
A verified factorization algorithm for integer
polynomials with polynomial complexity∗

Jose Divasón Sebastiaan Joosten René Thiemann
Akihisa Yamada

September 13, 2023

Abstract

Short vectors in lattices and factors of integer polynomials are re-
lated. Each factor of an integer polynomial belongs to a certain lattice.
When factoring polynomials, the condition that we are looking for an
irreducible polynomial means that we must look for a small element
in a lattice, which can be done by a basis reduction algorithm. In this
development we formalize this connection and thereby one main ap-
plication of the LLL basis reduction algorithm: an algorithm to factor
square-free integer polynomials which runs in polynomial time. The
work is based on our previous Berlekamp–Zassenhaus development,
where the exponential reconstruction phase has been replaced by the
polynomial-time basis reduction algorithm. Thanks to this formaliza-
tion we found a serious flaw in a textbook.

Contents
1 Introduction 2

2 Factor bound 5

3 Executable dvdm operation 6
3.1 Uniqueness of division algorithm for polynomials 7
3.2 Executable division operation modulo m for polynomials . . . 12

4 The LLL factorization algorithm 13

5 Correctness of the LLL factorization algorithm 16
5.1 Basic facts about the auxiliary functions 16
5.2 Facts about Sylvester matrices and norms 17

∗Supported by FWF (Austrian Science Fund) project Y757. Jose Divasón is partially
funded by the Spanish project MTM2017-88804-P.

1

5.3 Proof of the key lemma 16.20 21
5.4 Properties of the computed lattice and its connection with

Sylvester matrices . 22
5.5 Proving that factorization-lattice returns a basis of the lattice 23
5.6 Being in the lattice is being a multiple modulo 24
5.7 Soundness of the LLL factorization algorithm 31

6 Calculating All Possible Sums of Sub-Multisets 46

7 Implementation and soundness of a modified version of Al-
gorithm 16.22 47
7.1 Previous lemmas obtained using local type definitions 47
7.2 The modified version of Algorithm 16.22 48
7.3 Soundness proof . 50

7.3.1 Starting the proof . 50
7.3.2 Inner loop . 56
7.3.3 Outer loop . 72
7.3.4 Final statement . 77

8 Mistakes in the textbook Modern Computer Algebra (2nd
edition) 78
8.1 A real problem of Algorithm 16.22 78
8.2 Another potential problem of Algorithm 16.22 78
8.3 Verified wrong results . 80

1 Introduction
In order to factor an integer polynomial f , we may assume a modular fac-
torization of f into several monic factors ui: f ≡ lc(f) ·

∏
i ui modulo m

where m = pl is some prime power for user-specified l. In Isabelle, we just
reuse our verified modular factorization algorithm [1] to obtain the modular
factorization of f .

We briefly explain how to compute non-trivial integer factors of f . The
key is the following lemma [2, Lemma 16.20].

Lemma 1 ([2, Lemma 16.20]) Let f, g, u be non-constant integer polyno-
mials. Let u be monic. If u divides f modulo m, u divides g modulo m, and
||f ||degree(g) · ||g||degree(f) < m, then h = gcd(f, g) is non-constant.

Let f be a polynomial of degree n. Let u be any degree-d factor of f
modulo m. Now assume that f is reducible, so f = f1 · f2 where w.l.o.g.,
we assume that u divides f1 modulo m and that 0 < degree(f1) < n. Let
us further assume that a lattice Lu,k encodes the set of all polynomials of

2

degree below d + k (as vectors of length d + k) which are divisible by u
modulo m. Fix k = n− d. Then clearly, f1 ∈ Lu,k.

In order to instantiate Lemma 1, it now suffices to take g as the poly-
nomial corresponding to any short vector in Lu,k: u will divide g mod-
ulo m by definition of Lu,k and moreover degree(g) < n. The short vec-
tor requirement will provide an upper bound to satisfy the assumption
||f ||degree(g) · ||g||degree(f) < m.

||g|| ≤ 2(n−1)/2 · ||f1|| ≤ 2(n−1)/2 · 2n−1||f || = 23(n−1)/2||f || (1)
||f ||degree(g)·||g||degree(f) ≤ ||f ||n−1 · (23(n−1)/2||f ||)n = ||f ||2n−1 · 23n(n−1)/2 (2)

Here, the first inequality in (1) is the short vector approximation (f1 ∈ Lu,k).
The second inequality in (1) is Mignotte’s factor bound (f1 is a factor of f).
Finally, (1) is used as an approximation of ||g|| in (2).

Hence, if l is chosen large enough so that m = pl > ||f ||2n−1 · 23n(n−1)/2

then all preconditions of Lemma 1 are satisfied, and h = gcd(f, g) will be a
non-constant factor of f . Since the degree of h will be strictly less than n,
h is also a proper factor of f , i.e., in particular h /∈ {1, f}.

The textbook [2] also describes the general idea of the factorization algo-
rithm based on the previous lemma in prose, and then presents an algorithm
in pseudo-code which slightly extends the idea by directly splitting off ir-
reducible factors [2, Algorithm 16.22]. We initially implemented and tried to
verify this pseudo-code algorithm (see files Factorization_Algorithm_16_22.thy
and Modern_Computer_Algebra_Problem.thy). After some work, we had
only one remaining goal to prove: the content of the polynomial g corre-
sponding to the short vector is not divisible by the chosen prime p. How-
ever, we were unable to figure out how to discharge this goal and then also
started to search for inputs where the algorithm delivers wrong results. Af-
ter a while we realized that Algorithm 16.22 indeed has a serious flaw as
demonstrated in the upcoming example.

Example 1 Consider the square-free and content-free polynomial f = (1+
x) · (1 + x+ x3). Then according to Algorithm 16.22 we determine

• the prime p = 2

• the exponent l = 61
(our new formalized algorithm uses a tighter bound which results in
l = 41)

• the leading coefficient b = 1

• the value B = 96

• the factorization mod p via h1 = 1 + x, h2 = 1 + x+ x3

3

• the factorization mod pl via g1 = 1 + x, g2 = 1 + x+ x3

• f∗ = f , T = {1, 2}, G = ∅.

• we enter the loop and in the first iteration choose

• u = 1 + x+ x3, d = 3, j = 4

• we consider the lattice generated by (1, 1, 0, 1), (pl, 0, 0, 0), (0, pl, 0, 0),
(0, 0, pl, 0).

• now we obtain a short vector in the lattice: g∗ = (2, 2, 0, 2).
Note that g∗ has not really been computed by Algorithm 16.10, but it
satisfies the soundness criterion, i.e., it is a sufficiently short vector
in the lattice.
To see this, note that a shortest vector in the lattice is (1, 1, 0, 1).

||g∗|| = 2 ·
√
3 ≤ 2 ·

√
2 ·
√
3 = 2(j−1)/2 · ||(1, 1, 0, 1)||

So g∗ has the required precision that was assumed by the short-vector
calculation.

• the problem at this point is that p divides the content of g∗. Con-
sequently, every polynomial divides g∗ mod p. Thus in step 9 we
compute S = T , h = 1, enter the then-branch and update T = ∅,
G = G ∪ {1 + x+ x3}, f∗ = 1, b = 1.

• Then in step 10 we update G = {1 + x+ x3, 1} and finally return that
the factorization of f is (1 + x+ x3) · 1.

More details about the bug and some other wrong results presented in
the book are shown in the file Modern_Computer_Algebra_Problem.thy.

Once we realized the problem, we derived another algorithm based on
Lemma 1, which also runs in polynomial-time, and prove its soundness in
Isabelle/HOL. The corresponding Isabelle statement is as follows:

Theorem 1 (LLL Factorization Algorithm)

assumes square_free (f :: int poly)
and degree f 6= 0

and LLL_factorization f = gs

shows f = prod_list gs
and ∀gi ∈ set gs. irreducible gi

Finally, we also have been able to fix Algorithm 16.22 and provide a
formal correctness proof of the the slightly modified version. It can be seen
as an implementation of the pseudo-code factorization algorithm given by
Lenstra, Lenstra, and Lovász [3].

4

2 Factor bound

This theory extends the work about factor bounds which was carried out in
the Berlekamp-Zassenhaus development.
theory Factor-Bound-2
imports Berlekamp-Zassenhaus.Factor-Bound

LLL-Basis-Reduction.Norms
begin

lemma norm-1-bound-mignotte: norm1 f ≤ 2^(degree f) ∗ mahler-measure f
proof (cases f = 0)

case f0 : False
have cf : coeffs f = map (λ i. coeff f i) [0 ..< Suc(degree f)] unfolding coeffs-def

using f0 by auto
have real-of-int (sum-list (map abs (coeffs f)))
= (

∑
i≤degree f . real-of-int |poly.coeff f i|)

unfolding cf of-int-hom.hom-sum-list unfolding sum-list-sum-nth
by (rule sum.cong, force, auto simp: o-def nth-append)

also have . . . ≤ (
∑

i≤degree f . real (degree f choose i) ∗ mahler-measure f)
by (rule sum-mono, rule Mignotte-bound)

also have . . . = real (sum (λ i. (degree f choose i)) {..degree f }) ∗ mahler-measure
f

unfolding sum-distrib-right[symmetric] by auto
also have . . . = 2^(degree f) ∗ mahler-measure f unfolding choose-row-sum by

auto
finally show ?thesis unfolding norm1-def .

qed (auto simp: mahler-measure-ge-0 norm1-def)

lemma mahler-measure-l2norm: mahler-measure f ≤ sqrt (of-int ‖f ‖2)
using Landau-inequality-mahler-measure[of f] unfolding sq-norm-poly-def
by (auto simp: power2-eq-square)

lemma sq-norm-factor-bound:
fixes f h :: int poly
assumes dvd: h dvd f and f0 : f 6= 0
shows ‖h‖2 ≤ 2 ^ (2 ∗ degree h) ∗ ‖f ‖2

proof −
let ?r = real-of-int
have h21 : ?r ‖h‖2 ≤ (?r (norm1 h))^2 using norm2-le-norm1-int[of h]

by (metis of-int-le-iff of-int-power)
also have . . . ≤ (2^(degree h) ∗ mahler-measure h)^2

using power-mono[OF norm-1-bound-mignotte[of h], of 2]
by (auto simp: norm1-ge-0)

also have . . . = 2^(2 ∗ degree h) ∗ (mahler-measure h)^2
by (simp add: power-even-eq power-mult-distrib)

also have . . . ≤ 2^(2 ∗ degree h) ∗ (mahler-measure f)^2
by (rule mult-left-mono[OF power-mono], auto simp: mahler-measure-ge-0
mahler-measure-dvd[OF f0 dvd])

5

also have . . . ≤ 2^(2 ∗ degree h) ∗ ?r (‖f ‖2)
proof (rule mult-left-mono)

have ?r (‖f ‖2) ≥ 0 by auto
from real-sqrt-pow2 [OF this]
show (mahler-measure f)2 ≤ ?r (‖f ‖2)

using power-mono[OF mahler-measure-l2norm[of f], of 2]
by (auto simp: mahler-measure-ge-0)

qed auto
also have . . . = ?r (2^(2∗degree h) ∗ ‖f ‖2)

by (simp add: ac-simps)
finally show ‖h‖2 ≤ 2 ^ (2 ∗ degree h) ∗ ‖f ‖2 unfolding of-int-le-iff .

qed

end

3 Executable dvdm operation

This theory contains some results about division of integer polynomials
which are not part of Polynomial_Factorization.Dvd_Int_Poly.thy.
Essentially, we give an executable implementation of division modulo m.
theory Missing-Dvd-Int-Poly
imports

Berlekamp-Zassenhaus.Poly-Mod-Finite-Field
Berlekamp-Zassenhaus.Polynomial-Record-Based
Berlekamp-Zassenhaus.Hensel-Lifting
Subresultants.Subresultant
Perron-Frobenius.Cancel-Card-Constraint

begin

lemma degree-div-mod-smult:
fixes g::int poly
assumes g: degree g < j
and r : degree r < d
and u: degree u = d
and g1 : g = q ∗ u + smult m r
and q: q 6= 0 and m-not0 : m 6= 0

shows degree q < j − d
proof −

have u-not0 : u 6=0 using u r by auto
have d-uq: d ≤ degree (u∗q) using u degree-mult-right-le[OF q] by auto
have j: j > degree (q∗ u + smult m r) using g1 g by auto
have degree (smult m r) < d using degree-smult-eq m-not0 r by auto
also have ... ≤ degree (u∗q) using d-uq by auto
finally have deg-mr-uq: degree (smult m r) < degree (q∗u)

by (simp add: mult.commute)
have j2 : degree (q∗ u + smult m r) = degree (q∗u)

by (rule degree-add-eq-left[OF deg-mr-uq])

6

also have ... = degree q + degree u
by (rule degree-mult-eq[OF q u-not0])

finally have degree q = degree g − degree u using g1 by auto
thus ?thesis

using j j2 ‹degree (q ∗ u) = degree q + degree u› u
by linarith

qed

3.1 Uniqueness of division algorithm for polynomials
lemma uniqueness-algorithm-division-poly:

fixes f :: ′a::{comm-ring,semiring-1-no-zero-divisors} poly
assumes f1 : f = g ∗ q1 + r1

and f2 : f = g ∗ q2 + r2
and g: g 6= 0
and r1 : r1 = 0 ∨ degree r1 < degree g
and r2 : r2 = 0 ∨ degree r2 < degree g

shows q1 = q2 ∧ r1 = r2
proof −

have 0 = g ∗ q1 + r1 − (g ∗ q2 + r2) using f1 f2 by auto
also have ... = g ∗ (q1 − q2) + r1 − r2

by (simp add: right-diff-distrib)
finally have eq: g ∗ (q1 − q2) = r2 − r1 by auto
have q-eq: q1 = q2
proof (rule ccontr)

assume q1-not-q2 : q1 6= q2
hence nz: g ∗ (q1 − q2) 6= 0 using g by auto
hence degree (g ∗ (q1 − q2)) ≥ degree g

by (simp add: degree-mult-right-le)
moreover have degree (r2 − r1) < degree g

using eq nz degree-diff-less r1 r2 by auto
ultimately show False using eq by auto

qed
moreover have r1 = r2 using eq q-eq by auto
ultimately show ?thesis by simp

qed

lemma pdivmod-eq-pdivmod-monic:
assumes g: monic g
shows pdivmod f g = pdivmod-monic f g

proof −
obtain q r where qr : pdivmod f g = (q,r) by simp
obtain Q R where QR: pdivmod-monic f g = (Q,R) by (meson surj-pair)
have g0 : g 6= 0 using g by auto
have f1 : f = g ∗ q + r

by (metis Pair-inject mult-div-mod-eq qr)
have r : r=0 ∨ degree r < degree g

by (metis Pair-inject assms degree-mod-less leading-coeff-0-iff qr zero-neq-one)
have f2 : f = g ∗ Q + R

7

by (simp add: QR assms pdivmod-monic(1))
have R: R=0 ∨ degree R < degree g

by (rule pdivmod-monic[OF g QR])
have q=Q ∧ r=R by (rule uniqueness-algorithm-division-poly[OF f1 f2 g0 r R])
thus ?thesis using qr QR by auto

qed

context poly-mod
begin

definition pdivmod2 f g = (if Mp g = 0 then (0 , f)
else let ilc = inverse-p m ((lead-coeff (Mp g)));

h = Polynomial.smult ilc (Mp g); (q, r) = pseudo-divmod (Mp f) (Mp h)
in (Polynomial.smult ilc q, r))

end

context poly-mod-prime-type
begin

lemma dvdm-iff-pdivmod0 :
assumes f : (F :: ′a mod-ring poly) = of-int-poly f
and g: (G :: ′a mod-ring poly) = of-int-poly g
shows g dvdm f = (snd (pdivmod F G) = 0)

proof −
have [transfer-rule]: MP-Rel f F unfolding MP-Rel-def

by (simp add: Mp-f-representative f)
have [transfer-rule]: MP-Rel g G unfolding MP-Rel-def

by (simp add: Mp-f-representative g)
have (snd (pdivmod F G) = 0) = (G dvd F)

unfolding dvd-eq-mod-eq-0 by auto
from this [untransferred] show ?thesis by simp

qed

lemma of-int-poly-Mp-0 [simp]: (of-int-poly (Mp a) = (0 :: ′a mod-ring poly)) =
(Mp a = 0)

by (auto, metis Mp-f-representative map-poly-0 poly-mod.Mp-Mp)

lemma uniqueness-algorithm-division-of-int-poly:
assumes g0 : Mp g 6= 0
and f : (F :: ′a mod-ring poly) = of-int-poly f
and g: (G :: ′a mod-ring poly) = of-int-poly g
and F : F = G ∗ Q + R
and R: R = 0 ∨ degree R < degree G
and Mp-f : Mp f = Mp g ∗ q + r
and r : r = 0 ∨ degree r < degree (Mp g)

shows Q = of-int-poly q ∧ R = of-int-poly r
proof (rule uniqueness-algorithm-division-poly[OF F - - R])

have f ′: Mp f = to-int-poly F unfolding f
by (simp add: Mp-f-representative)

8

have g ′: Mp g = to-int-poly G unfolding g
by (simp add: Mp-f-representative)

have f ′′: of-int-poly (Mp f) = F
by (metis (no-types, lifting) Dp-Mp-eq Mp-f-representative

