
Duality of Linear Programming

René Thiemann

March 17, 2025

Abstract
We formalize the weak and strong duality theorems of linear pro-

gramming. For the strong duality theorem we provide three sufficient
preconditions: both the primal problem and the dual problem are sat-
isfiable, the primal problem is satisfiable and bounded, or the dual
problem is satisfiable and bounded. The proofs are based on an exist-
ing formalization of Farkas’ Lemma.

Contents
1 Introduction 1

2 Minimum and Maximum of Potentially Infinite Sets 2

3 Weak and Strong Duality of Linear Programming 3

1 Introduction

The proofs are taken from a textbook on linear programming [3]. There
clearly is already an related AFP entry on linear programming [2] and we
briefly explain the relationship between that entry and this one.

• The other AFP entry provides an algorithm for solving linear programs
based on an existing simplex implementation. Since the simplex im-
plementation is formulated only for rational numbers, several results
are only available for rational numbers. Moreover, the simplex algo-
rithm internally works on sets of inequalities that are represented by
linear polynomials, and there are conversions between matrix-vector
inequalities and linear polynomial inequalities. Finally, that AFP en-
try does not contain the strong duality theorem, which is the essential
result in this AFP entry.

• This AFP entry has completely been formalized in the matrix-vector
representation. It mainly consists of the strong duality theorems with-
out any algorithms. The proof of these theorems are based on Farkas’

1



Lemma which is provided in [1] for arbitrary linearly ordered fields.
Therefore, also the duality theorems are proven in that generality with-
out the restriction to rational numbers.

2 Minimum and Maximum of Potentially Infinite
Sets

theory Minimum-Maximum
imports Main

begin

We define minima and maxima of sets. In contrast to the existing Min and
Max operators, these operators are not restricted to finite sets
definition Maximum :: ′a :: linorder set ⇒ ′a where

Maximum S = (THE x. x ∈ S ∧ (∀ y ∈ S . y ≤ x))
definition Minimum :: ′a :: linorder set ⇒ ′a where

Minimum S = (THE x. x ∈ S ∧ (∀ y ∈ S . x ≤ y))

definition has-Maximum where has-Maximum S = (∃ x. x ∈ S ∧ (∀ y ∈ S . y
≤ x))
definition has-Minimum where has-Minimum S = (∃ x. x ∈ S ∧ (∀ y ∈ S . x ≤
y))

lemma eqMaximumI :
assumes x ∈ S
and

∧
y. y ∈ S =⇒ y ≤ x

shows Maximum S = x
unfolding Maximum-def
by (standard, insert assms, auto, fastforce)

lemma eqMinimumI :
assumes x ∈ S
and

∧
y. y ∈ S =⇒ x ≤ y

shows Minimum S = x
unfolding Minimum-def
by (standard, insert assms, auto, fastforce)

lemma has-MaximumD:
assumes has-Maximum S
shows Maximum S ∈ S

x ∈ S =⇒ x ≤ Maximum S
proof −

from assms[unfolded has-Maximum-def ]
obtain m where ∗: m ∈ S

∧
y. y ∈ S =⇒ y ≤ m by auto

have id: Maximum S = m
by (rule eqMaximumI , insert ∗, auto)

from ∗ id show Maximum S ∈ S x ∈ S =⇒ x ≤ Maximum S by auto
qed

2



lemma has-MinimumD:
assumes has-Minimum S
shows Minimum S ∈ S

x ∈ S =⇒ Minimum S ≤ x
proof −

from assms[unfolded has-Minimum-def ]
obtain m where ∗: m ∈ S

∧
y. y ∈ S =⇒ m ≤ y by auto

have id: Minimum S = m
by (rule eqMinimumI , insert ∗, auto)

from ∗ id show Minimum S ∈ S x ∈ S =⇒ Minimum S ≤ x by auto
qed

On non-empty finite sets, Minimum and Min coincide, and similarly Maxi-
mum and Max.
lemma Minimum-Min: assumes finite S S 6= {}

shows Minimum S = Min S
by (rule eqMinimumI , insert assms, auto)

lemma Maximum-Max: assumes finite S S 6= {}
shows Maximum S = Max S
by (rule eqMaximumI , insert assms, auto)

For natural numbers, having a maximum is the same as being bounded from
above and non-empty, or being finite and non-empty.
lemma has-Maximum-nat-iff-bdd-above: has-Maximum (A :: nat set)←→ bdd-above
A ∧ A 6= {}

unfolding has-Maximum-def
by (metis bdd-above.I bdd-above-nat emptyE finite-has-maximal nat-le-linear)

lemma has-Maximum-nat-iff-finite: has-Maximum (A :: nat set) ←→ finite A ∧
A 6= {}

unfolding has-Maximum-nat-iff-bdd-above bdd-above-nat ..

