Duality of Linear Programming

René Thiemann

March 17, 2025

Abstract

We formalize the weak and strong duality theorems of linear programming. For the strong duality theorem we provide three sufficient preconditions: both the primal problem and the dual problem are satisfiable, the primal problem is satisfiable and bounded, or the dual problem is satisfiable and bounded. The proofs are based on an existing formalization of Farkas' Lemma.

Contents

1	Introduction]
2	Minimum and Maximum of Potentially Infinite Sets	2
3	Weak and Strong Duality of Linear Programming	•

1 Introduction

The proofs are taken from a textbook on linear programming [3]. There clearly is already an related AFP entry on linear programming [2] and we briefly explain the relationship between that entry and this one.

- The other AFP entry provides an algorithm for solving linear programs based on an existing simplex implementation. Since the simplex implementation is formulated only for rational numbers, several results are only available for rational numbers. Moreover, the simplex algorithm internally works on sets of inequalities that are represented by linear polynomials, and there are conversions between matrix-vector inequalities and linear polynomial inequalities. Finally, that AFP entry does not contain the strong duality theorem, which is the essential result in this AFP entry.
- This AFP entry has completely been formalized in the matrix-vector representation. It mainly consists of the strong duality theorems without any algorithms. The proof of these theorems are based on Farkas'

Lemma which is provided in [1] for arbitrary linearly ordered fields. Therefore, also the duality theorems are proven in that generality without the restriction to rational numbers.

2 Minimum and Maximum of Potentially Infinite Sets

 ${\bf theory}\ {\it Minimum-Maximum}$

```
imports Main
begin
We define minima and maxima of sets. In contrast to the existing Min and
Max operators, these operators are not restricted to finite sets
definition Maximum :: 'a :: linorder set \Rightarrow 'a where
  Maximum S = (THE \ x. \ x \in S \land (\forall y \in S. \ y \leq x))
definition Minimum :: 'a :: linorder set \Rightarrow 'a where
  Minimum S = (THE \ x. \ x \in S \land (\forall y \in S. \ x \leq y))
definition has-Maximum where has-Maximum S = (\exists x. x \in S \land (\forall y \in S. y))
definition has-Minimum where has-Minimum S = (\exists x. x \in S \land (\forall y \in S. x \leq
y))
lemma eqMaximumI:
 assumes x \in S
 and \bigwedge y. y \in S \Longrightarrow y \leq x
shows Maximum S = x
 unfolding Maximum-def
 by (standard, insert assms, auto, fastforce)
lemma eqMinimumI:
 assumes x \in S
 and \bigwedge y. y \in S \Longrightarrow x \leq y
shows Minimum S = x
 unfolding Minimum-def
 by (standard, insert assms, auto, fastforce)
lemma has-MaximumD:
 assumes has-Maximum S
 shows Maximum S \in S
   x \in S \Longrightarrow x \leq Maximum S
  from assms[unfolded has-Maximum-def]
 obtain m where *: m \in S \land y. y \in S \Longrightarrow y \le m by auto
 have id: Maximum S = m
   by (rule eqMaximumI, insert *, auto)
 from * id show Maximum S \in S x \in S \Longrightarrow x \leq Maximum S by auto
qed
```

```
lemma has-MinimumD:
 assumes has-Minimum S
 shows Minimum S \in S
   x \in S \Longrightarrow Minimum \ S \le x
proof -
 from assms[unfolded has-Minimum-def]
 obtain m where *: m \in S \land y. y \in S \Longrightarrow m \leq y by auto
 have id: Minimum S = m
   by (rule eqMinimumI, insert *, auto)
 from * id show Minimum S \in S x \in S \Longrightarrow Minimum S \leq x by auto
On non-empty finite sets, Minimum and Min coincide, and similarly Maxi-
mum and Max.
lemma Minimum-Min: assumes finite\ S\ S \neq \{\}
 shows Minimum S = Min S
 by (rule eqMinimumI, insert assms, auto)
lemma Maximum-Max: assumes finite S S \neq \{\}
 shows Maximum S = Max S
 by (rule egMaximumI, insert assms, auto)
For natural numbers, having a maximum is the same as being bounded from
above and non-empty, or being finite and non-empty.
\mathbf{lemma} \ \mathit{has-Maximum-nat-iff-bdd-above:} \ \mathit{has-Maximum} \ (A :: nat \ set) \longleftrightarrow \mathit{bdd-above}
A \wedge A \neq \{\}
 unfolding has-Maximum-def
 by (metis bdd-above. I bdd-above-nat emptyE finite-has-maximal nat-le-linear)
lemma has-Maximum-nat-iff-finite: has-Maximum (A :: nat \ set) \longleftrightarrow finite \ A \land
 unfolding has-Maximum-nat-iff-bdd-above bdd-above-nat...
lemma bdd-above-Maximum-nat: (x::nat) \in A \Longrightarrow bdd-above A \Longrightarrow x \leq Maxi-
 by (rule has-MaximumD, auto simp: has-Maximum-nat-iff-bdd-above)
end
```

