
A Verified Solver for Linear Recurrences

Manuel Eberl

March 17, 2025

Abstract

Linear recurrences with constant coefficients are an interesting class
of recurrence equations that can be solved explicitly. The most famous
example are certainly the Fibonacci numbers with the equation f(n) =
f(n− 1) + f(n− 2) and the quite non-obvious closed form

1√
5
(ϕn − (−ϕ)−n)

where ϕ is the golden ratio.
In this work, I build on existing tools in Isabelle – such as formal

power series and polynomial factorisation algorithms – to develop a
theory of these recurrences and derive a fully executable solver for
them that can be exported to programming languages like Haskell.

Contents
1 Rational formal power series 2

1.1 Some auxiliary . 2
1.2 The type of rational formal power series 3

2 Falling factorial as a polynomial 22

3 Miscellaneous material required for linear recurrences 23

4 Partial Fraction Decomposition 28
4.1 Decomposition on general Euclidean rings 28
4.2 Specific results for polynomials 34

5 Factorizations of polynomials 36

6 Solver for rational formal power series 41

7 Material common to homogenous and inhomogenous linear
recurrences 49

1

8 Homogenous linear recurrences 50

9 Eulerian polynomials 56

10 Inhomogenous linear recurrences 59

2

1 Rational formal power series
theory RatFPS
imports

Complex-Main
HOL−Computational-Algebra.Computational-Algebra
HOL−Computational-Algebra.Polynomial-Factorial

begin

1.1 Some auxiliary
abbreviation constant-term :: ′a poly ⇒ ′a::zero

where constant-term p ≡ coeff p 0

lemma coeff-0-mult: coeff (p ∗ q) 0 = coeff p 0 ∗ coeff q 0
by (simp add: coeff-mult)

lemma coeff-0-div:
assumes coeff p 0 6= 0
assumes (q :: ′a :: field poly) dvd p
shows coeff (p div q) 0 = coeff p 0 div coeff q 0

proof (cases q = 0)
case False
from assms have p = p div q ∗ q by simp
also have coeff . . . 0 = coeff (p div q) 0 ∗ coeff q 0 by (simp add: coeff-0-mult)
finally show ?thesis using assms by auto

qed simp-all

lemma coeff-0-add-fract-nonzero:
assumes coeff (snd (quot-of-fract x)) 0 6= 0 coeff (snd (quot-of-fract y)) 0 6= 0
shows coeff (snd (quot-of-fract (x + y))) 0 6= 0

proof −
define num where num = fst (quot-of-fract x) ∗ snd (quot-of-fract y) +

snd (quot-of-fract x) ∗ fst (quot-of-fract y)
define denom where denom = snd (quot-of-fract x) ∗ snd (quot-of-fract y)
define z where z = (num, denom)
from assms have snd z 6= 0 by (auto simp: denom-def z-def)
then obtain d where d:

fst z = fst (normalize-quot z) ∗ d
snd z = snd (normalize-quot z) ∗ d
d dvd fst z
d dvd snd z
d 6= 0
by (rule normalize-quotE ′)

from assms have z: coeff (snd z) 0 6= 0 by (simp add: z-def denom-def co-
eff-0-mult)

have coeff (snd (quot-of-fract (x + y))) 0 = coeff (snd (normalize-quot z)) 0
by (simp add: quot-of-fract-add Let-def case-prod-unfold z-def num-def de-

nom-def)

3

also from z have . . . 6= 0 using d by (simp add: d coeff-0-mult)
finally show ?thesis .

qed

lemma coeff-0-normalize-quot-nonzero [simp]:
assumes coeff (snd x) 0 6= 0
shows coeff (snd (normalize-quot x)) 0 6= 0

proof −
from assms have snd x 6= 0 by auto
then obtain d where

fst x = fst (normalize-quot x) ∗ d
snd x = snd (normalize-quot x) ∗ d
d dvd fst x
d dvd snd x
d 6= 0

by (rule normalize-quotE ′)
with assms show ?thesis by (auto simp: coeff-0-mult)

qed

abbreviation numerator :: ′a fract ⇒ ′a::{ring-gcd,idom-divide,semiring-gcd-mult-normalize}
where numerator x ≡ fst (quot-of-fract x)

abbreviation denominator :: ′a fract ⇒ ′a::{ring-gcd,idom-divide,semiring-gcd-mult-normalize}
where denominator x ≡ snd (quot-of-fract x)

declare unit-factor-snd-quot-of-fract [simp]
normalize-snd-quot-of-fract [simp]

lemma constant-term-denominator-nonzero-imp-constant-term-denominator-div-gcd-nonzero:
constant-term (denominator x div gcd a (denominator x)) 6= 0
if constant-term (denominator x) 6= 0
using that coeff-0-normalize-quot-nonzero [of (a, denominator x)]
normalize-quot-proj(2) [of denominator x a]
by simp

1.2 The type of rational formal power series
typedef (overloaded) ′a :: field-gcd ratfps =
{x :: ′a poly fract. constant-term (denominator x) 6= 0}
by (rule exI [of - 0]) simp

setup-lifting type-definition-ratfps

instantiation ratfps :: (field-gcd) idom
begin

lift-definition zero-ratfps :: ′a ratfps is 0 by simp

lift-definition one-ratfps :: ′a ratfps is 1 by simp

4

lift-definition uminus-ratfps :: ′a ratfps ⇒ ′a ratfps is uminus
by (simp add: quot-of-fract-uminus case-prod-unfold Let-def)

lift-definition plus-ratfps :: ′a ratfps ⇒ ′a ratfps ⇒ ′a ratfps is (+)
by (rule coeff-0-add-fract-nonzero)

lift-definition minus-ratfps :: ′a ratfps ⇒ ′a ratfps ⇒ ′a ratfps is (−)
by (simp only: diff-conv-add-uminus, rule coeff-0-add-fract-nonzero)

(simp-all add: quot-of-fract-uminus Let-def case-prod-unfold)

lift-definition times-ratfps :: ′a ratfps ⇒ ′a ratfps ⇒ ′a ratfps is (∗)
by (simp add: quot-of-fract-mult Let-def case-prod-unfold coeff-0-mult
constant-term-denominator-nonzero-imp-constant-term-denominator-div-gcd-nonzero)

instance
by (standard; transfer) (simp-all add: ring-distribs)

end

fun ratfps-nth-aux :: (′a::field) poly ⇒ nat ⇒ ′a
where

ratfps-nth-aux p 0 = inverse (coeff p 0)
| ratfps-nth-aux p n =
− inverse (coeff p 0) ∗ sum (λi. coeff p i ∗ ratfps-nth-aux p (n − i)) {1 ..n}

lemma ratfps-nth-aux-correct: ratfps-nth-aux p n = natfun-inverse (fps-of-poly p)
n

by (induction p n rule: ratfps-nth-aux.induct) simp-all

lift-definition ratfps-nth :: ′a :: field-gcd ratfps ⇒ nat ⇒ ′a is
λx n. let (a,b) = quot-of-fract x

in (
∑

i = 0 ..n. coeff a i ∗ ratfps-nth-aux b (n − i)) .

lift-definition ratfps-subdegree :: ′a :: field-gcd ratfps ⇒ nat is
λx. poly-subdegree (fst (quot-of-fract x)) .

context
includes lifting-syntax
begin

lemma RatFPS-parametric: (rel-prod (=) (=) ===> (=))
(λ(p,q). if coeff q 0 = 0 then 0 else quot-to-fract (p, q))
(λ(p,q). if coeff q 0 = 0 then 0 else quot-to-fract (p, q))
by transfer-prover

end

5

lemma normalize-quot-quot-of-fract [simp]:
normalize-quot (quot-of-fract x) = quot-of-fract x
by (rule normalize-quot-id, rule quot-of-fract-in-normalized-fracts)

context
assumes SORT-CONSTRAINT (′a::field-gcd)
begin

lift-definition quot-of-ratfps :: ′a ratfps ⇒ (′a poly × ′a poly) is
quot-of-fract :: ′a poly fract ⇒ (′a poly × ′a poly) .

lift-definition quot-to-ratfps :: (′a poly × ′a poly) ⇒ ′a ratfps is
λ(x,y). let (x ′,y ′) = normalize-quot (x,y)

in if coeff y ′ 0 = 0 then 0 else quot-to-fract (x ′,y ′)
by (simp add: case-prod-unfold Let-def quot-of-fract-quot-to-fract)

lemma quot-to-ratfps-quot-of-ratfps [code abstype]:
quot-to-ratfps (quot-of-ratfps x) = x
by transfer (simp add: case-prod-unfold Let-def)

lemma coeff-0-snd-quot-of-ratfps-nonzero [simp]:
coeff (snd (quot-of-ratfps x)) 0 6= 0
by transfer simp

lemma quot-of-ratfps-quot-to-ratfps:
coeff (snd x) 0 6= 0 =⇒ x ∈ normalized-fracts =⇒ quot-of-ratfps (quot-to-ratfps

x) = x
by transfer (simp add: Let-def case-prod-unfold coeff-0-normalize-quot-nonzero

quot-of-fract-quot-to-fract normalize-quot-id)

lemma quot-of-ratfps-0 [simp, code abstract]: quot-of-ratfps 0 = (0 , 1)
by transfer simp-all

lemma quot-of-ratfps-1 [simp, code abstract]: quot-of-ratfps 1 = (1 , 1)
by transfer simp-all

lift-definition ratfps-of-poly :: ′a poly ⇒ ′a ratfps is
to-fract :: ′a poly ⇒ -
by transfer simp

lemma ratfps-of-poly-code [code abstract]:
quot-of-ratfps (ratfps-of-poly p) = (p, 1)
by transfer ′ simp

lemmas zero-ratfps-code = quot-of-ratfps-0

lemmas one-ratfps-code = quot-of-ratfps-1

lemma uminus-ratfps-code [code abstract]:

6

quot-of-ratfps (− x) = (let (a, b) = quot-of-ratfps x in (−a, b))
by transfer (rule quot-of-fract-uminus)

lemma plus-ratfps-code [code abstract]:
quot-of-ratfps (x + y) =

(let (a,b) = quot-of-ratfps x; (c,d) = quot-of-ratfps y
in normalize-quot (a ∗ d + b ∗ c, b ∗ d))

by transfer ′ (rule quot-of-fract-add)

lemma minus-ratfps-code [code abstract]:
quot-of-ratfps (x − y) =

(let (a,b) = quot-of-ratfps x; (c,d) = quot-of-ratfps y
in normalize-quot (a ∗ d − b ∗ c, b ∗ d))

by transfer ′ (rule quot-of-fract-diff)

definition ratfps-cutoff :: nat ⇒ ′a :: field-gcd ratfps ⇒ ′a poly where
ratfps-cutoff n x = poly-of-list (map (ratfps-nth x) [0 ..<n])

definition ratfps-shift :: nat ⇒ ′a :: field-gcd ratfps ⇒ ′a ratfps where
ratfps-shift n x = (let (a, b) = quot-of-ratfps (x − ratfps-of-poly (ratfps-cutoff n

x))
in quot-to-ratfps (poly-shift n a, b))

lemma times-ratfps-code [code abstract]:
quot-of-ratfps (x ∗ y) =

(let (a,b) = quot-of-ratfps x; (c,d) = quot-of-ratfps y;
(e,f) = normalize-quot (a,d); (g,h) = normalize-quot (c,b)

in (e∗g, f ∗h))
by transfer ′ (rule quot-of-fract-mult)

lemma ratfps-nth-code [code]:
ratfps-nth x n =
(let (a,b) = quot-of-ratfps x
in

∑
i = 0 ..n. coeff a i ∗ ratfps-nth-aux b (n − i))

by transfer ′ simp

lemma ratfps-subdegree-code [code]:
ratfps-subdegree x = poly-subdegree (fst (quot-of-ratfps x))
by transfer simp

end

instantiation ratfps :: (field-gcd) inverse
begin

lift-definition inverse-ratfps :: ′a ratfps ⇒ ′a ratfps is
λx. let (a,b) = quot-of-fract x

in if coeff a 0 = 0 then 0 else inverse x
by (auto simp: case-prod-unfold Let-def quot-of-fract-inverse)

7

lift-definition divide-ratfps :: ′a ratfps ⇒ ′a ratfps ⇒ ′a ratfps is
λf g. (if g = 0 then 0 else

let n = ratfps-subdegree g; h = ratfps-shift n g
in ratfps-shift n (f ∗ inverse h)) .

instance ..
end

lemma ratfps-inverse-code [code abstract]:
quot-of-ratfps (inverse x) =

(let (a,b) = quot-of-ratfps x
in if coeff a 0 = 0 then (0 , 1)

else let u = unit-factor a in (b div u, a div u))
by transfer ′ (simp-all add: Let-def case-prod-unfold quot-of-fract-inverse)

instantiation ratfps :: (equal) equal
begin

definition equal-ratfps :: ′a ratfps ⇒ ′a ratfps ⇒ bool where
[simp]: equal-ratfps x y ←→ x = y

instance by standard simp

end

lemma quot-of-fract-eq-iff [simp]: quot-of-fract x = quot-of-fract y ←→ x = y
by transfer (auto simp: normalize-quot-eq-iff)

lemma equal-ratfps-code [code]: HOL.equal x y ←→ quot-of-ratfps x = quot-of-ratfps
y

unfolding equal-ratfps-def by transfer simp

lemma fps-of-poly-quot-normalize-quot [simp]:
fps-of-poly (fst (normalize-quot x)) / fps-of-poly (snd (normalize-quot x)) =

fps-of-poly (fst x) / fps-of-poly (snd x)
if (snd x :: ′a :: field-gcd poly) 6= 0

proof −
from that obtain d where fst x = fst (normalize-quot x) ∗ d

and snd x = snd (normalize-quot x) ∗ d and d 6= 0
by (rule normalize-quotE ′)

then show ?thesis
by (simp add: fps-of-poly-mult)

qed

lemma fps-of-poly-quot-normalize-quot ′ [simp]:
fps-of-poly (fst (normalize-quot x)) / fps-of-poly (snd (normalize-quot x)) =

fps-of-poly (fst x) / fps-of-poly (snd x)
if coeff (snd x) 0 6= (0 :: ′a :: field-gcd)

8

using that by (auto intro: fps-of-poly-quot-normalize-quot)

lift-definition fps-of-ratfps :: ′a :: field-gcd ratfps ⇒ ′a fps is
λx. fps-of-poly (numerator x) / fps-of-poly (denominator x) .

lemma fps-of-ratfps-altdef :
fps-of-ratfps x = (case quot-of-ratfps x of (a, b) ⇒ fps-of-poly a / fps-of-poly b)
by transfer (simp add: case-prod-unfold)

lemma fps-of-ratfps-ratfps-of-poly [simp]: fps-of-ratfps (ratfps-of-poly p) = fps-of-poly
p

by transfer simp

lemma fps-of-ratfps-0 [simp]: fps-of-ratfps 0 = 0
by transfer simp

lemma fps-of-ratfps-1 [simp]: fps-of-ratfps 1 = 1
by transfer simp

lemma fps-of-ratfps-uminus [simp]: fps-of-ratfps (−x) = − fps-of-ratfps x
by transfer (simp add: quot-of-fract-uminus case-prod-unfold Let-def fps-of-poly-simps

dvd-neg-div)

lemma fps-of-ratfps-add [simp]: fps-of-ratfps (x + y) = fps-of-ratfps x + fps-of-ratfps
y
by transfer (simp add: quot-of-fract-add Let-def case-prod-unfold fps-of-poly-simps)

lemma fps-of-ratfps-diff [simp]: fps-of-ratfps (x − y) = fps-of-ratfps x − fps-of-ratfps
y
by transfer (simp add: quot-of-fract-diff Let-def case-prod-unfold fps-of-poly-simps)

lemma is-unit-div-div-commute: is-unit b =⇒ is-unit c =⇒ a div b div c = a div
c div b

by (metis is-unit-div-mult2-eq mult.commute)

lemma fps-of-ratfps-mult [simp]: fps-of-ratfps (x ∗ y) = fps-of-ratfps x ∗ fps-of-ratfps
y
proof (transfer , goal-cases)

case (1 x y)
moreover define x ′ y ′ where x ′ = quot-of-fract x and y ′ = quot-of-fract y
ultimately have assms: coeff (snd x ′) 0 6= 0 coeff (snd y ′) 0 6= 0

by simp-all
moreover define w z where w = normalize-quot (fst x ′, snd y ′) and z =

normalize-quot (fst y ′, snd x ′)
ultimately have unit: coeff (snd x ′) 0 6= 0 coeff (snd y ′) 0 6= 0

coeff (snd w) 0 6= 0 coeff (snd z) 0 6= 0
by (simp-all add: coeff-0-normalize-quot-nonzero)

have fps-of-poly (fst w ∗ fst z) / fps-of-poly (snd w ∗ snd z) =
(fps-of-poly (fst w) / fps-of-poly (snd w)) ∗

9

(fps-of-poly (fst z) / fps-of-poly (snd z)) (is - = ?A ∗ ?B)
by (simp add: is-unit-div-mult2-eq fps-of-poly-mult unit-div-mult-swap unit-div-commute

unit)
also have . . . = (fps-of-poly (fst x ′) / fps-of-poly (snd x ′)) ∗

(fps-of-poly (fst y ′) / fps-of-poly (snd y ′)) using unit
by (simp add: w-def z-def unit-div-commute unit-div-mult-swap is-unit-div-div-commute)

finally show ?case
by (simp add: w-def z-def x ′-def y ′-def Let-def case-prod-unfold quot-of-fract-mult

mult-ac)
qed

lemma div-const-unit-poly: is-unit c =⇒ p div [:c:] = smult (1 div c) p
by (simp add: is-unit-const-poly-iff unit-eq-div1)

lemma normalize-field:
normalize (x :: ′a :: {normalization-semidom,field}) = (if x = 0 then 0 else 1)
by (auto simp: normalize-1-iff dvd-field-iff)

lemma unit-factor-field [simp]:
unit-factor (x :: ′a :: {normalization-semidom,field}) = x
using unit-factor-mult-normalize[of x] normalize-field[of x]
by (simp split: if-splits)

lemma fps-of-poly-normalize-field:
fps-of-poly (normalize (p :: ′a :: {field, normalization-semidom} poly)) =

fps-of-poly p ∗ fps-const (inverse (lead-coeff p))
by (cases p = 0)
(simp-all add: normalize-poly-def div-const-unit-poly divide-simps dvd-field-iff)

lemma unit-factor-poly-altdef : unit-factor p = monom (unit-factor (lead-coeff p))
0

by (simp add: unit-factor-poly-def monom-altdef)

lemma div-const-poly: p div [:c:: ′a::field:] = smult (inverse c) p
by (cases c = 0) (simp-all add: unit-eq-div1 is-unit-triv)

lemma fps-of-ratfps-inverse [simp]: fps-of-ratfps (inverse x) = inverse (fps-of-ratfps
x)
proof (transfer , goal-cases)

case (1 x)
hence smult (lead-coeff (fst (quot-of-fract x))) (snd (quot-of-fract x)) div

unit-factor (fst (quot-of-fract x)) = snd (quot-of-fract x)
if fst (quot-of-fract x) 6= 0 using that
by (simp add: unit-factor-poly-altdef monom-0 div-const-poly)

with 1 show ?case
by (auto simp: Let-def case-prod-unfold fps-divide-unit fps-inverse-mult

quot-of-fract-inverse mult-ac
fps-of-poly-simps fps-const-inverse
fps-of-poly-normalize-field div-smult-left [symmetric])

10

qed

context
includes fps-syntax

begin

lemma ratfps-nth-altdef : ratfps-nth x n = fps-of-ratfps x $ n
by transfer

(simp-all add: case-prod-unfold fps-divide-unit fps-times-def fps-inverse-def
ratfps-nth-aux-correct Let-def)

lemma fps-of-ratfps-is-unit: fps-of-ratfps a $ 0 6= 0 ←→ ratfps-nth a 0 6= 0
by (simp add: ratfps-nth-altdef)

lemma ratfps-nth-0 [simp]: ratfps-nth 0 n = 0
by (simp add: ratfps-nth-altdef)

lemma fps-of-ratfps-cases:
obtains p q where coeff q 0 6= 0 fps-of-ratfps f = fps-of-poly p / fps-of-poly q
by (rule that[of snd (quot-of-ratfps f) fst (quot-of-ratfps f)])

(simp-all add: fps-of-ratfps-altdef case-prod-unfold)

lemma fps-of-ratfps-cutoff [simp]:
fps-of-poly (ratfps-cutoff n x) = fps-cutoff n (fps-of-ratfps x)

by (simp add: fps-eq-iff ratfps-cutoff-def nth-default-def ratfps-nth-altdef)

lemma subdegree-fps-of-ratfps:
subdegree (fps-of-ratfps x) = ratfps-subdegree x
by transfer (simp-all add: case-prod-unfold subdegree-div-unit poly-subdegree-def)

lemma ratfps-subdegree-altdef :
ratfps-subdegree x = subdegree (fps-of-ratfps x)
using subdegree-fps-of-ratfps ..

end

code-datatype fps-of-ratfps

lemma fps-zero-code [code]: 0 = fps-of-ratfps 0 by simp

lemma fps-one-code [code]: 1 = fps-of-ratfps 1 by simp

lemma fps-const-code [code]: fps-const c = fps-of-poly [:c:] by simp

lemma fps-of-poly-code [code]: fps-of-poly p = fps-of-ratfps (ratfps-of-poly p) by
simp

lemma fps-X-code [code]: fps-X = fps-of-ratfps (ratfps-of-poly [:0 ,1 :]) by simp

