Laplace Transform

Fabian Immler

March 17, 2025

Abstract

This entry formalizes the Laplace transform and concrete Laplace
transforms for arithmetic functions, frequency shift, integration and
(higher) differentiation in the time domain. It proves Lerch’s lemma
and uniqueness of the Laplace transform for continuous functions. In
order to formalize the foundational assumptions, this entry contains a
formalization of piecewise continuous functions and functions of expo-
nential order.

Contents

1 References 2

2 Library Additions 2
2.1 Derivatives e 2
2.2 Integrals 2
2.3 Miscellaneous 7

3 Piecewise Continous Functions 7
3.1 at withinfilters L. 7
3.2 intervals 8

4 Existence 20
4.1 Definition 20
4.2 Condition for Existence: Exponential Order 21
4.3 Concrete Laplace Transforms 26
4.4 higher derivatives L oo 42

5 Lerch Lemma 43

6 Uniqueness of Laplace Transform 45

theory Laplace-Transform-Library

imports

HOL— Analysis. Analysis

begin

1 References

Much of this formalization is based on Schiff’s textbook [3]. Parts of this
formalization are inspired by the HOL-Light formalization ([4], [1], [2]), but
stated more generally for piecewise continuous (instead of piecewise contin-
uously differentiable) functions.

2 Library Additions

2.1 Derivatives

lemma DERIV-compose-FDERIV:— TODO: generalize and move from HOL-
ODE

assumes DERIV f (g z) :> f'

assumes (g has-derivative g') (at x within s)

shows ((Az. f (g)) has-derivative (Az. g’ x = f')) (at © within s)

using assms has-derivative-composelof g ' z s f (x) [

by (auto simp: has-field-derivative-def ac-simps)

lemmas has-derivative-sin[derivative-intros] = DERIV-sin[THEN DERIV-compose-FDERIV|
and has-derivative-cos|derivative-intros]| = DERIV-cos| THEN DERIV-compose-FDERIV]
and has-derivative-exp|[derivative-intros| = DERIV-exp| THEN DERIV-compose-FDERIV|

2.2 Integrals

lemma negligible-real-ivll:
fixes a b::real
assumes a > b
shows negligible {a .. b}
proof —
from assms have {a .. b} = {a} V {a .. b} = {}
by auto
then show ?thesis
by auto
qed

lemma absolutely-integrable-on-combine:
fixes [:: real = 'a::euclidean-space
assumes | absolutely-integrable-on {a..c}
and f absolutely-integrable-on {c..b}
and a < ¢
and ¢ < b
shows f absolutely-integrable-on {a..b}
using assms
unfolding absolutely-integrable-on-def integrable-on-def
by (auto intro!: has-integral-combine)

lemma dominated-convergence-at-top:

fixes [:: real = 'n::euclidean-space = 'm::euclidean-space
assumes f: Ak. (f k) integrable-on s and h: h integrable-on s
and le: Nk z. z € s = norm (fkz) < hz
and conv: Vz € s. (Mk. fkz) —— g z) at-top
shows g integrable-on s ((A\k. integral s (f k)) —— integral s g) at-top
proof —
have 3: set-integrable lebesgue s h
unfolding absolutely-integrable-on-def
proof
show (Az. norm (h z)) integrable-on s
proof (intro integrable-spike-finite|OF - - h, where S={}] balll)
fix assume z € s — {} then show norm (hz) =hz
using order-trans|OF norm-ge-zero le[of z]] by auto
qed auto
qged fact
have 2: set-borel-measurable lebesgque s (f k) for k
using f[of k]
using has-integral-implies-lebesque-measurable|of f k]
by (auto intro: simp: integrable-on-def set-borel-measurable-def)
have conv”: Vz € s. (Mk. fkz) —— g x) sequentially
using conv filterlim-filtermap filterlim-compose filterlim-real-sequentially by
blast
from 2 have 1: set-borel-measurable lebesgue s g
unfolding set-borel-measurable-def
by (rule borel-measurable-LIMSEQ-metric) (use conv’ in <auto split: split-indicator)
have /: AF x in lebesgue. ((Ai. indicator s x xr f i x) —— indicator s x %R g
x) at-top
YV i in at-top. AE x in lebesque. norm (indicator s x xg f i z) < indicator s ©
*R hx
using conv le by (auto introl: always-eventually split: split-indicator)

note 1 2 8 4
note x = this[unfolded set-borel-measurable-def set-integrable-def]
have g: g absolutely-integrable-on s
unfolding set-integrable-def
by (rule integrable-dominated-convergence-at-top[OF x])
then show g integrable-on s
by (auto simp: absolutely-integrable-on-def)
have ((\k. (LINT x:s|lebesque. f k x)) —— (LINT x:s|lebesgue. g x)) at-top
unfolding set-lebesgue-integral-def
using x
by (rule integral-dominated-convergence-at-top)
then show ((\k. integral s (f k)) —— integral s g) at-top
using g absolutely-integrable-integrable-bound[OF le f h)
by (subst (asm) (1 2) set-lebesgue-integral-eq-integral) auto
qed

lemma has-integral-dominated-convergence-at-top:
fixes [:: real = 'n::euclidean-space = 'm::euclidean-space

assumes Ak. (f k has-integral y k) s h integrable-on s
Nk z. z€s = norm (fkz) < hax Vzes. (k. fkz) — gx) at-top
and z: (y ——) at-top
shows (g has-integral x) s
proof —
have int-f: N\k. (f k) integrable-on s
using assms by (auto simp: integrable-on-def)
have (g has-integral (integral s g)) s
by (intro integrable-integral dominated-convergence-at-top|OF int-f assms(2)])
fact+
moreover have integral s g = x
proof (rule tendsto-unique)
show ((\i. integral s (f 1)) ——) at-top
using integral-unique[OF assms(1)] = by simp
show ((Ai. integral s (f i)) —— integral s g) at-top
by (intro dominated-convergence-at-top|OF int-f assms(2)]) fact+
qed simp
ultimately show ?thesis
by simp
qed

lemma integral-indicator-eq-restriction:
fixes f::’a::euclidean-space = 'b::banach
assumes f: f integrable-on R
and RC S
shows integral S (Ax. indicator R x xg f) = integral R f
proof —
let ¢f = Ax. indicator R x xg fx
have ?f integrable-on R
using f negligible-empty
by (rule integrable-spike) auto
from integrable-integral| OF this]
have (?f has-integral integral R ?f) S
by (rule has-integral-on-superset) (use <R C S in (auto simp: indicator-def>)
also have integral R ?f = integral R f
using negligible-empty
by (rule integral-spike) auto
finally show ?thesis
by blast
qed

lemma

improper-integral-at-top:

fixes f::real = 'a::euclidean-space

assumes | absolutely-integrable-on {a..}

shows ((Az. integral {a..x} f) —— integral {a..} f) at-top
proof —

let ?2f = A(k::real) (t::real). indicator {a..k} t xg ft

have f: f integrable-on {a..k} for k

using set-lebesgue-integral-eg-integral(1)[OF assms)
by (rule integrable-on-subinterval) simp
from this negligible-empty have ?f k integrable-on {a..k} for k
by (rule integrable-spike) auto
from this have ?f k integrable-on {a..} for k
by (rule integrable-on-superset) auto
moreover
have (Az. norm (f z)) integrable-on {a..}
using assms by (simp add: absolutely-integrable-on-def)
moreover
note -
moreover
have V ¢ k in at-top. k > z for x::real
by (simp add: eventually-ge-at-top)
then have Vze{a..}. (Mk. 2f k 2) —— fx) at-top
by (auto intro!: Lim-transform-eventually[OF tendsto-const] simp: indicator-def
eventually-at-top-linorder)
ultimately
have ((Ak. integral {a..} (?f k)) —— integral {a ..} f) at-top
by (rule dominated-convergence-at-top) (auto simp: indicator-def)
also have (A\k. integral {a..} (2 k)) = (A\k. integral {a..k} f)
by (auto introl: ext integral-indicator-eq-restriction f)
finally show ?thesis .
qed

lemma norm-integrable-onl: (Az. norm (f x)) integrable-on S
if f absolutely-integrable-on S
for f::'a::euclidean-space="b::euclidean-space
using that by (auto simp: absolutely-integrable-on-def)

lemma
has-integral-improper-at-topl:
fixes f::real = 'a::banach
assumes [: YV g k in at-top. (f has-integral I k) {a..k}
assumes J: (I —— J) at-top
shows (f has-integral J) {a..}
apply (subst has-integral’)
proof (auto, goal-cases)
case (1 e)
from tendstoD[OF J <0 < e)]
have Vr z in at-top. dist (I z) J < e .
moreover have V p z in at-top. (z::real) > 0 by simp
moreover have YV z in at-top. (z::real) > — a— TODO: this seems to be
strange?
by simp
moreover note [
ultimately have Vg z in at-top. > 0 ANz > — a N dist (Tz) J < e A
(f has-integral I x) {a..x} by eventually-elim auto
then obtain k where k: V0>k. norm (Ib—J)<ek>0k>—a

and I: Ac. ¢ > k = (f has-integral I ¢) {a..c}
by (auto simp: eventually-at-top-linorder dist-norm)
show ?Zcase
apply (rule exI[where x=Fk))
apply (auto simp: <0 < k»)
subgoal premises prems for b ¢
proof —
have ball-eq: ball 0 k = {—k <..< k} by (auto simp: abs-real-def split: if-splits)
from prems <0 < k> have ¢ > 0b < 0
by (auto simp: subset-iff)
with prems <0 < k> have ¢ > k
apply (auto simp: ball-eq)
apply (auto simp: subset-iff)
apply (drule spec[where z=(c + k)/2])
apply (auto simp: algebra-split-simps not-less)
using <0 < ¢ by linarith
then have norm (I ¢ — J) < e using k by auto
moreover
from prems <0 < k> <¢ > 0> <b < 0> <¢c > k> <k > — a» have a > b
apply (auto simp: ball-eq)
apply (auto simp: subset-iff)
by (meson <b < 0) less-eg-real-def minus-less-iff not-le order-trans)
have ((Az. if x € cbox a ¢ then f x else 0) has-integral I ¢) (cbox b c)
apply (subst has-integral-restrict-closed-subintervals-eq)
using I[of ¢| prems <a > by <k < o
by (auto)
from negligible-empty - this have ((Az. if a < z then f z else 0) has-integral
I¢) (cbox b c)
by (rule has-integral-spike) auto
ultimately
show ?thesis
by (intro exzl[where z=I c]) auto
qed
done
qed

lemma has-integral-improperE:
fixes f::real = 'a::euclidean-space
assumes I: (f has-integral I) {a..}
assumes ai: [absolutely-integrable-on {a..}
obtains J where
Nk. (f has-integral J k) {a..k}
(J —— I) at-top
proof —
define J where J k = integral {a .. k} f for k
have (f has-integral J k) {a..k} for k
unfolding J-def
by (force intro: integrable-on-subinterval has-integral-integrable[OF I])
moreover

have I-def[symmetric|: integral {a..} f =1
using [by auto
from improper-integral-at-top| OF ai]
have (J —— 1) at-top
unfolding J-def I-def .
ultimately show %thesis ..
qed

2.3 Miscellaneous

lemma AFE-Balll: AEzeXin F. PzifVe e X. Px
using that by (intro always-eventually) auto

lemma bounded-le-Sup:

assumes bounded (f ‘ S)

shows VzeS. norm (f) < Sup (norm ‘ f < 5)

by (auto introl: cSup-upper bounded-imp-bdd-above simp: bounded-norm-comp
assms)

end

3 Piecewise Continous Functions

theory Piecewise-Continuous
imports
Laplace-Transform-Library
begin

3.1 at within filters

lemma at-within-self-singleton[simp|: at i within {i} = bot
by (auto intro!: antisym filter-lel simp: eventually-at-filter)

lemma at-within-t1-space-avoid:
(at z within X — {i}) = (at z within X) if # i for z i::'a::t1-space
proof (safe introl: antisym filter-lel)
fix P
assume eventually P (at x within X — {i})
moreover have eventually (Az. z # i) (nhds x)
by (rule t1-space-nhds) fact
ultimately
show eventually P (at z within X)
unfolding eventually-at-filter
by eventually-elim auto
qed (simp add: eventually-mono order.order-iff-strict eventually-at-filter)

lemma at-within-t1-space-avoid-finite:
(at x within X — I) = (at z within X) if finite [= ¢ I for x::'a::t1-space
using that

proof (induction I)
case (insert i I)
then show ?case
by auto (metis Diff-insert at-within-t1-space-avoid)
qed simp

lemma at-within-interior:

