
A verified factorization algorithm for integer
polynomials with polynomial complexity∗

Jose Divasón Sebastiaan Joosten René Thiemann
Akihisa Yamada

March 19, 2025

Abstract

Short vectors in lattices and factors of integer polynomials are re-
lated. Each factor of an integer polynomial belongs to a certain lattice.
When factoring polynomials, the condition that we are looking for an
irreducible polynomial means that we must look for a small element
in a lattice, which can be done by a basis reduction algorithm. In this
development we formalize this connection and thereby one main ap-
plication of the LLL basis reduction algorithm: an algorithm to factor
square-free integer polynomials which runs in polynomial time. The
work is based on our previous Berlekamp–Zassenhaus development,
where the exponential reconstruction phase has been replaced by the
polynomial-time basis reduction algorithm. Thanks to this formaliza-
tion we found a serious flaw in a textbook.

Contents
1 Introduction 2

2 Factor bound 5

3 Executable dvdm operation 5
3.1 Uniqueness of division algorithm for polynomials . . . . . . . 6
3.2 Executable division operation modulo m for polynomials . . . 7

4 The LLL factorization algorithm 8

5 Correctness of the LLL factorization algorithm 10
5.1 Basic facts about the auxiliary functions . . . . . . . . . . . . 10
5.2 Facts about Sylvester matrices and norms . . . . . . . . . . . 11

∗Supported by FWF (Austrian Science Fund) project Y757. Jose Divasón is partially
funded by the Spanish project MTM2017-88804-P.

1



5.3 Proof of the key lemma 16.20 . . . . . . . . . . . . . . . . . . 12
5.4 Properties of the computed lattice and its connection with

Sylvester matrices . . . . . . . . . . . . . . . . . . . . . . . . 12
5.5 Proving that factorization-lattice returns a basis of the lattice 13
5.6 Being in the lattice is being a multiple modulo . . . . . . . . 13
5.7 Soundness of the LLL factorization algorithm . . . . . . . . . 14

6 Calculating All Possible Sums of Sub-Multisets 16

7 Implementation and soundness of a modified version of Al-
gorithm 16.22 17
7.1 Previous lemmas obtained using local type definitions . . . . 17
7.2 The modified version of Algorithm 16.22 . . . . . . . . . . . . 17
7.3 Soundness proof . . . . . . . . . . . . . . . . . . . . . . . . . 20

7.3.1 Starting the proof . . . . . . . . . . . . . . . . . . . . 20
7.3.2 Inner loop . . . . . . . . . . . . . . . . . . . . . . . . . 22
7.3.3 Outer loop . . . . . . . . . . . . . . . . . . . . . . . . 25
7.3.4 Final statement . . . . . . . . . . . . . . . . . . . . . . 26

8 Mistakes in the textbook Modern Computer Algebra (2nd
edition) 26
8.1 A real problem of Algorithm 16.22 . . . . . . . . . . . . . . . 27
8.2 Another potential problem of Algorithm 16.22 . . . . . . . . . 27
8.3 Verified wrong results . . . . . . . . . . . . . . . . . . . . . . 28

1 Introduction
In order to factor an integer polynomial f , we may assume a modular fac-
torization of f into several monic factors ui: f ≡ lc(f) ·

∏
i ui modulo m

where m = pl is some prime power for user-specified l. In Isabelle, we just
reuse our verified modular factorization algorithm [1] to obtain the modular
factorization of f .

We briefly explain how to compute non-trivial integer factors of f . The
key is the following lemma [2, Lemma 16.20].

Lemma 1 ([2, Lemma 16.20]) Let f, g, u be non-constant integer polyno-
mials. Let u be monic. If u divides f modulo m, u divides g modulo m, and
||f ||degree(g) · ||g||degree(f) < m, then h = gcd(f, g) is non-constant.

Let f be a polynomial of degree n. Let u be any degree-d factor of f
modulo m. Now assume that f is reducible, so f = f1 · f2 where w.l.o.g.,
we assume that u divides f1 modulo m and that 0 < degree(f1) < n. Let
us further assume that a lattice Lu,k encodes the set of all polynomials of

2



degree below d + k (as vectors of length d + k) which are divisible by u
modulo m. Fix k = n− d. Then clearly, f1 ∈ Lu,k.

In order to instantiate Lemma 1, it now suffices to take g as the poly-
nomial corresponding to any short vector in Lu,k: u will divide g mod-
ulo m by definition of Lu,k and moreover degree(g) < n. The short vec-
tor requirement will provide an upper bound to satisfy the assumption
||f ||degree(g) · ||g||degree(f) < m.

||g|| ≤ 2(n−1)/2 · ||f1|| ≤ 2(n−1)/2 · 2n−1||f || = 23(n−1)/2||f || (1)
||f ||degree(g)·||g||degree(f) ≤ ||f ||n−1 · (23(n−1)/2||f ||)n = ||f ||2n−1 · 23n(n−1)/2 (2)

Here, the first inequality in (1) is the short vector approximation (f1 ∈ Lu,k).
The second inequality in (1) is Mignotte’s factor bound (f1 is a factor of f).
Finally, (1) is used as an approximation of ||g|| in (2).

Hence, if l is chosen large enough so that m = pl > ||f ||2n−1 · 23n(n−1)/2

then all preconditions of Lemma 1 are satisfied, and h = gcd(f, g) will be a
non-constant factor of f . Since the degree of h will be strictly less than n,
h is also a proper factor of f , i.e., in particular h /∈ {1, f}.

The textbook [2] also describes the general idea of the factorization algo-
rithm based on the previous lemma in prose, and then presents an algorithm
in pseudo-code which slightly extends the idea by directly splitting off ir-
reducible factors [2, Algorithm 16.22]. We initially implemented and tried to
verify this pseudo-code algorithm (see files Factorization_Algorithm_16_22.thy
and Modern_Computer_Algebra_Problem.thy). After some work, we had
only one remaining goal to prove: the content of the polynomial g corre-
sponding to the short vector is not divisible by the chosen prime p. How-
ever, we were unable to figure out how to discharge this goal and then also
started to search for inputs where the algorithm delivers wrong results. Af-
ter a while we realized that Algorithm 16.22 indeed has a serious flaw as
demonstrated in the upcoming example.

Example 1 Consider the square-free and content-free polynomial f = (1+
x) · (1 + x+ x3). Then according to Algorithm 16.22 we determine

• the prime p = 2

• the exponent l = 61
(our new formalized algorithm uses a tighter bound which results in
l = 41)

• the leading coefficient b = 1

• the value B = 96

• the factorization mod p via h1 = 1 + x, h2 = 1 + x+ x3

3



• the factorization mod pl via g1 = 1 + x, g2 = 1 + x+ x3

• f∗ = f , T = {1, 2}, G = ∅.

• we enter the loop and in the first iteration choose

• u = 1 + x+ x3, d = 3, j = 4

• we consider the lattice generated by (1, 1, 0, 1), (pl, 0, 0, 0), (0, pl, 0, 0),
(0, 0, pl, 0).

