Strong Normalization of Moggis’s Computational Metalanguage

Christian Doczkal
Saarland University
August 16, 2018

Abstract

Handling variable binding is one of the main difficulties in formal proofs. In this context, Moggi’s computational metalanguage serves as an interesting case study. It features monadic types and a commuting conversion rule that rearranges the binding structure. Lindley and Stark have given an elegant proof of strong normalization for this calculus. The key construction in their proof is a notion of relational \(\top\)-lifting, using stacks of elimination contexts to obtain a Girard-Tait style logical relation.

I give a formalization of their proof in Isabelle/HOL-Nominal with a particular emphasis on the treatment of bound variables.

Contents

1 Introduction 1
2 The Calculus 2
3 The Reduction Relation 5
4 Stacks 7
5 Reducibility for Terms and Stacks 9
6 Properties of the Reducibility Relation 10
7 Abstraction Preserves Reducibility 13
8 Sequencing Preserves Reducibility 13
 8.1 Central lemma 16
9 Fundamental Theorem 16
 9.1 Strong normalization theorem 17

1 Introduction

This article contains a formalization of the strong normalization theorem for the \(\lambda_{ml}\)-calculus. The formalization is based on a proof by Lindley and Stark [LS05]. An informal description of the formalization can be found in [DS09]. This formalization extends the example proof of strong normalization for the simply-typed \(\lambda\)-calculus, which is included in the Isabelle distribution [Nom].
The parts of the original proof which have been left unchanged are not displayed in this document.

The next section deals with the formalization of syntax, typing, and substitution. Section 3 contains the formalization of the reduction relation. Section 4 defines stacks which are used to define the reducibility relation in Section 5. The following sections contain proofs about the reducibility relation, ending with the normalization theorem in Section 9.

2 The Calculus

atom-decl name

nominal-datatype trm =
| Var name
| App trm trm
| Lam ≪name≫ trm (Λ - - [0,120] 120)
| To trm ≪name≫ trm (- to - in - [141,0,140] 140)
| Ret trm ([-])

declare trm.inject[simp]

lemmas name-swap-bij = pt-swap-bij''[OF pt-name-inst at-name-inst]
lemmas ex-fresh = exists-fresh''[OF fin-supp]

lemma alpha'' :
| fixes x y :: name and t::trm
| assumes a: x # t
| shows [y].t = [x].([(y,x)] ∙ t)
⟨proof⟩

Even though our types do not involve binders, we still need to formalize them as nominal datatypes to obtain a permutation action. This is required to establish equivariance of the typing relation.

nominal-datatype ty =
| TBase
| TFun ty ty (infix → 200)
| T ty

Since we cannot use typed variables, we have to formalize typing contexts. Typing contexts are formalized as lists. A context is valid if no name occurs twice.

inductive valid :: (name×ty) list ⇒ bool
where
| v1[intro]: valid []
| v2[intro]: [valid Γ;x#Γ]⇒ valid ((x,σ)#Γ)

equivariance valid

lemma fresh-ty:
| fixes x :: name and τ::ty
| shows x # τ
⟨proof⟩
lemma fresh-context:
 fixes Γ :: (name×ty)list
 assumes a: x ∉ Γ
 shows ¬(∃ τ . (x,τ)∈ set Γ)
 ⟨proof⟩

inductive
 typing :: (name×ty) list⇒ trm⇒ ty⇒ bool (- |- - : [60,60,60] 60)
 where
 t1[intro]: [valid Γ; (x,τ)∈ set Γ] => Γ |- Var x : τ
 t2[intro]: [Γ |- s : τ→σ; Γ |- t : τ] => Γ |- App s t : σ
 t3[intro]: [x ∉ Γ; ((x,τ)#Γ) |- t : σ] => Γ |- Λ x . t : τ→σ
 t4[intro]: [Γ |- s : σ] => Γ |- [s] : T σ
 t5[intro]: [x ∉ (Γ,s); Γ |- s : T σ; ((x,σ)#Γ) |- t : T τ]
 => Γ |- s to x in t : T τ

equivariance typing
nominal-inductive typing
 ⟨proof⟩

Except for the explicit requirement that contexts be valid in the variable case
and the freshness requirements in t3 and t5, this typing relation is a direct
translation of the original typing relation in [LS05] to Curry-style typing.

