Duality of Linear Programming

René Thiemann

March 17, 2025

Abstract

We formalize the weak and strong duality theorems of linear pro-
gramming. For the strong duality theorem we provide three sufficient
preconditions: both the primal problem and the dual problem are sat-
isfiable, the primal problem is satisfiable and bounded, or the dual
problem is satisfiable and bounded. The proofs are based on an exist-
ing formalization of Farkas’ Lemma.

Contents

1 Introduction 1
2 Minimum and Maximum of Potentially Infinite Sets 2
3 Weak and Strong Duality of Linear Programming 3

1 Introduction

The proofs are taken from a textbook on linear programming [3]. There
clearly is already an related AFP entry on linear programming [2] and we
briefly explain the relationship between that entry and this one.

e The other AFP entry provides an algorithm for solving linear programs
based on an existing simplex implementation. Since the simplex im-
plementation is formulated only for rational numbers, several results
are only available for rational numbers. Moreover, the simplex algo-
rithm internally works on sets of inequalities that are represented by
linear polynomials, and there are conversions between matrix-vector
inequalities and linear polynomial inequalities. Finally, that AFP en-
try does not contain the strong duality theorem, which is the essential
result in this AFP entry.

e This AFP entry has completely been formalized in the matrix-vector
representation. It mainly consists of the strong duality theorems with-
out any algorithms. The proof of these theorems are based on Farkas’

Lemma which is provided in [1] for arbitrary linearly ordered fields.
Therefore, also the duality theorems are proven in that generality with-
out the restriction to rational numbers.

2 Minimum and Maximum of Potentially Infinite
Sets

theory Minimum-Mazimum
imports Main
begin

We define minima and maxima of sets. In contrast to the existing Min and
Mazx operators, these operators are not restricted to finite sets

definition Maximum :: 'a :: linorder set = 'a where
Mazimum S = (THEz. 2 € SA (VY y€ S. y < x))
definition Minimum :: 'a :: linorder set = 'a where
Minimum S = (THEz. 2 € SA (VW y € S. z < y))

definition has-Mazimum where has-Mazimum S = (3 z.2 € SA NV ye S. y
<))
definition has-Minimum where has-Minimum S = (3 z.2 € SA (¥ ye S. ¢ <

y))

lemma eqgMazimuml:
assumes € S
and Ay yeS=y<z
shows Maximum S = x
unfolding Mazimum-def
by (standard, insert assms, auto, fastforce)

lemma egMinimuml:
assumes z € S
and Ay yeS=uz<y
shows Minimum S = x
unfolding Minimum-def
by (standard, insert assms, auto, fastforce)

lemma has-MaximumD:
assumes has-Mazimum S
shows Maximum S € S
z €S — z < Maximum S
proof —
from assms[unfolded has-Maximum-def]
obtain m where x: m € S A\ y. y € S = y < m by auto
have id: Maximum S = m
by (rule egMazimuml, insert *, auto)
from * id show Mazimum S € Sz € § = z < Maximum S by auto
qed

lemma has-MinimumD:
assumes has-Minimum S
shows Minimum S € S
z €S = Minimum S <z
proof —
from assms[unfolded has-Minimum-def]
obtain m where x: m € S A\ y. y € S = m < y by auto
have id: Minimum S = m
by (rule egMinimuml, insert %, auto)
from x id show Minimum S € Sz € S = Minimum S < z by auto
qed

On non-empty finite sets, Minimum and Min coincide, and similarly Mazi-
mum and Maz.
lemma Minimum-Min: assumes finite S S # {}

shows Minimum S = Min S
by (rule egMinimuml, insert assms, auto)

lemma Mazimum-Maz: assumes finite S S # {}
shows Maximum S = Maz S
by (rule eqgMazimuml, insert assms, auto)

For natural numbers, having a maximum is the same as being bounded from
above and non-empty, or being finite and non-empty.

lemma has-Mazimum-nat-iff-bdd-above: has-Mazimum (A :: nat set) «— bdd-above

ANA#{)

unfolding has-Mazimum-def
by (metis bdd-above.I bdd-above-nat emptyE finite-has-mazimal nat-le-linear)

lemma has-Mazimum-nat-iff-finite: has-Mazimum (A :: nat set) «+— finite A A

A# {3

unfolding has-Mazximum-nat-iff-bdd-above bdd-above-nat ..

