Lifting the Exponent

Maya Kadziotka
March 17, 2025

Abstract

We formalize the Lifting the Exponent Lemma, which shows how to
find the largest power of p dividing a™ 4+ b™, for a prime p and positive
integers a and b. The proof follows [1].

Contents
1 Library additions 1
2 The p > 2 case 3

3 The p = 2 case 7
theory LTE
imports
HOL— Number-Theory. Number-Theory
begin

1 Library additions

lemma cong-sum-mono-neutral-right:
assumes finite T
assumes S C T
assumes zeros: Vi € T — S. [g i = 0] (mod n)
shows [sum g T = sum g S] (mod n)
proof —
have [sum ¢ T = (3> z€T. if x € S then g z else 0)] (mod n)
using zeros by (auto intro: cong-sum)
also have (> z€T. if x € S then g z else 0) = (> z€S. if x € S then g x else 0)
by (intro sum.mono-neutral-right; fact?; auto)
also have ... = sum g §
by (auto intro: sum.cong)
finally show ?thesis.
qed

lemma power-odd-ing:
fixes a b :: 'a::linordered-idom

assumes odd k and ok = bk
shows a = b
proof (cases a > 0)
case True
then have b > 0
using assms zero-le-odd-power by metis
moreover from <odd k> have k > 0 by presburger
show ?thesis
by (rule power-eq-imp-eq-base; fact)
next
case Fulse
then have b < 0
using assms power-less-zero-eq not-less by metis
from <ok = bk have (—a) k= (=b) "k
using <odd k> power-minus-odd by simp
moreover have —ag¢ > 0 and —b > 0
using <— a > () and (b < 0> by auto
moreover from <odd k> have k > 0 by presburger

ultimately have —a = —b by (rule power-eg-imp-eq-base)
then show “thesis by simp
qed

lemma power-eq-abs:
fixes a b :: 'a:linordered-idom
assumes o k=bkand k > 0
shows |a| = |b|
proof —
from <a"k = b7k have |a| "k = |b] Tk
using power-abs by metis

show |a| = ||
by (rule power-eq-imp-eq-base; fact?; auto)
qed

lemma cong-scale:
k# 0= [a="b] (mod ¢) +— [kxa = kxb] (mod kxc)
unfolding cong-def by auto

lemma odd-square-mod-4:
fixes x :: int
assumes odd x
shows [272 = 1] (mod 4)
proof —
have 272 — 1 =(z— 1)« (z + 1)
by (simp add: ring-distribs power2-eq-square)
moreover from <odd x> have 2 dvd x — 1 and 2 dvd z + 1
by auto
ultimately have / dvd 272 — 1
by fastforce
thus ?thesis

by (simp add: cong-iff-dvd-diff)
qed

2 The p > 2 case

context
fixes z y :: int and p :: nat
assumes prime p
assumes p dvd x — y
assumes —p dvd . —p dvd y
begin

lemma decompose-mod-p:
[(OZi<n. y(n — Suc i) * 7%) = nxz”(n—1)] (mod p)
proof —
{
fix ¢
assume ¢ < n
from «p dvd x — y» have [z = y] (mod p)
by (simp add: cong-iff-dvd-diff)
hence [y (n — Suc i) * 27 = 2 (n — Suc @) x 73] (mod p)
by (intro cong-scalar-right cong-pow; rule cong-sym)
also have z(n — Suc i) * 275 = 27 (n — 1)
using i < n» by (simp flip: power-add)
finally have [y (n — Suc i) * 27 = 2 (n — 1)] (mod p)
by auto
}

hence [(>_ i<n. y(n — Suc i) * 27%) = (3 i<n. 7 (n—1))] (mod p)
by (intro cong-sum; auto)
thus [i<n. y(n — Suc i) * x7%) = n * x (n—1)] (mod p)
by simp
qed

Lemma 1:

lemma multiplicity-diff-pow-coprime:
assumes coprime p n
shows multiplicity p (z™n — y™n) = multiplicity p (x — y)
proof —
have factor: x™n — y"n = (O i<n. y(n — Suc i) * 27%) * (z — y)
by (simp add: power-diff-sumr2)
moreover have — p dvd (> i<n. y (n — Suc i) x z7%)
proof
assume p dvd (3 i<n. y(n — Suc i) * 27%)
with decompose-mod-p have p dvd n * x(n—1)
using cong-dvd-iff by blast
with <prime p» have p dvd n V p dvd z7(n—1)
by (simp add: prime-dvd-mult-eg-int)
moreover from <coprime p n» and <prime p> have —p dvd n
using coprime-absorb-right not-prime-unit by auto

ultimately have p dvd 2 (n—1)
by simp
hence p dvd z
using <prime p» prime-dvd-power-int prime-nat-int-transfer by blast
with <—p dvd z» show Fulse by simp
qed
ultimately show multiplicity p (z™n — y™n) = multiplicity p (z — y)
using <prime p»
by (auto intro: multiplicity-prime-elem-times-other)
qed

