Laplace Transform

Fabian Immler

March 17, 2025

Abstract

This entry formalizes the Laplace transform and concrete Laplace transforms for arithmetic functions, frequency shift, integration and (higher) differentiation in the time domain. It proves Lerch's lemma and uniqueness of the Laplace transform for continuous functions. In order to formalize the foundational assumptions, this entry contains a formalization of piecewise continuous functions and functions of exponential order.

Contents

1	Ref	erences	2
2	Library Additions		
	2.1	Derivatives	2
	2.2	Integrals	2
	2.3	Miscellaneous	7
3	Piecewise Continous Functions		
	3.1	at within filters	7
	3.2	intervals	8
4	Existence 2		
	4.1	Definition	20
	4.2	Condition for Existence: Exponential Order	21
	4.3	Concrete Laplace Transforms	26
	4.4	higher derivatives	42
5	Lere	ch Lemma	43
6	Uni	queness of Laplace Transform	45
	eory mpor	$Laplace ext{-}Transform ext{-}Library$ \mathbf{ts}	
	-	-Analysis. Analysis	
begin			

1 References

Much of this formalization is based on Schiff's textbook [3]. Parts of this formalization are inspired by the HOL-Light formalization ([4], [1], [2]), but stated more generally for piecewise continuous (instead of piecewise continuously differentiable) functions.

2 Library Additions

2.1 Derivatives

```
lemma DERIV\text{-}compose\text{-}FDERIV\text{:}— TODO: generalize and move from HOLODE assumes DERIVf(g|x):>f' assumes (g|has\text{-}derivative|g') (at|x|within|s) shows ((\lambda x.|f(g|x))|has\text{-}derivative (\lambda x.|g'|x|*|f') (at|x|within|s) using assms|has\text{-}derivative\text{-}compose[of|g|g'|x|s|f']} by (auto|simp:|has\text{-}field\text{-}derivative\text{-}def|ac\text{-}simps)} lemmas has\text{-}derivative\text{-}sin[derivative\text{-}intros] = DERIV\text{-}sin[THEN|DERIV\text{-}compose\text{-}FDERIV]} and has\text{-}derivative\text{-}cos[derivative\text{-}intros] = DERIV\text{-}cos[THEN|DERIV\text{-}compose\text{-}FDERIV]} and has\text{-}derivative\text{-}exp[derivative\text{-}intros] = DERIV\text{-}exp[THEN|DERIV\text{-}compose\text{-}FDERIV]}
```

2.2 Integrals

```
lemma negligible-real-ivlI:
 fixes a b::real
 assumes a \geq b
 shows negligible \{a .. b\}
  from assms have \{a ... b\} = \{a\} \lor \{a ... b\} = \{\}
   by auto
 then show ?thesis
   by auto
qed
{\bf lemma}\ absolutely-integrable-on-combine:
 fixes f :: real \Rightarrow 'a :: euclidean - space
 assumes f absolutely-integrable-on <math>\{a..c\}
   and f absolutely-integrable-on \{c..b\}
   and a \leq c
   and c \leq b
 shows f absolutely-integrable-on <math>\{a..b\}
 using assms
 unfolding absolutely-integrable-on-def integrable-on-def
 by (auto intro!: has-integral-combine)
```

lemma dominated-convergence-at-top:

```
fixes f :: real \Rightarrow 'n :: euclidean - space \Rightarrow 'm :: euclidean - space
  assumes f: \bigwedge k. (f k) integrable-on s and h: h integrable-on s
   and le: \bigwedge k \ x. \ x \in s \Longrightarrow norm \ (f \ k \ x) \le h \ x
   and conv: \forall x \in s. ((\lambda k. f k x) \longrightarrow g x) at-top
  shows g integrable-on s ((\lambda k. integral \ s \ (f \ k)) \longrightarrow integral \ s \ g) at-top
proof -
  have 3: set-integrable lebesgue s h
    unfolding absolutely-integrable-on-def
  proof
   show (\lambda x. norm (h x)) integrable-on s
   proof (intro integrable-spike-finite[OF - h, where S=\{\}] ballI)
     fix x assume x \in s - \{\} then show norm (h x) = h x
       using order-trans[OF\ norm-ge-zero le[of\ x]] by auto
   \mathbf{qed} auto
  qed fact
  have 2: set-borel-measurable lebesque s (f k) for k
   using f[of k]
   using has-integral-implies-lebesgue-measurable [of f k]
   by (auto intro: simp: integrable-on-def set-borel-measurable-def)
  have conv': \forall x \in s. ((\lambda k. f k x) \longrightarrow g x) sequentially
     using conv filterlim-filtermap filterlim-compose filterlim-real-sequentially by
blast
  from 2 have 1: set-borel-measurable lebesgue s g
   unfolding set-borel-measurable-def
  by (rule borel-measurable-LIMSEQ-metric) (use conv' in (auto split: split-indicator))
  have 4: AE x in lebesgue. ((\lambda i. indicator \ s \ x *_R f \ i \ x) \longrightarrow indicator \ s \ x *_R g
   \forall_F \ i \ in \ at	ext{-top.} \ AE \ x \ in \ lebesgue. \ norm \ (indicator \ s \ x *_R \ f \ i \ x) \leq indicator \ s \ x
*_R h x
   using conv le by (auto intro!: always-eventually split: split-indicator)
  note 1 2 3 4
  note * = this[unfolded set-borel-measurable-def set-integrable-def]
  have g: g absolutely-integrable-on s
   unfolding set-integrable-def
   by (rule integrable-dominated-convergence-at-top[OF *])
  then show g integrable-on s
   by (auto simp: absolutely-integrable-on-def)
  have ((\lambda k. (LINT x:s|lebesgue. f k x)) \longrightarrow (LINT x:s|lebesgue. g x)) at-top
   unfolding set-lebesque-integral-def
   using *
   by (rule integral-dominated-convergence-at-top)
  then show ((\lambda k. integral \ s \ (f \ k)) \longrightarrow integral \ s \ g) at-top
   using g absolutely-integrable-integrable-bound[OF le f h]
   by (subst (asm) (12) set-lebesgue-integral-eq-integral) auto
qed
\mathbf{lemma}\ \textit{has-integral-dominated-convergence-at-top}:
 fixes f :: real \Rightarrow 'n :: euclidean - space \Rightarrow 'm :: euclidean - space
```

```
assumes \bigwedge k. (f \ k \ has\text{-}integral \ y \ k) s \ h \ integrable\text{-}on \ s
    \bigwedge k \ x. \ x \in s \Longrightarrow norm \ (f \ k \ x) \le h \ x \ \forall x \in s. \ ((\lambda k. \ f \ k \ x) \longrightarrow g \ x) \ at\text{-top}
    and x: (y \longrightarrow x) at-top
  shows (g has-integral x) s
proof -
  have int-f: \bigwedge k. (f k) integrable-on s
    using assms by (auto simp: integrable-on-def)
  have (g \ has\text{-}integral \ (integral \ s \ g)) \ s
    by (intro integrable-integral dominated-convergence-at-top[OF int-f assms(2)])
fact+
  \mathbf{moreover} \ \mathbf{have} \ \mathit{integral} \ s \ g = x
  proof (rule tendsto-unique)
    show ((\lambda i. integral \ s \ (f \ i)) \longrightarrow x) \ at\text{-top}
      using integral-unique[OF\ assms(1)]\ x\ by\ simp
    show ((\lambda i. integral \ s \ (f \ i)) \longrightarrow integral \ s \ g) at-top
      by (intro dominated-convergence-at-top[OF int-f assms(2)]) fact+
  qed simp
  ultimately show ?thesis
    by simp
qed
lemma integral-indicator-eq-restriction:
  fixes f::'a::euclidean\text{-}space \Rightarrow 'b::banach
  assumes f: f integrable-on R
    and R \subseteq S
  shows integral S (\lambda x. indicator R x *_R f x) = integral R f
proof -
  let ?f = \lambda x. indicator R \times R f \times R
  have ?f integrable-on R
    using f negligible-empty
    by (rule integrable-spike) auto
  from integrable-integral [OF this]
  have (?f has\text{-}integral integral } R ?f) S
    by (rule has-integral-on-superset) (use \langle R \subseteq S \rangle in \langle auto\ simp:\ indicator-def \rangle)
  also have integral R ? f = integral R f
    using negligible-empty
    by (rule integral-spike) auto
  finally show ?thesis
    \mathbf{by} blast
qed
lemma
  improper-integral-at-top:
  fixes f::real \Rightarrow 'a::euclidean\text{-}space
 assumes f absolutely-integrable-on \{a..\}
 shows ((\lambda x. integral \{a...\} f) \longrightarrow integral \{a...\} f) at-top
  let ?f = \lambda(k::real) (t::real). indicator \{a..k\} t *_R f t
 have f: f integrable-on \{a..k\} for k
```

```
using set-lebesque-integral-eq-integral(1)[OF assms]
   by (rule integrable-on-subinterval) simp
  from this negligible-empty have ?f \ k \ integrable-on \ \{a..k\} \ for k
   by (rule integrable-spike) auto
  from this have ?f \ k \ integrable-on \ \{a..\} \ for k
   by (rule integrable-on-superset) auto
  moreover
  have (\lambda x. norm (f x)) integrable-on {a..}
    using assms by (simp add: absolutely-integrable-on-def)
  moreover
 note -
  moreover
  have \forall_F \ k \ in \ at\text{-}top. \ k \geq x \ \text{for} \ x::real
   by (simp add: eventually-ge-at-top)
  then have \forall x \in \{a..\}. ((\lambda k. ?f k x) -
                                                 \rightarrow f x) at-top
   by (auto intro!: Lim-transform-eventually [OF tendsto-const] simp: indicator-def
eventually-at-top-linorder)
  ultimately
  have ((\lambda k. integral \{a..\} (?f k)) \longrightarrow integral \{a..\} f) at-top
   by (rule dominated-convergence-at-top) (auto simp: indicator-def)
  also have (\lambda k. integral \{a..\} (?f k)) = (\lambda k. integral \{a..k\} f)
   by (auto intro!: ext integral-indicator-eq-restriction f)
  finally show ?thesis.
qed
lemma norm-integrable-onI: (\lambda x. norm (f x)) integrable-on S
  if f absolutely-integrable-on S
  for f::'a::euclidean-space \Rightarrow 'b::euclidean-space
  \mathbf{using}\ that\ \mathbf{by}\ (\mathit{auto}\ \mathit{simp}\colon \mathit{absolutely-integrable-on-def})
lemma
  has-integral-improper-at-topI:
  fixes f::real \Rightarrow 'a::banach
  assumes I: \forall_F \ k \ in \ at\text{-top.} \ (f \ has\text{-integral} \ I \ k) \ \{a..k\}
  assumes J: (I \longrightarrow J) at-top
 shows (f has-integral J) \{a..\}
  apply (subst has-integral')
proof (auto, goal-cases)
  case (1 e)
  from tendstoD[OF\ J\ \langle \theta < e \rangle]
  have \forall_F x \text{ in at-top. dist } (I x) J < e.
  moreover have \forall F x \text{ in at-top. } (x::real) > 0 \text{ by } simp
  moreover have \forall_F x in at-top. (x::real) > -a— TODO: this seems to be
strange?
   by simp
  moreover note I
  ultimately have \forall_F x \text{ in at-top. } x > 0 \land x > -a \land dist(Ix) J < e \land
    (f has\text{-}integral \ I \ x) \ \{a..x\} \ \mathbf{by} \ eventually\text{-}elim \ auto
  then obtain k where k: \forall b \ge k. norm (I \ b - J) < e \ k > 0 \ k > -a
```

```
and I: \land c. \ c \geq k \Longrightarrow (f \text{ has-integral } I \ c) \{a..c\}
   by (auto simp: eventually-at-top-linorder dist-norm)
  show ?case
   apply (rule exI[where x=k])
   apply (auto simp: \langle \theta < k \rangle)
   subgoal premises prems for b c
   proof -
    have ball-eq: ball 0 \ k = \{-k < ... < k\} by (auto simp: abs-real-def split: if-splits)
     from prems \langle \theta < k \rangle have c \geq \theta b \leq \theta
       by (auto simp: subset-iff)
     with prems \langle \theta < k \rangle have c \geq k
       apply (auto simp: ball-eq)
       apply (auto simp: subset-iff)
       apply (drule spec[where x=(c + k)/2])
       apply (auto simp: algebra-split-simps not-less)
       using \langle \theta < c \rangle by linarith
     then have norm (I c - J) < e using k by auto
     moreover
     from prems \langle 0 < k \rangle \langle c \geq 0 \rangle \langle b \leq 0 \rangle \langle c \geq k \rangle \langle k > -a \rangle have a \geq b
       apply (auto simp: ball-eq)
       apply (auto simp: subset-iff)
       by (meson \ \langle b \leq 0 \rangle \ less-eq-real-def minus-less-iff not-le order-trans)
     have ((\lambda x. if x \in cbox \ a \ c \ then \ f \ x \ else \ 0) \ has-integral \ I \ c) \ (cbox \ b \ c)
       apply (subst has-integral-restrict-closed-subintervals-eq)
       using I[of c] prems \langle a \geq b \rangle \langle k \leq c \rangle
       by (auto )
      from negligible-empty - this have ((\lambda x. if \ a \leq x \ then \ f \ x \ else \ 0) has-integral
I c) (cbox b c)
       by (rule has-integral-spike) auto
     ultimately
     show ?thesis
       by (intro exI[where x=Ic]) auto
   qed
   done
qed
lemma has-integral-improperE:
  fixes f::real \Rightarrow 'a::euclidean-space
  assumes I: (f has\text{-}integral \ I) \{a..\}
  assumes ai: f absolutely-integrable-on \{a..\}
  obtains J where
   proof -
  define J where J k = integral \{a ... k\} f for k
  have (f has\text{-}integral \ J \ k) \ \{a..k\} for k
   unfolding J-def
   by (force intro: integrable-on-subinterval has-integral-integrable [OF I])
  moreover
```

```
have I\text{-}def[symmetric]: integral\ \{a..\}\ f=I using I by auto from improper\text{-}integral\text{-}at\text{-}top[OF\ ai]} have (J\longrightarrow I)\ at\text{-}top unfolding J\text{-}def\ I\text{-}def . ultimately show ?thesis .. qed
```

2.3 Miscellaneous

```
lemma AE-BallI: AE x \in X in F. P x if \forall x \in X. P x using that by (intro always-eventually) auto

lemma bounded-le-Sup:
assumes bounded (f 'S)
shows \forall x \in S. norm (f x) \leq Sup (norm 'f 'S)
by (auto intro!: cSup-upper bounded-imp-bdd-above simp: bounded-norm-comp assms)
```