11

lemma fps-nth-code [code]: fps-nth (fps-of-ratfps x) n = ratfps-nth x n
by (simp add: ratfps-nth-altdef)

lemma fps-uminus-code [code]: − fps-of-ratfps x = fps-of-ratfps (−x) by simp

lemma fps-add-code [code]: fps-of-ratfps x + fps-of-ratfps y = fps-of-ratfps (x +
y) by simp

lemma fps-diff-code [code]: fps-of-ratfps x − fps-of-ratfps y = fps-of-ratfps (x − y)
by simp

lemma fps-mult-code [code]: fps-of-ratfps x ∗ fps-of-ratfps y = fps-of-ratfps (x ∗ y)
by simp

lemma fps-inverse-code [code]: inverse (fps-of-ratfps x) = fps-of-ratfps (inverse x)

by simp

lemma fps-cutoff-code [code]: fps-cutoff n (fps-of-ratfps x) = fps-of-poly (ratfps-cutoff
n x)

by simp

lemmas subdegree-code [code] = subdegree-fps-of-ratfps

lemma fractrel-normalize-quot:
fractrel p p =⇒ fractrel q q =⇒

fractrel (normalize-quot p) (normalize-quot q) ←→ fractrel p q
by (subst fractrel-normalize-quot-left fractrel-normalize-quot-right, simp)+ (rule

refl)

lemma fps-of-ratfps-eq-iff [simp]:
fps-of-ratfps p = fps-of-ratfps q ←→ p = q

proof −
{

fix p q :: ′a poly fract
assume fractrel (quot-of-fract p) (quot-of-fract q)
hence p = q by transfer (simp only: fractrel-normalize-quot)

} note A = this
show ?thesis
by transfer (auto simp: case-prod-unfold unit-eq-div1 unit-eq-div2 unit-div-commute

intro: A)
qed

lemma fps-of-ratfps-eq-zero-iff [simp]:
fps-of-ratfps p = 0 ←→ p = 0
by (simp del: fps-of-ratfps-0 add: fps-of-ratfps-0 [symmetric])

12

lemma unit-factor-snd-quot-of-ratfps [simp]:
unit-factor (snd (quot-of-ratfps x)) = 1
by transfer simp

lemma poly-shift-times-monom-le:
n ≤ m =⇒ poly-shift n (monom c m ∗ p) = monom c (m − n) ∗ p
by (intro poly-eqI) (auto simp: coeff-monom-mult coeff-poly-shift)

lemma poly-shift-times-monom-ge:
n ≥ m =⇒ poly-shift n (monom c m ∗ p) = smult c (poly-shift (n − m) p)
by (intro poly-eqI) (auto simp: coeff-monom-mult coeff-poly-shift)

lemma poly-shift-times-monom:
poly-shift n (monom c n ∗ p) = smult c p
by (intro poly-eqI) (auto simp: coeff-monom-mult coeff-poly-shift)

lemma monom-times-poly-shift:
assumes poly-subdegree p ≥ n
shows monom c n ∗ poly-shift n p = smult c p (is ?lhs = ?rhs)

proof (intro poly-eqI)
fix k
show coeff ?lhs k = coeff ?rhs k
proof (cases k < n)

case True
with assms have k < poly-subdegree p by simp
hence coeff p k = 0 by (simp add: coeff-less-poly-subdegree)
thus ?thesis by (auto simp: coeff-monom-mult coeff-poly-shift)

qed (auto simp: coeff-monom-mult coeff-poly-shift)
qed

lemma monom-times-poly-shift ′:
assumes poly-subdegree p ≥ n
shows monom (1 :: ′a :: comm-semiring-1) n ∗ poly-shift n p = p
by (simp add: monom-times-poly-shift[OF assms])

lemma subdegree-minus-cutoff-ge:
assumes f − fps-cutoff n (f :: ′a :: ab-group-add fps) 6= 0
shows subdegree (f − fps-cutoff n f) ≥ n
using assms by (rule subdegree-geI) simp-all

lemma fps-shift-times-X-power ′′: fps-shift n (fps-X ^ n ∗ f :: ′a :: comm-ring-1
fps) = f

using fps-shift-times-fps-X-power ′[of n f] by (simp add: mult.commute)

lemma
ratfps-shift-code [code abstract]:

quot-of-ratfps (ratfps-shift n x) =
(let (a, b) = quot-of-ratfps (x − ratfps-of-poly (ratfps-cutoff n x))
in (poly-shift n a, b)) (is ?lhs1 = ?rhs1) and

13

fps-of-ratfps-shift [simp]:
fps-of-ratfps (ratfps-shift n x) = fps-shift n (fps-of-ratfps x)

proof −
include fps-syntax
define x ′ where x ′ = ratfps-of-poly (ratfps-cutoff n x)
define y where y = quot-of-ratfps (x − x ′)

have coprime (fst y) (snd y) unfolding y-def
by transfer (rule coprime-quot-of-fract)

also have fst-y: fst y = monom 1 n ∗ poly-shift n (fst y)
proof (cases x = x ′)

case False
have poly-subdegree (fst y) = subdegree (fps-of-poly (fst y))

by (simp add: poly-subdegree-def)
also have . . . = subdegree (fps-of-poly (fst y) / fps-of-poly (snd y))

by (subst subdegree-div-unit) (simp-all add: y-def)
also have fps-of-poly (fst y) / fps-of-poly (snd y) = fps-of-ratfps (x − x ′)

unfolding y-def by transfer (simp add: case-prod-unfold)
also from False have subdegree . . . ≥ n
proof (intro subdegree-geI)

fix k assume k < n
thus fps-of-ratfps (x − x ′) $ k = 0 by (simp add: x ′-def)

qed simp-all
finally show ?thesis by (rule monom-times-poly-shift ′ [symmetric])

qed (simp-all add: y-def)
finally have coprime: coprime (poly-shift n (fst y)) (snd y)

by simp

have quot-of-ratfps (ratfps-shift n x) =
quot-of-ratfps (quot-to-ratfps (poly-shift n (fst y), snd y))

by (simp add: ratfps-shift-def Let-def case-prod-unfold x ′-def y-def)
also from coprime have . . . = (poly-shift n (fst y), snd y)
by (intro quot-of-ratfps-quot-to-ratfps) (simp-all add: y-def normalized-fracts-def)

also have . . . = ?rhs1 by (simp add: case-prod-unfold Let-def y-def x ′-def)
finally show eq: ?lhs1 = ?rhs1 .

have fps-shift n (fps-of-ratfps x) = fps-shift n (fps-of-ratfps (x − x ′))
by (intro fps-ext) (simp-all add: x ′-def)

also have fps-of-ratfps (x − x ′) = fps-of-poly (fst y) / fps-of-poly (snd y)
by (simp add: fps-of-ratfps-altdef y-def case-prod-unfold)

also have fps-shift n . . . = fps-of-ratfps (ratfps-shift n x)
by (subst fst-y, subst fps-of-poly-mult, subst unit-div-mult-swap [symmetric])

(simp-all add: y-def fps-of-poly-monom fps-shift-times-X-power ′′ eq
fps-of-ratfps-altdef case-prod-unfold Let-def x ′-def)

finally show fps-of-ratfps (ratfps-shift n x) = fps-shift n (fps-of-ratfps x) ..
qed

lemma fps-shift-code [code]: fps-shift n (fps-of-ratfps x) = fps-of-ratfps (ratfps-shift
n x)

14

by simp

instantiation fps :: (equal) equal
begin

definition equal-fps :: ′a fps ⇒ ′a fps ⇒ bool where
[simp]: equal-fps f g ←→ f = g

instance by standard simp-all

end

lemma equal-fps-code [code]: HOL.equal (fps-of-ratfps f) (fps-of-ratfps g) ←→ f =
g

by simp

lemma fps-of-ratfps-divide [simp]:
fps-of-ratfps (f div g) = fps-of-ratfps f div fps-of-ratfps g
unfolding fps-divide-def Let-def by transfer ′ (simp add: Let-def ratfps-subdegree-altdef)

lemma ratfps-eqI : fps-of-ratfps x = fps-of-ratfps y =⇒ x = y by simp

instance ratfps :: (field-gcd) algebraic-semidom
by standard (auto intro: ratfps-eqI)

lemma fps-of-ratfps-dvd [simp]:
fps-of-ratfps x dvd fps-of-ratfps y ←→ x dvd y

proof
assume fps-of-ratfps x dvd fps-of-ratfps y
hence fps-of-ratfps y = fps-of-ratfps y div fps-of-ratfps x ∗ fps-of-ratfps x by simp
also have . . . = fps-of-ratfps (y div x ∗ x) by simp
finally have y = y div x ∗ x by (subst (asm) fps-of-ratfps-eq-iff)
thus x dvd y by (intro dvdI [of - - y div x]) (simp add: mult-ac)

next
assume x dvd y
hence y = y div x ∗ x by simp
also have fps-of-ratfps . . . = fps-of-ratfps (y div x) ∗ fps-of-ratfps x by simp
finally show fps-of-ratfps x dvd fps-of-ratfps y by (simp del: fps-of-ratfps-divide)

qed

lemma is-unit-ratfps-iff [simp]:
is-unit x ←→ ratfps-nth x 0 6= 0

proof
assume is-unit x
then obtain y where 1 = x ∗ y by (auto elim!: dvdE)
hence 1 = fps-of-ratfps (x ∗ y) by (simp del: fps-of-ratfps-mult)
also have . . . = fps-of-ratfps x ∗ fps-of-ratfps y by simp
finally have is-unit (fps-of-ratfps x) by (rule dvdI [of - - fps-of-ratfps y])
thus ratfps-nth x 0 6= 0 by (simp add: ratfps-nth-altdef)

15

next
assume ratfps-nth x 0 6= 0
hence fps-of-ratfps (x ∗ inverse x) = 1

by (simp add: ratfps-nth-altdef inverse-mult-eq-1 ′)
also have . . . = fps-of-ratfps 1 by simp
finally have x ∗ inverse x = 1 by (subst (asm) fps-of-ratfps-eq-iff)
thus is-unit x by (intro dvdI [of - - inverse x]) simp-all

qed

instantiation ratfps :: (field-gcd) normalization-semidom
begin

definition unit-factor-ratfps :: ′a ratfps ⇒ ′a ratfps where
unit-factor x = ratfps-shift (ratfps-subdegree x) x

definition normalize-ratfps :: ′a ratfps ⇒ ′a ratfps where
normalize x = (if x = 0 then 0 else ratfps-of-poly (monom 1 (ratfps-subdegree

x)))

lemma fps-of-ratfps-unit-factor [simp]:
fps-of-ratfps (unit-factor x) = unit-factor (fps-of-ratfps x)
unfolding unit-factor-ratfps-def by (simp add: ratfps-subdegree-altdef)

lemma fps-of-ratfps-normalize [simp]:
fps-of-ratfps (normalize x) = normalize (fps-of-ratfps x)
unfolding normalize-ratfps-def by (simp add: fps-of-poly-monom ratfps-subdegree-altdef)

instance proof
show unit-factor x ∗ normalize x = x normalize (0 :: ′a ratfps) = 0

unit-factor (0 :: ′a ratfps) = 0 for x :: ′a ratfps
by (rule ratfps-eqI , simp add: ratfps-subdegree-code

del: fps-of-ratfps-eq-iff fps-unit-factor-def fps-normalize-def)+
show is-unit (unit-factor a) if a 6= 0 for a :: ′a ratfps

using that by (auto simp: ratfps-nth-altdef)
fix a b :: ′a ratfps
assume is-unit a
thus unit-factor (a ∗ b) = a ∗ unit-factor b

by (intro ratfps-eqI , unfold fps-of-ratfps-unit-factor fps-of-ratfps-mult,
subst unit-factor-mult-unit-left) (auto simp: ratfps-nth-altdef)

show unit-factor a = a if is-unit a for a :: ′a ratfps
by (rule ratfps-eqI) (insert that, auto simp: fps-of-ratfps-is-unit)

qed

end

instance ratfps :: (field-gcd) normalization-semidom-multiplicative
proof

show unit-factor (a ∗ b) = unit-factor a ∗ unit-factor b for a b :: ′a ratfps
by (rule ratfps-eqI , insert unit-factor-mult[of fps-of-ratfps a fps-of-ratfps b])

16

(simp del: fps-of-ratfps-eq-iff)
qed

instantiation ratfps :: (field-gcd) semidom-modulo
begin

lift-definition modulo-ratfps :: ′a ratfps ⇒ ′a ratfps ⇒ ′a ratfps is
λf g. if g = 0 then f else

let n = ratfps-subdegree g; h = ratfps-shift n g
in ratfps-of-poly (ratfps-cutoff n (f ∗ inverse h)) ∗ h .

lemma fps-of-ratfps-mod [simp]:
fps-of-ratfps (f mod g :: ′a ratfps) = fps-of-ratfps f mod fps-of-ratfps g

unfolding fps-mod-def by transfer ′ (simp add: Let-def ratfps-subdegree-altdef)

instance
by standard (auto intro: ratfps-eqI)

end

instantiation ratfps :: (field-gcd) euclidean-ring
begin

definition euclidean-size-ratfps :: ′a ratfps ⇒ nat where
euclidean-size-ratfps x = (if x = 0 then 0 else 2 ^ ratfps-subdegree x)

lemma fps-of-ratfps-euclidean-size [simp]:
euclidean-size x = euclidean-size (fps-of-ratfps x)
unfolding euclidean-size-ratfps-def fps-euclidean-size-def
by (simp add: ratfps-subdegree-altdef)

instance proof
show euclidean-size (0 :: ′a ratfps) = 0 by simp
show euclidean-size (a mod b) < euclidean-size b

euclidean-size a ≤ euclidean-size (a ∗ b) if b 6= 0 for a b :: ′a ratfps
using that by (simp-all add: mod-size-less size-mult-mono)

qed

end

instantiation ratfps :: (field-gcd) euclidean-ring-cancel
begin

instance
by standard (auto intro: ratfps-eqI)

end

lemma quot-of-ratfps-eq-iff [simp]: quot-of-ratfps x = quot-of-ratfps y ←→ x = y

17

by transfer simp

lemma ratfps-eq-0-code: x = 0 ←→ fst (quot-of-ratfps x) = 0
proof

assume fst (quot-of-ratfps x) = 0
moreover have coprime (fst (quot-of-ratfps x)) (snd (quot-of-ratfps x))

by transfer (simp add: coprime-quot-of-fract)
moreover have normalize (snd (quot-of-ratfps x)) = snd (quot-of-ratfps x)

by (simp add: div-unit-factor [symmetric] del: div-unit-factor)
ultimately have quot-of-ratfps x = (0 ,1)

by (simp add: prod-eq-iff normalize-idem-imp-is-unit-iff)
also have . . . = quot-of-ratfps 0 by simp
finally show x = 0 by (subst (asm) quot-of-ratfps-eq-iff)

qed simp-all

lemma fps-dvd-code [code-unfold]:
x dvd y ←→ y = 0 ∨ ((x:: ′a::field-gcd fps) 6= 0 ∧ subdegree x ≤ subdegree y)
using fps-dvd-iff [of x y] by (cases x = 0) auto

lemma ratfps-dvd-code [code-unfold]:
x dvd y ←→ y = 0 ∨ (x 6= 0 ∧ ratfps-subdegree x ≤ ratfps-subdegree y)
using fps-dvd-code [of fps-of-ratfps x fps-of-ratfps y]
by (simp add: ratfps-subdegree-altdef)

instance ratfps :: (field-gcd) normalization-euclidean-semiring ..

instantiation ratfps :: (field-gcd) euclidean-ring-gcd
begin

definition gcd-ratfps = (Euclidean-Algorithm.gcd :: ′a ratfps ⇒ -)
definition lcm-ratfps = (Euclidean-Algorithm.lcm :: ′a ratfps ⇒ -)
definition Gcd-ratfps = (Euclidean-Algorithm.Gcd :: ′a ratfps set ⇒ -)
definition Lcm-ratfps = (Euclidean-Algorithm.Lcm:: ′a ratfps set ⇒ -)

instance by standard (simp-all add: gcd-ratfps-def lcm-ratfps-def Gcd-ratfps-def
Lcm-ratfps-def)
end

lemma ratfps-eq-0-iff : x = 0 ←→ fps-of-ratfps x = 0
using fps-of-ratfps-eq-iff [of x 0] unfolding fps-of-ratfps-0 by simp

lemma ratfps-of-poly-eq-0-iff : ratfps-of-poly x = 0 ←→ x = 0
by (auto simp: ratfps-eq-0-iff)

lemma ratfps-gcd:
assumes [simp]: f 6= 0 g 6= 0
shows gcd f g = ratfps-of-poly (monom 1 (min (ratfps-subdegree f) (ratfps-subdegree

18

g)))
by (rule sym, rule gcdI)

(auto simp: ratfps-subdegree-altdef ratfps-dvd-code subdegree-fps-of-poly
ratfps-of-poly-eq-0-iff normalize-ratfps-def)

lemma ratfps-gcd-altdef : gcd (f :: ′a :: field-gcd ratfps) g =
(if f = 0 ∧ g = 0 then 0 else
if f = 0 then ratfps-of-poly (monom 1 (ratfps-subdegree g)) else
if g = 0 then ratfps-of-poly (monom 1 (ratfps-subdegree f)) else

ratfps-of-poly (monom 1 (min (ratfps-subdegree f) (ratfps-subdegree g))))
by (simp add: ratfps-gcd normalize-ratfps-def)

lemma ratfps-lcm:
assumes [simp]: f 6= 0 g 6= 0
shows lcm f g = ratfps-of-poly (monom 1 (max (ratfps-subdegree f) (ratfps-subdegree

g)))
by (rule sym, rule lcmI)

(auto simp: ratfps-subdegree-altdef ratfps-dvd-code subdegree-fps-of-poly
ratfps-of-poly-eq-0-iff normalize-ratfps-def)

lemma ratfps-lcm-altdef : lcm (f :: ′a :: field-gcd ratfps) g =
(if f = 0 ∨ g = 0 then 0 else

ratfps-of-poly (monom 1 (max (ratfps-subdegree f) (ratfps-subdegree g))))
by (simp add: ratfps-lcm)

lemma ratfps-Gcd:
assumes A − {0} 6= {}
shows Gcd A = ratfps-of-poly (monom 1 (INF f∈A−{0}. ratfps-subdegree f))

proof (rule sym, rule GcdI)
fix f assume f ∈ A
thus ratfps-of-poly (monom 1 (INF f∈A − {0}. ratfps-subdegree f)) dvd f
by (cases f = 0) (auto simp: ratfps-dvd-code ratfps-of-poly-eq-0-iff ratfps-subdegree-altdef

subdegree-fps-of-poly intro!: cINF-lower)
next

fix d assume d:
∧

f . f ∈ A =⇒ d dvd f
from assms obtain f where f ∈ A − {0} by auto
with d[of f] have [simp]: d 6= 0 by auto
from d assms have ratfps-subdegree d ≤ (INF f∈A−{0}. ratfps-subdegree f)

by (intro cINF-greatest) (auto simp: ratfps-dvd-code)
with d assms show d dvd ratfps-of-poly (monom 1 (INF f∈A−{0}. ratfps-subdegree

f))
by (simp add: ratfps-dvd-code ratfps-subdegree-altdef subdegree-fps-of-poly)

qed (simp-all add: ratfps-subdegree-altdef subdegree-fps-of-poly normalize-ratfps-def)

lemma ratfps-Gcd-altdef : Gcd (A :: ′a :: field-gcd ratfps set) =
(if A ⊆ {0} then 0 else ratfps-of-poly (monom 1 (INF f∈A−{0}. ratfps-subdegree

f)))
using ratfps-Gcd by auto

19

lemma ratfps-Lcm:
assumes A 6= {} 0 /∈ A bdd-above (ratfps-subdegree‘A)
shows Lcm A = ratfps-of-poly (monom 1 (SUP f∈A. ratfps-subdegree f))

proof (rule sym, rule LcmI)
fix f assume f ∈ A
moreover from assms(3) have bdd-above (ratfps-subdegree ‘ A) by auto
ultimately show f dvd ratfps-of-poly (monom 1 (SUP f∈A. ratfps-subdegree f))

using assms(2)
by (cases f = 0) (auto simp: ratfps-dvd-code ratfps-of-poly-eq-0-iff subde-

gree-fps-of-poly
ratfps-subdegree-altdef [abs-def] intro!: cSUP-upper)

next
fix d assume d:

∧
f . f ∈ A =⇒ f dvd d

from assms obtain f where f : f ∈ A f 6= 0 by auto
show ratfps-of-poly (monom 1 (SUP f∈A. ratfps-subdegree f)) dvd d
proof (cases d = 0)

assume d 6= 0
moreover from d have

∧
f . f ∈ A =⇒ f 6= 0 =⇒ f dvd d by blast

ultimately have ratfps-subdegree d ≥ (SUP f∈A. ratfps-subdegree f) using
assms

by (intro cSUP-least) (auto simp: ratfps-dvd-code)
with ‹d 6= 0 › show ?thesis by (simp add: ratfps-dvd-code ratfps-of-poly-eq-0-iff

ratfps-subdegree-altdef subdegree-fps-of-poly)
qed simp-all

qed (simp-all add: ratfps-subdegree-altdef subdegree-fps-of-poly normalize-ratfps-def)

lemma ratfps-Lcm-altdef :
Lcm (A :: ′a :: field-gcd ratfps set) =

(if 0 ∈ A ∨ ¬bdd-above (ratfps-subdegree‘A) then 0 else
if A = {} then 1 else ratfps-of-poly (monom 1 (SUP f∈A. ratfps-subdegree f)))

proof (cases bdd-above (ratfps-subdegree‘A))
assume unbounded: ¬bdd-above (ratfps-subdegree‘A)
have Lcm A = 0
proof (rule ccontr)

assume Lcm A 6= 0
from unbounded obtain f where f : f ∈ A ratfps-subdegree (Lcm A) <

ratfps-subdegree f
unfolding bdd-above-def by (auto simp: not-le)

moreover from this and ‹Lcm A 6= 0 › have ratfps-subdegree f ≤ ratfps-subdegree
(Lcm A)

using dvd-Lcm[of f A] by (auto simp: ratfps-dvd-code)
ultimately show False by simp

qed
with unbounded show ?thesis by simp

qed (simp-all add: ratfps-Lcm Lcm-eq-0-I)

lemma fps-of-ratfps-quot-to-ratfps:
coeff y 0 6= 0 =⇒ fps-of-ratfps (quot-to-ratfps (x,y)) = fps-of-poly x / fps-of-poly

20

y
proof (transfer , goal-cases)

case (1 y x)
define x ′ y ′ where x ′ = fst (normalize-quot (x,y)) and y ′ = snd (normalize-quot

