
LOFT — Verified Migration of Linux Firewalls to SDN
Julius Michaelis and Cornelius Diekmann

March 17, 2025

Abstract
We present LOFT — Linux firewall OpenF low Translator, a system that transforms the main routing table

and FORWARD chain of iptables of a Linux-based firewall into a set of static OpenFlow rules. Our implementation
is verified against a model of a simplified Linux-based router and we can directly show how much of the original
functionality is preserved.

Please note that this document is organized in two distinct parts. The first part contains the necessary definitions,
helper lemmas and proofs in all their technicality as made in the theory code. The second part reiterates the most
important definitions and proofs in a manner that is more suitable for human readers and enriches them with detailed
explanations in natural language. Any interested reader should start from there.

Many of the considerations that have led to the definitions made here have been explained in [8].

Contents

I Code 2

II Documentation 44

1 Configuration Translation 44
1.1 Linux Firewall Model . 44

1.1.1 Routing Table . 45
1.1.2 iptables Firewall . 46

1.2 OpenFlow Switch Model . 46
1.2.1 Matching Flow Table entries . 47
1.2.2 Evaluating a Flow Table . 47

1.3 Translation Implementation . 49
1.3.1 Chaining Firewalls . 49
1.3.2 Translation Implementation . 50
1.3.3 Comparison to Exodus . 52

2 Evaluation 52
2.1 Mininet Examples . 52
2.2 Performance Evaluation . 54

3 Conclusion and Future Work 55

1

Part I

Code
theory OpenFlow-Matches
imports IP-Addresses.Prefix-Match

Simple-Firewall.Simple-Packet
HOL−Library.Monad-Syntax

HOL−Library.List-Lexorder
HOL−Library.Char-ord

begin

datatype of-match-field =
IngressPort string
| EtherSrc 48 word
| EtherDst 48 word
| EtherType 16 word
| VlanId 16 word
| VlanPriority 16 word

| IPv4Src 32 prefix-match
| IPv4Dst 32 prefix-match
| IPv4Proto 8 word

| L4Src 16 word 16 word
| L4Dst 16 word 16 word

schematic-goal of-match-field-typeset: (field-match :: of-match-field) ∈ {
IngressPort (?s::string),
EtherSrc (?as::48 word), EtherDst (?ad::48 word),

EtherType (?t::16 word),
VlanId (?i::16 word), VlanPriority (?p::16 word),
IPv4Src (?pms::32 prefix-match),
IPv4Dst (?pmd::32 prefix-match),
IPv4Proto (?ipp :: 8 word),
L4Src (?ps :: 16 word) (?ms :: 16 word),
L4Dst (?pd :: 16 word) (?md :: 16 word)
}
proof((cases field-match;clarsimp),goal-cases)

next case (IngressPort s) thus s = (case field-match of IngressPort s ⇒ s) unfolding IngressPort of-match-field.simps
by rule

next case (EtherSrc s) thus s = (case field-match of EtherSrc s ⇒ s) unfolding EtherSrc of-match-field.simps by
rule

next case (EtherDst s) thus s = (case field-match of EtherDst s ⇒ s) unfolding EtherDst of-match-field.simps by
rule

next case (EtherType s) thus s = (case field-match of EtherType s ⇒ s) unfolding EtherType of-match-field.simps
by rule

next case (VlanId s) thus s = (case field-match of VlanId s ⇒ s) unfolding VlanId of-match-field.simps by rule
next case (VlanPriority s) thus s = (case field-match of VlanPriority s ⇒ s) unfolding VlanPriority of-match-field.simps

by rule

2

next case (IPv4Src s) thus s = (case field-match of IPv4Src s ⇒ s) unfolding IPv4Src of-match-field.simps by
rule

next case (IPv4Dst s) thus s = (case field-match of IPv4Dst s ⇒ s) by simp
next case (IPv4Proto s) thus s = (case field-match of IPv4Proto s ⇒ s) by simp
next case (L4Src p l) thus p = (case field-match of L4Src p m ⇒ p) ∧ l = (case field-match of L4Src p m ⇒ m) by

simp
next case (L4Dst p l) thus p = (case field-match of L4Dst p m ⇒ p) ∧ l = (case field-match of L4Dst p m ⇒ m) by

simp
qed

function prerequisites :: of-match-field ⇒ of-match-field set ⇒ bool where
prerequisites (IngressPort -) - = True |

prerequisites (EtherDst -) - = True |

prerequisites (EtherSrc -) - = True |

prerequisites (EtherType -) - = True |

prerequisites (VlanId -) - = True |

prerequisites (VlanPriority -) m = (∃ id. let v = VlanId id in v ∈ m ∧ prerequisites v m) |

prerequisites (IPv4Proto -) m = (let v = EtherType 0x0800 in v ∈ m ∧ prerequisites v m) |

prerequisites (IPv4Src -) m = (let v = EtherType 0x0800 in v ∈ m ∧ prerequisites v m) |

prerequisites (IPv4Dst -) m = (let v = EtherType 0x0800 in v ∈ m ∧ prerequisites v m) |

prerequisites (L4Src - -) m = (∃ proto ∈ {TCP,UDP,L4-Protocol.SCTP}. let v = IPv4Proto proto in v ∈ m ∧ prerequisites
v m) |
prerequisites (L4Dst - -) m = prerequisites (L4Src undefined undefined) m
by pat-completeness auto

fun match-sorter :: of-match-field ⇒ nat where
match-sorter (IngressPort -) = 1 |
match-sorter (VlanId -) = 2 |
match-sorter (VlanPriority -) = 3 |
match-sorter (EtherType -) = 4 |
match-sorter (EtherSrc -) = 5 |
match-sorter (EtherDst -) = 6 |
match-sorter (IPv4Proto -) = 7 |
match-sorter (IPv4Src -) = 8 |
match-sorter (IPv4Dst -) = 9 |
match-sorter (L4Src - -) = 10 |
match-sorter (L4Dst - -) = 11

termination prerequisites by(relation measure (match-sorter ◦ fst), simp-all)

definition less-eq-of-match-field1 :: of-match-field ⇒ of-match-field ⇒ bool

3

where less-eq-of-match-field1 (a::of-match-field) (b::of-match-field) ←→ (case (a, b) of
(IngressPort a, IngressPort b) ⇒ a ≤ b |
(VlanId a, VlanId b) ⇒ a ≤ b |
(EtherDst a, EtherDst b) ⇒ a ≤ b |
(EtherSrc a, EtherSrc b) ⇒ a ≤ b |
(EtherType a, EtherType b) ⇒ a ≤ b |
(VlanPriority a, VlanPriority b) ⇒ a ≤ b |
(IPv4Proto a, IPv4Proto b) ⇒ a ≤ b |
(IPv4Src a, IPv4Src b) ⇒ a ≤ b |
(IPv4Dst a, IPv4Dst b) ⇒ a ≤ b |
(L4Src a1 a2 , L4Src b1 b2) ⇒ if a2 = b2 then a1 ≤ b1 else a2 ≤ b2 |
(L4Dst a1 a2 , L4Dst b1 b2) ⇒ if a2 = b2 then a1 ≤ b1 else a2 ≤ b2 |
(a, b) ⇒ match-sorter a < match-sorter b)

instantiation of-match-field :: linorder
begin

definition
less-eq-of-match-field (a::of-match-field) (b::of-match-field) ←→ less-eq-of-match-field1 a b

definition
less-of-match-field (a::of-match-field) (b::of-match-field) ←→ a 6= b ∧ less-eq-of-match-field1 a b

instance
by standard (auto simp add: less-eq-of-match-field-def less-of-match-field-def less-eq-of-match-field1-def split: prod.splits

of-match-field.splits if-splits)

end

fun match-no-prereq :: of-match-field ⇒ (32 , ′a) simple-packet-ext-scheme ⇒ bool where
match-no-prereq (IngressPort i) p = (p-iiface p = i) |
match-no-prereq (EtherDst i) p = (p-l2src p = i) |
match-no-prereq (EtherSrc i) p = (p-l2dst p = i) |
match-no-prereq (EtherType i) p = (p-l2type p = i) |
match-no-prereq (VlanId i) p = (p-vlanid p = i) |
match-no-prereq (VlanPriority i) p = (p-vlanprio p = i) |
match-no-prereq (IPv4Proto i) p = (p-proto p = i) |
match-no-prereq (IPv4Src i) p = (prefix-match-semantics i (p-src p)) |
match-no-prereq (IPv4Dst i) p = (prefix-match-semantics i (p-dst p)) |
match-no-prereq (L4Src i m) p = (p-sport p && m = i) |
match-no-prereq (L4Dst i m) p = (p-dport p && m = i)

definition match-prereq :: of-match-field ⇒ of-match-field set ⇒ (32 , ′a) simple-packet-ext-scheme ⇒ bool option where
match-prereq i s p = (if prerequisites i s then Some (match-no-prereq i p) else None)

definition set-seq s ≡ if (∀ x ∈ s. x 6= None) then Some (the ‘ s) else None
definition all-true s ≡ ∀ x ∈ s. x
term map-option
definition OF-match-fields :: of-match-field set ⇒ (32 , ′a) simple-packet-ext-scheme ⇒ bool option where OF-match-fields
m p = map-option all-true (set-seq ((λf . match-prereq f m p) ‘ m))
definition OF-match-fields-unsafe :: of-match-field set ⇒ (32 , ′a) simple-packet-ext-scheme ⇒ bool where
OF-match-fields-unsafe m p = (∀ f ∈ m. match-no-prereq f p)
definition OF-match-fields-safe m ≡ the ◦ OF-match-fields m

4

definition all-prerequisites m ≡ ∀ f ∈ m. prerequisites f m

lemma
all-prerequisites p =⇒
L4Src x y ∈ p =⇒
IPv4Proto ‘ {TCP, UDP, L4-Protocol.SCTP} ∩ p 6= {}

unfolding all-prerequisites-def by auto

lemma of-safe-unsafe-match-eq: all-prerequisites m =⇒ OF-match-fields m p = Some (OF-match-fields-unsafe m p)
unfolding OF-match-fields-def OF-match-fields-unsafe-def comp-def set-seq-def match-prereq-def all-prerequisites-def
proof goal-cases
case 1
have 2 : (λf . if prerequisites f m then Some (match-no-prereq f p) else None) ‘ m = (λf . Some (match-no-prereq f p)) ‘ m
using 1 by fastforce

have 3 : ∀ x∈(λf . Some (match-no-prereq f p)) ‘ m. x 6= None by blast
show ?case
unfolding 2 unfolding eqTrueI [OF 3] unfolding if-True unfolding image-comp comp-def unfolding option.sel by(simp

add: all-true-def)
qed

lemma of-match-fields-safe-eq: assumes all-prerequisites m shows OF-match-fields-safe m = OF-match-fields-unsafe m
unfolding OF-match-fields-safe-def [abs-def] fun-eq-iff comp-def unfolding of-safe-unsafe-match-eq[OF assms] unfolding
option.sel by clarify

lemma OF-match-fields-alt: OF-match-fields m p =
(if ∃ f ∈ m. ¬prerequisites f m then None else

if ∀ f ∈ m. match-no-prereq f p then Some True else Some False)
unfolding OF-match-fields-def all-true-def [abs-def] set-seq-def match-prereq-def
by(auto simp add: ball-Un)

lemma of-match-fields-safe-eq2 : assumes all-prerequisites m shows OF-match-fields-safe m p ←→ OF-match-fields m p =
Some True
unfolding OF-match-fields-safe-def [abs-def] fun-eq-iff comp-def unfolding of-safe-unsafe-match-eq[OF assms] unfolding
option.sel by simp

end
theory OpenFlow-Action
imports
OpenFlow-Matches

begin

datatype of-action = Forward (oiface-sel: string) | ModifyField-l2dst 48 word

fun of-action-semantics where
of-action-semantics p [] = {} |
of-action-semantics p (a#as) = (case a of

5

Forward i ⇒ insert (i,p) (of-action-semantics p as) |
ModifyField-l2dst a ⇒ of-action-semantics (p(|p-l2dst := a|)) as)

value of-action-semantics p []
value of-action-semantics p [ModifyField-l2dst 66 , Forward ′′oif ′′]

end
theory Semantics-OpenFlow
imports List-Group Sort-Descending

IP-Addresses.IPv4
OpenFlow-Helpers

begin

datatype ′a flowtable-behavior = Action ′a | NoAction | Undefined

definition option-to-ftb b ≡ case b of Some a ⇒ Action a | None ⇒ NoAction
definition ftb-to-option b ≡ case b of Action a ⇒ Some a | NoAction ⇒ None

datatype (′m, ′a) flow-entry-match = OFEntry (ofe-prio: 16 word) (ofe-fields: ′m set) (ofe-action: ′a)

find-consts ((′a × ′b) ⇒ ′c) ⇒ ′a ⇒ ′b ⇒ ′c

find-consts (′a ⇒ ′b ⇒ ′c) ⇒ (′a × ′b) ⇒ ′c

definition split3 f p ≡ case p of (a,b,c) ⇒ f a b c
find-consts (′a ⇒ ′b ⇒ ′c ⇒ ′d) ⇒ (′a × ′b × ′c) ⇒ ′d

type-synonym (′m, ′a) flowtable = ((′m, ′a) flow-entry-match) list
type-synonym (′m, ′p) field-matcher = (′m set ⇒ ′p ⇒ bool)

definition OF-same-priority-match2 :: (′m, ′p) field-matcher ⇒ (′m, ′a) flowtable ⇒ ′p ⇒ ′a flowtable-behavior where
OF-same-priority-match2 γ flow-entries packet ≡ let s =
{ofe-action f |f . f ∈ set flow-entries ∧ γ (ofe-fields f) packet ∧
(∀ fo ∈ set flow-entries. ofe-prio fo > ofe-prio f −→ ¬γ (ofe-fields fo) packet)} in

case card s of 0 ⇒ NoAction
| (Suc 0) ⇒ Action (the-elem s)
| - ⇒ Undefined

6

definition check-no-overlap γ ft = (∀ a ∈ set ft. ∀ b ∈ set ft. ∀ p ∈ UNIV . (ofe-prio a = ofe-prio b ∧ γ (ofe-fields a) p ∧ a
6= b) −→ ¬γ (ofe-fields b) p)
definition check-no-overlap2 γ ft = (∀ a ∈ set ft. ∀ b ∈ set ft. (a 6= b ∧ ofe-prio a = ofe-prio b) −→ ¬(∃ p ∈ UNIV . γ
(ofe-fields a) p ∧ γ (ofe-fields b) p))
lemma check-no-overlap-alt: check-no-overlap γ ft = check-no-overlap2 γ ft
unfolding check-no-overlap2-def check-no-overlap-def
by blast

lemma no-overlap-not-unefined: check-no-overlap γ ft =⇒ OF-same-priority-match2 γ ft p 6= Undefined
proof

assume goal1 : check-no-overlap γ ft OF-same-priority-match2 γ ft p = Undefined
let ?as = {f . f ∈ set ft ∧ γ (ofe-fields f) p ∧ (∀ fo ∈ set ft. ofe-prio f < ofe-prio fo −→ ¬ γ (ofe-fields fo) p)}
have fin: finite ?as by simp
note goal1 (2)[unfolded OF-same-priority-match2-def]
then have 2 ≤ card (ofe-action ‘ ?as) unfolding f-Img-ex-set
unfolding Let-def
by(cases card (ofe-action ‘ ?as), simp) (rename-tac nat1 , case-tac nat1 , simp add: image-Collect, presburger)

then have 2 ≤ card ?as using card-image-le[OF fin, of ofe-action] by linarith
then obtain a b where ab: a 6= b a ∈ ?as b ∈ ?as using card2-eI by blast
then have ab2 : a ∈ set ft γ (ofe-fields a) p (∀ fo∈set ft. ofe-prio a < ofe-prio fo −→ ¬ γ (ofe-fields fo) p)

b ∈ set ft γ (ofe-fields b) p (∀ fo∈set ft. ofe-prio b < ofe-prio fo −→ ¬ γ (ofe-fields fo) p) by simp-all
then have ofe-prio a = ofe-prio b
by fastforce

note goal1 (1)[unfolded check-no-overlap-def] ab2 (1) ab2 (4) this ab2 (2) ab(1) ab2 (5)
then show False by blast

qed

fun OF-match-linear :: (′m, ′p) field-matcher ⇒ (′m, ′a) flowtable ⇒ ′p ⇒ ′a flowtable-behavior where
OF-match-linear - [] - = NoAction |
OF-match-linear γ (a#as) p = (if γ (ofe-fields a) p then Action (ofe-action a) else OF-match-linear γ as p)

lemma OF-match-linear-ne-Undefined: OF-match-linear γ ft p 6= Undefined
by(induction ft) auto

lemma OF-match-linear-append: OF-match-linear γ (a @ b) p = (case OF-match-linear γ a p of NoAction ⇒
OF-match-linear γ b p | x ⇒ x)
by(induction a) simp-all
lemma OF-match-linear-match-allsameaction: [[gr ∈ set oms; γ gr p = True]]

=⇒ OF-match-linear γ (map (λx. split3 OFEntry (pri, x, act)) oms) p = Action act
by(induction oms) (auto simp add: split3-def)
lemma OF-lm-noa-none-iff : OF-match-linear γ ft p = NoAction ←→ (∀ e∈set ft. ¬ γ (ofe-fields e) p)
by(induction ft) (simp-all split: if-splits)

lemma set-eq-rule: (
∧

x. x ∈ a =⇒ x ∈ b) =⇒ (
∧

x. x ∈ b =⇒ x ∈ a) =⇒ a = b by(rule antisym[OF subsetI subsetI])

lemma unmatching-insert-agnostic: ¬ γ (ofe-fields a) p =⇒ OF-same-priority-match2 γ (a # ft) p =
OF-same-priority-match2 γ ft p
proof −
let ?as = {f . f ∈ set ft ∧ γ (ofe-fields f) p ∧ (∀ fo ∈ set ft. ofe-prio f < ofe-prio fo −→ ¬ γ (ofe-fields fo) p)}
let ?aas = {f |f . f ∈ set (a # ft) ∧ γ (ofe-fields f) p ∧ (∀ fo∈set (a # ft). ofe-prio f < ofe-prio fo −→ ¬ γ (ofe-fields fo)

p)}
assume nm: ¬ γ (ofe-fields a) p

7

have aa: ?aas = ?as
proof(rule set-eq-rule)

fix x
assume x ∈ {f |f . f ∈ set (a # ft) ∧ γ (ofe-fields f) p ∧ (∀ fo∈set (a # ft). ofe-prio f < ofe-prio fo −→ ¬ γ (ofe-fields fo)

p)}
hence as: x ∈ set (a # ft) ∧ γ (ofe-fields x) p ∧ (∀ fo∈set (a # ft). ofe-prio x < ofe-prio fo −→ ¬ γ (ofe-fields fo) p) by

simp
with nm have x ∈ set ft by fastforce
moreover from as have (∀ fo∈set ft. ofe-prio x < ofe-prio fo −→ ¬ γ (ofe-fields fo) p) by simp
ultimately show x ∈ {f ∈ set ft. γ (ofe-fields f) p ∧ (∀ fo∈set ft. ofe-prio f < ofe-prio fo −→ ¬ γ (ofe-fields fo) p)} using

as by force
next

fix x
assume x ∈ {f ∈ set ft. γ (ofe-fields f) p ∧ (∀ fo∈set ft. ofe-prio f < ofe-prio fo −→ ¬ γ (ofe-fields fo) p)}
hence as: x ∈ set ft γ (ofe-fields x) p (∀ fo∈set ft. ofe-prio x < ofe-prio fo −→ ¬ γ (ofe-fields fo) p) by simp-all
from as(1) have x ∈ set (a # ft) by simp
moreover from as(3) have (∀ fo∈set (a # ft). ofe-prio x < ofe-prio fo −→ ¬ γ (ofe-fields fo) p) using nm by simp
ultimately show x ∈ {f |f . f ∈ set (a # ft) ∧ γ (ofe-fields f) p ∧ (∀ fo∈set (a # ft). ofe-prio f < ofe-prio fo −→ ¬ γ

(ofe-fields fo) p)} using as(2) by blast
qed
note uf = arg-cong[OF aa, of (‘) ofe-action, unfolded image-Collect]
show ?thesis unfolding OF-same-priority-match2-def using uf by presburger

qed

lemma OF-match-eq: sorted-descending (map ofe-prio ft) =⇒ check-no-overlap γ ft =⇒
OF-same-priority-match2 γ ft p = OF-match-linear γ ft p

proof(induction ft)
case (Cons a ft)
have 1 : sorted-descending (map ofe-prio ft) using Cons(2) by simp
have 2 : check-no-overlap γ ft using Cons(3) unfolding check-no-overlap-def using set-subset-Cons by fast
note mIH = Cons(1)[OF 1 2]
show ?case (is ?kees)
proof(cases γ (ofe-fields a) p)
case False thus ?kees
by(simp only: OF-match-linear .simps if-False mIH [symmetric] unmatching-insert-agnostic[of γ, OF False])

next
note sorted-descending-split[OF Cons(2)]
then obtain m n where mn: a # ft = m @ n ∀ e∈set m. ofe-prio a = ofe-prio e ∀ e∈set n. ofe-prio e < ofe-prio a
unfolding list.sel by blast

hence aem: a ∈ set m
by (metis UnE less-imp-neq list.set-intros(1) set-append)

have mover : check-no-overlap γ m using Cons(3) unfolding check-no-overlap-def
by (metis Un-iff mn(1) set-append)

let ?fc = (λs.
{f . f ∈ set s ∧ γ (ofe-fields f) p ∧
(∀ fo∈set (a # ft). ofe-prio f < ofe-prio fo −→ ¬ γ (ofe-fields fo) p)})

case True
have ?fc (m @ n) = ?fc m ∪ ?fc n by auto
moreover have ?fc n = {}
proof(rule set-eq-rule, rule ccontr , goal-cases)
case (1 x)
hence g1 : x ∈ set n γ (ofe-fields x) p
(∀ fo∈set m. ofe-prio x < ofe-prio fo −→ ¬ γ (ofe-fields fo) p)
(∀ fo∈set n. ofe-prio x < ofe-prio fo −→ ¬ γ (ofe-fields fo) p)

