The Lambert T Function on the Reals

Manuel Eberl

March 17, 2025

Abstract

The Lambert W function is a multi-valued function defined as the
inverse function of x — xe®. Besides numerous applications in com-
binatorics, physics, and engineering, it also frequently occurs when
solving equations containing both e” and «, or both x and log z.

This article provides a definition of the two real-valued branches
Wo(x) and W_1(x) and proves various properties such as basic identi-
ties and inequalities, monotonicity, differentiability, asymptotic expan-
sions, and the MacLaurin series of Wy(z) at z = 0.

Contents

1 The Lambert W Function on the reals 2
1.1 Properties of the function x — ze®* 2
1.2 Definition 4
1.3 Monotonicity properties oL 8
1.4 Basic identities and bounds L. 15
1.5 Limits, continuity, and differentiability 18
1.6 Asymptotic expansion 24
1.7 The MacLaurin series of Wy(z) at z =0 30

1 The Lambert W Function on the reals

theory Lambert-W
imports

Complez-Main

HOL- Library. FuncSet

HOL— Real-Asymp. Real-Asymp
begin

1.1 Properties of the function z +— ze”
lemma exp-times-self-gt:
assumes r #* —1
shows =z x exp © > —exp (—1::real)
proof —
define f where f = (\z::real. z x exp x)
define f’ where f' = (Az:real. (z + 1) * exp x)
have (f has-field-derivative f') (at z) for
by (auto simp: f-def f'-def introl: derivative-eq-intros simp: algebra-simps)
define | r where | = min z (—1) and r = mazx z (—1)

have 3z. z > IAz<r Afr—fl=(r—-0=x*f"z
unfolding f-def f’-def I-def r-def using assms
by (intro MVT2) (auto introl: derivative-eq-intros simp: algebra-simps)
then obtain z where z: z € {i<.<r} fr—fl=(r =10 *f'2
by auto
from z have fz =f (—1)+ (z + 1) x f' 2
using assms by (cases x > —1) (auto simp: l-def r-def maz-def min-def alge-
bra-simps)
moreover have sgn ((z + 1) * f' 2) = 1
using z assms
by (cases x (—1) :: real rule: linorder-cases; cases z (—1) :: real rule: linorder-cases)
(auto simp: f'-def sgn-mult I-def r-def)
hence (z + 1) x f’ z > 0 using sgn-greater by fastforce
ultimately show ?thesis by (simp add: f-def)
qed

lemma exp-times-self-ge: x * exp v > —exp (—1::real)
using ezp-times-self-gt[of z] by (cases x = —1) auto

lemma exp-times-self-strict-mono:
assumes ¢ > —1 z < (y :: real)
shows zxexpx <yx*expy
using assms(2)
proof (rule DERIV-pos-imp-increasing-open)
fix t assume t: z < tt <y
have ((A\z. = x exp z) has-real-derivative (t + 1) x exp t) (at t)
by (auto introl: derivative-eq-intros simp: algebra-simps)
moreover have (t + 1) x exp t > 0

using ¢ assms by (intro mult-pos-pos) auto
ultimately show Jy. ((Aa. a * exp a) has-real-derivative y) (at t) A 0 < y by
blast
qed (auto introl: continuous-intros)

lemma exp-times-self-strict-antimono:
assumes y < —1 z < (y :: real)
shows zxepz>yxexpy
proof —
have —z x expx < —y x exp y
using assms(2)
proof (rule DERIV-pos-imp-increasing-open)
fix tassume t: z < tt <y
have ((Az. —z * exp) has-real-derivative (—(t + 1)) * exp t) (at t)
by (auto intro!: derivative-eg-intros simp: algebra-simps)
moreover have (—(t + 1)) x exp t > 0
using ¢ assms by (intro mult-pos-pos) auto
ultimately show 3y. ((Aa. —a * exp a) has-real-derivative y) (at t) A 0 < y
by blast
qged (auto introl: continuous-intros)
thus ?thesis by simp
qged

lemma exp-times-self-mono:
assumes r > —1 x < (y I real)
shows zxempzx<yxexpy
using exp-times-self-strict-monolof x y] assms by (cases x = y) auto

lemma exp-times-self-antimono:
assumes y < —1 z < (y :: real)
shows T xexpx>yx*expy
using exp-times-self-strict-antimonolof y] assms by (cases & = y) auto

lemma exp-times-self-inj: inj-on (Az::real. x * exp z) {—1..}
proof
fix z y :: real
assume z € {—I1.}ye{-Il.}zxexpr=y*erpy
thus 2z = y
using exp-times-self-strict-mono|of x y| exp-times-self-strict-monolof y x|
by (cases x y rule: linorder-cases) auto
qed

lemma exp-times-self-inj": inj-on (Az:real. z x exp z) {.—1}
proof

fix x y :: real

assume z € {.—I}ye{.—1}zxepr=yxexpy

thus z =y

using exp-times-self-strict-antimonolof z y| exp-times-self-strict-antimono|of y

x

}

—
[\]
w
B
ot
D

Figure 1: The two real branches of the Lambert W function: W (blue) and
Wfl (red).

by (cases x y rule: linorder-cases) auto
qed

1.2 Definition

The following are the two branches Wy(x) and W_q(z) of the Lambert W
function on the real numbers. These are the inverse functions of the function
x> xe”, i.e. we have W (z)e (®) = 2 for both branches wherever they are

defined. The two branches meet at the point z = —%.

Wo(z) is the principal branch, whose domain is [—1;00) and whose range is
[—1;00). W_q1(x) has the domain [—1;0) and the range (—oo; —1]. Figure 1
shows plots of these two branches for illustration.

definition Lambert-W :: real = real where
Lambert-W x = (if t < —exp(—1) then —1 else (THE w. w > —1 A w % exp w

= z))
definition Lambert-W' :: real = real where

Lambert-W' z = (if ¢ € {—exp(—1)..<0} then (THE w. w < —1 AN w % exp w
=z) else —1)

lemma Lambert-W-ex1:

assumes (z::real) > —exp (—1)
shows Jlw. w>—1 AN w=*expw==x
proof (rule ex-ex1I)
have filterlim (Aw::real. w % exp w) at-top at-top
by real-asymp
hence eventually (Aw. w * exp w >) at-top
by (auto simp: filterlim-at-top)
hence eventually (Aw. w > 0 A w * exp w > x) at-top
by (intro eventually-conj eventually-ge-at-top)
then obtain w’ where w”: w’ * exp w’ > zw' > 0
by (auto simp: eventually-at-top-linorder)
from w’ assms have Jw. —1 <w Aw < w Awx*expw==zx
by (intro IVT' continuous-intros) auto
thus Jw. w > —1 A w x exp w = x by blast
next
fix w w’ :: real
assume ww”: w > -1 ANwsxexpw=zw >—-1ANw*xexpw ==z
hence w * exp w = w’ * exp w’ by simp
thus w = w’
using exp-times-self-strict-monolof w w’] exp-times-self-strict-monolof w’ w]
ww’
by (cases w w’ rule: linorder-cases) auto
qed

lemma Lambert-W'-ex1:
assumes (z::real) € {—exp (—1)..<0}
shows Jlw. w< -1 ANwx*expw=2x
proof (rule ex-ex1I)
have eventually (Aw. z < w * exp w) at-bot
using assms by real-asymp
hence eventually (Aw. w < —1 A w x exp w > z) at-bot
by (intro eventually-conj eventually-le-at-bot)
then obtain w’ where w”: w’ * exp w' > z w' < —1
by (auto simp: eventually-at-bot-linorder)

from w’ assms have Jw. w' < wAw< —1 Aw*expw==zx
by (intro IVT2' continuous-intros) auto
thus Jw. w < —1 A w * exp w = x by blast
next
fix ww' :: real
assume ww: w< -1 ANw*xexpw=zw < —1ANw*xepw =2z
hence w * exp w = w’ * exp w’ by simp
thus w = w’
using exp-times-self-strict-antimono[of w w’] exp-times-self-strict-antimonolof
w’ w] ww’
by (cases w w’ rule: linorder-cases) auto
qed

lemma Lambert- W-times-exp-self:

assumes z > —exp (—1)
shows Lambert-W x * exp (Lambert-W z) = z
using thel |OF Lambert-W-ex1[OF assms|| assms by (auto simp: Lambert- W-def)

lemma Lambert- W-times-exp-self
assumes ¢ > —exp (—1)
shows ezp (Lambert-W x) % Lambert-W z = x
using Lambert- W-times-exp-self[of] assms by (simp add: mult-ac)

lemma Lambert-W'-times-exp-self:
assumes z € {—exp (—1)..<0}
shows Lambert-W' x x exp (Lambert-W' z) = x
using thel |OF Lambert-W'-exl [OF assms]] assms by (auto simp: Lambert-W'-def)

lemma Lambert-W'-times-exp-self .
assumes z € {—exp (—1)..<0}
shows exp (Lambert-W') * Lambert-W'z = z
using Lambert-W'-times-exp-self|of =] assms by (simp add: mult-ac)

lemma Lambert-W-ge: Lambert-W z > —1
using thel [OF Lambert-W-ex1[of z]] by (auto simp: Lambert-W-def)

lemma Lambert-W'-le: Lambert-W' x < —1
using thel |OF Lambert-W'-exl [of z]] by (auto simp: Lambert-W'-def)

lemma Lambert-W-eql:
assumes w > —1 w*x exp w =<
shows Lambert-W z = w
proof —
from assms exp-times-self-ge[of w] have © > —exp (—1)
by (cases x > —exp (—1)) auto
from Lambert-W-ex1[OF this| Lambert- W-times-exp-self [OF this| Lambert-W-ge[of
x] assms
show ?thesis by metis
qed

