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Abstract

In the mid 80s, Lichtenstein, Pnueli, and Zuck proved a classi-
cal theorem stating that every formula of Past LTL (the extension
of LTL with past operators) is equivalent to a formula of the form
Ai_; GFp; VFG;, where ¢; and 1; contain only past operators [3, 6].
Some years later, Chang, Manna, and Pnueli built on this result to de-
rive a similar normal form for LTL [2]. Both normalisation procedures
have a non-elementary worst-case blow-up, and follow an involved path
from formulas to counter-free automata to star-free regular expressions
and back to formulas. We improve on both points. We present an ex-
ecutable formalisation of a direct and purely syntactic normalisation
procedure for LTL yielding a normal form, comparable to the one by
Chang, Manna, and Pnueli, that has only a single exponential blow-up.
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1 Overview

This document contains the formalisation of the central results appearing in
[4, Sections 4-6]. We refer the interested reader to [4] or to the extended ver-
sion [5] for an introduction to the topic, related work, intuitive explanations
of the proofs, and an application of the normalisation procedure, namely, a
translation from LTL to deterministic automata.

The central result of this document is the following theorem:

Theorem 1. Let ¢ be an LTL formula and let Ao, ¥y, 3o, and Iy be
the classes of LTL formulas from Definition 2. Then ¢ is equivalent to the
following formula from the class As:

V(e A N\ GF@INIT) A N FG(y[M]T)
]\]\{Q,u((go)) peM PeN
Cr(e

where Y[M|3, Y[NIT, and Y[M]} are functions mapping 1 to a formula
from ¥o, X1, and Iy, respectively.

Definition 2 (Adapted from [1]). We define the following classes of LTL
formulas:

o The class Yo = Iy = Ag is the least set containing all atomic proposi-
tions and their negations, and is closed under the application of con-
junction and disjunction.

o The class ;41 is the least set containing 1I; and is closed under the
application of conjunction, disjunction, and the X, U, and M opera-
tors.

e The class 1l;11 is the least set containing ¥; and is closed under the
application of conjunction, disjunction, and the X, R, and W opera-
tors.

o The class A1 is the least set containing ;11 and ;11 and is closed
under the application of conjunction and disjunction.

2 A Normal Form for Linear Temporal Logic

theory Normal-Form imports
LTL-Master- Theorem.Master-Theorem
begin



2.1 LTL Equivalences

Several valid laws of LTL relating strong and weak operators that are useful
later.

lemma ltin-strong-weak-2:
wkEn o Up ¥ «— w =, (¢ andy, Fy ) Wy, 1 (is 7thesisl)
wkEy o My Yy — w =y ¢ Ry (Y and, Fy, ) (is 7thesis?)
proof —
have 3j. suffiz (i + j) w |En ¥
if suffiz j w =, ¥ and Vj<i. = suffiz j w =, ¢ for i j
proof
from that have j > i
by (cases j > i) auto
thus suffic (i + (j — 1)) w =, ¢
using that by auto
qed
thus ?thesis!
unfolding ltin-strong-weak by auto
next
have 3j. suffiz (i + j) w |, ¢
if suffiz j w =, ¢ and Vj<i. = suffix j w =, ¢ for i j
proof
from that have j > i
by (cases j > i) auto
thus suffic (i + (j — ©) w En ¢
using that by auto
qed
thus ?thesis2
unfolding ltin-strong-weak by auto
qged

lemma ltin-weak-strong-2:
wEL, e Wopt «— wly, ¢ Uy (Y ory Gy @) (is Zthesisl)
wER ¢ Ry ¥ +— w =y (@ ory Gp ) My, ) (is ?thesis2)
proof —
have suffiz j w =, ¢
if \j.j<i= suffirjwk, ¢and Aj. suffix (i + j) w |, ¢ for i j
using that(1)[of j] that(2)[of j — i] by (cases j < i) simp-all
thus ?thesisi
unfolding ltin-weak-strong unfolding semantics-ltin.simps suffiz-suffix
by blast
next
have suffiz j w =, ¢
if \j. j <i= suffizjwlk, ¢ and Aj. suffiz (i + j) w =, ¢ for i j



using that(1)[of j] that(2)[of j — i] by (cases j < i) simp-all
thus ?thesis2
unfolding ltin-weak-strong unfolding semantics-ltin.simps suffiz-suffix
by blast
qed

2.2 Y[MJL, YINIE, ¢[M]5, and ¢[N]}

The following four functions use "promise sets", named M or N, to rewrite
arbitrary formulas into formulas from the class 31-, ¥o-, II1-, and Ils, re-
spectively. In general the obtained formulas are not equivalent, but under
some conditions (as outlined below) they are.

no-notation FG-advice (<-[-],» [90,60] 89)
no-notation GF-advice (¢-[-],» [90,60] 89)

notation FG-advice (<-[-]x1> [90,60] 89)
notation GF-advice (<-[-]r11> [90,60] 89)

fun flatten-sigma-2:: 'a ltln = 'a ltln set = 'a ltln (<-[-]n2’)
where

(¢ U V) [M]s2 = (¢[M]s2) Uy (¥[M]s2)
| (¢ V) [M]s2 = (¢[M]s2) Un (¥[M]s2) orn (Gn @[M]m1))
| (¢ M V) [M ]22 = (¢[M]s2) My ([M]s2)
| (¢ Rn ¥)[M]s2 = ((¢[M]s2) orn (Gn $[M]n1)) My (¥[M]s2)
| (¢ and V) [M ] = (¢[M]s2) and, (w[M}m)
| (p orn ¥)[M]s2 = (¢[M]s2) ory (¥[M]s2)
| (X0 ©)[M]s2 = Xy (9[M]s2)
| o[M]s2 = ¢

fun flatten-pi-2 :: 'a ltln = 'a ltln set = 'a ltln (<-[-]m2>)
where

(o Wy ¥)[N]n2 =
| (¢ U ¥)[N]m2 =
| (¢ Rn ¢)[N ]H2 = (¢[Nlm2) Bn (¢[N]m2)
| (¢ M $)[Nlm2 = (¢[N]n2) Rn (($[Nn2) and, (Fn ¢[N]s1))
l (¢ andn P)[Nlnz = (¢[N]m2) and, (Y[N]m2)
|
|

(¢[Nlm2) Wy (¥[Nm2)
(@[N]I'D andy, (Fn ¢[N]El)) W (¢[N]H2)

