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Abstract

We formalize the Lévy-Prokhorov metric, a metric on finite mea-
sures, mainly following the lecture notes by Gaans [4]. This entry
includes the following formalization.

Characterizations of closed sets, open sets, and topology by limit.
A special case of Alaoglu’s theorem.
Weak convergence and the Portmanteau theorem.

The Lévy-Prokhorov metric and its completeness and separabil-
ity.

The equivalence of the topology of weak convergence and the
topology generated by the Lévy-Prokhorov metric.

Prokhorov’s theorem.

Equality of two o-algebras on the space of finite measures. One
is the Borel algebra of the Lévy-Prokhorov metric and the other
is the least o-algebra that makes (Au. u(A)) measurable for all
measurable sets A.

The space of finite measures on a standard Borel space is also a
standard Borel space.
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1 Preliminaries

theory Lemmas-Levy-Prokhorov
imports Standard-Borel-Spaces.StandardBorel
begin

lemmal(in Metric-space) [measurable]:
shows mball-sets: mball z e € sets (borel-of mtopology)
and mcball-sets: mcball z e € sets (borel-of mtopology)

{proof)

lemma Metric-space-eq-MCauchy:
assumes Metric-space M d Az y. € M = ye M = dzy=d zy
and \zy. d'zy=d' yz N\zy. d'zy >0
shows Metric-space. MCauchy M d xn <— Metric-space. MCauchy M d’ xn
(proof)
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lemma borel-of-compact: Hausdorff-space X =—> compactin X K — K € sets
(borel-of X)
(proof)

lemma prob-algebra-cong: sets M = sets N = prob-algebra M = prob-algebra N
(proof)

lemma topology-eg-closedin: X = Y +— (VY C. closedin X C «— closedin Y C)
(proof)

Another version of finite-measure M = countable {z. Sigma-Algebra.measure
M {z} # 0}

lemma(in finite-measure) countable-support-sets:
assumes disjoint-family-on Ai D
shows countable {i€D. measure M (Ai i) # 0}
(proof)

1.1 Finite Sum of Measures

definition sum-measure :: ‘b measure = 'a set = ('a = 'b measure) = 'b measure
where

sum-measure M I Mi = measure-of (space M) (sets M) (AA. > i€l. emeasure (Mi
i) A)

lemma sum-measure-cong:
assumes sets M = sets M' Ni.i € ] = Ni= N’
shows sum-measure M I N = sum-measure M' I N’

(proof)

lemma [simp]:
shows space-sum-measure: space (sum-measure M I Mi) = space M
and sets-sum-measure[measurable-congl: sets (sum-measure M I Mi) = sets M

(proof)

lemma emeasure-sum-measure:
assumes [measurable]:A € sets M and A\i. i € I = sets (Mi i) = sets M
shows emeasure (sum-measure M I Mi) A = (> iel. Mii A)

(proof)

lemma sum-measure-infinite: infinite I = sum-measure M I Mi = null-measure
M

(proof)

lemma nn-integral-sum-measure:
assumes [ € borel-measurable M and [measurable-congl: N\i. i € I = sets (Mi
i) = sets M



shows ([ Tz. fz dsum-measure M I Mi) = (3 iel. ([T fz O(Mii)))
{proof)

corollary integrable-sum-measure-iff-ne:
fixes f :: 'a = 'b::{banach, second-countable-topology}
assumes [measurable-congl: Ni. i € I = sets (Mi i) = sets M and finite I and

I#{}
shows integrable (sum-measure M I Mi) f «— (Vi€l. integrable (Mi i) f)

(proof)

corollary integrable-sum-measure-iff:
fixes f :: 'a = 'b::{banach, second-countable-topology}
assumes [measurable-congl: N\i. i € I = sets (Mi i) = sets M and finite I
and [measurable]: f € borel-measurable M
shows integrable (sum-measure M I Mi) f «+— (Vi€l. integrable (Mi i) f)

(proof)

lemma integral-sum-measure:

fixes f :: 'a = 'b::{banach, second-countable-topology}

assumes [measurable-congl:\i. i € I = sets (Mi i) = sets M Ni. i € | =
integrable (Mi i) f

shows ([ z. fz dsum-measure M I Mi) = (Y iel. ([ z. fz O(Mi 7))
(proof)

Lemmas related to scale measure

lemma integrable-scale-measure:
fixes f :: 'a = 'b::{banach, second-countable-topology}
assumes integrable M f
shows integrable (scale-measure (ennreal r) M) f

(proof)

lemma integral-scale-measure:
assumes r > 0 integrable M f
shows ([ z. f z dscale-measure (ennreal v) M) = r * ([ z. fz OM)

{proof)

lemma
fixes ¢ :: ereal
assumes ¢: ¢ # — oo and a: An. 0 < an
shows liminf-cadd: liminf (An. ¢ + a n) = ¢ + liminf a
and limsup-cadd: limsup (An. ¢ + a n) = ¢ + limsup a
(proof)

lemmal(in Metric-space) frontier-measure-zero-balls:
assumes sets N = sets (borel-of mtopology) finite-measure N M # {}
and e > 0 and separable-space mtopology
obtains ai i where
(U i::nat. mball (ai i) (rii)) = M (Ji:nat. meball (ai ) (i) = M
Nicaiie MNi.rii>0 Ni.rii<e



Ni. measure N (mtopology frontier-of (mball (ai i) (rii))) = 0
Ni. measure N (mtopology frontier-of (mcball (ai i) (rii))) = 0
(proof)

lemma finite-measure-integral-eq-dense:
assumes finite: finite-measure N finite-measure M
and sets-N:sets N = sets (borel-of X) and sets-M: sets M = sets (borel-of X)
and dense:dense-in (mtopology-of (cfunspace X euclidean-metric)) F
and integ-eq: \f::- = real. f € F = ([z. fz ON) = ([ z. fz OM)
and f:continuous-map X euclideanreal f bounded (f * topspace X)
shows ([z. fz ON) = ([z. fz OM)
(proof)