lemma bdd-above-Mazimum-nat: (z :: nat) € A = bdd-above A = = < Mauxi-
mum A
by (rule has-MazimumD, auto simp: has-Mazimum-nat-iff-bdd-above)

end

3 Weak and Strong Duality of Linear Program-
ming

theory LP-Duality
imports
Linear-Inequalities. Farkas-Lemma
Minimum-Maximum
begin

lemma weak-duality-theorem:
fixes A :: 'a :: linordered-comm-semiring-strict mat
assumes A: A € carrier-mat nr nc
and b: b € carrier-vec nr
and c: ¢ € carrier-vec nc
and z: © € carrier-vec nc
and Axb: A x, z < b
and y0: y > 0, nr
and yA: AT x, y=c
shows c- 2 <b-y
proof —
from y0 have y: y € carrier-vec nr unfolding less-eg-vec-def by auto
have ¢ - = (AT x, y) - z unfolding yA by simp
also have ... = y - (A %, z) using = y A by (metis transpose-vec-mult-scalar)
also have ... <y - b
unfolding scalar-prod-def using A b Azxb y0
by (auto intro!: sum-mono mult-left-mono simp: less-eq-vec-def)

also have ... = b - y using y b by (metis comm-scalar-prod)
finally show ?thesis .
qed

corollary unbounded-primal-solutions:
fixes A :: 'a :: linordered-idom mat
assumes A: A € carrier-mat nr nc
and b: b € carrier-vec nr
and c: ¢ € carrier-vec nc
and unbounded: ¥V v. 3 x € carrier-vec nc. A x, t < bANc-x >0
shows = (3 4.y > 0, nr A AT %, y = ¢)
proof
assume (3 y. y > 0, nr AN AT %, y = ¢)
then obtain y where y: y > 0, nr and Ayc: AT %, y = ¢
by auto
from unbounded|[rule-format, of b - y + 1]
obtain z where z: € carrier-vec nc and Axb: A x, v < b
and le: b -y + 1 < ¢ - z by auto
from weak-duality-theorem|OF A b ¢ x Axb y Ayc]
have ¢ - z < b - y by auto
with le show Fulse by auto
qed

corollary unbounded-dual-solutions:
fixes A :: 'a :: linordered-idom mat
assumes A: A € carrier-mat nr nc
and b: b € carrier-vec nr
and c: ¢ € carrier-vec nc
and unbounded: V v. 3 y. y > 0, nr NAT x, y=cAb-y<w
shows — (3 z € carrier-vec nc. A %, © < b)
proof

assume 3 z € carrier-vec nc. A x, © < b

then obtain z where z: x € carrier-vec nc and Azb: A *, z < b by auto

from unbounded|[rule-format, of ¢ - x — 1]

obtain y where y: y>0, nr and Ayc: AT %, y=cand le:b-y<c-2 — 1
by auto

from weak-duality-theorem[OF A b ¢ © Azb y Ayc]

have ¢ - z < b - y by auto

with le show Fulse by auto
qed

A version of the strong duality theorem which demands that both primal
and dual problem are solvable. At this point we do not use min- or max-
operations

theorem strong-duality-theorem-both-sat:
fixes A :: 'a :: trivial-conjugatable-linordered-field mat
assumes A: A € carrier-mat nr nc
and b: b € carrier-vec nr
and c: ¢ € carrier-vec nc
and primal: 3 x € carrier-vec nc. A x, £ < b
and dual: 3 y. y > 0, nr AN AT %, y = ¢
shows 3 z y.
z € carrier-vec nc N A x, x < b A
y> 0, nr ANAT %, y = ¢ A
c-x="b-y
proof —
define M-up where M-up = four-block-mat A (0., nr nr) (mat-of-row (— c))
(mat-of-row b)
define M-low where M-low = four-block-mat (0, nc nc) (A1) (0 nc ne) (—
(47)
define M-last where M-last = append-cols (0, nr ne) (= 1, nr : 'a mat)
define M where M = (M-up Q, M-low) @, M-last
define bc where bc = ((b Q, 0, 1) Q, (¢ @, —¢)) Q, (0, nr)

let ?nr = ((nr + 1) 4+ (nc + nc)) + nr
let %nc = nc + nr
have M-up: M-up € carrier-mat (nr + 1) ?nc
unfolding M-up-def using A b ¢ by auto
have M-low: M-low € carrier-mat (nc + nc) ?nc
unfolding M-low-def using A by auto
have M-last: M-last € carrier-mat nr ?nc
unfolding M-last-def by auto
have M: M € carrier-mat ?nr ?nc
using carrier-append-rows|OF carrier-append-rows[OF M-up M-low] M-last]
unfolding M-def by auto
have bc: be € carrier-vec ?nr unfolding bc-def
by (intro append-carrier-vec, insert b ¢, auto)
have (Fzy. zy € carrier-vec ?nc A M x, zy < bc)
proof (subst gram-schmidt. Farkas-Lemma'|OF M bc], intro olll impl, elim conjE)
fix ulv

