The Lévy-Prokhorov Metric

Michikazu Hirata

March 17, 2025

Abstract

We formalize the Lévy-Prokhorov metric, a metric on finite measures, mainly following the lecture notes by Gaans [4]. This entry includes the following formalization.

- $\bullet\,$ Characterizations of closed sets, open sets, and topology by limit.
- A special case of Alaoglu's theorem.
- Weak convergence and the Portmanteau theorem.
- The Lévy-Prokhorov metric and its completeness and separability.
- The equivalence of the topology of weak convergence and the topology generated by the Lévy-Prokhorov metric.
- Prokhorov's theorem.
- Equality of two σ -algebras on the space of finite measures. One is the Borel algebra of the Lévy-Prokhorov metric and the other is the least σ -algebra that makes $(\lambda\mu, \mu(A))$ measurable for all measurable sets A.
- The space of finite measures on a standard Borel space is also a standard Borel space.

Contents

1	\mathbf{Pre}	liminaries	2
	1.1	Finite Sum of Measures	3
	1.2	Sequentially Continuous Maps	5
	1.3	Sequential Compactness	5
	1.4	Lemmas for Limsup and Liminf	6
	1.5	A Characterization of Closed Sets by Limit	7
	1.6	A Characterization of Topology by Limit	9
	1.7	A Characterization of Open Sets by Limit	9
	1.8	Lemmas for Upper/Lower-Semi Continuous Maps	9

2	Alaoglu's Theorem 10			
	2.1	Metrizability of the Space of Uniformly Bounded Positive Lin-		
		ear Functionals	10	
	2.2	Alaoglu's Theorem	10	
3	Ger	neral Weak Convergence	11	
	3.1	Topology of Weak Convegence	11	
	3.2	Weak Convergence	12	
	3.3	Limit in Topology of Weak Convegence	12	
	3.4	The Portmanteau Theorem	13	
4	The	e Lévy-Prokhorov Metric	16	
	4.1	The Lévy-Prokhorov Metric	16	
	4.2	Convervence and Weak Convergence	19	
	4.3	Separability	19	
	4.4	The Lévy-Prokhorov Metric and Topology of Weak Convegence	20	
5	Pro	khorov's Theorem	20	
	5.1	Prokhorov's Theorem	20	
	5.2	Completeness of the Lévy-Prokhorov Metric	21	
	5.3	Equivalence of Separability, Completeness, and Compactness	21	
	5.4	Prokhorov Theorem for Topology of Weak Convergence	23	
6	Mea	asurable Space of Finite Measures	24	
	6.1	Measurable Space of Finite Measures	24	
	6.2	Equivalence between Spaces of Finite Measures	26	
	6.3	Standardness	27	
1	P	reliminaries		
$^{ m th}$	eory	Lemmas- $Levy$ - $Prokhorov$		
		${f ts}$ $Standard ext{-}Borel ext{-}Spaces. Standard Borel$		
be	gin			
		in $Metric\text{-}space$) $[measurable]$: $mball\text{-}sets$: $mball$ x e \in $sets$ $(borel\text{-}of\ mtopology)$		
		$acball-sets: mcball \ x \ e \in sets \ (borel-of \ mtopology)$		
d				
	proof			
\(\left\)	$egin{aligned} & proof \ & \mathbf{nma} \end{aligned}$	Metric-space-eq-MCauchy:		
\(\left\)	proof nma ssum	Metric-space-eq-MCauchy: ues Metric-space M d $\bigwedge x$ y . $x \in M \Longrightarrow y \in M \Longrightarrow d$ x $y = d'$ x y		
(ler	nma ssum and	Metric-space-eq-MCauchy:		

```
lemma borel-of-compact: Hausdorff-space X \Longrightarrow compactin \ X \ K \Longrightarrow K \in sets
(borel-of X)
  \langle proof \rangle
lemma prob-algebra-cong: sets M = sets N \Longrightarrow prob-algebra M = prob-algebra N
  \langle proof \rangle
lemma topology-eq-closedin: X = Y \longleftrightarrow (\forall C. \ closedin \ X \ C \longleftrightarrow \ closedin \ Y \ C)
  \langle proof \rangle
Another version of finite-measure ?M \Longrightarrow countable \{x. Sigma-Algebra.measure\}
?M \{x\} \neq \emptyset\}
lemma(in finite-measure) countable-support-sets:
 assumes disjoint-family-on Ai D
  shows countable \{i \in D. \text{ measure } M \text{ } (Ai \text{ } i) \neq 0\}
\langle proof \rangle
1.1
        Finite Sum of Measures
definition sum-measure :: 'b measure \Rightarrow 'a set \Rightarrow ('a \Rightarrow 'b measure) \Rightarrow 'b measure
sum-measure M I Mi \equiv measure-of (space M) (sets M) (\lambda A. \sum i \in I. emeasure (Mi
i) A)
lemma sum-measure-cong:
 assumes sets M = sets M' \land i. i \in I \Longrightarrow N i = N' i
 shows sum-measure M I N = sum-measure M' I N'
  \langle proof \rangle
lemma [simp]:
  shows space-sum-measure: space (sum-measure M I Mi) = space M
   and sets-sum-measure [measurable-cong]: sets (sum-measure M I Mi) = sets M
  \langle proof \rangle
lemma emeasure-sum-measure:
  assumes [measurable]: A \in sets \ M and \bigwedge i. \ i \in I \Longrightarrow sets \ (Mi \ i) = sets \ M
 shows emeasure (sum-measure M I Mi) A = (\sum i \in I. Mi \ i \ A)
\langle proof \rangle
lemma sum-measure-infinite: infinite I \Longrightarrow sum-measure M \ I \ Mi = null-measure
M
  \langle proof \rangle
lemma nn-integral-sum-measure:
 assumes f \in borel-measurable M and [measurable-cong]: \bigwedge i. i \in I \Longrightarrow sets (Mi
i) = sets M
```

```
shows (\int x. f x \partial sum\text{-}measure \ M \ I \ Mi) = (\sum i \in I. (\int x. f x \partial (Mi \ i)))
  \langle proof \rangle
corollary integrable-sum-measure-iff-ne:
  fixes f :: 'a \Rightarrow 'b :: \{banach, second-countable-topology\}
 assumes [measurable-cong]: \bigwedge i. i \in I \Longrightarrow sets (Mi \ i) = sets M and finite I and
I \neq \{\}
  shows integrable (sum-measure M I Mi) f \longleftrightarrow (\forall i \in I. integrable (Mi i) f)
\langle proof \rangle
corollary integrable-sum-measure-iff:
  fixes f:: 'a \Rightarrow 'b::\{banach, second\text{-}countable\text{-}topology}\}
  assumes [measurable-cong]: \bigwedge i. i \in I \Longrightarrow sets (Mi \ i) = sets M and finite I
      and [measurable]: f \in borel-measurable M
    shows integrable (sum-measure M I Mi) f \longleftrightarrow (\forall i \in I. integrable (Mi i) f)
\langle proof \rangle
lemma integral-sum-measure:
  fixes f :: 'a \Rightarrow 'b :: \{banach, second-countable-topology\}
  assumes [measurable-cong]:\bigwedge i. \ i \in I \Longrightarrow sets \ (Mi \ i) = sets \ M \ \bigwedge i. \ i \in I \Longrightarrow
integrable (Mi i) f
  shows (\int x. f x \partial sum\text{-}measure \ M \ I \ Mi) = (\sum i \in I. (\int x. f x \partial (Mi \ i)))
\langle proof \rangle
Lemmas related to scale measure
lemma integrable-scale-measure:
  fixes f :: 'a \Rightarrow 'b :: \{banach, second-countable-topology\}
  assumes integrable M f
 shows integrable (scale-measure (ennreal r) M) f
  \langle proof \rangle
{f lemma}\ integral\mbox{-}scale\mbox{-}measure:
  assumes r \geq 0 integrable M f
  shows (\int x. f x \partial scale\text{-measure (ennreal } r) M) = r * (\int x. f x \partial M)
  \langle proof \rangle
lemma
  fixes c :: ereal
  assumes c: c \neq -\infty and a: n. 0 \leq a
 shows liminf-cadd: liminf (\lambda n. c + a n) = c + liminf a
    and limsup-cadd: limsup (\lambda n. c + a n) = c + limsup a
  \langle proof \rangle
lemma(in Metric-space) frontier-measure-zero-balls:
  assumes sets N = sets (borel-of mtopology) finite-measure N M \neq \{\}
    and e > 0 and separable-space mtopology
  obtains ai ri where
    (\bigcup i::nat. \ mball \ (ai \ i) \ (ri \ i)) = M \ (\bigcup i::nat. \ mcball \ (ai \ i) \ (ri \ i)) = M
    \bigwedge i. ai \ i \in M \bigwedge i. ri \ i > 0 \bigwedge i. ri \ i < e
```

```
\bigwedge i. measure N (mtopology frontier-of (mball (ai i) (ri i))) = 0
    \bigwedge i. measure N (mtopology frontier-of (mcball (ai i) (ri i))) = 0
\langle proof \rangle
lemma finite-measure-integral-eq-dense:
  assumes finite: finite-measure N finite-measure M
    and sets-N:sets N = sets (borel-of X) and sets-M: sets M = sets (borel-of X)
    {\bf and}\ dense: dense-in\ (mtopology-of\ (cfunspace\ X\ euclidean-metric))\ F
    and integ-eq:\bigwedge f: - \Rightarrow real. \ f \in F \Longrightarrow (\int x. \ f \ x \ \partial N) = (\int x. \ f \ x \ \partial M)
    and f:continuous-map X euclideanreal f bounded (f 'topspace X)
  shows (\int x. f x \partial N) = (\int x. f x \partial M)
\langle proof \rangle
         Sequentially Continuous Maps
1.2
definition seq-continuous-map :: 'a topology \Rightarrow 'b topology \Rightarrow ('a \Rightarrow 'b) \Rightarrow bool
where
seq-continuous-map X Y f \equiv (\forall xn \ x. \ limitin \ X \ xn \ x \ sequentially \longrightarrow limitin \ Y
(\lambda n. f(xn n)) (fx) sequentially)
lemma seq-continuous-map:
  \textit{seq-continuous-map} \ \textit{X} \ \textit{Y} \ \textit{f} \longleftrightarrow (\forall \textit{xn} \ \textit{x. limitin} \ \textit{X} \ \textit{xn} \ \textit{x} \ \textit{sequentially} \longrightarrow \textit{limitin} \ \textit{Y}
(\lambda n. f(xn n)) (fx) sequentially)
  \langle proof \rangle
\mathbf{lemma}\ seq\text{-}continuous\text{-}map\text{-}funspace:
  assumes seq-continuous-map X Y f
  shows f \in topspace X \rightarrow topspace Y
\langle proof \rangle
\mathbf{lemma}\ seq\text{-}continuous\text{-}iff\text{-}continuous\text{-}first\text{-}countable\text{:}
  assumes first-countable X
  shows seq\text{-}continuous\text{-}map\ X\ Y = continuous\text{-}map\ X\ Y
  \langle proof \rangle
1.3
         Sequential Compactness
definition seq\text{-}compactin :: 'a topology <math>\Rightarrow 'a set \Rightarrow bool where
seq\text{-}compactin\ X\ S
\longleftrightarrow S \subseteq topspace \ X \land (\forall xn. \ (\forall n::nat. \ xn \ n \in S) \longrightarrow (\exists \ l \in S. \ \exists \ a::nat \Rightarrow nat.
strict-mono a \wedge limitin X (xn \circ a) l sequentially))
definition seq-compact-space X \equiv seq-compactin X (topspace X)
lemma seq-compactin-subset-topspace: seq-compactin X S \Longrightarrow S \subseteq topspace X
  \langle proof \rangle
lemma seq\text{-}compactin\text{-}empty[simp]: seq\text{-}compactin X <math>\{\}
  \langle proof \rangle
```

```
lemma seq\text{-}compactin\text{-}seq\text{-}compact[simp]: <math>seq\text{-}compactin euclidean S \longleftrightarrow seq\text{-}compact
  \langle proof \rangle
lemma image-seq-compactin:
  assumes seq-compactin X S seq-continuous-map X Y f
  shows seq-compactin Y (f 'S)
  \langle proof \rangle
\mathbf{lemma}\ \mathit{closed\text{-}seq\text{-}compactin};
  assumes seq\text{-}compactin\ X\ K\ C\subseteq K\ closedin\ X\ C
  shows seq-compactin X C
  \langle proof \rangle
corollary closedin-seq-compact-space:
 seq\text{-}compact\text{-}space \ X \Longrightarrow closedin \ X \ C \Longrightarrow seq\text{-}compactin \ X \ C
  \langle proof \rangle
lemma seg\text{-}compactin\text{-}subtopology: <math>seg\text{-}compactin (subtopology \ X\ S)\ T \longleftrightarrow seg\text{-}compactin
X T \wedge T \subseteq S
  \langle proof \rangle
corollary seq\text{-}compact\text{-}space\text{-}subtopology\text{:}} seq\text{-}compact\text{in }XS\Longrightarrow seq\text{-}compact\text{-}space
(subtopology\ X\ S)
  \langle proof \rangle
lemma seq-compactin-PiED:
  assumes seq-compactin (product-topology X I) (Pi_E I S)
  shows (Pi_E \ I \ S = \{\} \ \lor \ (\forall i \in I. \ seq\text{-compactin} \ (X \ i) \ (S \ i)))
\langle proof \rangle
lemma metrizable-seq-compactin-iff-compactin:
  assumes metrizable-space X
  shows seq-compactin X S \longleftrightarrow compactin X S
\langle proof \rangle
{\bf corollary}\ \textit{metrizable-seq-compact-space-iff-compact-space:}
  shows metrizable-space X \Longrightarrow seq\text{-}compact\text{-}space \ X \longleftrightarrow compact\text{-}space \ X
  \langle proof \rangle
         Lemmas for Limsup and Liminf
lemma real-less-add-ex-less-pair:
  fixes x w v :: real
  assumes x < w + v
  shows \exists y \ z. \ x = y + z \land y < w \land z < v
  \langle proof \rangle
```

