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Abstract

We formalize results about linear inqualities, mainly from Schri-
jver’s book [3]. The main results are the proof of the fundamental the-
orem on linear inequalities, Farkas’ lemma, Carathéodory’s theorem,
the Farkas-Minkowsky-Weyl theorem, the decomposition theorem of
polyhedra, and Meyer’s result that the integer hull of a polyhedron
is a polyhedron itself. Several theorems include bounds on the ap-
pearing numbers, and in particular we provide an a-priori bound on
mixed-integer solutions of linear inequalities.
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1 Introduction
The motivation for this formalization is the aim of developing a verified the-
ory solver for linear integer arithmetic. Such a solver can be a combination of
a simplex-implementation within a branch-and-bound approach, that might
also utilize Gomory cuts [1, Section 4 of the extended version]. However,
the branch-and-bound algorithm does not terminate in general, since the
search space in infinite. To solve this latter problem, one can use results of
Papadimitriou: he showed that whenever a set of linear inequalities has an
integer solution, then it also has a small solution, where the bound on such
a solution can be computed easily from the input [2].

In this entry, we therefore formalize several results on linear inequalities
which are required to obtain the desired bound, by following the proofs of
Schrijver’s textbook [3, Sections 7 and 16].

We start with basic definitions and results on cones, convex hulls, and
polyhedra. Next, we verify the fundamental theorem of linear inequalities,
which in our formalization shows the equivalence of four statements to de-
scribe a cone. From this theorem, one easily derives Farkas’ Lemma and
Carathéodory’s theorem. Moreover we verify the Farkas-Minkowsky-Weyl
theorem, that a convex cone is polyhedral if and only if it is finitely gen-
erated, and use this result to obtain the decomposition theorem for poly-
hedra, i.e., that a polyhedron can always be decomposed into a polytope
and a finitely generated cone. For most of the previously mentioned results,
we include bounds, so that in particular we have a quantitative version of
the decomposition theorem, which provides bounds on the vectors that con-
struct the polytope and the cone, and where these bounds are computed
directly from the input polyhedron that should be decomposed.

We further prove the decomposition theorem also for the integer hull
of a polyhedron, using the same bounds, which gives rise to small integer
solutions for linear inequalities. We finally formalize a direct proof for the
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more general case of mixed integer solutions, where we also permit both
strict and non-strict linear inequalities.

Theorem 1. Consider A1 ∈ Zm1×n, b1 ∈ Zm1 , A2 ∈ Zm2×n, b2 ∈ Zm2. Let β
be a bound on A1, b1, A2, b2, i.e., β ≥ |z| for all numbers z that occur within
A1, b1, A2, b2. Let n = n1+n2. Then if x ∈ Zn1×Rn2 ⊆ Rn is a mixed integer
solution of the linear inequalities, i.e., A1x ≤ b1 and A2x < b2, then there
also exists a mixed integer solution y ∈ Zn1×Rn2 where |yi| ≤ (n+1)·

√
nn·βn

for each entry yi of y.

The verified bound in Theorem 1 in particular implies that integer-
satisfiability of linear-inqualities with integer coefficients is in NP.

2 Missing Lemmas on Vectors and Matrices
We provide some results on vector spaces which should be merged into
Jordan-Normal-Form/Matrix.
theory Missing-Matrix

imports Jordan-Normal-Form.Matrix
begin

lemma orthogonalD ′: assumes orthogonal vs
and v ∈ set vs and w ∈ set vs

shows (v · w = 0 ) = (v 6= w)
proof −

from assms(2 ) obtain i where v: v = vs ! i and i: i < length vs by (auto simp:
set-conv-nth)

from assms(3 ) obtain j where w: w = vs ! j and j: j < length vs by (auto
simp: set-conv-nth)

from orthogonalD[OF assms(1 ) i j, folded v w] orthogonalD[OF assms(1 ) i i,
folded v v]

show ?thesis using v w by auto
qed

lemma zero-mat-mult-vector [simp]: x ∈ carrier-vec nc =⇒ 0m nr nc ∗v x = 0 v

nr
by (intro eq-vecI , auto)

lemma add-diff-cancel-right-vec:
a ∈ carrier-vec n =⇒ (b :: ′a :: cancel-ab-semigroup-add vec) ∈ carrier-vec n =⇒
(a + b) − b = a

by (intro eq-vecI , auto)

lemma elements-four-block-mat-id:
assumes c: A ∈ carrier-mat nr1 nc1 B ∈ carrier-mat nr1 nc2

C ∈ carrier-mat nr2 nc1 D ∈ carrier-mat nr2 nc2
shows

elements-mat (four-block-mat A B C D) =
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elements-mat A ∪ elements-mat B ∪ elements-mat C ∪ elements-mat D
(is elements-mat ?four = ?X)

proof
show elements-mat ?four ⊆ ?X

by (rule elements-four-block-mat[OF c])
have 4 : ?four ∈ carrier-mat (nr1 + nr2 ) (nc1 + nc2 ) using c by auto
{

fix x
assume x ∈ ?X
then consider (A) x ∈ elements-mat A
| (B) x ∈ elements-mat B
| (C ) x ∈ elements-mat C
| (D) x ∈ elements-mat D by auto

hence x ∈ elements-mat ?four
proof (cases)

case A
from elements-matD[OF this] obtain i j

where ∗: i < nr1 j < nc1 and x: x = A $$ (i,j)
using c by auto

from elements-matI [OF 4 , of i j x] ∗ c
show ?thesis unfolding x by auto

next
case B
from elements-matD[OF this] obtain i j

where ∗: i < nr1 j < nc2 and x: x = B $$ (i,j)
using c by auto

from elements-matI [OF 4 , of i nc1 + j x] ∗ c
show ?thesis unfolding x by auto

next
case C
from elements-matD[OF this] obtain i j

where ∗: i < nr2 j < nc1 and x: x = C $$ (i,j)
using c by auto

from elements-matI [OF 4 , of nr1 + i j x] ∗ c
show ?thesis unfolding x by auto

next
case D
from elements-matD[OF this] obtain i j

where ∗: i < nr2 j < nc2 and x: x = D $$ (i,j)
using c by auto

from elements-matI [OF 4 , of nr1 + i nc1 + j x] ∗ c
show ?thesis unfolding x by auto

qed
}
thus elements-mat ?four ⊇ ?X by blast

qed

lemma elements-mat-append-rows: A ∈ carrier-mat nr n =⇒ B ∈ carrier-mat nr2
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n =⇒
elements-mat (A @r B) = elements-mat A ∪ elements-mat B
unfolding append-rows-def
by (subst elements-four-block-mat-id, auto)

lemma elements-mat-uminus[simp]: elements-mat (−A) = uminus ‘ elements-mat
A

unfolding elements-mat-def by auto

lemma vec-set-uminus[simp]: vec-set (−A) = uminus ‘ vec-set A
unfolding vec-set-def by auto

definition append-cols :: ′a :: zero mat ⇒ ′a mat ⇒ ′a mat (infixr ‹@c› 65 )
where

A @c B = (AT @r BT )T

lemma carrier-append-cols[simp, intro]:
A ∈ carrier-mat nr nc1 =⇒
B ∈ carrier-mat nr nc2 =⇒ (A @c B) ∈ carrier-mat nr (nc1 + nc2 )

unfolding append-cols-def by auto

lemma elements-mat-transpose-mat[simp]: elements-mat (AT ) = elements-mat A
unfolding elements-mat-def by auto

lemma elements-mat-append-cols: A ∈ carrier-mat n nc =⇒ B ∈ carrier-mat n
nc1
=⇒ elements-mat (A @c B) = elements-mat A ∪ elements-mat B
unfolding append-cols-def elements-mat-transpose-mat
by (subst elements-mat-append-rows, auto)

lemma vec-first-index:
assumes v: dim-vec v ≥ n

and i: i < n
shows (vec-first v n) $ i = v $ i
unfolding vec-first-def using assms by simp

lemma vec-last-index:
assumes v: v ∈ carrier-vec (n + m)

and i: i < m
shows (vec-last v m) $ i = v $ (n + i)
unfolding vec-last-def using assms by simp

lemma vec-first-add:
assumes dim-vec x ≥ n

and dim-vec y ≥ n
showsvec-first (x + y) n = vec-first x n + vec-first y n
unfolding vec-first-def using assms by auto

lemma vec-first-zero[simp]: m ≤ n =⇒ vec-first (0 v n) m = 0 v m
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unfolding vec-first-def by auto

lemma vec-first-smult:
[[ m ≤ n; x ∈ carrier-vec n ]] =⇒ vec-first (c ·v x) m = c ·v vec-first x m
unfolding vec-first-def by auto

lemma elements-mat-mat-of-row[simp]: elements-mat (mat-of-row v) = vec-set v
by (auto simp: mat-of-row-def elements-mat-def vec-set-def )

lemma vec-set-append-vec[simp]: vec-set (v @v w) = vec-set v ∪ vec-set w
by (metis list-of-vec-append set-append set-list-of-vec)

lemma vec-set-vNil[simp]: setv vNil = {} using set-list-of-vec by force

lemma diff-smult-distrib-vec: ((x :: ′a::ring) − y) ·v v = x ·v v − y ·v v
unfolding smult-vec-def minus-vec-def
by (rule eq-vecI , auto simp: left-diff-distrib)

lemma add-diff-eq-vec: fixes y :: ′a :: group-add vec
shows y ∈ carrier-vec n =⇒ x ∈ carrier-vec n =⇒ z ∈ carrier-vec n =⇒ y + (x
− z) = y + x − z

by (intro eq-vecI , auto simp: add-diff-eq)

definition mat-of-col v = (mat-of-row v)T

lemma elements-mat-mat-of-col[simp]: elements-mat (mat-of-col v) = vec-set v
unfolding mat-of-col-def by auto

lemma mat-of-col-dim[simp]: dim-row (mat-of-col v) = dim-vec v
dim-col (mat-of-col v) = 1
mat-of-col v ∈ carrier-mat (dim-vec v) 1
unfolding mat-of-col-def by auto

lemma col-mat-of-col[simp]: col (mat-of-col v) 0 = v
unfolding mat-of-col-def by auto

lemma mult-mat-of-col: A ∈ carrier-mat nr nc =⇒ v ∈ carrier-vec nc =⇒
A ∗ mat-of-col v = mat-of-col (A ∗v v)

by (intro mat-col-eqI , auto)

lemma mat-mult-append-cols: fixes A :: ′a :: comm-semiring-0 mat
assumes A: A ∈ carrier-mat nr nc1

and B: B ∈ carrier-mat nr nc2
and v1 : v1 ∈ carrier-vec nc1
and v2 : v2 ∈ carrier-vec nc2

shows (A @c B) ∗v (v1 @v v2 ) = A ∗v v1 + B ∗v v2
proof −

have (A @c B) ∗v (v1 @v v2 ) = (A @c B) ∗v col (mat-of-col (v1 @v v2 )) 0 by
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auto
also have . . . = col ((A @c B) ∗ mat-of-col (v1 @v v2 )) 0 by auto
also have (A @c B) ∗ mat-of-col (v1 @v v2 ) = ((A @c B) ∗ mat-of-col (v1 @v

v2 ))T T

by auto
also have ((A @c B) ∗ mat-of-col (v1 @v v2 ))T =

(mat-of-row (v1 @v v2 ))T T ∗ (AT @r BT )T T

unfolding append-cols-def mat-of-col-def
proof (rule transpose-mult, force, unfold transpose-carrier-mat, rule mat-of-row-carrier)

have AT ∈ carrier-mat nc1 nr using A by auto
moreover have BT ∈ carrier-mat nc2 nr using B by auto
ultimately have AT @r BT ∈ carrier-mat (nc1 + nc2 ) nr by auto
hence dim-row (AT @r BT ) = nc1 + nc2 by auto
thus v1 @v v2 ∈ carrier-vec (dim-row (AT @r BT )) using v1 v2 by auto

qed
also have . . . = (mat-of-row (v1 @v v2 )) ∗ (AT @r BT ) by auto
also have . . . = mat-of-row v1 ∗ AT + mat-of-row v2 ∗ BT

using mat-of-row-mult-append-rows[OF v1 v2 ] A B by auto
also have . . . T = (mat-of-row v1 ∗ AT )T + (mat-of-row v2 ∗ BT )T

using transpose-add A B by auto
also have (mat-of-row v1 ∗ AT )T = AT T ∗ ((mat-of-row v1 )T )

using transpose-mult A v1 transpose-carrier-mat mat-of-row-carrier(1 )
by metis

also have (mat-of-row v2 ∗ BT )T = BT T ∗ ((mat-of-row v2 )T )
using transpose-mult B v2 transpose-carrier-mat mat-of-row-carrier(1 )
by metis

also have AT T ∗ ((mat-of-row v1 )T ) + BT T ∗ ((mat-of-row v2 )T ) =
A ∗ mat-of-col v1 + B ∗ mat-of-col v2

unfolding mat-of-col-def by auto
also have col . . . 0 = col (A ∗ mat-of-col v1 ) 0 + col (B ∗ mat-of-col v2 ) 0

using assms by auto
also have . . . = col (mat-of-col (A ∗v v1 )) 0 + col (mat-of-col (B ∗v v2 )) 0

using mult-mat-of-col assms by auto
also have . . . = A ∗v v1 + B ∗v v2 by auto
finally show ?thesis by auto

qed

lemma vec-first-append:
assumes v ∈ carrier-vec n
shows vec-first (v @v w) n = v

proof −
have v @v w = vec-first (v @v w) n @v vec-last (v @v w) (dim-vec w)

using vec-first-last-append assms by simp
thus ?thesis using append-vec-eq[OF assms] by simp

qed

lemma vec-le-iff-diff-le-0 : fixes a :: ′a :: ordered-ab-group-add vec
shows (a ≤ b) = (a − b ≤ 0 v (dim-vec a))
unfolding less-eq-vec-def by auto
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definition mat-row-first A n ≡ mat n (dim-col A) (λ (i, j). A $$ (i, j))

definition mat-row-last A n ≡ mat n (dim-col A) (λ (i, j). A $$ (dim-row A − n
+ i, j))

lemma mat-row-first-carrier [simp]: mat-row-first A n ∈ carrier-mat n (dim-col A)
unfolding mat-row-first-def by simp

lemma mat-row-first-dim[simp]:
dim-row (mat-row-first A n) = n
dim-col (mat-row-first A n) = dim-col A
unfolding mat-row-first-def by simp-all

lemma mat-row-last-carrier [simp]: mat-row-last A n ∈ carrier-mat n (dim-col A)
unfolding mat-row-last-def by simp

lemma mat-row-last-dim[simp]:
dim-row (mat-row-last A n) = n
dim-col (mat-row-last A n) = dim-col A
unfolding mat-row-last-def by simp-all

lemma mat-row-first-nth[simp]: i < n =⇒ row (mat-row-first A n) i = row A i
unfolding mat-row-first-def row-def by fastforce

lemma append-rows-nth:
assumes A ∈ carrier-mat nr1 nc

and B ∈ carrier-mat nr2 nc
shows i < nr1 =⇒ row (A @r B) i = row A i

and [[ i ≥ nr1 ; i < nr1 + nr2 ]] =⇒ row (A @r B) i = row B (i − nr1 )
unfolding append-rows-def using row-four-block-mat assms by auto

lemma mat-of-row-last-nth[simp]:
i < n =⇒ row (mat-row-last A n) i = row A (dim-row A − n + i)
unfolding mat-row-last-def row-def by auto

lemma mat-row-first-last-append:
assumes dim-row A = m + n
shows (mat-row-first A m) @r (mat-row-last A n) = A

proof (rule eq-rowI )
show dim-row (mat-row-first A m @r mat-row-last A n) = dim-row A

unfolding append-rows-def using assms by fastforce
show dim-col (mat-row-first A m @r mat-row-last A n) = dim-col A

unfolding append-rows-def by fastforce
fix i
assume i: i < dim-row A
show row (mat-row-first A m @r mat-row-last A n) i = row A i
proof cases

assume i: i < m
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thus ?thesis using append-rows-nth(1 )[OF mat-row-first-carrier [of A m]
mat-row-last-carrier [of A n] i] by simp

next
assume i ′: ¬ i < m
thus ?thesis using append-rows-nth(2 )[OF mat-row-first-carrier [of A m]

mat-row-last-carrier [of A n]] i assms by simp
qed

qed

definition mat-col-first A n ≡ (mat-row-first AT n)T

definition mat-col-last A n ≡ (mat-row-last AT n)T

lemma mat-col-first-carrier [simp]: mat-col-first A n ∈ carrier-mat (dim-row A) n
unfolding mat-col-first-def by fastforce

lemma mat-col-first-dim[simp]:
dim-row (mat-col-first A n) = dim-row A
dim-col (mat-col-first A n) = n
unfolding mat-col-first-def by simp-all

lemma mat-col-last-carrier [simp]: mat-col-last A n ∈ carrier-mat (dim-row A) n
unfolding mat-col-last-def by fastforce

lemma mat-col-last-dim[simp]:
dim-row (mat-col-last A n) = dim-row A
dim-col (mat-col-last A n) = n
unfolding mat-col-last-def by simp-all

lemma mat-col-first-nth[simp]:
[[ i < n; i < dim-col A ]] =⇒ col (mat-col-first A n) i = col A i
unfolding mat-col-first-def by force

lemma append-cols-nth:
assumes A ∈ carrier-mat nr nc1

and B ∈ carrier-mat nr nc2
shows i < nc1 =⇒ col (A @c B) i = col A i

and [[ i ≥ nc1 ; i < nc1 + nc2 ]] =⇒ col (A @c B) i = col B (i − nc1 )
unfolding append-cols-def append-rows-def using row-four-block-mat assms
by auto

lemma mat-of-col-last-nth[simp]:
[[ i < n; i < dim-col A ]] =⇒ col (mat-col-last A n) i = col A (dim-col A − n +

i)
unfolding mat-col-last-def by auto

lemma mat-col-first-last-append:
assumes dim-col A = m + n
shows (mat-col-first A m) @c (mat-col-last A n) = A
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unfolding append-cols-def mat-col-first-def mat-col-last-def
using mat-row-first-last-append[of AT ] assms by simp

lemma mat-of-row-dim-row-1 : (dim-row A = 1 ) = (A = mat-of-row (row A 0 ))
proof

show dim-row A = 1 =⇒ A = mat-of-row (row A 0 ) by force
show A = mat-of-row (row A 0 ) =⇒ dim-row A = 1 using mat-of-row-dim(1 )

by metis
qed

lemma mat-of-col-dim-col-1 : (dim-col A = 1 ) = (A = mat-of-col (col A 0 ))
proof

show dim-col A = 1 =⇒ A = mat-of-col (col A 0 )
unfolding mat-of-col-def by auto

show A = mat-of-col (col A 0 ) =⇒ dim-col A = 1 by (metis mat-of-col-dim(2 ))
qed

definition vec-of-scal :: ′a ⇒ ′a vec where vec-of-scal x ≡ vec 1 (λ i. x)

lemma vec-of-scal-dim[simp]:
dim-vec (vec-of-scal x) = 1
vec-of-scal x ∈ carrier-vec 1
unfolding vec-of-scal-def by auto

lemma index-vec-of-scal[simp]: (vec-of-scal x) $ 0 = x
unfolding vec-of-scal-def by auto

lemma row-mat-of-col[simp]: i < dim-vec v =⇒ row (mat-of-col v) i = vec-of-scal
(v $ i)

unfolding mat-of-col-def by auto

lemma vec-of-scal-dim-1 : (v ∈ carrier-vec 1 ) = (v = vec-of-scal (v $ 0 ))
by(standard, auto simp del: One-nat-def , metis vec-of-scal-dim(2 ))

lemma mult-mat-of-row-vec-of-scal: fixes x :: ′a :: comm-ring-1
shows mat-of-col v ∗v vec-of-scal x = x ·v v
by (auto simp add: scalar-prod-def )

lemma smult-pos-vec[simp]: fixes l :: ′a :: linordered-ring-strict
assumes l: l > 0
shows (l ·v v ≤ 0 v n) = (v ≤ 0 v n)

proof (cases dim-vec v = n)
case True
have i < n =⇒ ((l ·v v) $ i ≤ 0 ) ←→ v $ i ≤ 0 for i using True

mult-le-cancel-left-pos[OF l, of - 0 ] by simp
thus ?thesis using True unfolding less-eq-vec-def by auto

qed (auto simp: less-eq-vec-def )

lemma finite-elements-mat[simp]: finite (elements-mat A)

10



unfolding elements-mat-def by (rule finite-set)

lemma finite-vec-set[simp]: finite (vec-set A)
unfolding vec-set-def by auto

lemma lesseq-vecI : assumes v ∈ carrier-vec n w ∈ carrier-vec n∧
i. i < n =⇒ v $ i ≤ w $ i

shows v ≤ w
using assms unfolding less-eq-vec-def by auto

lemma lesseq-vecD: assumes w ∈ carrier-vec n
and v ≤ w
and i < n

shows v $ i ≤ w $ i
using assms unfolding less-eq-vec-def by auto

lemma vec-add-mono: fixes a :: ′a :: ordered-ab-semigroup-add vec
assumes dim: dim-vec b = dim-vec d

and ab: a ≤ b
and cd: c ≤ d

shows a + c ≤ b + d
proof −

have
∧

i. i < dim-vec d =⇒ (a + c) $ i ≤ (b + d) $ i
proof −

fix i
assume id: i < dim-vec d
have ic: i < dim-vec c using id cd unfolding less-eq-vec-def by auto
have ib: i < dim-vec b using id dim by auto
have ia: i < dim-vec a using ib ab unfolding less-eq-vec-def by auto
have a $ i ≤ b $ i using ab ia ib unfolding less-eq-vec-def by auto
moreover have c $ i ≤ d $ i using cd ic id unfolding less-eq-vec-def by

auto
ultimately have abcdi: a $ i + c $ i ≤ b $ i + d $ i using add-mono by auto
have (a + c) $ i = a $ i + c $ i using index-add-vec(1 ) ic by auto
also have . . . ≤ b $ i + d $ i using abcdi by auto
also have b $ i + d $ i = (b + d) $ i using index-add-vec(1 ) id by auto
finally show (a + c) $ i ≤ (b + d) $ i by auto

qed
then show a + c ≤ b + d unfolding less-eq-vec-def

using dim index-add-vec(2 ) cd less-eq-vec-def by auto
qed

lemma smult-nneg-npos-vec: fixes l :: ′a :: ordered-semiring-0
assumes l: l ≥ 0

and v: v ≤ 0 v n
shows l ·v v ≤ 0 v n

proof −
{

fix i
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assume i: i < n
then have vi: v $ i ≤ 0 using v unfolding less-eq-vec-def by simp
then have (l ·v v) $ i = l ∗ v $ i using v i unfolding less-eq-vec-def by auto
also have l ∗ v $ i ≤ 0 by (rule mult-nonneg-nonpos[OF l vi])
finally have (l ·v v) $ i ≤ 0 by auto

}
then show ?thesis using v unfolding less-eq-vec-def by auto

qed

lemma smult-vec-nonneg-eq: fixes c :: ′a :: field
shows c 6= 0 =⇒ (c ·v x = c ·v y) = (x = y)

proof −
have c 6= 0 =⇒ c ·v x = c ·v y =⇒ x = y

by (metis smult-smult-assoc[of 1 / c c] nonzero-divide-eq-eq one-smult-vec)
thus c 6= 0 =⇒ ?thesis by auto

qed

lemma distinct-smult-nonneg: fixes c :: ′a :: field
assumes c: c 6= 0
shows distinct lC =⇒ distinct (map ((·v) c) lC )

proof (induction lC )
case (Cons v lC )
from Cons.prems have v /∈ set lC by fastforce
hence c ·v v /∈ set (map ((·v) c) lC ) using smult-vec-nonneg-eq[OF c] by fastforce
moreover have map ((·v) c) (v # lC ) = c ·v v # map ((·v) c) lC by simp
ultimately show ?case using Cons.IH Cons.prems by simp

qed auto

lemma exists-vec-append: (∃ x ∈ carrier-vec (n + m). P x) ←→ (∃ x1 ∈ car-
rier-vec n. ∃ x2 ∈ carrier-vec m. P (x1 @v x2 ))
proof

assume ∃ x ∈ carrier-vec (n + m). P x
from this obtain x where xcarr : x ∈ carrier-vec (n+m) and Px: P x by auto
have x = vec n (λ i. x $ i) @v vec m (λ i. x $ (n + i))

by (rule eq-vecI , insert xcarr , auto)
hence P x = P (vec n (λ i. x $ i) @v vec m (λ i. x $ (n + i))) by simp
also have 1 : . . . using xcarr Px calculation by blast
finally show ∃ x1∈carrier-vec n. ∃ x2∈carrier-vec m. P (x1 @v x2 ) using 1

vec-carrier by blast
next

assume (∃ x1 ∈ carrier-vec n. ∃ x2 ∈ carrier-vec m. P (x1 @v x2 ))
from this obtain x1 x2 where x1 : x1 ∈ carrier-vec n

and x2 : x2 ∈ carrier-vec m and P12 : P (x1 @v x2 ) by auto
define x where x = x1 @v x2
have xcarr : x ∈ carrier-vec (n+m) using x1 x2 by (simp add: x-def )
have P x using P12 xcarr using x-def by blast
then show (∃ x ∈ carrier-vec (n + m). P x) using xcarr by auto

qed
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end

3 Missing Lemmas on Vector Spaces
We provide some results on vector spaces which should be merged into other
AFP entries.
theory Missing-VS-Connect

imports
Jordan-Normal-Form.VS-Connect
Missing-Matrix
Polynomial-Factorization.Missing-List

begin

context vec-space
begin
lemma span-diff : assumes A: A ⊆ carrier-vec n

and a: a ∈ span A and b: b ∈ span A
shows a − b ∈ span A
proof −

from A a have an: a ∈ carrier-vec n by auto
from A b have bn: b ∈ carrier-vec n by auto
have a + (−1 ·v b) ∈ span A

by (rule span-add1 [OF A a], insert b A, auto)
also have a + (−1 ·v b) = a − b using an bn by auto
finally show ?thesis by auto

qed

lemma finsum-scalar-prod-sum ′:
assumes f : f ∈ U → carrier-vec n

and w: w ∈ carrier-vec n
shows w · finsum V f U = sum (λu. w · f u) U
by (subst comm-scalar-prod[OF w], (insert f , auto)[1 ],

subst finsum-scalar-prod-sum[OF f w],
insert f , intro sum.cong[OF refl] comm-scalar-prod[OF - w], auto)

lemma lincomb-scalar-prod-left: assumes W ⊆ carrier-vec n v ∈ carrier-vec n
shows lincomb a W · v = (

∑
w∈W . a w ∗ (w · v))

unfolding lincomb-def
by (subst finsum-scalar-prod-sum, insert assms, auto intro!: sum.cong)

lemma lincomb-scalar-prod-right: assumes W ⊆ carrier-vec n v ∈ carrier-vec n
shows v · lincomb a W = (

∑
w∈W . a w ∗ (v · w))

unfolding lincomb-def
by (subst finsum-scalar-prod-sum ′, insert assms, auto intro!: sum.cong)

lemma lin-indpt-empty[simp]: lin-indpt {}
using lin-dep-def by auto
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lemma span-carrier-lin-indpt-card-n:
assumes W ⊆ carrier-vec n card W = n lin-indpt W
shows span W = carrier-vec n
using assms basis-def dim-is-n dim-li-is-basis fin-dim-li-fin by simp

lemma ortho-span: assumes W : W ⊆ carrier-vec n
and X : X ⊆ carrier-vec n
and ortho:

∧
w x. w ∈ W =⇒ x ∈ X =⇒ w · x = 0

and w: w ∈ span W and x: x ∈ X
shows w · x = 0
proof −

from w W obtain c V where finite V and VW : V ⊆ W and w: w = lincomb
c V

by (meson in-spanE)
show ?thesis unfolding w
by (subst lincomb-scalar-prod-left, insert W VW X x ortho, auto intro!: sum.neutral)

qed

lemma ortho-span ′: assumes W : W ⊆ carrier-vec n
and X : X ⊆ carrier-vec n
and ortho:

∧
w x. w ∈ W =⇒ x ∈ X =⇒ x · w = 0

and w: w ∈ span W and x: x ∈ X
shows x · w = 0
proof −

from w W obtain c V where finite V and VW : V ⊆ W and w: w = lincomb
c V

by (meson in-spanE)
show ?thesis unfolding w

by (subst lincomb-scalar-prod-right, insert W VW X x ortho, auto intro!:
sum.neutral)
qed

lemma ortho-span-span: assumes W : W ⊆ carrier-vec n
and X : X ⊆ carrier-vec n
and ortho:

∧
w x. w ∈ W =⇒ x ∈ X =⇒ w · x = 0

and w: w ∈ span W and x: x ∈ span X
shows w · x = 0

by (rule ortho-span[OF W - ortho-span ′[OF X W - -] w x ], insert W X ortho,
auto)

lemma lincomb-in-span[intro]:
assumes X : X⊆ carrier-vec n
shows lincomb a X ∈ span X

proof(cases finite X)
case False hence lincomb a X = 0 v n using X

by (simp add: lincomb-def )
thus ?thesis using X by force

qed (insert X , auto)
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lemma generating-card-n-basis: assumes X : X ⊆ carrier-vec n
and span: carrier-vec n ⊆ span X
and card: card X = n

shows basis X
proof −

have fin: finite X
proof (cases n = 0 )

case False
with card show finite X by (meson card.infinite)

next
case True
with X have X ⊆ carrier-vec 0 by auto
also have . . . = {0 v 0} by auto
finally have X ⊆ {0 v 0} .
from finite-subset[OF this] show finite X by auto

qed
from X have span X ⊆ carrier-vec n by auto
with span have span: span X = carrier-vec n by auto
from dim-is-n card have card: card X ≤ dim by auto
from dim-gen-is-basis[OF fin X span card] show basis X .

qed

lemma lincomb-list-append:
assumes Ws: set Ws ⊆ carrier-vec n
shows set Vs ⊆ carrier-vec n =⇒ lincomb-list f (Vs @ Ws) =

lincomb-list f Vs + lincomb-list (λ i. f (i + length Vs)) Ws
proof (induction Vs arbitrary: f )

case Nil show ?case by(simp add: lincomb-list-carrier [OF Ws])
next

case (Cons x Vs)
have lincomb-list f (x # (Vs @ Ws)) = f 0 ·v x + lincomb-list (f ◦ Suc) (Vs @

Ws)
by (rule lincomb-list-Cons)

also have lincomb-list (f ◦ Suc) (Vs @ Ws) =
lincomb-list (f ◦ Suc) Vs + lincomb-list (λ i. (f ◦ Suc) (i + length Vs))

Ws
using Cons by auto

also have (λ i. (f ◦ Suc) (i + length Vs)) = (λ i. f (i + length (x # Vs))) by
simp

also have f 0 ·v x + ((lincomb-list (f ◦ Suc) Vs) + lincomb-list . . . Ws) =
(f 0 ·v x + (lincomb-list (f ◦ Suc) Vs)) + lincomb-list . . . Ws

using assoc-add-vec Cons.prems Ws lincomb-list-carrier by auto
finally show ?case using lincomb-list-Cons by auto

qed

lemma lincomb-list-snoc[simp]:
shows set Vs ⊆ carrier-vec n =⇒ x ∈ carrier-vec n =⇒

lincomb-list f (Vs @ [x]) = lincomb-list f Vs + f (length Vs) ·v x
using lincomb-list-append by auto
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lemma lincomb-list-smult:
set Vs ⊆ carrier-vec n =⇒ lincomb-list (λ i. a ∗ c i) Vs = a ·v lincomb-list c Vs

proof (induction Vs rule: rev-induct)
case (snoc x Vs)
have x: x ∈ carrier-vec n and Vs: set Vs ⊆ carrier-vec n using snoc.prems by

auto
have lincomb-list (λ i. a ∗ c i) (Vs @ [x]) =

lincomb-list (λ i. a ∗ c i) Vs + (a ∗ c (length Vs)) ·v x
using x Vs by auto

also have lincomb-list (λ i. a ∗ c i) Vs = a ·v lincomb-list c Vs
by(rule snoc.IH [OF Vs])

also have (a ∗ c (length Vs)) ·v x = a ·v (c (length Vs) ·v x)
using smult-smult-assoc x by auto

also have a ·v lincomb-list c Vs + . . . = a ·v (lincomb-list c Vs + c (length Vs)
·v x)

using smult-add-distrib-vec[of - n - a] lincomb-list-carrier [OF Vs] x by simp
also have lincomb-list c Vs + c (length Vs) ·v x = lincomb-list c (Vs @ [x])

using Vs x by auto
finally show ?case by auto

qed simp

lemma lincomb-list-index:
assumes i: i < n
shows set Xs ⊆ carrier-vec n =⇒

lincomb-list c Xs $ i = sum (λ j. c j ∗ (Xs ! j) $ i) {0 ..<length Xs}
proof (induction Xs rule: rev-induct)

case (snoc x Xs)
hence x: x ∈ carrier-vec n and Xs: set Xs ⊆ carrier-vec n by auto
hence lincomb-list c (Xs @ [x]) = lincomb-list c Xs + c (length Xs) ·v x by auto
also have . . . $ i = lincomb-list c Xs $ i + (c (length Xs) ·v x) $ i

using i index-add-vec(1 ) x by simp
also have (c (length Xs) ·v x) $ i = c (length Xs) ∗ x $ i using i x by simp
also have x $ i= (Xs @ [x]) ! (length Xs) $ i by simp
also have lincomb-list c Xs $ i = (

∑
j = 0 ..<length Xs. c j ∗ Xs ! j $ i)

by (rule snoc.IH [OF Xs])
also have . . . = (

∑
j = 0 ..<length Xs. c j ∗ (Xs @ [x]) ! j $ i)

by (rule R.finsum-restrict, force, rule restrict-ext, auto simp: append-Cons-nth-left)
finally show ?case

using sum.atLeast0-lessThan-Suc[of λ j. c j ∗ (Xs @ [x]) ! j $ i length Xs]
by fastforce

qed (simp add: i)

end
end
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4 Basis Extension
We prove that every linear indepent set/list of vectors can be extended
into a basis. Similarly, from every set of vectors one can extract a linear
independent set of vectors that spans the same space.
theory Basis-Extension

imports
LLL-Basis-Reduction.Gram-Schmidt-2

begin

context cof-vec-space
begin

lemma lin-indpt-list-length-le-n: assumes lin-indpt-list xs
shows length xs ≤ n

proof −
from assms[unfolded lin-indpt-list-def ]
have xs: set xs ⊆ carrier-vec n and dist: distinct xs and lin: lin-indpt (set xs)

by auto
from dist have card (set xs) = length xs by (rule distinct-card)
moreover have card (set xs) ≤ n

using lin xs dim-is-n li-le-dim(2 ) by auto
ultimately show ?thesis by auto

qed

lemma lin-indpt-list-length-eq-n: assumes lin-indpt-list xs
and length xs = n

shows span (set xs) = carrier-vec n basis (set xs)
proof −

from assms[unfolded lin-indpt-list-def ]
have xs: set xs ⊆ carrier-vec n and dist: distinct xs and lin: lin-indpt (set xs)

by auto
from dist have card (set xs) = length xs by (rule distinct-card)
with assms have card (set xs) = n by auto
with lin xs show span (set xs) = carrier-vec n basis (set xs) using dim-is-n
by (metis basis-def dim-basis dim-li-is-basis fin-dim finite-basis-exists gen-ge-dim

li-le-dim(1 ))+
qed

lemma expand-to-basis: assumes lin: lin-indpt-list xs
shows ∃ ys. set ys ⊆ set (unit-vecs n) ∧ lin-indpt-list (xs @ ys) ∧ length (xs @

ys) = n
proof −

define y where y = n − length xs
from lin have length xs ≤ n by (rule lin-indpt-list-length-le-n)
hence length xs + y = n unfolding y-def by auto
thus ∃ ys. set ys ⊆ set (unit-vecs n) ∧ lin-indpt-list (xs @ ys) ∧ length (xs @

ys) = n
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using lin
proof (induct y arbitrary: xs)

case (0 xs)
thus ?case by (intro exI [of - Nil], auto)

next
case (Suc y xs)
hence length xs < n by auto
from Suc(3 )[unfolded lin-indpt-list-def ]
have xs: set xs ⊆ carrier-vec n and dist: distinct xs and lin: lin-indpt (set xs)

by auto
from distinct-card[OF dist] Suc(2 ) have card: card (set xs) < n by auto
have span (set xs) 6= carrier-vec n using card dim-is-n xs basis-def dim-basis

lin by auto
with span-closed[OF xs] have span (set xs) ⊂ carrier-vec n by auto
also have carrier-vec n = span (set (unit-vecs n))

unfolding span-unit-vecs-is-carrier ..
finally have sub: span (set xs) ⊂ span (set (unit-vecs n)) .
have ∃ u. u ∈ set (unit-vecs n) ∧ u /∈ span (set xs)

using span-subsetI [OF xs, of set (unit-vecs n)] sub by force
then obtain u where uu: u ∈ set (unit-vecs n) and usxs: u /∈ span (set xs)

by auto
then have u: u ∈ carrier-vec n unfolding unit-vecs-def by auto
let ?xs = xs @ [u]
from span-mem[OF xs, of u] usxs have uxs: u /∈ set xs by auto
with dist have dist: distinct ?xs by auto
have lin: lin-indpt (set ?xs) using lin-dep-iff-in-span[OF xs lin u uxs] usxs by

auto
from lin dist u xs have lin: lin-indpt-list ?xs unfolding lin-indpt-list-def by

auto
from Suc(2 ) have length ?xs + y = n by auto
from Suc(1 )[OF this lin] obtain ys where

set ys ⊆ set (unit-vecs n) lin-indpt-list (?xs @ ys) length (?xs @ ys) = n by
auto

thus ?case using uu
by (intro exI [of - u # ys], auto)

qed
qed

definition basis-extension xs = (SOME ys.
set ys ⊆ set (unit-vecs n) ∧ lin-indpt-list (xs @ ys) ∧ length (xs @ ys) = n)

lemma basis-extension: assumes lin-indpt-list xs
shows set (basis-extension xs) ⊆ set (unit-vecs n)

lin-indpt-list (xs @ basis-extension xs)
length (xs @ basis-extension xs) = n

using someI-ex[OF expand-to-basis[OF assms], folded basis-extension-def ] by
auto

lemma exists-lin-indpt-sublist: assumes X : X ⊆ carrier-vec n
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shows ∃ Ls. lin-indpt-list Ls ∧ span (set Ls) = span X ∧ set Ls ⊆ X
proof −

let ?T = ?thesis
have (∃ Ls. lin-indpt-list Ls ∧ span (set Ls) ⊆ span X ∧ set Ls ⊆ X ∧ length

Ls = k) ∨ ?T for k
proof (induct k)

case 0
have lin-indpt {} by (simp add: lindep-span)
thus ?case using span-is-monotone by (auto simp: lin-indpt-list-def )

next
case (Suc k)
show ?case
proof (cases ?T )

case False
with Suc obtain Ls where lin: lin-indpt-list Ls

and span: span (set Ls) ⊆ span X and Ls: set Ls ⊆ X and len: length Ls
= k by auto

from Ls X have LsC : set Ls ⊆ carrier-vec n by auto
show ?thesis
proof (cases X ⊆ span (set Ls))

case True
hence span X ⊆ span (set Ls) using LsC X by (metis span-subsetI )
with span have span (set Ls) = span X by auto
hence ?T by (intro exI [of - Ls] conjI True lin Ls)
thus ?thesis by auto

next
case False
with span obtain x where xX : x ∈ X and xSLs: x /∈ span (set Ls) by

auto
from Ls X have LsC : set Ls ⊆ carrier-vec n by auto
from span-mem[OF this, of x] xSLs have xLs: x /∈ set Ls by auto
let ?Ls = x # Ls
show ?thesis
proof (intro disjI1 exI [of - ?Ls] conjI )

show length ?Ls = Suc k using len by auto
show lin-indpt-list ?Ls using lin xSLs xLs unfolding lin-indpt-list-def

using lin-dep-iff-in-span[OF LsC - - xLs] xX X by auto
show set ?Ls ⊆ X using xX Ls by auto
from span-is-monotone[OF this]
show span (set ?Ls) ⊆ span X .

qed
qed

qed auto
qed
from this[of n + 1 ] lin-indpt-list-length-le-n show ?thesis by fastforce

qed

lemma exists-lin-indpt-subset: assumes X ⊆ carrier-vec n
shows ∃ Ls. lin-indpt Ls ∧ span (Ls) = span X ∧ Ls ⊆ X
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proof −
from exists-lin-indpt-sublist[OF assms]
obtain Ls where lin-indpt-list Ls ∧ span (set Ls) = span X ∧ set Ls ⊆ X by

auto
thus ?thesis by (intro exI [of - set Ls], auto simp: lin-indpt-list-def )

qed
end

end

5 Sum of Vector Sets
We use Isabelle’s Set-Algebra theory to be able to write V + W for sets of
vectors V and W, and prove some obvious properties about them.
theory Sum-Vec-Set

imports
Missing-Matrix
HOL−Library.Set-Algebras

begin

lemma add-0-right-vecset:
assumes (A :: ′a :: monoid-add vec set) ⊆ carrier-vec n
shows A + {0 v n} = A
unfolding set-plus-def using assms by force

lemma add-0-left-vecset:
assumes (A :: ′a :: monoid-add vec set) ⊆ carrier-vec n
shows {0 v n} + A = A
unfolding set-plus-def using assms by force

lemma assoc-add-vecset:
assumes (A :: ′a :: semigroup-add vec set) ⊆ carrier-vec n

and B ⊆ carrier-vec n
and C ⊆ carrier-vec n

shows A + (B + C ) = (A + B) + C
proof −

{
fix x
assume x ∈ A + (B + C )
then obtain a b c where x = a + (b + c) and ∗: a ∈ A b ∈ B c ∈ C

unfolding set-plus-def by auto
with assms have x = (a + b) + c using assoc-add-vec[of a n b c] by force
with ∗ have x ∈ (A + B) + C by auto

}
moreover
{

fix x
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assume x ∈ (A + B) + C
then obtain a b c where x = (a + b) + c and ∗: a ∈ A b ∈ B c ∈ C

unfolding set-plus-def by auto
with assms have x = a + (b + c) using assoc-add-vec[of a n b c] by force
with ∗ have x ∈ A + (B + C ) by auto