• now we obtain a short vector in the lattice: g∗ = (2, 2, 0, 2).
Note that g∗ has not really been computed by Algorithm 16.10, but it
satisfies the soundness criterion, i.e., it is a sufficiently short vector
in the lattice.
To see this, note that a shortest vector in the lattice is (1, 1, 0, 1).

||g∗|| = 2 ·
√
3 ≤ 2 ·

√
2 ·
√
3 = 2(j−1)/2 · ||(1, 1, 0, 1)||

So g∗ has the required precision that was assumed by the short-vector
calculation.

• the problem at this point is that p divides the content of g∗. Con-
sequently, every polynomial divides g∗ mod p. Thus in step 9 we
compute S = T , h = 1, enter the then-branch and update T = ∅,
G = G ∪ {1 + x+ x3}, f∗ = 1, b = 1.

• Then in step 10 we update G = {1 + x+ x3, 1} and finally return that
the factorization of f is (1 + x+ x3) · 1.

More details about the bug and some other wrong results presented in
the book are shown in the file Modern_Computer_Algebra_Problem.thy.

Once we realized the problem, we derived another algorithm based on
Lemma 1, which also runs in polynomial-time, and prove its soundness in
Isabelle/HOL. The corresponding Isabelle statement is as follows:

Theorem 1 (LLL Factorization Algorithm)

assumes square_free (f :: int poly)
and degree f 6= 0

and LLL_factorization f = gs

shows f = prod_list gs
and ∀gi ∈ set gs. irreducible gi

Finally, we also have been able to fix Algorithm 16.22 and provide a
formal correctness proof of the the slightly modified version. It can be seen
as an implementation of the pseudo-code factorization algorithm given by
Lenstra, Lenstra, and Lovász [3].

4



2 Factor bound

This theory extends the work about factor bounds which was carried out in
the Berlekamp-Zassenhaus development.
theory Factor-Bound-2
imports Berlekamp-Zassenhaus.Factor-Bound

LLL-Basis-Reduction.Norms
begin

lemma norm-1-bound-mignotte: norm1 f ≤ 2^(degree f ) ∗ mahler-measure f
〈proof 〉

lemma mahler-measure-l2norm: mahler-measure f ≤ sqrt (of-int ‖f ‖2)
〈proof 〉

lemma sq-norm-factor-bound:
fixes f h :: int poly
assumes dvd: h dvd f and f0 : f 6= 0
shows ‖h‖2 ≤ 2 ^ (2 ∗ degree h) ∗ ‖f ‖2
〈proof 〉

end

3 Executable dvdm operation

This theory contains some results about division of integer polynomials
which are not part of Polynomial_Factorization.Dvd_Int_Poly.thy.
Essentially, we give an executable implementation of division modulo m.
theory Missing-Dvd-Int-Poly
imports

Berlekamp-Zassenhaus.Poly-Mod-Finite-Field
Berlekamp-Zassenhaus.Polynomial-Record-Based
Berlekamp-Zassenhaus.Hensel-Lifting
Subresultants.Subresultant
Perron-Frobenius.Cancel-Card-Constraint

begin

lemma degree-div-mod-smult:
fixes g::int poly
assumes g: degree g < j
and r : degree r < d
and u: degree u = d
and g1 : g = q ∗ u + smult m r
and q: q 6= 0 and m-not0 : m 6= 0

shows degree q < j − d
〈proof 〉

5



3.1 Uniqueness of division algorithm for polynomials
lemma uniqueness-algorithm-division-poly:

fixes f :: ′a::{comm-ring,semiring-1-no-zero-divisors} poly
assumes f1 : f = g ∗ q1 + r1

and f2 : f = g ∗ q2 + r2
and g: g 6= 0
and r1 : r1 = 0 ∨ degree r1 < degree g
and r2 : r2 = 0 ∨ degree r2 < degree g

shows q1 = q2 ∧ r1 = r2
〈proof 〉

lemma pdivmod-eq-pdivmod-monic:
assumes g: monic g
shows pdivmod f g = pdivmod-monic f g
〈proof 〉

context poly-mod
begin

definition pdivmod2 f g = (if Mp g = 0 then (0 , f )
else let ilc = inverse-p m ((lead-coeff (Mp g)));

h = Polynomial.smult ilc (Mp g); (q, r) = pseudo-divmod (Mp f ) (Mp h)
in (Polynomial.smult ilc q, r))

end

context poly-mod-prime-type
begin

lemma dvdm-iff-pdivmod0 :
assumes f : (F :: ′a mod-ring poly) = of-int-poly f
and g: (G :: ′a mod-ring poly) = of-int-poly g
shows g dvdm f = (snd (pdivmod F G) = 0 )
〈proof 〉

lemma of-int-poly-Mp-0 [simp]: (of-int-poly (Mp a) = (0 :: ′a mod-ring poly)) =
(Mp a = 0 )
〈proof 〉

lemma uniqueness-algorithm-division-of-int-poly:
assumes g0 : Mp g 6= 0
and f : (F :: ′a mod-ring poly) = of-int-poly f
and g: (G :: ′a mod-ring poly) = of-int-poly g
and F : F = G ∗ Q + R
and R: R = 0 ∨ degree R < degree G
and Mp-f : Mp f = Mp g ∗ q + r
and r : r = 0 ∨ degree r < degree (Mp g)

shows Q = of-int-poly q ∧ R = of-int-poly r
〈proof 〉

6



corollary uniqueness-algorithm-division-to-int-poly:
assumes g0 : Mp g 6= 0
and f : (F :: ′a mod-ring poly) = of-int-poly f
and g: (G :: ′a mod-ring poly) = of-int-poly g
and F : F = G ∗ Q + R
and R: R = 0 ∨ degree R < degree G
and Mp-f : Mp f = Mp g ∗ q + r
and r : r = 0 ∨ degree r < degree (Mp g)
shows Mp q = to-int-poly Q ∧ Mp r = to-int-poly R
〈proof 〉

lemma uniqueness-algorithm-division-Mp-Rel:
assumes monic-Mpg: monic (Mp g)

and f : (F :: ′a mod-ring poly) = of-int-poly f
and g: (G :: ′a mod-ring poly) = of-int-poly g
and qr : pseudo-divmod (Mp f ) (Mp g) = (q,r)
and QR: pseudo-divmod F G = (Q,R)

shows MP-Rel q Q ∧ MP-Rel r R
〈proof 〉

definition MP-Rel-Pair A B ≡ (let (a,b) = A; (c,d) = B in MP-Rel a c ∧ MP-Rel
b d)

lemma pdivmod2-rel[transfer-rule]:
(MP-Rel ===> MP-Rel ===> MP-Rel-Pair) (pdivmod2 ) (pdivmod)
〈proof 〉

