
Latin Square

Alexander Bentkamp

March 17, 2025

Abstract

A theory about Latin Squares following [1]. A Latin Square is a
n×n table filled with integers from 1 to n where each number appears
exactly once in each row and each column. A Latin Rectangle is a
partially filled n × n table with r filled rows and n − r empty rows,
such that each number appears at most once in each row and each
column. The main result of this theory is that any Latin Rectangle
can be completed to a Latin Square.

Contents

theory Latin-Square
imports Marriage.Marriage
begin

This theory is about Latin Squares. A Latin Square is a n×n table filled
with integers from 1 to n where each number appears exactly once in each
row and each column.

As described in "Das Buch der Beweise" a nice way to describe these
squares by a 3×n matrix. Each column of this matrix contains the index of
the row r, the index of the column c and the number in the cell (r,c). This
3× n matrix is called orthogonal array ("Zeilenmatrix").

I thought about different ways to formalize this orthogonal array, and
came up with this: As the order of the columns in the array does not matter
at all and no column can be a duplicate of another column, the orthogonal
array is in fact a set of 3-tuples. Another advantage of formalizing it as a
set is that it can easily model partially filled squares. For these 3-tuples I
decided against 3-lists and against nat × nat × nat (which is really (nat ×
nat)× nat) in favor of a function from a type with three elements to nat.

Additionally I use the numbers 0 to n− 1 instead of 1 to n for indexing
the rows and columns as well as for filling the cells.
datatype latin-type = Row | Col | Num

1



latin_type is of sort enum, needed for "value" command
instantiation latin-type :: enum
begin

definition enum-latin-type == [Row, Col, Num]
definition enum-all-latin-type (P:: latin-type ⇒ bool) = (P Row ∧ P Col ∧ P

Num)
definition enum-ex-latin-type (P:: latin-type ⇒ bool) = (∃ x. P x)

instance
apply standard

apply (auto simp add: enum-latin-type-def enum-all-latin-type-def enum-ex-latin-type-def )
apply (case-tac x,auto)

by (metis latin-type.exhaust)

end

Given a latin_type t, you might want to reference the other two. These
are "next t" and "next (next t)":
definition [simp]:next t ≡ (case t of Row ⇒ Col | Col ⇒ Num | Num ⇒ Row)

lemma all-types-next-eqiv:(∀ t. P (next t)) ←→ (∀ t. P t)
apply (rule iffI )
using next-def latin-type.case latin-type.exhaust apply metis

apply metis
done

We call a column of the orthogonal array a latin_entry:
type-synonym latin-entry = latin-type ⇒ nat

This function removes one element of the 3-tupel and returns the other
two as a pair:
definition without :: latin-type ⇒ latin-entry ⇒ nat × nat where
[simp]:without t ≡ λe. (e (next t), e (next (next t)))

value without Row (λt. case t of Row ⇒ 0 | Col ⇒ 1 | Num ⇒ 2 ) — returns
(1,2)

abbreviation row-col ≡ without Num

returns row and column of a latin_entry as a pair.
abbreviation col-num ≡ without Row

returns column and number of a latin_entry as a pair.
abbreviation num-row ≡ without Col

returns number and row of a latin_entry as a pair.

A partial latin square is a square that contains each number at most once
in each row and each column, but not all cells have to be filled. Equivalently

2



we can say that any two rows of the orthogonal array contain each pair of two
numbers at most once. This can be expressed using the inj_on predicate:
definition partial-latin-square :: latin-entry set ⇒ nat ⇒ bool where
partial-latin-square s n ≡
(∀ t. inj-on (without t) s) ∧ — numbers are unique in each column (t=Row),

numbers are unique in each row (t=Col), rows-column combinations are specified
unambiguously (t=Num)
(∀ e∈s. ∀ t. e t < n) — all numbers, column indices and row indices are <n

value partial-latin-square {
(λt. case t of Row ⇒ 0 | Col ⇒ 1 | Num ⇒ 0 ),
(λt. case t of Row ⇒ 1 | Col ⇒ 0 | Num ⇒ 1 )
} 2 — True

value partial-latin-square {
(λt. case t of Row ⇒ 0 | Col ⇒ 0 | Num ⇒ 1 ),
(λt. case t of Row ⇒ 1 | Col ⇒ 0 | Num ⇒ 1 )
} 2 — False, because 1 appears twice in column 0