}
ultimately show ?thesis by blast

qed

lemma sum-carrier-vec[intro]: A ⊆ carrier-vec n =⇒ B ⊆ carrier-vec n =⇒ A +
B ⊆ carrier-vec n

unfolding set-plus-def by force

lemma comm-add-vecset:
assumes (A :: ′a :: ab-semigroup-add vec set) ⊆ carrier-vec n

and B ⊆ carrier-vec n
shows A + B = B + A
unfolding set-plus-def using comm-add-vec assms by blast

end

6 Integral and Bounded Matrices and Vectors
We define notions of integral vectors and matrices and bounded vectors and
matrices and prove some preservation lemmas. Moreover, we prove two
bounds on determinants.
theory Integral-Bounded-Vectors

imports
Missing-VS-Connect
Sum-Vec-Set
LLL-Basis-Reduction.Gram-Schmidt-2

begin

lemma sq-norm-unit-vec[simp]: assumes i: i < n
shows ‖unit-vec n i‖2 = (1 :: ′a :: {comm-ring-1 ,conjugatable-ring})

proof −
from i have id: [0 ..<n] = [0 ..<i] @ [i] @ [Suc i ..< n]

by (metis append-Cons append-Nil diff-zero length-upt list-trisect)
show ?thesis unfolding sq-norm-vec-def unit-vec-def

by (auto simp: o-def id, subst (1 2 ) sum-list-0 , auto)
qed

definition Ints-vec (‹�v›) where
�v = {x. ∀ i < dim-vec x. x $ i ∈ �}

definition indexed-Ints-vec where
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indexed-Ints-vec I = {x. ∀ i < dim-vec x. i ∈ I −→ x $ i ∈ �}

lemma indexed-Ints-vec-UNIV : �v = indexed-Ints-vec UNIV
unfolding Ints-vec-def indexed-Ints-vec-def by auto

lemma indexed-Ints-vec-subset: �v ⊆ indexed-Ints-vec I
unfolding Ints-vec-def indexed-Ints-vec-def by auto

lemma Ints-vec-vec-set: v ∈ �v = (vec-set v ⊆ �)
unfolding Ints-vec-def vec-set-def by auto

definition Ints-mat (‹�m›) where
�m = {A. ∀ i < dim-row A. ∀ j < dim-col A. A $$ (i,j) ∈ �}

lemma Ints-mat-elements-mat: A ∈ �m = (elements-mat A ⊆ �)
unfolding Ints-mat-def elements-mat-def by force

lemma minus-in-Ints-vec-iff [simp]: (−x) ∈ �v ←→ (x :: ′a :: ring-1 vec) ∈ �v

unfolding Ints-vec-vec-set by (auto simp: minus-in-Ints-iff )

lemma minus-in-Ints-mat-iff [simp]: (−A) ∈ �m ←→ (A :: ′a :: ring-1 mat) ∈ �m

unfolding Ints-mat-elements-mat by (auto simp: minus-in-Ints-iff )

lemma Ints-vec-rows-Ints-mat[simp]: set (rows A) ⊆ �v ←→ A ∈ �m

unfolding rows-def Ints-vec-def Ints-mat-def by force

lemma unit-vec-integral[simp,intro]: unit-vec n i ∈ �v

unfolding Ints-vec-def by (auto simp: unit-vec-def )

lemma diff-indexed-Ints-vec:
x ∈ carrier-vec n =⇒ y ∈ carrier-vec n =⇒ x ∈ indexed-Ints-vec I =⇒ y ∈

indexed-Ints-vec I
=⇒ x − y ∈ indexed-Ints-vec I
unfolding indexed-Ints-vec-def by auto

lemma smult-indexed-Ints-vec: x ∈ � =⇒ v ∈ indexed-Ints-vec I =⇒ x ·v v ∈
indexed-Ints-vec I

unfolding indexed-Ints-vec-def smult-vec-def by simp

lemma add-indexed-Ints-vec:
x ∈ carrier-vec n =⇒ y ∈ carrier-vec n =⇒ x ∈ indexed-Ints-vec I =⇒ y ∈

indexed-Ints-vec I
=⇒ x + y ∈ indexed-Ints-vec I
unfolding indexed-Ints-vec-def by auto

lemma (in vec-space) lincomb-indexed-Ints-vec: assumes cI :
∧

x. x ∈ C =⇒ c x
∈ �

and C : C ⊆ carrier-vec n
and CI : C ⊆ indexed-Ints-vec I
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shows lincomb c C ∈ indexed-Ints-vec I
proof −

from C have id: dim-vec (lincomb c C ) = n by auto
show ?thesis unfolding indexed-Ints-vec-def mem-Collect-eq id
proof (intro allI impI )

fix i
assume i: i < n and iI : i ∈ I
have lincomb c C $ i = (

∑
x∈C . c x ∗ x $ i)

by (rule lincomb-index[OF i C ])
also have . . . ∈ �

by (intro Ints-sum Ints-mult cI , insert i iI CI [unfolded indexed-Ints-vec-def ]
C , force+)

finally show lincomb c C $ i ∈ � .
qed

qed

definition Bounded-vec (b :: ′a :: linordered-idom) = {x . ∀ i < dim-vec x . abs
(x $ i) ≤ b}

lemma Bounded-vec-vec-set: v ∈ Bounded-vec b ←→ (∀ x ∈ vec-set v. abs x ≤ b)
unfolding Bounded-vec-def vec-set-def by auto

definition Bounded-mat (b :: ′a :: linordered-idom) =
{A . (∀ i < dim-row A . ∀ j < dim-col A. abs (A $$ (i,j)) ≤ b)}

lemma Bounded-mat-elements-mat: A ∈ Bounded-mat b ←→ (∀ x ∈ elements-mat
A. abs x ≤ b)

unfolding Bounded-mat-def elements-mat-def by auto

lemma Bounded-vec-rows-Bounded-mat[simp]: set (rows A) ⊆ Bounded-vec B ←→
A ∈ Bounded-mat B

unfolding rows-def Bounded-vec-def Bounded-mat-def by force

lemma unit-vec-Bounded-vec[simp,intro]: unit-vec n i ∈ Bounded-vec (max 1 Bnd)
unfolding Bounded-vec-def unit-vec-def by auto

lemma unit-vec-int-bounds: set (unit-vecs n) ⊆ �v ∩ Bounded-vec (of-int (max 1
Bnd))

unfolding unit-vecs-def by (auto simp: Bounded-vec-def )

lemma Bounded-matD: assumes A ∈ Bounded-mat b
A ∈ carrier-mat nr nc

shows i < nr =⇒ j < nc =⇒ abs (A $$ (i,j)) ≤ b
using assms unfolding Bounded-mat-def by auto

lemma Bounded-vec-mono: b ≤ B =⇒ Bounded-vec b ⊆ Bounded-vec B
unfolding Bounded-vec-def by auto

lemma Bounded-mat-mono: b ≤ B =⇒ Bounded-mat b ⊆ Bounded-mat B
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unfolding Bounded-mat-def by force

lemma finite-Bounded-vec-Max:
assumes A: A ⊆ carrier-vec n

and fin: finite A
shows A ⊆ Bounded-vec (Max { abs (a $ i) | a i. a ∈ A ∧ i < n})

proof
let ?B = { abs (a $ i) | a i. a ∈ A ∧ i < n}
have fin: finite ?B

by (rule finite-subset[of - (λ (a,i). abs (a $ i)) ‘ (A × {0 ..< n})], insert fin,
auto)

fix a
assume a: a ∈ A
show a ∈ Bounded-vec (Max ?B)

unfolding Bounded-vec-def
by (standard, intro allI impI Max-ge[OF fin], insert a A, force)

qed

definition is-det-bound :: (nat ⇒ ′a :: linordered-idom ⇒ ′a) ⇒ bool where
is-det-bound f = (∀ A n x. A ∈ carrier-mat n n −→ A ∈ Bounded-mat x −→

abs (det A) ≤ f n x)

lemma is-det-bound-ge-zero: assumes is-det-bound f
and x ≥ 0
shows f n x ≥ 0
using assms(1 )[unfolded is-det-bound-def , rule-format, of 0m n n n x]
using assms(2 ) unfolding Bounded-mat-def by auto

definition det-bound-fact :: nat ⇒ ′a :: linordered-idom ⇒ ′a where
det-bound-fact n x = fact n ∗ (x^n)

lemma det-bound-fact: is-det-bound det-bound-fact
unfolding is-det-bound-def

proof (intro allI impI )
fix A :: ′a :: linordered-idom mat and n x
assume A: A ∈ carrier-mat n n

and x: A ∈ Bounded-mat x
show abs (det A) ≤ det-bound-fact n x
proof −

have abs (det A) = abs (
∑

p | p permutes {0 ..<n}. signof p ∗ (
∏

i = 0 ..<n.
A $$ (i, p i)))

unfolding det-def ′[OF A] ..
also have . . . ≤ (

∑
p | p permutes {0 ..<n}. abs (signof p ∗ (

∏
i = 0 ..<n. A

$$ (i, p i))))
by (rule sum-abs)

also have . . . = (
∑

p | p permutes {0 ..<n}. (
∏

i = 0 ..<n. abs (A $$ (i, p
i))))

by (rule sum.cong[OF refl], auto simp: abs-mult abs-prod sign-def simp flip:
of-int-abs)
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also have . . . ≤ (
∑

p | p permutes {0 ..<n}. (
∏

i = 0 ..<n. x))
by (intro sum-mono prod-mono conjI Bounded-matD[OF x A], auto)

also have . . . = fact n ∗ x^n by (auto simp add: card-permutations)
finally show abs (det A) ≤ det-bound-fact n x unfolding det-bound-fact-def

by auto
qed

qed

lemma (in gram-schmidt-fs) Gramian-determinant-det: assumes A: A ∈ car-
rier-mat n n

shows Gramian-determinant (rows A) n = det A ∗ det A
proof −

have [simp]: mat-of-rows n (rows A) = A using A
by (intro eq-matI , auto)

show ?thesis using A
unfolding Gramian-determinant-def
by (subst Gramian-matrix-alt-def , force, simp add: Let-def , subst det-mult[of -

n],
auto simp: det-transpose)

qed

lemma (in gram-schmidt-fs-lin-indpt) det-bound-main: assumes rows: rows A =
fs

and A: A ∈ carrier-mat n n
and n0 : n > 0
and Bnd: A ∈ Bounded-mat c

shows
(abs (det A))^2 ≤ of-nat n ^ n ∗ c ^ (2 ∗ n)

proof −
from n0 A Bnd have abs (A $$ (0 ,0 )) ≤ c by (auto simp: Bounded-mat-def )
hence c0 : c ≥ 0 by auto
from n0 A rows have fs: set fs 6= {} by (auto simp: rows-def )
from rows A have len: length fs = n by auto
have (abs (det A))^2 = det A ∗ det A unfolding power2-eq-square by simp
also have . . . = d n using Gramian-determinant-det[OF A] unfolding rows by

simp
also have . . . = (

∏
j<n. ‖gso j‖2)

by (rule Gramian-determinant(1 ), auto simp: len)
also have . . . ≤ (

∏
j<n. N )

by (rule prod-mono, insert N-gso, auto simp: len)
also have . . . = N^n by simp
also have . . . ≤ (of-nat n ∗ c^2 )^n
proof (rule power-mono)

show 0 ≤ N using N-ge-0 len n0 by auto
show N ≤ of-nat n ∗ c^2 unfolding N-def
proof (intro Max.boundedI , force, use fs in force, clarify)

fix f
assume f ∈ set fs
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from this[folded rows] obtain i where i: i < n and f : f = row A i
using A unfolding rows-def by auto

have ‖f ‖2 = (
∑

x←list-of-vec (row A i). x^2 )
unfolding f sq-norm-vec-def power2-eq-square by simp

also have list-of-vec (row A i) = map (λ j. A $$ (i,j)) [0 ..<n]
using i A by (intro nth-equalityI , auto)

also have sum-list (map power2 (map (λj. A $$ (i, j)) [0 ..<n])) ≤
sum-list (map (λ j. c^2 ) [0 ..<n]) unfolding map-map o-def

proof (intro sum-list-mono)
fix j
assume j ∈ set [0 ..< n]
hence j: j < n by auto
from Bnd i j A have |A $$ (i, j)| ≤ c by (auto simp: Bounded-mat-def )
thus (A $$ (i, j))2 ≤ c2

by (meson abs-ge-zero order-trans power2-le-iff-abs-le)
qed
also have . . . = (

∑
j <n. c2)

unfolding interv-sum-list-conv-sum-set-nat by auto
also have . . . = of-nat n ∗ c2 by auto
finally show ‖f ‖2 ≤ of-nat n ∗ c2 .

qed
qed
also have . . . = (of-nat n)^n ∗ (c2 ^ n) by (auto simp: algebra-simps)
also have . . . = of-nat n ^n ∗ c^(2 ∗ n) unfolding power-mult[symmetric]

by (simp add: ac-simps)
finally show ?thesis .

qed

lemma det-bound-hadamard-squared: fixes A:: ′a :: trivial-conjugatable-linordered-field
mat

assumes A: A ∈ carrier-mat n n
and Bnd: A ∈ Bounded-mat c

shows (abs (det A))^2 ≤ of-nat n ^ n ∗ c ^ (2 ∗ n)
proof (cases n > 0 )

case n: True
from n A Bnd have abs (A $$ (0 ,0 )) ≤ c by (auto simp: Bounded-mat-def )
hence c0 : c ≥ 0 by auto
let ?us = map (row A) [0 ..< n]
interpret gso: gram-schmidt-fs n ?us .
have len: length ?us = n by simp
have us: set ?us ⊆ carrier-vec n using A by auto
let ?vs = map gso.gso [0 ..<n]
show ?thesis
proof (cases carrier-vec n ⊆ gso.span (set ?us))

case False
from mat-of-rows-rows[unfolded rows-def ,of A] A gram-schmidt.non-span-det-zero[OF

len False us]
have zero: det A = 0 by auto

26



show ?thesis unfolding zero using c0 by simp
next

case True
with us len have basis: gso.basis-list ?us unfolding gso.basis-list-def by auto
note in-dep = gso.basis-list-imp-lin-indpt-list[OF basis]
interpret gso: gram-schmidt-fs-lin-indpt n ?us

by (standard) (use in-dep gso.lin-indpt-list-def in auto)
from gso.det-bound-main[OF - A n Bnd]
show ?thesis using A by (auto simp: rows-def )

qed
next

case False
with A show ?thesis by auto

qed

definition det-bound-hadamard :: nat ⇒ int ⇒ int where
det-bound-hadamard n c = (sqrt-int-floor ((int n ∗ c^2 )^n))

lemma det-bound-hadamard-altdef [code]:
det-bound-hadamard n c = (if n = 1 ∨ even n then int n ^ (n div 2 ) ∗ (abs c)^n

else sqrt-int-floor ((int n ∗ c^2 )^n))
proof (cases n = 1 ∨ even n)

case False
thus ?thesis unfolding det-bound-hadamard-def by auto

next
case True
define thesis where thesis = ?thesis
have thesis ←→ sqrt-int-floor ((int n ∗ c^2 )^n) = int n ^ (n div 2 ) ∗ abs c^n

using True unfolding thesis-def det-bound-hadamard-def by auto
also have (int n ∗ c^2 )^n = int n^n ∗ c^(2 ∗ n)

unfolding power-mult[symmetric] power-mult-distrib by (simp add: ac-simps)
also have int n^n = int n ^ (2 ∗ (n div 2 )) using True by auto
also have . . . ∗ c^(2 ∗ n) = (int n ^ (n div 2 ) ∗ c^n)^2

unfolding power-mult-distrib power-mult[symmetric] by (simp add: ac-simps)
also have sqrt-int-floor . . . = int n ^ (n div 2 ) ∗ |c| ^ n
unfolding sqrt-int-floor of-int-power real-sqrt-abs of-int-abs[symmetric] floor-of-int

abs-mult power-abs by simp
finally have thesis by auto
thus ?thesis unfolding thesis-def by auto

qed

lemma det-bound-hadamard: is-det-bound det-bound-hadamard
unfolding is-det-bound-def

proof (intro allI impI )
fix A :: int mat and n c
assume A: A ∈ carrier-mat n n and BndA: A ∈ Bounded-mat c
let ?h = rat-of-int
let ?hA = map-mat ?h A
let ?hc = ?h c

27



from A have hA: ?hA ∈ carrier-mat n n by auto
from BndA have Bnd: ?hA ∈ Bounded-mat ?hc

unfolding Bounded-mat-def
by (auto, unfold of-int-abs[symmetric] of-int-le-iff , auto)

have sqrt: sqrt ((real n ∗ (real-of-int c)2) ^ n) ≥ 0
by simp

from det-bound-hadamard-squared[OF hA Bnd, unfolded of-int-hom.hom-det of-int-abs[symmetric]]
have ?h ( |det A|^2 ) ≤ ?h (int n ^ n ∗ c ^ (2 ∗ n)) by simp
from this[unfolded of-int-le-iff ]
have |det A|^2 ≤ int n ^ n ∗ c ^ (2 ∗ n) .
also have . . . = (int n ∗ c^2 )^n unfolding power-mult power-mult-distrib by

simp
finally have |det A|2 ≤ (int n ∗ c2) ^ n by simp
hence sqrt-int-floor (|det A|2) ≤ sqrt-int-floor ((int n ∗ c2) ^ n)

unfolding sqrt-int-floor by (intro floor-mono real-sqrt-le-mono, linarith)
also have sqrt-int-floor (|det A|2) = |det A| by (simp del: of-int-abs add: of-int-abs[symmetric])
finally show |det A| ≤ det-bound-hadamard n c unfolding det-bound-hadamard-def

by simp
qed

lemma n-pow-n-le-fact-square: n ^ n ≤ (fact n)^2
proof −

define ii where ii (i :: nat) = (n + 1 − i) for i
have id: ii ‘ {1 ..n} = {1 ..n} unfolding ii-def
proof (auto, goal-cases)

case (1 i)
hence i: i = (−) (Suc n) (ii i) unfolding ii-def by auto
show ?case by (subst i, rule imageI , insert 1 , auto simp: ii-def )

qed
have (fact n) = (

∏
{1 ..n})

by (simp add: fact-prod)
hence (fact n)^2 = ((

∏
{1 ..n}) ∗ (

∏
{1 ..n})) by (auto simp: power2-eq-square)

also have . . . = ((
∏
{1 ..n}) ∗ prod (λ i. i) (ii ‘ {1 ..n}))

by (rule arg-cong[of - - λ x. (- ∗ x)], rule prod.cong[OF id[symmetric]], auto)
also have . . . = ((

∏
{1 ..n}) ∗ prod ii {1 ..n})

by (subst prod.reindex, auto simp: ii-def inj-on-def )
also have . . . = (prod (λ i. i ∗ ii i) {1 ..n})

by (subst prod.distrib, auto)
also have . . . ≥ (prod (λ i. n) {1 ..n})
proof (intro prod-mono conjI , simp)

fix i
assume i: i ∈ {1 .. n}
let ?j = ii i
show n ≤ i ∗ ?j
proof (cases i = 1 ∨ i = n)

case True
thus ?thesis unfolding ii-def by auto

next
case False
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hence min: min i ?j ≥ 2 using i by (auto simp: ii-def )
have max: n ≤ 2 ∗ max i ?j using i by (auto simp: ii-def )
also have . . . ≤ min i ?j ∗ max i ?j using min

by (intro mult-mono, auto)
also have . . . = i ∗ ?j by (cases i < ?j, auto simp: ac-simps)
finally show ?thesis .

qed
qed
finally show ?thesis by simp

qed

lemma sqrt-int-floor-bound: 0 ≤ x =⇒ (sqrt-int-floor x)^2 ≤ x
unfolding sqrt-int-floor-def
using root-int-floor-def root-int-floor-pos-lower by auto

lemma det-bound-hadamard-improves-det-bound-fact: assumes c: c ≥ 0
shows det-bound-hadamard n c ≤ det-bound-fact n c

proof −
have (det-bound-hadamard n c)^2 ≤ (int n ∗ c2) ^ n unfolding det-bound-hadamard-def

by (rule sqrt-int-floor-bound, auto)
also have . . . = int (n ^ n) ∗ c^(2 ∗ n) by (simp add: power-mult power-mult-distrib)
also have . . . ≤ int ((fact n)^2 ) ∗ c^(2 ∗ n)
by (intro mult-right-mono, unfold of-nat-le-iff , rule n-pow-n-le-fact-square, auto)

also have . . . = (det-bound-fact n c)^2 unfolding det-bound-fact-def
by (simp add: power-mult-distrib power-mult[symmetric] ac-simps)

finally have abs (det-bound-hadamard n c) ≤ abs (det-bound-fact n c)
unfolding abs-le-square-iff .

hence det-bound-hadamard n c ≤ abs (det-bound-fact n c) by simp
also have . . . = det-bound-fact n c unfolding det-bound-fact-def using c by

auto
finally show ?thesis .

qed

context
begin
private fun syl :: int ⇒ nat ⇒ int mat where

syl c 0 = mat 1 1 (λ -. c)
| syl c (Suc n) = (let A = syl c n in

four-block-mat A A (−A) A)

private lemma syl: assumes c: c ≥ 0
shows syl c n ∈ Bounded-mat c ∧ syl c n ∈ carrier-mat (2^n) (2^n)
∧ det (syl c n) = det-bound-hadamard (2^n) c

proof (cases n = 0 )
case True
thus ?thesis using c

unfolding det-bound-hadamard-altdef
by (auto simp: Bounded-mat-def det-single)

next
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case False
then obtain m where n: n = Suc m by (cases n, auto)
show ?thesis unfolding n
proof (induct m)

case 0
show ?case unfolding syl.simps Let-def using c

apply (subst det-four-block-mat[of - 1 ]; force?)
apply (subst det-single,

auto simp: Bounded-mat-def scalar-prod-def det-bound-hadamard-altdef
power2-eq-square)

done
next

case (Suc m)
define A where A = syl c (Suc m)
let ?FB = four-block-mat A A (− A) A
define n :: nat where n = 2 ^ Suc m
from Suc[folded A-def n-def ]
have Bnd: A ∈ Bounded-mat c

and A: A ∈ carrier-mat n n
and detA: det A = det-bound-hadamard n c
by auto

have n2 : 2 ^ Suc (Suc m) = 2 ∗ n unfolding n-def by auto
show ?case unfolding syl.simps(2 )[of - Suc m] A-def [symmetric] Let-def n2
proof (intro conjI )

show ?FB ∈ carrier-mat (2 ∗ n) (2 ∗ n) using A by auto
show ?FB ∈ Bounded-mat c using Bnd A unfolding Bounded-mat-elements-mat

by (subst elements-four-block-mat-id, auto)
have ev: even n and sum: n div 2 + n div 2 = n unfolding n-def by auto
have n2 : n ∗ 2 = n + n by simp
have det ?FB = det (A ∗ A − A ∗ − A)

by (rule det-four-block-mat[OF A A - A], insert A, auto)
also have A ∗ A − A ∗ − A = A ∗ A + A ∗ A using A by auto
also have . . . = 2 ·m (A ∗ A) using A by auto
also have det . . . = 2^n ∗ det (A ∗ A)

by (subst det-smult, insert A, auto)
also have det (A ∗ A) = det A ∗ det A by (rule det-mult[OF A A])
also have 2^n ∗ . . . = det-bound-hadamard (2 ∗ n) c unfolding detA
unfolding det-bound-hadamard-altdef by (simp add: ev ac-simps power-add[symmetric]

sum n2 )
finally show det ?FB = det-bound-hadamard (2 ∗ n) c .

qed
qed

qed

lemma det-bound-hadamard-tight:
assumes c: c ≥ 0

and n = 2^m
shows ∃ A. A ∈ carrier-mat n n ∧ A ∈ Bounded-mat c ∧ det A = det-bound-hadamard

n c
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by (rule exI [of - syl c m], insert syl[OF c, of m, folded assms(2 )], auto)
end

lemma Ints-matE : assumes A ∈ �m

shows ∃ B. A = map-mat of-int B
proof −

have ∀ ij. ∃ x. fst ij < dim-row A −→ snd ij < dim-col A −→ A $$ ij = of-int
x

using assms unfolding Ints-mat-def Ints-def by auto
from choice[OF this] obtain f where

f : ∀ i j. i < dim-row A −→ j < dim-col A −→ A $$ (i,j) = of-int (f (i,j))
by auto

show ?thesis
by (intro exI [of - mat (dim-row A) (dim-col A) f ] eq-matI , insert f , auto)

qed

lemma is-det-bound-of-int: fixes A :: ′a :: linordered-idom mat
assumes db: is-det-bound db
and A: A ∈ carrier-mat n n
and A ∈ �m ∩ Bounded-mat (of-int bnd)

shows abs (det A) ≤ of-int (db n bnd)
proof −

from assms have A ∈ �m by auto
from Ints-matE [OF this] obtain B where

AB: A = map-mat of-int B by auto
from assms have A ∈ Bounded-mat (of-int bnd) by auto
hence B ∈ Bounded-mat bnd unfolding AB Bounded-mat-elements-mat

by (auto simp flip: of-int-abs)
from db[unfolded is-det-bound-def , rule-format, OF - this, of n] AB A
have |det B| ≤ db n bnd by auto
thus ?thesis unfolding AB of-int-hom.hom-det

by (simp flip: of-int-abs)
qed

lemma minus-in-Bounded-vec[simp]:
(−x) ∈ Bounded-vec b ←→ x ∈ Bounded-vec b
unfolding Bounded-vec-def by auto

lemma sum-in-Bounded-vecI [intro]: assumes
xB: x ∈ Bounded-vec B1 and
yB: y ∈ Bounded-vec B2 and
x: x ∈ carrier-vec n and
y: y ∈ carrier-vec n

shows x + y ∈ Bounded-vec (B1 + B2 )
proof −

from x y have id: dim-vec (x + y) = n by auto
show ?thesis unfolding Bounded-vec-def mem-Collect-eq id
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proof (intro allI impI )
fix i
assume i: i < n
with x y xB yB have ∗: abs (x $ i) ≤ B1 abs (y $ i) ≤ B2

unfolding Bounded-vec-def by auto
thus |(x + y) $ i| ≤ B1 + B2 using i x y by simp

qed
qed

lemma (in gram-schmidt) lincomb-card-bound: assumes XBnd: X ⊆ Bounded-vec
Bnd

and X : X ⊆ carrier-vec n
and Bnd: Bnd ≥ 0
and c:

∧
x. x ∈ X =⇒ abs (c x) ≤ 1

and card: card X ≤ k
shows lincomb c X ∈ Bounded-vec (of-nat k ∗ Bnd)
proof −

from X have dim: dim-vec (lincomb c X) = n by auto
show ?thesis unfolding Bounded-vec-def mem-Collect-eq dim
proof (intro allI impI )

fix i
assume i: i < n
have abs (lincomb c X $ i) = abs (

∑
x∈X . c x ∗ x $ i)

by (subst lincomb-index[OF i X ], auto)
also have . . . ≤ (

∑
x∈X . abs (c x ∗ x $ i)) by auto

also have . . . = (
∑

x∈X . abs (c x) ∗ abs (x $ i)) by (auto simp: abs-mult)
also have . . . ≤ (

∑
x∈X . 1 ∗ abs (x $ i))

by (rule sum-mono[OF mult-right-mono], insert c, auto)
also have . . . = (

∑
x∈X . abs (x $ i)) by simp

also have . . . ≤ (
∑

x∈X . Bnd)
by (rule sum-mono, insert i XBnd[unfolded Bounded-vec-def ] X , force)

also have . . . = of-nat (card X) ∗ Bnd by simp
also have . . . ≤ of-nat k ∗ Bnd

by (rule mult-right-mono[OF - Bnd], insert card, auto)
finally show abs (lincomb c X $ i) ≤ of-nat k ∗ Bnd by auto

qed
qed

lemma bounded-vecset-sum:
assumes Acarr : A ⊆ carrier-vec n

and Bcarr : B ⊆ carrier-vec n
and sum: C = A + B
and Cbnd: ∃ bndC . C ⊆ Bounded-vec bndC

shows A 6= {} =⇒ (∃ bndB. B ⊆ Bounded-vec bndB)
and B 6= {} =⇒ (∃ bndA. A ⊆ Bounded-vec bndA)

proof −
{

fix A B :: ′a vec set
assume Acarr : A ⊆ carrier-vec n
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assume Bcarr : B ⊆ carrier-vec n
assume sum: C = A + B
assume Ane: A 6= {}
have ∃ bndB. B ⊆ Bounded-vec bndB
proof(cases B = {})

case Bne: False
from Cbnd obtain bndC where bndC : C ⊆ Bounded-vec bndC by auto
from Ane obtain a where aA: a ∈ A and acarr : a ∈ carrier-vec n using

Acarr by auto
let ?M = {abs (a $ i) | i. i < n}
have finM : finite ?M by simp
define nb where nb = abs bndC + Max ?M
{

fix b
assume bB: b ∈ B and bcarr : b ∈ carrier-vec n
have ab: a + b ∈ Bounded-vec bndC using aA bB bndC sum by auto
{

fix i
assume i-lt-n: i < n
hence ai-le-max: abs(a $ i) ≤ Max ?M using acarr finM Max-ge by blast
hence abs(a $ i + b $ i) ≤ abs bndC

using ab bcarr acarr index-add-vec(1 ) i-lt-n unfolding Bounded-vec-def
by auto

hence abs(b $ i) ≤ abs bndC + abs(a $ i) by simp
hence abs(b $ i) ≤ nb using i-lt-n bcarr ai-le-max unfolding nb-def by

simp
}
hence b ∈ Bounded-vec nb unfolding Bounded-vec-def using bcarr car-

rier-vecD by blast
}

hence B ⊆ Bounded-vec nb unfolding Bounded-vec-def using Bcarr by auto
thus ?thesis by auto

qed auto
} note theor = this
show A 6= {} =⇒ (∃ bndB. B ⊆ Bounded-vec bndB) using theor [OF Acarr

Bcarr sum] by simp
have CBA: C = B + A unfolding sum by (rule comm-add-vecset[OF Acarr

Bcarr ])
show B 6= {} =⇒ ∃ bndA. A ⊆ Bounded-vec bndA using theor [OF Bcarr Acarr

CBA] by simp
qed

end

7 Cones
We define the notions like cone, polyhedral cone, etc. and prove some basic
facts about them.
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theory Cone
imports

Basis-Extension
Missing-VS-Connect
Integral-Bounded-Vectors

begin

context gram-schmidt
begin

definition nonneg-lincomb c Vs b = (lincomb c Vs = b ∧ c ‘ Vs ⊆ {x. x ≥ 0})
definition nonneg-lincomb-list c Vs b = (lincomb-list c Vs = b ∧ (∀ i < length
Vs. c i ≥ 0 ))

definition finite-cone :: ′a vec set ⇒ ′a vec set where
finite-cone Vs = ({ b. ∃ c. nonneg-lincomb c (if finite Vs then Vs else {}) b})

definition cone :: ′a vec set ⇒ ′a vec set where
cone Vs = ({ x. ∃ Ws. finite Ws ∧ Ws ⊆ Vs ∧ x ∈ finite-cone Ws})

definition cone-list :: ′a vec list ⇒ ′a vec set where
cone-list Vs = {b. ∃ c. nonneg-lincomb-list c Vs b}

lemma finite-cone-iff-cone-list: assumes Vs: Vs ⊆ carrier-vec n
and id: Vs = set Vsl

shows finite-cone Vs = cone-list Vsl
proof −

have fin: finite Vs unfolding id by auto
from Vs id have Vsl: set Vsl ⊆ carrier-vec n by auto
{

fix c b
assume b: lincomb c Vs = b and c: c ‘ Vs ⊆ {x. x ≥ 0}
from lincomb-as-lincomb-list[OF Vsl, of c]
have b: lincomb-list (λi. if ∃ j<i. Vsl ! i = Vsl ! j then 0 else c (Vsl ! i)) Vsl

= b
unfolding b[symmetric] id by simp

have ∃ c. nonneg-lincomb-list c Vsl b
unfolding nonneg-lincomb-list-def
apply (intro exI conjI , rule b)
by (insert c, auto simp: set-conv-nth id)

}
moreover
{

fix c b
assume b: lincomb-list c Vsl = b and c: (∀ i < length Vsl. c i ≥ 0 )
have nonneg-lincomb (mk-coeff Vsl c) Vs b

unfolding b[symmetric] nonneg-lincomb-def
apply (subst lincomb-list-as-lincomb[OF Vsl])
by (insert c, auto simp: id mk-coeff-def intro!: sum-list-nonneg)
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hence ∃ c. nonneg-lincomb c Vs b by blast
}
ultimately show ?thesis unfolding finite-cone-def cone-list-def

nonneg-lincomb-def nonneg-lincomb-list-def using fin by auto
qed

lemma cone-alt-def : assumes Vs: Vs ⊆ carrier-vec n
shows cone Vs = ({ x. ∃ Ws. set Ws ⊆ Vs ∧ x ∈ cone-list Ws})
unfolding cone-def

proof (intro Collect-cong iffI )
fix x
assume ∃Ws. finite Ws ∧ Ws ⊆ Vs ∧ x ∈ finite-cone Ws
then obtain Ws where ∗: finite Ws Ws ⊆ Vs x ∈ finite-cone Ws by auto
from finite-list[OF ∗(1 )] obtain Wsl where id: Ws = set Wsl by auto
from finite-cone-iff-cone-list[OF - this] ∗(2−3 ) Vs
have x ∈ cone-list Wsl by auto
with ∗(2 ) id show ∃Wsl. set Wsl ⊆ Vs ∧ x ∈ cone-list Wsl by blast

next
fix x
assume ∃Wsl. set Wsl ⊆ Vs ∧ x ∈ cone-list Wsl
then obtain Wsl where set Wsl ⊆ Vs x ∈ cone-list Wsl by auto
thus ∃Ws. finite Ws ∧ Ws ⊆ Vs ∧ x ∈ finite-cone Ws using Vs

by (intro exI [of - set Wsl], subst finite-cone-iff-cone-list, auto)
qed

lemma cone-mono: Vs ⊆ Ws =⇒ cone Vs ⊆ cone Ws
unfolding cone-def by blast

lemma finite-cone-mono: assumes fin: finite Ws
and Ws: Ws ⊆ carrier-vec n
and sub: Vs ⊆ Ws

shows finite-cone Vs ⊆ finite-cone Ws
proof

fix b
assume b ∈ finite-cone Vs
then obtain c where b: b = lincomb c Vs and c: c ‘ Vs ⊆ {x. x ≥ 0}

unfolding finite-cone-def nonneg-lincomb-def using finite-subset[OF sub fin]
by auto

define d where d = (λ v. if v ∈ Vs then c v else 0 )
from c have d: d ‘ Ws ⊆ {x. x ≥ 0} unfolding d-def by auto
have lincomb d Ws = lincomb d (Ws − Vs) + lincomb d Vs

by (rule lincomb-vec-diff-add[OF Ws sub fin], auto)
also have lincomb d Vs = lincomb c Vs

by (rule lincomb-cong, insert Ws sub, auto simp: d-def )
also have lincomb d (Ws − Vs) = 0 v n

by (rule lincomb-zero, insert Ws sub, auto simp: d-def )
also have 0 v n + lincomb c Vs = lincomb c Vs using Ws sub by auto
also have . . . = b unfolding b by simp
finally
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have b = lincomb d Ws by auto
then show b ∈ finite-cone Ws using d fin

unfolding finite-cone-def nonneg-lincomb-def by auto
qed

lemma finite-cone-carrier : A ⊆ carrier-vec n =⇒ finite-cone A ⊆ carrier-vec n
unfolding finite-cone-def nonneg-lincomb-def by auto

lemma cone-carrier : A ⊆ carrier-vec n =⇒ cone A ⊆ carrier-vec n
using finite-cone-carrier unfolding cone-def by blast

lemma cone-iff-finite-cone: assumes A: A ⊆ carrier-vec n
and fin: finite A

shows cone A = finite-cone A
proof

show finite-cone A ⊆ cone A unfolding cone-def using fin by auto
show cone A ⊆ finite-cone A unfolding cone-def using fin finite-cone-mono[OF

fin A] by auto
qed

lemma set-in-finite-cone:
assumes Vs: Vs ⊆ carrier-vec n

and fin: finite Vs
shows Vs ⊆ finite-cone Vs

proof
fix x
assume x: x ∈ Vs
show x ∈ finite-cone Vs unfolding finite-cone-def
proof

let ?c = λ y. if x = y then 1 else 0 :: ′a
have Vsx: Vs − {x} ⊆ carrier-vec n using Vs by auto
have lincomb ?c Vs = x + lincomb ?c (Vs − {x})

using lincomb-del2 x Vs fin by auto
also have lincomb ?c (Vs − {x}) = 0 v n using lincomb-zero Vsx by auto
also have x + 0 v n = x using M .r-zero Vs x by auto
finally have lincomb ?c Vs = x by auto
moreover have ?c ‘ Vs ⊆ {z. z ≥ 0} by auto
ultimately show ∃ c. nonneg-lincomb c (if finite Vs then Vs else {}) x

unfolding nonneg-lincomb-def
using fin by auto

qed
qed

lemma set-in-cone:
assumes Vs: Vs ⊆ carrier-vec n
shows Vs ⊆ cone Vs

proof
fix x
assume x: x ∈ Vs
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show x ∈ cone Vs unfolding cone-def
proof (intro CollectI exI )

have x ∈ carrier-vec n using Vs x by auto
then have x ∈ finite-cone {x} using set-in-finite-cone by auto
then show finite {x} ∧ {x} ⊆ Vs ∧ x ∈ finite-cone {x} using x by auto

qed
qed

lemma zero-in-finite-cone:
assumes Vs: Vs ⊆ carrier-vec n
shows 0 v n ∈ finite-cone Vs

proof −
let ?Vs = (if finite Vs then Vs else {})
have lincomb (λ x. 0 :: ′a) ?Vs = 0 v n using lincomb-zero Vs by auto
moreover have (λ x. 0 :: ′a) ‘ ?Vs ⊆ {y. y ≥ 0} by auto
ultimately show ?thesis unfolding finite-cone-def nonneg-lincomb-def by blast

qed

lemma lincomb-in-finite-cone:
assumes x = lincomb l W

and finite W
and ∀ i ∈ W . l i ≥ 0
and W ⊆ carrier-vec n

shows x ∈ finite-cone W
using cone-iff-finite-cone assms unfolding finite-cone-def nonneg-lincomb-def

by auto

lemma lincomb-in-cone:
assumes x = lincomb l W

and finite W
and ∀ i ∈ W . l i ≥ 0
and W ⊆ carrier-vec n

shows x ∈ cone W
using cone-iff-finite-cone assms unfolding finite-cone-def nonneg-lincomb-def

by auto

lemma zero-in-cone: 0 v n ∈ cone Vs
proof −

have finite {} by auto
moreover have {} ⊆ cone Vs by auto
moreover have 0 v n ∈ finite-cone {} using zero-in-finite-cone by auto
ultimately show ?thesis unfolding cone-def by blast

qed

lemma cone-smult:
assumes a: a ≥ 0

and Vs: Vs ⊆ carrier-vec n
and x: x ∈ cone Vs

shows a ·v x ∈ cone Vs
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proof −
from x Vs obtain Ws c where Ws: Ws ⊆ Vs and fin: finite Ws and

nonneg-lincomb c Ws x
unfolding cone-def finite-cone-def by auto

then have nonneg-lincomb (λ w. a ∗ c w) Ws (a ·v x)
unfolding nonneg-lincomb-def using a lincomb-distrib Vs by auto

then show ?thesis using Ws fin unfolding cone-def finite-cone-def by auto
qed

lemma finite-cone-empty[simp]: finite-cone {} = {0 v n}
by (auto simp: finite-cone-def nonneg-lincomb-def )

lemma cone-empty[simp]: cone {} = {0 v n}
unfolding cone-def by simp

lemma cone-elem-sum:
assumes Vs: Vs ⊆ carrier-vec n

and x: x ∈ cone Vs
and y: y ∈ cone Vs

shows x + y ∈ cone Vs
proof −

obtain Xs where Xs: Xs ⊆ Vs and fin-Xs: finite Xs
and Xs-cone: x ∈ finite-cone Xs
using Vs x unfolding cone-def by auto

obtain Ys where Ys: Ys ⊆ Vs and fin-Ys: finite Ys
and Ys-cone: y ∈ finite-cone Ys
using Vs y unfolding cone-def
by auto

have x ∈ finite-cone (Xs ∪ Ys) and y ∈ finite-cone (Xs ∪ Ys)
using finite-cone-mono fin-Xs fin-Ys Xs Ys Vs Xs-cone Ys-cone
by (blast, blast)

then obtain cx cy where nonneg-lincomb cx (Xs ∪ Ys) x
and nonneg-lincomb cy (Xs ∪ Ys) y
unfolding finite-cone-def using fin-Xs fin-Ys by auto

hence nonneg-lincomb (λ v. cx v + cy v) (Xs ∪ Ys) (x + y)
unfolding nonneg-lincomb-def
using lincomb-sum[of Xs ∪ Ys cx cy] fin-Xs fin-Ys Xs Ys Vs
by fastforce

hence x + y ∈ finite-cone (Xs ∪ Ys)
unfolding finite-cone-def using fin-Xs fin-Ys by auto

thus ?thesis unfolding cone-def using fin-Xs fin-Ys Xs Ys by auto
qed

lemma cone-cone:
assumes Vs: Vs ⊆ carrier-vec n
shows cone (cone Vs) = cone Vs

proof
show cone Vs ⊆ cone (cone Vs)
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by (rule set-in-cone[OF cone-carrier [OF Vs]])
next

show cone (cone Vs) ⊆ cone Vs
proof

fix x
assume x: x ∈ cone (cone Vs)
then obtain Ws c where Ws: set Ws ⊆ cone Vs

and c: nonneg-lincomb-list c Ws x
using cone-alt-def Vs cone-carrier unfolding cone-list-def by auto

have set Ws ⊆ cone Vs =⇒ nonneg-lincomb-list c Ws x =⇒ x ∈ cone Vs
proof (induction Ws arbitrary: x c)

case Nil
hence x = 0 v n unfolding nonneg-lincomb-list-def by auto
thus x ∈ cone Vs using zero-in-cone by auto

next
case (Cons a Ws)
have a ∈ cone Vs using Cons.prems(1 ) by auto
moreover have c 0 ≥ 0

using Cons.prems(2 ) unfolding nonneg-lincomb-list-def by fastforce
ultimately have c 0 ·v a ∈ cone Vs using cone-smult Vs by auto
moreover have lincomb-list (c ◦ Suc) Ws ∈ cone Vs

using Cons unfolding nonneg-lincomb-list-def by fastforce
moreover have x = c 0 ·v a + lincomb-list (c ◦ Suc) Ws

using Cons.prems(2 ) unfolding nonneg-lincomb-list-def
by auto

ultimately show x ∈ cone Vs using cone-elem-sum Vs by auto
qed

thus x ∈ cone Vs using Ws c by auto
qed

qed

lemma cone-smult-basis:
assumes Vs: Vs ⊆ carrier-vec n

and l: l ‘ Vs ⊆ {x. x > 0}
shows cone {l v ·v v | v . v ∈ Vs} = cone Vs

proof
have {l v ·v v |v. v ∈ Vs} ⊆ cone Vs
proof

fix x
assume x ∈ {l v ·v v | v. v ∈ Vs}
then obtain v where v ∈ Vs and x = l v ·v v by auto
thus x ∈ cone Vs using

set-in-cone[OF Vs] cone-smult[OF - Vs, of l v v] l by fastforce
qed
thus cone {l v ·v v | v. v ∈ Vs} ⊆ cone Vs

using cone-mono cone-cone[OF Vs] by blast
next
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have lVs: {l v ·v v | v. v ∈ Vs} ⊆ carrier-vec n using Vs by auto
have Vs ⊆ cone {l v ·v v | v. v ∈ Vs}
proof

fix v assume v: v ∈ Vs
hence l v ·v v ∈ cone {l v ·v v | v. v ∈ Vs} using set-in-cone[OF lVs] by auto
moreover have 1 / l v > 0 using l v by auto
ultimately have (1 / l v) ·v (l v ·v v) ∈ cone {l v ·v v | v. v ∈ Vs}

using cone-smult[OF - lVs] by auto
also have (1 / l v) ·v (l v ·v v) = v using l v

by(auto simp add: smult-smult-assoc)
finally show v ∈ cone {l v ·v v | v. v ∈ Vs} by auto

qed
thus cone Vs ⊆ cone {l v ·v v | v. v ∈ Vs}

using cone-mono cone-cone[OF lVs] by blast
qed

lemma cone-add-cone:
assumes C : C ⊆ carrier-vec n
shows cone C + cone C = cone C

proof
note CC = cone-carrier [OF C ]
have cone C = cone C + {0 v n} by (subst add-0-right-vecset[OF CC ], simp)
also have . . . ⊆ cone C + cone C

by (rule set-plus-mono2 , insert zero-in-cone, auto)
finally show cone C ⊆ cone C + cone C by auto
from cone-elem-sum[OF C ]
show cone C + cone C ⊆ cone C

by (auto elim!: set-plus-elim)
qed

lemma orthogonal-cone:
assumes X : X ⊆ carrier-vec n

and W : W ⊆ carrier-vec n
and finX : finite X
and spanLW : span (set Ls ∪ W ) = carrier-vec n
and ortho:

∧
w x. w ∈ W =⇒ x ∈ set Ls =⇒ w · x = 0

and WWs: W = set Ws
and spanL: span (set Ls) = span X
and LX : set Ls ⊆ X
and lin-Ls-Bs: lin-indpt-list (Ls @ Bs)
and len-Ls-Bs: length (Ls @ Bs) = n

shows cone (X ∪ set Bs) ∩ {x ∈ carrier-vec n. ∀w∈W . w · x = 0} = cone X∧
x. ∀w∈W . w · x = 0 =⇒ Z ⊆ X =⇒ B ⊆ set Bs =⇒ x = lincomb c (Z ∪

B)
=⇒ x = lincomb c (Z − B)

proof −
from WWs have finW : finite W by auto
define Y where Y = X ∪ set Bs
from lin-Ls-Bs[unfolded lin-indpt-list-def ] have
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Ls: set Ls ⊆ carrier-vec n and
Bs: set Bs ⊆ carrier-vec n and
distLsBs: distinct (Ls @ Bs) and
lin: lin-indpt (set (Ls @ Bs)) by auto

have LW : set Ls ∩ W = {}
proof (rule ccontr)

assume ¬ ?thesis
then obtain x where xX : x ∈ set Ls and xW : x ∈ W by auto
from ortho[OF xW xX ] have x · x = 0 by auto
hence sq-norm x = 0 by (auto simp: sq-norm-vec-as-cscalar-prod)
with vs-zero-lin-dep[OF - lin] xX Ls Bs show False by auto

qed
have Y : Y ⊆ carrier-vec n using X Bs unfolding Y-def by auto
have CLB: carrier-vec n = span (set (Ls @ Bs))

using lin-Ls-Bs len-Ls-Bs lin-indpt-list-length-eq-n by blast
also have . . . ⊆ span Y

by (rule span-is-monotone, insert LX , auto simp: Y-def )
finally have span: span Y = carrier-vec n using Y by auto
have finY : finite Y using finX finW unfolding Y-def by auto
{

fix x Z B d
assume xX : ∀w∈W . w · x = 0 and ZX : Z ⊆ X and B: B ⊆ set Bs and

xd: x = lincomb d (Z ∪ B)
from ZX B X Bs have ZB: Z ∪ B ⊆ carrier-vec n by auto
with xd have x: x ∈ carrier-vec n by auto
from xX W have w0 : w ∈ W =⇒ w · x = 0 for w by auto
from finite-in-span[OF - - x[folded spanLW ]] Ls X W finW finX
obtain c where xc: x = lincomb c (set Ls ∪ W ) by auto
have x = lincomb c (set Ls ∪ W ) unfolding xc by auto
also have . . . = lincomb c (set Ls) + lincomb c W

by (rule lincomb-union, insert X LX W LW finW , auto)
finally have xsum: x = lincomb c (set Ls) + lincomb c W .
{

fix w
assume wW : w ∈ W
with W have w: w ∈ carrier-vec n by auto
from w0 [OF wW , unfolded xsum]
have 0 = w · (lincomb c (set Ls) + lincomb c W ) by simp
also have . . . = w · lincomb c (set Ls) + w · lincomb c W

by (rule scalar-prod-add-distrib[OF w], insert Ls W , auto)
also have w · lincomb c (set Ls) = 0 using ortho[OF wW ]

by (subst lincomb-scalar-prod-right[OF Ls w], auto)
finally have w · lincomb c W = 0 by simp

}
hence lincomb c W · lincomb c W = 0 using W

by (subst lincomb-scalar-prod-left, auto)
hence sq-norm (lincomb c W ) = 0

by (auto simp: sq-norm-vec-as-cscalar-prod)
hence 0 : lincomb c W = 0 v n using lincomb-closed[OF W , of c] by simp
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have xc: x = lincomb c (set Ls) unfolding xsum 0 using Ls by auto
hence xL: x ∈ span (set Ls) by auto
let ?X = Z − B
have lincomb d ?X ∈ span X using finite-subset[OF - finX , of ?X ] X ZX by

auto
from finite-in-span[OF finite-set Ls this[folded spanL]]
obtain e where ed: lincomb e (set Ls) = lincomb d ?X by auto
from B finite-subset[OF B] have finB: finite B by auto
from B Bs have BC : B ⊆ carrier-vec n by auto
define f where f =
(λ x. if x ∈ set Bs then if x ∈ B then d x else 0 else if x ∈ set Ls then e x else

undefined)
have x = lincomb d (?X ∪ B) unfolding xd by auto
also have . . . = lincomb d ?X + lincomb d B

by (rule lincomb-union[OF - - - finite-subset[OF - finX ]], insert ZX X finB B
Bs, auto)

finally have xd: x = lincomb d ?X + lincomb d B .
also have . . . = lincomb e (set Ls) + lincomb d B unfolding ed by auto
also have lincomb e (set Ls) = lincomb f (set Ls)

by (rule lincomb-cong[OF - Ls], insert distLsBs, auto simp: f-def )
also have lincomb d B = lincomb f B

by (rule lincomb-cong[OF - BC ], insert B, auto simp: f-def )
also have lincomb f B = lincomb f (B ∪ (set Bs − B))

by (subst lincomb-clean, insert finB Bs B, auto simp: f-def )
also have B ∪ (set Bs − B) = set Bs using B by auto
finally have x = lincomb f (set Ls) + lincomb f (set Bs) by auto
also have lincomb f (set Ls) + lincomb f (set Bs) = lincomb f (set (Ls @ Bs))

by (subst lincomb-union[symmetric], insert Ls distLsBs Bs, auto)
finally have x = lincomb f (set (Ls @ Bs)) .
hence f : f ∈ set (Ls @ Bs) →E UNIV ∧ lincomb f (set (Ls @ Bs)) = x

by (auto simp: f-def split: if-splits)
from finite-in-span[OF finite-set Ls xL] obtain g where

xg: x = lincomb g (set Ls) by auto
define h where h = (λ x. if x ∈ set Bs then 0 else if x ∈ set Ls then g x else

undefined)
have x = lincomb h (set Ls) unfolding xg

by (rule lincomb-cong[OF - Ls], insert distLsBs, auto simp: h-def )
also have . . . = lincomb h (set Ls) + 0 v n using Ls by auto
also have 0 v n = lincomb h (set Bs)

by (rule lincomb-zero[symmetric, OF Bs], auto simp: h-def )
also have lincomb h (set Ls) + lincomb h (set Bs) = lincomb h (set (Ls @ Bs))

by (subst lincomb-union[symmetric], insert Ls Bs distLsBs, auto)
finally have x = lincomb h (set (Ls @ Bs)) .
hence h: h ∈ set (Ls @ Bs) →E UNIV ∧ lincomb h (set (Ls @ Bs)) = x

by (auto simp: h-def split: if-splits)
have basis: basis (set (Ls @ Bs)) using lin-Ls-Bs[unfolded lin-indpt-list-def ]

len-Ls-Bs
using CLB basis-def by blast

from Ls Bs have set (Ls @ Bs) ⊆ carrier-vec n by auto
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from basis[unfolded basis-criterion[OF finite-set this], rule-format, OF x] f h
have fh: f = h by auto
hence

∧
x. x ∈ set Bs =⇒ f x = 0 unfolding h-def by auto

hence
∧

x. x ∈ B =⇒ d x = 0 unfolding f-def using B by force
thus x = lincomb d ?X unfolding xd

by (subst (2 ) lincomb-zero, insert BC ZB X , auto intro!: M .r-zero)
} note main = this
have cone Y ∩ {x ∈ carrier-vec n. ∀w∈W . w · x = 0} = cone X (is ?I = -)
proof

{
fix x
assume xX : x ∈ cone X
with cone-carrier [OF X ] have x: x ∈ carrier-vec n by auto
have X ⊆ Y unfolding Y-def by auto
from cone-mono[OF this] xX have xY : x ∈ cone Y by auto
from cone-iff-finite-cone[OF X finX ] xX have x ∈ finite-cone X by auto
from this[unfolded finite-cone-def nonneg-lincomb-def ] finX obtain c

where x = lincomb c X by auto
with finX X have x ∈ span X by auto
with spanL have x ∈ span (set Ls) by auto
from finite-in-span[OF - Ls this] obtain c where

xc: x = lincomb c (set Ls) by auto
{

fix w
assume wW : w ∈ W
hence w: w ∈ carrier-vec n using W by auto
have w · x = 0 unfolding xc using ortho[OF wW ]

by (subst lincomb-scalar-prod-right[OF Ls w], auto)
}
with xY x have x ∈ ?I by blast

}
thus cone X ⊆ ?I by blast
{

fix x
let ?X = X − set Bs
assume x ∈ ?I
with cone-carrier [OF Y ] cone-iff-finite-cone[OF Y finY ]
have xY : x ∈ finite-cone Y and x: x ∈ carrier-vec n

and w0 :
∧

w. w ∈ W =⇒ w · x = 0 by auto
from xY [unfolded finite-cone-def nonneg-lincomb-def ] finY obtain d

where xd: x = lincomb d Y and nonneg: d ‘ Y ⊆ Collect ((≤) 0 ) by auto
from main[OF - - - xd[unfolded Y-def ]] w0
have x = lincomb d ?X by auto
hence nonneg-lincomb d ?X x unfolding nonneg-lincomb-def

using nonneg[unfolded Y-def ] by auto
hence x ∈ finite-cone ?X using finX

unfolding finite-cone-def by auto
hence x ∈ cone X using finite-subset[OF - finX , of ?X ] unfolding cone-def

by blast
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}
then show ?I ⊆ cone X by auto

qed
thus cone (X ∪ set Bs) ∩ {x ∈ carrier-vec n. ∀w∈W . w · x = 0} = cone X

unfolding Y-def .
qed

definition polyhedral-cone (A :: ′a mat) = { x . x ∈ carrier-vec n ∧ A ∗v x ≤ 0 v

(dim-row A)}

lemma polyhedral-cone-carrier : assumes A ∈ carrier-mat nr n
shows polyhedral-cone A ⊆ carrier-vec n
using assms unfolding polyhedral-cone-def by auto

lemma cone-in-polyhedral-cone:
assumes CA: C ⊆ polyhedral-cone A

and A: A ∈ carrier-mat nr n
shows cone C ⊆ polyhedral-cone A

proof
interpret nr : gram-schmidt nr TYPE ( ′a).
from polyhedral-cone-carrier [OF A] assms(1 )
have C : C ⊆ carrier-vec n by auto
fix x
assume x: x ∈ cone C
then have xn: x ∈ carrier-vec n

using cone-carrier [OF C ] by auto
from x[unfolded cone-alt-def [OF C ] cone-list-def nonneg-lincomb-list-def ]
obtain ll Ds where l0 : lincomb-list ll Ds = x and l1 : ∀ i<length Ds. 0 ≤ ll i

and DsC : set Ds ⊆ C
by auto

from DsC C have Ds: set Ds ⊆ carrier-vec n by auto

have A ∗v x = A ∗v (lincomb-list ll Ds) using l0 by auto
also have . . . = nr .lincomb-list ll (map (λ d. A ∗v d) Ds)
proof −

have one: ∀w∈set Ds. dim-vec w = n using DsC C by auto
have two: ∀w∈set (map ((∗v) A) Ds). dim-vec w = nr using A DsC C by

auto
show A ∗v lincomb-list ll Ds = nr .lincomb-list ll (map ((∗v) A) Ds)

unfolding lincomb-list-as-mat-mult[OF one] nr .lincomb-list-as-mat-mult[OF
two] length-map

proof (subst assoc-mult-mat-vec[symmetric, OF A], force+, rule arg-cong[of -
- λ x. x ∗v -])

show A ∗ mat-of-cols n Ds = mat-of-cols nr (map ((∗v) A) Ds)
unfolding mat-of-cols-def
by (intro eq-matI , insert A Ds[unfolded set-conv-nth],

(force intro!: arg-cong[of - - λ x. row A - · x])+)
qed

qed
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also have . . . ≤ 0 v nr
proof (intro lesseq-vecI [of - nr ])

have ∗: set (map ((∗v) A) Ds) ⊆ carrier-vec nr using A Ds by auto
show Carr : nr .lincomb-list ll (map ((∗v) A) Ds) ∈ carrier-vec nr

by (intro nr .lincomb-list-carrier [OF ∗])
fix i
assume i: i < nr
from CA[unfolded polyhedral-cone-def ] A
have l2 : x ∈ C =⇒ A ∗v x ≤ 0 v nr for x by auto
show nr .lincomb-list ll (map ((∗v) A) Ds) $ i ≤ 0 v nr $ i
unfolding subst nr .lincomb-list-index[OF i ∗] length-map index-zero-vec(1 )[OF

i]
proof (intro sum-nonpos mult-nonneg-nonpos)

fix j
assume j ∈ {0 ..<length Ds}
hence j: j < length Ds by auto
from j show 0 ≤ ll j using l1 by auto
from j have Ds ! j ∈ C using DsC by auto
from l2 [OF this] have l2 : A ∗v Ds ! j ≤ 0 v nr by auto
from lesseq-vecD[OF - this i] i have (A ∗v Ds ! j) $ i ≤ 0 by auto
thus map ((∗v) A) Ds ! j $ i ≤ 0 using j i by auto

qed
qed auto
finally show x ∈ polyhedral-cone A

unfolding polyhedral-cone-def using A xn by auto
qed

lemma bounded-cone-is-zero:
assumes Ccarr : C ⊆ carrier-vec n and bnd: cone C ⊆ Bounded-vec bnd
shows cone C = {0 v n}

proof(rule ccontr)
assume ¬ ?thesis
then obtain v where vC : v ∈ cone C and vnz: v 6= 0 v n

using zero-in-cone assms by auto
have vcarr : v ∈ carrier-vec n using vC Ccarr cone-carrier by blast
from vnz vcarr obtain i where i-le-n: i < dim-vec v and vinz: v $ i 6= 0 by

force
define M where M = (1 / (v $ i) ∗ (bnd + 1 ))
have abs-ge-bnd: abs (M ∗ (v $ i)) > bnd unfolding M-def by (simp add: vinz)
have aMvC : (abs M ) ·v v ∈ cone C using cone-smult[OF - Ccarr vC ] abs-ge-bnd

by simp
have ¬(abs (abs M ∗ (v $ i)) ≤ bnd) using abs-ge-bnd by simp
hence (abs M ) ·v v /∈ Bounded-vec bnd unfolding Bounded-vec-def using i-le-n

aMvC by auto
thus False using aMvC bnd by auto

qed

lemma cone-of-cols: fixes A :: ′a mat and b :: ′a vec
assumes A: A ∈ carrier-mat n nr and b: b ∈ carrier-vec n
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shows b ∈ cone (set (cols A)) ←→ (∃ x. x ≥ 0 v nr ∧ A ∗v x = b)
proof −

let ?C = set (cols A)
from A have C : ?C ⊆ carrier-vec n and C ′: ∀w∈set (cols A). dim-vec w = n

unfolding cols-def by auto
have id: finite ?C = True length (cols A) = nr using A by auto
have Aid: mat-of-cols n (cols A) = A using A unfolding mat-of-cols-def

by (intro eq-matI , auto)
show ?thesis

unfolding cone-iff-finite-cone[OF C finite-set] finite-cone-iff-cone-list[OF C
refl]

unfolding cone-list-def nonneg-lincomb-list-def mem-Collect-eq id
unfolding lincomb-list-as-mat-mult[OF C ′] id Aid

proof −
{

fix x
assume x≥0 v nr A ∗v x = b
hence ∃ c. A ∗v vec nr c = b ∧ (∀ i<nr . 0 ≤ c i) using A b

by (intro exI [of - λ i. x $ i], auto simp: less-eq-vec-def intro!: arg-cong[of -
- (∗v) A])

}
moreover
{

fix c
assume A ∗v vec nr c = b (∀ i<nr . 0 ≤ c i)
hence ∃ x. x≥0 v nr ∧ A ∗v x = b

by (intro exI [of - vec nr c], auto simp: less-eq-vec-def )
}
ultimately show (∃ c. A ∗v vec nr c = b ∧ (∀ i<nr . 0 ≤ c i)) = (∃ x≥0 v nr .

A ∗v x = b) by blast
qed

qed

end
end

8 Convex Hulls
We define the notion of convex hull of a set or list of vectors and derive basic
properties thereof.
theory Convex-Hull

imports Cone
begin

context gram-schmidt
begin

definition convex-lincomb c Vs b = (nonneg-lincomb c Vs b ∧ sum c Vs = 1 )
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definition convex-lincomb-list c Vs b = (nonneg-lincomb-list c Vs b ∧ sum c
{0 ..<length Vs} = 1 )

definition convex-hull Vs = {x. ∃ Ws c. finite Ws ∧ Ws ⊆ Vs ∧ convex-lincomb
c Ws x}

lemma convex-hull-carrier [intro]: Vs ⊆ carrier-vec n =⇒ convex-hull Vs ⊆ car-
rier-vec n

unfolding convex-hull-def convex-lincomb-def nonneg-lincomb-def by auto

lemma convex-hull-mono: Vs ⊆ Ws =⇒ convex-hull Vs ⊆ convex-hull Ws
unfolding convex-hull-def by auto

lemma convex-lincomb-empty[simp]: ¬ (convex-lincomb c {} x)
unfolding convex-lincomb-def by simp

lemma set-in-convex-hull:
assumes A ⊆ carrier-vec n
shows A ⊆ convex-hull A

proof
fix a
assume a ∈ A
hence acarr : a ∈ carrier-vec n using assms by auto
hence convex-lincomb (λ x. 1 ) {a} a unfolding convex-lincomb-def

by (auto simp: nonneg-lincomb-def lincomb-def )
then show a ∈ convex-hull A using ‹a ∈ A› unfolding convex-hull-def by auto

qed

lemma convex-hull-empty[simp]:
convex-hull {} = {}
A ⊆ carrier-vec n =⇒ convex-hull A = {} ←→ A = {}

proof −
show convex-hull {} = {} unfolding convex-hull-def by auto
then show A ⊆ carrier-vec n =⇒ convex-hull A = {} ←→ A = {}

using set-in-convex-hull[of A] by auto
qed

lemma convex-hull-bound: assumes XBnd: X ⊆ Bounded-vec Bnd
and X : X ⊆ carrier-vec n

shows convex-hull X ⊆ Bounded-vec Bnd
proof

fix x
assume x ∈ convex-hull X
from this[unfolded convex-hull-def ]
obtain Y c where fin: finite Y and YX : Y ⊆ X and cx: convex-lincomb c Y

x by auto
from cx[unfolded convex-lincomb-def nonneg-lincomb-def ]
have x: x = lincomb c Y and sum: sum c Y = 1 and c0 :

∧
y. y ∈ Y =⇒ c y
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≥ 0 by auto
from YX X XBnd have Y : Y ⊆ carrier-vec n and YBnd: Y ⊆ Bounded-vec

Bnd by auto
from x Y have dim: dim-vec x = n by auto
show x ∈ Bounded-vec Bnd unfolding Bounded-vec-def mem-Collect-eq dim
proof (intro allI impI )

fix i
assume i: i < n
have abs (x $ i) = abs (

∑
x∈Y . c x ∗ x $ i) unfolding x

by (subst lincomb-index[OF i Y ], auto)
also have . . . ≤ (

∑
x∈Y . abs (c x ∗ x $ i)) by auto

also have . . . = (
∑

x∈Y . abs (c x) ∗ abs (x $ i)) by (simp add: abs-mult)
also have . . . ≤ (

∑
x∈Y . abs (c x) ∗ Bnd)

by (intro sum-mono mult-left-mono, insert YBnd[unfolded Bounded-vec-def ]
i Y , force+)

also have . . . = (
∑

x∈Y . abs (c x)) ∗ Bnd
by (simp add: sum-distrib-right)

also have (
∑

x∈Y . abs (c x)) = (
∑

x∈Y . c x)
by (rule sum.cong, insert c0 , auto)

also have . . . = 1 by fact
finally show |x $ i| ≤ Bnd by auto

qed
qed

definition convex-hull-list Vs = {x. ∃ c. convex-lincomb-list c Vs x}

lemma lincomb-list-elem:
set Vs ⊆ carrier-vec n =⇒
lincomb-list (λ j. if i=j then 1 else 0 ) Vs = (if i < length Vs then Vs ! i else 0 v

n)
proof (induction Vs rule: rev-induct)

case (snoc x Vs)
have x: x ∈ carrier-vec n and Vs: set Vs ⊆ carrier-vec n using snoc.prems by

auto
let ?f = λ j. if i = j then 1 else 0
have lincomb-list ?f (Vs @ [x]) = lincomb-list ?f Vs + ?f (length Vs) ·v x

using x Vs by simp
also have . . . = (if i < length (Vs @ [x]) then (Vs @ [x]) ! i else 0 v n) (is ?goal)

using less-linear [of i length Vs]
proof (elim disjE)

assume i: i < length Vs
have lincomb-list (λj. if i = j then 1 else 0 ) Vs = Vs ! i

using snoc.IH [OF Vs] i by auto
moreover have (if i = length Vs then 1 else 0 ) ·v x = 0 v n using i x by auto
moreover have (if i < length (Vs @ [x]) then (Vs @ [x]) ! i else 0 v n) = Vs ! i

using i append-Cons-nth-left by fastforce
ultimately show ?goal using Vs i lincomb-list-carrier M .r-zero by metis

next
assume i: i = length Vs
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have lincomb-list (λj. if i = j then 1 else 0 ) Vs = 0 v n
using snoc.IH [OF Vs] i by auto

moreover have (if i = length Vs then 1 else 0 ) ·v x = x using i x by auto
moreover have (if i < length (Vs @ [x]) then (Vs @ [x]) ! i else 0 v n) = x

using i append-Cons-nth-left by simp
ultimately show ?goal using x by simp

next
assume i: i > length Vs
have lincomb-list (λj. if i = j then 1 else 0 ) Vs = 0 v n

using snoc.IH [OF Vs] i by auto
moreover have (if i = length Vs then 1 else 0 ) ·v x = 0 v n using i x by auto
moreover have (if i < length (Vs @ [x]) then (Vs @ [x]) ! i else 0 v n) = 0 v n

using i by simp
ultimately show ?goal by simp

qed
finally show ?case by auto

qed simp

lemma set-in-convex-hull-list: fixes Vs :: ′a vec list
assumes set Vs ⊆ carrier-vec n
shows set Vs ⊆ convex-hull-list Vs

proof
fix x assume x ∈ set Vs
then obtain i where i: i < length Vs

and x: x = Vs ! i using set-conv-nth[of Vs] by auto
let ?f = λ j. if i = j then 1 else 0 :: ′a
have lincomb-list ?f Vs = x using i x lincomb-list-elem[OF assms] by auto
moreover have ∀ j < length Vs. ?f j ≥ 0 by auto
moreover have sum ?f {0 ..<length Vs} = 1 using i by simp
ultimately show x ∈ convex-hull-list Vs

unfolding convex-hull-list-def convex-lincomb-list-def nonneg-lincomb-list-def
by auto

qed

lemma convex-hull-list-combination:
assumes Vs: set Vs ⊆ carrier-vec n

and x: x ∈ convex-hull-list Vs
and y: y ∈ convex-hull-list Vs
and l0 : 0 ≤ l and l1 : l ≤ 1

shows l ·v x + (1 − l) ·v y ∈ convex-hull-list Vs
proof −

from x obtain cx where x: lincomb-list cx Vs = x and cx0 : ∀ i < length Vs.
cx i ≥ 0

and cx1 : sum cx {0 ..<length Vs} = 1
unfolding convex-hull-list-def convex-lincomb-list-def nonneg-lincomb-list-def
by auto

from y obtain cy where y: lincomb-list cy Vs = y and cy0 : ∀ i < length Vs.
cy i ≥ 0

and cy1 : sum cy {0 ..<length Vs} = 1
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unfolding convex-hull-list-def convex-lincomb-list-def nonneg-lincomb-list-def
by auto

let ?c = λ i. l ∗ cx i + (1 − l) ∗ cy i
have set Vs ⊆ carrier-vec n =⇒

lincomb-list ?c Vs = l ·v lincomb-list cx Vs + (1 − l) ·v lincomb-list cy Vs
proof (induction Vs rule: rev-induct)

case (snoc v Vs)
have v: v ∈ carrier-vec n and Vs: set Vs ⊆ carrier-vec n

using snoc.prems by auto
have lincomb-list ?c (Vs @ [v]) = lincomb-list ?c Vs + ?c (length Vs) ·v v

using snoc.prems by auto
also have lincomb-list ?c Vs =

l ·v lincomb-list cx Vs + (1 − l) ·v lincomb-list cy Vs
by (rule snoc.IH [OF Vs])

also have ?c (length Vs) ·v v =
l ·v (cx (length Vs) ·v v) + (1 − l) ·v (cy (length Vs) ·v v)

using add-smult-distrib-vec smult-smult-assoc by metis
also have l ·v lincomb-list cx Vs + (1 − l) ·v lincomb-list cy Vs + . . . =

l ·v (lincomb-list cx Vs + cx (length Vs) ·v v) +
(1 − l) ·v (lincomb-list cy Vs + cy (length Vs) ·v v)

using lincomb-list-carrier [OF Vs] v
by (simp add: M .add.m-assoc M .add.m-lcomm smult-r-distr)

finally show ?case using Vs v by simp
qed simp
hence lincomb-list ?c Vs = l ·v x + (1 − l) ·v y using Vs x y by simp
moreover have ∀ i < length Vs. ?c i ≥ 0 using cx0 cy0 l0 l1 by simp
moreover have sum ?c {0 ..<length Vs} = 1
proof(simp add: sum.distrib)

have (
∑

i = 0 ..<length Vs. (1 − l) ∗ cy i) = (1 − l) ∗ sum cy {0 ..<length
Vs}

using sum-distrib-left by metis
moreover have (

∑
i = 0 ..<length Vs. l ∗ cx i) = l ∗ sum cx {0 ..<length Vs}

using sum-distrib-left by metis
ultimately show (

∑
i = 0 ..<length Vs. l ∗ cx i) + (

∑
i = 0 ..<length Vs. (1

− l) ∗ cy i) = 1
using cx1 cy1 by simp

qed
ultimately show ?thesis

unfolding convex-hull-list-def convex-lincomb-list-def nonneg-lincomb-list-def
by auto

qed

lemma convex-hull-list-mono:
assumes set Ws ⊆ carrier-vec n
shows set Vs ⊆ set Ws =⇒ convex-hull-list Vs ⊆ convex-hull-list Ws

proof (standard, induction Vs)
case Nil
from Nil(2 ) show ?case unfolding convex-hull-list-def convex-lincomb-list-def

by auto
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next
case (Cons v Vs)
have v: v ∈ set Ws and Vs: set Vs ⊆ set Ws using Cons.prems(1 ) by auto
hence v1 : v ∈ convex-hull-list Ws using set-in-convex-hull-list[OF assms] by

auto
from Cons.prems(2 ) obtain c

where x: lincomb-list c (v # Vs) = x and c0 : ∀ i < length Vs + 1 . c i ≥ 0
and c1 : sum c {0 ..<length Vs + 1} = 1

unfolding convex-hull-list-def convex-lincomb-list-def nonneg-lincomb-list-def
by auto

have x: x = c 0 ·v v + lincomb-list (c ◦ Suc) Vs using Vs v assms x by auto

show ?case proof (cases)
assume P: c 0 = 1
hence sum (c ◦ Suc) {0 ..<length Vs} = 0

using sum.atLeast0-lessThan-Suc-shift c1
by (metis One-nat-def R.show-r-zero add.right-neutral add-Suc-right)

moreover have
∧

i. i ∈ {0 ..<length Vs} =⇒ (c ◦ Suc) i ≥ 0
using c0 by simp

ultimately have ∀ i ∈ {0 ..<length Vs}. (c ◦ Suc) i = 0
using sum-nonneg-eq-0-iff by blast

hence
∧

i. i < length Vs =⇒ (c ◦ Suc) i ·v Vs ! i = 0 v n
using Vs assms by (simp add: subset-code(1 ))

hence lincomb-list (c ◦ Suc) Vs = 0 v n
using lincomb-list-eq-0 by simp

hence x = v using P x v assms by auto
thus ?case using v1 by auto

next

assume P: c 0 6= 1
have c1 : c 0 + sum (c ◦ Suc) {0 ..<length Vs} = 1

using sum.atLeast0-lessThan-Suc-shift[of c] c1 by simp
have sum (c ◦ Suc) {0 ..<length Vs} ≥ 0 by (rule sum-nonneg, insert c0 , simp)
hence c 0 < 1 using P c1 by auto
let ?c ′ = λ i. 1 / (1 − c 0 ) ∗ (c ◦ Suc) i
have sum ?c ′ {0 ..<length Vs} = 1 / (1 − c 0 ) ∗ sum (c ◦ Suc) {0 ..<length

Vs}
using c1 P sum-distrib-left by metis

hence sum ?c ′ {0 ..<length Vs} = 1 using P c1 by simp
moreover have ∀ i < length Vs. ?c ′ i ≥ 0 using c0 ‹c 0 < 1 › by simp
ultimately have c ′: lincomb-list ?c ′ Vs ∈ convex-hull-list Ws

using Cons.IH [OF Vs]
convex-hull-list-def convex-lincomb-list-def nonneg-lincomb-list-def

by blast
have lincomb-list ?c ′ Vs = 1 / (1 − c 0 ) ·v lincomb-list (c ◦ Suc) Vs

by(rule lincomb-list-smult, insert Vs assms, auto)
hence (1 − c 0 ) ·v lincomb-list ?c ′ Vs = lincomb-list (c ◦ Suc) Vs

using P by auto
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hence x = c 0 ·v v + (1 − c 0 ) ·v lincomb-list ?c ′ Vs using x by auto
thus x ∈ convex-hull-list Ws

using convex-hull-list-combination[OF assms v1 c ′] c0 ‹c 0 < 1 ›
by simp

qed
qed

lemma convex-hull-list-eq-set:
set Vs ⊆ carrier-vec n =⇒ set Vs = set Ws =⇒ convex-hull-list Vs = con-

vex-hull-list Ws
using convex-hull-list-mono by blast

lemma find-indices-empty: (find-indices x Vs = []) = (x /∈ set Vs)
proof (induction Vs rule: rev-induct)

case (snoc v Vs)
show ?case
proof

assume find-indices x (Vs @ [v]) = []
hence x 6= v ∧ find-indices x Vs = [] by auto
thus x /∈ set (Vs @ [v]) using snoc by simp

next
assume x /∈ set (Vs @ [v])
hence x 6= v ∧ find-indices x Vs = [] using snoc by auto
thus find-indices x (Vs @ [v]) = [] by simp

qed
qed simp

lemma distinct-list-find-indices:
shows [[ i < length Vs; Vs ! i = x; distinct Vs ]] =⇒ find-indices x Vs = [i]

proof (induction Vs rule: rev-induct)
case (snoc v Vs)
have dist: distinct Vs and xVs: v /∈ set Vs using snoc.prems(3 ) by(simp-all)
show ?case
proof (cases)

assume i: i = length Vs
hence x = v using snoc.prems(2 ) by auto
thus ?case using xVs find-indices-empty i

by fastforce
next

assume i 6= length Vs
hence i: i < length Vs using snoc.prems(1 ) by simp
hence Vsi: Vs ! i = x using snoc.prems(2 ) append-Cons-nth-left by fastforce
hence x 6= v using snoc.prems(3 ) i by auto
thus ?case using snoc.IH [OF i Vsi dist] by simp

qed
qed auto

lemma finite-convex-hull-iff-convex-hull-list: assumes Vs: Vs ⊆ carrier-vec n
and id ′: Vs = set Vsl ′
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shows convex-hull Vs = convex-hull-list Vsl ′
proof −

have fin: finite Vs unfolding id ′ by auto
from finite-distinct-list fin obtain Vsl

where id: Vs = set Vsl and dist: distinct Vsl by auto
from Vs id have Vsl: set Vsl ⊆ carrier-vec n by auto
{

fix c :: nat ⇒ ′a
have distinct Vsl =⇒(

∑
x∈set Vsl. sum-list (map c (find-indices x Vsl))) =

sum c {0 ..<length Vsl}
proof (induction Vsl rule: rev-induct)

case (snoc v Vsl)
let ?coef = λ x. sum-list (map c (find-indices x (Vsl @ [v])))
let ?coef ′ = λ x. sum-list (map c (find-indices x Vsl))
have dist: distinct Vsl using snoc.prems by simp
have sum ?coef (set (Vsl @ [v])) = sum-list (map ?coef (Vsl @ [v]))

by (rule sum.distinct-set-conv-list[OF snoc.prems, of ?coef ])
also have . . . = sum-list (map ?coef Vsl) + ?coef v by simp
also have sum-list (map ?coef Vsl) = sum ?coef (set Vsl)

using sum.distinct-set-conv-list[OF dist, of ?coef ] by auto
also have . . . = sum ?coef ′ (set Vsl)
proof (intro R.finsum-restrict[of ?coef ] restrict-ext, standard)

fix x
assume x ∈ set Vsl
then obtain i where i: i < length Vsl and x: x = Vsl ! i

using in-set-conv-nth[of x Vsl] by blast
hence (Vsl @ [v]) ! i = x by (simp add: append-Cons-nth-left)
hence ?coef x = c i

using distinct-list-find-indices[OF - - snoc.prems] i by fastforce
also have c i = ?coef ′ x

using distinct-list-find-indices[OF i - dist] x by simp
finally show ?coef x = ?coef ′ x by auto

qed
also have . . . = sum c {0 ..<length Vsl} by (rule snoc.IH [OF dist])
also have ?coef v = c (length Vsl)

using distinct-list-find-indices[OF - - snoc.prems, of length Vsl v]
nth-append-length by simp

finally show ?case using sum.atLeast0-lessThan-Suc by simp
qed simp

} note sum-sumlist = this
{

fix b
assume b ∈ convex-hull-list Vsl
then obtain c where b: lincomb-list c Vsl = b and c: (∀ i < length Vsl. c i

≥ 0 )
and c1 : sum c {0 ..<length Vsl} = 1
unfolding convex-hull-list-def convex-lincomb-list-def nonneg-lincomb-list-def
by auto

have convex-lincomb (mk-coeff Vsl c) Vs b
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unfolding b[symmetric] convex-lincomb-def nonneg-lincomb-def
apply (subst lincomb-list-as-lincomb[OF Vsl])

by (insert c c1 , auto simp: id mk-coeff-def dist sum-sumlist intro!: sum-list-nonneg)
hence b ∈ convex-hull Vs

unfolding convex-hull-def convex-lincomb-def using fin by blast
}
moreover
{

fix b
assume b ∈ convex-hull Vs
then obtain c Ws where Ws: Ws ⊆ Vs and b: lincomb c Ws = b

and c: c ‘ Ws ⊆ {x. x ≥ 0} and c1 : sum c Ws = 1
unfolding convex-hull-def convex-lincomb-def nonneg-lincomb-def by auto

let ?d = λ x. if x ∈ Ws then c x else 0
have lincomb ?d Vs = lincomb c Ws + lincomb (λ x. 0 ) (Vs − Ws)

using lincomb-union2 [OF - - Diff-disjoint[of Ws Vs], of c λ x. 0 ]
fin Vs Diff-partition[OF Ws] by metis

also have lincomb (λ x. 0 ) (Vs − Ws) = 0 v n
using lincomb-zero[of Vs − Ws λ x. 0 ] Vs by auto

finally have lincomb ?d Vs = b using b lincomb-closed Vs Ws by auto
moreover have ?d ‘ Vs ⊆ {t. t ≥ 0} using c by auto
moreover have sum ?d Vs = 1 using c1 R.extend-sum[OF fin Ws] by auto
ultimately have ∃ c. convex-lincomb c Vs b

unfolding convex-lincomb-def nonneg-lincomb-def by blast
}
moreover
{

fix b
assume ∃ c. convex-lincomb c Vs b
then obtain c where b: lincomb c Vs = b and c: c ‘ Vs ⊆ {x. x ≥ 0}

and c1 : sum c Vs = 1
unfolding convex-lincomb-def nonneg-lincomb-def by auto

from lincomb-as-lincomb-list-distinct[OF Vsl dist, of c]
have b: lincomb-list (λi. c (Vsl ! i)) Vsl = b

unfolding b[symmetric] id by simp
have 1 = sum c (set Vsl) using c1 id by auto
also have . . . = sum-list (map c Vsl) by(rule sum.distinct-set-conv-list[OF

dist])
also have . . . = sum ((!) (map c Vsl)) {0 ..<length Vsl}

using sum-list-sum-nth length-map by metis
also have . . . = sum (λ i. c (Vsl ! i)) {0 ..<length Vsl} by simp
finally have sum-1 : (

∑
i = 0 ..<length Vsl. c (Vsl ! i)) = 1 by simp

have ∃ c. convex-lincomb-list c Vsl b
unfolding convex-lincomb-list-def nonneg-lincomb-list-def
by (intro exI [of - λi. c (Vsl ! i)] conjI b sum-1 )
(insert c, force simp: set-conv-nth id)

hence b ∈ convex-hull-list Vsl unfolding convex-hull-list-def by auto
}
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ultimately have convex-hull Vs = convex-hull-list Vsl by auto
also have convex-hull-list Vsl = convex-hull-list Vsl ′

using convex-hull-list-eq-set[OF Vsl, of Vsl ′] id id ′ by simp
finally show ?thesis by simp

qed

definition convex S = (convex-hull S = S)

lemma convex-convex-hull: convex S =⇒ convex-hull S = S
unfolding convex-def by auto

lemma convex-hull-convex-hull-listD: assumes A: A ⊆ carrier-vec n
and x: x ∈ convex-hull A

shows ∃ as. set as ⊆ A ∧ x ∈ convex-hull-list as
proof −

from x[unfolded convex-hull-def ]
obtain X c where finX : finite X and XA: X ⊆ A and convex-lincomb c X x

by auto
hence x: x ∈ convex-hull X unfolding convex-hull-def by auto
from finite-list[OF finX ] obtain xs where X : X = set xs by auto
from finite-convex-hull-iff-convex-hull-list[OF - this] x XA A have x: x ∈ con-

vex-hull-list xs by auto
thus ?thesis using XA unfolding X by auto

qed

lemma convex-hull-convex-sum: assumes A: A ⊆ carrier-vec n
and x: x ∈ convex-hull A
and y: y ∈ convex-hull A
and a: 0 ≤ a a ≤ 1

shows a ·v x + (1 − a) ·v y ∈ convex-hull A
proof −

from convex-hull-convex-hull-listD[OF A x] obtain xs where xs: set xs ⊆ A
and x: x ∈ convex-hull-list xs by auto

from convex-hull-convex-hull-listD[OF A y] obtain ys where ys: set ys ⊆ A
and y: y ∈ convex-hull-list ys by auto

have fin: finite (set (xs @ ys)) by auto
have sub: set (xs @ ys) ⊆ A using xs ys by auto
from convex-hull-list-mono[of xs @ ys xs] x sub A have x: x ∈ convex-hull-list

(xs @ ys) by auto
from convex-hull-list-mono[of xs @ ys ys] y sub A have y: y ∈ convex-hull-list

(xs @ ys) by auto
from convex-hull-list-combination[OF - x y a]
have a ·v x + (1 − a) ·v y ∈ convex-hull-list (xs @ ys) using sub A by auto
from finite-convex-hull-iff-convex-hull-list[of - xs @ ys] this sub A
have a ·v x + (1 − a) ·v y ∈ convex-hull (set (xs @ ys)) by auto
with convex-hull-mono[OF sub]
show a ·v x + (1 − a) ·v y ∈ convex-hull A by auto

qed
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lemma convexI : assumes S : S ⊆ carrier-vec n
and step:

∧
a x y. x ∈ S =⇒ y ∈ S =⇒ 0 ≤ a =⇒ a ≤ 1 =⇒ a ·v x + (1 −

a) ·v y ∈ S
shows convex S

unfolding convex-def
proof (standard, standard)

fix z
assume z ∈ convex-hull S
from this[unfolded convex-hull-def ] obtain W c where finite W and WS : W ⊆

S
and convex-lincomb c W z by auto

then show z ∈ S
proof (induct W arbitrary: c z)

case empty
thus ?case unfolding convex-lincomb-def by auto

next
case (insert w W c z)
have convex-lincomb c (insert w W ) z by fact
hence zl: z = lincomb c (insert w W ) and nonneg:

∧
w. w ∈ W =⇒ 0 ≤ c w

and cw: c w ≥ 0
and sum: sum c (insert w W ) = 1
unfolding convex-lincomb-def nonneg-lincomb-def by auto

have zl: z = c w ·v w + lincomb c W unfolding zl
by (rule lincomb-insert2 , insert insert S , auto)

have sum: c w + sum c W = 1 unfolding sum[symmetric]
by (subst sum.insert, insert insert, auto)

have W : W ⊆ carrier-vec n and w: w ∈ carrier-vec n using S insert by auto
show ?case
proof (cases sum c W = 0 )

case True
with nonneg have c0 :

