Lifting Definition Option*

René Thiemann

August 16, 2018

Abstract

We implemented a command, \texttt{lift-definition-option}, which can be used to easily generate elements of a restricted type \{\(x :: \alpha. P x\}\), provided the definition is of the form \(\lambda y_1 \ldots y_n. \text{if check } y_1 \ldots y_n \text{ then Some } (\text{generate } y_1 \ldots y_n :: \alpha) \text{ else None }\) and \(\text{check } y_1 \ldots y_n \Rightarrow P (\text{generate } y_1 \ldots y_n)\) can be proven.

In principle, such a definition is also directly possible using one invocation of \texttt{lift-definition}. However, then this definition will not be suitable for code-generation. To this end, we automated a more complex construction of Joachim Breitner which is amenable for code-generation, and where the test \(\text{check } y_1 \ldots y_n\) will only be performed once. In the automation, one auxiliary type is created, and Isabelle’s lifting- and transfer-package is invoked several times.

This entry is outdated as in the meantime the lifting- and transfer-package has the desired functionality in an even more general way. Therefore, only the examples are kept.

Contents

1 Examples 2
 1.1 A simple restricted type without type-parameters 2
 1.2 Examples with type-parameters in the restricted type 2
 1.3 Example from \texttt{IsaFoR/CeTA} 3
 1.4 Code generation tests and derived theorems 3

\begin{isabelle}
theory Lifting-Definition-Option-Examples
imports
 Main
begin
\end{isabelle}

*This research is supported by FWF (Austrian Science Fund) project Y 757.
1 Examples

1.1 A simple restricted type without type-parameters

typedef restricted = { i :: int. i mod 2 = 0} morphisms base restricted
(proof)
setup-lifting type-definition-restricted

Let us start with just using a sufficient criterion for testing for even numbers, without actually generating them, i.e., where the generator is just the identity function.
lift-definition(code-dt) restricted-of-simple :: int ⇒ restricted option is
λ x :: int. if x ∈ {0, 2, 4, 6} then Some x else None (proof)

We can also take several input arguments for the test, and generate a more complex value.
lift-definition(code-dt) restricted-of-many-args :: nat ⇒ int ⇒ bool ⇒ restricted option is
λ x y (b :: bool). if int x + y = 5 then Some ((int x + 1) * (y + 1)) else None (proof)

No problem to use type parameters.
lift-definition(code-dt) restricted-of-poly :: 'b list ⇒ restricted option is
λ xs :: 'b list. if length xs = 2 then Some (int (length (xs))) else None (proof)

1.2 Examples with type-parameters in the restricted type.
typedef 'f restrictedf = { xs :: 'f list. length xs < 3} morphisms base restrictedf
(proof)
setup-lifting type-definition-restrictedf

It does not matter, if we take the same or different type-parameters in the lift-definition.
lift-definition(code-dt) test1 :: 'g ⇒ nat ⇒ 'g restrictedf option is
λ (e :: 'g) x. if x < 2 then Some (replicate x e) else None (proof)

lift-definition(code-dt) test2 :: 'f ⇒ nat ⇒ 'f restrictedf option is
λ (e :: 'f) x. if x < 2 then Some (replicate x e) else None (proof)

Tests with multiple type-parameters.
typedef ('a,'f) restr = { (xs :: 'a list,ys :: 'f list) . length xs = length ys} morphisms base' restr
(proof)
setup-lifting type-definition-restr

lift-definition(code-dt) restr-of-pair :: 'g ⇒ 'e list ⇒ nat ⇒ nat ⇒ ('e,nat) restr option is
λ (z :: 'g) (xs :: 'e list) (y :: nat) n. if length xs = n then Some (xs,replicate n y) else None
1.3 Example from IsaFoR/CeTA

An argument filter is a mapping π from n-ary function symbols into lists of positions, i.e., where each position is between 0 and $n-1$. In IsaFoR, (Isabelle’s Formalization of Rewriting) and CeTA [1], the corresponding certifier for term rewriting related properties, this is modelled as follows, where a partial argument filter in a map is extended to a full one by means of a default filter.

```isar
typedef '$af' = { ($\pi :: 'f \times \text{nat} \Rightarrow \text{nat list}$. (\forall f n. set ($\pi (f,n)$) \subseteq \{0 ..< n\}) )}
morphisms $af$ Abs-$af$ 

setup-lifting type-definition-$af$

type-synonym '$af$-impl = (('f $\times$ nat) $\times$ nat list)

fun fun-of-map-fun :: ('$a \Rightarrow 'b option') $\Rightarrow$ ('$a \Rightarrow 'b') $\Rightarrow$ ('$a \Rightarrow 'b') where
fun-of-map-fun $m$ $a$ = (case $m$ $a$ of Some $b$ $\Rightarrow$ $b$ | None $\Rightarrow$ $f$ $a$)

lift-definition (code-dt) $af$-of :: '$af$-impl $\Rightarrow$ '$af$ option is
$\lambda$ $s$ :: '$af$-impl. if $($\forall$ $fidx$ $\in$ set $s$.$($\forall$ $i$ $\in$ set ($snd$ $fidx$). $i$ $<$ $snd$ ($fst$ $fidx$))$)$ then Some $(fun-of-map-fun$ ($map-of$ $s$) $($$\lambda$ $(f,n)$. $[0 ..< n]$)) else None

(proof)
```

1.4 Code generation tests and derived theorems

```isar
export-code
restricted-of-many-args
restricted-of-simple
restricted-of-poly
test1
test2
restr-of-pair
af-of
in Haskell

lemma restricted-of-simple-Some:
restricted-of-simple $x$ = Some $r$ $\Rightarrow$ base $r$ = $x$
(proof)
```

Acknowledgements

We thank Andreas Lochbihler for pointing us to Joachim’s solution, and we thank Makarius Wenzel for explaining us, how we can go back from states to local theories within Isabelle/ML.
References