lemma Lambert-W'-eql:
assumes w < —1 w*x exp w =
shows Lambert-W'z = w
proof —
from assms exp-times-self-ge[of w] have © > —exp (—1)
by (cases x > —exp (—1)) auto
moreover from assms have w * exp w < 0
by (intro mult-neg-pos) auto
ultimately have z € {—ezp (—1)..<0}
using assms by auto

from Lambert-W'-ex1[OF this(1)] Lambert-W'-times-exp-self[OF this(1)] Lam-
bert-W'-le assms

show ?thesis by metis
qed

Wo(z) and W_;(x) together fully cover all solutions of we" = x:

lemma exp-times-self-eqD:
assumes w *x exp w = T

shows 1 > —exp (—1) and w = Lambert-Wax V z < 0 A w = Lambert-W' z

proof —
from assms show © > —exp (—1)
using exp-times-self-ge[of w] by auto

show w = Lambert-W z V z < 0 N w = Lambert-W' z

proof (cases w > —1)
case True
hence Lambert-W z = w
using assms by (intro Lambert-W-eql) auto
thus ?thesis by auto
next
case Fulse
from False have w * exp w < 0
by (intro mult-neg-pos) auto
from Fualse have Lambert-W' z = w
using assms by (intro Lambert-W'-eql) auto
thus ?thesis using assms (w * exp w < 0> by auto
qed
qed

theorem exp-times-self-eq-iff:

wx erpw=u1x+— > —exp (—1) AN (w= Lambert-Wa V z < 0 AN w

Lambert-W' x)
using exp-times-self-eqD[of w]

by (auto simp: Lambert-W-times-exp-self Lambert-W'-times-exp-self)

lemma Lambert-W-exp-times-self [simpl: ¥ > —1 = Lambert-W (x % exp x)

T
by (rule Lambert-W-eql) auto

lemma Lambert-W-exp-times-self’ [simp]: © > —1 = Lambert-W (exp = * z)

x
by (rule Lambert-W-eql) auto

lemma Lambert-W'-exp-times-self [simp]: © < —1 => Lambert-W' (z * exp

=z
by (rule Lambert-W'-eql) auto

lemma Lambert-W'-exp-times-self’ [simp]: © < —1 = Lambert-W' (exp x *

=z
by (rule Lambert-W'-eql) auto

lemma Lambert- W-times-In-self:

assumes z > exp (—1)
shows Lambert-W (z x Inz) = Inx
proof —
have 0 < exp (—1 :: real)
by simp
also note (... <
finally have z > 0 .
from assms have In (exp (—1)) < In z
using «z > 0> by (subst In-le-cancel-iff) auto
hence Lambert-W (exp (Inz) * Inz) =Inz
by (subst Lambert-W-exp-times-self’) auto
thus ?thesis using «x > 0> by simp
qed

lemma Lambert- W-times-In-self .
assumes z > exp (—1)
shows Lambert-W (Inz x z) =Inz
using Lambert- W-times-In-self[OF assms] by (simp add: mult.commute)

lemma Lambert- W-eq-minus-exp-minus! [simp]: Lambert-W (—exp (—1)) = —1
by (rule Lambert-W-eql) auto

lemma Lambert-W'-eq-minus-exp-minusl [simp|: Lambert-W' (—exp (—1)) = —1
by (rule Lambert-W'-eqI) auto

lemma Lambert-W-0 [simp]: Lambert-W 0 = 0
by (rule Lambert-W-eql) auto

1.3 Monotonicity properties

lemma Lambert- W-strict-mono:
assumes z > —exp(—1) z < y
shows Lambert-W z < Lambert-W y
proof (rule ccontr)
assume —(Lambert-W z < Lambert-W y)
hence Lambert-W x % exp (Lambert-W z) > Lambert-W y % exp (Lambert-W y)
by (intro exp-times-self-mono) (auto simp: Lambert-W-ge)
hence = > y
using assms by (simp add: Lambert- W-times-exp-self)
with assms show Fulse by simp
qged

lemma Lambert-W-mono:
assumes z > —exp(—1) z < y
shows Lambert-W x < Lambert-W y
using Lambert-W-strict-mono|of = y| assms by (cases x = y) auto

lemma Lambert-W-eqg-iff [simp]:
z > —erp(—1) = y > —exp(—1) = Lambert-W z = Lambert-W y +— z =y

using Lambert- W-strict-mono|of x y| Lambert-W-strict-mono[of y]
by (cases x y rule: linorder-cases) auto

lemma Lambert- W-le-iff [simp]:
x> —erp(—1) = y > —exp(—1) = Lambert-W z < Lambert-W y +— x < y
using Lambert-W-strict-mono[of x y| Lambert-W-strict-mono|of y z]
by (cases x y rule: linorder-cases) auto

lemma Lambert- W-less-iff [simp]:
x> —exp(—1) = y > —exp(—1) = Lambert-W x < Lambert-W y +— z < y
using Lambert-W-strict-mono|of x y| Lambert-W-strict-mono[of y]
by (cases x y rule: linorder-cases) auto

lemma Lambert-W-le-minus-one:

assumes z < —exp(—1)

shows Lambert-W z = —1
proof (cases x = —exp(—1))

case Fulse

thus ?thesis using assms

by (auto simp: Lambert-W-def)

qed auto

lemma Lambert-W-pos-iff [simp]: Lambert-W z > 0 +— z > 0
proof (cases x > —exp (—1))
case True
thus ?thesis
using Lambert-W-less-iff [of 0 z] by (simp del: Lambert-W-less-iff)
next
case Fulse
hence z < — exp(—1) by auto
also have ... < 0 by simp
finally show ?thesis using False
by (auto simp: Lambert-W-le-minus-one)
qed

lemma Lambert-W-eq-0-iff [simp]: Lambert-W z = 0 +— z = 0

using Lambert-W-eq-iff [of = 0]

by (cases x > —exp (—1)) (auto simp: Lambert-W-le-minus-one simp del: Lam-
bert- W-eq-iff)

lemma Lambert-W-nonneg-iff [simp]: Lambert-W x > 0 +— z > 0
using Lambert-W-pos-iff [of z]
by (cases x = 0) (auto simp del: Lambert- W-pos-iff)

lemma Lambert-W-neg-iff [simp]: Lambert-W z < 0 +— z < 0
using Lambert-W-nonneg-iff [of z] by (auto simp del: Lambert-W-nonneg-iff)

lemma Lambert-W-nonpos-iff [simp]: Lambert-W z < 0 «— z < 0
using Lambert-W-pos-iff [of z] by (auto simp del: Lambert-W-pos-iff)

lemma Lambert-W-gel:
assumes y * exp y <
shows Lambert-W xz > y
proof (cases y > —1)
case Fulse
hence y < —1 by simp
also have —1 < Lambert-W x by (rule Lambert- W-ge)
finally show ?thesis .
next
case True
have Lambert-W x > Lambert-W (y * exp y)
using assms exp-times-self-gelof y] by (intro Lambert-W-mono) auto
thus ?thesis using assms True by simp
qed

lemma Lambert-W-gtl:
assumes y * exp y < T
shows Lambert-W z > y
proof (cases y > —1)
case Fulse
hence y < —1 by simp
also have —1 < Lambert-W x by (rule Lambert- W-ge)
finally show ?thesis .
next
case True
have Lambert-W x > Lambert-W (y * exp y)
using assms exp-times-self-ge|of y] by (intro Lambert- W-strict-mono) auto
thus ?thesis using assms True by simp
qed

lemma Lambert-W-lel:
assumes y x expy >y > —1x > —exp (—1)
shows Lambert-Wx < y
proof —
have Lambert-W x < Lambert-W (y * exp y)
using assms exp-times-self-ge[of y] by (intro Lambert-W-mono) auto
thus ?thesis using assms by simp
qed

lemma Lambert-W-lessI:
assumes y x expy >xy > —11x> —exp (—1)
shows Lambert-W z < y
proof —
have Lambert-W x < Lambert-W (y x exp y)
using assms exp-times-self-ge[of y] by (intro Lambert- W-strict-mono) auto
thus “thesis using assms by simp
qed

10

lemma Lambert- W' -strict-antimono:
assumes —exp (—1) <zz<yy<0
shows Lambert-W' x > Lambert-W' y
proof (rule ccontr)
assume —(Lambert-W' z > Lambert-W' y)
hence Lambert-W' z x exp (Lambert-W' x) > Lambert-W'y * exp (Lambert-W'
y)
using assms by (intro exp-times-self-antimono Lambert-W'-le) auto
hence z > y
using assms by (simp add: Lambert-W'-times-exp-self)
with assms show Fualse by simp
qed

lemma Lambert-W'-antimono:
assumes z > —exp(—1) s < yy < 0
shows Lambert-W' z > Lambert-W' y
using Lambert-W'-strict-antimono[of x y] assms by (cases © = y) auto

lemma Lambert-W'-eq-iff [simp]:
z€{—exp(—1).<0} = y € {—exp(—1)..<0} = Lambert-W'z = Lambert-W'
ye—az=y
using Lambert-W'-strict-antimono|of = y] Lambert-W'-strict-antimono|of y x|
by (cases x y rule: linorder-cases) auto

lemma Lambert-W'-le-iff [simp]:
z€{—erp(—1).<0} = y € {—exp(—1)..<0} = Lambert-W'z < Lambert-W'
y«—z 2>y
using Lambert-W'-strict-antimonolof x y] Lambert-W'-strict-antimono|of y
by (cases x y rule: linorder-cases) auto

lemma Lambert-W'-less-iff [simp]:
z€{—ewp(—1).<0} = ye€{—exp(—1)..<0} = Lambert-W'z < Lambert-W'
Yy x>y
using Lambert-W'-strict-antimonolof x y] Lambert-W'-strict-antimono|of y x
by (cases x y rule: linorder-cases) auto

lemma Lambert-W'-le-minus-one:
assumes z < —ezp(—1)

shows Lambert-W'z = —1
proof (cases © = —exp(—1))
case Fulse

thus ?thesis using assms
by (auto simp: Lambert-W'-def)
qed auto

lemma Lambert-W'-ge-zero: © > 0 = Lambert-W' z = —1
by (simp add: Lambert-W'-def)