∧
w. w ∈ W =⇒ c w = 0

using insert(1 ) sum-nonneg-eq-0-iff by auto
with sum have cw: c w = 1 by auto
have lin0 : lincomb c W = 0 v n

by (intro lincomb-zero W , insert c0 , auto)
have z = w unfolding zl cw lin0 using w by simp
with insert(4 ) show ?thesis by simp

next
case False
have sum c W ≥ 0 using nonneg by (metis sum-nonneg)
with False have pos: sum c W > 0 by auto
define b where b = (λ w. inverse (sum c W ) ∗ c w)
have convex-lincomb b W (lincomb b W )

unfolding convex-lincomb-def nonneg-lincomb-def b-def
proof (intro conjI refl)

show (λw. inverse (sum c W ) ∗ c w) ‘ W ⊆ Collect ((≤) 0 ) using nonneg
pos by auto

show (
∑

w∈W . inverse (sum c W ) ∗ c w) = 1 unfolding sum-distrib-left[symmetric]
using False by auto
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qed
from insert(3 )[OF - this] insert
have IH : lincomb b W ∈ S by auto
have lin: lincomb c W = sum c W ·v lincomb b W

unfolding b-def
by (subst lincomb-smult[symmetric, OF W ], rule lincomb-cong[OF - W ],

insert False, auto)
from sum cw pos have sum: sum c W = 1 − c w and cw1 : c w ≤ 1 by auto
show ?thesis unfolding zl lin unfolding sum

by (rule step[OF - IH cw cw1 ], insert insert, auto)
qed

qed
next

show S ⊆ convex-hull S using S by (rule set-in-convex-hull)
qed

lemma convex-hulls-are-convex: assumes A ⊆ carrier-vec n
shows convex (convex-hull A)
by (intro convexI convex-hull-convex-sum convex-hull-carrier assms)

lemma convex-hull-sum: assumes A: A ⊆ carrier-vec n and B: B ⊆ carrier-vec
n

shows convex-hull (A + B) = convex-hull A + convex-hull B
proof

note cA = convex-hull-carrier [OF A]
note cB = convex-hull-carrier [OF B]
have convex (convex-hull A + convex-hull B)
proof (intro convexI sum-carrier-vec convex-hull-carrier A B)

fix a :: ′a and x1 x2
assume x1 ∈ convex-hull A + convex-hull B x2 ∈ convex-hull A + convex-hull

B
then obtain y1 y2 z1 z2 where

x12 : x1 = y1 + z1 x2 = y2 + z2 and
y12 : y1 ∈ convex-hull A y2 ∈ convex-hull A and
z12 : z1 ∈ convex-hull B z2 ∈ convex-hull B
unfolding set-plus-def by auto

from y12 z12 cA cB have carr :
y1 ∈ carrier-vec n y2 ∈ carrier-vec n
z1 ∈ carrier-vec n z2 ∈ carrier-vec n
by auto

assume a: 0 ≤ a a ≤ 1
have A: a ·v y1 + (1 − a) ·v y2 ∈ convex-hull A using y12 a A by (metis

convex-hull-convex-sum)
have B: a ·v z1 + (1 − a) ·v z2 ∈ convex-hull B using z12 a B by (metis

convex-hull-convex-sum)
have a ·v x1 + (1 − a) ·v x2 = (a ·v y1 + a ·v z1 ) + ((1 − a) ·v y2 + (1 −

a) ·v z2 ) unfolding x12
using carr by (auto simp: smult-add-distrib-vec)

also have . . . = (a ·v y1 + (1 − a) ·v y2 ) + (a ·v z1 + (1 − a) ·v z2 ) using
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carr
by (intro eq-vecI , auto)

finally show a ·v x1 + (1 − a) ·v x2 ∈ convex-hull A + convex-hull B
using A B by auto

qed
from convex-convex-hull[OF this]
have id: convex-hull (convex-hull A + convex-hull B) = convex-hull A + con-

vex-hull B .
show convex-hull (A + B) ⊆ convex-hull A + convex-hull B
by (subst id[symmetric], rule convex-hull-mono[OF set-plus-mono2 ]; intro set-in-convex-hull

A B)
show convex-hull A + convex-hull B ⊆ convex-hull (A + B)
proof

fix x
assume x ∈ convex-hull A + convex-hull B
then obtain y z where x: x = y + z and y: y ∈ convex-hull A and z: z ∈

convex-hull B
by (auto simp: set-plus-def )

from convex-hull-convex-hull-listD[OF A y] obtain ys where ysA: set ys ⊆ A
and

y: y ∈ convex-hull-list ys by auto
from convex-hull-convex-hull-listD[OF B z] obtain zs where zsB: set zs ⊆ B

and
z: z ∈ convex-hull-list zs by auto

from y[unfolded convex-hull-list-def convex-lincomb-list-def nonneg-lincomb-list-def ]
obtain c where yid: y = lincomb-list c ys

and conv-c: (∀ i<length ys. 0 ≤ c i) ∧ sum c {0 ..<length ys} = 1
by auto

from z[unfolded convex-hull-list-def convex-lincomb-list-def nonneg-lincomb-list-def ]
obtain d where zid: z = lincomb-list d zs

and conv-d: (∀ i<length zs. 0 ≤ d i) ∧ sum d {0 ..<length zs} = 1
by auto

from ysA A have ys: set ys ⊆ carrier-vec n by auto
from zsB B have zs: set zs ⊆ carrier-vec n by auto

have [intro, simp]: lincomb-list x ys ∈ carrier-vec n for x using lincomb-list-carrier [OF
ys] .

have [intro, simp]: lincomb-list x zs ∈ carrier-vec n for x using lincomb-list-carrier [OF
zs] .

have dim[simp]: dim-vec (lincomb-list d zs) = n by auto
from yid have y: y ∈ carrier-vec n by auto
from zid have z: z ∈ carrier-vec n by auto
{

fix x
assume x ∈ set (map ((+) y) zs)
then obtain z where x = y + z and z ∈ set zs by auto
then obtain j where j: j < length zs and x: x = y + zs ! j unfolding

set-conv-nth by auto
hence mem: zs ! j ∈ set zs by auto
hence zsj: zs ! j ∈ carrier-vec n using zs by auto
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let ?list = (map (λ y. y + zs ! j) ys)
let ?set = set ?list
have set: ?set ⊆ carrier-vec n using ys A zsj by auto
have lin-map: lincomb-list c ?list ∈ carrier-vec n

by (intro lincomb-list-carrier [OF set])
have y + (zs ! j) = lincomb-list c ?list
unfolding yid using zsj lin-map lincomb-list-index[OF - set] lincomb-list-index[OF

- ys]
by (intro eq-vecI , auto simp: field-simps sum-distrib-right[symmetric] conv-c)
hence convex-lincomb-list c ?list (y + (zs ! j))

unfolding convex-lincomb-list-def nonneg-lincomb-list-def using conv-c by
auto

hence y + (zs ! j) ∈ convex-hull-list ?list unfolding convex-hull-list-def by
auto

with finite-convex-hull-iff-convex-hull-list[OF set refl]
have (y + zs ! j) ∈ convex-hull ?set by auto
also have . . . ⊆ convex-hull (A + B)
by (rule convex-hull-mono, insert mem ys ysA zsB, force simp: set-plus-def )

finally have x ∈ convex-hull (A + B) unfolding x .
} note step1 = this
{

let ?list = map ((+) y) zs
let ?set = set ?list
have set: ?set ⊆ carrier-vec n using zs B y by auto
have lin-map: lincomb-list d ?list ∈ carrier-vec n

by (intro lincomb-list-carrier [OF set])
have [simp]: i < n =⇒ (

∑
j = 0 ..<length zs. d j ∗ (y + zs ! j) $ i) =

(
∑

j = 0 ..<length zs. d j ∗ (y $ i + zs ! j $ i)) for i
by (rule sum.cong, insert zs[unfolded set-conv-nth] y, auto)

have y + z = lincomb-list d ?list
unfolding zid using y zs lin-map lincomb-list-index[OF - set] lincomb-list-index[OF

- zs]
set lincomb-list-carrier [OF zs, of d] zs[unfolded set-conv-nth]

by (intro eq-vecI , auto simp: field-simps sum-distrib-right[symmetric] conv-d)
hence convex-lincomb-list d ?list x unfolding x

unfolding convex-lincomb-list-def nonneg-lincomb-list-def using conv-d by
auto

hence x ∈ convex-hull-list ?list unfolding convex-hull-list-def by auto
with finite-convex-hull-iff-convex-hull-list[OF set refl]
have x ∈ convex-hull ?set by auto
also have . . . ⊆ convex-hull (convex-hull (A + B))

by (rule convex-hull-mono, insert step1 , auto)
also have . . . = convex-hull (A + B)
by (rule convex-convex-hull[OF convex-hulls-are-convex], intro sum-carrier-vec

A B)
finally show x ∈ convex-hull (A + B) .

}
qed

qed
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lemma convex-hull-in-cone:
convex-hull C ⊆ cone C
unfolding convex-hull-def cone-def convex-lincomb-def finite-cone-def by auto

lemma convex-cone:
assumes C : C ⊆ carrier-vec n
shows convex (cone C )
unfolding convex-def
using convex-hull-in-cone set-in-convex-hull[OF cone-carrier [OF C ]] cone-cone[OF

C ]
by blast

end
end

9 Normal Vectors
We provide a function for the normal vector of a half-space (given as n-1
linearly independent vectors). We further provide a function that returns a
list of normal vectors that span the orthogonal complement of some subspace
of Rn. Bounds for all normal vectors are provided.
theory Normal-Vector

imports
Integral-Bounded-Vectors
Basis-Extension

begin

context gram-schmidt
begin

lemma ortho-sum-in-span:
assumes W : W ⊆ carrier-vec n

and X : X ⊆ carrier-vec n
and ortho:

∧
w x. w ∈ W =⇒ x ∈ X =⇒ x · w = 0

and inspan: lincomb l1 X + lincomb l2 W ∈ span X
shows lincomb l2 W = 0 v n

proof (rule ccontr)
let ?v = lincomb l2 W
have vcarr : ?v ∈ carrier-vec n using W by auto
have vspan: ?v ∈ span W using W by auto
assume ¬?thesis
from this have vnz: ?v 6= 0 v n by auto
let ?x = lincomb l1 X
have xcarr : ?x ∈ carrier-vec n using X by auto
have xspan: ?x ∈ span X using X xcarr by auto
have 0 6= sq-norm ?v using vnz vcarr by simp
also have sq-norm ?v = 0 + ?v · ?v by (simp add: sq-norm-vec-as-cscalar-prod)
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also have . . . = ?x · ?v + ?v · ?v
by (subst (2 ) ortho-span-span[OF X W ortho], insert X W , auto)

also have . . . = (?x + ?v ) · ?v using xcarr vcarr
using add-scalar-prod-distrib by force

also have . . . = 0
by (rule ortho-span-span[OF X W ortho inspan vspan])

finally show False by simp
qed

lemma ortho-lin-indpt: assumes W : W ⊆ carrier-vec n
and X : X ⊆ carrier-vec n
and ortho:

∧
w x. w ∈ W =⇒ x ∈ X =⇒ x · w = 0

and linW : lin-indpt W
and linX : lin-indpt X

shows lin-indpt (W ∪ X)
proof (rule ccontr)

assume ¬?thesis
from this obtain c where zerocomb:lincomb c (W ∪ X) = 0 v n

and notallz: ∃ v ∈ (W ∪ X). c v 6= 0
using assms fin-dim fin-dim-li-fin finite-lin-indpt2 infinite-Un le-sup-iff
by metis

have zero-nin-W : 0 v n /∈ W using assms by (metis vs-zero-lin-dep)
have WXinters: W ∩ X = {}
proof (rule ccontr)

assume ¬?thesis
from this obtain v where v: v∈ W ∩ X by auto
hence v·v=0 using ortho by auto
moreover have v ∈ carrier-vec n using assms v by auto
ultimately have v=0 v n using sq-norm-vec-as-cscalar-prod[of v] by auto
then show False using zero-nin-W v by auto

qed
have finX : finite X using X linX by (simp add: fin-dim-li-fin)
have finW : finite W using W linW by (simp add: fin-dim-li-fin)
have split: lincomb c (W ∪ X) = lincomb c X + lincomb c W

using lincomb-union[OF W X WXinters finW finX ]
by (simp add: M .add.m-comm W X)

hence lincomb c X + lincomb c W ∈ span X using zerocomb
using local.span-zero by auto

hence z1 : lincomb c W = 0 v n
using ortho-sum-in-span[OF W X ortho] by simp

hence z2 : lincomb c X = 0 v n using split zerocomb X by simp
have or : (∃ v ∈ W . c v 6= 0 ) ∨ (∃ v∈ X . c v 6= 0 ) using notallz by auto
have ex1 : ∃ v ∈ W . c v 6= 0 =⇒ False using linW

using finW lin-dep-def z1 by blast
have ex2 : ∃ v∈ X . c v 6= 0 =⇒ False using linX

using finX lin-dep-def z2 by blast
show False using ex1 ex2 or by auto

qed
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definition normal-vector :: ′a vec set ⇒ ′a vec where
normal-vector W = (let ws = (SOME ws. set ws = W ∧ distinct ws);

m = length ws;
B = (λ j. mat m m (λ(i, j ′). ws ! i $ (if j ′ < j then j ′ else Suc j ′)))
in vec n (λ j. (−1 )^(m+j) ∗ det (B j)))

lemma normal-vector : assumes fin: finite W
and card: Suc (card W ) = n
and lin: lin-indpt W
and W : W ⊆ carrier-vec n

shows normal-vector W ∈ carrier-vec n
normal-vector W 6= 0 v n
w ∈ W =⇒ w · normal-vector W = 0
w ∈ W =⇒ normal-vector W · w = 0
lin-indpt (insert (normal-vector W ) W )
normal-vector W /∈ W
is-det-bound db =⇒ W ⊆ �v ∩ Bounded-vec (of-int Bnd) =⇒ normal-vector W
∈ �v ∩ Bounded-vec (of-int (db (n−1 ) Bnd))
proof −

define ws where ws = (SOME ws. set ws = W ∧ distinct ws)
from finite-distinct-list[OF fin]
have ∃ ws. set ws = W ∧ distinct ws by auto
from someI-ex[OF this, folded ws-def ] have id: set ws = W and dist: distinct

ws by auto
have len: length ws = card W using distinct-card[OF dist] id by auto
let ?n = length ws
define B where B = (λ j. mat ?n ?n (λ(i, j ′). ws ! i $ (if j ′ < j then j ′ else Suc

j ′)))
define nv where nv = vec n (λ j. (−1 )^(?n+j) ∗ det (B j))
have nv2 : normal-vector W = nv unfolding normal-vector-def Let-def

ws-def [symmetric] B-def nv-def ..
define A where A = (λ w. mat-of-rows n (ws @ [w]))
from len id card have len: Suc ?n = n by auto
have A: A w ∈ carrier-mat n n for w using id W len unfolding A-def by auto
{

fix w :: ′a vec
assume w: w ∈ carrier-vec n
from len have n1 [simp]: n − Suc 0 = ?n by auto
{

fix j
assume j: j < n
have mat-delete (A w) ?n j = B j

unfolding mat-delete-def A-def mat-of-rows-def B-def
by (rule eq-matI , insert j len, auto simp: nth-append)

} note B = this
have det (A w) = (

∑
j<n. (A w) $$ (length ws, j) ∗ cofactor (A w) ?n j)

by (subst laplace-expansion-row[OF A, of ?n], insert len, auto)
also have . . . = (

∑
j<n. w $ j ∗ (−1 )^(?n+j) ∗ det (mat-delete (A w) ?n j))
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by (rule sum.cong, auto simp: A-def mat-of-rows-def cofactor-def )
also have . . . = (

∑
j<n. w $ j ∗ (−1 )^(?n+j) ∗ det (B j))

by (rule sum.cong[OF refl], subst B, auto)
also have . . . = (

∑
j<n. w $ j ∗ nv $ j)

by (rule sum.cong[OF refl], auto simp: nv-def )
also have . . . = w · nv unfolding scalar-prod-def unfolding nv-def

by (rule sum.cong, auto)
finally have det (A w) = w · nv .

} note det-scalar = this
have nv: nv ∈ carrier-vec n unfolding nv-def by auto
{

fix w
assume wW : w ∈ W
with W have w: w ∈ carrier-vec n by auto
from wW id obtain i where i: i < ?n and ws: ws ! i = w unfolding

set-conv-nth by auto
from det-scalar [OF w] have det (A w) = w · nv .
also have det (A w) = 0

by (subst det-identical-rows[OF A, of i ?n], insert i ws len, auto simp: A-def
mat-of-rows-def nth-append)

finally have w · nv = 0 ..
note this this[unfolded comm-scalar-prod[OF w nv]]

} note ortho = this
have nv0 : nv 6= 0 v n
proof

assume nv: nv = 0 v n
define bs where bs = basis-extension ws
define w where w = hd bs
have lin-indpt-list ws using dist lin W unfolding lin-indpt-list-def id by auto
from basis-extension[OF this, folded bs-def ] len

have lin: lin-indpt-list (ws @ bs) and length bs = 1 and bsc: set bs ⊆ carrier-vec
n

by (auto simp: unit-vecs-def )
hence bs: bs = [w] unfolding w-def by (cases bs, auto)
with bsc have w: w ∈ carrier-vec n by auto
note lin = lin[unfolded bs]
from lin-indpt-list-length-eq-n[OF lin] len
have basis: basis (set (ws @ [w])) by auto
from w det-scalar nv have det0 : det (A w) = 0 by auto
with basis-det-nonzero[OF basis] len show False

unfolding A-def by auto
qed
let ?nv = normal-vector W
from ortho nv nv0
show nv: ?nv ∈ carrier-vec n

and ortho:
∧

w. w ∈ W =⇒ w · ?nv = 0∧
w. w ∈ W =⇒ ?nv · w = 0

and n0 : ?nv 6= 0 v n unfolding nv2 by auto
from n0 nv have sq-norm ?nv 6= 0 by auto
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hence nvnv: ?nv · ?nv 6= 0 by (auto simp: sq-norm-vec-as-cscalar-prod)
show nvW : ?nv /∈ W using nvnv ortho by blast
have ?nv /∈ span W using W ortho nvnv nv

using orthocompl-span by blast
with lin-dep-iff-in-span[OF W lin nv nvW ]
show lin-indpt (insert ?nv W ) by auto
{

assume db: is-det-bound db
assume W ⊆ �v ∩ Bounded-vec (of-int Bnd)
hence wsI : set ws ⊆ �v ∩ Bounded-vec (of-int Bnd) unfolding id by auto
have ws: set ws ⊆ carrier-vec n using W unfolding id by auto
from wsI ws have wsI : i < ?n =⇒ ws ! i ∈ �v ∩ Bounded-vec (of-int Bnd) ∩

carrier-vec n for i
using len wsI unfolding set-conv-nth by auto

have ints: i < ?n =⇒ j < n =⇒ ws ! i $ j ∈ � for i j
using wsI [of i, unfolded Ints-vec-def ] by force

have bnd: i < ?n =⇒ j < n =⇒ abs (ws ! i $ j) ≤ of-int Bnd for i j
using wsI [unfolded Bounded-vec-def , of i] by auto

{
fix i
assume i: i < n
have ints-nv: nv $ i ∈ � unfolding nv-def using wsI len ws

by (auto simp: i B-def set-conv-nth intro!: Ints-mult Ints-det ints)
have B i ∈ �m ∩ Bounded-mat (of-int Bnd)

unfolding B-def using len ws i bnd ints-nv
apply (simp add: Ints-mat-def Ints-vec-def Bounded-mat-def , intro allI impI )

subgoal for ii j using ints[of ii j] ints[of ii Suc j]
by auto

done
from is-det-bound-of-int[OF db - this, of ?n]
have |nv $ i| ≤ of-int (db (n − 1 ) Bnd)

unfolding nv-def using wsI len ws i
by (auto simp: B-def abs-mult bnd)

note ints-nv this
}
with nv nv2 show ?nv ∈ �v ∩ Bounded-vec (of-int (db (n − 1 ) Bnd))

unfolding Ints-vec-def Bounded-vec-def by auto
}

qed

lemma normal-vector-span:
assumes card: Suc (card D) = n

and D: D ⊆ carrier-vec n and fin: finite D and lin: lin-indpt D
shows span D = { x. x ∈ carrier-vec n ∧ x · normal-vector D = 0}

proof −
note nv = normal-vector [OF fin card lin D]
{

fix x
assume xspan: x ∈ span D
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from finite-in-span[OF fin D xspan] obtain c where
x · normal-vector D = lincomb c D · normal-vector D by auto

also have . . . = (
∑

w∈D. c w ∗ (w · normal-vector D))
by (rule lincomb-scalar-prod-left, insert D nv, auto)

also have . . . = 0
apply (rule sum.neutral) using nv(1 ,2 ,3 ) D comm-scalar-prod[of normal-vector

D] by fastforce
finally have x ∈ carrier-vec n x · normal-vector D = 0 using xspan D by

auto
}
moreover
{

let ?n = normal-vector D
fix x
assume x: x ∈ carrier-vec n and xscal: x · normal-vector D = 0
let ?B = (insert (normal-vector D) D)
have card ?B = n using card card-insert-disjoint[OF fin nv(6 )] by auto
moreover have B: ?B ⊆ carrier-vec n using D nv by auto
ultimately have span ?B = carrier-vec n

by (intro span-carrier-lin-indpt-card-n, insert nv(5 ), auto)
hence xspan: x ∈ span ?B using x by auto
obtain c where x = lincomb c ?B using finite-in-span[OF - B xspan] fin by

auto
hence 0 = lincomb c ?B · normal-vector D using xscal by auto
also have . . . = (

∑
w∈ ?B. c w ∗ (w · normal-vector D))

by (subst lincomb-scalar-prod-left, insert B, auto)
also have . . . = (

∑
w∈ D. c w ∗ (w · normal-vector D)) + c ?n ∗ (?n · ?n)

by (subst sum.insert[OF fin nv(6 )], auto)
also have (

∑
w∈ D. c w ∗ (w · normal-vector D)) = 0

apply(rule sum.neutral) using nv(1 ,3 ) comm-scalar-prod[OF nv(1 )] D by
fastforce

also have ?n · ?n = sq-norm ?n using sq-norm-vec-as-cscalar-prod[of ?n] by
simp

finally have c ?n ∗ sq-norm ?n = 0 by simp
hence ncoord: c ?n = 0 using nv(1−5 ) by auto
have x = lincomb c ?B by fact
also have . . . = lincomb c D

apply (subst lincomb-insert2 [OF fin D - nv(6 ,1 )]) using ncoord nv(1 ) D by
auto

finally have x ∈ span D using fin by auto
}
ultimately show ?thesis by auto

qed

definition normal-vectors :: ′a vec list ⇒ ′a vec list where
normal-vectors ws = (let us = basis-extension ws

in map (λ i. normal-vector (set (ws @ us) − {us ! i})) [0 ..<length us])

lemma normal-vectors:
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assumes lin: lin-indpt-list ws
shows set (normal-vectors ws) ⊆ carrier-vec n

w ∈ set ws =⇒ nv ∈ set (normal-vectors ws) =⇒ nv · w = 0
w ∈ set ws =⇒ nv ∈ set (normal-vectors ws) =⇒ w · nv = 0
lin-indpt-list (ws @ normal-vectors ws)
length ws + length (normal-vectors ws) = n
set ws ∩ set (normal-vectors ws) = {}
is-det-bound db =⇒ set ws ⊆ �v ∩ Bounded-vec (of-int Bnd) =⇒

set (normal-vectors ws) ⊆ �v ∩ Bounded-vec (of-int (db (n−1 ) (max 1 Bnd)))
proof −

define us where us = basis-extension ws
from basis-extension[OF assms, folded us-def ]
have units: set us ⊆ set (unit-vecs n)

and lin: lin-indpt-list (ws @ us)
and len: length (ws @ us) = n
by auto

from lin-indpt-list-length-eq-n[OF lin len]
have span: span (set (ws @ us)) = carrier-vec n by auto
from lin[unfolded lin-indpt-list-def ]
have wsus: set (ws @ us) ⊆ carrier-vec n

and dist: distinct (ws @ us)
and lin ′: lin-indpt (set (ws @ us)) by auto

let ?nv = normal-vectors ws
note nv-def = normal-vectors-def [of ws, unfolded Let-def , folded us-def ]
let ?m = length ws
let ?n = length us
have lnv[simp]: length ?nv = length us unfolding nv-def by auto
{

fix i
let ?V = set (ws @ us) − {us ! i}
assume i: i < ?n
hence nvi: ?nv ! i = normal-vector ?V unfolding nv-def by auto
from i have us ! i ∈ set us by auto
with wsus have u: us ! i ∈ carrier-vec n by auto
have id: ?V ∪ {us ! i} = set (ws @ us) using i by auto
have V : ?V ⊆ carrier-vec n using wsus by auto
have finV : finite ?V by auto
have Suc (card ?V ) = card (insert (us ! i) ?V )

by (subst card-insert-disjoint[OF finV ], auto)
also have insert (us ! i) ?V = set (ws @ us) using i by auto
finally have cardV : Suc (card ?V ) = n

using len distinct-card[OF dist] by auto
from subset-li-is-li[OF lin ′] have linV : lin-indpt ?V by auto
from lin-dep-iff-in-span[OF - linV u, unfolded id] wsus lin ′

have usV : us ! i /∈ span ?V by auto
note nv = normal-vector [OF finV cardV linV V , folded nvi]
from normal-vector-span[OF cardV V - linV , folded nvi] comm-scalar-prod[OF

- nv(1 )]
have span: span ?V = {x ∈ carrier-vec n. ?nv ! i · x = 0}
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by auto
from nv(1 ,2 ) have sq-norm (?nv ! i) 6= 0 by auto
hence nvi: ?nv ! i · ?nv ! i 6= 0

by (auto simp: sq-norm-vec-as-cscalar-prod)
from span nvi have nvspan: ?nv ! i /∈ span ?V by auto
from u usV [unfolded span] have ?nv ! i · us ! i 6= 0 by blast
note nv nvi this span usV nvspan

} note nvi = this
show nv: set ?nv ⊆ carrier-vec n

unfolding set-conv-nth using nvi(1 ) by auto
{

fix w nv
assume w: w ∈ set ws
with dist have wus: w /∈ set us by auto
assume n: nv ∈ set ?nv
with w wus show nv · w = 0

unfolding set-conv-nth[of normal-vectors -] by (auto intro!: nvi(4 )[of - w])
thus w · nv = 0 using comm-scalar-prod[of w n nv] w nv n wsus by auto

} note scalar-0 = this
show length ws + length ?nv = n using len by simp
{

let ?oi = of-int :: int ⇒ ′a
assume wsI : set ws ⊆ �v ∩ Bounded-vec (?oi Bnd) and db: is-det-bound db
{

fix nv
assume nv ∈ set ?nv
then obtain i where nv: nv = ?nv ! i and i: i < ?n unfolding set-conv-nth

by auto
from order .trans[OF units unit-vec-int-bounds]

wsI have set (ws @ us) − {us ! i} ⊆ �v ∩ Bounded-vec (?oi (max 1 Bnd))
using

Bounded-vec-mono[of ?oi Bnd ?oi (max 1 Bnd), unfolded of-int-le-iff ]
by auto

from nvi(7 )[OF i db this] nv
have nv ∈ �v ∩ Bounded-vec (?oi (db (n − 1 ) (max 1 Bnd)))

by auto
}
thus set ?nv ⊆ �v ∩ Bounded-vec (?oi (db (n − 1 ) (max 1 Bnd))) by auto

}
have dist-nv: distinct ?nv unfolding distinct-conv-nth lnv
proof (intro allI impI )

fix i j
assume i: i < ?n and j: j < ?n and ij: i 6= j
with dist have usj: us ! j ∈ set (ws @ us) − {us ! i}

by (simp, auto simp: distinct-conv-nth set-conv-nth)
from nvi(4 )[OF i this] nvi(9 )[OF j]
show ?nv ! i 6= ?nv ! j by auto

qed
show disj: set ws ∩ set ?nv = {}
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proof (rule ccontr)
assume ¬ ?thesis
then obtain w where w: w ∈ set ws w ∈ set ?nv by auto
from scalar-0 [OF this] this(1 ) have sq-norm w = 0

by (auto simp: sq-norm-vec-as-cscalar-prod)
with w wsus have w = 0 v n by auto
with vs-zero-lin-dep[OF wsus lin ′] w(1 ) show False by auto

qed
have dist ′: distinct (ws @ ?nv) using dist disj dist-nv by auto
show lin-indpt-list (ws @ ?nv) unfolding lin-indpt-list-def
proof (intro conjI dist ′)

show set: set (ws @ ?nv) ⊆ carrier-vec n using nv wsus by auto
hence ws: set ws ⊆ carrier-vec n by auto
have lin-nv: lin-indpt (set ?nv)
proof

assume lin-dep (set ?nv)
from finite-lin-dep[OF finite-set this nv]
obtain a v where comb: lincomb a (set ?nv) = 0 v n and vnv: v ∈ set ?nv

and av0 : a v 6= 0 by auto
from vnv[unfolded set-conv-nth] obtain i where i: i < ?n and vi: v = ?nv

! i by auto
define b where b = (λ w. a w / a v)
define c where c = (λ w. −1 ∗ b w)
define x where x = lincomb b (set ?nv − {v})
define w where w = lincomb c (set ?nv − {v})
have w: w ∈ carrier-vec n unfolding w-def using nv by auto
have x: x ∈ carrier-vec n unfolding x-def using nv by auto
from arg-cong[OF comb, of λ x. (1/ a v) ·v x]
have 0 v n = 1 / a v ·v lincomb a (set ?nv) by auto
also have . . . = lincomb b (set ?nv)

by (subst lincomb-smult[symmetric, OF nv], auto simp: b-def )
also have . . . = b v ·v v + lincomb b (set ?nv − {v})

by (subst lincomb-del2 [OF - nv - vnv], auto)
also have b v ·v v = v using av0 unfolding b-def by auto
finally have v + lincomb b (set ?nv − {v}) − lincomb b (set ?nv − {v}) =

0 v n − lincomb b (set ?nv − {v}) (is ?l = ?r) by simp
also have ?l = v

by (rule add-diff-cancel-right-vec, insert vnv nv, auto)
also have ?r = w unfolding w-def c-def

by (subst lincomb-smult, unfold x-def [symmetric], insert nv x, auto)
finally have vw: v = w .
have u: us ! i ∈ carrier-vec n using i wsus by auto
have nv ′: set ?nv − {?nv ! i} ⊆ carrier-vec n using nv by auto
have ?nv ! i · us ! i = 0

unfolding vi[symmetric] vw unfolding w-def vi
unfolding lincomb-scalar-prod-left[OF nv ′ u]

proof (rule sum.neutral, intro ballI )
fix x
assume x ∈ set ?nv − {?nv ! i}
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then obtain j where j: j < ?n and x: x = ?nv ! j and ij: i 6= j unfolding
set-conv-nth by auto

from dist[simplified] ij i j have us ! i 6= us ! j unfolding distinct-conv-nth
by auto

with i have us ! i ∈ set (ws @ us) − {us ! j} by auto
from nvi(3−4 )[OF j this]
show c x ∗ (x · us ! i) = 0 unfolding x by auto

qed
with nvi(9 )[OF i] show False ..

qed
from subset-li-is-li[OF lin ′] have lin-indpt (set ws) by auto
from ortho-lin-indpt[OF nv ws scalar-0 lin-nv this]
have lin-indpt (set ?nv ∪ set ws) .
also have set ?nv ∪ set ws = set (ws @ ?nv) by auto
finally show lin-indpt (set (ws @ ?nv)) .

qed
qed

definition pos-norm-vec :: ′a vec set ⇒ ′a vec ⇒ ′a vec where
pos-norm-vec D x = (let c ′ = normal-vector D;

c = (if c ′ · x > 0 then c ′ else −c ′) in c)

lemma pos-norm-vec:
assumes D: D ⊆ carrier-vec n and fin: finite D and lin: lin-indpt D

and card: Suc (card D) = n
and c-def : c = pos-norm-vec D x

shows c ∈ carrier-vec n span D = { x. x ∈ carrier-vec n ∧ x · c = 0}
x /∈ span D =⇒ x ∈ carrier-vec n =⇒ c · x > 0
c ∈ {normal-vector D, −normal-vector D}

proof −
have n: normal-vector D ∈ carrier-vec n using normal-vector assms by auto
show cnorm: c ∈ {normal-vector D, −normal-vector D} unfolding c-def pos-norm-vec-def

Let-def by auto
then show c: c ∈ carrier-vec n using assms normal-vector by auto
have span D = { x. x ∈ carrier-vec n ∧ x · normal-vector D = 0}

using normal-vector-span[OF card D fin lin] by auto
also have . . . = { x. x ∈ carrier-vec n ∧ x · c = 0} using cnorm c by auto
finally show span-char : span D = { x. x ∈ carrier-vec n ∧ x · c = 0} by auto
{

assume x: x /∈ span D x ∈ carrier-vec n
hence c · x 6= 0 using comm-scalar-prod[OF c] unfolding span-char by auto
hence normal-vector D · x 6= 0 using cnorm n x by auto
with x have b: ¬ (normal-vector D · x > 0 ) =⇒ (−normal-vector D) · x > 0

using assms n by auto
then show c · x > 0 unfolding c-def pos-norm-vec-def Let-def

by (auto split: if-splits)
}

qed
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end

end

10 Dimension of Spans
We define the notion of dimension of a span of vectors and prove some
natural results about them. The definition is made as a function, so that no
interpretation of locales like subspace is required.
theory Dim-Span

imports Missing-VS-Connect
begin

context vec-space
begin
definition dim-span W = Max (card ‘ {V . V ⊆ carrier-vec n ∧ V ⊆ span W ∧
lin-indpt V })

lemma fixes V W :: ′a vec set
shows

card-le-dim-span:
V ⊆ carrier-vec n =⇒ V ⊆ span W =⇒ lin-indpt V =⇒ card V ≤ dim-span

W and
card-eq-dim-span-imp-same-span:
W ⊆ carrier-vec n =⇒ V ⊆ span W =⇒ lin-indpt V =⇒ card V = dim-span

W =⇒ span V = span W and
same-span-imp-card-eq-dim-span:
V ⊆ carrier-vec n =⇒ W ⊆ carrier-vec n =⇒ span V = span W =⇒ lin-indpt

V =⇒ card V = dim-span W and
dim-span-cong:
span V = span W =⇒ dim-span V = dim-span W and
ex-basis-span:
V ⊆ carrier-vec n =⇒ ∃ W . W ⊆ carrier-vec n ∧ lin-indpt W ∧ span V =

span W ∧ dim-span V = card W
proof −

show cong:
∧

V W . span V = span W =⇒ dim-span V = dim-span W unfold-
ing dim-span-def by auto

{
fix W :: ′a vec set
let ?M = {V . V ⊆ carrier-vec n ∧ V ⊆ span W ∧ lin-indpt V }
have card ‘ ?M ⊆ {0 .. n}
proof

fix k
assume k ∈ card ‘ ?M
then obtain V where V : V ⊆ carrier-vec n ∧ V ⊆ span W ∧ lin-indpt V

and k: k = card V
by auto

from V have card V ≤ n using dim-is-n li-le-dim by auto
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with k show k ∈ {0 .. n} by auto
qed
from finite-subset[OF this]
have fin: finite (card ‘ ?M ) by auto
have {} ∈ ?M by (auto simp: span-empty span-zero)
from imageI [OF this, of card]
have 0 ∈ card ‘ ?M by auto
hence Mempty: card ‘ ?M 6= {} by auto
from Max-ge[OF fin, folded dim-span-def ]
show

∧
V :: ′a vec set. V ⊆ carrier-vec n =⇒ V ⊆ span W =⇒ lin-indpt V

=⇒ card V ≤ dim-span W
by auto

note this fin Mempty
} note part1 = this
{

fix V W :: ′a vec set
assume W : W ⊆ carrier-vec n
and VsW : V ⊆ span W and linV : lin-indpt V and card: card V = dim-span

W
from W VsW have V : V ⊆ carrier-vec n using span-mem[OF W ] by auto
from Max-in[OF part1 (2 ,3 ), folded dim-span-def , of W ]
obtain WW where WW : WW ⊆ carrier-vec n WW ⊆ span W lin-indpt WW

and id: dim-span W = card WW by auto
show span V = span W
proof (rule ccontr)

from VsW V W have sub: span V ⊆ span W using span-subsetI by metis
assume span V 6= span W
with sub obtain w where wW : w ∈ span W and wsV : w /∈ span V by auto
from wW W have w: w ∈ carrier-vec n by auto
from linV V have finV : finite V using fin-dim fin-dim-li-fin by blast
from wsV span-mem[OF V , of w] have wV : w /∈ V by auto
let ?X = insert w V
have card ?X = Suc (card V ) using wV finV by simp
hence gt: card ?X > dim-span W unfolding card by simp
have linX : lin-indpt ?X using lin-dep-iff-in-span[OF V linV w wV ] wsV by

auto
have XW : ?X ⊆ span W using wW VsW by auto
from part1 (1 )[OF - XW linX ] w V have card ?X ≤ dim-span W by auto
with gt show False by auto

qed
} note card-dim-span = this
{

fix V :: ′a vec set
assume V : V ⊆ carrier-vec n
from Max-in[OF part1 (2 ,3 ), folded dim-span-def , of V ]
obtain W where W : W ⊆ carrier-vec n W ⊆ span V lin-indpt W

and idW : card W = dim-span V by auto
show ∃ W . W ⊆ carrier-vec n ∧ lin-indpt W ∧ span V = span W ∧ dim-span

V = card W
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proof (intro exI [of - W ] conjI W idW [symmetric])
from card-dim-span[OF V (1 ) W (2−3 ) idW ] show span V = span W by

auto
qed

}
{

fix V W
assume V : V ⊆ carrier-vec n

and W : W ⊆ carrier-vec n
and span: span V = span W
and lin: lin-indpt V

from Max-in[OF part1 (2 ,3 ), folded dim-span-def , of W ]
obtain WW where WW : WW ⊆ carrier-vec n WW ⊆ span W lin-indpt WW

and idWW : card WW = dim-span W by auto
from card-dim-span[OF W WW (2−3 ) idWW ] span
have spanWW : span WW = span V by auto
from span have V ⊆ span W using span-mem[OF V ] by auto
from part1 (1 )[OF V this lin] have VW : card V ≤ dim-span W .
have finWW : finite WW using WW by (simp add: fin-dim-li-fin)
have finV : finite V using lin V by (simp add: fin-dim-li-fin)
from replacement[OF finWW finV V WW (3 ) WW (2 )[folded span], unfolded

idWW ]
obtain C :: ′a vec set

where le: int (card C ) ≤ int (card V ) − int (dim-span W ) by auto
from le have int (dim-span W ) + int (card C ) ≤ int (card V ) by linarith
hence dim-span W + card C ≤ card V by linarith
with VW show card V = dim-span W by auto

}
qed

lemma dim-span-le-n: assumes W : W ⊆ carrier-vec n shows dim-span W ≤ n
proof −

from ex-basis-span[OF W ] obtain V where
V : V ⊆ carrier-vec n
and lin: lin-indpt V
and dim: dim-span W = card V
by auto

show ?thesis unfolding dim using lin V
using dim-is-n li-le-dim by auto

qed

lemma dim-span-insert: assumes W : W ⊆ carrier-vec n
and v: v ∈ carrier-vec n and vs: v /∈ span W

shows dim-span (insert v W ) = Suc (dim-span W )
proof −

from ex-basis-span[OF W ] obtain V where
V : V ⊆ carrier-vec n
and lin: lin-indpt V
and span: span W = span V
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and dim: dim-span W = card V
by auto

from V vs[unfolded span] have vV : v /∈ V using span-mem[OF V ] by blast
from lin-dep-iff-in-span[OF V lin v vV ] vs span
have lin ′: lin-indpt (insert v V ) by auto
have finV : finite V using lin V using fin-dim fin-dim-li-fin by blast
have card (insert v V ) = Suc (card V ) using finV vV by auto
hence cvV : card (insert v V ) = Suc (dim-span W ) using dim by auto
have span (insert v V ) = span (insert v W )
using span V W v by (metis bot-least insert-subset insert-union span-union-is-sum)

from same-span-imp-card-eq-dim-span[OF - - this lin ′] cvV v V W
show ?thesis by auto

qed
end
end

11 The Fundamental Theorem of Linear Inequal-
ities

The theorem states that for a given set of vectors A and vector b, either
b is in the cone of a linear independent subset of A, or there is a hyper-
plane that contains span(A,b)-1 linearly independent vectors of A that sep-
arates A from b. We prove this theorem and derive some consequences, e.g.,
Caratheodory’s theorem that b is the cone of A iff b is in the cone of a linear
independent subset of A.
theory Fundamental-Theorem-Linear-Inequalities

imports
Cone
Normal-Vector
Dim-Span

begin

context gram-schmidt
begin

The mentions equivances A-D are:

• A: b is in the cone of vectors A,

• B: b is in the cone of a subset of linear independent of vectors A,

• C: there is no separating hyperplane of b and the vectors A, which
contains dim many linear independent vectors of A

• D: there is no separating hyperplane of b and the vectors A

lemma fundamental-theorem-of-linear-inequalities-A-imp-D:
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assumes A: A ⊆ carrier-vec n
and fin: finite A
and b: b ∈ cone A

shows @ c. c ∈ carrier-vec n ∧ (∀ ai ∈ A. c · ai ≥ 0 ) ∧ c · b < 0
proof

assume ∃ c. c ∈ carrier-vec n ∧ (∀ ai ∈ A. c · ai ≥ 0 ) ∧ c · b < 0
then obtain c where c: c ∈ carrier-vec n

and ai:
∧

ai. ai ∈ A =⇒ c · ai ≥ 0
and cb: c · b < 0 by auto

from b[unfolded cone-def nonneg-lincomb-def finite-cone-def ]
obtain l AA where bc: b = lincomb l AA and l: l ‘ AA ⊆ {x. x ≥ 0} and AA:

AA ⊆ A by auto
from cone-carrier [OF A] b have b: b ∈ carrier-vec n by auto
have 0 ≤ (

∑
ai∈AA. l ai ∗ (c · ai))

by (intro sum-nonneg mult-nonneg-nonneg, insert l ai AA, auto)
also have . . . = (

∑
ai∈AA. l ai ∗ (ai · c))

by (rule sum.cong, insert c A AA comm-scalar-prod, force+)
also have . . . = (

∑
ai∈AA. ((l ai ·v ai) · c))

by (rule sum.cong, insert smult-scalar-prod-distrib c A AA, auto)
also have . . . = b · c unfolding bc lincomb-def

by (subst finsum-scalar-prod-sum[symmetric], insert c A AA, auto)
also have . . . = c · b using comm-scalar-prod b c by auto
also have . . . < 0 by fact
finally show False by simp

qed

The difficult direction is that C implies B. To this end we follow the
proof that at least one of B and the negation of C is satisfied.
context

fixes a :: nat ⇒ ′a vec
and b :: ′a vec
and m :: nat

assumes a: a ‘ {0 ..< m} ⊆ carrier-vec n
and inj-a: inj-on a {0 ..< m}
and b: b ∈ carrier-vec n
and full-span: span (a ‘ {0 ..< m}) = carrier-vec n

begin

private definition goal = ((∃ I . I ⊆ {0 ..< m} ∧ card (a ‘ I ) = n ∧ lin-indpt
(a ‘ I ) ∧ b ∈ finite-cone (a ‘ I ))
∨ (∃ c I . I ⊆ {0 ..< m} ∧ c ∈ {normal-vector (a ‘ I ), − normal-vector (a ‘ I )}
∧ Suc (card (a ‘ I )) = n