3.2 Executable division operation modulo m for polynomials
lemma dvdm-iff-Mp-pdivmod2 :

shows g dvdm f = (Mp (snd (pdivmod2 f g)) = 0 )
〈proof 〉

end

lemmas (in poly-mod-prime) dvdm-pdivmod = poly-mod-prime-type.dvdm-iff-Mp-pdivmod2
[unfolded poly-mod-type-simps, internalize-sort ′a :: prime-card, OF type-to-set,
unfolded remove-duplicate-premise, cancel-type-definition, OF non-empty]

lemma (in poly-mod) dvdm-code:
g dvdm f = (if prime m then Mp (snd (pdivmod2 f g)) = 0
else Code.abort (STR ′′dvdm error : m is not a prime number ′′) (λ -. g dvdm f ))
〈proof 〉

declare poly-mod.pdivmod2-def [code]
declare poly-mod.dvdm-code[code]

end

7



4 The LLL factorization algorithm

This theory contains an implementation of a polynomial time factorization
algorithm. It first constructs a modular factorization. Afterwards it recur-
sively invokes the LLL basis reduction algorithm on one lattice to either
split a polynomial into two non-trivial factors, or to deduce irreducibility.
theory LLL-Factorization-Impl

imports LLL-Basis-Reduction.LLL-Certification
Factor-Bound-2
Missing-Dvd-Int-Poly
Berlekamp-Zassenhaus.Berlekamp-Zassenhaus

begin

hide-const (open) up-ring.coeff up-ring.monom
Unique-Factorization.factors Divisibility.factors
Unique-Factorization.factor Divisibility.factor
Divisibility.prime

definition factorization-lattice where factorization-lattice u k m ≡
map (λi. vec-of-poly-n (u ∗ monom 1 i) (degree u + k)) [k>..0 ] @
map (λi. vec-of-poly-n (monom m i) (degree u + k)) [degree u >..0 ]

fun min-degree-poly :: int poly ⇒ int poly ⇒ int poly
where min-degree-poly a b = (if degree a ≤ degree b then a else b)

fun choose-u :: int poly list ⇒ int poly
where choose-u [] = undefined
| choose-u [gi] = gi
| choose-u (gi # gj # gs) = min-degree-poly gi (choose-u (gj # gs))

lemma factorization-lattice-code[code]: factorization-lattice u k m = (
let n = degree u in

map
(λi. vec-of-poly-n (monom-mult i u) (n+k)) [k>..0 ]
@ map (λi. vec-of-poly-n (monom m i) (n+k)) [n>..0 ]

) 〈proof 〉

Optimization: directly try to minimize coefficients of polynomial u.
definition LLL-short-polynomial where
LLL-short-polynomial pl n u = poly-of-vec (short-vector-hybrid 2 (factorization-lattice

(poly-mod.inv-Mp pl (poly-mod.Mp pl u)) (n − degree u) pl))

locale LLL-implementation =
fixes p pl :: int

8



begin

function LLL-many-reconstruction where
LLL-many-reconstruction f us = (let

d = degree f ;
d2 = d div 2 ;
f2-opt = find-map-filter

(λ u. gcd f (LLL-short-polynomial pl (Suc d2 ) u))
(λ f2 . let deg = degree f2 in deg > 0 ∧ deg < d)
(filter (λ u. degree u ≤ d2 ) us)

in case f2-opt of None ⇒ [f ]
| Some f2 ⇒ let f1 = f div f2 ;

(us1 , us2 ) = List.partition (λ gi. poly-mod.dvdm p gi f1 ) us
in LLL-many-reconstruction f1 us1 @ LLL-many-reconstruction f2 us2 )

〈proof 〉

termination
〈proof 〉

function LLL-reconstruction where
LLL-reconstruction f us = (let

d = degree f ;
u = choose-u us;
g = LLL-short-polynomial pl d u;
f2 = gcd f g;
deg = degree f2

in if deg = 0 ∨ deg ≥ d then [f ]
else let f1 = f div f2 ;
(us1 , us2 ) = List.partition (λ gi. poly-mod.dvdm p gi f1 ) us
in LLL-reconstruction f1 us1 @ LLL-reconstruction f2 us2 )

〈proof 〉

termination
〈proof 〉
end

declare LLL-implementation.LLL-reconstruction.simps[code]
declare LLL-implementation.LLL-many-reconstruction.simps[code]

definition LLL-factorization :: int poly ⇒ int poly list where
LLL-factorization f = (let

— find suitable prime
p = suitable-prime-bz f ;
— compute finite field factorization
(-, fs) = finite-field-factorization-int p f ;
— determine exponent l and B
n = degree f ;
no = ‖f ‖2;
B = sqrt-int-ceiling (2^(5 ∗ (n − 1 ) ∗ (n − 1 )) ∗ no^(2 ∗ (n − 1 )));

9



l = find-exponent p B;
— perform hensel lifting to lift factorization to mod pl

us = hensel-lifting p l f fs;
— reconstruct integer factors via LLL algorithm
pl = p^l

in LLL-implementation.LLL-reconstruction p pl f us)

definition LLL-many-factorization :: int poly ⇒ int poly list where
LLL-many-factorization f = (let

— find suitable prime
p = suitable-prime-bz f ;
— compute finite field factorization
(-, fs) = finite-field-factorization-int p f ;
— determine exponent l and B
n = degree f ;
no = ‖f ‖2;
B = sqrt-int-ceiling (2^(5 ∗ (n div 2 ) ∗ (n div 2 )) ∗ no^(2 ∗ (n div 2 )));
l = find-exponent p B;
— perform hensel lifting to lift factorization to mod pl

us = hensel-lifting p l f fs;
— reconstruct integer factors via LLL algorithm
pl = p^l

in LLL-implementation.LLL-many-reconstruction p pl f us)

end

5 Correctness of the LLL factorization algorithm

This theory connects short vectors of lattices and factors of polynomials.
From this connection, we derive soundness of the lattice based factorization
algorithm.
theory LLL-Factorization

imports
LLL-Factorization-Impl
Berlekamp-Zassenhaus.Factorize-Int-Poly

begin

5.1 Basic facts about the auxiliary functions
hide-const (open) module.smult

lemma nth-factorization-lattice:
fixes u and d
defines n ≡ degree u
assumes i < n + d
shows factorization-lattice u d m ! i =
vec-of-poly-n (if i < d then u ∗ monom 1 (d − Suc i) else monom m (n+d−Suc

i)) (n+d)

10



〈proof 〉

lemma length-factorization-lattice[simp]:
shows length (factorization-lattice u d m) = degree u + d
〈proof 〉

lemma dim-factorization-lattice:
assumes x < degree u + d
shows dim-vec (factorization-lattice u d m ! x) = degree u + d
〈proof 〉

lemma dim-factorization-lattice-element:
assumes x ∈ set (factorization-lattice u d m) shows dim-vec x = degree u + d
〈proof 〉

lemma set-factorization-lattice-in-carrier [simp]: set (factorization-lattice u d m)
⊆ carrier-vec (degree u + d)
〈proof 〉

lemma choose-u-Cons: choose-u (x#xs) =
(if xs = [] then x else min-degree-poly x (choose-u xs))
〈proof 〉

lemma choose-u-member : xs 6= [] =⇒ choose-u xs ∈ set xs
〈proof 〉

declare choose-u.simps[simp del]

5.2 Facts about Sylvester matrices and norms
lemma (in LLL) lattice-is-span [simp]: lattice-of xs = span-list xs
〈proof 〉

lemma sq-norm-row-sylvester-mat1 :
fixes f g :: ′a :: conjugatable-ring poly
assumes i: i < degree g
shows ‖(row (sylvester-mat f g) i)‖2 = ‖f ‖2
〈proof 〉

lemma sq-norm-row-sylvester-mat2 :
fixes f g :: ′a :: conjugatable-ring poly
assumes i1 : degree g ≤ i and i2 : i < degree f + degree g
shows ‖row (sylvester-mat f g) i‖2 = ‖g‖2
〈proof 〉

lemma Hadamard ′s-inequality-int:
fixes A::int mat
assumes A: A ∈ carrier-mat n n