(x,y))
from 1 have nz: y 6= 0 by auto
have eq: normalize-quot (x ′, y ′) = (x ′, y ′) by (simp add: x ′-def y ′-def)
from normalize-quotE [OF nz, of x] obtain d where

x = fst (normalize-quot (x, y)) ∗ d
y = snd (normalize-quot (x, y)) ∗ d
d dvd x
d dvd y
d 6= 0 .

note d [folded x ′-def y ′-def] = this
have (case quot-of-fract (if coeff y ′ 0 = 0 then 0 else quot-to-fract (x ′, y ′)) of

(a, b) ⇒ fps-of-poly a / fps-of-poly b) = fps-of-poly x / fps-of-poly y
using d eq 1 by (auto simp: case-prod-unfold fps-of-poly-simps quot-of-fract-quot-to-fract

Let-def coeff-0-mult)
thus ?case by (auto simp add: Let-def case-prod-unfold x ′-def y ′-def)

qed

lemma fps-of-ratfps-quot-to-ratfps-code-post1 :
fps-of-ratfps (quot-to-ratfps (x,pCons 1 y)) = fps-of-poly x / fps-of-poly (pCons 1

y)
fps-of-ratfps (quot-to-ratfps (x,pCons (−1) y)) = fps-of-poly x / fps-of-poly (pCons

(−1) y)
by (simp-all add: fps-of-ratfps-quot-to-ratfps)

lemma fps-of-ratfps-quot-to-ratfps-code-post2 :
fps-of-ratfps (quot-to-ratfps (x ′:: ′a::{field-char-0 ,field-gcd} poly,pCons (numeral

n) y ′)) =
fps-of-poly x ′ / fps-of-poly (pCons (numeral n) y ′)

fps-of-ratfps (quot-to-ratfps (x ′:: ′a::{field-char-0 ,field-gcd} poly,pCons (−numeral
n) y ′)) =

fps-of-poly x ′ / fps-of-poly (pCons (−numeral n) y ′)
by (simp-all add: fps-of-ratfps-quot-to-ratfps)

lemmas fps-of-ratfps-quot-to-ratfps-code-post [code-post] =
fps-of-ratfps-quot-to-ratfps-code-post1
fps-of-ratfps-quot-to-ratfps-code-post2

lemma fps-dehorner :
fixes a b c :: ′a :: semiring-1 fps and d e f :: ′b :: ring-1 fps
shows
(b + c) ∗ fps-X = b ∗ fps-X + c ∗ fps-X (a ∗ fps-X) ∗ fps-X = a ∗ fps-X ^ 2
a ∗ fps-X ^ m ∗ fps-X = a ∗ fps-X ^ (Suc m) a ∗ fps-X ∗ fps-X ^ m = a ∗ fps-X

^ (Suc m)
a ∗ fps-X^m ∗ fps-X^n = a ∗ fps-X^(m+n) a + (b + c) = a + b + c a ∗ 1 =

21

a 1 ∗ a = a
d + − e = d − e (−d) ∗ e = − (d ∗ e) d + (e − f) = d + e − f
(d − e) ∗ fps-X = d ∗ fps-X − e ∗ fps-X fps-X ∗ fps-X = fps-X^2 fps-X ∗

fps-X^m = fps-X^(Suc m) fps-X^m ∗ fps-X = fps-X^Suc m
fps-X^m ∗ fps-X^n = fps-X^(m + n)
by (simp-all add: algebra-simps power2-eq-square power-add power-commutes)

lemma fps-divide-1 : (a :: ′a :: field fps) / 1 = a by simp

lemmas fps-of-poly-code-post [code-post] =
fps-of-poly-simps fps-const-0-eq-0 fps-const-1-eq-1 numeral-fps-const [symmetric]
fps-const-neg [symmetric] fps-const-divide [symmetric]
fps-dehorner Suc-numeral arith-simps fps-divide-1

context
includes term-syntax

begin

definition
valterm-ratfps ::

′a ::{field-gcd, typerep} poly × (unit ⇒ Code-Evaluation.term) ⇒
′a poly × (unit ⇒ Code-Evaluation.term)⇒ ′a ratfps × (unit ⇒ Code-Evaluation.term)

where
[code-unfold]: valterm-ratfps k l =

Code-Evaluation.valtermify (/) {·}
(Code-Evaluation.valtermify ratfps-of-poly {·} k) {·}
(Code-Evaluation.valtermify ratfps-of-poly {·} l)

end

instantiation ratfps :: ({field-gcd,random}) random
begin

context
includes state-combinator-syntax and term-syntax

begin

definition
Quickcheck-Random.random i =

Quickcheck-Random.random i ◦→ (λnum:: ′a poly × (unit ⇒ term).
Quickcheck-Random.random i ◦→ (λdenom:: ′a poly × (unit ⇒ term).
Pair (let denom = (if fst denom = 0 then Code-Evaluation.valtermify 1 else

denom)
in valterm-ratfps num denom)))

instance ..

end

22

end

instantiation ratfps :: ({field,factorial-ring-gcd,exhaustive}) exhaustive
begin

definition
exhaustive-ratfps f d =

Quickcheck-Exhaustive.exhaustive (λnum.
Quickcheck-Exhaustive.exhaustive (λdenom. f (

let denom = if denom = 0 then 1 else denom
in ratfps-of-poly num / ratfps-of-poly denom)) d) d

instance ..

end

instantiation ratfps :: ({field-gcd,full-exhaustive}) full-exhaustive
begin

definition
full-exhaustive-ratfps f d =

Quickcheck-Exhaustive.full-exhaustive (λnum:: ′a poly × (unit ⇒ term).
Quickcheck-Exhaustive.full-exhaustive (λdenom:: ′a poly × (unit ⇒ term).

f (let denom = if fst denom = 0 then Code-Evaluation.valtermify 1 else
denom

in valterm-ratfps num denom)) d) d

instance ..

end

quickcheck-generator fps constructors: fps-of-ratfps

end

2 Falling factorial as a polynomial
theory Pochhammer-Polynomials
imports

Complex-Main
HOL−Combinatorics.Stirling
HOL−Computational-Algebra.Polynomial

begin

definition pochhammer-poly :: nat ⇒ ′a :: {comm-semiring-1} poly where
pochhammer-poly n = Poly [of-nat (stirling n k). k ← [0 ..<Suc n]]

lemma pochhammer-poly-code [code abstract]:
coeffs (pochhammer-poly n) = map of-nat (stirling-row n)

23

by (simp add: pochhammer-poly-def stirling-row-def Let-def)

lemma coeff-pochhammer-poly: coeff (pochhammer-poly n) k = of-nat (stirling n
k)

by (simp add: pochhammer-poly-def nth-default-def del: upt-Suc)

lemma degree-pochhammer-poly [simp]: degree (pochhammer-poly n) = n
by (simp add: degree-eq-length-coeffs pochhammer-poly-def)

lemma pochhammer-poly-0 [simp]: pochhammer-poly 0 = 1
by (simp add: pochhammer-poly-def)

lemma pochhammer-poly-Suc: pochhammer-poly (Suc n) = [:of-nat n,1 :] ∗ pochham-
mer-poly n

by (cases n = 0) (simp-all add: poly-eq-iff coeff-pochhammer-poly coeff-pCons
split: nat.split)

lemma pochhammer-poly-altdef : pochhammer-poly n = (
∏

i<n. [:of-nat i,1 :])
by (induction n) (simp-all add: pochhammer-poly-Suc)

lemma eval-pochhammer-poly: poly (pochhammer-poly n) k = pochhammer k n
by (cases n) (auto simp add: pochhammer-poly-altdef poly-prod add-ac lessThan-Suc-atMost

pochhammer-Suc-prod atLeast0AtMost)

lemma pochhammer-poly-Suc ′:
pochhammer-poly (Suc n) = pCons 0 (pcompose (pochhammer-poly n) [:1 ,1 :])

by (simp add: pochhammer-poly-altdef prod.lessThan-Suc-shift pcompose-prod
pcompose-pCons add-ac del: prod.lessThan-Suc)

end

3 Miscellaneous material required for linear recur-
rences

theory Linear-Recurrences-Misc
imports

Complex-Main
HOL−Computational-Algebra.Computational-Algebra
HOL−Computational-Algebra.Polynomial-Factorial

begin

fun zip-with where
zip-with f (x#xs) (y#ys) = f x y # zip-with f xs ys
| zip-with f - - = []

lemma length-zip-with [simp]: length (zip-with f xs ys) = min (length xs) (length
ys)

24

by (induction f xs ys rule: zip-with.induct) simp-all

lemma zip-with-altdef : zip-with f xs ys = map (λ(x,y). f x y) (zip xs ys)
by (induction f xs ys rule: zip-with.induct) simp-all

lemma zip-with-nth [simp]:
n < length xs =⇒ n < length ys =⇒ zip-with f xs ys ! n = f (xs!n) (ys!n)
by (simp add: zip-with-altdef)

lemma take-zip-with: take n (zip-with f xs ys) = zip-with f (take n xs) (take n ys)
proof (induction f xs ys arbitrary: n rule: zip-with.induct)

case (1 f x xs y ys n)
thus ?case by (cases n) simp-all

qed simp-all

lemma drop-zip-with: drop n (zip-with f xs ys) = zip-with f (drop n xs) (drop n
ys)
proof (induction f xs ys arbitrary: n rule: zip-with.induct)

case (1 f x xs y ys n)
thus ?case by (cases n) simp-all

qed simp-all

lemma map-zip-with: map f (zip-with g xs ys) = zip-with (λx y. f (g x y)) xs ys
by (induction g xs ys rule: zip-with.induct) simp-all

lemma zip-with-map: zip-with f (map g xs) (map h ys) = zip-with (λx y. f (g x)
(h y)) xs ys

by (induction λx y. f (g x) (h y) xs ys rule: zip-with.induct) simp-all

lemma zip-with-map-left: zip-with f (map g xs) ys = zip-with (λx y. f (g x) y) xs
ys

using zip-with-map[of f g xs λx. x ys] by simp

lemma zip-with-map-right: zip-with f xs (map g ys) = zip-with (λx y. f x (g y)) xs
ys

using zip-with-map[of f λx. x xs g ys] by simp

lemma zip-with-swap: zip-with (λx y. f y x) xs ys = zip-with f ys xs
by (induction f ys xs rule: zip-with.induct) simp-all

lemma set-zip-with: set (zip-with f xs ys) = (λ(x,y). f x y) ‘ set (zip xs ys)
by (induction f xs ys rule: zip-with.induct) simp-all

lemma zip-with-Pair : zip-with Pair (xs :: ′a list) (ys :: ′b list) = zip xs ys
by (induction Pair :: ′a ⇒ ′b ⇒ - xs ys rule: zip-with.induct) simp-all

lemma zip-with-altdef ′:
zip-with f xs ys = [f (xs!i) (ys!i). i ← [0 ..<min (length xs) (length ys)]]

by (induction f xs ys rule: zip-with.induct) (simp-all add: map-upt-Suc del:

25

upt-Suc)

lemma zip-altdef : zip xs ys = [(xs!i, ys!i). i ← [0 ..<min (length xs) (length ys)]]
by (simp add: zip-with-Pair [symmetric] zip-with-altdef ′)

lemma card-poly-roots-bound:
fixes p :: ′a::{comm-ring-1 ,ring-no-zero-divisors} poly
assumes p 6= 0
shows card {x. poly p x = 0} ≤ degree p

using assms
proof (induction degree p arbitrary: p rule: less-induct)

case (less p)
show ?case
proof (cases ∃ x. poly p x = 0)

case False
hence {x. poly p x = 0} = {} by blast
thus ?thesis by simp

next
case True
then obtain x where x: poly p x = 0 by blast
hence [:−x, 1 :] dvd p by (subst (asm) poly-eq-0-iff-dvd)
then obtain q where q: p = [:−x, 1 :] ∗ q by (auto simp: dvd-def)
with ‹p 6= 0 › have [simp]: q 6= 0 by auto
have deg: degree p = Suc (degree q)

by (subst q, subst degree-mult-eq) auto
have card {x. poly p x = 0} ≤ card (insert x {x. poly q x = 0})

by (intro card-mono) (auto intro: poly-roots-finite simp: q)
also have . . . ≤ Suc (card {x. poly q x = 0})

by (rule card-insert-le-m1) auto
also from deg have card {x. poly q x = 0} ≤ degree q

using ‹p 6= 0 › and q by (intro less) auto
also have Suc . . . = degree p by (simp add: deg)
finally show ?thesis by − simp-all

qed
qed

lemma poly-eqI-degree:
fixes p q :: ′a :: {comm-ring-1 , ring-no-zero-divisors} poly
assumes

∧
x. x ∈ A =⇒ poly p x = poly q x

assumes card A > degree p card A > degree q
shows p = q

proof (rule ccontr)
assume neq: p 6= q
have degree (p − q) ≤ max (degree p) (degree q)

by (rule degree-diff-le-max)
also from assms have . . . < card A by linarith
also have . . . ≤ card {x. poly (p − q) x = 0}

26

using neq and assms by (intro card-mono poly-roots-finite) auto
finally have degree (p − q) < card {x. poly (p − q) x = 0} .
moreover have degree (p − q) ≥ card {x. poly (p − q) x = 0}

using neq by (intro card-poly-roots-bound) auto
ultimately show False by linarith

qed

lemma poly-root-order-induct [case-names 0 no-roots root]:
fixes p :: ′a :: idom poly
assumes P 0

∧
p. (

∧
x. poly p x 6= 0) =⇒ P p∧

p x n. n > 0 =⇒ poly p x 6= 0 =⇒ P p =⇒ P ([:−x, 1 :] ^ n ∗ p)
shows P p

proof (induction degree p arbitrary: p rule: less-induct)
case (less p)
consider p = 0 | p 6= 0 ∃ x. poly p x = 0 |

∧
x. poly p x 6= 0 by blast

thus ?case
proof cases

case 3
with assms(2)[of p] show ?thesis by simp

next
case 2
then obtain x where x: poly p x = 0 by auto
have [:−x, 1 :] ^ order x p dvd p by (intro order-1)
then obtain q where q: p = [:−x, 1 :] ^ order x p ∗ q by (auto simp: dvd-def)
with 2 have [simp]: q 6= 0 by auto
have order-pos: order x p > 0

using ‹p 6= 0 › and x by (auto simp: order-root)
have order x p = order x p + order x q

by (subst q, subst order-mult) (auto simp: order-power-n-n)
hence [simp]: order x q = 0 by simp
have deg: degree p = order x p + degree q

by (subst q, subst degree-mult-eq) (auto simp: degree-power-eq)
with order-pos have degree q < degree p by simp
hence P q by (rule less)
with order-pos have P ([:−x, 1 :] ^ order x p ∗ q)

by (intro assms(3)) (auto simp: order-root)
with q show ?thesis by simp

qed (simp-all add: assms(1))
qed

lemma complex-poly-decompose:
smult (lead-coeff p) (

∏
z|poly p z = 0 . [:−z, 1 :] ^ order z p) = (p :: complex poly)

proof (induction p rule: poly-root-order-induct)
case (no-roots p)
show ?case
proof (cases degree p = 0)

case False
hence ¬constant (poly p) by (subst constant-degree)
with fundamental-theorem-of-algebra and no-roots show ?thesis by blast

27

qed (auto elim!: degree-eq-zeroE)
next

case (root p x n)
from root have ∗: {z. poly ([:− x, 1 :] ^ n ∗ p) z = 0} = insert x {z. poly p z =

0}
by auto

have smult (lead-coeff ([:−x, 1 :] ^ n ∗ p))
(
∏

z|poly ([:−x,1 :] ^ n ∗ p) z = 0 . [:−z, 1 :] ^ order z ([:− x, 1 :] ^ n ∗
p)) =

[:− x, 1 :] ^ order x ([:− x, 1 :] ^ n ∗ p) ∗
smult (lead-coeff p) (

∏
z∈{z. poly p z = 0}. [:− z, 1 :] ^ order z ([:− x, 1 :]

^ n ∗ p))
by (subst ∗, subst prod.insert)
(insert root, auto intro: poly-roots-finite simp: mult-ac lead-coeff-mult lead-coeff-power)

also have order x ([:− x, 1 :] ^ n ∗ p) = n
using root by (subst order-mult) (auto simp: order-power-n-n order-0I)

also have (
∏

z∈{z. poly p z = 0}. [:− z, 1 :] ^ order z ([:− x, 1 :] ^ n ∗ p)) =
(
∏

z∈{z. poly p z = 0}. [:− z, 1 :] ^ order z p)
proof (intro prod.cong refl, goal-cases)

case (1 y)
with root have order y ([:−x,1 :] ^ n) = 0 by (intro order-0I) auto
thus ?case using root by (subst order-mult) auto

qed
also note root.IH
finally show ?case .

qed simp-all

lemma normalize-field:
normalize (x :: ′a :: {normalization-semidom,field}) = (if x = 0 then 0 else 1)
by (auto simp: normalize-1-iff dvd-field-iff)

lemma unit-factor-field [simp]:
unit-factor (x :: ′a :: {normalization-semidom,field}) = x
using unit-factor-mult-normalize[of x] normalize-field[of x]
by (simp split: if-splits)

lemma coprime-linear-poly:
fixes c :: ′a :: field-gcd
assumes c 6= c ′

shows coprime [:c,1 :] [:c ′,1 :]
proof −

have gcd [:c,1 :] [:c ′,1 :] = gcd ([:c,1 :] − [:c ′,1 :]) [:c ′,1 :]
by (rule gcd-diff1 [symmetric])

also have [:c,1 :] − [:c ′,1 :] = [:c−c ′:] by simp
also from assms have gcd . . . [:c ′,1 :] = normalize [:c−c ′:]

by (intro gcd-proj1-if-dvd) (auto simp: const-poly-dvd-iff dvd-field-iff)
also from assms have . . . = 1 by (simp add: normalize-poly-def)
finally show coprime [:c,1 :] [:c ′,1 :]

28

by (simp add: gcd-eq-1-imp-coprime)
qed

lemma coprime-linear-poly ′:
fixes c :: ′a :: field-gcd
assumes c 6= c ′ c 6= 0 c ′ 6= 0
shows coprime [:1 ,c:] [:1 ,c ′:]

proof −
have gcd [:1 ,c:] [:1 ,c ′:] = gcd ([:1 ,c:] mod [:1 ,c ′:]) [:1 ,c ′:]

by simp
also have ‹[:1 ,c:] mod [:1 ,c ′:] = [:1 − c / c ′:]›

using ‹c ′ 6= 0 › by (simp add: mod-pCons)
also from assms have gcd . . . [:1 ,c ′:] = normalize ([:1 − c / c ′:])

by (intro gcd-proj1-if-dvd) (auto simp: const-poly-dvd-iff dvd-field-iff)
also from assms have . . . = 1 by (auto simp: normalize-poly-def)
finally show ?thesis

by (rule gcd-eq-1-imp-coprime)
qed

end

4 Partial Fraction Decomposition
theory Partial-Fraction-Decomposition
imports

Main
HOL−Computational-Algebra.Computational-Algebra
HOL−Computational-Algebra.Polynomial-Factorial
HOL−Library.Sublist
Linear-Recurrences-Misc

begin

4.1 Decomposition on general Euclidean rings

Consider elements x, y1, . . . , yn of a ring R, where the yi are pairwise co-
prime. A Partial Fraction Decomposition of these elements (or rather the
formal quotient x/(y1 . . . yn) that they represent) is a finite sum of sum-
mands of the form a/yki . Obviously, the sum can be arranged such that
there is at most one summand with denominator yni for any combination of
i and n; in particular, there is at most one summand with denominator 1.
We can decompose the summands further by performing division with re-
mainder until in all quotients, the numerator’s Euclidean size is less than
that of the denominator.

