
Lifting the Exponent

Maya Kądziołka

March 17, 2025

Abstract

We formalize the Lifting the Exponent Lemma, which shows how to
find the largest power of p dividing an± bn, for a prime p and positive
integers a and b. The proof follows [1].

Contents
1 Library additions 1

2 The p > 2 case 3

3 The p = 2 case 7
theory LTE

imports
HOL−Number-Theory.Number-Theory

begin

1 Library additions
lemma cong-sum-mono-neutral-right:

assumes finite T
assumes S ⊆ T
assumes zeros: ∀ i ∈ T − S . [g i = 0] (mod n)
shows [sum g T = sum g S] (mod n)

proof −
have [sum g T = (

∑
x∈T . if x ∈ S then g x else 0)] (mod n)

using zeros by (auto intro: cong-sum)
also have (

∑
x∈T . if x ∈ S then g x else 0) = (

∑
x∈S . if x ∈ S then g x else 0)

by (intro sum.mono-neutral-right; fact?; auto)
also have ... = sum g S

by (auto intro: sum.cong)
finally show ?thesis.

qed

lemma power-odd-inj:
fixes a b :: ′a::linordered-idom

1

assumes odd k and a^k = b^k
shows a = b

proof (cases a ≥ 0)
case True
then have b ≥ 0

using assms zero-le-odd-power by metis
moreover from ‹odd k› have k > 0 by presburger
show ?thesis

by (rule power-eq-imp-eq-base; fact)
next

case False
then have b < 0

using assms power-less-zero-eq not-less by metis
from ‹a^k = b^k› have (−a)^k = (−b)^k

using ‹odd k› power-minus-odd by simp
moreover have −a ≥ 0 and −b ≥ 0

using ‹¬ a ≥ 0› and ‹b < 0› by auto
moreover from ‹odd k› have k > 0 by presburger
ultimately have −a = −b by (rule power-eq-imp-eq-base)
then show ?thesis by simp

qed

lemma power-eq-abs:
fixes a b :: ′a::linordered-idom
assumes a^k = b^k and k > 0
shows |a| = |b|

proof −
from ‹a^k = b^k› have |a|^k = |b|^k

using power-abs by metis
show |a| = |b|

by (rule power-eq-imp-eq-base; fact?; auto)
qed

lemma cong-scale:
k 6= 0 =⇒ [a = b] (mod c) ←→ [k∗a = k∗b] (mod k∗c)
unfolding cong-def by auto

lemma odd-square-mod-4:
fixes x :: int
assumes odd x
shows [x^2 = 1] (mod 4)

proof −
have x^2 − 1 = (x − 1) ∗ (x + 1)

by (simp add: ring-distribs power2-eq-square)
moreover from ‹odd x› have 2 dvd x − 1 and 2 dvd x + 1

by auto
ultimately have 4 dvd x^2 − 1

by fastforce
thus ?thesis

2

by (simp add: cong-iff-dvd-diff)
qed

2 The p > 2 case
context

fixes x y :: int and p :: nat
assumes prime p
assumes p dvd x − y
assumes ¬p dvd x ¬p dvd y

begin

lemma decompose-mod-p:
[(
∑

i<n. y^(n − Suc i) ∗ x^i) = n∗x^(n−1)] (mod p)
proof −

{
fix i
assume i < n
from ‹p dvd x − y› have [x = y] (mod p)

by (simp add: cong-iff-dvd-diff)
hence [y^(n − Suc i) ∗ x^i = x^(n − Suc i) ∗ x^i] (mod p)

by (intro cong-scalar-right cong-pow; rule cong-sym)
also have x^(n − Suc i) ∗ x^i = x^(n − 1)

using ‹i < n› by (simp flip: power-add)
finally have [y^(n − Suc i) ∗ x^i = x^(n − 1)] (mod p)

by auto
}
hence [(

∑
i<n. y^(n − Suc i) ∗ x^i) = (

∑
i<n. x^(n−1))] (mod p)

by (intro cong-sum; auto)
thus [(

∑
i<n. y^(n − Suc i) ∗ x^i) = n ∗ x^(n−1)] (mod p)