8

unfolding mn(1) by(simp-all)
from g1 (1) mn(3) have le: ofe-prio x < ofe-prio a by simp
note le g1 (3) aem True
then show False by blast

qed simp
ultimately have cc: ?fc (m @ n) = ?fc m by blast
have cm: ?fc m = {a}
proof −
have ∀ f ∈ set m. (∀ fo∈set (a # ft). ofe-prio f < ofe-prio fo −→ ¬ γ (ofe-fields fo) p)
by (metis UnE less-asym mn set-append)

hence 1 : ?fc m = {f ∈ set m. γ (ofe-fields f) p} by blast
show {f ∈ set m. γ (ofe-fields f) p ∧ (∀ fo∈set (a # ft). ofe-prio f < ofe-prio fo −→ ¬ γ (ofe-fields fo) p)} = {a}

unfolding 1
proof(rule set-eq-rule, goal-cases fwd bwd)
case (bwd x)
have a ∈ {f ∈ set m. γ (ofe-fields f) p} using True aem by simp
thus ?case using bwd by simp

next
case (fwd x) show ?case proof(rule ccontr)
assume x /∈ {a} hence ne: x 6= a by simp
from fwd have 1 : x ∈ set m γ (ofe-fields x) p by simp-all
have 2 : ofe-prio x = ofe-prio a using 1 (1) mn(2) by simp
show False using 1 ne mover aem True 2 unfolding check-no-overlap-def by blast

qed
qed

qed
show ?kees
unfolding mn(1)
unfolding OF-same-priority-match2-def
unfolding f-Img-ex-set
unfolding cc[unfolded mn(1)]
unfolding cm[unfolded mn(1)]
unfolding Let-def
by(simp only: mn(1)[symmetric] OF-match-linear .simps True if-True, simp)

qed
qed (simp add: OF-same-priority-match2-def)

lemma overlap-sort-invar [simp]: check-no-overlap γ (sort-descending-key k ft) = check-no-overlap γ ft
unfolding check-no-overlap-def
unfolding sort-descending-set-inv
..

lemma OF-match-eq2 :
assumes check-no-overlap γ ft
shows OF-same-priority-match2 γ ft p = OF-match-linear γ (sort-descending-key ofe-prio ft) p

proof −
have sorted-descending (map ofe-prio (sort-descending-key ofe-prio ft)) by (simp add: sorted-descending-sort-descending-key)
note ceq = OF-match-eq[OF this, unfolded overlap-sort-invar , OF ‹check-no-overlap γ ft›, symmetric]
show ?thesis
unfolding ceq
unfolding OF-same-priority-match2-def
unfolding sort-descending-set-inv
..

qed

9

lemma prio-match-matcher-alt: {f . f ∈ set flow-entries ∧ γ (ofe-fields f) packet ∧
(∀ fo ∈ set flow-entries. ofe-prio fo > ofe-prio f −→ ¬γ (ofe-fields fo) packet)}
= (
let matching = {f . f ∈ set flow-entries ∧ γ (ofe-fields f) packet}
in {f . f ∈ matching ∧ (∀ fo ∈ matching. ofe-prio fo ≤ ofe-prio f)}
)

by(auto simp add: Let-def)
lemma prio-match-matcher-alt2 : (

let matching = {f . f ∈ set flow-entries ∧ γ (ofe-fields f) packet}
in {f . f ∈ matching ∧ (∀ fo ∈ matching. ofe-prio fo ≤ ofe-prio f)}
) = set (
let matching = filter (λf . γ (ofe-fields f) packet) flow-entries
in filter (λf . ∀ fo ∈ set matching. ofe-prio fo ≤ ofe-prio f) matching
)

by(auto simp add: Let-def)

definition OF-priority-match where
OF-priority-match γ flow-entries packet ≡
let m = filter (λf . γ (ofe-fields f) packet) flow-entries;

m ′ = filter (λf . ∀ fo ∈ set m. ofe-prio fo ≤ ofe-prio f) m in
case m ′ of [] ⇒ NoAction

| [s] ⇒ Action (ofe-action s)
| - ⇒ Undefined

definition OF-priority-match-ana where
OF-priority-match-ana γ flow-entries packet ≡
let m = filter (λf . γ (ofe-fields f) packet) flow-entries;

m ′ = filter (λf . ∀ fo ∈ set m. ofe-prio fo ≤ ofe-prio f) m in
case m ′ of [] ⇒ NoAction

| [s] ⇒ Action s
| - ⇒ Undefined

lemma filter-singleton: [x←s. f x] = [y] =⇒ f y ∧ y ∈ set s by (metis filter-eq-Cons-iff in-set-conv-decomp)

lemma OF-spm3-get-fe: OF-priority-match γ ft p = Action a =⇒ ∃ fe. ofe-action fe = a ∧ fe ∈ set ft ∧ OF-priority-match-ana
γ ft p = Action fe
unfolding OF-priority-match-def OF-priority-match-ana-def
by(clarsimp split: flowtable-behavior .splits list.splits) (drule filter-singleton; simp)

fun no-overlaps where
no-overlaps - [] = True |
no-overlaps γ (a#as) = (no-overlaps γ as ∧ (
∀ b ∈ set as. ofe-prio a = ofe-prio b −→ ¬(∃ p ∈ UNIV . γ (ofe-fields a) p ∧ γ (ofe-fields b) p)))

lemma no-overlap-ConsI : check-no-overlap2 γ (x#xs) =⇒ check-no-overlap2 γ xs
unfolding check-no-overlap2-def by simp

lemma no-overlapsI : check-no-overlap γ t =⇒ distinct t =⇒ no-overlaps γ t
unfolding check-no-overlap-alt
proof(induction t)
case (Cons a t)
from no-overlap-ConsI [OF Cons(2)] Cons(3 ,1)

10

have no-overlaps γ t by simp
thus ?case using Cons(2 ,3) unfolding check-no-overlap2-def by auto

qed (simp add: check-no-overlap2-def)

lemma check-no-overlapI : no-overlaps γ t =⇒ check-no-overlap γ t
unfolding check-no-overlap-alt
proof(induction t)
case (Cons a t)
from Cons(1)[OF conjunct1 [OF Cons(2)[unfolded no-overlaps.simps]]]
show ?case
using conjunct2 [OF Cons(2)[unfolded no-overlaps.simps]]
unfolding check-no-overlap2-def
by auto

qed (simp add: check-no-overlap2-def)

lemma (
∧

e p. e ∈ set t =⇒ ¬γ (ofe-fields e) p) =⇒ no-overlaps γ t
by(induction t) simp-all

lemma no-overlaps-append: no-overlaps γ (x @ y) =⇒ no-overlaps γ y
by(induction x) simp-all

lemma no-overlaps-ne1 : no-overlaps γ (x @ a # y @ b # z) =⇒ ((∃ p. γ (ofe-fields a) p) ∨ (∃ p. γ (ofe-fields b) p)) =⇒ a
6= b
proof (rule notI , goal-cases contr)
case contr
from contr(1) no-overlaps-append have no-overlaps γ (a # y @ b # z) by blast
note this[unfolded no-overlaps.simps]
with contr(3) have ¬ (∃ p∈UNIV . γ (ofe-fields a) p ∧ γ (ofe-fields b) p) by simp
with contr(2) show False unfolding contr(3) by simp

qed

lemma no-overlaps-defeq: no-overlaps γ fe =⇒ OF-same-priority-match2 γ fe p = OF-priority-match γ fe p
unfolding OF-same-priority-match2-def OF-priority-match-def
unfolding f-Img-ex-set
unfolding prio-match-matcher-alt
unfolding prio-match-matcher-alt2

proof (goal-cases uf)
case uf
let ?m ′ = let m = [f←fe . γ (ofe-fields f) p] in [f←m . ∀ fo∈set m. ofe-prio fo ≤ ofe-prio f]
let ?s = ofe-action ‘ set ?m ′

from uf show ?case
proof(cases ?m ′)
case Nil
moreover then have card ?s = 0 by force
ultimately show ?thesis by(simp add: Let-def)

next
case (Cons a as)
have as = []
proof(rule ccontr)
assume as 6= []
then obtain b bs where bbs: as = b # bs by (meson neq-Nil-conv)
note no = Cons[unfolded Let-def filter-filter]

have f1 : a ∈ set ?m ′ b ∈ set ?m ′ unfolding bbs local.Cons by simp-all
hence ofe-prio a = ofe-prio b by (simp add: antisym)

moreover have ms: γ (ofe-fields a) p γ (ofe-fields b) p using no[symmetric] unfolding bbs by(blast dest: Cons-eq-filterD)+
moreover have abis: a ∈ set fe b ∈ set fe using f1 by auto

11

moreover have a 6= b proof(cases ∃ x y z. fe = x @ a # y @ b # z)
case True
then obtain x y z where xyz: fe = x @ a # y @ b # z by blast
from no-overlaps-ne1 ms(1) uf [unfolded xyz]
show ?thesis by blast

next
case False
then obtain x y z where xyz: fe = x @ b # y @ a # z
using no unfolding bbs
by (metis (no-types, lifting) Cons-eq-filterD)

from no-overlaps-ne1 ms(1) uf [unfolded xyz]
show ?thesis by blast

qed
ultimately show False using check-no-overlapI [OF uf , unfolded check-no-overlap-def] by blast

qed
then have oe: a # as = [a] by simp
show ?thesis using Cons[unfolded oe] by force

qed
qed

lemma distinct fe =⇒ check-no-overlap γ fe =⇒ OF-same-priority-match2 γ fe p = OF-priority-match γ fe p
by(rule no-overlaps-defeq) (drule (2) no-overlapsI)

theorem OF-eq:
assumes no: no-overlaps γ f

and so: sorted-descending (map ofe-prio f)
shows OF-match-linear γ f p = OF-priority-match γ f p
unfolding no-overlaps-defeq[symmetric,OF no] OF-match-eq[OF so check-no-overlapI [OF no]]
..

corollary OF-eq-sort:
assumes no: no-overlaps γ f
shows OF-priority-match γ f p = OF-match-linear γ (sort-descending-key ofe-prio f) p
using OF-match-eq2 check-no-overlapI no no-overlaps-defeq by fastforce

lemma OF-lm-noa-none: OF-match-linear γ ft p = NoAction =⇒ ∀ e∈set ft. ¬ γ (ofe-fields e) p
by(induction ft) (simp-all split: if-splits)

lemma OF-spm3-noa-none:
assumes no: no-overlaps γ ft
shows OF-priority-match γ ft p = NoAction =⇒ ∀ e ∈ set ft. ¬γ (ofe-fields e) p

unfolding OF-eq-sort[OF no] by(drule OF-lm-noa-none) simp

lemma no-overlaps-not-unefined: no-overlaps γ ft =⇒ OF-priority-match γ ft p 6= Undefined
using check-no-overlapI no-overlap-not-unefined no-overlaps-defeq by fastforce

end
theory OpenFlow-Serialize
imports OpenFlow-Matches

OpenFlow-Action
Semantics-OpenFlow
Simple-Firewall.Primitives-toString

12

IP-Addresses.Lib-Word-toString
begin

definition serialization-test-entry ≡ OFEntry 7 {EtherDst 0x1 , IPv4Dst (PrefixMatch 0xA000201 32), IngressPort
′′s1−lan ′′, L4Dst 0x50 0 , L4Src 0x400 0x3FF , IPv4Proto 6 , EtherType 0x800} [ModifyField-l2dst 0xA641F185E862 ,
Forward ′′s1−wan ′′]

value (map ((<<) (1 ::48 word) ◦ (∗) 8) ◦ rev) [0 ..<6]

definition serialize-mac (m::48 word) ≡ (intersperse (CHR ′′: ′′) ◦ map (hex-string-of-word 1 ◦ (λh. (m >> h ∗ 8) &&
0xff)) ◦ rev) [0 ..<6]
lemma serialize-mac 0xdeadbeefcafe = ′′de:ad:be:ef :ca:fe ′′ by eval

definition serialize-action pids a ≡ (case a of
Forward oif ⇒ ′′output: ′′ @ pids oif |
ModifyField-l2dst na ⇒ ′′mod-dl-dst: ′′ @ serialize-mac na)

definition serialize-actions pids a ≡ if length a = 0 then ′′drop ′′ else (intersperse (CHR ′′, ′′) ◦ map (serialize-action pids))
a

lemma serialize-actions (λoif . ′′42 ′′) (ofe-action serialization-test-entry) =
′′mod-dl-dst:a6 :41 :f1 :85 :e8 :62 ,output:42 ′′ by eval

lemma serialize-actions anything [] = ′′drop ′′

by(simp add: serialize-actions-def)

definition prefix-to-string pfx ≡ ipv4-cidr-toString (pfxm-prefix pfx, pfxm-length pfx)

primrec serialize-of-match where
serialize-of-match pids (IngressPort p) = ′′in-port= ′′ @ pids p |
serialize-of-match - (VlanId i) = ′′dl-vlan= ′′ @ dec-string-of-word0 i |
serialize-of-match - (VlanPriority -) = undefined |
serialize-of-match - (EtherType i) = ′′dl-type=0x ′′ @ hex-string-of-word0 i |
serialize-of-match - (EtherSrc m) = ′′dl-src= ′′ @ serialize-mac m |
serialize-of-match - (EtherDst m) = ′′dl-dst= ′′ @ serialize-mac m |
serialize-of-match - (IPv4Proto i) = ′′nw-proto= ′′ @ dec-string-of-word0 i |
serialize-of-match - (IPv4Src p) = ′′nw-src= ′′ @ prefix-to-string p |
serialize-of-match - (IPv4Dst p) = ′′nw-dst= ′′ @ prefix-to-string p |
serialize-of-match - (L4Src i m) = ′′tp-src= ′′ @ dec-string-of-word0 i @ (if m = − 1 then [] else ′′/0x ′′ @ hex-string-of-word
3 m) |
serialize-of-match - (L4Dst i m) = ′′tp-dst= ′′ @ dec-string-of-word0 i @ (if m = − 1 then [] else ′′/0x ′′ @ hex-string-of-word
3 m)

definition serialize-of-matches :: (string ⇒ string) ⇒ of-match-field set ⇒ string
where
serialize-of-matches pids ≡ (@) ′′hard-timeout=0 ,idle-timeout=0 , ′′ ◦ intersperse (CHR ′′, ′′) ◦ map (serialize-of-match pids)
◦ sorted-list-of-set

lemma serialize-of-matches pids of-matches=
(List.append ′′hard-timeout=0 ,idle-timeout=0 , ′′)
(intersperse (CHR ′′, ′′) (map (serialize-of-match pids) (sorted-list-of-set of-matches)))

by (simp add: serialize-of-matches-def)

13

export-code serialize-of-matches checking SML

lemma serialize-of-matches (λoif . ′′42 ′′) (ofe-fields serialization-test-entry) =
′′hard-timeout=0 ,idle-timeout=0 ,in-port=42 ,dl-type=0x800 ,dl-dst=00 :00 :00 :00 :00 :01 ,nw-proto=6 ,nw-dst=10 .0 .2 .1/32 ,tp-src=1024/0x03ff ,tp-dst=80/0x0000 ′′

by eval

definition serialize-of-entry pids e ≡ (case e of (OFEntry p f a) ⇒ ′′priority= ′′ @ dec-string-of-word0 p @ ′′, ′′ @ serial-
ize-of-matches pids f @ ′′, ′′ @ ′′action= ′′ @ serialize-actions pids a)

lemma serialize-of-entry (the ◦ map-of [(′′s1−lan ′′, ′′42 ′′),(′′s1−wan ′′, ′′1337 ′′)]) serialization-test-entry =
′′priority=7 ,hard-timeout=0 ,idle-timeout=0 ,in-port=42 ,dl-type=0x800 ,dl-dst=00 :00 :00 :00 :00 :01 ,nw-proto=6 ,nw-dst=10 .0 .2 .1/32 ,tp-src=1024/0x03ff ,tp-dst=80/0x0000 ,action=mod-dl-dst:a6 :41 :f1 :85 :e8 :62 ,output:1337 ′′

by eval

end
theory Featherweight-OpenFlow-Comparison
imports Semantics-OpenFlow
begin

inductive guha-table-semantics :: (′m, ′p) field-matcher ⇒ (′m, ′a) flowtable ⇒ ′p ⇒ ′a option ⇒ bool where
guha-matched: γ (ofe-fields fe) p = True =⇒
∀ fe ′ ∈ set (ft1 @ ft2). ofe-prio fe ′ > ofe-prio fe −→ γ (ofe-fields fe ′) p = False =⇒
guha-table-semantics γ (ft1 @ fe # ft2) p (Some (ofe-action fe)) |

guha-unmatched: ∀ fe ∈ set ft. γ (ofe-fields fe) p = False =⇒
guha-table-semantics γ ft p None

lemma guha-table-semantics-ex2res:
assumes ta: CARD(′a) ≥ 2

assumes ms: ∃ff . γ ff p
shows ∃ ft (a1 :: ′a) (a2 :: ′a). a1 6= a2 ∧ guha-table-semantics γ ft p (Some a1) ∧ guha-table-semantics γ ft p (Some a2)

proof −
from ms obtain ff where m: γ ff p ..
from ta obtain a1 a2 :: ′a where as: a1 6= a2 using card2-eI by blast
let ?fe1 = OFEntry 0 ff a1
let ?fe2 = OFEntry 0 ff a2
let ?ft = [?fe1 , ?fe2]
have guha-table-semantics γ ?ft p (Some a1) guha-table-semantics γ ?ft p (Some a2)
by(rule guha-table-semantics.intros(1)[of γ ?fe1 p [] [?fe2], unfolded append-Nil flow-entry-match.sel] |

rule guha-table-semantics.intros(1)[of γ ?fe2 p [?fe1] [], unfolded append-Nil2 flow-entry-match.sel append.simps] |
simp add: m)+

thus ?thesis using as by(intro exI conjI)
qed

lemma guha-umstaendlich:
assumes ae: a = ofe-action fe
assumes ele: fe ∈ set ft
assumes rest: γ (ofe-fields fe) p

∀ fe ′ ∈ set ft. ofe-prio fe ′ > ofe-prio fe −→ ¬γ (ofe-fields fe ′) p
shows guha-table-semantics γ ft p (Some a)

proof −
from ele obtain ft1 ft2 where ftspl: ft = ft1 @ fe # ft2 using split-list by fastforce
show ?thesis unfolding ae ftspl

14

apply(rule guha-table-semantics.intros(1))
using rest(1) apply(simp)
using rest(2)[unfolded ftspl] apply simp

done
qed

lemma guha-matched-rule-inversion:
assumes guha-table-semantics γ ft p (Some a)
shows ∃ fe ∈ set ft. a = ofe-action fe ∧ γ (ofe-fields fe) p ∧ (∀ fe ′ ∈ set ft. ofe-prio fe ′ > ofe-prio fe −→ ¬γ (ofe-fields fe ′)

p)
proof −
{
fix d
assume guha-table-semantics γ ft p d
hence Some a = d =⇒ (∃ fe ∈ set ft. a = ofe-action fe ∧ γ (ofe-fields fe) p ∧ (∀ fe ′ ∈ set ft. ofe-prio fe ′ > ofe-prio fe −→
¬γ (ofe-fields fe ′) p))

by(induction rule: guha-table-semantics.induct) simp-all
}
from this[OF assms refl]
show ?thesis .

qed

lemma guha-equal-Action:
assumes no: no-overlaps γ ft
assumes spm: OF-priority-match γ ft p = Action a
shows guha-table-semantics γ ft p (Some a)

proof −
note spm[THEN OF-spm3-get-fe] then obtain fe where a: ofe-action fe = a and fein: fe ∈ set ft and feana:

OF-priority-match-ana γ ft p = Action fe by blast
show ?thesis
apply(rule guha-umstaendlich)
apply(rule a[symmetric])
apply(rule fein)
using feana unfolding OF-priority-match-ana-def
apply(auto dest!: filter-singleton split: list.splits)

done
qed

lemma guha-equal-NoAction:
assumes no: no-overlaps γ ft
assumes spm: OF-priority-match γ ft p = NoAction
shows guha-table-semantics γ ft p None

using spm unfolding OF-priority-match-def
by(auto simp add: filter-empty-conv OF-spm3-noa-none[OF no spm] intro: guha-table-semantics.intros(2) split: list.splits)

lemma guha-equal-hlp:
assumes no: no-overlaps γ ft
shows guha-table-semantics γ ft p (ftb-to-option (OF-priority-match γ ft p))
unfolding ftb-to-option-def
apply(cases (OF-priority-match γ ft p))
apply(simp add: guha-equal-Action[OF no])
apply(simp add: guha-equal-NoAction[OF no])
apply(subgoal-tac False, simp)
apply(simp add: no no-overlaps-not-unefined)

15

done

lemma guha-deterministic1 : guha-table-semantics γ ft p (Some x1) =⇒ ¬ guha-table-semantics γ ft p None
by(auto simp add: guha-table-semantics.simps)

lemma guha-deterministic2 : [[no-overlaps γ ft; guha-table-semantics γ ft p (Some x1); guha-table-semantics γ ft p (Some a)]]
=⇒ x1 = a
proof(rule ccontr , goal-cases)
case 1
note 1 (2−3)[THEN guha-matched-rule-inversion] then obtain fe1 fe2 where fes:
fe1∈set ft x1 = ofe-action fe1 γ (ofe-fields fe1) p (∀ fe ′∈set ft. ofe-prio fe1 < ofe-prio fe ′ −→ ¬ γ (ofe-fields fe ′) p)

fe2∈set ft a = ofe-action fe2 γ (ofe-fields fe2) p (∀ fe ′∈set ft. ofe-prio fe2 < ofe-prio fe ′ −→ ¬ γ (ofe-fields fe ′) p)
by blast

from ‹x1 6= a› have fene: fe1 6= fe2 using fes(2 ,6) by blast
have pe: ofe-prio fe1 = ofe-prio fe2 using fes(1 ,3−4 ,5 ,7−8) less-linear by blast
note ‹no-overlaps γ ft›[THEN check-no-overlapI , unfolded check-no-overlap-def]
note this[unfolded Ball-def , THEN spec, THEN mp, OF fes(1), THEN spec, THEN mp, OF fes(5),THEN spec, THEN

mp, OF UNIV-I , of p] pe fene fes(3 ,7)
thus False by blast

qed

lemma guha-equal:
assumes no: no-overlaps γ ft
shows OF-priority-match γ ft p = option-to-ftb d ←→ guha-table-semantics γ ft p d
using guha-equal-hlp[OF no, of p] unfolding ftb-to-option-def option-to-ftb-def
apply(cases OF-priority-match γ ft p; cases d)
apply(simp-all)
using guha-deterministic1 apply fast
using guha-deterministic2 [OF no] apply blast
using guha-deterministic1 apply fast
using no-overlaps-not-unefined[OF no] apply fastforce
using no-overlaps-not-unefined[OF no] apply fastforce

done

lemma guha-nondeterministicD:
assumes ¬check-no-overlap γ ft
shows ∃ fe1 fe2 p. fe1 ∈ set ft ∧ fe2 ∈ set ft
∧ guha-table-semantics γ ft p (Some (ofe-action fe1))
∧ guha-table-semantics γ ft p (Some (ofe-action fe2))

using assms
apply(unfold check-no-overlap-def)
apply(clarsimp)
apply(rename-tac fe1 fe2 p)
apply(rule-tac x = fe1 in exI)
apply(simp)
apply(rule-tac x = fe2 in exI)
apply(simp)
apply(rule-tac x = p in exI)
apply(rule conjI)
apply(subst guha-table-semantics.simps)
apply(rule disjI1)
apply(clarsimp)
apply(rule-tac x = fe1 in exI)
apply(drule split-list)