∧ lin-indpt (a ‘ I ) ∧ (∀ i < m. c · a i ≥ 0 ) ∧ c · b < 0 ))

private lemma card-a-I [simp]: I ⊆ {0 ..< m} =⇒ card (a ‘ I ) = card I
by (smt inj-a card-image inj-on-image-eq-iff subset-image-inj subset-refl sub-

set-trans)

private lemma in-a-I [simp]: I ⊆ {0 ..< m} =⇒ i < m =⇒ (a i ∈ a ‘ I ) = (i ∈
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I )
using inj-a
by (meson atLeastLessThan-iff image-eqI inj-on-image-mem-iff zero-le)

private definition valid-I = { I . card I = n ∧ lin-indpt (a ‘ I ) ∧ I ⊆ {0 ..<
m}}

private definition cond where cond I I ′ l c h k ≡
b = lincomb l (a ‘ I ) ∧
h ∈ I ∧ l (a h) < 0 ∧ (∀ h ′. h ′ ∈ I −→ h ′ < h −→ l (a h ′) ≥ 0 ) ∧
c ∈ carrier-vec n ∧ span (a ‘ (I − {h})) = { x. x ∈ carrier-vec n ∧ c · x = 0}
∧ c · b < 0 ∧

k < m ∧ c · a k < 0 ∧ (∀ k ′. k ′ < k −→ c · a k ′ ≥ 0 ) ∧
I ′ = insert k (I − {h})

private definition step-rel = Restr { (I ′′, I ). ∃ l c h k. cond I I ′′ l c h k } valid-I

private lemma finite-step-rel: finite step-rel
proof (rule finite-subset)

show step-rel ⊆ (Pow {0 ..< m} × Pow {0 ..< m}) unfolding step-rel-def
valid-I-def by auto
qed auto

private lemma acyclic-imp-goal: acyclic step-rel =⇒ goal
proof (rule ccontr)

assume ngoal: ¬ goal
{

fix I
assume I : I ∈ valid-I
hence Im: I ⊆ {0 ..<m} and

lin: lin-indpt (a ‘ I ) and
cardI : card I = n
by (auto simp: valid-I-def )

let ?D = (a ‘ I )
have finD: finite ?D using Im infinite-super by blast
have carrD: ?D ⊆ carrier-vec n using a Im by auto
have cardD: card ?D = n using cardI Im by simp
have spanD: span ?D = carrier-vec n

by (intro span-carrier-lin-indpt-card-n lin cardD carrD)
obtain lamb where b-is-lincomb: b = lincomb lamb (a ‘ I )

using finite-in-span[OF fin carrD, of b] using spanD b carrD fin-dim lin by
auto

define h where h = (LEAST h. h ∈ I ∧ lamb (a h) < 0 )
have ∃ I ′. (I ′, I ) ∈ step-rel
proof (cases ∀ i∈ I . lamb (a i) ≥ 0 )

case cond1-T : True
have goal unfolding goal-def

by (intro disjI1 exI [of - I ] conjI lin cardI
lincomb-in-finite-cone[OF b-is-lincomb finD - carrD], insert cardI Im
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cond1-T , auto)
with ngoal show ?thesis by auto

next
case cond1-F : False
hence ∃ h. h ∈ I ∧ lamb (a h) < 0 by fastforce
from LeastI-ex[OF this, folded h-def ] have h: h ∈ I lamb (a h) < 0 by auto
from not-less-Least[of - λ h. h ∈ I ∧ lamb (a h) < 0 , folded h-def ]
have h-least: ∀ k. k ∈ I −→ k < h −→ lamb (a k) ≥ 0 by fastforce
obtain I ′ where I ′-def : I ′ = I − {h} by auto
obtain c where c-def : c = pos-norm-vec (a ‘ I ′) (a h) by auto
let ?D ′ = a ‘ I ′

have I ′m: I ′ ⊆ {0 ..<m} using Im I ′-def by auto
have carrD ′: ?D ′ ⊆ carrier-vec n using a Im I ′-def by auto
have finD ′: finite (?D ′) using Im I ′-def subset-eq-atLeast0-lessThan-finite by

auto
have D ′subs: ?D ′ ⊆ ?D using I ′-def by auto
have linD ′: lin-indpt (?D ′) using lin I ′-def Im D ′subs subset-li-is-li by auto
have D ′strictsubs: ?D = ?D ′ ∪ {a h} using h I ′-def by auto
have h-nin-I : h /∈ I ′ using h I ′-def by auto
have ah-nin-D ′: a h /∈ ?D ′ using h inj-a Im h-nin-I by (subst in-a-I , auto

simp: I ′-def )
have cardD ′: Suc (card (?D ′)) = n using cardD ah-nin-D ′ D ′strictsubs finD ′

by simp
have ah-carr : a h ∈ carrier-vec n using h a Im by auto
note pnv = pos-norm-vec[OF carrD ′ finD ′ linD ′ cardD ′ c-def ]
have ah-nin-span: a h /∈ span ?D ′

using D ′strictsubs lin-dep-iff-in-span[OF carrD ′ linD ′ ah-carr ah-nin-D ′] lin
by auto

have cah-ge-zero:c · a h > 0 and c ∈ carrier-vec n
and cnorm: span ?D ′ = {x ∈ carrier-vec n. x · c = 0}
using ah-carr ah-nin-span pnv by auto

have ccarr : c ∈ carrier-vec n by fact
have b · c = lincomb lamb (a ‘ I ) · c using b-is-lincomb by auto
also have . . . = (

∑
w∈ ?D. lamb w ∗ (w · c))

using lincomb-scalar-prod-left[OF carrD, of c lamb] pos-norm-vec ccarr by
blast

also have . . . = lamb (a h) ∗ (a h · c) + (
∑

w∈ ?D ′. lamb w ∗ (w · c))
using sum.insert[OF finD ′ ah-nin-D ′, of lamb] D ′strictsubs ah-nin-D ′ finD ′

by auto
also have (

∑
w∈ ?D ′. lamb w ∗ (w · c)) = 0

apply (rule sum.neutral)
using span-mem[OF carrD ′, unfolded cnorm] by simp

also have lamb (a h) ∗ (a h · c) + 0 < 0
using cah-ge-zero h(2 ) comm-scalar-prod[OF ah-carr ccarr ]
by (auto intro: mult-neg-pos)

finally have cb-le-zero: c · b < 0 using comm-scalar-prod[OF b ccarr ] by
auto

show ?thesis
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proof (cases ∀ i < m . c · a i ≥ 0 )
case cond2-T : True
have goal

unfolding goal-def
by (intro disjI2 exI [of - c] exI [of - I ′] conjI cb-le-zero linD ′ cond2-T cardD ′

I ′m pnv(4 ))
with ngoal show ?thesis by auto

next
case cond2-F : False
define k where k = (LEAST k. k < m ∧ c · a k < 0 )
let ?I ′′ = insert k I ′

show ?thesis unfolding step-rel-def
proof (intro exI [of - ?I ′′], standard, unfold mem-Collect-eq split, intro exI )

from LeastI-ex[OF ]
have ∃ k. k < m ∧ c · a k < 0 using cond2-F by fastforce
from LeastI-ex[OF this, folded k-def ] have k: k < m c · a k < 0 by auto
show cond I ?I ′′ lamb c h k unfolding cond-def I ′-def [symmetric] cnorm
proof(intro conjI cb-le-zero b-is-lincomb h ccarr h-least refl k)

show {x ∈ carrier-vec n. x · c = 0} = {x ∈ carrier-vec n. c · x = 0}
using comm-scalar-prod[OF ccarr ] by auto

from not-less-Least[of - λ k. k < m ∧ c · a k < 0 , folded k-def ]
have ∀ k ′ < k . k ′ > m ∨ c · a k ′ ≥ 0 using k(1 ) less-trans not-less by

blast
then show ∀ k ′ < k . c · a k ′ ≥ 0 using k(1 ) by auto

qed

have ?I ′′ ∈ valid-I unfolding valid-I-def
proof(standard, intro conjI )

from k a have ak-carr : a k ∈ carrier-vec n by auto
have ak-nin-span: a k /∈ span ?D ′ using k(2 ) cnorm comm-scalar-prod[OF

ak-carr ccarr ] by auto
hence ak-nin-D ′: a k /∈ ?D ′ using span-mem[OF carrD ′] by auto
from lin-dep-iff-in-span[OF carrD ′ linD ′ ak-carr ak-nin-D ′]
show lin-indpt (a ‘ ?I ′′) using ak-nin-span by auto
show ?I ′′ ⊆ {0 ..<m} using I ′m k by auto
show card (insert k I ′) = n using cardD ′ ak-nin-D ′ finD ′

by (metis ‹insert k I ′ ⊆ {0 ..<m}› card-a-I card-insert-disjoint
image-insert)

qed
then show (?I ′′, I ) ∈ valid-I × valid-I using I by auto

qed
qed

qed
} note step = this
{

from exists-lin-indpt-subset[OF a, unfolded full-span]
obtain A where lin: lin-indpt A and span: span A = carrier-vec n and Am:

A ⊆ a ‘ {0 ..<m} by auto

77



from Am a have A: A ⊆ carrier-vec n by auto
from lin span A have card: card A = n

using basis-def dim-basis dim-is-n fin-dim-li-fin by auto
from A Am obtain I where A: A = a ‘ I and I : I ⊆ {0 ..< m} by (metis

subset-imageE)
have I ∈ valid-I using I card lin unfolding valid-I-def A by auto
hence ∃ I . I ∈ valid-I ..

}
note init = this
have step-valid: (I ′,I ) ∈ step-rel =⇒ I ′ ∈ valid-I for I I ′ unfolding step-rel-def

by auto
have ¬ (wf step-rel)
proof

from init obtain I where I : I ∈ valid-I by auto
assume wf step-rel

from this[unfolded wf-eq-minimal, rule-format, OF I ] step step-valid show False
by blast

qed
with wf-iff-acyclic-if-finite[OF finite-step-rel]
have ¬ acyclic step-rel by auto
thus acyclic step-rel =⇒ False by auto

qed

private lemma acyclic-step-rel: acyclic step-rel
proof (rule ccontr)

assume ¬ ?thesis
hence ¬ acyclic (step-rel−1) by auto

then obtain I where (I , I ) ∈ (step-rel^−1 )^+ unfolding acyclic-def by blast
from this[unfolded trancl-power ]
obtain len where (I , I ) ∈ (step-rel^−1 ) ^^ len and len0 : len > 0 by blast

from this[unfolded relpow-fun-conv] obtain Is where
stepsIs:

∧
i. i < len =⇒ (Is (Suc i), Is i) ∈ step-rel

and IsI : Is 0 = I Is len = I by auto
{

fix i
assume i ≤ len hence i − 1 < len using len0 by auto
from stepsIs[unfolded step-rel-def , OF this]
have Is i ∈ valid-I by (cases i, auto)

} note Is-valid = this
from stepsIs[unfolded step-rel-def ]
have ∀ i. ∃ l c h k. i < len −→ cond (Is i) (Is (Suc i)) l c h k by auto

from choice[OF this] obtain ls where ∀ i. ∃ c h k. i < len −→ cond (Is i) (Is
(Suc i)) (ls i) c h k by auto

from choice[OF this] obtain cs where ∀ i. ∃ h k. i < len −→ cond (Is i) (Is
(Suc i)) (ls i) (cs i) h k by auto
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from choice[OF this] obtain hs where ∀ i. ∃ k. i < len −→ cond (Is i) (Is
(Suc i)) (ls i) (cs i) (hs i) k by auto

from choice[OF this] obtain ks where
cond:

∧
i. i < len =⇒ cond (Is i) (Is (Suc i)) (ls i) (cs i) (hs i) (ks i) by auto

let ?R = {hs i | i. i < len}
define r where r = Max ?R
from cond[OF len0 ] have hs 0 ∈ I using IsI unfolding cond-def by auto
hence R0 : hs 0 ∈ ?R using len0 by auto
have finR: finite ?R by auto
from Max-in[OF finR] R0
have rR: r ∈ ?R unfolding r-def [symmetric] by auto
then obtain p where rp: r = hs p and p: p < len by auto
from Max-ge[OF finR, folded r-def ]
have rLarge: i < len =⇒ hs i ≤ r for i by auto
have exq: ∃ q. ks q = r ∧ q < len
proof (rule ccontr)

assume neg: ¬?thesis
show False
proof(cases r ∈ I )

case True
have 1 : j∈{Suc p..len} =⇒ r /∈ Is j for j
proof(induction j rule: less-induct)

case (less j)
from less(2 ) have j-bounds: j = Suc p ∨ j > Suc p by auto
from less(2 ) have j-len: j ≤ len by auto
have pj-cond: j = Suc p =⇒ cond (Is p) (Is j) (ls p) (cs p) (hs p) (ks p)

using cond p by blast
have r-neq-ksp: r 6= ks p using p neg by auto
have j = Suc p =⇒ Is j = insert (ks p) (Is p − {r})

using rp cond pj-cond cond-def [of Is p Is j - - r ] by blast
hence c1 : j = Suc p =⇒ r /∈ Is j using r-neq-ksp by simp
have IH :

∧
t. t < j =⇒ t ∈ {Suc p..len} =⇒ r /∈ Is t by fact

have r-neq-kspj: j > Suc p ∧ j ≤ len =⇒ r 6= ks (j−1 ) using j-len neg IH
by auto

have jsucj-cond: j > Suc p ∧ j ≤ len =⇒ Is j = insert (ks (j−1 )) (Is (j−1 )
− {hs (j−1 )})

using cond-def [of Is (j−1 ) Is j] cond
by (metis (no-types, lifting) Suc-less-eq2 diff-Suc-1 le-simps(3 ))

hence j > Suc p ∧ j ≤ len =⇒ r /∈ insert (ks (j−1 )) (Is (j−1 ))
using IH r-neq-kspj by auto

hence j > Suc p ∧ j ≤ len =⇒ r /∈ Is j using jsucj-cond by simp
then show ?case using j-bounds j-len c1 by blast

qed
then show ?thesis using neg IsI (2 ) True p by auto

next
case False
have 2 : j∈{0 ..p} =⇒ r /∈ Is j for j
proof(induction j rule: less-induct)
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case(less j)
from less(2 ) have j-bound: j ≤ p by auto
have r-nin-Is0 : r /∈ Is 0 using IsI (1 ) False by simp
have IH :

∧
t. t < j ∧ t ∈ {0 ..p} =⇒ r /∈ Is t using less.IH by blast

have j-neq-ksjpred: j > 0 =⇒ r 6= ks (j −1 ) using neg j-bound p by auto
have Is-jpredj: j > 0 =⇒ Is j = insert (ks (j−1 )) (Is (j−1 ) − {hs (j−1 )})

using cond-def [of Is (j−1 ) Is j - - hs (j−1 ) ks (j−1 )] cond
by (metis (full-types) One-nat-def Suc-pred diff-le-self j-bound le-less-trans

p)
have j > 0 =⇒ r /∈ insert (ks (j−1 )) (Is (j−1 ))

using j-neq-ksjpred IH j-bound by fastforce
hence j > 0 =⇒ r /∈ Is j using Is-jpredj by blast
then show ?case using j-bound r-nin-Is0 by blast

qed
have 3 : r ∈ Is p using rp cond cond-def p by blast
then show ?thesis using 2 3 by auto

qed
qed
then obtain q where q1 : ks q = r and q-len: q < len by blast

{
fix t i1 i2
assume i1 < len i2 < len t < m
assume t∈ Is i1 t /∈ Is i2
have ∃ j < len. t = hs j
proof (rule ccontr)

assume ¬ ?thesis
hence hst:

∧
j. j < len =⇒ hs j 6= t by auto

have main: t /∈ Is (i + k) =⇒ i + k ≤ len =⇒ t /∈ Is k for i k
proof (induct i)

case (Suc i)
hence i: i + k < len by auto
from cond[OF this, unfolded cond-def ]
have Is (Suc i + k) = insert (ks (i + k)) (Is (i + k) − {hs (i + k)}) by

auto
from Suc(2 )[unfolded this] hst[OF i] have t /∈ Is (i + k) by auto
from Suc(1 )[OF this] i show ?case by auto

qed auto
from main[of i2 0 ] ‹i2 < len› ‹t /∈ Is i2 › have t /∈ Is 0 by auto
with IsI have t /∈ Is len by auto
with main[of len − i1 i1 ] ‹i1 < len› have t /∈ Is i1 by auto
with ‹t ∈ Is i1 › show False by blast

qed
} note innotin = this

{
fix i
assume i: i ∈ {Suc r ..<m}
{
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assume i-in-Isp: i ∈ Is p
have i ∈ Is q
proof (rule ccontr)

have i-range: i < m using i by simp
assume ¬ ?thesis
then have ex: ∃ j < len. i = hs j

using innotin[OF p q-len i-range i-in-Isp] by simp
then obtain j where j-hs: i = hs j by blast
have i>r using i by simp
then show False using j-hs p rLarge ex by force

qed
}
hence (i ∈ Is p) =⇒ (i ∈ Is q) by blast

} note bla = this
have blin: b = lincomb (ls p) (a ‘ (Is p)) using cond-def p cond by blast
have carrDp: (a ‘ (Is p)) ⊆ carrier-vec n using Is-valid valid-I-def a p

by (smt image-subset-iff less-imp-le-nat mem-Collect-eq subsetD)
have carrcq: cs q ∈ carrier-vec n using cond cond-def q-len by simp
have ineq1 : (cs q) · b < 0 using cond-def q-len cond by blast
let ?Isp-lt-r = {x ∈ Is p . x < r}
let ?Isp-gt-r = {x ∈ Is p . x > r}
have Is-disj: ?Isp-lt-r ∩ ?Isp-gt-r = {} using Is-valid by auto
have ?Isp-lt-r ⊆ Is p by simp
hence Isp-lt-0m: ?Isp-lt-r ⊆ {0 ..<m} using valid-I-def Is-valid p less-imp-le-nat

by blast
have ?Isp-gt-r ⊆ Is p by simp
hence Isp-gt-0m: ?Isp-gt-r ⊆ {0 ..<m} using valid-I-def Is-valid p less-imp-le-nat

by blast
let ?Dp-lt = a ‘ ?Isp-lt-r
let ?Dp-ge = a ‘ ?Isp-gt-r
{

fix A B
assume Asub: A ⊆ {0 ..<m} ∪ {0 ..<Suc r}
assume Bsub: B ⊆ {0 ..<m} ∪ {0 ..<Suc r}
assume ABinters: A ∩ B = {}
have r ∈ Is p using rp p cond unfolding cond-def by simp
hence r-lt-m: r < m using p Is-valid[of p] unfolding valid-I-def by auto
hence 1 : A ⊆ {0 ..<m} using Asub by auto
have 2 : B ⊆ {0 ..<m} using r-lt-m Bsub by auto
have a ‘ A ∩ a ‘ B = {}

using inj-on-image-Int[OF inj-a 1 2 ] ABinters by auto
} note inja = this

have (Is p ∩ {0 ..<r}) ∩ (Is p ∩ {r}) = {} by auto
hence a ‘ (Is p ∩ {0 ..<r} ∪ Is p ∩ {r}) = a ‘ (Is p ∩ {0 ..<r}) ∪ a ‘ (Is p ∩
{r})

using inj-a by auto
moreover have Is p ∩ {0 ..<r} ∪ Is p ∩ {r} ⊆ {0 ..<m} ∪ {0 ..<Suc r} by auto
moreover have Is p ∩ {Suc r ..<m} ⊆ {0 ..<m} ∪ {0 ..<Suc r} by auto
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moreover have (Is p ∩ {0 ..<r} ∪ Is p ∩ {r}) ∩ (Is p ∩ {Suc r ..<m}) = {} by
auto

ultimately have one: (a ‘ (Is p ∩ {0 ..<r}) ∪ a ‘ (Is p ∩ {r})) ∩ a ‘ (Is p ∩
{Suc r ..<m}) = {}

using inja[of Is p ∩ {0 ..<r} ∪ Is p ∩ {r} Is p ∩ {Suc r ..<m}] by auto
have split: Is p = Is p ∩ {0 ..<r} ∪ Is p ∩ {r} ∪ Is p ∩ {Suc r ..< m}

using rp p Is-valid[of p] unfolding valid-I-def by auto
have gtr : (

∑
w ∈ (a ‘ (Is p ∩ {Suc r ..< m})). ((ls p) w) ∗ (cs q · w)) = 0

proof (rule sum.neutral, clarify)
fix w
assume w1 : w ∈ Is p and w2 : w∈{Suc r ..<m}
have w-in-q: w ∈ Is q using bla[OF w2 ] w1 by blast
moreover have hs q ≤ r using rR rLarge using q-len by blast
ultimately have w 6= hs q using w2 by simp
hence w ∈ Is q −{hs q} using w1 w-in-q by auto
moreover have Is q − {hs q} ⊆ {0 ..<m}

using q-len Is-valid[of q] unfolding valid-I-def by auto
ultimately have a w ∈ span ( a ‘ (Is q − {hs q})) using a by (intro span-mem,

auto)
moreover have cs q ∈ carrier-vec n ∧ span (a ‘ (Is q − {hs q})) =
{ x. x ∈ carrier-vec n ∧ cs q · x = 0}
using cond[of q] q-len unfolding cond-def by auto

ultimately have (cs q) · (a w) = 0 using a w2 by simp
then show ls p (a w) ∗ (cs q · a w) = 0 by simp

qed
note pp = cond[OF p, unfolded cond-def rp[symmetric]]
note qq = cond[OF q-len, unfolded cond-def q1 ]
have (cs q) · b = (cs q) · lincomb (ls p) (a ‘ (Is p)) using blin by auto
also have . . . = (

∑
w ∈ (a ‘ (Is p)). ((ls p) w) ∗ (cs q · w))

by (subst lincomb-scalar-prod-right[OF carrDp carrcq], simp)
also have . . . = (

∑
w ∈ (a ‘ (Is p ∩ {0 ..<r}) ∪ a ‘ (Is p ∩ {r}) ∪ a ‘ (Is p ∩

{Suc r ..<m})).
((ls p) w) ∗ (cs q · w))

by (subst (1 ) split, rule sum.cong, auto)
also have . . . = (

∑
w ∈ (a ‘ (Is p ∩ {0 ..<r})). ((ls p) w) ∗ (cs q · w))

+ (
∑

w ∈ (a ‘ (Is p ∩ {r})). ((ls p) w) ∗ (cs q · w))
+ (

∑
w ∈ (a ‘ (Is p ∩ {Suc r ..< m})). ((ls p) w) ∗ (cs q · w))

apply (subst sum.union-disjoint[OF - - one])
apply (force+)[2 ]

apply (subst sum.union-disjoint)
apply (force+)[2 ]

apply (rule inja)
by auto

also have . . . = (
∑

w ∈ (a ‘ (Is p ∩ {0 ..<r})). ((ls p) w) ∗ (cs q · w))
+ (

∑
w ∈ (a ‘ (Is p ∩ {r})). ((ls p) w) ∗ (cs q · w))

using sum.neutral gtr by simp
also have . . . > 0 + 0
proof (intro add-le-less-mono sum-nonneg mult-nonneg-nonneg)

{
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fix x
assume x: x ∈ a ‘ (Is p ∩ {0 ..<r})
show 0 ≤ ls p x using pp x by auto
show 0 ≤ cs q · x using qq x by auto

}
have r ∈ Is p using pp by blast
hence a ‘ (Is p ∩ {r}) = {a r} by auto
hence id: (

∑
w∈a ‘ (Is p ∩ {r}). ls p w ∗ (cs q · w)) = ls p (a r) ∗ (cs q · a r)

by simp
show 0 < (

∑
w∈a ‘ (Is p ∩ {r}). ls p w ∗ (cs q · w))

unfolding id
proof (rule mult-neg-neg)

show ls p (a r) < 0 using pp by auto
show cs q · a r < 0 using qq by auto

qed
qed
finally have cs q · b > 0 by simp
moreover have cs q · b < 0 using qq by blast
ultimately show False by auto

qed

lemma fundamental-theorem-neg-C-or-B-in-context:
assumes W : W = a ‘ {0 ..< m}
shows (∃ U . U ⊆ W ∧ card U = n ∧ lin-indpt U ∧ b ∈ finite-cone U ) ∨
(∃ c U . U ⊆ W ∧

c ∈ {normal-vector U , − normal-vector U} ∧
Suc (card U ) = n ∧ lin-indpt U ∧ (∀w ∈ W . 0 ≤ c · w) ∧ c · b < 0 )

using acyclic-imp-goal[unfolded goal-def , OF acyclic-step-rel]
proof

assume ∃ I . I⊆{0 ..<m} ∧ card (a ‘ I ) = n ∧ lin-indpt (a ‘ I ) ∧ b ∈ finite-cone
(a ‘ I )

thus ?thesis unfolding W by (intro disjI1 , blast)
next

assume ∃ c I . I ⊆ {0 ..<m} ∧
c ∈ {normal-vector (a ‘ I ), − normal-vector (a ‘ I )} ∧
Suc (card (a ‘ I )) = n ∧ lin-indpt (a ‘ I ) ∧ (∀ i<m. 0 ≤ c · a i) ∧ c · b

< 0
then obtain c I where I ⊆ {0 ..<m} ∧

c ∈ {normal-vector (a ‘ I ), − normal-vector (a ‘ I )} ∧
Suc (card (a ‘ I )) = n ∧ lin-indpt (a ‘ I ) ∧ (∀ i<m. 0 ≤ c · a i) ∧ c · b

< 0 by auto
thus ?thesis unfolding W

by (intro disjI2 exI [of - c] exI [of - a ‘ I ], auto)
qed

end

lemma fundamental-theorem-of-linear-inequalities-C-imp-B-full-dim:
assumes A: A ⊆ carrier-vec n
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and fin: finite A
and span: span A = carrier-vec n
and b: b ∈ carrier-vec n
and C : @ c B. B ⊆ A ∧ c ∈ {normal-vector B, − normal-vector B} ∧ Suc

(card B) = n
∧ lin-indpt B ∧ (∀ ai ∈ A. c · ai ≥ 0 ) ∧ c · b < 0

shows ∃ B ⊆ A. lin-indpt B ∧ card B = n ∧ b ∈ finite-cone B
proof −

from finite-distinct-list[OF fin] obtain as where Aas: A = set as and dist:
distinct as by auto

define m where m = length as
define a where a = (λ i. as ! i)
have inj: inj-on a {0 ..< (m :: nat)}

and id: A = a ‘ {0 ..<m}
unfolding m-def a-def Aas using inj-on-nth[OF dist] unfolding set-conv-nth
by auto

from fundamental-theorem-neg-C-or-B-in-context[OF - inj b, folded id, OF A
span refl] C

show ?thesis by blast
qed

lemma fundamental-theorem-of-linear-inequalities-full-dim: fixes A :: ′a vec set
defines HyperN ≡ {b. b ∈ carrier-vec n ∧ (@ B c. B ⊆ A ∧ c ∈ {normal-vector

B, − normal-vector B}
∧ Suc (card B) = n ∧ lin-indpt B ∧ (∀ ai ∈ A. c · ai ≥ 0 ) ∧ c · b < 0 )}

defines HyperA ≡ {b. b ∈ carrier-vec n ∧ (@ c. c ∈ carrier-vec n ∧ (∀ ai ∈ A.
c · ai ≥ 0 ) ∧ c · b < 0 )}

defines lin-indpt-cone ≡
⋃
{ finite-cone B | B. B ⊆ A ∧ card B = n ∧ lin-indpt

B}
assumes A: A ⊆ carrier-vec n

and fin: finite A
and span: span A = carrier-vec n

shows
cone A = lin-indpt-cone
cone A = HyperN
cone A = HyperA

proof −
have lin-indpt-cone ⊆ cone A unfolding lin-indpt-cone-def cone-def using fin

finite-cone-mono A
by auto

moreover have cone A ⊆ HyperA
proof

fix c
assume cA: c ∈ cone A

from fundamental-theorem-of-linear-inequalities-A-imp-D[OF A fin this] cone-carrier [OF
A] cA

show c ∈ HyperA unfolding HyperA-def by auto
qed
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moreover have HyperA ⊆ HyperN
proof

fix c
assume c ∈ HyperA
hence False:

∧
v. v ∈ carrier-vec n =⇒ (∀ ai∈A. 0 ≤ v · ai) =⇒ v · c < 0

=⇒ False
and c: c ∈ carrier-vec n unfolding HyperA-def by auto

show c ∈ HyperN
unfolding HyperN-def

proof (standard, intro conjI c notI , clarify, goal-cases)
case (1 W nv)
with A fin have fin: finite W and W : W ⊆ carrier-vec n by (auto intro:

finite-subset)
show ?case using False[of nv] 1 normal-vector [OF fin - - W ] by auto

qed
qed
moreover have HyperN ⊆ lin-indpt-cone
proof

fix b
assume b ∈ HyperN
from this[unfolded HyperN-def ]

fundamental-theorem-of-linear-inequalities-C-imp-B-full-dim[OF A fin span,
of b]

show b ∈ lin-indpt-cone unfolding lin-indpt-cone-def by auto
qed
ultimately show

cone A = lin-indpt-cone
cone A = HyperN
cone A = HyperA
by auto

qed

lemma fundamental-theorem-of-linear-inequalities-C-imp-B:
assumes A: A ⊆ carrier-vec n

and fin: finite A
and b: b ∈ carrier-vec n
and C : @ c A ′. c ∈ carrier-vec n
∧ A ′ ⊆ A ∧ Suc (card A ′) = dim-span (insert b A)
∧ (∀ a ∈ A ′. c · a = 0 )
∧ lin-indpt A ′ ∧ (∀ ai ∈ A. c · ai ≥ 0 ) ∧ c · b < 0

shows ∃ B ⊆ A. lin-indpt B ∧ card B = dim-span A ∧ b ∈ finite-cone B
proof −

from exists-lin-indpt-sublist[OF A] obtain A ′ where
lin: lin-indpt-list A ′ and span: span (set A ′) = span A and A ′A: set A ′ ⊆ A

by auto
hence linA ′: lin-indpt (set A ′) unfolding lin-indpt-list-def by auto
from A ′A A have A ′: set A ′ ⊆ carrier-vec n by auto
have dim-spanA: dim-span A = card (set A ′)

by (rule sym, rule same-span-imp-card-eq-dim-span[OF A ′ A span linA ′])
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show ?thesis
proof (cases b ∈ span A)

case False
with span have b /∈ span (set A ′) by auto
with lin have linAb: lin-indpt-list (A ′ @ [b]) unfolding lin-indpt-list-def

using lin-dep-iff-in-span[OF A ′ - b] span-mem[OF A ′, of b] b by auto
interpret gso: gram-schmidt-fs-lin-indpt n A ′ @ [b]

by (standard, insert linAb[unfolded lin-indpt-list-def ], auto)
let ?m = length A ′

define c where c = − gso.gso ?m
have c: c ∈ carrier-vec n using gso.gso-carrier [of ?m] unfolding c-def by

auto
from gso.gso-times-self-is-norm[of ?m]
have b · gso.gso ?m = sq-norm (gso.gso ?m) unfolding c-def using b c by

auto
also have . . . > 0 using gso.sq-norm-pos[of ?m] by auto
finally have cb: c · b < 0 using b c comm-scalar-prod[OF b c] unfolding

c-def by auto
{

fix a
assume a ∈ A
hence a ∈ span (set A ′) unfolding span using span-mem[OF A] by auto
from finite-in-span[OF - A ′ this]
obtain l where a = lincomb l (set A ′) by auto
hence c · a = c · lincomb l (set A ′) by simp
also have . . . = 0

by (subst lincomb-scalar-prod-right[OF A ′ c], rule sum.neutral, insert A ′,
unfold set-conv-nth,

insert gso.gso-scalar-zero[of ?m] c, auto simp: c-def nth-append )
finally have c · a = 0 .

} note cA = this
have ∃ c A ′. c ∈ carrier-vec n ∧ A ′ ⊆ A ∧ Suc (card A ′) = dim-span (insert

b A)
∧ (∀ a ∈ A ′. c · a = 0 ) ∧ lin-indpt A ′ ∧ (∀ ai ∈ A. c · ai ≥ 0 ) ∧ c · b < 0

proof (intro exI [of - c] exI [of - set A ′] conjI A ′A linA ′ cb c)
show ∀ a∈set A ′. c · a = 0 ∀ ai∈A. 0 ≤ c · ai using cA A ′A by auto
have dim-span (insert b A) = Suc (dim-span A)

by (rule dim-span-insert[OF A b False])
also have . . . = Suc (card (set A ′)) unfolding dim-spanA ..
finally show Suc (card (set A ′)) = dim-span (insert b A) ..

qed
with C have False by blast
thus ?thesis ..

next
case bspan: True
define N where N = normal-vectors A ′

from normal-vectors[OF lin, folded N-def ]
have N : set N ⊆ carrier-vec n and

orthA ′N :
∧

w nv. w ∈ set A ′ =⇒ nv ∈ set N =⇒ nv · w = 0 and

86



linAN : lin-indpt-list (A ′ @ N ) and
lenAN : length (A ′ @ N ) = n and
disj: set A ′ ∩ set N = {} by auto

from linAN lenAN have full-span ′: span (set (A ′ @ N )) = carrier-vec n
using lin-indpt-list-length-eq-n by blast

hence full-span ′′: span (set A ′ ∪ set N ) = carrier-vec n by auto
from A N A ′ have AN : A ∪ set N ⊆ carrier-vec n and A ′N : set (A ′ @ N ) ⊆

carrier-vec n by auto
hence span (A ∪ set N ) ⊆ carrier-vec n by (simp add: span-is-subset2 )
with A ′A span-is-monotone[of set (A ′ @ N ) A ∪ set N , unfolded full-span ′]
have full-span: span (A ∪ set N ) = carrier-vec n unfolding set-append by fast
from fin have finAN : finite (A ∪ set N ) by auto

note fundamental = fundamental-theorem-of-linear-inequalities-full-dim[OF AN
finAN full-span]

show ?thesis
proof (cases b ∈ cone (A ∪ set N ))

case True
from this[unfolded fundamental(1 )] obtain C where CAN : C ⊆ A ∪ set N

and cardC : card C = n
and linC : lin-indpt C
and bC : b ∈ finite-cone C by auto

have finC : finite C using finite-subset[OF CAN ] fin by auto
from CAN A N have C : C ⊆ carrier-vec n by auto
from bC [unfolded finite-cone-def nonneg-lincomb-def ] finC obtain c

where bC : b = lincomb c C and nonneg:
∧

b. b ∈ C =⇒ c b ≥ 0 by auto
let ?C = C − set N
show ?thesis
proof (intro exI [of - ?C ] conjI )

from subset-li-is-li[OF linC ] show lin-indpt ?C by auto
show CA: ?C ⊆ A using CAN by auto
have bc: b = lincomb c (?C ∪ (C ∩ set N )) unfolding bC

by (rule arg-cong[of - - lincomb -], auto)
have b = lincomb c (?C − C ∩ set N )
proof (rule orthogonal-cone(2 )[OF A N fin full-span ′′ orthA ′N refl span

A ′A linAN lenAN - CA - bc])
show ∀w∈set N . w · b = 0

using ortho-span ′[OF A ′ N - bspan[folded span]] orthA ′N by auto
qed auto
also have ?C − C ∩ set N = ?C by auto
finally have b = lincomb c ?C .
with nonneg have nonneg-lincomb c ?C b unfolding nonneg-lincomb-def

by auto
thus b ∈ finite-cone ?C unfolding finite-cone-def using finite-subset[OF

CA fin] by auto
have Cid: C ∩ set N ∪ ?C = C by auto
have length A ′ + length N = n by fact
also have . . . = card (C ∩ set N ∪ ?C ) using Cid cardC by auto
also have . . . = card (C ∩ set N ) + card ?C

by (subst card-Un-disjoint, insert finC , auto)
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also have . . . ≤ length N + card ?C
by (rule add-right-mono, rule order .trans, rule card-mono[OF finite-set[of

N ]],
auto intro: card-length)

also have length A ′ = card (set A ′) using lin[unfolded lin-indpt-list-def ]
distinct-card[of A ′] by auto

finally have le: dim-span A ≤ card ?C using dim-spanA by auto
have CA: ?C ⊆ span A using CA C in-own-span[OF A] by auto
have linC : lin-indpt ?C using subset-li-is-li[OF linC ] by auto
show card ?C = dim-span A

using card-le-dim-span[OF - CA linC ] le C by force
qed

next
case False
from False[unfolded fundamental(2 )] b
obtain C c where

CAN : C ⊆ A ∪ set N and
cardC : Suc (card C ) = n and
linC : lin-indpt C and
contains: (∀ ai∈A ∪ set N . 0 ≤ c · ai) and
cb: c · b < 0 and
nv: c ∈ {normal-vector C , − normal-vector C}
by auto

from CAN A N have C : C ⊆ carrier-vec n by auto
from cardC have cardCn: card C < n by auto
from finite-subset[OF CAN ] fin have finC : finite C by auto
let ?C = C − set N
note nv ′ = normal-vector(1−4 )[OF finC cardC linC C ]
from nv ′ nv have c: c ∈ carrier-vec n by auto
have ∃ c A ′. c ∈ carrier-vec n ∧ A ′ ⊆ A ∧ Suc (card A ′) = dim-span (insert

b A)
∧ (∀ a ∈ A ′. c · a = 0 ) ∧ lin-indpt A ′ ∧ (∀ ai ∈ A. c · ai ≥ 0 ) ∧ c · b

< 0
proof (intro exI [of - c] exI [of - ?C ] conjI cb c)

show CA: ?C ⊆ A using CAN by auto
show ∀ ai∈A. 0 ≤ c · ai using contains by auto
show lin ′: lin-indpt ?C using subset-li-is-li[OF linC ] by auto
show sC0 : ∀ a∈ ?C . c · a = 0 using nv ′ nv C by auto
have Cid: C ∩ set N ∪ ?C = C by auto
have dim-span (set A ′) = card (set A ′)

by (rule sym, rule same-span-imp-card-eq-dim-span[OF A ′ A ′ refl linA ′])
also have . . . = length A ′

using lin[unfolded lin-indpt-list-def ] distinct-card[of A ′] by auto
finally have dimA ′: dim-span (set A ′) = length A ′ .

from bspan have span (insert b A) = span A using b A using already-in-span
by auto

from dim-span-cong[OF this[folded span]] dimA ′

have dimbA: dim-span (insert b A) = length A ′ by simp
also have . . . = Suc (card ?C )
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proof (rule ccontr)
assume neq: length A ′ 6= Suc (card ?C )
have length A ′ + length N = n by fact
also have . . . = Suc (card (C ∩ set N ∪ ?C )) using Cid cardC by auto
also have . . . = Suc (card (C ∩ set N ) + card ?C )

by (subst card-Un-disjoint, insert finC , auto)
finally have id: length A ′ + length N = Suc (card (C ∩ set N ) + card

?C ) .
have le1 : card (C ∩ set N ) ≤ length N

by (metis Int-lower2 List.finite-set card-length card-mono inf .absorb-iff2
le-inf-iff )

from CA C A have CsA: ?C ⊆ span (set A ′) unfolding span by (meson
in-own-span order .trans)

from card-le-dim-span[OF - this lin ′] C
have le2 : card ?C ≤ length A ′ unfolding dimA ′ by auto
from id le1 le2 neq
have id2 : card ?C = length A ′ by linarith+
from card-eq-dim-span-imp-same-span[OF A ′ CsA lin ′ id2 [folded dimA ′]]
have span ?C = span A unfolding span by auto
with bspan have b ∈ span ?C by auto
from orthocompl-span[OF - - c this] C sC0
have c · b = 0 by auto
with cb show False by simp

qed
finally show Suc (card ?C ) = dim-span (insert b A) by simp

qed
with assms(4 ) have False by blast
thus ?thesis ..

qed
qed

qed

lemma fundamental-theorem-of-linear-inequalities: fixes A :: ′a vec set
defines HyperN ≡ {b. b ∈ carrier-vec n ∧ (@ c B. c ∈ carrier-vec n ∧ B ⊆ A
∧ Suc (card B) = dim-span (insert b A) ∧ lin-indpt B
∧ (∀ a ∈ B. c · a = 0 )
∧ (∀ ai ∈ A. c · ai ≥ 0 ) ∧ c · b < 0 )}

defines HyperA ≡ {b. b ∈ carrier-vec n ∧ (@ c. c ∈ carrier-vec n ∧ (∀ ai ∈ A.
c · ai ≥ 0 ) ∧ c · b < 0 )}

defines lin-indpt-cone ≡
⋃
{ finite-cone B | B. B ⊆ A ∧ card B = dim-span A

∧ lin-indpt B}
assumes A: A ⊆ carrier-vec n

and fin: finite A
shows

cone A = lin-indpt-cone
cone A = HyperN
cone A = HyperA

proof −
have lin-indpt-cone ⊆ cone A
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unfolding lin-indpt-cone-def cone-def using fin finite-cone-mono A by auto
moreover have cone A ⊆ HyperA
using fundamental-theorem-of-linear-inequalities-A-imp-D[OF A fin] cone-carrier [OF

A]
unfolding HyperA-def by blast

moreover have HyperA ⊆ HyperN unfolding HyperA-def HyperN-def by blast
moreover have HyperN ⊆ lin-indpt-cone
proof

fix b
assume b ∈ HyperN
from this[unfolded HyperN-def ]

fundamental-theorem-of-linear-inequalities-C-imp-B[OF A fin, of b]
show b ∈ lin-indpt-cone unfolding lin-indpt-cone-def by blast

qed
ultimately show

cone A = lin-indpt-cone
cone A = HyperN
cone A = HyperA
by auto

qed

corollary Caratheodory-theorem: assumes A: A ⊆ carrier-vec n
shows cone A =

⋃
{finite-cone B |B. B ⊆ A ∧ lin-indpt B}

proof
show

⋃
{finite-cone B |B. B ⊆ A ∧ lin-indpt B} ⊆ cone A unfolding cone-def

using fin[OF fin-dim - subset-trans[OF - A]] by auto
{

fix a
assume a ∈ cone A
from this[unfolded cone-def ] obtain B where

finB: finite B and BA: B ⊆ A and a: a ∈ finite-cone B by auto
from BA A have B: B ⊆ carrier-vec n by auto
hence a ∈ cone B using finB a by (simp add: cone-iff-finite-cone)
with fundamental-theorem-of-linear-inequalities(1 )[OF B finB]
obtain C where CB: C ⊆ B and a: a ∈ finite-cone C and lin-indpt C by

auto
with BA have a ∈

⋃
{finite-cone B |B. B ⊆ A ∧ lin-indpt B} by auto

}
thus

⋃
{finite-cone B |B. B ⊆ A ∧ lin-indpt B} ⊇ cone A by blast

qed
end
end

12 Farkas’ Lemma
We prove two variants of Farkas’ lemma. Note that type here is more general
than in the versions of Farkas’ Lemma which are in the AFP-entry Farkas-
Lemma, which is restricted to rational matrices. However, there δ-rationals
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are supported, which are not present here.
theory Farkas-Lemma

imports Fundamental-Theorem-Linear-Inequalities
begin

context gram-schmidt
begin

lemma Farkas-Lemma: fixes A :: ′a mat and b :: ′a vec
assumes A: A ∈ carrier-mat n nr and b: b ∈ carrier-vec n
shows (∃ x. x ≥ 0 v nr ∧ A ∗v x = b) ←→ (∀ y. y ∈ carrier-vec n −→ AT ∗v

y ≥ 0 v nr −→ y · b ≥ 0 )
proof −

let ?C = set (cols A)
from A have C : ?C ⊆ carrier-vec n and C ′: ∀w∈set (cols A). dim-vec w = n

unfolding cols-def by auto
have (∃ x. x ≥ 0 v nr ∧ A ∗v x = b) = (b ∈ cone ?C )

using cone-of-cols[OF A b] by simp
also have . . . = (@ y. y ∈ carrier-vec n ∧ (∀ ai∈?C . 0 ≤ y · ai) ∧ y · b < 0 )
unfolding fundamental-theorem-of-linear-inequalities(3 )[OF C finite-set] mem-Collect-eq
using b by auto

also have . . . = (∀ y. y ∈ carrier-vec n −→ (∀ ai∈?C . 0 ≤ y · ai) −→ y · b ≥
0 )

by auto
also have . . . = (∀ y. y ∈ carrier-vec n −→ AT ∗v y ≥ 0 v nr −→ y · b ≥ 0 )
proof (intro all-cong imp-cong refl)

fix y :: ′a vec
assume y: y ∈ carrier-vec n
have (∀ ai∈ ?C . 0 ≤ y · ai) = (∀ ai∈ ?C . 0 ≤ ai · y)

by (intro ball-cong[OF refl], subst comm-scalar-prod[OF y], insert C , auto)
also have . . . = (0 v nr ≤ AT ∗v y)

unfolding less-eq-vec-def using C A y by (auto simp: cols-def )
finally show (∀ ai∈set (cols A). 0 ≤ y · ai) = (0 v nr ≤ AT ∗v y) .