3 Weak and Strong Duality of Linear Programming

```
theory LP-Duality
imports
Linear-Inequalities.Farkas-Lemma
Minimum-Maximum
begin
```

```
lemma weak-duality-theorem:
  fixes A :: 'a :: linordered\text{-}comm\text{-}semiring\text{-}strict mat
  assumes A: A \in carrier\text{-}mat\ nr\ nc
    and b: b \in carrier\text{-}vec \ nr
    and c: c \in carrier\text{-}vec \ nc
    and x: x \in carrier\text{-}vec \ nc
    and Axb: A *_v x \leq b
   \begin{array}{ll} \mathbf{and} \ y\theta \colon y \geq \theta_v \ nr \\ \mathbf{and} \ yA \colon A^T *_v y = c \end{array}
  \mathbf{shows}^{\cdot} c \cdot x \leq b \cdot y
proof -
  from y0 have y: y \in carrier\text{-}vec \ nr \ unfolding \ less\text{-}eq\text{-}vec\text{-}def \ by \ auto
  have c \cdot x = (A^T *_v y) \cdot x unfolding yA by simp
  also have ... = y \cdot (A *_v x) using x y A by (metis transpose-vec-mult-scalar)
 also have \dots < y \cdot b
    unfolding scalar-prod-def using A b Axb y0
    by (auto intro!: sum-mono mult-left-mono simp: less-eq-vec-def)
  also have \dots = b \cdot y using y \ b by (metis comm-scalar-prod)
  finally show ?thesis.
qed
corollary unbounded-primal-solutions:
  fixes A :: 'a :: linordered-idom mat
  assumes A: A \in carrier\text{-}mat \ nr \ nc
   and b: b \in carrier\text{-}vec \ nr
    and c: c \in carrier\text{-}vec \ nc
    and unbounded: \forall v. \exists x \in carrier\text{-}vec \ nc. \ A *_v x \leq b \land c \cdot x \geq v
  shows \neg (\exists y. y \ge \theta_v \ nr \land A^T *_v y = c)
  assume (\exists y. y \ge \theta_v \ nr \land A^T *_v y = c)
  then obtain y where y: y \ge \theta_v nr and Ayc: A^T *_v y = c
    by auto
  from unbounded[rule-format, of b \cdot y + 1]
  obtain x where x: x \in carrier\text{-}vec \ nc \ and \ Axb: A *_v \ x \leq b
    and le: b \cdot y + 1 \le c \cdot x by auto
  from weak-duality-theorem[OF A b c x Axb y Ayc]
 have c \cdot x \leq b \cdot y by auto
  with le show False by auto
qed
{f corollary}\ unbounded	ext{-}dual	ext{-}solutions:
  fixes A :: 'a :: linordered-idom mat
  assumes A: A \in carrier\text{-}mat\ nr\ nc
    and b: b \in carrier\text{-}vec \ nr
    and c: c \in carrier\text{-}vec \ nc
    and unbounded: \forall v. \exists y. y \geq 0_v \ nr \land A^T *_v y = c \land b \cdot y \leq v
  shows \neg (\exists x \in carrier\text{-}vec \ nc. \ A *_v x \leq b)
proof
```

```
assume \exists x \in carrier\text{-}vec\ nc.\ A *_v x \leq b then obtain x where x: x \in carrier\text{-}vec\ nc and Axb: A *_v x \leq b by auto from unbounded[rule\text{-}format,\ of\ c \cdot x - 1] obtain y where y: y \geq 0_v nr and Ayc: A^T *_v y = c and le: b \cdot y \leq c \cdot x - 1 by auto from weak\text{-}duality\text{-}theorem[OF\ A\ b\ c\ x\ Axb\ y\ Ayc] have c \cdot x \leq b \cdot y by auto with le show False by auto qed
```