16

apply(clarify)
apply(rename-tac ft1 ft2)
apply(rule-tac x = ft1 in exI)
apply(rule-tac x = ft2 in exI)
apply(simp)
oops

The above lemma does indeed not hold, the reason for this are (possibly partially) shadowed overlaps. This is
exemplified below: If there are at least three different possible actions (necessary assumption) and a match expression
that matches all packets (convenience assumption), it is possible to construct a flow table that is admonished by
check-no-overlap but still will never run into undefined behavior.
lemma

assumes CARD(′action) ≥ 3
assumes ∀ p. γ x p

shows ∃ ft::(′a, ′action) flow-entry-match list. ¬check-no-overlap γ ft ∧
¬(∃ fe1 fe2 p. fe1 ∈ set ft ∧ fe2 ∈ set ft ∧ fe1 6= fe2 ∧ ofe-prio fe1 = ofe-prio fe2
∧ guha-table-semantics γ ft p (Some (ofe-action fe1))
∧ guha-table-semantics γ ft p (Some (ofe-action fe2)))

proof −
obtain adef aa ab :: ′action where anb[simp]: aa 6= ab adef 6= aa adef 6= ab using assms(1) card3-eI by blast
let ?cex = [OFEntry 1 x adef , OFEntry 0 x aa, OFEntry 0 x ab]
have ol: ¬check-no-overlap γ ?cex

unfolding check-no-overlap-def ball-simps
apply(rule bexI [where x = OFEntry 0 x aa, rotated], (simp;fail))
apply(rule bexI [where x = OFEntry 0 x ab, rotated], (simp;fail))
apply(simp add: assms)

done
have df : guha-table-semantics γ ?cex p oc =⇒ oc = Some adef for p oc
unfolding guha-table-semantics.simps

apply(elim disjE ; clarsimp simp: assms)
subgoal for fe ft1 ft2
apply(cases ft1 = [])
apply(fastforce)
apply(cases ft2 = [])
apply(fastforce)
apply(subgoal-tac ft1 = [OFEntry 1 x adef] ∧ fe = OFEntry 0 x aa ∧ ft2 = [OFEntry 0 x ab])
apply(simp;fail)
apply(clarsimp simp add: List.neq-Nil-conv)
apply(rename-tac ya ys yz)
apply(case-tac ys; clarsimp simp add: List.neq-Nil-conv)

done done
show ?thesis

apply(intro exI [where x = ?cex], intro conjI , fact ol)
apply(clarify)
apply(unfold set-simps)
apply(elim insertE ; clarsimp)
apply((drule df)+; unfold option.inject; (elim anb[symmetric, THEN notE] | (simp;fail))?)+

done
qed

end
theory LinuxRouter-OpenFlow-Translation

17

imports IP-Addresses.CIDR-Split
Automatic-Refinement.Misc

Simple-Firewall.Generic-SimpleFw
Semantics-OpenFlow
OpenFlow-Matches
OpenFlow-Action
Routing.Linux-Router
Pure−ex.Guess

begin
hide-const Misc.uncurry
hide-fact Misc.uncurry-def

definition route2match r =
(|iiface = ifaceAny, oiface = ifaceAny,
src = (0 ,0), dst=(pfxm-prefix (routing-match r),pfxm-length (routing-match r)),
proto=ProtoAny, sports=(0 ,− 1), ports=(0 ,− 1)|)

definition toprefixmatch where
toprefixmatch m ≡ (let pm = PrefixMatch (fst m) (snd m) in if pm = PrefixMatch 0 0 then None else Some pm)
lemma prefix-match-semantics-simple-match:

assumes some: toprefixmatch m = Some pm
assumes vld: valid-prefix pm
shows prefix-match-semantics pm = simple-match-ip m

using some
by(cases m)
(clarsimp
simp add: toprefixmatch-def ipset-from-cidr-def pfxm-mask-def fun-eq-iff

prefix-match-semantics-ipset-from-netmask[OF vld] NOT-mask-shifted-lenword[symmetric]
split: if-splits)

definition simple-match-to-of-match-single ::
(32 , ′a) simple-match-scheme
⇒ char list option ⇒ protocol ⇒ (16 word × 16 word) option ⇒ (16 word × 16 word) option ⇒ of-match-field set

where
simple-match-to-of-match-single m iif prot sport dport ≡

uncurry L4Src ‘ option2set sport ∪ uncurry L4Dst ‘ option2set dport
∪ IPv4Proto ‘ (case prot of ProtoAny ⇒ {} | Proto p ⇒ {p}) — protocol is an 8 word option anyway...
∪ IngressPort ‘ option2set iif
∪ IPv4Src ‘ option2set (toprefixmatch (src m)) ∪ IPv4Dst ‘ option2set (toprefixmatch (dst m))
∪ {EtherType 0x0800}

definition simple-match-to-of-match :: 32 simple-match ⇒ string list ⇒ of-match-field set list where
simple-match-to-of-match m ifs ≡ (let
npm = (λp. fst p = 0 ∧ snd p = − 1);
sb = (λp. (if npm p then [None] else if fst p ≤ snd p

then map (Some ◦ (λpfx. (pfxm-prefix pfx, Bit-Operations.not (pfxm-mask pfx)))) (wordinterval-CIDR-split-prefixmatch
(WordInterval (fst p) (snd p))) else []))
in [simple-match-to-of-match-single m iif (proto m) sport dport.
iif ← (if iiface m = ifaceAny then [None] else [Some i. i ← ifs, match-iface (iiface m) i]),
sport ← sb (sports m),
dport ← sb (dports m)]

)

18

lemma smtoms-eq-hlp: simple-match-to-of-match-single r a b c d = simple-match-to-of-match-single r f g h i ←→ (a = f ∧
b = g ∧ c = h ∧ d = i)

proof(rule iffI ,goal-cases)
case 1
thus ?case proof(intro conjI)

have ∗:
∧

P z x. [[∀ x :: of-match-field. P x; z = Some x]] =⇒ P (IngressPort x) by simp
show a = f using 1 by(cases a; cases f)

(simp add: option2set-None simple-match-to-of-match-single-def toprefixmatch-def option2set-def ;
subst(asm) set-eq-iff ; drule (1) ∗; simp split: option.splits uncurry-splits protocol.splits)+

next
have ∗:

∧
P z x. [[∀ x :: of-match-field. P x; z = Proto x]] =⇒ P (IPv4Proto x) by simp

show b = g using 1 by(cases b; cases g)
(simp add: option2set-None simple-match-to-of-match-single-def toprefixmatch-def option2set-def ;
subst(asm) set-eq-iff ; drule (1) ∗; simp split: option.splits uncurry-splits protocol.splits)+

next
have ∗:

∧
P z x. [[∀ x :: of-match-field. P x; z = Some x]] =⇒ P (uncurry L4Src x) by simp

show c = h using 1 by(cases c; cases h)
(simp add: option2set-None simple-match-to-of-match-single-def toprefixmatch-def option2set-def ;
subst(asm) set-eq-iff ; drule (1) ∗; simp split: option.splits uncurry-splits protocol.splits)+

next
have ∗:

∧
P z x. [[∀ x :: of-match-field. P x; z = Some x]] =⇒ P (uncurry L4Dst x) by simp

show d = i using 1 by(cases d; cases i)
(simp add: option2set-None simple-match-to-of-match-single-def toprefixmatch-def option2set-def ;
subst(asm) set-eq-iff ; drule (1) ∗; simp split: option.splits uncurry-splits protocol.splits)+

qed
qed simp

lemma simple-match-to-of-match-generates-prereqs: simple-match-valid m =⇒ r ∈ set (simple-match-to-of-match m ifs) =⇒
all-prerequisites r
unfolding simple-match-to-of-match-def Let-def
proof(clarsimp, goal-cases)

case (1 xiface xsrcp xdstp)
note o = this
show ?case unfolding simple-match-to-of-match-single-def all-prerequisites-def

unfolding ball-Un
proof((intro conjI ; ((simp;fail)| −)), goal-cases)

case 1
have e: (fst (sports m) = 0 ∧ snd (sports m) = − 1) ∨ proto m = Proto TCP ∨ proto m = Proto UDP ∨ proto m =

Proto L4-Protocol.SCTP
using o(1)
unfolding simple-match-valid-alt Let-def
by(clarsimp split: if-splits)

show ?case
using o(3) e
by(elim disjE ; simp add: option2set-def split: if-splits prod.splits uncurry-splits)

next
case 2
have e: (fst (dports m) = 0 ∧ snd (dports m) = − 1) ∨ proto m = Proto TCP ∨ proto m = Proto UDP ∨ proto m =

Proto L4-Protocol.SCTP
using o(1)
unfolding simple-match-valid-alt Let-def

19

by(clarsimp split: if-splits)
show ?case

using o(4) e
by(elim disjE ; simp add: option2set-def split: if-splits prod.splits uncurry-splits)

qed
qed

lemma and-assoc: a ∧ b ∧ c ←→ (a ∧ b) ∧ c by simp

lemmas custom-simpset = Let-def set-concat set-map map-map comp-def concat-map-maps set-maps UN-iff fun-app-def
Set.image-iff

abbreviation simple-fw-prefix-to-wordinterval ≡ prefix-to-wordinterval ◦ uncurry PrefixMatch

lemma simple-match-port-alt: simple-match-port m p ←→ p ∈ wordinterval-to-set (uncurry WordInterval m) by(simp split:
uncurry-splits)

lemma simple-match-src-alt: simple-match-valid r =⇒
simple-match-ip (src r) p ←→ prefix-match-semantics (PrefixMatch (fst (src r)) (snd (src r))) p

by(cases (src r)) (simp add: prefix-match-semantics-ipset-from-netmask2 prefix-to-wordset-ipset-from-cidr
simple-match-valid-def valid-prefix-fw-def)
lemma simple-match-dst-alt: simple-match-valid r =⇒
simple-match-ip (dst r) p ←→ prefix-match-semantics (PrefixMatch (fst (dst r)) (snd (dst r))) p

by(cases (dst r)) (simp add: prefix-match-semantics-ipset-from-netmask2 prefix-to-wordset-ipset-from-cidr
simple-match-valid-def valid-prefix-fw-def)

lemma x ∈ set (wordinterval-CIDR-split-prefixmatch w) =⇒ valid-prefix x
using wordinterval-CIDR-split-prefixmatch-all-valid-Ball[THEN bspec, THEN conjunct1] .

lemma simple-match-to-of-matchI :
assumes mv: simple-match-valid r
assumes mm: simple-matches r p
assumes ii: p-iiface p ∈ set ifs
assumes ippkt: p-l2type p = 0x800
shows eq: ∃ gr ∈ set (simple-match-to-of-match r ifs). OF-match-fields gr p = Some True

proof −
let ?npm = λp. fst p = 0 ∧ snd p = − 1
let ?sb = λp r . (if ?npm p then None else Some r)
obtain si where si: case si of Some ssi ⇒ p-sport p ∈ prefix-to-wordset ssi | None ⇒ True
case si of None ⇒ True | Some ssi ⇒ ssi ∈ set (
wordinterval-CIDR-split-prefixmatch (uncurry WordInterval (sports r)))
si = None ←→ ?npm (sports r)

proof(cases ?npm (sports r), goal-cases)
case 1
hence (case None of None ⇒ True | Some ssi ⇒ p-sport p ∈ prefix-to-wordset ssi) ∧

(case None of None ⇒ True
| Some ssi ⇒ ssi ∈ set (wordinterval-CIDR-split-prefixmatch (uncurry WordInterval (sports r)))) by simp

with 1 show ?thesis by blast
next
case 2
from mm have p-sport p ∈ wordinterval-to-set (uncurry WordInterval (sports r))
by(simp only: simple-matches.simps simple-match-port-alt)

then obtain ssi where ssi:
ssi ∈ set (wordinterval-CIDR-split-prefixmatch (uncurry WordInterval (sports r)))

20

p-sport p ∈ prefix-to-wordset ssi
using wordinterval-CIDR-split-existential by fast

hence (case Some ssi of None ⇒ True | Some ssi ⇒ p-sport p ∈ prefix-to-wordset ssi) ∧
(case Some ssi of None ⇒ True
| Some ssi ⇒ ssi ∈ set (wordinterval-CIDR-split-prefixmatch (uncurry WordInterval (sports r)))) by simp

with 2 show ?thesis by blast
qed

obtain di where di: case di of Some ddi ⇒ p-dport p ∈ prefix-to-wordset ddi | None ⇒ True
case di of None ⇒ True | Some ddi ⇒ ddi ∈ set (
wordinterval-CIDR-split-prefixmatch (uncurry WordInterval (dports r)))
di = None ←→ ?npm (dports r)

proof(cases ?npm (dports r), goal-cases)
case 1
hence (case None of None ⇒ True | Some ssi ⇒ p-dport p ∈ prefix-to-wordset ssi) ∧

(case None of None ⇒ True
| Some ssi ⇒ ssi ∈ set (wordinterval-CIDR-split-prefixmatch (uncurry WordInterval (dports r)))) by simp

with 1 show ?thesis by blast
next
case 2
from mm have p-dport p ∈ wordinterval-to-set (uncurry WordInterval (dports r))
by(simp only: simple-matches.simps simple-match-port-alt)

then obtain ddi where ddi:
ddi ∈ set (wordinterval-CIDR-split-prefixmatch (uncurry WordInterval (dports r)))
p-dport p ∈ prefix-to-wordset ddi
using wordinterval-CIDR-split-existential by fast

hence (case Some ddi of None ⇒ True | Some ssi ⇒ p-dport p ∈ prefix-to-wordset ssi) ∧
(case Some ddi of None ⇒ True
| Some ssi ⇒ ssi ∈ set (wordinterval-CIDR-split-prefixmatch (uncurry WordInterval (dports r)))) by simp

with 2 show ?thesis by blast
qed
show ?thesis

proof
let ?mf = map-option (apsnd (wordNOT ◦ mask ◦ (−) 16) ◦ prefix-match-dtor)
let ?gr = simple-match-to-of-match-single r
(if iiface r = ifaceAny then None else Some (p-iiface p))
(if proto r = ProtoAny then ProtoAny else Proto (p-proto p))
(?mf si) (?mf di)

note mfu = simple-match-port.simps[of fst (sports r) snd (sports r), unfolded surjective-pairing[of sports r ,symmetric]]
simple-match-port.simps[of fst (dports r) snd (dports r), unfolded surjective-pairing[of dports r ,symmetric]]

note u = mm[unfolded simple-matches.simps mfu ord-class.atLeastAtMost-iff simple-packet-unext-def simple-packet.simps]
note of-safe-unsafe-match-eq[OF simple-match-to-of-match-generates-prereqs]
from u have ple: fst (sports r) ≤ snd (sports r) fst (dports r) ≤ snd (dports r) by force+
show eg: ?gr ∈ set (simple-match-to-of-match r ifs)
unfolding simple-match-to-of-match-def
unfolding custom-simpset
unfolding smtoms-eq-hlp
proof(intro bexI , (intro conjI ; ((rule refl)?)), goal-cases)
case 2 thus ?case using ple(2) di
apply(simp add: pfxm-mask-def prefix-match-dtor-def Set.image-iff

split: option.splits prod.splits uncurry-splits)
apply(erule bexI [rotated])
apply(simp split: prefix-match.splits)

done
next

21

case 3 thus ?case using ple(1) si
apply(simp add: pfxm-mask-def prefix-match-dtor-def Set.image-iff

split: option.splits prod.splits uncurry-splits)
apply(erule bexI [rotated])
apply(simp split: prefix-match.splits)

done
next
case 4 thus ?case

using u ii by(clarsimp simp: set-maps split: if-splits)
next
case 1 thus ?case using ii u by simp-all (metis match-proto.elims(2))

qed
have dpm: di = Some (PrefixMatch x1 x2) =⇒ p-dport p && ∼∼ (mask (16 − x2)) = x1 for x1 x2

proof −
have ∗: di = Some (PrefixMatch x1 x2) =⇒ prefix-match-semantics (the di) (p-dport p) =⇒ p-dport p && ∼∼ (mask

(16 − x2)) = x1
by(clarsimp simp: prefix-match-semantics-def pfxm-mask-def word-bw-comms;fail)

have ∗∗: pfx ∈ set (wordinterval-CIDR-split-prefixmatch ra) =⇒ prefix-match-semantics pfx a = (a ∈ prefix-to-wordset
pfx) for pfx ra and a :: 16 word

by (fact prefix-match-semantics-wordset[OF wordinterval-CIDR-split-prefixmatch-all-valid-Ball[THEN bspec, THEN
conjunct1]])

have [[di = Some (PrefixMatch x1 x2); p-dport p ∈ prefix-to-wordset (PrefixMatch x1 x2); PrefixMatch x1 x2 ∈ set
(wordinterval-CIDR-split-prefixmatch (uncurry WordInterval (dports r)))]]

=⇒ p-dport p && ∼∼ (mask (16 − x2)) = x1
using di(1 ,2)

using ∗ ∗∗ by auto
thus di = Some (PrefixMatch x1 x2) =⇒ p-dport p && ∼∼ (mask (16 − x2)) = x1 using di(1 ,2) by auto

qed
have spm: si = Some (PrefixMatch x1 x2) =⇒ p-sport p && ∼∼ (mask (16 − x2)) = x1 for x1 x2

using si
proof −

have ∗: si = Some (PrefixMatch x1 x2) =⇒ prefix-match-semantics (the si) (p-sport p) =⇒ p-sport p && ∼∼ (mask
(16 − x2)) = x1

by(clarsimp simp: prefix-match-semantics-def pfxm-mask-def word-bw-comms;fail)
have ∗∗: pfx ∈ set (wordinterval-CIDR-split-prefixmatch ra) =⇒ prefix-match-semantics pfx a = (a ∈ prefix-to-wordset

pfx) for pfx ra and a :: 16 word
by (fact prefix-match-semantics-wordset[OF wordinterval-CIDR-split-prefixmatch-all-valid-Ball[THEN bspec, THEN

conjunct1]])
have [[si = Some (PrefixMatch x1 x2); p-sport p ∈ prefix-to-wordset (PrefixMatch x1 x2); PrefixMatch x1 x2 ∈ set

(wordinterval-CIDR-split-prefixmatch (uncurry WordInterval (sports r)))]]
=⇒ p-sport p && ∼∼ (mask (16 − x2)) = x1

using si(1 ,2)
using ∗ ∗∗ by auto

thus si = Some (PrefixMatch x1 x2) =⇒ p-sport p && ∼∼ (mask (16 − x2)) = x1 using si(1 ,2) by auto
qed

show OF-match-fields ?gr p = Some True
unfolding of-safe-unsafe-match-eq[OF simple-match-to-of-match-generates-prereqs[OF mv eg]]

by(cases si; cases di)
(simp-all

add: simple-match-to-of-match-single-def OF-match-fields-unsafe-def spm
option2set-def u ippkt prefix-match-dtor-def toprefixmatch-def dpm
simple-match-dst-alt[OF mv, symmetric] simple-match-src-alt[OF mv, symmetric]

split: prefix-match.splits)
qed

22

qed

lemma prefix-match-00 [simp,intro!]: prefix-match-semantics (PrefixMatch 0 0) p
by (simp add: valid-prefix-def zero-prefix-match-all)

lemma simple-match-to-of-matchD:
assumes eg: gr ∈ set (simple-match-to-of-match r ifs)
assumes mo: OF-match-fields gr p = Some True
assumes me: match-iface (oiface r) (p-oiface p)
assumes mv: simple-match-valid r
shows simple-matches r p

proof −
from mv have validpfx:
valid-prefix (uncurry PrefixMatch (src r)) valid-prefix (uncurry PrefixMatch (dst r))∧

pm. toprefixmatch (src r) = Some pm =⇒ valid-prefix pm∧
pm. toprefixmatch (dst r) = Some pm =⇒ valid-prefix pm

unfolding simple-match-valid-def valid-prefix-fw-def toprefixmatch-def
by(simp-all split: uncurry-splits if-splits)

from mo have mo: OF-match-fields-unsafe gr p
unfolding of-safe-unsafe-match-eq[OF simple-match-to-of-match-generates-prereqs[OF mv eg]]
by simp

note this[unfolded OF-match-fields-unsafe-def]
note eg[unfolded simple-match-to-of-match-def simple-match-to-of-match-single-def custom-simpset option2set-def]
then guess x .. moreover from this(2) guess xa .. moreover from this(2) guess xb ..
note xx = calculation(1 ,3) this

{ fix a b xc xa
fix pp :: 16 word

have [[pp && ∼∼ (pfxm-mask xc) = pfxm-prefix xc]]
=⇒ prefix-match-semantics xc (pp) for xc

by(simp add: prefix-match-semantics-def word-bw-comms;fail)
moreover have pp ∈ wordinterval-to-set (WordInterval a b) =⇒ a ≤ pp ∧ pp ≤ b by simp
moreover have xc ∈ set (wordinterval-CIDR-split-prefixmatch (WordInterval a b)) =⇒ pp ∈ prefix-to-wordset xc =⇒

pp ∈ wordinterval-to-set (WordInterval a b)
by(subst wordinterval-CIDR-split-prefixmatch) blast
moreover have [[xc ∈ set (wordinterval-CIDR-split-prefixmatch (WordInterval a b)); xa = Some (pfxm-prefix xc, ∼∼

(pfxm-mask xc)); prefix-match-semantics xc (pp)]] =⇒ pp ∈ prefix-to-wordset xc
apply(subst(asm)(1) prefix-match-semantics-wordset)
apply(erule wordinterval-CIDR-split-prefixmatch-all-valid-Ball[THEN bspec, THEN conjunct1];fail)
apply assumption
done
ultimately have [[xc ∈ set (wordinterval-CIDR-split-prefixmatch (WordInterval a b)); xa = Some (pfxm-prefix xc, ∼∼

(pfxm-mask xc));
pp && ∼∼ (pfxm-mask xc) = pfxm-prefix xc]]
=⇒ a ≤ pp ∧ pp ≤ b

by metis
} note l4port-logic = this

show ?thesis unfolding simple-matches.simps
proof(unfold and-assoc, (rule)+)
show match-iface (iiface r) (p-iiface p)
apply(cases iiface r = ifaceAny)
apply (simp add: match-ifaceAny)

using xx(1) mo unfolding xx(4) OF-match-fields-unsafe-def

23

apply(simp only: if-False set-maps UN-iff)
apply(clarify)
apply(rename-tac a; subgoal-tac match-iface (iiface r) a)
apply(clarsimp simp add: option2set-def ;fail)

apply(rule ccontr ,simp;fail)
done

next
show match-iface (oiface r) (p-oiface p) using me .