(¢ orn ¥)[Nlnz = (¢[Nlnz2) orn (Y[N]mn2)
(Xn ©)[Nn2 = X»n (¢[N]mn2)
¢[Nlm2 = ¢

lemma GF-advice-restriction:
lGF (p Wy ) wim = 0[GF ¢ wim
Y[GF (¢ Ry ¥) wim = Y[GF ¢ wlm



by (metis (no-types, lifting) GF-semantics’ inf-commute inf-left-commute
inf-sup-absorb subformulas,.simps(6) GF-advice-inter-subformulas)
(metis (no-types, lifting) GF-advice-inter GF.simps(5) GF-semantics’
GF-subformulas,, inf.commute sup.boundedE)

lemma FG-advice-restriction:
VIFG (¢ Un ¥) ws1 = Y[FG ¢ wlm
P[FG (o My 1) wls1 = 0[FG ¢ w]s
by (metis (no-types, lifting) FG-advice-inter FG.simps(4) FG-semantics’
FG-subformulas, inf.commute sup.boundedFE)
(metis (no-types, lifting) FG-advice-inter FG.simps(7) FG-semantics’
FG-subformulas, inf.right-idem inf-commute sup.cobounded1)

lemma flatten-sigma-2-intersection:
M N subformulas, ¢ € S = @[M N Sy = ¢[M]s»
by (induction @) (simp; blast intro: GF-advice-inter)+

lemma flatten-sigma-2-intersection-eq:
M N subformulas, ¢ = M' = p[M']s2 = ¢[M]s2
using flatten-sigma-2-intersection by auto

lemma flatten-sigma-2-monotone:
wEn pM]sy = M C M'= w =y ¢[M52
by (induction ¢ arbitrary: w)
(simp; blast dest: GF-advice-monotone)+

lemma flatten-pi-2-intersection:
N N subformulas, ¢ € S = [N N Slm2 = @[N]
by (induction ¢) (simp; blast intro: FG-advice-inter)+

lemma flatten-pi-2-intersection-eq:
N N subformulas, ¢ = N' = ¢[N'n2 = ¢[N]n2
using flatten-pi-2-intersection by auto

lemma flatten-pi-2-monotone:
w En ¢[Nlnz = N € N' = w =n 0[N
by (induction ¢ arbitrary: w)
(simp; blast dest: FG-advice-monotone)+

lemma ltin-weak-strong-stable-words-1:

wEn (¢ Wn ) «— wkn @ Uy (¢ orn (Gn 9[GF ¢ wlm)) (is #lhs
< 2rhs)
proof

assume ?lhs



moreover

{

assume assm: w =, Gn ¢
moreover
obtain ¢ where Aj. F ¢ (suffiz i w) C GF ¢ w
by (metis MOST-nat-le GF-suffix p-stable-def order-refl suffiz-p-stable)
hence A\j. F ¢ (suffiz i (suffiz j w)) C GF ¢ w
by (metis F-suffix GF-F-subset GF -suffix semiring-normalization-rules(24)
subset-Un-eq suffiz-suffix sup.orderE)
ultimately
have suffiz i w =, Gpn (¢[GF ¢ w|m)
using GF-advice-al[OF <\j. F ¢ (suffix i (suffiz j w)) € GF ¢ w]
by (simp add: add.commute)
hence ?rhs
using assm by auto

}

moreover

have w =, ¢ U, ¥ = %rhs
by auto

ultimately

show ?rhs
using ltin-weak-to-strong(1) by blast
next
assume ?rhs
thus ?lhs
unfolding ltin-weak-strong-2 unfolding semantics-Iltin.simps
by (metis GF-suffix order-refl GF-advice-a2)
qed

lemma ltin-weak-strong-stable-words-2:

w By (¢ By ¥) «— w By (9 ory (Gn YIGF ¢ wlm)) My ¢ (is ?lhs
< 2rhs)
proof

assume ?lhs

moreover

{



assume assm: w =, Gy ¥
moreover
obtain ¢ where Aj. F ¢ (suffiz i w) C GF ¢ w
by (metis MOST-nat-le GF-suffix u-stable-def order-refl suffix-p-stable)
hence Aj. F ¢ (suffiz i (suffiz j w)) C GF ¢ w
by (metis F-suffiz GF-F-subset GF -suffiz semiring-normalization-rules(24 )
subset-Un-eq suffiz-suffix sup.orderE)
ultimately
have suffiz i w =, Gn (Y[GF ¥ w|m)
using GF-advice-al[OF «\j. F ¢ (suffiz i (suffix j w)) € GF ¥ wy]
by (simp add: add.commute)
hence %rhs
using assm by auto

}

moreover

have w =, ¢ M, v = %rhs
by auto

ultimately

show ?rhs
using ltin-weak-to-strong by blast
next
assume ?rhs
thus ?lhs
unfolding ltin-weak-strong-2 unfolding semantics-Itin.simps
by (metis GF-advice-a2 GF-suffix order-refl)
qged

lemma [tin-weak-strong-stable-words:
w ):n (SO W ¢) —w ):n o Un (1/) O0T'n (Gn So[g}— (SO W 1/}) w]Hl))
w = (¢ Bn ¥) <— w =n (@ ory (Gn Y[GF (¢ Rn ¥) wlm)) My ¢
unfolding ltin-weak-strong-stable-words-1 ltin-weak-strong-stable-words-2
GF-advice-restriction by simp+

lemma flatten-sigma-2-IH-lifting:

assumes ¥ € subfrmlsn ¢

assumes suffiz i w =, Y[GF ¢ (suffiz i w)|n2 = suffix i w =, P

shows suffiz i w =, Y[GF ¢ wlsna = suffic i w =,

by (metis (no-types, lifting) inf.absorb-iff2 inf-assoc inf-commute assms(2)
GF-suffix flatten-sigma-2-intersection-eqlof GF ¢ w 1p GF ¢ w] GF-semantics’
subformulas,,-subset[ OF assms(1)])



lemma flatten-sigma-2-correct:
w = QlOF o wlne «— wEn ¢
proof (induction ¢ arbitrary: w)
case (And-ltln p1 v2)
then show ?case
using flatten-sigma-2-IH-lifting|of - ¢ 1 and,, @2 0] by simp
next
case (Or-ltln p1 ¢2)
then show “case
using flatten-sigma-2-IH-lifting|of - ¢1 ory, ©2 0] by simp
next
case (Next-ltin @)
then show ?case
using flatten-sigma-2-IH-lifting|of - X,, ¢ 1] by fastforce
next
case (Until-ltin @1 ¢2)
then show ?case
using flatten-sigma-2-1H-lifting|of - ¢1 U, ¢2] by fastforce
next
case (Release-ltin p1 p2)
then show “case
unfolding ltin-weak-strong-stable-words
using flatten-sigma-2-IH-lifting|of - ¢1 R, ¢2] by fastforce
next
case (WeakUntil-ltin ¢1 ¢2)
then show ?case
unfolding ltin-weak-strong-stable-words
using flatten-sigma-2-IH-lifting|of - ¢1 W, ¢2] by fastforce
next
case (StrongRelease-ltin @1 ¢2)
then show ?case
using flatten-sigma-2-IH-lifting|of - ¢1 M,, p2] by fastforce
qed auto

lemma ltin-strong-weak-stable-words-1:

wEL e Uy +— w =, (¢ and, (Fp Y[FG ¢ w|x1)) Wy o (is ?lhs
< 2rhs)
proof

assume ?rhs

moreover

obtain i where v-stable ¢ (suffiz i w)



by (metis MOST-nat less-Suc-eq suffiz-v-stable)
hence Vi € FG ¢ w. suffir i w =, Gy 9
using FG-suffix G-elim v-stable-def by blast