Mp-smult-m-0 add-cancel-left-right f map-poly-zero of-int-hom.map-poly-hom-add

to-int-mod-ring-hom.hom-zero to-int-mod-ring-hom.injectivity)
have g ′′: of-int-poly (Mp g) = G

by (metis (no-types, lifting) Dp-Mp-eq Mp-f-representative
Mp-smult-m-0 add-cancel-left-right g map-poly-zero of-int-hom.map-poly-hom-add

to-int-mod-ring-hom.hom-zero to-int-mod-ring-hom.injectivity)
have F = of-int-poly (Mp g ∗ q + r) using Mp-f f ′′ by auto
also have ... = G ∗ of-int-poly q + of-int-poly r

by (simp add: g ′′ of-int-poly-hom.hom-add of-int-poly-hom.hom-mult)
finally show F = G ∗ of-int-poly q + of-int-poly r .
show of-int-poly r = 0 ∨ degree (of-int-poly r :: ′a mod-ring poly) < degree G
proof (cases r = 0)

case True
hence of-int-poly r = 0 by auto
then show ?thesis by auto

next
case False
have degree (of-int-poly r :: ′a mod-ring poly) ≤ degree (r)
by (simp add: degree-map-poly-le)
also have ... < degree (Mp g) using r False by auto
also have ... = degree G by (simp add: g ′)
finally show ?thesis by auto

qed
show G 6= 0 using g0 unfolding g ′′[symmetric] by simp

qed

corollary uniqueness-algorithm-division-to-int-poly:
assumes g0 : Mp g 6= 0
and f : (F :: ′a mod-ring poly) = of-int-poly f
and g: (G :: ′a mod-ring poly) = of-int-poly g
and F : F = G ∗ Q + R
and R: R = 0 ∨ degree R < degree G
and Mp-f : Mp f = Mp g ∗ q + r
and r : r = 0 ∨ degree r < degree (Mp g)
shows Mp q = to-int-poly Q ∧ Mp r = to-int-poly R
using uniqueness-algorithm-division-of-int-poly[OF assms]
by (auto simp add: Mp-f-representative)

lemma uniqueness-algorithm-division-Mp-Rel:
assumes monic-Mpg: monic (Mp g)

and f : (F :: ′a mod-ring poly) = of-int-poly f
and g: (G :: ′a mod-ring poly) = of-int-poly g
and qr : pseudo-divmod (Mp f) (Mp g) = (q,r)

9

and QR: pseudo-divmod F G = (Q,R)
shows MP-Rel q Q ∧ MP-Rel r R
proof (unfold MP-Rel-def , rule uniqueness-algorithm-division-to-int-poly[OF - f
g])

show f-gq-r : Mp f = Mp g ∗ q + r
by (rule pdivmod-monic(1)[OF monic-Mpg], simp add: pdivmod-monic-pseudo-divmod

qr monic-Mpg)
have monic-G: monic G using monic-Mpg

using Mp-f-representative g by auto
show F = G ∗ Q + R
by (rule pdivmod-monic(1)[OF monic-G], simp add: pdivmod-monic-pseudo-divmod

QR monic-G)
show Mp g 6= 0 using monic-Mpg by auto
show R = 0 ∨ degree R < degree G

by (rule pdivmod-monic(2)[OF monic-G],
auto simp add: pdivmod-monic-pseudo-divmod monic-G intro: QR)

show r = 0 ∨ degree r < degree (Mp g)
by (rule pdivmod-monic(2)[OF monic-Mpg],

auto simp add: pdivmod-monic-pseudo-divmod monic-Mpg intro: qr)
qed

definition MP-Rel-Pair A B ≡ (let (a,b) = A; (c,d) = B in MP-Rel a c ∧ MP-Rel
b d)

lemma pdivmod2-rel[transfer-rule]:
(MP-Rel ===> MP-Rel ===> MP-Rel-Pair) (pdivmod2) (pdivmod)

proof (auto simp add: rel-fun-def MP-Rel-Pair-def)
interpret pm: prime-field m

using m unfolding prime-field-def mod-ring-locale-def by auto
have p: prime-field TYPE(′a) m

using m unfolding prime-field-def mod-ring-locale-def by auto
fix f F g G a b
assume 1 [transfer-rule]: MP-Rel f F

and 2 [transfer-rule]: MP-Rel g G
and 3 : pdivmod2 f g = (a, b)

have MP-Rel a (F div G) ∧ MP-Rel b (F mod G)
proof (cases Mp g 6= 0)

case True note Mp-g = True
have G: G 6= 0 using Mp-g 2 unfolding MP-Rel-def by auto
have gG[transfer-rule]: pm.mod-ring-rel (lead-coeff (Mp g)) (lead-coeff G)

using 2
unfolding pm.mod-ring-rel-def MP-Rel-def
by auto

have [transfer-rule]: (pm.mod-ring-rel ===> pm.mod-ring-rel) (inverse-p m)
inverse

by (rule prime-field.mod-ring-inverse[OF p])
hence rel-inverse-p[transfer-rule]:

pm.mod-ring-rel (inverse-p m ((lead-coeff (Mp g)))) (inverse (lead-coeff G))
using gG unfolding rel-fun-def by auto

10

let ?h= (Polynomial.smult (inverse-p m (lead-coeff (Mp g))) g)
define h where h: h = Polynomial.smult (inverse-p m (lead-coeff (Mp g)))

(Mp g)
define H where H : H = Polynomial.smult (inverse (lead-coeff G)) G
have hH ′: MP-Rel ?h H unfolding MP-Rel-def unfolding H
by (metis (mono-tags, opaque-lifting) 2 MP-Rel-def M-to-int-mod-ring Mp-f-representative

rel-inverse-p functional-relation left-total-MP-Rel of-int-hom.map-poly-hom-smult

pm.mod-ring-rel-def right-unique-MP-Rel to-int-mod-ring-hom.injectivity
to-int-mod-ring-of-int-M)

have Mp (Polynomial.smult (inverse-p m (lead-coeff (Mp g))) g)
= Mp (Polynomial.smult (inverse-p m (lead-coeff (Mp g))) (Mp g)) by simp

hence hH : MP-Rel h H using hH ′ h unfolding MP-Rel-def by auto
obtain q x where pseudo-fh: pseudo-divmod (Mp f) (Mp h) = (q, x) by (meson

surj-pair)
hence lc-G: (lead-coeff G) 6= 0 using G by auto
have a: a = Polynomial.smult (inverse-p m ((lead-coeff (Mp g)))) q

using 3 pseudo-fh Mp-g
unfolding pdivmod2-def Let-def h by auto

have b: b = x using 3 pseudo-fh Mp-g
unfolding pdivmod2-def Let-def h by auto

have Mp-Rel-FH : MP-Rel q (F div H) ∧ MP-Rel x (F mod H)
proof (rule uniqueness-algorithm-division-Mp-Rel)

show monic (Mp h)
proof −

have aux: (inverse-p m (lead-coeff (Mp g))) = to-int-mod-ring (inverse
(lead-coeff G))

using rel-inverse-p unfolding pm.mod-ring-rel-def by auto
hence M (inverse-p m (M (poly.coeff g (degree (Mp g)))))
= to-int-mod-ring (inverse (lead-coeff G))
by (simp add: M-to-int-mod-ring Mp-coeff)

thus ?thesis unfolding h unfolding Mp-coeff by auto
(metis (no-types, lifting) 2 H MP-Rel-def Mp-coeff aux degree-smult-eq gG

hH ′

inverse-zero-imp-zero lc-G left-inverse pm.mod-ring-rel-def to-int-mod-ring-hom.degree-map-poly-hom
to-int-mod-ring-hom.hom-one to-int-mod-ring-times)

qed
hence monic-H : monic H using hH H lc-G by auto
show f : F = of-int-poly f

using 1 unfolding MP-Rel-def
by (simp add: Mp-f-representative poly-eq-iff)

have pdivmod F H = pdivmod-monic F H
by (rule pdivmod-eq-pdivmod-monic[OF monic-H])

also have ... = pseudo-divmod F H
by (rule pdivmod-monic-pseudo-divmod[OF monic-H])

finally show pseudo-divmod F H = (F div H , F mod H) by simp
show H = of-int-poly h
by (meson MP-Rel-def Mp-f-representative hH right-unique-MP-Rel right-unique-def)

11

show pseudo-divmod (Mp f) (Mp h) = (q, x) by (rule pseudo-fh)
qed
hence Mp-Rel-F-div-H : MP-Rel q (F div H) and Mp-Rel-F-mod-H : MP-Rel x

(F mod H) by auto
have F div H = Polynomial.smult (lead-coeff G) (F div G)

by (simp add: H div-smult-right)
hence F-div-G: (F div G) = Polynomial.smult (inverse (lead-coeff G)) (F div

H)
using lc-G by auto

have MP-Rel a (F div G)
proof −

have of-int-poly (Polynomial.smult (inverse-p m ((lead-coeff (Mp g)))) q)
= smult (inverse (lead-coeff G)) (F div H)

by (metis (mono-tags) MP-Rel-def M-to-int-mod-ring Mp-Rel-F-div-H
Mp-f-representative

of-int-hom.map-poly-hom-smult pm.mod-ring-rel-def rel-inverse-p right-unique-MP-Rel

right-unique-def to-int-mod-ring-hom.injectivity to-int-mod-ring-of-int-M)
thus ?thesis
using Mp-Rel-F-div-H
unfolding MP-Rel-def a F-div-G Mp-f-representative by auto

qed
moreover have MP-Rel b (F mod G)

using Mp-Rel-F-mod-H b H inverse-zero-imp-zero lc-G
by (metis mod-smult-right)

ultimately show ?thesis by auto
next

assume Mp-g-0 : ¬ Mp g 6= 0
hence pdivmod2 f g = (0 , f) unfolding pdivmod2-def by auto
hence a: a = 0 and b: b = f using 3 by auto
have G0 : G = 0 using Mp-g-0 2 unfolding MP-Rel-def by auto
have MP-Rel a (F div G) unfolding MP-Rel-def G0 a by auto
moreover have MP-Rel b (F mod G) using 1 unfolding MP-Rel-def G0 a b

by auto
ultimately show ?thesis by simp

qed
thus MP-Rel a (F div G) and MP-Rel b (F mod G) by auto

qed

3.2 Executable division operation modulo m for polynomials
lemma dvdm-iff-Mp-pdivmod2 :

shows g dvdm f = (Mp (snd (pdivmod2 f g)) = 0)
proof −

let ?F=(of-int-poly f):: ′a mod-ring poly
let ?G=(of-int-poly g):: ′a mod-ring poly
have a[transfer-rule]: MP-Rel f ?F

by (simp add: MP-Rel-def Mp-f-representative)
have b[transfer-rule]: MP-Rel g ?G

12

by (simp add: MP-Rel-def Mp-f-representative)
have MP-Rel-Pair (pdivmod2 f g) (pdivmod ?F ?G)

using pdivmod2-rel unfolding rel-fun-def using a b by auto
hence MP-Rel (snd (pdivmod2 f g)) (snd (pdivmod ?F ?G))

unfolding MP-Rel-Pair-def by auto
hence (Mp (snd (pdivmod2 f g)) = 0) = (snd (pdivmod ?F ?G) = 0)

unfolding MP-Rel-def by auto
thus ?thesis using dvdm-iff-pdivmod0 by auto

qed

end

lemmas (in poly-mod-prime) dvdm-pdivmod = poly-mod-prime-type.dvdm-iff-Mp-pdivmod2
[unfolded poly-mod-type-simps, internalize-sort ′a :: prime-card, OF type-to-set,
unfolded remove-duplicate-premise, cancel-type-definition, OF non-empty]

lemma (in poly-mod) dvdm-code:
g dvdm f = (if prime m then Mp (snd (pdivmod2 f g)) = 0
else Code.abort (STR ′′dvdm error : m is not a prime number ′′) (λ -. g dvdm f))

using poly-mod-prime.dvdm-pdivmod[unfolded poly-mod-prime-def]
by auto

declare poly-mod.pdivmod2-def [code]
declare poly-mod.dvdm-code[code]

end

4 The LLL factorization algorithm

This theory contains an implementation of a polynomial time factorization
algorithm. It first constructs a modular factorization. Afterwards it recur-
sively invokes the LLL basis reduction algorithm on one lattice to either
split a polynomial into two non-trivial factors, or to deduce irreducibility.
theory LLL-Factorization-Impl

imports LLL-Basis-Reduction.LLL-Certification
Factor-Bound-2
Missing-Dvd-Int-Poly
Berlekamp-Zassenhaus.Berlekamp-Zassenhaus

begin

hide-const (open) up-ring.coeff up-ring.monom
Unique-Factorization.factors Divisibility.factors
Unique-Factorization.factor Divisibility.factor
Divisibility.prime

13

definition factorization-lattice where factorization-lattice u k m ≡
map (λi. vec-of-poly-n (u ∗ monom 1 i) (degree u + k)) [k>..0] @
map (λi. vec-of-poly-n (monom m i) (degree u + k)) [degree u >..0]

fun min-degree-poly :: int poly ⇒ int poly ⇒ int poly
where min-degree-poly a b = (if degree a ≤ degree b then a else b)

fun choose-u :: int poly list ⇒ int poly
where choose-u [] = undefined
| choose-u [gi] = gi
| choose-u (gi # gj # gs) = min-degree-poly gi (choose-u (gj # gs))

lemma factorization-lattice-code[code]: factorization-lattice u k m = (
let n = degree u in

map
(λi. vec-of-poly-n (monom-mult i u) (n+k)) [k>..0]
@ map (λi. vec-of-poly-n (monom m i) (n+k)) [n>..0]

) unfolding factorization-lattice-def monom-mult-def
by (auto simp: ac-simps Let-def)

Optimization: directly try to minimize coefficients of polynomial u.
definition LLL-short-polynomial where
LLL-short-polynomial pl n u = poly-of-vec (short-vector-hybrid 2 (factorization-lattice

(poly-mod.inv-Mp pl (poly-mod.Mp pl u)) (n − degree u) pl))

locale LLL-implementation =
fixes p pl :: int

begin

function LLL-many-reconstruction where
LLL-many-reconstruction f us = (let

d = degree f ;
d2 = d div 2 ;
f2-opt = find-map-filter

(λ u. gcd f (LLL-short-polynomial pl (Suc d2) u))
(λ f2 . let deg = degree f2 in deg > 0 ∧ deg < d)
(filter (λ u. degree u ≤ d2) us)

in case f2-opt of None ⇒ [f]
| Some f2 ⇒ let f1 = f div f2 ;

(us1 , us2) = List.partition (λ gi. poly-mod.dvdm p gi f1) us
in LLL-many-reconstruction f1 us1 @ LLL-many-reconstruction f2 us2)

by pat-completeness auto

termination
proof (relation measure (λ (f ,us). degree f), goal-cases)

case (3 f us d d2 f2-opt f2 f1 pair us1 us2)
from find-map-filter-Some[OF 3 (4)[unfolded 3 (3) Let-def]] 3 (1 ,5)
show ?case by auto

14

next
case (2 f us d d2 f2-opt f2 f1 pair us1 us2)
from find-map-filter-Some[OF 2 (4)[unfolded 2 (3) Let-def]] 2 (1 ,5)
have f : f = f1 ∗ f2 and f0 : f 6= 0

and deg: degree f2 > 0 degree f2 < degree f by auto
have degree f = degree f1 + degree f2 using f0 unfolding f

by (subst degree-mult-eq, auto)
with deg show ?case by auto

qed auto

function LLL-reconstruction where
LLL-reconstruction f us = (let

d = degree f ;
u = choose-u us;
g = LLL-short-polynomial pl d u;
f2 = gcd f g;
deg = degree f2

in if deg = 0 ∨ deg ≥ d then [f]
else let f1 = f div f2 ;
(us1 , us2) = List.partition (λ gi. poly-mod.dvdm p gi f1) us
in LLL-reconstruction f1 us1 @ LLL-reconstruction f2 us2)

by pat-completeness auto

termination
proof (relation measure (λ (f ,us). degree f), goal-cases)

case (2 f us d u g f2 deg f1 pair us1 us2)
hence f : f = f1 ∗ f2 and f0 : f 6= 0 by auto
have deg: degree f = degree f1 + degree f2 using f0 unfolding f

by (subst degree-mult-eq, auto)
from 2 have degree f2 > 0 degree f2 < degree f by auto
thus ?case using deg by auto

qed auto
end

declare LLL-implementation.LLL-reconstruction.simps[code]
declare LLL-implementation.LLL-many-reconstruction.simps[code]

definition LLL-factorization :: int poly ⇒ int poly list where
LLL-factorization f = (let

— find suitable prime
p = suitable-prime-bz f ;
— compute finite field factorization
(-, fs) = finite-field-factorization-int p f ;
— determine exponent l and B
n = degree f ;
no = ‖f ‖2;
B = sqrt-int-ceiling (2^(5 ∗ (n − 1) ∗ (n − 1)) ∗ no^(2 ∗ (n − 1)));
l = find-exponent p B;
— perform hensel lifting to lift factorization to mod pl

15

us = hensel-lifting p l f fs;
— reconstruct integer factors via LLL algorithm
pl = p^l

in LLL-implementation.LLL-reconstruction p pl f us)

definition LLL-many-factorization :: int poly ⇒ int poly list where
LLL-many-factorization f = (let