Looking at the orthogonal array a latin square is given iff any two rows
of the orthogonal array contain each pair of two numbers at exactly once:
definition latin-square :: latin-entry set ⇒ nat ⇒ bool where
latin-square s n ≡
(∀ t. bij-betw (without t) s ({0 ..<n}×{0 ..<n}))

value latin-square {
(λt. case t of Row ⇒ 0 | Col ⇒ 0 | Num ⇒ 1 ), (λt. case t of Row ⇒ 0 | Col
⇒ 1 | Num ⇒ 0 ),
(λt. case t of Row ⇒ 1 | Col ⇒ 0 | Num ⇒ 0 ), (λt. case t of Row ⇒ 1 | Col
⇒ 1 | Num ⇒ 1 )
} 2 — True

value latin-square {
(λt. case t of Row ⇒ 0 | Col ⇒ 0 | Num ⇒ 1 ), (λt. case t of Row ⇒ 0 | Col
⇒ 1 | Num ⇒ 0 ),
(λt. case t of Row ⇒ 1 | Col ⇒ 0 | Num ⇒ 0 ), (λt. case t of Row ⇒ 1 | Col
⇒ 1 | Num ⇒ 0 )
} 2 — False, because 0 appears twice in Col 1 and twice in Row 1

A latin rectangle is a partial latin square in which the first m rows are
filled and the following rows are empty:
definition latin-rect :: latin-entry set ⇒ nat ⇒ nat ⇒ bool where
latin-rect s m n ≡

m ≤ n ∧
partial-latin-square s n ∧
bij-betw row-col s ({0 ..<m}×{0 ..<n}) ∧
bij-betw num-row s ({0 ..<n}×{0 ..<m})

value latin-rect {

3



(λt. case t of Row ⇒ 0 | Col ⇒ 0 | Num ⇒ 1 ), (λt. case t of Row ⇒ 0 | Col
⇒ 1 | Num ⇒ 0 )
} 1 2 — True

value latin-rect {
(λt. case t of Row ⇒ 0 | Col ⇒ 0 | Num ⇒ 1 ), (λt. case t of Row ⇒ 0 | Col
⇒ 1 | Num ⇒ 0 ),
(λt. case t of Row ⇒ 1 | Col ⇒ 0 | Num ⇒ 0 ), (λt. case t of Row ⇒ 1 | Col
⇒ 1 | Num ⇒ 1 )
} 1 2 — False

There is another equivalent description of latin rectangles, which is easier
to prove:
lemma latin-rect-iff :
m≤n ∧ partial-latin-square s n ∧ card s = n∗m ∧ (∀ e∈s. e Row < m) ←→
latin-rect s m n
proof (rule iffI )

assume prems:m≤n ∧ partial-latin-square s n ∧ card s = n ∗ m ∧ (∀ e∈s. e Row
< m)

have bij1 :bij-betw row-col s ({0 ..<m}×{0 ..<n}) using prems
proof

have inj-on row-col s using prems partial-latin-square-def by blast
moreover have {0 ..<m} × {0 ..<n} = row-col ‘ s
proof−

have row-col ‘ s ⊆ {0 ..<m} × {0 ..<n} using prems partial-latin-square-def
by auto

moreover have card (row-col ‘ s) = card ({0 ..<m} × {0 ..<n}) using prems
card-image[OF ‹inj-on row-col s›] by auto

ultimately show {0 ..<m} × {0 ..<n} = row-col ‘ s using card-subset-eq[of
{0 ..<m} × {0 ..<n} row-col ‘ s] by auto

qed
ultimately show ?thesis unfolding bij-betw-def by auto

qed

have bij2 :bij-betw num-row s ({0 ..<n}×{0 ..<m}) using prems
proof

have inj-on num-row s using prems partial-latin-square-def by blast
moreover have {0 ..<n} × {0 ..<m} = num-row ‘ s
proof−
have num-row ‘ s ⊆ {0 ..<n} × {0 ..<m} using prems partial-latin-square-def

by auto
moreover have card (num-row ‘ s) = card ({0 ..<n} × {0 ..<m}) using

prems card-image[OF ‹inj-on num-row s›] by auto
ultimately show {0 ..<n} × {0 ..<m} = num-row ‘ s using card-subset-eq[of