A version of the strong duality theorem which demands that both primal and dual problem are solvable. At this point we do not use min- or maxoperations

```
theorem strong-duality-theorem-both-sat:
  fixes A :: 'a :: trivial-conjugatable-linordered-field mat
 assumes A: A \in carrier\text{-}mat\ nr\ nc
   and b: b \in carrier\text{-}vec \ nr
   and c: c \in carrier\text{-}vec \ nc
   and primal: \exists x \in carrier\text{-}vec \ nc. \ A *_v x \leq b
   and dual: \exists y. y \geq \theta_v \ nr \wedge A^T *_v y = c
 shows \exists x y.
      x \in carrier\text{-}vec \ nc \land A *_v x \leq b \land
      y \ge \theta_v \ nr \wedge A^T *_v y = c \wedge
      c \cdot x = b \cdot y
proof -
  define M-up where M-up = four-block-mat A (\theta_m nr nr) (mat-of-row (- c))
(mat-of-row\ b)
  define M-low where M-low = four-block-mat (\theta_m nc nc) (A^T) (\theta_m nc nc) (-
(A^T)
  define M-last where M-last = append-cols (\theta_m \ nr \ nc) \ (-1_m \ nr :: 'a \ mat)
 define M where M = (M-up @_r M-low) @_r M-last
 define bc where bc = ((b @_v \theta_v 1) @_v (c @_v - c)) @_v (\theta_v nr)
 let ?nr = ((nr + 1) + (nc + nc)) + nr
 let ?nc = nc + nr
 have M-up: M-up \in carrier-mat (nr + 1) ?nc
   unfolding M-up-def using A b c by auto
  have M-low: M-low \in carrier-mat (nc + nc) ?nc
   unfolding M-low-def using A by auto
 have M-last: M-last \in carrier-mat nr ?nc
   unfolding M-last-def by auto
 have M: M \in carrier\text{-}mat ?nr ?nc
   using carrier-append-rows[OF carrier-append-rows[OF M-up M-low] M-last]
   unfolding M-def by auto
  have bc: bc \in carrier\text{-}vec ?nr \text{ unfolding } bc\text{-}def
   by (intro append-carrier-vec, insert b c, auto)
 have (\exists xy. xy \in carrier\text{-}vec ?nc \land M *_v xy \leq bc)
 proof (subst gram-schmidt.Farkas-Lemma'[OF M bc], intro allI impI, elim conjE)
   \mathbf{fix} ulv
```

```
assume ulv\theta: \theta_v ?nr \leq ulv and Mulv: M^T *_v ulv = \theta_v ?nc
   from ulv0[unfolded\ less-eq-vec-def]
   have ulv: ulv \in carrier\text{-}vec ?nr by auto
   define u1 where u1 = vec-first ulv((nr + 1) + (nc + nc))
   define u2 where u2 = vec-first u1 (nr + 1)
   define u3 where u3 = vec\text{-}last\ u1\ (nc + nc)
   define t where t = vec-last ulv nr
   have ulvid: ulv = u1 @_v t using ulv
     unfolding u1-def t-def by auto
   have t: t \in carrier\text{-}vec \ nr \ \mathbf{unfolding} \ t\text{-}def \ \mathbf{by} \ auto
   have u1: u1 \in carrier\text{-}vec\ ((nr+1)+(nc+nc))
     unfolding u1-def by auto
   have u1id: u1 = u2 @_v u3 using u1
     unfolding u2-def u3-def by auto
   have u2: u2 \in carrier\text{-}vec \ (nr+1) \text{ unfolding } u2\text{-}def \text{ by } auto
   have u3: u3 \in carrier\text{-}vec \ (nc + nc) \ unfolding \ u3\text{-}def \ by \ auto
   define v where v = vec-first u3 nc
   define w where w = vec\text{-}last \ u3 \ nc
   have u3id: u3 = v @_v w using u3
     unfolding v-def w-def by auto
   have v: v \in carrier\text{-}vec \ nc \ unfolding \ v\text{-}def \ by \ auto
   have w: w \in carrier\text{-}vec \ nc \ \mathbf{unfolding} \ w\text{-}def \ \mathbf{by} \ auto
   define u where u = vec-first u2 nr
   define L where L = vec-last u2 1
   have u2id: u2 = u @_v L using u2
     unfolding u-def L-def by auto
   have u: u \in carrier\text{-}vec \ nr \ unfolding \ u\text{-}def \ by \ auto
   have L: L \in carrier\text{-}vec \ 1 \text{ unfolding } L\text{-}def \text{ by } auto
   define vec1 where vec1 = A^T *_v u + mat\text{-of-col}(-c) *_v L
   have vec1: vec1 \in carrier\text{-}vec \ nc
     unfolding vec1-def mat-of-col-def using A u c L
     by (meson add-carrier-vec mat-of-row-carrier(1) mult-mat-vec-carrier trans-
pose-carrier-mat uminus-carrier-vec)
   define vec2 where vec2 = A *_v (v - w)
   have vec2: vec2 \in carrier\text{-}vec \ nr
     unfolding vec2-def using A \ v \ w by auto
   define vec3 where vec3 = mat\text{-}of\text{-}col\ b *_v L
   have vec3: vec3 \in carrier\text{-}vec \ nr
     using A b L unfolding mat-of-col-def vec3-def
     by (meson add-carrier-vec mat-of-row-carrier(1) mult-mat-vec-carrier trans-
pose\text{-}carrier\text{-}mat\ uminus\text{-}carrier\text{-}vec)
   have Mt: M^T = (M-up^T @_c M-low^T) @_c M-last^T
     unfolding M-def append-cols-def by simp
   have M^T *_v ulv = (M - up^T @_c M - low^T) *_v u1 + M - last^T *_v t
     unfolding Mt ulvid
     by (subst\ mat-mult-append-cols[OF\ carrier-append-cols\ -\ u1\ t],
         insert M-up M-low M-last, auto)
   also have M-last<sup>T</sup> = \theta_m nc nr @_r - 1_m nr unfolding M-last-def
```

```
unfolding append-cols-def by (simp, subst transpose-uminus, auto)
   also have ... *_v t = \theta_v nc @_v - t
     by (subst\ mat-mult-append[OF - - t],\ insert\ t,\ auto)
   also have (M - up^T @_c M - low^T) *_v u1 = (M - up^T *_v u2) + (M - low^T *_v u3)
     unfolding u1id
     by (rule mat-mult-append-cols[OF - - u2 u3], insert M-up M-low, auto)
   also have M-low<sup>T</sup> = four-block-mat (\theta_m nc nc) (\theta_m nc nc) A (-A)
     unfolding M-low-def
     by (subst transpose-four-block-mat, insert A, auto)
   also have ... *_v u\beta = (\theta_m \ nc \ nc \ *_v \ v + \theta_m \ nc \ nc \ *_v \ w) \ @_v \ (A \ *_v \ v + - A)
*_v w) unfolding u3id
     by (subst\ four-block-mat-mult-vec[OF - - A - v\ w],\ insert\ A,\ auto)
   also have \theta_m nc nc *_v v + \theta_m nc nc *_v w = \theta_v nc
     using v w by auto
   also have A *_v v +_- A *_v w = vec2 unfolding vec2-def using A v w