NO-MATCH (UNIV::'a set) (S::'a::topological-space set) = x € interior S =
at x within S = at x

by (rule at-within-interior)

3.2 intervals

lemma Compl-Icc: — {a .. b} = {..<a} U {b<..} for a b::'a::linorder
by auto

lemma interior-Icc[simp|: interior {a..b} = {a<..<b}
for a b::'a::{linorder-topology, dense-order, no-bot, no-top}
— TODO: is no-bot and no-top really required?
by (auto simp add: Compl-Icc interior-closure)

lemma closure-finite[simp): closure X = X if finite X for X::'a::t1-space set
using that
by (induction X) (simp-all add: closure-insert)

definition piecewise-continuous-on :: 'a::linorder-topology = 'a = 'a set = ('a =
'b::topological-space) = bool
where piecewise-continuous-on a b I f +—
(continuous-on ({a .. b} — I) f A finite I A
(Viel. (i € {a<..b} — (3. (f —— 1) (at-left 7)) A
(i € {a.<b} — Pu. (f —— u) (at-right 7)))))

lemma piecewise-continuous-on-subset:
piecewise-continuous-on a b I f = {c .. d} C {a .. b} = piecewise-continuous-on
cdlf

by (force simp add: piecewise-continuous-on-def intro: continuous-on-subset)

lemma piecewise-continuous-onk:

assumes piecewise-continuous-on a b I f

obtains [u

where finite I
and continuous-on ({a..b} — I) f
and (Ai. 1€l = a<i= (< b= (f —— [1) (at-left 7))
and (Ni. i€l = a<i= i< b= (f — ui) (at-right 7))

using assms

by (auto simp: piecewise-continuous-on-def Ball-def) metis

lemma piecewise-continuous-onl:
assumes finite I continuous-on ({a..b} — I) f

and (Ai. i €]l = a<i= i< b= (f —— 1) (at-left 7))
and (Ai. i€l = a<i= i< b= (f — u i) (at-right 7))
shows piecewise-continuous-on a b I f
using assms
by (force simp: piecewise-continuous-on-def)

lemma piecewise-continuous-onl”:
fixes a b::'a::{linorder-topology, dense-order, no-bot, no-top}
assumes finite I A\z. a < 2 = z < b = isCont fz
and a ¢ I = continuous (at-right a) f
and b ¢ I = continuous (at-left b) f
and (Ai. i €]l = a<i= i< b= (f —— 1) (at-left 7))
and (Ai. i€l = a<i= i< b= (f — u i) (at-right 7))
shows piecewise-continuous-on a b I f
proof (rule piecewise-continuous-onl)
have s ¢]| = a <1 = 2 < b= (f — f2) (at z within {a..b}) for z
using assms(2)[of z] assms(3,4)
by (cases a = x; cases b = x; cases x € {a<..<b})
(auto simp: at-within-Icc-at-left at-within-Icc-at-right isCont-def
continuous-within filterlim-at-split at-within-interior)
then show continuous-on ({a .. b} — I) f
by (auto simp: continuous-on-def <finite I at-within-t1-space-avoid-finite)
qed fact+

lemma piecewise-continuous-onk’:
fixes a b::'a::{linorder-topology, dense-order, no-bot, no-top}
assumes piecewise-continuous-on a b I f
obtains [u
where finite I
and A\z.a<z=z2s<b=z¢] = isCont fux
and (Az. a <z = 2 < b= (f —— [l z) (at-left z))
and (Az. e <z = 2 < b= (f —— u z) (at-right z))
and \z.a<z=z2<b=us¢]= fo=Ilx
and \v.a<z=2<b=c¢]= fr=ux
proof —
from piecewise-continuous-onE[OF assms] obtain [u
where finite I
and continuous: continuous-on ({a..b} — I) f
and left: (Ni. i€] = a<i= i< b= (f —— 117) (at-left i)
and right: (Ni. i1 €] = a < i= i< b= (f —— u i) (at-right 7))
by metis
define I’ where I’ z = (if x € I then | x else f z) for
define u’ where v’ z = (if x € I then u z else f z) for z
note «finite I»
moreover from continuous
have s <z = 2 < b= 1 ¢ I = isCont fz for z
by (rule continuous-on-interior) (auto simp: interior-diff «finite I»)
moreover
from continuous have ¢ < v = 2 < b=z ¢ I = (f —— fz) (at-left z)

for z
by (cases z = b)
(auto simp: continuous-on-def at-within-t1-space-avoid-finite <finite I
at-within-Icc-at-left at-within-interior filterlim-at-split
dest!: bspeclwhere r=z])
then have ¢« < z = ¢ < b = (f —— I’ z) (at-left z) for z
by (auto simp: l'-def left)
moreover
from continuous have ¢ < 1 = 2 < b=z ¢ [= (f —— fx) (at-right
z) for z
by (cases x = a)
(auto simp: continuous-on-def at-within-t1-space-avoid-finite <finite I
at-within-Icc-at-right at-within-interior filterlim-at-split
dest!: bspeclwhere r=z|)
then have « <z = 2z < b = (f —— u’ z) (at-right z) for z
by (auto simp: u’-def right)
moreover have « <z = 1 < b=z ¢ [= fz =1’z for z by (auto simp:
I'-def)
moreover have a« <z = 1< b=z ¢ | = fx = u’ z for z by (auto simp:
u’-def)
ultimately show ?thesis ..
qged

lemma tendsto-avoid-at-within:

(f ——) (at x within X)

if (f —— 1) (at 2z within X — {z})

using that

by (auto simp: eventually-at-filter dest!: topological-tendstoD intro!: topologi-
cal-tendstol)

lemma tendsto-within-subset-eventuallyl:
(f —— fr) (at z within X)
if ¢: (9 —— gy) (at y within Y)
and ev: Vg zin (at y within Y). fz =gz
and zy: x = y
and frgy: fr = gy
and XY: X — {2} C Y
apply (rule tendsto-avoid-at-within)
apply (rule tendsto-within-subset[where S = Y1)
unfolding zy
apply (subst tendsto-cong[OF ev])
apply (rule glfolded frgy))
apply (rule XY [unfolded xy])
done

lemma piecewise-continuous-on-insertk:
assumes piecewise-continuous-on a b (insert i I) f
assumes i € {a .. b}
obtains g h where

10

piecewise-continuous-on a i I g

piecewise-continuous-on i b I h

Ne.a<z=z<i=gz=fz

Ne.i<z=z2<b=hz=fz
proof —

from piecewise-continuous-onE[OF assms(1)] <i € {a .. b}> obtain [u where
finite: finite T

and cf: continuous-on ({a..b} — insert i I) f

and I: (N\i.i€el =a<i=i<b= (f —— 19) (at-left i)) i > a =
(f —— 14) (at-left ©)

and u: (Ni. i€l = a<i=i<b= (f — ui) (at-right 7)) i < b
= (f —— u i) (at-right 7)

by auto (metis (mono-tags))

have fl: (f(i :=2) —— 1j) (at-leftj)ifjeTa<jj<bforjux
using (1)
by (rule tendsto-within-subset-eventuallyl)
(auto simp: eventually-at-filter frequently-def t1-space-nhds that)
have fr: (f(i :=) —— v j) (at-right j) ifje la<jj<bforjz
using u(1)
by (rule tendsto-within-subset-eventuallyl)
(auto simp: eventually-at-filter frequently-def t1-space-nhds that)
from cf have tendsto: (f —— fz) (at x within {a..b} — insert i I)
if v € {a .. b} — insert i I for = using that
by (auto simp: continuous-on-def)
have continuous-on ({a..i} — I) (f(i:=11))
apply (cases a = i)
subgoal by (auto simp: continuous-on-def Diff-triv)
unfolding continuous-on-def
apply safe
subgoal for x
apply (cases xz = i)
subgoal
apply (rule tendsto-within-subset-eventuallyl)
apply (rule I(2))
by (auto simp: eventually-at-filter)
subgoal
apply (subst at-within-t1-space-avoid[symmetric], assumption)
apply (rule tendsto-within-subset-eventuallyl [where y=z])
apply (rule tendsto)
using <i € {a .. b}» by (auto simp: eventually-at-filter)
done
done
then have piecewise-continuous-on a i I (f(i:=1 1))
using <« € {a .. b}
by (auto introl: piecewise-continuous-onl finite fl fr)

moreover
have continuous-on ({i..b} — I) (f(i:=wu 7))

11

apply (cases b = 1)
subgoal by (auto simp: continuous-on-def Diff-triv)
unfolding continuous-on-def
apply safe
subgoal for x
apply (cases z = i)
subgoal
apply (rule tendsto-within-subset-eventuallyl)
apply (rule u(2))
by (auto simp: eventually-at-filter)
subgoal
apply (subst at-within-t1-space-avoid[symmetric|, assumption)
apply (rule tendsto-within-subset-eventuallyl [where y=z])
apply (rule tendsto)
using <i € {a .. b}» by (auto simp: eventually-at-filter)
done
done
then have piecewise-continuous-on i b I (f(i:=u 1))
using «i € {a .. b}
by (auto intro!: piecewise-continuous-onl finite fl fr)
moreover have (f(i:=li)) z=fzifa < z2x < ifor z
using that by auto
moreover have (f(i:=ui)) z = fzif i <zz < b forz
using that by auto
ultimately show #“thesis ..
qed

lemma eventually-avoid-finite:
Vp zin aty within Y. x ¢ I if finite I for y::'a::t1-space
using that
proof (induction)
case empty
then show ?case by simp
next
case (insert F)
then show ?case
apply (auto introl: eventually-conj)
apply (cases y = x)
subgoal by (simp add: eventually-at-filter)
subgoal by (rule tendsto-imp-eventually-ne) (rule tendsto-ident-at)
done
qed

lemma eventually-at-left-linorder:-— TODO: generalize ?b < 2a = V g z in at-left
%a. v € {%b<..<%a}
a > (b 'a = linorder-topology) = eventually (A\z. z € {b<..<a}) (at-left a)
unfolding eventually-at-left
by auto

12

lemma eventually-at-right-linorder:-— TODO: generalize ?a < ?b = VY z in
at-right ?a. € {?%a<..<?b}
a > (b 'a == linorder-topology) = eventually (A\z. © € {b<..<a}) (at-right b)
unfolding eventually-at-right
by auto

lemma piecewise-continuous-on-congl:
piecewise-continuous-on a b I g
if piecewise-continuous-on a b I f
and eg: Aw.z€{a. b} - = gz=fz
proof —
from piecewise-continuous-onE[OF that(1)]
obtain [v where finite: finite I
and x*:
continuous-on ({a..b} — I) f
(Ni.ie]l =a<i= i< b= (f —— 119) (at-left 7))
Ni.iel=a<i=i<b= (f —— ui) (at-right 7)
by blast
note finite
moreover
from x have continuous-on ({a..b} — I) g
using that(2)
by (auto simp: eq cong: continuous-on-cong) (subst continuous-on-cong|OF refl
eql; assumption)
moreover
have Vi z in at-lefti. fr =gz ifa < 7i < b for ¢
using eventually-avoid-finite[OF «finite I», of i {..<i}]
eventually-at-left-linorder|OF <a < 1)
by eventually-elim (subst eq, use that in auto)
thenhave i €] = a < i = i < b= (g —— 1 i) (at-left i) for i
using *(2)
by (rule Lim-transform-eventually[rotated]) auto
moreover
have Vp z in at-right i. fx = gax if a < i7 < b for ¢
using eventually-avoid-finite[OF «finite I», of i {i<..}]
eventually-at-right-linorder[OF i < b]
by eventually-elim (subst eq, use that in auto)
thenhave i € | = a < i = i < b= (9 —— u %) (at-right) for i
using *(3)
by (rule Lim-transform-eventually|[rotated]) auto
ultimately
show %thesis
by (rule piecewise-continuous-onl) auto
qed

lemma piecewise-continuous-on-cong|cong]:
piecewise-continuous-on a b I f +— piecewise-continuous-on ¢ d J g
ifa=c
b=d