{
assume assm: w =y, Gy, (¢ andy, (F, Y[FG ¢ w]s1))
hence suffiz i w =y, (F,, ¥)[FG ¢ wls1
by simp
hence suffiz i w =, F, ¥
by (blast dest: FG-advice-b2-helper[OF <~V € FG 1 w. suffix i w =,
Gn )
hence w =, ¢ Uy ¢
using assm by auto

}

ultimately

show ?lhs

by (meson ltin-weak-to-strong(1) semantics-ltin.simps(5) until-and-left-distrib)
next

assume ?lhs

moreover

have A\i. suffiz i w =y, ¥ = suffiv i w =, Y[FG ¥ w|ni
using FG-suffiz by (blast intro: FG-advice-b1)

ultimately

show ?rhs
unfolding ltin-strong-weak-2 by fastforce
qged

lemma [tin-strong-weak-stable-words-2:

wWER e My +— wl, ¢ Ry (Y and, (Fr o[ FG ¢ w|x1)) (is ?lhs +—
2rhs)
proof

assume ?rhs

moreover
obtain ¢ where v-stable ¢ (suffiz i w)

by (metis MOST-nat less-Suc-eq suffiz-v-stable)
hence V¢ € FG ¢ w. suffitiw =, G, ¢



using FG-suffix G-elim v-stable-def by blast

{
assume assm: w =y, G, (V¥ and,, (Fp, ¢[FG ¢ wls1))
hence suffiz i w =y, (Fn, ©)[FG ¢ w]|ni
by simp
hence suffiz i w =, Fp ¢
by (blast dest: FG-advice-b2-helper[OF V¢ € FG ¢ w. suffiz i w =,
Gn P])
hence w =, ¢ M,, ¢
using assm by auto

}

ultimately

show ?lhs

using ltin-weak-to-strong(3) semantics-ltin.simps(5) strong-release-and-right-distrib
by blast
next

assume ?lhs

moreover

have Ai. suffiz i w =, ¢ = suffix i w =, p[FG ¢ w1
using FG-suffiz by (blast intro: FG-advice-b1)

ultimately

show ?rhs
unfolding ltin-strong-weak-2 by fastforce
ged

lemma ltin-strong-weak-stable-words:
wEn o Un ¥ 6= w s (0 andy (Fn [FG (9 Up ¥) wls1)) Wi
w ):n o My <— w ):n ¢ Ry (w andy, (Fn (P[»Fg (90 M, ¢) w]El))
unfolding [tin-strong-weak-stable-words-1 Itin-strong-weak-stable-words-2
FG-advice-restriction by simp—+

lemma flatten-pi-2-1H-lifting:

assumes ¥ € subfrmlsn ¢

assumes suffiz i w =, Y[FG ¥ (suffiz i w)|ne = suffix i w =, ¢

shows suffiz i w =, V[FG ¢ wina = suffix i w =, ¢

by (metis (no-types, lifting) inf.absorb-iff2 inf-assoc inf-commute assms(2)
FG-suffix flatten-pi-2-intersection-eqlof FG ¢ w ¢ FG ¢ w| FG-semantics’

10



subformulas, -subset[OF assms(1)])

lemma flatten-pi-2-correct:
w En P[FG @ wlne «— w = @
proof (induction ¢ arbitrary: w)
case (And-ltln p1 v2)
then show “case
using flatten-pi-2-1H-lifting|of - @1 and,, @2 0] by simp
next
case (Or-ltin p1 ¢2)
then show “case
using flatten-pi-2-1H-lifting[of - p1 ory, @2 0] by simp
next
case (Next-ltin ¢)
then show ?case
using flatten-pi-2-1H-lifting[of - X,, ¢ 1] by fastforce
next
case (Until-ltin @1 ¢2)
then show ?case
unfolding ltin-strong-weak-stable-words
using flatten-pi-2-1H-lifting|of - ¢1 U, ¢2] by fastforce
next
case (Release-ltin p1 p2)
then show ?case
using flatten-pi-2-1H-lifting[of - p1 R, ¢2] by fastforce
next
case (WeakUntil-ltin ¢1 ¢2)
then show ?case
using flatten-pi-2-1H-lifting[of - ¢1 W, ©2] by fastforce
next
case (StrongRelease-ltin @1 ¢2)
then show ?case
unfolding ltin-strong-weak-stable-words
using flatten-pi-2-1H-lifting[of - p1 M,, 2] by fastforce
qged auto

2.3 Main Theorem

Using the four previously defined functions we obtain our normal form.

theorem normal-form-with-flatten-sigma-2:

w fEn @
3IM C subformulas, ¢. 3N C subformulas, .

w l:n QD[M]EQ A (V’(/J eEM. w ):n Gy (Fn ’(ﬁ[N]El)) A (VT/J eEN.w ):n

11



Fp, (Gn ¥[M]m1))) (is ?lhs <— ?rhs)
proof
assume ?lhs
then have w =, ¢[GF ¢ w]s2
using flatten-sigma-2-correct by blast
then show ?rhs
using GF-subformulas,, FG-subformulas, GF-implies-GF FG-implies-FG
by metis
next
assume ¢rhs
then obtain M N where w =, ¢[M]s2 and M C GF ¢ w and N C
FG o w
using X-GF-Y-FG by blast
then have w =, ¢[GF ¢ w|xa
using flatten-sigma-2-monotone by blast
then show ?lhs
using flatten-sigma-2-correct by blast
qed

theorem normal-form-with-flatten-pi-2:
w En @ <
(M C subformulas, ¢. AN C subformulas, ¢.
wEp [Nz A (Vo € M. w =, G, (Fp, ¥[N]x1)) A (VY € N. w =,
Fp (Gy, ¥[M]m1))) (is ?lhs «— ?rhs)
proof
assume ?lhs
then have w =, ¢[FG ¢ w|n2
using flatten-pi-2-correct by blast
then show ?rhs
using GF-subformulas,, FG-subformulas, GF-implies-GF FG-implies-FG
by metis
next
assume ?rhs
then obtain M N where w =, ¢[N|n2 and M C GF ¢ wand N C
FG o w
using X-GF-Y-FG by metis
then have w =, ¢[FG ¢ w]n2
using flatten-pi-2-monotone by metis
then show ?lhs
using flatten-pi-2-correct by blast
qged

end

12



3 Size Bounds

We prove an exponential upper bound for the normalisation procedure.
Moreover, we show that the number of proper subformulas, which corre-
spond to states very-weak alternating automata (A1W), is only linear for
each disjunct.

theory Normal-Form-Complezity imports
Normal-Form
begin

3.1 Inequalities and Identities

lemma inequality-1:
y>0=y+ 3<(2:nat) (y+ 1)
by (induction y) (simp, fastforce)

lemma inequality-2:

t>0=y>0= ((2:nat) (z+1)+ 2 (y+1)) <(2 (z
+y+ 1))

by (induction x; simp; induction y; simp; fastforce)

lemma size-gr-0:
size (¢ :: 'a ltin) > 0
by (cases ) simp-all

lemma sum-associative:
finite X = Dz e X. fo+c)=00 zv€e X. fz)+ card X x ¢
by (induction rule: finite-induct) simp-all