fun
 lookup :: (name×trm) list ⇒ name ⇒ trm
 where
 lookup [] x = Var x
 | lookup ((y,e)#ϑ) x = (if x=y then e else lookup ϑ x)

lemma lookup-eqvt[eqvt]:
 fixes pi::name prm
 and ϑ::(name×trm) list
 and x::name
 shows pi · (lookup ϑ x) = lookup (pi · ϑ) (pi · x)
 ⟨proof⟩

nominal-primrec
 psubst :: (name×trm) list ⇒ trm ⇒ trm (-<-> [95,95] 205)
 where
 ϑ<Var x> = lookup ϑ x
 | ϑ<App s t> = App (ϑ<s>) (ϑ<t>)
 | x ∉ ϑ => ϑ<Λ x , s> = Λ x . (ϑ<s>)
 | ϑ<[t]> = ϑ<]<t>
 | [x ∉ ϑ ; x ∉ t] => ϑ<t> to x in s> = (ϑ<t>) to x in (ϑ<s>)
 ⟨proof⟩

lemma psubst-eqvt[eqvt]:
 fixes pi::name prm
 shows pi · (ϑ<t>) = (pi · ϑ)<(pi · t)>
 ⟨proof⟩

abbreviation
 subst :: trm ⇒ name ⇒ trm ⇒ trm (-[::=-] [200,100,100] 200)
 where
 t[x::=t'] ≡ ([x,t'])<t>
lemma subst[simp]:
shows (Var x)[y::=v] = (if \(x = y \) then \(v \) else \(Var x \))
and (App s t)[y::=v] = App (s[y::=v]) (t[y::=v])
and \(x \not\models (y,v) \implies (\Lambda x . t)[y::=v] = \Lambda x . t[y::=v] \)
and \(x \not\models (s,y,v) \implies (s to x in t)[y::=v] = s[y::=v] to x in t[y::=v] \)
and \((\{s\})[y::=v] = \{s[y::=v]\} \)

⟨proof⟩

lemma subst-rename:
assumes \(a : y \not\models t \)
shows ([(y,x)]\cdot t)[y::=v] = t[x::=v]
⟨proof⟩

lemmas subst-rename′ = subst-rename[THEN sym]

lemma forget: \(x \not\models t \implies t[x::=v] = t \)
⟨proof⟩

lemma fresh-fact:
fixes \(x :: name \)
assumes \(x \not\models v \)
shows \(x \not\models t[x::=v] \)
⟨proof⟩

lemma fresh-fact′:
fixes \(x :: name \)
assumes \(x \not\models v \)
shows \(x \not\models t[x::=v] \)
⟨proof⟩

lemma subst-lemma:
assumes \(a : x \not= y \)
and \(b : x \not\models u \)
shows \(s[x::=v][y::=u] = s[y::=u][x::=v][y::=u] \)
⟨proof⟩

lemma id-subs:
shows \(t[x::=Var x] = t \)
⟨proof⟩

In addition to the facts on simple substitution we also need some facts on parallel substitution. In particular we want to be able to extend a parallel substitution with a simple one.

lemma lookup-fresh:
fixes \(z :: name \)
assumes \(z \not\models \varnothing \)
shows \(z \not\models lookup \varnothing x \)
⟨proof⟩

lemma lookup-fresh′:
assumes \(a : z \not\models \varnothing \)
shows \(lookup \varnothing z = \text{Var } z \)
⟨proof⟩

lemma psubst-fresh-fact:
fixes \(x :: name \)
assumes $a: x \not\in t$ and $b: x \not\in \emptyset$
shows $x \not\in \emptyset < t$

⟨proof⟩

lemma $psubst-subst$:
assumes $a: x \not\in \emptyset$
shows $\emptyset < t | [x::s] = ((x,s) \not\in \emptyset) < t$
⟨proof⟩

3 The Reduction Relation

With substitution in place, we can now define the reduction relation on λ_{ml}-terms. To derive strong induction and case rules, all the rules must be vc-compatible (cf. [Urb08]). This requires some additional freshness conditions. Note that in this particular case the additional freshness conditions only serve the technical purpose of automatically deriving strong reasoning principles. To show that the version with freshness conditions defines the same relation as the one without the freshness conditions, we also state this version and prove equality of the two relations.

This requires quite some effort and is something that is certainly undesirable in nominal reasoning. Unfortunately, handling the reduction rule $r10$ which rearranges the binding structure, appeared to be impossible without going through this.

inductive std-reduction :: trm \Rightarrow trm \Rightarrow bool ($\dashv\vdash$ \sim $\left[80,80\right]$ 80)
where

std-r1[intro]: $s \prec s' \Longrightarrow App s t \prec App s' t$
| std-r2[intro]: $t \prec t' \Longrightarrow App s t \prec App s t'$
| std-r3[intro]: $App (\Lambda x . t) s \prec t [x::s]
| std-r4[intro]: $t \prec t' \Longrightarrow \Lambda x . t \prec \Lambda x . t'$
| std-r5[intro]: $x \not\in t \Longrightarrow \Lambda x . App t (Var x) \prec t$
| std-r6[intro]: $s \prec s' \Longrightarrow s \in t \prec s' \in t$
| std-r7[intro]: $t \prec t' \Longrightarrow s \in t \prec s \in t'$
| std-r8[intro]: $s \in t \Longrightarrow t [x::s]
| std-r9[intro]: $x \not\in s \Rightarrow s \in t \Intr Var x \sim s$
| std-r10[intro]: $\left[x \not\in y; x \not\in u \right] \Rightarrow (s \in t \in u) \Rightarrow s \in t \in (t \in y \in u)$
| std-r11[intro]: $s \prec s' \Longrightarrow [s] \prec [s']$