lemma bdd-above-Maximum-nat: (x :: nat) ∈ A =⇒ bdd-above A =⇒ x ≤ Maxi-
mum A

by (rule has-MaximumD, auto simp: has-Maximum-nat-iff-bdd-above)

end

3 Weak and Strong Duality of Linear Program-
ming

theory LP-Duality
imports

Linear-Inequalities.Farkas-Lemma
Minimum-Maximum

begin

3



lemma weak-duality-theorem:
fixes A :: ′a :: linordered-comm-semiring-strict mat
assumes A: A ∈ carrier-mat nr nc

and b: b ∈ carrier-vec nr
and c: c ∈ carrier-vec nc
and x: x ∈ carrier-vec nc
and Axb: A ∗v x ≤ b
and y0 : y ≥ 0 v nr
and yA: AT ∗v y = c

shows c · x ≤ b · y
proof −

from y0 have y: y ∈ carrier-vec nr unfolding less-eq-vec-def by auto
have c · x = (AT ∗v y) · x unfolding yA by simp
also have . . . = y · (A ∗v x) using x y A by (metis transpose-vec-mult-scalar)
also have . . . ≤ y · b

unfolding scalar-prod-def using A b Axb y0
by (auto intro!: sum-mono mult-left-mono simp: less-eq-vec-def )

also have . . . = b · y using y b by (metis comm-scalar-prod)
finally show ?thesis .

qed

corollary unbounded-primal-solutions:
fixes A :: ′a :: linordered-idom mat
assumes A: A ∈ carrier-mat nr nc

and b: b ∈ carrier-vec nr
and c: c ∈ carrier-vec nc
and unbounded: ∀ v. ∃ x ∈ carrier-vec nc. A ∗v x ≤ b ∧ c · x ≥ v

shows ¬ (∃ y. y ≥ 0 v nr ∧ AT ∗v y = c)
proof

assume (∃ y. y ≥ 0 v nr ∧ AT ∗v y = c)
then obtain y where y: y ≥ 0 v nr and Ayc: AT ∗v y = c

by auto
from unbounded[rule-format, of b · y + 1 ]
obtain x where x: x ∈ carrier-vec nc and Axb: A ∗v x ≤ b

and le: b · y + 1 ≤ c · x by auto
from weak-duality-theorem[OF A b c x Axb y Ayc]
have c · x ≤ b · y by auto
with le show False by auto

qed

corollary unbounded-dual-solutions:
fixes A :: ′a :: linordered-idom mat
assumes A: A ∈ carrier-mat nr nc

and b: b ∈ carrier-vec nr
and c: c ∈ carrier-vec nc
and unbounded: ∀ v. ∃ y. y ≥ 0 v nr ∧ AT ∗v y = c ∧ b · y ≤ v

shows ¬ (∃ x ∈ carrier-vec nc. A ∗v x ≤ b)
proof

4



assume ∃ x ∈ carrier-vec nc. A ∗v x ≤ b
then obtain x where x: x ∈ carrier-vec nc and Axb: A ∗v x ≤ b by auto
from unbounded[rule-format, of c · x − 1 ]
obtain y where y: y≥0 v nr and Ayc: AT ∗v y = c and le: b · y ≤ c · x − 1

by auto
from weak-duality-theorem[OF A b c x Axb y Ayc]
have c · x ≤ b · y by auto
with le show False by auto

qed

A version of the strong duality theorem which demands that both primal
and dual problem are solvable. At this point we do not use min- or max-
operations
theorem strong-duality-theorem-both-sat:

fixes A :: ′a :: trivial-conjugatable-linordered-field mat
assumes A: A ∈ carrier-mat nr nc

and b: b ∈ carrier-vec nr
and c: c ∈ carrier-vec nc
and primal: ∃ x ∈ carrier-vec nc. A ∗v x ≤ b
and dual: ∃ y. y ≥ 0 v nr ∧ AT ∗v y = c

shows ∃ x y.
x ∈ carrier-vec nc ∧ A ∗v x ≤ b ∧
y ≥ 0 v nr ∧ AT ∗v y = c ∧
c · x = b · y

proof −
define M-up where M-up = four-block-mat A (0m nr nr) (mat-of-row (− c))

(mat-of-row b)
define M-low where M-low = four-block-mat (0m nc nc) (AT ) (0m nc nc) (−

(AT ))
define M-last where M-last = append-cols (0m nr nc) (− 1m nr :: ′a mat)
define M where M = (M-up @r M-low) @r M-last
define bc where bc = ((b @v 0 v 1 ) @v (c @v −c)) @v (0 v nr)

let ?nr = ((nr + 1 ) + (nc + nc)) + nr
let ?nc = nc + nr
have M-up: M-up ∈ carrier-mat (nr + 1 ) ?nc

unfolding M-up-def using A b c by auto
have M-low: M-low ∈ carrier-mat (nc + nc) ?nc

unfolding M-low-def using A by auto
have M-last: M-last ∈ carrier-mat nr ?nc

unfolding M-last-def by auto
have M : M ∈ carrier-mat ?nr ?nc

using carrier-append-rows[OF carrier-append-rows[OF M-up M-low] M-last]
unfolding M-def by auto

