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Abstract

Handling variable binding is one of the main difficulties in formal proofs. In this
context, Moggi’s computational metalanguage serves as an interesting case study. It
features monadic types and a commuting conversion rule that rearranges the binding
structure. Lindley and Stark have given an elegant proof of strong normalization for
this calculus. The key construction in their proof is a notion of relational >>-lifting,
using stacks of elimination contexts to obtain a Girard-Tait style logical relation.

I give a formalization of their proof in Isabelle/HOL-Nominal with a particular
emphasis on the treatment of bound variables.
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1 Introduction

This article contains a formalization of the strong normalization theorem for
the λml-calculus. The formalization is based on a proof by Lindley and Stark
[LS05]. An informal description of the formalization can be found in [DS09].
This formalization extends the example proof of strong normalization for the
simply-typed λ-calculus, which is included in the Isabelle distribution [Nom].
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The parts of the original proof which have been left unchanged are not dis-
played in this document.
The next section deals with the formalization of syntax, typing, and substitu-
tion. Section 3 contains the formalization of the reduction relation. Section 4
defines stacks which are used to define the reducibility relation in Section 5.
The following sections contain proofs about the reducibility relation, ending
with the normalization theorem in Section 9.

2 The Calculus
atom-decl name

nominal-datatype trm =
Var name

| App trm trm
| Lam «name»trm (‹Λ - . -› [0 ,120 ] 120 )
| To trm «name»trm (‹- to - in -› [141 ,0 ,140 ] 140 )
| Ret trm (‹[-]›)

declare trm.inject[simp]
lemmas name-swap-bij = pt-swap-bij ′′[OF pt-name-inst at-name-inst]
lemmas ex-fresh = exists-fresh ′[OF fin-supp]

lemma alpha ′′ :
fixes x y :: name and t::trm
assumes a: x ] t
shows [y].t = [x].([(y,x)] · t)

proof −
from a have aux: y ] [(y, x)] · t

by (subst fresh-bij[THEN sym, of - - [(x,y)]])
(auto simp add: perm-swap calc-atm)

thus ?thesis
by(auto simp add: alpha perm-swap name-swap-bij fresh-bij)

qed

Even though our types do not involve binders, we still need to formalize them
as nominal datatypes to obtain a permutation action. This is required to
establish equivariance of the typing relation.
nominal-datatype ty =

TBase
| TFun ty ty (infix ‹→› 200 )
| T ty

Since we cannot use typed variables, we have to formalize typing contexts.
Typing contexts are formalized as lists. A context is valid if no name occurs
twice.
inductive

valid :: (name×ty) list ⇒ bool
where

v1 [intro]: valid []
| v2 [intro]: [[valid Γ;x]Γ]]=⇒ valid ((x,σ)#Γ)
equivariance valid
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lemma fresh-ty:
fixes x :: name and τ ::ty
shows x ] τ

by (induct τ rule: ty.induct) (auto)

lemma fresh-context:
fixes Γ :: (name×ty)list
assumes a: x ] Γ
shows ¬(∃ τ . (x,τ)∈set Γ)

using a
by (induct Γ) (auto simp add: fresh-prod fresh-list-cons fresh-atm)

inductive
typing :: (name×ty) list⇒trm⇒ty⇒bool (‹- ` - : -› [60 ,60 ,60 ] 60 )

where
t1 [intro]: [[valid Γ; (x,τ)∈set Γ]] =⇒ Γ ` Var x : τ

| t2 [intro]: [[Γ ` s : τ→σ; Γ ` t : τ ]] =⇒ Γ ` App s t : σ
| t3 [intro]: [[x ] Γ; ((x,τ)#Γ) ` t : σ]] =⇒ Γ ` Λ x . t : τ→σ
| t4 [intro]: [[ Γ ` s : σ ]] =⇒ Γ ` [s] : T σ
| t5 [intro]: [[x ] (Γ,s); Γ ` s : T σ ; ((x,σ)#Γ) ` t : T τ ]]

=⇒ Γ ` s to x in t : T τ
equivariance typing
nominal-inductive typing

by(simp-all add: abs-fresh fresh-ty)

Except for the explicit requirement that contexts be valid in the variable case
and the freshness requirements in t3 and t5, this typing relation is a direct
translation of the original typing relation in [LS05] to Curry-style typing.
fun

lookup :: (name×trm) list ⇒ name ⇒ trm
where

lookup [] x = Var x
| lookup ((y,e)#ϑ) x = (if x=y then e else lookup ϑ x)

lemma lookup-eqvt[eqvt]:
fixes pi::name prm
and ϑ::(name×trm) list
and x::name
shows pi · (lookup ϑ x) = lookup (pi · ϑ) (pi · x)

by (induct ϑ) (auto simp add: eqvts)

nominal-primrec
psubst :: (name×trm) list ⇒ trm ⇒ trm (‹-<->› [95 ,95 ] 205 )

where
ϑ<Var x> = lookup ϑ x

| ϑ<App s t> = App (ϑ<s>) (ϑ<t>)
| x ] ϑ =⇒ ϑ<Λ x .s> = Λ x . (ϑ<s>)
| ϑ<[t]> = [ϑ<t>]
| [[ x ] ϑ ; x ] t ]] =⇒ ϑ<t to x in s> = (ϑ<t>) to x in (ϑ<s>)

by(finite-guess+ , (simp add: abs-fresh)+ , fresh-guess+)

lemma psubst-eqvt[eqvt]:
fixes pi::name prm
shows pi · (ϑ<t>) = (pi · ϑ)<(pi · t)>
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by(nominal-induct t avoiding: ϑ rule:trm.strong-induct)
(auto simp add: eqvts fresh-bij)

abbreviation
subst :: trm ⇒ name ⇒ trm ⇒ trm (‹-[-::=-]› [200 ,100 ,100 ] 200 )

where
t[x::=t ′] ≡ ([(x,t ′)])<t>

lemma subst[simp]:
shows (Var x)[y::=v] = (if x = y then v else Var x)

and (App s t)[y::=v] = App (s[y::=v]) (t[y::=v])
and x ] (y,v) =⇒ (Λ x . t)[y::=v] = Λ x .t[y::=v]
and x ] (s,y,v) =⇒ (s to x in t)[y::=v] = s[y::=v] to x in t[y::=v]
and ([s])[y::=v] = [s[y::=v]]

by(simp-all add: fresh-list-cons fresh-list-nil)

lemma subst-rename:
assumes a: y ] t
shows ([(y,x)]·t)[y::=v] = t[x::=v]

using a
by(nominal-induct t avoiding: x y v rule: trm.strong-induct)

(auto simp add: calc-atm fresh-atm abs-fresh fresh-prod fresh-aux)
lemmas subst-rename ′ = subst-rename[THEN sym]

lemma forget: x ] t =⇒ t[x::=v] = t
by(nominal-induct t avoiding: x v rule: trm.strong-induct)

(auto simp add: abs-fresh fresh-atm)

lemma fresh-fact:
fixes x::name
assumes x: x ] v x ] t
shows x ] t[y::=v]

using x
by(nominal-induct t avoiding: x y v rule: trm.strong-induct)

(auto simp add: abs-fresh fresh-atm)

lemma fresh-fact ′:
fixes x::name
assumes x: x ] v
shows x ] t[x::=v]

using x
by(nominal-induct t avoiding: x v rule: trm.strong-induct)

(auto simp add: abs-fresh fresh-atm)

lemma subst-lemma:
assumes a: x 6=y
and b: x ] u
shows s[x::=v][y::=u] = s[y::=u][x::=v[y::=u]]

using a b
by(nominal-induct s avoiding: x y u v rule: trm.strong-induct)

(auto simp add: fresh-fact forget)

lemma id-subs:
shows t[x::=Var x] = t

by(nominal-induct t avoiding: x rule:trm.strong-induct) auto
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In addition to the facts on simple substitution we also need some facts on
parallel substitution. In particular we want to be able to extend a parallel
substitution with a simple one.
lemma lookup-fresh:

fixes z::name
assumes z]ϑ z]x
shows z] lookup ϑ x

using assms
by(induct rule: lookup.induct)
(auto simp add: fresh-list-cons)

lemma lookup-fresh ′:
assumes a: z]ϑ
shows lookup ϑ z = Var z

using a
by (induct rule: lookup.induct)

(auto simp add: fresh-list-cons fresh-prod fresh-atm)

lemma psubst-fresh-fact:
fixes x :: name
assumes a: x ] t and b: x ] ϑ
shows x ] ϑ<t>

using a b
by(nominal-induct t avoiding: ϑ x rule:trm.strong-induct)