by simp
qed

Lemma 1:
lemma multiplicity-diff-pow-coprime:

assumes coprime p n
shows multiplicity p (x^n − y^n) = multiplicity p (x − y)

proof −
have factor : x^n − y^n = (

∑
i<n. y^(n − Suc i) ∗ x^i) ∗ (x − y)

by (simp add: power-diff-sumr2)
moreover have ¬ p dvd (

∑
i<n. y^(n − Suc i) ∗ x^i)

proof
assume p dvd (

∑
i<n. y^(n − Suc i) ∗ x^i)

with decompose-mod-p have p dvd n ∗ x^(n−1)
using cong-dvd-iff by blast

with ‹prime p› have p dvd n ∨ p dvd x^(n−1)
by (simp add: prime-dvd-mult-eq-int)

moreover from ‹coprime p n› and ‹prime p› have ¬p dvd n
using coprime-absorb-right not-prime-unit by auto

3

ultimately have p dvd x^(n−1)
by simp

hence p dvd x
using ‹prime p› prime-dvd-power-int prime-nat-int-transfer by blast

with ‹¬p dvd x› show False by simp
qed
ultimately show multiplicity p (x^n − y^n) = multiplicity p (x − y)

using ‹prime p›
by (auto intro: multiplicity-prime-elem-times-other)

qed

The inductive step:
lemma multiplicity-diff-self-pow:

assumes p > 2 and x 6= y
shows multiplicity p (x^p − y^p) = Suc (multiplicity p (x − y))

proof −
have ∗: multiplicity p (

∑
i<p. y^(p − Suc i) ∗ x^i) = 1

proof (rule multiplicity-eqI)
have [(

∑
t<p. y^(p − Suc t) ∗ x^t) = p ∗ x^(p−1)] (mod p)

by (rule decompose-mod-p)
also have [p ∗ x^(p−1) = 0] (mod p)

by (simp add: cong-mult-self-left)
finally show (int p)^1 dvd (

∑
i<p. y^(p − Suc i) ∗ x^i)

by (simp add: cong-0-iff)

from ‹p dvd x − y› obtain k::int where kp: x = y + k ∗ p
by (metis add.commute diff-add-cancel dvd-def mult.commute)

have [y^(p − Suc t) ∗ x^t = y^(p−1) + t∗k∗p∗y^(p−2)] (mod p^2) if t < p
for t

proof (cases t = 0)
case False
have y^(p − Suc t) ∗ x^t = y^(p − Suc t) ∗ (y + k∗p)^t

unfolding kp..
also have ... = y^(p − Suc t) ∗ (

∑
i≤t. (t choose i) ∗ (k∗p)^i ∗ y^(t−i))

by (simp flip: binomial-ring add: add.commute)
also have [... = y^(p − Suc t) ∗ (

∑
i≤1. (t choose i) ∗ (k∗p)^i ∗ y^(t−i))]

(mod p^2)
— discard i > 1

proof (intro cong-scalar-left cong-sum-mono-neutral-right; rule)
fix i
assume i ∈ {..t} − {..1}
then have i ≥ 2 by simp
then obtain i ′ where i = i ′ + 2

using add.commute le-Suc-ex by blast
hence (k∗p)^i = (k∗p)^i ′ ∗ k^2 ∗ p^2

by (simp add: ac-simps power2-eq-square)
hence [(k∗p)^i = 0] (mod p^2)

by (simp add: cong-mult-self-right)

4

thus [(t choose i) ∗ (k∗p)^i ∗ y^(t−i) = 0] (mod p^2)
by (simp add: cong-0-iff)

qed (use ‹t 6= 0› in auto)
also have (

∑
i≤1. (t choose i) ∗ (k∗p)^i ∗ y^(t−i)) = y^t + t∗k∗p∗y^(t−1)

by simp
also have y^(p − Suc t) ∗ ... = y^(p−1) + t∗k∗p∗y^(p−2)

using ‹t < p› ‹t 6= 0› by (auto simp add: algebra-simps numeral-eq-Suc
simp flip: power-add)