1.2 Sequentially Continuous Maps

definition seg-continuous-map :: ’a topology = 'b topology = (‘a = 'b) = bool
where

seq-continuous-map X Y f = (Van z. limitin X zn © sequentially — limitin Y
(An. f (zn n)) (f ) sequentially)

lemma seg-continuous-map:

seg-continuous-map X Y f «— (Van x. limitin X zn x sequentially — limitin Y
(An. f (zn n)) (f z) sequentially)

(proof)

lemma seg-continuous-map-funspace:
assumes seq-continuous-map X Y f
shows f € topspace X — topspace Y

(proof)

lemma seq-continuous-iff-continuous-first-countable:
assumes first-countable X
shows seq-continuous-map X Y = continuous-map X Y

(proof)

1.3 Sequential Compactness

definition seq-compactin :: 'a topology = 'a set = bool where

seq-compactin X S

+— S C topspace X N (Van. (Vnunat. an n € §) — (31€S. Jaunat = nat.
strict-mono a A limitin X (zn o a) | sequentially))

definition seq-compact-space X = seq-compactin X (topspace X)

lemma seq-compactin-subset-topspace: seq-compactin X S = S C topspace X
(proof )

lemma seg-compactin-empty[simp|: seq-compactin X {}
(proof )



lemma seg-compactin-seq-compact|[simp): seq-compactin euclidean S +— seq-compact

S
{proof)

lemma image-seq-compactin:
assumes seq-compactin X S seq-continuous-map X Y f
shows seg-compactin Y (f ¢ 5)

{proof)

lemma closed-seq-compactin:
assumes seq-compactin X K C C K closedin X C
shows seg-compactin X C

{proof)

corollary closedin-seq-compact-space:
seq-compact-space X —> closedin X C —> seq-compactin X C
(proof )

lemma seg-compactin-subtopology: seq-compactin (subtopology X S) T <— seq-compactin
XTANTCS

(proof)

corollary seq-compact-space-subtopology: seq-compactin X S = seq-compact-space
(subtopology X S)

{proof)

lemma seq-compactin-PiED:
assumes seq-compactin (product-topology X I) (Pig I S)
shows (Pig I S = {} Vv (Viel. seq-compactin (X i) (S 7)))
(proof)

lemma metrizable-seq-compactin-iff-compactin:
assumes metrizable-space X
shows seg-compactin X S «— compactin X S

(proof)

corollary metrizable-seq-compact-space-iff-compact-space:
shows metrizable-space X =—> seq-compact-space X +— compact-space X
(proof)

1.4 Lemmas for Limsup and Liminf

lemma real-less-add-ex-less-pair:
fixes = w v :: real
assumes z < w + v
showsdyz. 2=y +2zAy<wAz<w
(proof)

lemma ereal-less-add-ex-less-pair:



fixes z w v :: ereal
assumes — oo < w —oc0 < vr<w-+ v
shows dyz. z2=y+2zAy<wAz<w

(proof)

lemma real-add-less:
fixes z w v :: real
assumes w + v < T
shows dyz.c=y+2Aw<yAov<z

(proof)

lemma ereal-add-less:
fixes =z w v :: ereal
assumes w + v < T
showsdyz. z=y+z2zAw<yAv<z

(proof)

A generalized version of — (liminf Yu = oo A liminf 2v = — oo V liminf %u
= — 00 A liminf v = c0) = liminf ?u + liminf 2v < liminf (An. 2un +
v n).
lemma ereal-Liminf-add-mono:

fixes u v::'a = ereal

assumes —((Liminf F u = oo A Liminf F v = —o0) V (Liminf F u = —oco A
Liminf F v = 00))

shows Liminf F (An. un + v n) > Liminf F u + Liminf F v
(proof)

A generalized version of limsup (An. ?u n + %v n) < limsup ?u + limsup
2u.

lemma ereal-Limsup-add-mono:
fixes u v::'a = ereal
shows Limsup F (An. un + vn) < Limsup F u + Limsup F v

{proof)

1.5 A Characterization of Closed Sets by Limit

There is a net which charactrize closed sets in terms of convergence. Since
Isabelle/HOL’s convergent is defined through filters, we transform the net
to a filter. We refer to the lecture notes by Shi [3] for the conversion.

definition derived-filter :: ['i set, i = 'i = bool] = 'i filter where
derived-filter I op = ([|4€1. principal {j€I. op i j})

lemma eventually-derived-filter:
assumes A # {}
and refl:\a. a € A = rela a
and transs\abc.a€e A=be A= cc A= relab= relbc = rel
ac
and pair-bounded:Na b. a € A = b€ A= Fc€A. relacArelbdc



shows eventually P (derived-filter A rel) +— (Fi€A. VneA. relin — P n)
(proof)

definition nhdsin-sets :: 'a topology = 'a = 'a set filter where
nhdsin-sets X x = derived-filter {U. openin X U A xz € U} (D)

lemma eventually-nhdsin-sets:

assumes z € topspace X

shows eventually P (nhdsin-sets X ) +— (3 U. openin X U ANz € UAN (VV.
openin XV —2z€V —VCU-—PV))

(proof)

lemma eventually-nhdsin-setsl:
assumes z € topspace X N\U. x € U = openin X U = P U
shows eventually P (nhdsin-sets X x)

(proof)

lemma nhdsin-sets-bot[simp, intro]:
assumes z € topspace X
shows nhdsin-sets X © # L