have bc: bc ∈ carrier-vec ?nr unfolding bc-def
by (intro append-carrier-vec, insert b c, auto)

have (∃ xy. xy ∈ carrier-vec ?nc ∧ M ∗v xy ≤ bc)
proof (subst gram-schmidt.Farkas-Lemma ′[OF M bc], intro allI impI , elim conjE)

fix ulv

5



assume ulv0 : 0 v ?nr ≤ ulv and Mulv: MT ∗v ulv = 0 v ?nc
from ulv0 [unfolded less-eq-vec-def ]
have ulv: ulv ∈ carrier-vec ?nr by auto
define u1 where u1 = vec-first ulv ((nr + 1 ) + (nc + nc))
define u2 where u2 = vec-first u1 (nr + 1 )
define u3 where u3 = vec-last u1 (nc + nc)
define t where t = vec-last ulv nr
have ulvid: ulv = u1 @v t using ulv

unfolding u1-def t-def by auto
have t: t ∈ carrier-vec nr unfolding t-def by auto
have u1 : u1 ∈ carrier-vec ((nr + 1 ) + (nc + nc))

unfolding u1-def by auto
have u1id: u1 = u2 @v u3 using u1

unfolding u2-def u3-def by auto
have u2 : u2 ∈ carrier-vec (nr + 1 ) unfolding u2-def by auto
have u3 : u3 ∈ carrier-vec (nc + nc) unfolding u3-def by auto
define v where v = vec-first u3 nc
define w where w = vec-last u3 nc
have u3id: u3 = v @v w using u3

unfolding v-def w-def by auto
have v: v ∈ carrier-vec nc unfolding v-def by auto
have w: w ∈ carrier-vec nc unfolding w-def by auto

define u where u = vec-first u2 nr
define L where L = vec-last u2 1
have u2id: u2 = u @v L using u2

unfolding u-def L-def by auto
have u: u ∈ carrier-vec nr unfolding u-def by auto
have L: L ∈ carrier-vec 1 unfolding L-def by auto
define vec1 where vec1 = AT ∗v u + mat-of-col (− c) ∗v L
have vec1 : vec1 ∈ carrier-vec nc

unfolding vec1-def mat-of-col-def using A u c L
by (meson add-carrier-vec mat-of-row-carrier(1 ) mult-mat-vec-carrier trans-

pose-carrier-mat uminus-carrier-vec)
define vec2 where vec2 = A ∗v (v − w)
have vec2 : vec2 ∈ carrier-vec nr

unfolding vec2-def using A v w by auto
define vec3 where vec3 = mat-of-col b ∗v L
have vec3 : vec3 ∈ carrier-vec nr

using A b L unfolding mat-of-col-def vec3-def
by (meson add-carrier-vec mat-of-row-carrier(1 ) mult-mat-vec-carrier trans-

pose-carrier-mat uminus-carrier-vec)
have Mt: MT = (M-upT @c M-lowT ) @c M-lastT

unfolding M-def append-cols-def by simp
have MT ∗v ulv = (M-upT @c M-lowT ) ∗v u1 + M-lastT ∗v t

unfolding Mt ulvid
by (subst mat-mult-append-cols[OF carrier-append-cols - u1 t],

insert M-up M-low M-last, auto)
also have M-lastT = 0m nc nr @r − 1m nr unfolding M-last-def

6



unfolding append-cols-def by (simp, subst transpose-uminus, auto)
also have . . . ∗v t = 0 v nc @v − t

by (subst mat-mult-append[OF - - t], insert t, auto)
also have (M-upT @c M-lowT ) ∗v u1 = (M-upT ∗v u2 ) + (M-lowT ∗v u3 )

unfolding u1id
by (rule mat-mult-append-cols[OF - - u2 u3 ], insert M-up M-low, auto)

also have M-lowT = four-block-mat (0m nc nc) (0m nc nc) A (− A)
unfolding M-low-def
by (subst transpose-four-block-mat, insert A, auto)

also have . . . ∗v u3 = (0m nc nc ∗v v + 0m nc nc ∗v w) @v (A ∗v v + − A
∗v w) unfolding u3id

by (subst four-block-mat-mult-vec[OF - - A - v w], insert A, auto)
also have 0m nc nc ∗v v + 0m nc nc ∗v w = 0 v nc

using v w by auto
also have A ∗v v + − A ∗v w = vec2 unfolding vec2-def using A v w

by (metis (full-types) carrier-matD(2 ) carrier-vecD minus-add-uminus-vec
mult-mat-vec-carrier mult-minus-distrib-mat-vec uminus-mult-mat-vec)

also have M-upT = four-block-mat AT (mat-of-col (− c)) (0m nr nr) (mat-of-col
b)

unfolding M-up-def mat-of-col-def
by (subst transpose-four-block-mat[OF A], insert b c, auto)

also have . . . ∗v u2 = vec1 @v vec3
unfolding u2id vec1-def vec3-def
by (subst four-block-mat-mult-vec[OF - - - - u L], insert A b c u, auto)