11



shows |det A| ≤ sqrt (of-int (prod-list (map sq-norm (rows A))))
〈proof 〉

lemma resultant-le-prod-sq-norm:
fixes f g::int poly
defines n ≡ degree f and k ≡ degree g
shows |resultant f g| ≤ sqrt (of-int (‖f ‖2^k ∗ ‖g‖2^n))
〈proof 〉

5.3 Proof of the key lemma 16.20
lemma common-factor-via-short:

fixes f g u :: int poly
defines n ≡ degree f and k ≡ degree g
assumes n0 : n > 0 and k0 : k > 0

and monic: monic u and deg-u: degree u > 0
and uf : poly-mod.dvdm m u f and ug: poly-mod.dvdm m u g
and short: ‖f ‖2^k ∗ ‖g‖2^n < m2

and m: m ≥ 0
shows degree (gcd f g) > 0

〈proof 〉

5.4 Properties of the computed lattice and its connection
with Sylvester matrices

lemma factorization-lattice-as-sylvester :
fixes p :: ′a :: semidom poly
assumes dj: d ≤ j and d: degree p = d
shows mat-of-rows j (factorization-lattice p (j−d) m) = sylvester-mat-sub d

(j−d) p [:m:]
〈proof 〉

context inj-comm-semiring-hom begin

lemma map-poly-hom-mult-monom [hom-distribs]:
map-poly hom (p ∗ monom a n) = map-poly hom p ∗ monom (hom a) n
〈proof 〉

lemma hom-vec-of-poly-n [hom-distribs]:
map-vec hom (vec-of-poly-n p n) = vec-of-poly-n (map-poly hom p) n
〈proof 〉

lemma hom-factorization-lattice [hom-distribs]:
shows map (map-vec hom) (factorization-lattice u k m) = factorization-lattice

(map-poly hom u) k (hom m)
〈proof 〉

end

12



5.5 Proving that factorization-lattice returns a basis of the lat-
tice

context LLL
begin

sublocale idom-vec n TYPE(int)〈proof 〉

lemma upper-triangular-factorization-lattice:
fixes u :: ′a :: semidom poly and d :: nat
assumes d: d ≤ n and du: d = degree u
shows upper-triangular (mat-of-rows n (factorization-lattice u (n−d) k))
(is upper-triangular ?M )

〈proof 〉

lemma factorization-lattice-diag-nonzero:
fixes u :: ′a :: semidom poly and d
assumes d: d=degree u

and dn: d≤n
and u: u 6=0
and m0 : k 6=0
and i: i<n

shows (factorization-lattice u (n−d) k) ! i $ i 6= 0
〈proof 〉

corollary factorization-lattice-diag-nonzero-RAT : fixes d
assumes d=degree u

and d≤n
and u 6=0
and k 6=0
and i<n

shows RAT (factorization-lattice u (n−d) k) ! i $ i 6= 0
〈proof 〉

sublocale gs: vec-space TYPE(rat) n〈proof 〉

lemma lin-indpt-list-factorization-lattice: fixes d
assumes d: d = degree u and dn: d ≤ n and u: u 6= 0 and k: k 6= 0
shows gs.lin-indpt-list (RAT (factorization-lattice u (n−d) k)) (is gs.lin-indpt-list

(RAT ?vs))
〈proof 〉

end

5.6 Being in the lattice is being a multiple modulo
lemma (in semiring-hom) hom-poly-of-vec: map-poly hom (poly-of-vec v) = poly-of-vec
(map-vec hom v)
〈proof 〉

13



abbreviation of-int-vec ≡ map-vec of-int

context LLL
begin

lemma lincomb-to-dvd-modulo:
fixes u d
defines d ≡ degree u
assumes d: d ≤ n

and lincomb: lincomb-list c (factorization-lattice u (n−d) k) = g (is ?l = ?r)
shows poly-mod.dvdm k u (poly-of-vec g)
〈proof 〉

lemma dvd-modulo-to-lincomb:
fixes u :: int poly and d
defines d ≡ degree u
assumes d: d < n

and dvd: poly-mod.dvdm k u (poly-of-vec g)
and k-not0 : k 6=0
and monic-u: monic u
and dim-g: dim-vec g = n
and deg-u: degree u > 0

shows ∃ c. lincomb-list c (factorization-lattice u (n−d) k) = g
〈proof 〉

The factorization lattice precisely characterises the polynomials of a certain
degree which divide u modulo M .
lemma factorization-lattice: fixes M assumes

deg-u: degree u 6= 0 and M : M 6= 0
shows degree u ≤ n =⇒ n 6= 0 =⇒ f ∈ poly-of-vec ‘ lattice-of (factorization-lattice
u (n − degree u) M ) =⇒

degree f < n ∧ poly-mod.dvdm M u f
monic u =⇒ degree u < n =⇒
degree f < n =⇒ poly-mod.dvdm M u f =⇒ f ∈ poly-of-vec ‘ lattice-of (factorization-lattice

u (n − degree u) M )
〈proof 〉
end

5.7 Soundness of the LLL factorization algorithm
lemma LLL-short-polynomial: assumes deg-u-0 : degree u 6= 0 and deg-le: degree
u ≤ n

and pl1 : pl > 1
and monic: monic u

shows degree (LLL-short-polynomial pl n u) < n
and LLL-short-polynomial pl n u 6= 0
and poly-mod.dvdm pl u (LLL-short-polynomial pl n u)

14



and degree u < n =⇒ f 6= 0 =⇒
poly-mod.dvdm pl u f =⇒ degree f < n =⇒ ‖LLL-short-polynomial pl n u‖2 ≤

2 ^ (n − 1 ) ∗ ‖f ‖2
〈proof 〉

context LLL-implementation
begin

lemma LLL-reconstruction: assumes LLL-reconstruction f us = fs
and degree f 6= 0
and poly-mod.unique-factorization-m pl f (lead-coeff f , mset us)
and f dvd F
and

∧
ui. ui ∈ set us =⇒ poly-mod.Mp pl ui = ui

and F0 : F 6= 0
and cop: coprime (lead-coeff F) p
and sf : poly-mod.square-free-m p F
and pl1 : pl > 1
and plp: pl = p^l
and p: prime p
and large: 2^(5 ∗ (degree F − 1 ) ∗ (degree F − 1 )) ∗ ‖F‖2^(2 ∗ (degree F −

1 )) < pl2
shows f = prod-list fs ∧ (∀ fi ∈ set fs. irreducibled fi)
〈proof 〉

lemma LLL-many-reconstruction: assumes LLL-many-reconstruction f us = fs
and degree f 6= 0
and poly-mod.unique-factorization-m pl f (lead-coeff f , mset us)
and f dvd F
and

∧
ui. ui ∈ set us =⇒ poly-mod.Mp pl ui = ui

and F0 : F 6= 0
and cop: coprime (lead-coeff F) p
and sf : poly-mod.square-free-m p F
and pl1 : pl > 1
and plp: pl = p^l
and p: prime p
and large: 2^(5 ∗ (degree F div 2 ) ∗ (degree F div 2 )) ∗ ‖F‖2^(2 ∗ (degree F div