3.2 Length

We prove that the length (size) of the resulting formula in normal form is
at most exponential.

lemma flatten-sigma-1-length:
size (p[N]x1) < size ¢
by (induction ) simp-all

lemma flatten-pi-1-length:
size (p[M]m) < size ¢
by (induction ¢) simp-all
lemma flatten-sigma-2-length.:

size (p[M]xa) < 2 ™ (size ¢ + 1)

13



proof (induction @)
case (And-ltln p1 p2)
hence size (@1 and, p2)[M]sa < (2 ~(size o1 + 1)) + (2 ~ (size ¢2
+ 1)+ 1
by simp
also
have ... < 2 " (size 91 + size p2 + 1) + 1
using inequality-2[OF size-gr-0 size-gr-0] by simp
also
have ... < 2 " (size (p1 and, p2) + 1)
by simp
finally
show ?case.
next
case (Or-ltln p1 ¢2)
hence size (p1 ory, p2)[M]s2 < (2 ~(size o1 + 1)) + (2 ~ (size 2 +
1))+ 1
by simp
also
have ... < 2 7 (size 91 + size p2 + 1) + 1
using inequality-2|OF size-gr-0 size-gr-0] by simp
also
have ... < 2 7 (size (¢l orp, 2) + 1)
by simp
finally
show ?case.
next
case (Next-ltin @)
then show “case
using le-Suc-eq by fastforce
next
case (WeakUntil-ltin @1 ¢2)
hence size (p1 W, p2)[M]s2 < 2 ~ (size p1 + 1) + 2 ~ (size 2 + 1)
+ size w1 + 4
by (simp, simp add: add.commute add-mono flatten-pi-1-length)
also
have ... < 2 “(size p2 + 1)+ 2 x 2 " (size p1 + 1) + 1
using inequality-1[OF size-gr-0, of ¢1] by simp
also
have ... < 2 % (2 ~(size p1 + 1) + 2 ~ (size 2 + 1))
by simp
also
have ... < 2 x 2 7 (size p1 + size p2 + 1)
using inequality-2[OF size-gr-0 size-gr-0] mult-le-mono2 by blast

14



also
have ... = 2 7 (size (1 W, ©2) + 1)
by simp
finally
show Zcase.
next
case (StrongRelease-ltin ¢1 ¢2)
hence size (p1 M, p2)[M]s2 < (2 " (size o1 + 1)) + (2 ~ (size 2 +
1)+ 1
by simp
also
have ... < 2 7 (size 91 + size p2 + 1) + 1
using inequality-2[OF size-gr-0 size-gr-0] by simp
also
have ... < 2 7 (size (p1 M, 92) + 1)
by simp
finally
show Zcase.
next
case (Until-ltin @1 ¢2)
hence size (p1 U, ¢2)[M]n2 < (2 ~(size o1 + 1)) + (2 ~ (size 92 +
1)+ 1
by simp
also
have ... < 2 7 (size 91 + size p2 + 1) + 1
using inequality-2[OF size-gr-0 size-gr-0] by simp
also
have ... < 2 " (size (p1 U, ©2) + 1)
by simp
finally
show Zcase.
next
case (Release-ltin 1 p2)
hence size (p1 R, p2)[M]sa < 2 ~(size p1 + 1) + 2 ~ (size p2 + 1)
+ size 2 + 4
by (simp, simp add: add.commute add-mono flatten-pi-1-length)
also
have ... < 2 " (size pl + 1)+ 2 % 2~ (size p2 + 1) + 1
using inequality-1[OF size-gr-0, of ©2] by simp
also
have ... < 2 % (2 " (size ol + 1) + 2 ~ (size p2 + 1))
by simp
also
have ... < 2 % 2 7 (size o1 + size p2 + 1)

15



using inequality-2[OF size-gr-0 size-gr-0] mult-le-mono2 by blast
also
have ... = 2 " (size (¢l R, 92) + 1)
by simp
finally
show Zcase .
qed auto

lemma flatten-pi-2-length:
size (p[N]m2) < 2 ~(size ¢ + 1)
proof (induction @)
case (And-ltln p1 ¢2)
hence size (@1 and, p2)[Nlm2 < (2 ~ (size 1 + 1)) + (2 ~ (size 2
+ 1)+ 1
by simp
also
have ... < 2 7 (size 91 + size p2 + 1) + 1
using inequality-2[OF size-gr-0 size-gr-0] by simp
also
have ... < 2 7 (size (p1 and,, p2) + 1)
by simp
finally
show “case.
next
case (Or-ltin p1 ¢2)
hence size (p1 ory, @2)[Nlme < (2 ~(size p1 + 1)) + (2 ~ (size p2 +
1)) + 1
by simp
also
have ... < 2 7 (size p1 + size p2 + 1) + 1
using inequality-2[OF size-gr-0 size-gr-0] by simp
also
have ... < 2 7 (size (pl orp, 92) + 1)
by simp
finally
show “Zcase.
next
case (Next-ltin o)
then show “case
using le-Suc-eq by fastforce
next
case (Until-ltin @1 ¢2)
hence size (p1 Uy, 2)[Nln2 < 2 ~ (size 1 + 1) + 2 ~ (size 92 + 1)
+ size 2 + 4
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by (simp, simp add: add.commute add-mono flatten-sigma-1-length)
also
have ... < 2 " (size pl + 1)+ 2 % 2 " (size o2 + 1) + 1
using inequality-1[OF size-gr-0, of ©2] by simp
also
have ... < 2 % (2 " (size 1 + 1) + 2 ~ (size p2 + 1))
by simp
also
have ... < 2 % 2 7 (size p1 + size p2 + 1)
using inequality-2[OF size-gr-0 size-gr-0] mult-le-mono2 by blast
also
have ... = 2 " (size (p1 U, 92) + 1)
by simp
finally
show Zcase.
next
case (Release-ltin p1 p2)
hence size (p1 R, 2)[Nlm2 < (2 ~ (size p1 + 1)) + (2 ~ (size 92 +
1)) + 1
by simp
also
have ... < 2 7 (size p1 + size p2 + 1) + 1
using inequality-2[OF size-gr-0 size-gr-0] by simp
also
have ... < 2 " (size (¢1 R, p2) + 1)
by simp
finally
show Zcase.
next
case (WeakUntil-ltin @1 ¢2)
hence size (p1 W, p2)[Nln2 < (2 ~ (size p1 + 1)) + (2 ~ (size p2 +
1)) + 1
by simp
also
have ... < 2 7 (size p1 + size 2 + 1) + 1
using inequality-2[OF size-gr-0 size-gr-0] by simp
also
have ... < 2 7 (size (p1 Wy, ¢2) + 1)
by simp
finally
show ?case.
next
case (StrongRelease-ltin ¢1 p2)
hence size (p1 M, p2)[N]m2 < 2 ~(size o1 + 1) + 2 ~ (size 92 + 1)
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+ size w1 + 4
by (simp, simp add: add.commute add-mono flatten-sigma-1-length)
also
have ... < 2 “(size p2 + 1)+ 2 x 2 " (size p1 + 1) + 1
using inequality-1[OF size-gr-0, of ¢1] by simp
also
have ... < 2 % (2 " (size o1 + 1) + 2~ (size 2 + 1))
by simp
also
have ... < 2 x 2 7 (size p1 + size p2 + 1)
using inequality-2[OF size-gr-0 size-gr-0] mult-le-mono2 by blast
also
have ... = 2 " (size (p1 M, ¢2) + 1)
by simp
finally
show Zcase .
qged auto