 $\quad \mathbf{end} \quad$

3 Piecewise Continous Functions

```
theory Piecewise-Continuous
imports
Laplace-Transform-Library
begin
```

3.1 at within filters

```
lemma at-within-self-singleton[simp]: at i within \{i\} = bot
 by (auto intro!: antisym filter-leI simp: eventually-at-filter)
lemma at-within-t1-space-avoid:
  (at\ x\ within\ X-\{i\})=(at\ x\ within\ X)\ \mathbf{if}\ x\neq i\ \mathbf{for}\ x\ i::'a::t1\text{-space}
proof (safe intro!: antisym filter-leI)
 \mathbf{fix} P
 assume eventually P (at x within X - \{i\})
 moreover have eventually (\lambda x. \ x \neq i) (nhds \ x)
   by (rule t1-space-nhds) fact
  ultimately
  show eventually P (at x within X)
   unfolding eventually-at-filter
   by eventually-elim auto
qed (simp add: eventually-mono order.order-iff-strict eventually-at-filter)
\mathbf{lemma}\ at\text{-}within\text{-}t1\text{-}space\text{-}avoid\text{-}finite\text{:}
  (at\ x\ within\ X-I)=(at\ x\ within\ X)\ \textbf{if}\ finite\ I\ x\notin I\ \textbf{for}\ x::'a::t1-space
  using that
```

```
proof (induction I)
  case (insert i I)
  then show ?case
    by auto (metis Diff-insert at-within-t1-space-avoid)
qed simp
lemma at-within-interior:
  NO\text{-}MATCH (UNIV::'a set) (S::'a::topological-space set) \Longrightarrow x \in interior S \Longrightarrow
at x within S = at x
  by (rule at-within-interior)
          intervals
lemma Compl-Icc: -\{a ... b\} = \{... < a\} \cup \{b < ...\} for a b::'a::linorder
lemma interior-Icc[simp]: interior \{a..b\} = \{a < .. < b\}
  for a b::'a::{linorder-topology, dense-order, no-bot, no-top}
       - TODO: is no-bot and no-top really required?
  by (auto simp add: Compl-Icc interior-closure)
lemma closure-finite[simp]: closure X = X if finite X for X::'a::t1-space set
  using that
  by (induction X) (simp-all add: closure-insert)
definition piecewise-continuous-on :: 'a::linorder-topology \Rightarrow 'a \Rightarrow 'a set \Rightarrow ('a \Rightarrow
'b::topological-space) \Rightarrow bool
where piecewise-continuous-on a b I f \longleftrightarrow
  (continuous-on (\{a ... b\} - I) f \land finite I \land
    (\forall i \in I. \ (i \in \{a < ..b\} \longrightarrow (\exists l. \ (f \longrightarrow l) \ (at\text{-left } i))) \land (at\text{-left } i))) \land (at\text{-left } i))) \land (at\text{-left } i))
       (i \in \{a.. < b\} \longrightarrow (\exists u. (f \longrightarrow u) (at\text{-right } i)))))
lemma piecewise-continuous-on-subset:
 piecewise\text{-}continuous\text{-}on\ a\ b\ I\ f \Longrightarrow \{c\ ..\ d\} \subseteq \{a\ ..\ b\} \Longrightarrow piecewise\text{-}continuous\text{-}on
c\ d\ I\ f
  by (force simp add: piecewise-continuous-on-def intro: continuous-on-subset)
lemma piecewise-continuous-onE:
  assumes piecewise-continuous-on a b I f
  obtains l u
  where finite I
       and continuous-on (\{a..b\} - I) f
       \begin{array}{ll} \mathbf{and} \ (\bigwedge i. \ i \in I \Longrightarrow \overset{\backprime}{a} < \overset{\backprime}{i} \Longrightarrow \overset{\backprime}{i} \leq b \Longrightarrow (f \longrightarrow l \ i) \ (at\text{-left} \ i)) \\ \mathbf{and} \ (\bigwedge i. \ i \in I \Longrightarrow a \leq i \Longrightarrow i < b \Longrightarrow (f \longrightarrow u \ i) \ (at\text{-right} \ i)) \end{array}
  using assms
  \mathbf{by}\ (\mathit{auto}\ \mathit{simp}:\ \mathit{piecewise-continuous-on-def}\ \mathit{Ball-def})\ \mathit{metis}
lemma piecewise-continuous-onI:
  assumes finite I continuous-on (\{a..b\} - I) f
```

```
and (\bigwedge i.\ i \in I \Longrightarrow a < i \Longrightarrow i \le b \Longrightarrow (f \longrightarrow l\ i)\ (at\text{-left }i)) and (\bigwedge i.\ i \in I \Longrightarrow a \le i \Longrightarrow i < b \Longrightarrow (f \longrightarrow u\ i)\ (at\text{-right }i))
  shows piecewise-continuous-on a b I f
  using assms
  by (force simp: piecewise-continuous-on-def)
lemma piecewise-continuous-onI':
  fixes a b::'a::{linorder-topology, dense-order, no-bot, no-top}
  assumes finite I \land x. a < x \Longrightarrow x < b \Longrightarrow isCont f x
    and a \notin I \Longrightarrow continuous (at-right a) f
    and b \notin I \Longrightarrow continuous (at-left b) f
    and (\bigwedge i. \ i \in I \Longrightarrow a < i \Longrightarrow i \le b \Longrightarrow (f \longrightarrow l \ i) \ (at\text{-left } i))
    and (\bigwedge i. \ i \in I \Longrightarrow a \leq i \Longrightarrow i < b \Longrightarrow (f \longrightarrow u \ i) \ (at\text{-right } i))
  shows piecewise-continuous-on a b I f
proof (rule piecewise-continuous-onI)
  have x \notin I \Longrightarrow a \leq x \Longrightarrow x \leq b \Longrightarrow (f \longrightarrow f x) (at x within \{a..b\}) for x
    using assms(2)[of x] assms(3,4)
    by (cases a = x; cases b = x; cases x \in \{a < ... < b\})
       (auto simp: at-within-Icc-at-left at-within-Icc-at-right isCont-def
          continuous-within filterlim-at-split at-within-interior)
  then show continuous-on (\{a ... b\} - I) f
    by (auto simp: continuous-on-def \langle finite\ I \rangle at-within-t1-space-avoid-finite)
\mathbf{qed} \ fact +
lemma piecewise-continuous-onE':
  fixes a b::'a::{linorder-topology, dense-order, no-bot, no-top}
  assumes piecewise-continuous-on a b I f
  obtains l u
  where finite I
       and \bigwedge x. a < x \Longrightarrow x < b \Longrightarrow x \notin I \Longrightarrow isCont f x
       and (\bigwedge x. \ a < x \Longrightarrow x \le b \Longrightarrow (f \longrightarrow l \ x) \ (at\text{-left } x)) and (\bigwedge x. \ a \le x \Longrightarrow x < b \Longrightarrow (f \longrightarrow u \ x) \ (at\text{-right } x))
       and \bigwedge x. a \le x \Longrightarrow x \le b \Longrightarrow x \notin I \Longrightarrow f x = l x
       and \bigwedge x. a \leq x \Longrightarrow x \leq b \Longrightarrow x \notin I \Longrightarrow f x = u x
proof -
  from piecewise-continuous-onE[OF\ assms] obtain l\ u
    where finite I
       and continuous: continuous-on (\{a..b\} - I) f
       and left: (\bigwedge i. i \in I \Longrightarrow a < i \Longrightarrow i \leq b \Longrightarrow (f \longrightarrow l i) (at\text{-left } i))
       and right: (\bigwedge i. \ i \in I \Longrightarrow a \leq i \Longrightarrow i < b \Longrightarrow (f \longrightarrow u \ i) \ (at\text{-right } i))
    by metis
  define l' where l' x = (if x \in I then l x else f x) for x
  define u' where u' x = (if x \in I then u x else f x) for x
  note \langle finite \ I \rangle
  moreover from continuous
  have a < x \Longrightarrow x < b \Longrightarrow x \notin I \Longrightarrow isCont f x for x
    by (rule continuous-on-interior) (auto simp: interior-diff \langle finite \ I \rangle)
  moreover
  from continuous have a < x \Longrightarrow x \le b \Longrightarrow x \notin I \Longrightarrow (f \longrightarrow fx) (at-left x)
```

```
for x
    by (cases x = b)
     (auto simp: continuous-on-def at-within-t1-space-avoid-finite \langle finite\ I \rangle
        at-within-Icc-at-left at-within-interior filterlim-at-split
         dest!: bspec[\mathbf{where} \ x=x])
  then have a < x \Longrightarrow x \le b \Longrightarrow (f \longrightarrow l'x) (at-left x) for x
    by (auto simp: l'-def left)
  moreover
  from continuous have a \leq x \Longrightarrow x < b \Longrightarrow x \notin I \Longrightarrow (f \longrightarrow fx) (at-right
x) for x
    by (cases x = a)
     (auto simp: continuous-on-def at-within-t1-space-avoid-finite \langle finite | I \rangle
         at-within-Icc-at-right at-within-interior filterlim-at-split
         dest!: bspec[\mathbf{where} \ x=x])
  then have a \le x \Longrightarrow x < b \Longrightarrow (f \longrightarrow u' x) (at-right x) for x
    by (auto simp: u'-def right)
  moreover have a \le x \Longrightarrow x \le b \Longrightarrow x \notin I \Longrightarrow f \, x = l' \, x \text{ for } x \text{ by } (auto \ simp:
l'-def)
 moreover have a \le x \Longrightarrow x \le b \Longrightarrow x \notin I \Longrightarrow f x = u' x for x by (auto simp:
  ultimately show ?thesis ..
qed
{f lemma}\ tends to-avoid-at-within:
  \begin{array}{l} (f \longrightarrow l) \ (at \ x \ within \ X) \\ \textbf{if} \ (f \longrightarrow l) \ (at \ x \ within \ X - \{x\}) \end{array}
   by (auto simp: eventually-at-filter dest!: topological-tendstoD intro!: topologi-
cal-tendstoI)
\mathbf{lemma}\ tends to\text{-}with in\text{-}subset\text{-}eventually I:
  (f \longrightarrow fx) (at \ x \ within \ X)
  if g: (g \longrightarrow gy) (at \ y \ within \ Y)
    and ev: \forall_F x \text{ in } (at y \text{ within } Y). f x = g x
    and xy: x = y
    and fxgy: fx = gy
    and XY: X - \{x\} \subseteq Y
  apply (rule tendsto-avoid-at-within)
  apply (rule tendsto-within-subset[where S = Y])
  unfolding xy
  apply (subst tendsto-cong[OF ev ])
  apply (rule\ g[folded\ fxgy])
  apply (rule\ XY[unfolded\ xy])
  done
lemma piecewise-continuous-on-insertE:
  assumes piecewise-continuous-on a b (insert i I) f
  assumes i \in \{a ... b\}
  obtains g h where
```

```
piecewise-continuous-on a i I q
    piecewise-continuous-on i b I h
    \bigwedge x. \ a \leq x \Longrightarrow x < i \Longrightarrow g \ x = f \ x
    \bigwedge x. \ i < x \Longrightarrow x \leq b \Longrightarrow h \ x = f \ x
proof -
  from piecewise-continuous-onE[OF\ assms(1)] \ \langle i \in \{a\ ...\ b\} \rangle obtain l\ u where
        finite: finite I
    and cf: continuous-on (\{a..b\} - insert \ i \ I) \ f
    and l: (\bigwedge i. \ i \in I \Longrightarrow a < i \Longrightarrow i \le b \Longrightarrow (f \longrightarrow l \ i) \ (at\text{-left } i)) \ i > a \Longrightarrow
(f \longrightarrow l \ i) \ (at\text{-left} \ i)
    and u: (\bigwedge i. \ i \in I \Longrightarrow a \leq i \Longrightarrow i < b \Longrightarrow (f \longrightarrow u \ i) \ (at\text{-right } i)) \ i < b
\implies (f \longrightarrow u \ i) \ (at\text{-right} \ i)
    by auto (metis (mono-tags))
 have fl: (f(i := x) \longrightarrow l j) (at\text{-left } j) \text{ if } j \in I \ a < j j \leq b \text{ for } j \ x
    using l(1)
    by (rule tendsto-within-subset-eventuallyI)
       (auto simp: eventually-at-filter frequently-def t1-space-nhds that)
  have fr: (f(i := x) \longrightarrow u j) (at\text{-right } j) \text{ if } j \in I \ a \leq j j < b \text{ for } j \ x
    using u(1)
    by (rule tendsto-within-subset-eventually I)
       (auto simp: eventually-at-filter frequently-def t1-space-nhds that)
  from cf have tendsto: (f \longrightarrow f x) (at x within \{a..b\} - insert i I)
    if x \in \{a ... b\} - insert i I for x using that
    by (auto simp: continuous-on-def)
  have continuous-on (\{a..i\} - I) (f(i:=l\ i))
    apply (cases a = i)
    subgoal by (auto simp: continuous-on-def Diff-triv)
    unfolding continuous-on-def
    apply safe
    subgoal for x
      apply (cases x = i)
      subgoal
        apply (rule \ tends to - within - subset-eventually I)
            apply (rule l(2))
        by (auto simp: eventually-at-filter)
      subgoal
        apply (subst at-within-t1-space-avoid[symmetric], assumption)
        apply (rule tendsto-within-subset-eventually I [where y=x])
            apply (rule tendsto)
        using \langle i \in \{a ... b\} \rangle by (auto simp: eventually-at-filter)
      done
    done
  then have piecewise-continuous-on a i I (f(i=l i))
    using \langle i \in \{a ... b\} \rangle
    by (auto intro!: piecewise-continuous-onI finite fl fr)
  moreover
  have continuous-on (\{i..b\} - I) (f(i:=u\ i))
```

```
apply (cases b = i)
   subgoal by (auto simp: continuous-on-def Diff-triv)
   unfolding continuous-on-def
   apply safe
   subgoal for x
     apply (cases x = i)
     subgoal
       apply (rule tendsto-within-subset-eventuallyI)
          apply (rule u(2))
       by (auto simp: eventually-at-filter)
     subgoal
       apply (subst at-within-t1-space-avoid[symmetric], assumption)
       apply (rule tendsto-within-subset-eventually I[\mathbf{where}\ y=x])
           apply (rule tendsto)
       using \langle i \in \{a ... b\} \rangle by (auto simp: eventually-at-filter)
     done
   done
  then have piecewise-continuous-on i b I (f(i:=u i))
   using \langle i \in \{a ... b\} \rangle
   by (auto intro!: piecewise-continuous-onI finite fl fr)
  moreover have (f(i=l\ i))\ x = f\ x\ \mathbf{if}\ a \le x\ x < i\ \mathbf{for}\ x
   using that by auto
  moreover have (f(i=u\ i))\ x = f\ x\ \text{if}\ i < x\ x \le b\ \text{for}\ x
   using that by auto
  ultimately show ?thesis ..
qed
lemma eventually-avoid-finite:
 \forall_F \ x \ in \ at \ y \ within \ Y. \ x \notin I \ \textbf{if} \ finite \ I \ \textbf{for} \ y::'a::t1-space
 using that
proof (induction)
 case empty
 then show ?case by simp
next
 case (insert x F)
 then show ?case
   apply (auto intro!: eventually-conj)
   apply (cases y = x)
   subgoal by (simp add: eventually-at-filter)
   subgoal by (rule tendsto-imp-eventually-ne) (rule tendsto-ident-at)
   done
\mathbf{qed}
lemma eventually-at-left-linorder:— TODO: generalize ?b < ?a \Longrightarrow \forall_F \ x \ in \ at-left
?a. \ x \in \{?b < .. < ?a\}
 a > (b :: 'a :: linorder-topology) \Longrightarrow eventually (\lambda x. \ x \in \{b < .. < a\}) \ (at-left \ a)
 unfolding eventually-at-left
 by auto
```

```
lemma eventually-at-right-linorder:— TODO: generalize ?a < ?b \Longrightarrow \forall_F x in
at-right ?a. x \in \{?a < .. < ?b\}
  a > (b :: 'a :: linorder-topology) \Longrightarrow eventually (\lambda x. \ x \in \{b < ... < a\}) \ (at-right \ b)
  unfolding eventually-at-right
 by auto
lemma piecewise-continuous-on-congI:
  piecewise-continuous-on a b I g
  if piecewise-continuous-on a b I f
   and eq: \bigwedge x. x \in \{a ... b\} - I \Longrightarrow g x = f x
proof -
  from piecewise-continuous-onE[OF\ that(1)]
  obtain l u where finite: finite I
   and *:
    continuous-on (\{a..b\} - I) f
   by blast
  note finite
  moreover
  from * have continuous-on (\{a..b\} - I) g
   using that(2)
   by (auto simp: eq cong: continuous-on-cong) (subst continuous-on-cong[OF refl
eq]; assumption)
  moreover
  have \forall_F x \text{ in at-left } i. f x = g x \text{ if } a < i i \leq b \text{ for } i
   using eventually-avoid-finite [OF \land finite I), of i \{... < i\}
     eventually-at-left-linorder [OF \langle a < i \rangle]
   by eventually-elim (subst eq, use that in auto)
  then have i \in I \Longrightarrow a < i \Longrightarrow i \le b \Longrightarrow (g - i)
                                                             \rightarrow l \ i) \ (at\text{-}left \ i) \ \mathbf{for} \ i
   using *(2)
   by (rule Lim-transform-eventually[rotated]) auto
  moreover
  have \forall_F x \text{ in at-right } i. f x = g x \text{ if } a \leq i i < b \text{ for } i
   using eventually-avoid-finite [OF \land finite I \land, of i \{i \lt ... \}]
     eventually-at-right-linorder [OF \langle i < b \rangle]
   by eventually-elim (subst eq, use that in auto)
  then have i \in I \Longrightarrow a \leq i \Longrightarrow i < b \Longrightarrow (g \longrightarrow u \ i) \ (at\text{-right } i) for i
   by (rule Lim-transform-eventually[rotated]) auto
  ultimately
  show ?thesis
   by (rule piecewise-continuous-onI) auto
qed
lemma piecewise-continuous-on-cong[cong]:
  piecewise-continuous-on a b If \longleftrightarrow piecewise-continuous-on c \ d \ J \ g
 if a = c
   b = d
```

```
\bigwedge x. \ c \leq x \Longrightarrow x \leq d \Longrightarrow x \notin J \Longrightarrow f x = g x