(proof)

corollary limitin-nhdsin-sets: limitin X zn x (nhdsin-sets X x) <— x € topspace
XANNMU.openin XU — € U— 3V.openin X VAze VANW. openin
XW-—zeW-—WCV-—aWel)))

(proof)

lemma closedin-limitin:

assumes T C topspace X Aan z. © € topspace X — (ANU. z € U = openin
XU=mU+#z)= (ANU.2€ U= openinX U= anUecT)= (AU.
an U € topspace X) = limitin X zn x (nhdsin-sets X ¢) = x € T

shows closedin X T

(proof)

corollary closedin-iff-limitin-eq:
fixes X :: ‘a topology
shows closedin X C
+— C C topspace X N
(Vaix (F :: 'a set filter). (Vi. zi i € topspace X) — x € topspace X
— VpiinF.xiie C)— F#1 —limitinXzizcF — 2z € C)
(proof)

lemma closedin-iff-limitin-sequentially:

assumes first-countable X

shows closedin X S <— S C topspace X A (Vo l. range 0 C S A limitin X o 1
sequentially — 1 € S) (is ?lhs=2rhs)

{(proof)



1.6 A Characterization of Topology by Limit

lemma topology-eq-filter:
fixes X :: ‘a topology
assumes topspace X = topspace Y
and A\(F :: 'a set filter) xzi z. (\i. xi i € topspace X) = z € topspace X =
limitin X i x F <— limitin Y zi x F
shows X = Y
(proof )

lemma topology-eq-limit-sequentially:
assumes topspace X = topspace Y
and first-countable X first-countable Y
and Azn z. (An. zn i € topspace X) = z € topspace X = limitin X zn x
sequentially <— limitin Y xn z sequentially
shows X = Y

{proof)

1.7 A Characterization of Open Sets by Limit

corollary openin-limitin:

assumes U C topspace X N\zi z. © € topspace X = (\i. zi i € topspace X)
= limitin X i x (nhdsin-sets X ) = z € U = Vg i in (nhdsin-sets X x). xi
e U

shows openin X U

(proof)

corollary openin-iff-limitin-eq:
fixes X :: ‘a topology
shows openin X U «— U C topspace X N (Vziz (F :: 'a set filter). (Vi. zi i €
topspace X) — x € U — limitin X ziz F — (Vpiin F. zii € U))
(proof)

corollary limitin-openin-sequentially:

assumes first-countable X

shows openin X U «— U C topspace X N (Van z. x € U — limitin X an z
sequentially — (IN.Vn>N. znn € U))

{proof)

lemma upper-semicontinuous-map-limsup-iff:

fixes [ :: 'a = (b :: {complete-linorder,linorder-topology})

assumes first-countable X

shows upper-semicontinuous-map X f «— (Vzn z. limitin X an z sequentially
— limsup (An. f (znn)) < fz)

(proof )

1.8 Lemmas for Upper/Lower-Semi Continuous Maps

lemma upper-semicontinuous-map-limsup-real:
fixes f :: 'a = real



assumes first-countable X

shows upper-semicontinuous-map X f «+— (Vzn z. limitin X an z sequentially
— limsup (An. f (zn n)) < fx)

(proof)

lemma lower-semicontinuous-map-liminf-iff:

fixes [ :: 'a = (b :: {complete-linorder,linorder-topology})

assumes first-countable X

shows lower-semicontinuous-map X f +— (Van z. limitin X an z sequentially
— fx < liminf (An. f (2n n)))

(proof)

lemma lower-semicontinuous-map-liminf-real:

fixes f :: 'a = real

assumes first-countable X

shows lower-semicontinuous-map X f «— (Van x. limitin X zn © sequentially
— fz < liminf (An. f (zn n)))

(proof)

end

2 Alaoglu’s Theorem

theory Alaoglu-Theorem
imports Lemmas-Levy-Prokhorov
Riesz-Representation. Riesz- Representation
begin

We prove (a special case of) Alaoglu’s theorem for the space of continuous
functions. We refer to Section 9 of the lecture note by Heil [1].

2.1 Metrizability of the Space of Uniformly Bounded Posi-
tive Linear Functionals

lemma metrizable-functional:

fixes X :: ‘a topology and r :: real

defines prod-space = powertop-real (mspace (cfunspace X euclidean-metric))

defines B = {p€ctopspace prod-space. p (AxEtopspace X. 1) < r A positive-linear-functional-on-CX
X ¢}

defines ® = subtopology prod-space B

assumes compact: compact-space X and met: metrizable-space X

shows metrizable-space ®

(proof)

2.2 Alaoglu’s Theorem

According to Alaoglu’s theorem, {¢ € C(X)* | ||| < r} is compact. We
show that ® = {p € C(X)* | ||¢]| < r Ay is positive} is compact. Note that
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lloll = ¢(1) when ¢ € C(X)* is positive.

theorem Alaoglu-theorem-real-functional:

fixes X :: ‘a topology and r :: real

defines prod-space = powertop-real (mspace (cfunspace X euclidean-metric))

defines B = {p€topspace prod-space. ¢ (Az€topspace X. 1) < r A positive-linear-functional-on-CX
X ¢}

assumes compact: compact-space X and ne: topspace X # {}

shows compactin prod-space B

{(proof)

theorem Alaoglu-theorem-real-functional-seq:

fixes X :: 'a topology and r :: real

defines prod-space = powertop-real (mspace (cfunspace X euclidean-metric))

defines B = {pEtopspace prod-space. v (AzE€topspace X. 1) < r A positive-linear-functional-on-CX
X ¢}

assumes compact:compact-space X and ne: topspace X # {} and met: metriz-
able-space X

shows seq-compactin prod-space B

(proof)

end

3 General Weak Convergence

theory General- Weak-Convergence
imports Lemmas-Levy-Prokhorov
Riesz-Representation. Regular-Measure
begin

We formalize the notion of weak convergence and equivalent conditions.
The formalization of weak convergence in HOL-Probability is restricted to
probability measures on real numbers. Our formalization is generalized to
finite measures on any metric spaces.