definition normal-form-length-upper-bound
where normal-form-length-upper-bound
= (2 2 nat) " (size p) * (2 " (size o + 1) + 2 x (size o + 2) ~ 2)

definition normal-form-disjunct-with-flatten-pi-2-length
where normal-form-disjunct-with-flatten-pi-2-length ¢ M N
= size (p[N]m2) + O_¢ € M. size (¢[N]s1) + 2) + (O_¢ € N. size
(Y[M]m1) + 2)

definition normal-form-with-flatten-pi-2-length

where normal-form-with-flatten-pi-2-length ¢

=Y (M,N)e{(M,N)| MN.M C subformulas, ¢ N N C subformulas,
v}. normal-form-disjunct-with-flatten-pi-2-length ¢ M N

definition normal-form-disjunct-with-flatten-sigma-2-length
where normal-form-disjunct-with-flatten-sigma-2-length o M N
= size (p[M]s2) + O_ ¢ € M. size (¢[N]s1) + 2) + (D_¢ € N. size
(Y [M]m) + 2)

definition normal-form-with-flatten-sigma-2-length

where normal-form-with-flatten-sigma-2-length o

=Y (M,N)e{(M,N)|MN.M C subformulas, o N N C subformulas,
©}. normal-form-disjunct-with-flatten-sigma-2-length ¢ M N

lemma normal-form-disjunct-length-upper-bound:
assumes
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M C subformulas,, ¢
N C subformulas, ¢
shows
normal-form-disjunct-with-flatten-sigma-2-length ¢ M N < 2 ~ (size ¢
+ 1)+ 2 x (size o + 2) ~ 2 (is ?thesisl)
normal-form-disjunct-with-flatten-pi-2-length ¢ M N < 2 ™ (size o + 1)
+ 2 x (size ¢ + 2) ~ 2 (is ?thesis2)
proof —
let n = size ¢
let %b=2"(n+ 1)+ n*x(n+ 2)+ nx (n+ 2)

have finite-M: finite M and card-M: card M < %n
by (metis assms(1) finite-subset subformulas,,-finite)
(meson assms(1) card-mono order-trans subformulas,,-subfrmlsn sub-
frmlsn-card subfrmlsn-finite)

have finite-N: finite N and card-N: card N < 7n
by (metis assms(2) finite-subset subformulas, -finite)
(meson assms(2) card-mono order-trans subformulas, -subfrmlsn sub-
frmlsn-card subfrmlsn-finite)

have size-M: \. v € M = size 1p < size ¢
and size-N: \Y. p € N = size ¢ < size ¢
by (metis assms(1) eq-iff in-mono less-imp-le subformulas,-subfrmlsn
subfrmlsn-size)
(metis assms(2) eq-iff in-mono less-imp-le subformulas,-subfrmlsn
subfrmlsn-size)

hence size-M" \¢. p € M = size (¢¥[N]n1) < size ¢
and size-N": \p. v € N = size (Y[M]m1) < size ¢
using flatten-sigma-1-length flatten-pi-1-length order-trans by blast+

have (> ¢ € M. size (¢[N]s1)) < ?n % ?n
and (> v € N. size (Y[M]m1)) < ?n * ?n
using sum-bounded-above[of M, OF size-M’] sum-bounded-above|of N,
OF size-N'|
using mult-le-mono[ OF card-M| mult-le-mono| OF card-N| by fastforce+

hence (> ¢ € M. (size (¢[N]s1) + 2)) < ?n x (n + 2)
and (D¢ € N. (size (Y[M]m) + 2)) < %n x (9n + 2)
unfolding sum-associative| OF finite-M] sum-associative] OF finite-N|
using card-M card-N by simp-all

hence normal-form-disjunct-with-flatten-sigma-2-length ¢ M N < b
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and normal-form-disjunct-with-flatten-pi-2-length ¢ M N < b
unfolding normal-form-disjunct-with-flatten-sigma-2-length-def normal-form-disjunct-with-flatten

by (metis (no-types, lifting) flatten-sigma-2-length flatten-pi-2-length
add-le-mono)+

thus ?thesis] and ?thesis2
by (simp-all add: power2-eq-square)
ged

theorem normal-form-length-upper-bound:
normal-form-with-flatten-sigma-2-length ¢ < normal-form-length-upper-bound
¢ (is Zthesisl)
normal-form-with-flatten-pi-2-length ¢ < normal-form-length-upper-bound
¢ (is Zthesis2)
proof —
let ?n = size
let 9% =2 " (sizep + 1)+ 2 % (sizep + 2) ~ 2

have {(M, N) | M N. M C subformulas, ¢ N N C subformulas, ¢} =
{M. M C subformulas, ¢} x {N. N C subformulas, ¢} (is ?choices = -)
by simp

moreover

have card {M. M C subformulas,, ¢} = (2 :: nat) ~ (card (subformulas,

©))

and card {N. N C subformulas, ¢} = (2 :: nat) ~ (card (subformulas,

©))

using card-Pow unfolding Pow-def using subformulas,-finite subfor-
mulas, -finite by auto

ultimately

have card ?choices < 2 ~ (card (subfrmisn ¢)) (is ?2f < -)

by (metis subformulas,, -card card-cartesian-product subformulas,,, -subfrmisn
subfrmlsn-finite Suc-1 card-mono lessI power-add power-increasing-iff)

moreover

have (2 :: nat) ~ (card (subfrmlisn p)) < 2~ n
using power-increasinglof - - 2 :: nat] by (simp add: subfrmlsn-card)

ultimately
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have bar: of-nat (card ?choices) < (2 :: nat) ~ ?n
using of-nat-id by presburger

moreover

have normal-form-with-flatten-sigma-2-length ¢ < of-nat (card ?choices)
x b
unfolding normal-form-with-flatten-sigma-2-length-def
by (rule sum-bounded-above) (insert normal-form-disjunct-length-upper-bound,
auto)

moreover

have normal-form-with-flatten-pi-2-length ¢ < of-nat (card ?choices) x 2b
unfolding normal-form-with-flatten-pi-2-length-def
by (rule sum-bounded-above) (insert normal-form-disjunct-length-upper-bound,
auto)

ultimately

show ?thesis] and ?thesis2
unfolding normal-form-length-upper-bound-def
using mult-le-monol order-trans by blast+
qed

3.3 Proper Subformulas

We prove that the number of (proper) subformulas (sf) in a disjunct is linear
and not exponential.