assume ulv0: 0, ?nr < ulv and Mulv: MT %, ulv = 0, ?nc
from wulv0[unfolded less-eq-vec-def]
have ulv: ulv € carrier-vec ?nr by auto
define ul where ul = vec-first ulv ((nr + 1) + (nc + nc))
define u2 where u2 = vec-first ul (nr + 1)
define u3 where u3 = vec-last ul (nc + nc)
define ¢ where t = vec-last ulv nr
have ulvid: ulv = ul Q, t using ulv
unfolding ul-def t-def by auto
have t: t € carrier-vec nr unfolding t-def by auto
have ul: ul € carrier-vec ((nr + 1) + (nc + nc))
unfolding ul-def by auto
have ulid: vl = u2 Q, u3 using ul
unfolding u2-def u3-def by auto
have u2: u2 € carrier-vec (nr + 1) unfolding u2-def by auto
have u3: u3 € carrier-vec (nc + nc) unfolding u3-def by auto
define v where v = vec-first u3 nc
define w where w = vec-last u3 nc
have u%id: u8 = v @, w using u3
unfolding v-def w-def by auto
have v: v € carrier-vec nc unfolding v-def by auto
have w: w € carrier-vec nc unfolding w-def by auto

define v where u = vec-first u2 nr
define L where L = vec-last u2 1
have u2id: uv2 = v Q, L using u2
unfolding u-def L-def by auto
have u: u € carrier-vec nr unfolding u-def by auto
have L: L € carrier-vec 1 unfolding L-def by auto
define vec! where vecl = AT %, u + mat-of-col (— ¢) *, L
have vecl: vecl € carrier-vec nc
unfolding veci-def mat-of-col-def using A v ¢ L
by (meson add-carrier-vec mat-of-row-carrier(1) mult-mat-vec-carrier trans-
pose-carrier-mat uminus-carrier-vec)
define vec2 where vec2 = A %, (v — w)
have vec2: vec2 € carrier-vec nr
unfolding vec2-def using A v w by auto
define vec3 where vec3 = mat-of-col b x, L
have vec3: vec3 € carrier-vec nr
using A b L unfolding mat-of-col-def vec3-def
by (meson add-carrier-vec mat-of-row-carrier(1) mult-mat-vec-carrier trans-
pose-carrier-mat uminus-carrier-vec)
have Mt: MT = (M-up” @, M-low™) @. M-last™
unfolding M-def append-cols-def by simp
have M7 x, ulv = (M-up” @, M-low™) %, ul + M-last™ x, t
unfolding Mt ulvid
by (subst mat-mult-append-cols|OF carrier-append-cols - ul t],
insert M-up M-low M-last, auto)
also have M-last” = 0,, nc nr Q, — 1,, nr unfolding M-last-def

unfolding append-cols-def by (simp, subst transpose-uminus, auto)
also have ... x, t = 0, nc Q, — ¢
by (subst mat-mult-append|OF - - t], insert t, auto)
also have (M-up” @, M-low™) x, ul = (M-up® *, u2) + (M-low™ *, u3)
unfolding ulid
by (rule mat-mult-append-cols|OF - - u2 u3), insert M-up M-low, auto)
also have M-lowT = four-block-mat (0., nc nc) (0., nc nc) A (— A)
unfolding M-low-def
by (subst transpose-four-block-mat, insert A, auto)
also have ... %, u8 = (0, nc ne %y v + Oy NC NC %y W) @, (A %y, v+ — A
%, w) unfolding u3id
by (subst four-block-mat-mult-vec[OF - - A - v w], insert A, auto)
also have 0,, nc nc %, v + 0,, nc nc *, w = 0, nc
using v w by auto
also have A *, v + — A %, w = vec2 unfolding vec2-def using A v w
by (metis (full-types) carrier-matD(2) carrier-vecD minus-add-uminus-vec
mult-mat-vec-carrier mult-minus-distrib-mat-vec uminus-mult-mat-vec)
also have M-up” = four-block-mat AT (mat-of-col (— ¢)) (0., nr nr) (mat-of-col

b)
unfolding M-up-def mat-of-col-def
by (subst transpose-four-block-mat|OF A], insert b ¢, auto)
also have ... %, u2 = vecl Q, vecd
unfolding u2id vecl-def vec3-def
by (subst four-block-mat-mult-vec[OF - - - - u L], insert A b ¢ u, auto)