3.1 Topology of Weak Convegence

definition weak-conv-topology :: 'a topology = ’a measure topology where
weak-conv-topology X =
topology-generated-by
(Ufelf. continuous-map X euclideanreal f A (3 B. V z€topspace X. |f z| < B)}.
Collect (openin (pullback-topology {N. sets N = sets (borel-of X) A fi-
nite-measure N}
(AN. [z. fz ON) euclideanreal)))

lemma topspace-weak-conv-topology|simp]:
topspace (weak-conv-topology X) = {N. sets N = sets (borel-of X) A finite-measure
N}

(proof )
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lemma openin-weak-conv-topology-base:
assumes f:continuous-map X euclideanreal f and B:A\z. = € topspace X = |f
z| < B
and U:open U
shows openin (weak-conv-topology X) (AN. [z. fz ON) —*U
N {N. sets N = sets (borel-of X) N finite-measure
N})

{proof)

lemma continuous-map-weak-conv-topology:

assumes f:continuous-map X euclideanreal f and B:Az. z € topspace X = |f
z| < B

shows continuous-map (weak-conv-topology X) euclideanreal (AN. [z. fz ON)

(proof)

lemma weak-conv-topology-minimal:
assumes topspace Y = {N. sets N = sets (borel-of X) A finite-measure N}
and A\f B. continuous-map X euclideanreal f
= (Az. = € topspace X = |f 2| < B) = continuous-map Y
euclideanreal (AN. [z. fz ON)
shows openin (weak-conv-topology X) U = openin Y U
(proof)

lemma weak-conv-topology-continuous-map-integral:
assumes continuous-map X euclideanreal f Nxz. © € topspace X = |f x| < B
shows continuous-map (weak-conv-topology X) euclideanreal (AN. [z. fz ON)

{proof)

3.2 Weak Convergence

abbreviation weak-conv-on :: (‘a = 'b measure) = 'b measure = 'a filter = 'b
topology = bool

()] =we () () on () 56, 5] 55) where
weak-conv-on Ni N F X = limitin (weak-conv-topology X) Ni N F

abbreviation weak-conv-on-seq :: (nat = 'b measure) = ‘b measure = 'b topology
= bool

(<)) =we (1)) on (-)» [56, 55] 55) where
weak-conv-on-seq Ni N X = weak-conv-on Ni N sequentially X

3.3 Limit in Topology of Weak Convegence

lemma weak-conv-on-def:
weak-conv-on Ni N FF X +—
(VW iin F. sets (Ni i) = sets (borel-of X) A finite-measure (Ni 7)) A sets N =
sets (borel-of X)
A finite-measure N
A (Y f. continuous-map X euclideanreal f — (I B. ¥V z€topspace X. |f z| <
B)
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— ((Xi. [z fz ONii) — ([ z. fz ON)) F)
(proof)

lemma weak-conv-on-def”:

assumes Ai. sets (Ni i) = sets (borel-of X) and Ai. finite-measure (Ni )

and sets N = sets (borel-of X) and finite-measure N
shows weak-conv-on Ni N F X
«— (Vf. continuous-map X euclideanreal f — (3 B. V zEtopspace X. |f z|
< B)
— ((Mi. [z fz ONii) — ([ z. fz ON)) F)
(proof )

lemmas weak-conv-seq-def = weak-conv-on-def[where F=sequentially]

lemma weak-conv-on-const:
(Ni. Ni i = N) = sets N = sets (borel-of X)
= finite-measure N = weak-conv-on Ni N F X
{proof )

lemmas weak-conv-on-seq-const = weak-conv-on-const[where F=sequentially]

context Metric-space
begin

abbreviation mweak-conv = (ANi N F. weak-conv-on Ni N F mtopology)
abbreviation mweak-conv-seq = ANi N. mweak-conv Ni N sequentially

lemmas mweak-conv-def = weak-conv-on-def[where X=mtopology,simplified)
lemmas mweak-conv-seq-def = weak-conv-seq-def[where X=mtopology,simplified]

end

3.4 The Portmanteau Theorem

locale mweak-conv-fin = Metric-space +
fixes Ni :: 'b = 'a measure and N :: 'a measure and F
assumes sets-Ni:V p i in F. sets (Ni i) = sets (borel-of mtopology)
and sets-N[measurable-cong): sets N = sets (borel-of mtopology)
and finite-measure-Ni: ¥V g  in F. finite-measure (Ni 1)
and finite-measure-N: finite-measure N
begin

interpretation N: finite-measure N
(proof )

lemma space-N: space N = M
(proof)

lemma space-Ni: ¥V g i in F. space (Ni i) = M

13



{proof)

lemma eventually-Ni: ¥ g i in F. space (Ni i) = M A sets (Ni i) = sets (borel-of
mtopology) A finite-measure (Ni 7)
(proof)

lemma measure-converge-bounded’:

assumes ((An. measure (Ni n) M) —— measure N M) F

obtains K where AA. Vg z in F. measure (Niz) A < K NA. measure N A <
K

(proof)

lemma

assumes F # | Vg xzin F. measure (Ni z) A < K measure N A < K

shows Liminf-measure-bounded: Liminf F (Ai. measure (Ni i) A) < oo 0 <
Liminf F (\i. measure (Ni i) A)

and Limsup-measure-bounded: Limsup F (Ni. measure (Nii) A) < oo 0 < Limsup
F (Xi. measure (Ni i) A)
(proof)

lemma mweak-convl:
fixes f:: ‘a = real
assumes mweak-conv Ni N F
and uniformly-continuous-map Self euclidean-metric f
shows (3B. VzeM. |f z| < B) = ((An. integral® (Ni n) f) — integral’ N
f)F
(proof)

lemma mweak-conv2:
assumes Af:: ‘a = real. uniformly-continuous-map Self euclidean-metric f —>
(3B.VzeM. |fz| < B)
= ((An. integral® (Ni n) f) — integral® N f) F
and closedin mtopology A
shows Limsup F (Az. ereal (measure (Ni z) A)) < ereal (measure N A)