The inductive step:

lemma multiplicity-diff-self-pow:
assumes p > 2 and z # y
shows multiplicity p (x™p — y p) = Suc (multiplicity p (z — y))
proof —
have *: multiplicity p (> i<p. y (p — Suc @) * 27%) = 1
proof (rule multiplicity-eql)
have [t<p. y(p — Suct) * 7t) = p * x (p—1)] (mod p)
by (rule decompose-mod-p)
also have [p * z7(p—1) = 0] (mod p)
by (simp add: cong-mult-self-left)
finally show (int p) "1 dvd (D> i<p. y (p — Suc i) * x7%)
by (simp add: cong-0-iff)

from <p dvd x — 3> obtain k::int where kp: z =y + k x p
by (metis add.commute diff-add-cancel dvd-def mult.commute)

have [y (p — Suc t) * 27t = y (p—1) + txkxpxy (p—2)] (mod p~2) if t < p
for ¢
proof (cases t = 0)
case Fulse
have y (p — Suc t) x 27t = y " (p — Suc t) * (y + kxp) "t
unfolding kp..

also have ... = y(p — Suc t) x (O i<t. (t choose ©) * (kxp) i x y (t—1))
by (simp flip: binomial-ring add: add.commute)
also have [... = y(p — Suc t) * (> i<I. (t choose ©) * (k*p) i * y (t—1))]
(mod p~2)

— discard ¢ > 1
proof (intro cong-scalar-left cong-sum-mono-neutral-right; rule)
fix ¢
assume ¢ € {..t} — {..1}
then have i > 2 by simp
then obtain i’ where i = i’ + 2
using add.commute le-Suc-ex by blast
hence (kxp) i = (kxp) 7'« k72 x p”2
by (simp add: ac-simps power2-eg-square)
hence [(kxp) i = 0] (mod p~2)
by (simp add: cong-mult-self-right)

thus [(t choose 1) * (kxp) i x y (t—i) = 0] (mod p~2)
by (simp add: cong-0-iff)
qed (use <t # 0> in auto)
also have (3 i<1. (¢ choose i) * (kxp) i * y " (1—1)) = y "t + txkxpry (t—1)
by simp
also have y (p — Suc t) * ... = y (p—1) + txkxpxy (p—2)
using ¢ < p» «t # 0> by (auto simp add: algebra-simps numeral-eq-Suc
stmp flip: power-add)
finally show ?thesis.
qged simp

hence [(> t<p. y(p — Suct) * 7t) = O t<p. y (p—1) + txkxpxy (p—2))]
(mod p~2)
by (auto intro: cong-sum)
also have (> t<p. y (p—1) + txkspxy (p—2)) = pxy (p—1) + O t<p. t) *
kxpxy (p—2)
by (simp add: sum.distrib sum-distrib-right)
also have (D t<p. t) = px(p — 1) div 2
by (simp add: Sum-Ico-nat lessThan-atLeast0)
finally have [(>_ t<p. y (p — Suc t) * z7t) = pxy (p—1) + (px(p — 1) div 2)
x kxpxy (p—2)] (mod p~2).
moreover have [(px(p — 1) div 2) * kxpxy (p—2) = 0] (mod p~2)
proof —
have [(p *x (p — 1) div 2) x p = 0] (mod p~2)
proof —
from <p > 2> and (prime p> have odd p
using prime-odd-nat by blast
thus ?thesis
by (metis (no-types, lifting) cong-0-iff div-mult-swap dvd-times-left-cancel-iff
dvd-triv-left le-0-eq linorder-not-less mult.commute odd-pos odd-two-times-div-two-nat
one-add-one power-add power-one-right)
qed
hence [int ((px(p — 1) div 2) * p)*xkxy (p—2) = 0] (mod p~2)
unfolding cong-0-iff using int-dvd-int-iff by fastforce
thus ?thesis
by (simp add: ac-simps)
qed
ultimately have [(>_ t<p. y (p — Suc t) x 27t) = pxy (p—1)] (mod p~2)
using cong-add-lcancel-0 cong-trans by blast
moreover have — p~2 dvd pxy (p—1)
using «p > 2 <prime p» <— p dvd y by (simp add: power2-eq-square
prime-dvd-power-int-iff)
ultimately show — int p (Suc 1) dvd (3 t<p. y (p — Suc t) x z7t)
by (metis (no-types, lifting) Suc-1 of-nat-power cong-dvd-iff)
qed
moreover have multiplicity p (z"p — y p) = multiplicity p (z — y) + multiplicity
p O i<p. y(p — Suc i) x 7%)
apply (unfold power-diff-sumr2, intro prime-elem-multiplicity-mult-distrid)
using <prime p» «x # y» multiplicity-zero x by auto