2 )) < pl2
shows f = prod-list fs ∧ (∀ fi ∈ set fs. irreducibled fi)
〈proof 〉

end

lemma LLL-factorization:
assumes res: LLL-factorization f = gs
and sff : square-free f
and deg: degree f 6= 0
shows f = prod-list gs ∧ (∀ g∈set gs. irreducibled g)
〈proof 〉

15



lemma LLL-many-factorization:
assumes res: LLL-many-factorization f = gs
and sff : square-free f
and deg: degree f 6= 0
shows f = prod-list gs ∧ (∀ g∈set gs. irreducibled g)
〈proof 〉

lift-definition one-lattice-LLL-factorization :: int-poly-factorization-algorithm
is LLL-factorization 〈proof 〉

lift-definition many-lattice-LLL-factorization :: int-poly-factorization-algorithm
is LLL-many-factorization 〈proof 〉

lemma LLL-factorization-primitive: assumes LLL-factorization f = fs
square-free f
0 < degree f
primitive f

shows f = prod-list fs ∧ (∀fi∈set fs. irreducible fi ∧ 0 < degree fi ∧ primitive fi)
〈proof 〉

thm factorize-int-poly[of one-lattice-LLL-factorization]
thm factorize-int-poly[of many-lattice-LLL-factorization]
end

6 Calculating All Possible Sums of Sub-Multisets
theory Sub-Sums

imports
Main
HOL−Library.Multiset

begin

fun sub-mset-sums :: ′a :: comm-monoid-add list ⇒ ′a set where
sub-mset-sums [] = {0}
| sub-mset-sums (x # xs) = (let S = sub-mset-sums xs in S ∪ ( (+) x) ‘ S)

lemma subset-add-mset: ys ⊆# add-mset x zs ←→ (ys ⊆# zs ∨ (∃ xs. xs ⊆# zs
∧ ys = add-mset x xs))
(is ?l = ?r)
〈proof 〉

lemma sub-mset-sums[simp]: sub-mset-sums xs = sum-mset ‘ { ys. ys ⊆# mset xs
}
〈proof 〉

end

16



7 Implementation and soundness of a modified ver-
sion of Algorithm 16.22

Algorithm 16.22 is quite similar to the LLL factorization algorithm that was
verified in the previous section. Its main difference is that it has an inner
loop where each inner loop iteration has one invocation of the LLL basis
reduction algorithm. Algorithm 16.22 of the textbook is therefore closer
to the factorization algorithm as it is described by Lenstra, Lenstra, and
Lovász [3], which also uses an inner loop.
The advantage of the inner loop is that it can find factors earlier, and then
small lattices suffice where without the inner loop one invokes the basis
reduction algorithm on a large lattice. The disadvantage of the inner loop
is that if the input is irreducible, then one cannot find any factor early, so
that all but the last iteration have been useless: only the last iteration will
prove irreducibility.

We will describe the modifications w.r.t. the original Algorithm 16.22 of the
textbook later in this theory.
theory Factorization-Algorithm-16-22

imports
LLL-Factorization
Sub-Sums

begin

7.1 Previous lemmas obtained using local type definitions
context poly-mod-prime-type
begin

lemma irreducible-m-dvdm-prod-list-connect:
assumes irr : irreducible-m a
and dvd: a dvdm (prod-list xs)

shows ∃ b ∈ set xs. a dvdm b
〈proof 〉

end

lemma (in poly-mod-prime) irreducible-m-dvdm-prod-list:
assumes irr : irreducible-m a
and dvd: a dvdm (prod-list xs)
shows ∃ b ∈ set xs. a dvdm b
〈proof 〉

7.2 The modified version of Algorithm 16.22
definition B2-LLL :: int poly ⇒ int where

B2-LLL f = 2 ^ (2 ∗ degree f ) ∗ ‖f ‖2

17



hide-const (open) factors
hide-const (open) factors
hide-const (open) factor
hide-const (open) factor

context
fixes p :: int and l :: nat

begin

context
fixes gs :: int poly list

and f :: int poly
and u :: int poly
and Degs :: nat set

begin

This is the critical inner loop.
In the textbook there is a bug, namely that the filter is applied to g′ and not
to the primitive part of g′. (Problems occur if the content of g′ is divisible
by p.) We have fixed this problem in the obvious way.
However, there also is a second problem, namely it is only guaranteed that
g′ is divisible by u modulo pl. However, for soundness we need to know
that then also the primitive part of g′ is divisible by u modulo pl. This is
not necessary true, e.g., if g′ = pl, then the primitive part is 1 which is not
divisible by u modulo pl. It is open, whether such a large g′ can actually
occur. Therefore, the current fix is to manually test whether the leading
coefficient of g′ is strictly smaller than pl.
With these two modifications, Algorithm 16.22 will become sound as proven
below.
definition LLL-reconstruction-inner j ≡

let j ′ = j − 1 in
— optimization: check whether degree j’ is possible
if j ′ /∈ Degs then None else
— short vector computation
let

ll = (let n = sqrt-int-ceiling (‖f ‖2 ^ (2 ∗ j ′) ∗ 2 ^ (5 ∗ j ′ ∗ j ′));
ll ′ = find-exponent p n in if ll ′ < l then ll ′ else l);

— optimization: dynamically adjust the modulus
pl = p^ll;
g ′ = LLL-short-polynomial pl j u

— fix: forbid multiples of pl as short vector, unclear whether this is really required
in if abs (lead-coeff g ′) ≥ pl then None else
let ppg = primitive-part g ′

in
— slight deviation from textbook: we check divisibility instead of norm-inequality
case div-int-poly f ppg of Some f ′⇒

18



— fix: consider modular factors of ppg and not of g’
Some (filter (λgi. ¬ poly-mod.dvdm p gi ppg) gs, lead-coeff f ′, f ′, ppg)
| None ⇒ None

function LLL-reconstruction-inner-loop where
LLL-reconstruction-inner-loop j =
(if j > degree f then ([],1 ,1 ,f )
else case LLL-reconstruction-inner j

of Some tuple ⇒ tuple
| None ⇒ LLL-reconstruction-inner-loop (j+1 ))

〈proof 〉
termination 〈proof 〉

end

partial-function (tailrec) LLL-reconstruction ′′ where [code]:
LLL-reconstruction ′′ gs b f factors =
(if gs = [] then factors
else

let u = choose-u gs;
d = degree u;
gs ′ = remove1 u gs;
degs = map degree gs ′;
Degs = ((+) d) ‘ sub-mset-sums degs;
(gs ′, b ′, f ′, factor) = LLL-reconstruction-inner-loop gs f u Degs (d+1 )

in LLL-reconstruction ′′ gs ′ b ′ f ′ (factor#factors)
)

definition reconstruction-of-algorithm-16-22 gs f ≡
let G = [];

b = lead-coeff f
in LLL-reconstruction ′′ gs b f G

end

definition factorization-algorithm-16-22 :: int poly ⇒ int poly list where
factorization-algorithm-16-22 f = (let

— find suitable prime
p = suitable-prime-bz f ;
— compute finite field factorization
(-, fs) = finite-field-factorization-int p f ;
— determine l and B
n = degree f ;
— bound improved according to textbook, which uses no = (n + 1) ∗ (max −

normf)2

no = ‖f ‖2;
— possible improvement: B = sqrt(25∗n∗(n−1) ∗ no2∗n−1, cf. LLL-factorization

