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Abstract

The Lambert W function is a multi-valued function defined as the
inverse function of x 7→ xex. Besides numerous applications in com-
binatorics, physics, and engineering, it also frequently occurs when
solving equations containing both ex and x, or both x and log x.

This article provides a definition of the two real-valued branches
W0(x) and W−1(x) and proves various properties such as basic identi-
ties and inequalities, monotonicity, differentiability, asymptotic expan-
sions, and the MacLaurin series of W0(x) at x = 0.
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1 The Lambert W Function on the reals
theory Lambert-W
imports

Complex-Main
HOL−Library.FuncSet
HOL−Real-Asymp.Real-Asymp

begin

1.1 Properties of the function x 7→ xex

lemma exp-times-self-gt:
assumes x 6= −1
shows x ∗ exp x > −exp (−1 ::real)

proof −
define f where f = (λx::real. x ∗ exp x)
define f ′ where f ′ = (λx::real. (x + 1 ) ∗ exp x)
have (f has-field-derivative f ′ x) (at x) for x

by (auto simp: f-def f ′-def intro!: derivative-eq-intros simp: algebra-simps)
define l r where l = min x (−1 ) and r = max x (−1 )

have ∃ z. z > l ∧ z < r ∧ f r − f l = (r − l) ∗ f ′ z
unfolding f-def f ′-def l-def r-def using assms
by (intro MVT2 ) (auto intro!: derivative-eq-intros simp: algebra-simps)

then obtain z where z: z ∈ {l<..<r} f r − f l = (r − l) ∗ f ′ z
by auto

from z have f x = f (−1 ) + (x + 1 ) ∗ f ′ z
using assms by (cases x ≥ −1 ) (auto simp: l-def r-def max-def min-def alge-

bra-simps)
moreover have sgn ((x + 1 ) ∗ f ′ z) = 1

using z assms
by (cases x (−1 ) :: real rule: linorder-cases; cases z (−1 ) :: real rule: linorder-cases)

(auto simp: f ′-def sgn-mult l-def r-def )
hence (x + 1 ) ∗ f ′ z > 0 using sgn-greater by fastforce
ultimately show ?thesis by (simp add: f-def )

qed

lemma exp-times-self-ge: x ∗ exp x ≥ −exp (−1 ::real)
using exp-times-self-gt[of x] by (cases x = −1 ) auto

lemma exp-times-self-strict-mono:
assumes x ≥ −1 x < (y :: real)
shows x ∗ exp x < y ∗ exp y
using assms(2 )

proof (rule DERIV-pos-imp-increasing-open)
fix t assume t: x < t t < y
have ((λx. x ∗ exp x) has-real-derivative (t + 1 ) ∗ exp t) (at t)

by (auto intro!: derivative-eq-intros simp: algebra-simps)
moreover have (t + 1 ) ∗ exp t > 0

2



using t assms by (intro mult-pos-pos) auto
ultimately show ∃ y. ((λa. a ∗ exp a) has-real-derivative y) (at t) ∧ 0 < y by

blast
qed (auto intro!: continuous-intros)

lemma exp-times-self-strict-antimono:
assumes y ≤ −1 x < (y :: real)
shows x ∗ exp x > y ∗ exp y

proof −
have −x ∗ exp x < −y ∗ exp y

using assms(2 )
proof (rule DERIV-pos-imp-increasing-open)

fix t assume t: x < t t < y
have ((λx. −x ∗ exp x) has-real-derivative (−(t + 1 )) ∗ exp t) (at t)

by (auto intro!: derivative-eq-intros simp: algebra-simps)
moreover have (−(t + 1 )) ∗ exp t > 0

using t assms by (intro mult-pos-pos) auto
ultimately show ∃ y. ((λa. −a ∗ exp a) has-real-derivative y) (at t) ∧ 0 < y

by blast
qed (auto intro!: continuous-intros)
thus ?thesis by simp

qed

lemma exp-times-self-mono:
assumes x ≥ −1 x ≤ (y :: real)
shows x ∗ exp x ≤ y ∗ exp y
using exp-times-self-strict-mono[of x y] assms by (cases x = y) auto

lemma exp-times-self-antimono:
assumes y ≤ −1 x ≤ (y :: real)
shows x ∗ exp x ≥ y ∗ exp y
using exp-times-self-strict-antimono[of y x] assms by (cases x = y) auto

lemma exp-times-self-inj: inj-on (λx::real. x ∗ exp x) {−1 ..}
proof

fix x y :: real
assume x ∈ {−1 ..} y ∈ {−1 ..} x ∗ exp x = y ∗ exp y
thus x = y

using exp-times-self-strict-mono[of x y] exp-times-self-strict-mono[of y x]
by (cases x y rule: linorder-cases) auto

qed

lemma exp-times-self-inj ′: inj-on (λx::real. x ∗ exp x) {..−1}
proof

fix x y :: real
assume x ∈ {..−1} y ∈ {..−1} x ∗ exp x = y ∗ exp y
thus x = y

using exp-times-self-strict-antimono[of x y] exp-times-self-strict-antimono[of y
x]
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Figure 1: The two real branches of the Lambert W function: W0 (blue) and
W−1 (red).

by (cases x y rule: linorder-cases) auto
qed

1.2 Definition

The following are the two branches W0(x) and W−1(x) of the Lambert W
function on the real numbers. These are the inverse functions of the function
x 7→ xex, i. e. we have W (x)eW (x) = x for both branches wherever they are
defined. The two branches meet at the point x = −1

e .
W0(x) is the principal branch, whose domain is [−1

e ;∞) and whose range is
[−1;∞). W−1(x) has the domain [−1

e ; 0) and the range (−∞;−1]. Figure 1
shows plots of these two branches for illustration.

definition Lambert-W :: real ⇒ real where
Lambert-W x = (if x < −exp(−1 ) then −1 else (THE w. w ≥ −1 ∧ w ∗ exp w

= x))

definition Lambert-W ′ :: real ⇒ real where
Lambert-W ′ x = (if x ∈ {−exp(−1 )..<0} then (THE w. w ≤ −1 ∧ w ∗ exp w

= x) else −1 )

lemma Lambert-W-ex1 :
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assumes (x::real) ≥ −exp (−1 )
shows ∃ !w. w ≥ −1 ∧ w ∗ exp w = x

proof (rule ex-ex1I )
have filterlim (λw::real. w ∗ exp w) at-top at-top

by real-asymp
hence eventually (λw. w ∗ exp w ≥ x) at-top

by (auto simp: filterlim-at-top)
hence eventually (λw. w ≥ 0 ∧ w ∗ exp w ≥ x) at-top

by (intro eventually-conj eventually-ge-at-top)
then obtain w ′ where w ′: w ′ ∗ exp w ′ ≥ x w ′ ≥ 0

by (auto simp: eventually-at-top-linorder)
from w ′ assms have ∃w. −1 ≤ w ∧ w ≤ w ′ ∧ w ∗ exp w = x

by (intro IVT ′ continuous-intros) auto
thus ∃w. w ≥ −1 ∧ w ∗ exp w = x by blast

next
fix w w ′ :: real
assume ww ′: w ≥ −1 ∧ w ∗ exp w = x w ′ ≥ −1 ∧ w ′ ∗ exp w ′ = x
hence w ∗ exp w = w ′ ∗ exp w ′ by simp
thus w = w ′

using exp-times-self-strict-mono[of w w ′] exp-times-self-strict-mono[of w ′ w]
ww ′

by (cases w w ′ rule: linorder-cases) auto
qed

lemma Lambert-W ′-ex1 :
assumes (x::real) ∈ {−exp (−1 )..<0}
shows ∃ !w. w ≤ −1 ∧ w ∗ exp w = x

proof (rule ex-ex1I )
have eventually (λw. x ≤ w ∗ exp w) at-bot

using assms by real-asymp
hence eventually (λw. w ≤ −1 ∧ w ∗ exp w ≥ x) at-bot

by (intro eventually-conj eventually-le-at-bot)
then obtain w ′ where w ′: w ′ ∗ exp w ′ ≥ x w ′ ≤ −1

by (auto simp: eventually-at-bot-linorder)

from w ′ assms have ∃w. w ′ ≤ w ∧ w ≤ −1 ∧ w ∗ exp w = x
by (intro IVT2 ′ continuous-intros) auto

thus ∃w. w ≤ −1 ∧ w ∗ exp w = x by blast
next

fix w w ′ :: real
assume ww ′: w ≤ −1 ∧ w ∗ exp w = x w ′ ≤ −1 ∧ w ′ ∗ exp w ′ = x
hence w ∗ exp w = w ′ ∗ exp w ′ by simp
thus w = w ′

using exp-times-self-strict-antimono[of w w ′] exp-times-self-strict-antimono[of
w ′ w] ww ′

by (cases w w ′ rule: linorder-cases) auto
qed

lemma Lambert-W-times-exp-self :
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assumes x ≥ −exp (−1 )
shows Lambert-W x ∗ exp (Lambert-W x) = x
using theI ′[OF Lambert-W-ex1 [OF assms]] assms by (auto simp: Lambert-W-def )

lemma Lambert-W-times-exp-self ′:
assumes x ≥ −exp (−1 )
shows exp (Lambert-W x) ∗ Lambert-W x = x
using Lambert-W-times-exp-self [of x] assms by (simp add: mult-ac)

lemma Lambert-W ′-times-exp-self :
assumes x ∈ {−exp (−1 )..<0}
shows Lambert-W ′ x ∗ exp (Lambert-W ′ x) = x
using theI ′[OF Lambert-W ′-ex1 [OF assms]] assms by (auto simp: Lambert-W ′-def )

lemma Lambert-W ′-times-exp-self ′:
assumes x ∈ {−exp (−1 )..<0}
shows exp (Lambert-W ′ x) ∗ Lambert-W ′ x = x
using Lambert-W ′-times-exp-self [of x] assms by (simp add: mult-ac)

lemma Lambert-W-ge: Lambert-W x ≥ −1
using theI ′[OF Lambert-W-ex1 [of x]] by (auto simp: Lambert-W-def )

lemma Lambert-W ′-le: Lambert-W ′ x ≤ −1
using theI ′[OF Lambert-W ′-ex1 [of x]] by (auto simp: Lambert-W ′-def )

lemma Lambert-W-eqI :
assumes w ≥ −1 w ∗ exp w = x
shows Lambert-W x = w

proof −
from assms exp-times-self-ge[of w] have x ≥ −exp (−1 )

by (cases x ≥ −exp (−1 )) auto
from Lambert-W-ex1 [OF this] Lambert-W-times-exp-self [OF this] Lambert-W-ge[of

x] assms
show ?thesis by metis

qed

lemma Lambert-W ′-eqI :
assumes w ≤ −1 w ∗ exp w = x
shows Lambert-W ′ x = w

proof −
from assms exp-times-self-ge[of w] have x ≥ −exp (−1 )

by (cases x ≥ −exp (−1 )) auto
moreover from assms have w ∗ exp w < 0

by (intro mult-neg-pos) auto
ultimately have x ∈ {−exp (−1 )..<0}

using assms by auto

from Lambert-W ′-ex1 [OF this(1 )] Lambert-W ′-times-exp-self [OF this(1 )] Lam-
bert-W ′-le assms
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show ?thesis by metis
qed