13

I=1J
Ne.c<rz=z2<d=uas¢J]J=fr=gz
using that
by (auto intro: piecewise-continuous-on-congl)

lemma tendsto-at-left-continuous-on-avoidl: (f —— g i) (at-left i)
if g: continuous-on ({a..i} — I) g
and gf: A\, a<z=2<i{i=gz=fz
i¢Ifinitela<i
for i::'a::linorder-topology
proof (rule Lim-transform-eventually)
from that have ¢ € {a .. i} by auto
from ¢ have (¢ —— g i) (at ¢ within {a..i} — I)
using <i ¢ Iy <i € {a .. i}
by (auto elim!: piecewise-continuous-onE simp: continuous-on-def)
then show (¢ —— ¢ 7) (at-left 7)
by (metis that at-within-Icc-at-left at-within-t1-space-avoid-finite
greaterThanLess Than-iff)
show Vp zin at-left i. gz = fz
using eventually-at-left-linorder|OF <a <)]
by eventually-elim (auto simp: <a < @ gf)
qged

lemma tendsto-at-right-continuous-on-avoidl: (f —— g i) (at-right @)
if ¢g: continuous-on ({i.b} — I) g
and gf: A\z. i<z = 2< b= gz=fz
i ¢ Ifiniteli<b
for i::'a::linorder-topology
proof (rule Lim-transform-eventually)
from that have { € {i .. b} by auto
from ¢ have (9 —— g @) (at { within {i..b} — I)
using «i ¢ D «<i € {i .. b}
by (auto elim!: piecewise-continuous-onE simp: continuous-on-def)
then show (9 —— ¢ i) (at-right 7)
by (metis that at-within-Icc-at-right at-within-t1-space-avoid-finite
greaterThanLessThan-iff)
show V p x in at-right i. g x = fz
using eventually-at-right-linorder[OF <i < b)]
by eventually-elim (auto simp: <i < by gf)
qed

lemma piecewise-continuous-on-insert-leftl:
piecewise-continuous-on a b (insert a I) f if piecewise-continuous-on a b I f
apply (cases a € I)
subgoal using that by (auto dest: insert-absorb)
subgoal
using that
apply (rule piecewise-continuous-onFE)
subgoal for [u

14

apply (rule piecewise-continuous-onl[where u=u(a:=f a)])
apply (auto intro: continuous-on-subset)
apply (rule tendsto-at-right-continuous-on-avoidl, assumption)
apply auto
done
done
done

lemma piecewise-continuous-on-insert-rightl:
piecewise-continuous-on a b (insert b I) f if piecewise-continuous-on a b I f
apply (cases b € I)
subgoal using that by (auto dest: insert-absorb)
subgoal
using that
apply (rule piecewise-continuous-onFE)
subgoal for [u
apply (rule piecewise-continuous-onl[where [=I(b:=f b)])
apply (auto intro: continuous-on-subset)
apply (rule tendsto-at-left-continuous-on-avoidl, assumption)
apply auto
done
done
done

theorem piecewise-continuous-on-induct[consumes 1, case-names empty combine
weaken]:
assumes pc: piecewise-continuous-on a b I f
assumes I1: Aa b f. continuous-on {a .. b} f = Pa b {} f
assumes 2: NaibIfl1f2f a<i— i<b=—i¢I—=— Pailfl = Pi
b1f2 =
piecewise-continuous-on a i I fl =
piecewise-continuous-on i b I f2 —>
Nt.a<z=zs<i= flo=fr) =
Nr.i<z=z2<b= f2z=fzr) =
(i >a= (f — f11) (at-left i) =
(i< b= (f — f21) (at-right i)) =
Pab (insertil) f
assumes 3: AabiIf.Pablf = finite] = i¢ 1= Pab(insertil) f
shows Pa bl f
proof —
from pc have finite I
by (auto simp: piecewise-continuous-on-def)
then show ?thesis
using pc
proof (induction I arbitrary: a b f)
case empty
then show ?case
by (auto simp: piecewise-continuous-on-def 1)
next

15

case (insert i I)
show ?case
proof (cases i € {a .. b})
case True
from insert.prems| THEN piecewise-continuous-on-insertE, OF < € {a .. b})]
obtain g h
where g: piecewise-continuous-on a i I g
and h: piecewise-continuous-on i b I h
and gf: A\e.a <2z =z <i=gz=fz
and hf: N\z.i<z=z< b= hz=fz
by metis
from g have pcg: piecewise-continuous-on a i I (f(i:=g 7))
by (rule piecewise-continuous-on-congl) (auto simp: gf)
from h have pch: piecewise-continuous-on i b I (f(i:=h 7))
by (rule piecewise-continuous-on-congl) (auto simp: hf)

have fg: (f —— g 1) (at-left i) if a < i
apply (rule tendsto-at-left-continuous-on-avoidl [where a=a and I=I])
using g i ¢ I» <a <
by (auto elim!: piecewise-continuous-onE simp: gf)
have fh: (f —— h i) (at-right ©) if i < b
apply (rule tendsto-at-right-continuous-on-avoidl [where b=b and I=I])
using h i ¢ Iy <0 < b
by (auto elim!: piecewise-continuous-onE simp: hf)
show ?thesis
apply (rule 2)
using True apply force
using True apply force
apply (rule insert)
apply (rule insert.IH, rule pcg)
apply (rule insert.IH, rule pch)
apply fact
apply fact
using 3
by (auto simp: fg fh)
next
case Fulse
with insert.prems
have piecewise-continuous-on a b I f
by (auto simp: piecewise-continuous-on-def)
from insert. IH[OF this| show ?thesis
by (rule 3) fact+
qed
qed
qed

lemma continuous-on-imp-piecewise-continuous-on:

continuous-on {a .. b} f = piecewise-continuous-on a b {} f
by (auto simp: piecewise-continuous-on-def)

16

lemma piecewise-continuous-on-imp-absolutely-integrable:
fixes a b::real and f::real = 'a::euclidean-space
assumes piecewise-continuous-on a b I f
shows f absolutely-integrable-on {a..b}
using assms
proof (induction rule: piecewise-continuous-on-induct)
case (empty a b f)
show ?Zcase
by (auto introl: absolutely-integrable-onl integrable-continuous-interval
continuous-intros empty)
next
case (combine a i b I f1 f2f)
from combine(10)
have f absolutely-integrable-on {a..i}
by (rule absolutely-integrable-spike[where S={i}]) (auto simp: combine)
moreover
from combine(11)
have [absolutely-integrable-on {i..b}
by (rule absolutely-integrable-spike[where S={i}]) (auto simp: combine)
ultimately
show ?Zcase
by (rule absolutely-integrable-on-combine) fact+
qed

lemma piecewise-continuous-on-integrable:
fixes a b::real and f::real = 'a::euclidean-space
assumes piecewise-continuous-on a b I f
shows [integrable-on {a..b}
using piecewise-continuous-on-imp-absolutely-integrable| OF assms]
unfolding absolutely-integrable-on-def by auto

lemma piecewise-continuous-on-comp:
assumes p: piecewise-continuous-on a b I f
assumes ¢: Az. isCont (M(z, y). gz y)
shows piecewise-continuous-on a b I (Ax. g x (f z))
proof —
from piecewise-continuous-onE[OF p]
obtain [u
where I: finite [
and cf: continuous-on ({a..b} — I) f
and I: (N\i.iel=a<i= i< b= (f —— 1) (at-left 7))
and u: (Ni. i€l = a<i= i< b= (f — u i) (at-right 0))
by metis
note (finite I»
moreover
from ¢ have cg: continuous-on UNIV (A(z, y). g © y)
using ¢ by (auto simp: continuous-on-def isCont-def intro: tendsto-within-subset)
then have continuous-on ({a..b} — I) (Az. g = (f z))

17

by (intro continuous-on-compose2|OF cg, where f=Axz. (z, f x), simplified])
(auto introl: continuous-intros cf)
moreover
note tendstcomp = tendsto-compose| OF cunfolded isCont-def], where f=Az. (z,
f x), simplified, THEN tendsto-eq-rhs]
have ((Az. gz (fz)) —— g i (u 1)) (at-right i) if i € Ta <ii < bfor i
by (rule tendstcomp) (auto intro!: tendsto-eg-intros u[OF i € I] that)
moreover
have ((Az. gz (fz)) —— g i (14)) (at-left i) ifie Ta<ii<bfori
by (rule tendstcomp) (auto introl: tendsto-eq-intros [[OF «i € I»] that)
ultimately show %thesis
by (intro piecewise-continuous-onl)
qed

lemma bounded-piecewise-continuous-image:
bounded (f “{a .. b})
if piecewise-continuous-on a b I f for a b::real
using that
proof (induction rule: piecewise-continuous-on-induct)
case (empty a b f)
then show ?case by (auto intro!: compact-imp-bounded compact-continuous-image)
next
case (combine a i b I f1 f2f)
have (f ‘ {a..b}) C (insert (f4) (f1 ‘{a..i} U f2 ‘{i..b}))
using combine
by (auto simp: image-iff) (metis antisym-conv atLeastAtMost-iff le-cases not-less)
also have bounded ...
using combine by auto
finally (bounded-subset|[rotated]) show ?case .
qed

lemma tendsto-within-eventually:
(f ——) (at z within X)
if
(f —— D) (at z within Y)
Vryinatzwithin X.ye Y
using - that(1)
proof (rule tendsto-mono)
show at z within X < at x within Y
proof (rule filter-lel)
fix P
assume eventually P (at x within Y)
with that(2) show eventually P (at x within X)
unfolding cventually-at-filter
by eventually-elim auto
qed
qed

lemma at-within-eq-bot-lemma:

18

at z within {b..c} = (if x < bV b > c then bot else at z within {b..c})
for z b c::'a::linorder-topology
by (auto intro!: not-in-closure-trivial-limitI)

lemma at-within-eq-bot-lemma2:
at « within {a..b} = (if £ > bV a > b then bot else at x within {a..b})
for z a b::’a:linorder-topology
by (auto intro!: not-in-closure-trivial-limitI)

lemma piecewise-continuous-on-combine:
piecewise-continuous-on a ¢ J f
if piecewise-continuous-on a b J f piecewise-continuous-on b ¢ J f
using that
apply (auto elim!: piecewise-continuous-onkE)
subgoal for [u I’ u’
apply (rule piecewise-continuous-onl [where
I=MXi. if i < b then i else I’ i and
u=M\i. if i < b then u i else u’ 7))
subgoal by force
subgoal
apply (rule continuous-on-subset/where s=({a .. b} U {b .. ¢} = J)])
apply (auto simp: continuous-on-def at-within-t1-space-avoid-finite)
apply (rule Lim-Un)
subgoal by auto
subgoal by (subst at-within-eg-bot-lemma) auto
apply (rule Lim-Un)
subgoal by (subst at-within-eq-bot-lemma?2) auto
subgoal by auto
done
by auto
done

lemma piecewise-continuous-on-finite-superset:
piecewise-continuous-on a b 1 f = I C J = finite J = piecewise-continuous-on
ablJf
for a b::'a::{linorder-topology, dense-order, no-bot, no-top}
apply (auto simp add: piecewise-continuous-on-def)
apply (rule continuous-on-subset, assumption, force)
subgoal for i
apply (cases i € I)
apply (auto simp: continuous-on-def at-within-t1-space-avoid-finite)
apply (drule bspec[where x=i])
apply (auto simp: at-within-t1-space-avoid)
apply (cases i = b)
apply (auto simp: at-within-Icc-at-left)
apply (subst (asm) at-within-interior[where z=i))
by (auto simp: filterlim-at-split)
subgoal for ¢
apply (cases i € I)