lemma ereal-less-add-ex-less-pair:

```
fixes x w v :: ereal
  \mathbf{assumes} - \infty < w - \infty < v \ x < w + v
  shows \exists y \ z. \ x = y + z \land y < w \land z < v
\langle proof \rangle
lemma real-add-less:
  fixes x w v :: real
  assumes w + v < x
 shows \exists y \ z. \ x = y + z \land w < y \land v < z
  \langle proof \rangle
lemma ereal-add-less:
  fixes x w v :: ereal
 assumes w + v < x
 shows \exists y \ z. \ x = y + z \land w < y \land v < z
\langle proof \rangle
A generalized version of \neg (liminf ?u = \infty \land liminf ?v = -\infty \lor liminf ?u
=-\infty \wedge liminf ?v = \infty) \Longrightarrow liminf ?u + liminf ?v \leq liminf (\lambda n. ?u n + v)
?v n).
lemma ereal-Liminf-add-mono:
  fixes u v::'a \Rightarrow ereal
  assumes \neg((Liminf\ F\ u = \infty \land Liminf\ F\ v = -\infty) \lor (Liminf\ F\ u = -\infty \land
Liminf F v = \infty)
 \mathbf{shows}\ \mathit{Liminf}\ F\ (\lambda n.\ u\ n+v\ n) \geq \mathit{Liminf}\ F\ u+\mathit{Liminf}\ F\ v
A generalized version of \limsup (\lambda n. ?u n + ?v n) \leq \limsup ?u + \limsup
?v.
lemma ereal-Limsup-add-mono:
  fixes u v::'a \Rightarrow ereal
 shows Limsup \ F \ (\lambda n. \ u \ n + v \ n) \le Limsup \ F \ u + Limsup \ F \ v
  \langle proof \rangle
```