finally show ?thesis.
qed simp

hence [(
∑

t<p. y^(p − Suc t) ∗ x^t) = (
∑

t<p. y^(p−1) + t∗k∗p∗y^(p−2))]
(mod p^2)

by (auto intro: cong-sum)
also have (

∑
t<p. y^(p−1) + t∗k∗p∗y^(p−2)) = p∗y^(p−1) + (

∑
t<p. t) ∗

k∗p∗y^(p−2)
by (simp add: sum.distrib sum-distrib-right)

also have (
∑

t<p. t) = p∗(p − 1) div 2
by (simp add: Sum-Ico-nat lessThan-atLeast0)

finally have [(
∑

t<p. y^(p − Suc t) ∗ x^t) = p∗y^(p−1) + (p∗(p − 1) div 2)
∗ k∗p∗y^(p−2)] (mod p^2).

moreover have [(p∗(p − 1) div 2) ∗ k∗p∗y^(p−2) = 0] (mod p^2)
proof −

have [(p ∗ (p − 1) div 2) ∗ p = 0] (mod p^2)
proof −

from ‹p > 2› and ‹prime p› have odd p
using prime-odd-nat by blast

thus ?thesis
by (metis (no-types, lifting) cong-0-iff div-mult-swap dvd-times-left-cancel-iff
dvd-triv-left le-0-eq linorder-not-less mult.commute odd-pos odd-two-times-div-two-nat

one-add-one power-add power-one-right)
qed
hence [int ((p∗(p − 1) div 2) ∗ p)∗k∗y^(p−2) = 0] (mod p^2)

unfolding cong-0-iff using int-dvd-int-iff by fastforce
thus ?thesis

by (simp add: ac-simps)
qed
ultimately have [(

∑
t<p. y^(p − Suc t) ∗ x^t) = p∗y^(p−1)] (mod p^2)

using cong-add-lcancel-0 cong-trans by blast
moreover have ¬ p^2 dvd p∗y^(p−1)

using ‹p > 2› ‹prime p› ‹¬ p dvd y› by (simp add: power2-eq-square
prime-dvd-power-int-iff)

ultimately show ¬ int p^(Suc 1) dvd (
∑

t<p. y^(p − Suc t) ∗ x^t)
by (metis (no-types, lifting) Suc-1 of-nat-power cong-dvd-iff)

qed
moreover have multiplicity p (x^p − y^p) = multiplicity p (x − y) + multiplicity

p (
∑

i<p. y^(p − Suc i) ∗ x^i)
apply (unfold power-diff-sumr2, intro prime-elem-multiplicity-mult-distrib)
using ‹prime p› ‹x 6= y› multiplicity-zero ∗ by auto

5

ultimately show ?thesis by simp
qed

Theorem 1:
theorem multiplicity-diff-pow:

assumes p > 2 and x 6= y and n > 0
shows multiplicity p (x^n − y^n) = multiplicity p (x − y) + multiplicity p n

proof −
obtain k where n: n = p^multiplicity p n ∗ k and ¬ p dvd k

using ‹n > 0› ‹prime p›
by (metis neq0-conv not-prime-unit multiplicity-decompose ′)

have multiplicity p (x^(p^a ∗ k) − y^(p^a ∗ k)) = multiplicity p (x − y) + a
for a

proof (induction a)
case 0
from ‹¬ p dvd k› have coprime p k

using ‹prime p› by (intro prime-imp-coprime)
thus ?case

by (simp add: multiplicity-diff-pow-coprime)
next

case (Suc a)
let ?x ′ = x^(p^a∗k) and ?y ′ = y^(p^a∗k)
have ¬ p dvd ?x ′ and ¬ p dvd ?y ′

using ‹¬ p dvd x› ‹¬ p dvd y› and ‹prime p›
by (meson prime-dvd-power prime-nat-int-transfer)+

moreover have p dvd ?x ′ − ?y ′

using ‹p dvd x − y› by (simp add: power-diff-sumr2)
moreover have ?x ′ 6= ?y ′

proof
assume ?x ′ = ?y ′

moreover have 0 < p^a ∗ k
using ‹prime p› ‹n > 0› n
by (metis gr0I mult-is-0 power-not-zero prime-gt-0-nat)

ultimately have |x| = |y|
by (intro power-eq-abs)

with ‹x 6= y› have x = −y
using abs-eq-iff by simp

with ‹p dvd x − y› have p dvd 2∗x
by simp

with ‹prime p› have p dvd 2 ∨ p dvd x
by (metis int-dvd-int-iff of-nat-numeral prime-dvd-mult-iff prime-nat-int-transfer)
with ‹p > 2› have p dvd x

by auto
with ‹¬ p dvd x› show False..