(proof)

lemma mweak-convs:
assumes AA. closedin mtopology A = Limsup F (An. measure (Ni n) A) <
measure N A
and ((An. measure (Ni n) M) —— measure N M) F'
and openin mtopology U
shows measure N U < Liminf F (An. measure (Nin) U)

(proof)

lemma mweak-conv3":
assumes A U. openin mtopology U = measure N U < Liminf F (An. measure
(Nin) U)
and ((An. measure (Ni n) M) —— measure N M) F
and closedin mtopology A
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shows Limsup F' (An. measure (Ni n) A) < measure N A
(proof)

lemma mweak-convj:
assumes AA. closedin mtopology A = Limsup F (An. measure (Ni n) A) <

measure N A

and AU. openin mtopology U = measure N U < Liminf F (An. measure
(Nin) U)

and [measurable]: A € sets (borel-of mtopology)

and measure N (mtopology frontier-of A) = 0

shows ((An. measure (Ni n) A) —— measure N A) F

(proof)

lemma mweak-convs:
assumes \A. A € sets (borel-of mtopology) = measure N (mtopology frontier-of
A)=0
= ((An. measure (Nin) A) —— measure N A) F
shows mweak-conv Ni N F

(proof)

lemma mweak-conv-eq: mweak-conv Ni N F
+— (Vf::'a = real. continuous-map mtopology euclidean f — (I B. VzeM. |f z|
< B)
— ((An. [z. fz ONin) — ([ . fz ON)) F)
(proof)

lemma mweak-conv-eql: mweak-conv Ni N F
+—— (Vf:'a = real. uniformly-continuous-map Self euclidean-metric f — (3 B.
VzeM. |fz| < B)
— ((An. [z. fz ONin) — ([ . fz ON)) F)
{proof )

lemma mweak-conv-eq2: mweak-conv Ni N F
«— ((An. measure (Nin) M) —— measure N M) F A (V A. closedin mtopology
A

— Limsup F (An. measure (Nin) A) < measure N A)

(proof)

lemma mweak-conv-eq3: mweak-conv Ni N F
> ((An. measure (Ni n) M) —— measure N M) F A
(V U. openin mtopology U — measure N U < Liminf F (An. measure (Ni n)
U))
(proof)

lemma mweak-conv-eq4: mweak-conv Ni N F
«— (VA € sets (borel-of mtopology). measure N (mtopology frontier-of A) = 0
— ((An. measure (Ni n) A) —— measure N A) F)

(proof)
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corollary mweak-conv-imp-limit-space:
assumes mweak-conv Ni N F
shows ((\i. measure (Ni i) M) —— measure N M) F

{proof)

end

lemma
assumes metrizable-space X
and V p iin F. sets (Ni i) = sets (borel-of X) ¥V iin F. finite-measure (Ni i)
and sets N = sets (borel-of X) finite-measure N
shows weak-conv-on-eq1:
weak-conv-on Ni N F' X
+— ((An. measure (Ni n) (topspace X)) —— measure N (topspace X)) F
A (VA. closedin X A — Limsup F (An. measure (Ni n) A) < measure N
A) (is %eql)
and weak-conv-on-eq2:
weak-conv-on Ni N F' X
+— ((An. measure (Ni n) (topspace X)) —— measure N (topspace X)) F
A (VY U. openin X U — measure N U < Liminf F (An. measure (Ni n)
U)) (is %eq2)
and weak-conv-on-eq3:
weak-conv-on Ni N F' X
«— (VA € sets (borel-of X). measure N (X frontier-of A) = 0
— ((An. measure (Ni n) A) —— measure N A) F) (is ?eq3)

(proof)

end

4 The Lévy-Prokhorov Metric

theory Levy-Prokhorov-Distance
imports Lemmas-Levy-Prokhorov General- Weak-Convergence
begin

4.1 The Lévy-Prokhorov Metric

lemma LPm-ne":

assumes finite-measure M finite-measure N

shows Je>0. VA B C D. measure M A < measure N (B A e) + e A measure
N C < measure M (D Ce) + e

(proof)

locale Levy-Prokhorov = Metric-space
begin

definition P = {N. sets N = sets (borel-of mtopology) N finite-measure N}

lemma inP-D:
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assumes N € P
shows finite-measure N sets N = sets (borel-of mtopology) space N = M
(proof)

declare inP-D(2)[measurable-cong]

lemma inP-I: sets N = sets (borel-of mtopology) = finite-measure N = N €
P

{proof)

lemma inP-iff: N € P «— sets N = sets (borel-of mtopology) A finite-measure N
(proof)

lemma M-empty-P:

assumes M = {}

shows P = {} V P = {count-space {}}
(proof)

lemma M-empty-P"
assumes M = {}
shows P = {} V P = {null-measure (borel-of mtopology)}
(proof )

lemma inP-mweak-conv-fin-all:
assumes A\i. Nii € PN € P
shows mweak-conv-fin M d Ni N F