19



B = sqrt-int-ceiling (2 ^ (5 ∗ n ∗ n) ∗ no ^ (2 ∗ n));
l = find-exponent p B;
— perform hensel lifting to lift factorization to mod pl

vs = hensel-lifting p l f fs
— reconstruct integer factors

in reconstruction-of-algorithm-16-22 p l vs f )

7.3 Soundness proof
7.3.1 Starting the proof

Key lemma to show that forbidding values of pl or larger suffices to find
correct factors.
lemma (in poly-mod-prime) Mp-smult-p-removal: poly-mod.Mp (p ∗ p ^ k) (smult
p f ) = 0 =⇒ poly-mod.Mp (p^k) f = 0
〈proof 〉

lemma (in poly-mod-prime) eq-m-smult-p-removal: poly-mod.eq-m (p ∗ p ^ k)
(smult p f ) (smult p g)
=⇒ poly-mod.eq-m (p^k) f g 〈proof 〉

lemma content-le-lead-coeff : abs (content (f :: int poly)) ≤ abs (lead-coeff f )
〈proof 〉

lemma poly-mod-dvd-drop-smult: assumes u: monic u and p: prime p and c: c
6= 0 |c| < p^l

and dvd: poly-mod.dvdm (p^l) u (smult c f )
shows poly-mod.dvdm p u f
〈proof 〉

context
fixes p :: int

and F :: int poly
and N :: nat
and l :: nat

defines [simp]: N ≡ degree F
assumes p: prime p

and N0 : N > 0
and bound-l: 2 ^ N 2 ∗ B2-LLL F ^ (2 ∗ N ) ≤ (p^l)2

begin

private lemma F0 : F 6=0 〈proof 〉 lemma p1 : p > 1 〈proof 〉

interpretation p: poly-mod-prime p 〈proof 〉

interpretation pl: poly-mod p^l〈proof 〉

lemma B2-2 : 2 ≤ B2-LLL F
〈proof 〉

20



lemma l-gt-0 : l > 0
〈proof 〉

lemma l0 : l 6= 0 〈proof 〉

lemma pl-not0 : p ^ l 6= 0 〈proof 〉

interpretation pl: poly-mod-2 p^l
〈proof 〉 lemmas pl-dvdm-imp-p-dvdm = p.pl-dvdm-imp-p-dvdm[OF l0 ]

lemma p-Mp-pl-Mp[simp]: p.Mp (pl.Mp k) = p.Mp k
〈proof 〉

context
fixes u :: int poly

and d and f and n
and gs :: int poly list
and Degs :: nat set

defines [simp]: d ≡ degree u
assumes d0 : d > 0

and u: monic u
and irred-u: p.irreducible-m u
and u-f : p.dvdm u f
and f-dvd-F : f dvd F
and [simp]: n == degree f
and f-gs: pl.unique-factorization-m f (lead-coeff f , mset gs)
and cop: coprime (lead-coeff f ) p
and sf : p.square-free-m f
and sf-F : square-free f
and u-gs: u ∈ set gs
and norm-gs: map pl.Mp gs = gs
and Degs:

∧
factor . factor dvd f =⇒ p.dvdm u factor =⇒ degree factor ∈

Degs
begin
interpretation pl: poly-mod-2 p^l 〈proof 〉 lemma f0 : f 6= 0 〈proof 〉 lemma
Mpf0 : pl.Mp f 6= 0
〈proof 〉 lemma pMpf0 : p.Mp f 6= 0
〈proof 〉 lemma dn: d ≤ n 〈proof 〉 lemma n0 : n > 0 〈proof 〉 lemma B2-0 [intro!]:

B2-LLL F > 0 〈proof 〉 lemma deg-u: degree u > 0 〈proof 〉 lemma n-le-N : n≤N
〈proof 〉

lemma dvdm-power : assumes g dvd f
shows p.dvdm u g ←→ pl.dvdm u g
〈proof 〉 lemma uf : pl.dvdm u f 〈proof 〉

lemma exists-reconstruction: ∃ h0 . irreducibled h0 ∧ p.dvdm u h0 ∧ h0 dvd f
〈proof 〉

21



lemma factor-dvd-f-0 : assumes factor dvd f
shows pl.Mp factor 6= 0
〈proof 〉

lemma degree-factor-ge-degree-u:
assumes u-dvdm-factor : p.dvdm u factor

and factor-dvd: factor dvd f shows degree u ≤ degree factor
〈proof 〉

7.3.2 Inner loop
context

fixes j ′ :: nat
assumes dj ′: d ≤ j ′

and j ′n: j ′ < n
and deg:

∧
factor . p.dvdm u factor =⇒ factor dvd f =⇒ degree factor ≥ j ′

begin

private abbreviation (input) j ≡ Suc j ′

private lemma jn: j ≤ n 〈proof 〉 lemma factor-irreducibledI : assumes hf : h dvd
f

and puh: p.dvdm u h
and degh: degree h > 0
and degh-j: degree h ≤ j ′

shows irreducibled h
〈proof 〉 definition ll = (let n = sqrt-int-ceiling (‖f ‖2 ^ (2 ∗ j ′) ∗ 2 ^ (5 ∗ j ′ ∗
j ′));

ll ′ = find-exponent p n in if ll ′ < l then ll ′ else l)

lemma ll: ll ≤ l 〈proof 〉

lemma ll0 : ll 6= 0 〈proof 〉

lemma pll1 : p^ll > 1 〈proof 〉

interpretation pll: poly-mod-2 p^ll
〈proof 〉

lemma pll0 : p^ll 6= 0 〈proof 〉

lemma dvdm-l-ll: assumes pl.dvdm a b
shows pll.dvdm a b
〈proof 〉 definition g ≡ LLL-short-polynomial (p^ll) j u

lemma deg-g-j: degree g < j
and g0 : g 6= 0
and ug :pll.dvdm u g
and short-g: h 6= 0 =⇒ pll.dvdm u h =⇒ degree h ≤ j ′ =⇒ ‖g‖2 ≤ 2 ^ j ′ ∗

22



‖h‖2
〈proof 〉

lemma LLL-reconstruction-inner-simps: LLL-reconstruction-inner p l gs f u Degs
j
= (if j ′ /∈ Degs then None else if p ^ ll ≤ |lead-coeff g| then None
else case div-int-poly f (primitive-part g) of None ⇒ None
| Some f ′ ⇒ Some ([gi←gs . ¬ p.dvdm gi (primitive-part g)], lead-coeff f ′,

f ′, primitive-part g))
〈proof 〉

lemma LLL-reconstruction-inner-complete:
assumes ret: LLL-reconstruction-inner p l gs f u Degs j = None
shows

∧
factor . p.dvdm u factor =⇒ factor dvd f =⇒ degree factor ≥ j

〈proof 〉

lemma LLL-reconstruction-inner-sound:
assumes ret: LLL-reconstruction-inner p l gs f u Degs j = Some (gs ′,b ′,f ′,h)
shows f = f ′ ∗ h (is ?g1 )

and irreducibled h (is ?g2 )
and b ′ = lead-coeff f ′ (is ?g3 )
and pl.unique-factorization-m f ′ (lead-coeff f ′, mset gs ′) (is ?g4 )
and p.dvdm u h (is ?g5 )
and degree h = j ′ (is ?g6 )
and length gs ′ < length gs (is ?g7 )
and set gs ′ ⊆ set gs (is ?g8 )
and gs ′ 6= [] (is ?g9 )