11

lemma Lambert-W'-neg: Lambert-W' z < 0
by (rule le-less-trans|OF Lambert-W'-le]) auto

lemma Lambert-W'-nz [simp]: Lambert-W' xz # 0
using Lambert-W'-neg[of z] by simp

lemma Lambert-W'-gel:
assumes y x ezpy > cy < —1 ¢ > —exp(—1)
shows Lambert-W'x > y
proof —
from assms have y x exp y < 0
by (intro mult-neg-pos) auto
hence Lambert-W' z > Lambert-W' (y * exp y)
using assms exp-times-self-ge[of y] by (intro Lambert-W'-antimono) auto
thus ?thesis using assms by simp
qed

lemma Lambert-W'-gtl:
assumes y x expy >y < —1 x> —exp(—1)
shows Lambert-W'x > y
proof —
from assms have y x exp y < 0
by (intro mult-neg-pos) auto
hence Lambert-W' z > Lambert-W' (y * exp y)
using assms exp-times-self-geof y] by (intro Lambert-W'-strict-antimono) auto
thus ?thesis using assms by simp
qed

lemma Lambert-W'-lel:
assumes y x ezpy <z < 0
shows Lambert-W'z < y
proof (cases y < —1)
case True
have Lambert-W' x < Lambert-W' (y * exp y)
using assms exp-times-self-ge[of y] by (intro Lambert-W'-antimono) auto
thus ?thesis using assms True by simp
next
case Fulse
have Lambert-W' z < —1
by (rule Lambert-W'-le)
also have ... <y
using Fulse by simp
finally show ?thesis by simp
qed

lemma Lambert-W'-lessI:

assumes y x ezpy <z < 0
shows Lambert-W'z < y

12

proof (cases y < —1)
case True
have Lambert-W' x < Lambert-W' (y * exp y)
using assms exp-times-self-geof y] by (intro Lambert-W'-strict-antimono) auto
thus ?thesis using assms True by simp
next
case Fulse
have Lambert-W' z < —1
by (rule Lambert-W'-le)
also have ... <y
using False by simp
finally show ?thesis by simp
qed

lemma bij-betw-exp-times-self-atLeastAtMost:
fixes a b :: real
assumes a > —1a <)
shows bij-betw (Az. z * exp z) {a..b} {a * exp a..b x exp b}
unfolding bij-betw-def
proof
show inj-on (\z. z * exp z) {a..b}
by (rule inj-on-subset[OF exp-times-self-inj]) (use assms in auto)
next
show (Az. z * exp x) ‘{a..b} = {a * exp a..b x exp b}
proof safe
fix assume z € {a..b}
thus z x exp x € {a x exp a..b x exp b}
using assms by (auto introl: exp-times-self-mono)
next
fix z assume z: z € {a * exp a..b * exp b}
have (—1) x exp (—1) < a x exp a
using assms by (intro exp-times-self-mono) auto
also have ... < z using z by simp
finally have z > —exp (—1) by simp

have Lambert-W z € {a..b}
using z <z > —exp (—1)> assms by (auto intro!: Lambert-W-gel Lam-
bert-W-lel)
moreover have Lambert-W x % exp (Lambert-W z) = x
using <z > —exzp (—1)> by (simp add: Lambert-W-times-exp-self)
ultimately show z € (Az. z * exp z) ‘ {a..b}
unfolding image-iff by metis
qed
qed

lemma bij-betw-exp-times-self-atLeast AtMost":

fixes a b :: real
assumes a < b b < —1

13

shows bij-betw (A\z. z * exp z) {a..b} {b * exp b..a x exp a}
unfolding bij-betw-def
proof
show inj-on (Az. z * exp z) {a..b}
by (rule inj-on-subset[OF exp-times-self-inj’]) (use assms in auto)
next
show (Az. z % exp x) ‘{a..b} = {b * exp b..a * exp a}
proof safe
fix z assume z € {a..b}
thus z x exp z € {b % exp b..a x exp a}
using assms by (auto intro!: exp-times-self-antimono)
next
fix x assume z: x € {b * exp b..a * exp a}
from assms have a * exp a < 0
by (intro mult-neg-pos) auto
with z have z < 0 by auto
have (—1) xexp (—1) < b=x exp b
using assms by (intro exp-times-self-antimono) auto
also have ... < x using z by simp
finally have z > —exp (—1) by simp

have Lambert-W' z € {a..b}
using z <z > —exp (—1)» «x < 0> assms
by (auto introl: Lambert-W'-gel Lambert-W'-lel)

moreover have Lambert-W' z x exp (Lambert-W' z) = x
using «x > —exp (—1)) «x < 0) by (auto simp: Lambert-W'-times-exp-self)

ultimately show z € (Az. = * exp z) ‘{a..b}
unfolding image-iff by metis

qed
qed

lemma bij-betw-exp-times-self-atLeast:
fixes a :: real
assumes a > —1
shows bij-betw (Az. z * exp z) {a..} {a * exp a..}
unfolding bij-betw-def
proof
show inj-on (\z. z * exp z) {a..}
by (rule inj-on-subset[OF exp-times-self-inj]) (use assms in auto)
next
show (Az. z * exp x) ‘{a..} = {a * exp a..}
proof safe
fix x assume z > a
thus z « exp z > a * exp a
using assms by (auto introl: exp-times-self-mono)
next
fix z assume z: © > a % exp a
have (—1) x ezp (—1) < a * ezp a
using assms by (intro exp-times-self-mono) auto

14

also have ... < z using z by simp
finally have © > —eap (—1) by simp

have Lambert-W z € {a..}
using z <z > —exp (—1) assms by (auto intro!: Lambert-W-gel Lam-
bert-W-lel)
moreover have Lambert-W z % exp (Lambert-W x) = x
using <z > —exp (—1)» by (simp add: Lambert-W-times-exp-self)
ultimately show z € (Az. z * exp z) ‘{a..}
unfolding image-iff by metis
qed
qed

1.4 Basic identities and bounds

lemma Lambert-W-2-In-2 [simp|: Lambert-W (2 % In 2) = In 2
proof —
have —1 < (0 :: real)
by simp
also have ... < [n 2
by simp
finally have —1 < (In 2 :: real) .
thus %thesis
by (intro Lambert-W-eql) auto
qed

lemma Lambert-W-exp-1 [simp]: Lambert-W (exp 1) = 1
by (rule Lambert-W-eql) auto

lemma Lambert- W-neg-In-over-self:
assumes z € {exp (—1)..exp 1}
shows Lambert-W (—=lnz / z) = —In x

proof —
have 0 < (exp (—1) :: real)
by simp
also have ... < z

using assms by simp
finally have z > 0 .
from <z > 0) assms have In z < In (exp 1)
by (subst In-le-cancel-iff) auto
also have In (exp 1) = (1 :: real)
by simp
finally have Inz < 1 .
show ?thesis
using assms <x > 0> <nx < 1>
by (intro Lambert-W-eql) (auto simp: exp-minus field-simps)
qed

lemma Lambert-W'-neg-In-over-self:

15

assumes z > ezp I
shows Lambert-W' (—=lnz / z) = —Inx
proof (rule Lambert-W'-eql)

have 0 < (exp 1 :: real)
by simp

also have ... <z
by fact

finally have z > 0 .

from assms <z > 0> have Inz > In (exp 1)
by (subst In-le-cancel-iff) auto

thus —In z < —1 by simp

show —Inz x exp (—lnz) = -lnz [z
using <z > 0) by (simp add: field-simps exp-minus)
qed

lemma exp-Lambert-W: x > —exp (—1) = x # 0 = exp (Lambert-W z) = z
/ Lambert-W z
using Lambert- W-times-exp-self|of z] by (auto simp add: divide-simps mult-ac)

lemma exp-Lambert-W' x € {—exp (—1)..<0} = exp (Lambert-W' z) = x /
Lambert-W' x
using Lambert- W'-times-exp-self[of] by (auto simp add: divide-simps mult-ac)

lemma In-Lambert-W:
assumes x > 0
shows In (Lambert-W z) = In x — Lambert-W z

proof —
have —ezp (—1) < (0 :: real)
by simp

also have ... < z by fact
finally have z: © > —exp(—1) .

have exp (In (Lambert-W z)) = exp (In © — Lambert-W z)
using assms x by (subst exp-diff) (auto simp: exp-Lambert-W)
thus ?thesis by (subst (asm) exp-inj-iff)
qed

lemma In-minus-Lambert- W'
assumes z € {—ezp (—1)..<0}
shows In (—Lambert-W' z) = In (—z) — Lambert-W' x
proof —
have exp (In (—x) — Lambert-W' z) = —Lambert-W' z
using assms by (simp add: exp-diff exp-Lambert-W')
also have ... = ezp (In (—Lambert-W' z))
using Lambert-W'-neg[of x| by simp
finally show ?thesis by simp
qed

lemma Lambert- W-plus-Lambert- W-eq:

16

assumes z > 0y > 0
shows Lambert-W z + Lambert-W y = Lambert-W (xz % y x (1 / Lambert-W
xz + 1 / Lambert-W y))
proof (rule sym, rule Lambert-W-eql)
have © > —eap(—1) y > —exp (—1)
by (rule less-trans|OF - assms(1)] less-trans[OF - assms(2)], simp)+
with assms show (Lambert-W x + Lambert-W y) * exp (Lambert-W x + Lam-
bert-W y) =
zxy* (1 / Lambert-W z + 1 / Lambert-W y)
by (auto simp: field-simps exp-add exp-Lambert-W)
have —1 < (0 :: real)
by simp
also from assms have ... < Lambert-W z + Lambert-W y
by (intro add-nonneg-nonneg) auto
finally show ... > —1 .
qed

lemma Lambert- W' -plus-Lambert-W'-eq:
assumes ¢ € {—exp(—1)..<0} y € {—exp(—1)..<0}
shows Lambert-W'xz + Lambert-W'y = Lambert-W' (z y * (1 /| Lambert-W'
xz + 1/ Lambert-W' y))
proof (rule sym, rule Lambert-W'-eqI)
from assms show (Lambert-W' x + Lambert-W' y) % exp (Lambert-W' x +
Lambert-W'y) =
zxy* (1 / Lambert-W' z + 1 / Lambert-W' y)
by (auto simp: field-simps exp-add exp-Lambert-W')
have Lambert-W' z + Lambert-W'y < —1 + —1
by (intro add-mono Lambert-W'-le)
also have ... < —1 by simp
finally show Lambert-W’' x + Lambert-W'y < —1 .
qed

lemma Lambert- W-gt-in-minus-in-In:
assumes r > exp 1
shows Lambert-W x > Inz — In (In z)
proof (rule Lambert-W-gtI)
have z > 1
by (rule less-trans[OF - assms]) auto
have In z > In (exp 1)
by (subst In-less-cancel-iff) (use <z > 1> assms in auto)
thus (Inz — In (Inx)) x exp (Inx — In (Inz)) < z
using assms «x > 1) by (simp add: exp-diff field-simps)
qed

lemma Lambert-W-less-In:
assumes 2 > exp 1
shows Lambert-W x < In x
proof (rule Lambert-W-lessI)
have z > 0

17

by (rule less-trans[OF - assms|) auto
have In z > In (exp 1)

by (subst In-less-cancel-iff) (use <x > 0> assms in auto)
thus = < In x x exp (In z)

using «x > 0)» by simp
show Inxz > —1

by (rule less-imp-le[OF le-less-trans[OF - «In x > -)]]) auto
show z > —exp (—1)

by (rule less-imp-le[OF le-less-trans[OF - <z > 0)]]) auto

qed

1.5 Limits, continuity, and differentiability

lemma filterlim-Lambert- W-at-top [tendsto-intros|: filterlim Lambert-W at-top at-top
unfolding filterlim-at-top
proof
fix C :: real
have eventually (Az. z > C exp C) at-top
by (rule eventually-ge-at-top)
thus eventually (Az. Lambert-W z > C') at-top
proof eventually-elim
case (elim x)
thus ?case
by (intro Lambert-W-gel) auto
qed
qed

lemma filterlim-Lambert-W-at-left-0 [tendsto-intros]:
filterlim Lambert-W' at-bot (at-left 0)
unfolding filterlim-at-bot
proof
fix C :: real
define C’ where C’' = min C (—1)
have C'<0C' < C
by (simp-all add: C'-def)
have C' x exp C' < 0
using «C’ < 0» by (intro mult-neg-pos) auto
hence eventually (Az. © > C' x exp C') (at-left 0)
by real-asymp
moreover have eventually (Az::real. = < 0) (at-left 0)
by real-asymp
ultimately show eventually (Az. Lambert-W' z < C) (at-left 0)
proof eventually-elim
case (elim x)
hence Lambert-W' z < C’
by (intro Lambert-W'-lel) auto
also have ... < C by fact
finally show ?case .
qed

18

qed

lemma continuous-on-Lambert-W [continuous-intros|: continuous-on {—exp (—1)..}
Lambert-W
proof —
have *: continuous-on {—exp (—1)..b * exp b} Lambert-W if b > 0 for b
proof —
have continuous-on ((Az. z * exp z) ‘ {—1..b}) Lambert-W
by (rule continuous-on-inv) (auto introl: continuous-intros)
also have (Az. z * exp z) ‘{—1..b} = {—exp (—1)..b * exp b}
using bij-betw-exp-times-self-atLeastAtMost[of —1 b] 0>
by (simp add: bij-betw-def)
finally show ?thesis .
qed

have continuous (at) Lambert-W if x > 0 for z
proof —
have z: —exp (—1) < z
by (rule less-le-trans|OF - that]) auto

define b where b = Lambert-W z + 1
have b > 0
using Lambert-W-ge[of x] by (simp add: b-def)
have © = Lambert-W z x exp (Lambert-W z)
using that x by (subst Lambert- W-times-exp-self) auto
also have ... < bx*xexpb
by (intro exp-times-self-strict-mono) (auto simp: b-def Lambert-W-ge)
finally have b x exp b > x .
have continuous-on {—exp(—1)<..<b x exp b} Lambert-W
by (rule continuous-on-subset|OF [of b]]) (use 0» in auto)
moreover have z € {—exp(—1)<..<b * exp b}
using b x exp b > x> = by auto
ultimately show continuous (at) Lambert-W
by (subst (asm) continuous-on-eg-continuous-at) auto
qed
hence continuous-on {0..} Lambert-W
by (intro continuous-at-imp-continuous-on) auto
moreover have continuous-on {—exp (—1)..0} Lambert-W
using *[of 0] by simp
ultimately have continuous-on ({—exp (—1)..0} U {0..}) Lambert-W
by (intro continuous-on-closed-Un) auto
also have {—exp (—1)..0} U {0..} = {—exp (—1::real)..}
using order.trans[of —exp (—1)::real 0] by auto
finally show ?thesis .
qed

lemma continuous-on-Lambert-W-alt [continuous-intros|:

assumes continuous-on A f Nx. 1 € A = fz > —exp (—1)
shows continuous-on A (Az. Lambert-W (f x))

19

using continuous-on-compose2[OF continuous-on-Lambert-W assms(1)] assms
by auto

lemma continuous-on-Lambert-W' [continuous-intros]: continuous-on {—exp (—1)..<0}
Lambert-W"’
proof —
have *: continuous-on {—exp (—1)..—b * exp (—b)} Lambert-W'if b > 1 for b
proof —
have continuous-on ((Az. z * exp z) ‘ {—b..—1}) Lambert-W'
by (intro continuous-on-inv balll) (auto intro!: continuous-intros)
also have (Az. z * exp z) ‘{—b.—1} = {—exp (—1)..—b x exp (—b)}
using bij-betw-exp-times-self-atLeastAtMost'[of —b —1] that
by (simp add: bij-betw-def)
finally show ?thesis .
qed

have continuous (at) Lambert-W'if © > —exp (—1) x < 0 for z
proof —
define b where b = Lambert-W x + 1
have eventually (Ab. —b * exp (—b) > x) at-top
using that by real-asymp
hence eventually (Ab. b > 1 N —b x exp (—b) > z) at-top
by (intro eventually-conj eventually-ge-at-top)
then obtain b where b: b > 1 —b x exp (=) > x
by (auto simp: eventually-at-top-linorder)

have continuous-on {—exp(—1)<..<—b * exp (—b)} Lambert-W'
by (rule continuous-on-subset[OF *[of b]]) (use 1> in auto)
moreover have ¢ € {—ezp(—1)<.<—b * exp (—b)}
using b that by auto
ultimately show continuous (at) Lambert-W'’
by (subst (asm) continuous-on-eg-continuous-at) auto
qed
hence *x: continuous-on {—exp (—1)<..<0} Lambert-W'
by (intro continuous-at-imp-continuous-on) auto

show ?thesis
unfolding continuous-on-def
proof
fix :: real assume z: x € {—ezp(—1)..<0}
show (Lambert-W' —— Lambert-W' z) (at x within {—exp(—1)..<0})
proof (cases © = —exp(—1))
case Fulse
hence isCont Lambert-W' z
using z *x by (auto simp: continuous-on-eq-continuous-at)
thus ?thesis
using continuous-at filterlim-within-subset by blast
next
case True