fun sf :: ‘a ltin = ’'a ltin set
where

sf (¢ andn ) = sf @ U sf ¢

| sf (¢ orn ) = sf @ U sf
|5f(Xn§0):{Xn(P}U5f90

| sf (p Un ) ={p Un t} U sf o Usf
|3f(@Rn¢):{@Rn¢}USfQOU5f¢
| sf (¢ Wn ) ={p Wy} UsfoUsf
|3f((pMn1/}):{§0Mn¢}Usf@U3fw
| sf o =A{

lemma sf-finite:

finite (sf )
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by (induction ¢) auto

lemma sf-subset-subfrmlsn:
sf © C subfrmlsn ¢
by (induction ¢) auto

lemma sf-size:
Y € sf o = size P < size
by (induction ¢) auto

lemma sf-sf-subset:

pesfo=sfyYCsfy
by (induction ) auto

lemma subfrmlisn-sf-subset:
Y € subfrmlsn ¢ = sf Y C sf ¢
by (induction ) auto

lemma sf-subset-insert:
assumes sf ¢ C insert ¢ X
assumes ¥ € subfrmlsn ¢
assumes p # Y
shows sf ¢ C X

proof —

have sf ¢ C sf ¢ — {¢}
using assms(2,3) subfrmisn-sf-subset sf-size subfrmlsn-size by fastforce

thus “thesis
using assms(1) by auto
qed

lemma flatten-pi-1-sf-subset:

sf (pIM]m) € (Uwesf ¢ sf (¢[M]m1))
by (induction ¢) auto

lemma flatten-sigma-1-sf-subset:

sf (p[M]s1) € (Ugpesf ¢. sf (p[M]s1))
by (induction @) auto

lemma flatten-sigma-2-sf-subset:
sf (¢[M]s2) € (Uvesf o. sf (¥[M]s2))
by (induction ¢) auto

lemma sf-set?:

sf (p[M]s2) U sf (o[M]m1) € (U € (sf ¢). (sf (W[M]s2) U sf (¥[M]m1)))
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by (induction ¢) auto

lemma ltin-not-idempotent [simp]:

@ andp Y # @ ¥ andn © # 0 @ # @ andy Y @ # Y andyp @
P o Y F Qi orn pFE Q@ FEpornhoF Y or, @
Xno#pp#Xnep

Unv#Foo#oUnV Y UnpFop#p Uy

R #poo#Fo RV Y Roo#Fop#Y Ry
Wonv#ooFe Wpntp Wop#op#Y Wy
My #@op#oMypp My # @ p#Y My

y (induction @; force)+

€€ €6

=8

lemma flatten-card-sf-induct:
assumes finite X
assumes A\z. z € X = sfz C X
shows card (|JpeX. sf (¢[N]s1)) < card X
A card (JeeX. sf ([M]m1)) < card X
A card (JeeX. sf (¢[M]s2) U sf (p[M]m1)) < 3 * card X
using assms(2)
proof (induction rule: finite-ranking-induct[where f = size, OF «finite
X))
case (2 ¢ X)
{
assume ¢ ¢ X
hence Ax. x € X = sf x C X
using 2(2,4) sf-subset-subfrmlsn subfrmlsn-size by fastforce
hence card (|JpeX. sf (¢[N]s1)) < card X
and card (|JpeX. sf (¢[M]m1)) < card X
and card (|JpeX. sf (¢[M]s2) U sf (p[M]m1)) < 3 * card X
using 2(3) by simp+

moreover

let Zlower! = |J¢ € insert ¥ X. sf (p[N]s1)
let Zupperl = (Jp € X. sf (¢[N]s1)) U {¢[N]s1}

let Zlower2 = Jp € insert ¥ X. sf (p[M]m1)
let 7upper2 = (Up € X. sf (¢[M]mn1)) U {¢[M]m1}

let Zlower3 = |J¢ € insert v X. sf (¢[M]s2) U sf (¢[M]m)

let Zupper3-cases = {Y[M]x2, Y[M]m} U (case ¥ of (p1 W, ¢2) =
(G (o1 MI)} | (01 Ru 92) = {Go (92[MIm)} | - = {})

let Zupper3 = (Jp € X. sf (¢[M]x2) U sf (p[M]m1)) U Zupper3-cases
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have finite-upperl: finite (?upperl)
and finite-upper2: finite (Zupper2)
and finite-upper3: finite (?uppers3)
using 2(1) sf-finite by auto (cases ¥, auto)

have Az y. card {z, y} < 3
and Az y z. card {z, y, z} < 3
by (simp add: card-insert-if le-less)+
hence card-leg-3: card (Zupper3-cases) < 3
by (cases ) (simp-all, fast)

note card-subset-split-rule = le-trans[OF card-mono card-Un-le]

have sf-in-X: sf ¢ C insert ¢ X
using 2 by blast

have Zlower! C ?upperl A ?lower2 C Zupper2 A ?lowerd C 2upper3
proof (cases 1)
case (And-ltin 11 19)
have x: sf 1 C X sf 9o C X
by (rule sf-subset-insert[OF sf-in-X, unfolded And-Itin]; simp)+

have (sf (¢[M]s2)) € (Ug € X. sf (p[M]s2))
and (sf ([MJm)) € (U € X. sf (¢[M]n1))
and (sf (¢[N]z1)) € (U € X. sf (¢[N]z1))
subgoal
using flatten-sigma-2-sf-subset[of - M| * by (force simp: And-Itin)
subgoal
using flatten-pi-1-sf-subset[of - M] = by (force simp: And-ltin)
subgoal
using flatten-sigma-1-sf-subset * by (force simp: And-Itin)
done

thus ?thesis
by blast
next
case (Or-ltln 1 2)
have *x: sf 1 C X sf 9o C X
by (rule sf-subset-insert|OF sf-in-X, unfolded Or-ltin]; simp)+

have (sf (¢[M]s2)) € (Up € X. sf (p[M]s2))
and (sf (¢[M]m)) € (Uy € X. sf (p[M]m))
and (sf (Y[N]s1)) € (Uy € X. sf (¢[N]s1))
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subgoal

using flatten-sigma-2-sf-subset[of - M| x by (force simp: Or-ltin)
subgoal

using flatten-pi-1-sf-subset[of - M| x by (force simp: Or-ltin)
subgoal

using flatten-sigma-1-sf-subset = by (force simp: Or-ltin)
done

thus ?thesis
by blast
next
case (Next-ltin 1)
have x: sf 1 C X
by (rule sf-subset-insert|OF sf-in-X, unfolded Next-ltin]) simp-all

have (sf (¢[M]s2)) € (U € X. sf (¢[M]x2)) U {¢[M]s2}
and (sf (Y[M]m)) € (U € X. sf (¢[M]m1)) U {[M]m1}
ang (8f1(¢[N]21)) C (Up € X. sf (¢[N]s1)) U {¢[N]s1}
subgoa

using flatten-sigma-2-sf-subset[of - M| = by (force simp: Next-ltin)
subgoal

using flatten-pi-1-sf-subset|[of - M| x by (force simp: Next-ltin)
subgoal

using flatten-sigma-1-sf-subset = by (force simp: Next-ltin)
done

thus ?thesis
by blast
next
case (Until-ltin 11 13)
have *: sf 91 C X sf 99 C X
by (rule sf-subset-insert|OF sf-in-X, unfolded Until-ltin]; simp)+