— find suitable prime
p = suitable-prime-bz f ;
— compute finite field factorization
(-, fs) = finite-field-factorization-int p f ;
— determine exponent l and B
n = degree f ;
no = ‖f ‖2;
B = sqrt-int-ceiling (2^(5 ∗ (n div 2) ∗ (n div 2)) ∗ no^(2 ∗ (n div 2)));
l = find-exponent p B;
— perform hensel lifting to lift factorization to mod pl

us = hensel-lifting p l f fs;
— reconstruct integer factors via LLL algorithm
pl = p^l

in LLL-implementation.LLL-many-reconstruction p pl f us)

end

5 Correctness of the LLL factorization algorithm

This theory connects short vectors of lattices and factors of polynomials.
From this connection, we derive soundness of the lattice based factorization
algorithm.
theory LLL-Factorization

imports
LLL-Factorization-Impl
Berlekamp-Zassenhaus.Factorize-Int-Poly

begin

5.1 Basic facts about the auxiliary functions
hide-const (open) module.smult

lemma nth-factorization-lattice:
fixes u and d
defines n ≡ degree u
assumes i < n + d
shows factorization-lattice u d m ! i =
vec-of-poly-n (if i < d then u ∗ monom 1 (d − Suc i) else monom m (n+d−Suc

i)) (n+d)
using assms

16

by (unfold factorization-lattice-def , auto simp: nth-append smult-monom Let-def
not-less)

lemma length-factorization-lattice[simp]:
shows length (factorization-lattice u d m) = degree u + d
by (auto simp: factorization-lattice-def Let-def)

lemma dim-factorization-lattice:
assumes x < degree u + d
shows dim-vec (factorization-lattice u d m ! x) = degree u + d
unfolding factorization-lattice-def using assms nth-append
by (simp add: nth-append Let-def)

lemma dim-factorization-lattice-element:
assumes x ∈ set (factorization-lattice u d m) shows dim-vec x = degree u + d
using assms by (auto simp: factorization-lattice-def Let-def)

lemma set-factorization-lattice-in-carrier [simp]: set (factorization-lattice u d m)
⊆ carrier-vec (degree u + d)

using dim-factorization-lattice by (auto simp: factorization-lattice-def Let-def)

lemma choose-u-Cons: choose-u (x#xs) =
(if xs = [] then x else min-degree-poly x (choose-u xs))
by (cases xs, auto)

lemma choose-u-member : xs 6= [] =⇒ choose-u xs ∈ set xs
by (induct xs, auto simp: choose-u-Cons)

declare choose-u.simps[simp del]

5.2 Facts about Sylvester matrices and norms
lemma (in LLL) lattice-is-span [simp]: lattice-of xs = span-list xs

by (unfold lattice-of-def span-list-def lincomb-list-def image-def , auto)

lemma sq-norm-row-sylvester-mat1 :
fixes f g :: ′a :: conjugatable-ring poly
assumes i: i < degree g
shows ‖(row (sylvester-mat f g) i)‖2 = ‖f ‖2

proof (cases f = 0)
case True
thus ?thesis

by (auto simp add: sylvester-mat-def row-def sq-norm-vec-def o-def
interv-sum-list-conv-sum-set-nat i intro!: sum-list-zero)

next
case False note f = False
let ?f = λj. if i ≤ j ∧ j − i ≤ degree f then coeff f (degree f + i − j) else 0
let ?h = λj. j + i
let ?row = vec (degree f + degree g) ?f

17

let ?g = λj. degree f − j
have image-g: ?g ‘ {0 ..<Suc (degree f)} = {0 ..<Suc (degree f)}

by (auto simp add: image-def)
(metis (no-types, opaque-lifting) Nat.add-diff-assoc add.commute add-diff-cancel-left ′

atLeastLessThan-iff diff-Suc-Suc diff-Suc-less less-Suc-eq-le zero-le)
have bij-h: bij-betw ?h {0 ..<Suc (degree f)} {i..< Suc (degree f + i)}

unfolding bij-betw-def image-def
by (auto, metis atLeastLessThan-iff le-add-diff-inverse2

less-diff-conv linorder-not-less not-less-eq zero-order(3))
have ‖row (sylvester-mat f g) i‖2 = ‖?row‖2

by (rule arg-cong[of - - sq-norm-vec], insert i,
auto simp add: row-def sylvester-mat-def sylvester-mat-sub-def)

also have ... = sum-list (map (sq-norm ◦ ?f) [0 ..<degree f + degree g])
unfolding sq-norm-vec-def by auto

also have ... = sum (sq-norm ◦ ?f) {0 ..<degree f + degree g}
unfolding interv-sum-list-conv-sum-set-nat by auto

also have ... = sum (sq-norm ◦ ?f) {i..< Suc (degree f + i)}
by (rule sum.mono-neutral-right, insert i, auto)

also have ... = sum ((sq-norm ◦ ?f) ◦ ?h) {0 ..<Suc (degree f)}
by (unfold o-def , rule sum.reindex-bij-betw[symmetric, OF bij-h])

also have ... = sum (λj. sq-norm (coeff f (degree f − j))) {0 ..<Suc (degree f)}
by (rule sum.cong, auto)

also have ... = sum ((λj. sq-norm (coeff f j)) ◦ ?g) {0 ..<Suc (degree f)}
unfolding o-def ..

also have ... = sum (λj. sq-norm (coeff f j)) (?g ‘ {0 ..<Suc (degree f)})
by (rule sum.reindex[symmetric], auto simp add: inj-on-def)

also have ... = sum (sq-norm ◦ coeff f) {0 ..<Suc (degree f)} unfolding image-g
by simp

also have ... = sum-list (map sq-norm (coeffs f))
unfolding coeffs-def using f
by (simp add: interv-sum-list-conv-sum-set-nat)

finally show ?thesis unfolding sq-norm-poly-def by auto
qed

lemma sq-norm-row-sylvester-mat2 :
fixes f g :: ′a :: conjugatable-ring poly
assumes i1 : degree g ≤ i and i2 : i < degree f + degree g
shows ‖row (sylvester-mat f g) i‖2 = ‖g‖2

proof −
let ?f = λj. if i − degree g ≤ j ∧ j ≤ i then coeff g (i − j) else 0
let ?row = vec (degree f + degree g) ?f
let ?h = λj. j + i − degree g
let ?g = λj. degree g − j
have image-g: ?g ‘ {0 ..<Suc (degree g)} = {0 ..<Suc (degree g)}

by (auto simp add: image-def)
(metis atLeastLessThan-iff diff-diff-cancel diff-le-self less-Suc-eq-le zero-le)

have x: x − (i − degree g) ≤ degree g if x: x < Suc i for x using x by auto

18

have bij-h: bij-betw ?h {0 ..<Suc (degree g)} {i − degree g..<Suc i}
unfolding bij-betw-def inj-on-def using i1 i2 unfolding image-def

by (auto, metis (no-types) Nat.add-diff-assoc atLeastLessThan-iff x less-Suc-eq-le

less-eq-nat.simps(1) ordered-cancel-comm-monoid-diff-class.diff-add)
have ‖row (sylvester-mat f g) i‖2 = ‖?row‖2

by (rule arg-cong[of - - sq-norm-vec], insert i1 i2 ,
auto simp add: row-def sylvester-mat-def sylvester-mat-sub-def)

also have ... = sum-list (map (sq-norm ◦ ?f) [0 ..<degree f + degree g])
unfolding sq-norm-vec-def by auto

also have ... = sum (sq-norm ◦ ?f) {0 ..<degree f + degree g}
unfolding interv-sum-list-conv-sum-set-nat by auto

also have ... = sum (sq-norm ◦ ?f) {i − degree g..< Suc i}
by (rule sum.mono-neutral-right, insert i2 , auto)

also have ... = sum ((sq-norm ◦ ?f) ◦ ?h) {0 ..<Suc (degree g)}
by (unfold o-def , rule sum.reindex-bij-betw[symmetric, OF bij-h])

also have ... = sum (λj. sq-norm (coeff g (degree g − j))) {0 ..<Suc (degree g)}
by (rule sum.cong, insert i1 , auto)

also have ... = sum ((λj. sq-norm (coeff g j)) ◦ ?g) {0 ..<Suc (degree g)}
unfolding o-def ..

also have ... = sum (λj. sq-norm (coeff g j)) (?g ‘ {0 ..<Suc (degree g)})
by (rule sum.reindex[symmetric], auto simp add: inj-on-def)

also have ... = sum (sq-norm ◦ coeff g) {0 ..<Suc (degree g)} unfolding image-g
by simp

also have ... = sum-list (map sq-norm (coeffs g))
unfolding coeffs-def
by (simp add: interv-sum-list-conv-sum-set-nat)

finally show ?thesis unfolding sq-norm-poly-def by auto
qed

lemma Hadamard ′s-inequality-int:
fixes A::int mat
assumes A: A ∈ carrier-mat n n
shows |det A| ≤ sqrt (of-int (prod-list (map sq-norm (rows A))))

proof −
let ?A = map-mat real-of-int A
have |det A| = |det ?A| unfolding of-int-hom.hom-det by simp
also have . . . ≤ sqrt (prod-list (map sq-norm (rows ?A)))

by (rule Hadamard ′s-inequality[of ?A n], insert A, auto)
also have . . . = sqrt (of-int (prod-list (map sq-norm (rows A)))) unfolding

of-int-hom.hom-prod-list map-map
by (rule arg-cong[of - - λ x. sqrt (prod-list x)], rule nth-equalityI , force,
auto simp: sq-norm-of-int[symmetric] row-def intro!: arg-cong[of - - sq-norm-vec])

finally show ?thesis .
qed

lemma resultant-le-prod-sq-norm:
fixes f g::int poly
defines n ≡ degree f and k ≡ degree g

19

shows |resultant f g| ≤ sqrt (of-int (‖f ‖2^k ∗ ‖g‖2^n))
proof −

let ?S = sylvester-mat f g
let ?f = sq-norm ◦ row ?S
have map-rw1 : map ?f [0 ..<degree g] = replicate k ‖f ‖2
proof (rule nth-equalityI)

let ?M = map (sq-norm ◦ row (sylvester-mat f g)) [0 ..<degree g]
show length ?M = length (replicate k ‖f ‖2) using k-def by auto
show ?M ! i = replicate k ‖f ‖2 ! i if i: i < length ?M for i
proof −

have ik: i<k using i k-def by auto
hence i-deg-g: i < degree g using k-def by auto
have replicate k ‖f ‖2 ! i = ‖f ‖2 by (rule nth-replicate[OF ik])
also have ... = (sq-norm ◦ row (sylvester-mat f g)) (0 + i)

using sq-norm-row-sylvester-mat1 ik k-def by force
also have ... = ?M ! i by (rule nth-map-upt[symmetric], simp add: i-deg-g)
finally show ?M ! i = replicate k ‖f ‖2 ! i ..

qed
qed
have map-rw2 : map ?f [degree g..<degree f + degree g] = replicate n ‖g‖2
proof (rule nth-equalityI)
let ?M = map (sq-norm ◦ row (sylvester-mat f g)) [degree g..<degree f + degree

g]
show length ?M = length (replicate n ‖g‖2) by (simp add: n-def)
show ?M ! i = replicate n ‖g‖2 ! i if i<length ?M for i
proof −

have i-n: i<n using n-def that by auto
hence i-deg-f : i < degree f using n-def by auto
have replicate n ‖g‖2 ! i = ‖g‖2 by (rule nth-replicate[OF i-n])
also have ... = (sq-norm ◦ row (sylvester-mat f g)) (degree g + i)

using i-n n-def
by (simp add: sq-norm-row-sylvester-mat2)

also have ... = ?M ! i
by (simp add: i-deg-f)

finally show ?M ! i = replicate n ‖g‖2 ! i ..
qed

qed
have p1 : prod-list (map ?f [0 ..<degree g]) = ‖f ‖2^k

unfolding map-rw1 by (rule prod-list-replicate)
have p2 : prod-list (map ?f [degree g..<degree f + degree g]) = ‖g‖2^n

unfolding map-rw2 by (rule prod-list-replicate)
have list-rw: [0 ..<degree f + degree g] = [0 ..<degree g] @ [degree g..<degree f +

degree g]
by (metis add.commute upt-add-eq-append zero-le)

have |resultant f g| = |det ?S | unfolding resultant-def ..
also have ... ≤ sqrt (of-int (prod-list (map sq-norm (rows ?S))))

by (rule Hadamard ′s-inequality-int, auto)
also have map sq-norm (rows ?S) = map ?f [0 ..<degree f + degree g]

unfolding Matrix.rows-def by auto

20

also have ... = map ?f ([0 ..<degree g] @ [degree g..<degree f + degree g])
by (simp add: list-rw)

also have prod-list ... = prod-list (map ?f [0 ..<degree g])
∗ prod-list (map ?f [degree g..<degree f + degree g]) by auto

finally show ?thesis unfolding p1 p2 .
qed

5.3 Proof of the key lemma 16.20
lemma common-factor-via-short:

fixes f g u :: int poly
defines n ≡ degree f and k ≡ degree g
assumes n0 : n > 0 and k0 : k > 0

and monic: monic u and deg-u: degree u > 0
and uf : poly-mod.dvdm m u f and ug: poly-mod.dvdm m u g
and short: ‖f ‖2^k ∗ ‖g‖2^n < m2

and m: m ≥ 0
shows degree (gcd f g) > 0

proof −
interpret poly-mod m .
have f-not0 : f 6= 0 and g-not0 : g 6= 0

using n0 k0 k-def n-def by auto
have deg-f : degree f > 0 using n0 n-def by simp
have deg-g: degree g > 0 using k0 k-def by simp
obtain s t where deg-s: degree s < degree g and deg-t: degree t < degree f

and res-eq: [:resultant f g:] = s ∗ f + t ∗ g and s-not0 : s 6= 0 and t-not0 : t 6=
0

using resultant-as-nonzero-poly[OF deg-f deg-g] by auto
have res-eq-modulo: [:resultant f g:] =m s ∗ f + t ∗ g using res-eq

by simp
have u-dvdm-res: u dvdm [:resultant f g:]
proof (unfold res-eq, rule dvdm-add)

show u dvdm s ∗ f
using dvdm-factor [OF uf , of s]
unfolding mult.commute[of f s] by auto

show u dvdm t ∗ g
using dvdm-factor [OF ug, of t]
unfolding mult.commute[of g t] by auto

qed
have res-0-mod: resultant f g mod m = 0

by (rule monic-dvdm-constant[OF u-dvdm-res monic deg-u])
have res0 : resultant f g = 0
proof (rule mod-0-abs-less-imp-0)

show [resultant f g = 0] (mod m) using res-0-mod unfolding cong-def by
auto

have |resultant f g| ≤ sqrt (real-of-int (‖f ‖2 ^ k ∗ ‖g‖2 ^ n))
unfolding k-def n-def
by (rule resultant-le-prod-sq-norm)

also have ... < m

21

by (meson m of-int-0-le-iff of-int-power-less-of-int-cancel-iff real-less-lsqrt
short)

finally show |resultant f g| < m using of-int-less-iff by blast
qed

have ¬ coprime f g
by (rule resultant-zero-imp-common-factor , auto simp add: deg-f res0)

thus ?thesis
using res0 resultant-0-gcd by auto

qed

5.4 Properties of the computed lattice and its connection
with Sylvester matrices

lemma factorization-lattice-as-sylvester :
fixes p :: ′a :: semidom poly
assumes dj: d ≤ j and d: degree p = d
shows mat-of-rows j (factorization-lattice p (j−d) m) = sylvester-mat-sub d

(j−d) p [:m:]
proof (cases p=0)

case True
have deg-p: d = 0 using True d by simp
show ?thesis

by (auto simp add: factorization-lattice-def True deg-p mat-of-rows-def d)
next

case p0 : False
note 1 = degree-mult-eq[OF p0 , of monom - -, unfolded monom-eq-0-iff , OF

one-neq-zero]
from dj show ?thesis

apply (cases m = 0)
apply (auto simp: mat-eq-iff d[symmetric] 1 coeff-mult-monom

sylvester-mat-sub-index mat-of-rows-index nth-factorization-lattice vec-index-of-poly-n
degree-monom-eq coeff-const)

done
qed

context inj-comm-semiring-hom begin

lemma map-poly-hom-mult-monom [hom-distribs]:
map-poly hom (p ∗ monom a n) = map-poly hom p ∗ monom (hom a) n
by (auto intro!: poly-eqI simp:coeff-mult-monom hom-mult)

lemma hom-vec-of-poly-n [hom-distribs]:
map-vec hom (vec-of-poly-n p n) = vec-of-poly-n (map-poly hom p) n
by (auto simp: vec-index-of-poly-n)

lemma hom-factorization-lattice [hom-distribs]:
shows map (map-vec hom) (factorization-lattice u k m) = factorization-lattice

(map-poly hom u) k (hom m)

22

by (auto intro!:arg-cong[of - - λp. vec-of-poly-n p -] simp: list-eq-iff-nth-eq nth-factorization-lattice
hom-vec-of-poly-n map-poly-hom-mult-monom)

end

5.5 Proving that factorization-lattice returns a basis of the lat-
tice

context LLL
begin

sublocale idom-vec n TYPE(int).

lemma upper-triangular-factorization-lattice:
fixes u :: ′a :: semidom poly and d :: nat
assumes d: d ≤ n and du: d = degree u
shows upper-triangular (mat-of-rows n (factorization-lattice u (n−d) k))
(is upper-triangular ?M)

proof (intro upper-triangularI , unfold mat-of-rows-carrier length-factorization-lattice)
fix i j
assume ji: j < i and i: i < degree u + (n − d)
with d du have jn: j < n by auto
show ?M $$ (i,j) = 0
proof (cases u=0)

case True with ji i show ?thesis
by (auto simp: factorization-lattice-def mat-of-rows-def)

next
case False
then show ?thesis

using d ji i
apply (simp add: du mat-of-rows-index nth-factorization-lattice)
apply (auto simp: vec-index-of-poly-n[OF jn] degree-mult-eq degree-monom-eq)
done

qed
qed

lemma factorization-lattice-diag-nonzero:
fixes u :: ′a :: semidom poly and d
assumes d: d=degree u

and dn: d≤n
and u: u 6=0
and m0 : k 6=0
and i: i<n

shows (factorization-lattice u (n−d) k) ! i $ i 6= 0
proof−

have 1 : monom (1 :: ′a) (n − Suc (degree u + i)) 6= 0 using m0 by auto
have 2 : i < degree u + (n − d) using i d by auto
let ?p = u ∗ monom 1 (n − Suc (degree u + i))