1.5 A Characterization of Closed Sets by Limit

There is a net which charactrize closed sets in terms of convergence. Since Isabelle/HOL's convergent is defined through filters, we transform the net to a filter. We refer to the lecture notes by Shi [3] for the conversion.

```
definition derived-filter :: ['i set, 'i \Rightarrow 'i \Rightarrow bool] \Rightarrow 'i filter where derived-filter I op \equiv (\bigcap i \in I. \ principal \ \{j \in I. \ op \ i \ j\})
```

```
lemma eventually-derived-filter: assumes A \neq \{\} and refl: \land a. \ a \in A \Longrightarrow rel \ a \ a and trans: \land a \ b \ c. \ a \in A \Longrightarrow b \in A \Longrightarrow c \in A \Longrightarrow rel \ a \ b \Longrightarrow rel \ b \ c \Longrightarrow rel a c and pair-bounded: \land a \ b. \ a \in A \Longrightarrow b \in A \Longrightarrow \exists \ c \in A. \ rel \ a \ c \land rel \ b \ c
```

```
shows eventually P (derived-filter A rel) \longleftrightarrow (\exists i \in A. \forall n \in A. rel i n <math>\longleftrightarrow P n)
\langle proof \rangle
definition nhdsin\text{-}sets :: 'a \ topology \Rightarrow 'a \Rightarrow 'a \ set \ filter \ \mathbf{where}
nhdsin\text{-}sets\ X\ x\equiv derived\text{-}filter\ \{U.\ openin\ X\ U\ \land\ x\in U\}\ (\supseteq)
lemma eventually-nhdsin-sets:
  assumes x \in topspace X
  shows eventually P (nhdsin-sets X x) \longleftrightarrow (\exists U. openin X U \land x \in U \land (\forall V.
openin \ X \ V \longrightarrow x \in V \longrightarrow V \subseteq U \longrightarrow P \ V))
\langle proof \rangle
\mathbf{lemma}\ eventually\text{-}nhdsin\text{-}setsI\text{:}
  assumes x \in topspace \ X \ \ \ \ \ U. \ x \in U \Longrightarrow openin \ X \ U \Longrightarrow P \ U
  shows eventually P (nhdsin-sets X x)
  \langle proof \rangle
lemma nhdsin-sets-bot[simp, intro]:
  assumes x \in topspace X
  shows nhdsin\text{-}sets\ X\ x \neq \bot
  \langle proof \rangle
corollary limitin-nhdsin-sets: limitin X xn x (nhdsin-sets X x) \longleftrightarrow x \in topspace
X \wedge (\forall U. openin \ X \ U \longrightarrow x \in U \longrightarrow (\exists V. openin \ X \ V \wedge x \in V \wedge (\forall W. openin
X \ W \longrightarrow x \in W \longrightarrow W \subseteq V \longrightarrow xn \ W \in U)))
  \langle proof \rangle
lemma closedin-limitin:
  assumes T \subseteq topspace \ X \land xn \ x. \ x \in topspace \ X \Longrightarrow (\bigwedge U. \ x \in U \Longrightarrow openin
X\ U \Longrightarrow xn\ U \neq x) \Longrightarrow (\bigwedge U.\ x \in U \Longrightarrow openin\ X\ U \Longrightarrow xn\ U \in T) \Longrightarrow (\bigwedge U.
xn \ U \in topspace \ X) \Longrightarrow limitin \ X \ xn \ x \ (nhdsin-sets \ X \ x) \Longrightarrow x \in T
  shows closedin X T
\langle proof \rangle
corollary closedin-iff-limitin-eq:
  fixes X :: 'a \ topology
  shows closedin X C
     \longleftrightarrow C \subseteq topspace X \land
          (\forall xi \ x \ (F :: 'a \ set \ filter). \ (\forall i. \ xi \ i \in topspace \ X) \longrightarrow x \in topspace \ X
                 \longrightarrow (\forall_F \ i \ in \ F. \ xi \ i \in C) \longrightarrow F \neq \bot \longrightarrow limitin \ X \ xi \ x \ F \longrightarrow x \in C)
\langle proof \rangle
lemma closedin-iff-limitin-sequentially:
  assumes first-countable X
  shows closedin X S \longleftrightarrow S \subseteq topspace X \land (\forall \sigma \ l. \ range \ \sigma \subseteq S \land limitin X \ \sigma \ l
sequentially \longrightarrow l \in S) (is ?lhs = ?rhs)
\langle proof \rangle
```

1.6 A Characterization of Topology by Limit

lemma topology-eq-filter:

```
fixes X :: 'a \ topology
  assumes topspace X = topspace Y
    and \bigwedge(F :: 'a \ set \ filter) \ xi \ x. \ (\bigwedge i. \ xi \ i \in topspace \ X) \Longrightarrow x \in topspace \ X \Longrightarrow
limitin~X~xi~x~F \longleftrightarrow limitin~Y~xi~x~F
  shows X = Y
  \langle proof \rangle
lemma topology-eq-limit-sequentially:
  assumes topspace X = topspace Y
    and first-countable X first-countable Y
    and \bigwedge xn \ x. \ (\bigwedge n. \ xn \ i \in topspace \ X) \Longrightarrow x \in topspace \ X \Longrightarrow limitin \ X \ xn \ x
sequentially \longleftrightarrow limitin \ Y \ xn \ x \ sequentially
  shows X = Y
  \langle proof \rangle
         A Characterization of Open Sets by Limit
corollary openin-limitin:
  assumes U \subseteq topspace \ X \land xi \ x. \ x \in topspace \ X \Longrightarrow (\land i. \ xi \ i \in topspace \ X)
\implies limitin X xi x (nhdsin-sets X x) \implies x \in U \implies \forall F i in (nhdsin-sets X x). xi
i \in U
  shows openin X U
  \langle proof \rangle
{\bf corollary}\ open in\mbox{-}iff\mbox{-}limit in\mbox{-}eq:
  fixes X :: 'a \ topology
  shows openin X \cup U \subset topspace X \wedge (\forall xi \ x \ (F :: 'a \ set \ filter). \ (\forall i. \ xi \ i \in T)
topspace \ X) \longrightarrow x \in U \longrightarrow limitin \ X \ xi \ x \ F \longrightarrow (\forall_F \ i \ in \ F. \ xi \ i \in U))
    \langle proof \rangle
corollary limitin-openin-sequentially:
  assumes first-countable X
  shows openin X \ U \longleftrightarrow U \subseteq topspace \ X \land (\forall xn \ x. \ x \in U \longrightarrow limitin \ X \ xn \ x
sequentially \longrightarrow (\exists N. \forall n \geq N. xn \ n \in U)
  \langle proof \rangle
lemma upper-semicontinuous-map-limsup-iff:
  fixes f :: 'a \Rightarrow ('b :: \{complete-linorder, linorder-topology\})
  assumes first-countable X
  shows upper-semicontinuous-map X f \longleftrightarrow (\forall xn \ x. \ limitin \ X \ xn \ x \ sequentially
\longrightarrow limsup (\lambda n. f (xn n)) \leq f x
  \langle proof \rangle
```

1.8 Lemmas for Upper/Lower-Semi Continuous Maps

```
{\bf lemma}\ upper-semicontinuous-map-lim sup-real:
```

```
fixes f :: 'a \Rightarrow real
```

```
assumes first-countable X
  shows upper-semicontinuous-map X f \longleftrightarrow (\forall xn \ x. \ limitin \ X \ xn \ x \ sequentially
\longrightarrow limsup (\lambda n. f (xn n)) \leq f x
  \langle proof \rangle
lemma lower-semicontinuous-map-liminf-iff:
  fixes f :: 'a \Rightarrow ('b :: \{complete-linorder, linorder-topology\})
  assumes first-countable X
  shows lower-semicontinuous-map X f \longleftrightarrow (\forall xn \ x. \ limitin \ X \ xn \ x \ sequentially
\longrightarrow f x \leq liminf (\lambda n. f (xn n))
  \langle proof \rangle
\mathbf{lemma}\ lower\text{-}semicontinuous\text{-}map\text{-}liminf\text{-}real:
  fixes f :: 'a \Rightarrow real
  assumes first-countable X
  shows lower-semicontinuous-map X f \longleftrightarrow (\forall xn \ x. \ limitin \ X \ xn \ x \ sequentially
\longrightarrow f x \leq liminf (\lambda n. f (xn n))
  \langle proof \rangle
```

2 Alaoglu's Theorem

end

```
 \begin{array}{c} \textbf{theory} \ \ A laoglu\text{-}Theorem \\ \textbf{imports} \ \ Lemmas\text{-}Levy\text{-}Prokhorov \\ Riesz\text{-}Representation.Riesz\text{-}Representation \\ \textbf{begin} \end{array}
```

We prove (a special case of) Alaoglu's theorem for the space of continuous functions. We refer to Section 9 of the lecture note by Heil [1].

2.1 Metrizability of the Space of Uniformly Bounded Positive Linear Functionals

```
lemma metrizable-functional: fixes X: 'a topology and r: real defines prod-space \equiv powertop-real (mspace (cfunspace X euclidean-metric)) defines B \equiv \{\varphi \in topspace \ prod-space. \ \varphi \ (\lambda x \in topspace \ X. \ 1) \leq r \land positive-linear-functional-on-CX \ X \ \varphi\} defines \Phi \equiv subtopology \ prod-space \ B assumes compact: compact-space X and met: metrizable-space X shows metrizable-space \Phi \langle proof \rangle
```

2.2 Alaoglu's Theorem

According to Alaoglu's theorem, $\{\varphi \in C(X)^* \mid \|\varphi\| \leq r\}$ is compact. We show that $\Phi = \{\varphi \in C(X)^* \mid \|\varphi\| \leq r \land \varphi \text{ is positive}\}\$ is compact. Note that

```
\|\varphi\| = \varphi(1) when \varphi \in C(X)^* is positive.
theorem Alaoglu-theorem-real-functional:
  fixes X :: 'a \ topology \ {\bf and} \ r :: real
  defines \ prod-space \equiv powertop-real \ (mspace \ (cfunspace \ X \ euclidean-metric))
 defines B \equiv \{ \varphi \in topspace \ prod-space. \ \varphi \ (\lambda x \in topspace \ X. \ 1) \leq r \land positive-linear-functional-on-CX \ \}
X \varphi
  assumes compact: compact-space X and ne: topspace X \neq \{\}
  shows compactin prod-space B
\langle proof \rangle
theorem Alaoglu-theorem-real-functional-seq:
  fixes X :: 'a \ topology \ and \ r :: real
  defines prod\text{-}space \equiv powertop\text{-}real \ (mspace \ (cfunspace \ X \ euclidean\text{-}metric))
 defines B \equiv \{ \varphi \in topspace \ prod\text{-}space. \ \varphi \ (\lambda x \in topspace \ X. \ 1) \leq r \land positive\text{-}linear\text{-}functional\text{-}on\text{-}CX \} 
  assumes compact:compact-space X and ne: topspace X \neq \{\} and met: metriz-
able-space X
  shows seq-compactin prod-space B
\langle proof \rangle
```

3 General Weak Convergence

end

```
\begin{tabular}{ll} \textbf{theory} & \textit{General-Weak-Convergence} \\ \textbf{imports} & \textit{Lemmas-Levy-Prokhorov} \\ & \textit{Riesz-Representation.Regular-Measure} \\ \textbf{begin} \end{tabular}
```

We formalize the notion of weak convergence and equivalent conditions. The formalization of weak convergence in HOL-Probability is restricted to probability measures on real numbers. Our formalization is generalized to finite measures on any metric spaces.

