
Lazifying case constants

Lars Hupel

March 17, 2025

Abstract
Isabelle’s code generator performs various adaptations for target

languages. Among others, case statements are printed as match expres-
sions. Internally, this is a sophisticated procedure, because in HOL,
case statements are represented as nested calls to the case combinators
as generated by the datatype package. Furthermore, the procedure re-
lies on laziness of match expressions in the target language, i.e., that
branches guarded by patterns that fail to match are not evaluated.
Similarly, if-then-else is printed to the corresponding construct in
the target language. This entry provides tooling to replace these special
cases in the code generator by ignoring these target language features,
instead printing case expressions and if-then-else as functions.

1 Introduction
theory Lazy-Case

imports Main
keywords lazify :: thy-decl

begin

Importing this theory adds a preprocessing step to the code generator: All
case constants (and If) are replaced by “lazy” versions; i.e., new constants
that evaluate the cases lazily. For example, the type of case-list is ′a ⇒ (′b
⇒ ′b list ⇒ ′a)⇒ ′b list ⇒ ′a. A new constant is created with the type (unit
⇒ ′a) ⇒ (′b ⇒ ′b list ⇒ ′a) ⇒ ′b list ⇒ ′a. All fully-applied occurrences of
the standard case constants are rewritten (using the [code-unfold] attribute).

The motivation for doing this is twofold:

1. Reconstructing match expressions is complicated. For existing tar-
get languages, this theory reduces the amount of code that has to be
trusted in the code generator, because the transformation goes through
the kernel.

2. It lays the groundwork to support targets that do not have syntactic
constructs for case expressions or that cannot be used for some reason,
or targets where lazy evaluation of branching constructs is not given.

1

The obvious downside is that this construction will usually degrade per-
formance of generated code. To some extent, an optimising compiler that
performs inlining can alleviate that.

2 Setup

If is just an alias for case-bool.
lemma [code-unfold]: HOL.If P t f = case-bool t f P by simp

ML-file ‹lazy-case.ML›
setup ‹Lazy-Case.setup›

end

3 Usage
theory Test-Lazy-Case
imports Lazy-Case
begin

This entry provides a datatype plugin and a separate command. The plugin
runs by default on all defined datatypes, but it can be disabled individually:
datatype (plugins del: lazy-case) ′a tree = Node | Fork ′a ′a tree list

context begin

The lazify command can be used to add lazy constants if the plugin has
been disabled during datatype definition.
lazify tree

end

Nested and mutual recursion are supported.
datatype

′a mlist1 = MNil1 | MCons1 ′a ′a mlist2 and
′a mlist2 = MNil2 | MCons2 ′a ′a mlist1

Records are supported.
record meep =

x1 :: nat
x2 :: int

4 Examples
definition test where

2

test x ←→ (if x then True else False)

definition test ′ where
test ′ = case-bool True False

definition test ′′ where
test ′′ xs = (case xs of [] ⇒ False | - ⇒ True)

fun fac :: nat ⇒ nat where
fac n = (if n ≤ 1 then 1 else n ∗ fac (n − 1))

lemma map-tree[code]:
map-tree f t = (case t of Node ⇒ Node | Fork x ts ⇒ Fork (f x) (map (map-tree

f) ts))
by (induction t) auto

The generated code uses neither target-language if-then-else nor match
expressions.
export-code test test ′ test ′′ fac map-tree in SML

end

3

	Introduction
	Setup
	Usage
	Examples