  using that
  by (auto intro: piecewise-continuous-on-congI)
lemma tendsto-at-left-continuous-on-avoidI: (f \longrightarrow g i) (at-left i)
  if g: continuous-on (\{a..i\} - I) g
    and gf: \bigwedge x. \ a < x \Longrightarrow x < i \Longrightarrow g \ x = f \ x
    i \notin I finite I a < i
  for i::'a::linorder-topology
proof (rule Lim-transform-eventually)
  from that have i \in \{a ... i\} by auto
  from g have (g \longrightarrow g \ i) (at \ i \ within \ \{a..i\} - I)
    using \langle i \notin I \rangle \langle i \in \{a ... i\} \rangle
    by (auto elim!: piecewise-continuous-onE simp: continuous-on-def)
  then show (g \longrightarrow g \ i) (at\text{-left } i)
    by (metis that at-within-Icc-at-left at-within-t1-space-avoid-finite
        greaterThanLessThan-iff)
  show \forall_F x \text{ in at-left i. } g x = f x
    using eventually-at-left-linorder [OF \langle a < i \rangle]
    by eventually-elim (auto simp: \langle a < i \rangle gf)
qed
lemma tendsto-at-right-continuous-on-avoidI: (f \longrightarrow g \ i) \ (at-right \ i)
 if g: continuous-on (\{i..b\} - I) g
    and gf: \bigwedge x. i < x \Longrightarrow x < b \Longrightarrow g \ x = f \ x
    i \notin I finite I i < b
  for i::'a::linorder-topology
proof (rule Lim-transform-eventually)
  from that have i \in \{i ... b\} by auto
  from g have (g \longrightarrow g i) (at i within <math>\{i..b\} - I)
    using \langle i \notin I \rangle \langle i \in \{i ... b\} \rangle
    by (auto elim!: piecewise-continuous-onE simp: continuous-on-def)
  then show (g \longrightarrow g \ i) \ (at\text{-right } i)
    by (metis that at-within-Icc-at-right at-within-t1-space-avoid-finite
        greaterThanLessThan-iff)
  show \forall_F x \text{ in at-right i. } g x = f x
    using eventually-at-right-linorder [OF \langle i < b \rangle]
    by eventually-elim (auto simp: \langle i < b \rangle gf)
qed
lemma piecewise-continuous-on-insert-leftI:
  piecewise-continuous-on a b (insert a I) f if piecewise-continuous-on a b I f
  apply (cases a \in I)
  subgoal using that by (auto dest: insert-absorb)
  subgoal
    using that
    apply (rule piecewise-continuous-onE)
    subgoal for l u
```

```
apply (rule piecewise-continuous-onI[where u=u(a:=fa)])
        apply (auto intro: continuous-on-subset )
      apply (rule tendsto-at-right-continuous-on-avoidI, assumption)
        apply auto
     done
   done
  done
\mathbf{lemma}\ piecewise-continuous-on-insert-right I:
  piecewise-continuous-on a b (insert b I) f if piecewise-continuous-on a b I f
  apply (cases b \in I)
  subgoal using that by (auto dest: insert-absorb)
  subgoal
   using that
   apply (rule piecewise-continuous-onE)
   subgoal for l u
     apply (rule piecewise-continuous-on I[\mathbf{where}\ l = l(b := f\ b)])
        apply (auto intro: continuous-on-subset)
      apply (rule tendsto-at-left-continuous-on-avoidI, assumption)
        apply auto
      done
   done
  done
theorem piecewise-continuous-on-induct[consumes 1, case-names empty combine
weaken:
  assumes pc: piecewise-continuous-on a b I f
 assumes 1: \bigwedge a \ b \ f. continuous-on \{a \ ... \ b\} \ f \Longrightarrow P \ a \ b \ \{\} \ f
 assumes 2: \bigwedge a \ i \ b \ I \ f1 \ f2 \ f. \ a \leq i \Longrightarrow i \leq b \Longrightarrow i \notin I \Longrightarrow P \ a \ i \ I \ f1 \Longrightarrow P \ i
b I f2 \Longrightarrow
   piecewise-continuous-on a \ i \ If 1 \Longrightarrow
   piecewise-continuous-on i b I f2 \Longrightarrow
   (\bigwedge x. \ a \le x \Longrightarrow x < i \Longrightarrow f1 \ x = f \ x) \Longrightarrow
   (\bigwedge x. \ i < x \Longrightarrow x \le b \Longrightarrow f2 \ x = f \ x) \Longrightarrow
   P \ a \ b \ (insert \ i \ I) \ f
  assumes 3: \land a \ b \ i \ I \ f. P \ a \ b \ I \ f \Longrightarrow finite \ I \Longrightarrow i \notin I \Longrightarrow P \ a \ b \ (insert \ i \ I) \ f
  shows P \ a \ b \ I f
proof -
  from pc have finite I
   by (auto simp: piecewise-continuous-on-def)
  then show ?thesis
   using pc
  proof (induction\ I\ arbitrary:\ a\ b\ f)
   case empty
   then show ?case
      by (auto simp: piecewise-continuous-on-def 1)
  next
```

```
case (insert i I)
   \mathbf{show}~? case
   proof (cases i \in \{a ... b\})
     {\bf case}\ {\it True}
     from insert.prems[THEN\ piecewise-continuous-on-insertE,\ OF\ (i \in \{a\ ...\ b\})]
     obtain g h
       where g: piecewise-continuous-on a i I g
         and h: piecewise-continuous-on i b I h
         and gf: \bigwedge x. \ a \leq x \Longrightarrow x < i \Longrightarrow g \ x = f \ x
         and hf: \bigwedge x. i < x \Longrightarrow x \le b \Longrightarrow h \ x = f \ x
       by metis
     from g have pcg: piecewise-continuous-on a i I (f(i=g\ i))
       by (rule\ piecewise-continuous-on-cong I) (auto\ simp:\ gf)
     from h have pch: piecewise-continuous-on i b I (f(i=h i))
       by (rule piecewise-continuous-on-congI) (auto simp: hf)
     have fg: (f \longrightarrow g \ i) \ (at\text{-left} \ i) \ \mathbf{if} \ a < i
       apply (rule tendsto-at-left-continuous-on-avoidI[where a=a and I=I])
       using g \langle i \notin I \rangle \langle a < i \rangle
       by (auto elim!: piecewise-continuous-onE simp: gf)
     have fh: (f \longrightarrow h \ i) \ (at\text{-right} \ i) \ \mathbf{if} \ i < b
       apply (rule tendsto-at-right-continuous-on-avoidI[where b=b and I=I])
       using h \langle i \notin I \rangle \langle i < b \rangle
       by (auto elim!: piecewise-continuous-onE simp: hf)
     show ?thesis
       apply (rule 2)
       using True apply force
       using True apply force
               apply (rule insert)
              apply (rule insert.IH, rule pcg)
             apply (rule insert.IH, rule pch)
            \mathbf{apply}\ \mathit{fact}
           apply fact
       using \beta
       by (auto simp: fg fh)
   next
     case False
     with insert.prems
     have piecewise-continuous-on a b I f
       by (auto simp: piecewise-continuous-on-def)
     from insert.IH[OF this] show ?thesis
       by (rule 3) fact+
   qed
 qed
qed
\mathbf{lemma}\ continuous-on-imp-piecewise-continuous-on:
  continuous-on \{a ... b\} f \Longrightarrow piecewise-continuous-on a b \{\} f
  by (auto simp: piecewise-continuous-on-def)
```

```
lemma piecewise-continuous-on-imp-absolutely-integrable:
  fixes a b::real and f::real \Rightarrow 'a::euclidean-space
  assumes piecewise-continuous-on a b I f
  shows f absolutely-integrable-on <math>\{a..b\}
  using assms
proof (induction rule: piecewise-continuous-on-induct)
  case (empty \ a \ b \ f)
  show ?case
   \mathbf{by}\ (auto\ intro!:\ absolutely-integrable-onI\ integrable-continuous-interval
          continuous-intros empty)
next
  case (combine a i b I f1 f2 f)
  from combine(10)
 have f absolutely-integrable-on \{a..i\}
   by (rule absolutely-integrable-spike[where S=\{i\}]) (auto simp: combine)
  moreover
  from combine(11)
  have f absolutely-integrable-on \{i..b\}
   by (rule absolutely-integrable-spike[where S=\{i\}]) (auto simp: combine)
  ultimately
  show ?case
   by (rule absolutely-integrable-on-combine) fact+
qed
lemma piecewise-continuous-on-integrable:
  fixes a b::real and f::real \Rightarrow 'a::euclidean-space
  assumes piecewise-continuous-on a b I f
  shows f integrable-on \{a..b\}
  using piecewise-continuous-on-imp-absolutely-integrable [OF assms]
  unfolding absolutely-integrable-on-def by auto
lemma piecewise-continuous-on-comp:
  assumes p: piecewise-continuous-on a b I f
 assumes c: \bigwedge x. is Cont (\lambda(x, y), g(x, y), x)
  shows piecewise-continuous-on a b I (\lambda x. q x (f x))
proof -
  from piecewise-continuous-onE[OF p]
  obtain l u
    where I: finite I
     and cf: continuous-on (\{a..b\} - I) f
     and l: (\bigwedge i. \ i \in I \Longrightarrow a < i \Longrightarrow i \leq b \Longrightarrow (f \longrightarrow l \ i) \ (at\text{-left } i))
and u: (\bigwedge i. \ i \in I \Longrightarrow a \leq i \Longrightarrow i < b \Longrightarrow (f \longrightarrow u \ i) \ (at\text{-right } i))
   by metis
  \mathbf{note} \ \langle finite \ I \rangle
  moreover
  from c have cg: continuous-on UNIV (\lambda(x, y), g x y)
  using c by (auto simp: continuous-on-def is Cont-def intro: tendsto-within-subset)
  then have continuous-on (\{a..b\} - I) (\lambda x. g x (f x))
```

```
by (intro continuous-on-compose2[OF cg, where f=\lambda x. (x, f x), simplified])
     (auto intro!: continuous-intros cf)
  moreover
 note tendstcomp = tendsto-compose[OF c[unfolded isCont-def]], where <math>f = \lambda x. (x, y)
f(x), simplified, THEN tendsto-eq-rhs
  have ((\lambda x. \ g \ x \ (f \ x)) \longrightarrow g \ i \ (u \ i)) \ (at\text{-right } i) \ \text{if} \ i \in I \ a \leq i \ i < b \ \text{for} \ i
   by (rule tendstcomp) (auto intro!: tendsto-eq-intros u[OF \langle i \in I \rangle] that)
  moreover
  have ((\lambda x. \ g \ x \ (f \ x)) \longrightarrow g \ i \ (l \ i)) \ (at\text{-left } i) \ \text{if} \ i \in I \ a < i \ i \leq b \ \text{for} \ i
   by (rule tendstcomp) (auto intro!: tendsto-eq-intros l[OF \ \langle i \in I \rangle] that)
  ultimately show ?thesis
   by (intro\ piecewise-continuous-on I)
qed
lemma bounded-piecewise-continuous-image:
  bounded (f ` \{a .. b\})
 if piecewise-continuous-on a b I f for a b::real
  using that
proof (induction rule: piecewise-continuous-on-induct)
  case (empty \ a \ b \ f)
 then show ?case by (auto intro!: compact-imp-bounded compact-continuous-image)
\mathbf{next}
  case (combine \ a \ i \ b \ I \ f1 \ f2 \ f)
  have (f ` \{a..b\}) \subseteq (insert (f i) (f1 ` \{a..i\} \cup f2 ` \{i..b\}))
   using combine
  by (auto simp: image-iff) (metis antisym-conv atLeastAtMost-iff le-cases not-less)
  also have bounded ...
   using combine by auto
  finally (bounded-subset[rotated]) show ?case.
qed
lemma tendsto-within-eventually:
 (f \longrightarrow l) (at \ x \ within \ X)
    (f \longrightarrow l) (at \ x \ within \ Y)
   \forall_F \ y \ in \ at \ x \ within \ X. \ y \in Y
  using - that(1)
proof (rule tendsto-mono)
  show at x within X \leq at x within Y
  proof (rule filter-leI)
   \mathbf{fix} P
   assume eventually P (at x within Y)
   with that(2) show eventually P (at x within X)
     unfolding eventually-at-filter
     by eventually-elim auto
  qed
qed
{f lemma} at-within-eq-bot-lemma:
```

```
at x within \{b..c\} = (if \ x < b \lor b > c \ then \ bot \ else \ at x \ within \ \{b..c\})
  for x \ b \ c::'a::linorder-topology
 by (auto intro!: not-in-closure-trivial-limitI)
lemma at-within-eq-bot-lemma2:
  at x within \{a..b\} = (if \ x > b \ \lor \ a > b \ then \ bot \ else \ at \ x \ within \ \{a..b\})
 for x \ a \ b:: 'a:: linorder-topology
 by (auto intro!: not-in-closure-trivial-limitI)
lemma piecewise-continuous-on-combine:
  piecewise-continuous-on a c J f
 if piecewise-continuous-on a b J f piecewise-continuous-on b c J f
 using that
 apply (auto elim!: piecewise-continuous-onE)
 subgoal for l u l' u'
   apply (rule piecewise-continuous-onI[where
        l=\lambda i. if i < b then l i else l' i and
        u = \lambda i. if i < b then u i else u' i)
   subgoal by force
   subgoal
     apply (rule continuous-on-subset[where s = (\{a ... b\} \cup \{b ... c\} - J)])
     apply (auto simp: continuous-on-def at-within-t1-space-avoid-finite)
     apply (rule Lim-Un)
     subgoal by auto
     subgoal by (subst at-within-eq-bot-lemma) auto
     apply (rule Lim-Un)
     subgoal by (subst at-within-eq-bot-lemma2) auto
     subgoal by auto
     done
   by auto
 done
lemma piecewise-continuous-on-finite-superset:
 piecewise-continuous-on a b I f \Longrightarrow I \subseteq J \Longrightarrow finite J \Longrightarrow piecewise-continuous-on
a \ b \ J f
 for a b::'a::{linorder-topology, dense-order, no-bot, no-top}
 apply (auto simp add: piecewise-continuous-on-def)
   apply (rule continuous-on-subset, assumption, force)
 subgoal for i
   apply (cases i \in I)
    apply (auto simp: continuous-on-def at-within-t1-space-avoid-finite)
   apply (drule\ bspec[\mathbf{where}\ x=i])
    apply (auto simp: at-within-t1-space-avoid)
   apply (cases i = b)
    apply (auto simp: at-within-Icc-at-left)
   apply (subst (asm) at-within-interior[where x=i])
   by (auto simp: filterlim-at-split)
  subgoal for i
   apply (cases i \in I)
```

```
apply (auto simp: continuous-on-def at-within-t1-space-avoid-finite)
   apply (drule\ bspec[\mathbf{where}\ x=i])
    apply (auto simp: at-within-t1-space-avoid)
   apply (cases i = a)
    apply (auto simp: at-within-Icc-at-right)
   apply (subst (asm) at-within-interior[where x=i])
   subgoal by (simp add: interior-Icc)
   by (auto simp: filterlim-at-split)
 done
lemma piecewise-continuous-on-splitI:
  piecewise-continuous-on a c K f
 if
   piecewise-continuous-on a b I f
   piecewise-continuous-on b c J f
   I \subseteq K J \subseteq K  finite K
 for a b::'a::{ linorder-topology, dense-order, no-bot, no-top}
 apply (rule piecewise-continuous-on-combine [where b=b])
 subgoal
   by (rule piecewise-continuous-on-finite-superset, fact)
   (use that in \langle auto\ elim!:\ piecewise-continuous-onE \rangle)
 subgoal
   by (rule piecewise-continuous-on-finite-superset, fact)
   (use that in \langle auto\ elim!:\ piecewise-continuous-onE \rangle)
  done
end
      Existence
4
theory Existence imports
  Piecewise-Continuous
begin
4.1
       Definition
definition has-laplace :: (real \Rightarrow complex) \Rightarrow complex \Rightarrow complex \Rightarrow bool
  (infixr ⟨has'-laplace⟩ 46)
 where (f \text{ has-laplace } L) \ s \longleftrightarrow ((\lambda t. \ exp \ (t *_R - s) * f \ t) \ has-integral \ L) \ \{0..\}
lemma has-laplaceI:
 assumes ((\lambda t. \ exp \ (t *_R - s) * f \ t) \ has\text{-integral } L) \ \{0..\}
 shows (f has-laplace L) s
 using assms
 by (auto simp: has-laplace-def)
lemma has-laplaceD:
 assumes (f has\text{-}laplace L) s
 shows ((\lambda t. \ exp \ (t *_R - s) * f \ t) \ has\text{-}integral \ L) \ \{0..\}
```

```
using assms
 by (auto simp: has-laplace-def)
lemma has-laplace-unique:
  L = M \text{ if}
  (f has-laplace L) s
  (f has-laplace M) s
  using that
 by (auto simp: has-laplace-def has-integral-unique)
4.2
        Condition for Existence: Exponential Order
definition exponential-order M c f \longleftrightarrow 0 < M \land (\forall_F t in at\text{-top. norm } (f t) \le
M * exp(c * t)
lemma exponential-orderI:
 assumes 0 < M and eo: \forall_F \ t \ in \ at\text{-top. norm} \ (f \ t) \leq M * exp \ (c * t)
 shows exponential-order M c f
 by (auto intro!: assms simp: exponential-order-def)
lemma exponential-orderD:
 assumes exponential-order M c f
 shows 0 < M \ \forall_F \ t \ in \ at	ext{-}top. \ norm \ (f \ t) \leq M * exp \ (c * t)
 using assms by (auto simp: exponential-order-def)
context
  fixes f::real \Rightarrow complex
begin
definition laplace-integrand::complex \Rightarrow real \Rightarrow complex
  where laplace-integrand s t = exp (t *_R - s) * f t
\mathbf{lemma}\ laplace\text{-}integrand\text{-}absolutely\text{-}integrable\text{-}on\text{-}Icc:
  laplace-integrand s absolutely-integrable-on \{a..b\}
 if AE \ x \in \{a..b\} in lebesgue. cmod \ (f \ x) \leq B \ f \ integrable-on \ \{a..b\}
 apply (cases b \leq a)
  subgoal by (auto intro!: absolutely-integrable-onI integrable-negligible [OF negli-
gible-real-ivlI)