also have (vec! @, vec3)
+ (0, nc Q, vec2) + (0, nc @, — t) =
(vecl Q, (vec3 + vec2 — t))
apply (subst append-vec-add[of - nc - - nr, OF wvecl - vec3 vec2))
subgoal by force
apply (subst append-vec-add|of - nc - - nr])
subgoal using vecl by auto
subgoal by auto
subgoal using vec2 vec3 by auto
subgoal using t by auto
subgoal using vecl by auto
done
finally have vec! @, (vec3 + vec2 — t) = 0, ?nc
unfolding Mulv by simp
also have ... = 0, nc Q, 0, nr by auto
finally have vec! = 0, nc A vecd + vec2 — t = 0, nr
by (subst (asm) append-vec-eq|OF vecl], auto)
hence 01: vecl = 0, nc and 02: vec3 + vec2 — t = 0, nr by auto
from 01 have vec! + mat-of-col ¢ x, L = mat-of-col ¢ x, L
using ¢ L vecl unfolding mat-of-col-def by auto
also have vecl + mat-of-col ¢ %, L = AT %, u
unfolding vecl-def
using A u ¢ L unfolding mat-of-col-def mat-of-row-uminus transpose-uminus
by (subst uminus-mult-mat-vec, auto)
finally have As: AT %, u = mat-of-col ¢ *, L .

from 02 have (vec3 + vec2 — t) +t =0, nr + ¢
by simp
also have (vec3 + vec2 — t) + t = vec2 + vec3
using vec3 vec2 t by auto
finally have t23: t = vec2 + vec3 using t by auto
have id0: 0, ?nr = ((0, nr @, 0, 1) Q, (0, nc @, 0, nc)) @, 0, nr
by auto
from wulv0[unfolded id0 ulvid ulid u2id u3id)
have 0, nr < u N0, 1 <LANO,nc<vAO,nc<wAO0, nr <t
apply (subst (asm) append-vec-le[of - (nr + 1) + (nc + nc)])
subgoal by (intro append-carrier-vec, auto)
subgoal by (intro append-carrier-vec u L v w)
apply (subst (asm) append-vec-le[of - (nr + 1)])
subgoal by (intro append-carrier-vec, auto)
subgoal by (intro append-carrier-vec u L v w)
apply (subst (asm) append-vec-le[OF - u], force)
apply (subst (asm) append-vec-le[OF - v], force)
by auto
hence ineqs: 0, nr < u 0, 1 <L 0O, nc<v0, nc<wl, nr <t
by auto
have wlv - bce =u - b+ (v-c+ w- (—c))
unfolding ulvid ulid u2id u3id be-def
apply (subst scalar-prod-append|OF - t])
apply (rule append-carrier-vec| OF append-carrier-vec[OF u L] append-carrier-vec| OF
v wl])
apply (rule append-carrier-vec| OF append-carrier-vec| OF b] append-carrier-vec];
use ¢ in force)
apply force
apply (subst scalar-prod-append)
apply (rule append-carrier-vec|OF u L))
apply (rule append-carrier-vec|OF v w))
subgoal by (rule append-carrier-vec, insert b, auto)
subgoal by (rule append-carrier-vec, insert ¢, auto)
apply (subst scalar-prod-append|OF u L b], force)
apply (subst scalar-prod-append|OF v w c|, use ¢ in force)
apply (insert L t, auto)
done
alsohave v - c+ w: (—¢c)=c-v+ (—¢) - w
by (subst (1 2) comm-scalar-prod, insert w c v, auto)
also have ... = ¢+ v — (¢ - w) using ¢ w by simp
also have ... = ¢+ (v — w) using c v w
by (simp add: scalar-prod-minus-distrib)
finally have ulvbe: ulv - bc =u - b+ ¢+ (v — w) .
define lam where lam = L $ 0
from inegs(2) L have lam0: lam > 0 unfolding less-eq-vec-def lam-def by
auto
have As: AT %, u = lam -, c unfolding As using c L
unfolding lam-def mat-of-col-def
by (intro eg-vecl, auto simp: scalar-prod-def)

have vec3: vec3 = lam -, b unfolding vec3-def using b L

unfolding lam-def mat-of-col-def

by (intro eq-vecl, auto simp: scalar-prod-def)
note preconds = lam0 ineqs(1,3—)[unfolded t23[unfolded vec2-def vec3]] As
have 0 <u-b+c: (v— w)
proof (cases lam > 0)

case True

hence u - b = inverse lam * (lam * (b - u))

using comm-scalar-prod[OF b u] by simp

also have ... = inverse lam * ((lam -, b) - u)
using b u by simp
also have ... > inverse lam * (—(A *, (v — w)) + w)