19

apply (auto simp: continuous-on-def at-within-t1-space-avoid-finite)
apply (drule bspeclwhere z=i])
apply (auto simp: at-within-t1-space-avoid)
apply (cases i = a)
apply (auto simp: at-within-Icc-at-right)
apply (subst (asm) at-within-interior[where z=1])
subgoal by (simp add: interior-Icc)
by (auto simp: filterlim-at-split)
done

lemma piecewise-continuous-on-splitl:
piecewise-continuous-on a ¢ K f
if
piecewise-continuous-on a b I f
piecewise-continuous-on b ¢ J f
I C KJCK finite K
for a b::'a::{linorder-topology, dense-order, no-bot, no-top}
apply (rule piecewise-continuous-on-combine[where b=0])
subgoal
by (rule piecewise-continuous-on-finite-superset, fact)
(use that in <auto elim!: piecewise-continuous-onkE))
subgoal
by (rule piecewise-continuous-on-finite-superset, fact)
(use that in <auto elim!: piecewise-continuous-onE»)
done

end

4 Existence

theory FExistence imports
Piecewise-Continuous
begin

4.1 Definition

definition has-laplace :: (real = complex) = complex = complex = bool
(infixr <has’-laplace> 46)
where (f has-laplace L) s «+— ((At. exp (t xg — s) = ft) has-integral L) {0..}

lemma has-laplacel:
assumes ((At. exp (t *gp — 8) * f t) has-integral L) {0..}
shows (f has-laplace L) s
using assms
by (auto simp: has-laplace-def)

lemma has-laplaceD:

assumes (f has-laplace L) s
shows ((A\t. exp (t *g — 8) * ft) has-integral L) {0..}

20

using assms
by (auto simp: has-laplace-def)

lemma has-laplace-unique:
L=Mif
(f has-laplace L) s
(f has-laplace M) s
using that
by (auto simp: has-laplace-def has-integral-unique)

4.2 Condition for Existence: Exponential Order

definition exponential-order M ¢ f +— 0 < M AN (Y t in at-top. norm (ft) <
M x exp (c * t))

lemma exponential-orderl:
assumes 0 < M and eo: Vg ¢ in at-top. norm (ft) < M * exp (¢ * t)
shows exponential-order M c f
by (auto introl: assms simp: exponential-order-def)

lemma exponential-orderD:
assumes exponential-order M ¢ f
shows 0 < M V p tin at-top. norm (ft) < M * exp (¢ * t)
using assms by (auto simp: exponential-order-def)

context
fixes f::real = complex
begin

definition laplace-integrand::complex = real = complex
where laplace-integrand s t = exp (t xp — 8) * f

lemma laplace-integrand-absolutely-integrable-on-Icc:
laplace-integrand s absolutely-integrable-on {a..b}
if AE z€{a..b} in lebesgue. cmod (f x) < B f integrable-on {a..b}
apply (cases b < a)
subgoal by (auto intro!: absolutely-integrable-onl integrable-negligible OF negli-
gible-real-ivll])
proof goal-cases
case I
have compact (A\z. exp (— (z *g 8))) ‘{a .. b})
by (rule compact-continuous-image) (auto introl: continuous-intros)
then obtain C where C: 0 < Ca <z = 1z < b= cmod (exp (— (z *r s)))
< C for z
using 1
apply (auto simp: bounded-iff dest!: compact-imp-bounded)
by (metis atLeastAtMost-iff exp-ge-zero order-refl order-trans scaleR-complex.sel(1))

have m: (Az. indicator {a..b} z *g fx) € borel-measurable lebesque

21

apply (rule has-integral-implies-lebesque-measurable)
apply (rule integrable-integral)
apply (rule that)
done
have complez-set-integrable lebesgue {a..b} (Ax. exp (— (x xg s)) * (indicator {a
. b}z xp fx))
unfolding set-integrable-def
apply (rule integrablel-bounded-set-indicator[where B=C « B])
apply (simp; fail)
apply (rule borel-measurable-times)
apply measurable
apply (simp add: measurable-completion)
apply (simp add: measurable-completion)
apply (rule m)
apply (simp add: emeasure-lborel-Icc-eq)
using that(1)
apply eventually-elim
apply (auto simp: norm-mult)
apply (rule mult-mono)
using C
by auto
then show ?case
unfolding set-integrable-def
by (simp add: laplace-integrand-def|abs-def| indicator-inter-arith[symmetric])
qed

lemma laplace-integrand-integrable-on-Icc:
laplace-integrand s integrable-on {a..b}
if AE ze{a..b} in lebesgue. cmod (f x) < B f integrable-on {a..b}
using laplace-integrand-absolutely-integrable-on-Icc[OF that)
using set-lebesgue-integral-eq-integral(1) by blast

lemma eventually-laplace-integrand-le:
YV g tin at-top. cmod (laplace-integrand s t) < M * exp (— (Re s — ¢) * t)
if exponential-order M c f
using exponential-orderD(2)[OF that]
proof (eventually-elim)
case (elim t)
show ?Zcase
unfolding laplace-integrand-def
apply (rule norm-mult-ineq| THEN order-trans))
apply (auto introl: mult-left-mono| THEN order-trans, OF elim))
apply (auto simp: exp-minus divide-simps algebra-simps exp-add[symmetric])
done
qed

lemma

assumes eo: exponential-order M c f
and cs: ¢ < Re s

22

shows laplace-integrand-integrable-on-Ici-iff:
laplace-integrand s integrable-on {a..} +—
(Vk>a. laplace-integrand s integrable-on {a..k})
(is ?thl)
and laplace-integrand-absolutely-integrable-on-Ici-iff
laplace-integrand s absolutely-integrable-on {a..} +—
(Vk>a. laplace-integrand s absolutely-integrable-on {a..k})
(is 7th2)
proof —
have V g t in at-top. a < (t:real)
using eventually-gt-at-top by blast
then have V g t in at-top. t > a A cmod (laplace-integrand s t) < M x exp (—
(Res —c) xt)
using eventually-laplace-integrand-le[OF eo]
by eventually-elim (auto)
then obtain A where A: A > a and le: t > A = cmod (laplace-integrand s
t) < M x exp (— (Res — ¢) xt) for t
unfolding ecventually-at-top-linorder
by blast

let 2f = A(k:real) (t::real). indicat-real {A..k} t *gp laplace-integrand s t

from exponential-orderD|OF eo] have M # 0 by simp

have 2: (At. M x exp (— (Re s — ¢) x t)) integrable-on {A..}
unfolding integrable-on-cmult-iff[OF <M # 0)] norm-exp-eq-Re
by (rule integrable-on-exp-minus-to-infinity) (simp add: cs)

have 3: te{A..} = cmod (?fkt) < M *x exp (— (Re s — ¢) x t)
(is te-=— Zlhs t < %rhs t)
for t k
proof safe
fix t assume A < ¢
have ?lhs t < cmod (laplace-integrand s t)
by (auto simp: indicator-def)
also have ... < %rhs t using (A < & le by (simp add: laplace-integrand-def)
finally show ?lhs t < ?rhst .
qged

have 4: Vitc{A..}. (A\k. ?2f k t) —— laplace-integrand s t) at-top
proof safe
fix t assume ¢: ¢t > A
have V ¢ k in at-top. k > t
by (simp add: eventually-ge-at-top)
then have V g k in at-top. laplace-integrand s t = ?f k t
by eventually-elim (use t in <auto simp: indicator-def»)
then show ((\k. ?f k t) —— laplace-integrand s t) at-top using tendsto-const
by (rule Lim-transform-eventually|rotated))
qged

23

show thi: ?thi
proof safe
assume VY k>a. laplace-integrand s integrable-on {a..k}
note li = this[rule-format)
have liA: laplace-integrand s integrable-on {A..k} for k
proof cases
assume k£ < A
then have {A..k} = (if A = k then {k} else {}) by auto
then show ?thesis by (auto introl: integrable-negligible)
next
assume n: = k < A
show ?thesis
by (rule integrable-on-subinterval|OF lilof k]]) (use A n in auto)
qed
have ?f k integrable-on {A..k} for k
using liA[of k] negligible-empty
by (rule integrable-spike) auto
then have 1: ?f k integrable-on {A..} for k
by (rule integrable-on-superset) auto
note 1 2 38 J
note *x = this[unfolded set-integrable-def)
from li[of A] dominated-convergence-at-top(1)[OF x|
show laplace-integrand s integrable-on {a..}
by (rule integrable-Un') (use <a < A» in <auto simp: maz-def li))
qed (rule integrable-on-subinterval, assumption, auto)

show ?2th2
proof safe
assume ai: Vk>a. laplace-integrand s absolutely-integrable-on {a..k}
then have laplace-integrand s absolutely-integrable-on {a..A}
using A by auto
moreover
from ai have V k>a. laplace-integrand s integrable-on {a..k}
using set-lebesque-integral-eq-integral(1) by blast
with th1 have i: laplace-integrand s integrable-on {a..} by auto
have 1: ?f k integrable-on {A..} for k
apply (rule integrable-on-superset[where S={A..k}])
using - negligible-empty
apply (rule integrable-spike[where f=laplace-integrand s))
apply (rule integrable-on-subinterval)
apply (rule 7)
by (use <a < A» in auto)
have laplace-integrand s absolutely-integrable-on {A..}
using - dominated-convergence-at-top(1)[OF 1 2 3 4] 2
by (rule absolutely-integrable-integrable-bound) (use le in auto)
ultimately
have laplace-integrand s absolutely-integrable-on ({a..A} U {A..})
by (rule set-integrable-Un) auto
also have {a..A} U {A..} = {a..} using <a < 4> by auto

24

finally show local.laplace-integrand s absolutely-integrable-on {a..} .
qed (rule set-integrable-subset, assumption, auto)
qed

theorem laplace-exists-laplace-integrandl:
assumes laplace-integrand s integrable-on {0..}
obtains F where (f has-laplace F) s
proof —
from assms
have (f has-laplace integral {0..} (laplace-integrand s)) s
unfolding has-laplace-def laplace-integrand-def by blast
thus ?thesis ..
qed

lemma
assumes eo: exponential-order M c f
and pe: A\k. AE z€{0..k} in lebesque. cmod (f z) < B k Ak. f integrable-on
{0..k}
and s: Res > ¢
shows laplace-integrand-integrable: laplace-integrand s integrable-on {0..} (is
2th1)
and laplace-integrand-absolutely-integrable:
laplace-integrand s absolutely-integrable-on {0..} (is ?th2)
using eo laplace-integrand-absolutely-integrable-on-Icc[OF pc] s
by (auto simp: laplace-integrand-integrable-on-Ici-iff
laplace-integrand-absolutely-integrable-on-Ici-iff
set-lebesgue-integral-eq-integral)

lemma piecewise-continuous-on-AE-boundedFE:
assumes pc: A\k. piecewise-continuous-on a k (I k) f
obtains B where Ak. AF x€{a..k} in lebesque. cmod (f) < Bk
apply atomize-elim
apply (rule choice)
apply (rule alll)
subgoal for &
using bounded-piecewise-continuous-image[OF pc|of k]]
by (force simp: bounded-iff)
done

theorem piecewise-continuous-on-has-laplace:
assumes eo: exponential-order M c f
and pc: A\k. piecewise-continuous-on 0 k (I'k) f
and s: Re s > ¢
obtains F where (f has-laplace F) s
proof —
from piecewise-continuous-on-AE-boundedE[OF pc]
obtain B where AE: AE x€{0..k} in lebesgue. cmod (f x) < Bk for k by force
have int: f integrable-on {0..k} for k
using pc

25

by (rule piecewise-continuous-on-integrable)
show ?thesis
using pc
apply (rule piecewise-continuous-on-AE-boundedE)
apply (rule laplace-exists-laplace-integrandl)
apply (rule laplace-integrand-integrable)
apply (rule eo)
apply assumption
apply (rule int)
apply (rule s)
by (rule that)
qed

end

4.3 Concrete Laplace Transforms

lemma exp-scaleR-has-vector-derivative-left'|derivative-intros:
((At. exp (t xg A)) has-vector-derivative A * exp (t xg A)) (at t within S)
by (metis exp-scaleR-has-vector-derivative-right exp-times-scaleR-commute)

lemma
fixes a::complex— TODO: generalize
assumes a: 0 < Re a
shows integrable-on-cexp-minus-to-infinity: (Az. exp (z *xg — a)) integrable-on
{c..}
and integral-cezp-minus-to-infinity: integral {c..} (A\z. exp (x *p — a)) = exp
(cxgp —a)/a
proof —
from o have a # 0 by auto
define f where f = (A\k z. if x € {c..real k} then exp (z xg —a) else 0)
{
fix k :: nat assume k: of-nat k > ¢
from <a # O k
have ((Az. exp (z xr —a)) has-integral (—exp (k xg —a)/a — (—exp (¢ *g
—a)/a))) {c..real k}
by (intro fundamental-theorem-of-calculus)
(auto introl: derivative-eg-intros exp-scaleR-has-vector-derivative-left
stmp: divide-inverse-commute
simp del: scaleR-minus-left scaleR-minus-right)
hence (f k has-integral (exp (¢ xr —a)/a — exp (k *r —a)/a)) {c..} unfolding
J-def
by (subst has-integral-restrict) simp-all
} note has-integral-f = this

have integrable-fk: f k integrable-on {c..} for k
proof —
have (Az. exp (z *p —a)) integrable-on {c..of-real k} (is ?P)
unfolding f-def by (auto introl: continuous-intros integrable-continuous-real)