qed
finally show ?thesis .

qed

lemma Farkas-Lemma ′:
fixes A :: ′a mat and b :: ′a vec
assumes A: A ∈ carrier-mat nr nc and b: b∈ carrier-vec nr
shows (∃ x. x∈ carrier-vec nc ∧ A ∗v x ≤ b)

←→ (∀ y. y ≥ 0 v nr ∧ AT ∗v y = 0 v nc −→ y · b ≥ 0 )
proof −

define B where B = (1m nr) @c (A @c −A)
define b ′ where b ′ = 0 v nc @v (b @v −b)
define n where n = nr + (nc + nc)
have id0 : 0 v (nr + (nc + nc)) = 0 v nr @v (0 v nc @v 0 v nc) by (intro eq-vecI ,

auto)
have idcarr : (1m nr) ∈ carrier-mat nr nr by auto
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have B: B ∈ carrier-mat nr n unfolding B-def n-def using A by auto
have (∃ x ∈ carrier-vec nc. A ∗v x ≤ b) =

(∃ x1 ∈ carrier-vec nr . ∃ x2 ∈ carrier-vec nc. ∃ x3 ∈ carrier-vec nc.
x1 ≥ 0 v nr ∧ x2 ≥ 0 v nc ∧ x3 ≥ 0 v nc ∧ B ∗v (x1 @v (x2 @v x3 )) = b)

proof
assume ∃ x∈carrier-vec nc. A ∗v x ≤ b
from this obtain x where Axb: A ∗v x ≤ b and xcarr : x ∈ carrier-vec nc by

auto
have bmAx: b − A ∗v x ∈ carrier-vec nr using A b xcarr by simp
define x1 where x1 = b − A ∗v x
have x1 : x1 ∈ carrier-vec nr using bmAx unfolding x1-def by (simp add:

xcarr)
define x2 where x2 = vec (dim-vec x) (λi. if x $ i ≥ 0 then x $ i else 0 )
have x2 : x2 ∈ carrier-vec nc using xcarr unfolding x2-def by simp
define x3 where x3 = vec (dim-vec x) (λi. if x $ i < 0 then −x $ i else 0 )
have x3 : x3 ∈ carrier-vec nc using xcarr unfolding x3-def by simp
have x2x3carr : x2 @v x3 ∈ carrier-vec (nc + nc) using x2 x3 by simp
have x2x3x: x2 − x3 = x unfolding x2-def x3-def by auto
have A ∗v x −b ≤ 0 v nr using vec-le-iff-diff-le-0 b

by (metis A Axb carrier-matD(1 ) dim-mult-mat-vec)
hence x1lez: x1 ≥ 0 v nr using x1 unfolding x1-def
by (smt A Axb carrier-matD(1 ) carrier-vecD diff-ge-0-iff-ge dim-mult-mat-vec

index-minus-vec(1 ) index-zero-vec(1 ) index-zero-vec(2 ) less-eq-vec-def )
have x2lez: x2 ≥ 0 v nc using x2 less-eq-vec-def unfolding x2-def by fastforce
have x3lez: x3 ≥ 0 v nc using x3 less-eq-vec-def unfolding x3-def by fastforce
have B1 : (1m nr) ∗v x1 = b − A ∗v x using xcarr x1 unfolding x1-def by

simp
have A ∗v x2 + (−A) ∗v x3 = A ∗v x2 + A ∗v (−x3 ) using x2 x3 A by auto
also have . . . = A ∗v (x2 + (−x3 )) using A x2 x3

by (metis mult-add-distrib-mat-vec uminus-carrier-vec)
also have . . . = A ∗v x using x2x3x minus-add-uminus-vec x2 x3 by fastforce
finally have B2 :A ∗v x2 + (−A) ∗v x3 = A ∗v x by auto
have B ∗v (x1 @v (x2 @v x3 )) = (1m nr) ∗v x1 + (A ∗v x2 + (−A) ∗v x3 )

(is . . . = ?p1 + ?p2 )
using x1 x2 x3 A mat-mult-append-cols unfolding B-def

by (subst mat-mult-append-cols[OF - - x1 x2x3carr ], auto simp add: mat-mult-append-cols)
also have ?p1 = b − A ∗v x using B1 unfolding x1-def by auto
also have ?p2 = A ∗v x using B2 by simp
finally have res: B ∗v (x1 @v (x2 @v x3 )) = b using A xcarr b by auto
show ∃ x∈carrier-vec nc. A ∗v x ≤ b =⇒ ∃ x1∈carrier-vec nr . ∃ x2∈carrier-vec

nc. ∃ x3∈carrier-vec nc.
0 v nr ≤ x1 ∧ 0 v nc ≤ x2 ∧ 0 v nc ≤ x3 ∧ B ∗v (x1 @v x2 @v x3 ) = b

using x1 x2 x3 x1lez x2lez x3lez res by auto
next

assume ∃ x1 ∈ carrier-vec nr . ∃ x2 ∈ carrier-vec nc. ∃ x3 ∈ carrier-vec nc.
x1 ≥ 0 v nr ∧ x2 ≥ 0 v nc ∧ x3 ≥ 0 v nc ∧ B ∗v (x1 @v (x2 @v x3 )) = b

from this obtain x1 x2 x3 where x1 : x1 ∈ carrier-vec nr and x1lez: x1 ≥ 0 v

nr
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and x2 : x2 ∈ carrier-vec nc and x2lez: x2 ≥ 0 v nc
and x3 : x3 ∈ carrier-vec nc and x3lez: x3 ≥ 0 v nc
and clc: B ∗v (x1 @v (x2 @v x3 )) = b by auto

have x2x3carr : x2 @v x3 ∈ carrier-vec (nc + nc) using x2 x3 by simp
define x where x = x2 − x3
have xcarr : x ∈ carrier-vec nc using x2 x3 unfolding x-def by simp
have A ∗v x2 + (−A) ∗v x3 = A ∗v x2 + A ∗v (−x3 ) using x2 x3 A by auto
also have . . . = A ∗v (x2 + (−x3 )) using A x2 x3

by (metis mult-add-distrib-mat-vec uminus-carrier-vec)
also have . . . = A ∗v x using minus-add-uminus-vec x2 x3 unfolding x-def

by fastforce
finally have B2 :A ∗v x2 + (−A) ∗v x3 = A ∗v x by auto
have Axcarr : A ∗v x ∈ carrier-vec nr using A xcarr by auto
have b = B ∗v (x1 @v (x2 @v x3 )) using clc by auto
also have . . . = (1m nr) ∗v x1 + (A ∗v x2 + (−A) ∗v x3 ) (is . . . = ?p1 +

?p2 )
using x1 x2 x3 A mat-mult-append-cols unfolding B-def

by (subst mat-mult-append-cols[OF - - x1 x2x3carr ], auto simp add: mat-mult-append-cols)
also have ?p2 = A ∗v x using B2 by simp
finally have res: b = (1m nr) ∗v x1 + A ∗v x using A xcarr b by auto
hence b = x1 + A ∗v x using x1 A b by simp
hence b − A ∗v x = x1 using x1 A b by auto
hence b − A ∗v x ≥ 0 v nr using x1lez by auto
hence A ∗v x ≤ b using Axcarr

by (smt ‹b − A ∗v x = x1 › ‹b = x1 + A ∗v x› carrier-vecD comm-add-vec
index-zero-vec(2 )

minus-add-minus-vec minus-cancel-vec vec-le-iff-diff-le-0 x1 )
then show ∃ x1∈carrier-vec nr . ∃ x2∈carrier-vec nc. ∃ x3∈carrier-vec nc.

0 v nr ≤ x1 ∧ 0 v nc ≤ x2 ∧ 0 v nc ≤ x3 ∧ B ∗v (x1 @v x2 @v x3 ) = b
=⇒

∃ x∈carrier-vec nc. A ∗v x ≤ b using xcarr by blast
qed
also have . . . = (∃ x1 ∈ carrier-vec nr . ∃ x2 ∈ carrier-vec nc. ∃ x3 ∈ carrier-vec

nc.
(x1 @v (x2 @v x3 )) ≥ 0 v n ∧ B ∗v (x1 @v (x2 @v x3 )) = b)

by (metis append-vec-le id0 n-def zero-carrier-vec)
also have . . . = (∃ x ∈ carrier-vec n. x ≥ 0 v n ∧ B ∗v x = b)

unfolding n-def exists-vec-append by auto
also have . . . = (∃ x ≥ 0 v n. B ∗v x = b) unfolding less-eq-vec-def by fastforce
also have . . . = (∀ y. y ∈ carrier-vec nr −→ BT ∗v y ≥ 0 v n −→ y · b ≥ 0 )

by (rule gram-schmidt.Farkas-Lemma[OF B b])
also have . . . = (∀ y. y ∈ carrier-vec nr −→ (y ≥ 0 v nr ∧ AT ∗v y = 0 v nc)
−→ y · b ≥ 0 )

proof (intro all-cong imp-cong refl)
fix y :: ′a vec
assume y: y ∈ carrier-vec nr
have idtcarr : (1m nr)T ∈ carrier-mat nr nr by auto
have Atcarr : AT ∈ carrier-mat nc nr using A by auto
have mAtcarr : (−A)T ∈ carrier-mat nc nr using A by auto
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have AtAtcarr : AT @r (−A)T ∈ carrier-mat (nc + nc) nr using A by auto
have BT ∗v y = ((1m nr)T @r AT @r (−A)T ) ∗v y unfolding B-def

by (simp add: append-cols-def )
also have . . . = ((1m nr)T ∗v y) @v (AT ∗v y) @v ((−A)T ∗v y)

using mat-mult-append[OF Atcarr mAtcarr y] mat-mult-append y Atcarr
idtcarr mAtcarr

by (metis AtAtcarr)
finally have eq: BT ∗v y = ((1m nr)T ∗v y) @v (AT ∗v y) @v ((−A)T ∗v y)

by auto
have (BT ∗v y ≥ 0 v n) = (0 v n ≤ (1m nr)T ∗v y @v AT ∗v y @v (− A)T ∗v

y) unfolding eq by simp
also have . . . = (((1m nr)T ∗v y) @v (AT ∗v y) @v ((−A)T ∗v y) ≥ 0 v nr

@v 0 v nc @v 0 v nc)
using id0 by (metis eq n-def )

also have . . . = (y ≥ 0 v nr ∧ AT ∗v y ≥ 0 v nc ∧ ((−A)T ∗v y) ≥ 0 v nc)
by (metis Atcarr append-vec-le mult-mat-vec-carrier one-mult-mat-vec trans-

pose-one y zero-carrier-vec)
also have . . . = (y ≥ 0 v nr ∧AT ∗v y ≥ 0 v nc ∧ −(AT ∗v y) ≥ 0 v nc)

by (metis A Atcarr carrier-matD(2 ) carrier-vecD transpose-uminus umi-
nus-mult-mat-vec y)

also have . . . = (y ≥ 0 v nr ∧AT ∗v y ≥ 0 v nc ∧ (AT ∗v y) ≤ 0 v nc)
by (metis (mono-tags, lifting) A Atcarr carrier-matD(2 ) carrier-vecD in-

dex-zero-vec(2 )
mAtcarr mult-mat-vec-carrier transpose-uminus uminus-mult-mat-vec umi-

nus-uminus-vec
vec-le-iff-diff-le-0 y zero-minus-vec)

also have . . . = (y ≥ 0 v nr ∧ AT ∗v y = 0 v nc) by auto
finally show (BT ∗v y ≥ 0 v n) = (y ≥ 0 v nr ∧ AT ∗v y = 0 v nc) .

qed
finally show ?thesis by (auto simp: less-eq-vec-def )

qed

end
end

13 The Theorem of Farkas, Minkowsky and Weyl
We prove the theorem of Farkas, Minkowsky and Weyl that a cone is finitely
generated iff it is polyhedral. Moreover, we provide quantative bounds via
determinant bounds.
theory Farkas-Minkowsky-Weyl

imports Fundamental-Theorem-Linear-Inequalities
begin

context gram-schmidt
begin

We first prove the one direction of the theorem for the case that the span
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of the vectors is the full n-dimensional space.
lemma farkas-minkowsky-weyl-theorem-1-full-dim:

assumes X : X ⊆ carrier-vec n
and fin: finite X
and span: span X = carrier-vec n

shows ∃ nr A. A ∈ carrier-mat nr n ∧ cone X = polyhedral-cone A
∧ (is-det-bound db −→ X ⊆ �v ∩ Bounded-vec (of-int Bnd) −→ A ∈ �m ∩

Bounded-mat (of-int (db (n−1 ) Bnd)))
proof −

define cond where cond = (λ W . Suc (card W ) = n ∧ lin-indpt W ∧ W ⊆ X)
let ?oi = of-int :: int ⇒ ′a
{

fix W
assume cond W
hence ∗: finite W Suc (card W ) = n lin-indpt W W ⊆ carrier-vec n and WX :

W ⊆ X unfolding cond-def
using finite-subset[OF - fin] X by auto

note nv = normal-vector [OF ∗]
hence normal-vector W ∈ carrier-vec n

∧
w. w ∈ W =⇒ normal-vector W ·

w = 0
normal-vector W 6= 0 v n is-det-bound db =⇒ X ⊆ �v ∩ Bounded-vec (?oi

Bnd) =⇒ normal-vector W ∈ �v ∩ Bounded-vec (?oi (db (n − 1 ) Bnd))
using WX by blast+

} note condD = this
define Ns where Ns = { normal-vector W | W . cond W ∧ (∀ w ∈ X . nor-

mal-vector W · w ≥ 0 ) }
∪ { − normal-vector W | W . cond W ∧ (∀ w ∈ X . (− normal-vector W ) ·

w ≥ 0 )}
have Ns ⊆ normal-vector ‘ {W . W ⊆ X} ∪ (λ W . − normal-vector W ) ‘ {W .

W ⊆ X} unfolding Ns-def cond-def by blast
moreover have finite . . . using ‹finite X› by auto
ultimately have finite Ns by (metis finite-subset)
from finite-list[OF this] obtain ns where ns: set ns = Ns by auto
have Ns: Ns ⊆ carrier-vec n unfolding Ns-def using condD by auto
define A where A = mat-of-rows n ns
define nr where nr = length ns
have A: − A ∈ carrier-mat nr n unfolding A-def nr-def by auto
show ?thesis
proof (intro exI conjI impI , rule A)

have not-conj: ¬ (a ∧ b) ←→ (a −→ ¬ b) for a b by auto
have id: Ns = { nv . ∃ W . W ⊆ X ∧ nv ∈ {normal-vector W , − normal-vector

W } ∧
Suc (card W ) = n ∧ lin-indpt W ∧ (∀ ai∈X . 0 ≤ nv · ai)}

unfolding Ns-def cond-def by auto
have polyhedral-cone (− A) = { b. b ∈ carrier-vec n ∧ (− A) ∗v b ≤ 0 v nr}

unfolding polyhedral-cone-def
using A by auto

also have . . . = {b. b ∈ carrier-vec n ∧ (∀ i < nr . row (− A) i · b ≤ 0 )}
unfolding less-eq-vec-def using A by auto
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also have . . . = {b. b ∈ carrier-vec n ∧ (∀ i < nr . − (ns ! i) · b ≤ 0 )} using
A Ns[folded ns]

by (intro Collect-cong conj-cong refl all-cong arg-cong[of - - λ x. x · - ≤ -],
force simp: A-def mat-of-rows-def nr-def set-conv-nth)

also have . . . = {b. b ∈ carrier-vec n ∧ (∀ n ∈ Ns. − n · b ≤ 0 )}
unfolding ns[symmetric] nr-def by (auto simp: set-conv-nth)

also have . . . = {b. b ∈ carrier-vec n ∧ (∀ n ∈ Ns. n · b ≥ 0 )}
by (intro Collect-cong conj-cong refl ball-cong, insert Ns, auto)

also have . . . = cone X
unfolding fundamental-theorem-of-linear-inequalities-full-dim(2 )[OF X fin

span]
by (intro Collect-cong conj-cong refl, unfold not-le[symmetric] not-ex not-conj

not-not id, blast)
finally show cone X = polyhedral-cone (− A) ..
{

assume XI : X ⊆ �v ∩ Bounded-vec (?oi Bnd) and db: is-det-bound db
{

fix v
assume v ∈ set (rows (− A))
hence −v ∈ set (rows A) unfolding rows-def by auto
hence −v ∈ Ns unfolding A-def using ns Ns by auto
from this[unfolded Ns-def ] obtain W where cW : cond W

and v: −v = normal-vector W ∨ v = normal-vector W by auto
from cW [unfolded cond-def ] have WX : W ⊆ X by auto
from v have v: v = normal-vector W ∨ v = − normal-vector W

by (metis uminus-uminus-vec)
from condD(4 )[OF cW db XI ]
have normal-vector W ∈ �v ∩ Bounded-vec (?oi (db (n − 1 ) Bnd)) by

auto
hence v ∈ �v ∩ Bounded-vec (?oi (db (n − 1 ) Bnd)) using v by auto

}
hence set (rows (− A)) ⊆ �v ∩ Bounded-vec (?oi (db (n − 1 ) Bnd)) by blast
thus − A ∈ �m ∩ Bounded-mat (?oi (db (n − 1 ) Bnd)) by simp

}
qed

qed

We next generalize the theorem to the case where X does not span the
full space. To this end, we extend X by unit-vectors until the full space is
spanned, and then add the normal-vectors of these unit-vectors which are
orthogonal to span X as additional constraints to the resulting matrix.
lemma farkas-minkowsky-weyl-theorem-1 :

assumes X : X ⊆ carrier-vec n
and finX : finite X

shows ∃ nr A. A ∈ carrier-mat nr n ∧ cone X = polyhedral-cone A ∧
(is-det-bound db −→ X ⊆ �v ∩ Bounded-vec (of-int Bnd) −→ A ∈ �m ∩

Bounded-mat (of-int (db (n−1 ) (max 1 Bnd))))
proof −

let ?oi = of-int :: int ⇒ ′a
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from exists-lin-indpt-sublist[OF X ]
obtain Ls where lin-Ls: lin-indpt-list Ls and

spanL: span (set Ls) = span X and LX : set Ls ⊆ X by auto
define Ns where Ns = normal-vectors Ls
define Bs where Bs = basis-extension Ls
from basis-extension[OF lin-Ls, folded Bs-def ]
have BU : set Bs ⊆ set (unit-vecs n)

and lin-Ls-Bs: lin-indpt-list (Ls @ Bs)
and len-Ls-Bs: length (Ls @ Bs) = n
by auto

note nv = normal-vectors[OF lin-Ls, folded Ns-def ]
from nv(1−6 ) nv(7 )[of db Bnd]
have N : set Ns ⊆ carrier-vec n

and LN ′: lin-indpt-list (Ls @ Ns) length (Ls @ Ns) = n
and ortho:

∧
l w. l ∈ set Ls =⇒ w ∈ set Ns =⇒ w · l = 0

and Ns-bnd: is-det-bound db =⇒ set Ls ⊆ �v ∩ Bounded-vec (?oi Bnd)
=⇒ set Ns ⊆ �v ∩ Bounded-vec (?oi (db (n−1 ) (max 1 Bnd)))

by auto
from lin-indpt-list-length-eq-n[OF LN ′]
have spanLN : span (set Ls ∪ set Ns) = carrier-vec n by auto
let ?Bnd = Bounded-vec (?oi (db (n−1 ) (max 1 Bnd)))
let ?Bndm = Bounded-mat (?oi (db (n−1 ) (max 1 Bnd)))
define Y where Y = X ∪ set Bs
from lin-Ls-Bs[unfolded lin-indpt-list-def ] have

Ls: set Ls ⊆ carrier-vec n and
Bs: set Bs ⊆ carrier-vec n and
distLsBs: distinct (Ls @ Bs) and
lin ′: lin-indpt (set (Ls @ Bs)) by auto

have LN : set Ls ∩ set Ns = {}
proof (rule ccontr)

assume ¬ ?thesis
then obtain x where xX : x ∈ set Ls and xW : x ∈ set Ns by auto
from ortho[OF xX xW ] have x · x = 0 by auto
hence sq-norm x = 0 by (auto simp: sq-norm-vec-as-cscalar-prod)
with xX LX X have x = 0 v n by auto
with vs-zero-lin-dep[OF - lin ′] Ls Bs xX show False by auto

qed
have Y : Y ⊆ carrier-vec n using X Bs unfolding Y-def by auto
have CLB: carrier-vec n = span (set (Ls @ Bs))

using lin-Ls-Bs len-Ls-Bs lin-indpt-list-length-eq-n by blast
also have . . . ⊆ span Y

by (rule span-is-monotone, insert LX , auto simp: Y-def )
finally have span: span Y = carrier-vec n using Y by auto
have finY : finite Y using finX unfolding Y-def by auto
from farkas-minkowsky-weyl-theorem-1-full-dim[OF Y finY span]
obtain A nr where A: A ∈ carrier-mat nr n and YA: cone Y = polyhedral-cone

A
and Y-Ints: is-det-bound db =⇒ Y ⊆ �v ∩ Bounded-vec (?oi (max 1 Bnd))

=⇒ A ∈ �m ∩ ?Bndm by blast
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have fin: finite ({row A i | i. i < nr} ∪ set Ns ∪ uminus ‘ set Ns) by auto
from finite-list[OF this] obtain rs where rs-def : set rs = {row A i |i. i < nr}
∪ set Ns ∪ uminus ‘ set Ns by auto

from A N have rs: set rs ⊆ carrier-vec n unfolding rs-def by auto
let ?m = length rs
define B where B = mat-of-rows n rs
have B: B ∈ carrier-mat ?m n unfolding B-def by auto
show ?thesis
proof (intro exI conjI impI , rule B)

have id: (∀ r∈{rs ! i |i. i < ?m}. P r) = (∀ r < ?m. P (rs ! r)) for P by auto
have polyhedral-cone B = { x ∈ carrier-vec n. B ∗v x ≤ 0 v ?m} unfolding

polyhedral-cone-def
using B by auto

also have . . . = { x ∈ carrier-vec n. ∀ i < ?m. row B i · x ≤ 0}
unfolding less-eq-vec-def using B by auto
also have . . . = { x ∈ carrier-vec n. ∀ r ∈ set rs. r · x ≤ 0} using rs

unfolding set-conv-nth id
by (intro Collect-cong conj-cong refl all-cong arg-cong[of - - λ x. x · - ≤ 0 ],

auto simp: B-def )
also have . . . = {x ∈ carrier-vec n. ∀ i < nr . row A i · x ≤ 0}

∩ {x ∈ carrier-vec n. ∀ w ∈ set Ns ∪ uminus ‘ set Ns. w · x ≤ 0}
unfolding rs-def by blast

also have {x ∈ carrier-vec n. ∀ i < nr . row A i · x ≤ 0} = polyhedral-cone A
unfolding polyhedral-cone-def using A by (auto simp: less-eq-vec-def )

also have . . . = cone Y unfolding YA ..
also have {x ∈ carrier-vec n. ∀ w ∈ set Ns ∪ uminus ‘ set Ns. w · x ≤ 0}
= {x ∈ carrier-vec n. ∀ w ∈ set Ns. w · x = 0}
(is ?l = ?r)

proof
show ?r ⊆ ?l using N by auto
{

fix x w
assume x ∈ ?l w ∈ set Ns
with N have x: x ∈ carrier-vec n and w: w ∈ carrier-vec n

and one: w · x ≤ 0 and two: (−w) · x ≤ 0 by auto
from two have w · x ≥ 0

by (subst (asm) scalar-prod-uminus-left, insert w x, auto)
with one have w · x = 0 by auto

}
thus ?l ⊆ ?r by blast

qed
finally have polyhedral-cone B = cone Y ∩ {x ∈ carrier-vec n. ∀w∈set Ns. w

· x = 0} .
also have . . . = cone X unfolding Y-def
by (rule orthogonal-cone(1 )[OF X N finX spanLN ortho refl spanL LX lin-Ls-Bs

len-Ls-Bs])
finally show cone X = polyhedral-cone B ..
assume X-I : X ⊆ �v ∩ Bounded-vec (?oi Bnd) and db: is-det-bound db
with LX have set Ls ⊆ �v ∩ Bounded-vec (?oi Bnd) by auto
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from Ns-bnd[OF db this] have N-I-Bnd: set Ns ⊆ �v ∩ ?Bnd by auto
from lin-Ls-Bs have linLs: lin-indpt-list Ls unfolding lin-indpt-list-def

using subset-li-is-li[of - set Ls] by auto
from X-I LX have L-I : set Ls ⊆ �v by auto
have Y-I : Y ⊆ �v ∩ Bounded-vec (?oi (max 1 Bnd)) unfolding Y-def using

X-I order .trans[OF BU unit-vec-int-bounds, of Bnd]
Bounded-vec-mono[of ?oi Bnd ?oi (max 1 Bnd)] by auto

from Y-Ints[OF db Y-I ]
have A-I-Bnd: set (rows A) ⊆ �v ∩ ?Bnd by auto
have set (rows B) = set (rows (mat-of-rows n rs)) unfolding B-def by auto
also have . . . = set rs using rs by auto
also have . . . = set (rows A) ∪ set Ns ∪ uminus ‘ set Ns unfolding rs-def

rows-def using A by auto
also have . . . ⊆ �v ∩ ?Bnd using A-I-Bnd N-I-Bnd by auto
finally show B ∈ �m ∩ ?Bndm by simp

qed
qed

Now for the other direction.
lemma farkas-minkowsky-weyl-theorem-2 :

assumes A: A ∈ carrier-mat nr n
shows ∃ X . X ⊆ carrier-vec n ∧ finite X ∧ polyhedral-cone A = cone X
∧ (is-det-bound db −→ A ∈ �m ∩ Bounded-mat (of-int Bnd) −→ X ⊆ �v ∩

Bounded-vec (of-int (db (n−1 ) (max 1 Bnd))))
proof −

let ?oi = of-int :: int ⇒ ′a
let ?rows-A = {row A i | i. i < nr}
let ?Bnd = Bounded-vec (?oi (db (n−1 ) (max 1 Bnd)))
have rows-A-n: ?rows-A ⊆ carrier-vec n using row-carrier-vec A by auto
hence ∃ mr B. B ∈ carrier-mat mr n ∧ cone ?rows-A = polyhedral-cone B
∧ (is-det-bound db −→ ?rows-A ⊆ �v ∩ Bounded-vec (?oi Bnd) −→ set (rows

B) ⊆ �v ∩ ?Bnd)
using farkas-minkowsky-weyl-theorem-1 [of ?rows-A] by auto

then obtain mr B
where mr : B ∈ carrier-mat mr n and B: cone ?rows-A = polyhedral-cone B

and Bnd: is-det-bound db =⇒ ?rows-A ⊆ �v ∩ Bounded-vec (?oi Bnd) =⇒
set (rows B) ⊆ �v ∩ ?Bnd

by blast
let ?rows-B = {row B i | i. i < mr}
have rows-B: ?rows-B ⊆ carrier-vec n using mr by auto
have cone ?rows-B = polyhedral-cone A
proof

have ?rows-B ⊆ polyhedral-cone A
proof

fix r
assume r ∈ ?rows-B
then obtain j where r : r = row B j and j: j < mr by auto
then have rn: r ∈ carrier-vec n using mr row-carrier by auto
moreover have A ∗v r ≤ 0 v nr unfolding less-eq-vec-def
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proof (standard, unfold index-zero-vec)
show dim-vec (A ∗v r) = nr using A by auto

next
show ∀ i< nr . (A ∗v r) $ i ≤ 0 v nr $ i
proof (standard, rule impI )

fix i
assume i: i < nr
then have row A i ∈ ?rows-A by auto
then have row A i ∈ cone ?rows-A

using set-in-cone rows-A-n by blast
then have row A i ∈ polyhedral-cone B using B by auto
then have Br : B ∗v (row A i) ≤ 0 v mr

unfolding polyhedral-cone-def using rows-A-n mr by auto

then have (A ∗v r) $ i = (row A i) · r using A i index-mult-mat-vec by
auto

also have . . . = r · (row A i)
using comm-scalar-prod[OF - rn] row-carrier A by auto

also have . . . = (row B j) · (row A i) using r by auto
also have . . . = (B ∗v (row A i)) $ j using index-mult-mat-vec mr j by

auto
also have . . . ≤ 0 using Br j unfolding less-eq-vec-def by auto
also have . . . = 0 v nr $ i using i by auto
finally show (A ∗v r) $ i ≤ 0 v nr $ i by auto

qed
qed
then show r ∈ polyhedral-cone A

unfolding polyhedral-cone-def
using A rn by auto

qed
then show cone ?rows-B ⊆ polyhedral-cone A

using cone-in-polyhedral-cone A by auto

next

show polyhedral-cone A ⊆ cone ?rows-B
proof (rule ccontr)

assume ¬ polyhedral-cone A ⊆ cone ?rows-B
then obtain y where yA: y ∈ polyhedral-cone A

and yB: y /∈ cone ?rows-B by auto
then have yn: y ∈ carrier-vec n unfolding polyhedral-cone-def by auto
have finRB: finite ?rows-B by auto
from farkas-minkowsky-weyl-theorem-1 [OF rows-B finRB]
obtain nr ′ A ′ where A ′: A ′ ∈ carrier-mat nr ′ n and cone: cone ?rows-B =

polyhedral-cone A ′

by blast
from yB[unfolded cone polyhedral-cone-def ] yn A ′

have ¬ (A ′ ∗v y ≤ 0 v nr ′) by auto
then obtain i where i: i < nr ′ and row A ′ i · y > 0
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unfolding less-eq-vec-def using A ′ yn by auto
define w where w = row A ′ i
have w: w ∈ carrier-vec n using i A ′ yn unfolding w-def by auto
from ‹row A ′ i · y > 0 › comm-scalar-prod[OF w yn] have wy: w · y > 0 y ·

w > 0 unfolding w-def by auto
{

fix b
assume b ∈ ?rows-B
hence b ∈ cone ?rows-B using set-in-cone[OF rows-B] by auto
from this[unfolded cone polyhedral-cone-def ] A ′

have b: b ∈ carrier-vec n and A ′ ∗v b ≤ 0 v nr ′ by auto
from this(2 )[unfolded less-eq-vec-def , THEN conjunct2 , rule-format, of i]
have w · b ≤ 0 unfolding w-def using i A ′ by auto
hence b · w ≤ 0 using comm-scalar-prod[OF b w] by auto

}
hence wA: w ∈ cone ?rows-A unfolding B polyhedral-cone-def using mr w

by (auto simp: less-eq-vec-def )
from wy have yw: −y · w < 0

by (subst scalar-prod-uminus-left, insert yn w, auto)
have ?rows-A ⊆ carrier-vec n finite ?rows-A using assms by auto

from fundamental-theorem-of-linear-inequalities-A-imp-D[OF this wA, un-
folded not-ex,

rule-format, of −y ] yn yw
obtain i where i: i < nr and − y · row A i < 0 by auto

hence y · row A i > 0 by (subst (asm) scalar-prod-uminus-left, insert i assms
yn, auto)

hence row A i · y > 0 using comm-scalar-prod[OF - yn, of row A i] i assms
yn by auto

with yA show False unfolding polyhedral-cone-def less-eq-vec-def using i
assms by auto

qed
qed
moreover have ?rows-B ⊆ carrier-vec n

using row-carrier-vec mr by auto
moreover have finite ?rows-B by auto
moreover {

have rA: set (rows A) = ?rows-A using A unfolding rows-def by auto
have rB: set (rows B) = ?rows-B using mr unfolding rows-def by auto
assume A ∈ �m ∩ Bounded-mat (?oi Bnd) and db: is-det-bound db
hence set (rows A) ⊆ �v ∩ Bounded-vec (?oi Bnd) by simp
from Bnd[OF db this[unfolded rA]]
have ?rows-B ⊆ �v ∩ ?Bnd unfolding rA rB .

}
ultimately show ?thesis by blast

qed

lemma farkas-minkowsky-weyl-theorem:
(∃ X . X ⊆ carrier-vec n ∧ finite X ∧ P = cone X)
←→ (∃ A nr . A ∈ carrier-mat nr n ∧ P = polyhedral-cone A)
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using farkas-minkowsky-weyl-theorem-1 farkas-minkowsky-weyl-theorem-2 by metis
end
end

14 The Decomposition Theorem
This theory contains a proof of the fact, that every polyhedron can be de-
composed into a convex hull of a finite set of points + a finitely generated
cone, including bounds on the numbers that are required in the decom-
position. We further prove the inverse direction of this theorem (without
bounds) and as a corollary, we derive that a polyhedron is bounded iff it is
the convex hull of finitely many points, i.e., a polytope.
theory Decomposition-Theorem

imports
Farkas-Minkowsky-Weyl
Convex-Hull

begin

context gram-schmidt
begin

definition polytope P = (∃ V . V ⊆ carrier-vec n ∧ finite V ∧ P = convex-hull
V )

definition polyhedron A b = {x ∈ carrier-vec n. A ∗v x ≤ b}

lemma polyhedra-are-convex:
assumes A: A ∈ carrier-mat nr n

and b: b ∈ carrier-vec nr
and P: P = polyhedron A b

shows convex P
proof (intro convexI )

show Pcarr : P ⊆ carrier-vec n using assms unfolding polyhedron-def by auto
fix a :: ′a and x y
assume xy: x ∈ P y ∈ P and a: 0 ≤ a a ≤ 1
from xy[unfolded P polyhedron-def ]
have x: x ∈ carrier-vec n and y: y ∈ carrier-vec n and le: A ∗v x ≤ b A ∗v y
≤ b by auto

show a ·v x + (1 − a) ·v y ∈ P unfolding P polyhedron-def
proof (intro CollectI conjI )

from x have ax: a ·v x ∈ carrier-vec n by auto
from y have ay: (1 − a) ·v y ∈ carrier-vec n by auto
show a ·v x + (1 − a) ·v y ∈ carrier-vec n using ax ay by auto
show A ∗v (a ·v x + (1 − a) ·v y) ≤ b
proof (intro lesseq-vecI [OF - b])

show A ∗v (a ·v x + (1 − a) ·v y) ∈ carrier-vec nr using A x y by auto
fix i
assume i: i < nr
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from lesseq-vecD[OF b le(1 ) i] lesseq-vecD[OF b le(2 ) i]
have le: (A ∗v x) $ i ≤ b $ i (A ∗v y) $ i ≤ b $ i by auto
have (A ∗v (a ·v x + (1 − a) ·v y)) $ i = a ∗ (A ∗v x) $ i + (1 − a) ∗ (A

∗v y) $ i
using A x y i by (auto simp: scalar-prod-add-distrib[of - n])

also have . . . ≤ a ∗ b $ i + (1 − a) ∗ b $ i
by (rule add-mono; rule mult-left-mono, insert le a, auto)

also have . . . = b $ i by (auto simp: field-simps)
finally show (A ∗v (a ·v x + (1 − a) ·v y)) $ i ≤ b $ i .

qed
qed

qed

end

locale gram-schmidt-m = n: gram-schmidt n f-ty + m: gram-schmidt m f-ty
for n m :: nat and f-ty

begin

lemma vec-first-lincomb-list:
assumes Xs: set Xs ⊆ carrier-vec n

and nm: m ≤ n
shows vec-first (n.lincomb-list c Xs) m =

m.lincomb-list c (map (λ v. vec-first v m) Xs)
using Xs

proof (induction Xs arbitrary: c)
case Nil
show ?case by (simp add: nm)

next
case (Cons x Xs)
from Cons.prems have x: x ∈ carrier-vec n and Xs: set Xs ⊆ carrier-vec n by

auto

have vec-first (n.lincomb-list c (x # Xs)) m =
vec-first (c 0 ·v x + n.lincomb-list (c ◦ Suc) Xs) m by auto

also have . . . = vec-first (c 0 ·v x) m + vec-first (n.lincomb-list (c ◦ Suc) Xs)
m

using vec-first-add[of m c 0 ·v x] x n.lincomb-list-carrier [OF Xs, of c ◦ Suc]
nm

by simp
also have vec-first (c 0 ·v x) m = c 0 ·v vec-first x m

using vec-first-smult[OF nm, of x c 0 ] Cons.prems by auto
also have vec-first (n.lincomb-list (c ◦ Suc) Xs) m =

m.lincomb-list (c ◦ Suc) (map (λ v. vec-first v m) Xs)
using Cons by simp

also have c 0 ·v vec-first x m + . . . =
m.lincomb-list c (map (λ v. vec-first v m) (x # Xs))
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by simp
finally show ?case by auto

qed

lemma convex-hull-next-dim:
assumes n = m + 1

and X : X ⊆ carrier-vec n
and finite X
and Xm1 : ∀ y ∈ X . y $ m = 1
and y-dim: y ∈ carrier-vec n
and y: y $ m = 1

shows (vec-first y m ∈ m.convex-hull {vec-first y m | y. y ∈ X}) = (y ∈ n.cone
X)
proof −

from ‹finite X› obtain Xs where Xs: X = set Xs using finite-list by auto
let ?Y = {vec-first y m | y. y ∈ X}
let ?Ys = map (λ y. vec-first y m) Xs
have Ys: ?Y = set ?Ys using Xs by auto

define x where x = vec-first y m
{

have y = vec-first y m @v vec-last y 1
using ‹n = m + 1 › vec-first-last-append y-dim by auto

also have vec-last y 1 = vec-of-scal (vec-last y 1 $ 0 )
using vec-of-scal-dim-1 [of vec-last y 1 ] by simp

also have vec-last y 1 $ 0 = y $ m
using y-dim ‹n = m + 1 › vec-last-index[of y m 1 0 ] by auto

finally have y = x @v vec-of-scal 1 unfolding x-def using y by simp
} note xy = this
{

assume y ∈ n.cone X
then obtain c where x: n.nonneg-lincomb c X y

using n.cone-iff-finite-cone[OF X ] ‹finite X›
unfolding n.finite-cone-def by auto

have 1 = y $ m by (simp add: y)
also have y = n.lincomb c X

using x unfolding n.nonneg-lincomb-def by simp
also have . . . $ m = (

∑
x∈X . c x ∗ x $ m)

using n.lincomb-index[OF - X ] ‹n = m + 1 › by simp
also have . . . = sum c X

by (rule n.R.finsum-restrict, auto, rule restrict-ext, simp add: Xm1 )
finally have y ∈ n.convex-hull X

unfolding n.convex-hull-def n.convex-lincomb-def
using ‹finite X› x by auto

}
moreover have n.convex-hull X ⊆ n.cone X

unfolding n.convex-hull-def n.convex-lincomb-def n.finite-cone-def n.cone-def
using ‹finite X› by auto
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moreover have n.convex-hull X = n.convex-hull-list Xs
by (rule n.finite-convex-hull-iff-convex-hull-list[OF X Xs])

moreover {
assume y ∈ n.convex-hull-list Xs
then obtain c where c: n.lincomb-list c Xs = y

and c0 : ∀ i < length Xs. c i ≥ 0 and c1 : sum c {0 ..<length Xs} = 1
unfolding n.convex-hull-list-def n.convex-lincomb-list-def

n.nonneg-lincomb-list-def by fast
have m.lincomb-list c ?Ys = vec-first y m

using c vec-first-lincomb-list[of Xs c] X Xs ‹n = m + 1 › by simp
hence x ∈ m.convex-hull-list ?Ys

unfolding m.convex-hull-list-def m.convex-lincomb-list-def
m.nonneg-lincomb-list-def

using x-def c0 c1 x-def by auto
} moreover {

assume x ∈ m.convex-hull-list ?Ys
then obtain c where x: m.lincomb-list c ?Ys = x

and c0 : ∀ i < length Xs. c i ≥ 0
and c1 : sum c {0 ..<length Xs} = 1
unfolding m.convex-hull-list-def m.convex-lincomb-list-def

m.nonneg-lincomb-list-def by auto

have n.lincomb-list c Xs $ m = (
∑

j = 0 ..<length Xs. c j ∗ Xs ! j $ m)
using n.lincomb-list-index[of m Xs c] ‹n = m + 1 › Xs X by fastforce

also have . . . = sum c {0 ..<length Xs}
apply(rule n.R.finsum-restrict, auto, rule restrict-ext)
by (simp add: Xm1 Xs)

also have . . . = 1 by (rule c1 )
finally have vec-last (n.lincomb-list c Xs) 1 $ 0 = 1

using vec-of-scal-dim-1 vec-last-index[of n.lincomb-list c Xs m 1 0 ]
n.lincomb-list-carrier Xs X ‹n = m + 1 › by simp

hence vec-last (n.lincomb-list c Xs) 1 = vec-of-scal 1
using vec-of-scal-dim-1 by auto

moreover have vec-first (n.lincomb-list c Xs) m = x
using vec-first-lincomb-list ‹n = m + 1 › Xs X x by auto

moreover have n.lincomb-list c Xs =
vec-first (n.lincomb-list c Xs) m @v vec-last (n.lincomb-list c Xs) 1

using vec-first-last-append Xs X n.lincomb-list-carrier ‹n = m + 1 › by auto

ultimately have n.lincomb-list c Xs = y using xy by simp

hence y ∈ n.convex-hull-list Xs
unfolding n.convex-hull-list-def n.convex-lincomb-list-def

n.nonneg-lincomb-list-def using c0 c1 by blast
}
moreover have m.convex-hull ?Y = m.convex-hull-list ?Ys

using m.finite-convex-hull-iff-convex-hull-list[OF - Ys] by fastforce
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ultimately show ?thesis unfolding x-def by blast
qed

lemma cone-next-dim:
assumes n = m + 1

and X : X ⊆ carrier-vec n
and finite X
and Xm0 : ∀ y ∈ X . y $ m = 0
and y-dim: y ∈ carrier-vec n
and y: y $ m = 0

shows (vec-first y m ∈ m.cone {vec-first y m | y. y ∈ X}) = (y ∈ n.cone X)
proof −

from ‹finite X› obtain Xs where Xs: X = set Xs using finite-list by auto
let ?Y = {vec-first y m | y. y ∈ X}
let ?Ys = map (λ y. vec-first y m) Xs
have Ys: ?Y = set ?Ys using Xs by auto

define x where x = vec-first y m
{

have y = vec-first y m @v vec-last y 1
using ‹n = m + 1 › vec-first-last-append y-dim by auto

also have vec-last y 1 = vec-of-scal (vec-last y 1 $ 0 )
using vec-of-scal-dim-1 [of vec-last y 1 ] by simp

also have vec-last y 1 $ 0 = y $ m
using y-dim ‹n = m + 1 › vec-last-index[of y m 1 0 ] by auto

finally have y = x @v vec-of-scal 0 unfolding x-def using y by simp
} note xy = this

have n.cone X = n.cone-list Xs
using n.cone-iff-finite-cone[OF X ‹finite X›] n.finite-cone-iff-cone-list[OF X