23

have 3 : i < n − degree u =⇒ degree (?p) = n − Suc i
using assms by (auto simp: degree-mult-eq[OF - 1] degree-monom-eq)

show ?thesis
apply (unfold nth-factorization-lattice[OF 2] vec-index-of-poly-n[OF 2])
using assms leading-coeff-0-iff [of ?p]
apply (cases i < n − degree u, auto simp: d 3 degree-monom-eq)
done

qed

corollary factorization-lattice-diag-nonzero-RAT : fixes d
assumes d=degree u

and d≤n
and u 6=0
and k 6=0
and i<n

shows RAT (factorization-lattice u (n−d) k) ! i $ i 6= 0
using factorization-lattice-diag-nonzero[OF assms] assms
by (auto simp: nth-factorization-lattice)

sublocale gs: vec-space TYPE(rat) n.

lemma lin-indpt-list-factorization-lattice: fixes d
assumes d: d = degree u and dn: d ≤ n and u: u 6= 0 and k: k 6= 0
shows gs.lin-indpt-list (RAT (factorization-lattice u (n−d) k)) (is gs.lin-indpt-list

(RAT ?vs))
proof−

have 1 : rows (mat-of-rows n (map (map-vec rat-of-int) ?vs)) = map (map-vec
rat-of-int) ?vs

using dn d
by (subst rows-mat-of-rows, auto dest!: subsetD[OF set-factorization-lattice-in-carrier])

note 2 = factorization-lattice-diag-nonzero-RAT [OF d dn u k]
show ?thesis

apply (intro gs.upper-triangular-imp-lin-indpt-list[of mat-of-rows n (RAT ?vs),
unfolded 1])

using assms 2 by (auto simp: diag-mat-def mat-of-rows-index hom-distribs
intro!:upper-triangular-factorization-lattice)
qed

end

5.6 Being in the lattice is being a multiple modulo
lemma (in semiring-hom) hom-poly-of-vec: map-poly hom (poly-of-vec v) = poly-of-vec
(map-vec hom v)

by (auto simp add: coeff-poly-of-vec poly-eq-iff)

abbreviation of-int-vec ≡ map-vec of-int

context LLL

24

begin

lemma lincomb-to-dvd-modulo:
fixes u d
defines d ≡ degree u
assumes d: d ≤ n

and lincomb: lincomb-list c (factorization-lattice u (n−d) k) = g (is ?l = ?r)
shows poly-mod.dvdm k u (poly-of-vec g)

proof−
let ?S = sylvester-mat-sub d (n − d) u [:k:]
define q where q ≡ poly-of-vec (vec-first (vec n c) (n − d))
define r where r ≡ poly-of-vec (vec-last (vec n c) d)
have ?l = ?ST ∗v vec n c

apply (subst lincomb-list-as-mat-mult)
using d d-def apply (force simp:factorization-lattice-def)
apply (fold transpose-mat-of-rows)
using d d-def by (simp add: factorization-lattice-as-sylvester)

also have poly-of-vec . . . = q ∗ u + smult k r
apply (subst sylvester-sub-poly) using d-def d q-def r-def by auto

finally have . . . = poly-of-vec g
unfolding lincomb of-int-hom.hom-poly-of-vec by auto

then have poly-of-vec g = q ∗ u + Polynomial.smult k r by auto
then have poly-mod.Mp k (poly-of-vec g) = poly-mod.Mp k (q ∗ u + Polyno-

mial.smult k r) by auto
also have ... = poly-mod.Mp k (q ∗ u + poly-mod.Mp k (Polynomial.smult k r))

using poly-mod.plus-Mp(2) by auto
also have ... = poly-mod.Mp k (q ∗ u)

using poly-mod.plus-Mp(2) unfolding poly-mod.Mp-smult-m-0 by simp
also have ... = poly-mod.Mp k (u ∗ q) by (simp add: mult.commute)
finally show ?thesis unfolding poly-mod.dvdm-def by auto

qed

lemma dvd-modulo-to-lincomb:
fixes u :: int poly and d
defines d ≡ degree u
assumes d: d < n

and dvd: poly-mod.dvdm k u (poly-of-vec g)
and k-not0 : k 6=0
and monic-u: monic u
and dim-g: dim-vec g = n
and deg-u: degree u > 0

shows ∃ c. lincomb-list c (factorization-lattice u (n−d) k) = g
proof −

interpret p: poly-mod k .
have u-not0 : u 6= 0 using monic-u by auto
hence n[simp]: 0 < n using d by auto
obtain q ′ r ′ where g: poly-of-vec g = q ′ ∗ u + smult k r ′

using p.dvdm-imp-div-mod[OF dvd] by auto

25

obtain q ′′ r ′′ where r ′: r ′ = q ′′ ∗ u + r ′′ and deg-r ′′: degree r ′′<degree u
using monic-imp-div-mod-int-poly-degree2 [OF monic-u deg-u, of r ′] by auto

have g1 : poly-of-vec g = (q ′ + smult k q ′′) ∗ u + smult k r ′′

unfolding g r ′

by (metis (no-types, lifting) combine-common-factor mult-smult-left smult-add-right)
define q where q: q = (q ′ + smult k q ′′)
define r where r : r = r ′′

have degree-q: q = 0 ∨ degree (q ′ + smult k q ′′) < n − d
proof (cases q = 0 ,auto, rule degree-div-mod-smult[OF - - - g1])
show degree (poly-of-vec g) < n by (rule degree-poly-of-vec-less, auto simp add:

dim-g)
show degree r ′′ < d using deg-r ′′ unfolding d-def .
assume q 6=0 thus q ′ + smult k q ′′ 6= 0 unfolding q .
show k 6= 0 by fact
show degree u = d using d-def by auto

qed
have g2 : (vec-of-poly-n (q∗u) n) + (vec-of-poly-n (smult k r) n) = g
proof −

have g = vec-of-poly-n (poly-of-vec g) n
by (rule vec-of-poly-n-poly-of-vec[symmetric], auto simp add: dim-g)

also have . . . = vec-of-poly-n ((q ′ + smult k q ′′) ∗ u + smult k r ′′) n
using g1 by auto

also have ... = vec-of-poly-n (q ∗ u + smult k r ′′) n unfolding q by auto
also have ... = vec-of-poly-n (q ∗ u) n + vec-of-poly-n (smult k r ′′) n

by (rule vec-of-poly-n-add)
finally show ?thesis unfolding r by simp

qed
let ?c = λi. if i < n − d then coeff q (n − d − 1 − i) else coeff r (n − Suc i)
let ?c1 = λi. ?c i ·v factorization-lattice u (n−d) k ! i
show ?thesis
proof (rule exI [of - ?c])

let ?part1 = map (λi. vec-of-poly-n (u ∗ monom 1 i) n) [n−d>..0]
let ?part2 = map (λi. vec-of-poly-n (monom k i) n) [d>..0]
have [simp]: dim-vec (M .sumlist (map ?c1 [0 ..<n − d])) = n

by (rule dim-sumlist, auto simp add: dim-factorization-lattice d-def)
have [simp]: dim-vec (M .sumlist (map ?c1 [n−d..<n])) = n

by (rule dim-sumlist, insert d, auto simp add: dim-factorization-lattice d-def)
have [simp]: factorization-lattice u (n−d) k ! x ∈ carrier-vec n if x: x < n for

x
using x dim-factorization-lattice-element nth-factorization-lattice[of x u n−d]

d
by (auto simp: d-def)

have [0 ..<length (factorization-lattice u (n−d) k)] = [0 ..<n]
using d by (simp add: d-def less-imp-le-nat)

also have ... = [0 ..<n − d] @ [n−d..<n]
by (rule upt-minus-eq-append, auto)

finally have list-rw: [0 ..<length (factorization-lattice u (n−d) k)] = [0 ..<n −
d] @ [n−d..<n] .

26

have qu1 : poly-of-vec (M .sumlist (map ?c1 [0 ..<n − d])) = q∗u
proof −
have poly-of-vec (M .sumlist (map ?c1 [0 ..<n − d])) = poly-of-vec (

⊕
Vi∈{0 ..<n−d}.

?c1 i)
by (subst sumlist-map-as-finsum, auto)

also have ... = poly-of-vec (
⊕

Vi∈set [0 ..<n−d]. ?c1 i) by auto
also have ... = sum (λi. poly-of-vec (?c1 i)) (set [0 ..<n−d])

by (auto simp:poly-of-vec-finsum)
also have ... = sum (λi. poly-of-vec (?c1 i)) {0 ..<n−d} by auto
also have ... = q∗u
proof −
have deg: degree (u ∗ monom 1 (n − Suc (d + i))) < n if i: i < n − d for

i
proof −

let ?m=monom (1 ::int) (n − Suc (d + i))
have monom-not0 : ?m 6= 0 using i by auto
have deg-m: degree ?m = n − Suc (d + i) by (rule degree-monom-eq,

auto)
have degree (u ∗ ?m) = d + (n − Suc (d + i))

using degree-mult-eq[OF u-not0 monom-not0] d-def deg-m by auto
also have ... < n using i by auto
finally show ?thesis .

qed
have lattice-rw: factorization-lattice u (n−d) k ! i = vec-of-poly-n (u ∗

monom 1 (n − Suc (d + i))) n
if i: i< n − d for i apply (subst nth-factorization-lattice) using i by

(auto simp:d-def)
have q-rw: q = (

∑
i = 0 ..<n − d. (smult (coeff q (n − Suc (d + i)))

(monom 1 (n − Suc (d + i)))))
proof (auto simp add: poly-eq-iff coeff-sum)

fix j
let ?m = n−d−1−j
let ?f = λx. coeff q (n − Suc (d + x)) ∗ (if n − Suc (d + x) = j then 1

else 0)
have set-rw: {0 ..<n−d} = insert ?m ({0 ..<n−d} − {?m}) using d by

auto
have sum0 : (

∑
x ∈ {0 ..<n−d} − {?m}. ?f x) = 0 by (rule sum.neutral,

auto)
have (

∑
x = 0 ..<n − d. ?f x) = (

∑
x ∈ insert ?m ({0 ..<n−d} − {?m}).

?f x)
using set-rw by presburger
also have ... = ?f ?m + (

∑
x ∈ {0 ..<n−d} − {?m}. ?f x) by (rule

sum.insert, auto)
also have ... = ?f ?m unfolding sum0 by auto
also have ... = coeff q j
proof (cases j < n − d)

case True
then show ?thesis by auto

next

27

case False
have j>degree q using degree-q q False d by auto
then show ?thesis using coeff-eq-0 by auto

qed
finally show coeff q j = (

∑
i = 0 ..<n − d. coeff q (n − Suc (d + i))

∗ (if n − Suc (d + i) = j then 1 else 0)) ..
qed
have sum (λi. poly-of-vec (?c1 i)) {0 ..<n−d}
= (

∑
i = 0 ..<n − d. poly-of-vec (coeff q (n − Suc (d + i)) ·v factoriza-

tion-lattice u (n−d) k ! i))
by (rule sum.cong, auto)

also have ... = (
∑

i = 0 ..<n − d. (poly-of-vec (coeff q (n − Suc (d + i))
·v (vec-of-poly-n (u ∗ monom 1 (n − Suc (d + i))) n))))
by (rule sum.cong, auto simp add: lattice-rw)

also have ... = (
∑

i = 0 ..<n − d. smult (coeff q (n − Suc (d + i))) (u ∗
monom 1 (n − Suc (d + i))))

by (rule sum.cong, auto simp add: poly-of-vec-scalar-mult[OF deg])
also have ... = (

∑
i = 0 ..<n − d. u∗(smult (coeff q (n − Suc (d + i)))

(monom 1 (n − Suc (d + i)))))
by auto

also have ... = u ∗(
∑

i = 0 ..<n − d. (smult (coeff q (n − Suc (d + i)))
(monom 1 (n − Suc (d + i)))))

by (rule sum-distrib-left[symmetric])
also have ... = u ∗ q using q-rw by auto
also have ... = q∗u by auto
finally show ?thesis .

qed
finally show ?thesis .

qed
have qu: M .sumlist (map ?c1 [0 ..<n − d]) = vec-of-poly-n (q∗u) n
proof −

have vec-of-poly-n (q∗u) n = vec-of-poly-n (poly-of-vec (M .sumlist (map ?c1
[0 ..<n − d]))) n

using qu1 by auto
also have vec-of-poly-n (poly-of-vec (M .sumlist (map ?c1 [0 ..<n − d]))) n
= M .sumlist (map ?c1 [0 ..<n − d])
by (rule vec-of-poly-n-poly-of-vec, auto)

finally show ?thesis ..
qed
have rm1 : poly-of-vec (M .sumlist (map ?c1 [n−d..<n])) = smult k r
proof −
have poly-of-vec (M .sumlist (map ?c1 [n−d..<n])) = poly-of-vec (

⊕
Vi∈{n−d..<n}.

?c1 i)
by (subst sumlist-map-as-finsum, auto)

also have ... = poly-of-vec (
⊕

Vi∈set [n−d..<n]. ?c1 i) by auto
also have ... = sum (λi. poly-of-vec (?c1 i)) {n−d..<n}

by (auto simp: poly-of-vec-finsum)
also have ... = smult k r
proof −

28

have deg: degree (monom k (n − Suc i)) < n if i: n−d≤i and i2 : i<n for
i

using degree-monom-le i i2
by (simp add: degree-monom-eq k-not0)

have lattice-rw: factorization-lattice u (n−d) k ! i = vec-of-poly-n (monom
k (n − Suc i)) n

if i: n − d ≤ i and i2 : i<n for i
using i2 i d d-def
by (subst nth-factorization-lattice, auto)

have r-rw: r = (
∑

i ∈ {n−d..<n}. (monom (coeff r (n − Suc i)) (n − Suc
i)))

proof (auto simp add: poly-eq-iff coeff-sum)
fix j
show coeff r j = (

∑
i = n − d..<n. if n − Suc i = j then coeff r (n −

Suc i) else 0)
proof (cases j<d)

case True
have j-eq: n − Suc (n − 1 − j) = j using d True by auto
let ?i = n−1−j
let ?f =λi. if n − Suc i = j then coeff r (n − Suc i) else 0

have sum0 : sum ?f ({n−d..<n} − {?i}) = 0 by (rule sum.neutral, auto)
have {n−d..<n} = insert ?i ({n−d..<n} − {?i}) using True by auto
hence sum ?f {n − d..<n} = sum ?f (insert ?i ({n−d..<n} − {?i}))

by auto
also have ... = ?f ?i + sum ?f ({n−d..<n} − {?i})

by (rule sum.insert, auto)
also have ... = coeff r j unfolding sum0 j-eq by simp
finally show ?thesis ..

next
case False
hence (

∑
i = n − d..<n. if n − Suc i = j then coeff r (n − Suc i) else

0) = 0
by (intro sum.neutral ballI , insert False, simp, linarith)

also have ... = coeff r j
by (rule coeff-eq-0 [symmetric], insert False deg-r ′′ r d-def , auto)

finally show ?thesis ..
qed

qed
have sum (λi. poly-of-vec (?c1 i)) {n−d..<n}
= (

∑
i ∈ {n−d..<n}. poly-of-vec (coeff r (n − Suc i) ·v factorization-lattice

u (n−d) k ! i))
by (rule sum.cong, auto)

also have ... = (
∑

i ∈ {n−d..<n}. (poly-of-vec (coeff r (n − Suc i)
·v vec-of-poly-n (monom k (n − Suc i)) n)))
by (rule sum.cong, auto simp add: lattice-rw)

also have ... = (
∑

i ∈ {n−d..<n}. smult (coeff r (n − Suc i)) (monom k
(n − Suc i)))

by (rule sum.cong, auto simp add: poly-of-vec-scalar-mult[OF deg])
also have ... = (

∑
i ∈ {n−d..<n}. smult k (monom (coeff r (n − Suc i))

29

(n − Suc i)))
by (rule sum.cong, auto simp add: smult-monom smult-sum2)

also have ... = smult k (
∑

i ∈ {n−d..<n}. (monom (coeff r (n − Suc i))
(n − Suc i)))

by (simp add: smult-sum2)
also have ... = smult k r using r-rw by auto
finally show ?thesis .

qed
finally show ?thesis .

qed
have rm: (M .sumlist (map ?c1 [n−d..<n])) = vec-of-poly-n (smult k r) n
proof −

have vec-of-poly-n (smult k r) n
= vec-of-poly-n (poly-of-vec (M .sumlist (map ?c1 [n−d..<n]))) n
using rm1 by auto

also have vec-of-poly-n (poly-of-vec (M .sumlist (map ?c1 [n−d..<n]))) n
= M .sumlist (map ?c1 [n−d..<n])
by (rule vec-of-poly-n-poly-of-vec, auto)

finally show ?thesis ..
qed
have lincomb-list ?c (factorization-lattice u (n−d) k) = M .sumlist (map ?c1