proof (intro mult-left-mono)
show 0 < inverse lam using preconds by auto
show —(A x, (v — w)) - u < (lam -, b) - u
unfolding scalar-prod-def
apply (rule sum-mono)
subgoal for i
using lesseq-vecD[OF - preconds(2), of nr i) lesseq-vecD[OF - preconds(5),
ofnriluvwdA
by (intro mult-right-mono, auto)
done
qed
also have inverse lam x (—(A %, (v — w)) - u) =
— (inverse lam x ((A %, (v — w)) -+ u))
by (subst scalar-prod-uminus-left, insert A u v w, auto)
also have (A4 x, (v — w)) - u = (AT %, u) - (v — w)
apply (subst transpose-vec-mult-scalar|OF A - u])
subgoal using v w by force
by (rule comm-scalar-prod[OF - u], insert A v w, auto)
also have inverse lam x ... = ¢ - (v — w) unfolding preconds(6)
using True
by (subst scalar-prod-smult-left, insert ¢ v w, auto)
finally show ?thesis by simp
next
case Fulse
with preconds have lam: lam = 0 by auto
from primal obtain z0 where z0: z0 € carrier-vec nc
and Az0b: A x, 20 < b by auto
from dual obtain y0 where y00: y0 > 0, nr
and Ay0c: AT %, y0 = ¢ by auto
from y00 have y0: y0 € carrier-vec nr
unfolding less-eq-vec-def by auto
have Au: AT %, v = 0, nc
unfolding preconds lam using c by auto
have 0 = (AT %, u) - 20 unfolding Au using z0 by auto

also have ... = u - (4 %, z0)
by (rule transpose-vec-mult-scalar[OF A z0 u])
also have ... < u - b

unfolding scalar-prod-def
apply (use A 20 b in simp)
apply (intro sum-mono)
subgoal for i
using lesseq-vecD[OF - preconds(2), of nr i) lesseq-vecD[OF - Ax0b, of nr
JuovwbAz0
by (intro mult-left-mono, auto)
done
finally have ub: 0 < u - b .
have ¢ - (v — w) = (AT *, y0) - (v — w) unfolding Ay0c by simp

also have ... = y0 + (A x, (v — w))
by (subst transpose-vec-mult-scalar[OF A - y0], insert v w, auto)
also have ... > 0

unfolding scalar-prod-def
apply (use A v w in simp)
apply (intro sum-nonneg)
subgoal for 7
using lesseq-vecD[OF - y00, of nr i] lesseq-vecD|OF' - preconds(5)[unfolded
lam], of nri] A y0 v wb
by (intro mult-nonneg-nonneg, auto)

done
finally show ?thesis using ub by auto
qed
thus 0 < ulv - bc unfolding ulvbc .

qed
then obtain zy where zy: xzy € carrier-vec ?nc and le: M *, xy < bc by auto
define z where © = vec-first zy nc
define y where y = vec-last zy nr
have zyid: zy = ¢ Q, y using xy
unfolding z-def y-def by auto
have z: © € carrier-vec nc unfolding z-def by auto
have y: y € carrier-vec nr unfolding y-def by auto
have At: AT € carrier-mat nc nr using A by auto
have Az1: A %, x Q, vec I (A\-. by — ¢+ z) € carrier-vec (nr + 1)
using A z by fastforce
have b0cc: (b Q, 0, 1) Q, ¢ @, — ¢ € carrier-vec ((nr + 1) + (nc + nc))
using b ¢
by (intro append-carrier-vec, auto)
have M x, zy = (M-up *, zy Q, M-low *, zy) Q, (M-last *, xy)
unfolding M-def
unfolding mat-mult-append|OF carrier-append-rows|OF M-up M-low] M-last
ay]
by (simp add: mat-mult-append[OF M-up M-low xy])
also have M-low *, 1y = (0., nc nc x, © + AT %, y) @, (0,, nc nec *, v + —
AT %, 9)
unfolding M-low-def zyid
by (rule four-block-mat-mult-vec[OF - At - - x y|, insert A, auto)
also have 0,, nc nc *, z + AT %, y = AT %, y using A = y by auto
also have 0,, nc nc *, © + — AT %, y = — AT x, y using A z y by auto