(auto simp add: lookup-fresh abs-fresh)

lemma psubst-subst:
assumes a: x ] ϑ
shows ϑ<t>[x::=s] = ((x,s)#ϑ)<t>
using a

by(nominal-induct t avoiding: ϑ x s rule: trm.strong-induct)
(auto simp add: fresh-list-cons fresh-atm forget

lookup-fresh lookup-fresh ′ fresh-prod psubst-fresh-fact)

3 The Reduction Relation

With substitution in place, we can now define the reduction relation on λml-
terms. To derive strong induction and case rules, all the rules must be vc-
compatible (cf. [Urb08]). This requires some additional freshness conditions.
Note that in this particular case the additional freshness conditions only serve
the technical purpose of automatically deriving strong reasoning principles.
To show that the version with freshness conditions defines the same relation
as the one without the freshness conditions, we also state this version and
prove equality of the two relations.
This requires quite some effort and is something that is certainly undesirable
in nominal reasoning. Unfortunately, handling the reduction rule r10 which
rearranges the binding structure, appeared to be impossible without going
through this.
inductive std-reduction :: trm ⇒ trm ⇒ bool (‹-  -› [80 ,80 ] 80 )
where

std-r1 [intro!]:s  s ′ =⇒ App s t  App s ′ t
| std-r2 [intro!]:t  t ′ =⇒ App s t  App s t ′
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| std-r3 [intro!]:App (Λ x . t) s  t[x::=s]

| std-r4 [intro!]:t  t ′ =⇒ Λ x . t  Λ x . t ′

| std-r5 [intro!]:x ] t =⇒ Λ x . App t (Var x)  t

| std-r6 [intro!]:[[ s  s ′ ]] =⇒ s to x in t  s ′ to x in t
| std-r7 [intro!]:[[ t  t ′ ]] =⇒ s to x in t  s to x in t ′

| std-r8 [intro!]:[s] to x in t  t[x::=s]
| std-r9 [intro!]:x ] s =⇒ s to x in [Var x]  s
| std-r10 [intro!]: [[ x ] y; x ] u]]

=⇒ (s to x in t) to y in u  s to x in (t to y in u)
| std-r11 [intro!]: s  s ′ =⇒ [s]  [s ′]

inductive
reduction :: trm ⇒ trm ⇒ bool (‹- 7→ -› [80 ,80 ] 80 )

where
r1 [intro!]:s 7→ s ′ =⇒ App s t 7→ App s ′ t

| r2 [intro!]:t 7→ t ′ =⇒ App s t 7→ App s t ′

| r3 [intro!]:x ] s =⇒ App (Λ x . t) s 7→ t[x::=s]

| r4 [intro!]:t 7→ t ′ =⇒ Λ x . t 7→ Λ x . t ′

| r5 [intro!]:x ] t =⇒ Λ x . App t (Var x) 7→ t

| r6 [intro!]:[[ x ] (s,s ′) ; s 7→ s ′ ]] =⇒ s to x in t 7→ s ′ to x in t
| r7 [intro!]:[[ x ] s ; t 7→ t ′ ]] =⇒ s to x in t 7→ s to x in t ′

| r8 [intro!]:x ] s =⇒ [s] to x in t 7→ t[x::=s]
| r9 [intro!]:x ] s =⇒ s to x in [Var x] 7→ s
| r10 [intro!]: [[ x ] (y,s,u) ; y ] (s,t) ]]

=⇒ (s to x in t) to y in u 7→ s to x in (t to y in u)
| r11 [intro!]: s 7→ s ′ =⇒ [s] 7→ [s ′]
equivariance reduction
nominal-inductive reduction

by(auto simp add: abs-fresh fresh-fact ′ fresh-prod fresh-atm)

In order to show adequacy, the extra freshness conditions in the rules r3, r6,
r7, r8, r9, and r10 need to be discharged.
lemma r3 ′[intro!]: App (Λ x . t) s 7→ t[x::=s]
proof −

obtain x ′::name where s: x ′ ] s and t: x ′ ] t
using ex-fresh[of (s,t)] by (auto simp add: fresh-prod)

from t have App (Λ x . t) s = App (Λ x ′ . ([(x,x ′)] · t)) s
by (simp add: alpha ′′)

also from s have . . . 7→ ([(x, x ′)] · t)[x ′::=s] ..
also have . . . = t[x::=s] using t

by (auto simp add: subst-rename ′) (metis perm-swap)
finally show ?thesis .

qed
declare r3 [rule del]

lemma r6 ′[intro]:
fixes s :: trm
assumes r : s 7→ s ′

shows s to x in t 7→ s ′ to x in t
using assms
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proof −
obtain x ′::name where s: x ′ ] (s, s ′) and t: x ′ ] t

using ex-fresh[of (s,s ′,t)] by (auto simp add: fresh-prod)
from t have s to x in t = s to x ′ in ([(x,x ′)] · t)

by (simp add: alpha ′′)
also from s r have . . . 7→ s ′ to x ′ in ([(x, x ′)] · t) ..
also from t have . . . = s ′ to x in t

by (simp add: alpha ′′)
finally show ?thesis .

qed
declare r6 [rule del]

lemma r7 ′[intro]:
fixes t :: trm
assumes t 7→ t ′

shows s to x in t 7→ s to x in t ′

using assms
proof −

obtain x ′::name where f : x ′ ] t x ′ ] t ′ x ′ ] s x ′ ] x
using ex-fresh[of (t,t ′,s,x)] by(auto simp add:fresh-prod)

hence a: s to x in t = s to x ′ in ([(x,x ′)] · t)
by (auto simp add: alpha ′′)

from assms have ([(x,x ′)] · t) 7→ [(x,x ′)] · t ′

by (simp add: eqvts)
hence r : s to x ′ in ([(x,x ′)] · t) 7→ s to x ′ in ([(x,x ′)] · t ′)

using f by auto
from f have s to x in t ′ = s to x ′ in ([(x,x ′)] · t ′)

by (auto simp add: alpha ′′)
with a r show ?thesis by (simp del: trm.inject)

qed
declare r7 [rule del]

lemma r8 ′[intro!]: [s] to x in t 7→ t[x::=s]
proof −

obtain x ′::name where s: x ′ ] s and t: x ′ ] t
using ex-fresh[of (s,t)] by (auto simp add: fresh-prod)

from t have [s] to x in t = [s] to x ′ in ([(x,x ′)] · t)
by (simp add: alpha ′′)

also from s have . . . 7→ ([(x, x ′)] · t)[x ′::=s] ..
also have . . . = t[x::=s] using t

by (auto simp add: subst-rename ′) (metis perm-swap)
finally show ?thesis .

qed
declare r8 [rule del]

lemma r9 ′[intro!]: s to x in [Var x] 7→ s
proof −

obtain x ′::name where f : x ′ ] s x ′ ] x
using ex-fresh[of (s,x)] by(auto simp add:fresh-prod)

hence s to x ′ in [Var x ′] 7→ s by auto
moreover have s to x ′ in ([Var x ′]) = s to x in ([Var x])

by (auto simp add: alpha fresh-atm swap-simps)
ultimately show ?thesis by simp

qed
declare r9 [rule del]
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While discharging these freshness conditions is easy for rules involving only
one binder it unfortunately becomes quite tedious for the assoc rule r10. This
is due to the complex binding structure of this rule which includes four bind-
ing occurrences of two different names. Furthermore, the binding structure
changes from the left to the right: On the left hand side, x is only bound in t,
whereas on the right hand side the scope of x extends over the whole term t
to y in u.
lemma r10 ′[intro!]:

assumes xf : x ] y x ] u
shows (s to x in t) to y in u 7→ s to x in (t to y in u)

proof −
obtain y ′::name — suitably fresh

where y: y ′ ] s y ′ ] x y ′ ] t y ′ ] u
using ex-fresh[of (s,x,t,u,[(x, x ′)] · t)]
by (auto simp add: fresh-prod)

obtain x ′::name
where x: x ′ ] s x ′ ] y ′ x ′ ] y x ′ ] t x ′ ] u

x ′ ] ([(y,y ′)] · u)
using ex-fresh[of (s,y ′,y,t,u,([(y,y ′)] · u))]
by (auto simp add: fresh-prod)

from x y have yaux: y ′ ] [(x, x ′)] · t
by(simp add: fresh-left perm-fresh-fresh fresh-atm)

have (s to x in t) to y in u = (s to x in t) to y ′ in ([(y,y ′)] · u)
using ‹y ′ ] u› by (simp add: alpha ′′)

also have . . . = (s to x ′ in ([(x,x ′)] · t)) to y ′ in ([(y,y ′)] · u)
using ‹x ′ ] t› by (simp add: alpha ′′)

also have . . . 7→ s to x ′ in (([(x,x ′)] · t) to y ′ in ([(y,y ′)] · u))
using x y yaux by (auto simp add: fresh-prod)

also have . . . = s to x ′ in (([(x,x ′)] · t) to y in u)
using ‹y ′ ] u› by (simp add: abs-fun-eq1 alpha ′′)

also have . . . = s to x in (t to y in u)
proof (subst trm.inject)

from xf x have swap: [(x,x ′)] · y = y [(x,x ′)] · u = u
by(auto simp add: fresh-atm perm-fresh-fresh )

with x show s = s ∧ [x ′].([(x, x ′)] · t) to y in u = [x].t to y in u
by (auto simp add: alpha ′′[of x ′ - x] abs-fresh abs-fun-eq1 swap)

qed
finally show ?thesis .