W0(x) and W−1(x) together fully cover all solutions of wew = x:
lemma exp-times-self-eqD:

assumes w ∗ exp w = x
shows x ≥ −exp (−1 ) and w = Lambert-W x ∨ x < 0 ∧ w = Lambert-W ′ x

proof −
from assms show x ≥ −exp (−1 )

using exp-times-self-ge[of w] by auto
show w = Lambert-W x ∨ x < 0 ∧ w = Lambert-W ′ x
proof (cases w ≥ −1 )

case True
hence Lambert-W x = w

using assms by (intro Lambert-W-eqI ) auto
thus ?thesis by auto

next
case False
from False have w ∗ exp w < 0

by (intro mult-neg-pos) auto
from False have Lambert-W ′ x = w

using assms by (intro Lambert-W ′-eqI ) auto
thus ?thesis using assms ‹w ∗ exp w < 0 › by auto

qed
qed

theorem exp-times-self-eq-iff :
w ∗ exp w = x ←→ x ≥ −exp (−1 ) ∧ (w = Lambert-W x ∨ x < 0 ∧ w =

Lambert-W ′ x)
using exp-times-self-eqD[of w x]
by (auto simp: Lambert-W-times-exp-self Lambert-W ′-times-exp-self )

lemma Lambert-W-exp-times-self [simp]: x ≥ −1 =⇒ Lambert-W (x ∗ exp x) =
x

by (rule Lambert-W-eqI ) auto

lemma Lambert-W-exp-times-self ′ [simp]: x ≥ −1 =⇒ Lambert-W (exp x ∗ x) =
x

by (rule Lambert-W-eqI ) auto

lemma Lambert-W ′-exp-times-self [simp]: x ≤ −1 =⇒ Lambert-W ′ (x ∗ exp x)
= x

by (rule Lambert-W ′-eqI ) auto

lemma Lambert-W ′-exp-times-self ′ [simp]: x ≤ −1 =⇒ Lambert-W ′ (exp x ∗ x)
= x

by (rule Lambert-W ′-eqI ) auto

lemma Lambert-W-times-ln-self :
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assumes x ≥ exp (−1 )
shows Lambert-W (x ∗ ln x) = ln x

proof −
have 0 < exp (−1 :: real)

by simp
also note ‹. . . ≤ x›
finally have x > 0 .
from assms have ln (exp (−1 )) ≤ ln x

using ‹x > 0 › by (subst ln-le-cancel-iff ) auto
hence Lambert-W (exp (ln x) ∗ ln x) = ln x

by (subst Lambert-W-exp-times-self ′) auto
thus ?thesis using ‹x > 0 › by simp

qed

lemma Lambert-W-times-ln-self ′:
assumes x ≥ exp (−1 )
shows Lambert-W (ln x ∗ x) = ln x
using Lambert-W-times-ln-self [OF assms] by (simp add: mult.commute)

lemma Lambert-W-eq-minus-exp-minus1 [simp]: Lambert-W (−exp (−1 )) = −1
by (rule Lambert-W-eqI ) auto

lemma Lambert-W ′-eq-minus-exp-minus1 [simp]: Lambert-W ′ (−exp (−1 )) = −1
by (rule Lambert-W ′-eqI ) auto

lemma Lambert-W-0 [simp]: Lambert-W 0 = 0
by (rule Lambert-W-eqI ) auto

1.3 Monotonicity properties
lemma Lambert-W-strict-mono:

assumes x ≥ −exp(−1 ) x < y
shows Lambert-W x < Lambert-W y

proof (rule ccontr)
assume ¬(Lambert-W x < Lambert-W y)
hence Lambert-W x ∗ exp (Lambert-W x) ≥ Lambert-W y ∗ exp (Lambert-W y)

by (intro exp-times-self-mono) (auto simp: Lambert-W-ge)
hence x ≥ y

using assms by (simp add: Lambert-W-times-exp-self )
with assms show False by simp

qed

lemma Lambert-W-mono:
assumes x ≥ −exp(−1 ) x ≤ y
shows Lambert-W x ≤ Lambert-W y
using Lambert-W-strict-mono[of x y] assms by (cases x = y) auto

lemma Lambert-W-eq-iff [simp]:
x ≥ −exp(−1 ) =⇒ y ≥ −exp(−1 ) =⇒ Lambert-W x = Lambert-W y ←→ x = y
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using Lambert-W-strict-mono[of x y] Lambert-W-strict-mono[of y x]
by (cases x y rule: linorder-cases) auto

lemma Lambert-W-le-iff [simp]:
x ≥ −exp(−1 ) =⇒ y ≥ −exp(−1 ) =⇒ Lambert-W x ≤ Lambert-W y ←→ x ≤ y
using Lambert-W-strict-mono[of x y] Lambert-W-strict-mono[of y x]
by (cases x y rule: linorder-cases) auto

lemma Lambert-W-less-iff [simp]:
x ≥ −exp(−1 ) =⇒ y ≥ −exp(−1 ) =⇒ Lambert-W x < Lambert-W y ←→ x < y
using Lambert-W-strict-mono[of x y] Lambert-W-strict-mono[of y x]
by (cases x y rule: linorder-cases) auto

lemma Lambert-W-le-minus-one:
assumes x ≤ −exp(−1 )
shows Lambert-W x = −1

proof (cases x = −exp(−1 ))
case False
thus ?thesis using assms

by (auto simp: Lambert-W-def )
qed auto

lemma Lambert-W-pos-iff [simp]: Lambert-W x > 0 ←→ x > 0
proof (cases x ≥ −exp (−1 ))

case True
thus ?thesis

using Lambert-W-less-iff [of 0 x] by (simp del: Lambert-W-less-iff )
next

case False
hence x < − exp(−1 ) by auto
also have . . . ≤ 0 by simp
finally show ?thesis using False

by (auto simp: Lambert-W-le-minus-one)
qed

lemma Lambert-W-eq-0-iff [simp]: Lambert-W x = 0 ←→ x = 0
using Lambert-W-eq-iff [of x 0 ]
by (cases x ≥ −exp (−1 )) (auto simp: Lambert-W-le-minus-one simp del: Lam-

bert-W-eq-iff )

lemma Lambert-W-nonneg-iff [simp]: Lambert-W x ≥ 0 ←→ x ≥ 0
using Lambert-W-pos-iff [of x]
by (cases x = 0 ) (auto simp del: Lambert-W-pos-iff )

lemma Lambert-W-neg-iff [simp]: Lambert-W x < 0 ←→ x < 0
using Lambert-W-nonneg-iff [of x] by (auto simp del: Lambert-W-nonneg-iff )

lemma Lambert-W-nonpos-iff [simp]: Lambert-W x ≤ 0 ←→ x ≤ 0
using Lambert-W-pos-iff [of x] by (auto simp del: Lambert-W-pos-iff )
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lemma Lambert-W-geI :
assumes y ∗ exp y ≤ x
shows Lambert-W x ≥ y

proof (cases y ≥ −1 )
case False
hence y ≤ −1 by simp
also have −1 ≤ Lambert-W x by (rule Lambert-W-ge)
finally show ?thesis .

next
case True
have Lambert-W x ≥ Lambert-W (y ∗ exp y)

using assms exp-times-self-ge[of y] by (intro Lambert-W-mono) auto
thus ?thesis using assms True by simp

qed

lemma Lambert-W-gtI :
assumes y ∗ exp y < x
shows Lambert-W x > y

proof (cases y ≥ −1 )
case False
hence y < −1 by simp
also have −1 ≤ Lambert-W x by (rule Lambert-W-ge)
finally show ?thesis .

next
case True
have Lambert-W x > Lambert-W (y ∗ exp y)

using assms exp-times-self-ge[of y] by (intro Lambert-W-strict-mono) auto
thus ?thesis using assms True by simp

qed

lemma Lambert-W-leI :
assumes y ∗ exp y ≥ x y ≥ −1 x ≥ −exp (−1 )
shows Lambert-W x ≤ y

proof −
have Lambert-W x ≤ Lambert-W (y ∗ exp y)

using assms exp-times-self-ge[of y] by (intro Lambert-W-mono) auto
thus ?thesis using assms by simp

qed

lemma Lambert-W-lessI :
assumes y ∗ exp y > x y ≥ −1 x ≥ −exp (−1 )
shows Lambert-W x < y

proof −
have Lambert-W x < Lambert-W (y ∗ exp y)

using assms exp-times-self-ge[of y] by (intro Lambert-W-strict-mono) auto
thus ?thesis using assms by simp

qed
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lemma Lambert-W ′-strict-antimono:
assumes −exp (−1 ) ≤ x x < y y < 0
shows Lambert-W ′ x > Lambert-W ′ y

proof (rule ccontr)
assume ¬(Lambert-W ′ x > Lambert-W ′ y)
hence Lambert-W ′ x ∗ exp (Lambert-W ′ x) ≥ Lambert-W ′ y ∗ exp (Lambert-W ′

y)
using assms by (intro exp-times-self-antimono Lambert-W ′-le) auto

hence x ≥ y
using assms by (simp add: Lambert-W ′-times-exp-self )

with assms show False by simp
qed

lemma Lambert-W ′-antimono:
assumes x ≥ −exp(−1 ) x ≤ y y < 0
shows Lambert-W ′ x ≥ Lambert-W ′ y
using Lambert-W ′-strict-antimono[of x y] assms by (cases x = y) auto

lemma Lambert-W ′-eq-iff [simp]:
x ∈ {−exp(−1 )..<0} =⇒ y ∈ {−exp(−1 )..<0} =⇒ Lambert-W ′ x = Lambert-W ′

y ←→ x = y
using Lambert-W ′-strict-antimono[of x y] Lambert-W ′-strict-antimono[of y x]
by (cases x y rule: linorder-cases) auto

lemma Lambert-W ′-le-iff [simp]:
x ∈ {−exp(−1 )..<0} =⇒ y ∈ {−exp(−1 )..<0} =⇒ Lambert-W ′ x ≤ Lambert-W ′