{0 ..<n} × {0 ..<m} num-row ‘ s] by auto
qed
ultimately show ?thesis unfolding bij-betw-def by auto

qed

4



from prems bij1 bij2 show latin-rect s m n unfolding latin-rect-def by auto
next

assume prems:latin-rect s m n
have m≤n partial-latin-square s n using latin-rect-def prems by auto
moreover have card s = m ∗ n
proof −

have bij-betw row-col s ({0 ..<m} × {0 ..<n}) using latin-rect-def prems by
auto

then show ?thesis using bij-betw-same-card[of row-col s {0 ..<m} × {0 ..<n}]
by auto

qed
moreover have ∀ e∈s. e Row < m using latin-rect-def prems using atLeast0LessThan

bij-betwE by fastforce
ultimately show m≤n ∧ partial-latin-square s n ∧ card s = n ∗ m ∧ (∀ e∈s. e

Row < m) by auto
qed

A square is a latin square iff it is a partial latin square with all n2 cells
filled:
lemma partial-latin-square-full:
partial-latin-square s n ∧ card s = n∗n ←→ latin-square s n
proof (rule iffI )

assume prem: partial-latin-square s n ∧ card s = n ∗ n
have ∀ t. (without t) ‘ s ⊆ {0 ..<n} × {0 ..<n}
proof

fix t show (without t) ‘ s ⊆ {0 ..<n} × {0 ..<n} using partial-latin-square-def
next-def atLeast0LessThan prem by (cases t) auto

qed
then show partial-latin-square s n ∧ card s = n ∗ n =⇒ latin-square s n

unfolding latin-square-def using partial-latin-square-def
by (metis bij-betw-def card-atLeastLessThan card-cartesian-product card-image

card-subset-eq diff-zero finite-SigmaI finite-atLeastLessThan)
next

assume prem:latin-square s n
then have bij-betw row-col s ({0 ..<n} × {0 ..<n}) using latin-square-def by

blast
moreover have partial-latin-square s n
proof −
have ∀ t. ∀ e∈s. (without t) e ∈ ({0 ..<n}×{0 ..<n}) using prem latin-square-def

bij-betwE by metis
then have 1 :∀ e∈s.∀ t. e t < n using latin-square-def all-types-next-eqiv[of λt.

∀ e∈s. e t < n] bij-betwE by auto
have 2 :(∀ t. inj-on (without t) s) using prem bij-betw-def latin-square-def by

auto
from 1 2 show ?thesis using partial-latin-square-def by auto

qed
ultimately show partial-latin-square s n ∧ card s = n∗n by (auto simp add:

bij-betw-same-card)

5



qed

Now we prove Lemma 1 from chapter 27 in "Das Buch der Beweise". But
first some lemmas, that prove very intuitive facts:
lemma bij-restrict:
assumes bij-betw f A B ∀ a∈A. P a ←→ Q (f a)
shows bij-betw f {a∈A. P a} {b∈B. Q b}
proof −

have inj: inj-on f {a∈A. P a} using assms bij-betw-def by (metis (mono-tags,
lifting) inj-onD inj-onI mem-Collect-eq)

have surj1 : f ‘ {a∈A. P a} ⊆ {b∈B. Q b} using assms(1 ) assms(2 ) bij-betwE
by blast

have surj2 : {b∈B. Q b} ⊆ f ‘ {a∈A. P a}
proof

fix b
assume b ∈ {b ∈ B. Q b}
then obtain a where f a = b a∈A using assms(1 ) bij-betw-inv-into-right

bij-betwE bij-betw-inv-into mem-Collect-eq by (metis (no-types, lifting))
then show b ∈ f ‘ {a∈A. P a} using ‹b ∈ {b ∈ B. Q b}› assms(2 ) by blast

qed
with inj surj1 surj2 show ?thesis using bij-betw-imageI by fastforce

qed

lemma cartesian-product-margin1 :
assumes a∈A
shows {p∈A×B. fst p = a} = {a}×B
using SigmaI assms by auto

lemma cartesian-product-margin2 :
assumes b∈B
shows {p∈A×B. snd p = b} = A×{b}
using SigmaI assms by auto