next
show simple-match-ip (src r) (p-src p)
using mo unfolding xx(4) OF-match-fields-unsafe-def toprefixmatch-def
by(clarsimp

simp add: simple-packet-unext-def option2set-def validpfx simple-match-src-alt[OF mv] toprefixmatch-def
split: if-splits)

next
show simple-match-ip (dst r) (p-dst p)
using mo unfolding xx(4) OF-match-fields-unsafe-def toprefixmatch-def
by(clarsimp

simp add: simple-packet-unext-def option2set-def validpfx simple-match-dst-alt[OF mv] toprefixmatch-def
split: if-splits)

next
show match-proto (proto r) (p-proto p)
using mo unfolding xx(4) OF-match-fields-unsafe-def
using xx(1) by(clarsimp
simp add: singleton-iff simple-packet-unext-def option2set-def prefix-match-semantics-simple-match ball-Un
split: if-splits protocol.splits)

next
show simple-match-port (sports r) (p-sport p)
using mo xx(2) unfolding xx(4) OF-match-fields-unsafe-def

by(cases sports r) (clarsimp simp add: l4port-logic simple-packet-unext-def option2set-def
prefix-match-semantics-simple-match split: if-splits)
next
show simple-match-port (dports r) (p-dport p)

using mo xx(3) unfolding xx(4) OF-match-fields-unsafe-def
by(cases dports r) (clarsimp simp add: l4port-logic simple-packet-unext-def option2set-def

prefix-match-semantics-simple-match split: if-splits)
qed

qed

primrec annotate-rlen where
annotate-rlen [] = [] |
annotate-rlen (a#as) = (length as, a) # annotate-rlen as
lemma annotate-rlen ′′asdf ′′ = [(3 , CHR ′′a ′′), (2 , CHR ′′s ′′), (1 , CHR ′′d ′′), (0 , CHR ′′f ′′)] by simp

lemma fst-annotate-rlen-le: (k, a) ∈ set (annotate-rlen l) =⇒ k < length l
by(induction l arbitrary: k; simp; force)

lemma distinct-fst-annotate-rlen: distinct (map fst (annotate-rlen l))
using fst-annotate-rlen-le by(induction l) (simp, fastforce)

lemma distinct-annotate-rlen: distinct (annotate-rlen l)
using distinct-fst-annotate-rlen unfolding distinct-map by blast

lemma in-annotate-rlen: (a,x) ∈ set (annotate-rlen l) =⇒ x ∈ set l
by(induction l) (simp-all, blast)

lemma map-snd-annotate-rlen: map snd (annotate-rlen l) = l

24

by(induction l) simp-all
lemma sorted-descending (map fst (annotate-rlen l))

by(induction l; clarsimp) (force dest: fst-annotate-rlen-le)
lemma annotate-rlen l = zip (rev [0 ..<length l]) l

by(induction l; simp)

primrec annotate-rlen-code where
annotate-rlen-code [] = (0 ,[]) |
annotate-rlen-code (a#as) = (case annotate-rlen-code as of (r ,aas) ⇒ (Suc r , (r , a) # aas))
lemma annotate-rlen-len: fst (annotate-rlen-code r) = length r
by(induction r) (clarsimp split: prod.splits)+
lemma annotate-rlen-code[code]: annotate-rlen s = snd (annotate-rlen-code s)
proof(induction s)

case (Cons s ss) thus ?case using annotate-rlen-len[of ss] by(clarsimp split: prod.split)
qed simp

lemma suc2plus-inj-on: inj-on (of-nat :: nat ⇒ (′l :: len) word) {0 ..unat (max-word :: ′l word)}
proof(rule inj-onI)

let ?mmw = (max-word :: ′l word)
let ?mstp = (of-nat :: nat ⇒ ′l word)
fix x y :: nat
assume x ∈ {0 ..unat ?mmw} y ∈ {0 ..unat ?mmw}
hence se: x ≤ unat ?mmw y ≤ unat ?mmw by simp-all
assume eq: ?mstp x = ?mstp y
note f = le-unat-uoi[OF se(1)] le-unat-uoi[OF se(2)]
show x = y using eq le-unat-uoi se by metis

qed

lemma distinct-of-nat-list:
distinct l =⇒ ∀ e ∈ set l. e ≤ unat (max-word :: (′l::len) word) =⇒ distinct (map (of-nat :: nat ⇒ ′l word) l)

proof(induction l)
let ?mmw = (max-word :: ′l word)
let ?mstp = (of-nat :: nat ⇒ ′l word)
case (Cons a as)
have distinct as ∀ e∈set as. e ≤ unat ?mmw using Cons.prems by simp-all
note mIH = Cons.IH [OF this]
moreover have ?mstp a /∈ ?mstp ‘ set as
proof
have representable-set: set as ⊆ {0 ..unat ?mmw} using ‹∀ e∈set (a # as). e ≤ unat max-word› by fastforce
have a-reprbl: a ∈ {0 ..unat ?mmw} using ‹∀ e∈set (a # as). e ≤ unat max-word› by simp
assume ?mstp a ∈ ?mstp ‘ set as
with inj-on-image-mem-iff [OF suc2plus-inj-on a-reprbl representable-set]
have a ∈ set as by simp
with ‹distinct (a # as)› show False by simp

qed
ultimately show ?case by simp

qed simp

lemma annotate-first-le-hlp:
length l < unat (max-word :: (′l :: len) word) =⇒ ∀ e∈set (map fst (annotate-rlen l)). e ≤ unat (max-word :: ′l word)
by(clarsimp) (meson fst-annotate-rlen-le less-trans nat-less-le)

lemmas distinct-of-prio-hlp = distinct-of-nat-list[OF distinct-fst-annotate-rlen annotate-first-le-hlp]

25

lemma fst-annotate-rlen: map fst (annotate-rlen l) = rev [0 ..<length l]
by(induction l) (simp-all)

lemma sorted-word-upt:
defines[simp]: won ≡ (of-nat :: nat ⇒ (′l :: len) word)
assumes length l ≤ unat (max-word :: ′l word)
shows sorted-descending (map won (rev [0 ..<Suc (length l)]))

using assms
by(induction l rule: rev-induct;clarsimp)
(metis (mono-tags, opaque-lifting) le-SucI le-unat-uoi of-nat-Suc order-refl word-le-nat-alt)

lemma sorted-annotated:
assumes length l ≤ unat (max-word :: (′l :: len) word)
shows sorted-descending (map fst (map (apfst (of-nat :: nat ⇒ ′l word)) (annotate-rlen l)))

proof −
let ?won = (of-nat :: nat ⇒ ′l word)
have sorted-descending (map ?won (rev [0 ..<Suc (length l)]))
using sorted-word-upt[OF assms] .

hence sorted-descending (map ?won (map fst (annotate-rlen l))) by(simp add: fst-annotate-rlen)
thus sorted-descending (map fst (map (apfst ?won) (annotate-rlen l))) by simp

qed

l3 device to l2 forwarding
definition lr-of-tran-s3 ifs ard = (
[(p, b, case a of simple-action.Accept ⇒ [Forward c] | simple-action.Drop ⇒ []).
(p,r ,(c,a)) ← ard, b ← simple-match-to-of-match r ifs])

definition oif-ne-iif-p1 ifs ≡ [(simple-match-any(|oiface := Iface oif , iiface := Iface iif |), simple-action.Accept). oif ← ifs,
iif ← ifs, oif 6= iif]
definition oif-ne-iif-p2 ifs = [(simple-match-any(|oiface := Iface i, iiface := Iface i|), simple-action.Drop). i ← ifs]
definition oif-ne-iif ifs = oif-ne-iif-p2 ifs @ oif-ne-iif-p1 ifs

definition lr-of-tran-s4 ard ifs ≡ generalized-fw-join ard (oif-ne-iif ifs)

definition lr-of-tran-s1 rt = [(route2match r , output-iface (routing-action r)). r ← rt]

definition lr-of-tran-fbs rt fw ifs ≡ let
gfw = map simple-rule-dtor fw; — generalized simple fw, hopefully for FORWARD
frt = lr-of-tran-s1 rt; — rt as fw
prd = generalized-fw-join frt gfw
in prd

definition pack-OF-entries ifs ard ≡ (map (split3 OFEntry) (lr-of-tran-s3 ifs ard))
definition no-oif-match ≡ list-all (λm. oiface (match-sel m) = ifaceAny)

definition lr-of-tran rt fw ifs ≡
if ¬ (no-oif-match fw ∧ has-default-policy fw ∧ simple-fw-valid fw ∧ valid-prefixes rt ∧ has-default-route rt ∧ distinct ifs)

then Inl ′′Error in creating OpenFlow table: prerequisites not satisifed ′′

else (
let nrd = lr-of-tran-fbs rt fw ifs;

ard = map (apfst of-nat) (annotate-rlen nrd) — give them a priority

26

in
if length nrd < unat (− 1 :: 16 word)
then Inr (pack-OF-entries ifs ard)
else Inl ′′Error in creating OpenFlow table: priority number space exhausted ′′)

definition is-iface-name i ≡ i 6= [] ∧ ¬Iface.iface-name-is-wildcard i
definition is-iface-list ifs ≡ distinct ifs ∧ list-all is-iface-name ifs

lemma max-16-word-max[simp]: (a :: 16 word) ≤ 0xffff
proof −
have 0xFFFF = (− 1 :: 16 word) by simp
then show ?thesis by (simp only:) simp

qed

lemma replicate-FT-hlp: x ≤ 16 ∧ y ≤ 16 =⇒ replicate (16 − x) False @ replicate x True = replicate (16 − y) False @
replicate y True =⇒ x = y
proof −
let ?ns = {0 ,1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9 ,10 ,11 ,12 ,13 ,14 ,15 ,16}
assume x ≤ 16 ∧ y ≤ 16
hence x ∈ ?ns y ∈ ?ns by(simp; presburger)+
moreover assume replicate (16 − x) False @ replicate x True = replicate (16 − y) False @ replicate y True
ultimately show x = y by simp (elim disjE ; simp-all add: numeral-eq-Suc)

qed

lemma mask-inj-hlp1 : inj-on (mask :: nat ⇒ 16 word) {0 ..16}
proof(intro inj-onI , goal-cases)

case (1 x y)
from 1 (3)
have oe: of-bl (replicate (16 − x) False @ replicate x True) = (of-bl (replicate (16 − y) False @ replicate y True) :: 16

word)
unfolding mask-bl of-bl-rep-False .

have
∧

z. z ≤ 16 =⇒ length (replicate (16 − z) False @ replicate z True) = 16 by auto
with 1 (1 ,2)
have ps: replicate (16 − x) False @ replicate x True ∈ {bl. length bl = LENGTH (16)} replicate (16 − y) False @ replicate

y True ∈ {bl. length bl = LENGTH (16)} by simp-all
from inj-onD[OF word-bl.Abs-inj-on, OF oe ps]
show ?case using 1 (1 ,2) by(fastforce intro: replicate-FT-hlp)

qed

lemma distinct-simple-match-to-of-match-portlist-hlp:
fixes ps :: (16 word × 16 word)
shows distinct ifs =⇒

distinct
(if fst ps = 0 ∧ snd ps = max-word then [None]
else if fst ps ≤ snd ps

then map (Some ◦ (λpfx. (pfxm-prefix pfx, ∼∼ (pfxm-mask pfx))))
(wordinterval-CIDR-split-prefixmatch (WordInterval (fst ps) (snd ps)))

else [])
proof −

assume di: distinct ifs
{ define wis where wis = set (wordinterval-CIDR-split-prefixmatch (WordInterval (fst ps) (snd ps)))

fix x y :: 16 prefix-match
obtain xm xn ym yn where xyd[simp]: x = PrefixMatch xm xn y = PrefixMatch ym yn by(cases x; cases y)

27

assume iw: x ∈ wis y ∈ wis and et: (pfxm-prefix x, ∼∼ (pfxm-mask x)) = (pfxm-prefix y, ∼∼ (pfxm-mask y))
hence le16 : xn ≤ 16 yn ≤ 16 unfolding wis-def using wordinterval-CIDR-split-prefixmatch-all-valid-Ball[unfolded

Ball-def , THEN spec, THEN mp] by force+
with et have 16 − xn = 16 − yn unfolding pfxm-mask-def by(auto intro: mask-inj-hlp1 [THEN inj-onD])
hence x = y using et le16 using diff-diff-cancel by simp

} note ∗ = this
show ?thesis

apply(clarsimp simp add: smtoms-eq-hlp distinct-map wordinterval-CIDR-split-distinct)
apply(subst comp-inj-on-iff [symmetric]; intro inj-onI)

using ∗ by simp-all
qed

lemma distinct-simple-match-to-of-match: distinct ifs =⇒ distinct (simple-match-to-of-match m ifs)
apply(unfold simple-match-to-of-match-def Let-def)
apply(rule distinct-3lcomprI)
subgoal by(induction ifs; clarsimp)
subgoal by(fact distinct-simple-match-to-of-match-portlist-hlp)
subgoal by(fact distinct-simple-match-to-of-match-portlist-hlp)
subgoal by(simp-all add: smtoms-eq-hlp)

done

lemma inj-inj-on: inj F =⇒ inj-on F A using subset-inj-on by auto

lemma no-overlaps-lroft-hlp2 : distinct (map fst amr) =⇒ (
∧

r . distinct (fm r)) =⇒
distinct (concat (map (λ(p, r , c, a). map (λb. (p, b, fs a c)) (fm r)) amr))

by(induction amr ; force intro: injI inj-onI simp add: distinct-map split: prod.splits)

lemma distinct-lroft-s3 : [[distinct (map fst amr); distinct ifs]] =⇒ distinct (lr-of-tran-s3 ifs amr)
unfolding lr-of-tran-s3-def
by(erule no-overlaps-lroft-hlp2 , simp add: distinct-simple-match-to-of-match)

lemma no-overlaps-lroft-hlp3 : distinct (map fst amr) =⇒
(aa, ab, ac) ∈ set (lr-of-tran-s3 ifs amr) =⇒ (ba, bb, bc) ∈ set (lr-of-tran-s3 ifs amr) =⇒
ac 6= bc =⇒ aa 6= ba

apply(unfold lr-of-tran-s3-def)
apply(clarsimp)
apply(clarsimp split: simple-action.splits)

apply(metis map-of-eq-Some-iff old.prod.inject option.inject)
apply(metis map-of-eq-Some-iff old.prod.inject option.inject simple-action.distinct(2))+

done

lemma no-overlaps-lroft-s3-hlp-hlp:
[[distinct (map fst amr); OF-match-fields-unsafe ab p; ab 6= ad ∨ ba 6= bb; OF-match-fields-unsafe ad p;

(ac, ab, ba) ∈ set (lr-of-tran-s3 ifs amr); (ac, ad, bb) ∈ set (lr-of-tran-s3 ifs amr)]]
=⇒ False

proof(elim disjE , goal-cases)
case 1
have 4 : [[distinct (map fst amr); (ac, ab, x1 , x2) ∈ set amr ; (ac, bb, x4 , x5) ∈ set amr ; ab 6= bb]]

=⇒ False for ab x1 x2 bb x4 x5
by (meson distinct-map-fstD old.prod.inject)

have conjunctSomeProtoAnyD: Some ProtoAny = simple-proto-conjunct a (Proto b) =⇒ False for a b
using conjunctProtoD by force

have 5 :
[[OF-match-fields-unsafe am p; OF-match-fields-unsafe bm p; am 6= bm;

28

am ∈ set (simple-match-to-of-match ab ifs); bm ∈ set (simple-match-to-of-match bb ifs); ¬ ab 6= bb]]
=⇒ False for ab bb am bm

by(clarify | unfold
simple-match-to-of-match-def smtoms-eq-hlp Let-def set-concat set-map de-Morgan-conj not-False-eq-True)+
(auto dest: conjunctSomeProtoAnyD cidrsplit-no-overlaps

simp add: OF-match-fields-unsafe-def simple-match-to-of-match-single-def option2set-def comp-def
split: if-splits
cong: smtoms-eq-hlp)

from 1 show ?case
using 4 5 by(clarsimp simp add: lr-of-tran-s3-def) blast

qed(metis no-overlaps-lroft-hlp3)

lemma no-overlaps-lroft-s3-hlp: distinct (map fst amr) =⇒ distinct ifs =⇒
no-overlaps OF-match-fields-unsafe (map (split3 OFEntry) (lr-of-tran-s3 ifs amr))

apply(rule no-overlapsI [rotated])
apply(subst distinct-map, rule conjI)
subgoal by(erule (1) distinct-lroft-s3)
subgoal

apply(rule inj-inj-on)
apply(rule injI)
apply(rename-tac x y, case-tac x, case-tac y)
apply(simp add: split3-def ;fail)

done
subgoal

apply(unfold check-no-overlap-def)
apply(clarify)
apply(unfold set-map)
apply(clarify)
apply(unfold split3-def prod.simps flow-entry-match.simps flow-entry-match.sel de-Morgan-conj)
apply(clarsimp simp only:)
apply(erule (1) no-overlaps-lroft-s3-hlp-hlp)

apply simp
apply assumption

apply assumption
apply simp

done
done

lemma lr-of-tran-no-overlaps: assumes distinct ifs shows Inr t = (lr-of-tran rt fw ifs) =⇒ no-overlaps
OF-match-fields-unsafe t
apply(unfold lr-of-tran-def Let-def pack-OF-entries-def)
apply(simp split: if-splits)
apply(thin-tac t = -)
apply(drule distinct-of-prio-hlp)
apply(rule no-overlaps-lroft-s3-hlp[rotated])
subgoal by(simp add: assms)
subgoal by(simp add: o-assoc)

done

lemma sorted-lr-of-tran-s3-hlp: ∀ x∈set f . fst x ≤ a =⇒ b ∈ set (lr-of-tran-s3 s f) =⇒ fst b ≤ a
by(auto simp add: lr-of-tran-s3-def)

lemma lr-of-tran-s3-Cons: lr-of-tran-s3 ifs (a#ard) = (

29

[(p, b, case a of simple-action.Accept ⇒ [Forward c] | simple-action.Drop ⇒ []).
(p,r ,(c,a)) ← [a], b ← simple-match-to-of-match r ifs]) @ lr-of-tran-s3 ifs ard

by(clarsimp simp: lr-of-tran-s3-def)

lemma sorted-lr-of-tran-s3 : sorted-descending (map fst f) =⇒ sorted-descending (map fst (lr-of-tran-s3 s f))
apply(induction f)
subgoal by(simp add: lr-of-tran-s3-def)

apply(clarsimp simp: lr-of-tran-s3-Cons map-concat comp-def)
apply(unfold sorted-descending-append)
apply(simp add: sorted-descending-alt rev-map sorted-lr-of-tran-s3-hlp sorted-const)

done

lemma sorted-lr-of-tran-hlp: (ofe-prio ◦ split3 OFEntry) = fst by(simp add: fun-eq-iff comp-def split3-def)

lemma lr-of-tran-sorted-descending: Inr r = lr-of-tran rt fw ifs =⇒ sorted-descending (map ofe-prio r)
apply(unfold lr-of-tran-def Let-def)
apply(simp split: if-splits)
apply(thin-tac r = -)
apply(unfold sorted-lr-of-tran-hlp pack-OF-entries-def split3-def [abs-def] fun-app-def map-map comp-def prod.case-distrib)
apply(simp add: fst-def [symmetric])
apply(rule sorted-lr-of-tran-s3)
apply(drule sorted-annotated[OF less-or-eq-imp-le, OF disjI1])
apply(simp add: o-assoc)

done

lemma lr-of-tran-s1-split: lr-of-tran-s1 (a # rt) = (route2match a, output-iface (routing-action a)) # lr-of-tran-s1 rt
by(unfold lr-of-tran-s1-def list.map, rule)

lemma route2match-correct: valid-prefix (routing-match a) =⇒ prefix-match-semantics (routing-match a) (p-dst p) ←→ sim-
ple-matches (route2match a) (p)
by(simp add: route2match-def simple-matches.simps match-ifaceAny match-iface-refl ipset-from-cidr-0
prefix-match-semantics-ipset-from-netmask2)

lemma s1-correct: valid-prefixes rt =⇒ has-default-route (rt::(′i::len) prefix-routing) =⇒
∃ rm ra. generalized-sfw (lr-of-tran-s1 rt) p = Some (rm,ra) ∧ ra = output-iface (routing-table-semantics rt (p-dst p))

apply(induction rt)
apply(simp;fail)

apply(drule valid-prefixes-split)
apply(clarsimp)
apply(erule disjE)
subgoal for a rt
apply(case-tac a)
apply(rename-tac routing-m metric routing-action)
apply(case-tac routing-m)
apply(simp add: valid-prefix-def pfxm-mask-def prefix-match-semantics-def generalized-sfw-def

lr-of-tran-s1-def route2match-def simple-matches.simps match-ifaceAny match-iface-refl ipset-from-cidr-0
max-word-mask[where ′a = ′i, symmetric, simplified])

done
subgoal

apply(rule conjI)
apply(simp add: generalized-sfw-def lr-of-tran-s1-def route2match-correct;fail)

apply(simp add: route2match-def simple-matches.simps prefix-match-semantics-ipset-from-netmask2
lr-of-tran-s1-split generalized-sfw-simps)

done

30

done

definition to-OF-action a ≡ (case a of (p,d) ⇒ (case d of simple-action.Accept ⇒ [Forward p] | simple-action.Drop ⇒ []))
definition from-OF-action a = (case a of [] ⇒ (′′′′,simple-action.Drop) | [Forward p] ⇒ (p, simple-action.Accept))

lemma OF-match-linear-not-noD: OF-match-linear γ oms p 6= NoAction =⇒ ∃ ome. ome ∈ set oms ∧ γ (ofe-fields ome) p
apply(induction oms)
apply(simp)

apply(simp split: if-splits)
apply blast+

done

lemma s3-noaction-hlp: [[simple-match-valid ac; ¬simple-matches ac p; match-iface (oiface ac) (p-oiface p)]] =⇒
OF-match-linear OF-match-fields-safe (map (λx. split3 OFEntry (x1 , x, case ba of simple-action.Accept ⇒ [Forward ad] |
simple-action.Drop ⇒ [])) (simple-match-to-of-match ac ifs)) p = NoAction

apply(rule ccontr)
apply(drule OF-match-linear-not-noD)
apply(clarsimp)
apply(rename-tac x)
apply(subgoal-tac all-prerequisites x)
apply(drule simple-match-to-of-matchD)

apply(simp add: split3-def)
apply(subst(asm) of-match-fields-safe-eq2)
apply(simp;fail)+

using simple-match-to-of-match-generates-prereqs by blast

lemma aux:
‹v = Some x =⇒ the v = x›
by simp

lemma s3-correct:
assumes vsfwm: list-all simple-match-valid (map (fst ◦ snd) ard)
assumes ippkt: p-l2type p = 0x800
assumes iiifs: p-iiface p ∈ set ifs
assumes oiifs: list-all (λm. oiface (fst (snd m)) = ifaceAny) ard
shows OF-match-linear OF-match-fields-safe (pack-OF-entries ifs ard) p = Action ao ←→ (∃ r af . generalized-sfw (map snd

ard) p = (Some (r ,af)) ∧ (if snd af = simple-action.Drop then ao = [] else ao = [Forward (fst af)]))
unfolding pack-OF-entries-def lr-of-tran-s3-def fun-app-def
using vsfwm oiifs

apply(induction ard)
subgoal by(simp add: generalized-sfw-simps)

apply simp
apply(clarsimp simp add: generalized-sfw-simps split: prod.splits)
apply(intro conjI)
subgoal for ard x1 ac ad ba
apply(clarsimp simp add: OF-match-linear-append split: prod.splits)
apply(drule simple-match-to-of-matchI [rotated])

apply(rule iiifs)
apply(rule ippkt)

apply blast
apply(clarsimp simp add: comp-def)
apply(drule

OF-match-linear-match-allsameaction[where
γ=OF-match-fields-safe and pri = x1 and