20

define a :: real where a = —2 * exp (—2)
have a: a > —exp (—1)
using exp-times-self-strict-antimonolof —1 —2] by (auto simp: a-def)
from True have z € {—exp (—1)..<a}
using a by (auto simp: a-def)
have continuous-on {—exp (—1)..<a} Lambert-W'
unfolding a-def by (rule continuous-on-subset|OF x[of 2]]) auto
hence (Lambert-W' —— Lambert-W' x) (at « within {—exp (—1)..<a})
using <z € {—exp (—1)..<a}» by (auto simp: continuous-on-def)
also have at = within {—exp (—1)..<a} = at-right =
using a by (intro at-within-nhd[of - {..<a}]) (auto simp: True)
also have ... = at x within {—exp (—1)..<0}
using a by (intro at-within-nhd[of - {..<0}]) (auto simp: True)
finally show ?Zthesis .
qed
qged
qed

lemma continuous-on-Lambert-W'-alt [continuous-intros]:
assumes continuous-on A f Az. z € A = fa € {—exp (—1)..<0}
shows continuous-on A (Az. Lambert-W' (f x))
using continuous-on-compose2[OF continuous-on-Lambert-W' assms(1)] assms
by (auto simp: subset-iff)

lemma tendsto-Lambert-W-1:

assumes (f —— L) F eventually (Az. fz > —exp (—1)) F

shows ((Az. Lambert-W (f z)) —— Lambert-W L) F
proof (cases F' = bot)

case [simp|: False

from tendsto-lowerbound[OF assms] have L > —exp (—1) by simp

thus ?thesis

using continuous-on-tendsto-compose|OF continuous-on-Lambert-W assms(1)]

assms(2) by simp
qed auto

lemma tendsto-Lambert- W-2:
assumes (f —— L) F L > —exp (—1)
shows ((Az. Lambert-W (f z)) —— Lambert-W L) F
using order-tendstoD(1)[OF assms| assms
by (intro tendsto-Lambert-W-1) (auto elim: eventually-mono)

lemma tendsto-Lambert-W [tendsto-intros]:
assumes (f —— L) F eventually (Az. fz > —exp (—1)) FV L > —exp (—1)
shows ((Az. Lambert-W (f z)) —— Lambert-W L) F
using assms(2)
proof
assume L > —exp (—1)
from order-tendstoD(1)[OF assms(1) this] assms(1) show ?thesis

21

by (intro tendsto-Lambert-W-1) (auto elim: eventually-mono)
qed (use tendsto-Lambert-W-1[OF assms(1)] in auto)

lemma tendsto-Lambert-W'-1:
assumes (f —— L) F eventually (M\z. fo > —exp (—1)) FL < 0
shows ((Az. Lambert-W' (f x)) —— Lambert-W' L) F
proof (cases F = bot)
case [simp|: False
from tendsto-lowerbound[OF assms(1,2)] have L-ge: L > —exp (—1) by simp
from order-tendstoD(2)[OF assms(1,3)] have ev: eventually (A\z. fo < 0) F
by auto
with assms(2) have eventually (A\z. fz € {—exzp (—1)..<0}) F
by eventually-elim auto
thus ?thesis using L-ge assms(3)
by (intro continuous-on-tendsto-compose[OF continuous-on-Lambert-W' assms(1)])
auto
qed auto

lemma tendsto-Lambert-W'-2:
assumes (f —— L) FL> —exp (—1) L < 0
shows ((Az. Lambert-W' (f)) —— Lambert-W' L) F
using order-tendstoD(1)[OF assms(1,2)] assms
by (intro tendsto-Lambert-W'-1) (auto elim: eventually-mono)

lemma tendsto-Lambert-W' [tendsto-intros|:

assumes (f —— L) F eventually (A\z. fz > —exp (—1)) FV L > —exp (—1)
L<o0

shows ((Az. Lambert-W' (f x)) —— Lambert-W' L) F

using assms(2)
proof

assume L > —exp (—1)

from order-tendstoD(1)[OF assms(1) this] assms(1,3) show %thesis

by (intro tendsto-Lambert-W'-1) (auto elim: eventually-mono)

qed (use tendsto-Lambert-W'-1[OF assms(1) - assms(3)] in auto)

lemma continuous-Lambert-W [continuous-intros|:

assumes continuous F f f (Lim F (Az. z)) > —exp (—1) V eventually (\z. f z
> —eap (—1)) F

shows continuous F' (Az. Lambert-W (f z))

using assms unfolding continuous-def by (intro tendsto-Lambert-W) auto

lemma continuous-Lambert-W' [continuous-intros]:
assumes continuous F f f (Lim F (Az. x)) > —exp (—1) V eventually (Mz. fz
> —eap (~1)) F
f(Lim F (Az. z)) < 0
shows continuous F (Az. Lambert-W' (f))
using assms unfolding continuous-def by (intro tendsto-Lambert-W') auto

22

lemma has-field-derivative-Lambert-W [derivative-intros]:

assumes z: ¢ > —exp (—1)

shows (Lambert-W has-real-derivative inverse (¢ + exp (Lambert-W z))) (at x
within A)
proof —

write Lambert-W (<W»)

from z have Wz > W (—exzp (—1))

by (subst Lambert- W-less-iff) auto
hence Wz > —1 by simp

note [derivative-intros| = DERIV-inverse-function|where g = Lambert- W]

have ((Az. z * exp x) has-real-derivative (1 + W z) * exp (W x)) (at (W z))
by (auto intro!: derivative-eg-intros simp: algebra-simps)

hence (W has-real-derivative inverse (1 + W) * exp (W z))) (at z)
by (rule DERIV-inverse-function|where a = —exzp (—1) and b = z + 1])

(use z «<W x> —1» in <auto simp: Lambert- W-times-exp-self Lim-ident-at
introl: continuous-introsy)

also have (1 + Wz) x exp (Wz) =2 + exp (W x)
using = by (simp add: algebra-simps Lambert- W-times-exp-self)

finally show ?thesis by (rule has-field-derivative-at-within)

qged

lemma has-field-derivative-Lambert- W-gen [derivative-intros):
assumes (f has-real-derivative ') (at © within A) fz > —exp (—1)
shows ((Az. Lambert-W (f z)) has-real-derivative
(f"/ (fx + exp (Lambert-W (f x))))) (at x within A)
using DERIV-chain2[OF has-field-derivative-Lambert-W[OF assms(2)] assms(1)]
by (simp add: field-simps)

lemma has-field-derivative-Lambert-W' [derivative-intros]:

assumes z: ¢ € {—exp (—1)<..<0}

shows (Lambert-W' has-real-derivative inverse (z + exp (Lambert-W' z))) (at
x within A)
proof —

write Lambert-W' («W)

from z have Wz < W (—exp (—1))

by (subst Lambert-W'-less-iff) auto
hence Wz < —1 by simp

note [derivative-intros]| = DERIV-inverse-function|where g = Lambert- W]
have ((Az. z * exp x) has-real-derivative (1 + W z) * exp (W z)) (at (W x))
by (auto intro!: derivative-eq-intros simp: algebra-simps)
hence (W has-real-derivative inverse (1 + W z) x exp (W z))) (at x)
by (rule DERIV-inverse-function|where a = —ezp (—1) and b = 0])
(use z «Wz < —1) in <auto simp: Lambert-W'-times-exp-self Lim-ident-at
introl: continuous-intros»)
also have (I + Wz) x exp (Waz) =z + exp (W z)
using z by (simp add: algebra-simps Lambert-W'-times-exp-self)

23

finally show ?thesis by (rule has-field-derivative-at-within)
qed

lemma has-field-derivative-Lambert-W'-gen [derivative-intros]:
assumes (f has-real-derivative f') (at within A) fz € {—exp (—1)<..<0}
shows ((Az. Lambert-W' (f x)) has-real-derivative
(f" /] (fz + exp (Lambert-W' (f x))))) (at x within A)
using DERIV-chain2[OF has-field-derivative-Lambert-W'[OF assms(2)] assms(1)]
by (simp add: field-simps)

1.6 Asymptotic expansion

Lastly, we prove some more detailed asymptotic expansions of W and W’
at their singularities. First, we show that:

W(zx) = log z — loglog x + o(log log x) for v — oo
W'(z) = log(—z) — log(—log(—x)) + o(log(— log(—x))) for x — 0~

theorem Lambert- W-asymp-equiv-at-top:
(Az. Lambert-W x — In x) ~[at-top] (Az. —In (In z))
proof —
have (Az. Lambert-W z — In x) ~[at-top] (Az. (—1) * In (In x))
proof (rule asymp-equiv-sandwich’)
fix ¢’ :: real assume ¢ ¢’ € {-2<.<—1}
have eventually (Az. (Inz 4+ ¢’ x In (In z)) * exp (Inz + ¢’ % In (In z)) < x)
at-top
eventually (Az. In z + ¢’ * In (In) > —1) at-top
using ¢’ by real-asymp+
thus eventually (Az. Lambert-W z — Inz > ¢’ * In (In z)) at-top
proof eventually-elim
case (elim)
hence Lambert-W z > In z + ¢’ * In (In z)
by (intro Lambert-W-gel)
thus “case by simp
qed
next
fix ¢’ :: real assume ¢’ ¢’ € {—1<..<0}
have eventually (Az. (Inz + ¢’ * In (In z)) * exp (Inz + ¢’ x In (In z)) > z)
at-top
eventually (Az. Inz + ¢’ * In (In) > —1) at-top
using ¢’ by real-asymp+
thus eventually (Az. Lambert-W z — In z < ¢’ * In (In z)) at-top
using eventually-ge-at-toplof —exp (—1)]
proof eventually-elim
case (elim x)
hence Lambert-W x < In x + ¢’ % In (In z)
by (intro Lambert-W-lel)
thus ?case by simp
qed