inductive reduction :: trm \Rightarrow trm \Rightarrow bool ($\dashv\vdash$ \sim $\left[80,80\right]$ 80)
where

r1[intro]: $s \to s' \Longrightarrow App s t \to App s' t$
| r2[intro]: $t \to t' \Longrightarrow App s t \to App s t'$
| r3[intro]: $x \not\in s \Longrightarrow App (\Lambda x . t) s \to t [x::s]
| r4[intro]: $t \to t' \Longrightarrow \Lambda x . t \to \Lambda x . t'$
| r5[intro]: $x \not\in t \Longrightarrow \Lambda x . App t (Var x) \to t$
| r6[intro]: $x \not\in (s,s') ; s \to s' \Longrightarrow s \in t \to s' \in t$
| r7[intro]: $x \not\in s ; t \to t' \Longrightarrow s \in t \to s \in t'$
| r8[intro]: $x \not\in s \Longrightarrow [s] \to t [x::s]$
In order to show adequacy, the extra freshness conditions in the rules r3, r6, r7, r8, r9, and r10 need to be discharged.

Lemma r3' [intro]: \[\text{App} (\Lambda x . t) s \mapsto t[x::=s] \]

Proof

**Declare r3 [rule del] **

Lemma r6' [intro]:

- **Fixes** \(s :: \text{trm}\)
- **Assumes** \(r : s \mapsto s'\)
- **Shows** \(s \mapsto x \mapsto x \mapsto t \mapsto t \mapsto t'\)

Proof

**Declare r6 [rule del] **

Lemma r7' [intro]:

- **Fixes** \(t :: \text{trm}\)
- **Assumes** \(t \mapsto t'\)
- **Shows** \(s \mapsto x \mapsto t \mapsto s \mapsto t \mapsto t'\)

Proof

**Declare r7 [rule del] **

Lemma r8' [intro]: \([s] \mapsto x \mapsto t \mapsto t[x::=s] \]

Proof

**Declare r8 [rule del] **

Lemma r9' [intro]: \(s \mapsto x \mapsto [\Var x] \mapsto s\)

Proof

**Declare r9 [rule del] **

While discharging these freshness conditions is easy for rules involving only one binder it unfortunately becomes quite tedious for the assoc rule r10. This is due to the complex binding structure of this rule which includes four binding occurrences of two different names. Furthermore, the binding structure changes from the left to the right: On the left hand side, \(x\) is only bound in \(t\), whereas on the right hand side the scope of \(x\) extends over the whole term \(t\) to \(y\) in \(u\).

Lemma r10' [intro]:

- **Assumes** \(xf : x \notin y \land x \notin u\)
- **Shows** \((s \mapsto x \mapsto t \mapsto y \mapsto u) \mapsto s \mapsto x \mapsto (t \mapsto y \mapsto u)\)

Proof

**Declare r10 [rule del] **

Since now all the introduction rules of the vc-compatible reduction relation exactly match their standard counterparts, both directions of the adequacy proof are trivial inductions.

Theorem adequacy: \(s \mapsto t = s \Rightarrow t\)
Next we show that the reduction relation preserves freshness and is in turn preserved under substitution.

lemma reduction-fresh:

fixes $x :: \text{name}$

assumes $r : t \mapsto t'$

shows $x \not\in t \implies x \not\in t'$

proof

lemma reduction-subst:

assumes $a : t \mapsto t'$

shows $t[x::=v] \mapsto t'[x::=v]$

proof

Following [Nom], we use an inductive variant of strong normalization, as it allows for inductive proofs on terms being strongly normalizing, without establishing that the reduction relation is finitely branching.

inductive

$SN :: \text{trm} \Rightarrow \text{bool}$

where

SN-intro: $(\forall t'. t \mapsto t' \implies SN t') \implies SN t$

lemma SN-preserved[intro]:

assumes $a : SN t \quad t \mapsto t'$

shows $SN t'$

proof

definition $NORMAL :: \text{trm} \Rightarrow \text{bool}$

where

$NORMAL t \equiv \neg(\exists t'. t \mapsto t')$

lemma normal-var: $NORMAL (\text{Var} x)$

proof

lemma normal-implies-sn : $NORMAL s \Rightarrow SN s$

proof

4 Stacks

As explained in [LS05], the monadic type structure of the λ_{ml}-calculus does not lend itself to an easy definition of a logical relation along the type structure of the calculus. Therefore, we need to introduce stacks as an auxiliary notion to handle the monadic type constructor T. Stacks can be thought of as lists of term abstractions $[x], t$. The notation for stacks is chosen with this resemblance in mind.

nominal-datatype stack $= \text{Id} \mid St <\text{name}> \text{trm} \text{ stack } ([\cdot] \gg)$

lemma stack-exhaust :

fixes $e :: \text{\textsc{a}:fs-name}$

shows $k = \text{Id} \lor (\exists y n l . y \not\in l \land y \not\in e \land k = [y]n \gg l)$