qed
moreover have p^Suc a ∗ k = p^a ∗ k ∗ p

by (simp add: ac-simps)
ultimately show ?case
using LTE .multiplicity-diff-self-pow[where x=?x ′ and y=?y ′, OF ‹prime p›]

6

‹p > 2›
and Suc.IH

by (metis add-Suc-right power-mult)
qed
with n show ?thesis by metis

qed

end

Theorem 2:
corollary multiplicity-add-pow:

fixes x y :: int and p n :: nat
assumes odd n

and prime p and p > 2
and p dvd x + y and ¬ p dvd x ¬ p dvd y
and x 6= −y

shows multiplicity p (x^n + y^n) = multiplicity p (x + y) + multiplicity p n
proof −

have [simp]: (−y)^n = −(y^n)
using ‹odd n› by (rule power-minus-odd)

moreover have n > 0
using ‹odd n› by presburger

with assms show ?thesis
using multiplicity-diff-pow[where x=x and y=−y and n=n]
by simp

qed

3 The p = 2 case

Theorem 3:
theorem multiplicity-2-diff-pow-4div:

fixes x y :: int
assumes odd x odd y and 4 dvd x − y and n > 0 x 6= y
shows multiplicity 2 (x^n − y^n) = multiplicity 2 (x − y) + multiplicity 2 n

proof −
have prime (2::nat) by simp
then obtain k where n: n = 2^multiplicity 2 n ∗ k and ¬ 2 dvd k

using ‹n > 0›
by (metis neq0-conv not-prime-unit multiplicity-decompose ′)

have pow2: multiplicity 2 (x^(2^k) − y^(2^k)) = multiplicity 2 (x − y) + k for
k

proof (induction k)
case (Suc k)
have x^(2^Suc k) − y^(2^Suc k) = (x^2^k)^2 − (y^2^k)^2

by (simp flip: power-mult algebra-simps)
also have ... = (x^2^k − y^2^k)∗(x^2^k + y^2^k)

by (simp add: power2-eq-square algebra-simps)

7

finally have factor : x^(2^Suc k) − y^(2^Suc k) = (x^2^k − y^2^k)∗(x^2^k +
y^2^k).

moreover have m-plus: multiplicity 2 (x^2^k + y^2^k) = 1
proof (rule multiplicity-eqI)

show 2^1 dvd x^2^k + y^2^k
using ‹odd x› and ‹odd y› by simp

have [x^2^k + y^2^k = 2] (mod 4)
proof (cases k)

case 0
from ‹odd y› have [y = 1] (mod 2)

using cong-def by fastforce
hence [2∗y = 2] (mod 4)

using cong-scale[where k=2 and b=1 and c=2, simplified] by force
moreover from ‹4 dvd x − y› have [x − y = 0] (mod 4)

by (simp add: cong-0-iff)
ultimately have [x + y = 2] (mod 4)

by (metis add.commute assms(3) cong-add-lcancel cong-iff-dvd-diff cong-trans
mult-2)

with ‹k = 0› show ?thesis by simp
next

case (Suc k ′)
then have [x^2^k = 1] (mod 4) and [y^2^k = 1] (mod 4)

using ‹odd x› ‹odd y›
by (auto simp add: power-mult power-Suc2 simp del: power-Suc intro:

odd-square-mod-4)
thus [x^2^k + y^2^k = 2] (mod 4)

using cong-add by fastforce
qed
thus ¬ 2^Suc 1 dvd x^2^k + y^2^k

by (simp add: cong-dvd-iff)
qed
moreover have x^2^k + y^2^k 6= 0

using m-plus multiplicity-zero by auto
moreover have x^2^k − y^2^k 6= 0
proof

assume x^2^k − y^2^k = 0
then have |x| = |y|

by (intro power-eq-abs, simp, simp)
hence x = y ∨ x = −y

using abs-eq-iff by auto
with ‹x 6= y› have x = −y

by simp
with ‹4 dvd x − y› have 4 dvd 2∗x

by simp
hence 2 dvd x

by auto
with ‹odd x› show False..