y ←→ x ≥ y
using Lambert-W ′-strict-antimono[of x y] Lambert-W ′-strict-antimono[of y x]
by (cases x y rule: linorder-cases) auto

lemma Lambert-W ′-less-iff [simp]:
x ∈ {−exp(−1 )..<0} =⇒ y ∈ {−exp(−1 )..<0} =⇒ Lambert-W ′ x < Lambert-W ′

y ←→ x > y
using Lambert-W ′-strict-antimono[of x y] Lambert-W ′-strict-antimono[of y x]
by (cases x y rule: linorder-cases) auto

lemma Lambert-W ′-le-minus-one:
assumes x ≤ −exp(−1 )
shows Lambert-W ′ x = −1

proof (cases x = −exp(−1 ))
case False
thus ?thesis using assms

by (auto simp: Lambert-W ′-def )
qed auto

lemma Lambert-W ′-ge-zero: x ≥ 0 =⇒ Lambert-W ′ x = −1
by (simp add: Lambert-W ′-def )
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lemma Lambert-W ′-neg: Lambert-W ′ x < 0
by (rule le-less-trans[OF Lambert-W ′-le]) auto

lemma Lambert-W ′-nz [simp]: Lambert-W ′ x 6= 0
using Lambert-W ′-neg[of x] by simp

lemma Lambert-W ′-geI :
assumes y ∗ exp y ≥ x y ≤ −1 x ≥ −exp(−1 )
shows Lambert-W ′ x ≥ y

proof −
from assms have y ∗ exp y < 0

by (intro mult-neg-pos) auto
hence Lambert-W ′ x ≥ Lambert-W ′ (y ∗ exp y)

using assms exp-times-self-ge[of y] by (intro Lambert-W ′-antimono) auto
thus ?thesis using assms by simp

qed

lemma Lambert-W ′-gtI :
assumes y ∗ exp y > x y ≤ −1 x ≥ −exp(−1 )
shows Lambert-W ′ x ≥ y

proof −
from assms have y ∗ exp y < 0

by (intro mult-neg-pos) auto
hence Lambert-W ′ x > Lambert-W ′ (y ∗ exp y)
using assms exp-times-self-ge[of y] by (intro Lambert-W ′-strict-antimono) auto

thus ?thesis using assms by simp
qed

lemma Lambert-W ′-leI :
assumes y ∗ exp y ≤ x x < 0
shows Lambert-W ′ x ≤ y

proof (cases y ≤ −1 )
case True
have Lambert-W ′ x ≤ Lambert-W ′ (y ∗ exp y)

using assms exp-times-self-ge[of y] by (intro Lambert-W ′-antimono) auto
thus ?thesis using assms True by simp

next
case False
have Lambert-W ′ x ≤ −1

by (rule Lambert-W ′-le)
also have . . . < y

using False by simp
finally show ?thesis by simp

qed

lemma Lambert-W ′-lessI :
assumes y ∗ exp y < x x < 0
shows Lambert-W ′ x < y
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proof (cases y ≤ −1 )
case True
have Lambert-W ′ x < Lambert-W ′ (y ∗ exp y)
using assms exp-times-self-ge[of y] by (intro Lambert-W ′-strict-antimono) auto

thus ?thesis using assms True by simp
next

case False
have Lambert-W ′ x ≤ −1

by (rule Lambert-W ′-le)
also have . . . < y

using False by simp
finally show ?thesis by simp

qed

lemma bij-betw-exp-times-self-atLeastAtMost:
fixes a b :: real
assumes a ≥ −1 a ≤ b
shows bij-betw (λx. x ∗ exp x) {a..b} {a ∗ exp a..b ∗ exp b}
unfolding bij-betw-def

proof
show inj-on (λx. x ∗ exp x) {a..b}

by (rule inj-on-subset[OF exp-times-self-inj]) (use assms in auto)
next

show (λx. x ∗ exp x) ‘ {a..b} = {a ∗ exp a..b ∗ exp b}
proof safe

fix x assume x ∈ {a..b}
thus x ∗ exp x ∈ {a ∗ exp a..b ∗ exp b}

using assms by (auto intro!: exp-times-self-mono)
next

fix x assume x: x ∈ {a ∗ exp a..b ∗ exp b}
have (−1 ) ∗ exp (−1 ) ≤ a ∗ exp a

using assms by (intro exp-times-self-mono) auto
also have . . . ≤ x using x by simp
finally have x ≥ −exp (−1 ) by simp

have Lambert-W x ∈ {a..b}
using x ‹x ≥ −exp (−1 )› assms by (auto intro!: Lambert-W-geI Lam-

bert-W-leI )
moreover have Lambert-W x ∗ exp (Lambert-W x) = x

using ‹x ≥ −exp (−1 )› by (simp add: Lambert-W-times-exp-self )
ultimately show x ∈ (λx. x ∗ exp x) ‘ {a..b}

unfolding image-iff by metis
qed

qed

lemma bij-betw-exp-times-self-atLeastAtMost ′:
fixes a b :: real
assumes a ≤ b b ≤ −1
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shows bij-betw (λx. x ∗ exp x) {a..b} {b ∗ exp b..a ∗ exp a}
unfolding bij-betw-def

proof
show inj-on (λx. x ∗ exp x) {a..b}

by (rule inj-on-subset[OF exp-times-self-inj ′]) (use assms in auto)
next

show (λx. x ∗ exp x) ‘ {a..b} = {b ∗ exp b..a ∗ exp a}
proof safe

fix x assume x ∈ {a..b}
thus x ∗ exp x ∈ {b ∗ exp b..a ∗ exp a}

using assms by (auto intro!: exp-times-self-antimono)
next

fix x assume x: x ∈ {b ∗ exp b..a ∗ exp a}
from assms have a ∗ exp a < 0

by (intro mult-neg-pos) auto
with x have x < 0 by auto
have (−1 ) ∗ exp (−1 ) ≤ b ∗ exp b

using assms by (intro exp-times-self-antimono) auto
also have . . . ≤ x using x by simp
finally have x ≥ −exp (−1 ) by simp

have Lambert-W ′ x ∈ {a..b}
using x ‹x ≥ −exp (−1 )› ‹x < 0 › assms
by (auto intro!: Lambert-W ′-geI Lambert-W ′-leI )

moreover have Lambert-W ′ x ∗ exp (Lambert-W ′ x) = x
using ‹x ≥ −exp (−1 )› ‹x < 0 › by (auto simp: Lambert-W ′-times-exp-self )

ultimately show x ∈ (λx. x ∗ exp x) ‘ {a..b}
unfolding image-iff by metis

qed
qed

lemma bij-betw-exp-times-self-atLeast:
fixes a :: real
assumes a ≥ −1
shows bij-betw (λx. x ∗ exp x) {a..} {a ∗ exp a..}
unfolding bij-betw-def

proof
show inj-on (λx. x ∗ exp x) {a..}

by (rule inj-on-subset[OF exp-times-self-inj]) (use assms in auto)
next

show (λx. x ∗ exp x) ‘ {a..} = {a ∗ exp a..}
proof safe

fix x assume x ≥ a
thus x ∗ exp x ≥ a ∗ exp a

using assms by (auto intro!: exp-times-self-mono)
next

fix x assume x: x ≥ a ∗ exp a
have (−1 ) ∗ exp (−1 ) ≤ a ∗ exp a

using assms by (intro exp-times-self-mono) auto
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also have . . . ≤ x using x by simp
finally have x ≥ −exp (−1 ) by simp

have Lambert-W x ∈ {a..}
using x ‹x ≥ −exp (−1 )› assms by (auto intro!: Lambert-W-geI Lam-

bert-W-leI )
moreover have Lambert-W x ∗ exp (Lambert-W x) = x

using ‹x ≥ −exp (−1 )› by (simp add: Lambert-W-times-exp-self )
ultimately show x ∈ (λx. x ∗ exp x) ‘ {a..}

unfolding image-iff by metis
qed

qed

1.4 Basic identities and bounds
lemma Lambert-W-2-ln-2 [simp]: Lambert-W (2 ∗ ln 2 ) = ln 2
proof −

have −1 ≤ (0 :: real)
by simp

also have . . . ≤ ln 2
by simp

finally have −1 ≤ (ln 2 :: real) .
thus ?thesis

by (intro Lambert-W-eqI ) auto
qed

lemma Lambert-W-exp-1 [simp]: Lambert-W (exp 1 ) = 1
by (rule Lambert-W-eqI ) auto

lemma Lambert-W-neg-ln-over-self :
assumes x ∈ {exp (−1 )..exp 1}
shows Lambert-W (−ln x / x) = −ln x

proof −
have 0 < (exp (−1 ) :: real)

by simp
also have . . . ≤ x

using assms by simp
finally have x > 0 .
from ‹x > 0 › assms have ln x ≤ ln (exp 1 )

by (subst ln-le-cancel-iff ) auto
also have ln (exp 1 ) = (1 :: real)

by simp
finally have ln x ≤ 1 .
show ?thesis

using assms ‹x > 0 › ‹ln x ≤ 1 ›
by (intro Lambert-W-eqI ) (auto simp: exp-minus field-simps)

qed

lemma Lambert-W ′-neg-ln-over-self :
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assumes x ≥ exp 1
shows Lambert-W ′ (−ln x / x) = −ln x

proof (rule Lambert-W ′-eqI )
have 0 < (exp 1 :: real)

by simp
also have . . . ≤ x

by fact
finally have x > 0 .
from assms ‹x > 0 › have ln x ≥ ln (exp 1 )

by (subst ln-le-cancel-iff ) auto
thus −ln x ≤ −1 by simp
show −ln x ∗ exp (−ln x) = −ln x / x

using ‹x > 0 › by (simp add: field-simps exp-minus)
qed

lemma exp-Lambert-W : x ≥ −exp (−1 ) =⇒ x 6= 0 =⇒ exp (Lambert-W x) = x
/ Lambert-W x

using Lambert-W-times-exp-self [of x] by (auto simp add: divide-simps mult-ac)

lemma exp-Lambert-W ′: x ∈ {−exp (−1 )..<0} =⇒ exp (Lambert-W ′ x) = x /
Lambert-W ′ x

using Lambert-W ′-times-exp-self [of x] by (auto simp add: divide-simps mult-ac)

lemma ln-Lambert-W :
assumes x > 0
shows ln (Lambert-W x) = ln x − Lambert-W x

proof −
have −exp (−1 ) ≤ (0 :: real)

by simp
also have . . . < x by fact
finally have x: x > −exp(−1 ) .