also have (vec1 @v vec3 )
+ (0 v nc @v vec2 ) + (0 v nc @v − t) =
(vec1 @v (vec3 + vec2 − t))
apply (subst append-vec-add[of - nc - - nr , OF vec1 - vec3 vec2 ])
subgoal by force
apply (subst append-vec-add[of - nc - - nr ])
subgoal using vec1 by auto
subgoal by auto
subgoal using vec2 vec3 by auto
subgoal using t by auto
subgoal using vec1 by auto
done

finally have vec1 @v (vec3 + vec2 − t) = 0 v ?nc
unfolding Mulv by simp

also have . . . = 0 v nc @v 0 v nr by auto
finally have vec1 = 0 v nc ∧ vec3 + vec2 − t = 0 v nr

by (subst (asm) append-vec-eq[OF vec1 ], auto)
hence 01 : vec1 = 0 v nc and 02 : vec3 + vec2 − t = 0 v nr by auto
from 01 have vec1 + mat-of-col c ∗v L = mat-of-col c ∗v L

using c L vec1 unfolding mat-of-col-def by auto
also have vec1 + mat-of-col c ∗v L = AT ∗v u

unfolding vec1-def
using A u c L unfolding mat-of-col-def mat-of-row-uminus transpose-uminus
by (subst uminus-mult-mat-vec, auto)

finally have As: AT ∗v u = mat-of-col c ∗v L .

7



from 02 have (vec3 + vec2 − t) + t = 0 v nr + t
by simp

also have (vec3 + vec2 − t) + t = vec2 + vec3
using vec3 vec2 t by auto

finally have t23 : t = vec2 + vec3 using t by auto
have id0 : 0 v ?nr = ((0 v nr @v 0 v 1 ) @v (0 v nc @v 0 v nc)) @v 0 v nr

by auto
from ulv0 [unfolded id0 ulvid u1id u2id u3id]
have 0 v nr ≤ u ∧ 0 v 1 ≤ L ∧ 0 v nc ≤ v ∧ 0 v nc ≤ w ∧ 0 v nr ≤ t

apply (subst (asm) append-vec-le[of - (nr + 1 ) + (nc + nc)])
subgoal by (intro append-carrier-vec, auto)
subgoal by (intro append-carrier-vec u L v w)
apply (subst (asm) append-vec-le[of - (nr + 1 )])
subgoal by (intro append-carrier-vec, auto)
subgoal by (intro append-carrier-vec u L v w)
apply (subst (asm) append-vec-le[OF - u], force)
apply (subst (asm) append-vec-le[OF - v], force)
by auto

hence ineqs: 0 v nr ≤ u 0 v 1 ≤ L 0 v nc ≤ v 0 v nc ≤ w 0 v nr ≤ t
by auto

have ulv · bc = u · b + (v · c + w · (−c))
unfolding ulvid u1id u2id u3id bc-def
apply (subst scalar-prod-append[OF - t])
apply (rule append-carrier-vec[OF append-carrier-vec[OF u L] append-carrier-vec[OF

v w]])
apply (rule append-carrier-vec[OF append-carrier-vec[OF b] append-carrier-vec];

use c in force)
apply force

apply (subst scalar-prod-append)
apply (rule append-carrier-vec[OF u L])

apply (rule append-carrier-vec[OF v w])
subgoal by (rule append-carrier-vec, insert b, auto)
subgoal by (rule append-carrier-vec, insert c, auto)
apply (subst scalar-prod-append[OF u L b], force)
apply (subst scalar-prod-append[OF v w c], use c in force)
apply (insert L t, auto)
done

also have v · c + w · (−c) = c · v + (−c) · w
by (subst (1 2 ) comm-scalar-prod, insert w c v, auto)

also have . . . = c · v − (c · w) using c w by simp
also have . . . = c · (v − w) using c v w

by (simp add: scalar-prod-minus-distrib)
finally have ulvbc: ulv · bc = u · b + c · (v − w) .
define lam where lam = L $ 0
from ineqs(2 ) L have lam0 : lam ≥ 0 unfolding less-eq-vec-def lam-def by

auto
have As: AT ∗v u = lam ·v c unfolding As using c L

unfolding lam-def mat-of-col-def
by (intro eq-vecI , auto simp: scalar-prod-def )

8



have vec3 : vec3 = lam ·v b unfolding vec3-def using b L
unfolding lam-def mat-of-col-def
by (intro eq-vecI , auto simp: scalar-prod-def )

note preconds = lam0 ineqs(1 ,3−)[unfolded t23 [unfolded vec2-def vec3 ]] As
have 0 ≤ u · b + c · (v − w)
proof (cases lam > 0 )

case True
hence u · b = inverse lam ∗ (lam ∗ (b · u))

using comm-scalar-prod[OF b u] by simp
also have . . . = inverse lam ∗ ((lam ·v b) · u)

using b u by simp
also have . . . ≥ inverse lam ∗ (−(A ∗v (v − w)) · u)
proof (intro mult-left-mono)

show 0 ≤ inverse lam using preconds by auto
show −(A ∗v (v − w)) · u ≤ (lam ·v b) · u