The union of sets containing at most k elements each cannot contain
more elements than the number of sets times k:
lemma limited-family-union: finite B =⇒ ∀P∈B. card P ≤ k =⇒ card (

⋃
B) ≤

card B ∗ k
proof (induction B rule:finite-induct)

case empty
then show ?case by auto

next
case (insert P B)
have card (

⋃
(insert P B)) ≤ card P + card (

⋃
B) by (simp add: card-Un-le)

then have card (
⋃
(insert P B)) ≤ card P + card B ∗ k using insert by auto

then show ?case using insert by simp
qed

If f hits each element at most k times, the domain of f can only be k
times bigger than the image of f:

6



lemma limited-preimages:
assumes ∀ x ∈ f ‘ D. card ((f −‘ {x})∩D) ≤ k finite D
shows card D ≤ card (f ‘ D) ∗ k
proof −

let ?preimages = (λx. (f −‘ {x})∩D) ‘ (f ‘ D)
have D =

⋃
?preimages by auto

have card (
⋃

?preimages) ≤ card ?preimages ∗ k using limited-family-union[of
?preimages k] assms by auto

moreover have card (?preimages) ∗ k ≤ card (f ‘ D) ∗ k using card-image-le[of
f ‘ D λx. (f −‘ {x})∩D] assms by auto

ultimately have card (
⋃

?preimages) ≤ card (f ‘ D) ∗ k using le-trans by blast
then show ?thesis using ‹D =

⋃
?preimages› by metis

qed

Let A1, . . . , An be sets with k > 0 elements each. Any element is only
contained in at most k of these sets. Then there are more different elements
in total than sets Ai:
lemma union-limited-replicates:
assumes finite I ∀ i∈I . finite (A i) k>0 ∀ i∈I . card (A i) = k ∀ i∈I . ∀ x∈(A i).
card {i∈I . x∈A i} ≤ k
shows card (

⋃
i∈I . (A i)) ≥ card I using assms

proof −
let ?pairs = {(i,x). i∈I ∧ x∈A i}

have card-pairs: card ?pairs = card I ∗ k using assms
proof (induction I rule:finite-induct)

case empty
then show ?case using card-eq-0-iff by auto

next
case (insert i0 I )
have ∀ i∈I . ∀ x∈(A i). card {i∈I . x∈A i} ≤ k
proof (rule ballI )+

fix i x assume i ∈ I x∈A i
then have card {i ∈ insert i0 I . x ∈ A i} ≤ k using insert by auto
moreover have finite {i ∈ insert i0 I . x ∈ A i} using insert by auto
ultimately show card {i∈I . x∈A i} ≤ k using card-mono[of {i ∈ insert i0

I . x ∈ A i} {i ∈ I . x ∈ A i}] le-trans by blast
qed
then have card-S : card {(i, x). i ∈ I ∧ x ∈ A i} = card I ∗ k using insert

by auto

have card-B: card {(i, x). i=i0 ∧ x∈A i0} = k using insert by auto

have {(i, x). i ∈ insert i0 I ∧ x ∈ A i} = {(i, x). i ∈ I ∧ x ∈ A i} ∪ {(i, x).
i=i0 ∧ x∈A i0} by auto

moreover have {(i, x). i ∈ I ∧ x ∈ A i} ∩ {(i, x). i=i0 ∧ x∈A i0} = {}
using insert by auto

moreover have finite {(i, x). i ∈ I ∧ x ∈ A i} using insert rev-finite-subset[of
I ×

⋃
(A ‘ I ) {(i, x). i ∈ I ∧ x ∈ A i}] by auto

7



moreover have finite {(i, x). i=i0 ∧ x∈A i0} using insert card-B card.infinite
neq0-conv by blast

ultimately have card {(i, x). i ∈ insert i0 I ∧ x ∈ A i} = card {(i, x). i ∈ I
∧ x ∈ A i} + card {(i, x). i=i0 ∧ x∈A i0} by (simp add: card-Un-disjoint)

with card-S card-B have card {(i, x). i ∈ insert i0 I ∧ x ∈ A i} = (card I +
1 ) ∗ k by auto