      by (metis (full-types) carrier-matD(2) carrier-vecD minus-add-uminus-vec
mult-mat-vec-carrier mult-minus-distrib-mat-vec uminus-mult-mat-vec)
  also have M-up^T = four-block-mat A^T (mat-of-col (-c)) (<math>\theta_m \ nr \ nr) (mat-of-col (-c))
     unfolding M-up-def mat-of-col-def
     by (subst\ transpose-four-block-mat[OF\ A],\ insert\ b\ c,\ auto)
   also have ... *_v u2 = vec1 @_v vec3
     unfolding u2id vec1-def vec3-def
     by (subst\ four-block-mat-mult-vec[OF - - - - u\ L],\ insert\ A\ b\ c\ u,\ auto)
   also have (vec1 @_v vec3)
     + (\theta_v \ nc \ @_v \ vec2) + (\theta_v \ nc \ @_v - t) =
     (vec1 @_v (vec3 + vec2 - t))
     apply (subst append-vec-add[of - nc - - nr, OF vec1 - vec3 vec2])
     subgoal by force
     apply (subst\ append\ -vec\ -add[of\ -nc\ -nr])
     subgoal using vec1 by auto
     subgoal by auto
     subgoal using vec2 vec3 by auto
     subgoal using t by auto
     subgoal using vec1 by auto
   finally have vec1 @ (vec3 + vec2 - t) = 0_v ?nc
     unfolding Mulv by simp
   also have ... = \theta_v nc @_v \theta_v nr by auto
   finally have vec1 = \theta_v \ nc \wedge vec3 + vec2 - t = \theta_v \ nr
     by (subst (asm) append-vec-eq[OF vec1], auto)
   hence 01: vec1 = \theta_v \ nc and 02: vec3 + vec2 - t = \theta_v \ nr by auto
   from 01 have vec1 + mat\text{-}of\text{-}col\ c *_v L = mat\text{-}of\text{-}col\ c *_v L
     using c L vec1 unfolding mat-of-col-def by auto
   also have vec1 + mat\text{-}of\text{-}col\ c *_v L = A^T *_v u
     unfolding vec1-def
    using A u c L unfolding mat-of-col-def mat-of-row-uminus transpose-uminus
     by (subst uminus-mult-mat-vec, auto)
   finally have As: A^T *_v u = mat\text{-}of\text{-}col\ c *_v L.
```

```
from \theta 2 have (vec3 + vec2 - t) + t = \theta_v nr + t
     by simp
   also have (vec3 + vec2 - t) + t = vec2 + vec3
     using vec3 vec2 t by auto
   finally have t23: t = vec2 + vec3 using t by auto
   have id\theta: \theta_v ?nr = ((\theta_v \ nr \ @_v \ \theta_v \ 1) \ @_v \ (\theta_v \ nc \ @_v \ \theta_v \ nc)) \ @_v \ \theta_v \ nr
     by auto
   from ulv0[unfolded\ id0\ ulvid\ u1id\ u2id\ u3id]
   have \theta_v nr \leq u \wedge \theta_v 1 \leq L \wedge \theta_v nc \leq v \wedge \theta_v nc \leq w \wedge \theta_v nr \leq t
     apply (subst (asm) append-vec-le[of - (nr + 1) + (nc + nc)])
     subgoal by (intro append-carrier-vec, auto)
     subgoal by (intro append-carrier-vec u L v w)
     apply (subst (asm) append-vec-le[of - (nr + 1)])
     subgoal by (intro append-carrier-vec, auto)
     subgoal by (intro append-carrier-vec u L v w)
     apply (subst (asm) append-vec-le[OF - u], force)
     apply (subst (asm) append-vec-le[OF - v], force)
     by auto
   hence ineqs: \theta_v nr \leq u \theta_v 1 \leq L \theta_v nc \leq v \theta_v nc \leq w \theta_v nr \leq t
     by auto
   have ulv \cdot bc = u \cdot b + (v \cdot c + w \cdot (-c))
     unfolding ulvid u1id u2id u3id bc-def
     apply (subst\ scalar-prod-append[OF-t])
     apply (rule append-carrier-vec[OF append-carrier-vec[OF u L] append-carrier-vec[OF
v \ w]])
     apply (rule append-carrier-vec[OF append-carrier-vec[OF b] append-carrier-vec];
use c in force)
      apply force
     apply (subst scalar-prod-append)
         apply (rule append-carrier-vec[OF\ u\ L])
        apply (rule append-carrier-vec[OF \ v \ w])
     subgoal by (rule append-carrier-vec, insert b, auto)
     subgoal by (rule append-carrier-vec, insert c, auto)
     apply (subst\ scalar-prod-append[OF\ u\ L\ b],\ force)
     apply (subst scalar-prod-append[OF \ v \ w \ c], use c \ \mathbf{in} \ force)
     apply (insert L t, auto)
     done
   also have v \cdot c + w \cdot (-c) = c \cdot v + (-c) \cdot w
     by (subst (12) comm-scalar-prod, insert w c v, auto)
   also have \dots = c \cdot v - (c \cdot w) using c w by simp
   also have \dots = c \cdot (v - w) using c \ v \ w
     by (simp add: scalar-prod-minus-distrib)
   finally have ulvbc: ulv \cdot bc = u \cdot b + c \cdot (v - w).
   define lam where lam = L \$ \theta
    from ineqs(2) L have lam\theta: lam \ge 0 unfolding less-eq-vec-def lam-def by
auto
   have As: A^T *_v u = lam \cdot_v c unfolding As using c L
     unfolding lam-def mat-of-col-def
     by (intro eq-vecI, auto simp: scalar-prod-def)
```

```
have vec3: vec3 = lam \cdot_v b unfolding vec3-def using b L
     unfolding lam-def mat-of-col-def
     by (intro eq-vecI, auto simp: scalar-prod-def)
   note preconds = lam0 \ ineqs(1,3-)[unfolded \ t23[unfolded \ vec2-def \ vec3]] \ As
   have 0 \le u \cdot b + c \cdot (v - w)
   proof (cases \ lam > 0)
     case True
     hence u \cdot b = inverse \ lam * (lam * (b \cdot u))
       using comm-scalar-prod[OF b u] by simp
     also have ... = inverse\ lam * ((lam \cdot_v \ b) \cdot u)
       using b u by simp
     also have ... \geq inverse\ lam * (-(A *_v (v - w)) \cdot u)
     proof (intro mult-left-mono)
       show 0 \le inverse \ lam \ using \ preconds \ by \ auto
       \mathbf{show}\ -(A *_v (v-w)) \cdot u \leq (lam \cdot_v b) \cdot u
         unfolding scalar-prod-def
         apply (rule sum-mono)
         subgoal for i
        using lesseq-vecD[OF - preconds(2), of nr i] lesseq-vecD[OF - preconds(5),
of nr i | u v w b A
          by (intro mult-right-mono, auto)
         done
     qed
     also have inverse lam *(-(A *_v (v - w)) \cdot u) =
        - (inverse\ lam * ((A *_v (v - w)) \cdot u))
       by (subst scalar-prod-uminus-left, insert A \ u \ v \ w, auto)