26

then have int: (f k) integrable-on {c..of-real k}
by (rule integrable-eq) (simp add: f-def)
show ?thesis
by (rule integrable-on-superset[OF int)) (auto simp: f-def)
qged
have limseq: Nz. © €{c..} = (M\k. fkz) —— exp (z xr — a)
apply (auto intro!: Lim-transform-eventually[OF tendsto-const] simp: f-def)
by (meson eventually-sequentiallyl nat-ceiling-le-eq)
have bnd: Az. z € {c..} = cmod (fk z) < exp (— Re a * x) for k
by (auto simp: f-def)

have [simpl]: f k = (A-. 0) if of-nat k < ¢ for k using that by (auto simp:
fun-cq-iff f-def)
have integral-f: integral {c..} (f k) =
(if real k > c then exp (¢ xg —a)/a — exp (k g —a)/a else 0)
for k using integral-unique| OF has-integral-f[of k]| by simp

have (\k. exp (¢ *r —a)/a — exp (k *g —a)/a) —— exp (cxgr—a)/a — 0/a
apply (intro tendsto-intros filterlim-compose|OF exp-at-bot]
filterlim-tendsto-neg-mult-at-bot| OF tendsto-const] filterlim-real-sequentially)+
apply (rule tendsto-norm-zero-cancel)
by (auto introl: assms <a # 0) filterlim-real-sequentially
filterlim-compose[OF exp-at-bot] filterlim-compose| OF filterlim-uminus-at-bot-at-top]
filterlim-at-top-mult-tendsto-pos| OF tendsto-const])
moreover
note A = dominated-convergence[where g=\z. exp (x xr —a),
OF integrable-fk integrable-on-exp-minus-to-infinity[where a=Re a and c=c,
OF <0 < Re w]
bnd limseq|
from A(1) show (A\z. exp (z xg — a)) integrable-on {c..} .
from eventually-gt-at-top|of nat [c]] have eventually (Ak. of-nat k > ¢) sequen-
tially
by eventually-elim linarith
hence eventually (k. exp (¢ *p —a)/a — exp (k *g —a)/a = integral {c..} (f
k)) sequentially
by eventually-elim (simp add: integral-f)
ultimately have (\k. integral {c..} (fk)) —— exp (¢ *r —a)/a — 0/a
by (rule Lim-transform-eventually)
from LIMSEQ-unique[OF A(2) this]
show integral {c..} (Az. exp (x xr —a)) = exp (c xg —a)/a by simp
qed

lemma has-integral-cexp-minus-to-infinity:
fixes a::complez— TODO: generalize
assumes a: 0 < Re a
shows ((Az. exp (x *xg — a)) has-integral exp (¢ xg — a) / a) {c..}
using integral-cexp-minus-to-infinity| OF assms]
integrable-on-cexp-minus-to-infinity| OF assms)
using has-integral-integrable-integral by blast

27

lemma has-laplace-one:

((A-. 1) has-laplace inverse s) s if Re s > 0
proof (safe introl: has-laplacel)

from that have ((At. exp (¢t xg — s)) has-integral inverse s) {0..}

by (rule has-integral-cexp-minus-to-infinity| THEN has-integral-eq-rhs])
(auto simp: inverse-eq-divide)

then show ((\t. exp (t xg — $) * 1) has-integral inverse s) {0..} by simp

qed

lemma has-laplace-add:
assumes f: (f has-laplace F) S
assumes ¢: (g has-laplace G) S
shows ((A\z. fz + g z) has-laplace F + G) S
apply (rule has-laplacel)
using has-integral-add[OF has-laplaceD]OF f | has-laplaceD]OF g]]
by (auto simp: algebra-simps)

lemma has-laplace-cmul:
assumes (f has-laplace F) S
shows ((Az. r xg fz) has-laplace r xp F) S
apply (rule has-laplacel)
using has-laplaceD[OF assms, THEN has-integral-cmul[where c=r]]
by auto

lemma has-laplace-uminus:
assumes (f has-laplace F) S
shows ((A\z. — f) has-laplace — F) S
using has-laplace-cmul[OF assms, of —1]
by auto

lemma has-laplace-minus:
assumes f: (f has-laplace F) S
assumes ¢: (g has-laplace G) S
shows ((A\z. fz — g z) has-laplace F — G) S
using has-laplace-add[OF f has-laplace-uminus|OF g]]
by simp

lemma has-laplace-spike:
(f has-laplace L) s
if L: (g has-laplace L) s
and negligible T
and \t. t ¢ T —=t>0= ft=gt
by (auto intro!: has-laplacel has-integral-spike[where S=T, OF - - has-laplaceD[OF
L]] that)

lemma has-laplace-frequency-shift:— First Translation Theorem in Schiff
((Mt. exp (t xg b) * ft) has-laplace L) s

28

if (f has-laplace L) (s — b)

using that

by (auto intro!: has-laplacel dest!: has-laplaceD
simp: mult-exp-exp algebra-simps)

theorem has-laplace-derivative-time-domain:
(f" has-laplace s x L — f0) s
if L: (f has-laplace L) s
and f: At. t > 0 = (f has-vector-derivative ' t) (at t)
and f0: (f —— f0) (at-right 0)
and eo: exponential-order M c f
and cs: ¢ < Re s
— Proof and statement follow "The Laplace Transform: Theory and Applications"
by Joel L. Schiff.
proof (rule has-laplacel)
have ce: continuous-on S (At. exp (t xg — s)) for S
by (auto introl: continuous-intros)
have de: ((A\t. exp (t xg — 5)) has-vector-derivative (— s * exp (— (t *g 5))))
(at t) for t
by (auto simp: has-vector-derivative-def introl: derivative-eq-intros ext)
have ((Az. —s * (fz * exp (— (z %R $)))) has-integral — s * L) {0..}
apply (rule has-integral-mult-right)
using has-laplaceD[OF L]
by (auto simp: ac-simps)

define g where g z = (if z < 0 then f0 else f z) for z

have eog: exponential-order M c g
proof —
from exponential-orderD[OF eo] have 0 < M
and ev: Vg tin at-top. cmod (ft) < M * exp (¢ * t) .
have V ¢ t::real in at-top. t > 0 by simp
with ev have YV g t in at-top. ecmod (g t) < M * exp (¢ * t)
by eventually-elim (auto simp: g-def)
with <0 < M» show ?thesis
by (rule exponential-orderl)
qged
have Lg: (g has-laplace L) s
using L
by (rule has-laplace-spike[where T={0}]) (auto simp: g-def)
have g At. 0 < t = (g has-vector-derivative ' t) (at t)
using f’
by (rule has-vector-derivative-transform-within-open[where S={0<..}]) (auto
simp: g-def)
have cg: continuous-on {0..k} g for k
apply (auto simp: g-def continuous-on-def)
apply (rule filterlim-at-within-If)
subgoal by (rule tendsto-intros)
subgoal

29

apply (rule tendsto-within-subset)
apply (rule f0)
by auto
subgoal premises prems for x
proof —
from prems have 0 < z by auto
from order-tendstoD|OF tendsto-ident-at this]
have eventually ((<) 0) (at x within {0..k}) by auto
then have Vg = in at x within {0..k}. fz = (if x < 0 then f0 else f x)
by eventually-elim auto
moreover
note [simp| = at-within-open[where S={0<..}]
have continuous-on {0<..} f
by (rule continuous-on-vector-derivative)
(auto simp add: intro!: f)
then have (f —— fx) (at z within {0..k})
using 0 <
by (auto simp: continuous-on-def intro: Lim-at-imp-Lim-at-within)
ultimately show ?thesis
by (rule Lim-transform-eventually[rotated))
qed
done
then have pcg: piecewise-continuous-on 0 k {} g for k
by (auto simp: piecewise-continuous-on-def)
from piecewise-continuous-on-AE-bounded E[OF this]
obtain B where B: AE z€{0..k} in lebesgue. cmod (g) < B k for k by auto
have 1: laplace-integrand g s absolutely-integrable-on {0..}
apply (rule laplace-integrand-absolutely-integrable[OF eog))
apply (rule B)
apply (rule piecewise-continuous-on-integrable)
apply (rule pcg)
apply (rule cs)
done
then have csi: complex-set-integrable lebesgue {0..} (Az. exp (z *xp — s) * g x)
by (auto simp: laplace-integrand-def|abs-def])
from has-laplaceD|OF Lg, THEN has-integral-improperE, OF csi]
obtain J where J: Ak. ((At. exp (t xg — s) % g t) has-integral J k) {0..k}
and [tendsto-intros]: (J —— L) at-top
by auto
have ((Az. —s * (exp (z *xp — s) * g x)) has-integral —s x J k) {0..k} for k
by (rule has-integral-mult-right) (rule J)
then have x: (A\z. gz * (— s % exp (— (x *g 9)))) has-integral —s = J k) {0..k}
for k
by (auto simp: algebra-simps)
have YV ¢ k::real in at-top. k > 0
using eventually-ge-at-top by blast
then have evl: Vg k in at-top. (At. exp (t xg — s) * f' t) has-integral
gk*exp(k+p—s)+sxJk—g0){0.k}
proof eventually-elim

30

case (elim k)
show ?case
apply (subst mult.commute)
apply (rule integration-by-parts-interior| OF bounded-bilinear-mult], fact)
apply (rule cg) apply (rule ce) apply (rule g') apply force apply (rule de)
apply (rule has-integral-eq-rhs)
apply (rule x)
by auto
qed
have t1: (A\x. g z * exp (z xg — s)) —— 0) at-top
apply (subst mult.commute)
unfolding laplace-integrand-def[symmetric]
apply (rule Lim-null-comparison)
apply (rule eventually-laplace-integrand-le[OF eog])
apply (rule tendsto-mult-right-zero)
apply (rule filterlim-compose[OF exp-at-bot))
apply (rule filterlim-tendsto-neg-mult-at-bot)
apply (rule tendsto-intros)
using cs apply simp
apply (rule filterlim-ident)
done
show ((At. exp (t xgp — s) * f' t) has-integral s x L — f0) {0..}
apply (rule has-integral-improper-at-topI [OF evl])
subgoal
apply (rule tendsto-eg-intros)
apply (rule tendsto-intros)
apply (rule t1)
apply (rule tendsto-intros)
apply (rule tendsto-intros)
apply (rule tendsto-intros)
apply (rule tendsto-intros)
by (simp add: g-def)
done
qed

lemma exp-times-has-integral:
((At. exp (c * t)) has-integral (if ¢ = 0 then t else exp (¢ x t) [¢) — (if c =0
then t0 else exp (c * t0) / ¢)) {t0 .. t}
ifto0 <t
for c t::real
apply (cases ¢ = 0)
subgoal
using that
apply auto
apply (rule has-integral-eq-rhs)
apply (rule has-integral-const-real)
by auto
subgoal
apply (rule fundamental-theorem-of-calculus)