proof goal-cases
  case 1
 have compact ((\lambda x. exp (-(x *_R s))) ` \{a .. b\})
   by (rule compact-continuous-image) (auto intro!: continuous-intros)
 then obtain C where C: 0 \le C \ a \le x \Longrightarrow x \le b \Longrightarrow cmod (exp (-(x *_R s)))
\leq C \text{ for } x
   using 1
   apply (auto simp: bounded-iff dest!: compact-imp-bounded)
  by (metis\ at Least At Most-iff\ exp-ge-zero\ order-refl\ order-trans\ scale R-complex.sel(1))
 have m: (\lambda x. indicator \{a..b\} x *_R f x) \in borel-measurable lebesgue
```

```
apply (rule has-integral-implies-lebesgue-measurable)
   apply (rule integrable-integral)
   apply (rule that)
   done
 have complex-set-integrable lebesque \{a..b\} (\lambda x. exp(-(x*_R s))*(indicator \{a
.. b} x *_R f x))
   unfolding set-integrable-def
   apply (rule integrable I-bounded-set-indicator [where B=C*B])
      apply (simp; fail)
     apply (rule borel-measurable-times)
     apply measurable
      apply (simp add: measurable-completion)
     apply (simp add: measurable-completion)
     apply (rule \ m)
   apply (simp add: emeasure-lborel-Icc-eq)
   using that(1)
   apply eventually-elim
   apply (auto simp: norm-mult)
   apply (rule mult-mono)
   using C
   by auto
 then show ?case
   unfolding set-integrable-def
   by (simp add: laplace-integrand-def[abs-def] indicator-inter-arith[symmetric])
qed
\mathbf{lemma}\ laplace\text{-}integrand\text{-}integrable\text{-}on\text{-}Icc:
 laplace-integrand s integrable-on \{a..b\}
 if AE \ x \in \{a..b\} in lebesgue. cmod \ (f \ x) \le B \ f \ integrable-on \ \{a..b\}
 using laplace-integrand-absolutely-integrable-on-Icc[OF that]
 using set-lebesgue-integral-eq-integral(1) by blast
lemma eventually-laplace-integrand-le:
 \forall_F \ t \ in \ at	ext{-top.} \ cmod \ (laplace	ext{-integrand} \ s \ t) \leq M * exp \ (- \ (Re \ s - \ c) * t)
 if exponential-order M c f
 using exponential-orderD(2)[OF\ that]
proof (eventually-elim)
 case (elim\ t)
 show ?case
   unfolding laplace-integrand-def
   apply (rule norm-mult-ineq[THEN order-trans])
   apply (auto intro!: mult-left-mono[THEN order-trans, OF elim])
   apply (auto simp: exp-minus divide-simps algebra-simps exp-add[symmetric])
   done
\mathbf{qed}
lemma
 assumes eo: exponential-order M c f
   and cs: c < Re s
```

```
shows laplace-integrand-integrable-on-Ici-iff:
   laplace-integrand s integrable-on \{a..\} \longleftrightarrow
      (\forall k>a. laplace-integrand s integrable-on \{a..k\})
    (is ?th1)
  and laplace-integrand-absolutely-integrable-on-Ici-iff:
    laplace-integrand s absolutely-integrable-on \{a..\} \longleftrightarrow
      (\forall k>a.\ laplace-integrand\ s\ absolutely-integrable-on\ \{a..k\})
    (is ?th2)
proof -
  have \forall_F \ t \ in \ at\text{-top.} \ a < (t::real)
   \mathbf{using}\ \mathit{eventually-gt-at-top}\ \mathbf{by}\ \mathit{blast}
  then have \forall_F t in at-top. t > a \land cmod (laplace-integrand s t) \leq M * exp (-
(Re\ s-c)*t)
   \mathbf{using}\ eventually\text{-}laplace\text{-}integrand\text{-}le[\mathit{OF}\ eo]
   by eventually-elim (auto)
  then obtain A where A: A > a and le: t \ge A \implies cmod (laplace-integrand s
t) \leq M * exp (-(Re s - c) * t)  for t
   unfolding eventually-at-top-linorder
   by blast
 let ?f = \lambda(k::real) (t::real). indicat-real \{A..k\} t *_R laplace-integrand s t
  from exponential-orderD[OF eo] have M \neq 0 by simp
  have 2: (\lambda t. M * exp (-(Re s - c) * t)) integrable-on \{A..\}
   unfolding integrable-on-cmult-iff [OF \land M \neq 0 \land] norm-exp-eq-Re
   by (rule integrable-on-exp-minus-to-infinity) (simp add: cs)
  have 3: t \in \{A..\} \Longrightarrow cmod (?f k t) \leq M * exp (-(Re s - c) * t)
    (is t \in - \implies ?lhs \ t \leq ?rhs \ t)
   for t k
  proof safe
   fix t assume A \leq t
   have ?lhs t \leq cmod (laplace-integrand s t)
      by (auto simp: indicator-def)
   also have ... \leq ?rhs \ t \ using \langle A \leq t \rangle \ le \ by \ (simp \ add: laplace-integrand-def)
   finally show ?lhs\ t < ?rhs\ t .
  qed
  have 4: \forall t \in \{A..\}. ((\lambda k. ?f k t) \longrightarrow laplace-integrand s t) at-top
  proof safe
   fix t assume t: t \ge A
   have \forall_F \ k \ in \ at\text{-}top. \ k \geq t
     by (simp add: eventually-ge-at-top)
   then have \forall_F \ k \ in \ at\text{-top. laplace-integrand} \ s \ t = ?f \ k \ t
     by eventually-elim (use t in \langle auto\ simp:\ indicator-def \rangle)
   then show ((\lambda k. ?f k t) \longrightarrow laplace-integrand s t) at-top using tendsto-const
      by (rule Lim-transform-eventually[rotated])
  qed
```

```
show th1: ?th1
proof safe
 assume \forall k>a. laplace-integrand s integrable-on \{a..k\}
 note li = this[rule-format]
 have liA: laplace-integrand s integrable-on \{A..k\} for k
 proof cases
   assume k \leq A
   then have \{A..k\} = (if A = k then \{k\} else \{\}) by auto
   then show ?thesis by (auto intro!: integrable-negligible)
 next
   assume n: \neg k \leq A
   show ?thesis
     by (rule integrable-on-subinterval [OF\ li[of\ k]]) (use A\ n\ in\ auto)
 qed
 have ?f \ k \ integrable-on \ \{A..k\} \ for \ k
   using liA[of k] negligible-empty
   by (rule integrable-spike) auto
 then have 1: ?f k integrable-on \{A...\} for k
   by (rule integrable-on-superset) auto
 note 1 2 3 4
 note * = this[unfolded set-integrable-def]
 from li[of A] dominated-convergence-at-top(1)[OF *]
 show laplace-integrand s integrable-on \{a..\}
   by (rule integrable-Un') (use \langle a < A \rangle in \langle auto \ simp: max-def \ li \rangle)
qed (rule integrable-on-subinterval, assumption, auto)
show ?th2
proof safe
 \textbf{assume} \ ai: \ \forall \ k{>}a. \ laplace{-integrand} \ s \ absolutely{-integrable-on} \ \{a..k\}
 then have laplace-integrand s absolutely-integrable-on \{a..A\}
   using A by auto
 moreover
 from ai have \forall k>a. laplace-integrand s integrable-on \{a..k\}
   using set-lebesgue-integral-eq-integral(1) by blast
 with th1 have i: laplace-integrand s integrable-on \{a..\} by auto
 have 1: ?f \ k \ integrable-on \ \{A...\} \ for \ k
   apply (rule integrable-on-superset[where S = \{A...k\}])
   using - negligible-empty
     apply (rule integrable-spike[where f = laplace-integrand s])
     apply (rule integrable-on-subinterval)
      apply (rule \ i)
   by (use \langle a < A \rangle \text{ in } auto)
 have laplace-integrand s absolutely-integrable-on \{A..\}
   using - dominated-convergence-at-top(1)[OF 1 2 3 4] 2
   by (rule absolutely-integrable-integrable-bound) (use le in auto)
 ultimately
 have laplace-integrand s absolutely-integrable-on (\{a..A\} \cup \{A..\})
   by (rule set-integrable-Un) auto
 also have \{a..A\} \cup \{A..\} = \{a..\} using \langle a < A \rangle by auto
```

```
finally show local.laplace-integrand s absolutely-integrable-on \{a..\}.
 qed (rule set-integrable-subset, assumption, auto)
qed
theorem laplace-exists-laplace-integrandI:
 assumes laplace-integrand s integrable-on \{0..\}
  obtains F where (f has\text{-}laplace \ F) s
proof -
 \mathbf{from}\ \mathit{assms}
 have (f has-laplace integral \{0..\} (laplace-integrand s)) s
   unfolding has-laplace-def laplace-integrand-def by blast
 thus ?thesis ..
qed
lemma
 assumes eo: exponential-order M c f
   and pc: \bigwedge k. AE x \in \{0..k\} in lebesgue. cmod (f x) \leq B k \bigwedge k. f integrable-on
\{\theta..k\}
   and s: Re \ s > c
  shows laplace-integrand-integrable: laplace-integrand s integrable-on \{0..\} (is
?th1)
   and laplace-integrand-absolutely-integrable:
     laplace-integrand s absolutely-integrable-on \{0..\} (is ?th2)
  using eo laplace-integrand-absolutely-integrable-on-Icc[OF\ pc]\ s
  by (auto simp: laplace-integrand-integrable-on-Ici-iff
     laplace-integrand-absolutely-integrable-on-Ici-iff
     set-lebesque-integral-eq-integral)
\mathbf{lemma}\ piecewise\text{-}continuous\text{-}on\text{-}AE\text{-}boundedE\text{:}
 assumes pc: \bigwedge k. piecewise-continuous-on a \ k \ (I \ k) \ f
 obtains B where \bigwedge k. AE x \in \{a..k\} in lebesgue. cmod (f x) \leq B k
 apply atomize-elim
 apply (rule choice)
 apply (rule allI)
 subgoal for k
   using bounded-piecewise-continuous-image [OF pc[of k]]
   by (force simp: bounded-iff)
 done
theorem piecewise-continuous-on-has-laplace:
  assumes eo: exponential-order M c f
   and pc: \bigwedge k. piecewise-continuous-on 0 k (I k) f
   and s: Re s > c
 obtains F where (f has\text{-}laplace \ F) s
proof -
  from piecewise-continuous-on-AE-boundedE[OF pc]
 obtain B where AE: AE x \in \{0..k\} in lebesque. cmod (fx) \le Bk for k by force
 have int: f integrable-on \{0..k\} for k
   using pc
```

```
by (rule piecewise-continuous-on-integrable)
  show ?thesis
   using pc
   apply (rule piecewise-continuous-on-AE-boundedE)
   apply (rule laplace-exists-laplace-integrandI)
    apply (rule laplace-integrand-integrable)
       apply (rule eo)
      apply assumption
     apply (rule int)
    apply (rule\ s)
   by (rule that)
qed
end
4.3
       Concrete Laplace Transforms
lemma exp-scaleR-has-vector-derivative-left'[derivative-intros]:
  ((\lambda t. exp (t *_R A)) has-vector-derivative A * exp (t *_R A)) (at t within S)
 by (metis exp-scaleR-has-vector-derivative-right exp-times-scaleR-commute)
lemma
 fixes a::complex— TODO: generalize
 assumes a: 0 < Re \ a
  shows integrable-on-cexp-minus-to-infinity: (\lambda x. \ exp \ (x *_R - a)) integrable-on
\{c..\}
   and integral-cexp-minus-to-infinity: integral \{c..\} (\lambda x. exp (x *_R - a)) = exp
(c *_R - a) / a
proof -
 from a have a \neq 0 by auto
 define f where f = (\lambda k \ x. \ if \ x \in \{c..real \ k\} \ then \ exp \ (x *_R -a) \ else \ 0)
   fix k :: nat assume k :: of\text{-}nat \ k \geq c
   from \langle a \neq \theta \rangle k
     have ((\lambda x. \ exp \ (x *_R - a)) \ has-integral \ (-exp \ (k *_R - a)/a - (-exp \ (c *_R - a)/a)))
-a)/a))) \{c..real k\}
     by (intro fundamental-theorem-of-calculus)
        (auto intro!: derivative-eq-intros exp-scaleR-has-vector-derivative-left
          simp:\ divide-inverse-commute
             simp del: scaleR-minus-left scaleR-minus-right)
   hence (f k \text{ has-integral } (exp (c *_R - a)/a - exp (k *_R - a)/a)) \{c..\} unfolding
f-def
     by (subst has-integral-restrict) simp-all
  } note has-integral-f = this
 have integrable-fk: f \ k integrable-on \{c..\} for k
 proof -
   have (\lambda x. exp (x *_R - a)) integrable-on \{c..of\text{-real }k\} (is ?P)
    unfolding f-def by (auto intro!: continuous-intros integrable-continuous-real)
```

```
then have int: (f k) integrable-on \{c..of\text{-real } k\}
     by (rule integrable-eq) (simp add: f-def)
   show ?thesis
     by (rule integrable-on-superset[OF int]) (auto simp: f-def)
  ged
  have limseq: \bigwedge x. \ x \in \{c..\} \Longrightarrow (\lambda k. \ f \ k \ x) \longrightarrow exp \ (x *_R - a)
   apply (auto intro!: Lim-transform-eventually[OF tendsto-const] simp: f-def)
   by (meson eventually-sequentially Inat-ceiling-le-eq)
  have bnd: \bigwedge x. \ x \in \{c..\} \Longrightarrow cmod \ (f \ k \ x) \le exp \ (-Re \ a * x) \ \textbf{for} \ k
   by (auto simp: f-def)
  have [simp]: f k = (\lambda - 0) if of-nat k < c for k using that by (auto simp:
fun-eq-iff f-def)
 have integral - f: integral \{c..\} (f k) =
                    (if real k \ge c then exp(c *_R -a)/a - exp(k *_R -a)/a else 0)
   for k using integral-unique [OF has-integral-f[of k]] by simp
 have (\lambda k. \ exp \ (c *_R - a)/a - exp \ (k *_R - a)/a) \longrightarrow exp \ (c *_R - a)/a - 0/a
   apply (intro tendsto-intros filterlim-compose[OF exp-at-bot]
      filter lim-tends to-neq-mult-at-bot[OF\ tends to-const]\ filter lim-real-sequentially)+
    apply (rule tendsto-norm-zero-cancel)
   by (auto intro!: assms \langle a \neq 0 \rangle filterlim-real-sequentially
     filter lim-compose [OF\ exp-at-bot]\ filter lim-compose [OF\ filter lim-uminus-at-bot-at-top]
       filter lim-at-top-mult-tends to-pos[OF\ tends to-const])
 moreover
 note A = dominated-convergence[where g = \lambda x. exp(x *_R - a),
    OF integrable-fk integrable-on-exp-minus-to-infinity where a=Re a and c=c,
OF \langle \theta < Re \ a \rangle
     bnd limseq
 from A(1) show (\lambda x. exp (x *_R - a)) integrable-on \{c..\}.
 from eventually-gt-at-top[of nat \lceil c \rceil] have eventually (\lambda k. \text{ of-nat } k > c) sequen-
   by eventually-elim linarith
  hence eventually (\lambda k. \ exp \ (c *_R -a)/a - exp \ (k *_R -a)/a = integral \ \{c..\} \ (f
k)) sequentially
   by eventually-elim (simp add: integral-f)
  ultimately have (\lambda k. integral \{c..\} (f k)) \longrightarrow exp (c *_R -a)/a - \theta/a
   by (rule Lim-transform-eventually)
  from LIMSEQ-unique [OF A(2) this]
 show integral \{c..\} (\lambda x. exp (x *_R - a)) = exp (c *_R - a)/a by simp
\mathbf{qed}
lemma has-integral-cexp-minus-to-infinity:
  fixes a::complex— TODO: generalize
 assumes a: 0 < Re \ a
 shows ((\lambda x. \ exp \ (x *_R - a)) \ has\text{-}integral \ exp \ (c *_R - a) / a) \ \{c..\}
  using integral-cexp-minus-to-infinity[OF assms]
   integrable-on-cexp-minus-to-infinity[OF assms]
 using has-integral-integrable-integral by blast
```

```
lemma has-laplace-one:
 ((\lambda - 1) has-laplace inverse s) s if Re s > 0
proof (safe intro!: has-laplaceI)
 from that have ((\lambda t. exp (t *_R - s)) has-integral inverse s) {0..}
   by (rule has-integral-cexp-minus-to-infinity[THEN has-integral-eq-rhs])
      (auto simp: inverse-eq-divide)
  then show ((\lambda t. \ exp \ (t *_R - s) * 1) \ has\text{-}integral inverse s) \{0..\} by simp
qed
lemma has-laplace-add:
 assumes f: (f has-laplace F) S
 assumes g: (g has-laplace G) S
 shows ((\lambda x. f x + g x) has\text{-laplace } F + G) S
 apply (rule has-laplaceI)
 using has-integral-add[OF has-laplaceD[OF f] has-laplaceD[OF g]]
 by (auto simp: algebra-simps)
lemma has-laplace-cmul:
 assumes (f has\text{-}laplace \ F) \ S
 shows ((\lambda x. \ r *_R f x) \ has\text{-laplace} \ r *_R F) \ S
 apply (rule has-laplaceI)
 using has-laplaceD[OF assms, THEN has-integral-cmul[where c=r]]
 by auto
lemma has-laplace-uminus:
 assumes (f has\text{-}laplace \ F) \ S
 shows ((\lambda x. - f x) has-laplace - F) S
 using has-laplace-cmul[OF assms, of -1]
 by auto
lemma has-laplace-minus:
 assumes f: (f has-laplace F) S
 assumes g: (g has-laplace G) S
 shows ((\lambda x. f x - g x) has\text{-laplace } F - G) S
 using has-laplace-add[OF f has-laplace-uminus[OF g]]
 by simp
lemma has-laplace-spike:
  (f has-laplace L) s
 if L: (g has-laplace L) s
   and negligible T
   and \bigwedge t. t \notin T \Longrightarrow t \geq 0 \Longrightarrow f t = g t
 by (auto intro!: has-laplaceI has-integral-spike[where S=T, OF - - has-laplaceD[OF
L]] that)
lemma has-laplace-frequency-shift:— First Translation Theorem in Schiff
 ((\lambda t. \ exp \ (t *_R b) * f t) \ has\text{-laplace } L) \ s
```

```
if (f has\text{-}laplace L) (s - b)
  using that
 by (auto intro!: has-laplaceI dest!: has-laplaceD
     simp: mult-exp-exp algebra-simps)
\textbf{theorem} \ \textit{has-laplace-derivative-time-domain}:
  (f' has-laplace \ s * L - f0) \ s
 if L: (f has-laplace L) s
   and f': \Lambda t. \ t > 0 \Longrightarrow (f \ has - vector - derivative \ f' \ t) \ (at \ t)
   and f\theta: (f \longrightarrow f\theta) (at\text{-right } \theta)