then show ?case using insert by auto
qed

define f where f ix = (case ix of (i,x) ⇒ x) for ix :: ′a × ′b

have preimages-le-k: ∀ x ∈ f ‘ ?pairs. card ((f −‘ {x}) ∩ ?pairs) ≤ k
proof

fix x0 assume x0-def : x0 ∈ f ‘ ?pairs
have (f −‘ {x0}) ∩ ?pairs = {(i,x). i∈I ∧ x∈A i ∧ x=x0} using f-def by

auto
moreover have card {(i,x). i∈I ∧ x∈A i ∧ x=x0} = card {i∈I . x0∈A i}

using ‹finite I ›
proof −

have inj-on (λi. (i,x0 )) {i∈I . x0∈A i} by (meson Pair-inject inj-onI )
moreover have (λi. (i,x0 )) ‘ {i∈I . x0∈A i} = {(i,x). i∈I ∧ x∈A i ∧ x=x0}

by (rule subset-antisym) blast+
ultimately show ?thesis using card-image by fastforce

qed
ultimately have 1 :card ((f −‘ {x0}) ∩ ?pairs) = card {i∈I . x0∈A i} by

auto

have∃ i0 . x0∈A i0 ∧ i0∈I using x0-def f-def by auto
then have card {i∈I . x0∈A i} ≤ k using assms by auto
with 1 show card ((f −‘ {x0}) ∩ ?pairs) ≤ k by auto

qed

have card ?pairs ≤ card (f ‘ ?pairs) ∗ k
proof −

have finite {(i, x). i ∈ I ∧ x ∈ A i} using assms card-pairs not-finite-existsD
by fastforce

then show ?thesis using limited-preimages[of f ?pairs k, OF preimages-le-k]
by auto

qed

then have card I ≤ card (f ‘ ?pairs) using card-pairs assms by auto
moreover have f ‘ ?pairs = (

⋃
i∈I . (A i)) using f-def [abs-def ] by auto

ultimately show ?thesis using f-def by auto
qed

In a m× n latin rectangle each number appears in m columns:
lemma latin-rect-card-col:
assumes latin-rect s m n x<n
shows card {e Col|e. e∈s ∧ e Num = x} = m

8



proof −
have card {e ∈ s. e Num = x} = m
proof −

have 1 :bij-betw num-row s ({0 ..<n}×{0 ..<m}) using assms latin-rect-def by
auto

have 2 :∀ e∈s. e Num = x ←→ fst (num-row e) = x by simp
have bij-betw num-row {e∈s. e Num = x} ({x}×{0 ..<m})

using bij-restrict[OF 1 2 ] cartesian-product-margin1 [of x {0 ..<n} {0 ..<m}]
assms by auto

then show ?thesis using card-cartesian-product by (simp add: bij-betw-same-card)
qed
moreover have card {e∈s. e Num = x} = card {e Col |e. e ∈ s ∧ e Num = x}
proof −
have inj-on col-num s using assms latin-rect-def [of s m n] partial-latin-square-def [of

s n] by blast
then have inj-on col-num {e∈s. e Num = x} by (metis (mono-tags, lifting)

inj-onD inj-onI mem-Collect-eq)
then have inj-on (λe. e Col) {e∈s. e Num = x} unfolding inj-on-def using

without-def by auto
moreover have (λe. e Col) ‘ {e∈s. e Num = x} = {e Col |e. e ∈ s ∧ e Num

= x} by (rule subset-antisym) blast+
ultimately show ?thesis using card-image by fastforce

qed
ultimately show ?thesis by auto

qed

In a m× n latin rectangle each column contains m numbers:
lemma latin-rect-card-num:
assumes latin-rect s m n x<n
shows card {e Num|e. e∈s ∧ e Col = x} = m
proof −

have card {e ∈ s. e Col = x} = m
proof −

have 1 :bij-betw row-col s ({0 ..<m}×{0 ..<n}) using assms latin-rect-def by
auto

have 2 :∀ e∈s. e Col = x ←→ snd (row-col e) = x by simp
have bij-betw row-col {e∈s. e Col = x} ({0 ..<m}×{x})

using bij-restrict[OF 1 2 ] cartesian-product-margin2 [of x {0 ..<n} {0 ..<m}]
assms by auto

then show ?thesis using card-cartesian-product by (simp add: bij-betw-same-card)
qed
moreover have card {e∈s. e Col = x} = card {e Num |e. e ∈ s ∧ e Col = x}
proof −
have inj-on col-num s using assms latin-rect-def [of s m n] partial-latin-square-def [of