unfolding scalar-prod-def
apply (rule sum-mono)
subgoal for i
using lesseq-vecD[OF - preconds(2 ), of nr i] lesseq-vecD[OF - preconds(5 ),

of nr i] u v w b A
by (intro mult-right-mono, auto)

done
qed
also have inverse lam ∗ (−(A ∗v (v − w)) · u) =
− (inverse lam ∗ ((A ∗v (v − w)) · u))

by (subst scalar-prod-uminus-left, insert A u v w, auto)
also have (A ∗v (v − w)) · u = (AT ∗v u) · (v − w)

apply (subst transpose-vec-mult-scalar [OF A - u])
subgoal using v w by force
by (rule comm-scalar-prod[OF - u], insert A v w, auto)

also have inverse lam ∗ . . . = c · (v − w) unfolding preconds(6 )
using True
by (subst scalar-prod-smult-left, insert c v w, auto)

finally show ?thesis by simp
next

case False
with preconds have lam: lam = 0 by auto
from primal obtain x0 where x0 : x0 ∈ carrier-vec nc

and Ax0b: A ∗v x0 ≤ b by auto
from dual obtain y0 where y00 : y0 ≥ 0 v nr

and Ay0c: AT ∗v y0 = c by auto
from y00 have y0 : y0 ∈ carrier-vec nr

unfolding less-eq-vec-def by auto
have Au: AT ∗v u = 0 v nc

unfolding preconds lam using c by auto
have 0 = (AT ∗v u) · x0 unfolding Au using x0 by auto
also have . . . = u · (A ∗v x0 )

by (rule transpose-vec-mult-scalar [OF A x0 u])
also have . . . ≤ u · b

9



unfolding scalar-prod-def
apply (use A x0 b in simp)
apply (intro sum-mono)
subgoal for i

using lesseq-vecD[OF - preconds(2 ), of nr i] lesseq-vecD[OF - Ax0b, of nr
i] u v w b A x0

by (intro mult-left-mono, auto)
done

finally have ub: 0 ≤ u · b .
have c · (v − w) = (AT ∗v y0 ) · (v − w) unfolding Ay0c by simp
also have . . . = y0 · (A ∗v (v − w))

by (subst transpose-vec-mult-scalar [OF A - y0 ], insert v w, auto)
also have . . . ≥ 0

unfolding scalar-prod-def
apply (use A v w in simp)
apply (intro sum-nonneg)
subgoal for i
using lesseq-vecD[OF - y00 , of nr i] lesseq-vecD[OF - preconds(5 )[unfolded

lam], of nr i] A y0 v w b
by (intro mult-nonneg-nonneg, auto)

done
finally show ?thesis using ub by auto

qed
thus 0 ≤ ulv · bc unfolding ulvbc .

qed
then obtain xy where xy: xy ∈ carrier-vec ?nc and le: M ∗v xy ≤ bc by auto
define x where x = vec-first xy nc
define y where y = vec-last xy nr
have xyid: xy = x @v y using xy

unfolding x-def y-def by auto
have x: x ∈ carrier-vec nc unfolding x-def by auto
have y: y ∈ carrier-vec nr unfolding y-def by auto
have At: AT ∈ carrier-mat nc nr using A by auto
have Ax1 : A ∗v x @v vec 1 (λ-. b · y − c · x) ∈ carrier-vec (nr + 1 )

using A x by fastforce
have b0cc: (b @v 0 v 1 ) @v c @v − c ∈ carrier-vec ((nr + 1 ) + (nc + nc))

using b c
by (intro append-carrier-vec, auto)

have M ∗v xy = (M-up ∗v xy @v M-low ∗v xy) @v (M-last ∗v xy)
unfolding M-def
unfolding mat-mult-append[OF carrier-append-rows[OF M-up M-low] M-last

xy]
by (simp add: mat-mult-append[OF M-up M-low xy])

also have M-low ∗v xy = (0m nc nc ∗v x + AT ∗v y) @v (0m nc nc ∗v x + −
AT ∗v y)

unfolding M-low-def xyid
by (rule four-block-mat-mult-vec[OF - At - - x y], insert A, auto)

also have 0m nc nc ∗v x + AT ∗v y = AT ∗v y using A x y by auto
also have 0m nc nc ∗v x + − AT ∗v y = − AT ∗v y using A x y by auto

10



also have M-up ∗v xy = (A ∗v x + 0m nr nr ∗v y) @v

(mat-of-row (− c) ∗v x + mat-of-row b ∗v y)
unfolding M-up-def xyid
by (rule four-block-mat-mult-vec[OF A - - - x y], insert b c, auto)

also have A ∗v x + 0m nr nr ∗v y = A ∗v x using A x y by auto
also have mat-of-row (− c) ∗v x + mat-of-row b ∗v y =

vec 1 (λ -. b · y − c · x)
unfolding mult-mat-vec-def using c x by (intro eq-vecI , auto)

also have M-last ∗v xy = − y
unfolding M-last-def xyid using x y
by (subst mat-mult-append-cols[OF - - x y], auto)

finally have ((A ∗v x @v vec 1 (λ-. b · y − c · x)) @v (AT ∗v y @v − AT ∗v
y)) @v −y