have exp (ln (Lambert-W x)) = exp (ln x − Lambert-W x)
using assms x by (subst exp-diff ) (auto simp: exp-Lambert-W )

thus ?thesis by (subst (asm) exp-inj-iff )
qed

lemma ln-minus-Lambert-W ′:
assumes x ∈ {−exp (−1 )..<0}
shows ln (−Lambert-W ′ x) = ln (−x) − Lambert-W ′ x

proof −
have exp (ln (−x) − Lambert-W ′ x) = −Lambert-W ′ x

using assms by (simp add: exp-diff exp-Lambert-W ′)
also have . . . = exp (ln (−Lambert-W ′ x))

using Lambert-W ′-neg[of x] by simp
finally show ?thesis by simp

qed

lemma Lambert-W-plus-Lambert-W-eq:
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assumes x > 0 y > 0
shows Lambert-W x + Lambert-W y = Lambert-W (x ∗ y ∗ (1 / Lambert-W

x + 1 / Lambert-W y))
proof (rule sym, rule Lambert-W-eqI )

have x > −exp(−1 ) y > −exp (−1 )
by (rule less-trans[OF - assms(1 )] less-trans[OF - assms(2 )], simp)+

with assms show (Lambert-W x + Lambert-W y) ∗ exp (Lambert-W x + Lam-
bert-W y) =

x ∗ y ∗ (1 / Lambert-W x + 1 / Lambert-W y)
by (auto simp: field-simps exp-add exp-Lambert-W )

have −1 ≤ (0 :: real)
by simp

also from assms have . . . ≤ Lambert-W x + Lambert-W y
by (intro add-nonneg-nonneg) auto

finally show . . . ≥ −1 .
qed

lemma Lambert-W ′-plus-Lambert-W ′-eq:
assumes x ∈ {−exp(−1 )..<0} y ∈ {−exp(−1 )..<0}
shows Lambert-W ′ x + Lambert-W ′ y = Lambert-W ′ (x ∗ y ∗ (1 / Lambert-W ′

x + 1 / Lambert-W ′ y))
proof (rule sym, rule Lambert-W ′-eqI )

from assms show (Lambert-W ′ x + Lambert-W ′ y) ∗ exp (Lambert-W ′ x +
Lambert-W ′ y) =

x ∗ y ∗ (1 / Lambert-W ′ x + 1 / Lambert-W ′ y)
by (auto simp: field-simps exp-add exp-Lambert-W ′)

have Lambert-W ′ x + Lambert-W ′ y ≤ −1 + −1
by (intro add-mono Lambert-W ′-le)

also have . . . ≤ −1 by simp
finally show Lambert-W ′ x + Lambert-W ′ y ≤ −1 .

qed

lemma Lambert-W-gt-ln-minus-ln-ln:
assumes x > exp 1
shows Lambert-W x > ln x − ln (ln x)

proof (rule Lambert-W-gtI )
have x > 1

by (rule less-trans[OF - assms]) auto
have ln x > ln (exp 1 )

by (subst ln-less-cancel-iff ) (use ‹x > 1 › assms in auto)
thus (ln x − ln (ln x)) ∗ exp (ln x − ln (ln x)) < x

using assms ‹x > 1 › by (simp add: exp-diff field-simps)
qed

lemma Lambert-W-less-ln:
assumes x > exp 1
shows Lambert-W x < ln x

proof (rule Lambert-W-lessI )
have x > 0
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by (rule less-trans[OF - assms]) auto
have ln x > ln (exp 1 )

by (subst ln-less-cancel-iff ) (use ‹x > 0 › assms in auto)
thus x < ln x ∗ exp (ln x)

using ‹x > 0 › by simp
show ln x ≥ −1

by (rule less-imp-le[OF le-less-trans[OF - ‹ln x > -›]]) auto
show x ≥ −exp (−1 )

by (rule less-imp-le[OF le-less-trans[OF - ‹x > 0 ›]]) auto
qed

1.5 Limits, continuity, and differentiability
lemma filterlim-Lambert-W-at-top [tendsto-intros]: filterlim Lambert-W at-top at-top

unfolding filterlim-at-top
proof

fix C :: real
have eventually (λx. x ≥ C ∗ exp C ) at-top

by (rule eventually-ge-at-top)
thus eventually (λx. Lambert-W x ≥ C ) at-top
proof eventually-elim

case (elim x)
thus ?case

by (intro Lambert-W-geI ) auto
qed

qed

lemma filterlim-Lambert-W-at-left-0 [tendsto-intros]:
filterlim Lambert-W ′ at-bot (at-left 0 )
unfolding filterlim-at-bot

proof
fix C :: real
define C ′ where C ′ = min C (−1 )
have C ′ < 0 C ′ ≤ C

by (simp-all add: C ′-def )
have C ′ ∗ exp C ′ < 0

using ‹C ′ < 0 › by (intro mult-neg-pos) auto
hence eventually (λx. x ≥ C ′ ∗ exp C ′) (at-left 0 )

by real-asymp
moreover have eventually (λx::real. x < 0 ) (at-left 0 )

by real-asymp
ultimately show eventually (λx. Lambert-W ′ x ≤ C ) (at-left 0 )
proof eventually-elim

case (elim x)
hence Lambert-W ′ x ≤ C ′

by (intro Lambert-W ′-leI ) auto
also have . . . ≤ C by fact
finally show ?case .

qed
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qed

lemma continuous-on-Lambert-W [continuous-intros]: continuous-on {−exp (−1 )..}
Lambert-W
proof −

have ∗: continuous-on {−exp (−1 )..b ∗ exp b} Lambert-W if b ≥ 0 for b
proof −

have continuous-on ((λx. x ∗ exp x) ‘ {−1 ..b}) Lambert-W
by (rule continuous-on-inv) (auto intro!: continuous-intros)

also have (λx. x ∗ exp x) ‘ {−1 ..b} = {−exp (−1 )..b ∗ exp b}
using bij-betw-exp-times-self-atLeastAtMost[of −1 b] ‹b ≥ 0 ›
by (simp add: bij-betw-def )

finally show ?thesis .
qed

have continuous (at x) Lambert-W if x ≥ 0 for x
proof −

have x: −exp (−1 ) < x
by (rule less-le-trans[OF - that]) auto

define b where b = Lambert-W x + 1
have b ≥ 0

using Lambert-W-ge[of x] by (simp add: b-def )
have x = Lambert-W x ∗ exp (Lambert-W x)

using that x by (subst Lambert-W-times-exp-self ) auto
also have . . . < b ∗ exp b

by (intro exp-times-self-strict-mono) (auto simp: b-def Lambert-W-ge)
finally have b ∗ exp b > x .
have continuous-on {−exp(−1 )<..<b ∗ exp b} Lambert-W

by (rule continuous-on-subset[OF ∗[of b]]) (use ‹b ≥ 0 › in auto)
moreover have x ∈ {−exp(−1 )<..<b ∗ exp b}

using ‹b ∗ exp b > x› x by auto
ultimately show continuous (at x) Lambert-W

by (subst (asm) continuous-on-eq-continuous-at) auto
qed
hence continuous-on {0 ..} Lambert-W

by (intro continuous-at-imp-continuous-on) auto
moreover have continuous-on {−exp (−1 )..0} Lambert-W

using ∗[of 0 ] by simp
ultimately have continuous-on ({−exp (−1 )..0} ∪ {0 ..}) Lambert-W

by (intro continuous-on-closed-Un) auto
also have {−exp (−1 )..0} ∪ {0 ..} = {−exp (−1 ::real)..}

using order .trans[of −exp (−1 )::real 0 ] by auto
finally show ?thesis .

qed

lemma continuous-on-Lambert-W-alt [continuous-intros]:
assumes continuous-on A f

∧
x. x ∈ A =⇒ f x ≥ −exp (−1 )

shows continuous-on A (λx. Lambert-W (f x))
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using continuous-on-compose2 [OF continuous-on-Lambert-W assms(1 )] assms
by auto

lemma continuous-on-Lambert-W ′ [continuous-intros]: continuous-on {−exp (−1 )..<0}
Lambert-W ′

proof −
have ∗: continuous-on {−exp (−1 )..−b ∗ exp (−b)} Lambert-W ′ if b ≥ 1 for b
proof −

have continuous-on ((λx. x ∗ exp x) ‘ {−b..−1}) Lambert-W ′

by (intro continuous-on-inv ballI ) (auto intro!: continuous-intros)
also have (λx. x ∗ exp x) ‘ {−b..−1} = {−exp (−1 )..−b ∗ exp (−b)}

using bij-betw-exp-times-self-atLeastAtMost ′[of −b −1 ] that
by (simp add: bij-betw-def )

finally show ?thesis .
qed

have continuous (at x) Lambert-W ′ if x > −exp (−1 ) x < 0 for x
proof −

define b where b = Lambert-W x + 1
have eventually (λb. −b ∗ exp (−b) > x) at-top

using that by real-asymp
hence eventually (λb. b ≥ 1 ∧ −b ∗ exp (−b) > x) at-top

by (intro eventually-conj eventually-ge-at-top)
then obtain b where b: b ≥ 1 −b ∗ exp (−b) > x

by (auto simp: eventually-at-top-linorder)

have continuous-on {−exp(−1 )<..<−b ∗ exp (−b)} Lambert-W ′

by (rule continuous-on-subset[OF ∗[of b]]) (use ‹b ≥ 1 › in auto)
moreover have x ∈ {−exp(−1 )<..<−b ∗ exp (−b)}

using b that by auto
ultimately show continuous (at x) Lambert-W ′

by (subst (asm) continuous-on-eq-continuous-at) auto
qed
hence ∗∗: continuous-on {−exp (−1 )<..<0} Lambert-W ′

by (intro continuous-at-imp-continuous-on) auto

show ?thesis
unfolding continuous-on-def

proof
fix x :: real assume x: x ∈ {−exp(−1 )..<0}
show (Lambert-W ′ −−−→ Lambert-W ′ x) (at x within {−exp(−1 )..<0})
proof (cases x = −exp(−1 ))

case False
hence isCont Lambert-W ′ x

using x ∗∗ by (auto simp: continuous-on-eq-continuous-at)
thus ?thesis

using continuous-at filterlim-within-subset by blast
next

case True
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define a :: real where a = −2 ∗ exp (−2 )
have a: a > −exp (−1 )

using exp-times-self-strict-antimono[of −1 −2 ] by (auto simp: a-def )
from True have x ∈ {−exp (−1 )..<a}

using a by (auto simp: a-def )
have continuous-on {−exp (−1 )..<a} Lambert-W ′

unfolding a-def by (rule continuous-on-subset[OF ∗[of 2 ]]) auto
hence (Lambert-W ′ −−−→ Lambert-W ′ x) (at x within {−exp (−1 )..<a})

using ‹x ∈ {−exp (−1 )..<a}› by (auto simp: continuous-on-def )
also have at x within {−exp (−1 )..<a} = at-right x

using a by (intro at-within-nhd[of - {..<a}]) (auto simp: True)
also have . . . = at x within {−exp (−1 )..<0}

using a by (intro at-within-nhd[of - {..<0}]) (auto simp: True)
finally show ?thesis .