s n] by blast
then have inj-on col-num {e∈s. e Col = x} by (metis (mono-tags, lifting)

inj-onD inj-onI mem-Collect-eq)
then have inj-on (λe. e Num) {e∈s. e Col = x} unfolding inj-on-def using

without-def by auto

9



moreover have (λe. e Num) ‘ {e∈s. e Col = x} = {e Num |e. e ∈ s ∧ e Col
= x} by (rule subset-antisym) blast+

ultimately show ?thesis using card-image by fastforce
qed
ultimately show ?thesis by auto

qed

Finally we prove lemma 1 chapter 27 of "Das Buch der Beweise":
theorem

assumes latin-rect s (n−m) n m≤n
shows ∃ s ′. s⊆s ′ ∧ latin-square s ′ n

using assms
proof (induction m arbitrary:s) — induction over the number of empty rows

case 0
then have bij-betw row-col s ({0 ..<n} × {0 ..<n}) using latin-rect-def by auto
then have card s = n∗n by (simp add:bij-betw-same-card)
then show ?case using partial-latin-square-full 0 latin-rect-def by auto

next
case (Suc m)

— We use the Hall theorem on the sets Aj of numbers that do not occur in column
j:

let ?not-in-column = λj. {0 ..<n} − {e Num |e. e∈s ∧ e Col = j}

— Proof of the hall condition:
have ∀ J⊆{0 ..<n}. card J ≤ card (

⋃
j∈J . ?not-in-column j)

proof (rule allI ; rule impI )
fix J assume J-def :J⊆{0 ..<n}
have ∀ j∈J . card (?not-in-column j) = Suc m
proof

fix j assume j-def :j∈J
have {e Num |e. e∈s ∧ e Col = j} ⊆ {0 ..<n} using atLeastLessThan-iff Suc

latin-rect-def partial-latin-square-def by auto
moreover then have finite {e Num |e. e∈s ∧ e Col = j} using finite-subset

by auto
ultimately have card (?not-in-column j) = card {0 ..<n} − card {e Num

|e. e ∈ s ∧ e Col = j} using card-Diff-subset[of {e Num |e. e∈s ∧ e Col = j}
{0 ..<n}] by auto

then show card(?not-in-column j) = Suc m using latin-rect-card-num J-def
j-def Suc by auto

qed
moreover have ∀ j0∈J . ∀ x∈?not-in-column j0 . card {j ∈ J . x ∈ ?not-in-column

j} ≤ Suc m
proof (rule ballI ; rule ballI )

fix j0 x assume j0 ∈ J x ∈ ?not-in-column j0
then have card ({0 ..<n} − {e Col|e. e∈s ∧ e Num = x}) = Suc m
proof −
have card {e Col|e. e∈s ∧ e Num = x} = n − Suc m using latin-rect-card-col

‹x ∈ ?not-in-column j0 › Suc by auto

10



moreover have {e Col|e. e∈s ∧ e Num = x}⊆{0 ..<n} using Suc
latin-rect-def partial-latin-square-def by auto

moreover then have finite {e Col|e. e∈s ∧ e Num = x} using finite-subset
by auto

ultimately show ?thesis using card-Diff-subset[of {e Col|e. e∈s ∧ e Num
= x} {0 ..<n}] using Suc.prems by auto

qed
moreover have {j ∈ J . x ∈ ?not-in-column j} ⊆ {0 ..<n} − {e Col|e. e∈s

∧ e Num = x} using Diff-mono J-def using ‹x ∈ ?not-in-column j0 › by blast
ultimately show card {j ∈ J . x ∈ ?not-in-column j} ≤ Suc m by (metis

