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Abstract
We formalize the weak and strong duality theorems of linear pro-

gramming. For the strong duality theorem we provide three sufficient
preconditions: both the primal problem and the dual problem are sat-
isfiable, the primal problem is satisfiable and bounded, or the dual
problem is satisfiable and bounded. The proofs are based on an exist-
ing formalization of Farkas’ Lemma.
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1 Introduction

The proofs are taken from a textbook on linear programming [3]. There
clearly is already an related AFP entry on linear programming [2] and we
briefly explain the relationship between that entry and this one.

• The other AFP entry provides an algorithm for solving linear programs
based on an existing simplex implementation. Since the simplex im-
plementation is formulated only for rational numbers, several results
are only available for rational numbers. Moreover, the simplex algo-
rithm internally works on sets of inequalities that are represented by
linear polynomials, and there are conversions between matrix-vector
inequalities and linear polynomial inequalities. Finally, that AFP en-
try does not contain the strong duality theorem, which is the essential
result in this AFP entry.

• This AFP entry has completely been formalized in the matrix-vector
representation. It mainly consists of the strong duality theorems with-
out any algorithms. The proof of these theorems are based on Farkas’
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Lemma which is provided in [1] for arbitrary linearly ordered fields.
Therefore, also the duality theorems are proven in that generality with-
out the restriction to rational numbers.

2 Minimum and Maximum of Potentially Infinite
Sets

theory Minimum-Maximum
imports Main

begin

We define minima and maxima of sets. In contrast to the existing Min and
Max operators, these operators are not restricted to finite sets
definition Maximum :: ′a :: linorder set ⇒ ′a where

Maximum S = (THE x. x ∈ S ∧ (∀ y ∈ S . y ≤ x))
definition Minimum :: ′a :: linorder set ⇒ ′a where

Minimum S = (THE x. x ∈ S ∧ (∀ y ∈ S . x ≤ y))

definition has-Maximum where has-Maximum S = (∃ x. x ∈ S ∧ (∀ y ∈ S . y
≤ x))
definition has-Minimum where has-Minimum S = (∃ x. x ∈ S ∧ (∀ y ∈ S . x ≤
y))

lemma eqMaximumI :
assumes x ∈ S
and

∧
y. y ∈ S =⇒ y ≤ x

shows Maximum S = x
〈proof 〉

lemma eqMinimumI :
assumes x ∈ S
and

∧
y. y ∈ S =⇒ x ≤ y

shows Minimum S = x
〈proof 〉

lemma has-MaximumD:
assumes has-Maximum S
shows Maximum S ∈ S

x ∈ S =⇒ x ≤ Maximum S
〈proof 〉

lemma has-MinimumD:
assumes has-Minimum S
shows Minimum S ∈ S

x ∈ S =⇒ Minimum S ≤ x
〈proof 〉

On non-empty finite sets, Minimum and Min coincide, and similarly Maxi-
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mum and Max.
lemma Minimum-Min: assumes finite S S 6= {}

shows Minimum S = Min S
〈proof 〉

lemma Maximum-Max: assumes finite S S 6= {}
shows Maximum S = Max S
〈proof 〉

For natural numbers, having a maximum is the same as being bounded from
above and non-empty, or being finite and non-empty.
lemma has-Maximum-nat-iff-bdd-above: has-Maximum (A :: nat set)←→ bdd-above
A ∧ A 6= {}
〈proof 〉

lemma has-Maximum-nat-iff-finite: has-Maximum (A :: nat set) ←→ finite A ∧
A 6= {}
〈proof 〉

lemma bdd-above-Maximum-nat: (x :: nat) ∈ A =⇒ bdd-above A =⇒ x ≤ Maxi-
mum A
〈proof 〉

end

3 Weak and Strong Duality of Linear Program-
ming

theory LP-Duality
imports

Linear-Inequalities.Farkas-Lemma
Minimum-Maximum

begin

lemma weak-duality-theorem:
fixes A :: ′a :: linordered-comm-semiring-strict mat
assumes A: A ∈ carrier-mat nr nc

and b: b ∈ carrier-vec nr
and c: c ∈ carrier-vec nc
and x: x ∈ carrier-vec nc
and Axb: A ∗v x ≤ b
and y0 : y ≥ 0 v nr
and yA: AT ∗v y = c

shows c · x ≤ b · y
〈proof 〉

corollary unbounded-primal-solutions:
fixes A :: ′a :: linordered-idom mat
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assumes A: A ∈ carrier-mat nr nc
and b: b ∈ carrier-vec nr
and c: c ∈ carrier-vec nc
and unbounded: ∀ v. ∃ x ∈ carrier-vec nc. A ∗v x ≤ b ∧ c · x ≥ v

shows ¬ (∃ y. y ≥ 0 v nr ∧ AT ∗v y = c)
〈proof 〉

corollary unbounded-dual-solutions:
fixes A :: ′a :: linordered-idom mat
assumes A: A ∈ carrier-mat nr nc

and b: b ∈ carrier-vec nr
and c: c ∈ carrier-vec nc
and unbounded: ∀ v. ∃ y. y ≥ 0 v nr ∧ AT ∗v y = c ∧ b · y ≤ v