([0 ..<n − d] @ [n−d..<n]))
unfolding lincomb-list-def list-rw by auto

also have ... = M .sumlist (map ?c1 [0 ..<n − d] @ map ?c1 [n−d..<n]) by
auto

also have ... = M .sumlist (map ?c1 [0 ..<n − d]) + M .sumlist (map ?c1
[n−d..<n])

using d by (auto simp add: d-def nth-factorization-lattice intro!: M .sumlist-append)
also have ... = vec-of-poly-n (q∗u) n + vec-of-poly-n (smult k r) n

unfolding qu rm by auto
also have ... = g using g2 by simp
finally show lincomb-list ?c (factorization-lattice u (n−d) k) = g .

qed
qed

The factorization lattice precisely characterises the polynomials of a certain
degree which divide u modulo M .
lemma factorization-lattice: fixes M assumes

deg-u: degree u 6= 0 and M : M 6= 0
shows degree u ≤ n =⇒ n 6= 0 =⇒ f ∈ poly-of-vec ‘ lattice-of (factorization-lattice
u (n − degree u) M) =⇒

degree f < n ∧ poly-mod.dvdm M u f
monic u =⇒ degree u < n =⇒
degree f < n =⇒ poly-mod.dvdm M u f =⇒ f ∈ poly-of-vec ‘ lattice-of (factorization-lattice

u (n − degree u) M)
proof −

from deg-u have deg-u: degree u > 0 by auto
let ?L = factorization-lattice u (n − degree u) M
{

30

assume deg: degree f < n and dvd: poly-mod.dvdm M u f and mon: monic u
and deg-u-lt: degree u < n

define fv where fv = vec n (λ i. (coeff f (n − Suc i)))
have f : f = poly-of-vec fv unfolding fv-def poly-of-vec-def Let-def using deg

by (auto intro!: poly-eqI coeff-eq-0 simp: coeff-sum)
have dim-fv: dim-vec fv = n unfolding fv-def by simp
from dvd-modulo-to-lincomb[OF deg-u-lt - M mon - deg-u(1), of fv, folded f ,

OF dvd dim-fv]
obtain c where gv: fv = lincomb-list c ?L by auto

have fv ∈ lattice-of ?L unfolding gv lattice-is-span by (auto simp: in-span-listI)
thus f ∈ poly-of-vec ‘ lattice-of ?L unfolding f by auto

}
moreover
{

assume f ∈ poly-of-vec ‘ lattice-of ?L and deg-u: degree u ≤ n and n: n 6= 0
then obtain fv where f : f = poly-of-vec fv and fv: fv ∈ lattice-of ?L by auto
from in-span-listE [OF fv[unfolded lattice-is-span]]
obtain c where fv: fv = lincomb-list c ?L by auto
from lincomb-to-dvd-modulo[OF - fv[symmetric]] deg-u f
have dvd: poly-mod.dvdm M u f by auto
have set ?L ⊆ carrier-vec n unfolding factorization-lattice-def using deg-u

by auto
hence fv ∈ carrier-vec n unfolding fv by (metis lincomb-list-carrier)
hence degree f < n unfolding f using degree-poly-of-vec-less[of fv n] using n

by auto
with dvd show degree f < n ∧ poly-mod.dvdm M u f by auto

}
qed
end

5.7 Soundness of the LLL factorization algorithm
lemma LLL-short-polynomial: assumes deg-u-0 : degree u 6= 0 and deg-le: degree
u ≤ n

and pl1 : pl > 1
and monic: monic u

shows degree (LLL-short-polynomial pl n u) < n
and LLL-short-polynomial pl n u 6= 0
and poly-mod.dvdm pl u (LLL-short-polynomial pl n u)
and degree u < n =⇒ f 6= 0 =⇒

poly-mod.dvdm pl u f =⇒ degree f < n =⇒ ‖LLL-short-polynomial pl n u‖2 ≤
2 ^ (n − 1) ∗ ‖f ‖2
proof −

interpret poly-mod-2 pl
by (unfold-locales, insert pl1 , auto)

from pl1 have pl0 : pl 6= 0 by auto
let ?d = degree u
let ?u = Mp u
let ?iu = inv-Mp ?u

31

from Mp-inv-Mp-id[of ?u] have ?iu =m ?u .
also have . . . =m u by simp
finally have iu-u: ?iu =m u by simp
have degu[simp]: degree ?u = degree u using monic by simp
have mon: monic ?u using monic by (rule monic-Mp)
have degree ?iu = degree ?u unfolding inv-Mp-def

by (rule degree-map-poly, unfold mon, insert mon pl1 , auto simp: inv-M-def)
with degu have deg-iu: degree ?iu = degree u by simp
have mon-iu: monic ?iu unfolding deg-iu unfolding inv-Mp-def Mp-def inv-M-def

M-def
by (insert pl1 , auto simp: coeff-map-poly monic)

let ?L = factorization-lattice ?iu (n − ?d) pl
let ?sv = short-vector-hybrid 2 ?L
from deg-u-0 deg-le have n: n 6= 0 by auto
from deg-u-0 have u0 : u 6= 0 by auto
have id: LLL-short-polynomial pl n u = poly-of-vec ?sv

unfolding LLL-short-polynomial-def by blast
have id ′: ‖?sv‖2 = ‖LLL-short-polynomial pl n u‖2 unfolding id by simp
interpret vec-module TYPE(int) n.
interpret L: LLL n n ?L 2 .
from deg-le deg-iu have deg-iu-le: degree ?iu ≤ n by simp
have len: length ?L = n

unfolding factorization-lattice-def using deg-le deg-iu by auto
from deg-u-0 deg-iu have deg-iu0 : degree ?iu 6= 0 by auto
hence iu0 : ?iu 6= 0 by auto
from L.lin-indpt-list-factorization-lattice[OF refl deg-iu-le iu0 pl0]
have ∗: 4/3 ≤ (2 :: rat) L.gs.lin-indpt-list (L.RAT ?L) by (auto simp: deg-iu)
interpret L: LLL-with-assms n n ?L 2

by (unfold-locales, insert ∗, auto simp: deg-iu deg-le)
note short = L.short-vector-hybrid[OF refl n, unfolded id ′ L.L-def]
from short(2) have mem: LLL-short-polynomial pl n u ∈ poly-of-vec ‘ lattice-of

?L
unfolding id by auto

note fact = L.factorization-lattice(1)[OF deg-iu0 pl0 deg-iu-le n, unfolded deg-iu,
OF mem]

show degree (LLL-short-polynomial pl n u) < n using fact by auto
from fact have ?iu dvdm (LLL-short-polynomial pl n u) by auto
then obtain h where LLL-short-polynomial pl n u =m ?iu ∗ h unfolding

dvdm-def by auto
also have ?iu ∗ h =m Mp ?iu ∗ h unfolding mult-Mp by simp
also have Mp ?iu ∗ h =m u ∗ h unfolding iu-u unfolding mult-Mp by simp
finally show u dvdm (LLL-short-polynomial pl n u) unfolding dvdm-def by

auto
from short have sv1 : ?sv ∈ carrier-vec n by auto
from short have ?sv 6= 0 v j for j by auto
thus LLL-short-polynomial pl n u 6= 0 unfolding id by simp
assume degu: degree u < n and dvd: u dvdm f

and degf : degree f < n and f0 : f 6= 0
from dvd obtain h where f =m u ∗ h unfolding dvdm-def by auto

32

also have u ∗ h =m Mp u ∗ h unfolding mult-Mp by simp
also have Mp u ∗ h =m Mp ?iu ∗ h unfolding iu-u by simp
also have Mp ?iu ∗ h =m ?iu ∗ h unfolding mult-Mp by simp
finally have dvd: ?iu dvdm f unfolding dvdm-def by auto
from degu deg-iu have deg-iun: degree ?iu < n by auto
from L.factorization-lattice(2)[OF deg-iu0 pl0 mon-iu deg-iun degf dvd]
have f ∈ poly-of-vec ‘ lattice-of ?L using deg-iu by auto
then obtain fv where f : f = poly-of-vec fv and fv: fv ∈ lattice-of ?L by auto
have norm: ‖fv‖2 = ‖f ‖2 unfolding f by simp
have fv0 : fv 6= 0 v n using f0 unfolding f by auto
with fv have fvL: fv ∈ lattice-of ?L − {0 v n} by auto
from short(3)[OF this, unfolded norm]
have rat-of-int ‖LLL-short-polynomial pl n u‖2 ≤ rat-of-int (2 ^ (n − 1) ∗ ‖f ‖2)

by simp
thus ‖LLL-short-polynomial pl n u‖2 ≤ 2 ^ (n − 1) ∗ ‖f ‖2 by linarith

qed

context LLL-implementation
begin

lemma LLL-reconstruction: assumes LLL-reconstruction f us = fs
and degree f 6= 0
and poly-mod.unique-factorization-m pl f (lead-coeff f , mset us)
and f dvd F
and

∧
ui. ui ∈ set us =⇒ poly-mod.Mp pl ui = ui

and F0 : F 6= 0
and cop: coprime (lead-coeff F) p
and sf : poly-mod.square-free-m p F
and pl1 : pl > 1
and plp: pl = p^l
and p: prime p
and large: 2^(5 ∗ (degree F − 1) ∗ (degree F − 1)) ∗ ‖F‖2^(2 ∗ (degree F −

1)) < pl2
shows f = prod-list fs ∧ (∀ fi ∈ set fs. irreducibled fi)
proof −

interpret p: poly-mod-prime p by (standard, rule p)
interpret pl: poly-mod-2 pl by (standard, rule pl1)
from pl1 plp have l0 : l 6= 0 by (cases l, auto)
show ?thesis using assms(1−5)
proof (induct f us arbitrary: fs rule: LLL-reconstruction.induct)

case (1 f us fs)
define u where u = choose-u us
define g where g = LLL-short-polynomial pl (degree f) u
define k where k = gcd f g
note res = 1 (3)
note degf = 1 (4)
note uf = 1 (5)
note fF = 1 (6)
note norm = 1 (7)

33

note to-fact = pl.unique-factorization-m-imp-factorization
note fact = to-fact[OF uf]
have mon-gs: ui ∈ set us =⇒ monic ui for ui using norm fact

unfolding pl.factorization-m-def by auto
from p.coprime-lead-coeff-factor [OF p.prime] fF cop
have cop: coprime (lead-coeff f) p unfolding dvd-def by blast
have plf0 : pl.Mp f 6= 0

using fact pl.factorization-m-lead-coeff pl.unique-factorization-m-zero uf by
fastforce

have degree f = pl.degree-m f
by (rule sym, rule poly-mod.degree-m-eq[OF - pl.m1],

insert cop p, simp add: l0 p.coprime-exp-mod plp)
also have . . . = sum-mset (image-mset pl.degree-m (mset us))

unfolding pl.factorization-m-degree[OF fact plf0] ..
also have . . . = sum-list (map pl.degree-m us)

unfolding sum-mset-sum-list[symmetric] by auto
also have . . . = sum-list (map degree us)

by (rule arg-cong[OF map-cong, OF refl], rule pl.monic-degree-m, insert
mon-gs, auto)

finally have degf-gs: degree f = sum-list (map degree us) by auto
hence gs: us 6= [] using degf by (cases us, auto)
from choose-u-member [OF gs] have u-gs: u ∈ set us unfolding u-def by auto
from fact u-gs have irred: pl.irreducibled-m u unfolding pl.factorization-m-def

by auto
hence deg-u: degree u 6= 0 unfolding pl.irreducibled-m-def norm[OF u-gs] by

auto
have deg-uf : degree u ≤ degree f unfolding degf-gs using split-list[OF u-gs]

by auto
from mon-gs[OF u-gs] have mon-u: monic u and u0 : u 6= 0 by auto
have f0 : f 6= 0 using degf by auto
from norm have norm ′: image-mset pl.Mp (mset us) = mset us by (induct us,

auto)
have pl0 : pl 6= 0 using pl1 by auto
note short-main = LLL-short-polynomial[OF deg-u deg-uf pl1 mon-u]
from short-main(1−2)[folded g-def]
have degree k < degree f unfolding k-def

by (smt Suc-leI Suc-less-eq degree-gcd1 gcd.commute le-imp-less-Suc le-trans)

hence deg-fk: (degree k = 0 ∨ degree f ≤ degree k) = (degree k = 0) by auto
note res = res[unfolded LLL-reconstruction.simps[of f us] Let-def , folded u-def ,

folded g-def , folded k-def , unfolded deg-fk]
show ?case
proof (cases degree k = 0)

case True
with res have fs: fs = [f] by auto
from sf fF have sf : p.square-free-m f

using p.square-free-m-factor(1)[of f] unfolding dvd-def by auto
have irr : irreducibled f

34

proof (rule ccontr)
assume ¬ irreducibled f
from reducibledE [OF this] degf obtain f1 f2 where

f : f = f1 ∗ f2 and
deg12 : degree f1 6= 0 degree f2 6= 0 degree f1 < degree f degree f2 < degree

f
by (simp, metis)

from pl.unique-factorization-m-factor [OF p uf [unfolded f], folded f , OF cop
sf l0 plp]

obtain us1 us2 where
uf12 : pl.unique-factorization-m f1 (lead-coeff f1 , us1)

pl.unique-factorization-m f2 (lead-coeff f2 , us2)
and gs: mset us = us1 + us2
and norm12 : image-mset pl.Mp us2 = us2 image-mset pl.Mp us1 = us1
unfolding pl.Mf-def norm ′ split by (auto simp: pl.Mf-def)

note norm-u = norm[OF u-gs]
from u-gs have u-gs ′: u ∈# mset us by auto
with pl.factorization-m-mem-dvdm[OF fact, of u]
have u-f : pl.dvdm u f by auto
from u-gs ′[unfolded gs] have u ∈# us1 ∨ u ∈# us2 by auto
with pl.factorization-m-mem-dvdm[OF to-fact[OF uf12 (1)], of u]

pl.factorization-m-mem-dvdm[OF to-fact[OF uf12 (2)], of u]
have pl.dvdm u f1 ∨ pl.dvdm u f2 unfolding norm12 norm-u by auto
from this have ∃ f1 f2 . f = f1 ∗ f2 ∧
degree f1 6= 0 ∧ degree f2 6= 0 ∧ degree f1 < degree f ∧ degree f2 < degree

f ∧
pl.dvdm u f1

proof
assume pl.dvdm u f1 thus ?thesis using f deg12 by auto

next
from f have f : f = f2 ∗ f1 by auto
assume pl.dvdm u f2 thus ?thesis using f deg12 by auto

qed
then obtain f1 f2 where prod: f = f1 ∗ f2

and deg: degree f1 6= 0 degree f2 6= 0 degree f1 < degree f degree f2 <
degree f

and uf1 : pl.dvdm u f1 by auto
from pl.unique-factorization-m-factor [OF p uf [unfolded prod], folded prod,

OF cop sf l0 plp]
obtain us1 where fact-f1 : pl.unique-factorization-m f1 (lead-coeff f1 , us1)

by auto
have plf1 : pl.Mp f1 6= 0

using to-fact[OF fact-f1] pl.factorization-m-lead-coeff
pl.unique-factorization-m-zero fact-f1 by fastforce

have degree u ≤ degree f1
by (rule pl.dvdm-degree[OF mon-u uf1 plf1])

with deg have deg-uf : degree u < degree f by auto
have pl0 : pl 6= 0 using pl.m1 plp by linarith
let ?n = degree f

35

let ?n1 = degree f1
let ?d = degree u
from prod fF have f1F : f1 dvd F unfolding dvd-def by auto
from deg-uf have deg-uf ′: ?d ≤ ?n by auto
from deg have f1-0 : f1 6= 0 by auto
have ug: pl.dvdm u g using short-main(3) unfolding g-def .
have g0 : g 6= 0 using short-main(2) unfolding g-def .
have deg-gf : degree g < degree f using short-main(1) unfolding g-def .
let ?N = degree F
from fF prod have f1F : f1 dvd F unfolding dvd-def by auto
have ‖g‖2 ≤ 2 ^ (?n − 1) ∗ ‖f1‖2 unfolding g-def

by (rule short-main(4)[OF deg-uf - uf1], insert deg, auto)
also have . . . ≤ 2 ^ (?n − 1) ∗ (2 ^ (2 ∗ degree f1) ∗ ‖F‖2)

by (rule mult-left-mono[OF sq-norm-factor-bound[OF f1F F0]], simp)
also have . . . = 2 ^ ((?n − 1) + 2 ∗ degree f1) ∗ ‖F‖2

unfolding power-add by simp
also have . . . ≤ 2 ^ ((?n − 1) + 2 ∗ (?n − 1)) ∗ ‖F‖2

by (rule mult-right-mono, insert deg(3), auto)
also have . . . = 2 ^ (3 ∗ (?n − 1)) ∗ ‖F‖2 by simp
finally have ineq-g: ‖g‖2 ≤ 2 ^ (3 ∗ (?n − 1)) ∗ ‖F‖2 .
from power-mono[OF this, of ?n1]
have ineq1 : ‖g‖2 ^ ?n1 ≤ (2 ^ (3 ∗ (?n − 1)) ∗ ‖F‖2)^?n1 by auto

from F0 have normF : ‖F‖2 ≥ 1 using sq-norm-poly-pos[of F] by presburger
from g0 have normg: ‖g‖2 ≥ 1 using sq-norm-poly-pos[of g] by presburger
from f0 have normf : ‖f ‖2 ≥ 1 using sq-norm-poly-pos[of f] by presburger

from f1-0 have normf1 : ‖f1‖2 ≥ 1 using sq-norm-poly-pos[of f1] by
presburger

from power-mono[OF sq-norm-factor-bound[OF f1F F0], of degree g]
have ineq2 : ‖f1‖2 ^ degree g ≤ (2 ^ (2 ∗ ?n1) ∗ ‖F‖2) ^ degree g by auto
also have . . . ≤ (2 ^ (2 ∗ ?n1) ∗ ‖F‖2) ^ (?n − 1)

by (rule pow-mono-exp, insert deg-gf normF , auto)
finally have ineq2 : ‖f1‖2 ^ degree g ≤ (2 ^ (2 ∗ ?n1) ∗ ‖F‖2) ^ (?n − 1) .
have nN : ?n ≤ ?N using fF F0 by (metis dvd-imp-degree-le)
from deg nN have n1N : ?n1 ≤ ?N − 1 by auto
have ‖f1‖2 ^ degree g ∗ ‖g‖2 ^ ?n1 ≤
(2 ^ (2 ∗ ?n1) ∗ ‖F‖2) ^ (?n − 1) ∗ (2 ^ (3 ∗ (?n − 1)) ∗ ‖F‖2)^?n1
by (rule mult-mono[OF ineq2 ineq1], force+)

also have . . . ≤ (2 ^ (2 ∗ (?N − 1)) ∗ ‖F‖2) ^ (?N − 1) ∗
(2 ^ (3 ∗ (?N − 1)) ∗ ‖F‖2) ^ (?N − 1)
by (rule mult-mono[OF power-both-mono[OF - - mult-mono]

power-both-mono], insert normF n1N nN , auto intro: power-both-mono
mult-mono)

also have . . . = 2 ^ (2 ∗ (?N −1) ∗ (?N − 1) + 3 ∗ (?N − 1) ∗ (?N −
1))