3.1 Topology of Weak Convegence

```
definition weak-conv-topology :: 'a topology \Rightarrow 'a measure topology where weak-conv-topology X \equiv topology-generated-by (\bigcup f \in \{f.\ continuous\text{-}map\ X\ euclidean real\ f \land (\exists\ B.\ \forall\ x \in top space\ X.\ |f\ x| \leq B)\}. Collect (openin (pullback-topology \{N.\ sets\ N=sets\ (borel\text{-}of\ X)\land f.\ nite\text{-}measure\ N\} (\lambda N.\ \int x.\ f\ x\ \partial N)\ euclidean real)))
lemma top space-weak-conv-topology [simp]: top space (weak-conv-topology X) = \{N.\ sets\ N=sets\ (borel\text{-}of\ X)\land finite\text{-}measure\ N\} \langle proof \rangle
```

```
lemma openin-weak-conv-topology-base:
    assumes f:continuous-map X euclideanreal f and B:\bigwedge x. x \in topspace X \Longrightarrow |f|
        and U:open\ U
    shows openin (weak-conv-topology X) ((\lambda N. \int x. f x \partial N) - U)
                                                                                \cap \{N. \ sets \ N = sets \ (borel-of \ X) \land finite-measure \}
N\})
    \langle proof \rangle
lemma continuous-map-weak-conv-topology:
    assumes f:continuous-map X euclideanreal f and B: \bigwedge x. x \in topspace X \Longrightarrow |f|
|x| \leq B
   shows continuous-map (weak-conv-topology X) euclideanreal (\lambda N. \int x. \int x \, \partial N)
    \langle proof \rangle
lemma weak-conv-topology-minimal:
    assumes topspace Y = \{N. sets \ N = sets \ (borel-of \ X) \land finite-measure \ N\}
        and \bigwedge f B. continuous-map X euclideanreal f
                                        \implies (\bigwedge x. \ x \in topspace \ X \implies |f \ x| \le B) \implies continuous-map \ Y
euclideanreal (\lambda N. \int x. f x \partial N)
    shows openin (weak-conv-topology X) U \Longrightarrow openin Y U
    \langle proof \rangle
\mathbf{lemma}\ weak\text{-}conv\text{-}topology\text{-}continuous\text{-}map\text{-}integral:
    assumes continuous-map X euclideanreal f \land x. x \in topspace X \Longrightarrow |f x| \leq B
    shows continuous-map (weak-conv-topology X) euclideanreal (\lambda N. \int x. \int x \, \partial N)
    \langle proof \rangle
3.2
                  Weak Convergence
abbreviation weak-conv-on :: ('a \Rightarrow 'b \text{ measure}) \Rightarrow 'b \text{ measure} \Rightarrow 'a \text{ filter} \Rightarrow 'b
topology \Rightarrow bool
      (\langle ((-)/\Rightarrow_{WC} (-)') (-)/on (-)\rangle [56, 55] 55) where
weak-conv-on Ni N F X \equiv limitin (weak-conv-topology X) Ni N F
abbreviation weak-conv-on-seq :: (nat \Rightarrow 'b \ measure) \Rightarrow 'b \ measure \Rightarrow 'b \ topology
      ( \langle '((-)/ \Rightarrow_{WC} (-)') \ on \ (-) \rangle \ [56, 55] \ 55) \ \mathbf{where}
weak-conv-on-seq Ni N X \equiv weak-conv-on Ni N sequentially X
                 Limit in Topology of Weak Convegence
3.3
lemma weak-conv-on-def:
  weak-conv-on Ni N F X \longleftrightarrow
      (\forall_F \ i \ in \ F. \ sets \ (Ni \ i) = sets \ (borel-of \ X) \land finite-measure \ (Ni \ i)) \land sets \ N =
sets (borel-of X)
              \land finite-measure N
               \land (\forall f. \ continuous\text{-}map \ X \ euclidean real \ f \longrightarrow (\exists B. \ \forall x \in top space \ X. \ |f \ x| \leq top space \ X. \ |f \ x| \leq top space \ X. \ |f \ x| \leq top space \ X. \ |f \ x| \leq top space \ X. \ |f \ x| \leq top space \ X. \ |f \ x| \leq top space \ X. \ |f \ x| \leq top space \ X. \ |f \ x| \leq top space \ X. \ |f \ x| \leq top space \ X. \ |f \ x| \leq top space \ X. \ |f \ x| \leq top space \ X. \ |f \ x| \leq top space \ X. \ |f \ x| \leq top space \ X. \ |f \ x| \leq top space \ X. \ |f \ x| \leq top space \ X. \ |f \ x| \leq top space \ X. \ |f \ x| \leq top space \ X. \ |f \ x| \leq top space \ X. \ |f \ x| \leq top space \ X. \ |f \ x| \leq top space \ X. \ |f \ x| \leq top space \ X. \ |f \ x| \leq top space \ X. \ |f \ x| \leq top space \ X. \ |f \ x| \leq top space \ X. \ |f \ x| \leq top space \ X. \ |f \ x| \leq top space \ X. \ |f \ x| \leq top space \ X. \ |f \ x| \leq top space \ X. \ |f \ x| \leq top space \ X. \ |f \ x| \leq top space \ X. \ |f \ x| \leq top space \ X. \ |f \ x| \leq top space \ X. \ |f \ x| \leq top space \ X. \ |f \ x| \leq top space \ X. \ |f \ x| \leq top space \ X. \ |f \ x| \leq top space \ X. \ |f \ x| \leq top space \ X. \ |f \ x| \leq top space \ X. \ |f \ x| \leq top space \ X. \ |f \ x| \leq top space \ X. \ |f \ x| \leq top space \ X. \ |f \ x| \leq top space \ X. \ |f \ x| \leq top space \ X. \ |f \ x| \leq top space \ X. \ |f \ x| \leq top space \ X. \ |f \ x| \leq top space \ X. \ |f \ x| \leq top space \ X. \ |f \ x| \leq top space \ X. \ |f \ x| \leq top space \ X. \ |f \ x| \leq top space \ X. \ |f \ x| \leq top space \ X. \ |f \ x| \leq top space \ X. \ |f \ x| \leq top space \ X. \ |f \ x| \leq top space \ X. \ |f \ x| \leq top space \ X. \ |f \ x| \leq top space \ X. \ |f \ x| \leq top space \ X. \ |f \ x| \leq top space \ X. \ |f \ x| \leq top space \ X. \ |f \ x| \leq top space \ X. \ |f \ x| \leq top space \ X. \ |f \ x| \leq top space \ X. \ |f \ x| \leq top space \ X. \ |f \ x| \leq top space \ X. \ |f \ x| \leq top space \ X. \ |f \ x| \leq top space \ X. \ |f \ x| \leq top space \ X. \ |f \ x| \leq top space \ X. \ |f \ x| \leq top space \ X. \ |f \ x| \leq top space \ X. \ |f \ x| \leq top space \ X. \ |f \ x| \leq top space \ X. \ |f \ x| \leq top 
B)
```

```
\longrightarrow ((\lambda i. \int x. f x \partial Ni i) \longrightarrow (\int x. f x \partial N)) F)
\langle proof \rangle
lemma weak-conv-on-def':
  assumes \bigwedge i. sets (Ni \ i) = sets \ (borel-of \ X) and \bigwedge i. finite-measure (Ni \ i)
    and sets N = sets (borel-of X) and finite-measure N
 \mathbf{shows}\ \textit{weak-conv-on}\ \textit{Ni}\ \textit{N}\ \textit{F}\ \textit{X}
         \longleftrightarrow (\forall f. \ continuous\text{-}map \ X \ euclidean real \ f \longrightarrow (\exists B. \ \forall x \in top space \ X. \ |f \ x|
\leq B)
                   \longrightarrow ((\lambda i. \int x. f x \partial Ni i) \longrightarrow (\int x. f x \partial N)) F)
  \langle proof \rangle
lemmas weak-conv-seq-def = weak-conv-on-def[where F=sequentially]
lemma weak-conv-on-const:
  (\bigwedge i. \ Ni \ i = N) \Longrightarrow sets \ N = sets \ (borel-of \ X)
   \implies finite-measure N \implies weak-conv-on Ni N F X
  \langle proof \rangle
lemmas weak-conv-on-seq-const = weak-conv-on-const[where F=sequentially]
context Metric-space
begin
abbreviation mweak\text{-}conv \equiv (\lambda Ni \ N \ F. \ weak\text{-}conv\text{-}on \ Ni \ N \ F \ mtopology)
abbreviation mweak-conv-seq \equiv \lambda Ni N. mweak-conv Ni N sequentially
lemmas mweak-conv-def = weak-conv-on-def [where <math>X = mtopology, simplified]
lemmas mweak-conv-seq-def = weak-conv-seq-def [where X=mtopology, simplified]
end
3.4
         The Portmanteau Theorem
locale mweak-conv-fin = Metric-space +
 fixes Ni :: 'b \Rightarrow 'a \text{ measure and } N :: 'a \text{ measure and } F
 assumes sets-Ni:\forall_F i in F. sets (Ni i) = sets (borel-of mtopology)
      and sets-N[measurable-cong]: sets N = sets (borel-of mtopology)
      and finite-measure-Ni: \forall_F \ i \ in \ F. finite-measure (Ni i)
      and finite-measure N: finite-measure N
begin
interpretation N: finite-measure N
  \langle proof \rangle
lemma space-N: space N = M
  \langle proof \rangle
```