{proof)

lemma inP-mweak-conv-fin:
assumes Vgp iin F. Nii€¢ P N e P
shows mweak-conv-fin M d Ni N F

(proof)

definition LPm :: 'a measure = 'a measure = real where
LPm N L =
if N e PANLEeTP then
(] {e. e > 0 A (¥ Aesets (borel-of mtopology).
measure N A < measure L (|Ja€A. mball a e) + e A
measure L A < measure N (|Ja€A. mball a ) + ¢)})
else 0

lemma bdd-below-Levy-Prokhorov:

bdd-below {e. e > 0 A (V A€sets (borel-of mtopology).
measure N A < measure L (|Ja€A. mball a e) + e A
measure L A < measure N (|Ja€A. mball a ) + €)}

{proof)

lemma LPm-ne:
assumes N ¢ P L€ P
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shows {e. e > 0 A (V A€sets (borel-of mtopology).
measure N A < measure L (|Ja€A. mball a ) + e A
measure L A < measure N (|J a€A. mball a ) + €)}
#{}
(proof)

lemma LPm-imp-le:
assumes e¢ > 0
and AB. B € sets (borel-of mtopology) = measure L B < measure N (|J a€B.
mball a €) + e
and AB. B € sets (borel-of mtopology) => measure N B < measure L (| a€B.
mball a e) + e
shows LPm L N < e

(proof)

lemma LPm-le-maz-measure: LPm L N < max (measure L (space L)) (measure
N (space N))
(proof)

lemma LPm-less-then:
assumes N € Pand L € P
and LPm N L < e A € sets (borel-of mtopology)
shows measure N A < measure L (|Ja€A. mball a ) + e measure L A <
measure N (| a€A. mball a €) + ¢

(proof)

lemma LPm-nonneg:0 < LPm N L
(proof )

lemma LPm-open: LPm L N = (if L € P A N € P then
(I {e. e> 0 N (VAe{U. openin mtopology U}.
measure L A < measure N (|J a€A. mball
ae)+ e

ae) + e)})
(proof)
lemma LPm-closed: LPm L N = (if L € P A N € P then

([ {e- e > 0 N (VAe{U. closedin mtopology U}.
measure L A < measure N (|J a€A. mball

measure N A < measure L (| a€A. mball

else 0)

ae)+eA

ae)+e)})

measure N A < measure L (| a€A. mball

else 0)
(proof)

lemma LPm-compact:
assumes separable-space mtopology mcomplete
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shows LPm L N = (if L€ P A N € P then
(] {e- e> 0 N (YVA{U. compactin mtopology U}.
measure L A < measure N (|Ja€A. mball a e)
+ e

+ )

measure N A < measure L (|Ja€A. mball a e)

else 0)
(proof)

sublocale LPm: Metric-space P LPm
(proof)

4.2 Convervence and Weak Convergence

lemma converge-imp-mweak-conv:
assumes limitin LPm.mtopology Ni N F
shows mweak-conv Ni N F

(proof)

lemma mweak-conv-imp-converge:
assumes separable-space mtopology
and mweak-conv Ni N F
shows limitin LPm.mtopology Ni N F

(proof)

corollary conv-iff-mweak-conv: separable-space mtopology = limitin LPm.mtopology
Ni N F <— muweak-conv N¢ N F

(proof)

4.3 Separability

lemma LPm-countable-base:
assumes ai:mdense (range ai)
shows LPm.mdense
((A(k,bi). sum-measure
(borel-of mtopology) {..k}
(Ai. scale-measure (ennreal (bi ©)) (return (borel-of mtopology)

(ai 7))

D)
(proof)

“(SIGMA k:(UNIV :: nat set). ({.k} =g QN {0..}))) (is LPm.mdense

lemma separable-LPm:
assumes separable-space mtopology
shows separable-space LPm.mtopology

(proof)

lemma closedin-bounded-measures:
closedin LPm.mtopology {N. sets N = sets (borel-of mtopology) N N (space N)
< ennreal r}
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{proof)

lemma closedin-subprobs:

closedin LPm.mtopology {N. subprob-space N A sets N = sets (borel-of mtopol-
ogy)}

(proof)

lemma closedin-probs: closedin LPm.mtopology {N. prob-space N N\ sets N = sets
(borel-of mtopology) }

(proof)

4.4 The Lévy-Prokhorov Metric and Topology of Weak Con-
vegence

lemma weak-conv-topology-le-LPm-topology:
assumesopenin (weak-conv-topology mtopology) S
shows openin LPm.mtopology S

(proof)

lemma LPmtopology-eq-weak-conv-topology:
assumes separable-space mtopology
shows LPm.mtopology = weak-conv-topology mtopology

{proof)

end

corollary
assumes metrizable-space X separable-space X
shows metrizable-weak-conv-topology:metrizable-space (weak-conv-topology X)
and separable-weak-conv-topology: separable-space (weak-conv-topology X)

(proof)

end

5 Prokhorov’s Theorem

theory Prokhorov-Theorem
imports Levy-Prokhorov-Distance
Alaoglu-Theorem
begin

5.1 Prokhorov’s Theorem

context Levy-Prokhorov
begin

lemma relatively-compact-imp-tight-LP:

assumes I' C P separable-space mtopology mcomplete
and compactin LPm.mtopology (LPm.mtopology closure-of T")

20



shows tight-on-set mtopology T’
(proof )

lemma mcompact-imp-LPmcompact:
assumes compact-space mtopology
shows compactin LPm.mtopology {N. sets N = sets (borel-of mtopology) N N
(space N) < ennreal 1}
(is compactin - ¢N)
(proof)

lemma tight-imp-relatively-compact-LP:
assumes I' C {N. sets N = sets (borel-of mtopology) N N (space N) < ennreal
r} separable-space mtopology
and tight-on-set mtopology T’
shows compactin LPm.mtopology (LPm.mtopology closure-of T')