Xs]
by simp

moreover {
assume y ∈ n.cone-list Xs
then obtain c where y: n.lincomb-list c Xs = y and c: ∀ i < length Xs. c i

≥ 0
unfolding n.cone-list-def n.nonneg-lincomb-list-def by blast

from y have m.lincomb-list c ?Ys = x
unfolding x-def
using vec-first-lincomb-list Xs X ‹n = m + 1 › by auto

hence x ∈ m.cone-list ?Ys using c
unfolding m.cone-list-def m.nonneg-lincomb-list-def by auto

} moreover {
assume x ∈ m.cone-list ?Ys
then obtain c where x: m.lincomb-list c ?Ys = x and c: ∀ i < length Xs. c

i ≥ 0
unfolding m.cone-list-def m.nonneg-lincomb-list-def by auto

have vec-last (n.lincomb-list c Xs) 1 $ 0 = n.lincomb-list c Xs $ m
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using ‹n = m + 1 › n.lincomb-list-carrier X Xs vec-last-index[of - m 1 0 ]
by auto

also have . . . = 0
using n.lincomb-list-index[of m Xs c] Xs X ‹n = m + 1 › Xm0 by simp

also have . . . = vec-last y 1 $ 0
using y y-dim ‹n = m + 1 › vec-last-index[of y m 1 0 ] by auto

finally have vec-last (n.lincomb-list c Xs) 1 = vec-last y 1 by fastforce

moreover have vec-first (n.lincomb-list c Xs) m = x
using vec-first-lincomb-list[of Xs c] x X Xs ‹n = m + 1 ›
unfolding x-def by simp

ultimately have n.lincomb-list c Xs = y unfolding x-def
using vec-first-last-append[of - m 1 ] ‹n = m + 1 › y-dim

n.lincomb-list-carrier [of Xs c] Xs X
by metis

hence y ∈ n.cone-list Xs
unfolding n.cone-list-def n.nonneg-lincomb-list-def using c by blast

}
moreover have m.cone-list ?Ys = m.cone ?Y

using m.finite-cone-iff-cone-list[OF - Ys] m.cone-iff-finite-cone[of ?Y ]
‹finite X› by force

ultimately show ?thesis unfolding x-def by blast
qed

end

context gram-schmidt
begin

lemma decomposition-theorem-polyhedra-1 :
assumes A: A ∈ carrier-mat nr n

and b: b ∈ carrier-vec nr
and P: P = polyhedron A b

shows ∃ Q X . X ⊆ carrier-vec n ∧ finite X ∧
Q ⊆ carrier-vec n ∧ finite Q ∧
P = convex-hull Q + cone X ∧
(is-det-bound db −→ A ∈ �m ∩ Bounded-mat (of-int Bnd) −→ b ∈ �v ∩

Bounded-vec (of-int Bnd) −→
X ⊆ �v ∩ Bounded-vec (of-int (db n (max 1 Bnd)))
∧ Q ⊆ Bounded-vec (of-int (db n (max 1 Bnd))))

proof −
let ?oi = of-int :: int ⇒ ′a

interpret next-dim: gram-schmidt n + 1 TYPE ( ′a).
interpret gram-schmidt-m n + 1 n TYPE( ′a).

from P[unfolded polyhedron-def ] have P ⊆ carrier-vec n by auto
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have mcb: mat-of-col (−b) ∈ carrier-mat nr 1 using b by auto
define M where M = (A @c mat-of-col (−b)) @r (0m 1 n @c −1m 1 )
have M-top: A @c mat-of-col (− b) ∈ carrier-mat nr (n + 1 )

by (rule carrier-append-cols[OF A mcb])
have M-bottom: (0m 1 n @c −1m 1 ) ∈ carrier-mat 1 (n + 1 )

by (rule carrier-append-cols, auto)
have M-dim: M ∈ carrier-mat (nr + 1 ) (n + 1 )

unfolding M-def
by (rule carrier-append-rows[OF M-top M-bottom])

{
fix x :: ′a vec fix t assume x: x ∈ carrier-vec n
have x @v vec-of-scal t ∈ next-dim.polyhedral-cone M =

(A ∗v x − t ·v b ≤ 0 v nr ∧ t ≥ 0 )
proof −

let ?y = x @v vec-of-scal t
have y: ?y ∈ carrier-vec (n + 1 ) using x by(simp del: One-nat-def )
have ?y ∈ next-dim.polyhedral-cone M =

(M ∗v ?y ≤ 0 v (nr + 1 ))
unfolding next-dim.polyhedral-cone-def using y M-dim by auto

also have 0 v (nr + 1 ) = 0 v nr @v 0 v 1 by auto
also have M ∗v ?y ≤ 0 v nr @v 0 v 1 =

((A @c mat-of-col (−b)) ∗v ?y ≤ 0 v nr ∧
(0m 1 n @c −1m 1 ) ∗v ?y ≤ 0 v 1 )

unfolding M-def
by (intro append-rows-le[OF M-top M-bottom - y], auto)

also have (A @c mat-of-col(−b)) ∗v ?y =
A ∗v x + mat-of-col(−b) ∗v vec-of-scal t

by (rule mat-mult-append-cols[OF A - x],
auto simp add: b simp del: One-nat-def )

also have mat-of-col(−b) ∗v vec-of-scal t = t ·v (−b)
by(rule mult-mat-of-row-vec-of-scal)

also have A ∗v x + t ·v (−b) = A ∗v x − t ·v b by auto
also have (0m 1 n @c − 1m 1 ) ∗v (x @v vec-of-scal t) =

0m 1 n ∗v x + − 1m 1 ∗v vec-of-scal t
by(rule mat-mult-append-cols, auto simp add: x simp del: One-nat-def )

also have . . . = − vec-of-scal t using x by (auto simp del: One-nat-def )
also have (. . . ≤ 0 v 1 ) = (t ≥ 0 ) unfolding less-eq-vec-def by auto
finally show (?y ∈ next-dim.polyhedral-cone M ) =

(A ∗v x − t ·v b ≤ 0 v nr ∧ t ≥ 0 ) by auto
qed

} note M-cone-car = this
from next-dim.farkas-minkowsky-weyl-theorem-2 [OF M-dim, of db max 1 Bnd]
obtain X where X : next-dim.polyhedral-cone M = next-dim.cone X and

fin-X : finite X and X-carrier : X ⊆ carrier-vec (n+1 )
and Bnd: is-det-bound db =⇒ M ∈ �m ∩ Bounded-mat (?oi (max 1 Bnd)) =⇒

X ⊆ �v ∩ Bounded-vec (?oi (db n (max 1 Bnd)))
by auto

let ?f = λ x. if x $ n = 0 then 1 else 1 / (x $ n)
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define Y where Y = {?f x ·v x | x. x ∈ X}
have finite Y unfolding Y-def using fin-X by auto
have Y-carrier : Y ⊆ carrier-vec (n+1 ) unfolding Y-def using X-carrier by

auto
have ?f ‘ X ⊆ {y. y > 0}
proof

fix y
assume y ∈ ?f ‘ X
then obtain x where x: x ∈ X and y: y = ?f x by auto
show y ∈ {y. y > 0}
proof cases

assume x $ n = 0
thus y ∈ {y. y > 0} using y by auto

next
assume P: x $ n 6= 0
have x = vec-first x n @v vec-last x 1

using x X-carrier vec-first-last-append by auto
also have vec-last x 1 = vec-of-scal (vec-last x 1 $ 0 ) by auto
also have vec-last x 1 $ 0 = x $ n

using x X-carrier unfolding vec-last-def by auto
finally have x = vec-first x n @v vec-of-scal (x $ n) by auto
moreover have x ∈ next-dim.polyhedral-cone M

using x X X-carrier next-dim.set-in-cone by auto
ultimately have x $ n ≥ 0 using M-cone-car vec-first-carrier by metis
hence x $ n > 0 using P by auto
thus y ∈ {y. y > 0} using y by auto

qed
qed
hence Y : next-dim.cone Y = next-dim.polyhedral-cone M unfolding Y-def

using next-dim.cone-smult-basis[OF X-carrier ] X by auto
define Y0 where Y0 = {v ∈ Y . v $ n = 0}
define Y1 where Y1 = Y − Y0
have Y0-carrier : Y0 ⊆ carrier-vec (n + 1 ) and Y1-carrier : Y1 ⊆ carrier-vec

(n + 1 )
unfolding Y0-def Y1-def using Y-carrier by auto

have finite Y0 and finite Y1
unfolding Y0-def Y1-def using ‹finite Y › by auto

have Y1 :
∧

y. y ∈ Y1 =⇒ y $ n = 1
proof −

fix y assume y: y ∈ Y1
hence y ∈ Y unfolding Y1-def by auto
then obtain x where x ∈ X and x: y = ?f x ·v x unfolding Y-def by auto
then have x $ n 6= 0 using x y Y1-def Y0-def by auto
then have y = 1 / (x $ n) ·v x using x by auto
then have y $ n = 1 / (x $ n) ∗ x $ n using X-carrier ‹x ∈ X› by auto
thus y $ n = 1 using ‹x $ n 6= 0 › by auto

qed
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let ?Z0 = {vec-first y n | y. y ∈ Y0}
let ?Z1 = {vec-first y n | y. y ∈ Y1}
show ?thesis
proof (intro exI conjI impI )

show ?Z0 ⊆ carrier-vec n by auto
show ?Z1 ⊆ carrier-vec n by auto
show finite ?Z0 using ‹finite Y0 › by auto
show finite ?Z1 using ‹finite Y1 › by auto
show P = convex-hull ?Z1 + cone ?Z0
proof −

{
fix x
assume x ∈ P
hence xn: x ∈ carrier-vec n and A ∗v x ≤ b

using P unfolding polyhedron-def by auto
hence A ∗v x − 1 ·v b ≤ 0 v nr
using vec-le-iff-diff-le-0 A b carrier-vecD mult-mat-vec-carrier one-smult-vec

by metis
hence x @v vec-of-scal 1 ∈ next-dim.polyhedral-cone M

using M-cone-car [OF xn] by auto
hence x @v vec-of-scal 1 ∈ next-dim.cone Y using Y by auto
hence x @v vec-of-scal 1 ∈ next-dim.finite-cone Y

using next-dim.cone-iff-finite-cone[OF Y-carrier ‹finite Y ›] by auto
then obtain c where c: next-dim.nonneg-lincomb c Y (x @v vec-of-scal 1 )

unfolding next-dim.finite-cone-def using ‹finite Y › by auto
let ?y = next-dim.lincomb c Y1
let ?z = next-dim.lincomb c Y0
have y-dim: ?y ∈ carrier-vec (n + 1 ) and z-dim: ?z ∈ carrier-vec (n + 1 )

unfolding next-dim.nonneg-lincomb-def
using Y0-carrier Y1-carrier next-dim.lincomb-closed by simp-all

hence yz-dim: ?y + ?z ∈ carrier-vec (n + 1 ) by auto
have x @v vec-of-scal 1 = next-dim.lincomb c Y

using c unfolding next-dim.nonneg-lincomb-def by auto
also have Y = Y1 ∪ Y0 unfolding Y1-def using Y0-def by blast
also have next-dim.lincomb c (Y1 ∪ Y0 ) = ?y + ?z

using next-dim.lincomb-union2 [of Y1 Y0 ]
‹finite Y0 › ‹finite Y › Y0-carrier Y-carrier

unfolding Y1-def by fastforce
also have ?y + ?z = vec-first (?y + ?z) n @v vec-last (?y + ?z) 1

using vec-first-last-append[of ?y + ?z n 1 ] add-carrier-vec yz-dim
by simp

also have vec-last (?y + ?z) 1 = vec-of-scal ((?y + ?z) $ n)
using vec-of-scal-dim-1 vec-last-index[OF yz-dim, of 0 ] by auto

finally have x @v vec-of-scal 1 =
vec-first (?y + ?z) n @v vec-of-scal ((?y + ?z) $ n) by auto

hence x = vec-first (?y + ?z) n and
yz-last: vec-of-scal 1 = vec-of-scal ((?y + ?z) $ n)
using append-vec-eq yz-dim xn by auto

hence xyz: x = vec-first ?y n + vec-first ?z n
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using vec-first-add[of n ?y ?z] y-dim z-dim by simp

have 1 = ((?y + ?z) $ n) using yz-last index-vec-of-scal
by (metis (no-types, lifting))

hence 1 = ?y $ n + ?z $ n using y-dim z-dim by auto
moreover have zn0 : ?z $ n = 0

using next-dim.lincomb-index[OF - Y0-carrier ] Y0-def by auto
ultimately have yn1 : 1 = ?y $ n by auto
have next-dim.nonneg-lincomb c Y1 ?y

using c Y1-def
unfolding next-dim.nonneg-lincomb-def by auto

hence ?y ∈ next-dim.cone Y1
using next-dim.cone-iff-finite-cone[OF Y1-carrier ] ‹finite Y1 ›
unfolding next-dim.finite-cone-def by auto

hence y: vec-first ?y n ∈ convex-hull ?Z1
using convex-hull-next-dim[OF - Y1-carrier ‹finite Y1 › - y-dim] Y1 yn1
by simp

have next-dim.nonneg-lincomb c Y0 ?z using c Y0-def
unfolding next-dim.nonneg-lincomb-def by blast

hence ?z ∈ next-dim.cone Y0
using ‹finite Y0 › next-dim.cone-iff-finite-cone[OF Y0-carrier ‹finite Y0 ›]
unfolding next-dim.finite-cone-def
by fastforce

hence z: vec-first ?z n ∈ cone ?Z0
using cone-next-dim[OF - Y0-carrier ‹finite Y0 › - - zn0 ] Y0-def

next-dim.lincomb-closed[OF Y0-carrier ] by blast

from xyz y z have x ∈ convex-hull ?Z1 + cone ?Z0 by blast
} moreover {

fix x
assume x ∈ convex-hull ?Z1 + cone ?Z0
then obtain y z where x = y + z and y: y ∈ convex-hull ?Z1

and z: z ∈ cone ?Z0 by (auto elim: set-plus-elim)

have yn: y ∈ carrier-vec n
using y convex-hull-carrier [OF ‹?Z1 ⊆ carrier-vec n›] by blast

hence y @v vec-of-scal 1 ∈ carrier-vec (n + 1 )
using vec-of-scal-dim(2 ) by fast

moreover have vec-first (y @v vec-of-scal 1 ) n ∈ convex-hull ?Z1
using vec-first-append[OF yn] y by auto

moreover have (y @v vec-of-scal 1 ) $ n = 1 using yn by simp
ultimately have y @v vec-of-scal 1 ∈ next-dim.cone Y1

using convex-hull-next-dim[OF - Y1-carrier ‹finite Y1 ›] Y1 by blast
hence y-cone: y @v vec-of-scal 1 ∈ next-dim.cone Y

using next-dim.cone-mono[of Y1 Y ] Y1-def by blast

have zn: z ∈ carrier-vec n using z cone-carrier [of ?Z0 ] by fastforce
hence z @v vec-of-scal 0 ∈ carrier-vec (n + 1 )
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using vec-of-scal-dim(2 ) by fast
moreover have vec-first (z @v vec-of-scal 0 ) n ∈ cone ?Z0

using vec-first-append[OF zn] z by auto
moreover have (z @v vec-of-scal 0 ) $ n = 0 using zn by simp
ultimately have z @v vec-of-scal 0 ∈ next-dim.cone Y0

using cone-next-dim[OF - Y0-carrier ‹finite Y0 ›] Y0-def by blast
hence z-cone: z @v vec-of-scal 0 ∈ next-dim.cone Y

using Y0-def next-dim.cone-mono[of Y0 Y ] by blast

have xn: x ∈ carrier-vec n using ‹x = y + z› yn zn by blast
have x @v vec-of-scal 1 = (y @v vec-of-scal 1 ) + (z @v vec-of-scal 0 )

using ‹x = y + z› append-vec-add[OF yn zn]
unfolding vec-of-scal-def by auto

hence x @v vec-of-scal 1 ∈ next-dim.cone Y
using next-dim.cone-elem-sum[OF Y-carrier y-cone z-cone] by simp

hence A ∗v x − b ≤ 0 v nr using M-cone-car [OF xn] Y by simp
hence A ∗v x ≤ b using vec-le-iff-diff-le-0 [of A ∗v x b]

dim-mult-mat-vec[of A x] A by simp
hence x ∈ P using P xn unfolding polyhedron-def by blast

}
ultimately show P = convex-hull ?Z1 + cone ?Z0 by blast

qed

let ?Bnd = db n (max 1 Bnd)
assume A ∈ �m ∩ Bounded-mat (?oi Bnd)

b ∈ �v ∩ Bounded-vec (?oi Bnd)
and db: is-det-bound db

hence ∗: A ∈ �m A ∈ Bounded-mat (?oi Bnd) b ∈ �v b ∈ Bounded-vec (?oi
Bnd) by auto

have elements-mat M ⊆ elements-mat A ∪ vec-set (−b) ∪ {0 ,−1}
unfolding M-def
unfolding elements-mat-append-rows[OF M-top M-bottom]
unfolding elements-mat-append-cols[OF A mcb]
by (subst elements-mat-append-cols, auto)

also have . . . ⊆ � ∩ ({x. abs x ≤ ?oi Bnd} ∪ {0 ,−1})
using ∗[unfolded Bounded-mat-elements-mat Ints-mat-elements-mat

Bounded-vec-vec-set Ints-vec-vec-set] by auto
also have . . . ⊆ � ∩ ({x. abs x ≤ ?oi (max 1 Bnd)}) by (auto simp: of-int-max)
finally have M ∈ �m M ∈ Bounded-mat (?oi (max 1 Bnd))

unfolding Bounded-mat-elements-mat Ints-mat-elements-mat by auto
hence M ∈ �m ∩ Bounded-mat (?oi (max 1 Bnd)) by blast
from Bnd[OF db this]
have XBnd: X ⊆ �v ∩ Bounded-vec (?oi ?Bnd) .
{

fix y
assume y: y ∈ Y
then obtain x where y: y = ?f x ·v x and xX : x ∈ X unfolding Y-def by

auto
with ‹X ⊆ carrier-vec (n+1 )› have x: x ∈ carrier-vec (n+1 ) by auto
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from XBnd xX have xI : x ∈ �v and xB: x ∈ Bounded-vec (?oi ?Bnd) by
auto

{
assume y $ n = 0
hence y = x unfolding y using x by auto
hence y ∈ �v ∩ Bounded-vec (?oi ?Bnd) using xI xB by auto

} note y0 = this
{

assume y $ n 6= 0
hence x0 : x $ n 6= 0 using x unfolding y by auto
from x xI have x $ n ∈ � unfolding Ints-vec-def by auto
with x0 have abs (x $ n) ≥ 1 by (meson Ints-nonzero-abs-ge1 )
hence abs: abs (1 / (x $ n)) ≤ 1 by simp
{

fix a
have abs ((1 / (x $ n)) ∗ a) = abs (1 / (x $ n)) ∗ abs a

by simp
also have . . . ≤ 1 ∗ abs a

by (rule mult-right-mono[OF abs], auto)
finally have abs ((1 / (x $ n)) ∗ a) ≤ abs a by auto

} note abs = this
from x0 have y: y = (1 / (x $ n)) ·v x unfolding y by auto
have vy: vec-set y = (λ a. (1 / (x $ n)) ∗ a) ‘ vec-set x

unfolding y by (auto simp: vec-set-def )
have y ∈ Bounded-vec (?oi ?Bnd) using xB abs

unfolding Bounded-vec-vec-set vy
by (smt imageE max.absorb2 max.bounded-iff )

} note yn0 = this
note y0 yn0

} note BndY = this
from ‹Y ⊆ carrier-vec (n+1 )›
have setvY : y ∈ Y =⇒ setv (vec-first y n) ⊆ setv y for y

unfolding vec-first-def vec-set-def by auto
from BndY (1 ) setvY
show ?Z0 ⊆ �v ∩ Bounded-vec (?oi (db n (max 1 Bnd)))

by (force simp: Bounded-vec-vec-set Ints-vec-vec-set Y0-def )
from BndY (2 ) setvY
show ?Z1 ⊆ Bounded-vec (?oi (db n (max 1 Bnd)))

by (force simp: Bounded-vec-vec-set Ints-vec-vec-set Y0-def Y1-def )
qed

qed

lemma decomposition-theorem-polyhedra-2 :
assumes Q: Q ⊆ carrier-vec n and fin-Q: finite Q

and X : X ⊆ carrier-vec n and fin-X : finite X
and P: P = convex-hull Q + cone X

shows ∃A b nr . A ∈ carrier-mat nr n ∧ b ∈ carrier-vec nr ∧ P = polyhedron A
b
proof −
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interpret next-dim: gram-schmidt n + 1 TYPE ( ′a).
interpret gram-schmidt-m n + 1 n TYPE( ′a).

from fin-Q obtain Qs where Qs: Q = set Qs using finite-list by auto
from fin-X obtain Xs where Xs: X = set Xs using finite-list by auto
define Y where Y = {x @v vec-of-scal 1 | x. x ∈ Q}
define Z where Z = {x @v vec-of-scal 0 | x. x ∈ X}
have fin-Y : finite Y unfolding Y-def using fin-Q by simp
have fin-Z : finite Z unfolding Z-def using fin-X by simp
have Y-dim: Y ⊆ carrier-vec (n + 1 )

unfolding Y-def using Q append-carrier-vec[OF - vec-of-scal-dim(2 )[of 1 ]]
by blast

have Z-dim: Z ⊆ carrier-vec (n + 1 )
unfolding Z-def using X append-carrier-vec[OF - vec-of-scal-dim(2 )[of 0 ]]
by blast

have Y-car : Q = {vec-first x n | x. x ∈ Y }
proof (intro equalityI subsetI )

fix x assume x: x ∈ Q
hence x @v vec-of-scal 1 ∈ Y unfolding Y-def by blast
thus x ∈ {vec-first x n | x. x ∈ Y }

using Q vec-first-append[of x n vec-of-scal 1 ] x by force
next

fix x assume x ∈ {vec-first x n | x. x ∈ Y }
then obtain y where y ∈ Q and x = vec-first (y @v vec-of-scal 1 ) n

unfolding Y-def by blast
thus x ∈ Q using Q vec-first-append[of y] by auto

qed
have Z-car : X = {vec-first x n | x. x ∈ Z}
proof (intro equalityI subsetI )

fix x assume x: x ∈ X
hence x @v vec-of-scal 0 ∈ Z unfolding Z-def by blast
thus x ∈ {vec-first x n | x. x ∈ Z}

using X vec-first-append[of x n vec-of-scal 0 ] x by force
next

fix x assume x ∈ {vec-first x n | x. x ∈ Z}
then obtain y where y ∈ X and x = vec-first (y @v vec-of-scal 0 ) n

unfolding Z-def by blast
thus x ∈ X using X vec-first-append[of y] by auto

qed
have Y-last: ∀ x ∈ Y . x $ n = 1 unfolding Y-def using Q by auto
have Z-last: ∀ x ∈ Z . x $ n = 0 unfolding Z-def using X by auto

have finite (Y ∪ Z ) using fin-Y fin-Z by blast
moreover have Y ∪ Z ⊆ carrier-vec (n + 1 ) using Y-dim Z-dim by blast
ultimately obtain B nr

where B: next-dim.cone (Y ∪ Z ) = next-dim.polyhedral-cone B
and B-carrier : B ∈ carrier-mat nr (n + 1 )

using next-dim.farkas-minkowsky-weyl-theorem[of next-dim.cone (Y ∪ Z )]
by blast
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define A where A = mat-col-first B n
define b where b = col B n
have B-blocks: B = A @c mat-of-col b

unfolding A-def b-def
using mat-col-first-last-append[of B n 1 ] B-carrier

mat-of-col-dim-col-1 [of mat-col-last B 1 ] by auto
have A-carrier : A ∈ carrier-mat nr n unfolding A-def using B-carrier by force
have b-carrier : b ∈ carrier-vec nr unfolding b-def using B-carrier by force

{
fix x assume x ∈ P
then obtain y z where x: x = y + z and y: y ∈ convex-hull Q and z: z ∈

cone X
using P by (auto elim: set-plus-elim)

have yn: y ∈ carrier-vec n using y convex-hull-carrier [OF Q] by blast
moreover have zn: z ∈ carrier-vec n using z cone-carrier [OF X ] by blast
ultimately have xn: x ∈ carrier-vec n using x by blast

have yn1 : y @v vec-of-scal 1 ∈ carrier-vec (n + 1 )
using append-carrier-vec[OF yn] vec-of-scal-dim by fast

have y-last: (y @v vec-of-scal 1 ) $ n = 1 using yn by force
have vec-first (y @v vec-of-scal 1 ) n = y

using vec-first-append[OF yn] by simp
hence y @v vec-of-scal 1 ∈ next-dim.cone Y

using convex-hull-next-dim[OF - Y-dim fin-Y Y-last yn1 y-last] Y-car y by
argo

hence y-cone: y @v vec-of-scal 1 ∈ next-dim.cone (Y ∪ Z )
using next-dim.cone-mono[of Y Y ∪ Z ] by blast

have zn1 : z @v vec-of-scal 0 ∈ carrier-vec (n + 1 )
using append-carrier-vec[OF zn] vec-of-scal-dim by fast

have z-last: (z @v vec-of-scal 0 ) $ n = 0 using zn by force
have vec-first (z @v vec-of-scal 0 ) n = z

using vec-first-append[OF zn] by simp
hence z @v vec-of-scal 0 ∈ next-dim.cone Z

using cone-next-dim[OF - Z-dim fin-Z Z-last zn1 z-last] Z-car z by argo
hence z-cone: z @v vec-of-scal 0 ∈ next-dim.cone (Y ∪ Z )

using next-dim.cone-mono[of Z Y ∪ Z ] by blast

from ‹x = y + z›
have x @v vec-of-scal 1 = (y @v vec-of-scal 1 ) + (z @v vec-of-scal 0 )

using append-vec-add[OF yn zn] vec-of-scal-dim-1
unfolding vec-of-scal-def by auto

hence x @v vec-of-scal 1 ∈ next-dim.cone (Y ∪ Z ) ∧ x ∈ carrier-vec n
using next-dim.cone-elem-sum[OF - y-cone z-cone] Y-dim Z-dim xn by auto

} moreover {
fix x assume x @v vec-of-scal 1 ∈ next-dim.cone (Y ∪ Z )
then obtain c where x: next-dim.lincomb c (Y ∪ Z ) = x @v vec-of-scal 1

115



and c: c ‘ (Y ∪ Z ) ⊆ {t. t ≥ 0}
using next-dim.cone-iff-finite-cone Y-dim Z-dim fin-Y fin-Z
unfolding next-dim.finite-cone-def next-dim.nonneg-lincomb-def by auto

let ?y = next-dim.lincomb c Y
let ?z = next-dim.lincomb c Z
have xyz: x @v vec-of-scal 1 = ?y + ?z

using x next-dim.lincomb-union[OF Y-dim Z-dim - fin-Y fin-Z ] Y-last Z-last
by fastforce

have y-dim: ?y ∈ carrier-vec (n + 1 ) using next-dim.lincomb-closed[OF Y-dim]
by blast

have z-dim: ?z ∈ carrier-vec (n + 1 ) using next-dim.lincomb-closed[OF Z-dim]
by blast

have x @v vec-of-scal 1 ∈ carrier-vec (n + 1 )
using xyz add-carrier-vec[OF y-dim z-dim] by argo

hence x-dim: x ∈ carrier-vec n
using carrier-dim-vec[of x n] carrier-dim-vec[of - n + 1 ]
by force

have z-last: ?z $ n = 0 using Z-last next-dim.lincomb-index[OF - Z-dim, of n]
by force

have ?y $ n + ?z $ n = (x @v vec-of-scal 1 ) $ n
using xyz index-add-vec(1 ) z-dim by simp

also have . . . = 1 using x-dim by auto
finally have y-last: ?y $ n = 1 using z-last by algebra

have ?y ∈ next-dim.cone Y
using next-dim.cone-iff-finite-cone[OF Y-dim] fin-Y c
unfolding next-dim.finite-cone-def next-dim.nonneg-lincomb-def by auto

hence y-cone: vec-first ?y n ∈ convex-hull Q
using convex-hull-next-dim[OF - Y-dim fin-Y Y-last y-dim y-last] Y-car
by blast

have ?z ∈ next-dim.cone Z
using next-dim.cone-iff-finite-cone[OF Z-dim] fin-Z c
unfolding next-dim.finite-cone-def next-dim.nonneg-lincomb-def by auto

hence z-cone: vec-first ?z n ∈ cone X
using cone-next-dim[OF - Z-dim fin-Z Z-last z-dim z-last] Z-car
by blast

have x = vec-first (x @v vec-of-scal 1 ) n using vec-first-append[OF x-dim] by
simp

also have . . . = vec-first ?y n + vec-first ?z n
using xyz vec-first-add[of n ?y ?z] y-dim z-dim carrier-dim-vec by auto

finally have x ∈ P
using y-cone z-cone P by blast

} moreover {
fix x :: ′a vec
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assume xn: x ∈ carrier-vec n
hence (x @v vec-of-scal 1 ∈ next-dim.polyhedral-cone B) =

(B ∗v (x @v vec-of-scal 1 ) ≤ 0 v nr)
unfolding next-dim.polyhedral-cone-def using B-carrier
using append-carrier-vec[OF - vec-of-scal-dim(2 )[of 1 ]] by auto

also have . . . = ((A @c mat-of-col b) ∗v (x @v vec-of-scal 1 ) ≤ 0 v nr)
using B-blocks by blast

also have (A @c mat-of-col b) ∗v (x @v vec-of-scal 1 ) =
A ∗v x + mat-of-col b ∗v vec-of-scal 1

by (rule mat-mult-append-cols, insert A-carrier b-carrier xn, auto simp del:
One-nat-def )

also have mat-of-col b ∗v vec-of-scal 1 = b
using mult-mat-of-row-vec-of-scal[of b 1 ] by simp

also have A ∗v x + b = A ∗v x − −b by auto
finally have (x @v vec-of-scal 1 ∈ next-dim.polyhedral-cone B) = (A ∗v x ≤

−b)
using vec-le-iff-diff-le-0 [of A ∗v x −b] A-carrier by simp

}
ultimately have P = polyhedron A (−b)

unfolding polyhedron-def using B by blast
moreover have −b ∈ carrier-vec nr using b-carrier by simp
ultimately show ?thesis using A-carrier by blast

qed

lemma decomposition-theorem-polyhedra:
(∃ A b nr . A ∈ carrier-mat nr n ∧ b ∈ carrier-vec nr ∧ P = polyhedron A b)
←→

(∃ Q X . Q ∪ X ⊆ carrier-vec n ∧ finite (Q ∪ X) ∧ P = convex-hull Q + cone
X) (is ?l = ?r)
proof

assume ?l
then obtain A b nr where A: A ∈ carrier-mat nr n

and b: b ∈ carrier-vec nr and P: P = polyhedron A b by auto
from decomposition-theorem-polyhedra-1 [OF this] obtain Q X
where ∗: X ⊆ carrier-vec n finite X Q ⊆ carrier-vec n finite Q P = convex-hull

Q + cone X
by meson

show ?r
by (rule exI [of - Q], rule exI [of - X ], insert ∗, auto simp: polytope-def )

next
assume ?r
then obtain Q X where QX-carrier : Q ∪ X ⊆ carrier-vec n

and QX-fin: finite (Q ∪ X)
and P: P = convex-hull Q + cone X by blast

from QX-carrier have Q: Q ⊆ carrier-vec n and X : X ⊆ carrier-vec n by
simp-all

from QX-fin have fin-Q: finite Q and fin-X : finite X by simp-all
show ?l using decomposition-theorem-polyhedra-2 [OF Q fin-Q X fin-X P] by

blast

117



qed

lemma polytope-equiv-bounded-polyhedron:
polytope P ←→
(∃A b nr bnd. A ∈ carrier-mat nr n ∧ b ∈ carrier-vec nr ∧ P = polyhedron A b
∧ P ⊆ Bounded-vec bnd)
proof

assume polyP: polytope P
from this obtain Q where Qcarr : Q ⊆ carrier-vec n and finQ: finite Q

and PconvhQ: P = convex-hull Q unfolding polytope-def by auto
let ?X = {}
have convex-hull Q + {0 v n} = convex-hull Q using Qcarr add-0-right-vecset[of

convex-hull Q]
by (simp add: convex-hull-carrier)

hence P = convex-hull Q + cone ?X using PconvhQ by simp
hence Q ∪ ?X ⊆ carrier-vec n ∧ finite (Q ∪ ?X) ∧ P = convex-hull Q + cone

?X
using Qcarr finQ PconvhQ by simp

hence ∃ A b nr . A ∈ carrier-mat nr n ∧ b ∈ carrier-vec nr ∧ P = polyhedron
A b

using decomposition-theorem-polyhedra by blast
hence Ppolyh: ∃A b nr . A ∈ carrier-mat nr n ∧ b ∈ carrier-vec nr ∧ P =

polyhedron A b by blast
from finite-Bounded-vec-Max[OF Qcarr finQ] obtain bnd where Q ⊆ Bounded-vec

bnd by auto
hence Pbnd: P ⊆ Bounded-vec bnd using convex-hull-bound PconvhQ Qcarr by

auto
from Ppolyh Pbnd show ∃A b nr bnd. A ∈ carrier-mat nr n ∧ b ∈ carrier-vec

nr
∧ P = polyhedron A b ∧ P ⊆ Bounded-vec bnd by auto

next
assume ∃A b nr bnd. A ∈ carrier-mat nr n ∧ b ∈ carrier-vec nr ∧ P = polyhedron

A b
∧ P ⊆ Bounded-vec bnd

from this obtain A b nr bnd where Adim: A ∈ carrier-mat nr n and bdim: b
∈ carrier-vec nr

and Ppolyh: P = polyhedron A b and Pbnd: P ⊆ Bounded-vec bnd by auto
have ∃ A b nr . A ∈ carrier-mat nr n ∧ b ∈ carrier-vec nr ∧ P = polyhedron A

b
using Adim bdim Ppolyh by blast

hence ∃ Q X . Q ∪ X ⊆ carrier-vec n ∧ finite (Q ∪ X) ∧ P = convex-hull Q +
cone X

using decomposition-theorem-polyhedra by simp
from this obtain Q X where QXcarr : Q ∪ X ⊆ carrier-vec n

and finQX : finite (Q ∪ X) and Psum: P = convex-hull Q + cone X by auto
from QXcarr have Qcarr : convex-hull Q ⊆ carrier-vec n by (simp add: con-

vex-hull-carrier)
from QXcarr have Xcarr : cone X ⊆ carrier-vec n by (simp add: gram-schmidt.cone-carrier)
from Pbnd have Pcarr : P ⊆ carrier-vec n using Ppolyh unfolding polyhe-
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dron-def by simp
have P = convex-hull Q
proof(cases Q = {})

case True
then show P = convex-hull Q unfolding Psum by (auto simp: set-plus-def )

next
case False
hence convnotempty: convex-hull Q 6= {} using QXcarr by simp
have Pbndex: ∃ bnd. P ⊆ Bounded-vec bnd using Pbnd

using QXcarr by auto
from False have (∃ bndc. cone X ⊆ Bounded-vec bndc)
using bounded-vecset-sum[OF Qcarr Xcarr Psum Pbndex] False convnotempty

by blast
hence cone X = {0 v n} using bounded-cone-is-zero QXcarr by auto
thus ?thesis unfolding Psum using Qcarr by (auto simp: add-0-right-vecset)

qed
thus polytope P using finQX QXcarr unfolding polytope-def by auto

qed
end

end

15 Mixed Integer Solutions
We prove that if an integral system of linear inequalities Ax ≤ b ∧ A′x <
b′ has a (mixed)integer solution, then there is also a small (mixed)integer
solution, where the numbers are bounded by (n + 1) ∗ dbmn where n is
the number of variables, m is a bound on the absolute values of numbers
occurring in A,A′, b, b′, and dbmn is a bound on determinants for matrices
of size n with values of at most m.
theory Mixed-Integer-Solutions

imports Decomposition-Theorem
begin

definition less-vec :: ′a vec ⇒ ( ′a :: ord) vec ⇒ bool (infix ‹<v› 50 ) where
v <v w = (dim-vec v = dim-vec w ∧ (∀ i < dim-vec w. v $ i < w $ i))

lemma less-vecD: assumes v <v w and w ∈ carrier-vec n
shows i < n =⇒ v $ i < w $ i
using assms unfolding less-vec-def by auto

lemma less-vecI : assumes v ∈ carrier-vec n w ∈ carrier-vec n∧
i. i < n =⇒ v $ i < w $ i

shows v <v w
using assms unfolding less-vec-def by auto

lemma less-vec-lesseq-vec: v <v (w :: ′a :: preorder vec) =⇒ v ≤ w
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unfolding less-vec-def less-eq-vec-def
by (auto simp: less-le-not-le)

lemma floor-less: x /∈ � =⇒ of-int bxc < x
using le-less by fastforce

lemma floor-of-int-eq[simp]: x ∈ � =⇒ of-int bxc = x
by (metis Ints-cases of-int-floor-cancel)

locale gram-schmidt-floor = gram-schmidt n f-ty
for n :: nat and f-ty :: ′a :: {floor-ceiling,

trivial-conjugatable-linordered-field} itself
begin

lemma small-mixed-integer-solution-main: fixes A1 :: ′a mat
assumes db: is-det-bound db

and A1 : A1 ∈ carrier-mat nr1 n
and A2 : A2 ∈ carrier-mat nr2 n
and b1 : b1 ∈ carrier-vec nr1

and b2 : b2 ∈ carrier-vec nr2

and A1Bnd: A1 ∈ �m ∩ Bounded-mat (of-int Bnd)
and b1Bnd: b1 ∈ �v ∩ Bounded-vec (of-int Bnd)
and A2Bnd: A2 ∈ �m ∩ Bounded-mat (of-int Bnd)
and b2Bnd: b2 ∈ �v ∩ Bounded-vec (of-int Bnd)
and x: x ∈ carrier-vec n
and xI : x ∈ indexed-Ints-vec I
and sol-nonstrict: A1 ∗v x ≤ b1
and sol-strict: A2 ∗v x <v b2

shows ∃ x.
x ∈ carrier-vec n ∧
x ∈ indexed-Ints-vec I ∧
A1 ∗v x ≤ b1 ∧
A2 ∗v x <v b2 ∧
x ∈ Bounded-vec (of-int (of-nat (n + 1 ) ∗ db n (max 1 Bnd)))

proof −
let ?oi = of-int :: int ⇒ ′a
let ?Bnd = ?oi Bnd
define B where B = ?oi (db n (max 1 Bnd))
define A where A = A1 @r A2

define b where b = b1 @v b2
define nr where nr = nr1 + nr2

have B0 : B ≥ 0 unfolding B-def of-int-0-le-iff
by (rule is-det-bound-ge-zero[OF db], auto)

note defs = A-def b-def nr-def
from A1 A2 have A: A ∈ carrier-mat nr n unfolding defs by auto
from b1 b2 have b: b ∈ carrier-vec nr unfolding defs by auto
from A1Bnd A2Bnd A1 A2 have ABnd: A ∈ �m ∩ Bounded-mat ?Bnd un-

folding defs
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by (auto simp: Ints-mat-elements-mat Bounded-mat-elements-mat elements-mat-append-rows)
from b1Bnd b2Bnd b1 b2 have bBnd: b ∈ �v ∩ Bounded-vec ?Bnd unfolding

defs
by (auto simp: Ints-vec-vec-set Bounded-vec-vec-set)

from decomposition-theorem-polyhedra-1 [OF A b refl, of db Bnd] ABnd bBnd db
obtain Y Z where Z : Z ⊆ carrier-vec n

and finX : finite Z
and Y : Y ⊆ carrier-vec n
and finY : finite Y
and poly: polyhedron A b = convex-hull Y + cone Z
and ZBnd: Z ⊆ �v ∩ Bounded-vec B
and YBnd: Y ⊆ Bounded-vec B unfolding B-def by blast

let ?P = {x ∈ carrier-vec n. A1 ∗v x ≤ b1 ∧ A2 ∗v x ≤ b2}
let ?L = ?P ∩ {x. A2 ∗v x <v b2} ∩ indexed-Ints-vec I
have polyhedron A b = {x ∈ carrier-vec n. A ∗v x ≤ b} unfolding polyhedron-def

by auto
also have . . . = ?P unfolding defs

by (intro Collect-cong conj-cong refl append-rows-le[OF A1 A2 b1 ])
finally have poly: ?P = convex-hull Y + cone Z unfolding poly ..
have x ∈ ?P using x sol-nonstrict less-vec-lesseq-vec[OF sol-strict] by blast
note sol = this[unfolded poly]
from set-plus-elim[OF sol] obtain y z where xyz: x = y + z and

yY : y ∈ convex-hull Y and zZ : z ∈ cone Z by auto
from convex-hull-carrier [OF Y ] yY have y: y ∈ carrier-vec n by auto
from Caratheodory-theorem[OF Z ] zZ
obtain C where zC : z ∈ finite-cone C and CZ : C ⊆ Z and lin: lin-indpt C

by auto
from subset-trans[OF CZ Z ] lin have card: card C ≤ n

using dim-is-n li-le-dim(2 ) by auto
from finite-subset[OF CZ finX ] have finC : finite C .
from zC [unfolded finite-cone-def nonneg-lincomb-def ] finC obtain a

where za: z = lincomb a C and nonneg:
∧

u. u ∈ C =⇒ a u ≥ 0 by auto
from CZ Z have C : C ⊆ carrier-vec n by auto
have z: z ∈ carrier-vec n using C unfolding za by auto
have yB: y ∈ Bounded-vec B using yY convex-hull-bound[OF YBnd Y ] by auto
{

fix D
assume DC : D ⊆ C
from finite-subset[OF this finC ] have finite D .
hence ∃ a. y + lincomb a C ∈ ?L ∧ (∀ c ∈ C . a c ≥ 0 ) ∧ (∀ c ∈ D. a c ≤ 1 )

using DC
proof (induct D)

case empty
show ?case by (intro exI [of - a], fold za xyz, insert sol-strict x xI nonneg ‹x