lemma space-Ni: \forall_F i in F. space (Ni i) = M

```
\langle proof \rangle
lemma eventually-Ni: \forall_F \ i \ in \ F. \ space \ (Ni \ i) = M \land sets \ (Ni \ i) = sets \ (borel-of
mtopology) \land finite-measure (Ni i)
  \langle proof \rangle
lemma measure-converge-bounded':
  assumes ((\lambda n. measure (Ni n) M) \longrightarrow measure N M) F
  obtains K where \bigwedge A. \forall_F x \text{ in } F. measure (Ni x) A \leq K \bigwedge A. measure NA \leq K
K
\langle proof \rangle
lemma
  assumes F \neq \bot \forall_F x \text{ in } F. \text{ measure } (Ni x) A \leq K \text{ measure } N A \leq K
  shows Liminf-measure-bounded: Liminf F (\lambda i. measure (Ni i) A) < \infty \theta \le
Liminf F (\lambda i. measure (Ni i) A)
 and Limsup-measure-bounded: Limsup F (\lambda i. measure (Ni i) A) < \infty 0 < Limsup
F(\lambda i. measure(Ni i) A)
\langle proof \rangle
lemma mweak-conv1:
  fixes f:: 'a \Rightarrow real
 assumes mweak-conv Ni N F
    and uniformly-continuous-map Self euclidean-metric f
  shows (\exists B. \ \forall x \in M. \ |f x| \leq B) \Longrightarrow ((\lambda n. \ integral^L \ (Ni \ n) \ f) \longrightarrow integral^L \ N
f) F
  \langle proof \rangle
lemma mweak-conv2:
 assumes \bigwedge f:: 'a \Rightarrow real. uniformly-continuous-map Self euclidean-metric f \Longrightarrow
(\exists B. \ \forall x \in M. \ |f x| \leq B)
           \implies ((\lambda n. integral^L (Ni n) f) \longrightarrow integral^L N f) F
    and closedin mtopology A
  shows Limsup F(\lambda x. ereal (measure (Ni x) A)) \le ereal (measure N A)
\langle proof \rangle
lemma mweak-conv3:
  assumes \bigwedge A. closedin mtopology A \Longrightarrow Limsup \ F \ (\lambda n. measure \ (Ni \ n) \ A) \le
measure\ N\ A
      and ((\lambda n. measure (Ni n) M) \longrightarrow measure N M) F
      and openin mtopology U
    shows measure N \ U \le Liminf \ F \ (\lambda n. \ measure \ (Ni \ n) \ \ U)
\langle proof \rangle
lemma mweak-conv3':
 assumes \bigwedge U. openin mtopology U \Longrightarrow measure N U \le Liminf F (\lambda n. measure
      and ((\lambda n. measure (Ni n) M) \longrightarrow measure N M) F
      and closedin mtopology A
```

```
shows Limsup F(\lambda n. measure(Ni n) A) \leq measure(N A)
\langle proof \rangle
lemma mweak-conv4:
  assumes \bigwedge A. closedin mtopology A \Longrightarrow Limsup \ F \ (\lambda n. \ measure \ (Ni \ n) \ A) \le
measure\ N\ A
        and \bigwedge U. openin mtopology U \Longrightarrow measure N \ U \le Liminf \ F \ (\lambda n. \ measure
(Ni \ n) \ U)
       and [measurable]: A \in sets (borel-of mtopology)
       and measure N (mtopology frontier-of A) = \theta
    shows ((\lambda n. measure (Ni n) A) \longrightarrow measure N A) F
\langle proof \rangle
lemma mweak-conv5:
 assumes \bigwedge A.\ A \in sets\ (borel-of\ mtopology) \Longrightarrow measure\ N\ (mtopology\ frontier-of\ mtopology)
A) = 0
                   \implies ((\lambda n. \ measure \ (Ni \ n) \ A) \longrightarrow measure \ N \ A) \ F
  shows mweak-conv Ni N F
\langle proof \rangle
lemma mweak-conv-eq: mweak-conv Ni N F
 \longleftrightarrow (\forall f :: 'a \Rightarrow real. \ continuous\text{-}map \ mtopology \ euclidean \ f \longrightarrow (\exists B. \ \forall x \in M. \ |fx|)
\leq B)
                          \longrightarrow ((\lambda n. \int x. f x \partial Ni n) \longrightarrow (\int x. f x \partial N)) F)
  \langle proof \rangle
lemma mweak-conv-eq1: mweak-conv Ni N F
 \longleftrightarrow (\forall f::'a \Rightarrow real.\ uniformly-continuous-map\ Self\ euclidean-metric\ f\ \longrightarrow\ (\exists\ B.
\forall x \in M. |f x| \leq B
                            \longrightarrow ((\lambda n. \int x. f x \, \partial Ni \, n) \longrightarrow (\int x. f x \, \partial N)) \, F)
\langle proof \rangle
lemma mweak-conv-eq2: mweak-conv Ni N F
 \longleftrightarrow ((\lambda n. \ measure \ (Ni \ n) \ M) \longrightarrow measure \ N \ M) \ F \land (\forall A. \ closedin \ mtopology
        \longrightarrow Limsup \ F \ (\lambda n. \ measure \ (Ni \ n) \ A) \leq measure \ N \ A)
\langle proof \rangle
lemma mweak-conv-eq3: mweak-conv Ni N F
 \longleftrightarrow ((\lambda n.\ \textit{measure}\ (\textit{Ni}\ n)\ \textit{M})\ \longrightarrow\ \textit{measure}\ \textit{N}\ \textit{M})\ \textit{F}\ \land
     (\forall \ U. \ openin \ mtopology \ U \longrightarrow measure \ N \ U \leq Liminf \ F \ (\lambda n. \ measure \ (Ni \ n)
U))
\langle proof \rangle
lemma mweak-conv-eq4: mweak-conv Ni N F
 \longleftrightarrow (\forall A \in sets \ (borel-of \ mtopology). \ measure \ N \ (mtopology \ frontier-of \ A) = 0
                                           \longrightarrow ((\lambda n. measure (Ni n) A) \longrightarrow measure N A) F)
\langle proof \rangle
```

```
assumes mweak-conv Ni N F
 shows ((\lambda i. measure (Ni i) M) \longrightarrow measure N M) F
end
lemma
  assumes metrizable-space X
   and \forall_F \ i \ in \ F. \ sets \ (Ni \ i) = sets \ (borel-of \ X) \ \forall_F \ i \ in \ F. \ finite-measure \ (Ni \ i)
   and sets N = sets (borel-of X) finite-measure N
  shows weak-conv-on-eq1:
    weak-conv-on Ni N F X
      \longleftrightarrow ((\lambda n. \ measure \ (Ni \ n) \ (topspace \ X)) \longrightarrow measure \ N \ (topspace \ X)) \ F
        \land (\forall A. \ closedin \ X \ A \longrightarrow Limsup \ F \ (\lambda n. \ measure \ (Ni \ n) \ A) \leq measure \ N
A) (is ?eq1)
   and weak-conv-on-eq2:
   weak-conv-on Ni N F X
      \longleftrightarrow ((\lambda n. \ measure \ (Ni \ n) \ (topspace \ X)) \longrightarrow measure \ N \ (topspace \ X)) \ F
           \wedge \ (\forall \ U. \ openin \ X \ U \longrightarrow measure \ N \ U \leq Liminf \ F \ (\lambda n. \ measure \ (Ni \ n))
U)) (is ?eq2)
   and weak-conv-on-eq3:
   weak-conv-on Ni N F X
      \longleftrightarrow (\forall A \in sets (borel-of X). measure N (X frontier-of A) = 0
           \longrightarrow ((\lambda n. \ measure \ (Ni \ n) \ A) \longrightarrow measure \ N \ A) \ F) \ (is ?eq3)
\langle proof \rangle
end
      The Lévy-Prokhorov Metric
4
theory Levy-Prokhorov-Distance
 imports Lemmas-Levy-Prokhorov General-Weak-Convergence
begin
        The Lévy-Prokhorov Metric
4.1
lemma LPm-ne':
  assumes finite-measure M finite-measure N
  shows \exists e>0. \forall A \ B \ C \ D. measure M \ A \leq measure \ N \ (B \ A \ e) + e \land measure
N C \leq measure M (D C e) + e
\langle proof \rangle
locale Levy-Prokhorov = Metric-space
begin
```