Together with the stack datatype, we introduce the notion of dismantling a term onto a stack. Unfortunately, the dismantling operation has no easy primitive recursive formulation. The Nominal package, however, only provides a recursion combinator for primitive recursion. This means that for dismantling one has to prove pattern completeness, right uniqueness, and termination explicitly.

function
\[
disableproof
dismantle :: \text{trm} \Rightarrow \text{stack} \Rightarrow \text{trm}\
\]
\[
\text{where}\
t \star \text{Id} = t |\|
x \# (K, t) \Rightarrow t \star ([x]s \gg K) = (t \text{ to } x \text{ in } s) \star K\
\]
\enableproof

termination dismantled
\enableproof

Like all our constructions, dismantling is equivariant. Also, freshness can be pushed over dismantling, and the freshness requirement in the second defining equation is not needed.

lemma dismantling-eqvt[eqvt]:
\[
\text{fixes } \pi :: (\text{name} \times \text{name}) \text{ list}\
\text{shows } \pi \cdot (t \star K) = (\pi \cdot t) \star (\pi \cdot K)
\]
\enableproof

lemma dismantling-fresh[iff]:
\[
\text{fixes } x :: \text{name}\
\text{shows } (x \# (t \star k)) = (x \# t \land x \# k)
\]
\enableproof

lemma dismantling-simp[simp]:
\[
s \star [y]n \gg L = (s \text{ to } y \text{ in } n) \star L
\]
\enableproof

We also need a notion of reduction on stacks. This reduction relation allows us to define strong normalization not only for terms but also for stacks and is needed to prove the properties of the logical relation later on.

definition stack-reduction :: stack \Rightarrow stack \Rightarrow \text{bool} (- \mapsto -)
\[
\text{where}\
k \mapsto k' \equiv \forall (t :: \text{trm}) . (t \star k) \mapsto (t \star k')
\]

lemma stack-reduction-fresh:
\[
\text{fixes } k :: \text{stack} \text{ and } x :: \text{name}\
\text{assumes } r : k \mapsto k' \text{ and } f : x \# k
\text{shows } x \# k'\]
\enableproof

8
lemma dismantle-red[intro]:
 fixes m :: trm
 assumes r: m ↦→ m'
 shows m * k ↦→ m' * k
⟨proof⟩

Next we define a substitution operation for stacks. The main purpose of this is to distribute substitution over dismantling.

nominal-primrec
ssubst :: name ⇒ trm ⇒ stack ⇒ stack
where
 ssubst x v Id = Id
 | y # (k,x,v) ⇒ ssubst x v ((y]|n]|k) = [y]|n|x:=v]|k)(ssubst x v k)
⟨proof⟩

lemma ssubst-fresh:
 fixes y :: name
 assumes y # (x,v,k)
 shows y # ssubst x v k
⟨proof⟩

lemma ssubst-forget:
 fixes x :: name
 assumes x # k
 shows ssubst x v k = k
⟨proof⟩

lemma subst-dismantle[simp]: (t * k)[x ::= v] = (t[x:=v]) * ssubst x v k
⟨proof⟩

5 Reducibility for Terms and Stacks

Following [Nom], we formalize the logical relation as a function RED of type ty ⇒ trm set for the term part and accordingly SRED of type ty ⇒ stack set for the stack part of the logical relation.

lemma ty-exhaust: ty = TBase ∨ (∃ σ . ty = σ → τ) ∨ (∃ σ . ty = T σ)
⟨proof⟩

function RED :: ty ⇒ trm set
and SRED :: ty ⇒ stack set
where
 RED (TBase) = { t . SN(t) }
 | RED (τ→σ) = { t . ∀ u ∈ RED τ . (App t u) ∈ RED σ }
 | RED (T σ) = { t . ∀ k ∈ SRED σ . SN(t * k) }
 | SRED τ = { k . ∀ t ∈ RED τ . SN ([t] * k) }
⟨proof⟩

This is the second non-primitive function in the formalization. Since types do not involve binders, pattern completeness and right uniqueness are mostly trivial. The termination argument is not as simple as for the dismantling function, because the definition of SRED τ involves a recursive call to RED τ without reducing the size of τ.
nominal-primrec
\[tsize :: ty \Rightarrow \text{nat} \]
where
\[tsize \ TBase = 1 \]
\[tsize (\sigma \rightarrow \tau) = 1 + tsize \sigma + tsize \tau \]
\[tsize (T \tau) = 1 + tsize \tau \]
(proof)

In the termination argument below, \textit{Inl} \ \tau \ corresponds to the call \textit{RED} \ \tau, whereas \textit{Inr} \ \tau \ corresponds to \textit{SRED} \ \tau

termination \textit{RED}
(proof)

6 Properties of the Reducibility Relation

After defining the logical relations we need to prove that the relation implies strong normalization, is preserved under reduction, and satisfies the head expansion property.