qed
qed

qed

lemma continuous-on-Lambert-W ′-alt [continuous-intros]:
assumes continuous-on A f

∧
x. x ∈ A =⇒ f x ∈ {−exp (−1 )..<0}

shows continuous-on A (λx. Lambert-W ′ (f x))
using continuous-on-compose2 [OF continuous-on-Lambert-W ′ assms(1 )] assms
by (auto simp: subset-iff )

lemma tendsto-Lambert-W-1 :
assumes (f −−−→ L) F eventually (λx. f x ≥ −exp (−1 )) F
shows ((λx. Lambert-W (f x)) −−−→ Lambert-W L) F

proof (cases F = bot)
case [simp]: False
from tendsto-lowerbound[OF assms] have L ≥ −exp (−1 ) by simp
thus ?thesis

using continuous-on-tendsto-compose[OF continuous-on-Lambert-W assms(1 )]
assms(2 ) by simp
qed auto

lemma tendsto-Lambert-W-2 :
assumes (f −−−→ L) F L > −exp (−1 )
shows ((λx. Lambert-W (f x)) −−−→ Lambert-W L) F
using order-tendstoD(1 )[OF assms] assms
by (intro tendsto-Lambert-W-1 ) (auto elim: eventually-mono)

lemma tendsto-Lambert-W [tendsto-intros]:
assumes (f −−−→ L) F eventually (λx. f x ≥ −exp (−1 )) F ∨ L > −exp (−1 )
shows ((λx. Lambert-W (f x)) −−−→ Lambert-W L) F
using assms(2 )

proof
assume L > −exp (−1 )
from order-tendstoD(1 )[OF assms(1 ) this] assms(1 ) show ?thesis
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by (intro tendsto-Lambert-W-1 ) (auto elim: eventually-mono)
qed (use tendsto-Lambert-W-1 [OF assms(1 )] in auto)

lemma tendsto-Lambert-W ′-1 :
assumes (f −−−→ L) F eventually (λx. f x ≥ −exp (−1 )) F L < 0
shows ((λx. Lambert-W ′ (f x)) −−−→ Lambert-W ′ L) F

proof (cases F = bot)
case [simp]: False
from tendsto-lowerbound[OF assms(1 ,2 )] have L-ge: L ≥ −exp (−1 ) by simp
from order-tendstoD(2 )[OF assms(1 ,3 )] have ev: eventually (λx. f x < 0 ) F

by auto
with assms(2 ) have eventually (λx. f x ∈ {−exp (−1 )..<0}) F

by eventually-elim auto
thus ?thesis using L-ge assms(3 )
by (intro continuous-on-tendsto-compose[OF continuous-on-Lambert-W ′ assms(1 )])

auto
qed auto

lemma tendsto-Lambert-W ′-2 :
assumes (f −−−→ L) F L > −exp (−1 ) L < 0
shows ((λx. Lambert-W ′ (f x)) −−−→ Lambert-W ′ L) F
using order-tendstoD(1 )[OF assms(1 ,2 )] assms
by (intro tendsto-Lambert-W ′-1 ) (auto elim: eventually-mono)

lemma tendsto-Lambert-W ′ [tendsto-intros]:
assumes (f −−−→ L) F eventually (λx. f x ≥ −exp (−1 )) F ∨ L > −exp (−1 )

L < 0
shows ((λx. Lambert-W ′ (f x)) −−−→ Lambert-W ′ L) F
using assms(2 )

proof
assume L > −exp (−1 )
from order-tendstoD(1 )[OF assms(1 ) this] assms(1 ,3 ) show ?thesis

by (intro tendsto-Lambert-W ′-1 ) (auto elim: eventually-mono)
qed (use tendsto-Lambert-W ′-1 [OF assms(1 ) - assms(3 )] in auto)

lemma continuous-Lambert-W [continuous-intros]:
assumes continuous F f f (Lim F (λx. x)) > −exp (−1 ) ∨ eventually (λx. f x
≥ −exp (−1 )) F

shows continuous F (λx. Lambert-W (f x))
using assms unfolding continuous-def by (intro tendsto-Lambert-W ) auto

lemma continuous-Lambert-W ′ [continuous-intros]:
assumes continuous F f f (Lim F (λx. x)) > −exp (−1 ) ∨ eventually (λx. f x
≥ −exp (−1 )) F

f (Lim F (λx. x)) < 0
shows continuous F (λx. Lambert-W ′ (f x))
using assms unfolding continuous-def by (intro tendsto-Lambert-W ′) auto
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lemma has-field-derivative-Lambert-W [derivative-intros]:
assumes x: x > −exp (−1 )
shows (Lambert-W has-real-derivative inverse (x + exp (Lambert-W x))) (at x

within A)
proof −

write Lambert-W (‹W ›)
from x have W x > W (−exp (−1 ))

by (subst Lambert-W-less-iff ) auto
hence W x > −1 by simp

note [derivative-intros] = DERIV-inverse-function[where g = Lambert-W ]
have ((λx. x ∗ exp x) has-real-derivative (1 + W x) ∗ exp (W x)) (at (W x))

by (auto intro!: derivative-eq-intros simp: algebra-simps)
hence (W has-real-derivative inverse ((1 + W x) ∗ exp (W x))) (at x)

by (rule DERIV-inverse-function[where a = −exp (−1 ) and b = x + 1 ])
(use x ‹W x > −1 › in ‹auto simp: Lambert-W-times-exp-self Lim-ident-at

intro!: continuous-intros›)
also have (1 + W x) ∗ exp (W x) = x + exp (W x)

using x by (simp add: algebra-simps Lambert-W-times-exp-self )
finally show ?thesis by (rule has-field-derivative-at-within)

qed

lemma has-field-derivative-Lambert-W-gen [derivative-intros]:
assumes (f has-real-derivative f ′) (at x within A) f x > −exp (−1 )
shows ((λx. Lambert-W (f x)) has-real-derivative

(f ′ / (f x + exp (Lambert-W (f x))))) (at x within A)
using DERIV-chain2 [OF has-field-derivative-Lambert-W [OF assms(2 )] assms(1 )]
by (simp add: field-simps)

lemma has-field-derivative-Lambert-W ′ [derivative-intros]:
assumes x: x ∈ {−exp (−1 )<..<0}
shows (Lambert-W ′ has-real-derivative inverse (x + exp (Lambert-W ′ x))) (at

x within A)
proof −

write Lambert-W ′ (‹W ›)
from x have W x < W (−exp (−1 ))

by (subst Lambert-W ′-less-iff ) auto
hence W x < −1 by simp

note [derivative-intros] = DERIV-inverse-function[where g = Lambert-W ]
have ((λx. x ∗ exp x) has-real-derivative (1 + W x) ∗ exp (W x)) (at (W x))

by (auto intro!: derivative-eq-intros simp: algebra-simps)
hence (W has-real-derivative inverse ((1 + W x) ∗ exp (W x))) (at x)

by (rule DERIV-inverse-function[where a = −exp (−1 ) and b = 0 ])
(use x ‹W x < −1 › in ‹auto simp: Lambert-W ′-times-exp-self Lim-ident-at

intro!: continuous-intros›)
also have (1 + W x) ∗ exp (W x) = x + exp (W x)

using x by (simp add: algebra-simps Lambert-W ′-times-exp-self )
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finally show ?thesis by (rule has-field-derivative-at-within)
qed

lemma has-field-derivative-Lambert-W ′-gen [derivative-intros]:
assumes (f has-real-derivative f ′) (at x within A) f x ∈ {−exp (−1 )<..<0}
shows ((λx. Lambert-W ′ (f x)) has-real-derivative

(f ′ / (f x + exp (Lambert-W ′ (f x))))) (at x within A)
using DERIV-chain2 [OF has-field-derivative-Lambert-W ′[OF assms(2 )] assms(1 )]
by (simp add: field-simps)

1.6 Asymptotic expansion

Lastly, we prove some more detailed asymptotic expansions of W and W ′

at their singularities. First, we show that:

W (x) = log x− log log x+ o(log log x) for x→∞
W ′(x) = log(−x)− log(− log(−x)) + o(log(− log(−x))) for x→ 0−

theorem Lambert-W-asymp-equiv-at-top:
(λx. Lambert-W x − ln x) ∼[at-top] (λx. −ln (ln x))

proof −
have (λx. Lambert-W x − ln x) ∼[at-top] (λx. (−1 ) ∗ ln (ln x))
proof (rule asymp-equiv-sandwich ′)

fix c ′ :: real assume c ′: c ′ ∈ {−2<..<−1}
have eventually (λx. (ln x + c ′ ∗ ln (ln x)) ∗ exp (ln x + c ′ ∗ ln (ln x)) ≤ x)

at-top
eventually (λx. ln x + c ′ ∗ ln (ln x) ≥ −1 ) at-top

using c ′ by real-asymp+
thus eventually (λx. Lambert-W x − ln x ≥ c ′ ∗ ln (ln x)) at-top
proof eventually-elim

case (elim x)
hence Lambert-W x ≥ ln x + c ′ ∗ ln (ln x)

by (intro Lambert-W-geI )
thus ?case by simp

qed
next

fix c ′ :: real assume c ′: c ′ ∈ {−1<..<0}
have eventually (λx. (ln x + c ′ ∗ ln (ln x)) ∗ exp (ln x + c ′ ∗ ln (ln x)) ≥ x)

at-top
eventually (λx. ln x + c ′ ∗ ln (ln x) ≥ −1 ) at-top

using c ′ by real-asymp+
thus eventually (λx. Lambert-W x − ln x ≤ c ′ ∗ ln (ln x)) at-top

using eventually-ge-at-top[of −exp (−1 )]
proof eventually-elim

case (elim x)
hence Lambert-W x ≤ ln x + c ′ ∗ ln (ln x)

by (intro Lambert-W-leI )
thus ?case by simp

qed

24



qed auto
thus ?thesis by simp

qed

lemma Lambert-W-asymp-equiv-at-top ′ [asymp-equiv-intros]:
Lambert-W ∼[at-top] ln

proof −
have (λx. Lambert-W x − ln x) ∈ Θ(λx. −ln (ln x))

by (intro asymp-equiv-imp-bigtheta Lambert-W-asymp-equiv-at-top)
also have (λx::real. −ln (ln x)) ∈ o(ln)

by real-asymp
finally show ?thesis by (simp add: asymp-equiv-altdef )

qed

theorem Lambert-W ′-asymp-equiv-at-left-0 :
(λx. Lambert-W ′ x − ln (−x)) ∼[at-left 0 ] (λx. −ln (−ln (−x)))

proof −
have (λx. Lambert-W ′ x − ln (−x)) ∼[at-left 0 ] (λx. (−1 ) ∗ ln (−ln (−x)))
proof (rule asymp-equiv-sandwich ′)

fix c ′ :: real assume c ′: c ′ ∈ {−2<..<−1}
have eventually (λx. x ≤ (ln (−x) + c ′ ∗ ln (−ln (−x))) ∗ exp (ln (−x) + c ′