corollary *mweak-conv-imp-limit-space*:

definition $\mathcal{P} \equiv \{N. \ sets \ N = sets \ (borel-of \ mtopology) \land finite-measure \ N\}$

lemma inP-D:

```
assumes N \in \mathcal{P}
  shows finite-measure N sets N = sets (borel-of mtopology) space N = M
  \langle proof \rangle
declare inP-D(2)[measurable-cong]
lemma in P-I: sets N = sets (borel-of mtopology) \Longrightarrow finite-measure N \Longrightarrow N \in
  \langle proof \rangle
lemma in P-iff: N \in \mathcal{P} \longleftrightarrow sets \ N = sets \ (borel-of \ mtopology) \land finite-measure \ N
  \langle proof \rangle
lemma M-empty-P:
  assumes M = \{\}
  shows \mathcal{P} = \{\} \lor \mathcal{P} = \{count\text{-space } \{\}\}
\langle proof \rangle
lemma M-empty-P':
  assumes M = \{\}
  shows \mathcal{P} = \{\} \lor \mathcal{P} = \{null\text{-}measure (borel\text{-}of mtopology)\}
  \langle proof \rangle
lemma in P-mweak-conv-fin-all:
  assumes \bigwedge i. Ni \ i \in \mathcal{P} \ N \in \mathcal{P}
  shows mweak-conv-fin M d Ni N F
  \langle proof \rangle
\mathbf{lemma}\ in P\text{-}mweak\text{-}conv\text{-}fin:
  assumes \forall_F \ i \ in \ F. \ Ni \ i \in \mathcal{P} \ N \in \mathcal{P}
  shows mweak-conv-fin M d Ni N F
  \langle proof \rangle
definition LPm :: 'a measure \Rightarrow 'a measure \Rightarrow real where
LPm\ N\ L \equiv
   if N \in \mathcal{P} \wedge L \in \mathcal{P} then
     ( \bigcap \{e.\ e > 0 \land (\forall A \in sets\ (borel-of\ mtopology).
                           measure N A \leq measure L (\bigcup a \in A. mball \ a \ e) + e \land
                           measure L A \leq measure \ N ([ ] a \in A. \ mball \ a \ e) + e) \})
   else 0
\mathbf{lemma}\ bdd\text{-}below\text{-}Levy\text{-}Prokhorov:
 bdd-below \{e. e > 0 \land (\forall A \in sets (borel-of mtopology).
                                  measure N A \leq measure L (\bigcup a \in A. mball \ a \ e) + e \land
                                  measure L A \leq measure \ N \ (\bigcup a \in A. \ mball \ a \ e) + e) \}
  \langle proof \rangle
lemma LPm-ne:
  assumes N \in \mathcal{P} L \in \mathcal{P}
```

```
shows \{e. \ e > 0 \land (\forall A \in sets \ (borel-of \ mtopology).
                          measure N A \leq measure L (\bigcup a \in A. mball a e) + e \land
                          measure L A \leq measure \ N \ (\bigcup a \in A. \ mball \ a \ e) + e) \}
         \neq \{\}
\langle proof \rangle
lemma LPm-imp-le:
  assumes e > 0
    and \bigwedge B. B \in sets (borel-of mtopology) \Longrightarrow measure L B \leq measure N (\bigcup a \in B.
mball \ a \ e) + e
    and \bigwedge B. B \in sets (borel-of mtopology) \Longrightarrow measure N B \leq measure L (\bigcup a \in B.
mball \ a \ e) + e
    shows LPm \ L \ N \le e
\langle proof \rangle
lemma LPm-le-max-measure: LPm L N \leq max (measure L (space L)) (measure
N (space N)
\langle proof \rangle
lemma LPm-less-then:
  assumes N \in \mathcal{P} and L \in \mathcal{P}
     and LPm \ N \ L < e \ A \in sets \ (borel-of \ mtopology)
     shows measure N A \leq measure L (\bigcup a \in A. mball \ a \ e) + e measure L A \leq
measure N (\bigcup a \in A. mball a e) + e
\langle proof \rangle
lemma LPm-nonneg:0 \le LPm \ N \ L
  \langle proof \rangle
lemma LPm-open: LPm L N = (if L \in \mathcal{P} \land N \in \mathcal{P} then
                              ( \bigcap \{e. \ e > 0 \land (\forall A \in \{U. \ openin \ mtopology \ U\}.
                                                 measure L A \leq measure N (\bigcup a \in A. mball)
a e) + e \wedge
                                                 measure N A \leq measure L (\bigcup a \in A. mball)
(a \ e) + (e))
                            else 0)
\langle proof \rangle
lemma LPm-closed: LPm L N = (if L \in P \land N \in P then
                                measure L A \leq measure N (\bigcup a \in A. mball
a e) + e \wedge
                                                 measure N A \leq measure L (\bigcup a \in A. mball)
(a \ e) + (e))
                              else 0)
\langle proof \rangle
lemma LPm-compact:
```

assumes separable-space mtopology mcomplete

```
( \bigcap \{e. \ e > 0 \land (\forall A \in \{U. \ compactin \ mtopology \ U\}.
                                            measure L A \leq measure N (\bigcup a \in A. mball \ a \ e)
+ e \wedge
                                            measure N A \leq measure L (\bigcup a \in A. mball \ a \ e)
+ e)))
                    else 0)
\langle proof \rangle
sublocale LPm: Metric-space P LPm
\langle proof \rangle
4.2
         Convervence and Weak Convergence
\mathbf{lemma}\ converge-imp\text{-}mweak\text{-}conv:
  assumes limitin\ LPm.mtopology\ Ni\ N\ F
 \mathbf{shows}\ \mathit{mweak\text{-}conv}\ \mathit{Ni}\ \mathit{N}\ \mathit{F}
\langle proof \rangle
\mathbf{lemma}\ \mathit{mweak-conv-imp-converge} :
 assumes separable-space mtopology
    and mweak-conv Ni N F
  shows limitin LPm.mtopology Ni N F
\langle proof \rangle
corollary conv-iff-mweak-conv: separable-space mtopology \Longrightarrow limitin LPm.mtopology
Ni N F \longleftrightarrow mweak\text{-}conv Ni N F
  \langle proof \rangle
4.3
        Separability
lemma LPm-countable-base:
  assumes ai:mdense (range ai)
 shows LPm.mdense
            ((\lambda(k,bi). sum\text{-}measure)
                         (borel-of\ mtopology)\ \{..k\}
                        (\lambda i.\ scale\text{-}measure\ (ennreal\ (bi\ i))\ (return\ (borel\text{-}of\ mtopology)
(ai\ i))))
             '(SIGMA k:(UNIV :: nat set). ({..k} \rightarrow_E \mathbb{Q} \cap \{0..\}))) (is LPm.mdense
?D)
\langle proof \rangle
lemma separable-LPm:
  assumes separable-space mtopology
  shows separable-space LPm.mtopology
\langle proof \rangle
\mathbf{lemma}\ closed in\text{-}bounded\text{-}measures:
  closedin LPm.mtopology \{N. sets \ N = sets \ (borel-of \ mtopology) \land N \ (space \ N)
\leq ennreal r
```