∗ (‖F‖2)^((?N − 1) + (?N − 1))
unfolding power-mult-distrib power-add power-mult by simp

also have 2 ∗ (?N − 1) ∗ (?N − 1) + 3 ∗ (?N − 1) ∗ (?N − 1) = 5 ∗
(?N − 1) ∗ (?N − 1) by simp

also have ?N − 1 + (?N − 1) = 2 ∗ (?N − 1) by simp

36

also have 2^(5 ∗ (?N − 1) ∗ (?N − 1)) ∗ ‖F‖2^(2 ∗ (?N − 1)) < pl^2
by (rule large)

finally have large: ‖f1‖2 ^ degree g ∗ ‖g‖2 ^ degree f1 < pl2 .
have deg-ug: degree u ≤ degree g
proof (rule pl.dvdm-degree[OF mon-u ug], standard)

assume pl.Mp g = 0
from arg-cong[OF this, of λ p. coeff p (degree g)]

have pl.M (coeff g (degree g)) = 0 by (auto simp: pl.Mp-def coeff-map-poly)
from this[unfolded pl.M-def] obtain c where lg: lead-coeff g = pl ∗ c by

auto
with g0 have c0 : c 6= 0 by auto
hence pl^2 ≤ (lead-coeff g)^2 unfolding lg abs-le-square-iff [symmetric]

by (rule aux-abs-int)
also have . . . ≤ ‖g‖2 ^ 1 using coeff-le-sq-norm[of g] by auto
also have . . . ≤ ‖g‖2 ^ degree f1

by (rule pow-mono-exp, insert deg normg, auto)
also have . . . = 1 ∗ . . . by simp
also have . . . ≤ ‖f1‖2 ^ degree g ∗ ‖g‖2 ^ degree f1

by (rule mult-right-mono, insert normf1 , auto)
also have . . . < pl2 by (rule large)
finally show False by auto

qed
from deg deg-u deg-ug have degree f1 > 0 degree g > 0 by auto
from common-factor-via-short[OF this mon-u - uf1 ug large] deg-u pl.m1
have 0 < degree (gcd f1 g) by auto
moreover from True[unfolded k-def] have degree (gcd f g) = 0 .
moreover have dvd: gcd f1 g dvd gcd f g using f0 unfolding prod by simp
ultimately show False using divides-degree[OF dvd] using f0 by simp

qed
show ?thesis unfolding fs using irr by auto

next
case False
define f1 where f1 = f div k
have f : f = f1 ∗ k unfolding f1-def k-def by auto
with arg-cong[OF this, of degree] f0 have deg-f1k: degree f = degree f1 +

degree k
by (auto simp: degree-mult-eq)

from f fF have dvd: f1 dvd F k dvd F unfolding dvd-def by auto
obtain gs1 gs2 where part: List.partition (λgi. p.dvdm gi f1) us = (gs1 , gs2)

by force
note IH = 1 (1−2)[OF refl u-def g-def k-def refl, unfolded deg-fk, OF False

f1-def part[symmetric] refl]
obtain fs1 where fs1 : LLL-reconstruction f1 gs1 = fs1 by auto
obtain fs2 where fs2 : LLL-reconstruction k gs2 = fs2 by auto
from False res[folded f1-def , unfolded part split fs1 fs2]
have fs: fs = fs1 @ fs2 by auto
from short-main(1)
have deg-gf : degree g < degree f unfolding g-def by auto
from short-main(2)

37

have g0 : g 6= 0 unfolding g-def by auto
have deg-kg: degree k ≤ degree g unfolding k-def gcd.commute[of f g]

by (rule degree-gcd1 [OF g0])
from deg-gf deg-kg have deg-kf : degree k < degree f by auto
with deg-f1k have deg-f1 : degree f1 6= 0 by auto
have sf-f : p.square-free-m f using sf fF p.square-free-m-factor unfolding

dvd-def by blast
from p.unique-factorization-m-factor-partition[OF l0 uf [unfolded plp] f cop

sf-f part]
have uf : pl.unique-factorization-m f1 (lead-coeff f1 , mset gs1)

pl.unique-factorization-m k (lead-coeff k, mset gs2) by (auto simp: plp)
have set us = set gs1 ∪ set gs2 using part by auto
with norm have norm-12 : gi ∈ set gs1 ∨ gi ∈ set gs2 =⇒ pl.Mp gi = gi for

gi by auto
note IH1 = IH (1)[OF fs1 deg-f1 uf (1) dvd(1) norm-12]
note IH2 = IH (2)[OF fs2 False uf (2) dvd(2) norm-12]
show ?thesis unfolding fs f using IH1 IH2 by auto

qed
qed

qed

lemma LLL-many-reconstruction: assumes LLL-many-reconstruction f us = fs
and degree f 6= 0
and poly-mod.unique-factorization-m pl f (lead-coeff f , mset us)
and f dvd F
and

∧
ui. ui ∈ set us =⇒ poly-mod.Mp pl ui = ui

and F0 : F 6= 0
and cop: coprime (lead-coeff F) p
and sf : poly-mod.square-free-m p F
and pl1 : pl > 1
and plp: pl = p^l
and p: prime p
and large: 2^(5 ∗ (degree F div 2) ∗ (degree F div 2)) ∗ ‖F‖2^(2 ∗ (degree F div

2)) < pl2
shows f = prod-list fs ∧ (∀ fi ∈ set fs. irreducibled fi)
proof −

interpret p: poly-mod-prime p by (standard, rule p)
interpret pl: poly-mod-2 pl by (standard, rule pl1)
from pl1 plp have l0 : l 6= 0 by (cases l, auto)
show ?thesis using assms(1−5)
proof (induct f us arbitrary: fs rule: LLL-many-reconstruction.induct)

case (1 f us fs)
note res = 1 (3)
note degf = 1 (4)
note uf = 1 (5)
note fF = 1 (6)
note norm = 1 (7)
note to-fact = pl.unique-factorization-m-imp-factorization
note fact = to-fact[OF uf]

38

have mon-gs: ui ∈ set us =⇒ monic ui for ui using norm fact
unfolding pl.factorization-m-def by auto

from p.coprime-lead-coeff-factor [OF p.prime] fF cop
have cop: coprime (lead-coeff f) p unfolding dvd-def by blast
have plf0 : pl.Mp f 6= 0

using fact pl.factorization-m-lead-coeff pl.unique-factorization-m-zero uf by
fastforce

have degree f = pl.degree-m f
by (rule sym, rule poly-mod.degree-m-eq[OF - pl.m1],

insert cop p, simp add: l0 p.coprime-exp-mod plp)
also have . . . = sum-mset (image-mset pl.degree-m (mset us))

unfolding pl.factorization-m-degree[OF fact plf0] ..
also have . . . = sum-list (map pl.degree-m us)

unfolding sum-mset-sum-list[symmetric] by auto
also have . . . = sum-list (map degree us)

by (rule arg-cong[OF map-cong, OF refl], rule pl.monic-degree-m, insert
mon-gs, auto)

finally have degf-gs: degree f = sum-list (map degree us) by auto
hence gs: us 6= [] using degf by (cases us, auto)
from 1 (4) have f0 : f 6= 0 and df0 : degree f 6= 0 by auto
from norm have norm ′: image-mset pl.Mp (mset us) = mset us by (induct us,

auto)
have pl0 : pl 6= 0 using pl1 by auto

let ?D2 = degree F div 2
let ?d2 = degree f div 2
define gg where gg = LLL-short-polynomial pl (Suc ?d2)
let ?us = filter (λu. degree u ≤ ?d2) us

note res = res[unfolded LLL-many-reconstruction.simps[of f us], unfolded Let-def ,
folded gg-def]

let ?f2-opt = find-map-filter (λu. gcd f (gg u))
(λf2 . 0 < degree f2 ∧ degree f2 < degree f) ?us

show ?case
proof (cases ?f2-opt)

case (Some f2)
from find-map-filter-Some[OF this]
obtain g where deg-f2 : degree f2 6= 0 degree f2 < degree f

and dvd: f2 dvd f and gcd: f2 = gcd f g by auto
note res = res[unfolded Some option.simps]

define f1 where f1 = f div f2
have f : f = f1 ∗ f2 unfolding f1-def using dvd by auto
with arg-cong[OF this, of degree] f0 have deg-sum: degree f = degree f1 +

degree f2
by (auto simp: degree-mult-eq)

with deg-f2 have deg-f1 : degree f1 6= 0 degree f1 < degree f by auto
from f fF have dvd: f1 dvd F f2 dvd F unfolding dvd-def by auto

obtain gs1 gs2 where part: List.partition (λgi. p.dvdm gi f1) us = (gs1 , gs2)
by force

39

note IH = 1 (1−2)[OF refl refl refl, unfolded Let-def , folded gg-def , OF Some
f1-def part[symmetric] refl]

obtain fs1 where fs1 : LLL-many-reconstruction f1 gs1 = fs1 by blast
obtain fs2 where fs2 : LLL-many-reconstruction f2 gs2 = fs2 by blast
from res[folded f1-def , unfolded part split fs1 fs2]
have fs: fs = fs1 @ fs2 by auto
have sf-f : p.square-free-m f using sf fF p.square-free-m-factor unfolding

dvd-def by blast
from p.unique-factorization-m-factor-partition[OF l0 uf [unfolded plp] f cop

sf-f part]
have uf : pl.unique-factorization-m f1 (lead-coeff f1 , mset gs1)

pl.unique-factorization-m f2 (lead-coeff f2 , mset gs2) by (auto simp: plp)
have set us = set gs1 ∪ set gs2 using part by auto
with norm have norm-12 : gi ∈ set gs1 ∨ gi ∈ set gs2 =⇒ pl.Mp gi = gi for

gi by auto
note IH1 = IH (1)[OF fs1 deg-f1 (1) uf (1) dvd(1) norm-12]
note IH2 = IH (2)[OF fs2 deg-f2 (1) uf (2) dvd(2) norm-12]
show ?thesis unfolding fs f using IH1 IH2 by auto

next
case None
from res[unfolded None option.simps] have fs-f : fs = [f] by simp
from sf fF have sf : p.square-free-m f

using p.square-free-m-factor(1)[of f] unfolding dvd-def by auto
have irreducibled f
proof (rule ccontr)

assume ¬ irreducibled f
from reducibledE [OF this] degf obtain f1 f2 where

f : f = f1 ∗ f2 and
deg12 : degree f1 6= 0 degree f2 6= 0 degree f1 < degree f degree f2 < degree

f
by (simp, metis)

from f0 have degree f = degree f1 + degree f2 unfolding f
by (auto simp: degree-mult-eq)

hence degree f1 ≤ degree f div 2 ∨ degree f2 ≤ degree f div 2 by auto
then obtain f1 f2 where

f : f = f1 ∗ f2 and
deg12 : degree f1 6= 0 degree f2 6= 0 degree f1 ≤ degree f div 2 degree f2 <

degree f
proof (standard, goal-cases)

case 1
from 1 (1)[of f1 f2] 1 (2) f deg12 show ?thesis by auto

next
case 2
from 2 (1)[of f2 f1] 2 (2) f deg12 show ?thesis by auto

qed
from f0 f have f10 : f1 6= 0 by auto
from sf f have sf1 : p.square-free-m f1

using p.square-free-m-factor(1)[of f1] by auto
from p.coprime-lead-coeff-factor [OF p.prime cop[unfolded f]]

40

have cop1 : coprime (lead-coeff f1) p by auto
have deg-m1 : pl.degree-m f1 = degree f1

by (rule poly-mod.degree-m-eq[OF - pl.m1],
insert cop1 p, simp add: l0 p.coprime-exp-mod plp)

from pl.unique-factorization-m-factor [OF p uf [unfolded f], folded f , OF cop
sf l0 plp]

obtain us1 us2 where
uf12 : pl.unique-factorization-m f1 (lead-coeff f1 , us1)

pl.unique-factorization-m f2 (lead-coeff f2 , us2)
and gs: mset us = us1 + us2
and norm12 : image-mset pl.Mp us2 = us2 image-mset pl.Mp us1 = us1
unfolding pl.Mf-def norm ′ split by (auto simp: pl.Mf-def)

from gs have x ∈# us1 =⇒ x ∈# mset us for x by auto
hence sub1 : x ∈# us1 =⇒ x ∈ set us for x by auto
from to-fact[OF uf12 (1)]
have fact1 : pl.factorization-m f1 (lead-coeff f1 , us1) .
have plf10 : pl.Mp f1 6= 0

using fact1 pl.factorization-m-lead-coeff pl.unique-factorization-m-zero
uf12 (1) by fastforce

have degree f1 = pl.degree-m f1 using deg-m1 by simp
also have . . . = sum-mset (image-mset pl.degree-m us1)

unfolding pl.factorization-m-degree[OF fact1 plf10] ..
also have . . . = sum-mset (image-mset degree us1)

by (rule arg-cong[of - - sum-mset], rule image-mset-cong,
rule pl.monic-degree-m, rule mon-gs, rule sub1)

finally have degf1-sum: degree f1 = sum-mset (image-mset degree us1) by
auto

with deg12 have us1 6= {#} by auto
then obtain u us11 where us1 : us1 = {#u#} + us11

by (cases us1 , auto)
hence u1 : u ∈# us1 by auto
hence u: u ∈ set us by (rule sub1)
let ?g = gg u
from pl.factorization-m-mem-dvdm[OF fact1 , of u] u1 have u-f1 : pl.dvdm

u f1 by auto
note norm-u = norm[OF u]

from fact u have irred: pl.irreducibled-m u unfolding pl.factorization-m-def
by auto

hence deg-u: degree u 6= 0 unfolding pl.irreducibled-m-def norm[OF u] by
auto

have degree u ≤ degree f1 unfolding degf1-sum unfolding us1 by simp
also have . . . ≤ degree f div 2 by fact
finally have deg-uf : degree u ≤ degree f div 2 .
hence deg-uf ′: degree u ≤ Suc (degree f div 2) degree u < Suc (degree f div

2) by auto
from mon-gs[OF u] have mon-u: monic u .

note short = LLL-short-polynomial[OF deg-u deg-uf ′(1) pl1 mon-u, folded
gg-def]

41

note short = short(1−3) short(4)[OF deg-uf ′(2)]
from short(1 ,2) deg12 (1 ,3) f10 have degree (gcd f ?g) ≤ degree f div 2

by (metis Suc-leI Suc-le-mono degree-gcd1 gcd.commute le-trans)
also have . . . < degree f using degf by simp
finally have degree (gcd f ?g) < degree f by simp
with find-map-filter-None[OF None, simplified, rule-format, of u] deg-uf u
have deg-gcd: degree (gcd f (?g)) = 0 by (auto simp: gcd.commute)
have gcd f1 (?g) dvd gcd f (?g) using f0 unfolding f by simp
from divides-degree[OF this, unfolded deg-gcd] f0
have deg-gcd1 : degree (gcd f1 (?g)) = 0 by auto

from F0 have normF : ‖F‖2 ≥ 1 using sq-norm-poly-pos[of F] by presburger
have g0 : ?g 6= 0 using short(2) .