(no-types, lifting) card-mono finite-Diff finite-atLeastLessThan)
qed
moreover have finite J using J-def finite-subset by auto

ultimately show card J ≤ card (
⋃

j∈J . ?not-in-column j) using union-limited-replicates[of
J ?not-in-column Suc m] by auto

qed

— The Hall theorem gives us a system of distinct representatives, which we can
use to fill the next row:

then obtain R where R-def :∀ j∈{0 ..<n}. R j ∈ ?not-in-column j ∧ inj-on R
{0 ..<n} using marriage-HV [of {0 ..<n} ?not-in-column] by blast

define new-row where new-row = (λj. rec-latin-type (n − Suc m) j (R j)) ‘
{0 ..<n}

define s ′ where s ′ = s ∪ new-row

— s’ is now a latin rect with one more row:
have latin-rect s ′ (n−m) n
proof −

— We prove all four criteria specified in the lemma latinrectiff:
have n−m ≤ n by auto
moreover have partial-latin-square s ′ n
proof −

have inj-on (without Col) s ′ unfolding inj-on-def
proof (rule ballI ; rule ballI ; rule impI )

fix e1 e2 assume e1 ∈ s ′ e2 ∈ s ′ num-row e1 = num-row e2
then have e1 Num = e2 Num e1 Row = e2 Row using without-def by auto
moreover have e1 Col = e2 Col
proof (cases)

assume e1 Row = n − Suc m
then have e2 Row = n − Suc m using without-def ‹num-row e1 =

num-row e2 › by auto
have ∀ e∈s. e Row < n − Suc m using Suc latin-rect-iff by blast
then have e1 ∈ new-row e2 ∈ new-row using s ′-def ‹e1 ∈ s ′› ‹e2 ∈ s ′›

‹e1 Row = n − Suc m› ‹e2 Row = n − Suc m› by auto
then have e1 Num = R (e1 Col) e2 Num = R (e2 Col) using new-row-def

by auto
then have R (e1 Col) = R (e2 Col) using ‹e1 Num = e2 Num› by auto

moreover have e1 Col < n e2 Col < n using ‹e1 ∈ new-row› ‹e2 ∈

11



new-row› new-row-def by auto
ultimately show e1 Col = e2 Col using R-def inj-on-def by (metis

(mono-tags, lifting) atLeast0LessThan lessThan-iff )
next

assume e1 Row 6= n − Suc m
then have e1∈s e2∈s using new-row-def s ′-def ‹e1∈s ′› ‹e2∈s ′› ‹e1 Row

= e2 Row› by auto
then show e1 Col = e2 Col using Suc latin-rect-def bij-betw-def by (metis

‹num-row e1 = num-row e2 › inj-onD)
qed
ultimately show e1=e2 using latin-type.induct[of λt. e1 t = e2 t] by

auto
qed
moreover have inj-on (without Row) s ′ unfolding inj-on-def
proof (rule ballI ; rule ballI ; rule impI )

fix e1 e2 assume e1 ∈ s ′ e2 ∈ s ′ col-num e1 = col-num e2
then have e1 Col = e2 Col e1 Num = e2 Num using without-def by auto
moreover have e1 Row = e2 Row
proof (cases)

assume e1 Row = n − Suc m
have ∀ e∈s. e Row < n − Suc m using Suc latin-rect-iff by blast
then have e2 Num ∈ ?not-in-column (e2 Col) using R-def new-row-def

‹e1 Col = e2 Col› ‹e1 Num = e2 Num› using s ′-def ‹e1 ∈ s ′› ‹e1 Row = n −
Suc m› by auto

then show e1 Row = e2 Row using new-row-def ‹e1 Row = n − Suc m›
s ′-def ‹e2 ∈ s ′› by auto

next
assume e1 Row 6= n − Suc m
then have e1∈s using new-row-def s ′-def ‹e1∈s ′› by auto
then have e2 Num /∈ ?not-in-column (e2 Col) using ‹e1 Col = e2 Col›

‹e1 Num = e2 Num› by auto
then have e2∈s using new-row-def s ′-def ‹e2∈s ′› R-def by auto
moreover have inj-on col-num s using Suc.prems latin-rect-def [of s (n

− Suc m) n] partial-latin-square-def [of s n] by blast
ultimately show e1 Row = e2 Row using Suc latin-rect-def by (metis