∈ ?P›, auto)
next

case (insert c D)
then obtain a where sol: y + lincomb a C ∈ ?L

and a: (∀ c ∈ C . a c ≥ 0 ) and D: (∀ c ∈ D. a c ≤ 1 ) by auto
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from insert(4 ) C have c: c ∈ carrier-vec n and cC : c ∈ C by auto
show ?case
proof (cases a c > 1 )

case False
thus ?thesis by (intro exI [of - a], insert sol a D, auto)

next
case True
let ?z = λ d. lincomb a C − d ·v c
let ?x = λ d. y + ?z d
{

fix d
have lin: lincomb a (C − {c}) ∈ carrier-vec n using C by auto
have id: ?z d = lincomb (λ e. if e = c then (a c − d) else a e) C

unfolding lincomb-del2 [OF finC C TrueI cC ]
by (subst (2 ) lincomb-cong[OF refl, of - - a], insert C c lin, auto simp:

diff-smult-distrib-vec)
{

assume le: d ≤ a c
have ?z d ∈ finite-cone C
proof −
have ∀ f∈C . 0 ≤ (λe. if e = c then a c − d else a e) f using le a finC

by simp
then show ?thesis unfolding id using le a finC

by (simp add: C lincomb-in-finite-cone)
qed
hence ?z d ∈ cone Z using CZ

using finC local.cone-def by blast
hence ?x d ∈ ?P unfolding poly

by (intro set-plus-intro[OF yY ], auto)
} note sol = this
{

fix w :: ′a vec
assume w: w ∈ carrier-vec n
have w · (?x d) = w · y + w · lincomb a C − d ∗ (w · c)

by (subst scalar-prod-add-distrib[OF w y], (insert C c, force),
subst scalar-prod-minus-distrib[OF w], insert w c C , auto)

} note scalar = this
note id sol scalar

} note generic = this
let ?fl = (of-int (floor (a c)) :: ′a)
define p where p = (if ?fl = a c then a c − 1 else ?fl)
have p-lt-ac: p < a c unfolding p-def

using floor-less floor-of-int-eq by auto
have p1-ge-ac: p + 1 ≥ a c unfolding p-def

using floor-correct le-less by auto
have p1 : p ≥ 1 using True unfolding p-def by auto
define a ′ where a ′ = (λe. if e = c then a c − p else a e)
have lin-id: lincomb a ′ C = lincomb a C − p ·v c unfolding a ′-def using

id
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by (simp add: generic(1 ))
hence 1 : y + lincomb a ′ C ∈ {x ∈ carrier-vec n. A1 ∗v x ≤ b1 ∧ A2 ∗v x

≤ b2}
using p-lt-ac generic(2 )[of p] by auto

have pInt: p ∈ � unfolding p-def using sol by auto
have C ⊆ indexed-Ints-vec I using CZ ZBnd

using indexed-Ints-vec-subset by force
hence c ∈ indexed-Ints-vec I using cC by auto
hence pvindInts: p ·v c ∈ indexed-Ints-vec I unfolding indexed-Ints-vec-def

using pInt by simp
have prod: A2 ∗v (?x b) ∈ carrier-vec nr2 for b using A2 C c y by auto
have 2 : y + lincomb a ′ C ∈ {x. A2 ∗v x <v b2} unfolding lin-id
proof (intro less-vecI [OF prod b2 ] CollectI )

fix i
assume i: i < nr2

from sol have A2 ∗v (?x 0 ) <v b2 using y C c by auto
from less-vecD[OF this b2 i]
have lt: row A2 i · ?x 0 < b2 $ i using A2 i by auto
from generic(2 )[of a c] i A2
have le: row A2 i · ?x (a c) ≤ b2 $ i

unfolding less-eq-vec-def by auto
from A2 i have A2icarr : row A2 i ∈ carrier-vec n by auto
have row A2 i · ?x p < b2 $ i
proof −

define lhs where lhs = row A2 i · y + row A2 i · lincomb a C − b2 $ i
define mult where mult = row A2 i · c
have le2 : lhs ≤ a c ∗ mult using le unfolding generic(3 )[OF A2icarr ]

lhs-def mult-def by auto
have lt2 : lhs < 0 ∗ mult using lt unfolding generic(3 )[OF A2icarr ]

lhs-def by auto
from le2 lt2 have lhs < p ∗ mult using p-lt-ac p1 True

by (smt dual-order .strict-trans linorder-neqE-linordered-idom
mult-less-cancel-right not-less zero-less-one-class.zero-less-one)

then show ?thesis unfolding generic(3 )[OF A2icarr ] lhs-def mult-def
by auto

qed
thus (A2 ∗v ?x p) $ i < b2 $ i using i A2 by auto

qed
have y + lincomb a ′ C = y + lincomb a C − p ·v c

by (subst lin-id, insert y C c, auto simp: add-diff-eq-vec)
also have . . . ∈ indexed-Ints-vec I using sol
by(intro diff-indexed-Ints-vec[OF - - - pvindInts, of - n ], insert c C , auto)

finally have 3 : y + lincomb a ′ C ∈ indexed-Ints-vec I by auto
have 4 : ∀ c∈C . 0 ≤ a ′ c unfolding a ′-def p-def using p-lt-ac a by auto
have 5 : ∀ c∈insert c D. a ′ c ≤ 1 unfolding a ′-def using p1-ge-ac D p-def

by auto
show ?thesis

by (intro exI [of - a ′], intro conjI IntI 1 2 3 4 5 )
qed
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qed
}
from this[of C ] obtain a where

sol: y + lincomb a C ∈ ?L and bnds: (∀ c ∈ C . a c ≥ 0 ) (∀ c ∈ C . a c ≤ 1 )
by auto

show ?thesis
proof (intro exI [of - y + lincomb a C ] conjI )

from ZBnd CZ have BndC : C ⊆ Bounded-vec B and IntC : C ⊆ �v by auto
have lincomb a C ∈ Bounded-vec (of-nat n ∗ B)

using lincomb-card-bound[OF BndC C B0 - card] bnds by auto
from sum-in-Bounded-vecI [OF yB this y] C
have y + lincomb a C ∈ Bounded-vec (B + of-nat n ∗ B) by auto
also have B + of-nat n ∗ B = of-nat (n+1 ) ∗ B by (auto simp: field-simps)
finally show y + lincomb a C ∈ Bounded-vec (of-int (of-nat (n + 1 ) ∗ db n

(max 1 Bnd)))
unfolding B-def by auto

qed (insert sol, auto)
qed

We get rid of the max-1 operation, by showing that a smaller value
of Bnd can only occur in very special cases where the theorem is trivially
satisfied.
lemma small-mixed-integer-solution: fixes A1 :: ′a mat

assumes db: is-det-bound db
and A1 : A1 ∈ carrier-mat nr1 n
and A2 : A2 ∈ carrier-mat nr2 n
and b1 : b1 ∈ carrier-vec nr1

and b2 : b2 ∈ carrier-vec nr2

and A1Bnd: A1 ∈ �m ∩ Bounded-mat (of-int Bnd)
and b1Bnd: b1 ∈ �v ∩ Bounded-vec (of-int Bnd)
and A2Bnd: A2 ∈ �m ∩ Bounded-mat (of-int Bnd)
and b2Bnd: b2 ∈ �v ∩ Bounded-vec (of-int Bnd)
and x: x ∈ carrier-vec n
and xI : x ∈ indexed-Ints-vec I
and sol-nonstrict: A1 ∗v x ≤ b1
and sol-strict: A2 ∗v x <v b2
and non-degenerate: nr1 6= 0 ∨ nr2 6= 0 ∨ Bnd ≥ 0

shows ∃ x.
x ∈ carrier-vec n ∧
x ∈ indexed-Ints-vec I ∧
A1 ∗v x ≤ b1 ∧
A2 ∗v x <v b2 ∧
x ∈ Bounded-vec (of-int (int (n+1 ) ∗ db n Bnd))

proof (cases Bnd ≥ 1 )
case True
hence max 1 Bnd = Bnd by auto
with small-mixed-integer-solution-main[OF assms(1−13 )] True show ?thesis by

auto
next
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case trivial: False
let ?oi = of-int :: int ⇒ ′a
show ?thesis
proof (cases n = 0 )

case True
with x have x ∈ Bounded-vec b for b unfolding Bounded-vec-def by auto
with xI x sol-nonstrict sol-strict show ?thesis by blast

next
case n: False
{

fix A nr
assume A: A ∈ carrier-mat nr n and Bnd: A ∈ �m ∩ Bounded-mat (?oi

Bnd)
{

fix i j
assume i < nr j < n
with Bnd A have ∗: A $$ (i,j) ∈ � abs (A $$ (i,j)) ≤ ?oi Bnd

unfolding Bounded-mat-def Ints-mat-def by auto
from Ints-nonzero-abs-less1 [OF ∗(1 )] ∗(2 ) trivial
have A $$ (i,j) = 0

by (meson add-le-less-mono int-one-le-iff-zero-less less-add-same-cancel2
of-int-0-less-iff zero-less-abs-iff )

with ∗(2 ) have Bnd ≥ 0 A $$ (i,j) = 0 by auto
} note main = this
have A0 : A = 0m nr n

by (intro eq-matI , insert main A, auto)
have nr 6= 0 =⇒ Bnd ≥ 0 using main[of 0 0 ] n by auto
note A0 this

} note main = this
from main[OF A1 A1Bnd] have A1 : A1 = 0m nr1 n and nr1 : nr1 6= 0 =⇒

Bnd ≥ 0
by auto

from main[OF A2 A2Bnd] have A2 : A2 = 0m nr2 n and nr2 : nr2 6= 0 =⇒
Bnd ≥ 0

by auto
let ?x = 0 v n
show ?thesis
proof (intro exI [of - ?x] conjI )

show A1 ∗v ?x ≤ b1 using sol-nonstrict x unfolding A1 by auto
show A2 ∗v ?x <v b2 using sol-strict x unfolding A2 by auto
show ?x ∈ carrier-vec n by auto
show ?x ∈ indexed-Ints-vec I unfolding indexed-Ints-vec-def by auto
from nr1 nr2 non-degenerate have Bnd: Bnd ≥ 0 by auto
from is-det-bound-ge-zero[OF db Bnd] have db n Bnd ≥ 0 .
hence ?oi (of-nat (n + 1 ) ∗ db n Bnd) ≥ 0 by simp
thus ?x ∈ Bounded-vec (?oi (of-nat (n + 1 ) ∗ db n Bnd)) by (auto simp:

Bounded-vec-def )
qed

qed
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qed

lemmas small-mixed-integer-solution-hadamard =
small-mixed-integer-solution[OF det-bound-hadamard, unfolded det-bound-hadamard-def

of-int-mult of-int-of-nat-eq]

lemma Bounded-vec-of-int: assumes v ∈ Bounded-vec bnd
shows (map-vec of-int v :: ′a vec) ∈ �v ∩ Bounded-vec (of-int bnd)
using assms
apply (simp add: Ints-vec-vec-set Bounded-vec-vec-set Ints-def )
apply (intro conjI , force)
apply (clarsimp)
subgoal for x apply (elim ballE [of - - x], auto)

by (metis of-int-abs of-int-le-iff )
done

lemma Bounded-mat-of-int: assumes A ∈ Bounded-mat bnd
shows (map-mat of-int A :: ′a mat) ∈ �m ∩ Bounded-mat (of-int bnd)
using assms
apply (simp add: Ints-mat-elements-mat Bounded-mat-elements-mat Ints-def )
apply (intro conjI , force)
apply (clarsimp)
subgoal for x apply (elim ballE [of - - x], auto)

by (metis of-int-abs of-int-le-iff )
done

lemma small-mixed-integer-solution-int-mat: fixes x :: ′a vec
assumes db: is-det-bound db

and A1 : A1 ∈ carrier-mat nr1 n
and A2 : A2 ∈ carrier-mat nr2 n
and b1 : b1 ∈ carrier-vec nr1

and b2 : b2 ∈ carrier-vec nr2

and A1Bnd: A1 ∈ Bounded-mat Bnd
and b1Bnd: b1 ∈ Bounded-vec Bnd
and A2Bnd: A2 ∈ Bounded-mat Bnd
and b2Bnd: b2 ∈ Bounded-vec Bnd
and x: x ∈ carrier-vec n
and xI : x ∈ indexed-Ints-vec I
and sol-nonstrict: map-mat of-int A1 ∗v x ≤ map-vec of-int b1
and sol-strict: map-mat of-int A2 ∗v x <v map-vec of-int b2
and non-degenerate: nr1 6= 0 ∨ nr2 6= 0 ∨ Bnd ≥ 0

shows ∃ x :: ′a vec.
x ∈ carrier-vec n ∧
x ∈ indexed-Ints-vec I ∧
map-mat of-int A1 ∗v x ≤ map-vec of-int b1 ∧
map-mat of-int A2 ∗v x <v map-vec of-int b2 ∧
x ∈ Bounded-vec (of-int (of-nat (n+1 ) ∗ db n Bnd))

proof −
let ?oi = of-int :: int ⇒ ′a
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let ?A1 = map-mat ?oi A1

let ?A2 = map-mat ?oi A2

let ?b1 = map-vec ?oi b1
let ?b2 = map-vec ?oi b2
let ?Bnd = ?oi Bnd
from A1 have A1 ′: ?A1 ∈ carrier-mat nr1 n by auto
from A2 have A2 ′: ?A2 ∈ carrier-mat nr2 n by auto
from b1 have b1 ′: ?b1 ∈ carrier-vec nr1 by auto
from b2 have b2 ′: ?b2 ∈ carrier-vec nr2 by auto
from small-mixed-integer-solution[OF db A1 ′ A2 ′ b1 ′ b2 ′

Bounded-mat-of-int[OF A1Bnd] Bounded-vec-of-int[OF b1Bnd]
Bounded-mat-of-int[OF A2Bnd] Bounded-vec-of-int[OF b2Bnd]
x xI sol-nonstrict sol-strict non-degenerate]

show ?thesis .
qed

lemmas small-mixed-integer-solution-int-mat-hadamard =
small-mixed-integer-solution-int-mat[OF det-bound-hadamard, unfolded det-bound-hadamard-def

of-int-mult of-int-of-nat-eq]

end

lemma of-int-hom-le: (of-int-hom.vec-hom v :: ′a :: linordered-field vec) ≤ of-int-hom.vec-hom
w ←→ v ≤ w

unfolding less-eq-vec-def by auto

lemma of-int-hom-less: (of-int-hom.vec-hom v :: ′a :: linordered-field vec) <v of-int-hom.vec-hom
w ←→ v <v w

unfolding less-vec-def by auto

lemma Ints-vec-to-int-vec: assumes v ∈ �v

shows ∃ w. v = map-vec of-int w
proof −

have ∀ i. ∃ x. i < dim-vec v −→ v $ i = of-int x
using assms unfolding Ints-vec-def Ints-def by auto

from choice[OF this] obtain x where
∧

i. i < dim-vec v =⇒ v $ i = of-int (x
i)

by auto
thus ?thesis

by (intro exI [of - vec (dim-vec v) x], auto)
qed

lemma small-integer-solution: fixes A1 :: int mat
assumes db: is-det-bound db

and A1 : A1 ∈ carrier-mat nr1 n
and A2 : A2 ∈ carrier-mat nr2 n
and b1 : b1 ∈ carrier-vec nr1

and b2 : b2 ∈ carrier-vec nr2

and A1Bnd: A1 ∈ Bounded-mat Bnd
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and b1Bnd: b1 ∈ Bounded-vec Bnd
and A2Bnd: A2 ∈ Bounded-mat Bnd
and b2Bnd: b2 ∈ Bounded-vec Bnd
and x: x ∈ carrier-vec n
and sol-nonstrict: A1 ∗v x ≤ b1
and sol-strict: A2 ∗v x <v b2
and non-degenerate: nr1 6= 0 ∨ nr2 6= 0 ∨ Bnd ≥ 0

shows ∃ x.
x ∈ carrier-vec n ∧
A1 ∗v x ≤ b1 ∧
A2 ∗v x <v b2 ∧
x ∈ Bounded-vec (of-nat (n+1 ) ∗ db n Bnd)

proof −
let ?oi = rat-of-int
let ?x = map-vec ?oi x
let ?oiM = map-mat ?oi
let ?oiv = map-vec ?oi
from x have xx: ?x ∈ carrier-vec n by auto
have Int: ?x ∈ indexed-Ints-vec UNIV unfolding indexed-Ints-vec-def Ints-def

by auto
interpret gram-schmidt-floor n TYPE(rat) .
from

small-mixed-integer-solution-int-mat[OF db A1 A2 b1 b2 A1Bnd b1Bnd A2Bnd
b2Bnd xx Int

- - non-degenerate,
folded of-int-hom.mult-mat-vec-hom[OF A1 x] of-int-hom.mult-mat-vec-hom[OF

A2 x ],
unfolded of-int-hom-less of-int-hom-le, OF sol-nonstrict sol-strict, folded in-

dexed-Ints-vec-UNIV ]
obtain x where

x: x ∈ carrier-vec n and
xI : x ∈ �v and
le: ?oiM A1 ∗v x ≤ ?oiv b1 and
less: ?oiM A2 ∗v x <v ?oiv b2 and
Bnd: x ∈ Bounded-vec (?oi (int (n + 1 ) ∗ db n Bnd))
by blast

from Ints-vec-to-int-vec[OF xI ] obtain xI where xI : x = ?oiv xI by auto
from x[unfolded xI ] have x: xI ∈ carrier-vec n by auto
from le[unfolded xI , folded of-int-hom.mult-mat-vec-hom[OF A1 x], unfolded

of-int-hom-le]
have le: A1 ∗v xI ≤ b1 .
from less[unfolded xI , folded of-int-hom.mult-mat-vec-hom[OF A2 x], unfolded

of-int-hom-less]
have less: A2 ∗v xI <v b2 .
show ?thesis
proof (intro exI [of - xI ] conjI x le less)

show xI ∈ Bounded-vec (int (n + 1 ) ∗ db n Bnd)
unfolding Bounded-vec-def

proof clarsimp
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fix i
assume i: i < dim-vec xI
with Bnd[unfolded Bounded-vec-def ]
have |x $ i| ≤ ?oi (int (n + 1 ) ∗ db n Bnd) by (auto simp: xI )
also have |x $ i| = ?oi (|xI $ i|) unfolding xI using i by simp
finally show |xI $ i| ≤ (1 + int n) ∗ db n Bnd unfolding of-int-le-iff by

auto
qed

qed
qed

corollary small-integer-solution-nonstrict: fixes A :: int mat
assumes db: is-det-bound db

and A: A ∈ carrier-mat nr n
and b: b ∈ carrier-vec nr
and ABnd: A ∈ Bounded-mat Bnd
and bBnd: b ∈ Bounded-vec Bnd
and x: x ∈ carrier-vec n
and sol: A ∗v x ≤ b
and non-degenerate: nr 6= 0 ∨ Bnd ≥ 0

shows ∃ y.
y ∈ carrier-vec n ∧
A ∗v y ≤ b ∧
y ∈ Bounded-vec (of-nat (n+1 ) ∗ db n Bnd)

proof −
let ?A2 = 0m 0 n :: int mat
let ?b2 = 0 v 0 :: int vec
from non-degenerate have degen: nr 6= 0 ∨ (0 :: nat) 6= 0 ∨ Bnd ≥ 0 by auto
have ∃ y. y ∈ carrier-vec n ∧ A ∗v y ≤ b ∧ ?A2 ∗v y <v ?b2
∧ y ∈ Bounded-vec (of-nat (n+1 ) ∗ db n Bnd)

apply (rule small-integer-solution[OF db A - b - ABnd bBnd - - x sol - degen])
by (auto simp: Bounded-mat-def Bounded-vec-def less-vec-def )

thus ?thesis by blast
qed

lemmas small-integer-solution-nonstrict-hadamard =
small-integer-solution-nonstrict[OF det-bound-hadamard, unfolded det-bound-hadamard-def ]

end

16 Integer Hull
We define the integer hull of a polyhedron, i.e., the convex hull of all integer
solutions. Moreover, we prove the result of Meyer that the integer hull of
a polyhedron defined by an integer matrix is again a polyhedron, and give
bounds for a corresponding decomposition theorem.
theory Integer-Hull
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imports
Decomposition-Theorem
Mixed-Integer-Solutions

begin

context gram-schmidt
begin
definition integer-hull P = convex-hull (P ∩ �v)

lemma integer-hull-mono: P ⊆ Q =⇒ integer-hull P ⊆ integer-hull Q
unfolding integer-hull-def
by (intro convex-hull-mono, auto)

end

lemma abs-neg-floor : |of-int b| ≤ Bnd =⇒ − (floor Bnd) ≤ b
using abs-le-D2 floor-mono by fastforce

lemma abs-pos-floor : |of-int b| ≤ Bnd =⇒ b ≤ floor Bnd
using abs-le-D1 le-floor-iff by auto

context gram-schmidt-floor
begin

lemma integer-hull-integer-cone: assumes C : C ⊆ carrier-vec n
and CI : C ⊆ �v

shows integer-hull (cone C ) = cone C
proof

have cone C ∩ �v ⊆ cone C by blast
thus integer-hull (cone C ) ⊆ cone C

using cone-cone[OF C ] convex-cone[OF C ] convex-hull-mono
unfolding integer-hull-def convex-def by metis

{
fix x
assume x ∈ cone C
then obtain D where finD: finite D and DC : D ⊆ C and x: x ∈ finite-cone

D
unfolding cone-def by auto

from DC C CI have D: D ⊆ carrier-vec n and DI : D ⊆ �v by auto
from D x finD have x ∈ finite-cone (D ∪ {0 v n}) using finite-cone-mono[of

D ∪ {0 v n} D] by auto
then obtain l where x: lincomb l (D ∪ {0 v n}) = x

and l: l ‘ (D ∪ {0 v n}) ⊆ {t. t ≥ 0}
using finD unfolding finite-cone-def nonneg-lincomb-def by auto

define L where L = sum l (D ∪ {0 v n})
define L-sup :: ′a where L-sup = of-int (floor L + 1 )
have L-sup ≥ L using floor-correct[of L] unfolding L-sup-def by linarith
have L ≥ 0 unfolding L-def using sum-nonneg[of - l] l by blast
hence L-sup ≥ 1 unfolding L-sup-def by simp
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hence L-sup > 0 by fastforce

let ?f = λ y. if y = 0 v n then L-sup − L else 0
have lincomb ?f {0 v n} = 0 v n

using already-in-span[of {} 0 v n] lincomb-in-span local.span-empty
by auto

moreover have lincomb ?f (D − {0 v n}) = 0 v n
by(rule lincomb-zero, insert D, auto)

ultimately have lincomb ?f (D ∪ {0 v n}) = 0 v n
using lincomb-vec-diff-add[of D ∪ {0 v n} {0 v n}] D finD by simp

hence lcomb-f : lincomb (λ y. l y + ?f y) (D ∪ {0 v n}) = x
using lincomb-sum[of D ∪ {0 v n} l ?f ] finD D x by simp

have sum ?f (D ∪ {0 v n}) = L-sup − L
by (simp add: sum.subset-diff [of {0 v n} D ∪ {0 v n} ?f ] finD)

hence sum (λ y. l y + ?f y) (D ∪ {0 v n}) = L-sup
using l L-def by auto

moreover have (λ y. l y + ?f y) ‘ (D ∪ {0 v n}) ⊆ {t. t ≥ 0}
using ‹L ≤ L-sup› l by force

ultimately obtain l ′ where x: lincomb l ′ (D ∪ {0 v n}) = x
and l ′: l ′ ‘ (D ∪ {0 v n}) ⊆ {t. t ≥ 0}
and sum-l ′: sum l ′ (D ∪ {0 v n}) = L-sup

using lcomb-f by blast

let ?D ′ = {L-sup ·v v | v. v ∈ D ∪ {0 v n}}
have Did: ?D ′ = (λ v. L-sup ·v v) ‘ (D ∪ {0 v n}) by force
define l ′′ where l ′′ = (λ y. l ′ ((1 / L-sup) ·v y) / L-sup)
obtain lD where dist: distinct lD and lD: D ∪ {0 v n} = set lD

using finite-distinct-list[of D ∪ {0 v n}] finD by auto
let ?lD ′ = map ((·v) L-sup) lD
have dist ′: distinct ?lD ′

using distinct-smult-nonneg[OF - dist] ‹L-sup > 0 › by fastforce

have x ′: lincomb l ′′ ?D ′ = x unfolding x[symmetric] l ′′-def
unfolding lincomb-def Did

proof (subst finsum-reindex)
from ‹L-sup > 0 › smult-vec-nonneg-eq[of L-sup] show inj-on ((·v) L-sup) (D

∪ {0 v n})
by (auto simp: inj-on-def )

show (λv. l ′ (1 / L-sup ·v v) / L-sup ·v v) ∈ (·v) L-sup ‘ (D ∪ {0 v n}) →
carrier-vec n

using D by auto
from ‹L-sup > 0 › have L-sup 6= 0 by auto
then show (

⊕
Vx∈D ∪ {0 v n}. l ′ (1 / L-sup ·v (L-sup ·v x)) / L-sup ·v

(L-sup ·v x)) =
(
⊕

Vv∈D ∪ {0 v n}. l ′ v ·v v)
by (intro finsum-cong, insert D, auto simp: smult-smult-assoc)

qed
have D ∪ {0 v n} ⊆ cone C using set-in-cone[OF C ] DC zero-in-cone by blast
hence D ′: ?D ′ ⊆ cone C using cone-smult[of L-sup, OF - C ] ‹L-sup > 0 › by
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auto
have D ∪ {0 v n} ⊆ �v unfolding zero-vec-def using DI Ints-vec-def by auto
moreover have L-sup ∈ � unfolding L-sup-def by auto
ultimately have D ′I : ?D ′ ⊆ �v unfolding Ints-vec-def by force

have 1 = sum l ′ (D ∪ {0 v n}) ∗ (1 / L-sup) using sum-l ′ ‹L-sup > 0 › by
auto

also have sum l ′ (D ∪ {0 v n}) = sum-list (map l ′ lD)
using sum.distinct-set-conv-list[OF dist] lD by auto

also have map l ′ lD = map (l ′ ◦ ((·v) (1 / L-sup))) ?lD ′

using smult-smult-assoc[of 1 / L-sup L-sup] ‹L-sup > 0 ›
by (simp add: comp-assoc)
also have l ′ ◦ ((·v) (1 / L-sup)) = (λ x. l ′ ((1 / L-sup) ·v x)) by (rule

comp-def )
also have sum-list (map . . . ?lD ′) ∗ (1 / L-sup) =

sum-list (map (λy. l ′ (1 / L-sup ·v y) ∗ (1 / L-sup)) ?lD ′)
using sum-list-mult-const[of - 1 / L-sup ?lD ′] by presburger

also have . . . = sum-list (map l ′′ ?lD ′)
unfolding l ′′-def using ‹L-sup > 0 › by simp

also have . . . = sum l ′′ (set ?lD ′) using sum.distinct-set-conv-list[OF dist ′]
by metis

also have set ?lD ′ = ?D ′ using lD by auto
finally have sum-l ′: sum l ′′ ?D ′ = 1 by auto

moreover have l ′′ ‘ ?D ′ ⊆ {t. t ≥ 0}
proof

fix y
assume y ∈ l ′′ ‘ ?D ′

then obtain x where y: y = l ′′ x and x ∈ ?D ′ by blast
then obtain v where v ∈ D ∪ {0 v n} and x: x = L-sup ·v v by blast
hence 0 ≤ l ′ v / L-sup using l ′ ‹L-sup > 0 › by fastforce
also have . . . = l ′′ x unfolding x l ′′-def

using smult-smult-assoc[of 1 / L-sup L-sup v] ‹L-sup > 0 › by simp
finally show y ∈ {t. t ≥ 0} using y by blast
qed

moreover have finite ?D ′ using finD by simp

ultimately have x ∈ integer-hull (cone C )
unfolding integer-hull-def convex-hull-def
using x ′ D ′ D ′I convex-lincomb-def [of l ′′ ?D ′ x]

nonneg-lincomb-def [of l ′′ ?D ′ x] by fast
}
thus cone C ⊆ integer-hull (cone C ) by blast

qed

theorem decomposition-theorem-integer-hull-of-polyhedron:
assumes db: is-det-bound db
and A: A ∈ carrier-mat nr n
and b: b ∈ carrier-vec nr

132



and AI : A ∈ �m

and bI : b ∈ �v

and P: P = polyhedron A b
and Bnd: of-int Bnd ≥ Max (abs ‘ (elements-mat A ∪ vec-set b))

shows ∃ H C . H ∪ C ⊆ carrier-vec n ∩ �v

∧ H ⊆ Bounded-vec (of-nat (n + 1 ) ∗ of-int (db n (max 1 Bnd)))
∧ C ⊆ Bounded-vec (of-int (db n (max 1 Bnd)))
∧ finite (H ∪ C )
∧ integer-hull P = convex-hull H + cone C

proof −
define MBnd where MBnd = Max (abs ‘ (elements-mat A ∪ setv b))
define DBnd :: ′a where DBnd = of-int (db n (max 1 Bnd))
define nBnd where nBnd = of-nat (n+1 ) ∗ DBnd
have DBnd0 : DBnd ≥ 0 unfolding DBnd-def of-int-0-le-iff

by (rule is-det-bound-ge-zero[OF db], auto)
have Pn: P ⊆ carrier-vec n unfolding P polyhedron-def by auto
have A ∈ Bounded-mat MBnd ∧ b ∈ Bounded-vec MBnd

unfolding MBnd-def Bounded-mat-elements-mat Bounded-vec-vec-set
by (intro ballI conjI Max-ge finite-imageI imageI finite-UnI , auto)

hence A ∈ Bounded-mat (of-int Bnd) ∧ b ∈ Bounded-vec (of-int Bnd)
using Bounded-mat-mono[OF Bnd] Bounded-vec-mono[OF Bnd] unfolding

MBnd-def by auto
from decomposition-theorem-polyhedra-1 [OF A b P, of db Bnd] db AI bI this
obtain QQ Q C where C : C ⊆ carrier-vec n and finC : finite C

and QQ: QQ ⊆ carrier-vec n and finQ: finite QQ and BndQQ: QQ ⊆
Bounded-vec DBnd

and P: P = Q + cone C
and Q-def : Q = convex-hull QQ
and CI : C ⊆ �v and BndC : C ⊆ Bounded-vec DBnd
by (auto simp: DBnd-def )

define Bnd ′ where Bnd ′ = of-nat n ∗ DBnd
note coneC = cone-iff-finite-cone[OF C finC ]
have Q: Q ⊆ carrier-vec n unfolding Q-def using convex-hull-carrier [OF QQ]

.
define B where B = {x. ∃ a D. nonneg-lincomb a D x ∧ D ⊆ C ∧ lin-indpt D
∧ (∀ d ∈ D. a d ≤ 1 )}

{
fix b
assume b ∈ B
then obtain a D where b: b = lincomb a D and DC : D ⊆ C

and linD: lin-indpt D and bnd-a: ∀ d ∈ D. 0 ≤ a d ∧ a d ≤ 1
by (force simp: B-def nonneg-lincomb-def )

from DC C have D: D ⊆ carrier-vec n by auto
from DC finC have finD: finite D by (metis finite-subset)
from D linD finD have cardD: card D ≤ n using dim-is-n li-le-dim(2 ) by auto
from BndC DC have BndD: D ⊆ Bounded-vec DBnd by auto
from lincomb-card-bound[OF this D DBnd0 - cardD, of a, folded b] bnd-a
have b ∈ Bounded-vec Bnd ′ unfolding Bnd ′-def by force

}
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hence BndB: B ⊆ Bounded-vec Bnd ′ ..
from BndQQ have BndQ: Q ⊆ Bounded-vec DBnd unfolding Q-def using QQ

by (metis convex-hull-bound)
have B: B ⊆ carrier-vec n

unfolding B-def nonneg-lincomb-def using C by auto
from Q B have QB: Q + B ⊆ carrier-vec n by (auto elim!: set-plus-elim)
from sum-in-Bounded-vecI [of - DBnd - Bnd ′ n] BndQ BndB B Q
have Q + B ⊆ Bounded-vec (DBnd + Bnd ′) by (auto elim!: set-plus-elim)
also have DBnd + Bnd ′ = nBnd unfolding nBnd-def Bnd ′-def by (simp add:

algebra-simps)
finally have QB-Bnd: Q + B ⊆ Bounded-vec nBnd by blast
have finQBZ : finite ((Q + B) ∩ �v)
proof (rule finite-subset[OF subsetI ])

define ZBnd where ZBnd = floor nBnd
let ?vecs = set (map vec-of-list (concat-lists (map (λ i. map (of-int :: - ⇒ ′a)

[−ZBnd..ZBnd]) [0 ..<n])))
have id: ?vecs = vec-of-list ‘
{as. length as = n ∧ (∀ i<n. ∃ b. as ! i = of-int b ∧ b ∈ {− ZBnd..ZBnd})}
unfolding set-map by (rule image-cong, auto)

show finite ?vecs by (rule finite-set)
fix x
assume x ∈ (Q + B) ∩ �v

hence xQB: x ∈ Q + B and xI : x ∈ �v by auto
from xQB QB-Bnd QB have xBnd: x ∈ Bounded-vec nBnd and x: x ∈ car-

rier-vec n by auto
have xid: x = vec-of-list (list-of-vec x) by auto
show x ∈ ?vecs unfolding id
proof (subst xid, intro imageI CollectI conjI allI impI )

show length (list-of-vec x) = n using x by auto
fix i
assume i: i < n
have id: list-of-vec x ! i = x $ i using i x by auto
from xBnd[unfolded Bounded-vec-def ] i x have xiBnd: abs (x $ i) ≤ nBnd

by auto
from xI [unfolded Ints-vec-def ] i x have x $ i ∈ � by auto
then obtain b where b: x $ i = of-int b unfolding Ints-def by blast
show ∃ b. list-of-vec x ! i = of-int b ∧ b ∈ {− ZBnd..ZBnd} unfolding id

ZBnd-def
using xiBnd unfolding b by (intro exI [of - b], auto intro!: abs-neg-floor

abs-pos-floor)
qed

qed
have QBZ : (Q + B) ∩ �v ⊆ carrier-vec n using QB by auto
from decomposition-theorem-polyhedra-2 [OF QBZ finQBZ , folded integer-hull-def ,

OF C finC refl]
obtain A ′ b ′ nr ′ where A ′: A ′ ∈ carrier-mat nr ′ n and b ′: b ′ ∈ carrier-vec nr ′

and IH : integer-hull (Q + B) + cone C = polyhedron A ′ b ′

by auto
{
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fix p
assume p ∈ P ∩ �v

hence pI : p ∈ �v and p: p ∈ Q + cone C unfolding P by auto
from set-plus-elim[OF p] obtain q c where

pqc: p = q + c and qQ: q ∈ Q and cC : c ∈ cone C by auto
from qQ Q have q: q ∈ carrier-vec n by auto
from Caratheodory-theorem[OF C ] cC
obtain D where cD: c ∈ finite-cone D and DC : D ⊆ C and linD: lin-indpt

D by auto
from DC C have D: D ⊆ carrier-vec n by auto
from DC finC have finD: finite D by (metis finite-subset)
from cD finD
obtain a where nonneg-lincomb a D c unfolding finite-cone-def by auto
hence caD: c = lincomb a D and a0 :

∧
d. d ∈ D =⇒ a d ≥ 0

unfolding nonneg-lincomb-def by auto
define a1 where a1 = (λ c. a c − of-int (floor (a c)))
define a2 where a2 = (λ c. of-int (floor (a c)) :: ′a)
define d where d = lincomb a2 D
define b where b = lincomb a1 D
have b: b ∈ carrier-vec n and d: d ∈ carrier-vec n unfolding d-def b-def using

D by auto
have bB: b ∈ B unfolding B-def b-def nonneg-lincomb-def
proof (intro CollectI exI [of - a1 ] exI [of - D] conjI ballI refl subsetI linD)

show x ∈ a1 ‘ D =⇒ 0 ≤ x for x using a0 unfolding a1-def by auto
show a1 c ≤ 1 for c unfolding a1-def by linarith

qed (insert DC , auto)
have cbd: c = b + d unfolding b-def d-def caD lincomb-sum[OF finD D,

symmetric]
by (rule lincomb-cong[OF refl D], auto simp: a1-def a2-def )

have nonneg-lincomb a2 D d unfolding d-def nonneg-lincomb-def
by (intro allI conjI refl subsetI , insert a0 , auto simp: a2-def )

hence dC : d ∈ cone C unfolding cone-def finite-cone-def using finC finD DC
by auto

have p: p = (q + b) + d unfolding pqc cbd using q b d by auto
have dI : d ∈ �v using CI DC C unfolding d-def indexed-Ints-vec-UNIV

by (intro lincomb-indexed-Ints-vec, auto simp: a2-def )
from diff-indexed-Ints-vec[of - - - UNIV , folded indexed-Ints-vec-UNIV , OF -

d pI dI , unfolded p]
have q + b + d − d ∈ �v using q b d by auto
also have q + b + d − d = q + b using q b d by auto
finally have qbI : q + b ∈ �v by auto
have p ∈ integer-hull (Q + B) + cone C unfolding p integer-hull-def

by (intro set-plus-intro dC set-mp[OF set-in-convex-hull] IntI qQ bB qbI ,
insert Q B,

auto elim!: set-plus-elim)
}
hence P ∩ �v ⊆ integer-hull (Q + B) + cone C by auto
hence one-dir : integer-hull P ⊆ integer-hull (Q + B) + cone C unfolding IH
unfolding integer-hull-def using convex-convex-hull[OF polyhedra-are-convex[OF

135



A ′ b ′ refl]]
convex-hull-mono by blast

have integer-hull (Q + B) + cone C ⊆ integer-hull P + cone C unfolding P
proof (intro set-plus-mono2 subset-refl integer-hull-mono)
show B ⊆ cone C unfolding B-def cone-def finite-cone-def using finite-subset[OF

- finC ] by auto
qed
also have . . . = integer-hull P + integer-hull (cone C )

using integer-hull-integer-cone[OF C CI ] by simp
also have . . . = convex-hull (P ∩ �v) + convex-hull (cone C ∩ �v)

unfolding integer-hull-def by simp
also have . . . = convex-hull ((P ∩ �v) + (cone C ∩ �v))

by (rule convex-hull-sum[symmetric], insert Pn cone-carrier [OF C ], auto)
also have . . . ⊆ convex-hull ((P + cone C ) ∩ �v)
proof (rule convex-hull-mono)

show P ∩ �v + cone C ∩ �v ⊆ (P + cone C ) ∩ �v

using add-indexed-Ints-vec[of - n - UNIV , folded indexed-Ints-vec-UNIV ]
cone-carrier [OF C ] Pn

by (auto elim!: set-plus-elim)
qed
also have . . . = integer-hull (P + cone C ) unfolding integer-hull-def ..
also have P + cone C = P
proof −

have CC : cone C ⊆ carrier-vec n using C by (rule cone-carrier)
have P + cone C = Q + (cone C + cone C ) unfolding P

by (rule assoc-add-vecset[symmetric, OF Q CC CC ])
also have cone C + cone C = cone C by (rule cone-add-cone[OF C ])
finally show ?thesis unfolding P .

qed
finally have integer-hull (Q + B) + cone C ⊆ integer-hull P .
with one-dir have id: integer-hull P = integer-hull (Q + B) + cone C by auto
show ?thesis unfolding id unfolding integer-hull-def DBnd-def [symmetric]

nBnd-def [symmetric]
proof (rule exI [of - (Q + B) ∩ �v], intro exI [of - C ] conjI refl BndC )

from QB-Bnd show (Q + B) ∩ �v ⊆ Bounded-vec nBnd by auto
show (Q + B) ∩ �v ∪ C ⊆ carrier-vec n ∩ �v

using QB C CI by auto
show finite ((Q + B) ∩ �v ∪ C ) using finQBZ finC by auto

qed
qed

corollary integer-hull-of-polyhedron: assumes A: A ∈ carrier-mat nr n
and b: b ∈ carrier-vec nr
and AI : A ∈ �m

and bI : b ∈ �v

and P: P = polyhedron A b
shows ∃ A ′ b ′ nr ′. A ′ ∈ carrier-mat nr ′ n ∧ b ′ ∈ carrier-vec nr ′ ∧

integer-hull P = polyhedron A ′ b ′

proof −
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obtain Bnd where Bnd: Max (abs ‘ (elements-mat A ∪ setv b)) ≤ of-int Bnd
by (meson ex-le-of-int)

from decomposition-theorem-integer-hull-of-polyhedron[OF det-bound-fact A b AI
bI P Bnd]

obtain H C
where HC : H ∪ C ⊆ carrier-vec n ∩ �v finite (H ∪ C )

and decomp: integer-hull P = convex-hull H + cone C by auto
show ?thesis
by (rule decomposition-theorem-polyhedra-2 [OF - - - - decomp], insert HC , auto)

qed

corollary small-integer-solution-nonstrict-via-decomp: fixes A :: ′a mat
assumes db: is-det-bound db

and A: A ∈ carrier-mat nr n
and b: b ∈ carrier-vec nr
and AI : A ∈ �m

and bI : b ∈ �v

and Bnd: of-int Bnd ≥ Max (abs ‘ (elements-mat A ∪ vec-set b))
and x: x ∈ carrier-vec n
and xI : x ∈ �v

and sol: A ∗v x ≤ b
shows ∃ y.
y ∈ carrier-vec n ∧
y ∈ �v ∧
A ∗v y ≤ b ∧
y ∈ Bounded-vec (of-nat (n+1 ) ∗ of-int (db n (max 1 Bnd)))

proof −
from x sol have x ∈ polyhedron A b unfolding polyhedron-def by auto
with xI x have xsol: x ∈ integer-hull (polyhedron A b) unfolding integer-hull-def
by (meson IntI convex-hull-mono in-mono inf-sup-ord(1 ) inf-sup-ord(2 ) set-in-convex-hull)

from decomposition-theorem-integer-hull-of-polyhedron[OF db A b AI bI refl Bnd]
obtain H C where HC : H ∪ C ⊆ carrier-vec n ∩ �v

H ⊆ Bounded-vec (of-nat (n + 1 ) ∗ of-int (db n (max 1 Bnd)))
finite (H ∪ C ) and
id: integer-hull (polyhedron A b) = convex-hull H + cone C
by auto

from xsol[unfolded id] have H 6= {} unfolding set-plus-def by auto
then obtain h where hH : h ∈ H by auto
with set-in-convex-hull have h ∈ convex-hull H using HC by auto
moreover have 0 v n ∈ cone C by (intro zero-in-cone)
ultimately have h + 0 v n ∈ integer-hull (polyhedron A b) unfolding id by

auto
also have h + 0 v n = h using hH HC by auto
also have integer-hull (polyhedron A b) ⊆ convex-hull (polyhedron A b)

unfolding integer-hull-def by (rule convex-hull-mono, auto)
also have convex-hull (polyhedron A b) = polyhedron A b using A b

using convex-convex-hull polyhedra-are-convex by blast
finally have h: h ∈ carrier-vec n A ∗v h ≤ b unfolding polyhedron-def by auto
show ?thesis
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by (intro exI [of - h] conjI h, insert HC hH , auto)
qed

lemmas small-integer-solution-nonstrict-via-decomp-hadamard =
small-integer-solution-nonstrict-via-decomp[OF det-bound-hadamard, unfolded det-bound-hadamard-def ]

end
end
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