= M ∗v xy ..
also have . . . ≤ bc by fact
also have . . . = ((b @v 0 v 1 ) @v (c @v −c)) @v 0 v nr unfolding bc-def by

auto
finally have ineqs: A ∗v x ≤ b ∧ vec 1 (λ-. b · y − c · x) ≤ 0 v 1

∧ AT ∗v y ≤ c ∧ − AT ∗v y ≤ −c ∧ −y ≤ 0 v nr
apply (subst (asm) append-vec-le[OF - b0cc])
subgoal using A x y by (intro append-carrier-vec, auto)
apply (subst (asm) append-vec-le[OF Ax1 ], use b in fastforce)
apply (subst (asm) append-vec-le[OF - b], use A x in force)
apply (subst (asm) append-vec-le[OF - c], use A y in force)
by auto

show ?thesis
proof (intro exI conjI )

from ineqs show Axb: A ∗v x ≤ b by auto
from ineqs have − AT ∗v y ≤ −c AT ∗v y ≤ c by auto
hence AT ∗v y ≥ c AT ∗v y ≤ c unfolding less-eq-vec-def using A y by auto
then show Aty: AT ∗v y = c by simp
from ineqs have − y ≤ 0 v nr by simp
then show y0 : 0 v nr ≤ y unfolding less-eq-vec-def by auto
from ineqs have b · y ≤ c · x unfolding less-eq-vec-def by auto
with weak-duality-theorem[OF A b c x Axb y0 Aty]
show c · x = b · y by auto

qed (insert x)
qed

A version of the strong duality theorem which demands that the primal
problem is solvable and the objective function is bounded.
theorem strong-duality-theorem-primal-sat-bounded:

fixes bound :: ′a :: trivial-conjugatable-linordered-field
assumes A: A ∈ carrier-mat nr nc

and b: b ∈ carrier-vec nr
and c: c ∈ carrier-vec nc
and sat: ∃ x ∈ carrier-vec nc. A ∗v x ≤ b
and bounded: ∀ x ∈ carrier-vec nc. A ∗v x ≤ b −→ c · x ≤ bound

shows ∃ x y.

11



x ∈ carrier-vec nc ∧ A ∗v x ≤ b ∧
y ≥ 0 v nr ∧ AT ∗v y = c ∧
c · x = b · y

proof (rule strong-duality-theorem-both-sat[OF A b c sat])
show ∃ y≥0 v nr . AT ∗v y = c
proof (rule ccontr)

assume ¬ ?thesis
hence ∃ y. y ∈ carrier-vec nc ∧ 0 v nr ≤ A ∗v y ∧ 0 > y · c

by (subst (asm) gram-schmidt.Farkas-Lemma[OF - c], insert A, auto)
then obtain y where y: y ∈ carrier-vec nc

and Ay0 : A ∗v y ≥ 0 v nr and yc0 : y · c < 0 by auto
from sat obtain x where x: x ∈ carrier-vec nc

and Axb: A ∗v x ≤ b by auto
define diff where diff = bound + 1 − c · x
from x Axb bounded have c · x < bound + 1 by auto
hence diff : diff > 0 unfolding diff-def by auto
from yc0 have inv: inverse (− (y · c)) > 0 by auto
define fact where fact = diff ∗ (inverse (− (y · c)))
have fact: fact > 0 unfolding fact-def using diff inv by (metis mult-pos-pos)
define z where z = x − fact ·v y
have A ∗v z = A ∗v x − A ∗v (fact ·v y)
unfolding z-def using A x y by (meson mult-minus-distrib-mat-vec smult-carrier-vec)
also have . . . = A ∗v x − fact ·v (A ∗v y) using A y by auto
also have . . . ≤ b
proof (intro lesseq-vecI [OF - b])

show A ∗v x − fact ·v (A ∗v y) ∈ carrier-vec nr using A x y by auto
fix i
assume i: i < nr
have (A ∗v x − fact ·v (A ∗v y)) $ i
= (A ∗v x) $ i − fact ∗ (A ∗v y) $ i
using i A x y by auto

also have . . . ≤ b $ i − fact ∗ (A ∗v y) $ i
using lesseq-vecD[OF b Axb i] by auto

also have . . . ≤ b $ i − 0 ∗ 0 using lesseq-vecD[OF - Ay0 i] fact A y i
by (intro diff-left-mono mult-monom, auto)

finally show (A ∗v x − fact ·v (A ∗v y)) $ i ≤ b $ i by simp
qed
finally have Azb: A ∗v z ≤ b .
have z: z ∈ carrier-vec nc using x y unfolding z-def by auto
have c · z = c · x − fact ∗ (c · y) unfolding z-def

using c x y by (simp add: scalar-prod-minus-distrib)
also have . . . = c · x + diff