10

also have M-up x, zy = (A *, & + 0, nrnr x, y) Q,
(mat-of-row (— ¢) *, ¢ + mat-of-row b *, y)

unfolding M-up-def zyid

by (rule four-block-mat-mult-vec[OF A - - - x y], insert b ¢, auto)
also have A x, x + 0, nrnr x, y = A x, z using A z y by auto
also have mat-of-row (— ¢) *, x + mat-of-row b *, y =

veecl (A-b-y—c-2x)

unfolding mult-mat-vec-def using c z by (intro eg-vecl, auto)
also have M-last %, ty = — y

unfolding M-last-def zyid using = y

by (subst mat-mult-append-cols|OF - - z y], auto)
finally have ((A %, z @, vec I (A-. b -y — c - 1)) @, (AT %, y @, — AT x,

y)) @, —y
=M %, zy ..
also have ... < bc by fact
also have ... = ((b @, 0, 1) Q, (¢ @, —¢)) @, 0, nr unfolding bc-def by
auto

finally have inegs: A x, t < bAwvecl (M b-y—c-2)<0,1
NAT sy y<ecN—AT %, y < —c A —y < 0, nr

apply (subst (asm) append-vec-le[OF - b0cc)
subgoal using A z y by (intro append-carrier-vec, auto)
apply (subst (asm) append-vec-le[OF Axzl1], use b in fastforce)
apply (subst (asm) append-vec-le[OF - b], use A z in force)
apply (subst (asm) append-vec-le[OF - c|, use A y in force)
by auto

show ?thesis

proof (intro exI conjI)
from inegs show Azb: A x, © < b by auto
from inegs have — AT x, y < —c AT %, y < ¢ by auto
hence A7 x, y > ¢ AT %, y < ¢ unfolding less-eg-vec-def using A y by auto
then show Aty: AT x, y = ¢ by simp
from inegs have — y < 0, nr by simp
then show y0: 0, nr < y unfolding less-eq-vec-def by auto
from inegs have b - y < ¢ - x unfolding less-eq-vec-def by auto
with weak-duality-theorem[OF A b ¢ x Axb y0 Aty
show ¢ - £ = b - y by auto

qged (insert z)

qged

A version of the strong duality theorem which demands that the primal
problem is solvable and the objective function is bounded.

theorem strong-duality-theorem-primal-sat-bounded:
fixes bound :: 'a :: trivial-conjugatable-linordered-field
assumes A: A € carrier-mat nr nc
and b: b € carrier-vec nr
and c: ¢ € carrier-vec nc
and sat: 3 x € carrier-vec nc. A x, x < b
and bounded: ¥V x € carrier-vec nc. A x, x < b — ¢ - x < bound
shows 3 z y.

11

z € carrier-vec nc AN A *, x < b A
y> 0, nr ANAT %, y = ¢ A
c-x=>b-y
proof (rule strong-duality-theorem-both-sat[OF A b ¢ sat])
show 3y>0, nr. AT %, y = ¢
proof (rule ccontr)
assume — ?thesis
hence Jy. y € carrier-vec nc A 0, nr < Ax, y N0 >y - c
by (subst (asm) gram-schmidt. Farkas-Lemma|OF -], insert A, auto)
then obtain y where y: y € carrier-vec nc
and Ay0: A %, y > 0, nr and yc0: y - ¢ < 0 by auto
from sat obtain z where z: x € carrier-vec nc
and Azb: A x, z < b by auto
define diff where diff = bound + 1 — c - x
from z Azb bounded have c - © < bound + 1 by auto
hence diff: diff > 0 unfolding diff-def by auto
from yc0 have inv: inverse (— (y - ¢)) > 0 by auto
define fact where fact = diff x (inverse (— (y - ¢)))
have fact: fact > 0 unfolding fact-def using diff inv by (metis mult-pos-pos)
define z where z = © — fact -, y
have A x, z = A x, . — A *, (fact -, y)
unfolding z-def using A x y by (meson mult-minus-distrib-mat-vec smult-carrier-vec)
also have ... = A %, z — fact -, (A %, y) using A y by auto
also have ... < b
proof (intro lesseq-vecI[OF - b])
show A x, © — fact -, (A %, y) € carrier-vec nr using A x y by auto
fix ¢
assume i: ¢ < nr
have (A %, z — fact -, (A %, y)) $ ¢
= (Ax*y2) 87— fact x (Ax, y) $ 4
using 7 A = y by auto
also have ... < b $ i — fact x (A *, y) $ ¢
using lesseq-vecD[OF b Azb i] by auto
also have ... < b $ i — 0 * 0 using lesseq-vecD[OF - Ay0] fact A y i
by (intro diff-left-mono mult-monom, auto)
finally show (A %, = — fact -, (A %, y)) $ i < b $ i by simp
qged
finally have Azb: A %, 2 < b .
have z: z € carrier-vec nc using z y unfolding z-def by auto
have ¢ - z = ¢+ x — fact * (¢ - y) unfolding z-def
using ¢ z y by (simp add: scalar-prod-minus-distrib)

also have ... = ¢ - z + diff
unfolding comm-scalar-prod[OF ¢ y| fact-def using yc0 by simp
also have ... = bound + 1 unfolding diff-def by simp
also have ... > ¢ - z using bounded Azb z by auto
finally show Fulse by simp
qed
qed