〈proof 〉
end

interpretation LLL d 〈proof 〉

lemma LLL-reconstruction-inner-None-upt-j ′:
assumes ij: ∀ i∈{d+1 ..j}. LLL-reconstruction-inner p l gs f u Degs i = None

and dj: d<j and j≤n
shows

∧
factor . p.dvdm u factor =⇒ factor dvd f =⇒ degree factor ≥ j

〈proof 〉

corollary LLL-reconstruction-inner-None-upt-j:
assumes ij: ∀ i∈{d+1 ..j}. LLL-reconstruction-inner p l gs f u Degs i = None

and dj: d≤j and jn: j≤n
shows

∧
factor . p.dvdm u factor =⇒ factor dvd f =⇒ degree factor ≥ j

〈proof 〉

lemma LLL-reconstruction-inner-all-None-imp-irreducible:
assumes i: ∀ i∈{d+1 ..n}. LLL-reconstruction-inner p l gs f u Degs i = None
shows irreducibled f
〈proof 〉

23



lemma irreducible-imp-LLL-reconstruction-inner-all-None:
assumes irr-f : irreducibled f
shows ∀ i∈{d+1 ..n}. LLL-reconstruction-inner p l gs f u Degs i = None
〈proof 〉

lemma LLL-reconstruction-inner-all-None:
assumes i: ∀ i∈{d+1 ..n}. LLL-reconstruction-inner p l gs f u Degs i = None
and dj: d<j

shows LLL-reconstruction-inner-loop p l gs f u Degs j = ([],1 ,1 ,f )
〈proof 〉

corollary irreducible-imp-LLL-reconstruction-inner-loop-f :
assumes irr-f : irreducibled f and dj: d<j

shows LLL-reconstruction-inner-loop p l gs f u Degs j = ([],1 ,1 ,f )
〈proof 〉

lemma exists-index-LLL-reconstruction-inner-Some:
assumes inner-loop: LLL-reconstruction-inner-loop p l gs f u Degs j = (gs ′,b ′,f ′,factor)

and i: ∀ i∈{d+1 ..<j}. LLL-reconstruction-inner p l gs f u Degs i = None
and dj: d<j and jn: j≤n and f : ¬ irreducibled f

shows ∃ j ′. j ≤ j ′ ∧ j ′≤n ∧ d<j ′
∧ (LLL-reconstruction-inner p l gs f u Degs j ′ = Some (gs ′, b ′, f ′, factor))
∧ (∀ i∈{d+1 ..<j ′}. LLL-reconstruction-inner p l gs f u Degs i = None)
〈proof 〉

lemma unique-factorization-m-1 : pl.unique-factorization-m 1 (1 , {#})
〈proof 〉

lemma LLL-reconstruction-inner-loop-j-le-n:
assumes ret: LLL-reconstruction-inner-loop p l gs f u Degs j = (gs ′,b ′,f ′,factor)

and ij: ∀ i∈{d+1 ..<j}. LLL-reconstruction-inner p l gs f u Degs i = None
and n: n = degree f
and jn: j ≤ n
and dj: d < j

shows f = f ′ ∗ factor (is ?g1 )
and irreducibled factor (is ?g2 )
and b ′ = lead-coeff f ′ (is ?g3 )
and pl.unique-factorization-m f ′ (b ′, mset gs ′) (is ?g4 )
and p.dvdm u factor (is ?g5 )
and gs 6= [] −→ length gs ′ < length gs (is ?g6 )
and factor dvd f (is ?g7 )
and f ′ dvd f (is ?g8 )
and set gs ′ ⊆ set gs (is ?g9 )
and gs ′ = [] −→ f ′ = 1 (is ?g10 )
〈proof 〉

lemma LLL-reconstruction-inner-loop-j-ge-n:
assumes ret: LLL-reconstruction-inner-loop p l gs f u Degs j = (gs ′,b ′,f ′,factor)

24



and ij: ∀ i∈{d+1 ..n}. LLL-reconstruction-inner p l gs f u Degs i = None
and dj: d < j
and jn: j>n

shows f = f ′ ∗ factor (is ?g1 )
and irreducibled factor (is ?g2 )
and b ′ = lead-coeff f ′ (is ?g3 )
and pl.unique-factorization-m f ′ (b ′, mset gs ′) (is ?g4 )
and p.dvdm u factor (is ?g5 )
and gs 6= [] −→ length gs ′ < length gs (is ?g6 )
and factor dvd f (is ?g7 )
and f ′ dvd f (is ?g8 )
and set gs ′ ⊆ set gs (is ?g9 )
and f ′ = 1 (is ?g10 )

〈proof 〉

lemma LLL-reconstruction-inner-loop:
assumes ret: LLL-reconstruction-inner-loop p l gs f u Degs j = (gs ′,b ′,f ′,factor)

and ij: ∀ i∈{d+1 ..<j}. LLL-reconstruction-inner p l gs f u Degs i = None
and n: n = degree f
and dj: d < j

shows f = f ′ ∗ factor (is ?g1 )
and irreducibled factor (is ?g2 )
and b ′ = lead-coeff f ′ (is ?g3 )
and pl.unique-factorization-m f ′ (b ′, mset gs ′) (is ?g4 )
and p.dvdm u factor (is ?g5 )
and gs 6= [] −→ length gs ′ < length gs (is ?g6 )
and factor dvd f (is ?g7 )
and f ′ dvd f (is ?g8 )
and set gs ′ ⊆ set gs (is ?g9 )
and gs ′ = [] −→ f ′ = 1 (is ?g10 )

〈proof 〉
end

7.3.3 Outer loop
lemma LLL-reconstruction ′′:

assumes 1 : LLL-reconstruction ′′ p l gs b f G = G ′

and irreducible-G:
∧

factor . factor ∈ set G =⇒ irreducibled factor
and 3 : F = f ∗ prod-list G
and 4 : pl.unique-factorization-m f (lead-coeff f , mset gs)
and 5 : gs 6= []
and 6 :

∧
gi. gi ∈ set gs =⇒ pl.Mp gi = gi

and 7 :
∧

gi. gi ∈ set gs =⇒ p.irreducibled-m gi
and 8 : p.square-free-m f
and 9 : coprime (lead-coeff f ) p
and sf-F : square-free F

shows (∀ g ∈ set G ′. irreducibled g) ∧ F = prod-list G ′

〈proof 〉

25



context
fixes gs :: int poly list
assumes gs-hen: berlekamp-hensel p l F = gs
and cop: coprime (lead-coeff F) p
and sf : poly-mod.square-free-m p F
and sf-F : square-free F

begin

lemma gs-not-empty: gs 6= []
〈proof 〉

lemma reconstruction-of-algorithm-16-22 :
assumes 1 : reconstruction-of-algorithm-16-22 p l gs F = G
shows (∀ g∈set G. irreducibled g) ∧ F = prod-list G
〈proof 〉
end
end