definition \text{NEUT} :: \text{trm} \Rightarrow \text{bool}
where
\[\text{NEUT} \ t \equiv (\exists a. \ t = \text{Var} \ a) \lor (\exists t1 \ t2. \ t = \text{App} \ t1 \ t2) \]
definition \text{CR1} :: \text{ty} \Rightarrow \text{bool}
where
\[\text{CR1} \ \tau \equiv \forall t. \ (t \in \text{RED} \ \tau \implies \text{SN} \ t) \]
definition \text{CR2} :: \text{ty} \Rightarrow \text{bool}
where
\[\text{CR2} \ \tau \equiv \forall t \ t'. \ (t \in \text{RED} \ \tau \land t \mapsto t') \implies t' \in \text{RED} \ \tau \]
definition \text{CR3-RED} :: \text{trm} \Rightarrow \text{ty} \Rightarrow \text{bool}
where
\[\text{CR3-RED} \ t \ \tau \equiv \forall t'. \ t \mapsto t' \implies t' \in \text{RED} \ \tau \]
definition \text{CR3} :: \text{ty} \Rightarrow \text{bool}
where
\[\text{CR3} \ \tau \equiv \forall t. \ (\text{NEUT} \ t \land \text{CR3-RED} \ t \ \tau) \implies t \in \text{RED} \ \tau \]
definition \text{CR4} :: \text{ty} \Rightarrow \text{bool}
where
\[\text{CR4} \ \tau \equiv \forall t. \ (\text{NEUT} \ t \land \text{NORMAL} \ t) \implies t \in \text{RED} \ \tau \]
lemma \text{CR3-implies-CR4}[intro]: \text{CR3} \ \tau \implies \text{CR4} \ \tau
(proof)

inductive
\[\text{FST} :: \text{trm} \Rightarrow \text{trm} \Rightarrow \text{bool} \quad (\mapsto \mapsto [80,80] 80) \]
where
\[\text{fst}[\text{intro}] : (\text{App} \ t \ s) \mapsto t \]
lemma \text{SN-of-FST-of-App}:
asumes \ a: \text{SN} \ (\text{App} \ t \ s)
shows \text{SN} \ t

10
The lemma above is a simplified version of the one used in [Nom]. Since we have generalized our notion of reduction from terms to stacks, we can also generalize the notion of strong normalization. The new induction principle will be used to prove the T case of the properties of the reducibility relation.

inductive

$SSN :: stack \Rightarrow bool$

where

SSN-intro: $(\forall k'. k \mapsto k' \Rightarrow SSN k') \Rightarrow SSN k$

Furthermore, the approach for deriving strong normalization of subterms from above can be generalized to terms of the form $t \star k$. In contrast to the case of applications, $t \star k$ does not uniquely determine t and k. Thus, the extraction is a proper relation in this case.

inductive

$SND-DIS :: trm \Rightarrow stack \Rightarrow bool$\((\cdot \triangleright \cdot) \)

where

snd-dis[intro]: $t \star k \triangleright k$

lemma $SN-SSN$:

assumes $a: SN (t \star k)$

shows $SSN k$

⟨proof⟩

To prove CR1-3, the authors of [LS05] use a case distinction on the reducts of $t \star k$, where t is a neutral term and therefore no interaction occurs between t and k.

$$
\begin{align*}
\frac{t \star k \mapsto r \quad \bigwedge t'. [t \mapsto t'; r = t' \star k]}{P} & \quad (NEUT \ t) \quad \bigwedge k'. [k \mapsto k'; r = t \star k'] \mapsto P
\end{align*}
$$

We strive for a proof of this rule by structural induction on k. The general idea of the case where $k = [y|n]\gg l$ is to move the first stack frame into the term t and then apply the induction hypothesis as a case rule. Unfortunately, this term is no longer neutral, so, for the induction to go through, we need to generalize the claim to also include the possible interactions of non-neutral terms and stacks.

lemma $dismantle$-$cases$:

fixes $t :: trm$

assumes $r: t \star k \mapsto r$

and T: $\bigwedge t'. [t \mapsto t'; r = t' \star k] \mapsto P$

and K: $\bigwedge k'. [k \mapsto k'; r = t \star k'] \mapsto P$

and B: $\bigwedge s y n l . [t = [s]; k = [y|n]\gg l; r = (n[y::=s]) \star l] \mapsto P$

and A: $\bigwedge u x v y n l . [x \triangleright y; x \triangleright n; t = u to x in v; k = [y|n]\gg l; r = (u to x in (v to y in n)) \star l] \mapsto P$

shows P

⟨proof⟩

Now that we have established the general claim, we can restrict t to neutral terms only and drop the cases dealing with possible interactions.
Let t be neutral such that $t' \in RED_{T_\sigma}$ whenever $t \mapsto t'$. We have to show that $(t \star k)$ is SN for each $k \in SRED_\sigma$. First, we have that $[x] \star k$ is SN, as $x \in RED_\sigma$ by the induction hypothesis. Hence k itself is SN, and we can work by induction on $\max(k)$. Application $t \star k$ may reduce as follows:

- $t' \star k$, where $t \mapsto t'$, which is SN as $k \in SRED_\sigma$ and $t' \in RED_{T_\sigma}$.
- $t \star k'$, where $k \mapsto k'$. For any $s \in RED_\sigma$, $[s] \star k$ is SN as $k \in SRED_\sigma$; and $[s] \star k \mapsto [s] \star k'$, so $[s] \star k'$ is also SN. From this we have $k' \in SRED_\sigma$ with $\max(k') < \max(k)$, so by induction hypothesis $t \star k'$ is SN.