The following function performs the first step of the above process: it takes
the values x and y1, . . . , yn and returns the numerators of the summands in
the decomposition. (the denominators are simply the yi from the input)

29

fun decompose :: (′a :: euclidean-ring-gcd) ⇒ ′a list ⇒ ′a list where
decompose x [] = []
| decompose x [y] = [x]
| decompose x (y#ys) =

(case bezout-coefficients y (prod-list ys) of
(a, b) ⇒ (b∗x) # decompose (a∗x) ys)

lemma decompose-rec:
ys 6= [] =⇒ decompose x (y#ys) =

(case bezout-coefficients y (prod-list ys) of
(a, b) ⇒ (b∗x) # decompose (a∗x) ys)

by (cases ys) simp-all

lemma length-decompose [simp]: length (decompose x ys) = length ys
proof (induction x ys rule: decompose.induct)

case (3 x y z ys)
obtain a b where ab: (a,b) = bezout-coefficients y (prod-list (z#ys))

by (cases bezout-coefficients y (z ∗ prod-list ys)) simp-all
from 3 [OF ab] ab[symmetric] show ?case by simp

qed simp-all

fun decompose ′ :: (′a :: euclidean-ring-gcd) ⇒ ′a list ⇒ ′a list ⇒ ′a list where
decompose ′ x [] - = []
| decompose ′ x [y] - = [x]
| decompose ′ - - [] = []
| decompose ′ x (y#ys) (p#ps) =

(case bezout-coefficients y p of
(a, b) ⇒ (b∗x) # decompose ′ (a∗x) ys ps)

primrec decompose-aux :: ′a :: {ab-semigroup-mult,monoid-mult} ⇒ - where
decompose-aux acc [] = [acc]
| decompose-aux acc (x#xs) = acc # decompose-aux (x ∗ acc) xs

lemma decompose-code [code]:
decompose x ys = decompose ′ x ys (tl (rev (decompose-aux 1 (rev ys))))

proof (induction x ys rule: decompose.induct)
case (3 x y1 y2 ys)
have [simp]:

decompose-aux acc xs = map (λx. prod-list x ∗ acc) (prefixes xs) for acc :: ′a
and xs

by (induction xs arbitrary: acc) (simp-all add: mult-ac)
show ?case

using 3 [of fst (bezout-coefficients y1 (y2 ∗ prod-list ys))
snd (bezout-coefficients y1 (y2 ∗ prod-list ys))]

by (simp add: case-prod-unfold rev-map prefixes-conv-suffixes o-def mult-ac)
qed simp-all

The next function performs the second step: Given a quotient of the form
x/yn, it returns a list of x0, . . . , xn such that x/yn = x0/y

n+. . .+xn−1/y+xn

30

and all xi have a Euclidean size less than that of y.
fun normalise-decomp :: (′a :: semiring-modulo) ⇒ ′a ⇒ nat ⇒ ′a × (′a list)
where

normalise-decomp x y 0 = (x, [])
| normalise-decomp x y (Suc n) = (

case normalise-decomp (x div y) y n of
(z, rs) ⇒ (z, x mod y # rs))

lemma length-normalise-decomp [simp]: length (snd (normalise-decomp x y n)) =
n

by (induction x y n rule: normalise-decomp.induct) (auto split: prod.split)

The following constant implements the full process of partial fraction de-
composition: The input is a quotient x/(yk11 . . . yknn) and the output is a sum
of an entire element and terms of the form a/yki where a has a Euclidean
size less than yi.
definition partial-fraction-decomposition ::

′a :: euclidean-ring-gcd ⇒ (′a × nat) list ⇒ ′a × ′a list list where
partial-fraction-decomposition x ys = (if ys = [] then (x, []) else

(let zs = [let (y, n) = ys ! i
in normalise-decomp (decompose x (map (λ(y,n). y ^ Suc n) ys) ! i)

y (Suc n).
i ← [0 ..<length ys]]

in (sum-list (map fst zs), map snd zs)))

lemma length-pfd1 [simp]:
length (snd (partial-fraction-decomposition x ys)) = length ys
by (simp add: partial-fraction-decomposition-def)

lemma length-pfd2 [simp]:
i < length ys =⇒ length (snd (partial-fraction-decomposition x ys) ! i) = snd (ys

! i) + 1
by (auto simp: partial-fraction-decomposition-def case-prod-unfold Let-def)

lemma size-normalise-decomp:
a ∈ set (snd (normalise-decomp x y n)) =⇒ y 6= 0 =⇒ euclidean-size a <

euclidean-size y
by (induction x y n rule: normalise-decomp.induct)

(auto simp: case-prod-unfold Let-def mod-size-less)

lemma size-partial-fraction-decomposition:
i < length xs =⇒ fst (xs ! i) 6= 0 =⇒ x ∈ set (snd (partial-fraction-decomposition

y xs) ! i)
=⇒ euclidean-size x < euclidean-size (fst (xs ! i))

by (auto simp: partial-fraction-decomposition-def Let-def case-prod-unfold
simp del: normalise-decomp.simps split: if-split-asm intro!: size-normalise-decomp)

A homomorphism ϕ from a Euclidean ring R into another ring S with a
notion of division. We will show that for any x, y ∈ R such that φ(y)

31

is a unit, we can perform partial fraction decomposition on the quotient
ϕ(x)/ϕ(y).
The obvious choice for S is the fraction field of R, but other choices may also
make sense: If, for example, R is a ring of polynomials K[X], then one could
let S = K and ϕ the evaluation homomorphism. Or one could let S = K[[X]]
(the ring of formal power series) and ϕ the canonical homomorphism from
polynomials to formal power series.
locale pfd-homomorphism =
fixes lift :: (′a :: euclidean-ring-gcd) ⇒ (′b :: euclidean-semiring-cancel)
assumes lift-add: lift (a + b) = lift a + lift b
assumes lift-mult: lift (a ∗ b) = lift a ∗ lift b
assumes lift-0 [simp]: lift 0 = 0
assumes lift-1 [simp]: lift 1 = 1
begin

lemma lift-power :
lift (a ^ n) = lift a ^ n
by (induction n) (simp-all add: lift-mult)

definition from-decomp :: ′a ⇒ ′a ⇒ nat ⇒ ′b where
from-decomp x y n = lift x div lift y ^ n

lemma decompose:
assumes ys 6= [] pairwise coprime (set ys) distinct ys∧

y. y ∈ set ys =⇒ is-unit (lift y)
shows (

∑
i<length ys. lift (decompose x ys ! i) div lift (ys ! i)) =

lift x div lift (prod-list ys)
using assms

proof (induction ys arbitrary: x rule: list-nonempty-induct)
case (cons y ys x)
from cons.prems have coprime (prod-list ys) y

by (auto simp add: pairwise-insert intro: prod-list-coprime-left)
from cons.prems have unit: is-unit (lift y) by simp
moreover from cons.prems have ∀ y∈set ys. is-unit (lift y) by simp
hence unit ′: is-unit (lift (prod-list ys)) by (induction ys) (auto simp: lift-mult)
ultimately have unit: lift y dvd b lift (prod-list ys) dvd b for b by auto

obtain s t where st: bezout-coefficients y (prod-list ys) = (s, t)
by (cases bezout-coefficients y (prod-list ys)) simp-all

from ‹pairwise coprime (set (y#ys))›
have coprime:pairwise coprime (set ys)

by (rule pairwise-subset) auto

have (
∑

i<length (y # ys). lift (decompose x (y # ys) ! i) div lift ((y # ys) !
i)) =

lift (t ∗ x) div lift y + lift (s ∗ x) div lift (prod-list ys)
using cons.hyps cons.prems coprime unfolding length-Cons atLeast0LessThan

32

[symmetric]
by (subst sum.atLeast-Suc-lessThan, simp, subst sum.shift-bounds-Suc-ivl)

(simp add: atLeast0LessThan decompose-rec st cons.IH lift-mult)
also have (lift (t ∗ x) div lift y + lift (s ∗ x) div lift (prod-list ys)) ∗

lift (prod-list (y#ys)) =
lift (prod-list ys) ∗ (lift y ∗ (lift (t ∗ x) div lift y)) +
lift y ∗ (lift (prod-list ys) ∗ (lift (s ∗ x) div lift (prod-list ys)))

by (simp-all add: lift-mult algebra-simps)
also have . . . = lift (prod-list ys ∗ t ∗ x + y ∗ s ∗ x) using assms unit

by (simp add: lift-mult lift-add algebra-simps)
finally have (

∑
i<length (y # ys). lift (decompose x (y # ys) ! i) div lift ((y #

ys) ! i)) =
lift ((s ∗ y + t ∗ prod-list ys) ∗ x) div lift (prod-list (y#ys))

using unit by (subst unit-eq-div2) (auto simp: lift-mult lift-add algebra-simps)
also have s ∗ y + t ∗ prod-list ys = gcd (prod-list ys) y
using bezout-coefficients-fst-snd[of y prod-list ys] by (simp add: st gcd.commute)

also have . . . = 1
using ‹coprime (prod-list ys) y› by simp

finally show ?case by simp
qed simp-all

lemma normalise-decomp:
fixes x y :: ′a and n :: nat
assumes is-unit (lift y)
defines xs ≡ snd (normalise-decomp x y n)
shows lift (fst (normalise-decomp x y n)) + (

∑
i<n. from-decomp (xs!i) y

(n−i)) =
lift x div lift y ^ n

using assms unfolding xs-def
proof (induction x y n rule: normalise-decomp.induct, goal-cases)

case (2 x y n)
from 2 (2) have unit: is-unit (lift y ^ n)

by (simp add: is-unit-power-iff)
obtain a b where ab: normalise-decomp (x div y) y n = (a, b)

by (cases normalise-decomp (x div y) y n) simp-all
have lift (fst (normalise-decomp x y (Suc n))) +

(
∑

i<Suc n. from-decomp (snd (normalise-decomp x y (Suc n)) ! i) y
(Suc n − i)) =

lift a + (
∑

i<n. from-decomp (b ! i) y (n − i)) + from-decomp (x mod y)
y (Suc n)

unfolding atLeast0LessThan[symmetric]
apply (subst sum.atLeast-Suc-lessThan)
apply simp
apply (subst sum.shift-bounds-Suc-ivl)
apply (simp add: ab atLeast0LessThan ac-simps)
done

also have lift a + (
∑

i<n. from-decomp (b ! i) y (n − i)) =
lift (x div y) div lift y ^ n

using 2 by (simp add: ab)

33

also from 2 (2) unit have (. . . + from-decomp (x mod y) y (Suc n)) ∗ lift y =
(lift ((x div y) ∗ y + x mod y) div lift y ^ n) (is ?A ∗ - = ?B div -)
unfolding lift-add lift-mult
apply (subst div-add)
apply (auto simp add: from-decomp-def algebra-simps dvd-div-mult2-eq

unit-div-mult-swap dvd-div-mult2-eq[OF unit-imp-dvd] is-unit-mult-iff)
done

with 2 (2) have ?A = . . . div lift y by (subst eq-commute, subst dvd-div-eq-mult)
auto

also from 2 (2) unit have . . . = ?B div (lift y ^ Suc n)
by (subst is-unit-div-mult2-eq [symmetric]) (auto simp: mult-ac)

also have x div y ∗ y + x mod y = x by (rule div-mult-mod-eq)
finally show ?case .

qed simp-all

lemma lift-prod-list: lift (prod-list xs) = prod-list (map lift xs)
by (induction xs) (simp-all add: lift-mult)

lemma lift-sum: lift (sum f A) = sum (λx. lift (f x)) A
by (cases finite A, induction A rule: finite-induct) (simp-all add: lift-add)

lemma partial-fraction-decomposition:
fixes ys :: (′a × nat) list
defines ys ′ ≡ map (λ(x,n). x ^ Suc n) ys :: ′a list
assumes unit:

∧
y. y ∈ fst ‘ set ys =⇒ is-unit (lift y)

assumes coprime: pairwise coprime (set ys ′)
assumes distinct: distinct ys ′

assumes partial-fraction-decomposition x ys = (a, zs)
shows lift a + (

∑
i<length ys.

∑
j≤snd (ys!i).

from-decomp (zs!i!j) (fst (ys!i)) (snd (ys!i)+1 − j)) =
lift x div lift (prod-list ys ′)

proof (cases ys = [])
assume [simp]: ys 6= []
define n where n = length ys

have lift x div lift (prod-list ys ′) = (
∑

i<n. lift (decompose x ys ′ ! i) div lift (ys ′

! i))
using assms by (subst decompose [symmetric])
(force simp: lift-prod-list prod-list-zero-iff lift-power lift-mult o-def n-def

is-unit-mult-iff is-unit-power-iff)+
also have . . . =

(
∑

i<n. lift (fst (normalise-decomp (decompose x ys ′ ! i) (fst (ys!i)) (snd
(ys!i)+1)))) +

(
∑

i<n. (
∑

j≤snd (ys!i). from-decomp (zs!i!j) (fst (ys!i)) (snd (ys!i)+1 − j)))
(is - = ?A + ?B)

proof (subst sum.distrib [symmetric], intro sum.cong refl, goal-cases)
case (1 i)
from 1 have lift (ys ′ ! i) = lift (fst (ys ! i)) ^ Suc (snd (ys ! i))

by (simp add: ys ′-def n-def lift-power lift-mult split: prod.split)

34

also from 1 have lift (decompose x ys ′ ! i) div . . . =
lift (fst (normalise-decomp (decompose x ys ′ ! i) (fst (ys!i)) (snd (ys!i)+1)))

+
(
∑

j<Suc (snd (ys ! i)). from-decomp (snd (normalise-decomp (decompose x
ys ′ ! i)

(fst (ys!i)) (snd (ys!i)+1)) ! j) (fst (ys ! i)) (snd (ys!i)+1 − j)) (is - =
- + ?C)

by (subst normalise-decomp [symmetric]) (simp-all add: n-def unit)
also have ?C = (

∑
j≤snd (ys!i). from-decomp (zs!i!j) (fst (ys!i)) (snd (ys!i)+1

− j))
using assms 1
by (intro sum.cong refl)
(auto simp: partial-fraction-decomposition-def case-prod-unfold Let-def o-def

n-def
simp del: normalise-decomp.simps)

finally show ?case .
qed
also from assms have ?A = lift a
by (auto simp: partial-fraction-decomposition-def o-def sum-list-sum-nth atLeast0LessThan

case-prod-unfold Let-def lift-sum n-def intro!: sum.cong)
finally show ?thesis by (simp add: n-def)

qed (insert assms, simp add: partial-fraction-decomposition-def)

end

4.2 Specific results for polynomials
definition divmod-field-poly :: ′a :: field poly ⇒ ′a poly ⇒ ′a poly × ′a poly where

divmod-field-poly p q = (p div q, p mod q)

lemma divmod-field-poly-code [code]:
divmod-field-poly p q =
(let cg = coeffs q
in if cg = [] then (0 , p)

else let cf = coeffs p; ilc = inverse (last cg);
ch = map ((∗) ilc) cg;
(q, r) =

divmod-poly-one-main-list [] (rev cf) (rev ch)
(1 + length cf − length cg)

in (poly-of-list (map ((∗) ilc) q), poly-of-list (rev r)))
unfolding divmod-field-poly-def by (rule pdivmod-via-divmod-list)

definition normalise-decomp-poly :: ′a::field-gcd poly ⇒ ′a poly ⇒ nat ⇒ ′a poly
× ′a poly list

where [simp]: normalise-decomp-poly (p :: - poly) q n = normalise-decomp p q n

lemma normalise-decomp-poly-code [code]:
normalise-decomp-poly x y 0 = (x, [])
normalise-decomp-poly x y (Suc n) = (

35

let (x ′, r) = divmod-field-poly x y;
(z, rs) = normalise-decomp-poly x ′ y n

in (z, r # rs))
by (simp-all add: divmod-field-poly-def)

definition poly-pfd-simple where
poly-pfd-simple x cs = (if cs = [] then (x, []) else

(let zs = [let (c, n) = cs ! i
in normalise-decomp-poly (decompose x

(map (λ(c,n). [:1 ,−c:] ^ Suc n) cs) ! i) [:1 ,−c:] (n+1).
i ← [0 ..<length cs]]

in (sum-list (map fst zs), map (map (λp. coeff p 0) ◦ snd) zs)))

lemma poly-pfd-simple-code [code]:
poly-pfd-simple x cs =
(if cs = [] then (x, []) else

let zs = zip-with (λ(c,n) decomp. normalise-decomp-poly decomp [:1 ,−c:]
(n+1))

cs (decompose x (map (λ(c,n). [:1 ,−c:] ^ Suc n) cs))
in (sum-list (map fst zs), map (map (λp. coeff p 0) ◦ snd) zs))

unfolding poly-pfd-simple-def zip-with-altdef ′

by (simp add: Let-def case-prod-unfold)

lemma fst-poly-pfd-simple:
fst (poly-pfd-simple x cs) =

fst (partial-fraction-decomposition x (map (λ(c,n). ([:1 ,−c:],n)) cs))
by (auto simp: poly-pfd-simple-def partial-fraction-decomposition-def o-def

case-prod-unfold Let-def sum-list-sum-nth intro!: sum.cong)

lemma const-polyI : degree p = 0 =⇒ [:coeff p 0 :] = p
by (elim degree-eq-zeroE) simp-all

lemma snd-poly-pfd-simple:
map (map (λc. [:c :: ′a :: field-gcd:])) (snd (poly-pfd-simple x cs)) =

(snd (partial-fraction-decomposition x (map (λ(c,n). ([:1 ,−c:],n)) cs)))
proof −

have snd (poly-pfd-simple x cs) = map (map (λp. coeff p 0))
(snd (partial-fraction-decomposition x (map (λ(c,n). ([:1 ,−c:],n)) cs)))

(is - = map ?f ?B)
by (auto simp: poly-pfd-simple-def partial-fraction-decomposition-def o-def

case-prod-unfold Let-def sum-list-sum-nth intro!: sum.cong)
also have map (map (λc. [:c:])) (map ?f ?B) = map (map (λx. x)) ?B

unfolding map-map o-def
proof (intro map-cong refl const-polyI , goal-cases)

case (1 ys y)
from 1 obtain i where i: i < length cs

ys = snd (partial-fraction-decomposition x (map (λ(c,n). ([:1 ,−c:],n)) cs)) ! i
by (auto simp: in-set-conv-nth)

with 1 have euclidean-size y < euclidean-size (fst (map (λ(c,n). ([:1 ,−c:],n))

36

cs ! i))
by (intro size-partial-fraction-decomposition[of i - - x])

(auto simp: case-prod-unfold Let-def)
with i(1) have euclidean-size y < 2
by (auto simp: case-prod-unfold Let-def euclidean-size-poly-def split: if-split-asm)
thus ?case

by (cases y rule: pCons-cases) (auto simp: euclidean-size-poly-def split:
if-split-asm)

qed
finally show ?thesis by simp

qed

lemma poly-pfd-simple:
partial-fraction-decomposition x (map (λ(c,n). ([:1 ,−c:],n)) cs) =

(fst (poly-pfd-simple x cs), map (map (λc. [:c:])) (snd (poly-pfd-simple x
cs)))

by (simp add: fst-poly-pfd-simple snd-poly-pfd-simple)

end

5 Factorizations of polynomials
theory Factorizations
imports

Complex-Main
Linear-Recurrences-Misc
HOL−Computational-Algebra.Computational-Algebra
HOL−Computational-Algebra.Polynomial-Factorial

begin

We view a factorisation of a polynomial as a pair consisting of the leading
coefficient and a list of roots with multiplicities. This gives us a factorization
into factors of the form (X − c)n+1.
definition interp-factorization where

interp-factorization = (λ(a,cs). Polynomial.smult a (
∏

(c,n)←cs. [:−c,1 :] ^ Suc
n))

An alternative way to factorise is as a pair of the leading coefficient and
factors of the form (1− cX)n+1.
definition interp-alt-factorization where

interp-alt-factorization = (λ(a,cs). Polynomial.smult a (
∏

(c,n)←cs. [:1 ,−c:] ^
Suc n))

definition is-factorization-of where
is-factorization-of fctrs p =

(interp-factorization fctrs = p ∧ distinct (map fst (snd fctrs)))

definition is-alt-factorization-of where

37

is-alt-factorization-of fctrs p =
(interp-alt-factorization fctrs = p ∧ 0 /∈ set (map fst (snd fctrs)) ∧
distinct (map fst (snd fctrs)))

Regular and alternative factorisations are related by reflecting the polyno-
mial.
lemma interp-factorization-reflect:

assumes (0 :: ′a::idom) /∈ fst ‘ set (snd fctrs)
shows reflect-poly (interp-factorization fctrs) = interp-alt-factorization fctrs

proof −
have reflect-poly (interp-factorization fctrs) =

Polynomial.smult (fst fctrs) (
∏

x←snd fctrs. reflect-poly [:− fst x, 1 :] ^
Suc (snd x))

by (simp add: interp-factorization-def interp-alt-factorization-def case-prod-unfold
reflect-poly-smult reflect-poly-prod-list reflect-poly-power o-def del:

power-Suc)
also have map (λx. reflect-poly [:− fst x, 1 :] ^ Suc (snd x)) (snd fctrs) =

map (λx. [:1 , − fst x:] ^ Suc (snd x)) (snd fctrs)
using assms by (intro list.map-cong0 , subst reflect-poly-pCons) auto

also have Polynomial.smult (fst fctrs) (prod-list . . .) = interp-alt-factorization
fctrs

by (simp add: interp-alt-factorization-def case-prod-unfold)
finally show ?thesis .

qed

lemma interp-alt-factorization-reflect:
assumes (0 :: ′a::idom) /∈ fst ‘ set (snd fctrs)
shows reflect-poly (interp-alt-factorization fctrs) = interp-factorization fctrs

proof −
have reflect-poly (interp-alt-factorization fctrs) =

Polynomial.smult (fst fctrs) (
∏

x←snd fctrs. reflect-poly [:1 , − fst x:] ^
Suc (snd x))

by (simp add: interp-factorization-def interp-alt-factorization-def case-prod-unfold
reflect-poly-smult reflect-poly-prod-list reflect-poly-power o-def del:

power-Suc)
also have map (λx. reflect-poly [:1 , − fst x:] ^ Suc (snd x)) (snd fctrs) =

map (λx. [:− fst x, 1 :] ^ Suc (snd x)) (snd fctrs)
proof (intro list.map-cong0 , clarsimp simp del: power-Suc, goal-cases)

fix c n assume (c, n) ∈ set (snd fctrs)
with assms have c 6= 0 by force
thus reflect-poly [:1 , −c:] ^ Suc n = [:−c, 1 :] ^ Suc n

by (simp add: reflect-poly-pCons del: power-Suc)
qed
also have Polynomial.smult (fst fctrs) (prod-list . . .) = interp-factorization fctrs

by (simp add: interp-factorization-def case-prod-unfold)
finally show ?thesis .

qed

38

lemma coeff-0-interp-factorization:
coeff (interp-factorization fctrs) 0 = (0 :: ′a :: idom) ←→

fst fctrs = 0 ∨ 0 ∈ fst ‘ set (snd fctrs)
by (force simp: interp-factorization-def case-prod-unfold coeff-0-prod-list o-def

coeff-0-power prod-list-zero-iff simp del: power-Suc)

lemma reflect-factorization:
assumes coeff p 0 6= (0 :: ′a::idom)
assumes is-factorization-of fctrs p
shows is-alt-factorization-of fctrs (reflect-poly p)
using assms by (force simp: interp-factorization-reflect is-factorization-of-def

is-alt-factorization-of-def coeff-0-interp-factorization)

lemma reflect-factorization ′:
assumes coeff p 0 6= (0 :: ′a::idom)
assumes is-alt-factorization-of fctrs p
shows is-factorization-of fctrs (reflect-poly p)
using assms by (force simp: interp-alt-factorization-reflect is-factorization-of-def

is-alt-factorization-of-def coeff-0-interp-factorization)

lemma zero-in-factorization-iff :
assumes is-factorization-of fctrs p
shows coeff p 0 = 0 ←→ p = 0 ∨ (0 :: ′a::idom) ∈ fst ‘ set (snd fctrs)

proof (cases p = 0)
assume p 6= 0
with assms have [simp]: fst fctrs 6= 0

by (auto simp: is-factorization-of-def interp-factorization-def case-prod-unfold)
from assms have p = interp-factorization fctrs by (simp add: is-factorization-of-def)
also have coeff . . . 0 = 0 ←→ 0 ∈ fst ‘ set (snd fctrs)

by (force simp add: interp-factorization-def case-prod-unfold coeff-0-prod-list
prod-list-zero-iff o-def coeff-0-power)

finally show ?thesis using ‹p 6= 0 › by blast
next

assume p: p = 0
with assms have interp-factorization fctrs = 0 by (simp add: is-factorization-of-def)
also have interp-factorization fctrs = 0 ←→

fst fctrs = 0 ∨ (
∏

(c,n)←snd fctrs. [:−c,1 :]^Suc n) = 0
by (simp add: interp-factorization-def case-prod-unfold)

also have (
∏

(c,n)←snd fctrs. [:−c,1 :]^Suc n) = 0 ←→ False
by (auto simp: prod-list-zero-iff simp del: power-Suc)

finally show ?thesis by (simp add: ‹p = 0 ›)
qed

lemma poly-prod-list [simp]: poly (prod-list ps) x = prod-list (map (λp. poly p x)
ps)

by (induction ps) auto

lemma is-factorization-of-roots:
fixes a :: ′a :: idom

39

assumes is-factorization-of (a, fctrs) p p 6= 0
shows set (map fst fctrs) = {x. poly p x = 0}
using assms
by (force simp: is-factorization-of-def interp-factorization-def o-def

case-prod-unfold prod-list-zero-iff simp del: power-Suc)

lemma (in monoid-mult) prod-list-prod-nth: prod-list xs = (
∏

i<length xs. xs ! i)
by (induction xs) (auto simp: prod.lessThan-Suc-shift simp del: prod.lessThan-Suc)

lemma order-prod:
assumes

∧
x. x ∈ A =⇒ f x 6= 0

assumes
∧

x y. x ∈ A =⇒ y ∈ A =⇒ x 6= y =⇒ coprime (f x) (f y)
shows order c (prod f A) = (