   and eo: exponential-order M c f
   and cs: c < Re s
   — Proof and statement follow "The Laplace Transform: Theory and Applications"
by Joel L. Schiff.
proof (rule has-laplaceI)
 have ce: continuous-on S (\lambda t. exp (t *_R - s)) for S
   by (auto intro!: continuous-intros)
  have de: ((\lambda t. \ exp \ (t *_R - s)) \ has-vector-derivative \ (-s * exp \ (-(t *_R s))))
(at\ t) for t
   by (auto simp: has-vector-derivative-def intro!: derivative-eq-intros ext)
  have ((\lambda x. -s * (f x * exp (- (x *_R s)))) has\text{-}integral - s * L) \{0..\}
   apply (rule has-integral-mult-right)
   using has-laplaceD[OF\ L]
   by (auto simp: ac-simps)
  define g where g x = (if x \le 0 then f0 else <math>f x) for x
 have eog: exponential-order M c g
 proof -
   from exponential-orderD[OF eo] have \theta < M
     and ev: \forall_F \ t \ in \ at\text{-top.} \ cmod \ (f \ t) \leq M * exp \ (c * t).
   have \forall_F t::real in at-top. t > 0 by simp
   with ev have \forall_F \ t \ in \ at\text{-top.} \ cmod \ (g \ t) \leq M * exp \ (c * t)
     by eventually-elim (auto simp: g-def)
   with \langle \theta \rangle < M \rangle show ?thesis
     by (rule exponential-orderI)
 qed
 have Lg: (g has-laplace L) s
   using L
   by (rule has-laplace-spike[where T=\{0\}]) (auto simp: g-def)
 have g': \Lambda t. \ \theta < t \Longrightarrow (g \ has-vector-derivative \ f' \ t) \ (at \ t)
   using f'
    by (rule has-vector-derivative-transform-within-open[where S=\{0<..\}]) (auto
simp: g-def)
 have cg: continuous - on \{0..k\} g for k
   apply (auto simp: g-def continuous-on-def)
    apply (rule filterlim-at-within-If)
   subgoal by (rule tendsto-intros)
   subgoal
```

```
apply (rule tendsto-within-subset)
      apply (rule f0)
     \mathbf{by}\ \mathit{auto}
   subgoal premises prems for x
   proof -
     from prems have \theta < x by auto
     from order-tendstoD[OF tendsto-ident-at this]
     have eventually ((<) \ \theta) (at x within \{\theta..k\}) by auto
     then have \forall_F x \text{ in at } x \text{ within } \{0..k\}. f x = (if x \leq 0 \text{ then } f0 \text{ else } f x)
       by eventually-elim auto
     moreover
     note [simp] = at\text{-}within\text{-}open[where } S = \{0 < ...\}]
     have continuous-on \{0<...\} f
       by (rule continuous-on-vector-derivative)
         (auto simp add: intro!: f')
     then have (f \longrightarrow f x) (at x within \{0..k\})
       using \langle \theta < x \rangle
       by (auto simp: continuous-on-def intro: Lim-at-imp-Lim-at-within)
     ultimately show ?thesis
       by (rule Lim-transform-eventually[rotated])
   qed
   done
  then have pcg: piecewise-continuous-on 0 \ k \ \{\} g for k
   by (auto simp: piecewise-continuous-on-def)
  from piecewise-continuous-on-AE-boundedE[OF this]
  obtain B where B: AE \ x \in \{0..k\} in lebesque. cmod \ (q \ x) \le B \ k for k by auto
  have 1: laplace-integrand g s absolutely-integrable-on \{0..\}
   apply (rule laplace-integrand-absolutely-integrable [OF eog])
     apply (rule B)
    apply (rule piecewise-continuous-on-integrable)
    apply (rule \ pcg)
   apply (rule \ cs)
   done
  then have csi: complex-set-integrable lebesgue \{0..\} (\lambda x. \ exp \ (x *_R - s) *_R x)
   by (auto simp: laplace-integrand-def[abs-def])
 from has-laplaceD[OF Lg, THEN has-integral-improperE, OF csi]
  obtain J where J: \bigwedge k. ((\lambda t. exp (t *_R - s) * g t) has-integral J k) {0..k}
   and [tendsto-intros]: (J \longrightarrow L) at-top
   by auto
  have ((\lambda x. -s * (exp (x *_R - s) * g x)) has\text{-}integral -s * J k) \{0..k\} for k
   by (rule has-integral-mult-right) (rule J)
 then have *: ((\lambda x. g x * (-s * exp (-(x *_R s)))) has-integral -s * J k) \{0..k\}
for k
   by (auto simp: algebra-simps)
 have \forall_F k::real in at-top. k \geq 0
   using eventually-ge-at-top by blast
  then have evI: \forall_F \ k \ in \ at\text{-top.} \ ((\lambda t. \ exp \ (t *_R - s) * f' \ t) \ has\text{-integral}
   g k * exp (k *_R - s) + s * J k - g \theta) \{\theta ... k\}
 proof eventually-elim
```

```
case (elim\ k)
   show ?case
     apply (subst mult.commute)
     apply (rule integration-by-parts-interior[OF bounded-bilinear-mult], fact)
    apply (rule cg) apply (rule ce) apply (rule g') apply force apply (rule de)
     apply (rule has-integral-eq-rhs)
     apply (rule *)
     by auto
 qed
 have t1: ((\lambda x. \ g \ x * exp \ (x *_R - s)) \longrightarrow \theta) \ at\text{-top}
   apply (subst mult.commute)
   unfolding laplace-integrand-def[symmetric]
   apply (rule Lim-null-comparison)
   apply (rule eventually-laplace-integrand-le[OF eog])
   apply (rule tendsto-mult-right-zero)
   apply (rule filterlim-compose[OF exp-at-bot])
   apply (rule filterlim-tendsto-neg-mult-at-bot)
     apply (rule tendsto-intros)
   using cs apply simp
   apply (rule filterlim-ident)
 show ((\lambda t. exp (t *_R - s) * f' t) has-integral s * L - f0) \{0..\}
   apply (rule has-integral-improper-at-topI[OF evI])
   subgoal
     apply (rule tendsto-eq-intros)
     apply (rule tendsto-intros)
      apply (rule t1)
     apply (rule tendsto-intros)
      apply (rule tendsto-intros)
     apply (rule tendsto-intros)
     apply (rule tendsto-intros)
     by (simp add: g-def)
   done
qed
lemma exp-times-has-integral:
 ((\lambda t. exp (c * t)) has-integral (if c = 0 then t else exp (c * t) / c) - (if c = 0)
then t\theta else exp(c * t\theta) / c)) {t\theta ... t}
 if t\theta \leq t
 for c t::real
 apply (cases c = \theta)
 subgoal
   using that
   apply auto
   apply (rule has-integral-eq-rhs)
   apply (rule has-integral-const-real)
   by auto
 subgoal
   apply (rule fundamental-theorem-of-calculus)
```

```
using that
   by (auto simp: has-vector-derivative-def intro!: derivative-eq-intros)
  done
lemma integral-exp-times:
  integral \{t0 ... t\} (\lambda t. exp (c * t)) = (if c = 0 then t - t0 else exp (c * t) / c -
exp(c*t0)/c)
 if t\theta \leq t
 for c t::real
 using exp-times-has-integral [OF that, of c] that
 by (auto split: if-splits)
lemma filtermap-times-pos-at-top: filtermap ((*) e) at-top = at-top
 if e > 0
 for e::real
 apply (rule filtermap-fun-inverse [of (*) (inverse e)])
   apply (rule filterlim-tendsto-pos-mult-at-top)
     apply (rule tendsto-intros)
 subgoal using that by simp
   apply (rule filterlim-ident)
   apply (rule filterlim-tendsto-pos-mult-at-top)
     apply (rule tendsto-intros)
 subgoal using that by simp
  apply (rule filterlim-ident)
 using that by auto
lemma exponential-order-additiveI:
 assumes 0 < M and eo: \forall_F t \text{ in at-top. norm } (f t) \leq K + M * exp (c * t) and
c \ge 0
 obtains M' where exponential-order M' c f
 consider c = \theta \mid c > \theta using \langle c \geq \theta \rangle by arith
 then show ?thesis
 proof cases
   assume c = 0
   have exponential-order (max K 0 + M) c f
     using eo
      apply (auto intro!: exponential-order add-nonneg-pos \langle 0 < M \rangle simp: \langle c =
\theta \rangle
     apply (auto simp: max-def)
     using eventually-elim2 by force
   then show ?thesis ...
 next
   assume c > \theta
   have \forall F \ t \ in \ at\text{-top. norm} \ (f \ t) \leq K + M * exp \ (c * t)
     by fact
   moreover
   have \forall_F t in (filtermap exp (filtermap ((*) c) at-top)). K < t
     by (simp add: filtermap-times-pos-at-top \langle c > 0 \rangle filtermap-exp-at-top)
```

```
then have \forall_F \ t \ in \ at\text{-top.} \ K < exp \ (c * t)
     by (simp add: eventually-filtermap)
   ultimately
   have \forall_F t \text{ in at-top. norm } (f t) \leq (1 + M) * exp (c * t)
      by eventually-elim (auto simp: algebra-simps)
   with add-nonneg-pos[OF zero-le-one \langle 0 < M \rangle]
   have exponential-order (1 + M) c f
      by (rule exponential-orderI)
   then show ?thesis ..
  \mathbf{qed}
qed
lemma exponential-order-integral:
  fixes f::real \Rightarrow 'a::banach
  assumes I: \land t. \ t \geq a \Longrightarrow (f \ has \ integral \ I \ t) \ \{a \ .. \ t\}
   and eo: exponential-order M c f
   and c > \theta
  obtains M' where exponential-order M' c I
proof -
  from exponential-orderD[OF eo] have 0 < M
   and bound: \forall_F \ t \ in \ at\text{-top. norm} \ (f \ t) \leq M * exp \ (c * t)
   by auto
  have \forall_F \ t \ in \ at\text{-}top. \ t > a
   by simp
  from bound this
  have \forall_F \ t \ in \ at\text{-top. norm} \ (f \ t) \leq M * exp \ (c * t) \land t > a
   by eventually-elim auto
 then obtain t\theta where t\theta: \Delta t. t \ge t\theta \Longrightarrow norm (ft) \le M * exp (c * t) t\theta > a
   by (auto simp: eventually-at-top-linorder)
  have \forall_F \ t \ in \ at\text{-top.} \ t > t\theta \ \text{by} \ simp
 then have \forall_F \ t \ in \ at\text{-top. norm} \ (I \ t) \leq norm \ (integral \ \{a..t0\} \ f) - M * exp \ (c
* t0) / c + (M / c) * exp (c * t)
 proof eventually-elim
   case (elim t) then have that: t \ge t0 by simp
   from t\theta have a \leq t\theta by simp
   have f integrable-on \{a ... t0\} f integrable-on \{t0 ... t\}
      subgoal by (rule has-integral-integrable [OF I [OF \langle a \leq t0 \rangle])
      apply (rule integrable-on-subinterval OF has-integral-integrable OF I where
t=t
        using \langle t\theta \rangle a \rangle that by auto
      done
   have I t = integral \{a ... t0\} f + integral \{t0 ... t\} f
    by (metis Henstock-Kurzweil-Integration.integral-combine I \land a \leq t0 \land dual-order.strict-trans
          has-integral-integrable-integral less-eq-real-def that)
    also have norm ... \leq norm \ (integral \ \{a ... t0\} \ f) + norm \ (integral \ \{t0 ... t\}
f) by norm
   also
   have norm (integral \{t0 ... t\} f) \le integral \{t0 ... t\} (\lambda t. M * exp (c * t))
```

```
apply (rule integral-norm-bound-integral)
       apply fact
     by (auto intro!: integrable-continuous-interval continuous-intros t\theta)
   also have ... = M * integral \{t0 ... t\} (\lambda t. exp (c * t))
   also have integral \{t0 ... t\} (\lambda t. exp(c * t)) = exp(c * t) / c - exp(c * t0)
     using \langle c > \theta \rangle \langle t\theta \leq t \rangle
     by (subst integral-exp-times) auto
   finally show ?case
     using \langle c > \theta \rangle
     by (auto simp: algebra-simps)
  qed
  from exponential-order-additive I [OF divide-pos-pos [OF \langle 0 < M \rangle \langle 0 < c \rangle] this
less-imp-le[OF \langle 0 < c \rangle]]
  obtain M' where exponential-order M' c I.
  then show ?thesis ..
qed
lemma integral-has-vector-derivative-piecewise-continuous:
  fixes f :: real \Rightarrow 'a :: euclidean - space — TODO: generalize?
  assumes piecewise-continuous-on a b D f
  shows \bigwedge x. \ x \in \{a ... b\} - D \Longrightarrow
    ((\lambda u. integral \{a..u\} f) has-vector-derivative f(x)) (at x within \{a..b\} - D)
  using assms
proof (induction a b D f rule: piecewise-continuous-on-induct)
  case (empty \ a \ b \ f)
  then show ?case
   by (auto intro: integral-has-vector-derivative)
\mathbf{next}
  case (combine a i b I f1 f2 f)
  then consider x < i \mid i < x by auto arith
  then show ?case
  proof cases— TODO: this is very explicit...
   have evless: \forall_F xa in nhds x. xa < i
     apply (rule order-tendstoD[OF - \langle x < i \rangle])
     by (simp add: filterlim-ident)
   have eq: at x within \{a..b\} - insert i I = at x within \{a..i\} - I
     unfolding filter-eq-iff
   proof safe
     \mathbf{fix} P
     \mathbf{assume}\ \textit{eventually}\ P\ (\textit{at}\ x\ \textit{within}\ \{\textit{a..i}\}\ -\ \textit{I})
     with evless show eventually P (at x within \{a..b\} – insert i I)
       unfolding eventually-at-filter
       by eventually-elim auto
   next
     \mathbf{fix} P
```

```
assume eventually P (at x within \{a..b\} – insert i I)
     with evless show eventually P (at x within \{a...i\} - I)
       {\bf unfolding} \ \textit{eventually-at-filter}
       apply eventually-elim
       using 1 combine
      by auto
   qed
   have f x = f1 x using combine 1 by auto
   have i-eq: integral \{a..y\} f = integral \{a..y\} f1 if y < i for y
     using negligible-empty
     apply (rule integral-spike)
     using combine 1 that
     by auto
   from evless have ev-eq: \forall_F \ x \ in \ nhds \ x. \ x \in \{a..i\} - I \longrightarrow integral \ \{a..x\} \ f
= integral \{a..x\} f1
     by eventually-elim (auto simp: i-eq)
   show ?thesis unfolding eq \langle f x = f1 x \rangle
     apply (subst has-vector-derivative-cong-ev[OF \ ev-eq])
     using combine.IH[of x]
     using combine.hyps combine.prems 1
     by (auto\ simp:\ i-eq)
 next
   case 2
   have evless: \forall_F xa in nhds x. xa > i
     apply (rule order-tendstoD[OF - \langle x > i \rangle])
     by (simp add: filterlim-ident)
   have eq: at x within \{a..b\} - insert i I = at x within \{i..b\} - I
     unfolding filter-eq-iff
   proof safe
     \mathbf{fix} P
     assume eventually P (at x within \{i..b\} - I)
     with evless show eventually P (at x within \{a..b\} – insert i I)
       unfolding eventually-at-filter
      by eventually-elim auto
   \mathbf{next}
     assume eventually P (at x within \{a..b\} – insert i I)
     with evless show eventually P (at x within \{i..b\} - I)
       unfolding eventually-at-filter
      apply eventually-elim
       using 2 combine
      by auto
   qed
   have f x = f2 x using combine 2 by auto
   have i-eq: integral \{a...y\} f = integral \{a...i\} f + integral \{i...y\} f2 if i < y y
\leq b for y
   proof -
     have integral \{a..y\} f = integral \{a..i\} f + integral \{i..y\} f
       apply (cases i = y)
```

```
subgoal by auto
       subgoal
         apply (rule Henstock-Kurzweil-Integration.integral-combine[symmetric])
         using combine that apply auto
         apply (rule integrable-Un'[where A = \{a ... i\} and B = \{i...y\}])
         subgoal
           by (rule integrable-spike[where S=\{i\} and f=f1])
             (auto intro: piecewise-continuous-on-integrable)
         subgoal
           apply (rule integrable-on-subinterval[where S=\{i..b\}])
           by (rule integrable-spike[where S=\{i\} and f=f2])
             (auto intro: piecewise-continuous-on-integrable)
         subgoal by (auto simp: max-def min-def)
         subgoal by auto
         done
       done
     also have integral \{i..y\} f = integral \{i..y\} f2
       apply (rule integral-spike[where S=\{i\}])
       using combine 2 that
       by auto
     finally show ?thesis.
   qed
    from evless have ev-eq: \forall_F y in nhds x. y \in \{i..b\} - I \longrightarrow integral \{a..y\} f
= integral \{a...i\} f + integral \{i...y\} f2
     by eventually-elim (auto simp: i-eq)
   show ?thesis unfolding eq
     apply (subst has-vector-derivative-cong-ev[OF ev-eq])
     using combine.IH[of x] combine.prems combine.hyps 2
     by (auto simp: i-eq intro!: derivative-eq-intros)
 qed
qed (auto intro: has-vector-derivative-within-subset)
lemma has-derivative-at-split:
 (f \text{ has-derivative } f') \text{ } (at x) \longleftrightarrow (f \text{ has-derivative } f') \text{ } (at\text{-left } x) \land (f \text{ has-derivative } f')
f') (at\text{-}right \ x)
 for x::'a::\{linorder-topology, real-normed-vector\}
 \mathbf{by}\ (\mathit{auto}\ \mathit{simp}\colon \mathit{has-derivative-at-within}\ \mathit{filterlim-at-split})
lemma has-vector-derivative-at-split:
  (f has\text{-}vector\text{-}derivative f') (at x) \longleftrightarrow
  (f has\text{-}vector\text{-}derivative f') (at\text{-}left x) \land
  (f has-vector-derivative f') (at-right x)
  using has-derivative-at-split [of f \lambda h. h *_R f' x]
 by (simp add: has-vector-derivative-def)
lemmas differentiable I-vector [intro]
lemma differentiable-at-splitD:
 f differentiable at-left x
```

```
f differentiable at-right x
  if f differentiable (at x)
  for x::real
  using that [unfolded vector-derivative-works has-vector-derivative-at-split]
  by auto
\mathbf{lemma}\ integral\text{-}differentiable:
  fixes f :: real \Rightarrow 'a :: banach
  assumes continuous-on \{a..b\} f
   and x \in \{a..b\}
  shows (\lambda u. integral \{a..u\} f) differentiable at x within \{a..b\}
  using integral-has-vector-derivative [OF assms]
  by blast
theorem integral-has-vector-derivative-piecewise-continuous':
  fixes f :: real \Rightarrow 'a :: euclidean - space — TODO: generalize?
  assumes piecewise-continuous-on a b D f a < b
 shows
    (\forall x. \ a < x \longrightarrow x < b \longrightarrow x \notin D \longrightarrow (\lambda u. \ integral \{a..u\} f) differentiable at
x) \wedge
    (\forall x. \ a \leq x \longrightarrow x < b \longrightarrow (\lambda t. \ integral \{a..t\} \ f) \ differentiable \ at-right \ x) \ \land
   (\forall x. \ a < x \longrightarrow x \leq b \longrightarrow (\lambda t. \ integral \{a..t\} \ f) \ differentiable \ at-left \ x)
  using assms
proof (induction a b D f rule: piecewise-continuous-on-induct)
  case (empty \ a \ b \ f)
  have a < x \Longrightarrow x < b \Longrightarrow (\lambda u. integral \{a..u\} f) differentiable (at x) for x
   using integral-differentiable[OF\ empty(1),\ of\ x]
   by (auto simp: at-within-interior)
  then show ?case
   using integral-differentiable [OF empty(1), of a]
     integral-differentiable[OF\ empty(1),\ of\ b]
   by (auto simp: at-within-Icc-at-right at-within-Icc-at-left le-less
        intro: differentiable-at-withinI)
next
  case (combine a i b I f1 f2 f)
 from \langle piecewise\text{-}continuous\text{-}on\ a\ i\ I\ f1 \rangle have finite I
   by (auto elim!: piecewise-continuous-onE)
  from combine(4) have piecewise-continuous-on a i (insert i I) f1
   by (rule\ piecewise-continuous-on-insert-right I)
  then have piecewise-continuous-on a i (insert i I) f
   by (rule piecewise-continuous-on-congI) (auto simp: combine)
  moreover
  from combine(5) have piecewise-continuous-on i b (insert i I) f2
   by (rule piecewise-continuous-on-insert-leftI)
  then have piecewise-continuous-on i b (insert i I) f
   by (rule piecewise-continuous-on-congI) (auto simp: combine)
  ultimately have piecewise-continuous-on a b (insert i I) f
```

```
by (rule piecewise-continuous-on-combine)
  then have f-int: f integrable-on \{a ... b\}
   by (rule piecewise-continuous-on-integrable)
  from combine.IH
 have f1: x > a \Longrightarrow x < i \Longrightarrow x \notin I \Longrightarrow (\lambda u. integral \{a..u\} f1) differentiable (at
x)
   x \ge a \implies x < i \implies (\lambda t. integral \{a..t\} f1) differentiable (at-right x)
   x>a \implies x \le i \implies (\lambda t. integral \{a..t\} f1) differentiable (at-left x)
  and f2: x > i \implies x < b \implies x \notin I \implies (\lambda u. integral \{i..u\} f2) differentiable (at
   x \ge i \implies x < b \implies (\lambda t. integral \{i..t\} f2) differentiable (at-right x)
   x>i \implies x \leq b \implies (\lambda t. integral \{i..t\} f2) differentiable (at-left x)
   for x
   by auto
  have (\lambda u. integral \{a..u\} f) differentiable at x if a < x x < b x \neq i x \notin I for x
  proof -
   from that consider x < i \mid i < x by arith
   then show ?thesis
   proof cases
      case 1
      have at: at x within \{a < ... < i\} - I = at x
       using that 1
       by (intro at-within-open) (auto intro!: open-Diff finite-imp-closed \langle finite I\rangle)
      then have (\lambda u. integral \{a..u\} f1) differentiable at x within \{a < ... < i\} - I
       using that 1 f1 by auto
      then have (\lambda u. integral \{a..u\} f) differentiable at x within \{a<...< i\} - I
       apply (rule differentiable-transform-within[OF - zero-less-one])
       using that combine.hyps 1 by (auto intro!: integral-cong)
      then show ?thesis by (simp add: at)
   next
      case 2
      have at: at x within \{i < ... < b\} - I = at x
       using that 2
       by (intro at-within-open) (auto intro!: open-Diff finite-imp-closed \langle finite\ I \rangle)
     then have (\lambda u. integral \{a...i\} f + integral \{i...u\} f2) differentiable at x within
\{i < ... < b\} - I
        using that 2 f2 by auto
     then have (\lambda u. integral \{a...i\} f + integral \{i...u\} f) differentiable at x within
\{i < .. < b\} - I
       \mathbf{apply}\ (\mathit{rule}\ \mathit{differentiable-transform-within}[\mathit{OF}\ -\ \mathit{zero-less-one}])
       using that combine.hyps 2 by (auto intro!: integral-spike[where S=\{i,x\}])
      then have (\lambda u. integral \{a..u\} f) differentiable at x within \{i < ... < b\} - I
       \mathbf{apply}\ (\mathit{rule}\ \mathit{differentiable-transform-within}[\mathit{OF}\ -\ \mathit{zero-less-one}])
       subgoal using that 2 by auto
       apply auto
       apply (subst Henstock-Kurzweil-Integration.integral-combine)
       using that 2 \langle a \leq i \rangle
```

```
apply auto
      by (auto intro: integrable-on-subinterval f-int)
     then show ?thesis by (simp add: at)
   qed
 ged
 moreover
 have (\lambda t. integral \{a...t\} f) differentiable at-right x if a \le x x < b for x
  proof -
   from that consider x < i \mid i \le x by arith
   then show ?thesis
   proof cases
     case 1
     have at: at x within \{x..i\} = at\text{-right } x
       using \langle x < i \rangle by (rule at-within-Icc-at-right)
     then have (\lambda u. integral \{a..u\} f1) differentiable at x within \{x..i\}
       using that 1 f1 by auto
     then have (\lambda u. integral \{a..u\} f) differentiable at x within \{x..i\}
       apply (rule differentiable-transform-within[OF - zero-less-one])
       using that combine.hyps 1 by (auto intro!: integral-spike[where S=\{i,x\}])
     then show ?thesis by (simp add: at)
   next
     case 2
     have at: at x within \{x..b\} = at-right x
       using \langle x < b \rangle by (rule at-within-Icc-at-right)
    then have (\lambda u. integral \{a...i\} f + integral \{i...u\} f2) differentiable at x within
\{x..b\}
       using that 2 f2 by auto
     then have (\lambda u. integral \{a...i\} f + integral \{i...u\} f) differentiable at x within
\{x..b\}
       apply (rule differentiable-transform-within[OF - zero-less-one])
       using that combine.hyps 2 by (auto intro!: integral-spike[where S=\{i,x\}])
     then have (\lambda u. integral \{a..u\} f) differentiable at x within \{x..b\}
       apply (rule differentiable-transform-within[OF - zero-less-one])
      subgoal using that 2 by auto
       apply auto
       apply (subst Henstock-Kurzweil-Integration.integral-combine)
       using that 2 \langle a \leq i \rangle
       apply auto
       by (auto intro: integrable-on-subinterval f-int)
     then show ?thesis by (simp add: at)
   qed
 qed
 moreover
 have (\lambda t. integral \{a..t\} f) differentiable at-left x if a < x x \le b for x
   from that consider x \leq i \mid i < x by arith
   then show ?thesis
   proof cases
     case 1
```

```
have at: at x within \{a..x\} = at\text{-left } x
       using \langle a < x \rangle by (rule at-within-Icc-at-left)
     then have (\lambda u. integral \{a..u\} f1) differentiable at x within \{a..x\}
       using that 1 f1 by auto
     then have (\lambda u. integral \{a..u\} f) differentiable at x within \{a..x\}
       apply (rule differentiable-transform-within[OF - zero-less-one])
       using that combine.hyps 1 by (auto intro!: integral-spike[where S=\{i,x\}])
     then show ?thesis by (simp add: at)
   next
     case 2
     have at: at x within \{i..x\} = at\text{-left } x
       using \langle i < x \rangle by (rule at-within-Icc-at-left)
    then have (\lambda u. integral \{a...i\} f + integral \{i...u\} f2) differentiable at x within
\{i..x\}
       using that 2 f2 by auto
     then have (\lambda u. integral \{a...i\} f + integral \{i...u\} f) differentiable at x within
       apply (rule differentiable-transform-within[OF - zero-less-one])
       using that combine.hyps 2 by (auto intro!: integral-spike[where S=\{i,x\}])
     then have (\lambda u. integral \{a..u\} f) differentiable at x within \{i..x\}
       apply (rule differentiable-transform-within[OF - zero-less-one])
       subgoal using that 2 by auto
       apply auto
       apply (subst Henstock-Kurzweil-Integration.integral-combine)
       using that 2 \langle a \leq i \rangle
       apply auto
       by (auto intro: integrable-on-subinterval f-int)
     then show ?thesis by (simp add: at)
   qed
  qed
  ultimately
  show ?case
   by auto
next
  case (weaken a \ b \ i \ I f)
  from weaken.IH[OF \langle a < b \rangle]
  obtain l u where IH:
   \bigwedge x. \ a < x \Longrightarrow x < b \Longrightarrow x \notin I \Longrightarrow (\lambda u. integral \{a..u\} f) \ differentiable (at x)
   \bigwedge x. \ a \leq x \Longrightarrow x < b \Longrightarrow (\lambda t. \ integral \{a..t\} \ f) \ differentiable (at-right \ x)
   \bigwedge x. \ a < x \Longrightarrow x \le b \Longrightarrow (\lambda t. \ integral \{a..t\} \ f) \ differentiable (at-left x)
   by metis
  then show ?case by auto
qed
lemma closure (-S) \cap closure S = frontier S
 by (auto simp add: frontier-def closure-complement)
{\bf theorem}\ integral\mbox{-}time\mbox{-}domain\mbox{-}has\mbox{-}laplace:
  ((\lambda t. integral \{0 ... t\} f) has-laplace L / s) s
```

```
if pc: \bigwedge k. piecewise-continuous-on 0 k D f
   and eo: exponential-order M c f
   and L: (f has-laplace L) s
   and s: Re \ s > c
   and c: c > 0
   and TODO: D = \{\} — TODO: generalize to actual piecewise-continuous-on
  for f::real \Rightarrow complex
proof -
  define I where I = (\lambda t. integral \{0 ... t\} f)
  have I': (I has-vector-derivative f t) (at t within <math>\{0..x\} - D)
   \mathbf{if}\ t \in \{\theta\ ..\ x\} - D
   for x t
   unfolding I-def
   \mathbf{by}\ (\mathit{rule\ integral-has-vector-derivative-piecewise-continuous;\ fact})
 have f: f integrable-on \{0..t\} for t
   by (rule piecewise-continuous-on-integrable) fact
 have Ic: continuous-on \{\theta ... t\} I for t
   unfolding I-def using fi
   by (rule indefinite-integral-continuous-1)
  have Ipc: piecewise-continuous-on 0\ t\ \{\}\ I for t
   by (rule piecewise-continuous-onI) (auto intro!: Ic)
  have I: (f has\text{-}integral \ I \ t) \ \{\theta \ .. \ t\} for t
   unfolding I-def
   using fi
   by (rule integrable-integral)
  from exponential-order-integral [OF I eo \langle 0 < c \rangle] obtain M'
   where Ieo: exponential-order M' c I.
  have Ili: laplace-integrand I s integrable-on <math>\{0..\}
   using Ipc
   apply (rule \ piecewise-continuous-on-AE-boundedE)
   apply (rule laplace-integrand-integrable)
   apply (rule Ieo)
     apply assumption
    apply (rule integrable-continuous-interval)
    apply (rule Ic)
   apply (rule\ s)
   done
  then obtain LI where LI: (I has-laplace LI) s
   by (rule laplace-exists-laplace-integrandI)
  from piecewise-continuous-on E[OF pc] have \langle finite D \rangle by auto
  have I'2: (I has-vector-derivative f t) (at t) if t > 0 t \notin D for t
   apply (subst at-within-open[symmetric, where S = \{0 < ... < t+1\} - D])
   subgoal using that by auto
   subgoal by (auto intro!: open-Diff finite-imp-closed \langle finite D\rangle)
   subgoal using I'[where x=t+1]
     apply (rule has-vector-derivative-within-subset)
     using that
     by auto
```

```
done
  have I-tndsto: (I \longrightarrow \theta) (at\text{-}right \ \theta)
    apply (rule tendsto-eq-rhs)
    apply (rule continuous-on-Icc-at-rightD)
     apply (rule Ic)
    apply (rule zero-less-one)
    by (auto simp: I-def)
  have (f has-laplace s * LI - \theta) s
    by (rule has-laplace-derivative-time-domain[OF LI I'2 I-tndsto Ieo s])
      (auto simp: TODO)
  from has-laplace-unique[OF this L] have LI = L / s
    using s c by auto
  with LI show (I has-laplace L / s) s by simp
qed
4.4
        higher derivatives
definition nderiv if X = ((\lambda f. (\lambda x. vector-derivative f (at x within X)))^{i}) f
definition ndiff \ n \ f \ X \longleftrightarrow (\forall \ i < n. \ \forall \ x \in X. \ nderiv \ i \ f \ X \ differentiable \ at \ x \ within
lemma nderiv\text{-}zero[simp]: nderiv \ 0 \ f \ X = f
 \mathbf{by}\ (\mathit{auto}\ \mathit{simp} \colon \mathit{nderiv-def})
lemma nderiv\text{-}Suc[simp]:
  nderiv (Suc i) f X x = vector-derivative (nderiv i f X) (at x within X)
  by (auto simp: nderiv-def)
lemma ndiff-zero[simp]: ndiff 0 f X
  by (auto simp: ndiff-def)
lemma ndiff-Sucs[simp]:
  ndiff (Suc i) f X \longleftrightarrow
    (ndiff\ i\ f\ X)\ \land
    (\forall x \in X. (nderiv \ if \ X) \ differentiable (at \ x \ within \ X))
  apply (auto simp: ndiff-def)
  using less-antisym by blast
{f theorem}\ has-laplace-vector-derivative:
  ((\lambda t. \ vector-derivative \ f \ (at \ t)) \ has-laplace \ s*L-f0) \ s
  if L: (f has-laplace L) s
    and f': \Lambda t. t > 0 \Longrightarrow f differentiable (at t)
    and f\theta: (f \longrightarrow f\theta) (at\text{-right } \theta)
    and eo: exponential-order M c f
    and cs: c < Re s
proof -
 have f': (\bigwedge t. \ 0 < t \Longrightarrow (f \ has - vector - derivative \ vector - derivative \ f \ (at \ t)) \ (at \ t))
    using f'
```

```
by (subst vector-derivative-works[symmetric])
  show ?thesis
   by (rule has-laplace-derivative-time-domain[OF L f' f0 eo cs])
qed
{\bf lemma}\ has\text{-}laplace\text{-}nderiv:
  (nderiv n f \{0 < ...\} has-laplace s \hat{n} * L - (\sum i < n. s \hat{n} - Suc i) * f0 i)) s
  if L: (f has-laplace L) s
   and f': ndiff n f \{0 < ...\}
   and f\theta: \bigwedge i. i < n \Longrightarrow (nderiv \ if \ \{\theta < ...\} \longrightarrow f\theta \ i) \ (at\text{-right } \theta)
   and eo: \bigwedge i. i < n \Longrightarrow exponential\text{-}order\ M\ c\ (nderiv\ i\ f\ \{0<..\})
   and cs: c < Re s
  using f' f\theta eo
proof (induction n)
  case \theta
  then show ?case
   by (auto simp: L)
\mathbf{next}
  case (Suc \ n)
  have awo: at t within \{0 < ...\} = at \ t \ if \ t > 0 \ for \ t :: real
   using that
   by (subst at-within-open) auto
  have ((\lambda a. \ vector\ derivative \ (nderiv \ n \ f \ \{0<..\}) \ (at \ a)) \ has\ laplace
   s * (s ^n * L - (\sum i < n. s ^n * L - (\sum i < n. s ^n * L - Suc i) * f0 i)) - f0 n) s
   (is (-has-laplace ?L) -)
   apply (rule has-laplace-vector-derivative)
       apply (rule Suc.IH)
   subgoal using Suc. prems by auto
   subgoal using Suc. prems by auto
   subgoal using Suc. prems by auto
   subgoal using Suc. prems by (auto simp: awo)
   subgoal using Suc. prems by auto
    apply (rule Suc.prems; force)
   apply (rule cs)
   done
  also have ?L = s \cap Suc \ n * L - (\sum i < Suc \ n. \ s \cap (Suc \ n - Suc \ i) * f0 \ i)
   by (auto simp: algebra-simps sum-distrib-left diff-Suc Suc-diff-le
       split: nat.splits
       intro!: sum.cong)
  finally show ?case
   by (rule has-laplace-spike[where T=\{0\}]) (auto simp: awo)
qed
end
```