shows $LPm \ L \ N = (if \ L \in \mathcal{P} \land N \in \mathcal{P} \ then$

```
\langle proof \rangle
\mathbf{lemma}\ \mathit{closedin}\text{-}\mathit{subprobs}\text{:}
  closedin LPm.mtopology {N. subprob-space N \land sets N = sets (borel-of mtopol-
ogy)
  \langle proof \rangle
lemma closedin-probs: closedin LPm.mtopology \{N. prob-space N \land sets N = sets \}
(borel-of\ mtopology)\}
  \langle proof \rangle
        The Lévy-Prokhorov Metric and Topology of Weak Con-
4.4
lemma weak-conv-topology-le-LPm-topology:
  assumes openin (weak-conv-topology mtopology) S
 shows open in LPm.mtopology S
\langle proof \rangle
\mathbf{lemma}\ LPmtopology\text{-}eq\text{-}weak\text{-}conv\text{-}topology\text{:}
  assumes separable-space mtopology
 \mathbf{shows}\ \mathit{LPm.mtopology} = \mathit{weak-conv-topology}\ \mathit{mtopology}
  \langle proof \rangle
end
corollary
  assumes metrizable-space X separable-space X
 shows metrizable-weak-conv-topology:metrizable-space (weak-conv-topology X)
   and separable-weak-conv-topology: separable-space (weak-conv-topology X)
\langle proof \rangle
end
      Prokhorov's Theorem
5
theory Prokhorov-Theorem
 \mathbf{imports}\ \mathit{Levy-Prokhorov-Distance}
         A la oglu\text{-}Theorem
begin
        Prokhorov's Theorem
5.1
{\bf context}\ \textit{Levy-Prokhorov}
begin
lemma relatively-compact-imp-tight-LP:
  assumes \Gamma \subseteq \mathcal{P} separable-space mtopology mcomplete
```

and compactin LPm.mtopology (LPm.mtopology closure-of Γ)

```
shows tight-on-set mtopology \Gamma
\langle proof \rangle
\mathbf{lemma}\ mcompact	ext{-}imp	ext{-}LPmcompact:
  assumes compact-space mtopology
  shows compactin LPm.mtopology \{N. sets \ N = sets \ (borel-of \ mtopology) \land N \}
(space\ N) \leq ennreal\ r\}
    (is compactin - ?N)
\langle proof \rangle
lemma tight-imp-relatively-compact-LP:
 assumes \Gamma \subseteq \{N. \text{ sets } N = \text{sets (borel-of mtopology}) \land N \text{ (space } N) \leq \text{ennreal } \}
r} separable-space mtopology
     and tight-on-set mtopology \Gamma
    shows compactin LPm.mtopology (LPm.mtopology closure-of \Gamma)
\langle proof \rangle
corollary Prokhorov-theorem-LP:
  assumes \Gamma \subseteq \{N. \text{ sets } N = \text{ sets (borel-of mtopology)} \land \text{ emeasure } N \text{ (space } N)\}
\leq ennreal r
    and separable-space mtopology mcomplete
 shows compactin LPm.mtopology (LPm.mtopology closure-of \Gamma) \longleftrightarrow tight-on-set
mtopology \Gamma
\langle proof \rangle
5.2
        Completeness of the Lévy-Prokhorov Metric
\mathbf{lemma}\ mcomplete	ext{-}tight	ext{-}on	ext{-}set:
  assumes \Gamma \subseteq \mathcal{P} mcomplete
    and \bigwedge e f. e > 0 \Longrightarrow f > 0
           \implies \exists an \ n. \ an \ `\{..n::nat\} \subseteq M \land (\forall N \in \Gamma. \ measure \ N \ (M - (\bigcup j \leq n.)) \}
mball\ (an\ i)\ f)) \leq e)
 shows tight-on-set mtopology \Gamma
  \langle proof \rangle
\mathbf{lemma}\ mcomplete\text{-}LPmcomplete:
 assumes mcomplete separable-space mtopology
  shows LPm.mcomplete
\langle proof \rangle
5.3
        Equivalence of Separability, Completeness, and Compact-
        ness
lemma return-inP[simp]:return (borel-of mtopology) x \in \mathcal{P}
  \langle proof \rangle
lemma LPm-return-eq:
  assumes x \in M \ y \in M
  shows LPm (return (borel-of mtopology) x) (return (borel-of mtopology) y) =
```

```
min \ 1 \ (d \ x \ y)
\langle proof \rangle
corollary LPm-return-eq-capped-dist:
 assumes x \in M \ y \in M
  shows LPm (return (borel-of mtopology) x)(return (borel-of mtopology) y) =
capped-dist 1 x y
  \langle proof \rangle
corollary MCauchy-iff-MCauchy-return:
  assumes range xn \subseteq M
 shows MCauchy\ xn \longleftrightarrow LPm.MCauchy\ (\lambda n.\ return\ (borel-of\ mtopology)\ (xn\ n))
\langle proof \rangle
lemma conv-conv-return:
  assumes limitin mtopology xn x sequentially
  shows limitin LPm.mtopology (\lambda n. return (borel-of mtopology) (xn n)) (return
(borel-of\ mtopology)\ x)\ sequentially
\langle proof \rangle
lemma conv-iff-conv-return:
  assumes range \ xn \subseteq M \ x \in M
 shows limitin mtopology xn x sequentially
        \longleftrightarrow limitin \ LPm.mtopology \ (\lambda n. \ return \ (borel-of \ mtopology) \ (xn \ n))
                                 (return\ (borel-of\ mtopology)\ x)\ sequentially
\langle proof \rangle
lemma continuous-map-return: continuous-map mtopology LPm.mtopology (\lambda x.
return (borel-of mtopology) x)
  \langle proof \rangle
lemma homeomorphic-map-return:
  homeomorphic{-}map\ mtopology
                  (subtopology\ LPm.mtopology\ ((\lambda x.\ return\ (borel-of\ mtopology)\ x) '
M))
                   (\lambda x. \ return \ (borel-of \ mtopology) \ x)
\langle proof \rangle
corollary homeomorphic-space-mtopology-return:
 mtopology\ homeomorphic-space (subtopology LPm.mtopology\ ((\lambda x.\ return\ (borel-of
mtopology(x) \cdot M)
  \langle proof \rangle
lemma closedin-returnM: closedin LPm.mtopology ((\lambda x. return (borel-of mtopol-
ogy(x) 'M)
  \langle proof \rangle
corollary separable-iff-LPm-separable: separable-space mtopology \longleftrightarrow separable-space
```

LPm.mtopology

```
\langle proof \rangle
{\bf corollary}\ LPmcomplete\text{-}mcomplete\text{:}
  assumes LPm.mcomplete
  shows mcomplete
  \langle proof \rangle
corollary mcomplete-iff-LPmcomplete: separable-space mtopology \implies mcomplete
\longleftrightarrow LPm.mcomplete
  \langle proof \rangle
lemma LPmcompact-imp-mcompact: compact-space LPm.mtopology \implies compact-space
mtopology
  \langle proof \rangle
end
corollary Polish-space-weak-conv-topology:
 assumes Polish-space X
  shows Polish-space (weak-conv-topology X)
\langle proof \rangle
        Prokhorov Theorem for Topology of Weak Convergence
\mathbf{lemma}\ \mathit{relatively-compact-imp-tight}\colon
  assumes Polish-space X \Gamma \subseteq \{N. \text{ sets } N = \text{sets (borel-of } X) \land \text{finite-measure } \}
N
     and compactin (weak-conv-topology X) (weak-conv-topology X closure-of \Gamma)
   shows tight-on-set X \Gamma
\langle proof \rangle
lemma tight-imp-relatively-compact:
  assumes metrizable-space X separable-space X
   \Gamma \subseteq \{N. \ N \ (space \ N) \leq ennreal \ r \land sets \ N = sets \ (borel-of \ X)\}
     and tight-on-set X \Gamma
   shows compactin (weak-conv-topology X) (weak-conv-topology X closure-of \Gamma)
\langle proof \rangle
lemma Prokhorov:
  assumes Polish-space X \Gamma \subseteq \{N. \ N \ (space \ N) \leq ennreal \ r \land sets \ N = sets
 shows tight-on-set X \Gamma \longleftrightarrow compactin (weak-conv-topology X) (weak-conv-topology X)
X \ closure-of \ \Gamma)
\langle proof \rangle
{\bf corollary}\ tight-on-set-imp-convergent-subsequence:
  fixes Ni :: nat \Rightarrow -measure
  assumes metrizable-space X separable-space X
   and tight-on-set X (range Ni) \land i. (Ni i) (space (Ni i)) \leq ennreal r
```