(proof)

corollary Prokhorov-theorem-LP:
assumes I' C {N. sets N = sets (borel-of mtopology) N\ emeasure N (space N)
< ennreal r}
and separable-space mtopology mcomplete
shows compactin LPm.mtopology (LPm.mtopology closure-of T') <— tight-on-set
mtopology T'

(proof)

5.2 Completeness of the Lévy-Prokhorov Metric

lemma mcomplete-tight-on-set:
assumes I' C P mcomplete
and A\ef.e> 0= f>0
= Jan n. an ‘ {.nunat} C M A (VNel. measure N (M — (Ji<n.
mball (an i) f)) < e)
shows tight-on-set mtopology T’
(proof )

lemma mcomplete-LPmcomplete:
assumes mcomplete separable-space mtopology
shows LPm.mcomplete

(proof)

5.3 Equivalence of Separability, Completeness, and Compact-
ness

lemma return-inP[simp]:return (borel-of mtopology) = € P
{proof)

lemma LPm-return-eq:
assumes x € My e M
shows LPm (return (borel-of mtopology) x) (return (borel-of mtopology) y) =

21



min 1 (d z y)
(proof)

corollary LPm-return-eq-capped-dist:

assumes r € My e M

shows LPm (return (borel-of mtopology) x)(return (borel-of mtopology) y) =
capped-dist 1 x y

{proof )

corollary MCauchy-iff-MCauchy-return:
assumes range zn C M
shows MCauchy zn <— LPm.MCauchy (An. return (borel-of mtopology) (zn n))

(proof)

lemma conv-conv-return:

assumes limitin mtopology zn T sequentially

shows limitin LPm.mtopology (An. return (borel-of mtopology) (zn n)) (return
(borel-of mtopology) x) sequentially
{proof)

lemma conv-iff-conv-return:
assumes range zn C Mz € M
shows limitin mtopology xn x sequentially
< limitin LPm.mtopology (An. return (borel-of mtopology) (zn n))
(return (borel-of mtopology) x) sequentially

(proof)

lemma continuous-map-return: continuous-map mtopology LPm.mtopology (Az.
return (borel-of mtopology) x)

{proof)

lemma homeomorphic-map-return:
homeomorphic-map mtopology
(subtopology LPm.mtopology ((Ax. return (borel-of mtopology) x) *
M)
(Az. return (borel-of mtopology) x)

(proof)

corollary homeomorphic-space-mtopology-return:

mtopology homeomorphic-space (subtopology LPm.mtopology ((Az. return (borel-of
mtopology) z) * M))

(proof )
lemma closedin-returnM: closedin LPm.mtopology ((Az. return (borel-of mtopol-
ogy) x) * M)

(proof )

corollary separable-iff-LPm-separable: separable-space mtopology <— separable-space
LPm.mtopology
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{proof)

corollary LPmcomplete-mcomplete:
assumes LPm.mcomplete
shows mcomplete

{proof)

corollary mcomplete-iff-LPmcomplete: separable-space mtopology =—> mcomplete
+— LPm.mcomplete

(proof)

lemma LPmcompact-imp-mcompact: compact-space LPm.mtopology =—> compact-space
mtopology

{proof)

end

corollary Polish-space-weak-conv-topology:
assumes Polish-space X
shows Polish-space (weak-conv-topology X)

(proof)

5.4 Prokhorov Theorem for Topology of Weak Convergence

lemma relatively-compact-imp-tight:
assumes Polish-space X T' C {N. sets N = sets (borel-of X) A finite-measure
N}
and compactin (weak-conv-topology X) (weak-conv-topology X closure-of T')
shows tight-on-set X T

(proof)

lemma tight-imp-relatively-compact:
assumes metrizable-space X separable-space X
' C {N. N (space N) < ennreal r A sets N = sets (borel-of X)}
and tight-on-set X T’
shows compactin (weak-conv-topology X) (weak-conv-topology X closure-of T')

(proof)

lemma Prokhorov:

assumes Polish-space X T' C {N. N (space N) < ennreal r N sets N = sets
(borel-of X)}

shows tight-on-set X T' «— compactin (weak-conv-topology X) (weak-conv-topology
X closure-of T')

(proof)

corollary tight-on-set-imp-convergent-subsequence:
fixes Ni :: nat = - measure
assumes metrizable-space X separable-space X
and tight-on-set X (range Ni) Ni. (Ni i) (space (Nii)) < ennreal r
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shows Ja N. strict-mono a A finite-measure N A sets N = sets (borel-of X)
A N (space N) < ennreal r A weak-conv-on (Ni o a) N sequentially X

(proof)

end

theory Space-of-Finite-Measures
imports Prokhorov-Theorem
begin

6 Measurable Space of Finite Measures

6.1 Measurable Space of Finite Measures

We define the measurable space of all finite measures in the same way as
subprob-algebra.

definition finite-measure-algebra :: 'a measure = 'a measure measure where
finite-measure-algebra K =
(SUP A € sets K. vimage-algebra {M. finite-measure M A sets M = sets K}
(AM. emeasure M A) borel)

lemma space-finite-measure-algebra:
space (finite-measure-algebra A) = {M. finite-measure M A sets M = sets A}

{proof)

lemma finite-measure-algebra-cong: sets M = sets N = finite-measure-algebra
M = finite-measure-algebra N