7.3.4 Final statement
lemma factorization-algorithm-16-22 :

assumes res: factorization-algorithm-16-22 f = G
and sff : square-free f
and deg: degree f > 0
shows (∀ g∈set G. irreducibled g) ∧ f = prod-list G
〈proof 〉

lift-definition increasing-lattices-LLL-factorization :: int-poly-factorization-algorithm
is factorization-algorithm-16-22 〈proof 〉

thm factorize-int-poly[of increasing-lattices-LLL-factorization]

end

8 Mistakes in the textbook Modern Computer Al-
gebra (2nd edition)

theory Modern-Computer-Algebra-Problem
imports Factorization-Algorithm-16-22

begin

fun max-degree-poly :: int poly ⇒ int poly ⇒ int poly
where max-degree-poly a b = (if degree a ≥ degree b then a else b)

fun choose-u :: int poly list ⇒ int poly
where choose-u [] = undefined
| choose-u [gi] = gi
| choose-u (gi # gj # gs) = max-degree-poly gi (choose-u (gj # gs))

26



8.1 A real problem of Algorithm 16.22

Bogus example for Modern Computer Algebra (2nd edition), Algorithm
16.22, step 9: After having detected the factor [:1 , 1 , 0 , 1 :], the remaining
polynomial f∗ will be 1, and the remaining list of modular factors will be
empty.
lemma let f = [:1 ,1 :] ∗ [:1 ,1 ,0 ,1 :];

p = suitable-prime-bz f ;
b = lead-coeff f ;
A = linf-norm-poly f ; n = degree f ; B = sqrt-int-ceiling (n+1 ) ∗ 2^n ∗ A;
Bnd = 2^(n^2 div 2 ) ∗ B^(2∗n); l = log-ceiling p Bnd;
(-, fs) = finite-field-factorization-int p f ;
gs = hensel-lifting p l f fs;
u = choose-u gs;
d = degree u;
g-star = [:2 ,2 ,0 ,2 :: int :];
(gs ′,hs ′) = List.partition (λgi. poly-mod.dvdm p gi g-star) gs;
h-star = smult b (prod-list hs ′);
f-star = primitive-part h-star

in (hs ′ = [] ∧ f-star = 1 ) 〈proof 〉

8.2 Another potential problem of Algorithm 16.22

Suppose that g∗ is pl. (It is is not yet clear whether lattices exists where
this g∗ is short enough). Then pp(g∗) = 1 is detected as irreducible factor
and the algorithm stops.
definition input-poly = [: 1 ,0 ,0 ,0 ,1 ,1 ,0 ,0 ,1 ,0 ,1 ,0 ,1 :: int :]

For input-poly the factorization will result in a lattice where each initial basis
element has a Euclidean norm of at least pl (since the input polynomial u
has a norm larger than pl.) So, just from the norm of the basis one cannot
infer that the lattice contains small vectors.
lemma let f = input-poly;

p = suitable-prime-bz f ;
b = lead-coeff f ;
A = linf-norm-poly f ; n = degree f ; B = sqrt-int-ceiling (n+1 ) ∗ 2^n ∗ A;
Bnd = 2^(n^2 div 2 ) ∗ B^(2∗n); l = log-ceiling p Bnd;
(-, fs) = finite-field-factorization-int p f ;
gs = hensel-lifting p l f fs;
u = choose-u gs;
pl = p^l;
pl2 = pl div 2 ;
u ′ = poly-mod.inv-Mp2 pl pl2 (poly-mod.Mp pl (smult b u))

in sqrt-int-floor (sq-norm u ′) > pl 〈proof 〉

The following calculation will show that the norm of g∗ is not that much
shorter than pl which is an indication that it is not obvious that in general
pl cannot be chosen as short polynomial.

27



definition compute-norms = (let f = input-poly;
p = suitable-prime-bz f ;
b = lead-coeff f ;
A = linf-norm-poly f ; n = degree f ; B = sqrt-int-ceiling (n+1 ) ∗ 2^n ∗ A;
Bnd = 2^(n^2 div 2 ) ∗ B^(2∗n); l = log-ceiling p Bnd;
(-, fs) = finite-field-factorization-int p f ;
gs = hensel-lifting p l f fs;
u = choose-u gs;
pl = p^l;
pl2 = pl div 2 ;
u ′ = poly-mod.inv-Mp2 pl pl2 (poly-mod.Mp pl (smult b u));
d = degree u;
pl = p^l;
L = factorization-lattice u ′ 1 pl;
g-star = short-vector 2 L

in (
′′p^l: ′′ @ show pl @ shows-nl [] @
′′norm u: ′′ @ show (sqrt-int-floor (sq-norm-poly u ′)) @ shows-nl [] @
′′norm g-star : ′′ @ show (sqrt-int-floor (sq-norm-vec g-star)) @ shows-nl [] @

shows-nl []
))

export-code compute-norms in Haskell

• pl:≈ 6.61056·10122, namely 661055968790248598951915308032771039828404682964281219284648795274405791236311345825189210439715284847591212025023358304256

• norm u:≈ 6.67555·10122, namely 667555058938127908386141559707490406617756492853269306735125739182352318769782701477339940304992057299993307341153235059302

• norm g-star :≈ 5.02568·10110, namely 502567871888893789258107599397950338997348731386301514804539180088146716526330518979464688385872213886910747667

8.3 Verified wrong results

An equality in example 16.24 of the textbook which is not valid.
lemma let g2 = [:−984 ,1 :];

g3 = [:−72 ,1 :];
g4 = [:−6828 ,1 :];
rhs = [:−1728 ,−840 ,−420 ,6 :]

in ¬ poly-mod.eq-m (5^6 ) (smult 6 (g2∗g3∗g4 )) (rhs) 〈proof 〉

end

References

[1] J. Divasón, S. J. C. Joosten, R. Thiemann, and A. Yamada. A formal-
ization of the Berlekamp–Zassenhaus factorization algorithm. In CPP
2017, pages 17–29. ACM, 2017.

28



[2] J. v. z. Gathen and J. Gerhard. Modern Computer Algebra. Cambridge
University Press, New York, NY, USA, 2nd edition, 2003.

[3] A. K. Lenstra, H. W. Lenstra, and L. Lovász. Factoring polynomials
with rational coefficients. Mathematische Annalen, 261:515–534, 1982.

29


	Introduction
	Factor bound
	Executable dvdm operation
	Uniqueness of division algorithm for polynomials
	Executable division operation modulo m for polynomials

	The LLL factorization algorithm
	Correctness of the LLL factorization algorithm
	Basic facts about the auxiliary functions
	Facts about Sylvester matrices and norms
	Proof of the key lemma 16.20
	Properties of the computed lattice and its connection with Sylvester matrices
	Proving that 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 factorization-lattice returns a basis of the lattice
	Being in the lattice is being a multiple modulo
	Soundness of the LLL factorization algorithm

	Calculating All Possible Sums of Sub-Multisets
	Implementation and soundness of a modified version of Algorithm 16.22
	Previous lemmas obtained using local type definitions
	The modified version of Algorithm 16.22
	Soundness proof
	Starting the proof
	Inner loop
	Outer loop
	Final statement


	Mistakes in the textbook Modern Computer Algebra (2nd edition)
	A real problem of Algorithm 16.22
	Another potential problem of Algorithm 16.22
	Verified wrong results