31

using that
by (auto simp: has-vector-derivative-def introl: derivative-egq-intros)
done

lemma integral-exp-times:

integral {t0 .. t} (Mt. exp (¢ x t)) = (if c = 0 then t — 10 else exp (¢ x t) / ¢ —
eap (c 10) / ©)

ifto <t

for ¢ t::real

using exp-times-has-integral|OF that, of c] that

by (auto split: if-splits)

lemma filtermap-times-pos-at-top: filtermap ((x) e) at-top = at-top
ife>0
for e::real
apply (rule filtermap-fun-inverse[of (x) (inverse e)])
apply (rule filterlim-tendsto-pos-mult-at-top)
apply (rule tendsto-intros)
subgoal using that by simp
apply (rule filterlim-ident)
apply (rule filterlim-tendsto-pos-mult-at-top)
apply (rule tendsto-intros)
subgoal using that by simp
apply (rule filterlim-ident)
using that by auto

lemma exponential-order-additivel:
assumes 0 < M and eo: V g t in at-top. norm (ft) < K + M * exp (¢ * t) and
c>0
obtains M’ where exponential-order M’ c f
proof —
consider ¢ = 0 | ¢ > 0 using ¢ > 0> by arith
then show ?thesis
proof cases
assume c = (
have exponential-order (max K 0 + M) ¢ f
using eo
apply (auto intro!: exponential-orderl add-nonneg-pos <0 < M) simp: <c =
0»)
apply (auto simp: maz-def)
using eventually-elim2 by force
then show ?thesis ..
next
assume ¢ > (
have V p t in at-top. norm (ft) < K + M * exp (¢ * t)
by fact
moreover
have V r t in (filtermap exp (filtermap ((%) ¢) at-top)). K < t
by (simp add: filtermap-times-pos-at-top <¢ > 0 filtermap-exp-at-top)

32

then have V i ¢ in at-top. K < exp (¢ * t)
by (simp add: eventually-filtermap)
ultimately
have V r t in at-top. norm (ft) < (1 + M) x exp (¢ * t)
by eventually-elim (auto simp: algebra-simps)
with add-nonneg-pos[OF zero-le-one <0 < M)]
have exponential-order (1 + M) ¢ f
by (rule exponential-orderl)
then show ?thesis ..
qged
qged

lemma exponential-order-integral:
fixes f::real = 'a::banach
assumes I: A\t. t > a = (f has-integral I't) {a .. t}
and eo: exponential-order M c f
and ¢ > 0
obtains M’ where exponential-order M' ¢ I
proof —
from exponential-orderD[OF eo] have 0 < M
and bound: Y g t in at-top. norm (ft) < M x exp (¢ * t)
by auto
have V i t in at-top. t > a
by simp
from bound this
have V p t in at-top. norm (ft) < M = exp (c x t) ANt > a
by eventually-elim auto
then obtain t0 where t0: \t. ¢t > t0 = norm (ft) < M * exp (¢ x t) t0 > a
by (auto simp: eventually-at-top-linorder)
have V i t in at-top. t > t0 by simp
then have V r t in at-top. norm (I t) < norm (integral {a..t0} f) — M * exp (c
xt0) / ¢+ (M / ¢) * exp (¢ * t)
proof eventually-elim
case (elim t) then have that: t > t0 by simp
from t0 have a < t0 by simp
have f integrable-on {a .. t0} f integrable-on {t0 .. t}
subgoal by (rule has-integral-integrable]OF I[OF <a < t0)]])
subgoal
apply (rule integrable-on-subinterval]| OF has-integral-integrable[OF I[where
t=t]]})
using «t0 > a» that by auto
done
have It = integral {a .. t0} f + integral {t0 .. t} f
by (metis Henstock-Kurzweil-Integration.integral-combine I <a < t0» dual-order.strict-trans
has-integral-integrable-integral less-eq-real-def that)
also have norm ... < norm (integral {a .. t0} f) + norm (integral {t0 .. t}
f) by norm
also
have norm (integral {t0 .. t} f) < integral {t0 .. t} (A\t. M x exp (¢ * t))

33

apply (rule integral-norm-bound-integral)

apply fact
by (auto intro!: integrable-continuous-interval continuous-intros t0)
also have ... = M x integral {t0 .. t} (At. exp (¢ * t))
by simp

also have integral {t0 .. t} (At. exp (¢ x t)) = exp (¢ *x t) / ¢ — exp (¢ * t0)
/¢
using <¢ > 0> «t0 < t
by (subst integral-exp-times) auto
finally show “case
using <c > 0»
by (auto simp: algebra-simps)
qed
from exponential-order-additivel[OF divide-pos-pos|OF <0 < M» <0 < o] this
less-imp-le]OF <0 < ¢»]]
obtain M’ where exponential-order M’ c I .
then show ?thesis ..
qed

lemma integral-has-vector-derivative-piecewise-continuous:
fixes [:: real = 'a::euclidean-space— TODO: generalize?
assumes piecewise-continuous-on a b D f
shows Az. z € {a .. b} — D =
((Au. integral {a..u} f) has-vector-derivative f(z)) (at x within {a..b} — D)
using assms
proof (induction a b D f rule: piecewise-continuous-on-induct)
case (empty a b f)
then show ?case
by (auto intro: integral-has-vector-derivative)
next
case (combine a i b I f1 f2 f)
then consider z < i | i < z by auto arith

then show ?case
proof cases— TODO: this is very explicit...
case I
have evless: V g za in nhds x. va < 1
apply (rule order-tendstoD[OF - «x < 3])
by (simp add: filterlim-ident)
have eq: at z within {a..b} — insert i I = at x within {a .. i} — I
unfolding filter-eq-iff
proof safe
fix P
assume eventually P (at x within {a..i} — I)
with evless show eventually P (at x within {a..b} — insert i I)
unfolding eventually-at-filter
by eventually-elim auto
next

fix P

34

assume eventually P (at z within {a..b} — insert i I)
with evless show eventually P (at x within {a..i} — I)
unfolding eventually-at-filter
apply eventually-elim
using 1 combine
by auto
qed
have fx = f1 z using combine 1 by auto
have i-eq: integral {a..y} f = integral {a..y} f1 if y < i for y
using negligible-empty
apply (rule integral-spike)
using combine 1 that
by auto
from evless have ev-eq: Vg x in nhds z. € {a..i} — I — iintegral {a..z} f
= integral {a..z} f1
by eventually-elim (auto simp: i-eq)
show ?thesis unfolding eq <f x = fI x>
apply (subst has-vector-derivative-cong-ev|OF ev-eq])
using combine.IH[of x]
using combine.hyps combine.prems 1
by (auto simp: i-eq)
next
case 2
have evless: V ¢ za in nhds x. xa > i
apply (rule order-tendstoD[OF - «x > }])
by (simp add: filterlim-ident)
have eq: at x within {a..b} — insert i I = at x within {i .. b} — I
unfolding filter-eq-iff
proof safe
fix P
assume eventually P (at x within {i..b} — I)
with evless show eventually P (at xz within {a..b} — insert i I)
unfolding eventually-at-filter
by eventually-elim auto
next
fix P
assume eventually P (at x within {a..b} — insert i I)
with evless show eventually P (at x within {i..b} — I)
unfolding eventually-at-filter
apply eventually-elim
using 2 combine
by auto
qed
have fx = f2 x using combine 2 by auto
have i-eq: integral {a..y} f = integral {a..i} f + integral {i.y} f2ifi<yy
< b for y
proof —
have integral {a..y} f = integral {a..i} f + integral {i..y} f
apply (cases i = y)

35

subgoal by auto
subgoal
apply (rule Henstock- Kurzweil-Integration.integral-combine[symmetric])
using combine that apply auto
apply (rule integrable-Un'[where A={a .. i} and B={i..y}])
subgoal
by (rule integrable-spike[where S={i} and f=f1])
(auto intro: piecewise-continuous-on-integrable)
subgoal
apply (rule integrable-on-subinterval[where S={i..b}])
by (rule integrable-spike[where S={i} and f=f2])
(auto intro: piecewise-continuous-on-integrable)
subgoal by (auto simp: maz-def min-def)
subgoal by auto
done
done
also have integral {i..y} f = integral {i..y} f2
apply (rule integral-spikelwhere S={i}])
using combine 2 that
by auto
finally show ?thesis .
qed
from evless have ev-eq: Vp y in nhds . y € {i..b} — I — integral {a..y} f
= integral {a..i} f + integral {i..y} f2
by eventually-elim (auto simp: i-eq)
show ?thesis unfolding eq
apply (subst has-vector-derivative-cong-ev[OF ev-eq])
using combine.IH [of x] combine.prems combine.hyps 2
by (auto simp: i-eq intro!: derivative-egq-intros)
qed
qed (auto intro: has-vector-derivative-within-subset)

lemma has-derivative-at-split:

(f has-derivative ') (at z) +— (f has-derivative f') (at-left) A (f has-derivative
1) (at-right z)

for z::’a::{linorder-topology, real-normed-vector}

by (auto simp: has-derivative-at-within filterlim-at-split)

lemma has-vector-derivative-at-split:
(f has-vector-derivative ') (at x) +—
(f has-vector-derivative f') (at-left) A
(f has-vector-derivative f') (at-right x)
using has-derivative-at-split[of f Ah. h xg [’ x]
by (simp add: has-vector-derivative-def)

lemmas differentiablel-vector|intro]

lemma differentiable-at-splitD:
f differentiable at-left x

36

f differentiable at-right x

if f differentiable (at x)

for z::real

using that[unfolded vector-derivative-works has-vector-derivative-at-split]
by auto

lemma integral-differentiable:
fixes [:: real = 'a::banach
assumes continuous-on {a..b} f
and z € {a..b}
shows (Au. integral {a..u} f) differentiable at x within {a..b}
using integral-has-vector-derivative| OF assms)
by blast

theorem integral-has-vector-derivative-piecewise-continuous':
fixes [:: real = 'a::euclidean-space— TODO: generalize?
assumes piecewise-continuous-on a b D fa < b
shows
Vz.a<z—2<b— ¢ D — (Au. integral {a..u} f) differentiadle at
z) A
(V. a <z — < b—> (At integral {a..t} f) differentiable at-right x) A
Vz. a <z — 2 < b— (At integral {a..t} f) differentiable at-left)
using assms
proof (induction a b D f rule: piecewise-continuous-on-induct)
case (empty a b f)
have ¢ < 1 = z < b = (\u. integral {a..u} f) differentiable (at z) for z
using integral-differentiable] OF empty(1), of x]
by (auto simp: at-within-interior)
then show ?case
using integral-differentiable] OF empty(1), of a]
integral-differentiable] OF empty(1), of b]
a < b
by (auto simp: at-within-Icc-at-right at-within-Icc-at-left le-less
intro: differentiable-at-withinI)
next
case (combine a i b I f1 f2 f)
from <piecewise-continuous-on a i I f1y have finite I
by (auto elim!: piecewise-continuous-onkE)

from combine(4) have piecewise-continuous-on a i (insert ¢ I) f1
by (rule piecewise-continuous-on-insert-rightl)
then have piecewise-continuous-on a i (insert i I) f
by (rule piecewise-continuous-on-congl) (auto simp: combine)
moreover
from combine(5) have piecewise-continuous-on i b (insert i I) f2
by (rule piecewise-continuous-on-insert-leftl)
then have piecewise-continuous-on i b (insert i I) f
by (rule piecewise-continuous-on-congl) (auto simp: combine)
ultimately have pieccewise-continuous-on a b (insert i I) f

37

by (rule piecewise-continuous-on-combine)
then have f-int: f integrable-on {a .. b}
by (rule piecewise-continuous-on-integrable)

from combine.lH
have f1: >0 = =z < i = x ¢ I = (\u. integral {a..u} f1) differentiable (at
)
>a = z < i = (M. integral {a..t} f1) differentiable (at-right z)
>a = x < i => (At. integral {a..t} f1) differentiable (at-left)
and f2: >i —= < b = z ¢ I = (A\u. integral {i..u} f2) differentiable (at
x)
r>i = x < b = (\t. integral {i..t} f2) differentiable (at-right x)
r>i => & < b = (At. integral {i..t} f2) differentiable (at-left x)
for z
by auto

have (A\u. integral {a..u} f) differentiable at z if a < zx < bz # iz ¢ I for x
proof —
from that consider z < 7 |i < x by arith
then show ?thesis
proof cases
case I
have at: at © within {a<..<i} — I = at z
using that 1
by (intro at-within-open) (auto intro!: open-Diff finite-imp-closed «finite I»)
then have (\u. integral {a..u} f1) differentiable at © within {a<..<i} — I
using that 1 f1 by auto
then have (A\u. integral {a..u} f) differentiable at x within {a<..<i} — I
apply (rule differentiable-transform-within[OF - zero-less-onel)
using that combine.hyps 1 by (auto intro!: integral-cong)
then show ?thesis by (simp add: at)
next
case 2
have at: at z within {i<.<b} — I = at x
using that 2
by (intro at-within-open) (auto intro!: open-Diff finite-imp-closed «finite I»)
then have (\u. integral {a..i} f + integral {i..u} f2) differentiable at x within
{i<.<b} -1
using that 2 f2 by auto
then have (\u. integral {a..i} f + integral {i..u} f) differentiable at x within
{i<.<b} =1
apply (rule differentiable-transform-within[OF - zero-less-one])
using that combine.hyps 2 by (auto intro!: integral-spike[where S={i,z}])
then have (A\u. integral {a..u} f) differentiable at x within {i<..<b} — I
apply (rule differentiable-transform-within[OF - zero-less-onel)
subgoal using that 2 by auto
apply auto
apply (subst Henstock-Kurzweil-Integration.integral-combine)
using that 2 <a <