There are no other possibilities as t is neutral. Hence $t \star k$ is strongly normalizing for every $k \in SRED_\sigma$, and so $t \in RED_{T_\sigma}$ as required.

Figure 1: Proof of the case T_σ subcase CR3 as in [LS05]

Lemma dismantle-cases\([\text{consumes } 2, \text{case-names } T K]\):

- **fixes** $m :: trm$
- **assumes** $r : t \star k \mapsto r$
- **and** $\text{NEUT } t$
- **and** $\bigwedge t'. \left[t \mapsto t'; r = t' \star k \right] \implies P$
- **and** $\bigwedge k'. \left[k \mapsto k'; r = t \star k' \right] \implies P$
- **shows** P

(proof)

Lemma red-Ret:

- **fixes** $t :: trm$
- **assumes** $[s] \mapsto t$
- **shows** $\exists s'. t = [s] \land s \mapsto s'$

(proof)

Lemma SN-Ret: $SN u \implies SN \ [u]$

(proof)

All the properties of reducibility are shown simultaneously by induction on the type. Lindley and Stark [LS05] only spell out the cases dealing with the monadic type constructor T. We do the same by reusing the proofs from [Nom] for the other cases. To shorten the presentation, these proofs are omitted

Lemma RED-props:

- **shows** $\text{CR1 } \tau \text{ and CR2 } \tau \text{ and CR3 } \tau$

(proof) (proof) (proof)

The last case above shows that, once all the reasoning principles have been established, some proofs have a formalization which is amazingly close to the informal version. For a direct comparison, the informal proof is presented in Figure 1.

Now that we have established the properties of the reducibility relation, we need to show that reducibility is preserved by the various term constructors. The only nontrivial cases are abstraction and sequencing.
7 Abstraction Preserves Reducibility

Once again we could reuse the proofs from [Nom]. The proof uses the double-SN rule and the lemma red-Lam below. Unfortunately, this time the proofs are not fully identical to the proofs in [Nom] because we consider $\beta\eta$-reduction rather than β-reduction only. However, the differences are only minor.

Lemma double-SN[consumes 2]:
> assumes a: SN a
> and b: SN b
> and c: $\lambda(x::trm) (z::trm)$.
> $[\forall y. x \mapsto y \Rightarrow P y z; \forall u. z \mapsto u \Rightarrow P x u] \Rightarrow P x z$
> shows $P a b$
> ⟨proof⟩

Lemma red-Lam:
> assumes a: $\Lambda x . t \mapsto r$
> shows $(\exists t'. r = \Lambda x . t' \land t \mapsto t') \lor (t = App r (Var x) \land x \notin r')$
> ⟨proof⟩

Lemma abs-RED:
> assumes asm: $\forall s \in RED \tau . t[x::s] \in RED \sigma$
> shows $\Lambda x . t \in RED (\tau \mapsto \sigma)$

8 Sequencing Preserves Reducibility

This section corresponds to the main part of the paper being formalized and as such deserves special attention. In the lambda case one has to formalize doing induction on $\max(s) + \max(t)$ for two strongly normalizing terms s and t (cf. [GTL89, Section 6.3]). Above, this was done through a double-SN rule. The central Lemma 7 of Lindley and Stark’s paper uses an even more complicated induction scheme. They assume terms p and n as well as a stack K such that SN p and SN $(n[x::=p] \star K)$. The induction is then done on $|K| + \max(n \star K) + \max(p)$. See Figure 2 in for details.

Since we have settled for a different characterization of strong normalization, we have to derive an induction principle similar in spirit to the double-SN rule. Furthermore, it turns out that it is not necessary to formalize the fact that stack reductions do not increase the length of the stack.1 Doing induction on the sum above, this is necessary to handle the case of a reduction occurring in K. We differ from [LS05] and establish an induction principle which to some extent resembles the lexicographic order on

$$(SN, \mapsto) \times (SN, \mapsto) \times (\mathbb{N}, >).$$

Lemma triple-induct[consumes 2]:
> assumes a: SN (p)

1This possibility was only discovered after having formalized $K \mapsto K' \Rightarrow |K| \geq |K'|$. The proof of this seemingly simple fact was about 90 lines of Isar code.
Lemma 8.1. (Lemma 7) Let \(p, n \) be terms and \(K \) a stack such that \(SN(p) \) and \(SN(n[x := p] \star K) \). Then \(SN(([p] \to x \ in \ n) \star K) \)