qed
declare r10 [rule del]

Since now all the introduction rules of the vc-compatible reduction relation
exactly match their standard counterparts, both directions of the adequacy
proof are trivial inductions.
theorem adequacy: s 7→ t = s  t
by (auto elim:reduction.induct std-reduction.induct)

Next we show that the reduction relation preserves freshness and is in turn
preserved under substitution.
lemma reduction-fresh:

fixes x::name
assumes r : t 7→ t ′

shows x ] t =⇒ x ] t ′

using r
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by(nominal-induct t t ′ avoiding: x rule: reduction.strong-induct)
(auto simp add: abs-fresh fresh-fact fresh-atm)

lemma reduction-subst:
assumes a: t 7→ t ′

shows t[x::=v] 7→ t ′[x::=v]
using a
by(nominal-induct t t ′ avoiding: x v rule: reduction.strong-induct)
(auto simp add: fresh-atm fresh-fact subst-lemma fresh-prod abs-fresh)

Following [Nom], we use an inductive variant of strong normalization, as it
allows for inductive proofs on terms being strongly normalizing, without es-
tablishing that the reduction relation is finitely branching.
inductive

SN :: trm ⇒ bool
where

SN-intro: (
∧

t ′ . t 7→ t ′ =⇒ SN t ′) =⇒ SN t

lemma SN-preserved[intro]:
assumes a: SN t t 7→ t ′

shows SN t ′

using a by (cases) (auto)

definition NORMAL :: trm ⇒ bool
where

NORMAL t ≡ ¬(∃ t ′. t 7→ t ′)

lemma normal-var : NORMAL (Var x)
unfolding NORMAL-def by (auto elim: reduction.cases)

lemma normal-implies-sn : NORMAL s =⇒ SN s
unfolding NORMAL-def by(auto intro: SN-intro)

4 Stacks

As explained in [LS05], the monadic type structure of the λml-calculus does
not lend itself to an easy definition of a logical relation along the type structure
of the calculus. Therefore, we need to introduce stacks as an auxiliary notion
to handle the monadic type constructor T . Stacks can be thought of as lists of
term abstractions [x].t. The notation for stacks is chosen with this resemblance
in mind.
nominal-datatype stack = Id | St «name»trm stack (‹[-]-�-›)

lemma stack-exhaust :
fixes c :: ′a::fs-name
shows k = Id ∨ (∃ y n l . y ] l ∧ y ] c ∧ k = [y]n�l)

by(nominal-induct k avoiding: c rule: stack.strong-induct) (auto)

nominal-primrec
length :: stack ⇒ nat ( ‹|-|›)

where
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|Id| = 0
| y ] L =⇒ length ([y]n�L) = 1 + |L|
by(finite-guess+,auto simp add: fresh-nat,fresh-guess)

Together with the stack datatype, we introduce the notion of dismantling a
term onto a stack. Unfortunately, the dismantling operation has no easy prim-
itive recursive formulation. The Nominal package, however, only provides a
recursion combinator for primitive recursion. This means that for dismantling
one has to prove pattern completeness, right uniqueness, and termination ex-
plicitly.
function

dismantle :: trm ⇒ stack ⇒ trm (‹- ? -› [160 ,160 ] 160 )
where

t ? Id = t |
x ] (K ,t) =⇒ t ? ([x]s�K ) = (t to x in s) ? K

proof − — pattern completeness
fix P :: bool and arg::trm × stack
assume id:

∧
t. arg = (t, stack.Id) =⇒ P

and st:
∧

x K t s. [[x ] (K , t); arg = (t, [x]s�K )]] =⇒ P
{ assume snd arg = Id

hence P by (metis id[where t=fst arg] surjective-pairing) }
moreover
{ fix y n L assume snd arg = [y]n�L y ] (L, fst arg)

hence P by (metis st[where t=fst arg] surjective-pairing) }
ultimately show P using stack-exhaust[of snd arg fst arg] by auto

next
— right uniqueness
— only the case of the second equation matching both args needs to be shown.

fix t t ′ :: trm and x x ′ :: name and s s ′ :: trm and K K ′ :: stack
let ?g = dismantle-sumC — graph of dismantle
assume x ] (K , t) x ′ ] (K ′, t ′)

and (t, [x]s�K ) = (t ′, [x ′]s ′�K ′)
thus ?g (t to x in s, K ) = ?g (t ′ to x ′ in s ′, K ′)

by (auto intro!: arg-cong[where f=?g] simp add: stack.inject)
qed (simp-all add: stack.inject) — all other cases are trivial

termination dismantle
by(relation measure (λ(t,K ). |K | ))(auto)

Like all our constructions, dismantling is equivariant. Also, freshness can be
pushed over dismantling, and the freshness requirement in the second defining
equation is not needed
lemma dismantle-eqvt[eqvt]:

fixes pi :: (name × name) list
shows pi · (t ? K ) = (pi · t) ? (pi · K )

by(nominal-induct K avoiding: pi t rule:stack.strong-induct)
(auto simp add: eqvts fresh-bij)

lemma dismantle-fresh[iff ]:
fixes x :: name
shows (x ] (t ? k)) = (x ] t ∧ x ] k)

by(nominal-induct k avoiding: t x rule: stack.strong-induct)
(simp-all)
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lemma dismantle-simp[simp]: s ? [y]n�L = (s to y in n) ? L
proof −

obtain x::name where f : x ] s x ] L x ] n
using ex-fresh[of (s,L,n)] by(auto simp add:fresh-prod)

hence t: s to y in n = s to x in ([(y,x)] · n)
by(auto simp add: alpha ′′)

from f have [y]n�L = [x]([(y,x)] · n)�L
by (auto simp add: stack.inject alpha ′′)

hence s ? [y]n�L = s ? [x]([(y,x)] · n)�L by simp
also have . . . = (s to y in n) ? L using f t by(simp del:trm.inject)
finally show ?thesis .

qed

We also need a notion of reduction on stacks. This reduction relation allows
us to define strong normalization not only for terms but also for stacks and is
needed to prove the properties of the logical relation later on.
definition stack-reduction :: stack ⇒ stack ⇒ bool (‹ - 7→ - ›)
where

k 7→ k ′ ≡ ∀ (t::trm) . (t ? k) 7→ (t ? k ′)

lemma stack-reduction-fresh:
fixes k :: stack and x :: name
assumes r : k 7→ k ′ and f :x ] k
shows x ] k ′

proof −
from ex-fresh[of x] obtain z::name where f ′: z ] x ..
from r have Var z ? k 7→ Var z ? k ′ unfolding stack-reduction-def ..
moreover from f f ′ have x ] Var z ? k by(auto simp add: fresh-atm)
ultimately have x ] Var z ? k ′ by(rule reduction-fresh)
thus x ] k ′ by simp

qed

lemma dismantle-red[intro]:
fixes m :: trm
assumes r : m 7→ m ′

shows m ? k 7→ m ′ ? k
using r
by (nominal-induct k avoiding: m m ′ rule:stack.strong-induct) auto

Next we define a substitution operation for stacks. The main purpose of this
is to distribute substitution over dismantling.
nominal-primrec

ssubst :: name ⇒ trm ⇒ stack ⇒ stack
where

ssubst x v Id = Id
| y ] (k,x,v) =⇒ ssubst x v ([y]n�k) = [y](n[x::=v])�(ssubst x v k)

by(finite-guess+ , (simp add: abs-fresh)+ , fresh-guess+)

lemma ssubst-fresh:
fixes y :: name
assumes y ] (x,v,k)
shows y ] ssubst x v k

using assms
by(nominal-induct k avoiding: y x v rule: stack.strong-induct)
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(auto simp add: fresh-prod fresh-atm abs-fresh fresh-fact)

lemma ssubst-forget:
fixes x :: name
assumes x ] k
shows ssubst x v k = k

using assms
by(nominal-induct k avoiding: x v rule: stack.strong-induct)
(auto simp add: abs-fresh fresh-atm forget)

lemma subst-dismantle[simp]: (t ? k)[x ::= v] = (t[x::=v]) ? ssubst x v k
by(nominal-induct k avoiding: t x v rule: stack.strong-induct)
(auto simp add: ssubst-fresh fresh-prod fresh-fact)