∗ ln (−ln (−x)))) (at-left 0 )
eventually (λx::real. ln (−x) + c ′ ∗ ln (−ln (−x)) ≤ −1 ) (at-left 0 )
eventually (λx::real. −exp (−1 ) ≤ x) (at-left 0 )

using c ′ by real-asymp+
thus eventually (λx. Lambert-W ′ x − ln (−x) ≥ c ′ ∗ ln (−ln (−x))) (at-left 0 )
proof eventually-elim

case (elim x)
hence Lambert-W ′ x ≥ ln (−x) + c ′ ∗ ln (−ln (−x))

by (intro Lambert-W ′-geI )
thus ?case by simp

qed
next

fix c ′ :: real assume c ′: c ′ ∈ {−1<..<0}
have eventually (λx. x ≥ (ln (−x) + c ′ ∗ ln (−ln (−x))) ∗ exp (ln (−x) + c ′

∗ ln (−ln (−x)))) (at-left 0 )
using c ′ by real-asymp

moreover have eventually (λx::real. x < 0 ) (at-left 0 )
by (auto simp: eventually-at intro: exI [of - 1 ])

ultimately show eventually (λx. Lambert-W ′ x − ln (−x) ≤ c ′ ∗ ln (−ln
(−x))) (at-left 0 )

proof eventually-elim
case (elim x)
hence Lambert-W ′ x ≤ ln (−x) + c ′ ∗ ln (−ln (−x))

by (intro Lambert-W ′-leI )
thus ?case by simp

qed
qed auto
thus ?thesis by simp
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qed

lemma Lambert-W ′-asymp-equiv ′-at-left-0 [asymp-equiv-intros]:
Lambert-W ′ ∼[at-left 0 ] (λx. ln (−x))

proof −
have (λx. Lambert-W ′ x − ln (−x)) ∈ Θ[at-left 0 ](λx. −ln (−ln (−x)))

by (intro asymp-equiv-imp-bigtheta Lambert-W ′-asymp-equiv-at-left-0 )
also have (λx::real. −ln (−ln (−x))) ∈ o[at-left 0 ](λx. ln (−x))

by real-asymp
finally show ?thesis by (simp add: asymp-equiv-altdef )

qed

Next, we look at the branching point a := 1
e . Here, the asymptotic behaviour

is as follows:

W (x) = −1 +
√
2e(x− a)

1
2 − 2

3e(x− a) + o(x− a) forx→ a+

W ′(x) = −1−
√
2e(x− a)

1
2 − 2

3e(x− a) + o(x− a) forx→ a+

lemma sqrt-sqrt-mult:
assumes x ≥ (0 :: real)
shows sqrt x ∗ (sqrt x ∗ y) = x ∗ y
using assms by (subst mult.assoc [symmetric]) auto

theorem Lambert-W-asymp-equiv-at-right-minus-exp-minus1 :
defines e ≡ exp 1
defines a ≡ −exp (−1 )
defines C1 ≡ sqrt (2 ∗ exp 1 )
defines f ≡ (λx. −1 + C1 ∗ sqrt (x − a))
shows (λx. Lambert-W x − f x) ∼[at-right a] (λx. −2/3 ∗ e ∗ (x − a))

proof −
define C :: real ⇒ real where C = (λc. sqrt (2/e)/3 ∗ (2∗e+3∗c))
have asymp-equiv: (λx. (f x + c ∗ (x − a)) ∗ exp (f x + c ∗ (x − a)) − x)

∼[at-right a] (λx. C c ∗ (x − a) powr (3/2 )) if c 6= −2/3 ∗ e
for c

proof −
from that have C c 6= 0

by (auto simp: C-def e-def )
have (λx. (f x + c ∗ (x − a)) ∗ exp (f x + c ∗ (x − a)) − x − C c ∗ (x − a)

powr (3/2 ))
∈ o[at-right a](λx. (x − a) powr (3/2 ))

unfolding f-def a-def C-def C1-def e-def
by (real-asymp simp: field-simps real-sqrt-mult real-sqrt-divide sqrt-sqrt-mult

exp-minus simp flip: sqrt-def )
thus ?thesis

using ‹C c 6= 0 › by (intro smallo-imp-asymp-equiv) auto
qed

show ?thesis
proof (rule asymp-equiv-sandwich ′)
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fix c ′ :: real assume c ′: c ′ ∈ {−e<..<−2/3∗e}
hence neq: c ′ 6= −2/3 ∗ e by auto
from c ′ have neg: C c ′ < 0 unfolding C-def by (auto intro!: mult-pos-neg)
hence eventually (λx. C c ′ ∗ (x − a) powr (3 / 2 ) < 0 ) (at-right a)

by real-asymp
hence eventually (λx. (f x + c ′ ∗ (x − a)) ∗ exp (f x + c ′ ∗ (x − a)) − x <

0 ) (at-right a)
using asymp-equiv-eventually-neg-iff [OF asymp-equiv[OF neq]]
by eventually-elim (use neg in auto)

thus eventually (λx. Lambert-W x − f x ≥ c ′ ∗ (x − a)) (at-right a)
proof eventually-elim

case (elim x)
hence Lambert-W x ≥ f x + c ′ ∗ (x − a)

by (intro Lambert-W-geI ) auto
thus ?case by simp

qed
next

fix c ′ :: real assume c ′: c ′ ∈ {−2/3∗e<..<0}
hence neq: c ′ 6= −2/3 ∗ e by auto
from c ′ have pos: C c ′ > 0 unfolding C-def by auto
hence eventually (λx. C c ′ ∗ (x − a) powr (3 / 2 ) > 0 ) (at-right a)

by real-asymp
hence eventually (λx. (f x + c ′ ∗ (x − a)) ∗ exp (f x + c ′ ∗ (x − a)) − x >

0 ) (at-right a)
using asymp-equiv-eventually-pos-iff [OF asymp-equiv[OF neq]]
by eventually-elim (use pos in auto)

moreover have eventually (λx. − 1 ≤ f x + c ′ ∗ (x − a)) (at-right a)
eventually (λx. x > a) (at-right a)

unfolding a-def f-def C1-def c ′ by real-asymp+
ultimately show eventually (λx. Lambert-W x − f x ≤ c ′ ∗ (x − a)) (at-right

a)
proof eventually-elim

case (elim x)
hence Lambert-W x ≤ f x + c ′ ∗ (x − a)

by (intro Lambert-W-leI ) (auto simp: a-def )
thus ?case by simp

qed
qed (auto simp: e-def )

qed

theorem Lambert-W ′-asymp-equiv-at-right-minus-exp-minus1 :
defines e ≡ exp 1
defines a ≡ −exp (−1 )
defines C1 ≡ sqrt (2 ∗ exp 1 )
defines f ≡ (λx. −1 − C1 ∗ sqrt (x − a))
shows (λx. Lambert-W ′ x − f x) ∼[at-right a] (λx. −2/3 ∗ e ∗ (x − a))

proof −
define C :: real ⇒ real where C = (λc. −sqrt (2/e)/3 ∗ (2∗e+3∗c))
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have asymp-equiv: (λx. (f x + c ∗ (x − a)) ∗ exp (f x + c ∗ (x − a)) − x)
∼[at-right a] (λx. C c ∗ (x − a) powr (3/2 )) if c 6= −2/3 ∗ e

for c
proof −

from that have C c 6= 0
by (auto simp: C-def e-def )

have (λx. (f x + c ∗ (x − a)) ∗ exp (f x + c ∗ (x − a)) − x − C c ∗ (x − a)
powr (3/2 ))

∈ o[at-right a](λx. (x − a) powr (3/2 ))
unfolding f-def a-def C-def C1-def e-def
by (real-asymp simp: field-simps real-sqrt-mult real-sqrt-divide sqrt-sqrt-mult

exp-minus simp flip: sqrt-def )
thus ?thesis

using ‹C c 6= 0 › by (intro smallo-imp-asymp-equiv) auto
qed

show ?thesis
proof (rule asymp-equiv-sandwich ′)

fix c ′ :: real assume c ′: c ′ ∈ {−e<..<−2/3∗e}
hence neq: c ′ 6= −2/3 ∗ e by auto
from c ′ have pos: C c ′ > 0 unfolding C-def by (auto intro!: mult-pos-neg)
hence eventually (λx. C c ′ ∗ (x − a) powr (3 / 2 ) > 0 ) (at-right a)

by real-asymp
hence eventually (λx. (f x + c ′ ∗ (x − a)) ∗ exp (f x + c ′ ∗ (x − a)) − x >

0 ) (at-right a)
using asymp-equiv-eventually-pos-iff [OF asymp-equiv[OF neq]]
by eventually-elim (use pos in auto)

moreover have eventually (λx. x > a) (at-right a)
eventually (λx. f x + c ′ ∗ (x − a) ≤ −1 ) (at-right a)

unfolding a-def f-def C1-def c ′ by real-asymp+
ultimately show eventually (λx. Lambert-W ′ x − f x ≥ c ′ ∗ (x − a)) (at-right

a)
proof eventually-elim

case (elim x)
hence Lambert-W ′ x ≥ f x + c ′ ∗ (x − a)

by (intro Lambert-W ′-geI ) (auto simp: a-def )
thus ?case by simp

qed
next

fix c ′ :: real assume c ′: c ′ ∈ {−2/3∗e<..<0}
hence neq: c ′ 6= −2/3 ∗ e by auto
from c ′ have neg: C c ′ < 0 unfolding C-def by auto
hence eventually (λx. C c ′ ∗ (x − a) powr (3 / 2 ) < 0 ) (at-right a)

by real-asymp
hence eventually (λx. (f x + c ′ ∗ (x − a)) ∗ exp (f x + c ′ ∗ (x − a)) − x <