ultimately show ?thesis by simp
qed

Theorem 1:

theorem multiplicity-diff-pow:
assumes p > 2and z # yand n > 0
shows multiplicity p (x™n — y™n) = multiplicity p (z — y) + multiplicity p n
proof —
obtain k where n: n = p multiplicity p n * k and — p dvd k
using <n > () <prime p»
by (metis neq0-conv not-prime-unit multiplicity-decompose’)
have multiplicity p (z(p"a x k) — y (p~a * k)) = multiplicity p (z — y) + a
for a
proof (induction a)
case (
from <= p dvd k> have coprime p k
using <prime p» by (intro prime-imp-coprime)
thus Zcase
by (simp add: multiplicity-diff-pow-coprime)
next
case (Suc a)
let %z’ = 27 (p axk) and 2y’ = y (p axk)
have — p dvd ?z’ and — p dvd %y’
using <= p dvd x> <= p dvd y» and <prime p
by (meson prime-dvd-power prime-nat-int-transfer)+
moreover have p dvd %z’ — ?y’
using «p dvd x — y» by (simp add: power-diff-sumr2)
moreover have %z’ #£ 7y’
proof
assume 7z’ = 7y’
moreover have 0 < p_a * k
using <prime p» <n > 0> n
by (metis grol mult-is-0 power-not-zero prime-gt-0-nat)
ultimately have |z| = |y|
by (intro power-eq-abs)
with «x # y» have z = —y
using abs-eq-iff by simp
with «p dvd ¢ — 3> have p dvd 2xx
by simp
with <prime p» have p dvd 2 V p dvd x
by (metis int-dvd-int-iff of-nat-numeral prime-dvd-mult-iff prime-nat-int-transfer)
with <p > 2) have p dvd z

by auto
with (= p dvd x> show False..
qed

moreover have p " Suca x k=p axkxp
by (simp add: ac-simps)
ultimately show ?case
using LTE.multiplicity-diff-self-pow[where =72z’ and y="2y’, OF «prime p»|

p > 2
and Suc.IH
by (metis add-Suc-right power-mult)
qed
with n show ?thesis by metis
qed

end

Theorem 2:

corollary multiplicity-add-pow:
fixes z y :: int and p n :: nat
assumes odd n
and prime p and p > 2
and pdvdz + yand — pdvdz — p dvd y
and ¢ # —y
shows multiplicity p (x"n 4+ y™n) = multiplicity p (z + y) + multiplicity p n
proof —
have [simp]: (—y) n = —(y™n)
using <odd ny by (rule power-minus-odd)
moreover have n > (
using <odd n» by presburger
with assms show ?thesis
using multiplicity-diff-pow|where z=z and y=—y and n=n]
by simp
qed

3 The p = 2 case

Theorem 3:

theorem multiplicity-2-diff-pow-4 div:
fixes z y :: int
assumes odd x odd y and 4/ dvdz — yand n > 0 z # y
shows multiplicity 2 (z™n — y n) = multiplicity 2 (x — y) + multiplicity 2 n
proof —
have prime (2::nat) by simp
then obtain k£ where n: n = 2 multiplicity 2 n x k and — 2 dvd k
using <n >
by (metis neq0-conv not-prime-unit multiplicity-decompose’)

have pow2: multiplicity 2 (z(27k) — y (27k)) = multiplicity 2 (z — y) + k for
k
proof (induction k)
case (Suc k)
have (2 Suc k) — y (27 Suc k) = (x727k) "2 — (y 27k) "2
by (simp flip: power-mult algebra-simps)
also have ... = (£727k — y 27k)x(2"27k + vy 27%)
by (simp add: power2-eq-square algebra-simps)

finally have factor: (2 Suc k) — y (2" Suc k) = (z727k — y 2 k)x(z" 27k +
Yy 27k).
moreover have m-plus: multiplicity 2 (x™27k + y 27k) = 1
proof (rule multiplicity-eql)
show 271 dvd 2727k + y 27k
using <odd z» and <odd y» by simp