unfolding comm-scalar-prod[OF c y] fact-def using yc0 by simp
also have . . . = bound + 1 unfolding diff-def by simp
also have . . . > c · z using bounded Azb z by auto
finally show False by simp

qed
qed

A version of the strong duality theorem which demands that the dual prob-

12



lem is solvable and the objective function is bounded.
theorem strong-duality-theorem-dual-sat-bounded:

fixes bound :: ′a :: trivial-conjugatable-linordered-field
assumes A: A ∈ carrier-mat nr nc

and b: b ∈ carrier-vec nr
and c: c ∈ carrier-vec nc
and sat: ∃ y. y ≥ 0 v nr ∧ AT ∗v y = c
and bounded: ∀ y. y ≥ 0 v nr ∧ AT ∗v y = c −→ bound ≤ b · y

shows ∃ x y.
x ∈ carrier-vec nc ∧ A ∗v x ≤ b ∧
y ≥ 0 v nr ∧ AT ∗v y = c ∧
c · x = b · y

proof (rule strong-duality-theorem-both-sat[OF A b c - sat])
show ∃ x∈carrier-vec nc. A ∗v x ≤ b
proof (rule ccontr)

assume ¬ ?thesis
hence ¬ (∃ x. x ∈ carrier-vec nc ∧ A ∗v x ≤ b) by auto
then obtain y where y0 : y ≥ 0 v nr and Ay0 : AT ∗v y = 0 v nc and yb: y ·

b < 0
by (subst (asm) gram-schmidt.Farkas-Lemma ′[OF A b], auto)

from sat obtain x where x0 : x ≥ 0 v nr and Axc: AT ∗v x = c by auto
define diff where diff = b · x − (bound − 1 )
from x0 Axc bounded have bound ≤ b · x by auto
hence diff : diff > 0 unfolding diff-def by auto
define fact where fact = − inverse (y · b) ∗ diff

have fact: fact > 0 unfolding fact-def using diff yb by (auto intro: mult-neg-pos)
define z where z = x + fact ·v y
from x0 have x: x ∈ carrier-vec nr

unfolding less-eq-vec-def by auto
from y0 have y: y ∈ carrier-vec nr

unfolding less-eq-vec-def by auto
have AT ∗v z = AT ∗v x + AT ∗v (fact ·v y)

unfolding z-def using A x y by (simp add: mult-add-distrib-mat-vec)
also have . . . = AT ∗v x + fact ·v (AT ∗v y) using A y by auto
also have . . . = c unfolding Ay0 Axc using c by auto
finally have Azc: AT ∗v z = c .
have z0 : z ≥ 0 v nr unfolding z-def
by (intro lesseq-vecI [of - nr ], insert x y lesseq-vecD[OF - x0 , of nr ] lesseq-vecD[OF

- y0 , of nr ] fact,
auto intro!: add-nonneg-nonneg)

from bounded Azc z0 have bz: bound ≤ b · z by auto
also have . . . = b · x + fact ∗ (b · y) unfolding z-def using b x y

by (simp add: scalar-prod-add-distrib)
also have . . . = diff + (bound − 1 ) + fact ∗ (b · y)

unfolding diff-def by auto
also have fact ∗ (b · y) = − diff using yb

unfolding fact-def comm-scalar-prod[OF y b] by auto
finally show False by simp

qed

13



qed

Now the previous three duality theorems are formulated via min/max.
corollary strong-duality-theorem-min-max:

fixes A :: ′a :: trivial-conjugatable-linordered-field mat
assumes A: A ∈ carrier-mat nr nc

and b: b ∈ carrier-vec nr
and c: c ∈ carrier-vec nc
and primal: ∃ x ∈ carrier-vec nc. A ∗v x ≤ b
and dual: ∃ y. y ≥ 0 v nr ∧ AT ∗v y = c

shows Maximum {c · x | x. x ∈ carrier-vec nc ∧ A ∗v x ≤ b}
= Minimum {b · y | y. y ≥ 0 v nr ∧ AT ∗v y = c}

and has-Maximum {c · x | x. x ∈ carrier-vec nc ∧ A ∗v x ≤ b}
and has-Minimum {b · y | y. y ≥ 0 v nr ∧ AT ∗v y = c}

proof −
let ?Prim = {c · x | x. x ∈ carrier-vec nc ∧ A ∗v x ≤ b}
let ?Dual = {b · y | y. y ≥ 0 v nr ∧ AT ∗v y = c}
define Prim where Prim = ?Prim
define Dual where Dual = ?Dual
from strong-duality-theorem-both-sat[OF assms]
obtain x y where x: x ∈ carrier-vec nc and Axb: A ∗v x ≤ b

and y: y ≥ 0 v nr and Ayc: AT ∗v y = c
and eq: c · x = b · y by auto

have cxP: c · x ∈ Prim unfolding Prim-def using x Axb by auto
have cxD: c · x ∈ Dual unfolding eq Dual-def using y Ayc by auto
{

fix z
assume z ∈ Prim
from this[unfolded Prim-def ] obtain x ′ where x ′: x ′ ∈ carrier-vec nc

and Axb ′: A ∗v x ′ ≤ b and z: z = c · x ′ by auto
from weak-duality-theorem[OF A b c x ′ Axb ′ y Ayc, folded eq]
have z ≤ c · x unfolding z .