0 ) (at-right a)
using asymp-equiv-eventually-neg-iff [OF asymp-equiv[OF neq]]
by eventually-elim (use neg in auto)

moreover have eventually (λx. x < 0 ) (at-right a)
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unfolding a-def by real-asymp
ultimately show eventually (λx. Lambert-W ′ x − f x ≤ c ′ ∗ (x − a)) (at-right

a)
proof eventually-elim

case (elim x)
hence Lambert-W ′ x ≤ f x + c ′ ∗ (x − a)

by (intro Lambert-W ′-leI ) auto
thus ?case by simp

qed
qed (auto simp: e-def )

qed

Lastly, just for fun, we derive a slightly more accurate expansion of W0(x)
for x→∞:
theorem Lambert-W-asymp-equiv-at-top ′′:
(λx. Lambert-W x − ln x + ln (ln x)) ∼[at-top] (λx. ln (ln x) / ln x)

proof −
have (λx. Lambert-W x − ln x + ln (ln x)) ∼[at-top] (λx. 1 ∗ (ln (ln x) / ln x))
proof (rule asymp-equiv-sandwich ′)

fix c ′ :: real assume c ′: c ′ ∈ {0<..<1}
define a where a = (λx::real. ln x − ln (ln x) + c ′ ∗ (ln (ln x) / ln x))
have eventually (λx. a x ∗ exp (a x) ≤ x) at-top

using c ′ unfolding a-def by real-asymp+
thus eventually (λx. Lambert-W x − ln x + ln (ln x) ≥ c ′ ∗ (ln (ln x) / ln x))

at-top
proof eventually-elim

case (elim x)
hence Lambert-W x ≥ a x

by (intro Lambert-W-geI )
thus ?case by (simp add: a-def )

qed
next

fix c ′ :: real assume c ′: c ′ ∈ {1<..<2}
define a where a = (λx::real. ln x − ln (ln x) + c ′ ∗ (ln (ln x) / ln x))
have eventually (λx. a x ∗ exp (a x) ≥ x) at-top

eventually (λx. a x ≥ −1 ) at-top
using c ′ unfolding a-def by real-asymp+

thus eventually (λx. Lambert-W x − ln x + ln (ln x) ≤ c ′ ∗ (ln (ln x) / ln x))
at-top

using eventually-ge-at-top[of −exp (−1 )]
proof eventually-elim

case (elim x)
hence Lambert-W x ≤ a x

by (intro Lambert-W-leI )
thus ?case by (simp add: a-def )

qed
qed auto
thus ?thesis by simp

qed
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end

theory Lambert-W-MacLaurin-Series
imports

HOL−Computational-Algebra.Formal-Power-Series
Bernoulli.Bernoulli-FPS
Stirling-Formula.Stirling-Formula
Lambert-W

begin

1.7 The MacLaurin series of W0(x) at x = 0

In this section, we derive the MacLaurin series of W0(x) as a formal power
series at x = 0 and prove that its radius of convergenge is e−1.
We do not actually show that this series evaluates to 1 since Isabelle’s library
does not contain the required theorems about convergence of the composi-
tion of two power series yet. If it did, however, this last remaining step
would be trivial since we did all the real work here.
lemma Stirling-Suc-n-n: Stirling (Suc n) n = (Suc n choose 2 )

by (induction n) (auto simp: choose-two)

lemma Stirling-n-n-minus-1 : n > 0 =⇒ Stirling n (n − 1 ) = (n choose 2 )
using Stirling-Suc-n-n[of n − 1 ] by (cases n) auto

The following defines the power series W (X) as the formal inverse of the
formal power series XeX :
definition fps-Lambert-W :: real fps where

fps-Lambert-W = fps-inv (fps-X ∗ fps-exp 1 )

The formal composition of W (X) and XeX is, in fact, the identity (in both
directions).
lemma fps-compose-Lambert-W : fps-compose fps-Lambert-W (fps-X ∗ fps-exp 1 )
= fps-X

unfolding fps-Lambert-W-def by (rule fps-inv) auto

lemma fps-compose-Lambert-W ′: fps-compose (fps-X ∗ fps-exp 1 ) fps-Lambert-W
= fps-X

unfolding fps-Lambert-W-def by (rule fps-inv-right) auto

We have W (0) = 0, which shows that W (X) indeed represents the branch
W0.
lemma fps-nth-Lambert-W-0 [simp]: fps-nth fps-Lambert-W 0 = 0

by (simp add: fps-Lambert-W-def fps-inv-def )

lemma fps-nth-Lambert-W-1 [simp]: fps-nth fps-Lambert-W 1 = 1
by (simp add: fps-Lambert-W-def fps-inv-def )
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All the equalities that hold for the analytic Lambert W function in a neigh-
bourhood of 0 also hold formally for the formal power series, e.g. W (X) =
Xe−W (X):
lemma fps-Lambert-W-over-X :

fps-Lambert-W = fps-X ∗ fps-compose (fps-exp (−1 )) fps-Lambert-W
proof −

have fps-nth (fps-exp 1 oo fps-Lambert-W ) 0 = 1
by simp

hence nz: fps-exp 1 oo fps-Lambert-W 6= 0
by force

have fps-Lambert-W ∗ fps-compose (fps-exp 1 ) fps-Lambert-W =
fps-compose (fps-X ∗ fps-exp 1 ) fps-Lambert-W

by (simp add: fps-compose-mult-distrib)
also have . . . = fps-X ∗ fps-compose 1 fps-Lambert-W

by (simp add: fps-compose-Lambert-W ′)
also have 1 = fps-exp (−1 ) ∗ fps-exp (1 :: real)

by (simp flip: fps-exp-add-mult)
also have fps-X ∗ fps-compose . . . fps-Lambert-W =

fps-X ∗ fps-compose (fps-exp (−1 )) fps-Lambert-W ∗
fps-compose (fps-exp 1 ) fps-Lambert-W

by (simp add: fps-compose-mult-distrib mult-ac)
finally show ?thesis

using nz by simp
qed

We now derive the closed-form expression

W (X) =

∞∑
n=1

(−n)n−1

n!
Xn .

lemma fps-nth-Lambert-W : fps-nth fps-Lambert-W n = (if n = 0 then 0 else
((−n)^(n−1 ) / fact n))
proof −

define F :: real fps where F = fps-X ∗ fps-exp 1
have fps-nth-eq: fps-nth F n = 1 / fact (n − 1 ) if n > 0 for n

using that unfolding F-def by simp
have F-power : F ^ n = fps-X ^ n ∗ fps-exp (of-nat n) for n

by (simp add: F-def power-mult-distrib fps-exp-power-mult)

have fps-nth (fps-inv F) n = (if n = 0 then 0 else ((−n)^(n−1 ) / fact n)) for n
proof (induction n rule: less-induct)

case (less n)
consider n = 0 | n = 1 | n > 1 by force
thus ?case
proof cases

case 3
hence fps-nth (fps-inv F) n = −(

∑
i=0 ..n−1 . fps-nth (fps-inv F) i ∗ fps-nth

(F ^ i) n)
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(is - = −?S) by (cases n) (auto simp: fps-inv-def F-def )
also have ?S = (

∑
i=1 ..<n. fps-nth (fps-inv F) i ∗ fps-nth (F ^ i) n)

using less[of 1 ] 3 by (intro sum.mono-neutral-right) (auto simp: not-le)
also have . . . = (−1 ) ^ (n+1 ) / fact n ∗

(
∑

i=1 ..<n. ((−1 )^(n − i) ∗ real (n choose i) ∗ real i ^ (n −
1 )))

unfolding sum-divide-distrib sum-distrib-left
proof (intro sum.cong, goal-cases)

case (2 i)
hence fps-nth (fps-inv F) i ∗ fps-nth (F ^ i) n =

(−1 ) ^ (i − 1 ) ∗ real (i ^ (i − 1 ) ∗ i ^ (n − i)) ∗
(fact n / (fact i ∗ fact (n − i)) / fact n)

using less.IH [of i] by (simp add: F-power less fps-X-power-mult-nth
power-minus ′)

also have (fact n / (fact i ∗ fact (n − i))) = real (n choose i)
using 2 by (subst binomial-fact) auto

also have i ^ (i − 1 ) ∗ i ^ (n − i) = i ^ (n − 1 )
using 2 by (subst power-add [symmetric]) auto

also have (−1 ) ^ (i − 1 ) = ((−1 ) ^ (n+1 ) ∗ (−1 )^(n−i) :: real)
using 2 by (subst power-add [symmetric]) (auto simp: minus-one-power-iff )
finally show ?case by simp

qed auto
also have (

∑
i=1 ..<n. ((−1 )^(n − i) ∗ real (n choose i) ∗ real i ^ (n −

1 ))) =
(
∑

i∈{..n}−{n}. ((−1 )^(n − i) ∗ real (n choose i) ∗ real i ^ (n −
1 )))

using 3 by (intro sum.mono-neutral-left) auto
also have . . . = (

∑
i≤n. ((−1 )^(n − i) ∗ real (n choose i) ∗ real i ^ (n −

1 ))) −
real n ^ (n − 1 )

by (subst (2 ) sum.remove[of - n]) auto
also have (

∑
i≤n. ((−1 )^(n − i) ∗ real (n choose i) ∗ real i ^ (n − 1 ))) =

real (Stirling (n − 1 ) n) ∗ fact n
by (subst Stirling-closed-form) auto

also have Stirling (n − 1 ) n = 0
using 3 by (subst Stirling-less) auto

finally have fps-nth (fps-inv F) n = −((−1 ) ^ n ∗ real n ^ (n − 1 ) / fact n)
by simp

also have . . . = (−real n) ^ (n − 1 ) / fact n
using 3 by (subst power-minus) (auto simp: minus-one-power-iff )

finally show ?thesis
using 3 by simp

qed (auto simp: fps-inv-def F-def )
qed
thus ?thesis by (simp add: F-def fps-Lambert-W-def )

qed

Next, we need a few auxiliary lemmas about summability and convergence
radii that should go into Isabelle’s standard library at some point:
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lemma summable-comparison-test-bigo:
fixes f :: nat ⇒ real
assumes summable (λn. norm (g n)) f ∈ O(g)
shows summable f

proof −
from ‹f ∈ O(g)› obtain C where C : eventually (λx. norm (f x) ≤ C ∗ norm

(g x)) at-top
by (auto elim: landau-o.bigE)

thus ?thesis
by (rule summable-comparison-test-ev) (insert assms, auto intro: summable-mult)

qed

lemma summable-comparison-test-bigo ′:
assumes summable (λn. norm (g n))
assumes (λn. norm (f n :: ′a :: banach)) ∈ O(λn. norm (g n))
shows summable f

proof (rule summable-norm-cancel, rule summable-comparison-test-bigo)
show summable (λn. norm (norm (g n)))

using assms by simp
qed fact+

lemma conv-radius-conv-Sup ′:
fixes f :: nat ⇒ ′a :: {banach, real-normed-div-algebra}
shows conv-radius f = Sup {r . ∀ z. ereal (norm z) < r −→ summable (λn. norm