∑
x∈A. order c (f x))

using assms
proof (induction A rule: infinite-finite-induct)

case (insert x A)
from insert.hyps have order c (prod f (insert x A)) = order c (f x ∗ prod f A)

by simp
also have . . . = order c (f x) + order c (prod f A)

using insert.prems and insert.hyps by (intro order-mult) auto
also have order c (prod f A) = (

∑
x∈A. order c (f x))

using insert.prems and insert.hyps by (intro insert.IH) auto
finally show ?case using insert.hyps by simp

qed auto

lemma is-factorization-of-order :
fixes p :: ′a :: field-gcd poly
assumes p 6= 0
assumes is-factorization-of (a, fctrs) p
assumes (c, n) ∈ set fctrs
shows order c p = Suc n

proof −
from assms have distinct: distinct (map fst (fctrs))

by (simp add: is-factorization-of-def)
from assms have [simp]: a 6= 0

by (auto simp: is-factorization-of-def interp-factorization-def)
from assms(2) have p = interp-factorization (a, fctrs)

unfolding is-factorization-of-def by simp
also have order c . . . = order c (

∏
(c,n)←fctrs. [:−c, 1 :] ^ Suc n)

unfolding interp-factorization-def by (simp add: order-smult)
also have (

∏
(c,n)←fctrs. [:−c, 1 :] ^ Suc n) =

(
∏

i∈{..<length fctrs}. [:−fst (fctrs ! i), 1 :] ^ Suc (snd (fctrs ! i)))
by (simp add: prod-list-prod-nth case-prod-unfold)

also have order c . . . =
(
∑

x<length fctrs. order c ([:− fst (fctrs ! x), 1 :] ^ Suc (snd (fctrs !
x))))

proof (rule order-prod)
fix i
assume i ∈ {..<length fctrs}

40

then show [:− fst (fctrs ! i), 1 :] ^ Suc (snd (fctrs ! i)) 6= 0
by (simp only: power-eq-0-iff) simp

next
fix i j :: nat
assume i 6= j i ∈ {..<length fctrs} j ∈ {..<length fctrs}
then have fst (fctrs ! i) 6= fst (fctrs ! j)

using nth-eq-iff-index-eq [OF distinct, of i j] by simp
then show coprime ([:− fst (fctrs ! i), 1 :] ^ Suc (snd (fctrs ! i)))
([:− fst (fctrs ! j), 1 :] ^ Suc (snd (fctrs ! j)))
by (simp only: coprime-power-left-iff coprime-power-right-iff)
(auto simp add: coprime-linear-poly)

qed
also have . . . = (

∑
(c ′,n ′)←fctrs. order c ([:−c ′, 1 :] ^ Suc n ′))

by (simp add: sum-list-sum-nth case-prod-unfold atLeast0LessThan)
also have . . . = (

∑
(c ′,n ′)←fctrs. if c = c ′ then Suc n ′ else 0)

by (intro arg-cong[OF map-cong]) (auto simp add: order-power-n-n order-0I
simp del: power-Suc)

also have . . . = (
∑

x←fctrs. if x = (c, n) then Suc (snd x) else 0)
using distinct assms by (intro arg-cong[OF map-cong]) (force simp: distinct-map

inj-on-def)+
also from distinct have . . . = (

∑
x∈set fctrs. if x = (c, n) then Suc (snd x)

else 0)
by (intro sum-list-distinct-conv-sum-set) (simp-all add: distinct-map)

also from assms have . . . = Suc n by simp
finally show ?thesis .

qed

For complex polynomials, a factorisation in the above sense always exists.
lemma complex-factorization-exists:
∃ fctrs. is-factorization-of fctrs (p :: complex poly)

proof (cases p = 0)
case True
thus ?thesis
by (intro exI [of - (0 , [])]) (auto simp: is-factorization-of-def interp-factorization-def)

next
case False
hence ∃ xs. set xs = {x. poly p x = 0} ∧ distinct xs

by (intro finite-distinct-list poly-roots-finite)
then obtain xs where [simp]: set xs = {x. poly p x = 0} distinct xs by blast
have interp-factorization (lead-coeff p, map (λx. (x, order x p − 1)) xs) =

smult (lead-coeff p) (
∏

x←xs. [:− x, 1 :] ^ Suc (order x p − 1))
by (simp add: interp-factorization-def o-def)

also have (
∏

x←xs. [:− x, 1 :] ^ Suc (order x p − 1)) =
(
∏

x|poly p x = 0 . [:− x, 1 :] ^ Suc (order x p − 1))
by (subst prod.distinct-set-conv-list [symmetric]) simp-all

also have . . . = (
∏

x|poly p x = 0 . [:− x, 1 :] ^ order x p)
proof (intro prod.cong refl, goal-cases)

case (1 x)
with False have order x p 6= 0 by (subst (asm) order-root) auto

41

hence ∗: Suc (order x p − 1) = order x p by simp
show ?case by (simp only: ∗)

qed
also have smult (lead-coeff p) . . . = p

by (rule complex-poly-decompose)
finally have is-factorization-of (lead-coeff p, map (λx. (x, order x p − 1)) xs) p

by (auto simp: is-factorization-of-def o-def)
thus ?thesis ..

qed

By reflecting the polynomial, this means that for complex polynomials with
non-zero constant coefficient, the alternative factorisation also exists.
corollary complex-alt-factorization-exists:

assumes coeff p 0 6= 0
shows ∃ fctrs. is-alt-factorization-of fctrs (p :: complex poly)

proof −
from assms have coeff (reflect-poly p) 0 6= 0

by auto
moreover from complex-factorization-exists [of reflect-poly p]
obtain fctrs where is-factorization-of fctrs (reflect-poly p) ..
ultimately have is-alt-factorization-of fctrs (reflect-poly (reflect-poly p))

by (rule reflect-factorization)
also from assms have reflect-poly (reflect-poly p) = p

by simp
finally show ?thesis ..

qed

end

6 Solver for rational formal power series
theory Rational-FPS-Solver
imports

Complex-Main
Pochhammer-Polynomials
Partial-Fraction-Decomposition
Factorizations
HOL−Computational-Algebra.Field-as-Ring

begin

We can determine the k-th coefficient of an FPS of the form d/(1 − cX)n,
which is an important step in solving linear recurrences. The k-th coeffi-
cient of such an FPS is always of the form p(k)ck where p is the following
polynomial:
definition inverse-irred-power-poly :: ′a :: field-char-0 ⇒ nat ⇒ ′a poly where

inverse-irred-power-poly d n =
Poly [(d ∗ of-nat (stirling n (k+1))) / (fact (n − 1)). k ← [0 ..<n]]

42

lemma one-minus-const-fps-X-neg-power ′′:
fixes c :: ′a :: field-char-0
assumes n: n > 0
shows fps-const d / ((1 − fps-const (c :: ′a :: field-char-0) ∗ fps-X) ^ n) =

Abs-fps (λk. poly (inverse-irred-power-poly d n) (of-nat k) ∗ c^k) (is ?lhs
= ?rhs)
proof (rule fps-ext)

include fps-syntax
fix k :: nat
let ?p = smult (d / (fact (n − 1))) (pcompose (pochhammer-poly (n − 1))

[:1 ,1 :])
from n have ?lhs = fps-const d ∗ inverse ((1 − fps-const c ∗ fps-X) ^ n)

by (subst fps-divide-unit) auto
also have inverse ((1 − fps-const c ∗ fps-X) ^ n) =

Abs-fps (λk. of-nat ((n + k − 1) choose k) ∗ c^k)
by (intro one-minus-const-fps-X-neg-power ′ n)

also have (fps-const d ∗ . . .) $ k = d ∗ of-nat ((n + k − 1) choose k) ∗ c^k
by simp

also from n have (n + k − 1 choose k) = (n + k − 1 choose (n − 1))
by (subst binomial-symmetric) simp-all

also from n have of-nat . . . = (pochhammer (of-nat k + 1) (n − 1) / fact (n
− 1) :: ′a)

by (simp-all add: binomial-gbinomial gbinomial-pochhammer ′ of-nat-diff)
also have d ∗ . . . = poly ?p (of-nat k)

by (simp add: divide-inverse eval-pochhammer-poly poly-pcompose add-ac)
also {

from assms have pCons 0 (pcompose (pochhammer-poly (n−1)) [:1 ,1 :: ′a:]) =
pochhammer-poly n

by (subst pochhammer-poly-Suc ′ [symmetric]) simp
also from assms have . . . = pCons 0 (Poly [of-nat (stirling n (k+1)). k ←

[0 ..<Suc n]])
unfolding pochhammer-poly-def
by (auto simp add: poly-eq-iff nth-default-def coeff-pCons

split: nat.split simp del: upt-Suc)
finally have pcompose (pochhammer-poly (n−1)) [:1 ,1 :: ′a:] =

Poly [of-nat (stirling n (k+1)). k ← [0 ..<Suc n]] by simp
}
also have smult (d / fact (n − 1)) (Poly [of-nat (stirling n (k+1)). k ← [0 ..<Suc

n]]) =
inverse-irred-power-poly d n

by (auto simp: poly-eq-iff inverse-irred-power-poly-def nth-default-def)
also have poly . . . (of-nat k) ∗ c ^ k = ?rhs $ k by simp
finally show ?lhs $ k = ?rhs $ k .

qed

lemma inverse-irred-power-poly-code [code abstract]:
coeffs (inverse-irred-power-poly d n) =
(if n = 0 ∨ d = 0 then [] else
let e = d / (fact (n − 1))

43

in [e ∗ of-nat x. x ← tl (stirling-row n)])
proof (cases n = 0 ∨ d = 0)

case False
define e where e = d / (fact (n − 1))
from False have coeffs (inverse-irred-power-poly d n) =

[e ∗ of-nat (stirling n (k+1)). k ← [0 ..<n]]
by (auto simp: inverse-irred-power-poly-def Let-def divide-inverse mult-ac last-map

stirling-row-def map-tl [symmetric] tl-upt e-def no-trailing-unfold)
also have . . . = [e ∗ of-nat x. x ← tl (stirling-row n)]

by (simp add: stirling-row-def map-tl [symmetric] o-def tl-upt
map-Suc-upt [symmetric] del: upt-Suc)

finally show ?thesis using False by (simp add: Let-def e-def)
qed (auto simp: inverse-irred-power-poly-def)

lemma solve-rat-fps-aux:
fixes p :: ′a :: {field-char-0 ,field-gcd} poly and cs :: (′a × nat) list
assumes distinct: distinct (map fst cs)
assumes azs: (a, zs) = poly-pfd-simple p cs
assumes nz: 0 /∈ fst ‘ set cs
shows fps-of-poly p / fps-of-poly (

∏
(c,n)←cs. [:1 ,−c:]^Suc n) =

Abs-fps (λk. coeff a k + (
∑

i<length cs. poly (
∑

j≤snd (cs ! i).
(inverse-irred-power-poly (zs ! i ! j) (snd (cs ! i)+1 − j)))

(of-nat k) ∗ (fst (cs ! i)) ^ k)) (is - = ?rhs)
proof −

interpret pfd-homomorphism fps-of-poly :: ′a poly ⇒ ′a fps
by standard (auto simp: fps-of-poly-add fps-of-poly-mult)

from distinct have distinct ′: (a, b1) ∈ set cs =⇒
(a, b2) ∈ set cs =⇒ b1 = b2 for a b1 b2
by (metis (no-types, opaque-lifting) Some-eq-map-of-iff image-set in-set-zipE

insert-iff list.simps(15) map-of-Cons-code(2) map-of-SomeD nz snd-conv)
from nz have nz ′: (0 , b) /∈ set cs for b

by (auto simp add: image-iff)
define n where n = length cs
let ?g = λ(c, n). [:1 , − c:] ^ Suc n
have inj-on ?g (set cs)
proof

fix x y
assume x ∈ set cs y ∈ set cs ?g x = ?g y
moreover obtain c1 n1 c2 n2 where [simp]: x = (c1 , n1) y = (c2 , n2)

by (cases x, cases y)
ultimately have in-cs: (c1 , n1) ∈ set cs
(c2 , n2) ∈ set cs
and eq: [:1 , − c1 :] ^ Suc n1 = [:1 , − c2 :] ^ Suc n2
by simp-all

with nz have [simp]: c1 6= 0 c2 6= 0
by (auto simp add: image-iff)

have Suc n1 = degree ([:1 , − c1 :] ^ Suc n1)
by (simp add: degree-power-eq del: power-Suc)

also have . . . = degree ([:1 , − c2 :] ^ Suc n2)

44

using eq by simp
also have . . . = Suc n2

by (simp add: degree-power-eq del: power-Suc)
finally have n1 = n2 by simp
then have 0 = poly ([:1 , − c1 :] ^ Suc n1) (1 / c1)

by simp
also have . . . = poly ([:1 , − c2 :] ^ Suc n2) (1 / c1)

using eq by simp
finally show x = y using ‹n1 = n2 ›

by (auto simp: field-simps)
qed
with distinct have distinct ′: distinct (map ?g cs)

by (simp add: distinct-map del: power-Suc)
from nz ′ distinct have coprime: pairwise coprime (?g ‘ set cs)
by (auto intro!: pairwise-imageI coprime-linear-poly ′ simp add: eq-key-imp-eq-value

simp del: power-Suc)
have [simp]: length zs = n

using assms by (simp add: poly-pfd-simple-def n-def split: if-split-asm)
have [simp]: i < length cs =⇒ length (zs!i) = snd (cs!i)+1 for i

using assms by (simp add: poly-pfd-simple-def Let-def case-prod-unfold split:
if-split-asm)

let ?f = λ(c, n). ([:1 ,−c:], n)
let ?cs ′ = map ?f cs
have fps-of-poly (fst (poly-pfd-simple p cs)) +

(
∑

i<length ?cs ′.
∑

j≤snd (?cs ′ ! i).
from-decomp (map (map (λc. [:c:])) (snd (poly-pfd-simple p cs)) ! i ! j)

(fst (?cs ′ ! i)) (snd (?cs ′ ! i)+1 − j)) =
fps-of-poly p / fps-of-poly (

∏
(x, n)←?cs ′. x ^ Suc n)

(is ?A = ?B) using nz distinct ′ coprime
by (intro partial-fraction-decomposition poly-pfd-simple)

(force simp: o-def case-prod-unfold simp del: power-Suc)+
note this [symmetric]
also from azs [symmetric]

have ?A = fps-of-poly a + (
∑

i<n.
∑

j≤snd (cs ! i). from-decomp
(map (map (λc. [:c:])) zs ! i ! j) [:1 ,−fst (cs ! i):] (snd (cs ! i)+1 −

j))
(is - = - + ?S) by (simp add: case-prod-unfold Let-def n-def)

also have ?S = (
∑

i<length cs.
∑

j≤snd (cs ! i). fps-const (zs ! i ! j) /
((1 − fps-const (fst (cs!i))∗fps-X) ^ (snd (cs!i)+1 − j)))

by (intro sum.cong refl)
(auto simp: from-decomp-def map-nth n-def fps-of-poly-linear ′ fps-of-poly-simps

fps-const-neg [symmetric] mult-ac simp del: fps-const-neg)
also have . . . = (

∑
i<length cs.

∑
j≤snd (cs ! i) .

Abs-fps (λk. poly (inverse-irred-power-poly (zs ! i ! j)
(snd (cs ! i)+1 − j)) (of-nat k) ∗ (fst (cs ! i)) ^ k))

using nz by (intro sum.cong refl one-minus-const-fps-X-neg-power ′′) auto
also have fps-of-poly a + . . . = ?rhs

by (intro fps-ext) (simp-all add: sum-distrib-right fps-sum-nth poly-sum)

45

finally show ?thesis by (simp add: o-def case-prod-unfold)
qed

definition solve-factored-ratfps ::
(′a :: {field-char-0 ,field-gcd}) poly ⇒ (′a × nat) list ⇒ ′a poly × (′a poly × ′a)

list where
solve-factored-ratfps p cs = (let n = length cs in case poly-pfd-simple p cs of (a,

zs) ⇒
(a, zip-with (λzs (c,n). ((

∑
(z,j) ← zip zs [0 ..<Suc n].

inverse-irred-power-poly z (n + 1 − j)), c)) zs cs))

lemma length-snd-poly-pfd-simple [simp]: length (snd (poly-pfd-simple p cs)) =
length cs

by (simp add: poly-pfd-simple-def)

lemma length-nth-snd-poly-pfd-simple [simp]:
i < length cs =⇒ length (snd (poly-pfd-simple p cs) ! i) = snd (cs!i) + 1
by (auto simp: poly-pfd-simple-def case-prod-unfold Let-def)

lemma solve-factored-ratfps-roots:
map snd (snd (solve-factored-ratfps p cs)) = map fst cs
by (rule nth-equalityI)
(simp-all add: solve-factored-ratfps-def poly-pfd-simple case-prod-unfold Let-def

zip-with-altdef o-def)

definition interp-ratfps-solution where
interp-ratfps-solution = (λ(p,cs) n. coeff p n + (

∑
(q,c)←cs. poly q (of-nat n) ∗

c ^ n))

lemma solve-factored-ratfps:
fixes p :: ′a :: {field-char-0 ,field-gcd} poly and cs :: (′a × nat) list
assumes distinct: distinct (map fst cs)
assumes nz: 0 /∈ fst ‘ set cs
shows fps-of-poly p / fps-of-poly (

∏
(c,n)←cs. [:1 ,−c:]^Suc n) =

Abs-fps (interp-ratfps-solution (solve-factored-ratfps p cs)) (is ?lhs = ?rhs)
proof −

obtain a zs where azs: (a, zs) = solve-factored-ratfps p cs
using prod.exhaust by metis

from azs have a: a = fst (poly-pfd-simple p cs)
by (simp add: solve-factored-ratfps-def Let-def case-prod-unfold)

define zs ′ where zs ′ = snd (poly-pfd-simple p cs)
with a have azs ′: (a, zs ′) = poly-pfd-simple p cs by simp
from azs have zs: zs = snd (solve-factored-ratfps p cs)

by (auto simp add: snd-def split: prod.split)

have ?lhs = Abs-fps (λk. coeff a k + (
∑

i<length cs. poly (
∑

j≤snd (cs ! i).