5 Reducibility for Terms and Stacks

Following [Nom], we formalize the logical relation as a function RED of type
ty ⇒ trm set for the term part and accordingly SRED of type ty ⇒ stack set
for the stack part of the logical relation.
lemma ty-exhaust: ty = TBase ∨ (∃ σ τ . ty = σ → τ) ∨ (∃ σ . ty = T σ)
by(induct ty rule:ty.induct) (auto)

function RED :: ty ⇒ trm set
and SRED :: ty ⇒ stack set
where

RED (TBase) = {t. SN (t)}
| RED (τ→σ) = {t. ∀ u ∈ RED τ . (App t u) ∈ RED σ }
| RED (T σ) = {t. ∀ k ∈ SRED σ . SN (t ? k) }
| SRED τ = {k. ∀ t ∈ RED τ . SN ([t] ? k) }
by(auto simp add: ty.inject, case-tac x rule: sum.exhaust,insert ty-exhaust)
(blast)+

This is the second non-primitive function in the formalization. Since types
do not involve binders, pattern completeness and right uniqueness are mostly
trivial. The termination argument is not as simple as for the dismantling
function, because the definiton of SRED τ involves a recursive call to RED τ
without reducing the size of τ .
nominal-primrec

tsize :: ty ⇒ nat
where

tsize TBase = 1
| tsize (σ→τ) = 1 + tsize σ + tsize τ
| tsize (T τ) = 1 + tsize τ

by (rule TrueI )+

In the termination argument below, Inl τ corresponds to the call RED τ ,
whereas Inr τ corresponds to SRED τ

termination RED
by(relation measure

(λ x . case x of Inl τ ⇒ 2 ∗ tsize τ
| Inr τ ⇒ 2 ∗ tsize τ + 1 )) (auto)
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6 Properties of the Reducibility Relation

After defining the logical relations we need to prove that the relation implies
strong normalization, is preserved under reduction, and satisfies the head ex-
pansion property.
definition NEUT :: trm ⇒ bool
where

NEUT t ≡ (∃ a. t = Var a) ∨ (∃ t1 t2 . t = App t1 t2 )

definition CR1 :: ty ⇒ bool
where

CR1 τ ≡ ∀ t. (t∈RED τ −→ SN t)

definition CR2 :: ty ⇒ bool
where

CR2 τ ≡ ∀ t t ′. (t∈RED τ ∧ t 7→ t ′) −→ t ′∈RED τ

definition CR3-RED :: trm ⇒ ty ⇒ bool
where

CR3-RED t τ ≡ ∀ t ′. t 7→ t ′ −→ t ′∈RED τ

definition CR3 :: ty ⇒ bool
where

CR3 τ ≡ ∀ t. (NEUT t ∧ CR3-RED t τ) −→ t∈RED τ

definition CR4 :: ty ⇒ bool
where

CR4 τ ≡ ∀ t. (NEUT t ∧ NORMAL t) −→t∈RED τ

lemma CR3-implies-CR4 [intro]: CR3 τ =⇒ CR4 τ
by (auto simp add: CR3-def CR3-RED-def CR4-def NORMAL-def )

inductive
FST :: trm⇒trm⇒bool (‹ - » -› [80 ,80 ] 80 )

where
fst[intro!]: (App t s) » t

lemma SN-of-FST-of-App:
assumes a: SN (App t s)
shows SN t

proof −
from a have ∀ z. (App t s » z) −→ SN z

by (induct rule: SN .induct)
(blast elim: FST .cases intro: SN-intro)

then show SN t by blast
qed

The lemma above is a simplified version of the one used in [Nom]. Since we
have generalized our notion of reduction from terms to stacks, we can also
generalize the notion of strong normalization. The new induction principle
will be used to prove the T case of the properties of the reducibility relation.
inductive

SSN :: stack ⇒ bool
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where
SSN-intro: (

∧
k ′ . k 7→ k ′ =⇒ SSN k ′) =⇒ SSN k

Furthermore, the approach for deriving strong normalization of subterms from
above can be generalized to terms of the form t ? k. In contrast to the case of
applications, t ? k does not uniquely determine t and k. Thus, the extraction
is a proper relation in this case.
inductive

SND-DIS :: trm ⇒ stack ⇒ bool (‹- B -›)
where

snd-dis[intro!]: t ? k B k

lemma SN-SSN :
assumes a: SN (t ? k)
shows SSN k

proof −
from a have ∀ z. (t ? k B z) −→ SSN z by (induct rule: SN .induct)

(metis SND-DIS .cases SSN-intro snd-dis stack-reduction-def )
thus SSN k by blast

qed

To prove CR1-3, the authors of [LS05] use a case distinction on the reducts of
t ? k, where t is a neutral term and therefore no interaction occurs between t
and k.

t ? k 7→ r
∧

t ′. [[t 7→ t ′; r = t ′ ? k]] =⇒ P
NEUT t

∧
k ′. [[ k 7→ k ′ ; r = t ? k ′]] =⇒ P

P

We strive for a proof of this rule by structural induction on k. The general
idea of the case where k = [y]n�l is to move the first stack frame into the
term t and then apply the induction hypothesis as a case rule. Unfortunately,
this term is no longer neutral, so, for the induction to go through, we need
to generalize the claim to also include the possible interactions of non-neutral
terms and stacks.
lemma dismantle-cases:

fixes t :: trm
assumes r : t ? k 7→ r
and T :

∧
t ′ . [[ t 7→ t ′ ; r = t ′ ? k ]] =⇒ P

and K :
∧

k ′ . [[ k 7→ k ′ ; r = t ? k ′ ]] =⇒ P
and B:

∧
s y n l .[[ t = [s] ; k = [y]n�l ; r = (n[y::=s]) ? l ]] =⇒ P

and A:
∧

u x v y n l.[[ x ] y; x ] n ; t = u to x in v ;
k = [y]n�l ; r = (u to x in (v to y in n)) ? l ]] =⇒ P

shows P
using assms
proof (nominal-induct k avoiding: t r rule:stack.strong-induct)

case (St y n L) note yfresh = ‹y ] t› ‹y ] r› ‹y ] L›
note IH = St(4 )

and T = St(6 ) and K = St(7 ) and B = St(8 ) and A = St(9 )
thus P proof (cases rule:IH [where b=t to y in n and ba=r ])

case (2 r ′) have red: t to y in n 7→ r ′ and r : r = r ′ ? L by fact+
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If m to y in n makes a step we reason by case distinction on the successors of m to
y in n. We want to use the strong inversion principle for the reduction relation. For
this we need that y is fresh for t to y in n and r′.

from yfresh r have y: y ] t to y in n y ] r ′

by (auto simp add: abs-fresh)
obtain z where z: z 6= y z ] r ′ z ] t to y in n

using ex-fresh[of (y,r ′,t to y in n)]
by(auto simp add:fresh-prod fresh-atm)

from red r show P
proof (cases rule:reduction.strong-cases

[ where x=yand xa=y and xb=y and xc=y and xd=y
and xe=y and xf=y and xg=z and y=y])

case (r6 s t ′ u) — if t makes a step we use assumption T
with y have m: t 7→ t ′ r ′ = t ′ to y in n by auto
thus P using T [of t ′] r by auto

next
case (r7 - - n ′) with y have n: n 7→ n ′ and r ′: r ′ = t to y in n ′

by (auto simp add: alpha)

Since k = [y]n�L, the reduction n 7→ n ′ occurs within the stack k. Hence, we need
to establish this stack reduction.

have [y]n�L 7→ [y]n ′�L unfolding stack-reduction-def
proof

fix u have u to y in n 7→ u to y in n ′ using n ..
hence (u to y in n) ? L 7→ (u to y in n ′) ? L ..
thus u ? [y]n�L 7→ u ? [y]n ′�L

by simp
qed
moreover have r = t ? [y]n ′�L using r r ′ by simp
ultimately show P by (rule K )

next
case (r8 s -) — the case of a β-reduction is exactly B
with y have t = [s] r ′ = n[y::=s] by(auto simp add: alpha)
thus P using B[of s y n L] r by auto

next
case (r9 -) — The case of an η-reduction is a stack reduction as well.
with y have n: n = [Var y] and r ′: r ′ = t

by(auto simp add: alpha)
{ fix u have u to y in n 7→ u unfolding n ..