31

oms = simple-match-to-of-match ac ifs and
act = case ba of simple-action.Accept ⇒ [Forward ad] | simple-action.Drop ⇒ []])

apply(unfold OF-match-fields-safe-def comp-def)
apply(erule aux)

apply(clarsimp)
apply(intro iffI)
subgoal
apply(rule exI [where x = ac])
apply(rule exI [where x = ad])
apply(rule exI [where x = ba])
apply(clarsimp simp: split3-def split: simple-action.splits flowtable-behavior .splits if-splits)

done
subgoal
apply(clarsimp)
apply(rename-tac b)
apply(case-tac b)
apply(simp-all)

done
done
subgoal for ard x1 ac ad ba
apply(simp add: OF-match-linear-append OF-match-fields-safe-def comp-def)
apply(clarify)
apply(subgoal-tac OF-match-linear OF-match-fields-safe (map (λx. split3 OFEntry (x1 , x, case ba of simple-action.Accept

⇒ [Forward ad] | simple-action.Drop ⇒ [])) (simple-match-to-of-match ac ifs)) p = NoAction)
apply(simp;fail)

apply(erule (1) s3-noaction-hlp)
apply(simp add: match-ifaceAny;fail)

done
done

context
notes valid-prefix-00 [simp, intro!]

begin
lemma lr-of-tran-s1-valid: valid-prefixes rt =⇒ gsfw-valid (lr-of-tran-s1 rt)

unfolding lr-of-tran-s1-def route2match-def gsfw-valid-def list-all-iff
apply(clarsimp simp: simple-match-valid-def valid-prefix-fw-def)
apply(intro conjI)
apply force

apply(simp add: valid-prefixes-alt-def)
done

end

lemma simple-match-valid-fbs-rlen: [[valid-prefixes rt; simple-fw-valid fw; (a, aa, ab, b) ∈ set (annotate-rlen (lr-of-tran-fbs rt
fw ifs))]] =⇒ simple-match-valid aa
proof(goal-cases)

case 1
note 1 [unfolded lr-of-tran-fbs-def Let-def]
have gsfw-valid (map simple-rule-dtor fw) using gsfw-validI 1 by blast
moreover have gsfw-valid (lr-of-tran-s1 rt) using 1 lr-of-tran-s1-valid by blast
ultimately have gsfw-valid (generalized-fw-join (lr-of-tran-s1 rt) (map simple-rule-dtor fw)) using gsfw-join-valid by blast
moreover have (aa, ab, b) ∈ set (lr-of-tran-fbs rt fw ifs) using 1 using in-annotate-rlen by fast
ultimately show ?thesis unfolding lr-of-tran-fbs-def Let-def gsfw-valid-def list-all-iff by fastforce

qed

32

lemma simple-match-valid-fbs: [[valid-prefixes rt; simple-fw-valid fw]] =⇒ list-all simple-match-valid (map fst (lr-of-tran-fbs
rt fw ifs))
proof(goal-cases)

case 1
note 1 [unfolded lr-of-tran-fbs-def Let-def]
have gsfw-valid (map simple-rule-dtor fw) using gsfw-validI 1 by blast
moreover have gsfw-valid (lr-of-tran-s1 rt) using 1 lr-of-tran-s1-valid by blast
ultimately have gsfw-valid (generalized-fw-join (lr-of-tran-s1 rt) (map simple-rule-dtor fw)) using gsfw-join-valid by blast
thus ?thesis unfolding lr-of-tran-fbs-def Let-def gsfw-valid-def list-all-iff by fastforce

qed

lemma lr-of-tran-prereqs: valid-prefixes rt =⇒ simple-fw-valid fw =⇒ lr-of-tran rt fw ifs = Inr oft =⇒
list-all (all-prerequisites ◦ ofe-fields) oft
unfolding lr-of-tran-def pack-OF-entries-def lr-of-tran-s3-def Let-def

apply(simp add: map-concat comp-def prod.case-distrib split3-def split: if-splits)
apply(simp add: list-all-iff)
apply(clarsimp)
apply(drule simple-match-valid-fbs-rlen[rotated])

apply(simp add: list-all-iff ;fail)
apply(simp add: list-all-iff ;fail)

apply(rule simple-match-to-of-match-generates-prereqs; assumption)
done

lemma OF-unsafe-safe-match3-eq:
list-all (all-prerequisites ◦ ofe-fields) oft =⇒
OF-priority-match OF-match-fields-unsafe oft = OF-priority-match OF-match-fields-safe oft

unfolding OF-priority-match-def [abs-def]
proof(goal-cases)

case 1
from 1 have

∧
packet. [f←oft . OF-match-fields-unsafe (ofe-fields f) packet] = [f←oft . OF-match-fields-safe (ofe-fields f)

packet]
apply(clarsimp simp add: list-all-iff of-match-fields-safe-eq)

using of-match-fields-safe-eq by(metis (mono-tags, lifting) filter-cong)
thus ?case by metis

qed

lemma OF-unsafe-safe-match-linear-eq:
list-all (all-prerequisites ◦ ofe-fields) oft =⇒
OF-match-linear OF-match-fields-unsafe oft = OF-match-linear OF-match-fields-safe oft

unfolding fun-eq-iff
by(induction oft) (clarsimp simp add: list-all-iff of-match-fields-safe-eq)+

lemma simple-action-ne[simp]:
b 6= simple-action.Accept ←→ b = simple-action.Drop
b 6= simple-action.Drop ←→ b = simple-action.Accept

using simple-action.exhaust by blast+

lemma map-snd-apfst: map snd (map (apfst x) l) = map snd l
unfolding map-map comp-def snd-apfst ..

lemma match-ifaceAny-eq: oiface m = ifaceAny =⇒ simple-matches m p = simple-matches m (p(|p-oiface := any|))
by(cases m) (simp add: simple-matches.simps match-ifaceAny)
lemma no-oif-matchD: no-oif-match fw =⇒ simple-fw fw p = simple-fw fw (p(|p-oiface := any|))

33

by(induction fw)
(auto simp add: no-oif-match-def simple-fw-alt dest: match-ifaceAny-eq)

lemma lr-of-tran-fbs-acceptD:
assumes s1 : valid-prefixes rt has-default-route rt
assumes s2 : no-oif-match fw
shows generalized-sfw (lr-of-tran-fbs rt fw ifs) p = Some (r , oif , simple-action.Accept) =⇒
simple-linux-router-nol12 rt fw p = Some (p(|p-oiface := oif |))

proof(goal-cases)
case 1
note 1 [unfolded lr-of-tran-fbs-def Let-def , THEN generalized-fw-joinD]
then guess r1 .. then guess r2 .. note r12 = this
note s1-correct[OF s1 , of p]
then guess rm .. then guess ra .. note rmra = this
from r12 rmra have oifra: oif = ra by simp
from r12 have sfw: simple-fw fw p = Decision FinalAllow using simple-fw-iff-generalized-fw-accept by blast
note ifupdateirrel = no-oif-matchD[OF s2 , where any = output-iface (routing-table-semantics rt (p-dst p)) and p = p,

symmetric]
show ?case unfolding simple-linux-router-nol12-def by(simp add: Let-def ifupdateirrel sfw oifra rmra split:

Option.bind-splits option.splits)
qed

lemma lr-of-tran-fbs-acceptI :
assumes s1 : valid-prefixes rt has-default-route rt
assumes s2 : no-oif-match fw has-default-policy fw
shows simple-linux-router-nol12 rt fw p = Some (p(|p-oiface := oif |)) =⇒
∃ r . generalized-sfw (lr-of-tran-fbs rt fw ifs) p = Some (r , oif , simple-action.Accept)

proof(goal-cases)
from s2 have nud:

∧
p. simple-fw fw p 6= Undecided by (metis has-default-policy state.distinct(1))

note ifupdateirrel = no-oif-matchD[OF s2 (1), symmetric]
case 1
from 1 have simple-fw fw p = Decision FinalAllow by(simp add: simple-linux-router-nol12-def Let-def nud ifupdateirrel

split: Option.bind-splits state.splits final-decision.splits)
then obtain r where r : generalized-sfw (map simple-rule-dtor fw) p = Some (r , simple-action.Accept) using sim-

ple-fw-iff-generalized-fw-accept by blast
have oif-def : oif = output-iface (routing-table-semantics rt (p-dst p)) using 1 by(cases p) (simp add:

simple-linux-router-nol12-def Let-def nud ifupdateirrel split: Option.bind-splits state.splits final-decision.splits)
note s1-correct[OF s1 , of p] then guess rm .. then guess ra .. note rmra = this
show ?case unfolding lr-of-tran-fbs-def Let-def

apply(rule exI)
apply(rule generalized-fw-joinI)
unfolding oif-def using rmra apply simp
apply(rule r)

done
qed

lemma lr-of-tran-fbs-dropD:
assumes s1 : valid-prefixes rt has-default-route rt
assumes s2 : no-oif-match fw
shows generalized-sfw (lr-of-tran-fbs rt fw ifs) p = Some (r , oif , simple-action.Drop) =⇒
simple-linux-router-nol12 rt fw p = None

proof(goal-cases)
note ifupdateirrel = no-oif-matchD[OF s2 (1), symmetric]
case 1

34

from 1 [unfolded lr-of-tran-fbs-def Let-def , THEN generalized-fw-joinD]
obtain rr fr where generalized-sfw (lr-of-tran-s1 rt) p = Some (rr , oif) ∧

generalized-sfw (map simple-rule-dtor fw) p = Some (fr , simple-action.Drop) ∧ Some r = simple-match-and rr fr by
presburger

hence fd:
∧

u. simple-fw fw (p(|p-oiface := u|)) = Decision FinalDeny unfolding ifupdateirrel
using simple-fw-iff-generalized-fw-drop by blast
show ?thesis

by(clarsimp simp: simple-linux-router-nol12-def Let-def fd split: Option.bind-splits)
qed

lemma lr-of-tran-fbs-dropI :
assumes s1 : valid-prefixes rt has-default-route rt
assumes s2 : no-oif-match fw has-default-policy fw
shows simple-linux-router-nol12 rt fw p = None =⇒
∃ r oif . generalized-sfw (lr-of-tran-fbs rt fw ifs) p = Some (r , oif , simple-action.Drop)

proof(goal-cases)
from s2 have nud:

∧
p. simple-fw fw p 6= Undecided by (metis has-default-policy state.distinct(1))

note ifupdateirrel = no-oif-matchD[OF s2 (1), symmetric]
case 1
from 1 have simple-fw fw p = Decision FinalDeny by(simp add: simple-linux-router-nol12-def Let-def nud ifupdateirrel

split: Option.bind-splits state.splits final-decision.splits)
then obtain r where r : generalized-sfw (map simple-rule-dtor fw) p = Some (r , simple-action.Drop) using

simple-fw-iff-generalized-fw-drop by blast
note s1-correct[OF s1 , of p] then guess rm .. then guess ra .. note rmra = this
show ?case unfolding lr-of-tran-fbs-def Let-def

apply(rule exI)
apply(rule exI [where x = ra])
apply(rule generalized-fw-joinI)
using rmra apply simp
apply(rule r)

done
qed

lemma no-oif-match-fbs:
no-oif-match fw =⇒ list-all (λm. oiface (fst (snd m)) = ifaceAny) (map (apfst of-nat) (annotate-rlen (lr-of-tran-fbs rt fw

ifs)))
proof(goal-cases)

case 1
have c:

∧
mr ar mf af f a. [[(mr , ar) ∈ set (lr-of-tran-s1 rt); (mf , af) ∈ simple-rule-dtor ‘ set fw; simple-match-and mr mf

= Some a]] =⇒ oiface a = ifaceAny
proof(goal-cases)

case (1 mr ar mf af f a)
have oiface mr = ifaceAny using 1 (1) unfolding lr-of-tran-s1-def route2match-def by(clarsimp simp add: Set.image-iff)

moreover have oiface mf = ifaceAny using 1 (2) ‹no-oif-match fw› unfolding no-oif-match-def
simple-rule-dtor-def [abs-def]

by(clarsimp simp: list-all-iff split: simple-rule.splits) fastforce
ultimately show ?case using 1 (3) by(cases a; cases mr ; cases mf) (simp add: iface-conjunct-ifaceAny split: option.splits)

qed
have la: list-all (λm. oiface (fst m) = ifaceAny) (lr-of-tran-fbs rt fw ifs)

unfolding lr-of-tran-fbs-def Let-def list-all-iff
apply(clarify)
apply(subst(asm) generalized-sfw-join-set)
apply(clarsimp)

35

using c by blast
thus ?case
proof(goal-cases)

case 1
have ∗: (λm. oiface (fst (snd m)) = ifaceAny) = (λm. oiface (fst m) = ifaceAny) ◦ snd unfolding comp-def ..
show ?case unfolding ∗ list-all-map[symmetric] map-snd-apfst map-snd-annotate-rlen using la .

qed
qed

lemma lr-of-tran-correct:
fixes p :: (32 , ′a) simple-packet-ext-scheme

assumes nerr : lr-of-tran rt fw ifs = Inr oft
and ippkt: p-l2type p = 0x800
and ifvld: p-iiface p ∈ set ifs

shows OF-priority-match OF-match-fields-safe oft p = Action [Forward oif] ←→ simple-linux-router-nol12 rt fw p = (Some
(p(|p-oiface := oif |)))

OF-priority-match OF-match-fields-safe oft p = Action [] ←→ simple-linux-router-nol12 rt fw p = None

OF-priority-match OF-match-fields-safe oft p 6= NoAction OF-priority-match OF-match-fields-safe oft p 6= Undefined
OF-priority-match OF-match-fields-safe oft p = Action ls −→ length ls ≤ 1
∃ ls. length ls ≤ 1 ∧ OF-priority-match OF-match-fields-safe oft p = Action ls

proof −
have s1 : valid-prefixes rt has-default-route rt

and s2 : has-default-policy fw simple-fw-valid fw no-oif-match fw
and difs: distinct ifs
using nerr unfolding lr-of-tran-def by(simp-all split: if-splits)

have no-oif-match fw using nerr unfolding lr-of-tran-def by(simp split: if-splits)
note s2 = s2 this
have unsafe-safe-eq:

OF-priority-match OF-match-fields-unsafe oft = OF-priority-match OF-match-fields-safe oft
OF-match-linear OF-match-fields-unsafe oft = OF-match-linear OF-match-fields-safe oft
apply(subst OF-unsafe-safe-match3-eq; (rule lr-of-tran-prereqs s1 s2 nerr refl)+)
apply(subst OF-unsafe-safe-match-linear-eq; (rule lr-of-tran-prereqs s1 s2 nerr refl)+)

done
have lin: OF-priority-match OF-match-fields-safe oft = OF-match-linear OF-match-fields-safe oft

using OF-eq[OF lr-of-tran-no-overlaps lr-of-tran-sorted-descending, OF difs nerr [symmetric] nerr [symmetric]] unfolding
fun-eq-iff unsafe-safe-eq by metis

let ?ard = map (apfst of-nat) (annotate-rlen (lr-of-tran-fbs rt fw ifs))
have oft-def : oft = pack-OF-entries ifs ?ard using nerr unfolding lr-of-tran-def Let-def by(simp split: if-splits)
have vld: list-all simple-match-valid (map (fst ◦ snd) ?ard)

unfolding fun-app-def map-map[symmetric] snd-apfst map-snd-apfst map-snd-annotate-rlen using
simple-match-valid-fbs[OF s1 (1) s2 (2)] .

have ∗: list-all (λm. oiface (fst (snd m)) = ifaceAny) ?ard using no-oif-match-fbs[OF s2 (3)] .
have not-undec:

∧
p. simple-fw fw p 6= Undecided by (metis has-default-policy s2 (1) state.simps(3))

have w1-1 :
∧

oif . OF-match-linear OF-match-fields-safe oft p = Action [Forward oif] =⇒ simple-linux-router-nol12 rt fw
p = Some (p(|p-oiface := oif |))
∧ oif = output-iface (routing-table-semantics rt (p-dst p))

proof(intro conjI , goal-cases)
case (1 oif)
note s3-correct[OF vld ippkt ifvld(1) ∗, THEN iffD1 , unfolded oft-def [symmetric], OF 1]
hence ∃ r . generalized-sfw (map snd (map (apfst of-nat) (annotate-rlen (lr-of-tran-fbs rt fw ifs)))) p = Some (r , (oif ,

simple-action.Accept))
by(clarsimp split: if-splits)

36

then obtain r where generalized-sfw (lr-of-tran-fbs rt fw ifs) p = Some (r , (oif , simple-action.Accept))
unfolding map-map comp-def snd-apfst map-snd-annotate-rlen by blast

thus ?case using lr-of-tran-fbs-acceptD[OF s1 s2 (3)] by metis
thus oif = output-iface (routing-table-semantics rt (p-dst p))

by(cases p) (clarsimp simp: simple-linux-router-nol12-def Let-def not-undec split: Option.bind-splits state.splits fi-
nal-decision.splits)

qed
have w1-2 :

∧
oif . simple-linux-router-nol12 rt fw p = Some (p(|p-oiface := oif |)) =⇒ OF-match-linear OF-match-fields-safe

oft p = Action [Forward oif]
proof(goal-cases)

case (1 oif)
note lr-of-tran-fbs-acceptI [OF s1 s2 (3) s2 (1) this, of ifs] then guess r .. note r = this
hence generalized-sfw (map snd (map (apfst of-nat) (annotate-rlen (lr-of-tran-fbs rt fw ifs)))) p = Some (r , (oif , sim-

ple-action.Accept))
unfolding map-snd-apfst map-snd-annotate-rlen .
moreover note s3-correct[OF vld ippkt ifvld(1) ∗, THEN iffD2 , unfolded oft-def [symmetric], of [Forward oif]]
ultimately show ?case by simp

qed
show w1 :

∧
oif . (OF-priority-match OF-match-fields-safe oft p = Action [Forward oif]) = (simple-linux-router-nol12 rt fw

p = Some (p(|p-oiface := oif |)))
unfolding lin using w1-1 w1-2 by blast

show w2 : (OF-priority-match OF-match-fields-safe oft p = Action []) = (simple-linux-router-nol12 rt fw p = None)
unfolding lin
proof(rule iffI , goal-cases)

case 1
note s3-correct[OF vld ippkt ifvld(1) ∗, THEN iffD1 , unfolded oft-def [symmetric], OF 1]
then obtain r oif where roif : generalized-sfw (lr-of-tran-fbs rt fw ifs) p = Some (r , oif , simple-action.Drop)

unfolding map-snd-apfst map-snd-annotate-rlen by(clarsimp split: if-splits)
note lr-of-tran-fbs-dropD[OF s1 s2 (3) this]
thus ?case .

next
case 2
note lr-of-tran-fbs-dropI [OF s1 s2 (3) s2 (1) this, of ifs] then
obtain r oif where generalized-sfw (lr-of-tran-fbs rt fw ifs) p = Some (r , oif , simple-action.Drop) by blast
hence generalized-sfw (map snd (map (apfst of-nat) (annotate-rlen (lr-of-tran-fbs rt fw ifs)))) p = Some (r , oif , sim-

ple-action.Drop)
unfolding map-snd-apfst map-snd-annotate-rlen .

moreover note s3-correct[OF vld ippkt ifvld(1) ∗, THEN iffD2 , unfolded oft-def [symmetric], of []]
ultimately show ?case by force

qed
have lr-determ:

∧
a. simple-linux-router-nol12 rt fw p = Some a =⇒ a = p(|p-oiface := output-iface (routing-table-semantics

rt (p-dst p))|)
by(clarsimp simp: simple-linux-router-nol12-def Let-def not-undec split: Option.bind-splits state.splits final-decision.splits)

show notno: OF-priority-match OF-match-fields-safe oft p 6= NoAction
apply(cases simple-linux-router-nol12 rt fw p)
using w2 apply(simp)
using w1 [of output-iface (routing-table-semantics rt (p-dst p))] apply(simp)
apply(drule lr-determ)
apply(simp)

done
show notub: OF-priority-match OF-match-fields-safe oft p 6= Undefined unfolding lin using OF-match-linear-ne-Undefined

.
show notmult:

∧
ls. OF-priority-match OF-match-fields-safe oft p = Action ls −→ length ls ≤ 1

apply(cases simple-linux-router-nol12 rt fw p)

37

using w2 apply(simp)
using w1 [of output-iface (routing-table-semantics rt (p-dst p))] apply(simp)
apply(drule lr-determ)
apply(clarsimp)

done
show ∃ ls. length ls ≤ 1 ∧ OF-priority-match OF-match-fields-safe oft p = Action ls

apply(cases OF-priority-match OF-match-fields-safe oft p)
using notmult apply blast
using notno apply blast
using notub apply blast

done
qed

end
theory OF-conv-test
imports

Iptables-Semantics.Parser
Simple-Firewall.SimpleFw-toString
Routing.IpRoute-Parser
../../LinuxRouter-OpenFlow-Translation
../../OpenFlow-Serialize

begin

parse-iptables-save SQRL-fw=iptables−save

term SQRL-fw
thm SQRL-fw-def
thm SQRL-fw-FORWARD-default-policy-def

value[code] map (λ(c,rs). (c, map (quote-rewrite ◦ common-primitive-rule-toString) rs)) SQRL-fw
definition unfolded = unfold-ruleset-FORWARD SQRL-fw-FORWARD-default-policy (map-of-string-ipv4 SQRL-fw)
lemma map (quote-rewrite ◦ common-primitive-rule-toString) unfolded =
[′′−p icmp −j ACCEPT ′′,
′′−i s1−lan −p tcp −m tcp −−spts [1024 :65535] −m tcp −−dpts [80] −j ACCEPT ′′,
′′−i s1−wan −p tcp −m tcp −−spts [80] −m tcp −−dpts [1024 :65535] −j ACCEPT ′′,
′′ −j DROP ′′] by eval

lemma length unfolded = 4 by eval

value[code] map (quote-rewrite ◦ common-primitive-rule-toString) (upper-closure unfolded)
lemma length (upper-closure unfolded) = 4 by eval

value[code] upper-closure (packet-assume-new unfolded)

lemma length (lower-closure unfolded) = 4 by eval

lemma check-simple-fw-preconditions (upper-closure unfolded) = True by eval
lemma ∀m ∈ get-match‘set (upper-closure (packet-assume-new unfolded)). normalized-nnf-match m by eval