24

qged auto
thus ?thesis by simp
qed

lemma Lambert- W-asymp-equiv-at-top’ [asymp-equiv-intros|:
Lambert-W ~at-top] In
proof —
have (Az. Lambert-W z — In z) € O(Az. —in (In z))
by (intro asymp-equiv-imp-bigtheta Lambert-W-asymp-equiv-at-top)
also have (Az::real. —in (In z)) € o(in)
by real-asymp
finally show ?thesis by (simp add: asymp-equiv-altdef)
qed

theorem Lambert- W' -asymp-equiv-at-left-0:
(Az. Lambert-W' z — In (—z)) ~[at-left 0] (A\z. —In (=In (—x)))
proof —
have (\z. Lambert-W' x — In (—z)) ~[at-left 0] (Az. (—1) % In (—In (—z)))
proof (rule asymp-equiv-sandwich’)
fix ¢’ :: real assume ¢’ ¢’ € {—2<.<—1}
have eventually (Az. z < (In (—z) + ¢’ x In (=In (—=2z))) * exp (In (—z) + ¢’
x In (—In (—x)))) (at-left 0)
eventually (Az::real. In (—z) + ¢’ x In (—In (—2)) < —1) (at-left 0)
eventually (Az::real. —exp (—1) < x) (at-left 0)
using ¢’ by real-asymp+
thus eventually (A\x. Lambert-W'z — In (—z) > ¢’ * In (=In (—z))) (at-left 0)
proof eventually-elim
case (elim)
hence Lambert-W' z > In (—z) + ¢’ * In (=In (—z))
by (intro Lambert-W'-gel)
thus “case by simp
qed
next
fix ¢’ :: real assume ¢’ ¢/ € {—1<..<0}
have eventually (Az. z > (In (—z) + ¢’ x In (=In (—z))) * exp (In (—z) + ¢’
x In (—in (—x)))) (at-left 0)
using ¢’ by real-asymp
moreover have eventually (Az::real. x < 0) (at-left 0)
by (auto simp: eventually-at intro: exI|of - 1])
ultimately show eventually (Az. Lambert-W' x — In (—z) < ¢’ * In (=In
(—2)) (at-left 0)
proof eventually-elim
case (elim)
hence Lambert-W'z < In (—z) + ¢’ x In (=In (—x))
by (intro Lambert-W'-lel)
thus ?case by simp
qed
qed auto
thus ?thesis by simp

25

qed

lemma Lambert-W’-asymp-equiv’-at-left-0 [asymp-equiv-intros]:
Lambert-W' ~[at-left 0] (A\z. In (—z))
proof —
have (Az. Lambert-W' z — In (—z)) € Olat-left 0](Az. —In (—in (—1)))
by (intro asymp-equiv-imp-bigtheta Lambert-W'-asymp-equiv-at-left-0)
also have (Az::real. —In (—in (—1z))) € olat-left 0](Az. In (—z))
by real-asymp
finally show ?thesis by (simp add: asymp-equiv-altdef)
qged

Next, we look at the branching point a := % Here, the asymptotic behaviour
is as follows:

W (z) :—l—i—\/%(x—a)% — 2e(z —a) +o(z —a) forx — a™
W’(m):—l—\/%(x—a)% —%e(:c—a)—i—o(x—a) forz — a™

lemma sqrt-sqri-mult:
assumes z > (0 :: real)
shows sqrtz x (sqrtz x y) =z *x y
using assms by (subst mult.assoc [symmetric]) auto

theorem Lambert- W-asymp-equiv-at-right-minus-exp-minus1 :
defines e = exp 1
defines a = —exp (—1)
defines C1 = sqrt (2 * exp 1)
defines f = (\z. —1 + CI1 * sqrt (z — a))
shows (Az. Lambert-W z — f) ~[at-right a] (A\z. —2/3 * e * (z — a))
proof —
define C :: real = real where C = (Ac. sqrt (2/€)/3 * (2xe+3%c))
have asymp-equiv: (Az. (fz + ¢ * (x — a)) x exp (fz + ¢ * (x — a)) — 2)
~lat-right o] (Az. C ¢ x (z — a) powr (3/2)) if c £ —2/3 * e
for ¢
proof —
from that have C ¢ # 0
by (auto simp: C-def e-def)
have (A\z. (fz +c*x(z —a)) xexp (fz +c*x(x —a)) —z— Ccx*(z— a)
pouwr (3/2))
€ olat-right a](Az. (x — a) powr (3/2))
unfolding f-def a-def C-def C1-def e-def
by (real-asymp simp: field-simps real-sqrt-mult real-sqrt-divide sqrt-sqrt-mult
exp-minus simp flip: sqri-def)
thus ?thesis
using «C ¢ # 0> by (intro smallo-imp-asymp-equiv) auto
qged

show ?thesis
proof (rule asymp-equiv-sandwich’)

26

fix ¢’ :: real assume ¢’ ¢’ € {—e<..<—2/3x*e}
hence neq: ¢’ # —2/8 x e by auto
from ¢’ have neg: C ¢’ < 0 unfolding C-def by (auto intro!: mult-pos-neg)
hence eventually (Az. C ¢’ (x — a) powr (8 / 2) < 0) (at-right a)
by real-asymp
hence eventually (Az. (fz + ¢’ *x (x — a)) x exp (fz + ¢’ x (z —a)) —z <
0) (at-right a)
using asymp-equiv-eventually-neg-iff [OF asymp-equiv|OF neq]
by eventually-elim (use neg in auto)
thus eventually (Az. Lambert-W z — fz > ¢’ * (z — a)) (at-right a)
proof eventually-elim
case (elim)
hence Lambert-Wz > fz + ¢ * (z — a)
by (intro Lambert-W-gel) auto
thus “case by simp
qed
next
fix ¢’ :: real assume ¢’ ¢’ € {—2/3xe<..<0}
hence neq: ¢’ # —2/8 = e by auto
from ¢’ have pos: C ¢’ > 0 unfolding C-def by auto
hence eventually (Az. C ¢’ * (x — a) powr (8 / 2) > 0) (at-right a)
by real-asymp
hence eventually (Az. (fz + ¢’ *x (x — a)) x exp (fz + ¢’ x (z — a)) — z >
0) (at-right a)
using asymp-equiv-eventually-pos-iff [OF asymp-equiv[OF neq]]
by eventually-elim (use pos in auto)
moreover have eventually (Az. — 1 < fz + ¢’ x (z — a)) (at-right a)
eventually (Az. © > a) (at-right a)
unfolding a-def f-def C1-def ¢’ by real-asymp+
ultimately show eventually (Az. Lambert-W z — fz < ¢’ * (z — a)) (at-right
a)
proof eventually-elim
case (elim)
hence Lambert-Wz < fz + ¢’ * (z — a)
by (intro Lambert-W-lel) (auto simp: a-def)
thus “case by simp
qged
qed (auto simp: e-def)
qed

theorem Lambert- W' -asymp-equiv-at-right-minus-exp-minusl:

defines e = exp 1

defines a = —exp (—1)

defines C1 = sqrt (2 % exp 1)

defines f = (A\z. —1 — C1 * sqrt (z — a))

shows (Az. Lambert-W' z — fz) ~[at-right a] (Ax. —2/3 * e x (z — a))
proof —

define C :: real = real where C = (Ac. —sqrt (2/e)/3 * (2xe+3xc))

27

have asymp-equiv: (Az. (fx 4+ ¢ * (x — a)) x exp (fz + ¢ * (x — a)) — z)
~[at-right o] (Ax. C ¢ x (x — a) powr (3/2))if c £ —2/3 x e
for ¢
proof —
from that have C ¢ # 0
by (auto simp: C-def e-def)
have (A\z. (fz +c*x(z —a)) xexp (fx + c*x(x —a)) —z— Ccx*(z— a)
powr (3/2))
€ olat-right a|(Az. (x — a) powr (3/2))
unfolding f-def a-def C-def C1-def e-def
by (real-asymp simp: field-simps real-sqrt-mult real-sqrt-divide sqrt-sqrt-mult
exp-minus simp flip: sqri-def)
thus ?thesis
using <C ¢ # 0> by (intro smallo-imp-asymp-equiv) auto
qed

show ?thesis
proof (rule asymp-equiv-sandwich’)
fix ¢’ :: real assume ¢’ ¢’ € {—e<..<—2/8xe}
hence neq: ¢’ # —2/8 x e by auto
from ¢’ have pos: C ¢’ > 0 unfolding C-def by (auto intro!: mult-pos-neg)
hence eventually (Az. C ¢’ x (z — a) powr (8 / 2) > 0) (at-right a)
by real-asymp
hence eventually (Az. (fz + ¢’ (z — a)) x exp (fz + ¢’ *x (x — a)) — z >
0) (at-right a)
using asymp-equiv-eventually-pos-iff [OF asymp-equiv[OF neq]]
by eventually-elim (use pos in auto)
moreover have eventually (Az. z > a) (at-right a)
eventually (Az. fz + ¢/ x (x — a) < —1) (at-right a)
unfolding a-def f-def C1-def ¢’ by real-asymp+
ultimately show eventually (Ax. Lambert-W'z — fo > ¢’ * (x — a)) (at-right
a)
proof eventually-elim
case (elim)
hence Lambert-W'z > fx + ¢’ % (z — a)
by (intro Lambert-W'-gel) (auto simp: a-def)
thus “case by simp
qed
next
fix ¢’ :: real assume ¢’ ¢’ € {—2/3xe<..<0}
hence neq: ¢’ # —2/8 = e by auto
from ¢’ have neg: C ¢’ < 0 unfolding C-def by auto
hence eventually (A\z. C ¢’ x (z — a) powr (8 / 2) < 0) (at-right a)
by real-asymp
hence eventually (Az. (fz + ¢’ (z —a)) xexp (fz + ¢’ *x (z —a)) —z <
0) (at-right a)
using asymp-equiv-eventually-neg-iff [OF asymp-equiv|OF neq]
by eventually-elim (use neg in auto)
moreover have eventually (Az. z < 0) (at-right a)

28

unfolding a-def by real-asymp
ultimately show eventually (Az. Lambert-W'z — fo < ¢’ x (z — a)) (at-right
)
proof eventually-elim
case (elim)
hence Lambert-W' z < fz + ¢’ x (z — a)
by (intro Lambert-W'-leI) auto
thus ?case by simp
qed
qged (auto simp: e-def)
qged