A version of the strong duality theorem which demands that the dual prob-

12

lem is solvable and the objective function is bounded.

theorem strong-duality-theorem-dual-sat-bounded:
fixes bound :: 'a :: trivial-conjugatable-linordered-field
assumes A: A € carrier-mat nr nc
and b: b € carrier-vec nr
and c: ¢ € carrier-vec nc
and sat: 3 y. y > 0, nr N AT %, y = ¢
and bounded: ¥V y. y > 0y, nr A AT %, y = ¢ — bound < b - y
shows 3 z y.
z € carrier-vec nc N A %, x < b A
y>0,nr ANAT %, y =c A
cox=>b-y
proof (rule strong-duality-theorem-both-sat[OF A b ¢ - sat])
show Jzeccarrier-vec nc. A x, £ < b
proof (rule ccontr)
assume — ?thesis
hence — (3. z € carrier-vec nc A A %, © < b) by auto
then obtain y where y0: y > 0, nr and Ay0: AT %, y = 0, nc and yb: y -
b<0
by (subst (asm) gram-schmidt. Farkas-Lemma'[OF A b, auto)
from sat obtain z where z0: z > 0, nr and Azc: AT %, © = ¢ by auto
define diff where diff = b - x — (bound — 1)
from x0 Axzc bounded have bound < b - x by auto
hence diff: diff > 0 unfolding diff-def by auto
define fact where fact = — inverse (y - b) * diff
have fact: fact > 0 unfolding fact-def using diff yb by (auto intro: mult-neg-pos)
define z where z = z + fact -, y
from z0 have x: x € carrier-vec nr
unfolding less-eq-vec-def by auto
from y0 have y: y € carrier-vec nr
unfolding less-eq-vec-def by auto
have AT x, z = AT %, v + AT x, (fact -, ¥)
unfolding z-def using A z y by (simp add: mult-add-distrib-mat-vec)
also have ... = AT %, z + fact -, (AT %, y) using A y by auto
also have ... = ¢ unfolding Ay0 Azc using c by auto
finally have Azc: AT %, z = c.
have 20: z > 0, nr unfolding z-def
by (intro lesseq-vecI[of - nr], insert x y lesseq-vecD[OF - 20, of nr] lesseq-vecD[OF
- y0, of nr] fact,
auto intro!: add-nonneg-nonneg)
from bounded Azc z0 have bz: bound < b - z by auto

also have ... = b - z + fact * (b - y) unfolding z-def using b z y
by (simp add: scalar-prod-add-distrib)

also have ... = diff + (bound — 1) + fact x (b - y)
unfolding diff-def by auto

also have fact * (b - y) = — diff using yb

unfolding fact-def comm-scalar-prod[OF y b] by auto
finally show Fulse by simp
qed

13

qed

Now the previous three duality theorems are formulated via min/max.

corollary strong-duality-theorem-min-max:
fixes A :: 'a :: trivial-conjugatable-linordered-field mat
assumes A: A € carrier-mat nr nc
and b: b € carrier-vec nr
and c: ¢ € carrier-vec nc
and primal: 3 © € carrier-vec nc. A x, £ < b
and dual: 3 y. y > 0, nr AN AT %, y = ¢
shows Mazimum {c - © | . € carrier-vec nc N A %, z < b}
= Minimum {b -y | y. y > 0, nr A AT %, y = ¢}
and has-Mazimum {c - z | x. © € carrier-vec nc A A %, ¢ < b}
and has-Minimum {b -y | y. y > 0, nr AN AT %, y = ¢}
proof —
let ?Prim = {c - z | z. € carrier-vec nc A A *, < b}
let ?Dual = {b-y |y y> 0, nr AN AT %, y = ¢}
define Prim where Prim = ?Prim
define Dual where Dual = ?Dual
from strong-duality-theorem-both-sat[OF assms)
obtain z y where z: © € carrier-vec nc and Azb: A x, © < b
and y: y > 0, nr and Ayc: AT %, y = ¢
and eq: ¢c - x = b - y by auto
have cxP: ¢ - x € Prim unfolding Prim-def using x Azb by auto
have caD: ¢ + © € Dual unfolding eq Dual-def using y Ayc by auto
{
fix 2z
assume z € Prim
from this[unfolded Prim-def] obtain z’ where z": z’ € carrier-vec nc
and Azb" A x, 2’ < band z: z = ¢ - 2’ by auto
from weak-duality-theorem[OF A b ¢ ' Azb’ y Aye, folded eq]
have z < ¢ - z unfolding = .
} note czMaz = this
have maz: Mazimum Prim = ¢ - x
by (intro eqMaximumlI cxP cxMax)
show has-Maximum ?Prim
unfolding Prim-def[symmetric] has-Mazimum-def using czP czMax by auto
{
fix z
assume z € Dual
from this[unfolded Dual-def] obtain y’ where y": y' > 0, nr
and Ayc" AT %, y'=cand z: 2 = b - y' by auto
from weak-duality-theorem[OF A b ¢ x Axb y' Ayc’, folded 2]
have c - 2 < 2.
} note czMin = this
show has-Minimum ?Dual
unfolding Dual-def[symmetric] has-Minimum-def using czD czMin by auto
have min: Minimum Dual = ¢ - z
by (intro eqgMinimumlI cxD cxMin)