46

inverse-irred-power-poly (zs ′ ! i ! j) (snd (cs ! i)+1 − j))
(of-nat k) ∗ (fst (cs ! i)) ^ k))

by (rule solve-rat-fps-aux[OF distinct azs ′ nz])
also from azs have . . . = ?rhs unfolding interp-ratfps-solution-def

by (auto simp: a zs solve-factored-ratfps-def Let-def case-prod-unfold zip-altdef
zip-with-altdef ′ sum-list-sum-nth atLeast0LessThan zs ′-def

lessThan-Suc-atMost
intro!: fps-ext sum.cong simp del: upt-Suc)

finally show ?thesis .
qed

definition solve-factored-ratfps ′ where
solve-factored-ratfps ′ = (λp (a,cs). solve-factored-ratfps (smult (inverse a) p) cs)

lemma solve-factored-ratfps ′:
assumes is-alt-factorization-of fctrs q q 6= 0
shows Abs-fps (interp-ratfps-solution (solve-factored-ratfps ′ p fctrs)) =

fps-of-poly p / fps-of-poly q
proof −

from assms have q: q = interp-alt-factorization fctrs
by (simp add: is-alt-factorization-of-def)

from assms(2) have nz: fst fctrs 6= 0
by (subst (asm) q) (auto simp: interp-alt-factorization-def case-prod-unfold)

note q
also from nz have coeff (interp-alt-factorization fctrs) 0 6= 0

by (auto simp: interp-alt-factorization-def case-prod-unfold coeff-0-prod-list
o-def coeff-0-power prod-list-zero-iff)

finally have coeff q 0 6= 0 .

obtain a cs where fctrs: fctrs = (a, cs) by (cases fctrs) simp-all
obtain b zs where sol: solve-factored-ratfps ′ p fctrs = (b, zs) using prod.exhaust

by metis
from assms have [simp]: a 6= 0

by (auto simp: is-alt-factorization-of-def interp-alt-factorization-def fctrs)

have fps-of-poly p / fps-of-poly (smult a (
∏

(c, n)←cs. [:1 , − c:] ^ Suc n)) =
fps-of-poly p / (fps-const a ∗ fps-of-poly (

∏
(c, n)←cs. [:1 , − c:] ^ Suc n))

by (simp-all add: fps-of-poly-smult case-prod-unfold del: power-Suc)
also have . . . = fps-of-poly p / fps-const a / fps-of-poly (

∏
(c, n)←cs. [:1 , − c:]

^ Suc n)
by (subst is-unit-div-mult2-eq)

(auto simp: coeff-0-power coeff-0-prod-list prod-list-zero-iff)
also have fps-of-poly p / fps-const a = fps-of-poly (smult (inverse a) p)

by (simp add: fps-const-inverse fps-divide-unit)
also from assms have smult a (

∏
(c, n)←cs. [:1 , − c:] ^ Suc n) = q

by (simp add: is-alt-factorization-of-def interp-alt-factorization-def fctrs del:
power-Suc)

also have fps-of-poly (smult (inverse a) p) /

47

fps-of-poly (
∏

(c, n)←cs. [:1 , − c:] ^ Suc n) =
Abs-fps (interp-ratfps-solution (solve-factored-ratfps (smult (inverse a)

p) cs))
(is ?lhs = -) using assms
by (intro solve-factored-ratfps)

(simp-all add: is-alt-factorization-of-def fctrs solve-factored-ratfps ′-def)
also have . . . = Abs-fps (interp-ratfps-solution (solve-factored-ratfps ′ p fctrs))

by (simp add: solve-factored-ratfps ′-def fctrs)
finally show ?thesis ..

qed

lemma degree-Poly-eq:
assumes xs = [] ∨ last xs 6= 0
shows degree (Poly xs) = length xs − 1

proof −
from assms consider xs = [] | xs 6= [] last xs 6= 0 by blast
thus ?thesis
proof cases

assume last xs 6= 0 xs 6= []
hence no-trailing ((=) 0) xs by (auto simp: no-trailing-unfold)
thus ?thesis by (simp add: degree-eq-length-coeffs)

qed auto
qed

lemma degree-Poly ′: degree (Poly xs) ≤ length xs − 1
using length-strip-while-le[of (=) 0 xs] by (simp add: degree-eq-length-coeffs)

lemma degree-inverse-irred-power-poly-le:
degree (inverse-irred-power-poly c n) ≤ n − 1
by (auto simp: inverse-irred-power-poly-def intro: order .trans[OF degree-Poly ′])

lemma degree-inverse-irred-power-poly:
assumes c 6= 0
shows degree (inverse-irred-power-poly c n) = n − 1
unfolding inverse-irred-power-poly-def using assms
by (subst degree-Poly-eq) (auto simp: last-conv-nth)

lemma reflect-poly-0-iff [simp]: reflect-poly p = 0 ←→ p = 0
using coeff-0-reflect-poly-0-iff [of p] by fastforce

lemma degree-sum-list-le: (
∧

p. p ∈ set ps =⇒ degree p ≤ T) =⇒ degree (sum-list
ps) ≤ T

by (induction ps) (auto intro: degree-add-le)

theorem ratfps-closed-form-exists:
fixes q :: complex poly
assumes nz: coeff q 0 6= 0
defines q ′ ≡ reflect-poly q

48

obtains r rs
where

∧
n. fps-nth (fps-of-poly p / fps-of-poly q) n =

coeff r n + (
∑

c | poly q ′ c = 0 . poly (rs c) (of-nat n) ∗ c ^ n)
and

∧
z. poly q ′ z = 0 =⇒ degree (rs z) ≤ order z q ′ − 1

proof −
from assms have nz ′: q 6= 0 by auto
from complex-alt-factorization-exists [OF nz]
obtain fctrs where fctrs: is-alt-factorization-of fctrs q ..
with nz have fctrs ′: is-factorization-of fctrs q ′ unfolding q ′-def

by (rule reflect-factorization ′)
define r where r = fst (solve-factored-ratfps ′ p fctrs)
define ts where ts = snd (solve-factored-ratfps ′ p fctrs)
define rs where rs = the ◦ map-of (map (λ(x,y). (y,x)) ts)

from nz ′ have q ′ 6= 0 by (simp add: q ′-def)
hence roots: {z. poly q ′ z = 0} = set (map fst (snd fctrs))

using is-factorization-of-roots [of fst fctrs snd fctrs q ′] fctrs ′ by simp

have rs: rs c = r if (r , c) ∈ set ts for c r
proof −

have map-of (map (λ(x,y). (y, x)) (snd (solve-factored-ratfps ′ p fctrs))) c =
Some r

using that fctrs
by (intro map-of-is-SomeI)

(force simp: o-def case-prod-unfold solve-factored-ratfps ′-def ts-def
solve-factored-ratfps-roots is-alt-factorization-of-def)+

thus ?thesis by (simp add: rs-def ts-def)
qed

have [simp]: length ts = length (snd fctrs)
by (auto simp: ts-def solve-factored-ratfps ′-def case-prod-unfold solve-factored-ratfps-def)

{
fix n :: nat
have fps-of-poly p / fps-of-poly q =

Abs-fps (interp-ratfps-solution (solve-factored-ratfps ′ p fctrs))
using solve-factored-ratfps ′ [OF fctrs nz ′] ..

also have fps-nth . . . n = interp-ratfps-solution (solve-factored-ratfps ′ p fctrs)
n

by simp
also have . . . = coeff r n + (

∑
p←snd (solve-factored-ratfps ′ p fctrs).

poly (fst p) (of-nat n) ∗ snd p ^ n) (is - = - + ?A)
unfolding interp-ratfps-solution-def case-prod-unfold r-def by simp

also have ?A = (
∑

p←ts. poly (rs (snd p)) (of-nat n) ∗ snd p ^ n)
by (intro arg-cong[OF map-cong] refl) (auto simp: rs ts-def)

also have . . . = (
∑

c←map snd ts.
poly (rs c) (of-nat n) ∗ c ^ n) by (simp add: o-def)

also have map snd ts = map fst (snd fctrs)
unfolding solve-factored-ratfps ′-def case-prod-unfold ts-def

49

by (rule solve-factored-ratfps-roots)
also have (

∑
c←. . . . poly (rs c) (of-nat n) ∗ c ^ n) =

(
∑

c | poly q ′ c = 0 . poly (rs c) (of-nat n) ∗ c ^ n) unfolding roots
using fctrs by (intro sum-list-distinct-conv-sum-set) (auto simp: is-alt-factorization-of-def)
finally have fps-nth (fps-of-poly p / fps-of-poly q) n =

coeff r n + (
∑

c∈{z. poly q ′ z = 0}. poly (rs c) (of-nat n) ∗ c ^
n) .

} moreover {
fix z assume poly q ′ z = 0
hence z ∈ set (map fst (snd fctrs)) using roots by blast
then obtain i where i: i < length (snd fctrs) and [simp]: z = fst (snd fctrs !

i)
by (auto simp: set-conv-nth)

from i have (fst (ts ! i), snd (ts ! i)) ∈ set ts
by (auto simp: set-conv-nth)

also from i have snd (ts ! i) = z
by (simp add: ts-def solve-factored-ratfps ′-def case-prod-unfold solve-factored-ratfps-def)
finally have rs z = fst (ts ! i) by (intro rs) auto
also have . . . = (

∑
p←zip (snd (poly-pfd-simple (smult (inverse (fst fctrs)) p)

(snd fctrs)) ! i)
[0 ..<Suc (snd (snd fctrs ! i))].
inverse-irred-power-poly (fst p) (Suc (snd (snd fctrs ! i)) − snd

p))
using i by (auto simp: ts-def solve-factored-ratfps ′-def solve-factored-ratfps-def

o-def
case-prod-unfold Let-def simp del: upt-Suc power-Suc)

also have degree . . . ≤ snd (snd fctrs ! i)
by (intro degree-sum-list-le)

(auto intro!: order .trans [OF degree-inverse-irred-power-poly-le])
also have order z q ′ = Suc . . .

using nz ′ fctrs ′ i
by (intro is-factorization-of-order [of q ′ fst fctrs snd fctrs]) (auto simp: q ′-def)

hence snd (snd fctrs ! i) = order z q ′ − 1 by simp
finally have degree (rs z) ≤

}
ultimately show ?thesis

using that[of r rs] by blast
qed

end

7 Material common to homogenous and inhomoge-
nous linear recurrences

theory Linear-Recurrences-Common
imports

Complex-Main
HOL−Computational-Algebra.Computational-Algebra

50

begin

definition lr-fps-denominator where
lr-fps-denominator cs = Poly (rev cs)

lemma lr-fps-denominator-code [code abstract]:
coeffs (lr-fps-denominator cs) = rev (dropWhile ((=) 0) cs)
by (simp add: lr-fps-denominator-def)

definition lr-fps-denominator ′ where
lr-fps-denominator ′ cs = Poly cs

lemma lr-fps-denominator ′-code [code abstract]:
coeffs (lr-fps-denominator ′ cs) = strip-while ((=) 0) cs
by (simp add: lr-fps-denominator ′-def)

lemma lr-fps-denominator-nz: last cs 6= 0 =⇒ cs 6= [] =⇒ lr-fps-denominator cs
6= 0

unfolding lr-fps-denominator-def
by (subst coeffs-eq-iff) (auto simp: poly-eq-iff intro!: bexI [of - last cs])

lemma lr-fps-denominator ′-nz: last cs 6= 0 =⇒ cs 6= [] =⇒ lr-fps-denominator ′ cs
6= 0

unfolding lr-fps-denominator ′-def
by (subst coeffs-eq-iff) (auto simp: poly-eq-iff intro!: bexI [of - last cs])

end

8 Homogenous linear recurrences
theory Linear-Homogenous-Recurrences
imports

Complex-Main
RatFPS
Rational-FPS-Solver
Linear-Recurrences-Common

begin

The following is the numerator of the rational generating function of a linear
homogenous recurrence.
definition lhr-fps-numerator where

lhr-fps-numerator m cs f = (let N = length cs − 1 in
Poly [(

∑
i≤min N k. cs ! (N − i) ∗ f (k − i)). k ← [0 ..<N+m]])

lemma lhr-fps-numerator-code [code abstract]:
coeffs (lhr-fps-numerator m cs f) = (let N = length cs − 1 in

strip-while ((=) 0) [(
∑

i≤min N k. cs ! (N − i) ∗ f (k − i)). k ← [0 ..<N+m]])
by (simp add: lhr-fps-numerator-def Let-def)

51

lemma lhr-fps-aux:
fixes f :: nat ⇒ ′a :: field
assumes

∧
n. n ≥ m =⇒ (

∑
k≤N . c k ∗ f (n + k)) = 0

assumes cN : c N 6= 0
defines p ≡ Poly [c (N − k). k ← [0 ..<Suc N]]
defines q ≡ Poly [(

∑
i≤min N k. c (N − i) ∗ f (k − i)). k ← [0 ..<N+m]]

shows Abs-fps f = fps-of-poly q / fps-of-poly p
proof −

include fps-syntax
define F where F = Abs-fps f
have [simp]: F $ n = f n for n by (simp add: F-def)
have [simp]: coeff p 0 = c N

by (simp add: p-def nth-default-def del: upt-Suc)

have (fps-of-poly p ∗ F) $ n = coeff q n for n
proof (cases n ≥ N + m)

case True
let ?f = λi. N − i
have (fps-of-poly p ∗ F) $ n = (

∑
i≤n. coeff p i ∗ f (n − i))

by (simp add: fps-mult-nth atLeast0AtMost)
also from True have . . . = (

∑
i≤N . coeff p i ∗ f (n − i))

by (intro sum.mono-neutral-right) (auto simp: nth-default-def p-def)
also have . . . = (

∑
i≤N . c (N − i) ∗ f (n − i))

by (intro sum.cong) (auto simp: nth-default-def p-def simp del: upt-Suc)
also from True have . . . = (

∑
i≤N . c i ∗ f (n − N + i))

by (intro sum.reindex-bij-witness[of - ?f ?f]) auto
also from True have . . . = 0 by (intro assms) simp-all
also from True have . . . = coeff q n

by (simp add: q-def nth-default-def del: upt-Suc)
finally show ?thesis .

next
case False
hence (fps-of-poly p ∗ F) $ n = (

∑
i≤n. coeff p i ∗ f (n − i))

by (simp add: fps-mult-nth atLeast0AtMost)
also have . . . = (

∑
i≤min N n. coeff p i ∗ f (n − i))

by (intro sum.mono-neutral-right)
(auto simp: p-def nth-default-def simp del: upt-Suc)

also have . . . = (
∑

i≤min N n. c (N − i) ∗ f (n − i))
by (intro sum.cong) (simp-all add: p-def nth-default-def del: upt-Suc)

also from False have . . . = coeff q n by (simp add: q-def nth-default-def)
finally show ?thesis .

qed
hence fps-of-poly p ∗ F = fps-of-poly q

by (intro fps-ext) simp
with cN show F = fps-of-poly q / fps-of-poly p

by (subst unit-eq-div2) (simp-all add: mult-ac)
qed

lemma lhr-fps:

52

fixes f :: nat ⇒ ′a :: field and cs :: ′a list
defines N ≡ length cs − 1
assumes cs: cs 6= []
assumes

∧
n. n ≥ m =⇒ (

∑
k≤N . cs ! k ∗ f (n + k)) = 0

assumes cN : last cs 6= 0
shows Abs-fps f = fps-of-poly (lhr-fps-numerator m cs f) /

fps-of-poly (lr-fps-denominator cs)
proof −

define p and q
where p = Poly (map (λk.

∑
i≤min N k. cs ! (N − i) ∗ f (k − i)) [0 ..<N +

m])
and q = Poly (map (λk. cs ! (N − k)) [0 ..<Suc N])

from assms have Abs-fps f = fps-of-poly p / fps-of-poly q unfolding p-def q-def
by (intro lhr-fps-aux) (simp-all add: last-conv-nth)

also have p = lhr-fps-numerator m cs f
unfolding p-def lhr-fps-numerator-def by (auto simp: Let-def N-def)

also from cN have q = lr-fps-denominator cs
unfolding q-def lr-fps-denominator-def
by (intro poly-eqI)

(auto simp add: nth-default-def rev-nth N-def not-less cs simp del: upt-Suc)
finally show ?thesis .

qed

fun lhr where
lhr cs fs n =

(if (cs :: ′a :: field list) = [] ∨ last cs = 0 ∨ length fs < length cs − 1 then
undefined else

(if n < length fs then fs ! n else
(
∑

k<length cs − 1 . cs ! k ∗ lhr cs fs (n + 1 − length cs + k)) / −last
cs))

declare lhr .simps [simp del]

lemma lhr-rec:
assumes cs 6= [] last cs 6= 0 length fs ≥ length cs − 1 n ≥ length fs
shows (

∑
k<length cs. cs ! k ∗ lhr cs fs (n + 1 − length cs + k)) = 0

proof −
from assms have {..<length cs} = insert (length cs − 1) {..<length cs − 1} by

auto
also have (

∑
k∈. . . . cs ! k ∗ lhr cs fs (n + 1 − length cs + k)) =

(
∑

k<length cs − 1 . cs ! k ∗ lhr cs fs (n + 1 − length cs + k)) +
last cs ∗ lhr cs fs n using assms

by (cases cs) (simp-all add: algebra-simps last-conv-nth)
also from assms have . . . = 0 by (subst (2) lhr .simps) (simp-all add: field-simps)
finally show ?thesis .

qed

53

lemma lhrI :
assumes cs 6= [] last cs 6= 0 length fs ≥ length cs − 1
assumes

∧
n. n < length fs =⇒ f n = fs ! n

assumes
∧

n. n ≥ length fs =⇒ (
∑

k<length cs. cs ! k ∗ f (n + 1 − length cs
+ k)) = 0

shows f n = lhr cs fs n
using assms
proof (induction cs fs n rule: lhr .induct)

case (1 cs fs n)
show ?case
proof (cases n < length fs)

case False
with 1 have 0 = (

∑
k<length cs. cs ! k ∗ f (n + 1 − length cs + k)) by simp

also from 1 have {..<length cs} = insert (length cs − 1) {..<length cs − 1}
by auto

also have (
∑

k∈. . . . cs ! k ∗ f (n + 1 − length cs + k)) =
(
∑

k<length cs − 1 . cs ! k ∗ f (n + 1 − length cs + k)) +
last cs ∗ f n using 1 False

by (cases cs) (simp-all add: algebra-simps last-conv-nth)
also have (

∑
k<length cs − 1 . cs ! k ∗ f (n + 1 − length cs + k)) =

(
∑

k<length cs − 1 . cs ! k ∗ lhr cs fs (n + 1 − length cs + k))
using False 1 by (intro sum.cong refl) simp

finally have f n = (
∑

k<length cs − 1 . cs ! k ∗ lhr cs fs (n + 1 − length cs
+ k)) / −last cs

using ‹last cs 6= 0 › by (simp add: field-simps eq-neg-iff-add-eq-0)
also from 1 (2−4) False have . . . = lhr cs fs n by (subst lhr .simps) simp

finally show ?thesis .
qed (insert 1 (2−5), simp add: lhr .simps)

qed

locale linear-homogenous-recurrence =
fixes f :: nat ⇒ ′a :: comm-semiring-0 and cs fs :: ′a list
assumes base: n < length fs =⇒ f n = fs ! n
assumes cs-not-null [simp]: cs 6= [] and last-cs [simp]: last cs 6= 0

and hd-cs [simp]: hd cs 6= 0 and enough-base: length fs + 1 ≥ length cs
assumes rec: n ≥ length fs − length cs =⇒ (

∑
k<length cs. cs ! k ∗ f (n + k))

= 0
begin

lemma lhr-fps-numerator-altdef :
lhr-fps-numerator (length fs + 1 − length cs) cs f =

lhr-fps-numerator (length fs + 1 − length cs) cs ((!) fs)
proof −

define N where N = length cs − 1
define m where m = length fs + 1 − length cs
have lhr-fps-numerator m cs f =

Poly (map (λk. (
∑

i≤min N k. cs ! (N − i) ∗ f (k − i))) [0 ..<N + m])
by (simp add: lhr-fps-numerator-def Let-def N-def)

54

also from enough-base have N + m = length fs
by (cases cs) (simp-all add: N-def m-def algebra-simps)

also {
fix k assume k: k ∈ {0 ..<length fs}
hence f (k − i) = fs ! (k − i) if i ≤ min N k for i

using enough-base that by (intro base) (auto simp: Suc-le-eq N-def m-def
algebra-simps)

hence (
∑

i≤min N k. cs ! (N − i) ∗ f (k − i)) = (
∑

i≤min N k. cs ! (N −
i) ∗ fs ! (k − i))

by simp
}
hence map (λk. (

∑
i≤min N k. cs ! (N − i) ∗ f (k − i))) [0 ..<length fs] =

map (λk. (
∑

i≤min N k. cs ! (N − i) ∗ fs ! (k − i))) [0 ..<length fs]
by (intro map-cong) simp-all

also have Poly . . . = lhr-fps-numerator m cs ((!) fs) using enough-base
by (cases cs) (simp-all add: lhr-fps-numerator-def Let-def m-def N-def)

finally show ?thesis unfolding m-def .
qed

end

lemma solve-lhr-aux:
assumes linear-homogenous-recurrence f cs fs
assumes is-factorization-of fctrs (lr-fps-denominator ′ cs)
shows f = interp-ratfps-solution (solve-factored-ratfps ′ (lhr-fps-numerator

(length fs + 1 − length cs) cs ((!) fs)) fctrs)
proof −

interpret linear-homogenous-recurrence f cs fs by fact

note assms(2)
hence is-alt-factorization-of fctrs (reflect-poly (lr-fps-denominator ′ cs))

by (intro reflect-factorization)
(simp-all add: lr-fps-denominator ′-def

nth-default-def hd-conv-nth [symmetric])
also have reflect-poly (lr-fps-denominator ′ cs) = lr-fps-denominator cs

unfolding lr-fps-denominator-def lr-fps-denominator ′-def
by (subst coeffs-eq-iff) (simp add: coeffs-reflect-poly strip-while-rev [symmetric]

no-trailing-unfold last-rev del: strip-while-rev)
finally have factorization: is-alt-factorization-of fctrs (lr-fps-denominator cs) .

define m where m = length fs + 1 − length cs
obtain a ds where fctrs: fctrs = (a, ds) by (cases fctrs) simp-all
define p and p ′ where p = lhr-fps-numerator m cs ((!) fs) and p ′ = smult

(inverse a) p
obtain b es where sol: solve-factored-ratfps ′ p fctrs = (b, es)

by (cases solve-factored-ratfps ′ p fctrs) simp-all
have sol ′: (b, es) = solve-factored-ratfps p ′ ds

by (subst sol [symmetric]) (simp add: fctrs p ′-def solve-factored-ratfps-def

55

solve-factored-ratfps ′-def case-prod-unfold)
have factorization ′: lr-fps-denominator cs = interp-alt-factorization fctrs

using factorization by (simp add: is-alt-factorization-of-def)
from assms(2) have distinct: distinct (map fst ds)

by (simp add: fctrs is-factorization-of-def)
have coeff-0-denom: coeff (lr-fps-denominator cs) 0 6= 0

by (simp add: lr-fps-denominator-def nth-default-def
hd-conv-nth [symmetric] hd-rev)

have coeff (lr-fps-denominator ′ cs) 0 6= 0
by (simp add: lr-fps-denominator ′-def nth-default-def hd-conv-nth [symmetric])

with assms(2) have no-zero: 0 /∈ fst ‘ set ds by (simp add: zero-in-factorization-iff
fctrs)

from assms(2) have a-nz [simp]: a 6= 0
by (auto simp: fctrs interp-factorization-def is-factorization-of-def lr-fps-denominator ′-nz)

hence unit1 : is-unit (fps-const a) by simp
moreover have is-unit (fps-of-poly (interp-alt-factorization fctrs))

by (simp add: coeff-0-denom factorization ′ [symmetric])
ultimately have unit2 : is-unit (fps-of-poly (

∏
p←ds. [:1 , − fst p:] ^ Suc (snd

p)))
by (simp add: fctrs case-prod-unfold interp-alt-factorization-def del: power-Suc)

have Abs-fps f = fps-of-poly (lhr-fps-numerator m cs f) /
fps-of-poly (lr-fps-denominator cs)

proof (intro lhr-fps)
fix n assume n: n ≥ m
have {..length cs − 1} = {..<length cs} by (cases cs) auto
also from n have (

∑
k∈. . . . cs ! k ∗ f (n + k)) = 0

by (intro rec) (simp-all add: m-def algebra-simps)
finally show (

∑
k≤length cs − 1 . cs ! k ∗ f (n + k)) = 0 .