Proof. We show by induction on \(|K| + max(n \star K) + max(p)\) that the reducts of \(([p] \to x \ in \ n) \star K\) are all strongly normalizing. The interesting reductions are as follows:

- \(T.\beta \) giving \(n[x := p] \star K \) which is strongly normalizing by hypothesis.
- \(T.\eta \) when \(n = [x] \) giving \([p] \star K\). But \([p] \star K = n[x := p] \star K\) which is again strongly normalizing by hypothesis.
- \(T.assoc \) in the case where \(K = [y|m \gg K'] \) with \(x \notin fv(m)\); giving the reduct \(([p] \to x \ in \ (n \to y \ in \ m)) \star K\). We aim to apply the induction hypothesis with \(K' \) and \((n \to y \ in \ m)\) for \(K \) and \(n \) respectively. Now
 \[
 (n \to y \ in \ m)[x := p] \star K' = (n[x := p] \to y \ in \ m) \star K' = n[x := p] \star K
 \]
 which is strongly normalizing by induction hypothesis. Also
 \[
 |K'| + max((n \to y \ in \ m) \star K') + max(p) < |K| + max(n \star K) + max(p)
 \]
as \(|K'| < |K| \) and \((n \to y \ in \ m) \star K' = n \star K\). This last equation explains the use of \(max(n \star K)\); it remains fixed under \(T.assoc \) unlike \(max(K) \) and \(max(n)\). Applying the induction hypothesis gives \(SN(([p] \to x \ in \ (n \to y \ in \ m)) \star K) \) as required.

Other reductions are confined to \(K, n \) or \(p \) and can be treated by the induction hypothesis, decreasing either \(max(n \star K) \) or \(max(p) \).

Figure 2: Proof of Lemma 7 as in [LS05]
and \(b: SN (q) \)
and \(hyp: \bigwedge_{(p::trm)} (q::trm) (k::stack) .\)
\[
\bigwedge p'. p \mapsto p' \implies P p' q k ;
\bigwedge q' k . q \mapsto q' \implies P p q' k ;
\bigwedge k'. |k'| < |k| \implies P p q k' \implies P p q k
\]
shows \(P p q k \)
(proof)

Here we strengthen the case rule for terms of the form \(t * k \mapsto r \). The freshness requirements on \(x,y, \) and \(z \) correspond to those for the rule \textit{reduction.strong-cases}, the strong inversion principle for the reduction relation.

lemma \textit{dismantle-strong-cases}:

\begin{itemize}
 \item \textbf{fixes} \(t :: trm \)
 \item \textbf{assumes} \(r: t * k \mapsto r \)
 \item \textbf{and} \(f: y \not\in (t,k,r) x \not\in (z,t,k,r) z \not\in (t,k,r) \)
 \item \textbf{and} \(T: \bigwedge t'. [t \mapsto t' ; r = t' * k] \implies P \)
 \item \textbf{and} \(K: \bigwedge k'. [k \mapsto k' ; r = t * k'] \implies P \)
 \item \textbf{and} \(B: \bigwedge s n l . [t = [s] ; k = [y] n \gg l ; r = (n[y::=s]) * l] \implies P \)
\end{itemize}

\(\text{shows} \ P \)
(proof)

The lemma in Figure 2 assumes \(SN (n[x::=p] * K) \) but the actual induction in done on \(SN (n * K) \). The stronger assumption \(SN (n[x::=p] * K) \) is needed to handle the \(\beta \) and \(\eta \) cases.

lemma \textit{sn-forget}:

\begin{itemize}
 \item \textbf{assumes} \(a: SN (t[x::=v]) \)
 \item \textbf{shows} \(SN t \)
\end{itemize}
(proof)

lemma \textit{sn-forget'}:

\begin{itemize}
 \item \textbf{assumes} \(sn: SN (t[x::=p] * k) \)
 \item \textbf{and} \(x: x \not\in k \)
 \item \textbf{shows} \(SN (t * k) \)
\end{itemize}
(proof)

abbreviation

\begin{itemize}
 \item \textit{redtrans}:: trm \Rightarrow trm \Rightarrow bool (- \mapsto^* -)
 \item \textbf{where} \textit{redtrans} \equiv \textit{reduction}"**
\end{itemize}

To be able to handle the case where \(p \) makes a step, we need to establish \(p \mapsto p' \implies m[x::=p] \mapsto^* m[x::=p'] \) as well as the fact that strong normalization is preserved for an arbitrary number of reduction steps. The first claim involves a number of simple transitivity lemmas. Here we can benefit from having removed the freshness conditions from the reduction relation as this allows all the cases to be proven automatically. Similarly, in the \textit{red-subst} lemma, only those cases where substitution is pushed to two subterms needs to be proven explicitly.