hence (u to y in n) ? L 7→ u ? L ..
hence u ? [y]n�L 7→ u ? L by simp

} hence [y]n�L 7→ L unfolding stack-reduction-def ..
moreover have r = t ? L using r r ′ by simp
ultimately show P by (rule K )

next
case (r10 u - v) — The assoc case holds by A.
with y z have

t = (u to z in v)
r ′ = u to z in (v to y in n)
z ] (y,n) by (auto simp add: fresh-prod alpha)

thus P using A[of z y n] r by auto
qed (insert y, auto) — No other reductions are possible.

next

Next we have to solve the case where a reduction occurs deep within L. We get a
reduction of the stack k by moving the first stack frame “[y]n” back to the right hand
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side of the dismantling operator.

case (3 L ′)
hence L: L 7→ L ′ and r : r = (t to y in n) ? L ′ by auto
{ fix s from L have (s to y in n) ? L 7→ (s to y in n) ? L ′

unfolding stack-reduction-def ..
hence s ? [y]n�L 7→ s ? [y]n�L ′ by simp

} hence [y]n�L 7→ [y]n�L ′ unfolding stack-reduction-def by auto
moreover from r have r = t ? [y]n�L ′ by simp
ultimately show P by (rule K )

next
case (5 x z n ′ s v K ) — The “assoc” case is again a stack reduction
have xf : x ] z x ] n ′

— We get the following equalities
and red: t to y in n = s to x in v

L = [z]n ′�K
r = (s to x in v to z in n ′) ? K by fact+

{ fix u from red have u ? [y]n�L = ((u to x in v) to z in n ′) ? K
by(auto intro: arg-cong[where f=λ x . x ? K ])

moreover
{ from xf have (u to x in v) to z in n ′ 7→ u to x in (v to z in n ′) ..

hence ((u to x in v) to z in n ′) ? K 7→ (u to x in (v to z in n ′)) ? K
by rule

} ultimately have u ? [y]n�L 7→ (u to x in (v to z in n ′)) ? K
by (simp (no-asm-simp) del:dismantle-simp)

hence u ? [y]n�L 7→ u ? [x](v to z in n ′)�K by simp
} hence [y]n�L 7→ [x](v to z in n ′)� K

unfolding stack-reduction-def by simp
moreover have r = t ? ([x](v to z in n ′)�K ) using red

by (auto)
ultimately show P by (rule K )

qed (insert St, auto )
qed auto

Now that we have established the general claim, we can restrict t to neutral
terms only and drop the cases dealing with possible interactions.
lemma dismantle-cases ′[consumes 2 , case-names T K ]:

fixes m :: trm
assumes r : t ? k 7→ r
and NEUT t
and

∧
t ′ . [[ t 7→ t ′ ; r = t ′ ? k ]] =⇒ P

and
∧

k ′ . [[ k 7→ k ′ ; r = t ? k ′ ]] =⇒ P
shows P

using assms unfolding NEUT-def
by (cases rule: dismantle-cases[of t k r ]) (auto)

lemma red-Ret:
fixes t :: trm
assumes [s] 7→ t
shows ∃ s ′ . t = [s ′] ∧ s 7→ s ′

using assms by cases (auto)

lemma SN-Ret: SN u =⇒ SN [u]
by(induct rule:SN .induct) (metis SN .intros red-Ret)

All the properties of reducibility are shown simultaneously by induction on
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the type. Lindley and Stark [LS05] only spell out the cases dealing with the
monadic type constructor T . We do the same by reusing the proofs from [Nom]
for the other cases. To shorten the presentation, these proofs are omitted
lemma RED-props:

shows CR1 τ and CR2 τ and CR3 τ
proof (nominal-induct τ rule: ty.strong-induct)

case TBasenext
case (TFun τ1 τ2 )next
case (T σ)
{ case 1 — follows from the fact that stack.Id ∈ SRED σ

have ih-CR1-σ: CR1 σ by fact
{ fix t assume t-red: t ∈ RED (T σ)

{ fix s assume s ∈ RED σ
hence SN s using ih-CR1-σ by (auto simp add: CR1-def )
hence SN ([s]) by (rule SN-Ret)
hence SN ([s] ? Id) by simp

} hence Id ∈ SRED σ by simp
with t-red have SN (t) by (auto simp del: SRED.simps)

} thus CR1 (T σ) unfolding CR1-def by blast
next

case 2 — follows since SN is preserved under redcution
{ fix t t ′::trm assume t-red: t ∈ RED (T σ) and t-t ′: t 7→ t ′

{ fix k assume k: k ∈ SRED σ
with t-red have SN (t ? k) by simp
moreover from t-t ′ have t ? k 7→ t ′ ? k ..
ultimately have SN (t ′ ? k) by (rule SN-preserved)

} hence t ′ ∈ RED (T σ) by (simp del: SRED.simps)
} thus CR2 (T σ)unfolding CR2-def by blast

next
case 3 from ‹CR3 σ› have ih-CR4-σ : CR4 σ ..
{ fix t assume t ′-red:

∧
t ′ . t 7→ t ′ =⇒ t ′ ∈ RED (T σ)

and neut-t: NEUT t
{ fix k assume k-red: k ∈ SRED σ

fix x have NEUT (Var x) unfolding NEUT-def by simp
hence Var x ∈ RED σ using normal-var ih-CR4-σ

by (simp add: CR4-def )
hence SN ([Var x] ? k) using k-red by simp
hence SSN k by (rule SN-SSN )
then have SN (t ? k) using k-red
proof (induct k rule:SSN .induct)

case (SSN-intro k)
have ih :

∧
k ′. [[ k 7→ k ′ ; k ′ ∈ SRED σ ]] =⇒ SN (t ? k ′)

and k-red: k ∈ SRED σ by fact+
{ fix r assume r : t ? k 7→ r

hence SN r using neut-t
proof (cases rule:dismantle-cases ′)

case (T t ′) hence t-t ′: t 7→ t ′ and r-def : r = t ′ ? k .
from t-t ′ have t ′ ∈ RED (T σ) by (rule t ′-red)
thus SN r using k-red r-def by simp

next
case (K k ′) hence k-k ′: k 7→ k ′ and r-def : r = t ? k ′ .
{ fix s assume s ∈ RED σ

hence SN ([s] ? k) using k-red
by simp

moreover have [s] ? k 7→ [s] ? k ′
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Let t be neutral such that t′ ∈ REDT σ whenever t 7→ t′. We have to show that (t ? k) is
SN for each k ∈ SREDσ. First, we have that [x]?k is SN , as x ∈ REDσ by the induction
hypothesis. Hence k itself is SN , and we can work by induction on max(k). Application
t ? k may reduce as follows:

• t′ ? k, where t 7→ t′, which is SN as k∈SREDσ and t′ ∈REDT σ.

• t ? k′, where k 7→ k′. For any s∈REDσ, [s] ? k is SN as k∈SREDσ; and [s] ? k 7→
[s] ? k′, so [s]?k′ is also SN . From this we have k′ ∈SREDσ with max(k′) < max(k),
so by induction hypothesis t ? k′ is SN .

There are no other possibilities as t is neutral. Hence t ? k is strongly normalizing for
every k∈SREDσ, and so t∈REDT σ as required.

Figure 1: Proof of the case T σ subcase CR3 as in [LS05]

using k-k ′ unfolding stack-reduction-def ..
ultimately have SN ([s] ? k ′) ..

} hence k ′ ∈ SRED σ by simp
with k-k ′ show SN r unfolding r-def by (rule ih)

qed } thus SN (t ? k) ..
qed } hence t ∈ RED (T σ) by simp

} thus CR3 (T σ) unfolding CR3-def CR3-RED-def by blast
}

qed

The last case above shows that, once all the reasoning principles have been
established, some proofs have a formalization which is amazingly close to the
informal version. For a direct comparison, the informal proof is presented in
Figure 1.

Now that we have established the properties of the reducibility relation, we
need to show that reducibility is preserved by the various term constructors.
The only nontrivial cases are abstraction and sequencing.

7 Abstraction Preserves Reducibility

Once again we could reuse the proofs from [Nom]. The proof uses the double-
SN rule and the lemma red-Lam below. Unfortunately, this time the proofs
are not fully identical to the proofs in [Nom] because we consider βη-reduction
rather than β-reduction only. However, the differences are only minor.

lemma double-SN [consumes 2 ]:
assumes a: SN a
and b: SN b
and c:

∧
(x::trm) (z::trm).