{proof)

lemma measurable-emeasure-finite-measure-algebra|measurable]:

a € sets A = (AM. emeasure M a) € borel-measurable (finite-measure-algebra
4)

{proof)

lemma measurable-measure-finite-measure-algebra|measurable]:
a € sets A => (AM. measure M a) € borel-measurable (finite-measure-algebra A)

(proof)

lemma finite-measure-measurableD:
assumes N: N € measurable M (finite-measure-algebra S) and z: x € space M
shows space (N z) = space S
and sets (N z) = sets S
and measurable (N z) K = measurable S K
and measurable K (N x) = measurable K S

{proof)

(ML)
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context
fixes K M N assumes K: K € measurable M (finite-measure-algebra N)
begin

lemma finite-measure-space-kernel: a € space M = finite-measure (K a)
{proof )

lemma sets-finite-kernel: a € space M = sets (K a) = sets N
{proof)

lemma measurable-emeasure-finite-kernel[measurable]:
A € sets N = (Aa. emeasure (K a) A) € borel-measurable M
{proof)

end

lemma measurable-finite-measure-algebra:
(Aa. a € space M = finite-measure (K a)) =
(Aa. a € space M = sets (K a) = sets N) =
(NA. A € sets N = (\a. emeasure (K a) A) € borel-measurable M) =
K € measurable M (finite-measure-algebra N)

{proof)

lemma measurable-finite-markov:
K € measurable M (finite-measure-algebra M) +—
(Vze€space M. finite-measure (K x) A sets (K z) = sets M) A
(V Aesets M. (Az. emeasure (K x) A) € measurable M borel)
(proof)

lemma measurable-finite-measure-algebra-generated:
assumes eq: sets N = sigma-sets @ G and Int-stable G G C Pow 2
assumes subsp: Aa. a € space M = finite-measure (K a)
assumes sets: A\a. a € space M = sets (K a) = sets N
assumes A\A. 4 € G = (\a. emeasure (K a) A) € borel-measurable M
assumes 2: (Aa. emeasure (K a) Q1) € borel-measurable M
shows K € measurable M (finite-measure-algebra N)

(proof)

lemma space-finite-measure-algebra-empty: space N = {} = space (finite-measure-algebra
N) = {null-measure N}

(proof )

lemma sets-subprob-algebra-restrict:

sets (subprob-algebra M) = sets (restrict-space (finite-measure-algebra M) {N.
subprob-space N})

(is sets 7L = sets ?R)

(proof)
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6.2 Equivalence between Spaces of Finite Measures

Corollary 17.21 [2].

lemma(in Levy-Prokhorov) openin-lower-semicontinuous:
assumes openin mtopology U
shows lower-semicontinuous-map LPm.mtopology (AN. measure N U)

{proof)

lemma(in Levy-Prokhorov) closedin-upper-semicontinuous:
assumes closedin mtopology A
shows upper-semicontinuous-map LPm.mtopology (AN. measure N A)

{proof)

context Levy-Prokhorov
begin

We show that the measurable space generated from LPm.mtopology is equal
to finite-measure-algebra (borel-of LPm.mtopology).

lemma sets-LPm1: sets (finite-measure-algebra (borel-of mtopology))
C sets (borel-of LPm.mtopology) (is sets ?Giry C sets ?Levy)

(proof)

lemma sets-LPm2:
assumes mcomplete separable-space mtopology
shows sets (borel-of LPm.mtopology) C sets (finite-measure-algebra (borel-of
mtopology))
(is sets ?Levy C sets ?Gliry)
(proof)

corollary sets-LPm-eq-sets-finite-measure-algebra:

assumes mcomplete separable-space mtopology

shows sets (borel-of LPm.mtopology) = sets (finite-measure-algebra (borel-of
mtopology))

(proof )

end

corollary weak-conv-topology-eq-finite-measure-algebra:

assumes Polish-space X

shows sets (borel-of (weak-conv-topology X)) = sets (finite-measure-algebra (borel-of
X))
(proof)

corollary weak-conv-topology-eq-subprob-algebra:
assumes Polish-space X
shows sets (borel-of (subtopology (weak-conv-topology X) {N. subprob-space N A
sets N = sets (borel-of X)}))
= sets (subprob-algebra (borel-of X)) (is ?lhs = ?rhs)
(proof)
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corollary weak-conv-topology-eq-prob-algebra:
assumes Polish-space X
shows sets (borel-of (subtopology (weak-conv-topology X) {N. prob-space N A
sets N = sets (borel-of X)}))
= sets (prob-algebra (borel-of X)) (is ?lhs = frhs)
(proof)

6.3 Standardness

lemma closedin-weak-conv-topology-r:
closedin (weak-conv-topology X) {N. sets N = sets (borel-of X) A N (space N)
< ennreal 1}

(proof)

lemma closedin-weak-conv-topology-subprob:

closedin (weak-conv-topology X) {N. subprob-space N A sets N = sets (borel-of
X)}
(proof)

lemma closedin-weak-conv-topology-prob:
closedin (weak-conv-topology X) {N. prob-space N N\ sets N = sets (borel-of X)}
(proof)

corollary
assumes standard-borel M
shows standard-borel-finite-measure-algebra: standard-borel (finite-measure-algebra
M)
and standard-borel-ne-finite-measure-algebra: standard-borel-ne (finite-measure-algebra
M)
and standard-borel-subprob-algebra: standard-borel (subprob-algebra M)
and standard-borel-prob-algebra: standard-borel (prob-algebra M)

{(proof)

corollary
assumes standard-borel-ne M
shows standard-borel-ne-subprob-algebra: standard-borel-ne (subprob-algebra M)
and standard-borel-ne-prob-algebra: standard-borel-ne (prob-algebra M)

(proof)

end
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