lemma \textit{red-trans}:

\begin{itemize}
 \item \textbf{shows} \(\textit{rl-trans}: s \mapsto^* s' \implies App s t \mapsto^* App s' t \)
\end{itemize

and \(r_2\)-trans: \(t \mapsto t' \Rightarrow \text{App } s \ t \mapsto \text{App } s \ t'\)

and \(r_4\)-trans: \(t \mapsto t' \Rightarrow \Lambda x . t \mapsto \Lambda x . t'\)

and \(r_6\)-trans: \(s \mapsto s' \Rightarrow s \to x \in t \mapsto s' \to x \in t\)

and \(r_7\)-trans: \(s \mapsto s' \Rightarrow [s] \mapsto [s']\)

\(\langle\text{proof}\rangle\)

\textbf{Lemma red-subst}: \(p \mapsto p' \Rightarrow (m[x::=p]) \mapsto (m[x::=p'])\)

\(\langle\text{proof}\rangle\)

\textbf{Lemma SN-trans}: \([p \mapsto p'] ; \text{SN } p \] \Rightarrow \text{SN } p'

\(\langle\text{proof}\rangle\)

\section{8.1 Central lemma}

Now we have everything in place we need to tackle the central “Lemma 7” of \([LS05]\) (cf. Figure 2). The proof is quite long, but for the most part, the reasoning is that of \([LS05]\).

\textbf{Lemma to-RED-aux}:

\textit{Assumes} \(p : \text{SN } p\)

\textit{And} \(x : x \notin p\) \(x \notin k\)

\textit{And} \(npk : \text{SN } (n[x::=p] \ast k)\)

\textit{Shows} \(\text{SN } (([p] \to x \in n) \ast k)\)

\(\langle\text{proof}\rangle\)

Having established the claim above, we use it show that to-bindings preserve reducibility.

\textbf{Lemma to-RED}:

\textit{Assumes} \(s : s \in \text{RED } (T \sigma)\)

\textit{And} \(t : \forall p \in \text{RED } \sigma . \ t[x::=p] \in \text{RED } (T \tau)\)

\textit{Shows} \(s \to x \in t \in \text{RED } (T \tau)\)

\(\langle\text{proof}\rangle\)

\section{9 Fundamental Theorem}

The remainder of this section follows \([Nom]\) very closely. We first establish that all well typed terms are reducible if we substitute reducible terms for the free variables.

\textbf{Abbreviation}

\(\text{mapsto :: } (\text{name }\times \text{trm}) \ \text{list } \Rightarrow \text{name } \Rightarrow \text{trm } \Rightarrow \text{bool } (\text{- maps - to - } [55,55,55] \ 55)\)

\textit{Where}

\(\vartheta \ \text{maps } x \text{ to } e \equiv (\text{lookup } \vartheta \ x) = e\)

\textbf{Abbreviation}

\(\text{closes :: } (\text{name }\times \text{trm}) \ \text{list } \Rightarrow (\text{name }\times \text{ty}) \ \text{list } \Rightarrow \text{bool } (\text{- closes - } [55,55] \ 55)\)

\textit{Where}

\(\vartheta \ \text{closes } \Gamma \equiv \forall x \ \tau . \ ((x,\tau) \in \text{set } \Gamma \longrightarrow (\exists t. \ \vartheta \ \text{maps } x \text{ to } t \land t \in \text{RED } \tau))\)

\textbf{Theorem fundamental-theorem}:

\textit{Assumes} \(a : \Gamma \vdash t : \tau\) \textit{And} \(b : \vartheta \ \text{closes } \Gamma\)

\textit{Shows} \(\vartheta <t> \in \text{RED } \tau\)

\(\langle\text{proof}\rangle\)

\(\langle\text{proof}\rangle\)
The final result then follows using the identity substitution, which is Γ-closing since all variables are reducible at any type.

```ml
fun id :: (name\times ty) list \Rightarrow (name\times trm) list
where
  id [] = []
  | id ((x,\tau)#\Gamma) = (x, Var x)#(id \Gamma)
```

lemma id-maps:
- shows $(id \Gamma)$ maps a to $(\text{Var } a)$
 ⟨proof⟩

lemma id-fresh:
- fixes $x::name$
- assumes $x \notin \Gamma$
- shows $x \notin (id \Gamma)$
 ⟨proof⟩

lemma id-apply:
- shows $(id \Gamma)<t> = t$
 ⟨proof⟩

lemma id-closes:
- shows $(id \Gamma)$ closes Γ
 ⟨proof⟩

9.1 Strong normalization theorem

lemma typing-implies-RED:
- assumes $a: \Gamma \vdash t : \tau$
- shows $t \in \text{RED } \tau$
 ⟨proof⟩

theorem strong-normalization:
- assumes $a: \Gamma \vdash t : \tau$
- shows $SN(t)$
 ⟨proof⟩

This finishes our formalization effort. This article is generated from the Isabelle theory file, which consists of roughly 1500 lines of proof code. The reader is invited to replay some of the more technical proofs using the theory file provided.

Acknowledgments

I thank Christian Urban, the Nominal Methods group, and the members of the Isabelle mailing list for their helpful answers to my questions.

References

[DS09] Christian Doczkal and Jan Schwinghammer. Formalizing a Strong Normalization proof for Moggi’s Computational Metalanguage: A Case Study in