     also have (A *_v (v - w)) \cdot u = (A^T *_v u) \cdot (v - w)
       apply (subst transpose-vec-mult-scalar[OF A - u])
       subgoal using v w by force
       by (rule\ comm-scalar-prod[OF - u],\ insert\ A\ v\ w,\ auto)
     also have inverse lam * ... = c \cdot (v - w) unfolding preconds(6)
       using True
       by (subst scalar-prod-smult-left, insert c v w, auto)
     finally show ?thesis by simp
   next
     {f case} False
     with preconds have lam: lam = 0 by auto
     from primal obtain x\theta where x\theta: x\theta \in carrier\text{-}vec\ nc
       and Ax\theta b: A *_v x\theta \leq b by auto
     from dual obtain y\theta where y\theta\theta: y\theta \geq \theta_v nr
       and Ay\theta c: A^T *_v y\theta = c by auto
     from y\theta\theta have y\theta: y\theta \in carrier\text{-}vec nr
       unfolding less-eq-vec-def by auto
     have Au: A^T *_v u = \theta_v nc
       unfolding preconds\ lam\ using\ c\ by\ auto
     have \theta = (A^T *_v u) \cdot x\theta unfolding Au using x\theta by auto
     also have \dots = u \cdot (A *_v x\theta)
       by (rule transpose-vec-mult-scalar [OF A x\theta u])
     also have \dots \leq u \cdot b
```

```
unfolding scalar-prod-def
       apply (use A \ x0 \ b \ in \ simp)
       apply (intro sum-mono)
       subgoal for i
         using lesseq-vecD[OF - preconds(2), of nr i] lesseq-vecD[OF - Ax0b, of nr
i \mid u v w b A x \theta
         by (intro mult-left-mono, auto)
       done
     finally have ub: 0 \le u \cdot b.
     have c \cdot (v - w) = (A^T *_v y\theta) \cdot (v - w) unfolding Ay\theta c by simp
     also have \dots = y\theta \cdot (A *_v (v - w))
       by (subst\ transpose-vec-mult-scalar[OF\ A\ -\ y0],\ insert\ v\ w,\ auto)
     also have \ldots > \theta
       unfolding scalar-prod-def
       apply (use A \ v \ w \ in \ simp)
       apply (intro sum-nonneg)
       subgoal for i
        using lesseq-vecD[OF - y00, of nr i] lesseq-vecD[OF - preconds(5)[unfolded
lam], of nr i] A y0 v w b
         by (intro mult-nonneg-nonneg, auto)
     finally show ?thesis using ub by auto
   thus 0 \le ulv \cdot bc unfolding ulvbc.
  qed
  then obtain xy where xy: xy \in carrier\text{-}vec ?nc \text{ and } le: M *_v xy \leq bc \text{ by } auto
  define x where x = vec-first xy nc
  define y where y = vec\text{-}last xy nr
 have xyid: xy = x @_v y using xy
   unfolding x-def y-def by auto
 have x: x \in carrier\text{-}vec \ nc \ unfolding \ x\text{-}def \ by \ auto
  have y: y \in carrier\text{-}vec \ nr \ unfolding \ y\text{-}def \ by \ auto
 have At: A^T \in carrier\text{-}mat\ nc\ nr\ \mathbf{using}\ A\ \mathbf{by}\ auto
 have Ax1: A *_v x @_v vec 1 (\lambda -. b \cdot y - c \cdot x) \in carrier-vec (nr + 1)
   using A \times by fastforce
 have b\theta cc: (b @_v \theta_v 1) @_v c @_v - c \in carrier\text{-}vec ((nr+1) + (nc+nc))
   using b c
   by (intro append-carrier-vec, auto)
  have M *_v xy = (M-up *_v xy @_v M-low *_v xy) @_v (M-last *_v xy)
   unfolding M-def
    unfolding mat-mult-append[OF carrier-append-rows[OF M-up M-low] M-last
   by (simp add: mat-mult-append[OF M-up M-low xy])
 also have M-low *_v xy = (\theta_m \ nc \ nc \ *_v x + A^T \ *_v y) @_v (\theta_m \ nc \ nc \ *_v x + -
A^T *_v y
   unfolding M-low-def xyid
   by (rule four-block-mat-mult-vec[OF - At - - xy], insert A, auto)
 also have \theta_m nc nc *_v x + A^T *_v y = A^T *_v y using A x y by auto also have \theta_m nc nc *_v x + - A^T *_v y = - A^T *_v y using A x y by auto
```

```
also have M-up *_v xy = (A *_v x + \theta_m nr nr *_v y) @_v
             (mat\text{-}of\text{-}row\ (-\ c)\ *_v\ x\ +\ mat\text{-}of\text{-}row\ b\ *_v\ y)
   unfolding M-up-def xyid
   by (rule four-block-mat-mult-vec[OF A - - xy], insert b c, auto)
  also have A *_v x + \theta_m \ nr \ nr *_v y = A *_v x  using A \ x \ y  by auto
  also have mat-of-row (-c) *_v x + mat-of-row b *_v y =
   vec \ 1 \ (\lambda - b \cdot y - c \cdot x)
   unfolding mult-mat-vec-def using c x by (intro eq-vecI, auto)
  also have M-last *_v xy = -y
   unfolding M-last-def xyid using x y
   by (subst\ mat-mult-append-cols[OF - - x y],\ auto)
  finally have ((A *_v x @_v vec 1 (\lambda -. b \cdot y - c \cdot x)) @_v (A^T *_v y @_v - A^T *_v
y)) @_{v} - y
   = M *_v xy ...
 also have \dots \leq bc by fact
  also have ... = ((b @_v \theta_v 1) @_v (c @_v - c)) @_v \theta_v nr unfolding bc-def by
 finally have ineqs: A *_v x \leq b \land vec \ 1 \ (\lambda -. \ b \cdot y - c \cdot x) \leq \theta_v \ 1
            \wedge A^T *_v y \leq c \wedge - A^T *_v y \leq -c \wedge -y \leq \theta_v nr
   apply (subst\ (asm)\ append-vec-le[OF\ -\ b0cc])
   subgoal using A \times y by (intro append-carrier-vec, auto)
   apply (subst (asm) append-vec-le[OF Ax1], use b in fastforce)
   apply (subst (asm) append-vec-le[OF - b], use A \times in force)
   apply (subst (asm) append-vec-le[OF - c], use A y in force)
   by auto
  show ?thesis
  proof (intro\ exI\ conjI)
   from ineqs show Axb: A *_v x \leq b by auto
   from ineqs have -A^T *_v y \leq -c A^T *_v y \leq c by auto
   hence A^T *_v y \ge c A^T *_v y \le c unfolding less-eq-vec-def using A y by auto
   then show Aty: A^T *_v y = c by simp
   from ineqs have -y \le \theta_v nr by simp
   then show y\theta: \theta_v nr \leq y unfolding less-eq-vec-def by auto
   from ineqs have b \cdot y \leq c \cdot x unfolding less-eq-vec-def by auto
   with weak-duality-theorem[OF A b c x Axb y0 Aty]
   show c \cdot x = b \cdot y by auto
  qed (insert x)
qed
```