[[
∧

y. x 7→ y =⇒ P y z;
∧

u. z 7→ u =⇒ P x u]] =⇒ P x z
shows P a b

using a b c
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lemma red-Lam:
assumes a: Λ x . t 7→ r
shows (∃ t ′. r = Λ x . t ′ ∧ t 7→ t ′) ∨ (t = App r (Var x) ∧ x ] r )

proof −
obtain z::name where z: z ] x z ] t z ] r

using ex-fresh[of (x,t,r)] by (auto simp add: fresh-prod)
have x ] Λ x . t by (simp add: abs-fresh)
with a have x ] r by (simp add: reduction-fresh)
with a show ?thesis using z

by(cases rule: reduction.strong-cases
[where x =x and xa=x and xb=x and xc=x and

xd=x and xe=x and xf=x and xg=x and y=z])
(auto simp add: abs-fresh alpha fresh-atm)

qed

lemma abs-RED:
assumes asm: ∀ s∈RED τ . t[x::=s]∈RED σ
shows Λ x . t ∈RED (τ→σ)

8 Sequencing Preserves Reducibility

This section corresponds to the main part of the paper being formalized and
as such deserves special attention. In the lambda case one has to formalize
doing induction on max(s) + max(t) for two strongly normalizing terms s
and t (cf. [GTL89, Section 6.3]). Above, this was done through a double-SN
rule. The central Lemma 7 of Lindley and Stark’s paper uses an even more
complicated induction scheme. They assume terms p and n as well as a stack
K such that SN p and SN (n[x::=p] ? K ). The induction is then done on
|K|+max(n ? K) +max(p). See Figure 2 in for details.

Since we have settled for a different characterization of strong normalization,
we have to derive an induction principle similar in spirit to the double-SN rule.
Furthermore, it turns out that it is not necessary to formalize the fact that
stack reductions do not increase the length of the stack.1 Doing induction on
the sum above, this is necessary to handle the case of a reduction occurring in
K. We differ from [LS05] and establish an induction principle which to some
extent resembles the lexicographic order on

(SN , 7→)× (SN , 7→)× (N, >) .

lemma triple-induct[consumes 2 ]:
assumes a: SN (p)
and b: SN (q)
and hyp:

∧
(p::trm) (q::trm) (k::stack) .

[[
∧

p ′ . p 7→ p ′ =⇒ P p ′ q k ;∧
q ′ k . q 7→ q ′ =⇒ P p q ′ k;∧
k ′ . |k ′| < |k| =⇒ P p q k ′ ]] =⇒ P p q k

shows P p q k
proof −

1This possibility was only discovered after having formalized K 7→ K′ ⇒ |K| ≥ |K′|. The proof of this
seemingly simple fact was about 90 lines of Isar code.
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Lemma 8.1. (Lemma 7) Let p, n be terms and K a stack such that SN (p) and SN (n[x ::=
p] ? K). Then SN (([p] to x in n) ? K)

Proof. We show by induction on |K| + max(n ? K) + max(p) that the reducts of
([p] to x in n) ? K are all strongly normalizing. The interesting reductions are as fol-
lows:

• T.β giving n[x ::= p] ? K which is strongly normalizing by hypothesis.

• T.η when n = [x] giving [p]?K. But [p]?K = n[x ::= p]?K which is again strongly
normalizing by hypothesis

• T.assoc in the case where K = [y]m � K ′ with x /∈ fv(m); giving the reduct
([p] to x in (n to y in m)) ? K. We aim to apply the induction hypothesis with K ′

and (n to y in m) for K and n respectively. Now

(n to y in m)[x ::= p] ? K ′ = (n[x ::= p] to y in m) ? K ′

= n[x ::= p] ? K

which is strongly normalizing by induction hypothesis. Also

|K ′|+max((n to y in m) ? K ′) +max(p) < |K|+max(n ? K) +max(p)

as |K ′| < |K| and (n to y in m) ?K ′ = n ?K. This last equation explains the use of
max(n ?K); it remains fixed under T.assoc unlike max(K) and max(n). Applying
the induction hypothesis gives SN(([p] to x in (n to y in m)) ? K) as required.

Other reductions are confined to K, n or p and can be treated by the induction hypothesis,
decreasing either max(n ? K) or max(p).

Figure 2: Proof of Lemma 7 as in [LS05]

20



from a have
∧

q K . SN q =⇒ P p q K
proof (induct p)

case (SN-intro p)
have sn1 :

∧
p ′ q K . [[p 7→ p ′; SN q]] =⇒ P p ′ q K by fact

have sn-q: SN q SN q by fact+
thus P p q K
proof (induct q arbitrary: K )

case (SN-intro q K )
have sn2 :

∧
q ′ K . [[q 7→ q ′; SN q ′]] =⇒ P p q ′ K by fact

show P p q K
proof (induct K rule: measure-induct-rule[where f=length])

case (less k)
have le:

∧
k ′ . |k ′| < |k| =⇒ P p q k ′ by fact

{ fix p ′ assume p 7→ p ′

moreover have SN q by fact
ultimately have P p ′ q k using sn1 by auto }

moreover
{ fix q ′ K assume r : q 7→ q ′

have SN q by fact
hence SN q ′ using r by (rule SN-preserved)
with r have P p q ′ K using sn2 by auto }

ultimately show ?case using le
by (auto intro:hyp)

qed
qed

qed
with b show ?thesis by blast

qed

Here we strengthen the case rule for terms of the form t ? k 7→ r. The freshness
requirements on x,y, and z correspond to those for the rule reduction.strong-
cases, the strong inversion principle for the reduction relation.
lemma dismantle-strong-cases:

fixes t :: trm
assumes r : t ? k 7→ r
and f : y ] (t,k,r) x ] (z,t,k,r) z ] (t,k,r)
and T :

∧
t ′ . [[ t 7→ t ′ ; r = t ′ ? k ]] =⇒ P

and K :
∧

k ′ . [[ k 7→ k ′ ; r = t ? k ′ ]] =⇒ P
and B:

∧
s n l . [[ t = [s] ;

k = [y]n�l ; r = (n[y::=s]) ? l ]] =⇒ P
and A:

∧
u v n l .

[[ x ] (z,n); t = u to x in v ; k = [z]n�l ;
r = (u to x in (v to z in n)) ? l ]] =⇒ P

shows P
proof (cases rule:dismantle-cases[of t k r P])

case (4 s y ′ n L) have ch:
t = [s]
k = [y ′]n�L
r = n[y ′::=s] ? L by fact+

The equations we get look almost like those we need to instantiate the hypothesis B.
The only difference is that B only applies to y, and since we want y to become an
instantiation variable of the strengthened rule, we only know that y satisfies f and
nothing else. But the condition f is just strong enough to rename y′ to y and apply
B.
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with f have y = y ′ ∨ y ] n
by (auto simp add: fresh-prod abs-fresh)

hence n[y ′::=s] = ([(y,y ′)] · n)[y::=s]
and [y ′]n�L = [y]([(y,y ′)] · n)�L
by(auto simp add: name-swap-bij subst-rename ′ stack.inject alpha ′ )

with ch have t = [s]
k = [y]([(y,y ′)] · n)�L
r = ([(y,y ′)] · n)[y::=s] ? L
by (auto)

thus P by (rule B)
next

case (5 u x ′ v z ′ n L) have ch:
x ′ ] z ′ x ′ ] n
t = u to x ′ in v
k = [z ′]n�L
r = (u to x ′ in v to z ′ in n) ? L by fact+

We want to do the same trick as above but at this point we have to take care of the
possibility that x might coincide with x′ or z′. Similarly, z might coincide with z′.

with f have x: x = x ′ ∨ x ] v to z ′ in n
and z: z = z ′ ∨ z ] n
by (auto simp add: fresh-prod abs-fresh)

from f ch have x ′: x ′ ] n x ′ ] z ′

and xz ′: x = z ′ ∨ x ] n
by (auto simp add:name-swap-bij alpha fresh-prod fresh-atm abs-fresh)

from f ch have x ] z x ] [z ′].n by (auto simp add: fresh-prod)
with xz ′ z have x ] (z , ([(z, z ′)] · n))

by (auto simp add: fresh-atm fresh-bij name-swap-bij
fresh-prod abs-fresh calc-atm fresh-aux fresh-left)

moreover from x ch have t = u to x in ([(x,x ′)] · v)
by (auto simp add:name-swap-bij alpha ′)

moreover from z ch have k = [z]([(z,z ′)] · n)�L
by (auto simp add:name-swap-bij stack.inject alpha ′)