qed

8

ultimately have multiplicity 2 (x^2^Suc k − y^2^Suc k) =
multiplicity 2 (x^2^k − y^2^k) + multiplicity 2 (x^2^k + y^2^k)

by (unfold factor ; intro prime-elem-multiplicity-mult-distrib; auto)
then show ?case

using m-plus Suc.IH by simp
qed simp

moreover have even-diff : int 2 dvd x^2^multiplicity 2 n − y^2^multiplicity 2 n
using ‹odd x› and ‹odd y› by simp

moreover have odd-parts: ¬ int 2 dvd x^2^multiplicity 2 n ¬ int 2 dvd
y^2^multiplicity 2 n

using ‹odd x› and ‹odd y› by simp+
moreover have coprime: coprime 2 k

using ‹¬ 2 dvd k› by simp

show ?thesis
apply (subst (1) n)
apply (subst (2) n)
apply (simp only: power-mult)

apply (simp only: multiplicity-diff-pow-coprime[OF ‹prime 2› even-diff odd-parts
coprime, simplified])

by (rule pow2)
qed

Theorem 4:
theorem multiplicity-2-diff-even-pow:

fixes x y :: int
assumes odd x odd y and even n and n > 0 and |x| 6= |y|
shows multiplicity 2 (x^n − y^n) = multiplicity 2 (x − y) + multiplicity 2 (x +

y) + multiplicity 2 n − 1
proof −

obtain n ′ where n = 2∗n ′

using ‹even n› by auto
with ‹n > 0› have n ′ > 0 by simp

moreover have 4 dvd x^2 − y^2
proof −

have x^2 − y^2 = (x + y) ∗ (x − y)
by (simp add: algebra-simps power2-eq-square)

moreover have 2 dvd x + y and 2 dvd x − y
using ‹odd x› and ‹odd y› by auto

ultimately show 4 dvd x^2 − y^2 by fastforce
qed

moreover have odd (x^2) and odd (y^2)
using ‹odd x› ‹odd y› by auto

moreover from ‹|x| 6= |y|› have x^2 6= y^2
using diff-0 diff-0-right power2-eq-iff by fastforce

9

ultimately have multiplicity 2 ((x^2)^n ′ − (y^2)^n ′) = multiplicity 2 (x^2 −
y^2) + multiplicity 2 n ′

by (intro multiplicity-2-diff-pow-4div)
also have multiplicity 2 ((x^2)^n ′ − (y^2)^n ′) = multiplicity 2 (x^n − y^n)

unfolding ‹n = 2∗n ′› by (simp add: power-mult)
also have multiplicity 2 (x^2 − y^2) = multiplicity 2 ((x − y) ∗ (x + y))

by (simp add: algebra-simps power2-eq-square)
also have ... = multiplicity 2 (x − y) + multiplicity 2 (x + y)

using ‹|x| 6= |y|› by (auto intro: prime-elem-multiplicity-mult-distrib)
also have multiplicity 2 n = Suc (multiplicity 2 n ′)

unfolding ‹n = 2∗n ′› using ‹n ′ > 0› by (simp add: multiplicity-times-same)
ultimately show ?thesis by simp

qed

end

References

[1] Hossein Parvardi. Lifting The Exponent Lemma (LTE), 2011.
URL: https://s3.amazonaws.com/aops-cdn.artofproblemsolving.com/
resources/articles/lifting-the-exponent.pdf.

10

https://s3.amazonaws.com/aops-cdn.artofproblemsolving.com/resources/articles/lifting-the-exponent.pdf
https://s3.amazonaws.com/aops-cdn.artofproblemsolving.com/resources/articles/lifting-the-exponent.pdf

	Library additions
	The 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 p > 2 case
	The 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 p = 2 case