38

apply auto
by (auto intro: integrable-on-subinterval f-int)
then show ?thesis by (simp add: at)
qed
qed
moreover
have (\t. integral {a..t} f) differentiable at-right z if « < zz < b for z
proof —
from that consider z < i |i < x by arith
then show ?thesis
proof cases
case]
have at: at z within {z..i} = at-right ©
using <z < O by (rule at-within-Icc-at-right)
then have (\u. integral {a..u} f1) differentiable at x within {z..7}
using that 1 f1 by auto
then have (\u. integral {a..u} f) differentiable at x within {z..i}
apply (rule differentiable-transform-within[OF - zero-less-onel)
using that combine.hyps 1 by (auto introl: integral-spike[where S={i,z}])
then show ?thesis by (simp add: at)
next
case 2
have at: at z within {z..b} = at-right
using <z < b by (rule at-within-Icc-at-right)
then have (\u. integral {a..i} f + integral {i..u} f2) differentiable at x within
{z..b}
using that 2 f2 by auto
then have (\u. integral {a..i} f + integral {i..u} f) differentiable at x within
{z..b}
apply (rule differentiable-transform-within[OF - zero-less-one])
using that combine.hyps 2 by (auto intro!: integral-spike[where S={i,z}])
then have (\u. integral {a..u} f) differentiable at x within {z..b}
apply (rule differentiable-transform-within[OF - zero-less-one])
subgoal using that 2 by auto
apply auto
apply (subst Henstock-Kurzweil-Integration.integral-combine)
using that 2 <a < 0>
apply auto
by (auto intro: integrable-on-subinterval f-int)
then show ?thesis by (simp add: at)
qed
qed
moreover
have (At. integral {a..t} f) differentiable at-left x if o < z 2 < b for z
proof —
from that consider z < i |i < x by arith
then show ?thesis
proof cases
case]

39

have at: at z within {a..x} = at-left ©
using <a < > by (rule at-within-Icc-at-left)
then have (\u. integral {a..u} f1) differentiable at x within {a..z}
using that 1 f1 by auto
then have (\u. integral {a..u} f) differentiable at x within {a..x}
apply (rule differentiable-transform-within[OF - zero-less-onel)
using that combine.hyps 1 by (auto introl: integral-spike[where S={i,z}])
then show ?thesis by (simp add: at)
next
case 2
have at: at z within {i..x} = at-left x
using «i < o> by (rule at-within-Icc-at-left)
then have (A\u. integral {a..i} f + integral {i..u} f2) differentiable at x within

using that 2 f2 by auto
then have (Au. integral {a..i} f + integral {i..u} f) differentiable at x within
apply (rule differentiable-transform-within[OF - zero-less-onel)
using that combine.hyps 2 by (auto introl: integral-spike[where S={i,z}])
then have (\u. integral {a..u} f) differentiable at x within {i..x}
apply (rule differentiable-transform-within[OF - zero-less-one])
subgoal using that 2 by auto
apply auto
apply (subst Henstock-Kurzweil-Integration.integral-combine)
using that 2 <a < O
apply auto
by (auto intro: integrable-on-subinterval f-int)
then show %thesis by (simp add: at)
qed
qed
ultimately
show Zcase
by auto
next
case (weaken a b i I f)
from weaken. IH[OF <a < b)
obtain [u where IH:
Nt.a<z= 2z < b= 2z ¢ I = (A\u. integral {a..u} f) differentiable (at x)
Nz. a <z = z < b= (\t. integral {a..t} f) differentiable (at-right)
Nz. a < 2 =z < b= (At. integral {a..t} f) differentiable (at-left x)
by metis
then show ?case by auto
qed

lemma closure (—S) N closure S = frontier S
by (auto simp add: frontier-def closure-complement)

theorem integral-time-domain-has-laplace:
((At. integral {0 .. t} f) has-laplace L / s) s

40

if pe: A\k. piecewise-continuous-on 0 k D f
and eo: exponential-order M c f
and L: (f has-laplace L) s
and s: Res > ¢
and c¢: ¢ > 0
and TODO: D = {} — TODO: generalize to actual piecewise-continuous-on
for f::real = complex
proof —
define I where I = (\t. integral {0 .. t} f)
have I": (I has-vector-derivative f t) (at t within {0..2} — D)
ifte{0. 2z} —D
for z ¢
unfolding I-def
by (rule integral-has-vector-derivative-piecewise-continuous; fact)
have fi: f integrable-on {0..t} for ¢
by (rule piecewise-continuous-on-integrable) fact
have Ic: continuous-on {0 .. t} I for t
unfolding I-def using fi
by (rule indefinite-integral-continuous-1)
have Ipc: piecewise-continuous-on 0t {} I for ¢
by (rule piecewise-continuous-onl) (auto introl: Ic)
have I: (f has-integral It) {0 .. t} for ¢
unfolding I-def
using fi
by (rule integrable-integral)
from exponential-order-integral[OF I eo <0 < c¢)] obtain M’
where Ieo: exponential-order M' ¢ I .
have Ili: laplace-integrand I s integrable-on {0..}
using Ipc
apply (rule piecewise-continuous-on-AE-boundedE)
apply (rule laplace-integrand-integrable)
apply (rule Ieo)
apply assumption
apply (rule integrable-continuous-interval)
apply (rule Ic)
apply (rule s)
done
then obtain LI where LI: (I has-laplace LI) s
by (rule laplace-ezists-laplace-integrandl)

from piecewise-continuous-onE[OF pc] have «(finite Dy by auto
have I'2: (I has-vector-derivative f t) (at t) if t > 0t ¢ D for ¢
apply (subst at-within-open[symmetric, where S={0<..<t+1} — D])
subgoal using that by auto
subgoal by (auto introl:open-Diff finite-imp-closed «finite D»)
subgoal using ['[where 2=t + 1]
apply (rule has-vector-derivative-within-subset)
using that
by auto

41

done
have I-tndsto: (I —— 0) (at-right 0)
apply (rule tendsto-eq-rhs)
apply (rule continuous-on-Icc-at-rightD)
apply (rule Ic)
apply (rule zero-less-one)
by (auto simp: I-def)
have (f has-laplace s « LI — 0) s
by (rule has-laplace-derivative-time-domain[OF LI I'2 I-tndsto Ieo s))
(auto simp: TODO)
from has-laplace-unique| OF this L] have LI = L / s
using s ¢ by auto
with LI show (I has-laplace L / s) s by simp
qed

4.4 higher derivatives
definition nderiv i f X = ((Af. (Az. vector-derivative f (at x within X))) ™ %) f

definition ndiff n f X «— (Vi<n.Vz € X. nderiv ¢ f X differentiable at x within
X)

lemma nderiv-zero[simp|: nderiv 0 f X = f
by (auto simp: nderiv-def)

lemma nderiv-Suc[simp]:
nderiv (Suc 1) f X © = vector-derivative (nderiv i f X) (at x within X)
by (auto simp: nderiv-def)

lemma ndiff-zero[simp|: ndiff 0 f X
by (auto simp: ndiff-def)

lemma ndiff-Sucs[simp]:
ndiff (Suc i) fX +—
(ndiff i f X) A
(Vz € X. (nderiv i f X) differentiable (at x within X))
apply (auto simp: ndiff-def)
using less-antisym by blast

theorem has-laplace-vector-derivative:
((At. vector-derivative f (at t)) has-laplace s * L — f0) s
if L: (f has-laplace L) s
and f: At. t > 0 = f differentiable (at t)
and f0: (f —— f0) (at-right 0)
and eo: exponential-order M c f
and cs: ¢ < Re s
proof —
have [(At. 0 < t = (f has-vector-derivative vector-derivative f (at t)) (at t))
using f’

42

by (subst vector-derivative-works|symmetric])
show ?thesis
by (rule has-laplace-derivative-time-domain|OF L f' f0 eo cs])
qed

lemma has-laplace-nderiv:
(nderiv n f {0<..} has-laplace s™n x L — (D> i<n. s (n — Suc i) * f010)) s
if L: (f has-laplace L) s
and [ndiff n f {0<..}
and f0: N\i. i < n = (nderiv i f {0<..} —— f01) (at-right 0)
and eo: A\i. i < n = exponential-order M ¢ (nderiv i f {0<..})
and cs: ¢ < Re s
using [’ f0 eo
proof (induction n)
case (
then show Zcase
by (auto simp: L)
next
case (Suc n)
have awo: at t within {0<..} = at t if t > 0 for t::real
using that
by (subst at-within-open) auto
have ((Aa. vector-derivative (nderiv n f {0<..}) (at a)) has-laplace
sk (s " mxL— (3 i<n. s (n— Suci)* f0i)) — fOn) s
(is (- has-laplace ?L) -)
apply (rule has-laplace-vector-derivative)
apply (rule Suc.IH)
subgoal using Suc.prems by auto
subgoal using Suc.prems by auto
subgoal using Suc.prems by auto
subgoal using Suc.prems by (auto simp: awo)
subgoal using Suc.prems by auto
apply (rule Suc.prems; force)
apply (rule cs)
done
also have ?L = s ~Sucn* L — (3 i<Suc n. s = (Suc n — Suc i) = f0 ©)
by (auto simp: algebra-simps sum-distrib-left diff-Suc Suc-diff-le
split: nat.splits
introl: sum.cong)
finally show ?case
by (rule has-laplace-spike[where T={0}]) (auto simp: awo)
qged

end

5 Lerch Lemma

theory Lerch-Lemma
imports

43

HOL— Analysis. Analysis
begin

The main tool to prove uniqueness of the Laplace transform.

lemma lerch-lemma-real:
fixes h::real = real
assumes h-cont|continuous-intros|: continuous-on {0 .. 1} h
assumes int-0: An. (Au. u " n * h u) has-integral 0) {0 .. 1}
assumes u: 0 < uu < I
shows h u = 0
proof —
from Stone- Weierstrass-uniform-limit|OF compact-Icc h-cont]
obtain g where g: uniform-limit {0..1} g h sequentially polynomial-function (g
n) for n
by blast
then have rpf-g: real-polynomial-function (g n) for n
by (simp add: real-polynomial-function-eq)

let P =Anz. hzxgnz
have continuous-on-g[continuous-intros|: continuous-on s (g n) for s n
by (rule continuous-on-polymonial-function) fact
have P-cont: continuous-on {0 .. 1} (¢P n) for n
by (auto intro!: continuous-intros)
have uniform-limit {0 .. 1} (Anz. hx x g nx) (Az. h & x h x) sequentially
by (auto introl: uniform-limit-intros g assms compact-imp-bounded compact-continuous-image)

from uniform-limit-integral| OF this P-cont)
obtain I J where
I: (An. (P n has-integral I n) {0..1})
and J: (Az. h z * h x) has-integral J) {0..1}
and [J: [—— J
by auto

have (?P n has-integral 0) {0..1} for n
proof —
from real-polynomial-function-imp-sum[OF rpf-g|
obtain gn ga where g n = (Az. > i<gn. ga i * = ~ i) by metis
then have ?Pnz = (3 i<gn.z ~ix* hz * ga i) for z
by (auto simp: sum-distrib-left algebra-simps)

moreover have ((Az. ... z) has-integral 0) {0 .. 1}
by (auto intro!: has-integral-sum| THEN has-integral-eq-rhs| has-integral-mult-left
assms)
ultimately show #thesis by simp
qed

with [have I n = 0 for n
using has-integral-unique by blast
with IJ J have ((Az. h x % h z) has-integral 0) (cbox 0 1)
by (metis (full-types) LIMSEQ-le-const LIMSEQ-le-const2 boz-real(2) dual-order.antisym
order-refl)