Lastly, just for fun, we derive a slightly more accurate expansion of Wy(z)
for z — oc:

theorem Lambert- W-asymp-equiv-at-top’":
(Az. Lambert-W x — In x + In (In x)) ~[at-top] (Az. In (In z) / In)
proof —
have (Az. Lambert-W x — In z + In (In z)) ~[at-top] (Az. 1 % (In (In z) / In z))
proof (rule asymp-equiv-sandwich’)
fix ¢’ :: real assume ¢’ ¢’ € {0<..<1}
define a where a = (Az:real. Inz — In (Inx) + ¢’ * (In (In z) / In x))
have eventually (Az. a z * exp (a) < z) at-top
using ¢’ unfolding a-def by real-asymp-+
thus eventually (Az. Lambert-Wax — Inx + In (Inz) > ¢’ * (In (In z) / In z))
at-top
proof eventually-elim
case (elim)
hence Lambert-W x > a =
by (intro Lambert-W-gel)
thus %case by (simp add: a-def)
qed
next
fix ¢’ :: real assume ¢’ ¢’ € {1<..<2}
define ¢ where a = (Az:real. Inx — In (Inx) + ¢’ * (In (Inz) / In x))
have eventually (Az. a z * exp (a) > z) at-top
eventually (Az. a © > —1) at-top
using ¢’ unfolding a-def by real-asymp-+
thus eventually (Az. Lambert-Wax — Ilnz + In (Inz) < ¢’ x (In (Inx) / In 1))
at-top
using eventually-ge-at-top[of —exp (—1)]
proof eventually-elim
case (elim x)
hence Lambert-W z < a
by (intro Lambert-W-lel)
thus %case by (simp add: a-def)
qed
qed auto
thus %thesis by simp
qged

29

end

theory Lambert-W-MacLaurin-Series

imports
HOL— Computational-Algebra. Formal-Power-Series
Bernoulli. Bernoulli-FPS
Stirling-Formula.Stirling- Formula
Lambert-W

begin

1.7 The MacLaurin series of Wy(z) at =0

In this section, we derive the MacLaurin series of Wy(x) as a formal power

series at = 0 and prove that its radius of convergenge is e~?.

We do not actually show that this series evaluates to 1 since Isabelle’s library
does not contain the required theorems about convergence of the composi-
tion of two power series yet. If it did, however, this last remaining step
would be trivial since we did all the real work here.

lemma Stirling-Suc-n-n: Stirling (Suc n) n = (Suc n choose 2)
by (induction n) (auto simp: choose-two)

lemma Stirling-n-n-minus-1: n > 0 = Stirling n (n — 1) = (n choose 2)
using Stirling-Suc-n-n[of n — 1] by (cases n) auto

The following defines the power series W (X) as the formal inverse of the
formal power series XeX:

definition fps-Lambert-W :: real fps where
fos-Lambert-W = fps-inv (fps-X * fps-exp 1)

The formal composition of W (X) and XeX is, in fact, the identity (in both
directions).
lemma fps-compose-Lambert-W: fps-compose fps-Lambert-W (fps-X * fps-exp 1)

= fps-X
unfolding fps-Lambert-W-def by (rule fps-inv) auto

lemma fps-compose-Lambert-W': fps-compose (fps-X x fps-exp 1) fps-Lambert-W
= fps-X
unfolding fps-Lambert-W-def by (rule fps-inv-right) auto

We have W (0) = 0, which shows that W (X) indeed represents the branch
Wo.
lemma fps-nth-Lambert-W-0 [simp]: fps-nth fps-Lambert-W 0 = 0

by (simp add: fps-Lambert-W-def fps-inv-def)

lemma fps-nth-Lambert-W-1 [simp]: fps-nth fps-Lambert-W 1 = 1
by (simp add: fps-Lambert-W-def fps-inv-def)

30

All the equalities that hold for the analytic Lambert W function in a neigh-

bourhood of 0 also hold formally for the formal power series, e.g. W(X) =
Xe WX,

lemma fps-Lambert-W-over-X:
fos-Lambert-W = fps-X fps-compose (fps-exp (—1)) fps-Lambert-W
proof —
have fps-nth (fps-exp 1 oo fps-Lambert-W) 0 = 1
by simp
hence nz: fps-exp 1 oo fps-Lambert-W # 0
by force
have fps-Lambert-W x fps-compose (fps-exp 1) fps-Lambert-W =
fps-compose (fps-X * fps-exp 1) fps-Lambert-W
by (simp add: fps-compose-mult-distrib)
also have ... = fps-X x fps-compose 1 fps-Lambert-W
by (simp add: fps-compose-Lambert-W")
also have 1 = fps-exp (—1) * fps-exp (1 :: real)
by (simp flip: fps-exp-add-mult)
also have fps-X * fps-compose ... fps-Lambert-W =
fps-X x fps-compose (fps-exp (—1)) fps-Lambert-W x
fps-compose (fps-exp 1) fps-Lambert-W
by (simp add: fps-compose-mult-distrib mult-ac)
finally show ?thesis
using nz by simp
qed

We now derive the closed-form expression

lemma fps-nth-Lambert-W: fps-nth fps-Lambert-W n = (if n = 0 then 0 else
((=n) (n—1) / fact n))
proof —
define F :: real fps where F = fps-X * fps-exp 1
have fps-nth-eq: fps-nth Fn =1 / fact (n — 1) if n > 0 for n
using that unfolding F-def by simp
have F-power: F' ~n = fps-X ~ n * fps-exp (of-nat n) for n
by (simp add: F-def power-mult-distrib fps-exp-power-mult)

have fps-nth (fps-inv F) n = (if n = 0 then 0 else ((—n) (n—1) / fact n)) for n
proof (induction n rule: less-induct)
case (less n)
consider n = 0 | n=1|n > 1 by force
thus Zcase
proof cases
case J
hence fps-nth (fps-inv F) n = —(>_i=0..n—1. fps-nth (fps-inv F') i % fps-nth
(F i) n)

31

(is - = —%5) by (cases n) (auto simp: fps-inv-def F-def)
also have 25 = (3 i=1..<n. fps-nth (fps-inv F) i = fps-nth (F " i) n)
using less[of 1] 8 by (intro sum.mono-neutral-right) (auto simp: not-le)
also have ... = (—1) "~ (n+1) / fact n *
>i=1..<n. ((=1)(n — %) * real (n choose i) % real i ~ (n —
1))
unfolding sum-divide-distrib sum-distrib-left
proof (intro sum.cong, goal-cases)
case (2 1)
hence fps-nth (fps-inv F) @ * fps-nth (F " i) n =
(1) " (i —1)*real (i (i —1)xi (n—1)) %
(fact n / (fact i * fact (n — 7)) / fact n)
using less.IH|[of i| by (simp add: F-power less fps-X-power-mult-nth
power-minus’)
also have (fact n / (fact i * fact (n — 7))) = real (n choose i)
using 2 by (subst binomial-fact) auto
alsohave i " (i — 1)xi " (n—14) =14 (n— 1)
using 2 by (subst power-add [symmetric]) auto
also have (—1) " (i — 1) =((—1) " (n+1) %= (—1) (n—1i) :: real)
using 2 by (subst power-add [symmetric]) (auto simp: minus-one-power-iff)
finally show ?case by simp
qed auto
also have (> i=1..<n. ((—=1) (n — 4) * real (n choose) * real i ~ (n —

1)) =
1))

> ie{.n}—{n}. (=1)(n — ©) * real (n choose i) * real i ~ (n —

using 3 by (intro sum.mono-neutral-left) auto

also have ... = (> i<n. ((—1)(n — %) x real (n choose i) * real i ~ (n —

1) -
realn ~ (n — 1)

by (subst (2) sum.remove|of - n]) auto

also have (> i<n. ((—1)(n — %) * real (n choose ©) * real i ~ (n — 1))) =

real (Stirling (n — 1) n) * fact n

by (subst Stirling-closed-form) auto

also have Stirling (n — 1) n =0
using 3 by (subst Stirling-less) auto

finally have fps-nth (fps-inv F) n = —((—1) "n* realn ~(n — 1) / fact n)
by simp

also have ... = (—realn) ~(n — 1) / fact n
using 3 by (subst power-minus) (auto simp: minus-one-power-iff)

finally show ?thesis
using 3 by simp

qed (auto simp: fps-inv-def F-def)
qed
thus ?thesis by (simp add: F-def fps-Lambert-W-def)
qed

Next, we need a few auxiliary lemmas about summability and convergence
radii that should go into Isabelle’s standard library at some point:

32

lemma summable-comparison-test-bigo:

fixes f :: nat = real

assumes summable (An. norm (g n)) f € O(g)

shows summable f
proof —

from «f € O(g)> obtain C where C: eventually (Az. norm (f z) < C x norm
(9 z)) at-top

by (auto elim: landau-o0.bigE)

thus %thesis

by (rule summable-comparison-test-ev) (insert assms, auto intro: summable-mult)
qged

lemma summable-comparison-test-bigo”:
assumes summable (An. norm (g n))
assumes (An. norm (f n :: 'a :: banach)) € O(An. norm (g n))
shows summable f
proof (rule summable-norm-cancel, rule summable-comparison-test-bigo)
show summable (An. norm (norm (g n)))
using assms by simp
ged fact+

lemma conv-radius-conv-Sup”:
fixes [:: nat = 'a :: {banach, real-normed-div-algebra}
shows conv-radius f = Sup {r. V z. ereal (norm z) < r — summable (An. norm
(Fnsxznm))
proof (rule Sup-eql [symmetric], goal-cases)
case (1)
show ?Zcase
proof (rule conv-radius-gel-ez’)
fix ' :: real assume 1’ ' > 0 ereal r' < r
show summable (An. fn x of-real v’ " n)
by (rule summable-norm-cancel) (use 1 v’ in auto)
qed
next
case (2 1)
from 2[of 0] have r: r > 0 by auto
show Zcase
proof (intro conv-radius-lel-ex’ r)
fix R assume R: R > O ereal R > r
with r obtain r’ where [simp]: r = ereal r’ by (cases r) auto
show —summable (An. fn * of-real R ~ n)
proof
assume *: summable (An. fn *x of-real R ~ n)
define R’ where R' = (R + r') / 2
from R have R R’ > r' R’ < R by (simp-all add: R’-def)
hence V z. norm z < R' — summable (An. norm (fn * z " n))
using powser-insidea| OF «] by auto
from 2[of R'] and this have R’ < r’ by auto
with <R’ > r’y show False by simp