6 Measurable Space of Finite Measures

6.1 Measurable Space of Finite Measures

begin

We define the measurable space of all finite measures in the same way as *subprob-algebra*.

```
definition finite-measure-algebra :: 'a measure \Rightarrow 'a measure measure where
 finite-measure-algebra K =
    (SUP\ A \in sets\ K.\ vimage-algebra\ \{M.\ finite-measure\ M \land sets\ M = sets\ K\}
(\lambda M.\ emeasure\ M\ A)\ borel)
lemma space-finite-measure-algebra:
  space\ (finite-measure-algebra\ A)=\{M.\ finite-measure\ M\ \land\ sets\ M=sets\ A\}
  \langle proof \rangle
lemma finite-measure-algebra-cong: sets M = sets N \Longrightarrow finite-measure-algebra
M = finite-measure-algebra N
  \langle proof \rangle
\mathbf{lemma}\ measurable\text{-}emeasure\text{-}finite\text{-}measure\text{-}algebra[measurable]}:
  a \in sets \ A \Longrightarrow (\lambda M. \ emeasure \ M \ a) \in borel-measurable (finite-measure-algebra
A)
  \langle proof \rangle
lemma measurable-measure-finite-measure-algebra[measurable]:
 a \in sets A \Longrightarrow (\lambda M. measure M a) \in borel-measurable (finite-measure-algebra A)
  \langle proof \rangle
lemma finite-measure-measurableD:
  assumes N: N \in measurable\ M\ (finite-measure-algebra\ S) and x: x \in space\ M
  shows space(N x) = space S
   and sets (N x) = sets S
   and measurable (N x) K = measurable S K
   and measurable K(N x) = measurable K S
  \langle proof \rangle
\langle ML \rangle
```

```
context
  fixes K M N assumes K: K \in measurable M (finite-measure-algebra N)
lemma finite-measure-space-kernel: a \in space M \Longrightarrow finite-measure (K a)
  \langle proof \rangle
lemma sets-finite-kernel: a \in space M \Longrightarrow sets (K a) = sets N
  \langle proof \rangle
lemma measurable-emeasure-finite-kernel[measurable]:
    A \in sets \ N \Longrightarrow (\lambda a. \ emeasure \ (K \ a) \ A) \in borel-measurable \ M
  \langle proof \rangle
end
{\bf lemma}\ measurable-finite-measure-algebra:
  (\land a. \ a \in space \ M \Longrightarrow finite\text{-}measure \ (K \ a)) \Longrightarrow
  (\bigwedge a. \ a \in space \ M \Longrightarrow sets \ (K \ a) = sets \ N) \Longrightarrow
  (\bigwedge A. \ A \in sets \ N \Longrightarrow (\lambda a. \ emeasure \ (K \ a) \ A) \in borel-measurable \ M) \Longrightarrow
  K \in measurable\ M\ (finite-measure-algebra\ N)
  \langle proof \rangle
{\bf lemma}\ measurable	ext{-}finite	ext{-}markov:
  K \in measurable\ M\ (finite-measure-algebra\ M) \longleftrightarrow
    (\forall x \in space \ M. \ finite-measure \ (K \ x) \land sets \ (K \ x) = sets \ M) \land
    (\forall A \in sets \ M. \ (\lambda x. \ emeasure \ (K \ x) \ A) \in measurable \ M \ borel)
\langle proof \rangle
lemma measurable-finite-measure-algebra-generated:
  assumes eq: sets N = sigma-sets \Omega G and Int-stable G \subseteq Pow \Omega
  assumes subsp: \bigwedge a. a \in space M \Longrightarrow finite\text{-measure} (K a)
  assumes sets: \bigwedge a. a \in space M \Longrightarrow sets (K a) = sets N
  assumes \bigwedge A. A \in G \Longrightarrow (\lambda a. \ emeasure \ (K \ a) \ A) \in borel-measurable \ M
  assumes \Omega: (\lambda a.\ emeasure\ (K\ a)\ \Omega) \in borel-measurable\ M
  shows K \in measurable M (finite-measure-algebra N)
\langle proof \rangle
lemma space-finite-measure-algebra-empty: space N = \{\} \Longrightarrow space (finite-measure-algebra
N) = \{null\text{-}measure N\}
  \langle proof \rangle
lemma sets-subprob-algebra-restrict:
  sets\ (subprob-algebra\ M)\ =\ sets\ (restrict-space\ (finite-measure-algebra\ M)\ \{N.
subprob-space N\})
  (is sets ?L = sets ?R)
\langle proof \rangle
```

6.2 Equivalence between Spaces of Finite Measures

```
Corollary 17.21 [2].
\mathbf{lemma}(\mathbf{in}\ \mathit{Levy-Prokhorov})\ open in-lower-semicontinuous:
 assumes openin mtopology U
 shows lower-semicontinuous-map LPm.mtopology (\lambda N. measure N U)
  \langle proof \rangle
lemma(in \ Levy-Prokhorov) \ closedin-upper-semicontinuous:
  assumes closedin \ mtopology \ A
 shows upper-semicontinuous-map LPm.mtopology (\lambda N. measure N A)
  \langle proof \rangle
context Levy-Prokhorov
begin
We show that the measurable space generated from LPm.mtopology is equal
to finite-measure-algebra (borel-of LPm.mtopology).
lemma sets-LPm1: sets (finite-measure-algebra (borel-of mtopology))
               \subseteq sets (borel-of LPm.mtopology) (is sets ?Giry \subseteq sets ?Levy)
\langle proof \rangle
lemma sets-LPm2:
 assumes mcomplete separable-space mtopology
  shows sets (borel-of LPm.mtopology) \subseteq sets (finite-measure-algebra (borel-of
mtopology))
   (is sets ?Levy \subseteq sets ?Giry)
\langle proof \rangle
corollary sets-LPm-eq-sets-finite-measure-algebra:
 assumes mcomplete separable-space mtopology
  shows sets (borel-of LPm.mtopology) = sets (finite-measure-algebra (borel-of
mtopology))
  \langle proof \rangle
end
corollary weak-conv-topology-eq-finite-measure-algebra:
 assumes Polish-space X
 shows sets (borel-of (weak-conv-topology X)) = sets (finite-measure-algebra (borel-of
X))
\langle proof \rangle
{\bf corollary}\ weak-conv-topology-eq-subprob-algebra:
 assumes Polish-space X
 shows sets (borel-of (subtopology (weak-conv-topology X) \{N. \text{ subprob-space } N \land
sets N = sets (borel-of X)\})
        = sets (subprob-algebra (borel-of X)) (is ?lhs = ?rhs)
\langle proof \rangle
```

```
assumes Polish-space X
     shows sets (borel-of (subtopology (weak-conv-topology X) \{N. prob-space\ N \land
sets N = sets (borel-of X)\})
                    = sets (prob-algebra (borel-of X)) (is ?lhs = ?rhs)
\langle proof \rangle
                   Standardness
6.3
lemma closedin-weak-conv-topology-r:
     closedin (weak-conv-topology X) \{N. sets \ N = sets \ (borel-of \ X) \land N \ (space \ N) \}
\leq ennreal r
\langle proof \rangle
lemma closedin-weak-conv-topology-subprob:
     closedin (weak-conv-topology X) \{N. \text{ subprob-space } N \land \text{ sets } N = \text{ sets (borel-of } \}\}
X)
\langle proof \rangle
lemma closedin-weak-conv-topology-prob:
     closedin (weak-conv-topology X) \{N. \text{ prob-space } N \land \text{ sets } N = \text{ sets (borel-of X)}\}
\langle proof \rangle
corollary
    assumes standard-borel M
   {f shows}\ standard\ -borel\ -finite\ -measure\ -algebra:\ standard\ -borel\ (finite\ -measure\ -algebra\ -algebr
M
      and standard-borel-ne-finite-measure-algebra: standard-borel-ne (finite-measure-algebra
M
         and standard-borel-subprob-algebra: standard-borel (subprob-algebra M)
         and standard-borel-prob-algebra: standard-borel (prob-algebra M)
\langle proof \rangle
corollary
    assumes standard-borel-ne M
    shows standard-borel-ne-subprob-algebra: standard-borel-ne (subprob-algebra M)
         and standard-borel-ne-prob-algebra: standard-borel-ne (prob-algebra M)
\langle proof \rangle
end
```

 ${\bf corollary}\ weak-conv-topology-eq-prob-algebra:$

References

[1] C. E. Heil. Lecture note on math 6338 (real analysis ii) at Georgia Institute of Technology. https://heil.math.gatech.edu/6338/summer08/, 2008. Accessed November 17th 2023.

- [2] A. S. Kechris. *Classical Descriptive Set Theory*. Graduate Texts in Mathematics. Springer New York, 1995.
- [3] M. Shi. Nets and filters. https://www.uvm.edu/~smillere/TProjects/MShi20s.pdf, 2020. Accessed November 17th 2023.
- [4] O. van Gaans. Probability measures on metric spaces. https://www.math.leidenuniv.nl/~vangaans/jancol1.pdf. Accessed: March 2. 2023.