38

lemma ∀m ∈ get-match‘set (optimize-matches abstract-for-simple-firewall (upper-closure (packet-assume-new unfolded))).
normalized-nnf-match m by eval
lemma check-simple-fw-preconditions (upper-closure (optimize-matches abstract-for-simple-firewall (upper-closure
(packet-assume-new unfolded)))) by eval
lemma length (to-simple-firewall (upper-closure (packet-assume-new unfolded))) = 4 by eval

lemma (lower-closure (optimize-matches abstract-for-simple-firewall (lower-closure (packet-assume-new unfolded)))) =
lower-closure unfolded

lower-closure unfolded = upper-closure unfolded
(upper-closure (optimize-matches abstract-for-simple-firewall (upper-closure (packet-assume-new unfolded)))) = up-

per-closure unfolded by eval+

value[code] (getParts (to-simple-firewall (lower-closure (optimize-matches abstract-for-simple-firewall (lower-closure
(packet-assume-new unfolded))))))

definition SQRL-fw-simple ≡ remdups-rev (to-simple-firewall (upper-closure (optimize-matches abstract-for-simple-firewall
(upper-closure (packet-assume-new unfolded)))))
value[code] SQRL-fw-simple
lemma simple-fw-valid SQRL-fw-simple by eval

parse-ip-route SQRL-rtbl-main = ip−route
value SQRL-rtbl-main
lemma SQRL-rtbl-main = [(|routing-match = PrefixMatch 0xA000100 24 , metric = 0 , routing-action = (|output-iface =
′′s1−lan ′′, next-hop = None|)|),
(|routing-match = PrefixMatch 0xA000200 24 , metric = 0 , routing-action = (|output-iface = ′′s1−wan ′′, next-hop = None|)|),
(|routing-match = PrefixMatch 0 0 , metric = 0 , routing-action = (|output-iface = ′′s1−wan ′′, next-hop = Some

0xA000201 |)|)] by eval
value dotdecimal-of-ipv4addr 0xA0D2500
lemma SQRL-rtbl-main = [
rr-ctor (10 ,0 ,1 ,0) 24 ′′s1−lan ′′ None 0 ,
rr-ctor (10 ,0 ,2 ,0) 24 ′′s1−wan ′′ None 0 ,
rr-ctor (0 ,0 ,0 ,0) 0 ′′s1−wan ′′ (Some (10 ,0 ,2 ,1)) 0
]

by eval

definition SQRL-rtbl-main-sorted ≡ rev (sort-key (λr . pfxm-length (routing-match r)) SQRL-rtbl-main)
value SQRL-rtbl-main-sorted
definition SQRL-ifs ≡ [
(|iface-name = ′′s1−lan ′′, iface-mac = 0x10001 |),
(|iface-name = ′′s1−wan ′′, iface-mac = 0x10002 |)
]
value SQRL-ifs

definition SQRL-macs ≡ [
//////////////(′′s1−lan ′′,//////////////////////////////(ipv4addr-of-dotdecimal///////////////(10 ,0 ,1 ,1),////////0x3)),
(′′s1−lan ′′, (ipv4addr-of-dotdecimal (10 ,0 ,1 ,2), 0x1)),
(′′s1−lan ′′, (ipv4addr-of-dotdecimal (10 ,0 ,1 ,3), 0x2)),
(′′s1−wan ′′, (ipv4addr-of-dotdecimal (10 ,0 ,2 ,1), 0x3))
///////////////(′′s1−wan ′′,//////////////////////////////(ipv4addr-of-dotdecimal///////////////(10 ,0 ,2 ,4),///////////////////////0xeabad0152059))
]

definition SQRL-ports ≡ [

39

(′′s1−lan ′′, ′′1 ′′),
(′′s1−wan ′′, ′′2 ′′)
]

lemma let fw = SQRL-fw-simple in no-oif-match fw ∧ has-default-policy fw ∧ simple-fw-valid fw by eval
lemma let rt = SQRL-rtbl-main-sorted in valid-prefixes rt ∧ has-default-route rt by eval
lemma let ifs = (map iface-name SQRL-ifs) in distinct ifs by eval

definition ofi ≡
case (lr-of-tran SQRL-rtbl-main-sorted SQRL-fw-simple (map iface-name SQRL-ifs))
of (Inr openflow-rules) ⇒ map (serialize-of-entry (the ◦ map-of SQRL-ports)) openflow-rules

lemma ofi =
[′′priority=11 ,hard-timeout=0 ,idle-timeout=0 ,dl-type=0x800 ,nw-proto=1 ,nw-dst=10 .0 .2 .0/24 ,action=output:2 ′′,
′′priority=10 ,hard-timeout=0 ,idle-timeout=0 ,in-port=1 ,dl-type=0x800 ,nw-proto=6 ,nw-dst=10 .0 .2 .0/24 ,tp-src=1024/0xfc00 ,tp-dst=80 ,action=output:2 ′′,
′′priority=10 ,hard-timeout=0 ,idle-timeout=0 ,in-port=1 ,dl-type=0x800 ,nw-proto=6 ,nw-dst=10 .0 .2 .0/24 ,tp-src=2048/0xf800 ,tp-dst=80 ,action=output:2 ′′,
′′priority=10 ,hard-timeout=0 ,idle-timeout=0 ,in-port=1 ,dl-type=0x800 ,nw-proto=6 ,nw-dst=10 .0 .2 .0/24 ,tp-src=4096/0xf000 ,tp-dst=80 ,action=output:2 ′′,
′′priority=10 ,hard-timeout=0 ,idle-timeout=0 ,in-port=1 ,dl-type=0x800 ,nw-proto=6 ,nw-dst=10 .0 .2 .0/24 ,tp-src=8192/0xe000 ,tp-dst=80 ,action=output:2 ′′,
′′priority=10 ,hard-timeout=0 ,idle-timeout=0 ,in-port=1 ,dl-type=0x800 ,nw-proto=6 ,nw-dst=10 .0 .2 .0/24 ,tp-src=16384/0xc000 ,tp-dst=80 ,action=output:2 ′′,
′′priority=10 ,hard-timeout=0 ,idle-timeout=0 ,in-port=1 ,dl-type=0x800 ,nw-proto=6 ,nw-dst=10 .0 .2 .0/24 ,tp-src=32768/0x8000 ,tp-dst=80 ,action=output:2 ′′,
′′priority=9 ,hard-timeout=0 ,idle-timeout=0 ,in-port=2 ,dl-type=0x800 ,nw-proto=6 ,nw-dst=10 .0 .2 .0/24 ,tp-src=80 ,tp-dst=1024/0xfc00 ,action=output:2 ′′,
′′priority=9 ,hard-timeout=0 ,idle-timeout=0 ,in-port=2 ,dl-type=0x800 ,nw-proto=6 ,nw-dst=10 .0 .2 .0/24 ,tp-src=80 ,tp-dst=2048/0xf800 ,action=output:2 ′′,
′′priority=9 ,hard-timeout=0 ,idle-timeout=0 ,in-port=2 ,dl-type=0x800 ,nw-proto=6 ,nw-dst=10 .0 .2 .0/24 ,tp-src=80 ,tp-dst=4096/0xf000 ,action=output:2 ′′,
′′priority=9 ,hard-timeout=0 ,idle-timeout=0 ,in-port=2 ,dl-type=0x800 ,nw-proto=6 ,nw-dst=10 .0 .2 .0/24 ,tp-src=80 ,tp-dst=8192/0xe000 ,action=output:2 ′′,
′′priority=9 ,hard-timeout=0 ,idle-timeout=0 ,in-port=2 ,dl-type=0x800 ,nw-proto=6 ,nw-dst=10 .0 .2 .0/24 ,tp-src=80 ,tp-dst=16384/0xc000 ,action=output:2 ′′,
′′priority=9 ,hard-timeout=0 ,idle-timeout=0 ,in-port=2 ,dl-type=0x800 ,nw-proto=6 ,nw-dst=10 .0 .2 .0/24 ,tp-src=80 ,tp-dst=32768/0x8000 ,action=output:2 ′′,
′′priority=8 ,hard-timeout=0 ,idle-timeout=0 ,dl-type=0x800 ,nw-dst=10 .0 .2 .0/24 ,action=drop ′′,
′′priority=7 ,hard-timeout=0 ,idle-timeout=0 ,dl-type=0x800 ,nw-proto=1 ,nw-dst=10 .0 .1 .0/24 ,action=output:1 ′′,
′′priority=6 ,hard-timeout=0 ,idle-timeout=0 ,in-port=1 ,dl-type=0x800 ,nw-proto=6 ,nw-dst=10 .0 .1 .0/24 ,tp-src=1024/0xfc00 ,tp-dst=80 ,action=output:1 ′′,
′′priority=6 ,hard-timeout=0 ,idle-timeout=0 ,in-port=1 ,dl-type=0x800 ,nw-proto=6 ,nw-dst=10 .0 .1 .0/24 ,tp-src=2048/0xf800 ,tp-dst=80 ,action=output:1 ′′,
′′priority=6 ,hard-timeout=0 ,idle-timeout=0 ,in-port=1 ,dl-type=0x800 ,nw-proto=6 ,nw-dst=10 .0 .1 .0/24 ,tp-src=4096/0xf000 ,tp-dst=80 ,action=output:1 ′′,
′′priority=6 ,hard-timeout=0 ,idle-timeout=0 ,in-port=1 ,dl-type=0x800 ,nw-proto=6 ,nw-dst=10 .0 .1 .0/24 ,tp-src=8192/0xe000 ,tp-dst=80 ,action=output:1 ′′,
′′priority=6 ,hard-timeout=0 ,idle-timeout=0 ,in-port=1 ,dl-type=0x800 ,nw-proto=6 ,nw-dst=10 .0 .1 .0/24 ,tp-src=16384/0xc000 ,tp-dst=80 ,action=output:1 ′′,
′′priority=6 ,hard-timeout=0 ,idle-timeout=0 ,in-port=1 ,dl-type=0x800 ,nw-proto=6 ,nw-dst=10 .0 .1 .0/24 ,tp-src=32768/0x8000 ,tp-dst=80 ,action=output:1 ′′,
′′priority=5 ,hard-timeout=0 ,idle-timeout=0 ,in-port=2 ,dl-type=0x800 ,nw-proto=6 ,nw-dst=10 .0 .1 .0/24 ,tp-src=80 ,tp-dst=1024/0xfc00 ,action=output:1 ′′,
′′priority=5 ,hard-timeout=0 ,idle-timeout=0 ,in-port=2 ,dl-type=0x800 ,nw-proto=6 ,nw-dst=10 .0 .1 .0/24 ,tp-src=80 ,tp-dst=2048/0xf800 ,action=output:1 ′′,
′′priority=5 ,hard-timeout=0 ,idle-timeout=0 ,in-port=2 ,dl-type=0x800 ,nw-proto=6 ,nw-dst=10 .0 .1 .0/24 ,tp-src=80 ,tp-dst=4096/0xf000 ,action=output:1 ′′,
′′priority=5 ,hard-timeout=0 ,idle-timeout=0 ,in-port=2 ,dl-type=0x800 ,nw-proto=6 ,nw-dst=10 .0 .1 .0/24 ,tp-src=80 ,tp-dst=8192/0xe000 ,action=output:1 ′′,
′′priority=5 ,hard-timeout=0 ,idle-timeout=0 ,in-port=2 ,dl-type=0x800 ,nw-proto=6 ,nw-dst=10 .0 .1 .0/24 ,tp-src=80 ,tp-dst=16384/0xc000 ,action=output:1 ′′,
′′priority=5 ,hard-timeout=0 ,idle-timeout=0 ,in-port=2 ,dl-type=0x800 ,nw-proto=6 ,nw-dst=10 .0 .1 .0/24 ,tp-src=80 ,tp-dst=32768/0x8000 ,action=output:1 ′′,
′′priority=4 ,hard-timeout=0 ,idle-timeout=0 ,dl-type=0x800 ,nw-dst=10 .0 .1 .0/24 ,action=drop ′′,
′′priority=3 ,hard-timeout=0 ,idle-timeout=0 ,dl-type=0x800 ,nw-proto=1 ,action=output:2 ′′,
′′priority=2 ,hard-timeout=0 ,idle-timeout=0 ,in-port=1 ,dl-type=0x800 ,nw-proto=6 ,tp-src=1024/0xfc00 ,tp-dst=80 ,action=output:2 ′′,
′′priority=2 ,hard-timeout=0 ,idle-timeout=0 ,in-port=1 ,dl-type=0x800 ,nw-proto=6 ,tp-src=2048/0xf800 ,tp-dst=80 ,action=output:2 ′′,
′′priority=2 ,hard-timeout=0 ,idle-timeout=0 ,in-port=1 ,dl-type=0x800 ,nw-proto=6 ,tp-src=4096/0xf000 ,tp-dst=80 ,action=output:2 ′′,
′′priority=2 ,hard-timeout=0 ,idle-timeout=0 ,in-port=1 ,dl-type=0x800 ,nw-proto=6 ,tp-src=8192/0xe000 ,tp-dst=80 ,action=output:2 ′′,
′′priority=2 ,hard-timeout=0 ,idle-timeout=0 ,in-port=1 ,dl-type=0x800 ,nw-proto=6 ,tp-src=16384/0xc000 ,tp-dst=80 ,action=output:2 ′′,
′′priority=2 ,hard-timeout=0 ,idle-timeout=0 ,in-port=1 ,dl-type=0x800 ,nw-proto=6 ,tp-src=32768/0x8000 ,tp-dst=80 ,action=output:2 ′′,
′′priority=1 ,hard-timeout=0 ,idle-timeout=0 ,in-port=2 ,dl-type=0x800 ,nw-proto=6 ,tp-src=80 ,tp-dst=1024/0xfc00 ,action=output:2 ′′,
′′priority=1 ,hard-timeout=0 ,idle-timeout=0 ,in-port=2 ,dl-type=0x800 ,nw-proto=6 ,tp-src=80 ,tp-dst=2048/0xf800 ,action=output:2 ′′,
′′priority=1 ,hard-timeout=0 ,idle-timeout=0 ,in-port=2 ,dl-type=0x800 ,nw-proto=6 ,tp-src=80 ,tp-dst=4096/0xf000 ,action=output:2 ′′,
′′priority=1 ,hard-timeout=0 ,idle-timeout=0 ,in-port=2 ,dl-type=0x800 ,nw-proto=6 ,tp-src=80 ,tp-dst=8192/0xe000 ,action=output:2 ′′,
′′priority=1 ,hard-timeout=0 ,idle-timeout=0 ,in-port=2 ,dl-type=0x800 ,nw-proto=6 ,tp-src=80 ,tp-dst=16384/0xc000 ,action=output:2 ′′,
′′priority=1 ,hard-timeout=0 ,idle-timeout=0 ,in-port=2 ,dl-type=0x800 ,nw-proto=6 ,tp-src=80 ,tp-dst=32768/0x8000 ,action=output:2 ′′,

40

′′priority=0 ,hard-timeout=0 ,idle-timeout=0 ,dl-type=0x800 ,action=drop ′′] by eval

value[code] ofi

end
theory RFC2544
imports

Iptables-Semantics.Parser
Routing.IpRoute-Parser
../../LinuxRouter-OpenFlow-Translation
../../OpenFlow-Serialize

begin

parse-iptables-save SQRL-fw=iptables−save

term SQRL-fw
thm SQRL-fw-def
thm SQRL-fw-FORWARD-default-policy-def

value[code] map (λ(c,rs). (c, map (quote-rewrite ◦ common-primitive-rule-toString) rs)) SQRL-fw
definition unfolded = unfold-ruleset-FORWARD SQRL-fw-FORWARD-default-policy (map-of-string-ipv4 SQRL-fw)

lemma length unfolded = 26 by eval

value[code] unfolded
value[code] (upper-closure unfolded)
value[code] map (quote-rewrite ◦ common-primitive-rule-toString) (upper-closure unfolded)
lemma length (upper-closure unfolded) = 26 by eval

value[code] upper-closure (packet-assume-new unfolded)

lemma length (lower-closure unfolded) = 26 by eval

lemma check-simple-fw-preconditions (upper-closure unfolded) by eval
lemma ∀m ∈ get-match‘set (upper-closure (packet-assume-new unfolded)). normalized-nnf-match m by eval
lemma ∀m ∈ get-match‘set (optimize-matches abstract-for-simple-firewall (upper-closure (packet-assume-new unfolded))).
normalized-nnf-match m by eval
lemma check-simple-fw-preconditions (upper-closure (optimize-matches abstract-for-simple-firewall (upper-closure
(packet-assume-new unfolded)))) by eval
lemma length (to-simple-firewall (upper-closure (packet-assume-new unfolded))) = 26 by eval

lemma (lower-closure (optimize-matches abstract-for-simple-firewall (lower-closure (packet-assume-new unfolded)))) =
lower-closure unfolded

lower-closure unfolded = upper-closure unfolded
(upper-closure (optimize-matches abstract-for-simple-firewall (upper-closure (packet-assume-new unfolded)))) = up-

per-closure unfolded by eval+

41

value[code] (getParts (to-simple-firewall (lower-closure (optimize-matches abstract-for-simple-firewall (lower-closure
(packet-assume-new unfolded))))))

definition SQRL-fw-simple ≡ remdups-rev (to-simple-firewall (upper-closure (optimize-matches abstract-for-simple-firewall
(upper-closure (packet-assume-new unfolded)))))
value[code] SQRL-fw-simple
lemma simple-fw-valid SQRL-fw-simple by eval

parse-ip-route SQRL-rtbl-main = ip−route
value SQRL-rtbl-main
lemma SQRL-rtbl-main = [(|routing-match = PrefixMatch 0xC6120100 24 , metric = 0 , routing-action = (|output-iface =
′′ip1 ′′, next-hop = None|)|),
(|routing-match = PrefixMatch 0xC6130100 24 , metric = 0 , routing-action = (|output-iface = ′′op1 ′′, next-hop = None|)|),
(|routing-match = PrefixMatch 0 0 , metric = 0 , routing-action = (|output-iface = ′′op1 ′′, next-hop = Some 0xC6130102 |)|)]

by eval
lemma SQRL-rtbl-main = [
rr-ctor (198 ,18 ,1 ,0) 24 ′′ip1 ′′ None 0 ,
rr-ctor (198 ,19 ,1 ,0) 24 ′′op1 ′′ None 0 ,
rr-ctor (0 ,0 ,0 ,0) 0 ′′op1 ′′ (Some (198 ,19 ,1 ,2)) 0
]

by eval

definition SQRL-ports ≡ [
(′′ip1 ′′, ′′1 ′′),
(′′op1 ′′, ′′2 ′′)
]

definition ofi ≡
case (lr-of-tran SQRL-rtbl-main SQRL-fw-simple (map fst SQRL-ports))
of (Inr openflow-rules) ⇒ map (serialize-of-entry (the ◦ map-of SQRL-ports)) openflow-rules

lemma ofi =
[′′priority=27 ,hard-timeout=0 ,idle-timeout=0 ,dl-type=0x800 ,nw-dst=198 .18 .1 .0/24 ,action=drop ′′,

′′priority=26 ,hard-timeout=0 ,idle-timeout=0 ,dl-type=0x800 ,nw-dst=198 .19 .1 .0/24 ,action=drop ′′,
′′priority=25 ,hard-timeout=0 ,idle-timeout=0 ,dl-type=0x800 ,nw-src=192 .18 .1 .1/32 ,nw-dst=192 .18 .101 .1/32 ,action=drop ′′,
′′priority=24 ,hard-timeout=0 ,idle-timeout=0 ,dl-type=0x800 ,nw-src=192 .18 .2 .2/32 ,nw-dst=192 .18 .102 .2/32 ,action=drop ′′,
′′priority=23 ,hard-timeout=0 ,idle-timeout=0 ,dl-type=0x800 ,nw-src=192 .18 .3 .3/32 ,nw-dst=192 .18 .103 .3/32 ,action=drop ′′,
′′priority=22 ,hard-timeout=0 ,idle-timeout=0 ,dl-type=0x800 ,nw-src=192 .18 .4 .4/32 ,nw-dst=192 .18 .104 .4/32 ,action=drop ′′,
′′priority=21 ,hard-timeout=0 ,idle-timeout=0 ,dl-type=0x800 ,nw-src=192 .18 .5 .5/32 ,nw-dst=192 .18 .105 .5/32 ,action=drop ′′,
′′priority=20 ,hard-timeout=0 ,idle-timeout=0 ,dl-type=0x800 ,nw-src=192 .18 .6 .6/32 ,nw-dst=192 .18 .106 .6/32 ,action=drop ′′,
′′priority=19 ,hard-timeout=0 ,idle-timeout=0 ,dl-type=0x800 ,nw-src=192 .18 .7 .7/32 ,nw-dst=192 .18 .107 .7/32 ,action=drop ′′,
′′priority=18 ,hard-timeout=0 ,idle-timeout=0 ,dl-type=0x800 ,nw-src=192 .18 .8 .8/32 ,nw-dst=192 .18 .108 .8/32 ,action=drop ′′,
′′priority=17 ,hard-timeout=0 ,idle-timeout=0 ,dl-type=0x800 ,nw-src=192 .18 .9 .9/32 ,nw-dst=192 .18 .109 .9/32 ,action=drop ′′,
′′priority=16 ,hard-timeout=0 ,idle-timeout=0 ,dl-type=0x800 ,nw-src=192 .18 .10 .10/32 ,nw-dst=192 .18 .110 .10/32 ,action=drop ′′,
′′priority=15 ,hard-timeout=0 ,idle-timeout=0 ,dl-type=0x800 ,nw-src=192 .18 .11 .11/32 ,nw-dst=192 .18 .111 .11/32 ,action=drop ′′,
′′priority=14 ,hard-timeout=0 ,idle-timeout=0 ,dl-type=0x800 ,nw-src=192 .18 .12 .12/32 ,nw-dst=192 .18 .112 .12/32 ,action=drop ′′,
′′priority=13 ,hard-timeout=0 ,idle-timeout=0 ,dl-type=0x800 ,nw-src=192 .19 .1 .2/32 ,nw-dst=192 .19 .65 .1/32 ,action=output:2 ′′,
′′priority=12 ,hard-timeout=0 ,idle-timeout=0 ,dl-type=0x800 ,nw-src=192 .18 .13 .13/32 ,nw-dst=192 .18 .113 .13/32 ,action=drop ′′,
′′priority=11 ,hard-timeout=0 ,idle-timeout=0 ,dl-type=0x800 ,nw-src=192 .18 .14 .14/32 ,nw-dst=192 .18 .114 .14/32 ,action=drop ′′,
′′priority=10 ,hard-timeout=0 ,idle-timeout=0 ,dl-type=0x800 ,nw-src=192 .18 .15 .15/32 ,nw-dst=192 .18 .115 .15/32 ,action=drop ′′,
′′priority=9 ,hard-timeout=0 ,idle-timeout=0 ,dl-type=0x800 ,nw-src=192 .18 .16 .16/32 ,nw-dst=192 .18 .116 .16/32 ,action=drop ′′,
′′priority=8 ,hard-timeout=0 ,idle-timeout=0 ,dl-type=0x800 ,nw-src=192 .18 .17 .17/32 ,nw-dst=192 .18 .117 .17/32 ,action=drop ′′,
′′priority=7 ,hard-timeout=0 ,idle-timeout=0 ,dl-type=0x800 ,nw-src=192 .18 .18 .18/32 ,nw-dst=192 .18 .118 .18/32 ,action=drop ′′,
′′priority=6 ,hard-timeout=0 ,idle-timeout=0 ,dl-type=0x800 ,nw-src=192 .18 .19 .19/32 ,nw-dst=192 .18 .119 .19/32 ,action=drop ′′,
′′priority=5 ,hard-timeout=0 ,idle-timeout=0 ,dl-type=0x800 ,nw-src=192 .18 .20 .20/32 ,nw-dst=192 .18 .120 .20/32 ,action=drop ′′,