33

qed
qed
qed

lemma bigo-imp-conv-radius-ge:
fixes f g :: nat = ‘a :: {banach, real-normed-field}
assumes f € 0(g)
shows conv-radius f > conv-radius g
proof —
have conv-radius g = Sup {r. V z. ereal (norm z) < r — summable (An. norm
(gn+2"m))
by (simp add: conv-radius-conv-Sup’)
also have ... < Sup {r. Vz. ereal (norm z) < r — summable (An. fn % z =
n)}
proof (rule Sup-subset-mono, safe)
fix r :: ereal and 2 :: 'a
assume g: V z. ereal (norm z) < r — summable (An. norm (g n * z ~ n))
assume z: ereal (norm z) < r
from g z have summable (An. norm (g n x z ~ n))
by blast
moreover have (An. norm (fn x z " n)) € O(An. norm (g n x z " n))
unfolding landau-o.big.norm-iff by (intro landau-o.big.mult assms) auto
ultimately show summable (An. fn * z ~ n)
by (rule summable-comparison-test-bigo’)
qed
also have ... = conv-radius f
by (simp add: conv-radius-conv-Sup)
finally show ?thesis .
qed

lemma conv-radius-cong-bigtheta:
assumes [€ O(g)
shows conv-radius f = conv-radius g
using assms
by (intro antisym bigo-imp-conv-radius-ge) (auto simp: bigtheta-def bigomega-iff-bigo)

lemma conv-radius-eql-smallomega-smallo:
fixes [:: nat = 'a :: {real-normed-div-algebra, banach}
assumes Ac. ¢ > | = ¢ < inverse C = (An. norm (f n)) € w(An. € "~ n)
assumes Ac. ¢ < u => € > inverse C = (An. norm (f n)) € o(An. ¢ " n)
assumes C: C > 0 and lu: | > 01 < inverse C u > inverse C
shows conv-radius f = ereal C
proof (intro antisym)
have 0 < inverse C
using assms by (auto simp: field-simps)
also have ... < u
by fact
finally have v > 0 by simp
show conv-radius f > C

34

unfolding conv-radius-altdef le- Liminf-iff
proof safe
fix c :: ereal assume c¢: ¢ < C
hence mazx ¢ (inverse u) < ereal C
using lu C <u > 0) by (auto simp: field-simps)
from ereal-dense2[OF this| obtain ¢’ where ¢ ¢ < ereal ¢’ inverse u < ¢’ ¢’
<C
by auto
have inverse u > 0
using «u > 0» by simp
also have ... < ¢’ by fact
finally have ¢’ > 0 .

have V r z in sequentially. norm (norm (f z)) < 1/2 % norm (inverse ¢’ ~ z)
using landau-o.smallD[OF assms(2)[of inverse ¢, of 1/2] ¢/ C'lu <¢' > 0 ¢
by (simp add: field-simps)

thus V p n in sequentially. ¢ < inverse (ereal (root n (norm (f n))))
using eventually-gt-at-toplof 0]

proof eventually-elim
case (elim n)
have norm (fn) < 1/2 % norm (inverse ¢’ ~ n)

using ¢’ using elim by (simp add: field-simps)
also have ... < norm (inverse ¢’ " n)
using <¢’ > 0 by simp
finally have root n (norm (f n)) < root n (norm (inverse ¢’ ~ n))
using <n > 0 ¢’ by (intro real-root-less-mono) auto
also have root n (norm (inverse ¢’ ~ n)) = inverse ¢’
using «n > 0y <«¢’ > 0» by (simp add: norm-power real-root-power)
finally have ereal (root n (norm (f n))) < ereal (inverse c’)
by simp
also have ... = inverse (ereal ¢’
using «¢’ > 0> by auto
finally have inverse (inverse (ereal ¢')) < inverse (ereal (root n (norm (f
)
using ¢’ «n > 0) by (intro ereal-inverse-antimono-strict) auto
also have inverse (inverse (ereal ¢')) = ereal ¢’
using ¢’ by simp
finally show ?case
using (¢ < ¢» by simp
qed
qed
next
show conv-radius f < C
proof (rule ccontr)

assume —(conv-radius f < C)

hence conv-radius f > C by auto

hence min (conv-radius f) (inverse I) > ereal C
using lu C «I > 0» by (auto simp: field-simps)

from ereal-dense2[OF this] obtain ¢ where c¢: C < ereal ¢ inverse | > ¢ ¢ <

35

conv-radius f
by auto
hence ¢ > 0 using lu C
by (simp add: field-simps)

have V i n in sequentially. ereal ¢ < inverse (ereal (root n (norm (f n))))
using less-LiminfD[OF c(3)[unfolded conv-radius-altdef]] by simp
moreover have V p n in sequentially. norm (f n) > 2 % norm (inverse ¢ ~ n)
using landau-omega.smallD[OF assms(1)[of inverse c, of 2] ¢ C <¢ > 0 lu
by (simp add: field-simps)
ultimately have eventually (An. False) sequentially
using eventually-gt-at-toplof 0]
proof eventually-elim
case (elim n)
have norm (inverse ¢ ~n) < 2 % norm (inverse ¢ ~ n)
using ¢ <n > 0> C by simp
also have ... < norm (f n)
using elim by simp
finally have root n (inverse ¢ ~n) < root n (norm (f n))
using «n >) by (intro real-root-less-mono) auto
also have root n (inverse ¢ ~ n) = inverse c
using «n > 0y ¢ C by (subst real-root-power) auto
finally have ereal (inverse ¢) < ereal (root n (norm (f n)))
by simp
also have ereal (inverse ¢) = inverse (ereal ¢)
using ¢ C by auto
finally have inverse (ereal (root n (norm (f n)))) < inverse (inverse (ereal

using ¢ C
by (intro ereal-inverse-antimono-strict) auto
also have ... = ereal c
using ¢ C by auto
also have ... < inverse (ereal (root n (norm (f n))))
using elim by simp
finally show Fulse .
qed
thus Fulse by simp
qed
qed

Finally, we show that the radius of convergence of W (X) is e~! by directly
computing
lim V/|[X" W(X)| =e

n—oo
using Stirling’s formula for n!:
lemma fps-conv-radius-Lambert-W: fps-conv-radius fps-Lambert-W = exp (—1)
proof —

have conv-radius (fps-nth fps-Lambert-W) = conv-radius (An. exp 1 ~n x n powr
(—=8/2) :: real)

36

proof (rule conv-radius-cong-bigtheta)
have fps-nth fps-Lambert-W € ©(An. (—realn) ~(n — 1) / fact n)
by (intro bigthetal-cong eventually-mono|OF eventually-gt-at-top[of 0]])
(auto simp: fps-nth-Lambert-W)
also have (An. (—realn) ~(n — 1) / fact n) € ©(An. realn ~(n — 1) / fact
n
)
by (subst landau-theta.norm-iff [symmetric|, subst norm-divide) auto
also have (An. (realn) ~(n — 1) / fact n) €
O(An. (realn) ~(n — 1) / (sqrt (2 = pi x real n) * (real n / exp 1)
“n))

by (intro asymp-equiv-imp-bigtheta asymp-equiv-intros fact-asymp-equiv)
also have (An. (realn) ~(n — 1) / (sqrt (2 % pi * real n) * (real n / exp 1)
“n)) €
O(An. exp 1 " n x n powr (—3/2))
by (real-asymp simp: In-inverse)
finally show fps-nth fps-Lambert-W € ©(An. exp 1 ~n x n powr (—3/2) =
real) .
qed
also have ... = inverse (limsup (An. ereal (root n (exp 1 ~ n * real n powr —
(3/2))
by (simp add: conv-radius-def)
also have limsup (An. ereal (root n (exp 1 ~n x real n powr — (3 / 2)))) = exp
1
proof (intro lim-imp-Limsup tendsto-intros)
— real__asymp does not support root for a variable basis natively, so we need
to convert it to (powr) first.

have (An. (exp 1 " n * real n powr —(3/2)) powr (1 / real n)) —— exp 1
by real-asymp
also have ?this +— (Az. root x (exp 1 ~ x * real x powr — (8] 2))) ——
exp 1
by (intro filterlim-cong eventually-mono[OF eventually-gt-at-top[of 0]])
(auto simp: root-powr-inverse)
finally show
qged auto
finally show ?thesis
by (simp add: fps-conv-radius-def exp-minus)
qged

end

References
[1] R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D. E.

Knuth. On the Lambert W function. Advances in Computational Math-
ematics, 5(1):329-359, Dec. 1996.

37

	The Lambert W Function on the reals
	Properties of the function xx ex
	Definition
	Monotonicity properties
	Basic identities and bounds
	Limits, continuity, and differentiability
	Asymptotic expansion
	The MacLaurin series of W0(x) at x = 0