qed (simp-all add: m-def)
also have lhr-fps-numerator m cs f = lhr-fps-numerator m cs ((!) fs)

unfolding lhr-fps-numerator-def using enough-base
by (auto simp: Let-def poly-eq-iff nth-default-def base

m-def Suc-le-eq intro!: sum.cong)
also have fps-of-poly . . . / fps-of-poly (lr-fps-denominator cs) =

fps-of-poly (lhr-fps-numerator m cs ((!) fs)) /
(fps-const (fst fctrs) ∗

fps-of-poly (
∏

p←snd fctrs. [:1 , − fst p:] ^ Suc (snd p)))
unfolding assms factorization ′ interp-alt-factorization-def
by (simp add: case-prod-unfold Let-def fps-of-poly-smult)

also from unit1 unit2 have . . . = fps-of-poly p / fps-const a /
fps-of-poly (

∏
(c,n)←ds. [:1 , −c:]^Suc n)

by (subst is-unit-div-mult2-eq) (simp-all add: fctrs case-prod-unfold p-def)
also from unit1 have fps-of-poly p / fps-const a = fps-of-poly p ′

by (simp add: fps-divide-unit fps-of-poly-smult fps-const-inverse p ′-def)
also from distinct no-zero have . . . / fps-of-poly (

∏
(c,n)←ds. [:1 , −c:]^Suc n)

=
Abs-fps (interp-ratfps-solution (solve-factored-ratfps ′ p fctrs))

56

by (subst solve-factored-ratfps) (simp-all add: case-prod-unfold sol ′ sol)
finally show ?thesis unfolding p-def m-def

by (intro ext) (simp add: fps-eq-iff)
qed

definition
lhr-fps as fs = (

let m = length fs + 1 − length as;
p = lhr-fps-numerator m as (λn. fs ! n);
q = lr-fps-denominator as

in ratfps-of-poly p / ratfps-of-poly q)

lemma lhr-fps-correct:
fixes f :: nat ⇒ ′a :: {field-char-0 ,field-gcd}
assumes linear-homogenous-recurrence f cs fs
shows fps-of-ratfps (lhr-fps cs fs) = Abs-fps f

proof −
interpret linear-homogenous-recurrence f cs fs by fact
define m where m = length fs + 1 − length cs
let ?num = lhr-fps-numerator m cs f
let ?num ′ = lhr-fps-numerator m cs ((!) fs)
let ?denom = lr-fps-denominator cs

have {..length cs − 1} = {..<length cs} by (cases cs) auto
moreover have length cs ≥ 1 by (cases cs) auto
ultimately have Abs-fps f = fps-of-poly ?num / fps-of-poly ?denom

by (intro lhr-fps) (insert rec, simp-all add: m-def)
also have ?num = ?num ′

by (rule lhr-fps-numerator-altdef [folded m-def])
also have fps-of-poly ?num ′ / fps-of-poly ?denom =

fps-of-ratfps (ratfps-of-poly ?num ′ / ratfps-of-poly ?denom)
by simp

also from enough-base have . . . = fps-of-ratfps (lhr-fps cs fs)
by (cases cs) (simp-all add: base fps-of-ratfps-def case-prod-unfold lhr-fps-def

m-def)
finally show ?thesis ..

qed

end

9 Eulerian polynomials
theory Eulerian-Polynomials
imports

Complex-Main
HOL−Combinatorics.Stirling
HOL−Computational-Algebra.Computational-Algebra

begin

57

The Eulerian polynomials are a sequence of polynomials that is related to
the closed forms of the power series

∞∑
n=0

nkXn

for a fixed k.
primrec eulerian-poly :: nat ⇒ ′a :: idom poly where

eulerian-poly 0 = 1
| eulerian-poly (Suc n) = (let p = eulerian-poly n in

[:0 ,1 ,−1 :] ∗ pderiv p + p ∗ [:1 , of-nat n:])

lemmas eulerian-poly-Suc [simp del] = eulerian-poly.simps(2)

lemma eulerian-poly:
fps-of-poly (eulerian-poly k :: ′a :: field poly) =

Abs-fps (λn. of-nat (n+1) ^ k) ∗ (1 − fps-X) ^ (k + 1)
proof (induction k)

case 0
have Abs-fps (λ-. 1 :: ′a) = inverse (1 − fps-X)

by (rule fps-inverse-unique [symmetric])
(simp add: inverse-mult-eq-1 fps-inverse-gp ′ [symmetric])

thus ?case by (simp add: inverse-mult-eq-1)
next

case (Suc k)
define p :: ′a fps where p = fps-of-poly (eulerian-poly k)
define F :: ′a fps where F = Abs-fps (λn. of-nat (n+1) ^ k)

have p: p = F ∗ (1 − fps-X) ^ (k+1) by (simp add: p-def Suc F-def)
have p ′: fps-deriv p = fps-deriv F ∗ (1 − fps-X) ^ (k + 1) − F ∗ (1 − fps-X)

^ k ∗ of-nat (k + 1)
by (simp add: p fps-deriv-power algebra-simps fps-const-neg [symmetric] fps-of-nat

del: power-Suc of-nat-Suc fps-const-neg)

have fps-of-poly (eulerian-poly (Suc k)) = (fps-X ∗ fps-deriv F + F) ∗ (1 −
fps-X) ^ (Suc k + 1)

apply (simp add: Let-def p-def [symmetric] fps-of-poly-simps eulerian-poly-Suc
del: power-Suc)

apply (simp add: p p ′ fps-deriv-power fps-const-neg [symmetric] fps-of-nat
del: power-Suc of-nat-Suc fps-const-neg)

apply (simp add: algebra-simps)
done

also have fps-X ∗ fps-deriv F + F = Abs-fps (λn. of-nat (n + 1) ^ Suc k)
unfolding F-def by (intro fps-ext) (auto simp: algebra-simps)

finally show ?case .
qed

lemma eulerian-poly ′:

58

Abs-fps (λn. of-nat (n+1) ^ k) =
fps-of-poly (eulerian-poly k :: ′a :: field poly) / (1 − fps-X) ^ (k + 1)

by (subst eulerian-poly) simp

lemma eulerian-poly ′′:
assumes k: k > 0
shows Abs-fps (λn. of-nat n ^ k) =

fps-of-poly (pCons 0 (eulerian-poly k :: ′a :: field poly)) / (1 − fps-X) ^
(k + 1)
proof −

from assms have Abs-fps (λn. of-nat n ^ k :: ′a) = fps-X ∗ Abs-fps (λn. of-nat
(n + 1) ^ k)

by (intro fps-ext) (auto simp: of-nat-diff)
also have Abs-fps (λn. of-nat (n + 1) ^ k :: ′a) =

fps-of-poly (eulerian-poly k) / (1 − fps-X) ^ (k + 1) by (rule
eulerian-poly ′)

also have fps-X ∗ . . . = fps-of-poly (pCons 0 (eulerian-poly k)) / (1 − fps-X)
^ (k + 1)

by (simp add: fps-of-poly-pCons fps-divide-unit)
finally show ?thesis .

qed

definition fps-monom-poly :: ′a :: field ⇒ nat ⇒ ′a poly
where fps-monom-poly c k = (if k = 0 then 1 else pcompose (pCons 0 (eulerian-poly

k)) [:0 ,c:])

primrec fps-monom-poly-aux :: ′a :: field ⇒ nat ⇒ ′a poly where
fps-monom-poly-aux c 0 = [:c:]
| fps-monom-poly-aux c (Suc k) =

(let p = fps-monom-poly-aux c k
in [:0 ,1 ,−c:] ∗ pderiv p + [:1 , of-nat k ∗ c:] ∗ p)

lemma fps-monom-poly-aux:
fps-monom-poly-aux c k = smult c (pcompose (eulerian-poly k) [:0 ,c:])
by (induction k)

(simp-all add: eulerian-poly-Suc Let-def pderiv-pcompose pcompose-pCons
pcompose-add pcompose-smult pcompose-uminus smult-add-right

pderiv-pCons
pderiv-smult algebra-simps one-pCons)

lemma fps-monom-poly-code [code]:
fps-monom-poly c k = (if k = 0 then 1 else pCons 0 (fps-monom-poly-aux c k))
by (simp add: fps-monom-poly-def fps-monom-poly-aux pcompose-pCons)

lemma fps-monom-aux:
Abs-fps (λn. of-nat n ^ k) = fps-of-poly (fps-monom-poly 1 k) / (1 − fps-X) ^

(k+1)
proof (cases k = 0)

assume [simp]: k = 0

59

hence Abs-fps (λn. of-nat n ^ k :: ′a) = Abs-fps (λ-. 1) by simp
also have . . . = 1 / (1 − fps-X) by (subst gp [symmetric]) simp-all
finally show ?thesis by (simp add: fps-monom-poly-def)

qed (insert eulerian-poly ′′[of k, where ? ′a = ′a], simp add: fps-monom-poly-def)

lemma fps-monom:
Abs-fps (λn. of-nat n ^ k ∗ c ^ n) =

fps-of-poly (fps-monom-poly c k) / (1 − fps-const c ∗ fps-X) ^ (k+1)
proof −

have Abs-fps (λn. of-nat n ^ k ∗ c ^ n) =
fps-compose (Abs-fps (λn. of-nat n ^ k)) (fps-const c ∗ fps-X)

by (subst fps-compose-linear) (simp add: mult-ac)
also have Abs-fps (λn. of-nat n ^ k) = fps-of-poly (fps-monom-poly 1 k) / (1 −

fps-X) ^ (k+1)
by (rule fps-monom-aux)

also have fps-compose . . . (fps-const c ∗ fps-X) =
(fps-of-poly (fps-monom-poly 1 k) oo fps-const c ∗ fps-X) /
((1 − fps-X) ^ (k + 1) oo fps-const c ∗ fps-X)

by (intro fps-compose-divide-distrib)
(simp-all add: fps-compose-power [symmetric] fps-compose-sub-distrib del:

power-Suc)
also have fps-of-poly (fps-monom-poly 1 k) oo (fps-const c ∗ fps-X) =

fps-of-poly (fps-monom-poly c k)
by (simp add: fps-monom-poly-def fps-of-poly-pcompose fps-of-poly-simps

fps-of-poly-pCons mult-ac)
also have ((1 − fps-X) ^ (k + 1) oo fps-const c ∗ fps-X) = (1 − fps-const c ∗

fps-X) ^ (k + 1)
by (simp add: fps-compose-power [symmetric] fps-compose-sub-distrib del: power-Suc)

finally show ?thesis .
qed

end

10 Inhomogenous linear recurrences
theory Linear-Inhomogenous-Recurrences
imports

Complex-Main
Linear-Homogenous-Recurrences
Eulerian-Polynomials
RatFPS

begin

definition lir-fps-numerator where
lir-fps-numerator m cs f g = (let N = length cs − 1 in

Poly [(
∑

i≤min N k. cs ! (N − i) ∗ f (k − i)) − g k. k ← [0 ..<N+m]])

lemma lir-fps-numerator-code [code abstract]:
coeffs (lir-fps-numerator m cs f g) = (let N = length cs − 1 in

60

strip-while ((=) 0) [(
∑

i≤min N k. cs ! (N − i) ∗ f (k − i)) − g k. k ←
[0 ..<N+m]])

by (simp add: lir-fps-numerator-def Let-def)

locale linear-inhomogenous-recurrence =
fixes f g :: nat ⇒ ′a :: comm-ring and cs fs :: ′a list
assumes base: n < length fs =⇒ f n = fs ! n
assumes cs-not-null [simp]: cs 6= [] and last-cs [simp]: last cs 6= 0

and hd-cs [simp]: hd cs 6= 0 and enough-base: length fs + 1 ≥ length cs
assumes rec: n ≥ length fs + 1 − length cs =⇒

(
∑

k<length cs. cs ! k ∗ f (n + k)) = g (n + length cs − 1)
begin

lemma coeff-0-lr-fps-denominator [simp]: coeff (lr-fps-denominator cs) 0 = last
cs
by (auto simp: lr-fps-denominator-def nth-default-def nth-Cons hd-conv-nth [symmetric]

hd-rev)

lemma lir-fps-numerator-altdef :
lir-fps-numerator (length fs + 1 − length cs) cs f g =

lir-fps-numerator (length fs + 1 − length cs) cs ((!) fs) g
proof −

define N where N = length cs − 1
define m where m = length fs + 1 − length cs
have lir-fps-numerator m cs f g =

Poly (map (λk. (
∑

i≤min N k. cs ! (N − i) ∗ f (k − i)) − g k) [0 ..<N
+ m])

by (simp add: lir-fps-numerator-def Let-def N-def)
also from enough-base have N + m = length fs

by (cases cs) (simp-all add: N-def m-def algebra-simps)
also {

fix k assume k: k ∈ {0 ..<length fs}
hence f (k − i) = fs ! (k − i) if i ≤ min N k for i

using enough-base that by (intro base) (auto simp: Suc-le-eq N-def m-def
algebra-simps)

hence (
∑

i≤min N k. cs ! (N − i) ∗ f (k − i)) = (
∑

i≤min N k. cs ! (N −
i) ∗ fs ! (k − i))

by simp
}
hence map (λk. (

∑
i≤min N k. cs ! (N − i) ∗ f (k − i)) − g k) [0 ..<length fs]

=
map (λk. (

∑
i≤min N k. cs ! (N − i) ∗ fs ! (k − i)) − g k) [0 ..<length

fs]
by (intro map-cong) simp-all

also have Poly . . . = lir-fps-numerator m cs ((!) fs) g using enough-base
by (cases cs) (simp-all add: lir-fps-numerator-def Let-def m-def N-def)

finally show ?thesis unfolding m-def .
qed

61

end

context
begin

private lemma lir-fps-aux:
fixes f :: nat ⇒ ′a :: field
assumes rec:

∧
n. n ≥ m =⇒ (

∑
k≤N . c k ∗ f (n + k)) = g (n + N)

assumes cN : c N 6= 0
defines p ≡ Poly [c (N − k). k ← [0 ..<Suc N]]
defines q ≡ Poly [(

∑
i≤min N k. c (N − i) ∗ f (k − i)) − g k. k ← [0 ..<N+m]]

shows Abs-fps f = (fps-of-poly q + Abs-fps g) / fps-of-poly p
proof −

include fps-syntax
define F where F = Abs-fps f
have [simp]: F $ n = f n for n by (simp add: F-def)
have [simp]: coeff p 0 = c N

by (simp add: p-def nth-default-def del: upt-Suc)

have (fps-of-poly p ∗ F) $ n = coeff q n + g n for n
proof (cases n ≥ N + m)

case True
let ?f = λi. N − i
have (fps-of-poly p ∗ F) $ n = (

∑
i≤n. coeff p i ∗ f (n − i))

by (simp add: fps-mult-nth atLeast0AtMost)
also from True have . . . = (

∑
i≤N . coeff p i ∗ f (n − i))

by (intro sum.mono-neutral-right) (auto simp: nth-default-def p-def)
also have . . . = (

∑
i≤N . c (N − i) ∗ f (n − i))

by (intro sum.cong) (auto simp: nth-default-def p-def simp del: upt-Suc)
also from True have . . . = (

∑
i≤N . c i ∗ f (n − N + i))

by (intro sum.reindex-bij-witness[of - ?f ?f]) auto
also from True have . . . = g (n − N + N) by (intro rec) simp-all
also from True have . . . = coeff q n + g n

by (simp add: q-def nth-default-def del: upt-Suc)
finally show ?thesis .

next
case False
hence (fps-of-poly p ∗ F) $ n = (

∑
i≤n. coeff p i ∗ f (n − i))

by (simp add: fps-mult-nth atLeast0AtMost)
also have . . . = (

∑
i≤min N n. coeff p i ∗ f (n − i))

by (intro sum.mono-neutral-right)
(auto simp: p-def nth-default-def simp del: upt-Suc)

also have . . . = (
∑

i≤min N n. c (N − i) ∗ f (n − i))
by (intro sum.cong) (simp-all add: p-def nth-default-def del: upt-Suc)

also from False have . . . = coeff q n + g n by (simp add: q-def nth-default-def)
finally show ?thesis .

qed

62

hence fps-of-poly p ∗ F = fps-of-poly q + Abs-fps g
by (intro fps-ext) (simp add:)

with cN show F = (fps-of-poly q + Abs-fps g) / fps-of-poly p
by (subst unit-eq-div2) (simp-all add: mult-ac)

qed

lemma lir-fps:
fixes f g :: nat ⇒ ′a :: field and cs :: ′a list
defines N ≡ length cs − 1
assumes cs: cs 6= []
assumes

∧
n. n ≥ m =⇒ (

∑
k≤N . cs ! k ∗ f (n + k)) = g (n + N)

assumes cN : last cs 6= 0
shows Abs-fps f = (fps-of-poly (lir-fps-numerator m cs f g) + Abs-fps g) /

fps-of-poly (lr-fps-denominator cs)
proof −

define p and q
where p = Poly [(

∑
i≤min N k. cs ! (N − i) ∗ f (k − i)) − g k. k ←

[0 ..<N+m]]
and q = Poly (map (λk. cs ! (N − k)) [0 ..<Suc N])

from assms have Abs-fps f = (fps-of-poly p + Abs-fps g) / fps-of-poly q
unfolding p-def q-def by (intro lir-fps-aux) (simp-all add: last-conv-nth)

also have p = lir-fps-numerator m cs f g
unfolding p-def lir-fps-numerator-def by (auto simp: Let-def N-def)

also from cN have q = lr-fps-denominator cs
unfolding q-def lr-fps-denominator-def
by (intro poly-eqI)

(auto simp add: nth-default-def rev-nth N-def not-less cs simp del: upt-Suc)
finally show ?thesis .

qed

end

type-synonym ′a polyexp = (′a × nat × ′a) list

definition eval-polyexp :: (′a::semiring-1) polyexp ⇒ nat ⇒ ′a where
eval-polyexp xs = (λn.

∑
(a,k,b)←xs. a ∗ of-nat n ^ k ∗ b ^ n)

lemma eval-polyexp-Nil [simp]: eval-polyexp [] = (λ-. 0)
by (simp add: eval-polyexp-def)

lemma eval-polyexp-Cons:
eval-polyexp (x#xs) = (λn. (case x of (a,k,b) ⇒ a ∗ of-nat n ^ k ∗ b ^ n) +

eval-polyexp xs n)
by (simp add: eval-polyexp-def)

definition polyexp-fps :: (′a :: field) polyexp ⇒ ′a fps where
polyexp-fps xs =

63

(
∑

(a,k,b)←xs. fps-of-poly (Polynomial.smult a (fps-monom-poly b k)) /
(1 − fps-const b ∗ fps-X) ^ (k + 1))

lemma polyexp-fps-Nil [simp]: polyexp-fps [] = 0
by (simp add: polyexp-fps-def)

lemma polyexp-fps-Cons:
polyexp-fps (x#xs) = (case x of (a,k,b) ⇒

fps-of-poly (Polynomial.smult a (fps-monom-poly b k)) / (1 − fps-const b ∗
fps-X) ^ (k + 1)) +

polyexp-fps xs
by (simp add: polyexp-fps-def)

definition polyexp-ratfps :: (′a :: field-gcd) polyexp ⇒ ′a ratfps where
polyexp-ratfps xs =

(
∑

(a,k,b)←xs. ratfps-of-poly (Polynomial.smult a (fps-monom-poly b k)) /
ratfps-of-poly ([:1 , −b:] ^ (k + 1)))

lemma polyexp-ratfps-Nil [simp]: polyexp-ratfps [] = 0
by (simp add: polyexp-ratfps-def)

lemma polyexp-ratfps-Cons: polyexp-ratfps (x#xs) = (case x of (a,k,b) ⇒
ratfps-of-poly (Polynomial.smult a (fps-monom-poly b k)) /

ratfps-of-poly ([:1 , −b:] ^ (k + 1))) + polyexp-ratfps xs
by (simp add: polyexp-ratfps-def)

lemma polyexp-fps: Abs-fps (eval-polyexp xs) = polyexp-fps xs
proof (induction xs)

case (Cons x xs)
obtain a k b where [simp]: x = (a, k, b) by (metis prod.exhaust)
have Abs-fps (eval-polyexp (x#xs)) =

fps-const a ∗ Abs-fps (λn. of-nat n ^ k ∗ b ^ n) + Abs-fps (eval-polyexp xs)
by (simp add: eval-polyexp-Cons fps-plus-def mult-ac)

also have Abs-fps (λn. of-nat n ^ k ∗ b ^ n) =
fps-of-poly (fps-monom-poly b k) / (1 − fps-const b ∗ fps-X) ^ (k +

1)
(is - = ?A / ?B)

by (rule fps-monom)
also have fps-const a ∗ (?A / ?B) = (fps-const a ∗ ?A) / ?B

by (intro unit-div-mult-swap) simp-all
also have fps-const a ∗ ?A = fps-of-poly (Polynomial.smult a (fps-monom-poly

b k))
by simp

also note Cons.IH
finally show ?case by (simp add: polyexp-fps-Cons)

qed (simp-all add: fps-zero-def)

lemma polyexp-ratfps [simp]: fps-of-ratfps (polyexp-ratfps xs) = polyexp-fps xs
by (induction xs)