A version of the strong duality theorem which demands that the primal problem is solvable and the objective function is bounded.

problem is solvable and the objective function is bounded.

theorem strong-duality-theorem-primal-sat-bounded:

```
fixes bound :: 'a :: trivial-conjugatable-linordered-field assumes A: A \in carrier-mat nr nc and b: b \in carrier-vec nr and c: c \in carrier-vec nc and sat: \exists \ x \in carrier-vec nc. A *_v \ x \leq b and bounded: \forall \ x \in carrier-vec nc. A *_v \ x \leq b \longrightarrow c \cdot x \leq bound shows \exists \ x \ y.
```

```
x \in carrier\text{-}vec \ nc \land A *_v x \leq b \land
      y \ge \theta_v \ nr \wedge A^T *_v y = c \wedge
      c \cdot x = b \cdot y
proof (rule strong-duality-theorem-both-sat[OF A b c sat])
  show \exists y \geq \theta_v \ nr. \ A^T *_v y = c
  proof (rule ccontr)
   assume \neg ?thesis
   hence \exists y. y \in carrier\text{-}vec \ nc \land \theta_v \ nr \leq A *_v y \land \theta > y \cdot c
     by (subst (asm) gram-schmidt.Farkas-Lemma[OF - c], insert A, auto)
   then obtain y where y: y \in carrier\text{-}vec \ nc
     and Ay\theta: A *_v y \ge \theta_v nr and yc\theta: y \cdot c < \theta by auto
   from sat obtain x where x: x \in carrier\text{-}vec \ nc
     and Axb: A *_v x \leq b by auto
   define diff where diff = bound + 1 - c \cdot x
   from x Axb bounded have c \cdot x < bound + 1 by auto
   hence diff: diff > 0 unfolding diff-def by auto
   from yc\theta have inv: inverse (-(y \cdot c)) > \theta by auto
   define fact where fact = diff * (inverse (-(y \cdot c)))
   have fact: fact > 0 unfolding fact-def using diff inv by (metis mult-pos-pos)
   define z where z = x - fact \cdot_v y
   have A *_v z = A *_v x - A *_v (fact \cdot_v y)
    unfolding z-def using A x y by (meson mult-minus-distrib-mat-vec smult-carrier-vec)
   also have ... = A *_v x - fact \cdot_v (A *_v y) using A y by auto
   also have \dots \leq b
   \mathbf{proof}\ (intro\ lesseq\text{-}vecI[\mathit{OF}\ \text{-}\ b])
     show A *_v x - fact \cdot_v (A *_v y) \in carrier\text{-}vec \ nr \ \mathbf{using} \ A \ x \ y \ \mathbf{by} \ auto
     assume i: i < nr
     have (A *_v x - fact \cdot_v (A *_v y)) $ i
       = (A *_{v} x)  $ i - fact * (A *_{v} y)  $ i
       using i A x y by auto
     also have \ldots \leq b \ \$ \ i - fact * (A *_v y) \ \$ \ i
       using lesseq-vecD[OF\ b\ Axb\ i] by auto
     also have ... \leq b \ \ i - \theta * \theta  using lesseq-vecD[OF - Ay\theta i] fact A y i
       by (intro diff-left-mono mult-monom, auto)
     finally show (A *_v x - fact \cdot_v (A *_v y)) \$ i \le b \$ i by simp
   qed
   finally have Azb: A *_v z \le b.
   have z: z \in carrier\text{-}vec \ nc \ using \ x \ y \ unfolding \ z\text{-}def \ by \ auto
   have c \cdot z = c \cdot x - fact * (c \cdot y) unfolding z-def
     using c \times y by (simp \ add: scalar-prod-minus-distrib)
   also have \dots = c \cdot x + diff
     unfolding comm-scalar-prod[OF c y] fact-def using yc0 by simp
   also have \dots = bound + 1 unfolding diff-def by simp
   also have ... > c \cdot z using bounded Azb z by auto
   finally show False by simp
  ged
qed
```