42

′′priority=4 ,hard-timeout=0 ,idle-timeout=0 ,dl-type=0x800 ,nw-src=192 .18 .21 .21/32 ,nw-dst=192 .18 .121 .21/32 ,action=drop ′′,
′′priority=3 ,hard-timeout=0 ,idle-timeout=0 ,dl-type=0x800 ,nw-src=192 .18 .22 .22/32 ,nw-dst=192 .18 .122 .22/32 ,action=drop ′′,
′′priority=2 ,hard-timeout=0 ,idle-timeout=0 ,dl-type=0x800 ,nw-src=192 .18 .23 .23/32 ,nw-dst=192 .18 .123 .23/32 ,action=drop ′′,
′′priority=1 ,hard-timeout=0 ,idle-timeout=0 ,dl-type=0x800 ,nw-src=192 .18 .24 .24/32 ,nw-dst=192 .18 .124 .24/32 ,action=drop ′′,
′′priority=0 ,hard-timeout=0 ,idle-timeout=0 ,dl-type=0x800 ,action=drop ′′] by eval

value[code] length ofi

end

43

Part II

Documentation
1 Configuration Translation
All the results we present in this section are formalized
and verified in Isabelle/HOL [11]. This means that their
formal correctness can be trusted a level close to abso-
lute certainty. The definitions and lemmas stated here
are merely a repetition of lemmas stated in other the-
ory files. This means that they have been directly set
to this document from Isabelle and no typos or hidden
assumptions are possible. Additionally, it allows us to
omit various helper lemmas that do not help the under-
standing. However, it causes some notation inaccuracy,
as type and function definitions are stated as lemmas
or schematic goals.
theory OpenFlow-Documentation

1.1 Linux Firewall Model
We want to write a program that translates the configu-
ration of a linux firewall to that of an OpenFlow switch.
We furthermore want to verify that translation. For
this purpose, we need a clear definition of the behav-
ior of the two device types – we need their models and
semantics. In case of a linux firewall, this is problem-
atic because a linux firewall is a highly complex device
that is ultimately capable of general purpose computa-
tion. Creating a comprehensive semantics that encom-
passes all possible configuration types of a linux firewall
is thus highly non-trivial and not useful for the purpose
of analysis. We decided to approach the problem from
the other side: we created a model that includes only
the most basic features. (This implies neglecting IPv6.)
Fortunately, many of the highly complex features are
rarely essential and even our basic model is still of some
use.

We first divided the firewall into subsystems.
Given a routing table rt, the firewall rules fw, the
routing decision for a packet p can be obtained by
routing-table-semantics rt (p-dst p), the firewall
decision by simple-fw fw p. We draft the first
description of our linux router model:

1. The destination MAC address of an arriving
packet is checked: Does it match the MAC

address of the ingress port? If it does, we
continue, otherwise, the packet is discarded.

2. The routing decision rd ≡ routing-table-semantics
rt p is obtained.

3. The packet’s output interface is updated based on
rd1.

4. The firewall is queried for a decision: simple-fw
fw p. If the decision is to Drop, the packet is
discarded.

5. The next hop is computed: If rd provides a next
hop, that is used. Otherwise, the destination ad-
dress of the packet is used.

6. The MAC address of the next hop is looked up;
the packet is updated with it and sent.

We decided that this description is best formalized as
an abortable program in the option monad:
lemma simple-linux-router rt fw mlf ifl p ≡ do {
- ← iface-packet-check ifl p;
let rd — (routing decision) = routing-table-semantics rt

(p-dst p);
let p = p(|p-oiface := output-iface rd|);
let fd — (firewall decision) = simple-fw fw p;
- ← (case fd of Decision FinalAllow ⇒ Some () | Decision

FinalDeny ⇒ None);
let nh = (case next-hop rd of None ⇒ p-dst p | Some a ⇒

a);
ma ← mlf nh;
Some (p(|p-l2dst := ma|))
}
unfolding fromMaybe-def [symmetric] by(fact
simple-linux-router-def)

where mlf is a function that looks up the MAC address
for an IP address.

There are already a few important aspects that have
not been modelled, but they are not core essential for
the functionality of a firewall. Namely, there is no local
traffic from/to the firewall. This is problematic since
this model can not generate ARP replies — thus, an
equivalent OpenFlow device will not do so, either. Fur-
thermore, this model is problematic because it requires
access to a function that looks up a MAC address, some-
thing that may not be known at the time of time run-
ning a translation to an OpenFlow configuration.

1Note that we assume a packet model with input and output
interfaces. The origin of this is explained in Section 1.1.2

44

It is possible to circumvent these problems by inserting
static ARP table entries in the directly connected
devices and looking up their MAC addresses a priori.
A test-wise implementation of the translation based on
this model showed acceptable results. However, we
deemed the a priori lookup of the MAC addresses to
be rather inelegant and built a second model.
definition simple-linux-router-altered rt fw ifl p ≡ do {
let rd = routing-table-semantics rt (p-dst p);
let p = p(|p-oiface := output-iface rd|);
- ← if p-oiface p = p-iiface p then None else Some ();

let fd = simple-fw fw p;
- ← (case fd of Decision FinalAllow ⇒ Some () | Decision

FinalDeny ⇒ None);
Some p
}

In this model, all access to the MAC layer has been
eliminated. This is done by the approximation that
the firewall will be asked to route a packet (i.e. be ad-
dressed on the MAC layer) iff the destination IP address
of the packet causes it to be routed out on a different in-
terface. Because this model does not insert destination
MAC addresses, the destination MAC address has to be
already correct when the packet is sent. This can only
be achieved by changing the subnet of all connected
device, moving them into one common subnet2.

While a test-wise implementation based on this model
also showed acceptable results, the model is still prob-
lematic. The check p-oiface p = p-iiface p and the fire-
wall require access to the output interface. The details
of why this cannot be provided are be elaborated in Sec-
tion 1.3. The intuitive explanation is that an OpenFlow
match can not have a field for the output interface. We
thus simplified the model even further:
lemma simple-linux-router-nol12 rt fw p ≡ do {
let rd = routing-table-semantics rt (p-dst p);
let p = p(|p-oiface := output-iface rd|);
let fd = simple-fw fw p;
- ← (case fd of Decision FinalAllow ⇒ Some () | Decision

FinalDeny ⇒ None);
Some p
} by(fact simple-linux-router-nol12-def)

We continue with this definition as a basis for our trans-
lation. Even this strongly altered version and the orig-
inal linux firewall still behave the same in a substantial
amount of cases:

2There are cases where this is not possible — A limitation of
our system.

theorem
[[iface-packet-check ifl pii 6= None;
mlf (case next-hop (routing-table-semantics rt (p-dst pii))

of None ⇒ p-dst pii | Some a ⇒ a) 6= None]] =⇒
∃ x. map-option (λp. p(|p-l2dst := x|))

(simple-linux-router-nol12 rt fw pii) = simple-linux-router
rt fw mlf ifl pii
by(fact rtr-nomac-eq[unfolded fromMaybe-def])

The conditions are to be read as “The check whether a
received packet has the correct destination MAC never
returns False” and “The next hop MAC address for all
packets can be looked up”. Obviously, these conditions
do not hold for all packets. We will show an example
where this makes a difference in Section 2.1.

1.1.1 Routing Table

The routing system in linux features multiple tables and
a system that can use the iptables firewall and an addi-
tional match language to select a routing table. Based
on our directive, we only focused on the single most
used main routing table.

We define a routing table entry to be a record (named
tuple) of a prefix match, a metric and the routing action,
which in turn is a record of an output interface and an
optional next-hop address.
schematic-goal (?rtbl-entry :: (′a::len) routing-rule) = (|
routing-match = PrefixMatch pfx len, metric = met, rout-
ing-action = (| output-iface = oif-string, next-hop = (h :: ′a
word option) |) |) ..

A routing table is then a list of these entries:
lemma (rtbl :: (′a :: len) prefix-routing) = (rtbl :: ′a rout-
ing-rule list) by rule

Not all members of the type prefix-routing are sane rout-
ing tables. There are three different validity criteria
that we require so that our definitions are adequate.

• The prefixes have to be 0 in bits exceeding their
length.

• There has to be a default rule, i.e. one with prefix
length 0. With the condition above, that implies
that all its prefix bits are zero and it thus matches
any address.

• The entries have to be sorted by prefix length and
metric.

45

The first two are set into code in the following way:
lemma valid-prefix (PrefixMatch pfx len) ≡ pfx && (2 ^
(32 − len) − 1) = (0 :: 32 word)

by (simp add: valid-prefix-def pfxm-mask-def
mask-eq-decr-exp and.commute)
lemma has-default-route rt ←→ (∃ r ∈ set rt. pfxm-length
(routing-match r) = 0)
by(fact has-default-route-alt)

The third is not needed in any of the further proofs, so
we omit it.

The semantics of a routing table is to simply traverse
the list until a matching entry is found.
schematic-goal routing-table-semantics (rt-entry # rt)
dst-addr = (if prefix-match-semantics (routing-match
rt-entry) dst-addr then routing-action rt-entry else
routing-table-semantics rt dst-addr) by(fact
routing-table-semantics.simps)

If no matching entry is found, the behavior is undefined.

1.1.2 iptables Firewall

The firewall subsystem in a linux router is not any less
complex than any of the of the other systems. For-
tunately, this complexity has been dealt with in [6, 5]
already and we can directly use the result.

In short, one of the results is that a complex iptables
configuration can be simplified to be represented by a
single list of matches that only support the following
match conditions:

• (String) prefix matches on the input and output
interfaces.

• A prefix-match on the source and destination IP
address.

• An exact match on the layer 4 protocol.

• Interval matches on the source or destination
port, e.g. pd ∈ {1 ..1023}

The model/type of the packet is adjusted to fit that: it
is a record of the fields matched on. This also means
that input and output interface are coded to the packet.
Given that this information is usually stored alongside
the packet content, this can be deemed a reasonable
model. In case the output interface is not needed (e.g.,
when evaluating an OpenFlow table), it can simply be
left blank.

Obviously, a simplification into the above match type
cannot always produce an equivalent firewall, and the
set of accepted packets has to be over- or underapprox-
imated. The reader interested in the details of this is
strongly referred to [6]; we are simply going to continue
with the result: simple-fw.

One property of the simplification is worth noting here:
The simplified firewall does not know state and the sim-
plification approximates stateful matches by stateless
ones. Thus, the overapproximation of a stateful firewall
ruleset that begins with accepting packets of established
connections usually begins with a rule that accepts all
packets. Dealing with this by writing a meaningful sim-
plification of stateful firewalls is future work.

1.2 OpenFlow Switch Model
In this section, we present our model of an OpenFlow
switch. The requirements for this model are derived
from the fact that it models devices that are the target
of a configuration translation. This has two implica-
tions:

• All configurations that are representable in our
model should produce the correct behavior wrt.
their semantics. The problem is that correct here
means that the behavior is the same that any real
device would produce. Since we cannot possibly
account for all device types, we instead focus on
those that conform to the OpenFlow specifica-
tions. To account for the multiple different ver-
sions of the specification (e.g. [2, 3]), we tried mak-
ing our model a subset of both the oldest stable
version 1.0 [2] and the newest available specifica-
tion version 1.5.1 [3].

• Conversely, our model does not need to represent
all possible behavior of an OpenFlow switch, just
the behavior that can be invoked by the result of
our translation. This is especially useful regarding
for controller interaction, but also for MPLS or
VLANs, which we did not model in Section 1.1.

More concretely, we set the following rough outline for
our model.

• A switch consists of a single flow table.

• A flow table entry consists of a priority, a match
condition and an action list.

46

• The only possible action (we require) is to forward
the packet on a port.

• We do not model controller interaction.

Additionally, we decided that we wanted to be able to
ensure the validity of the flow table in all qualities, i.e.
we want to model the conditions ‘no overlapping flow
entries appear’, ‘all match conditions have their neces-
sary preconditions’. The details of this are explained in
the following sections.

1.2.1 Matching Flow Table entries

Table 3 of Section 3.1 of [2] gives a list of required packet
fields that can be used to match packets. This directly
translates into the type for a match expression on a
single field:
schematic-goal (field-match :: of-match-field) ∈ {

IngressPort (?s::string),
EtherSrc (?as::48 word), EtherDst (?ad::48 word),

EtherType (?t::16 word),
VlanId (?i::16 word), VlanPriority (?p::16 word),
IPv4Src (?pms::32 prefix-match),
IPv4Dst (?pmd::32 prefix-match),
IPv4Proto (?ipp :: 8 word),
L4Src (?ps :: 16 word) (?ms :: 16 word),
L4Dst (?pd :: 16 word) (?md :: 16 word)
} by(fact of-match-field-typeset)

Two things are worth additional mention: L3 and L4
“addressess”. The IPv4Src and IPv4Dst matches are
specified as “can be subnet masked” in [2], whereras [3]
states clearly that arbitrary bitmasks can be used. We
took the conservative approach here. Our alteration
of L4Src and L4Dst is more grave. While [2] does not
state anything about layer 4 ports and masks, [3] specifi-
cally forbids using masks on them. Nevertheless, Open-
VSwitch [1] and some other implementations support
them. We will explain in detail why we must include
bitmasks on layer 4 ports to obtain a meaningful trans-
lation in Section 1.3.

One of-match-field is not enough to classify a packet.
To match packets, we thus use entire sets of match
fields. As Guha et al. [7] noted3, executing a set of
given of-match-fields on a packet requires careful con-
sideration. For example, it is not meaningful to use
IPv4Dst if the given packet is not actually an IP packet,

3See also: [8, §2.3]

i.e. IPv4Dst has the prerequisite of EtherType 2048 be-
ing among the match fields. Guha et al. decided to
use the fact that the preconditions can be arranged on
a directed acyclic graph (or rather: an acyclic forest).
They evaluated match conditions in a manner follow-
ing that graph: first, all field matches without precon-
ditions are evaluated. Upon evaluating a field match
(e.g., EtherType 2048), the matches that had their pre-
condition fulfilled by it (e.g., IPv4Src and IPv4Src in
this example) are evalutated. This mirrors the faulty
behavior of some implementations (see [7]). Adopt-
ing that behavior into our model would mean that any
packet matches against the field match set {IPv4Dst
(PrefixMatch 134744072 32)} instead of just those des-
tined for 8.8.8.8 or causing an error. We found this to
be unsatisfactory.

To solve this problem, we made three definitions. The
first, match-no-prereq matches an of-match-field against
a packet without considering prerequisites. The second,
prerequisites, checks for a given of-match-field whether
its prerequisites are in a set of given match fields. Es-
pecially:
lemma

prerequisites (VlanPriority pri) m = (∃ id. let v = VlanId
id in v ∈ m ∧ prerequisites v m)

prerequisites (IPv4Proto pr) m = (let v = EtherType
0x0800 in v ∈ m ∧ prerequisites v m)

prerequisites (IPv4Src a) m = (let v = EtherType 0x0800
in v ∈ m ∧ prerequisites v m)

prerequisites (IPv4Dst a) m = (let v = EtherType 0x0800
in v ∈ m ∧ prerequisites v m)

prerequisites (L4Src p msk) m = (∃ proto ∈
{TCP,UDP,L4-Protocol.SCTP}. let v = IPv4Proto proto
in v ∈ m ∧ prerequisites v m)

prerequisites (L4Dst p msk) m = prerequisites (L4Src un-
defined undefined) m

by(fact prerequisites.simps)+

Then, to actually match a set of of-match-field against
a packet, we use the option type:
lemma OF-match-fields m p =
(if ∃ f ∈ m. ¬prerequisites f m then None else

if ∀ f ∈ m. match-no-prereq f p then Some True else
Some False)
by(fact OF-match-fields-alt)

1.2.2 Evaluating a Flow Table

In the previous section, we explained how we match
the set of match fields belonging to a single flow entry
against a packet. This section explains how the correct

47

flow entry from a table can be selected. To prevent to
much entanglement with the previous section, we as-
sume an arbitrary match function γ. This function γ
takes the match condition m from a flow entry OFEntry
priority m action and decides whether a packet matches
those.

The flow table is simply a list of flow table entries
flow-entry-match. Deciding the right flow entry to use
for a given packet is explained in the OpenFlow speci-
fication [2], Section 3.4:

Packets are matched against flow entries
based on prioritization. An entry that
specifies an exact match (i.e., has no
wildcards) is always the highest priority4.
All wildcard entries have a priority
associated with them. Higher priority
entries must match before lower priority
ones. If multiple entries have the same
priority, the switch is free to choose any
ordering.

We use the term “overlapping” for the flow entries that
can cause a packet to match multiple flow entries with
the same priority. Guha et al. [7] have dealt with over-
lapping. However, the semantics for a flow table they
presented [7, Figure 5] is slightly different from what
they actually used in their theory files. We have tried to
reproduce the original inductive definition (while keep-
ing our abstraction γ), in Isabelle/HOL5:
lemma γ (ofe-fields fe) p = True =⇒
∀ fe ′ ∈ set (ft1 @ ft2). ofe-prio fe ′ > ofe-prio fe −→ γ
(ofe-fields fe ′) p = False =⇒
guha-table-semantics γ (ft1 @ fe # ft2) p (Some (ofe-action
fe))
∀ fe ∈ set ft. γ (ofe-fields fe) p = False =⇒
guha-table-semantics γ ft p None by(fact guha-matched

guha-unmatched)+

Guha et al. have deliberately made their semantics non-
deterministic, to match the fact that the switch “may
choose any ordering”. This can lead to undesired re-
sults:
lemma CARD(′action) ≥ 2 =⇒ ∃ff . γ ff p =⇒ ∃ ft (a1 ::
′action) (a2 :: ′action). a1 6= a2 ∧ guha-table-semantics γ
ft p (Some a1) ∧ guha-table-semantics γ ft p (Some a2)
by(fact guha-table-semantics-ex2res)

4This behavior has been deprecated.
5The original is written in Coq [4] and we can not use it di-

rectly.

This means that, given at least two distinct actions ex-
ist and our matcher γ is not false for all possible match
conditions, we can say that a flow table and two ac-
tions exist such that both actions are executed. This
can be misleading, as the switch might choose an order-
ing on some flow table and never execute some of the
(overlapped) actions.

Instead, we decided to follow Section 5.3 of the specifi-
cation [3], which states:

If there are multiple matching flow entries,
the selected flow entry is explicitly unde-
fined.

This still leaves some room for interpretation, but it
clearly states that overlapping flow entries are unde-
fined behavior, and undefined behavior should not be in-
voked. Thus, we came up with a semantics that clearly
indicates when undefined behavior has been invoked:
lemma

OF-priority-match γ flow-entries packet = (
let m = filter (λf . γ (ofe-fields f) packet) flow-entries;

m ′ = filter (λf . ∀ fo ∈ set m. ofe-prio fo ≤ ofe-prio f)
m in

case m ′ of [] ⇒ NoAction
| [s] ⇒ Action (ofe-action s)
| - ⇒ Undefined)

unfolding OF-priority-match-def ..

The definition works the following way6:

1. The flow table is filtered for those entries that
match, the result is called m.

2. m is filtered again, leaving only those entries for
which no entries with lower priority could be
found, i.e. the matching flow table entries with
minimal priority. The result is called m′.

3. A case distinction on m′ is made. If only one
matching entry was found, its action is returned
for execution. If m is empty, the flow table seman-
tics returns NoAction to indicate that the flow
table does not decide an action for the packet.
If, not zero or one entry is found, but more, the
special value Undefined for indicating undefined
behavior is returned.

6Note that the order of the flow table entries is irrelevant.
We could have made this definition on sets but chose not to for
consistency.

48

The use of Undefined immediately raises the question in
which condition it cannot occur. We give the following
definition:
lemma check-no-overlap γ ft = (∀ a ∈ set ft. ∀ b ∈ set ft.
(a 6= b ∧ ofe-prio a = ofe-prio b) −→ ¬(∃ p. γ (ofe-fields
a) p ∧ γ (ofe-fields b) p)) unfolding check-no-overlap-alt
check-no-overlap2-def by force

Together with distinctness of the flow table, this pro-
vides the abscence of Undefined7:
lemma [[check-no-overlap γ ft; distinct ft]] =⇒

OF-priority-match γ ft p 6= Undefined by (simp add:
no-overlapsI no-overlaps-not-unefined)

Given the absence of overlapping or duplicate flow en-
tries, we can show two interesting equivalences. the first
is the equality to the semantics defined by Guha et al.:
lemma [[check-no-overlap γ ft; distinct ft]] =⇒
OF-priority-match γ ft p = option-to-ftb d ←→
guha-table-semantics γ ft p d
by (simp add: guha-equal no-overlapsI)

where option-to-ftb maps between the return type of
OF-priority-match and an option type as one would ex-
pect.

The second equality for OF-priority-match is one that
helps reasoning about flow tables. We define a simple
recursive traversal for flow tables:
lemma

OF-match-linear γ [] p = NoAction
OF-match-linear γ (a#as) p = (if γ (ofe-fields a) p then

Action (ofe-action a) else OF-match-linear γ as p)
by(fact OF-match-linear .simps)+

For this definition to be equivalent, we need the flow
table to be sorted:
lemma
[[no-overlaps γ f ;sorted-descending (map ofe-prio f)]] =⇒
OF-match-linear γ f p = OF-priority-match γ f p

by(fact OF-eq)

As the last step, we implemented a serialization func-
tion for flow entries; it has to remain unverified. The
serialization function deals with one little inaccuracy:
We have modelled the IngressPort match to use the in-
terface name, but OpenFlow requires numerical inter-
face IDs instead. We deemed that pulling this transla-
tion step into the main translation would only make the

7It is slightly stronger than necessary, overlapping rules might
be shadowed and thus never influence the behavior.

correctness lemma of the translation more complicated
while not increasing the confidence in the correctness
significantly. We thus made replacing interface names
by their ID part of the serialization.