have 2727k + y 27k = 2] (mod 4)
proof (cases k)
case (
from <odd y» have [y = 1] (mod 2)
using cong-def by fastforce
hence [2+xy = 2] (mod 4)
using cong-scale[where k=2 and b=1 and c¢=2, simplified] by force
moreover from <4 dvd r — y» have [z — y = 0] (mod 4)
by (simp add: cong-0-iff)
ultimately have [z + y = 2] (mod 4)
by (metis add.commute assms(3) cong-add-lcancel cong-iff-dvd-diff cong-trans
mult-2)
with <k = 0> show ?thesis by simp
next
case (Suc k')
then have [2727k = 1] (mod 4) and [y"27k = 1] (mod 4)
using <odd x) <odd 1>
by (auto simp add: power-mult power-Suc2 simp del: power-Suc intro:
odd-square-mod-4)
thus [z727k + y 27k = 2] (mod 4)
using cong-add by fastforce
qed
thus = 27Suc 1 dvd x™ 27k + y 2%
by (simp add: cong-dvd-iff)
qed
moreover have 727k + y 27k # 0
using m-plus multiplicity-zero by auto
moreover have 727k — y 27k # 0

proof
assume z 2k — y 27k =0
then have |z| = |y]

by (intro power-eq-abs, simp, simp)
hence z =yVvVz=—y
using abs-eq-iff by auto
with <z # i have z = —y
by simp
with <4 dvd x — y» have 4 dvd 2xz
by simp
hence 2 dvd z
by auto
with <odd > show False..
qed

ultimately have multiplicity 2 (72 Suc k — y 2 Suc k) =
multiplicity 2 (z727k — y 27k) + multiplicity 2 (z727k + vy 27k)
by (unfold factor; intro prime-elem-multiplicity-mult-distrib; auto)
then show ?Zcase
using m-plus Suc.IH by simp
qed simp

moreover have even-diff: int 2 dvd 2 multiplicity 2 n — y~2 multiplicity 2 n
using <odd x)> and <odd > by simp
moreover have odd-parts: — int 2 dvd x~2 multiplicity 2 n — int 2 dvd
y 2 multiplicity 2 n
using <odd x> and <odd > by simp+
moreover have coprime: coprime 2 k
using <— 2 dvd k> by simp

show ?thesis
apply (subst (1) n)
apply (subst (2) n)
apply (simp only: power-mult)
apply (simp only: multiplicity-diff-pow-coprime| OF <prime 2y even-diff odd-parts
coprime, simplified))
by (rule pow?2)
qed

Theorem 4:

theorem multiplicity-2-diff-even-pow:

fixes z y :: int

assumes odd z odd y and even n and n > 0 and |z| # |y

shows multiplicity 2 (z”™n — y™n) = multiplicity 2 (z — y) + multiplicity 2 (z +
y) + multiplicity 2 n — 1
proof —

obtain n’ where n = 2xn’

using <even n» by auto
with <n > 0> have n’ > 0 by simp

moreover have / dvd 172 — y 2
proof —
have 272 —y 2= (z+ y) *x (z — y)
by (simp add: algebra-simps power2-eq-square)
moreover have 2 dvd z + y and 2 dvd x — y
using <odd x> and <odd 3> by auto
ultimately show 4 dvd 72 — y 2 by fastforce
qed

moreover have odd (272) and odd (y"2)
using <odd x> <odd y» by auto

moreover from ¢|z| # |y|» have 272 # y 2
using diff-0 diff-0-right power2-eq-iff by fastforce

ultimately have multiplicity 2 ((z72) n’ — (y"2) "n') = multiplicity 2 (z72 —
y"2) + multiplicity 2 n’
by (intro multiplicity-2-diff-pow-4div)
also have multiplicity 2 ((z72) "n’ — (y72) "n’) = multiplicity 2 (z™n — y™n)
unfolding «n = 2xn’ by (simp add: power-mult)
also have multiplicity 2 (272 — y~2) = multiplicity 2 ((z — y) * (z + y))
by (simp add: algebra-simps power2-eq-square)
also have ... = multiplicity 2 (z — y) + multiplicity 2 (z + y)
using <|z| # |y|» by (auto intro: prime-elem-multiplicity-mult-distrib)
also have multiplicity 2 n = Suc (multiplicity 2 n")
unfolding <n = 2xn’y using «n’ > 0> by (simp add: multiplicity-times-same)
ultimately show ?thesis by simp
qed

end

References
[1] Hossein Parvardi. Lifting The Exponent Lemma (LTE), 2011.

URL: https://s3.amazonaws.com/aops-cdn.artofproblemsolving.com/
resources/articles/lifting-the-exponent.pdf.

10

https://s3.amazonaws.com/aops-cdn.artofproblemsolving.com/resources/articles/lifting-the-exponent.pdf
https://s3.amazonaws.com/aops-cdn.artofproblemsolving.com/resources/articles/lifting-the-exponent.pdf

	Library additions
	The 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 p > 2 case
	The 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 p = 2 case