} note cxMax = this
have max: Maximum Prim = c · x

by (intro eqMaximumI cxP cxMax)
show has-Maximum ?Prim

unfolding Prim-def [symmetric] has-Maximum-def using cxP cxMax by auto
{

fix z
assume z ∈ Dual
from this[unfolded Dual-def ] obtain y ′ where y ′: y ′ ≥ 0 v nr

and Ayc ′: AT ∗v y ′ = c and z: z = b · y ′ by auto
from weak-duality-theorem[OF A b c x Axb y ′ Ayc ′, folded z]
have c · x ≤ z .

} note cxMin = this
show has-Minimum ?Dual

unfolding Dual-def [symmetric] has-Minimum-def using cxD cxMin by auto
have min: Minimum Dual = c · x

by (intro eqMinimumI cxD cxMin)

14



from min max show Maximum ?Prim = Minimum ?Dual
unfolding Dual-def Prim-def by auto

qed

corollary strong-duality-theorem-primal-sat-bounded-min-max:
fixes bound :: ′a :: trivial-conjugatable-linordered-field
assumes A: A ∈ carrier-mat nr nc

and b: b ∈ carrier-vec nr
and c: c ∈ carrier-vec nc
and sat: ∃ x ∈ carrier-vec nc. A ∗v x ≤ b
and bounded: ∀ x ∈ carrier-vec nc. A ∗v x ≤ b −→ c · x ≤ bound

shows Maximum {c · x | x. x ∈ carrier-vec nc ∧ A ∗v x ≤ b}
= Minimum {b · y | y. y ≥ 0 v nr ∧ AT ∗v y = c}

and has-Maximum {c · x | x. x ∈ carrier-vec nc ∧ A ∗v x ≤ b}
and has-Minimum {b · y | y. y ≥ 0 v nr ∧ AT ∗v y = c}

proof −
let ?Prim = {c · x | x. x ∈ carrier-vec nc ∧ A ∗v x ≤ b}
let ?Dual = {b · y | y. y ≥ 0 v nr ∧ AT ∗v y = c}
from strong-duality-theorem-primal-sat-bounded[OF assms]
have ∃ y≥0 v nr . AT ∗v y = c by blast
from strong-duality-theorem-min-max[OF A b c sat this]
show Maximum ?Prim = Minimum ?Dual has-Maximum ?Prim has-Minimum

?Dual
by blast+

qed

corollary strong-duality-theorem-dual-sat-bounded-min-max:
fixes bound :: ′a :: trivial-conjugatable-linordered-field
assumes A: A ∈ carrier-mat nr nc

and b: b ∈ carrier-vec nr
and c: c ∈ carrier-vec nc
and sat: ∃ y. y ≥ 0 v nr ∧ AT ∗v y = c
and bounded: ∀ y. y ≥ 0 v nr ∧ AT ∗v y = c −→ bound ≤ b · y

shows Maximum {c · x | x. x ∈ carrier-vec nc ∧ A ∗v x ≤ b}
= Minimum {b · y | y. y ≥ 0 v nr ∧ AT ∗v y = c}

and has-Maximum {c · x | x. x ∈ carrier-vec nc ∧ A ∗v x ≤ b}
and has-Minimum {b · y | y. y ≥ 0 v nr ∧ AT ∗v y = c}

proof −
let ?Prim = {c · x | x. x ∈ carrier-vec nc ∧ A ∗v x ≤ b}
let ?Dual = {b · y | y. y ≥ 0 v nr ∧ AT ∗v y = c}
from strong-duality-theorem-dual-sat-bounded[OF assms]
have ∃ x ∈ carrier-vec nc. A ∗v x ≤ b by blast
from strong-duality-theorem-min-max[OF A b c this sat]
show Maximum ?Prim = Minimum ?Dual has-Maximum ?Prim has-Minimum

?Dual
by blast+

qed

end

15



References

[1] R. Bottesch, A. Reynaud, and R. Thiemann. Linear inequalities.
Archive of Formal Proofs, June 2019. https://isa-afp.org/entries/
Linear_Inequalities.html, Formal proof development.

[2] J. Parsert and C. Kaliszyk. Linear programming. Archive of Formal
Proofs, Aug. 2019. https://isa-afp.org/entries/Linear_Programming.
html, Formal proof development.

[3] A. Schrijver. Theory of linear and integer programming. John Wiley &
Sons, 1998.

16

https://isa-afp.org/entries/Linear_Inequalities.html
https://isa-afp.org/entries/Linear_Inequalities.html
https://isa-afp.org/entries/Linear_Programming.html
https://isa-afp.org/entries/Linear_Programming.html

	Introduction
	Minimum and Maximum of Potentially Infinite Sets
	Weak and Strong Duality of Linear Programming

