
Lightweight Java

Rok Strniša Matthew Parkinson

March 17, 2025

Abstract
Lightweight Java (LJ) is an imperative fragment of Java [5]. It is

intended to be as simple as possible while still retaining the feel of
Java. LJ includes fields, methods, single inheritance, dynamic method
dispatch, and method overriding. It does not include support for local
variables, field hiding, interfaces, inner classes, or generics. The accom-
panying Isabelle script proves the type soundness of the Ott-generated
LJ definition.

1 Description
When designing or reasoning about a language feature or a language anal-
ysis, researchers try to limit the underlying language to avoid dealing with
unnecessary details. For example, object-oriented generics were formalised
on top of Featherweight Java (FJ) [6], a substantially simplified model of
the Java programming language [5].

Many researchers have used FJ as their base language. However, FJ
is not always suitable, since it is purely functional — it does not model
state; there are only expressions, which are evaluated completely locally.
Therefore, FJ is a poor choice for language analyses or language features
that rely on state, e.g. separation logic [7] or mixins [3].

In this chapter, we present Lightweight Java (LJ), a minimal imperative
core of Java. We chose a minimal set of features that still gives a Java-
like feel to the language, i.e. fields, methods, single inheritance, dynamic
method dispatch, and method overriding. We did not include type casts,
local variables, field hiding, interfaces, method overloading, or any of the
more advanced language features mainly due to their apparent orthogonality
to the Java Module System [11], a research topic at the time; however, we
later realised that, by including type casts and static data, we could formally
verify properties regarding class cast exceptions (or their lack of) and module
state independence — this extension remains future work.

LJ’s semantics uses a program heap, and a variable state, but does not
model a frame stack — method calls are effectively flattened as they are
executed, which simplifies the semantics. In spite of this, LJ is a proper

1



subset of Java, i.e. every LJ program is a valid Java program, while its
observable semantics exactly corresponds to Java’s semantics.

LJ is largely a simplification of Middleweight Java (MJ) [2]. In addition
to the above, MJ models a stack, type casts, and supports expressions (not
just statements).

LJ is defined rigorously. It is designed in Ott [8], a tool for writing
definitions of programming languages and calculi. From LJ’s Ott code, the
tool also generates the language definition in Isabelle/HOL [1], a tool for
writing computer-verified maths. Based on this definition, we mechanically
prove type soundness in Isabelle/HOL, which gives us high confidence in the
correctness of the results.

Initially, we designed LJ as a base language for modelling the Java Mod-
ule System, Lightweight Java Module System (LJAM) [10], and its improve-
ment, Improved Java Module System (iJAM) [9] — in both, we achieved a
high level of reuse in both the definitions and proof scripts. Through this
process, LJ has been abstracted to the point where we think it can be used
for experimenting with other language features. In fact, LJ has already been
used by others to formalise “features” in Lightweight Feature Java [4].

2 Example program
Here are two Lightweight Java class definitions, which show the use of class
fields, class methods, class inheritance, method overriding, subtyping, and
dynamic method dispatch.
class A { // class definition

A f; // class field
A m(B var) { this.f = var; return var; } // subtyping

}

class B extends A { // class inheritance
A m(B var) { this.f = var; return this; } // overriding

}

// A a, result ; B b;
a = new B(); // subtyping
b = new B();
result = a.m(b); // dynamic method dispatch (calls B::m)

Due to method overriding, the method call on the last line calls B’s
method m. Therefore, when the execution stops, both result and a point
to the same heap location.

3 Extending the language
The easiest way to extend the language is to modify its Ott source files. To
prove progress and well-formedness preservation of the extension, you can

2



either:

• modify the existing Isabelle scripts; or,

• prove that any valid program of the extended language can be reduced
to a program in LJ.

4 More information
More information about Lightweight Java’s operational semantics, type sys-
tem, type checking, and a detailed walkthrough of the proof of type sound-
ness can be found here:

http://rok.strnisa.com/lj/

References
[1] Isabelle. http://isabelle.in.tum.de/.

[2] G. Bierman, M. J. Parkinson, and A. Pitts. MJ: An Imperative Core
Calculus for Java and Java with Effects. Technical Report 563, Com-
puter Laboratory, University of Cambridge, Apr. 2003.

[3] G. Bracha and W. R. Cook. Mixin-based Inheritance. In Proceedings of
OOPSLA, volume 25(10) of ACM SIGPLAN Notices, pages 303–311.
ACM Press, Oct. 1990.

[4] B. Delaware, W. R. Cook, and D. Batory. A Machine-Checked Model of
Safe Composition. http://www.cs.utexas.edu/~bendy/featurejava.php,
Oct. 2008.

[5] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java™ Language
Specification. Sun Microsystems, Inc., Third edition, May 2005.

[6] A. Igarashi, B. C. Pierce, and P. Wadler. Featherweight Java: A Min-
imal Core Calculus for Java and GJ. In Proceedings of OOPSLA, vol-
ume 34(10) of ACM SIGPLAN Notices, pages 132–146. ACM Press,
Oct. 1999.

[7] J. C. Reynolds. Separation Logic: A Logic for Shared Mutable Data
Structures. In Proceedings of LICS, pages 55–74. IEEE Computer So-
ciety, July 2002.

[8] P. Sewell, F. Zappa Nardelli, S. Owens, G. Peskine, T. Ridge, S. Sarkar,
and R. Strniša. Ott: Effective Tool Support for the Working Semanti-
cist. In Proceedings of ICFP, volume 42(9) of ACM SIGPLAN Notices,
pages 1–12. ACM Press, Oct. 2007.

3



[9] R. Strniša. Improved Java Module System (iJAM). http://rok.strnisa.
com/iJAM/, Nov. 2007.

[10] R. Strniša. Lightweight Java Module System (LJAM). http://rok.
strnisa.com/ljam/, Mar. 2007.

[11] Sun Microsystems, Inc. JSR-277: Java™ Module System. http://jcp.
org/en/jsr/detail?id=277, Oct. 2006. Early Draft.

4