64

(auto simp del: power-Suc fps-const-neg
simp: coeff-0-power fps-of-poly-power fps-of-poly-smult fps-of-poly-pCons

fps-const-neg [symmetric] mult-ac polyexp-ratfps-Cons polyexp-fps-Cons)

definition lir-fps ::
′a :: field-gcd list ⇒ ′a list ⇒ ′a polyexp ⇒ (′a ratfps) option where

lir-fps cs fs g = (if cs = [] ∨ length fs < length cs − 1 then None else
let m = length fs + 1 − length cs;

p = lir-fps-numerator m cs (λn. fs ! n) (eval-polyexp g);
q = lr-fps-denominator cs

in Some ((ratfps-of-poly p + polyexp-ratfps g) ∗ inverse (ratfps-of-poly q)))

lemma lir-fps-correct:
fixes f :: nat ⇒ ′a :: field-gcd
assumes linear-inhomogenous-recurrence f (eval-polyexp g) cs fs
shows map-option fps-of-ratfps (lir-fps cs fs g) = Some (Abs-fps f)

proof −
interpret linear-inhomogenous-recurrence f eval-polyexp g cs fs by fact
define m where m = length fs + 1 − length cs
let ?num = lir-fps-numerator m cs f (eval-polyexp g)
let ?num ′ = lir-fps-numerator m cs ((!) fs) (eval-polyexp g)
let ?denom = lr-fps-denominator cs

have {..length cs − 1} = {..<length cs} by (cases cs) auto
moreover have length cs ≥ 1 by (cases cs) auto
ultimately have Abs-fps f = (fps-of-poly ?num + Abs-fps (eval-polyexp g)) /

fps-of-poly ?denom
by (intro lir-fps) (insert rec, simp-all add: m-def)

also have ?num = ?num ′ by (rule lir-fps-numerator-altdef [folded m-def])
also have (fps-of-poly ?num ′ + Abs-fps (eval-polyexp g)) / fps-of-poly ?denom =

fps-of-ratfps ((ratfps-of-poly ?num ′ + polyexp-ratfps g) ∗
inverse (ratfps-of-poly ?denom))

by (simp add: polyexp-fps fps-divide-unit)
also from enough-base have Some . . . = map-option fps-of-ratfps (lir-fps cs fs

g)
by (cases cs) (simp-all add: base fps-of-ratfps-def case-prod-unfold lir-fps-def

m-def)
finally show ?thesis ..

qed

end

theory Rational-FPS-Asymptotics
imports

HOL−Library.Landau-Symbols
Polynomial-Factorization.Square-Free-Factorization
HOL−Real-Asymp.Real-Asymp

65

Count-Complex-Roots.Count-Complex-Roots
Linear-Homogenous-Recurrences
Linear-Inhomogenous-Recurrences
RatFPS
Rational-FPS-Solver
HOL−Library.Code-Target-Numeral

begin

lemma poly-asymp-equiv:
assumes p 6= 0 and F ≤ at-infinity
shows poly p ∼[F] (λx. lead-coeff p ∗ x ^ degree p)

proof −
have poly-pCons ′: poly (pCons a q) = (λx. a + x ∗ poly q x) for a :: ′a and q

by (simp add: fun-eq-iff)
show ?thesis using assms(1)
proof (induction p)

case (pCons a p)
define n where n = Suc (degree p)
show ?case
proof (cases p = 0)

case [simp]: False
hence ∗: poly p ∼[F] (λx. lead-coeff p ∗ x ^ degree p)

by (intro pCons.IH)
have poly (pCons a p) = (λx. a + x ∗ poly p x)

by (simp add: poly-pCons ′)
moreover have . . . ∼[F] (λx. lead-coeff p ∗ x ^ n)
proof (subst asymp-equiv-add-left)

have (λx. x ∗ poly p x) ∼[F] (λx. x ∗ (lead-coeff p ∗ x ^ degree p))
by (intro asymp-equiv-intros ∗)

also have . . . = (λx. lead-coeff p ∗ x ^ n) by (simp add: n-def mult-ac)
finally show (λx. x ∗ poly p x) ∼[F]

next
have filterlim (λx. x) at-infinity F

by (simp add: filterlim-def assms)
hence (λx. x ^ n) ∈ ω[F](λ-. 1 :: ′a) unfolding smallomega-1-conv-filterlim
by (intro Limits.filterlim-power-at-infinity filterlim-ident) (auto simp: n-def)

hence (λx. a) ∈ o[F](λx. x ^ n) unfolding smallomega-iff-smallo[symmetric]
by (cases a = 0) auto

thus (λx. a) ∈ o[F](λx. lead-coeff p ∗ x ^ n)
by simp

qed
ultimately show ?thesis by (simp add: n-def)

qed auto
qed auto

qed

lemma poly-bigtheta:
assumes p 6= 0 and F ≤ at-infinity

66

shows poly p ∈ Θ[F](λx. x ^ degree p)
proof −

have poly p ∼[F] (λx. lead-coeff p ∗ x ^ degree p)
by (intro poly-asymp-equiv assms)

thus ?thesis using assms by (auto dest!: asymp-equiv-imp-bigtheta)
qed

lemma poly-bigo:
assumes F ≤ at-infinity and degree p ≤ k
shows poly p ∈ O[F](λx. x ^ k)

proof (cases p = 0)
case True
hence poly p = (λ-. 0) by (auto simp: fun-eq-iff)
thus ?thesis by simp

next
case False
have ∗: (λx. x ^ (k − degree p)) ∈ Ω[F](λx. 1)
proof (cases k = degree p)

case False
hence (λx. x ^ (k − degree p)) ∈ ω[F](λ-. 1)

unfolding smallomega-1-conv-filterlim using assms False
by (intro Limits.filterlim-power-at-infinity filterlim-ident)

(auto simp: filterlim-def)
thus ?thesis by (rule landau-omega.small-imp-big)

qed auto

have poly p ∈ Θ[F](λx. x ^ degree p ∗ 1)
using poly-bigtheta[OF False assms(1)] by simp

also have (λx. x ^ degree p ∗ 1) ∈ O[F](λx. x ^ degree p ∗ x ^ (k − degree p))
using ∗

by (intro landau-o.big.mult landau-o.big-refl) (auto simp: bigomega-iff-bigo)
also have (λx:: ′a. x ^ degree p ∗ x ^ (k − degree p)) = (λx. x ^ k)

using assms by (simp add: power-add [symmetric])
finally show ?thesis .

qed

lemma reflect-poly-dvdI :
fixes p q :: ′a::{comm-semiring-1 ,semiring-no-zero-divisors} poly
assumes p dvd q
shows reflect-poly p dvd reflect-poly q
using assms by (auto simp: reflect-poly-mult)

lemma smult-altdef : smult c p = [:c:] ∗ p
by (induction p) (auto simp: mult-ac)

lemma smult-power : smult (c ^ n) (p ^ n) = (smult c p) ^ n
proof −

have smult (c ^ n) (p ^ n) = [:c ^ n:] ∗ p ^ n
by simp

67

also have [:c:] ^ n = [:c ^ n:]
by (induction n) (auto simp: mult-ac)

hence [:c ^ n:] = [:c:] ^ n ..
also have . . . ∗ p ^ n = ([:c:] ∗ p) ^ n

by (rule power-mult-distrib [symmetric])
also have . . . = (smult c p) ^ n by simp
finally show ?thesis .

qed

lemma order-reflect-poly-ge:
fixes c :: ′a :: field
assumes c 6= 0 and p 6= 0
shows order c (reflect-poly p) ≥ order (1 / c) p

proof −
have reflect-poly ([:−(1 / c), 1 :] ^ order (1 / c) p) dvd reflect-poly p

by (intro reflect-poly-dvdI , subst order-divides) auto
also have reflect-poly ([:−(1 / c), 1 :] ^ order (1 / c) p) =

smult ((−1 / c) ^ order (1 / c) p) ([:−c, 1 :] ^ order (1 / c) p)
using assms by (simp add: reflect-poly-power reflect-poly-pCons smult-power)

finally have ([:−c, 1 :] ^ order (1 / c) p) dvd reflect-poly p
by (rule smult-dvd-cancel)

with ‹p 6= 0 › show ?thesis by (subst (asm) order-divides) auto
qed

lemma order-reflect-poly:
fixes c :: ′a :: field
assumes c 6= 0 and coeff p 0 6= 0
shows order c (reflect-poly p) = order (1 / c) p

proof (rule antisym)
from assms show order c (reflect-poly p) ≥ order (1 / c) p

by (intro order-reflect-poly-ge) auto
next

from assms have order (1 / (1 / c)) (reflect-poly p) ≤
order (1 / c) (reflect-poly (reflect-poly p))

by (intro order-reflect-poly-ge) auto
with assms show order c (reflect-poly p) ≤ order (1 / c) p

by simp
qed

lemma poly-reflect-eq-0-iff :
poly (reflect-poly p) (x :: ′a :: field) = 0 ←→ p = 0 ∨ x 6= 0 ∧ poly p (1 / x) =

0
by (cases x = 0) (auto simp: poly-reflect-poly-nz inverse-eq-divide)

theorem ratfps-nth-bigo:
fixes q :: complex poly
assumes R > 0
assumes roots1 :

∧
z. z ∈ ball 0 (1 / R) =⇒ poly q z 6= 0

68

assumes roots2 :
∧

z. z ∈ sphere 0 (1 / R) =⇒ poly q z = 0 =⇒ order z q ≤
Suc k

shows fps-nth (fps-of-poly p / fps-of-poly q) ∈ O(λn. of-nat n ^ k ∗ of-real R
^ n)
proof −

define q ′ where q ′ = reflect-poly q
from roots1 [of 0] and ‹R > 0 › have [simp]: coeff q 0 6= 0 q 6= 0

by (auto simp: poly-0-coeff-0)
from ratfps-closed-form-exists[OF this(1), of p]
obtain r rs where closed-form:∧

n. (fps-of-poly p / fps-of-poly q) $ n =
coeff r n + (

∑
c | poly (reflect-poly q) c = 0 . poly (rs c) (of-nat n) ∗ c ^ n)∧

z. poly (reflect-poly q) z = 0 =⇒ degree (rs z) ≤ order z (reflect-poly q) − 1
by blast

have fps-nth (fps-of-poly p / fps-of-poly q) =
(λn. coeff r n + (

∑
c | poly q ′ c = 0 . poly (rs c) (of-nat n) ∗ c ^ n))

by (intro ext, subst closed-form) (simp-all add: q ′-def)
also have . . . ∈ O(λn. of-nat n ^ k ∗ of-real R ^ n)
proof (intro sum-in-bigo big-sum-in-bigo)

have eventually (λn. coeff r n = 0) at-top
using MOST-nat coeff-eq-0 cofinite-eq-sequentially by force

hence coeff r ∈ Θ(λ-. 0) by (rule bigthetaI-cong)
also have (λ-. 0 :: complex) ∈ O(λn. of-nat n ^ k ∗ of-real R ^ n)

by simp
finally show coeff r ∈ O(λn. of-nat n ^ k ∗ of-real R ^ n) .

next
fix c assume c: c ∈ {c. poly q ′ c = 0}
hence [simp]: c 6= 0 by (auto simp: q ′-def)

show (λn. poly (rs c) n ∗ c ^ n) ∈ O(λn. of-nat n ^ k ∗ of-real R ^ n)
proof (cases norm c = R)

case True — The case of a root at the border of the disc
show ?thesis

proof (intro landau-o.big.mult landau-o.big.compose[OF poly-bigo tendsto-of-nat])
have degree (rs c) ≤ order c (reflect-poly q) − 1

using c by (intro closed-form(2)) (auto simp: q ′-def)
also have order c (reflect-poly q) = order (1 / c) q

using c by (intro order-reflect-poly) (auto simp: q ′-def)
also {

have order (1 / c) q ≤ Suc k using ‹R > 0 › and True and c
by (intro roots2) (auto simp: q ′-def norm-divide poly-reflect-eq-0-iff)

moreover have order (1 / c) q 6= 0
using order-root[of q 1 / c] c by (auto simp: q ′-def poly-reflect-eq-0-iff)

ultimately have order (1 / c) q − 1 ≤ k by simp
}
finally show degree (rs c) ≤ k .

next
have (λn. norm (c ^ n)) ∈ O(λn. norm (complex-of-real R ^ n))

69

using True and ‹R > 0 › by (simp add: norm-power)
thus (λn. c ^ n) ∈ O(λn. complex-of-real R ^ n)

by (subst (asm) landau-o.big.norm-iff)
qed auto

next
case False — The case of a root in the interior of the disc
hence norm c < R using c and roots1 [of 1/c] and ‹R > 0 ›

by (cases norm c R rule: linorder-cases)
(auto simp: q ′-def poly-reflect-eq-0-iff norm-divide field-simps)

define l where l = degree (rs c)

have (λn. poly (rs c) (of-nat n) ∗ c ^ n) ∈ O(λn. of-nat n ^ l ∗ c ^ n)
by (intro landau-o.big.mult landau-o.big.compose[OF poly-bigo tendsto-of-nat])

(auto simp: l-def)
also have (λn. of-nat n ^ l ∗ c ^ n) ∈ O(λn. of-nat n ^ k ∗ of-real R ^ n)
proof (subst landau-o.big.norm-iff [symmetric])

have (λn. real n ^ l) ∈ O(λn. real n ^ k ∗ (R / norm c) ^ n)
using ‹norm c < R› and ‹R > 0 › by real-asymp

hence (λn. real n ^ l ∗ norm c ^ n) ∈ O(λn. real n ^ k ∗ R ^ n)
by (simp add: power-divide landau-o.big.divide-eq1)

thus (λx. norm (of-nat x ^ l ∗ c ^ x)) ∈
O(λx. norm (of-nat x ^ k ∗ complex-of-real R ^ x))

unfolding norm-power norm-mult using ‹R > 0 › by simp
qed
finally show ?thesis .

qed
qed
finally show ?thesis .

qed

lemma order-power : p 6= 0 =⇒ order c (p ^ n) = n ∗ order c p
by (induction n) (auto simp: order-mult)

lemma same-root-imp-not-coprime:
assumes poly p x = 0 and poly q (x :: ′a :: {factorial-ring-gcd,semiring-gcd-mult-normalize})

= 0
shows ¬coprime p q

proof
assume coprime p q
from assms have [:−x, 1 :] dvd p and [:−x, 1 :] dvd q

by (simp-all add: poly-eq-0-iff-dvd)
hence [:−x, 1 :] dvd gcd p q by (simp add: poly-eq-0-iff-dvd)
also from ‹coprime p q› have gcd p q = 1

by (rule coprime-imp-gcd-eq-1)
finally show False by (elim is-unit-polyE) auto

qed

70

lemma ratfps-nth-bigo-square-free-factorization:
fixes p :: complex poly
assumes square-free-factorization q (b, cs)
assumes q 6= 0 and R > 0
assumes roots1 :

∧
c l. (c, l) ∈ set cs =⇒ ∀ x∈ball 0 (1 / R). poly c x 6= 0

assumes roots2 :
∧

c l. (c, l) ∈ set cs =⇒ l > Suc k =⇒ ∀ x∈sphere 0 (1 / R).
poly c x 6= 0

shows fps-nth (fps-of-poly p / fps-of-poly q) ∈ O(λn. of-nat n ^ k ∗ of-real R
^ n)
proof −

from assms(1) have q: q = smult b (
∏

(c, l)∈set cs. c ^ l)
unfolding square-free-factorization-def prod.case by blast

with ‹q 6= 0 › have [simp]: b 6= 0 by auto
note sff = square-free-factorizationD[OF assms(1)]

from sff (2)[of 0] have [simp]: (0 , x) /∈ set cs for x by auto

from assms(1) have coprime: c1 = c2 m = n
if ¬coprime c1 c2 (c1 , m) ∈ set cs (c2 , n) ∈ set cs for c1 c2 m n
using that by (auto simp: square-free-factorization-def case-prod-unfold)

show ?thesis
proof (rule ratfps-nth-bigo)

fix z :: complex assume z: z ∈ ball 0 (1 / R)
show poly q z 6= 0
proof

assume poly q z = 0
then obtain c l where cl: (c, l) ∈ set cs and poly c z = 0

by (auto simp: q poly-prod image-iff)
with roots1 [of c l] and z show False by auto

qed
next

fix z :: complex assume z: z ∈ sphere 0 (1 / R)

have order : order z q = order z (
∏

(c, l)∈set cs. c ^ l)
by (simp add: order-smult q)

also have . . . = (
∑

x∈set cs. order z (case x of (c, l) ⇒ c ^ l))
by (subst order-prod) (auto dest: coprime)

also have . . . = (
∑

(c, l)∈set cs. l ∗ order z c)
unfolding case-prod-unfold by (intro sum.cong refl, subst order-power) auto

finally have order z q =

show order z q ≤ Suc k
proof (cases ∃ c0 l0 . (c0 , l0) ∈ set cs ∧ poly c0 z = 0)

case False
have order z q = (

∑
(c, l)∈set cs. l ∗ order z c) by fact

also have order z c = 0 if (c, l) ∈ set cs for c l
using False that by (auto simp: order-root)

hence (
∑

(c, l)∈set cs. l ∗ order z c) = 0

71

by (intro sum.neutral) auto
finally show order z q ≤ Suc k by simp

next
case True — The order of a root is determined by the unique polynomial in

the square-free factorisation that contains it.
then obtain c0 l0 where cl0 : (c0 , l0) ∈ set cs poly c0 z = 0

by blast
have order z q = (

∑
(c, l)∈set cs. l ∗ order z c) by fact

also have . . . = l0 ∗ order z c0 + (
∑

(c, l) ∈ set cs − {(c0 , l0)}. l ∗ order
z c)

using cl0 by (subst sum.remove[of - (c0 , l0)]) auto
also have (

∑
(c, l) ∈ set cs − {(c0 , l0)}. l ∗ order z c) = 0

proof (intro sum.neutral ballI , goal-cases)
case (1 cl)
then obtain c l where [simp]: cl = (c, l) and cl: (c, l) ∈ set cs (c0 , l0)

6= (c, l)
by (cases cl) auto

from cl and cl0 and coprime[of c c0 l l0] have coprime c c0
by auto

with same-root-imp-not-coprime[of c z c0] and cl0 have poly c z 6= 0 by
auto

thus ?case by (auto simp: order-root)
qed
also have square-free c0 using cl0 assms(1)

by (auto simp: square-free-factorization-def)
hence rsquarefree c0 by (rule square-free-rsquarefree)
with cl0 have order z c0 = 1

by (auto simp: rsquarefree-def ′ order-root intro: antisym)
finally have order z q = l0 by simp

also from roots2 [OF cl0 (1)] cl0 (2) z have l0 ≤ Suc k
by (cases l0 Suc k rule: linorder-cases) auto

finally show order z q ≤ Suc k by simp
qed

qed fact+
qed

lemma proots-within-card-zero-iff :
assumes p 6= (0 :: ′a :: idom poly)
shows card (proots-within p A) = 0 ←→ (∀ x∈A. poly p x 6= 0)
using assms by (subst card-0-eq) (auto intro: finite-proots)

lemma ratfps-nth-bigo-square-free-factorization ′:
fixes p :: complex poly
assumes square-free-factorization q (b, cs)
assumes q 6= 0 and R > 0
assumes roots1 : list-all (λcl. proots-ball-card (fst cl) 0 (1 / R) = 0) cs
assumes roots2 : list-all (λcl. proots-sphere-card (fst cl) 0 (1 / R) = 0)

72

(filter (λcl. snd cl > Suc k) cs)
shows fps-nth (fps-of-poly p / fps-of-poly q) ∈ O(λn. of-nat n ^ k ∗ of-real R

^ n)
proof (rule ratfps-nth-bigo-square-free-factorization[OF assms(1)])

note sff = square-free-factorizationD[OF assms(1)]

from sff (2)[of 0] have [simp]: (0 , x) /∈ set cs for x by auto
from assms(1) have q: q = smult b (

∏
(c, l)∈set cs. c ^ l)

unfolding square-free-factorization-def prod.case by blast
with ‹q 6= 0 › have [simp]: b 6= 0 by auto

show ∀ x∈ball 0 (1 / R). poly c x 6= 0 if (c, l) ∈ set cs for c l
proof −

from roots1 that have card (proots-within c (ball 0 (1 / R))) = 0
by (auto simp: proots-ball-card-def list-all-def)

with that show ?thesis by (subst (asm) proots-within-card-zero-iff) auto
qed

show ∀ x∈sphere 0 (1 / R). poly c x 6= 0 if (c, l) ∈ set cs l > Suc k for c l
proof −

from roots2 that have card (proots-within c (sphere 0 (1 / R))) = 0
by (auto simp: proots-sphere-card-def list-all-def)

with that show ?thesis by (subst (asm) proots-within-card-zero-iff) auto
qed

qed fact+

definition ratfps-has-asymptotics where
ratfps-has-asymptotics q k R ←→ q 6= 0 ∧ R > 0 ∧

(let cs = snd (yun-factorization gcd q)
in list-all (λcl. proots-ball-card (fst cl) 0 (1 / R) = 0) cs ∧

list-all (λcl. proots-sphere-card (fst cl) 0 (1 / R) = 0) (filter (λcl. snd cl
> Suc k) cs))

lemma ratfps-has-asymptotics-correct:
assumes ratfps-has-asymptotics q k R
shows fps-nth (fps-of-poly p / fps-of-poly q) ∈ O(λn. of-nat n ^ k ∗ of-real R

^ n)
proof (rule ratfps-nth-bigo-square-free-factorization ′)
show square-free-factorization q (fst (yun-factorization gcd q), snd (yun-factorization

gcd q))
by (rule yun-factorization) simp

qed (insert assms, auto simp: ratfps-has-asymptotics-def Let-def list-all-def)

value map (fps-nth (fps-of-poly [:0 , 1 :] / fps-of-poly [:1 , −1 , −1 :: real:])) [0 ..<5]

73

method ratfps-bigo = (rule ratfps-has-asymptotics-correct; eval)

lemma fps-nth (fps-of-poly [:0 , 1 :] / fps-of-poly [:1 , −1 , −1 :: complex:]) ∈
O(λn. of-nat n ^ 0 ∗ complex-of-real 1 .618034 ^ n)

by ratfps-bigo

lemma fps-nth (fps-of-poly 1 / fps-of-poly [:1 , −3 , 3 , −1 :: complex:]) ∈
O(λn. of-nat n ^ 2 ∗ complex-of-real 1 ^ n)

by ratfps-bigo

lemma fps-nth (fps-of-poly f / fps-of-poly [:5 , 4 , 3 , 2 , 1 :: complex:]) ∈
O(λn. of-nat n ^ 0 ∗ complex-of-real 0 .69202 ^ n)

by ratfps-bigo

end

74

	Rational formal power series
	Some auxiliary
	The type of rational formal power series

	Falling factorial as a polynomial
	Miscellaneous material required for linear recurrences
	Partial Fraction Decomposition
	Decomposition on general Euclidean rings
	Specific results for polynomials

	Factorizations of polynomials
	Solver for rational formal power series
	Material common to homogenous and inhomogenous linear recurrences
	Homogenous linear recurrences
	Eulerian polynomials
	Inhomogenous linear recurrences