from g0 have normg: ‖?g‖2 ≥ 1 using sq-norm-poly-pos[of ?g] by presburger
from f10 have normf1 : ‖f1‖2 ≥ 1 using sq-norm-poly-pos[of f1] by

presburger
from fF f have f1F : f1 dvd F unfolding dvd-def by auto
have pl-ge0 : pl ≥ 0 using pl.poly-mod-2-axioms poly-mod-2-def by auto

from fF have degree f ≤ degree F using F0 f0 by (metis dvd-imp-degree-le)
hence d2D2 : ?d2 ≤ ?D2 by simp
with deg12 (3) have df1-D2 : degree f1 ≤ ?D2 by linarith
from short(1) d2D2 have dg-D2 : degree (gg u) ≤ ?D2 by linarith
have ‖f1‖2 ^ degree (gg u) ∗ ‖gg u‖2 ^ degree f1
≤ ‖f1‖2 ^ ?D2 ∗ ‖gg u‖2 ^ ?D2
by (rule mult-mono[OF pow-mono-exp pow-mono-exp],

insert normf1 normg, auto intro: df1-D2 dg-D2)
also have . . . = (‖f1‖2 ∗ ‖gg u‖2)^?D2

by (simp add: power-mult-distrib)
also have . . . ≤ (‖f1‖2 ∗ (2^?D2 ∗ ‖f1‖2))^?D2

by (rule power-mono[OF mult-left-mono[OF order .trans[OF short(4)[OF
f10 u-f1]]]],

insert deg12 d2D2 , auto intro!: mult-mono)
also have . . . = ‖f1‖2 ^ (?D2 + ?D2) ∗ 2^(?D2 ∗ ?D2)

unfolding power-add power-mult-distrib power-mult by simp
also have . . . ≤ (2 ^ (2 ∗ ?D2) ∗ ‖F‖2) ^ (?D2 + ?D2) ∗ 2^(?D2 ∗ ?D2)
by (rule mult-right-mono[OF order .trans[OF power-mono[OF sq-norm-factor-bound[OF

f1F F0]]]],
auto intro!: power-mono mult-right-mono df1-D2)

also have . . . = 2 ^ (2 ∗ ?D2 ∗ (?D2 + ?D2) + ?D2 ∗ ?D2) ∗ ‖F‖2 ^
(?D2 + ?D2)

unfolding power-mult-distrib power-mult power-add by simp
also have 2 ∗ ?D2 ∗ (?D2 + ?D2) + ?D2 ∗ ?D2 = 5 ∗ ?D2 ∗ ?D2 by

simp
also have ?D2 + ?D2 = 2 ∗ ?D2 by simp
finally have large:
‖f1‖2 ^ degree (gg u) ∗ ‖gg u‖2 ^ degree f1 < pl^2 using large by simp

have degree u ≤ degree (?g)
proof (rule pl.dvdm-degree[OF mon-u short(3)], standard)

assume pl.Mp (?g) = 0
from arg-cong[OF this, of λ p. coeff p (degree ?g)]

42

have pl.M (coeff ?g (degree ?g)) = 0 by (auto simp: pl.Mp-def co-
eff-map-poly)

from this[unfolded pl.M-def] obtain c where lg: lead-coeff ?g = pl ∗ c
by auto

with g0 have c0 : c 6= 0 by auto
hence pl^2 ≤ (lead-coeff ?g)^2 unfolding lg abs-le-square-iff [symmetric]

by (rule aux-abs-int)
also have . . . ≤ ‖?g‖2 using coeff-le-sq-norm[of ?g] by auto
also have . . . = ‖?g‖2 ^ 1 by simp
also have . . . ≤ ‖?g‖2 ^ degree f1

by (rule pow-mono-exp, insert deg12 normg, auto)
also have . . . = 1 ∗ . . . by simp
also have . . . ≤ ‖f1‖2 ^ degree ?g ∗ ‖?g‖2 ^ degree f1

by (rule mult-right-mono, insert normf1 , auto)
also have . . . < pl2 by (rule large)
finally show False by auto

qed
with deg-u have deg-g: 0 < degree (gg u) by auto
have pl-ge0 : pl ≥ 0 using pl.poly-mod-2-axioms poly-mod-2-def by auto

from fF have degree f ≤ degree F using F0 f0 by (metis dvd-imp-degree-le)
hence d2D2 : ?d2 ≤ ?D2 by simp
with deg12 (3) have df1-D2 : degree f1 ≤ ?D2 by linarith
from short(1) d2D2 have dg-D2 : degree (gg u) ≤ ?D2 by linarith
have 0 < degree f1 0 < degree u using deg12 deg-u by auto
from common-factor-via-short[of f1 gg u, OF this(1) deg-g mon-u this(2)

u-f1 short(3) - pl-ge0] deg-gcd1
have pl^2 ≤ ‖f1‖2 ^ degree (gg u) ∗ ‖gg u‖2 ^ degree f1 by linarith
also have . . . < pl^2 by (rule large)
finally show False by simp

qed
thus ?thesis using fs-f by simp

qed
qed

qed

end

lemma LLL-factorization:
assumes res: LLL-factorization f = gs
and sff : square-free f
and deg: degree f 6= 0
shows f = prod-list gs ∧ (∀ g∈set gs. irreducibled g)

proof −
let ?lc = lead-coeff f
define p where p ≡ suitable-prime-bz f
obtain c gs where fff : finite-field-factorization-int p f = (c,gs) by force
let ?degs = map degree gs
note res = res[unfolded LLL-factorization-def Let-def , folded p-def ,

unfolded fff split, folded]

43

from suitable-prime-bz[OF sff refl]
have prime: prime p and cop: coprime ?lc p and sf : poly-mod.square-free-m p f

unfolding p-def by auto
note res
from prime interpret p: poly-mod-prime p by unfold-locales
define K where K = 2^(5 ∗ (degree f − 1) ∗ (degree f − 1)) ∗ ‖f ‖2^(2 ∗

(degree f − 1))
define N where N = sqrt-int-ceiling K
have K0 : K ≥ 0 unfolding K-def by fastforce
have N0 : N ≥ 0 unfolding N-def sqrt-int-ceiling using K0

by (smt of-int-nonneg real-sqrt-ge-0-iff zero-le-ceiling)
define n where n = find-exponent p N
note res = res[folded n-def [unfolded N-def K-def]]
note n = find-exponent[OF p.m1 , of N , folded n-def]
note bh = p.berlekamp-and-hensel-separated(1)[OF cop sf refl fff n(2)]
from deg have f0 : f 6= 0 by auto
from n p.m1 have pn1 : p ^ n > 1 by auto
note res = res[folded bh(1)]
note ∗ = p.berlekamp-hensel-unique[OF cop sf bh n(2)]
note ∗∗ = p.berlekamp-hensel-main[OF n(2) bh cop sf fff]
from res ∗ ∗∗
have uf : poly-mod.unique-factorization-m (p ^ n) f (lead-coeff f , mset (berlekamp-hensel

p n f))
and norm:

∧
ui. ui ∈ set (berlekamp-hensel p n f) =⇒ poly-mod.Mp (p ^ n) ui

= ui
unfolding berlekamp-hensel-def fff split by auto

have K : K < (p ^ n)2 using n sqrt-int-ceiling-bound[OF K0]
by (smt N0 N-def n(1) power2-le-imp-le)

show ?thesis
by (rule LLL-implementation.LLL-reconstruction[OF res deg uf dvd-refl norm

f0 cop sf pn1
refl prime K [unfolded K-def]])

qed

lemma LLL-many-factorization:
assumes res: LLL-many-factorization f = gs
and sff : square-free f
and deg: degree f 6= 0
shows f = prod-list gs ∧ (∀ g∈set gs. irreducibled g)

proof −
let ?lc = lead-coeff f
define p where p ≡ suitable-prime-bz f
obtain c gs where fff : finite-field-factorization-int p f = (c,gs) by force
let ?degs = map degree gs
note res = res[unfolded LLL-many-factorization-def Let-def , folded p-def ,

unfolded fff split, folded]
from suitable-prime-bz[OF sff refl]
have prime: prime p and cop: coprime ?lc p and sf : poly-mod.square-free-m p f

unfolding p-def by auto

44

note res
from prime interpret p: poly-mod-prime p by unfold-locales
define K where K = 2^(5 ∗ (degree f div 2) ∗ (degree f div 2)) ∗ ‖f ‖2^(2 ∗

(degree f div 2))
define N where N = sqrt-int-ceiling K
have K0 : K ≥ 0 unfolding K-def by fastforce
have N0 : N ≥ 0 unfolding N-def sqrt-int-ceiling using K0

by (smt of-int-nonneg real-sqrt-ge-0-iff zero-le-ceiling)
define n where n = find-exponent p N
note res = res[folded n-def [unfolded N-def K-def]]
note n = find-exponent[OF p.m1 , of N , folded n-def]
note bh = p.berlekamp-and-hensel-separated(1)[OF cop sf refl fff n(2)]
from deg have f0 : f 6= 0 by auto
from n p.m1 have pn1 : p ^ n > 1 by auto
note res = res[folded bh(1)]
note ∗ = p.berlekamp-hensel-unique[OF cop sf bh n(2)]
note ∗∗ = p.berlekamp-hensel-main[OF n(2) bh cop sf fff]
from res ∗ ∗∗
have uf : poly-mod.unique-factorization-m (p ^ n) f (lead-coeff f , mset (berlekamp-hensel

p n f))
and norm:

∧
ui. ui ∈ set (berlekamp-hensel p n f) =⇒ poly-mod.Mp (p ^ n) ui

= ui
unfolding berlekamp-hensel-def fff split by auto

have K : K < (p ^ n)2 using n sqrt-int-ceiling-bound[OF K0]
by (smt N0 N-def n(1) power2-le-imp-le)

show ?thesis
by (rule LLL-implementation.LLL-many-reconstruction[OF res deg uf dvd-refl

norm f0 cop sf pn1
refl prime K [unfolded K-def]])

qed

lift-definition one-lattice-LLL-factorization :: int-poly-factorization-algorithm
is LLL-factorization using LLL-factorization by auto

lift-definition many-lattice-LLL-factorization :: int-poly-factorization-algorithm
is LLL-many-factorization using LLL-many-factorization by auto

lemma LLL-factorization-primitive: assumes LLL-factorization f = fs
square-free f
0 < degree f
primitive f

shows f = prod-list fs ∧ (∀fi∈set fs. irreducible fi ∧ 0 < degree fi ∧ primitive fi)
using assms(1)
by (intro int-poly-factorization-algorithm-irreducible[of one-lattice-LLL-factorization,

OF - assms(2−)], transfer , auto)

thm factorize-int-poly[of one-lattice-LLL-factorization]
thm factorize-int-poly[of many-lattice-LLL-factorization]

45

end

6 Calculating All Possible Sums of Sub-Multisets
theory Sub-Sums

imports
Main
HOL−Library.Multiset

begin

fun sub-mset-sums :: ′a :: comm-monoid-add list ⇒ ′a set where
sub-mset-sums [] = {0}
| sub-mset-sums (x # xs) = (let S = sub-mset-sums xs in S ∪ ((+) x) ‘ S)

lemma subset-add-mset: ys ⊆# add-mset x zs ←→ (ys ⊆# zs ∨ (∃ xs. xs ⊆# zs
∧ ys = add-mset x xs))
(is ?l = ?r)

proof
have sub: ys ⊆# zs =⇒ ys ⊆# add-mset x zs
by (metis add-mset-remove-trivial diff-subset-eq-self subset-mset.dual-order .trans)

assume ?r
thus ?l using sub by auto

next
assume l: ?l
show ?r
proof (cases x ∈# ys)

case True
define xs where xs = (ys − {# x #})
from True have ys: ys = add-mset x xs unfolding xs-def by auto
from l[unfolded ys] have xs ⊆# zs by auto
thus ?r unfolding ys by auto

next
case False
with l have ys ⊆# zs by (simp add: subset-mset.le-iff-sup)
thus ?thesis by auto

qed
qed

lemma sub-mset-sums[simp]: sub-mset-sums xs = sum-mset ‘ { ys. ys ⊆# mset xs
}
proof (induct xs)

case (Cons x xs)
have id: {ys. ys ⊆# mset (x # xs)} = {ys. ys ⊆# mset xs} ∪ {add-mset x ys |

ys. ys ⊆# mset xs}
unfolding mset.simps subset-add-mset by auto

show ?case unfolding sub-mset-sums.simps Let-def Cons id image-Un
by force

qed auto

46

end

7 Implementation and soundness of a modified ver-
sion of Algorithm 16.22

Algorithm 16.22 is quite similar to the LLL factorization algorithm that was
verified in the previous section. Its main difference is that it has an inner
loop where each inner loop iteration has one invocation of the LLL basis
reduction algorithm. Algorithm 16.22 of the textbook is therefore closer
to the factorization algorithm as it is described by Lenstra, Lenstra, and
Lovász [3], which also uses an inner loop.
The advantage of the inner loop is that it can find factors earlier, and then
small lattices suffice where without the inner loop one invokes the basis
reduction algorithm on a large lattice. The disadvantage of the inner loop
is that if the input is irreducible, then one cannot find any factor early, so
that all but the last iteration have been useless: only the last iteration will
prove irreducibility.

We will describe the modifications w.r.t. the original Algorithm 16.22 of the
textbook later in this theory.
theory Factorization-Algorithm-16-22

imports
LLL-Factorization
Sub-Sums

begin

7.1 Previous lemmas obtained using local type definitions
context poly-mod-prime-type
begin

lemma irreducible-m-dvdm-prod-list-connect:
assumes irr : irreducible-m a
and dvd: a dvdm (prod-list xs)

shows ∃ b ∈ set xs. a dvdm b
proof −

let ?A=(of-int-poly a):: ′a mod-ring poly
let ?XS=(map of-int-poly xs):: ′a mod-ring poly list
let ?XS1 = (of-int-poly (prod-list xs)):: ′a mod-ring poly
have [transfer-rule]: MP-Rel a ?A

by (simp add: MP-Rel-def Mp-f-representative)
have [transfer-rule]: MP-Rel (prod-list xs) ?XS1

by (simp add: MP-Rel-def Mp-f-representative)
have [transfer-rule]: list-all2 MP-Rel xs ?XS

by (simp add: MP-Rel-def Mp-f-representative list-all2-conv-all-nth)
have A: ?A dvd ?XS1 using dvd by transfer

47

have ∃ b ∈ set ?XS . ?A dvd b
by (rule irreducible-dvd-prod-list, insert irr , transfer , auto simp add: A)

from this[untransferred] show ?thesis .
qed

end

lemma (in poly-mod-prime) irreducible-m-dvdm-prod-list:
assumes irr : irreducible-m a
and dvd: a dvdm (prod-list xs)
shows ∃ b ∈ set xs. a dvdm b
by (rule poly-mod-prime-type.irreducible-m-dvdm-prod-list-connect[unfolded poly-mod-type-simps,

internalize-sort ′a :: prime-card, OF type-to-set, unfolded remove-duplicate-premise,

cancel-type-definition, OF non-empty irr dvd])

7.2 The modified version of Algorithm 16.22
definition B2-LLL :: int poly ⇒ int where

B2-LLL f = 2 ^ (2 ∗ degree f) ∗ ‖f ‖2

hide-const (open) factors
hide-const (open) factors
hide-const (open) factor
hide-const (open) factor

context
fixes p :: int and l :: nat

begin

context
fixes gs :: int poly list

and f :: int poly
and u :: int poly
and Degs :: nat set

begin

This is the critical inner loop.
In the textbook there is a bug, namely that the filter is applied to g′ and not
to the primitive part of g′. (Problems occur if the content of g′ is divisible
by p.) We have fixed this problem in the obvious way.
However, there also is a second problem, namely it is only guaranteed that
g′ is divisible by u modulo pl. However, for soundness we need to know
that then also the primitive part of g′ is divisible by u modulo pl. This is
not necessary true, e.g., if g′ = pl, then the primitive part is 1 which is not
divisible by u modulo pl. It is open, whether such a large g′ can actually
occur. Therefore, the current fix is to manually test whether the leading

48

coefficient of g′ is strictly smaller than pl.
With these two modifications, Algorithm 16.22 will become sound as proven
below.
definition LLL-reconstruction-inner j ≡

let j ′ = j − 1 in
— optimization: check whether degree j’ is possible
if j ′ /∈ Degs then None else
— short vector computation
let

ll = (let n = sqrt-int-ceiling (‖f ‖2 ^ (2 ∗ j ′) ∗ 2 ^ (5 ∗ j ′ ∗ j ′));
ll ′ = find-exponent p n in if ll ′ < l then ll ′ else l);

— optimization: dynamically adjust the modulus
pl = p^ll;
g ′ = LLL-short-polynomial pl j u

— fix: forbid multiples of pl as short vector, unclear whether this is really required
in if abs (lead-coeff g ′) ≥ pl then None else
let ppg = primitive-part g ′

in
— slight deviation from textbook: we check divisibility instead of norm-inequality
case div-int-poly f ppg of Some f ′⇒

— fix: consider modular factors of ppg and not of g’
Some (filter (λgi. ¬ poly-mod.dvdm p gi ppg) gs, lead-coeff f ′, f ′, ppg)
| None ⇒ None

function LLL-reconstruction-inner-loop where
LLL-reconstruction-inner-loop j =
(if j > degree f then ([],1 ,1 ,f)
else case LLL-reconstruction-inner j

of Some tuple ⇒ tuple
| None ⇒ LLL-reconstruction-inner-loop (j+1))

by auto
termination by (relation measure (λ j. Suc (degree f) − j), auto)

end

partial-function (tailrec) LLL-reconstruction ′′ where [code]:
LLL-reconstruction ′′ gs b f factors =
(if gs = [] then factors
else

let u = choose-u gs;
d = degree u;
gs ′ = remove1 u gs;
degs = map degree gs ′;
Degs = ((+) d) ‘ sub-mset-sums degs;
(gs ′, b ′, f ′, factor) = LLL-reconstruction-inner-loop gs f u Degs (d+1)

in LLL-reconstruction ′′ gs ′ b ′ f ′ (factor#factors)

49

)

definition reconstruction-of-algorithm-16-22 gs f ≡
let G = [];

b = lead-coeff f
in LLL-reconstruction ′′ gs b f G

end

definition factorization-algorithm-16-22 :: int poly ⇒ int poly list where
factorization-algorithm-16-22 f = (let