14

from min mazr show Mazimum ?Prim = Minimum ?Dual
unfolding Dual-def Prim-def by auto
qed

corollary strong-duality-theorem-primal-sat-bounded-min-mazx:
fixes bound :: 'a :: trivial-conjugatable-linordered-field
assumes A: A € carrier-mat nr nc
and b: b € carrier-vec nr
and c¢: ¢ € carrier-vec nc
and sat: 3 x € carrier-vec nc. A x, x < b
and bounded: ¥V x € carrier-vec nc. A x, v < b — ¢ - z < bound
shows Mazimum {c - © | z. © € carrier-vec nc N A %, ¥ < b}
= Minimum {b -y | y. y > 0, nr A AT %, y = ¢}
and has-Mazimum {c - © | z. € carrier-vec nc N A %, < b}
and has-Minimum {b -y | y. y > 0, nr AN AT %, y = ¢}
proof —
let ?Prim = {c - z | . © € carrier-vec nc N A %, x < b}
let ?Dual = {b-y |y y> 0, nr AN AT %, y = ¢}
from strong-duality-theorem-primal-sat-bounded| OF assms]
have 3y>0, nr. AT %, y = ¢ by blast
from strong-duality-theorem-min-max[OF A b ¢ sat this
show Maximum ?Prim = Minimum ?Dual has-Mazimum ?Prim has-Minimum
¢Dual
by blast+
qed

corollary strong-duality-theorem-dual-sat-bounded-min-mazx:
fixes bound :: 'a :: trivial-conjugatable-linordered-field
assumes A: A € carrier-mat nr nc
and b: b € carrier-vec nr
and c: ¢ € carrier-vec nc
and sat: 3 3.y > 0, nr AN AT x, y = ¢
and bounded: ¥ y. y > 0, nr A AT %, y = ¢ — bound < b - y
shows Mazimum {c - ¢ | z. © € carrier-vec nc N A %, ¥ < b}
= Minimum {b -y | y. y > 0, nr A AT %, y = ¢}
and has-Maximum {c - z | x. x € carrier-vec nc A A %, © < b}
and has-Minimum {b -y | y. y > 0, nr A AT %, y = ¢}
proof —
let ?Prim = {c - z | . © € carrier-vec nc N A %, x < b}
let ?Dual = {b-y | y. y > 0, nr AN AT %, y = ¢}
from strong-duality-theorem-dual-sat-bounded| OF assms]
have 3 z € carrier-vec nc. A x, x < b by blast
from strong-duality-theorem-min-max[OF A b c this sat]
show Maximum ?Prim = Minimum ?Dual has-Mazimum ?Prim has-Minimum
?Dual
by blast+
qed

end

15

References

[1] R. Bottesch, A. Reynaud, and R. Thiemann. Linear inequalities.
Archive of Formal Proofs, June 2019. https://isa-afp.org/entries/
Linear_ Inequalities.html, Formal proof development.

[2] J. Parsert and C. Kaliszyk. Linear programming. Archive of Formal
Proofs, Aug. 2019. https://isa-afp.org/entries/Linear Programming.
html, Formal proof development.

[3] A. Schrijver. Theory of linear and integer programming. John Wiley &
Sons, 1998.

16

https://isa-afp.org/entries/Linear_Inequalities.html
https://isa-afp.org/entries/Linear_Inequalities.html
https://isa-afp.org/entries/Linear_Programming.html
https://isa-afp.org/entries/Linear_Programming.html

	Introduction
	Minimum and Maximum of Potentially Infinite Sets
	Weak and Strong Duality of Linear Programming