A version of the strong duality theorem which demands that the dual prob-

lem is solvable and the objective function is bounded.

```
{\bf theorem}\ strong-duality-theorem-dual-sat-bounded:
  fixes bound :: 'a :: trivial-conjugatable-linordered-field
 assumes A: A \in carrier\text{-}mat\ nr\ nc
   and b: b \in carrier\text{-}vec \ nr
   and c: c \in carrier\text{-}vec \ nc
   and sat: \exists y. y \geq \theta_v \ nr \wedge A^T *_v y = c
   and bounded: \forall y. y \geq 0_v \ nr \land A^T *_v y = c \longrightarrow bound \leq b \cdot y
 shows \exists x y.
      x \in carrier\text{-}vec \ nc \land A *_v x \leq b \land
      y \geq \theta_v \ nr \wedge A^T *_v y = c \wedge
      c \cdot x = b \cdot y
proof (rule strong-duality-theorem-both-sat[OF A b c - sat])
 show \exists x \in carrier\text{-}vec \ nc. \ A *_v x \leq b
 proof (rule ccontr)
   assume ¬ ?thesis
   hence \neg (\exists x. \ x \in carrier\text{-}vec \ nc \land A *_v x \leq b) by auto
   then obtain y where y\theta: y \geq \theta_v nr and Ay\theta: A^T *_v y = \theta_v nc and yb: y.
     by (subst (asm) gram-schmidt.Farkas-Lemma'[OF A b], auto)
   from sat obtain x where x\theta: x \geq \theta_v nr and Axc: A^T *_v x = c by auto
   define diff where diff = b \cdot x - (bound - 1)
   from x0 Axc bounded have bound \leq b \cdot x by auto
   hence diff: diff > 0 unfolding diff-def by auto
   define fact where fact = -inverse (y \cdot b) * diff
  have fact: fact > 0 unfolding fact-def using diff yb by (auto intro: mult-neg-pos)
   define z where z = x + fact \cdot_v y
   from x\theta have x: x \in carrier\text{-}vec nr
     unfolding less-eq-vec-def by auto
   from y\theta have y: y \in carrier\text{-}vec nr
     unfolding less-eq-vec-def by auto
   have A^T *_v z = A^T *_v x + A^T *_v (fact \cdot_v y)
     unfolding z-def using A x y by (simp add: mult-add-distrib-mat-vec)
   also have ... = A^T *_v x + fact \cdot_v (A^T *_v y) using A y by auto
   also have \dots = c unfolding Ay\theta Axc using c by auto
   finally have Azc: A^T *_v z = c.
   have z\theta: z \geq \theta_v \ nr \ unfolding \ z\text{-}def
    by (intro lesseq-vecI[of - nr], insert xy lesseq-vecD[OF - x0, of nr] lesseq-vecD[OF
- y\theta, of nr] fact,
         auto intro!: add-nonneg-nonneg)
   from bounded Azc z0 have bz: bound \leq b \cdot z by auto
   also have ... = b \cdot x + fact * (b \cdot y) unfolding z-def using b \times y
     by (simp add: scalar-prod-add-distrib)
   also have \dots = diff + (bound - 1) + fact * (b \cdot y)
     unfolding diff-def by auto
   also have fact * (b \cdot y) = - diff using yb
     unfolding fact-def comm-scalar-prod[OF y b] by auto
   finally show False by simp
  qed
```