shows ¬ (∃ x ∈ carrier-vec nc. A ∗v x ≤ b)
〈proof 〉

A version of the strong duality theorem which demands that both primal
and dual problem are solvable. At this point we do not use min- or max-
operations
theorem strong-duality-theorem-both-sat:

fixes A :: ′a :: trivial-conjugatable-linordered-field mat
assumes A: A ∈ carrier-mat nr nc

and b: b ∈ carrier-vec nr
and c: c ∈ carrier-vec nc
and primal: ∃ x ∈ carrier-vec nc. A ∗v x ≤ b
and dual: ∃ y. y ≥ 0 v nr ∧ AT ∗v y = c

shows ∃ x y.
x ∈ carrier-vec nc ∧ A ∗v x ≤ b ∧
y ≥ 0 v nr ∧ AT ∗v y = c ∧
c · x = b · y

〈proof 〉

A version of the strong duality theorem which demands that the primal
problem is solvable and the objective function is bounded.
theorem strong-duality-theorem-primal-sat-bounded:

fixes bound :: ′a :: trivial-conjugatable-linordered-field
assumes A: A ∈ carrier-mat nr nc

and b: b ∈ carrier-vec nr
and c: c ∈ carrier-vec nc
and sat: ∃ x ∈ carrier-vec nc. A ∗v x ≤ b
and bounded: ∀ x ∈ carrier-vec nc. A ∗v x ≤ b −→ c · x ≤ bound

shows ∃ x y.
x ∈ carrier-vec nc ∧ A ∗v x ≤ b ∧
y ≥ 0 v nr ∧ AT ∗v y = c ∧
c · x = b · y

〈proof 〉

A version of the strong duality theorem which demands that the dual prob-
lem is solvable and the objective function is bounded.
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theorem strong-duality-theorem-dual-sat-bounded:
fixes bound :: ′a :: trivial-conjugatable-linordered-field
assumes A: A ∈ carrier-mat nr nc

and b: b ∈ carrier-vec nr
and c: c ∈ carrier-vec nc
and sat: ∃ y. y ≥ 0 v nr ∧ AT ∗v y = c
and bounded: ∀ y. y ≥ 0 v nr ∧ AT ∗v y = c −→ bound ≤ b · y

shows ∃ x y.
x ∈ carrier-vec nc ∧ A ∗v x ≤ b ∧
y ≥ 0 v nr ∧ AT ∗v y = c ∧
c · x = b · y

〈proof 〉

Now the previous three duality theorems are formulated via min/max.
corollary strong-duality-theorem-min-max:

fixes A :: ′a :: trivial-conjugatable-linordered-field mat
assumes A: A ∈ carrier-mat nr nc

and b: b ∈ carrier-vec nr
and c: c ∈ carrier-vec nc
and primal: ∃ x ∈ carrier-vec nc. A ∗v x ≤ b
and dual: ∃ y. y ≥ 0 v nr ∧ AT ∗v y = c

shows Maximum {c · x | x. x ∈ carrier-vec nc ∧ A ∗v x ≤ b}
= Minimum {b · y | y. y ≥ 0 v nr ∧ AT ∗v y = c}

and has-Maximum {c · x | x. x ∈ carrier-vec nc ∧ A ∗v x ≤ b}
and has-Minimum {b · y | y. y ≥ 0 v nr ∧ AT ∗v y = c}

〈proof 〉

corollary strong-duality-theorem-primal-sat-bounded-min-max:
fixes bound :: ′a :: trivial-conjugatable-linordered-field
assumes A: A ∈ carrier-mat nr nc

and b: b ∈ carrier-vec nr
and c: c ∈ carrier-vec nc
and sat: ∃ x ∈ carrier-vec nc. A ∗v x ≤ b
and bounded: ∀ x ∈ carrier-vec nc. A ∗v x ≤ b −→ c · x ≤ bound

shows Maximum {c · x | x. x ∈ carrier-vec nc ∧ A ∗v x ≤ b}
= Minimum {b · y | y. y ≥ 0 v nr ∧ AT ∗v y = c}

and has-Maximum {c · x | x. x ∈ carrier-vec nc ∧ A ∗v x ≤ b}
and has-Minimum {b · y | y. y ≥ 0 v nr ∧ AT ∗v y = c}

〈proof 〉

corollary strong-duality-theorem-dual-sat-bounded-min-max:
fixes bound :: ′a :: trivial-conjugatable-linordered-field
assumes A: A ∈ carrier-mat nr nc

and b: b ∈ carrier-vec nr
and c: c ∈ carrier-vec nc
and sat: ∃ y. y ≥ 0 v nr ∧ AT ∗v y = c
and bounded: ∀ y. y ≥ 0 v nr ∧ AT ∗v y = c −→ bound ≤ b · y

shows Maximum {c · x | x. x ∈ carrier-vec nc ∧ A ∗v x ≤ b}
= Minimum {b · y | y. y ≥ 0 v nr ∧ AT ∗v y = c}
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and has-Maximum {c · x | x. x ∈ carrier-vec nc ∧ A ∗v x ≤ b}
and has-Minimum {b · y | y. y ≥ 0 v nr ∧ AT ∗v y = c}

〈proof 〉

end
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