The first two α-renamings are simple, but here we have to handle the nested binding
structure of the assoc rule. Since x scopes over the whole term v to z ′ in n, we have
to push the swapping over z′

moreover { from x have
u to x ′ in (v to z ′ in n) = u to x in ([(x,x ′)] · (v to z ′ in n))

by (auto simp add:name-swap-bij alpha ′ simp del: trm.perm)
also from xz ′ x ′ have . . . = u to x in (([(x,x ′)] · v) to z ′ in n)

by (auto simp add: abs-fun-eq1 swap-simps alpha ′′)
(metis alpha ′′ fresh-atm perm-fresh-fresh swap-simps(1 ) x ′)

also from z have . . . = u to x in (([(x,x ′)] · v) to z in ([(z,z ′)] · n))
by (auto simp add: abs-fun-eq1 alpha ′ name-swap-bij )

finally
have r = (u to x in (([(x, x ′)] · v) to z in ([(z, z ′)] · n))) ? L

using ch by (simp del: trm.inject) }
ultimately show P

by (rule A[where n=[(z, z ′)] · n and v=([(x, x ′)] · v)])
qed (insert r T K , auto)

The lemma in Figure 2 assumes SN (n[x::=p] ? K ) but the actual induction in
done on SN (n ? K ). The stronger assumption SN (n[x::=p] ? K ) is needed
to handle the β and η cases.
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lemma sn-forget:
assumes a: SN (t[x::=v])
shows SN t

proof −
define q where q = t[x::=v]
from a have SN q unfolding q-def .
thus SN t using q-def
proof (induct q arbitrary: t)

case (SN-intro t)
hence ih:

∧
t ′. [[t[x::=v] 7→ t ′[x::=v]]] =⇒ SN t ′ by auto

{ fix t ′ assume t 7→ t ′

hence t[x::=v] 7→ t ′[x::=v] by (rule reduction-subst)
hence SN t ′ by (rule ih) }

thus SN t ..
qed

qed

lemma sn-forget ′:
assumes sn: SN (t[x::=p] ? k)
and x: x ] k
shows SN (t ? k)

proof −
from x have t[x::=p] ? k = (t ? k)[x::=p] by (simp add: ssubst-forget)
with sn have SN ( (t ? k)[x::=p] ) by simp
thus ?thesis by (rule sn-forget)

qed

abbreviation
redrtrans :: trm ⇒ trm ⇒ bool (‹ - 7→∗ - › )
where redrtrans ≡ reduction^∗∗

To be able to handle the case where p makes a step, we need to establish p 7→
p ′ =⇒ m[x::=p] 7→∗ m[x::=p ′] as well as the fact that strong normalization is
preserved for an arbitrary number of reduction steps. The first claim involves
a number of simple transitivity lemmas. Here we can benefit from having
removed the freshness conditions from the reduction relation as this allows all
the cases to be proven automatically. Similarly, in the red-subst lemma, only
those cases where substitution is pushed to two subterms needs to be proven
explicitly.
lemma red-trans:

shows r1-trans: s 7→∗ s ′ =⇒ App s t 7→∗ App s ′ t
and r2-trans: t 7→∗ t ′ =⇒ App s t 7→∗ App s t ′

and r4-trans: t 7→∗ t ′ =⇒ Λ x . t 7→∗ Λ x . t ′

and r6-trans: s 7→∗ s ′ =⇒ s to x in t 7→∗ s ′ to x in t
and r7-trans: [[ t 7→∗ t ′ ]] =⇒ s to x in t 7→∗ s to x in t ′

and r11-trans: s 7→∗ s ′ =⇒ [s] 7→∗ ([s ′])
by − (induct rule: rtranclp-induct , (auto intro:
transitive-closurep-trans ′)[2 ])+

lemma red-subst: p 7→ p ′ =⇒ (m[x::=p]) 7→∗ (m[x::=p ′])
proof(nominal-induct m avoiding: x p p ′ rule:trm.strong-induct)

case (App s t)
hence App (s[x::=p]) (t[x::=p]) 7→∗ App (s[x::=p ′]) (t[x::=p])

by (auto intro: r1-trans)
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also from App have . . . 7→∗ App (s[x::=p ′]) ( t[x::=p ′])
by (auto intro: r2-trans)

finally show ?case by auto
next

case (To s y n) hence
(s[x::=p]) to y in (n[x::=p]) 7→∗ (s[x::=p ′]) to y in (n[x::=p])
by (auto intro: r6-trans)

also from To have . . . 7→∗ (s[x::=p ′]) to y in (n[x::=p ′])
by (auto intro: r7-trans)

finally show ?case using To by auto
qed (auto intro:red-trans)

lemma SN-trans : [[ p 7→∗ p ′ ; SN p ]] =⇒ SN p ′

by (induct rule: rtranclp-induct) (auto intro: SN-preserved)

8.1 Central lemma

Now we have everything in place we need to tackle the central “Lemma 7”
of [LS05] (cf. Figure 2). The proof is quite long, but for the most part, the
reasoning is that of [LS05].
lemma to-RED-aux:

assumes p: SN p
and x: x ] p x ] k
and npk: SN (n[x::=p] ? k)
shows SN (([p] to x in n) ? k)

proof −
{ fix q assume SN q with p

have
∧

m . [[ q = m ? k ; SN (m[x::=p] ? k) ]]
=⇒ SN (([p] to x in m) ? k)

using x
proof (induct p q rule:triple-induct[where k=k])

case (1 p q k) — We obtain an induction hypothesis for p, q, and k.
have ih-p:∧

p ′ m . [[p 7→ p ′; q = m ? k; SN (m[x::=p ′] ? k); x ] p ′; x ] k]]
=⇒ SN (([p ′] to x in m) ? k) by fact

have ih-q:∧
q ′ m k . [[q 7→ q ′; q ′ = m ? k; SN (m[x::=p] ? k); x ] p; x ] k]]
=⇒ SN (([p] to x in m) ? k) by fact

have ih-k:∧
k ′ m . [[ |k ′| < |k|; q = m ? k ′; SN (m[x::=p] ? k ′); x ] p; x ] k ′]]
=⇒ SN (([p] to x in m) ? k ′) by fact

have q: q = m ? k and sn: SN (m[x::=p] ? k) by fact+
have xp: x ] p and xk: x ] k by fact+

Once again we want to reason via case distinction on the successors of a term including
a dismantling operator. Since this time we also need to handle the cases where
interactions occur, we want to use the strengthened case rule. We already require x
to be suitably fresh. To instantiate the rule, we need another fresh name.

{ fix r assume red: ([p] to x in m) ? k 7→ r
from xp xk have x1 : x ] ([p] to x in m) ? k

by (simp add: abs-fresh)
with red have x2 : x ] r by (rule reduction-fresh)
obtain z::name where z: z ] (x,p,m,k,r)

using ex-fresh[of (x,p,m,k,r)] by (auto simp add: fresh-prod)
have SN r
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proof (cases rule:dismantle-strong-cases
[of [p] to x in m k r x x z ])

case (5 r ′) have r : r = r ′ ? k and r ′: [p] to x in m 7→ r ′ by fact+

To handle the case of a reduction occurring somewhere in [p] to x in m, we need to
contract the freshness conditions to this subterm. This allows the use of the strong
inversion rule for the reduction relation.

from x1 x2 r
have xl:(x ] [p] to x in m) and xr :x ] r ′ by auto
from z have zl: z ] ([p] to x in m) x 6= z

by (auto simp add: abs-fresh fresh-prod fresh-atm)
with r ′ have zr : z ] r ′ by (blast intro:reduction-fresh)
— handle all reductions of [p] to x in m
from r ′ show SN r proof (cases rule:reduction.strong-cases

[where x=x and xa=x and xb=x and xc=x and xd=x
and xe=x and xf=xand xg=x and y=z])

The case where p 7→ p ′ is interesting, because it requires reasioning about the reflexive
transitive closure of the reduction relation.