44

with - - have hu x hu = 0
by (rule has-integral-0-cboz-imp-0) (auto introl: continuous-intros w)
then show h u = 0
by simp
qed

lemma lerch-lemma:
fixes h::real = 'a::euclidean-space
assumes [continuous-intros|: continuous-on {0 .. 1} h
assumes int-0: An. (Au. u "~ n *xg h u) has-integral 0) {0 .. 1}
assumes u: 0 < uu < I
shows h u = 0
proof (rule euclidean-eqI)
fix b::’a assume b € Basis
have continuous-on {0 .. 1} (Az. h z - b)
by (auto introl: continuous-intros)
moreover
from <b € Basis) have ((Au. v ~n % (h u - b)) has-integral 0) {0 .. 1} for n
using int-0[of n] has-integral-componentwise-iff [of Au. u ~n xg h u 0 {0 ..
1y
by auto
moreover note u
ultimately show hu - b=0-b
unfolding inner-zero-left
by (rule lerch-lemma-real)
qed

end

6 Uniqueness of Laplace Transform

theory Uniqueness
imports
Existence
Lerch-Lemma
begin

We show uniqueness of the Laplace transform for continuous functions.

lemma laplace-transform-zero.— should also work for piecewise continuous

assumes cont-f: continuous-on {0..} f

assumes eo: exponential-order M a f

assumes laplace: A\s. Re s > a = (f has-laplace 0) s

assumes t > ()

shows ft =0
proof —

define I where I = As k. integral {0..k} (laplace-integrand f s)

have bounded-image: bounded (f < {0..b}) for b

by (auto introl: compact-imp-bounded compact-continuous-image cont-f intro:

continuous-on-subset)

45

obtain B where B: Vze{0..b}. cmod (fz) < B b for b
apply atomize-elim
apply (rule choice)
using bounded-imagelunfolded bounded-iff]
by auto
have fi: f integrable-on {0..b} for b
by (auto intro!: integrable-continuous-interval intro: continuous-on-subset cont-f)
have aint: complez-set-integrable lebesque {0..b} (laplace-integrand f s) for b s
by (rule laplace-integrand-absolutely-integrable-on-Icc|OF
AE-BallI[OF bounded-le-Sup[OF bounded-image]| fi])
have int: ((At. exp (t xg — s) * ft) has-integral I s b) {0 .. b} for s b
using aint|of b s
unfolding laplace-integrand-def[symmetric] I-def absolutely-integrable-on-def
by blast
have I-integral: Re s > a = (I s —— integral {0..} (laplace-integrand f s))
at-top for s
unfolding I-def
by (metis aint eo improper-integral-at-top laplace-integrand-absolutely-integrable-on-Ici-iff)
have imp: (I s —— 0) at-top if s: Re s > a for s
using I-integral[of s] laplace[unfolded has-laplace-def, rule-format, OF s] s
unfolding has-laplace-def I-def laplace-integrand-def
by (simp add: integral-unique)

define s0 where s0 = a + 1
then have s0 > a by auto
have V p z in at-right (0:real). 0 < x ANz < 1
by (auto intro!: eventually-at-rightI)
moreover
from ezponential-orderD(2)[OF eo]
have V g t in at-right 0. cmod (f (— Int)) < M x exp (a * (— In t))
unfolding at-top-mirror filtermap-In-at-right[symmetric] eventually-filtermap .
ultimately have V p z in at-right 0. cmod ((x powr s0) = f (— Inz)) < M % z
powr (s0 — a)
(isVpain- 2z < ?rzx)
proof eventually-elim
case z: (elim x)
then have cmod ((z powr s0) x f (— In x)) < z powr s0 % (M * exp (a * (—

In z)))

by (intro norm-mult-ineq] THEN order-trans]) (auto introl: x(2)[THEN or-

der-trans])
also have ... = M x z powr (s0 — a)
by (simp add: exp-minus In-inverse divide-simps powr-def mult-exp-exp alge-
bra-simps)
finally show ?case .
qed

then have ((A\z. z powr s0 * f (— In x)) —— 0) (at-right 0)
by (rule Lim-null-comparison)
(auto intro!: tendsto-eg-intros <a < s0» eventually-at-rightl zero-less-one)
moreover have Viyp zinatz. Inx < 0if 0 < zz < 1 for z:real

46

using order-tendstoD(1)[OF tendsto-ident-at <0 < x>, of UNIV]
order-tendstoD(2)[OF tendsto-ident-at <z < 1y, of UNIV]

by eventually-elim simp
ultimately have [continuous-intros|:

continuous-on {0..1} (Az. x powr s0 x f (— In x))

by (intro continuous-on-Iccl;

force intro: continuous-on-tendsto-compose|OF cont-f] tendsto-eg-intros
eventually-at-left]
zero-less-one)

{

fix n:nat
let 20 = (Au. v ~n *xg (u powr s0 x f (— In w)))
let 21 = An b. integral {exp (— b).. 1} %i
have V g (b::real) in at-top. b > 0
by (simp add: eventually-gt-at-top)
then have V g b in at-top. I (s0 + Sucn) b= 2Inb
proof eventually-elim
case (elim b)
have eq: exp (t *p — complez-of-real (s0 + real (Suc n))) * ft =
complez-of-real (exp (— (real n * t)) x exp (— t) * exp (— (s0 * t))) = f
for ¢
by (auto simp: Euler mult-exp-exp algebra-simps simp del: of-real-mult)
from int[of sO + Suc n b]
have int” ((At. exp (— (n * t)) * exp (—t) * exp (— (s0 x t)) = f 1)
has-integral I (s0 + Suc n) b) {0..b}
(is (?fe has-integral -) -)
unfolding eq .
have ((Az. — exp (— z) *g exp (— z) ~n xg (exp (— z) powr sO * f (— In
(exp (— 2)))
has-integral
integral {exp (— 0)..exp (— b)} % — integral {exp (— b)..exp (— 0)} %)

{0..b}
by (rule has-integral-substitution-general[of {} 0 b At. exp(—t) 0 1 2i Ax.
—enp(—a)))
(auto introl: less-imp-le[OF 0] continuous-intros integrable-continuous-real
derivative-eq-intros)
then have (?fe has-integral ?I n b) {0..b}
using 0»
by (auto simp: algebra-simps mult-exp-exp exp-of-nat-mult[symmetric]
scaleR-conv-of-real
exp-add powr-def of-real-exp has-integral-neg-iff)
with int’ show ?case
by (rule has-integral-unique)
qed
moreover have (I (s0 + Suc n) —— 0) at-top
by (rule imp) (use <s0 > a) in auto)
ultimately have (71 n —— 0) at-top
by (rule Lim-transform-eventually[rotated))
then have 1: ((Az. integral {exp (In z)..1} %) —— 0) (at-right 0)

47

unfolding at-top-mirror filtermap-In-at-right[symmetric] filtermap-filtermap
filterlim-filtermap
by simp
have V¢ z in at-right 0. > 0
by (simp add: eventually-at-filter)
then have V i z in at-right 0. integral {exp (In z)..1} %i = integral {z .. 1} %i
by eventually-elim (auto simp:)
from Lim-transform-eventually|OF 1 this]
have ((Az. integral {z..1} %) —— 0) (at-right 0)
by simp
moreover
have ?i integrable-on {0..1}
by (force intro: continuous-intros integrable-continuous-real)
from continuous-on-Icc-at-right D{OF indefinite-integral-continuous-1'{OF this]
zero-less-one)
have ((Az. integral {z..1} %i) —— integral {0 .. 1} %i) (at-right 0)
by simp
ultimately have integral {0 .. 1} % = 0
by (rule tendsto-unique[symmetric, rotated]) simp
then have (% has-integral 0) {0 .. 1}
using integrable-integral < ?i integrable-on {0..1}>
by (metis (full-types))
} from lerch-lemmalOF - this, of exp (— t)]
show ft = 0 using <t > O
by (auto intro!: continuous-intros)
qged

lemma exponential-order-eventually-eq: exponential-order M a f
if exponential-order Ma g Nt. t > k = ft =gt

proof —
have Vi tin at-top. ft =g t
using that
unfolding eventually-at-top-linorder
by blast

with ezponential-orderD(2)[OF that(1)]
have (Vg tin at-top. norm (ft) < M x exp (a * t))
by eventually-elim auto
with ezponential-orderD(1)[OF that(1)]
show ?thesis
by (rule exponential-orderl)
qed

lemma exponential-order-mono:
assumes co: exponential-order M a f
assumes a < b M < N
shows exponential-order N b f

proof (rule exponential-orderl)
from exponential-orderD[OF eo] assms(3)
show 0 < N by simp

48

have V y t in at-top. (t::real) > 0
by (simp add: eventually-gt-at-top)
then have V p t in at-top. M * exp (a * t) < N x exp (b = 1)
by eventually-elim
(use <0 < Ny in <force intro: mult-mono assms»)
with exponential-orderD(2)[OF eo)
show V g t in at-top. norm (ft) < N x exp (b * 1)
by (eventually-elim) simp
qed

lemma exponential-order-uminus-iff:
exponential-order M a (A\x. — f) = exponential-order M a f
by (auto simp: exponential-order-def)

lemma exponential-order-add:
assumes exponential-order M a f exponential-order M a g
shows exponential-order (2 « M) a (Az. fz + g)
using assms
apply (auto simp: exponential-order-def)
subgoal premises prems
using prems(1,3)
apply (eventually-elim)
apply (rule norm-triangle-le)
by linarith
done

theorem laplace-transform-unique:
assumes f: A\s. Re s > a = (f has-laplace F) s
assumes g: A\s. Re s > b = (g has-laplace F) s
assumes [continuous-intros|: continuous-on {0..} f
assumes [continuous-intros|: continuous-on {0..} g
assumes eof: exponential-order M a f
assumes eog: exponential-order N b g
assumes t > (
shows ft =gt
proof —
define ¢ where ¢ = maz a b
define L where L = maz M N
from eof have eof: exponential-order L ¢ f
by (rule exponential-order-mono) (auto simp: L-def c-def)
from eog have eog: exponential-order L ¢ (Az. — g z)
unfolding exponential-order-uminus-iff
by (rule exponential-order-mono) (auto simp: L-def c-def)
from ezponential-order-add|OF eof eog]
have eom: exponential-order (2 « L) ¢ (Az. fz — g x)
by simp
have 10: (\z. fz — g x) has-laplace 0) s if Re s > ¢ for s
using has-laplace-minus[OF f g, of s] that by (simp add: c-def maz-def split:
if-splits)

49

have ft — gt =10

by (rule laplace-transform-zero[OF - eom 10 <t > 0)])

(auto introl: continuous-intros)

then show ?thesis by simp
qed

end
theory Laplace-Transform
imports

FExistence
Uniqueness

begin

end

References

1]

A. Rashid and O. Hasan. Formalization of transform methods using
HOLaLight. In H. Geuvers, M. England, O. Hasan, F. Rabe, and
O. Teschke, editors, Intelligent Computer Mathematics, pages 319-332,
Cham, 2017. Springer International Publishing.

A. Rashid and O. Hasan. Formalization of Lerch’s theorem using HOL
Light. FLAP, 5(8):1623-1652, 2018.

J. L. Schiff. The Laplace transform: theory and applications. Springer
New York, 1999.

S. H. Taqgdees and O. Hasan. Formalization of Laplace transform us-
ing the multivariable calculus theory of HOL-Light. In K. McMillan,
A. Middeldorp, and A. Voronkov, editors, Logic for Programming, Ar-
tificial Intelligence, and Reasoning, pages 744-758, Berlin, Heidelberg,
2013. Springer Berlin Heidelberg.

50

	References
	Library Additions
	Derivatives
	Integrals
	Miscellaneous

	Piecewise Continous Functions
	at within filters
	intervals

	Existence
	Definition
	Condition for Existence: Exponential Order
	Concrete Laplace Transforms
	higher derivatives

	Lerch Lemma
	Uniqueness of Laplace Transform