‹col-num e1 = col-num e2 › ‹e1 ∈ s› inj-onD)
qed
ultimately show e1=e2 using latin-type.induct[of λt. e1 t = e2 t] by

auto
qed
moreover have inj-on (without Num) s ′ unfolding inj-on-def
proof (rule ballI ; rule ballI ; rule impI )

fix e1 e2 assume e1 ∈ s ′ e2 ∈ s ′ row-col e1 = row-col e2
then have e1 Row = e2 Row e1 Col = e2 Col using without-def by auto
moreover have e1 Num = e2 Num
proof (cases)

assume e1 Row = n − Suc m
then have e2 Row = n − Suc m using without-def ‹row-col e1 = row-col

e2 › by auto

12



have ∀ e∈s. e Row < n − Suc m using Suc latin-rect-iff by blast
then show e1 Num = e2 Num using ‹e1 Col = e2 Col› using new-row-def

s ′-def ‹e1 ∈ s ′› ‹e2 ∈ s ′› ‹e1 Row = n − Suc m› ‹e2 Row = n − Suc m› by auto
next

assume e1 Row 6= n − Suc m
then have e1∈s e2∈s using new-row-def s ′-def ‹e1∈s ′› ‹e2∈s ′› ‹e1 Row

= e2 Row› by auto
then show e1 Num = e2 Num using Suc latin-rect-def bij-betw-def by

(metis ‹row-col e1 = row-col e2 › inj-onD)
qed
ultimately show e1=e2 using latin-type.induct[of λt. e1 t = e2 t] by

auto
qed
moreover have ∀ e∈s ′. ∀ t. e t < n
proof (rule ballI ; rule allI )

fix e t assume e∈s ′

then show e t < n
proof (cases)

assume e∈new-row
then show ?thesis using new-row-def R-def by (induction t) auto

next
assume e/∈new-row

then show ?thesis using s ′-def ‹e∈s ′› latin-rect-def partial-latin-square-def
Suc by auto

qed
qed
ultimately show partial-latin-square s ′ n unfolding partial-latin-square-def

using latin-type.induct[of λt. inj-on (without t) s ′] by auto
qed
moreover have card s ′ = n ∗ (n − m)
proof −

have card-s:card s = n ∗ (n − Suc m) using latin-rect-iff Suc by auto
have card-new-row:card new-row = n unfolding new-row-def
proof −

have inj-on (λj. rec-latin-type (n − Suc m) j (R j)) {0 ..<n} unfolding
inj-on-def

proof (rule ballI ; rule ballI ; rule impI )
fix j1 j2 assume j1 ∈ {0 ..<n} j2 ∈ {0 ..<n} rec-latin-type (n − Suc m)

j1 (R j1 ) = rec-latin-type (n − Suc m) j2 (R j2 )
then show j1 = j2 using latin-type.rec(2 )[of (n − Suc m) j1 R j1 ]

latin-type.rec(2 )[of - j2 -] by auto
qed
then show card ((λj. rec-latin-type (n − Suc m) j (R j)) ‘ {0 ..<n}) = n

by (simp add: card-image)
qed
have s ∩ new-row = {}
proof −

have ∀ e∈s. e Row < n − Suc m using Suc latin-rect-iff by blast
then have ∀ e ∈ new-row. e /∈ s using new-row-def by auto

13



then show ?thesis by blast
qed
moreover have finite s using Suc latin-rect-def by (metis bij-betw-finite

finite-SigmaI finite-atLeastLessThan)
moreover have finite new-row using new-row-def by simp

ultimately have card s ′= card s + card new-row using s ′-def card-Un-disjoint
by auto

with card-s card-new-row show ?thesis using Suc by (metis Suc-diff-Suc
Suc-le-lessD add.commute mult-Suc-right)

qed
moreover have ∀ e∈s ′. e Row < (n − m)
proof (rule ballI ; cases)

fix e
assume e∈new-row
then show e Row < n − m using Suc new-row-def R-def by auto

next
fix e
assume e ∈ s ′ e/∈new-row
then have e Row < n − Suc m using latin-rect-iff Suc s ′-def ‹e∈s ′› by

auto
then show e Row < n − m by auto

qed
ultimately show ?thesis using latin-rect-iff [of n−m n] by auto

qed

— Finally we use the induction hypothesis:
then obtain s ′′ where s ′ ⊆ s ′′ latin-square s ′′ n using Suc by auto
then have s ⊆ s ′′ using s ′-def by auto
then show ∃ s ′. s ⊆ s ′ ∧ latin-square s ′ n using ‹latin-square s ′′ n› by auto

qed

end

References
[1] M. Aigner and G. Ziegler. Das Buch der Beweise. Springer, 2004.

14