(f n ∗ z ^ n))}
proof (rule Sup-eqI [symmetric], goal-cases)

case (1 r)
show ?case
proof (rule conv-radius-geI-ex ′)

fix r ′ :: real assume r ′: r ′ > 0 ereal r ′ < r
show summable (λn. f n ∗ of-real r ′ ^ n)

by (rule summable-norm-cancel) (use 1 r ′ in auto)
qed

next
case (2 r)
from 2 [of 0 ] have r : r ≥ 0 by auto
show ?case
proof (intro conv-radius-leI-ex ′ r)

fix R assume R: R > 0 ereal R > r
with r obtain r ′ where [simp]: r = ereal r ′ by (cases r) auto
show ¬summable (λn. f n ∗ of-real R ^ n)
proof

assume ∗: summable (λn. f n ∗ of-real R ^ n)
define R ′ where R ′ = (R + r ′) / 2
from R have R ′: R ′ > r ′ R ′ < R by (simp-all add: R ′-def )
hence ∀ z. norm z < R ′ −→ summable (λn. norm (f n ∗ z ^ n))

using powser-insidea[OF ∗] by auto
from 2 [of R ′] and this have R ′ ≤ r ′ by auto
with ‹R ′ > r ′› show False by simp
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qed
qed

qed

lemma bigo-imp-conv-radius-ge:
fixes f g :: nat ⇒ ′a :: {banach, real-normed-field}
assumes f ∈ O(g)
shows conv-radius f ≥ conv-radius g

proof −
have conv-radius g = Sup {r . ∀ z. ereal (norm z) < r −→ summable (λn. norm

(g n ∗ z ^ n))}
by (simp add: conv-radius-conv-Sup ′)

also have . . . ≤ Sup {r . ∀ z. ereal (norm z) < r −→ summable (λn. f n ∗ z ^
n)}

proof (rule Sup-subset-mono, safe)
fix r :: ereal and z :: ′a
assume g: ∀ z. ereal (norm z) < r −→ summable (λn. norm (g n ∗ z ^ n))
assume z: ereal (norm z) < r
from g z have summable (λn. norm (g n ∗ z ^ n))

by blast
moreover have (λn. norm (f n ∗ z ^ n)) ∈ O(λn. norm (g n ∗ z ^ n))

unfolding landau-o.big.norm-iff by (intro landau-o.big.mult assms) auto
ultimately show summable (λn. f n ∗ z ^ n)

by (rule summable-comparison-test-bigo ′)
qed
also have . . . = conv-radius f

by (simp add: conv-radius-conv-Sup)
finally show ?thesis .

qed

lemma conv-radius-cong-bigtheta:
assumes f ∈ Θ(g)
shows conv-radius f = conv-radius g
using assms
by (intro antisym bigo-imp-conv-radius-ge) (auto simp: bigtheta-def bigomega-iff-bigo)

lemma conv-radius-eqI-smallomega-smallo:
fixes f :: nat ⇒ ′a :: {real-normed-div-algebra, banach}
assumes

∧
ε. ε > l =⇒ ε < inverse C =⇒ (λn. norm (f n)) ∈ ω(λn. ε ^ n)

assumes
∧
ε. ε < u =⇒ ε > inverse C =⇒ (λn. norm (f n)) ∈ o(λn. ε ^ n)

assumes C : C > 0 and lu: l > 0 l < inverse C u > inverse C
shows conv-radius f = ereal C

proof (intro antisym)
have 0 < inverse C

using assms by (auto simp: field-simps)
also have . . . < u

by fact
finally have u > 0 by simp
show conv-radius f ≥ C
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unfolding conv-radius-altdef le-Liminf-iff
proof safe

fix c :: ereal assume c: c < C
hence max c (inverse u) < ereal C

using lu C ‹u > 0 › by (auto simp: field-simps)
from ereal-dense2 [OF this] obtain c ′ where c ′: c < ereal c ′ inverse u < c ′ c ′

< C
by auto

have inverse u > 0
using ‹u > 0 › by simp

also have . . . < c ′ by fact
finally have c ′ > 0 .

have ∀ F x in sequentially. norm (norm (f x)) ≤ 1/2 ∗ norm (inverse c ′ ^ x)
using landau-o.smallD[OF assms(2 )[of inverse c ′], of 1/2 ] c ′ C lu ‹c ′ > 0 › c
by (simp add: field-simps)

thus ∀ F n in sequentially. c < inverse (ereal (root n (norm (f n))))
using eventually-gt-at-top[of 0 ]

proof eventually-elim
case (elim n)
have norm (f n) ≤ 1/2 ∗ norm (inverse c ′ ^ n)

using c ′ using elim by (simp add: field-simps)
also have . . . < norm (inverse c ′ ^ n)

using ‹c ′ > 0 › by simp
finally have root n (norm (f n)) < root n (norm (inverse c ′ ^ n))

using ‹n > 0 › c ′ by (intro real-root-less-mono) auto
also have root n (norm (inverse c ′ ^ n)) = inverse c ′

using ‹n > 0 › ‹c ′ > 0 › by (simp add: norm-power real-root-power)
finally have ereal (root n (norm (f n))) < ereal (inverse c ′)

by simp
also have . . . = inverse (ereal c ′)

using ‹c ′ > 0 › by auto
finally have inverse (inverse (ereal c ′)) < inverse (ereal (root n (norm (f

n))))
using c ′ ‹n > 0 › by (intro ereal-inverse-antimono-strict) auto

also have inverse (inverse (ereal c ′)) = ereal c ′

using c ′ by simp
finally show ?case

using ‹c < c ′› by simp
qed

qed
next

show conv-radius f ≤ C
proof (rule ccontr)

assume ¬(conv-radius f ≤ C )
hence conv-radius f > C by auto
hence min (conv-radius f ) (inverse l) > ereal C

using lu C ‹l > 0 › by (auto simp: field-simps)
from ereal-dense2 [OF this] obtain c where c: C < ereal c inverse l > c c <
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conv-radius f
by auto

hence c > 0 using lu C
by (simp add: field-simps)

have ∀ F n in sequentially. ereal c < inverse (ereal (root n (norm (f n))))
using less-LiminfD[OF c(3 )[unfolded conv-radius-altdef ]] by simp

moreover have ∀ F n in sequentially. norm (f n) ≥ 2 ∗ norm (inverse c ^ n)
using landau-omega.smallD[OF assms(1 )[of inverse c], of 2 ] c C ‹c > 0 › lu
by (simp add: field-simps)

ultimately have eventually (λn. False) sequentially
using eventually-gt-at-top[of 0 ]

proof eventually-elim
case (elim n)
have norm (inverse c ^ n) < 2 ∗ norm (inverse c ^ n)

using c ‹n > 0 › C by simp
also have . . . ≤ norm (f n)

using elim by simp
finally have root n (inverse c ^ n) < root n (norm (f n))

using ‹n > 0 › by (intro real-root-less-mono) auto
also have root n (inverse c ^ n) = inverse c

using ‹n > 0 › c C by (subst real-root-power) auto
finally have ereal (inverse c) < ereal (root n (norm (f n)))

by simp
also have ereal (inverse c) = inverse (ereal c)

using c C by auto
finally have inverse (ereal (root n (norm (f n)))) < inverse (inverse (ereal

c))
using c C
by (intro ereal-inverse-antimono-strict) auto

also have . . . = ereal c
using c C by auto

also have . . . < inverse (ereal (root n (norm (f n))))
using elim by simp

finally show False .
qed
thus False by simp

qed
qed

Finally, we show that the radius of convergence of W (X) is e−1 by directly
computing

lim
n→∞

n
√
|[Xn]W (X)| = e

using Stirling’s formula for n!:
lemma fps-conv-radius-Lambert-W : fps-conv-radius fps-Lambert-W = exp (−1 )
proof −

have conv-radius (fps-nth fps-Lambert-W ) = conv-radius (λn. exp 1 ^ n ∗ n powr
(−3/2 ) :: real)
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proof (rule conv-radius-cong-bigtheta)
have fps-nth fps-Lambert-W ∈ Θ(λn. (−real n) ^ (n − 1 ) / fact n)

by (intro bigthetaI-cong eventually-mono[OF eventually-gt-at-top[of 0 ]])
(auto simp: fps-nth-Lambert-W )

also have (λn. (−real n) ^ (n − 1 ) / fact n) ∈ Θ(λn. real n ^ (n − 1 ) / fact
n)

by (subst landau-theta.norm-iff [symmetric], subst norm-divide) auto
also have (λn. (real n) ^ (n − 1 ) / fact n) ∈

Θ(λn. (real n) ^ (n − 1 ) / (sqrt (2 ∗ pi ∗ real n) ∗ (real n / exp 1 )
^ n))

by (intro asymp-equiv-imp-bigtheta asymp-equiv-intros fact-asymp-equiv)
also have (λn. (real n) ^ (n − 1 ) / (sqrt (2 ∗ pi ∗ real n) ∗ (real n / exp 1 )

^ n)) ∈
Θ(λn. exp 1 ^ n ∗ n powr (−3/2 ))

by (real-asymp simp: ln-inverse)
finally show fps-nth fps-Lambert-W ∈ Θ(λn. exp 1 ^ n ∗ n powr (−3/2 ) ::

real) .
qed
also have . . . = inverse (limsup (λn. ereal (root n (exp 1 ^ n ∗ real n powr −

(3 / 2 )))))
by (simp add: conv-radius-def )

also have limsup (λn. ereal (root n (exp 1 ^ n ∗ real n powr − (3 / 2 )))) = exp
1

proof (intro lim-imp-Limsup tendsto-intros)
— real_asymp does not support root for a variable basis natively, so we need

to convert it to (powr) first.

have (λn. (exp 1 ^ n ∗ real n powr −(3/2 )) powr (1 / real n)) −−−−→ exp 1
by real-asymp

also have ?this ←→ (λx. root x (exp 1 ^ x ∗ real x powr − (3 / 2 ))) −−−−→
exp 1

by (intro filterlim-cong eventually-mono[OF eventually-gt-at-top[of 0 ]])
(auto simp: root-powr-inverse)

finally show . . . .
qed auto
finally show ?thesis

by (simp add: fps-conv-radius-def exp-minus)
qed

end
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