qed

Now the previous three duality theorems are formulated via min/max.

```
corollary strong-duality-theorem-min-max:
  fixes A :: 'a :: trivial-conjugatable-linordered-field mat
 assumes A: A \in carrier\text{-}mat\ nr\ nc
   and b: b \in carrier\text{-}vec \ nr
   and c: c \in carrier\text{-}vec \ nc
   and primal: \exists x \in carrier\text{-}vec \ nc. \ A *_v x \leq b
   and dual: \exists y. y \geq \theta_v \ nr \wedge A^T *_v y = c
  shows Maximum \{c \cdot x \mid x. \ x \in carrier\text{-}vec \ nc \land A *_v x \leq b\}
      = Minimum \{b \cdot y \mid y. \ y \geq \theta_v \ nr \wedge A^T *_v y = c\}
   and has-Maximum \{c \cdot x \mid x. \ x \in carrier\text{-}vec \ nc \land A *_v x \leq b\}
   and has-Minimum \{b \cdot y \mid y.\ y \geq \theta_v \ nr \wedge A^T *_v y = c\}
 let ?Prim = \{c \cdot x \mid x. \ x \in carrier\text{-}vec \ nc \land A *_v x \leq b\}
 let ?Dual = \{b \cdot y \mid y. \ y \geq \theta_v \ nr \land A^T *_v y = c\}
 define Prim where Prim = ?Prim
 define Dual where Dual = ?Dual
 {\bf from}\ strong-duality-theorem-both-sat[OF\ assms]
 obtain x y where x: x \in carrier\text{-}vec \ nc \ and \ Axb: A *_v \ x \leq b
   and y: y > \theta_v nr and Ayc: A^T *_v y = c
   and eq: c \cdot x = b \cdot y by auto
 have cxP: c \cdot x \in Prim \text{ unfolding } Prim-def \text{ using } x Axb \text{ by } auto
 have cxD: c \cdot x \in Dual unfolding eq Dual-def using y Ayc by auto
   fix z
   assume z \in Prim
   from this [unfolded Prim-def] obtain x' where x': x' \in carrier-vec nc
     and Axb': A *_v x' \le b and z: z = c \cdot x' by auto
   from weak-duality-theorem[OF A b c x' Axb' y Ayc, folded eq]
   have z \leq c \cdot x unfolding z.
  } note cxMax = this
  have max: Maximum Prim = c \cdot x
   by (intro eqMaximumI cxP cxMax)
  show has-Maximum ?Prim
   unfolding Prim-def[symmetric] has-Maximum-def using cxP cxMax by auto
  {
   \mathbf{fix} \ z
   assume z \in Dual
   from this [unfolded Dual-def] obtain y' where y': y' \geq \theta_v nr
     and Ayc': A^T *_v y' = c and z: z = b \cdot y' by auto
   from weak-duality-theorem[OF A b c x Axb y' Ayc', folded z]
   have c \cdot x \leq z.
  } note cxMin = this
  show has-Minimum ?Dual
   unfolding Dual-def[symmetric] has-Minimum-def using cxD cxMin by auto
  have min: Minimum Dual = c \cdot x
   by (intro eqMinimumI cxD cxMin)
```

```
from min \ max \ show \ Maximum \ ?Prim = Minimum \ ?Dual
    unfolding Dual-def Prim-def by auto
qed
corollary strong-duality-theorem-primal-sat-bounded-min-max:
  fixes bound :: 'a :: trivial-conjugatable-linordered-field
  assumes A: A \in carrier\text{-}mat\ nr\ nc
    and b: b \in carrier\text{-}vec \ nr
    and c: c \in carrier\text{-}vec \ nc
    and sat: \exists x \in carrier\text{-}vec \ nc. \ A *_v x \leq b
    and bounded: \forall x \in carrier\text{-}vec \ nc. \ A *_v x \leq b \longrightarrow c \cdot x \leq bound
  shows Maximum \{c \cdot x \mid x. \ x \in carrier\text{-}vec \ nc \land A *_v x \leq b\}
       = Minimum \{b \cdot y \mid y. \ y \geq \theta_v \ nr \wedge A^T *_v y = c\}
    and has-Maximum \{c \cdot x \mid x. \ x \in carrier\text{-}vec \ nc \land A *_v x \leq b\}
    and has-Minimum \{b \cdot y \mid y.\ y \geq \theta_v \ nr \wedge A^T *_v y = c\}
proof -
  let ?Prim = \{c \cdot x \mid x. \ x \in carrier\text{-}vec \ nc \land A *_v x \leq b\}
  let ?Dual = \{b \cdot y \mid y. \ y \geq \theta_v \ nr \wedge A^T *_v y = c\}
  {f from}\ strong-duality-theorem-primal-sat-bounded[OF\ assms]
  have \exists y \ge \theta_v \ nr. \ A^T *_v y = c by blast
  from strong-duality-theorem-min-max[OF A b c sat this]
  show Maximum ?Prim = Minimum ?Dual has-Maximum ?Prim has-Minimum
?Dual
    by blast+
\mathbf{qed}
{\bf corollary}\ strong-duality-theorem-dual-sat-bounded-min-max:
  fixes bound :: 'a :: trivial-conjugatable-linordered-field
  assumes A: A \in carrier\text{-}mat\ nr\ nc
    and b: b \in carrier\text{-}vec \ nr
    and c: c \in carrier\text{-}vec \ nc
    and sat: \exists y. y \geq \theta_v \ nr \wedge A^T *_v y = c and bounded: \forall y. y \geq \theta_v \ nr \wedge A^T *_v y = c \longrightarrow bound \leq b \cdot y
  shows Maximum \{c \cdot x \mid x. \ x \in carrier\text{-}vec \ nc \land A *_v x \leq b\}
       = Minimum \{b \cdot y \mid y. y \geq \theta_v \ nr \wedge A^T *_v y = c\}
    and has-Maximum \{c \cdot x \mid x. \ x \in carrier\text{-}vec \ nc \land A *_v x \leq b\}
    and has-Minimum \{b \cdot y \mid y.\ y \geq \theta_v \ nr \wedge A^T *_v y = c\}
  let ?Prim = \{c \cdot x \mid x. \ x \in carrier\text{-}vec \ nc \land A *_v x \leq b\}
  \mathbf{let} ?Dual = \{b \cdot y \mid y. \ y \ge \theta_v \ nr \land A^T *_v y = c\}
  \mathbf{from}\ strong\text{-}duality\text{-}theorem\text{-}dual\text{-}sat\text{-}bounded[OF\ assms]
  have \exists x \in carrier\text{-}vec \ nc. \ A *_v x \leq b \text{ by } blast
  from strong-duality-theorem-min-max[OF A b c this sat]
  show Maximum ?Prim = Minimum ?Dual has-Maximum ?Prim has-Minimum
?Dual
    by blast+
qed
end
```

References

- [1] R. Bottesch, A. Reynaud, and R. Thiemann. Linear inequalities. Archive of Formal Proofs, June 2019. https://isa-afp.org/entries/ Linear_Inequalities.html, Formal proof development.
- [2] J. Parsert and C. Kaliszyk. Linear programming. Archive of Formal Proofs, Aug. 2019. https://isa-afp.org/entries/Linear_Programming. html, Formal proof development.
- [3] A. Schrijver. Theory of linear and integer programming. John Wiley & Sons, 1998.