case (r6 s s ′ t) hence ch: [p] 7→ s ′ r ′ = s ′ to x in m
using xl xr by (auto)

from this obtain p ′ where s: s ′ = [p ′] and p : p 7→ p ′

by (blast dest:red-Ret)
from p have ((m?k)[x::=p]) 7→∗ ((m?k)[x::=p ′])

by (rule red-subst)
with xk have ((m[x::=p]) ? k) 7→∗ ((m[x::=p ′]) ? k)

by (simp add: ssubst-forget)
hence sn: SN ((m[x::=p ′]) ? k) using sn by (rule SN-trans)
from p xp have xp ′ : x ] p ′ by (rule reduction-fresh)
from ch s have rr : r ′ = [p ′] to x in m by simp
from p q sn xp ′ xk
show SN r unfolding r rr by (rule ih-p)

next

case(r7 s t m ′) hence r ′ = [p] to x in m ′ and m 7→ m ′

using xl xr by (auto simp add: alpha)
hence rr : r ′ = [p] to x in m ′ by simp
from q ‹m 7→ m ′› have q 7→ m ′ ? k by(simp add: dismantle-red)
moreover have m ′ ? k = m ′ ? k .. — a triviality
moreover { from ‹m 7→ m ′› have (m[x::=p]) ? k 7→ (m ′[x::=p]) ? k

by (simp add: dismantle-red reduction-subst)
with sn have SN (m ′[x::=p] ? k) .. }

ultimately show SN r using xp xk unfolding r rr by (rule ih-q)
next

case (r8 s t) — the β-case is handled by assumption
hence r ′ = m[x::=p] using xl xr by(auto simp add: alpha)
thus SN r unfolding r using sn by simp

next

case (r9 s) — the η-case is handled by assumption as well
hence m = [Var x] and r ′ = [p] using xl xr

by(auto simp add: alpha)
hence r ′ = m[x::=p] by simp
thus SN r unfolding r using sn by simp

qed (simp-all only: xr xl zl zr abs-fresh , auto)
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— There are no other possible reductions of [p] to x in m.
next

case (6 k ′)
have k: k 7→ k ′ and r : r = ([p] to x in m) ? k ′ by fact+
from q k have q 7→ m ? k ′ unfolding stack-reduction-def by blast
moreover have m ? k ′ = m ? k ′ ..
moreover { have SN (m[x::=p] ? k) by fact

moreover have (m[x::=p]) ? k 7→ (m[x::=p]) ? k ′

using k unfolding stack-reduction-def ..
ultimately have SN (m[x::=p] ? k ′) .. }

moreover note xp
moreover from k xk have x ] k ′

by (rule stack-reduction-fresh)
ultimately show SN r unfolding r by (rule ih-q)

next

The case of an assoc interaction between [p] to x in m and k is easily handled by the
induction hypothesis, since m[x::=p] ? k remains fixed under assoc.

case (8 s t u L)
hence k: k = [z]u�L

and r : r = ([p] to x in (m to z in u)) ? L
and u: x ] u
by(auto simp add: alpha fresh-prod)

let ?k = L and ?m = m to z in u
from k z have |?k| < |k| by (simp add: fresh-prod)
moreover have q = ?m ? ?k using k q by simp
moreover { from k u z xp have (?m[x::=p] ? ?k) = (m[x::=p]) ? k

by(simp add: fresh-prod forget)
hence SN (?m[x::=p] ? ?k) using sn by simp }
moreover from xp xk k have x ] p and x ] ?k by auto
ultimately show SN r unfolding r by (rule ih-k)

qed (insert red z x1 x2 xp xk ,
auto simp add: fresh-prod fresh-atm abs-fresh)

} thus SN (([p] to x in m) ? k) ..
qed }

moreover have SN ((n[x::=p]) ? k) by fact
moreover hence SN (n ? k) using ‹x ] k› by (rule sn-forget ′)
ultimately show ?thesis by blast

qed

Having established the claim above, we use it show that to-bindings preserve
reducibility.
lemma to-RED:

assumes s: s ∈ RED (T σ)
and t : ∀ p ∈ RED σ . t[x::=p] ∈ RED (T τ)
shows s to x in t ∈ RED (T τ)

proof −
{ fix K assume k: K ∈ SRED τ

{ fix p assume p: p ∈ RED σ
hence snp: SN p using RED-props by(simp add: CR1-def )
obtain x ′::name where x: x ′ ] (t, p, K )

using ex-fresh[of (t,p,K )] by (auto)
from p t k have SN ((t[x::=p]) ? K ) by auto
with x have SN ((([(x ′,x)] · t )[x ′::=p]) ? K )
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by (simp add: fresh-prod subst-rename)
with snp x have snx ′: SN (([p] to x ′ in ([(x ′,x)] · t )) ? K )

by (auto intro: to-RED-aux)
from x have [p] to x ′ in ([(x ′,x)] · t ) = [p] to x in t

by simp (metis alpha ′ fresh-prod name-swap-bij x)
moreover have ([p] to x in t) ? K = [p] ? [x]t�K by simp
ultimately have snx: SN ([p] ? [x]t�K ) using snx ′

by (simp del: trm.inject)
} hence [x]t�K ∈ SRED σ by simp
with s have SN ((s to x in t) ? K ) by(auto simp del: SRED.simps)

} thus s to x in t ∈ RED (T τ) by simp
qed

9 Fundamental Theorem

The remainder of this section follows [Nom] very closely. We first establish
that all well typed terms are reducible if we substitute reducible terms for the
free variables.
abbreviation
mapsto :: (name×trm) list ⇒ name ⇒ trm ⇒ bool (‹- maps - to -› [55 ,55 ,55 ] 55 )

where
ϑ maps x to e ≡ (lookup ϑ x) = e

abbreviation
closes :: (name×trm) list ⇒ (name×ty) list ⇒ bool (‹- closes -› [55 ,55 ] 55 )

where
ϑ closes Γ ≡ ∀ x τ . ((x,τ) ∈ set Γ −→ (∃ t. ϑ maps x to t ∧ t ∈ RED τ))

theorem fundamental-theorem:
assumes a: Γ ` t : τ and b: ϑ closes Γ
shows ϑ<t> ∈ RED τ

using a b
proof(nominal-induct avoiding: ϑ rule: typing.strong-induct)

case (t3 a Γ σ t τ ϑ) — lambda case
next

case (t5 x Γ s σ t τ ϑ) — to case
have ihs :

∧
ϑ . ϑ closes Γ =⇒ ϑ<s> ∈ RED (T σ) by fact

have iht :
∧

ϑ . ϑ closes ((x, σ) # Γ) =⇒ ϑ<t> ∈ RED (T τ) by fact
have ϑ-cond: ϑ closes Γ by fact
have fresh: x ] ϑ x ] Γ x ] s by fact+
from ihs have ϑ<s> ∈ RED (T σ) using ϑ-cond by simp
moreover
{ from iht have ∀ s∈RED σ. ((x,s)#ϑ)<t> ∈ RED (T τ)

using fresh ϑ-cond fresh-context by simp
hence ∀ s∈RED σ. ϑ<t>[x::=s] ∈ RED (T τ)

using fresh by (simp add: psubst-subst) }
ultimately have (ϑ<s>) to x in (ϑ<t>) ∈ RED (T τ) by (simp only: to-RED)
thus ϑ<s to x in t> ∈ RED (T τ) using fresh by simp

qed auto — all other cases are trivial

The final result then follows using the identity substitution, which is Γ-closing
since all variables are reducible at any type.
fun

id :: (name×ty) list ⇒ (name×trm) list
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where
id [] = []

| id ((x,τ)#Γ) = (x,Var x)#(id Γ)

lemma id-maps:
shows (id Γ) maps a to (Var a)

by (induct Γ) (auto)

lemma id-fresh:
fixes x::name
assumes x: x ] Γ
shows x ] (id Γ)

using x
by (induct Γ) (auto simp add: fresh-list-nil fresh-list-cons)

lemma id-apply:
shows (id Γ)<t> = t

by (nominal-induct t avoiding: Γ rule: trm.strong-induct)
(auto simp add: id-maps id-fresh)

lemma id-closes:
shows (id Γ) closes Γ

proof −
{ fix x τ assume (x,τ) ∈ set Γ

have CR4 τ by(simp add: RED-props CR3-implies-CR4 )
hence Var x ∈ RED τ

by(auto simp add: NEUT-def normal-var CR4-def )
hence (id Γ) maps x to Var x ∧ Var x ∈ RED τ

by (simp add: id-maps)
} thus ?thesis by blast

qed

9.1 Strong normalization theorem
lemma typing-implies-RED:

assumes a: Γ ` t : τ
shows t ∈ RED τ

proof −
have (id Γ)<t>∈RED τ
proof −

have (id Γ) closes Γ by (rule id-closes)
with a show ?thesis by (rule fundamental-theorem)

qed
thust ∈ RED τ by (simp add: id-apply)

qed

theorem strong-normalization:
assumes a: Γ ` t : τ
shows SN (t)

proof −
from a have t ∈ RED τ by (rule typing-implies-RED)
moreover have CR1 τ by (rule RED-props)
ultimately show SN (t) by (simp add: CR1-def )

qed

This finishes our formalization effort. This article is generated from the Is-
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abelle theory file, which consists of roughly 1500 lines of proof code. The
reader is invited to replay some of the more technical proofs using the theory
file provided.
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