hence (sf (¥[M]z2)) € (U € X. sf (¢[M]x2)) U {¢[M]s2}
and (sf (Y[M]m)) € (U € X. sf (¢[M]m1)) U {¢[M]m1}
ang (Sfl(%D[N]El)) C (Up € X. sf (¢[N]s1)) U {¢[N]s1}
subgoa

using flatten-sigma-2-sf-subset|of - M| = by (force simp: Until-ltin)
subgoal

using flatten-pi-1-sf-subset[of - M] x by (force simp: Until-ltin)
subgoal

using flatten-sigma-1-sf-subset * by (force simp: Until-ltin)
done
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thus ?thesis
by blast
next
case (Release-ltin 11 12)
have *: sf 91 C X sf 99 C X
by (rule sf-subset-insert|OF sf-in-X, unfolded Release-ltin]; simp)+

have (sf (¥[M]s2)) € (Up € X. sf (¢[M]s2)) U {¢[M]s2, Gy
YoM} U sf (Y2[M]m1)
and (ng { Jm)) € (Uw € X. sf (9[M]m1)) U {&[M]m1}

and (sf (¢[N]z1)) € (Ue € X. sf (¢[N]z1)) U {¢[N]s1}
subgoal

using flatten-sigma-2-sf-subset[of - M| * by (force simp: Re-
lease-ltin)
subgoal
using flatten-pi-1-sf-subset|of - M| = by (force simp: Release-Itin)
subgoal
using flatten-sigma-1-sf-subset x by (force simp: Release-ltin)
done

moreover

have sf (2[M]m1) € (UpeX. sf ¢[M]sa U sf (¢[M]n1)) U {¢[M]m1}

using «(sf (Y[M]m)) € (Ue € X. sf (p[M]m)) U {¢[M]m}p
by (auto simp: Release-ltin)

ultimately
show ?thesis
by (simp add: Release-ltin) blast
next
case (WeakUntil-ltin 11 1)2)
have x: sf 1 C X sf 9o C X
by (rule sf-subset-insert[OF sf-in-X, unfolded WeakUntil-ltin];
sitmp)+

have (sf (V[M]s2)) € (Ug € X. sf (¢[M]s2)) U {¢[M]s2, Gn

1) € (U € X. of (e[Mlm)) U {6[M]n}
Ns1)) € (U € X. of (¢[N]s1)) U {0[N]s1}
subgoal
using flatten-sigma-2-sf-subset|of - M| * by (force simp: WeakUn-
til-ltln)
subgoal
using flatten-pi-1-sf-subset[of - M| x by (force simp: WeakUntil-ltin)
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subgoal
using flatten-sigma-1-sf-subset = by (force simp: WeakUntil-ltin)
done

moreover

have sf (¥1[M]m1) € (UpeX. sf ¢[M]sa U sf (¢[M]u1)) U {¢[M]m1}

using «(sf (¥[M]m1)) € (U € X. sf (p[M]m)) U {¢[M]m}>
by (auto simp: WeakUntil-ltin)

ultimately
show ?Zthesis
by (simp add: WeakUntil-ltin) blast
next
case (StrongRelease-ltin 11 1)2)
have *: sf 91 C X sf 99 C X
by (rule sf-subset-insert[OF sf-in-X, unfolded StrongRelease-ltin];
simp)+

hence (sf (V[M]s2)) € (U € X. sf (¢[M]s2)) U {¢[M]s2}
and (sf (Y[M]m)) € (U € X. sf (p[M]m1)) U {¢[M]m1}
and (sf (Y[N]z1)) € (U € X. sf (¢[N]z1)) U {#[N]s1}

subgoal
using flatten-sigma-2-sf-subset|of - M| x by (force simp: Stron-
gRelease-lItin)
subgoal
using flatten-pi-1-sf-subset[of - M] * by (force simp: StrongRe-
lease-ltin)
subgoal
using flatten-sigma-1-sf-subset x by (force simp: StrongRelease-Itin)
done

thus ?thesis
by blast
qed auto

hence card ?lower! < card (Jp € X. sf (¢[N]s1)) + 1
and card ?lower2 < card ({[Jy € X. sf (¢[M]m1)) +
and card ?lowerd < card (Jp € X. sf (¢[M]s2) U sf (p[M]m1)) +

using card-subset-split-rule[OF finite-upperl, of ?lowerl1]
using card-subset-split-rule[OF finite-upper2, of ?lower2]
using card-subset-split-rule[OF finite-upper3, of ?lower3]
using card-leq-3 by simp+
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moreover
have card (insert ¥ X) = card X + 1
using ¢ ¢ X» <finite X> by simp
ultimately
have ?case
by linarith
}
moreover
have ¢ € X = ?case
using 2 by (simp add: insert-absorb)
ultimately
show ?Zcase
by meson
qed simp

theorem flatten-card-sf:
card (Jv € sf ¢. sf (W[M]x1)) < card (sf ¢) (is ?t1)
card (Jv € sf ¢. sf (W[M]m)) < card (sf ¢) (is ?t2)
card (sf (¢[M]s2) U sf (¢[M]m)) < 8 * card (sf o) (is 7t3)
proof —
have card (Jv¢ € sf ¢. sf Y[M]s2 U sf (Y[M]m)) < 3 * card (sf ¢)
using flatten-card-sf-induct[OF sf-finite sf-sf-subset| by auto
moreover
have card (sf ¢[M]s2 U sf (p[M]m1)) < card (v € sf ¢. sf Y[M]sa U
sf (¥[M]m1))
using card-mono[OF - sf-setl] sf-finite by blast
ultimately
show ¢t1 2t2 2t3
using flatten-card-sf-induct] OF sf-finite sf-sf-subset] by auto
ged

corollary flatten-sigma-2-card-sf:

card (sf (p[M]s2)) < 3 * (card (sf ¢))

by (metis sf-finite order.trans[OF - flatten-card-sf(3), of card (sf (¢[M]x2)),
OF card-mono)| finite-Unl Un-upperl)

end

4 Code Export

theory Normal-Form-Code-Ezport imports
LTL.Code-Equations
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LTL.Rewriting
LTL.Disjunctive-Normal-Form
HOL.String
Normal-Form

begin

fun flatten-pi-1-list :: String.literal ltin = String.literal ltin list = String.literal
ltin

where

flatten-pi-1-list (Y1 Uy, o) M = (if (1 Uy 1b2) € set M then (flatten-pi-1-list
1 M) W, (flatten-pi-1-list 1o M) else falsey,)
| flatten-pi-1-list (1 W, o) M = (flatten-pi-1-list 1oy M) W, (flatten-pi-1-list
Yo M)
| flatten-pi-1-list (1 My, o) M = (if (1 My, 2) € set M then (flatten-pi-1-list
Y1 M) Ry, (flatten-pi-1-list 1o M) else falsey,)
| flatten-pi-1-list (11 Ry, v¥2) M = (flatten-pi-1-list 11 M) R, (flatten-pi-1-list
Y2 M)
| flatten-pi-1-list (11 and, ¥a) M = (flatten-pi-1-list 11 M) and,, (flatten-pi-1-list
Yo M)
| flatten-pi-1-list (Y1 ory 2) M = (flatten-pi-1-list 11 M) ory, (flatten-pi-1-list
Va2 M)
| flatten-pi-1-list (X,, ¥) M = X,, (flatten-pi-1-list ¢ M)
| flatten-pi-1-list ¢ - = @