5 Lerch Lemma

theory Lerch-Lemma imports

```
begin
The main tool to prove uniqueness of the Laplace transform.
lemma lerch-lemma-real:
  fixes h::real \Rightarrow real
 assumes h-cont[continuous-intros]: continuous-on \{0 ... 1\} h
 assumes int-0: \bigwedge n. ((\lambda u. u \cap n * h u) has-integral 0) {0 .. 1}
 assumes u: 0 \le u u \le 1
 shows h u = 0
proof -
  from Stone-Weierstrass-uniform-limit[OF compact-Icc h-cont]
 obtain g where g: uniform-limit \{0..1\} g h sequentially polynomial-function (g
n) for n
   by blast
  then have rpf-g: real-polynomial-function (g \ n) for n
   by (simp add: real-polynomial-function-eq)
 let ?P = \lambda n \ x. \ h \ x * g \ n \ x
 have continuous-on-g[continuous-intros]: continuous-on s (g n) for s n
   by (rule continuous-on-polymonial-function) fact
 have P-cont: continuous-on \{0 ... 1\} (?P n) for n
   by (auto intro!: continuous-intros)
 have uniform-limit \{0 ... 1\} (\lambda n \ x. \ h \ x * g \ n \ x) (\lambda x. \ h \ x * h \ x) sequentially
  by (auto intro!: uniform-limit-intros g assms compact-imp-bounded compact-continuous-image)
  from uniform-limit-integral [OF this P-cont]
  obtain IJ where
   I: (\bigwedge n. (?P \ n \ has\text{-integral} \ I \ n) \{0..1\})
   and J: ((\lambda x. \ h \ x * h \ x) \ has-integral \ J) \{0...1\}
   and IJ: I \longrightarrow J
   by auto
  have (?P \ n \ has\text{-}integral \ \theta) {\theta...1} for n
  proof -
   from real-polynomial-function-imp-sum[OF rpf-g]
   obtain gn\ ga\ \text{where}\ g\ n=(\lambda x.\ \sum i\leq gn.\ ga\ i*x\ \widehat{\ }i) by metis then have ?P\ n\ x=(\sum i\leq gn.\ x\ \widehat{\ }i*h\ x*ga\ i) for x
     by (auto simp: sum-distrib-left algebra-simps)
   moreover have ((\lambda x....x) has\text{-}integral 0) \{0...1\}
    by (auto intro!: has-integral-sum[THEN has-integral-eq-rhs] has-integral-mult-left
assms)
   ultimately show ?thesis by simp
  qed
  with I have I n = \theta for n
   using has-integral-unique by blast
  with IJ J have ((\lambda x. \ h \ x * h \ x) \ has\text{-}integral \ \theta) \ (cbox \ \theta \ 1)
  by (metis (full-types) LIMSEQ-le-const LIMSEQ-le-const2 box-real(2) dual-order antisym
order-refl)
```