Having collected all important definitions and models,
we can move on to the conversion.

1.3 Translation Implementation
This section explains how the functions that are exe-
cuted sequentially in a linux firewall can be compressed
into a single OpenFlow table. Creating this flow ta-
ble in a single step would be immensely complicated.
We thus divided the task into several steps using the
following key insights:

• All steps that are executed in the linux router
can be formulated as a firewall, more specifically,
a generalization of simple-fw that allows arbitrary
actions instead of just accept and drop.

• A function that computes the conjunction of two
simple-fw matches is already present. Extending
this to a function that computes the join of two
firewalls is relatively simple. This is explained in
Section 1.3.1

1.3.1 Chaining Firewalls

This section explains how to compute the join of two
firewalls.

The basis of this is a generalization of simple-fw.
Instead of only allowing Accept or Drop as actions, it
allows arbitrary actions. The type of the function
that evaluates this generalized simple firewall is
generalized-sfw. The definition is straightforward:
lemma
generalized-sfw [] p = None
generalized-sfw (a # as) p = (if (case a of (m,-) ⇒ sim-
ple-matches m p) then Some a else generalized-sfw as p)
by(fact generalized-sfw-simps)+

Based on that, we asked: if fw1 makes the decision a
(where a is the second element of the result tuple from
generalized-sfw) and fw2 makes the decision b, how can
we compute the firewall that makes the decision (a, b)8.
One possible answer is given by the following definition:

8Note that tuples are right-associative in Isabelle/HOL, i.e.,
(a, b, c) is a pair of a and the pair (b, c)

49

lemma generalized-fw-join l1 l2 ≡ [(u,a,b). (m1 ,a) ← l1 ,
(m2 ,b) ← l2 , u ← (case simple-match-and m1 m2 of None
⇒ [] | Some s ⇒ [s])]
by(fact generalized-fw-join-def [unfolded option2list-def])+

This definition validates the following lemma:
lemma generalized-sfw (generalized-fw-join fw1 fw2) p =
Some (u, d1,d2)←→ (∃ r1 r2. generalized-sfw fw1 p = Some
(r1,d1) ∧ generalized-sfw fw2 p = Some (r2,d2) ∧ Some u
= simple-match-and r1 r2)

by (auto dest: generalized-fw-joinD sym simp add: gener-
alized-fw-joinI)

Thus, generalized-fw-join has a number of applications.
For example, it could be used to compute a firewall
ruleset that represents two firewalls that are executed
in sequence.
definition simple-action-conj a b ≡ (if a =
simple-action.Accept ∧ b = simple-action.Accept then
simple-action.Accept else simple-action.Drop)
definition simple-rule-conj ≡ (uncurry SimpleRule ◦ apsnd
(uncurry simple-action-conj))
theorem simple-fw rs1 p = Decision FinalAllow ∧ sim-
ple-fw rs2 p = Decision FinalAllow ←→
simple-fw (map simple-rule-conj (generalized-fw-join (map
simple-rule-dtor rs1) (map simple-rule-dtor rs2))) p = De-
cision FinalAllow
unfolding simple-rule-conj-def
simple-action-conj-def [abs-def] using simple-fw-join
by(force simp add: comp-def apsnd-def map-prod-def
case-prod-unfold uncurry-def [abs-def])

Using the join, it should be possible to compute any
n-ary logical operation on firewalls. We will use it for
something somewhat different in the next section.

1.3.2 Translation Implementation

This section shows the actual definition of the
translation function, in Figure 1. Before beginning the
translation, the definition checks whether the
necessary preconditions are valid. This first two steps
are to convert fw and rt to lists that can be evaluated
by generalized-sfw. For fw, this is done by map
simple-rule-dtor, which just deconstructs simple-rules
into tuples of match and action. For rt, we made a
firewall ruleset with rules that use prefix matches on
the destination IP address. The next step is to join the
two rulesets. The result of the join is a ruleset with
rules r that only match if both, the corresponding
firewall rule fwr and the corresponding routing rule rr
matches. The data accompanying r is the port from rr

and the firewall decision from fwr. Next, descending
priorities are added to the rules using map (apfst
word-of-nat) ◦ annotate-rlen. If the number of rules is
too large to fit into the 216 priority classes, an error is
returned. Otherwise, the function pack-OF-entries is
used to convert the (16 word × 32 simple-match ×
char list × simple-action) list to an OpenFlow table.
While converting the char list × simple-action tuple is
straightforward, converting the simple-match to an
equivalent list of of-match-field set is non-trivial. This
is done by the function simple-match-to-of-match.

The main difficulties for simple-match-to-of-match lie
in making sure that the prerequisites are satisfied and
in the fact that a simple-match operates on slightly
stronger match expressions.

• A simple-match allows a (string) prefix match on
the input and output interfaces. Given a list of
existing interfaces on the router ifs, the function
has to insert flow entries for each interface match-
ing the prefix.

• A simple-match can match ports by an interval.
Now it becomes obvious why Section 1.2.1 added
bitmasks to L4Src and L4Dst. Using the algo-
rithm to split word intervals into intervals that
can be represented by prefix matches from [6], we
can efficiently represent the original interval by
a few (32 in the worst case) prefix matches and
insert flow entries for each of them.9

The following lemma characterizes
simple-match-to-of-match:
lemma simple-match-to-of-match:
assumes

simple-match-valid r
p-iiface p ∈ set ifs
match-iface (oiface r) (p-oiface p)
p-l2type p = 0x800

shows
simple-matches r p ←→ (∃ gr ∈ set

(simple-match-to-of-match r ifs). OF-match-fields gr p =
Some True)
using assms simple-match-to-of-matchD
simple-match-to-of-matchI by blast

The assumptions are to be read as follows:
9It might be possible to represent the interval match more

efficiently than a split into prefixes. However, that would produce
overlapping matches (which is not a problem if we assing separate
priorities) and we did not have a verified implementation of an
algorithm that does so.

50

lemma lr-of-tran rt fw ifs ≡
if ¬ (no-oif-match fw ∧ has-default-policy fw ∧ simple-fw-valid fw ∧ valid-prefixes rt ∧ has-default-route rt ∧
distinct ifs)

then Inl ′′Error in creating OpenFlow table: prerequisites not satisifed ′′

else (
let

nfw = map simple-rule-dtor fw;
frt = map (λr. (route2match r, output-iface (routing-action r))) rt;
nrd = generalized-fw-join frt nfw;
ard = (map (apfst of-nat) ◦ annotate-rlen) nrd
in
if length nrd < unat (− 1 :: 16 word)
then Inr (pack-OF-entries ifs ard)
else Inl ′′Error in creating OpenFlow table: priority number space exhausted ′′

)
unfolding Let-def lr-of-tran-def lr-of-tran-fbs-def lr-of-tran-s1-def comp-def route2match-def by force

Figure 1: Function for translating a ′i simple-rule list, a ′i routing-rule list, and a list of interfaces to a flow table.

• The match r has to be valid, i.e. it has to use
valid-prefix matches, and it cannot use anything
other than 0-65535 for the port matches unless
its protocol match ensures TCP, UDP or
L4-Protocol.SCTP.

• simple-match-to-of-match cannot produce rules
for packets that have input interfaces that are
not named in the interface list.

• The output interface of p has to match the output
interface match of r. This is a weakened formula-
tion of oiface r = ifaceAny, since

match-iface ifaceAny i

. We require this because OpenFlow field matches
cannot be used to match on the output port —
they are supposed to match a packet and decide
an output port.

• The simple-match type was designed for IP(v4)
packets, we limit ourselves to them.

The conclusion then states that the simple-match
r matches iff an element of the result of
simple-match-to-of-match matches. The third
assumption is part of the explanation why we
did not use simple-linux-router-altered:
simple-match-to-of-match cannot deal with output

interface matches. Thus, before passing a generalized
simple firewall to pack-OF-entries, we would have to
set the output ports to ifaceAny. A system replace
output interface matches with destination IP addresses
has already been formalized and will be published in a
future version of [5]. For now, we limit ourselves to
firewalls that do not do output port matching, i.e., we
require no-oif-match fw.

Given discussed properties, we present the central the-
orem for our translation in Figure 2. The first two as-
sumptions are limitations on the traffic we make a state-
ment about. Obviously, we will never see any packets
with an input interface that is not in the interface list.
Furthermore, we do not state anything about non-IPv4
traffic. (The traffic will remain unmatched in by the
flow table, but we have not verified that.) The last
assumption is that the translation does not return a
run-time error. The translation will return a run-time
error if the rules can not be assigned priorities from a
16 bit integer, or when one of the following conditions
on the input data is not satisifed:
lemma
¬ no-oif-match fw ∨
¬ has-default-policy fw ∨
¬ simple-fw-valid fw ∨
¬ valid-prefixes rt ∨
¬ has-default-route rt ∨
¬ distinct ifs =⇒

51

theorem
fixes

p :: (32, ′a) simple-packet-ext-scheme
assumes

p-iiface p ∈ set ifs and p-l2type p = 0x800
lr-of-tran rt fw ifs = Inr oft

shows
OF-priority-match OF-match-fields-safe oft p = Action [Forward oif] ←→ simple-linux-router-nol12 rt fw p =

(Some (p(|p-oiface := oif|)))
OF-priority-match OF-match-fields-safe oft p = Action [] ←→ simple-linux-router-nol12 rt fw p = None
OF-priority-match OF-match-fields-safe oft p 6= NoAction OF-priority-match OF-match-fields-safe oft p 6=

Undefined
OF-priority-match OF-match-fields-safe oft p = Action ls −→ length ls ≤ 1
∃ ls. length ls ≤ 1 ∧ OF-priority-match OF-match-fields-safe oft p = Action ls

using assms lr-of-tran-correct by simp-all

Figure 2: Central theorem on lr-of-tran

∃ err . lr-of-tran rt fw ifs = Inl err unfolding lr-of-tran-def
by(simp split: if-splits)

1.3.3 Comparison to Exodus

We are not the first researchers to attempt automated
static migration to SDN. The (only) other attempt we
are aware of is Exodus by Nelson et al. [10].

There are some fundamental differences between Exo-
dus and our work:

• Exodus focuses on Cisco IOS instead of linux.

• Exodus does not produce OpenFlow rulesets, but
FlowLog [9] controller programs.

• Exodus is not limited to using a single flow table.

• Exodus requires continuous controller interaction
for some of its functions.

• Exodus attempts to support as much functional-
ity as possible and has implemented support for
dynamic routing, VLANs and NAT.

• Nelson et al. reject the idea that the translation
could or should be proven correct.

2 Evaluation
In Section 1, we have made lots of definitions and cre-
ated lots of models. How far these models are in accor-
dance with the real world has been up to the vigilance of
the reader. This section attemts to leviate this burden
by providing some examples.

2.1 Mininet Examples

The first example is designed to be minimal while still
showing the most important properties of our conver-
sion. For this purpose, we used a linux firewall F, that
we want to convert. We gave it two interfaces, and
connected one client each. Its original configuration
and the ruleset resulting from the translation is shown
in Figure 3. (The list of interfaces can be extracted
from the routing table; s1-lan received port number
1.) While the configuration does not fulfil any special
function (especially, no traffic from the interface s1-
wan is permitted), it is small enough to let us have a
detailed look. More specifically, we can see how the
only firewall rule (Line 2) got combined with the first
rule of the routing table to form Line 1 of the OpenFlow
rules. This also shows why the bitmasks on the layer 4
ports are necessary. If we only allowed exact matches,
we would have 215 rules instead of just one. Line 2 of
the OpenFlow ruleset has been formed by combining
the default drop policy with Line 1 of the routing table.

52

1 : FORWARD DROP [0:0]
2 -A FORWARD -d 10.0.2.0/24 -i s1 -lan -p tcp -

m tcp --sport 32768:65535 --dport 80 -j
ACCEPT

(a) FORWARD chain

1 10.0.2.0/24 dev s1 -wan proto kernel scope
link src 10.0.2.4

2 10.0.1.0/24 dev s1 -lan proto kernel scope
link src 10.0.1.1

3 default via 10.0.2.1 dev s1 -wan

(b) Routing table (sorted)

1 priority =4, hard_timeout =0, idle_timeout =0, in_port =1, dl_type =0 x800 , nw_proto =6, nw_dst =10.0.2.0/24 ,
tp_src =32768/0 x8000 , tp_dst =80 , action = output :2

2 priority =3, hard_timeout =0, idle_timeout =0, dl_type =0 x800 , nw_dst =10.0.2.0/24 , action =drop
3 priority =2, hard_timeout =0, idle_timeout =0, dl_type =0 x800 , nw_dst =10.0.1.0/24 , action =drop
4 priority =1, hard_timeout =0, idle_timeout =0, in_port =1, dl_type =0 x800 , nw_proto =6, nw_dst =10.0.2.0/24 ,

tp_src =32768/0 x8000 , tp_dst =80 , action = output :2
5 priority =0, hard_timeout =0, idle_timeout =0, dl_type =0 x800 , action =drop

(c) Resulting OpenFlow rules

Figure 3: Example Network 1 – Configuration

In a similar fashion, Line 2 of the routing rules has also
been combined with the two firewall rules. However, as
10.0.2.0/24 from the firewall and 10.0.1.0/24 from the
routing table have no common elements, no rule results
from combining Line 2 and Line 2. In a similar fashion,
the rest of the OpenFlow ruleset can be explained.
We feel that it is also worth noting again that it is nec-
essary to change the IP configuration of the two devices
attached to F. Assuming they are currently configured
with, e.g., 10.0.1.100/24 and 10.0.2.1/24, the subnet
would have to be changed from 24 to 22 or lower to
ensure that a common subnet is formed and the MAC
layer can function properly.
Next, we show a somewhat more evolved example. Its
topology is depicted in Figure 4a. As before, we called
the device to be replaced F. It is supposed to
implement the simple policy that the clients H1 and
H2 are allowed to communicate with the outside world
via HTTP, ICMP is generally allowed, any other
traffic is to be dropped (we neglected DNS for this
example). We used the iptables configuration that is
shown in Figure 4b. The routing table is the same as
in the first example network.
The topology has been chosen for a number of reasons:
we wanted one device which is not inside a common
subnet with F and thus requires no reconfiguration for
the translation. Moreover, we wanted two devices in a
network that can communicate with each other while
being overheard by F. For this purpose, we added two

clients H1 and H2 instead of just one. We connected
them with a broadcasting device.10

Executing our conversion function results in 36 rules11,
we decided not to include them here. Comparing to
the first example network, the size of the ruleset seems
relatively high. This can be explained by the port
matches: 1024-65535 has to be expressed by 6 different
matches, tp_src=1024/0xfc00, tp_src=2048/0xf800,
. . . , tp_src=32768/0x8000 (or tp_dst respectively).
When installing these rules, we also have to move all
of H1, H2 and S1 into a common subnet. We chose
10.0.0.0/16 and updated the IP configuration of the
three hosts accordingly. As discussed, the configura-
tion of S2 did not have to be updated, as it does not
share any subnet with F. We then tested reachability for
TCP 22 and 80 and ICMP. The connectivity between
all pairs of hosts (H1,H2,S1 and S2) remained the same
compared to before the conversion. This shows that the
concept can be made to work.
However, the example also reveals a flaw: When substi-
tuting the more complete model of a linux firewall with
the simple one in Section 1.1, we assumed that the check
whether the correct MAC address is set and the packets
are destined for the modelled device would never fail —
we assumed that all traffic arriving at a device is ac-
tually destined for it. Obviously, this network violates

10For the lack of a hub in mininet, we emulated one with an
OpenFlow switch.

11If we had implemented some spoofing protection by adding !
-s 10.0.1.0/24 to the respective rule, the number of rules would
have been increased to 312. This is because a cross product of
two prefix splits would occur.

53

F
S1 S2

H1

H2

(a) Topology

1 : FORWARD DROP [0:0]
2 -A FORWARD -p icmp -j ACCEPT
3 -A FORWARD -i s1 -lan -p tcp -m tcp --sport

1024:65535 --dport 80 -j ACCEPT
4 -A FORWARD -d 10.0.1.0/24 -i s1 -wan -p tcp -m tcp

--sport 80 --dport 1024:65535 -j ACCEPT

(b) FORWARD chain

Figure 4: Example Network 2

this assumption. We can trigger this in many ways,
for example by sending an ICMP ping from H1 to H2.
This will cause the generated rule priority=7, icmp,
nw_dst=10.0.1.0/24 actions=output:1 (where port
1 is the port facing H1 and H2) to be activated twice.
This is obviously not desired behavior. Dealing with
this is, as mentioned, future work.

2.2 Performance Evaluation

Unfortunately, we do not have any real-world data that
does not use output port matches as required in Sec-
tion 1.3. There is thus no way to run the translation
on the real-world firewall rulesets we have available and
obtain a meaningful result. Nevertheless, we can use a
real-world ruleset to evaluate the performance of our
translation. For this purpose, we picked the largest
firewall from the firewall collection from [6]. A signifi-
cant amount of time is necessary to convert its FORWARD
chain including 4946 rules12 to the required simplified
firewall form. Additionally to the simplified firewall, we
acquired the routing table (26 entries) from the same
machine. We then evaluated the time necessary to com-
plete the translation and the size of the resulting rule-
set when using only the first n simple firewall rules and
the full routing table. The result is shown in Figure 5.

12In the pre-parsed and already normalized version we used for
this benchmark, it took 45s. The full required time lies closer to
11min as stated in [6].

0 1,000 2,000 3,000 4,000

0

0.2

0.4

0.6

0.8

1
·105

Rule count n

R
ul

es
et

siz
e

0

20

40

T
im

e
in

s

Required time
Ruleset size

Figure 5: Benchmark

Given the time necessary to complete the conversion of
the iptables firewall to a simple firewall, it is reasonable
to say that the translation function is efficient enough.
At first glance, size of the resulting ruleset seems high.
This can be explained by two facts:

• The firewall contains a large number of rules with
port matches that allow the ports 1-65535, which
requires 16 OpenFlow rules.

• Some combinations of matches from the firewall
and the routing table cannot be ruled out, since

54

the firewall match might only contain an output
port and the rule can thus only apply for the pack-
ets matching a few routing table entries. However,
the translation is not aware of that and can thus
not remove the combination of the firewall rule
and other routing table entries.

In some rules, the conditions above coincede, resulting
in 416 (= 16 · 26) rules. To avoid the high number of
rules resulting from the port matches, rules that for-
bids packets with source or destination port 0 could be
added to the start of the firewall and the 1-65535 could
be removed; dealing with the firewall / routing table
problem is part of the future work on output interfaces.

3 Conclusion and Future Work
We believe that we have shown that it is possible to
translate at least basic configurations of a linux firewall
into OpenFlow rulesets while preserving the most im-
portant aspects of the behavior. We recognize that our
system has limited practical applicability. One possible
example would be a router or firewall inside a company
network whose state tables have been polluted by spe-
cial attack traffic. Our translation could provide an
OpenFlow based stateless replacement. However, given
the current prerequisites the implementation has on the
configuration, this application is relatively unlikely.
For the configuration translation, we have contributed
formal models of a linux firewall and of an OpenFlow
switch. Furthermore, the function that joins two fire-
walls and the function that translates a simplified match
from [6] to a list of equivalent OpenFlow field match
sets are contributions that we think are likely to be of
further use.
We want to explicitly formulate the following two goals
for our future work:

• We want to deal with output interface matches.
The idea is to formulate and verify a destination
interface / destination IP address rewriting that
can exchange output interfaces and destination IP
addressed in a firewall, based on the information
from the routing table.13

• We want to develop a system that can provide a
stricter approximation of stateful matches so our
translation will be applicable in more cases.

13As of now this has already been implemented, but is not yet
fully ready.

References
[1] Open vSwitch. http://openvswitch.org/.

[2] OpenFlow Switch Specification v1.0.0, December
2009.

[3] OpenFlow Switch Specification v1.5.1, March
2015.

[4] B. Barras, S. Boutin, C. Cornes, J. Courant, J.-
C. Filliatre, E. Gimenez, H. Herbelin, G. Huet,
C. Munoz, C. Murthy, et al. The coq proof as-
sistant reference manual: Version 6.1. 1997.

[5] C. Diekmann and L. Hupel. Iptables Semantics.
Archive of Formal Proofs, Sept. 2016. http:
//isa-afp.org/entries/Iptables_Semantics.shtml,
Formal proof development.

[6] C. Diekmann, J. Michaelis, M. Haslbeck, and
G. Carle. Verified iptables Firewall Analysis.
In Proceedings of IFIP Networking 2016 (NET-
WORKING 16), May 2016.

[7] A. Guha, M. Reitblatt, and N. Foster. Machine-
verified Network Controllers. In Proceedings of the
34th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’13,
pages 483–494, New York, NY, USA, 2013. ACM.

[8] J. Michaelis and C. Diekmann. Middlebox models
in network verification research. In Proceedings of
the Seminars Future Internet (FI) and Innovative
Internet Technologies and Mobile Communications
(IITM), Winter Semester 2015/2016, volume 17,
2016.

[9] T. Nelson, A. D. Ferguson, M. J. Scheer, and S. Kr-
ishnamurthi. Tierless programming and reasoning
for software-defined networks. In 11th USENIX
Symposium on Networked Systems Design and Im-
plementation (NSDI 14), pages 519–531, 2014.

[10] T. Nelson, A. D. Ferguson, D. Yu, R. Fonseca,
and S. Krishnamurthi. Exodus: toward automatic
migration of enterprise network configurations to
SDNs. In Proceedings of the 1st ACM SIGCOMM
Symposium on Software Defined Networking Re-
search, page 13. ACM, 2015.

[11] T. Nipkow, L. C. Paulson, and M. Wenzel. Is-
abelle/HOL — A Proof Assistant for Higher-Order
Logic, volume 2283 of LNCS. Springer, 2015.

55

http://openvswitch.org/
http://isa-afp.org/entries/Iptables_Semantics.shtml
http://isa-afp.org/entries/Iptables_Semantics.shtml

	I Code
	II Documentation
	Configuration Translation
	Linux Firewall Model
	Routing Table
	iptables Firewall

	OpenFlow Switch Model
	Matching Flow Table entries
	Evaluating a Flow Table

	Translation Implementation
	Chaining Firewalls
	Translation Implementation
	Comparison to Exodus

	Evaluation
	Mininet Examples
	Performance Evaluation

	Conclusion and Future Work