fun flatten-sigma-1-list :: String.literal ltin = String.literal ltin list = String.literal

ltin

where

flatten-sigma-1-list (Y1 Uy, 2) N = (flatten-sigma-1-list 11 N) Uy, (flatten-sigma-1-list
Y2 N)

| flatten-sigma-1-list (1 Wy, 12) N = (if (1 W, ¥2) € set N then true,

else (flatten-sigma-1-list 1 N) U, (flatten-sigma-1-list 1o N))

| flatten-sigma-1-list (1 My, 12) N = (flatten-sigma-1-list 11 N) M,, (flatten-sigma-1-list
Y2 N)

| flatten-sigma-1-list (1 R, 2) N = (if (1 Ry 2) € set N then true,

else (flatten-sigma-1-list 1 N) M,, (flatten-sigma-1-list 1o N))

| flatten-sigma-1-list (Y1 and, 2) N = (flatten-sigma-1-list 11 N) and,
(flatten-sigma-1-list 1o N)

| flatten-sigma-1-list (1 ory 1¥2) N = (flatten-sigma-1-list 11 N) ory, (flatten-sigma-1-list
Y2 N)

| flatten-sigma-1-list (X,, ¥) N = X,, (flatten-sigma-1-list 1) N)

| flatten-sigma-1-list ¢ - = @

fun flatten-sigma-2-list :: String.literal ltln = String.literal ltin list = String.literal
ltin
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where

flatten-sigma-2-list (¢ Uy, 1) M = (flatten-sigma-2-list ¢ M) U, (flatten-sigma-2-list
v M)

| flatten-sigma-2-list (¢ W, ) M = (flatten-sigma-2-list ¢ M) U,, ((flatten-sigma-2-list
v M) or, (Gn (flatten-pi-1-list ¢ M)))

| flatten-sigma-2-list (¢ M, ) M = (flatten-sigma-2-list @ M) M,, (flatten-sigma-2-list
¥ M)

| flatten-sigma-2-list (¢ Ry, ) M = ((flatten-sigma-2-list ¢ M) or, (G,
(flatten-pi-1-list ¢ M))) M,, (flatten-sigma-2-list ¢» M)

| flatten-sigma-2-list (¢ and, ¥) M = (flatten-sigma-2-list ¢ M) and,
(flatten-sigma-2-list 1 M)

| flatten-sigma-2-list (p ory, ¥) M = (flatten-sigma-2-list o M) ory, (flatten-sigma-2-list
% M)

| flatten-sigma-2-list (X,, ) M = X,, (flatten-sigma-2-list ¢ M)

| flatten-sigma-2-list ¢ - = @

lemma flatten-code-equations[simp]:
plset Mm = flatten-pi-1-list ¢ M
p[set M|x1 = flatten-sigma-1-list ¢ M
p[set M]so = flatten-sigma-2-list ¢ M
by (induction ¢) auto

abbreviation and-list = foldl And-ltin true,
abbreviation or-list = foldl Or-itin false,

definition normal-form-disjunct (p :: String.literal ltin) M N
= (flatten-sigma-2-list ¢ M)
and, (and-list (map (M. G, (Fp (flatten-sigma-1-list ¢ N))) M)
andy, (and-list (map (M. Fy, (G, (flatten-pi-1-list 1 M))) N)))

definition normal-form (p :: String.literal ltin)
= or-list (map (A(M, N). normal-form-disjunct ¢ M N) (advice-sets ¢))

lemma and-list-semantic: w =y, and-list xs «— (Vz € set xs. w =, )
by (induction xs rule: rev-induct) auto

lemma or-list-semantic: w =, or-list zs <— (Jz € set zs. w =y, x)
by (induction xs rule: rev-induct) auto

theorem normal-form-correct:

w E=n @ — w =, normal-form ¢
proof

assume w =, ¢
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then obtain M N where M C subformulas, ¢ and N C subformulas,
14
and cI: w |, ¢[M]s2 and ¢2: Vi € M. w =, G, (F, ¥[N]s1) and
cs: V¢ e N.w ':n F'n (Gn w[M]Hl)
using normal-form-with-flatten-sigma-2 by metis
then obtain ms ns where M = set ms and N = set ns and ms-ns-in:
(ms, ns) € set (advice-sets )
by (meson advice-sets-subformulas)
then have w |=,, normal-form-disjunct ¢ ms ns
using c1 ¢2 ¢3 by (simp add: and-list-semantic normal-form-disjunct-def)
then show w =, normal-form ¢
using normal-form-def or-list-semantic ms-ns-in by fastforce
next
assume w =, normal-form ¢
then obtain ms ns where (ms, ns) € set (advice-sets @)
and w =, normal-form-disjunct ¢ ms ns
unfolding normal-form-def or-list-semantic by force
then have set ms C subformulas, ¢ and set ns C subformulas, ¢
and cl: w |, p[set ms|ya and c2: Vo € set ms. w =, Gy (Fp ¢[set
nsy1) and ¢3: Vi € set ns. w =, Fp (G [set ms|m)
using advice-sets-element-subfrmlsn
by (auto simp: and-list-semantic normal-form-disjunct-def) blast
then show w =, ¢
using normal-form-with-flatten-sigma-2 by metis
qed

definition normal-form-with-simplifier (¢ :: String.literal Itin)
= min-dnf (simplify Slow (normal-form (simplify Slow ¢)))

lemma [tl-semantics-min-dnf:
wEn @ «— (3C € min-dnf ¢. V. Y |€] C — w =y, ¢) (is ?lhs <—
2rhs)
proof
let ?M = {¢. w =, ¥}
assume ?lhs
hence ?M Ep ¢
using ltl-models-equiv-prop-entailment by blast
then obtain M’ where fset M' C ?M and M’ € min-dnf ¢
using min-dnf-iff-prop-assignment-subset by blast
thus 9rhs
by (meson in-mono mem-Collect-eq)
next
let ?M = {¢. w =, ¥}

assume ?rhs
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then obtain M’ where fset M’ C ?M and M’ € min-dnf ¢
by auto
hence ?M Ep ¢
using min-dnf-iff-prop-assignment-subset by blast
thus ?lhs
using ltl-models-equiv-prop-entailment by blast
qed

theorem

w En ¢ «— (3 C € (normal-form-with-simplifier ¢). V. ¢ |€] C — w
En ¥) (is ?lhs «— ?rhs)

unfolding normal-form-with-simplifier-def ltl-semantics-min-dnf|symmetric]

using normal-form-correct by simp

In order to export the code run isabelle build -D [PATH] -e.

export-code normal-form in SML
export-code normal-form-with-simplifier in SML

end
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