HOL-Analysis. Analysis

```
with - - have h u * h u = 0
   by (rule has-integral-0-cbox-imp-0) (auto intro!: continuous-intros u)
  then show h u = 0
   by simp
qed
lemma lerch-lemma:
 fixes h::real \Rightarrow 'a::euclidean-space
 assumes [continuous-intros]: continuous-on \{0 ... 1\} h
 assumes int-\theta: \bigwedge n. ((\lambda u. u \cap n *_R h u) has-integral \theta) {\theta ... 1}
 assumes u: 0 \le u u \le 1
 shows h u = 0
proof (rule euclidean-eqI)
 fix b::'a assume b \in Basis
 have continuous-on \{0 ... 1\} (\lambda x. h x \cdot b)
   by (auto intro!: continuous-intros)
 moreover
 from \langle b \in Basis \rangle have ((\lambda u.\ u \cap n * (h\ u \cdot b))\ has-integral\ \theta) \ \{\theta\ ..\ 1\} for n
    using int-0[of n] has-integral-componentwise-iff[of \lambda u. u \cap n *_R h u \theta \{\theta ... \}
1}]
   by auto
 moreover note u
 ultimately show h \ u \cdot b = \theta \cdot b
   unfolding inner-zero-left
   by (rule lerch-lemma-real)
qed
end
      Uniqueness of Laplace Transform
6
theory Uniqueness
 imports
   Existence
   Lerch-Lemma
begin
We show uniqueness of the Laplace transform for continuous functions.
lemma laplace-transform-zero:— should also work for piecewise continuous
 assumes cont-f: continuous-on \{0...\} f
 assumes eo: exponential-order M a f
 assumes laplace: \bigwedge s. Re s > a \Longrightarrow (f has\text{-laplace } 0) s
 assumes t \geq \theta
```

by (auto introl: compact-imp-bounded compact-continuous-image cont-f intro:

define I where $I \equiv \lambda s \ k$. integral $\{0..k\}$ (laplace-integrand f s)

have bounded-image: bounded $(f ` \{0..b\})$ for b

shows f t = 0

continuous-on-subset)

proof -

```
obtain B where B: \forall x \in \{0..b\}. cmod(fx) \leq Bb for b
      apply atomize-elim
      apply (rule choice)
      using bounded-image[unfolded bounded-iff]
      by auto
   have fi: f integrable-on \{0..b\} for b
    by (auto intro!: integrable-continuous-interval intro: continuous-on-subset cont-f)
   have aint: complex-set-integrable lebesque \{0..b\} (laplace-integrand f s) for b s
      by (rule laplace-integrand-absolutely-integrable-on-Icc[OF]
                  AE-BallI[OF\ bounded-le-Sup[OF\ bounded-image]]\ fi])
   have int: ((\lambda t. exp (t *_R - s) * f t) has\text{-integral } I s b) \{0 ... b\}  for s b
      using aint[of \ b \ s]
      unfolding laplace-integrand-def[symmetric] I-def absolutely-integrable-on-def
      by blast
   have I-integral: Re s > a \Longrightarrow (I \ s \longrightarrow integral \ \{0..\} \ (laplace-integrand \ f \ s))
at-top for s
      unfolding I-def
     by (metis aint eo improper-integral-at-top laplace-integrand-absolutely-integrable-on-Ici-iff)
   have imp: (I s \longrightarrow 0) at-top if s: Re \ s > a for s
      using I-integral of s laplace unfolded has-laplace-def, rule-format, OF s s
      unfolding has-laplace-def I-def laplace-integrand-def
      by (simp add: integral-unique)
   define s\theta where s\theta = a + 1
   then have s\theta > a by auto
   have \forall_F x \text{ in at-right } (0::real). 0 < x \land x < 1
      by (auto intro!: eventually-at-rightI)
   moreover
   from exponential-orderD(2)[OF\ eo]
   have \forall_F t in at-right 0. cmod (f(-\ln t)) \leq M * exp(a * (-\ln t))
      unfolding at-top-mirror filtermap-ln-at-right[symmetric] eventually-filtermap.
   ultimately have \forall_F \ x \ in \ at\text{-right } 0. \ cmod \ ((x \ powr \ s\theta) * f \ (-ln \ x)) \leq M * x
powr (s\theta - a)
      (is \forall_F x in -. ?l x \leq ?r x)
   proof eventually-elim
      case x: (elim x)
       then have cmod((x powr s0) * f(-ln x)) \le x powr s0 * (M * exp(a * (-ln x))) \le x powr s0 * (M * exp(a * (-ln x))) \le x powr s0 * (M * exp(a * (-ln x))) \le x powr s0 * (M * exp(a * (-ln x))) \le x powr s0 * (M * exp(a * (-ln x))) \le x powr s0 * (M * exp(a * (-ln x))) \le x powr s0 * (M * exp(a * (-ln x))) \le x powr s0 * (M * exp(a * (-ln x))) \le x powr s0 * (M * exp(a * (-ln x))) \le x powr s0 * (M * exp(a * (-ln x))) \le x powr s0 * (M * exp(a * (-ln x))) \le x powr s0 * (M * exp(a * (-ln x))) \le x powr s0 * (M * exp(a * (-ln x))) \le x powr s0 * (M * exp(a * (-ln x))) \le x powr s0 * (M * exp(a * (-ln x))) \le x powr s0 * (M * exp(a * (-ln x))) \le x powr s0 * (M * exp(a * (-ln x))) \le x powr s0 * (M * exp(a * (-ln x))) \le x powr s0 * (M * exp(a * (-ln x))) \le x powr s0 * (M * exp(a * (-ln x))) \le x powr s0 * (M * exp(a * (-ln x))) \le x powr s0 * (M * exp(a * (-ln x))) \le x powr s0 * (M * exp(a * (-ln x))) \le x powr s0 * (M * exp(a * (-ln x))) \le x powr s0 * (M * exp(a * (-ln x))) \le x powr s0 * (M * exp(a * (-ln x))) \le x powr s0 * (M * exp(a * (-ln x))) \le x powr s0 * (M * exp(a * (-ln x))) \le x powr s0 * (M * exp(a * (-ln x))) \le x powr s0 * (M * exp(a * (-ln x))) \le x powr s0 * (M * exp(a * (-ln x))) \le x powr s0 * (M * exp(a * (-ln x))) \le x powr s0 * (M * exp(a * (-ln x))) \le x powr s0 * (M * exp(a * (-ln x))) \le x powr s0 * (M * exp(a * (-ln x))) \le x powr s0 * (M * exp(a * (-ln x))) \le x powr s0 * (M * exp(a * (-ln x))) \le x powr s0 * (M * exp(a * (-ln x))) \le x powr s0 * (M * exp(a * (-ln x))) \le x powr s0 * (M * exp(a * (-ln x))) \le x powr s0 * (M * exp(a * (-ln x))) \le x powr s0 * (M * exp(a * (-ln x))) \le x powr s0 * (M * exp(a * (-ln x))) \le x powr s0 * (M * exp(a * (-ln x))) \le x powr s0 * (M * exp(a * (-ln x))) \le x powr s0 * (M * exp(a * (-ln x))) \le x powr s0 * (M * exp(a * (-ln x))) \le x powr s0 * (M * exp(a * (-ln x))) \le x powr s0 * (M * exp(a * (-ln x))) \le x powr s0 * (M * exp(a * (-ln x))) \le x powr s0 * (M * exp(a * (-ln x))) \le x powr s0 * (M * exp(a * (-ln x))) \le x powr s0 * (M * exp(a * (-ln x))) \le x powr s0 * (M * exp(a * (-ln x))) \le x pow
ln(x)))
            by (intro norm-mult-ineq[THEN order-trans]) (auto intro!: x(2)[THEN or-
der-trans)
      also have ... = M * x powr (s\theta - a)
          by (simp add: exp-minus ln-inverse divide-simps powr-def mult-exp-exp alge-
bra-simps)
      finally show ?case.
   qed
   then have ((\lambda x. \ x \ powr \ s\theta * f \ (- \ ln \ x)) \longrightarrow \theta) \ (at\text{-right } \theta)
      by (rule Lim-null-comparison)
          (auto intro!: tendsto-eq-intros \langle a < s0 \rangle eventually-at-right I zero-less-one)
   moreover have \forall_F \ x \ in \ at \ x. \ ln \ x \leq 0 \ if \ 0 < x \ x < 1 \ for \ x::real
```

```
using order-tendstoD(1)[OF tendsto-ident-at \langle 0 < x \rangle, of UNIV]
     order-tendstoD(2)[OF\ tendsto-ident-at \langle x < 1 \rangle, of UNIV]
   by eventually-elim simp
  ultimately have [continuous-intros]:
    continuous-on \{0..1\} (\lambda x. \ x \ powr \ s0 * f \ (- \ ln \ x))
   by (intro continuous-on-IccI;
          force introl: continuous-on-tendsto-compose[OF cont-f] tendsto-eq-intros
eventually-at-leftI
       zero-less-one)
   \mathbf{fix} \ n :: nat
   let ?i = (\lambda u. \ u \cap n *_R (u \ powr \ s0 *_f (-ln \ u)))
   let ?I = \lambda n \ b. integral \{exp \ (-b)... \ 1\} ?i
   have \forall_F (b::real) in at-top. b > 0
     by (simp add: eventually-qt-at-top)
   then have \forall_F b in at-top. I (s0 + Suc \ n) b = ?I n b
   proof eventually-elim
     case (elim b)
     have eq: exp (t *_R - complex-of-real (s0 + real (Suc n))) * f t =
       complex-of-real\ (exp\ (-\ (real\ n\ *\ t))\ *\ exp\ (-\ t)\ *\ exp\ (-\ (s0\ *\ t)))\ *\ f\ t
       by (auto simp: Euler mult-exp-exp algebra-simps simp del: of-real-mult)
     from int[of s0 + Suc n b]
     have int': ((\lambda t. exp (-(n * t)) * exp (-t) * exp (-(s0 * t)) * f t)
         has-integral I(s0 + Suc n) b) \{0..b\}
       (is (?fe has-integral -) -)
       unfolding eq.
     have ((\lambda x. - exp (-x) *_R exp (-x) ^n *_R (exp (-x) powr s0 * f (-ln)))
(exp(-x))))
         has-integral
          integral \{exp (-0)..exp (-b)\} ?i - integral \{exp (-b)..exp (-0)\} ?i)
\{\theta..b\}
        by (rule has-integral-substitution-general of \{\}\ 0\ b\ \lambda t.\ exp(-t)\ 0\ 1\ ?i\ \lambda x.
-exp(-x)])
       (auto intro!: less-imp-le[OF \land b > 0 \land] continuous-intros integrable-continuous-real
            derivative-eq-intros)
     then have (?fe has-integral ?I \ n \ b) \{0..b\}
       using \langle b > \theta \rangle
           by (auto simp: algebra-simps mult-exp-exp exp-of-nat-mult[symmetric]
scaleR-conv-of-real
           exp-add powr-def of-real-exp has-integral-neg-iff)
     with int' show ?case
       by (rule has-integral-unique)
   qed
   moreover have (I (s\theta + Suc n) \longrightarrow \theta) at-top
     by (rule imp) (use \langle s\theta \rangle a \rangle in auto)
   ultimately have (?I n \longrightarrow \theta) at-top
     by (rule Lim-transform-eventually[rotated])
   then have 1: ((\lambda x. integral \{exp (ln x)...1\} ?i) \longrightarrow 0) (at-right 0)
```

```
unfolding at-top-mirror filtermap-ln-at-right[symmetric] filtermap-filtermap
filter lim-filter map
     \mathbf{by} \ simp
   have \forall_F x \text{ in at-right } \theta. x > \theta
     by (simp add: eventually-at-filter)
   then have \forall_F \ x \ in \ at\text{-right } 0. \ integral \ \{exp\ (ln\ x)..1\} \ ?i = integral \ \{x\ ..\ 1\} \ ?i
     by eventually-elim (auto simp:)
   from Lim-transform-eventually[OF 1 this]
   have ((\lambda x. integral \{x...1\} ?i) \longrightarrow \theta) (at\text{-right } \theta)
     by simp
   moreover
   have ?i integrable-on \{0..1\}
     by (force intro: continuous-intros integrable-continuous-real)
   from continuous-on-Icc-at-rightD[OF indefinite-integral-continuous-1'[OF this]
zero-less-one]
   have ((\lambda x. integral \{x...1\} ?i) \longrightarrow integral \{0...1\} ?i) (at\text{-right } 0)
     by simp
   ultimately have integral \{0 ... 1\} ?i = 0
     by (rule tendsto-unique[symmetric, rotated]) simp
   then have (?i has\text{-}integral 0) \{0 ... 1\}
     using integrable-integral \langle ?i integrable-on \{0..1\} \rangle
     by (metis (full-types))
  } from lerch-lemma[OF - this, of exp(-t)]
  \mathbf{show}\ f\ t = \theta\ \mathbf{using}\ \langle t \geq \theta \rangle
   by (auto intro!: continuous-intros)
qed
lemma exponential-order-eventually-eq: exponential-order M a f
 if exponential-order M a g \land t. t \ge k \Longrightarrow f t = g t
proof -
 have \forall_F \ t \ in \ at\text{-top.} \ f \ t = g \ t
   using that
   unfolding eventually-at-top-linorder
   by blast
  with exponential-order D(2)[OF\ that(1)]
  have (\forall_F \ t \ in \ at\text{-}top. \ norm \ (f \ t) \leq M * exp \ (a * t))
   by eventually-elim auto
  with exponential-orderD(1)[OF\ that(1)]
  show ?thesis
   by (rule exponential-orderI)
\mathbf{qed}
lemma exponential-order-mono:
  assumes eo: exponential-order M a f
 assumes a \leq b M \leq N
 shows exponential-order N b f
proof (rule exponential-orderI)
  from exponential-orderD[OF\ eo]\ assms(3)
  show 0 < N by simp
```

```
have \forall_F \ t \ in \ at\text{-top.} \ (t::real) > 0
   by (simp add: eventually-gt-at-top)
  then have \forall_F \ t \ in \ at\text{-}top. \ M*exp\ (a*t) \leq N*exp\ (b*t)
   by eventually-elim
     (use \langle 0 < N \rangle in \langle force\ intro:\ mult-mono\ assms \rangle)
  with exponential-orderD(2)[OF\ eo]
 show \forall_F t in at-top. norm (f t) \leq N * exp(b * t)
   by (eventually-elim) simp
qed
lemma exponential-order-uninus-iff:
  exponential-order M a (\lambda x. - f x) = exponential-order M a f
 by (auto simp: exponential-order-def)
lemma exponential-order-add:
 assumes exponential-order M a f exponential-order M a q
 shows exponential-order (2 * M) a (\lambda x. f x + g x)
 using assms
 apply (auto simp: exponential-order-def)
  subgoal premises prems
   using prems(1,3)
   apply (eventually-elim)
   apply (rule norm-triangle-le)
   by linarith
  done
theorem laplace-transform-unique:
 assumes f: \land s. Re s > a \Longrightarrow (f has\text{-laplace } F) s
 assumes g: \land s. Re \ s > b \Longrightarrow (g \ has\text{-laplace} \ F) \ s
 assumes [continuous-intros]: continuous-on \{0..\} f
 assumes [continuous-intros]: continuous-on \{0...\} g
 assumes eof: exponential-order M a f
 assumes eog: exponential - order \ N \ b \ g
 assumes t \geq \theta
 shows f t = g t
proof -
  define c where c = max \ a \ b
  define L where L = max M N
  from eof have eof: exponential-order L c f
   by (rule exponential-order-mono) (auto simp: L-def c-def)
  from eog have eog: exponential-order L c (\lambda x. - g x)
   unfolding exponential-order-uninus-iff
   by (rule exponential-order-mono) (auto simp: L-def c-def)
  from exponential-order-add[OF eof eog]
 have eom: exponential-order (2 * L) c (\lambda x. f x - g x)
   by simp
 have l\theta: ((\lambda x. f x - g x) has-laplace \theta) s if Re s > c for s
   using has-laplace-minus [OF f g, of s] that by (simp add: c-def max-def split:
if-splits)
```

```
have f \ t - g \ t = 0
by (rule laplace-transform-zero[OF - eom l0 \ \langle t \geq 0 \rangle])
(auto intro!: continuous-intros)
then show ?thesis by simp
qed
end
theory Laplace-Transform
imports
Existence
Uniqueness
begin
```

References

- [1] A. Rashid and O. Hasan. Formalization of transform methods using HOLăLight. In H. Geuvers, M. England, O. Hasan, F. Rabe, and O. Teschke, editors, *Intelligent Computer Mathematics*, pages 319–332, Cham, 2017. Springer International Publishing.
- [2] A. Rashid and O. Hasan. Formalization of Lerch's theorem using HOL Light. FLAP, 5(8):1623–1652, 2018.
- [3] J. L. Schiff. *The Laplace transform: theory and applications*. Springer New York, 1999.
- [4] S. H. Taqdees and O. Hasan. Formalization of Laplace transform using the multivariable calculus theory of HOL-Light. In K. McMillan, A. Middeldorp, and A. Voronkov, editors, *Logic for Programming, Artificial Intelligence, and Reasoning*, pages 744–758, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.