— find suitable prime
p = suitable-prime-bz f ;
— compute finite field factorization
(-, fs) = finite-field-factorization-int p f ;
— determine l and B
n = degree f ;
— bound improved according to textbook, which uses no = (n + 1) ∗ (max −

normf)2

no = ‖f ‖2;
— possible improvement: B = sqrt(25∗n∗(n−1) ∗ no2∗n−1, cf. LLL-factorization
B = sqrt-int-ceiling (2 ^ (5 ∗ n ∗ n) ∗ no ^ (2 ∗ n));
l = find-exponent p B;
— perform hensel lifting to lift factorization to mod pl

vs = hensel-lifting p l f fs
— reconstruct integer factors

in reconstruction-of-algorithm-16-22 p l vs f)

7.3 Soundness proof
7.3.1 Starting the proof

Key lemma to show that forbidding values of pl or larger suffices to find
correct factors.
lemma (in poly-mod-prime) Mp-smult-p-removal: poly-mod.Mp (p ∗ p ^ k) (smult
p f) = 0 =⇒ poly-mod.Mp (p^k) f = 0
by (smt add.left-neutral m1 poly-mod.Dp-Mp-eq poly-mod.Mp-smult-m-0 sdiv-poly-smult

smult-smult)

lemma (in poly-mod-prime) eq-m-smult-p-removal: poly-mod.eq-m (p ∗ p ^ k)
(smult p f) (smult p g)
=⇒ poly-mod.eq-m (p^k) f g using Mp-smult-p-removal[of k f − g]
by (metis add-diff-cancel-left ′ diff-add-cancel diff-self poly-mod.Mp-0 poly-mod.minus-Mp(2)

smult-diff-right)

lemma content-le-lead-coeff : abs (content (f :: int poly)) ≤ abs (lead-coeff f)
proof (cases f = 0)

case False
from content-dvd-coeff [of f degree f] have abs (content f) dvd abs (lead-coeff f)

50

by auto
moreover have abs (lead-coeff f) 6= 0 using False by auto
ultimately show ?thesis by (smt dvd-imp-le-int)

qed auto

lemma poly-mod-dvd-drop-smult: assumes u: monic u and p: prime p and c: c
6= 0 |c| < p^l

and dvd: poly-mod.dvdm (p^l) u (smult c f)
shows poly-mod.dvdm p u f

using c dvd
proof (induct l arbitrary: c rule: less-induct)

case (less l c)
interpret poly-mod-prime p by (unfold-locales, insert p, auto)
note c = less(2−3)
note dvd = less(4)
note IH = less(1)
show ?case
proof (cases l = 0)

case True
thus ?thesis using c dvd by auto

next
case l0 : False
interpret pl: poly-mod-2 p^l by (unfold-locales, insert m1 l0 , auto)
show ?thesis
proof (cases p dvd c)

case False
let ?i = inverse-mod c (p ^ l)
have gcd c p = 1 using p False
by (metis Primes.prime-int-iff gcd-ge-0-int semiring-gcd-class.gcd-dvd1 semir-

ing-gcd-class.gcd-dvd2)
hence coprime c p by (metis dvd-refl gcd-dvd-1)
from pl.inverse-mod-coprime-exp[OF refl p l0 this]
have id: pl.M (?i ∗ c) = 1 .
have pl.Mp (smult ?i (smult c f)) = pl.Mp (smult (pl.M (?i ∗ c)) f) by simp
also have . . . = pl.Mp f unfolding id by simp
finally have pl.dvdm u f using pl.dvdm-smult[OF dvd, of ?i] unfolding

pl.dvdm-def by simp
thus u dvdm f using l0 pl-dvdm-imp-p-dvdm by blast

next
case True
then obtain d where cpd: c = p ∗ d unfolding dvd-def by auto
from cpd c have d0 : d 6= 0 by auto
note to-p = Mp-Mp-pow-is-Mp[OF l0 m1]
from dvd obtain v where eq: pl.eq-m (u ∗ v) (smult p (smult d f))

unfolding pl.dvdm-def cpd by auto
from arg-cong[OF this, of Mp, unfolded to-p]
have Mp (u ∗ v) = 0 unfolding Mp-smult-m-0 .
with u have Mp v = 0

by (metis Mp-0 add-eq-0-iff-both-eq-0 degree-0

51

degree-m-mult-eq monic-degree-0 monic-degree-m mult-cancel-right2)
from Mp-0-smult-sdiv-poly[OF this]
obtain w where v: v = smult p w by metis
with eq have eq: pl.eq-m (smult p (u ∗ w)) (smult p (smult d f)) by simp
from l0 obtain ll where l = Suc ll by (cases l, auto)
hence pl: p^l = p ∗ p^ll and ll: ll < l by auto
from c(2) have d-small: |d| < p^ll unfolding pl cpd abs-mult

using mult-less-cancel-left-pos[of p d p^ll] m1 by auto
from eq-m-smult-p-removal[OF eq[unfolded pl]]
have poly-mod.eq-m (p^ll) (u ∗ w) (smult d f) .
hence dvd: poly-mod.dvdm (p^ll) u (smult d f) unfolding poly-mod.dvdm-def

by metis
show ?thesis by (rule IH [OF ll d0 d-small dvd])

qed
qed

qed

context
fixes p :: int

and F :: int poly
and N :: nat
and l :: nat

defines [simp]: N ≡ degree F
assumes p: prime p

and N0 : N > 0
and bound-l: 2 ^ N 2 ∗ B2-LLL F ^ (2 ∗ N) ≤ (p^l)2

begin

private lemma F0 : F 6=0 using N0
by fastforce

private lemma p1 : p > 1 using p prime-gt-1-int by auto

interpretation p: poly-mod-prime p using p by unfold-locales

interpretation pl: poly-mod p^l.

lemma B2-2 : 2 ≤ B2-LLL F
proof −

from F0 have ‖F‖2 6= 0 by simp
hence F1 : ‖F‖2 ≥ 1 using sq-norm-poly-pos[of F] F0 by linarith
have (2 :: int) = 2^1 ∗ 1 by simp
also have . . . ≤ B2-LLL F unfolding B2-LLL-def

by (intro mult-mono power-increasing F1 , insert N0 , auto)
finally show 2 ≤ B2-LLL F .

qed

lemma l-gt-0 : l > 0
proof (cases l)

52

case 0
have 1 ∗ 2 ≤ 2 ^ N 2 ∗ B2-LLL F ^ (2 ∗ N)
proof (rule mult-mono)

have 2 ∗ 1 ≤ (2 :: int) ∗ (2 ^ (2∗N − 1)) by (rule mult-left-mono, auto)
also have . . . = 2 ^ (2 ∗ N) using N0 by (cases N , auto)
also have . . . ≤ B2-LLL F ^ (2 ∗ N)

by (rule power-mono[OF B2-2], force)
finally show 2 ≤ B2-LLL F ^ (2 ∗ N) by simp

qed auto
also have . . . ≤ 1 using bound-l[unfolded 0] by auto
finally show ?thesis by auto

qed auto

lemma l0 : l 6= 0 using l-gt-0 by auto

lemma pl-not0 : p ^ l 6= 0 using p1 l0 by auto

interpretation pl: poly-mod-2 p^l
by (standard, insert p1 l0 , auto)

private lemmas pl-dvdm-imp-p-dvdm = p.pl-dvdm-imp-p-dvdm[OF l0]

lemma p-Mp-pl-Mp[simp]: p.Mp (pl.Mp k) = p.Mp k
using Mp-Mp-pow-is-Mp[OF l0 p.m1] .

context
fixes u :: int poly

and d and f and n
and gs :: int poly list
and Degs :: nat set

defines [simp]: d ≡ degree u
assumes d0 : d > 0

and u: monic u
and irred-u: p.irreducible-m u
and u-f : p.dvdm u f
and f-dvd-F : f dvd F
and [simp]: n == degree f
and f-gs: pl.unique-factorization-m f (lead-coeff f , mset gs)
and cop: coprime (lead-coeff f) p
and sf : p.square-free-m f
and sf-F : square-free f
and u-gs: u ∈ set gs
and norm-gs: map pl.Mp gs = gs
and Degs:

∧
factor . factor dvd f =⇒ p.dvdm u factor =⇒ degree factor ∈

Degs
begin
interpretation pl: poly-mod-2 p^l using l0 p1 by (unfold-locales, auto)

private lemma f0 : f 6= 0 using sf-F unfolding square-free-def by fastforce

53

private lemma Mpf0 : pl.Mp f 6= 0
by (metis p.square-free-m-def p-Mp-pl-Mp sf)

private lemma pMpf0 : p.Mp f 6= 0
using p.square-free-m-def sf by auto

private lemma dn: d ≤ n using p.dvdm-imp-degree-le[OF u-f u pMpf0 p1] by
auto

private lemma n0 : n > 0 using d0 dn by auto

private lemma B2-0 [intro!]: B2-LLL F > 0 using B2-2 by auto
private lemma deg-u: degree u > 0 using d0 d-def by auto

private lemma n-le-N : n≤N by (simp add: dvd-imp-degree-le[OF f-dvd-F F0])

lemma dvdm-power : assumes g dvd f
shows p.dvdm u g ←→ pl.dvdm u g

proof
assume pl.dvdm u g
thus p.dvdm u g by (rule pl-dvdm-imp-p-dvdm)

next
assume dvd: p.dvdm u g
from norm-gs have norm-gsp:

∧
f . f ∈ set gs =⇒ pl.Mp f = f by (induct gs,

auto)
with f-gs[unfolded pl.unique-factorization-m-alt-def pl.factorization-m-def split]
have gs-irred-mon:

∧
f . f ∈# mset gs =⇒ pl.irreducibled-m f ∧ monic f by

auto
from norm-gs have norm-gs: image-mset pl.Mp (mset gs) = mset gs by (induct

gs, auto)
from assms obtain h where f : f = g ∗ h unfolding dvd-def by auto
from pl.unique-factorization-m-factor [OF p.prime f-gs[unfolded f] - - l0 refl,

folded f ,
OF cop sf , unfolded pl.Mf-def split] norm-gs

obtain hs fs where uf : pl.unique-factorization-m h (lead-coeff h, hs)
pl.unique-factorization-m g (lead-coeff g, fs)

and id: mset gs = fs + hs
and norm: image-mset pl.Mp fs = fs image-mset pl.Mp hs = hs by auto

from p.square-free-m-prod-imp-coprime-m[OF sf [unfolded f]]
have cop-h-f : p.coprime-m g h by auto
show pl.dvdm u g
proof (cases u ∈# fs)

case True
hence pl.Mp u ∈# image-mset pl.Mp fs by auto

from pl.factorization-m-mem-dvdm[OF pl.unique-factorization-m-imp-factorization[OF
uf (2)] this]

show ?thesis .
next

54

case False
from u-gs have u ∈# mset gs by auto
from this[unfolded id] False have u ∈# hs by auto
hence pl.Mp u ∈# image-mset pl.Mp hs by auto

from pl.factorization-m-mem-dvdm[OF pl.unique-factorization-m-imp-factorization[OF
uf (1)] this]

have pl.dvdm u h by auto
from pl-dvdm-imp-p-dvdm[OF this]
have p.dvdm u h by auto
from cop-h-f [unfolded p.coprime-m-def , rule-format, OF dvd this]
have p.dvdm u 1 .
from p.dvdm-imp-degree-le[OF this u - p.m1] have degree u = 0 by auto
with deg-u show ?thesis by auto

qed
qed

private lemma uf : pl.dvdm u f using dvdm-power [OF dvd-refl] u-f by simp

lemma exists-reconstruction: ∃ h0 . irreducibled h0 ∧ p.dvdm u h0 ∧ h0 dvd f
proof −

have deg-f : degree f > 0 using ‹n ≡ degree f › n0 by blast
from berlekamp-zassenhaus-factorization-irreducibled[OF refl sf-F deg-f]
obtain fs where f-fs: f = prod-list fs

and c: (∀fi∈set fs. irreducibled fi ∧ 0 < degree fi) by blast
have pl.dvdm u (prod-list fs) using uf f-fs by simp
hence p.dvdm u (prod-list fs) by (rule pl-dvdm-imp-p-dvdm)
from this obtain h0 where h0 : h0 ∈ set fs and dvdm-u-h0 : p.dvdm u h0

using p.irreducible-m-dvdm-prod-list[OF irred-u] by auto
moreover have h0 dvd f by (unfold f-fs, rule prod-list-dvd[OF h0])
moreover have irreducibled h0 using c h0 by auto
ultimately show ?thesis by blast

qed

lemma factor-dvd-f-0 : assumes factor dvd f
shows pl.Mp factor 6= 0

proof −
from assms obtain h where f : f = factor ∗ h unfolding dvd-def ..
from arg-cong[OF this, of pl.Mp] have 0 6= pl.Mp (pl.Mp factor ∗ h)

using Mpf0 by auto
thus ?thesis by fastforce

qed

lemma degree-factor-ge-degree-u:
assumes u-dvdm-factor : p.dvdm u factor

and factor-dvd: factor dvd f shows degree u ≤ degree factor
proof −

from factor-dvd-f-0 [OF factor-dvd] have factor0 : pl.Mp factor 6= 0 .
from u-dvdm-factor [unfolded dvdm-power [OF factor-dvd] pl.dvdm-def] obtain v

where

55

∗: pl.Mp factor = pl.Mp (u ∗ pl.Mp v) by auto
with factor0 have v0 : pl.Mp v 6= 0 by fastforce
hence 0 6= lead-coeff (pl.Mp v) by auto
also have lead-coeff (pl.Mp v) = pl.M (lead-coeff (pl.Mp v))

by (auto simp: pl.Mp-def coeff-map-poly)
finally have ∗∗: lead-coeff (pl.Mp v) 6= p ^ l ∗ r for r by (auto simp: pl.M-def)

from ∗ have degree factor ≥ pl.degree-m (u ∗ pl.Mp v) using pl.degree-m-le[of
factor] by auto

also have pl.degree-m (u ∗ pl.Mp v) = degree (u ∗ pl.Mp v)
by (rule pl.degree-m-eq, unfold lead-coeff-mult, insert u pl.m1 ∗∗, auto)

also have . . . = degree u + degree (pl.Mp v)
by (rule degree-mult-eq, insert v0 u, auto)

finally show ?thesis by auto
qed

7.3.2 Inner loop
context

fixes j ′ :: nat
assumes dj ′: d ≤ j ′

and j ′n: j ′ < n
and deg:

∧
factor . p.dvdm u factor =⇒ factor dvd f =⇒ degree factor ≥ j ′

begin

private abbreviation (input) j ≡ Suc j ′

private lemma jn: j ≤ n using j ′n by auto

private lemma factor-irreducibledI : assumes hf : h dvd f
and puh: p.dvdm u h
and degh: degree h > 0
and degh-j: degree h ≤ j ′

shows irreducibled h
proof −

from dvdm-power [OF hf] puh have pluh: pl.dvdm u h by simp
note uf-partition = p.unique-factorization-m-factor-partition[OF l0]
obtain gs1 gs2 where part: List.partition (λgi. p.dvdm gi h) gs = (gs1 , gs2) by

force
from part u-gs puh
have u-gs1 : u ∈ set gs1 unfolding p by auto
have gs1 : gs1 = filter (λ gi. p.dvdm gi h) gs using part by auto
obtain k where f : f = h ∗ k using hf unfolding dvd-def by auto
from uf-partition[OF f-gs f cop sf part]
have uf-h: pl.unique-factorization-m h (lead-coeff h, mset gs1) by auto
show ?thesis
proof (intro irreducibledI degh)

fix q r
assume deg-q: degree q > 0 degree q < degree h

56

and deg-r : degree r > 0 degree r < degree h
and h: h = q ∗ r

then have r dvd h by auto
with h dvd-trans[OF - hf] have 1 : q dvd f r dvd f by auto
from cop[unfolded f] have cop: coprime (lead-coeff h) p

using p.prime pl.coprime-lead-coeff-factor(1) by blast
from sf [unfolded f] have sf : p.square-free-m h using p.square-free-m-factor by

metis
have norm-gs1 : image-mset pl.Mp (mset gs1) = mset gs1 using norm-gs

unfolding gs1
by (induct gs, auto)

from pl.unique-factorization-m-factor [OF p uf-h[unfolded h], folded h, OF cop
sf l0 refl]

obtain fs gs where uf-q: pl.unique-factorization-m q (lead-coeff q, fs)
and uf-r : pl.unique-factorization-m r (lead-coeff r , gs)
and id: mset gs1 = fs + gs
unfolding pl.Mf-def split using norm-gs1 by auto

from degh degh-j deg-q deg-r have qj ′: degree q < j ′ and rj ′: degree r < j ′ by
auto

have intro: u ∈# r =⇒ pl.Mp u ∈# image-mset pl.Mp r for r by auto
note dvdI = pl.factorization-m-mem-dvdm[OF pl.unique-factorization-m-imp-factorization

intro]
from u-gs1 id have u ∈# fs ∨ u ∈# gs unfolding in-multiset-in-set[symmetric]

by auto
with dvdI [OF uf-q] dvdI [OF uf-r] have pl.dvdm u q ∨ pl.dvdm u r by auto
hence p.dvdm u q ∨ p.dvdm u r using pl-dvdm-imp-p-dvdm by blast
with 1 qj ′ rj ′ show False

by (elim disjE , auto dest!: deg)
qed

qed

private definition ll = (let n = sqrt-int-ceiling (‖f ‖2 ^ (2 ∗ j ′) ∗ 2 ^ (5 ∗ j ′ ∗
j ′));

ll ′ = find-exponent p n in if ll ′ < l then ll ′ else l)

lemma ll: ll ≤ l unfolding ll-def Let-def by auto

lemma ll0 : ll 6= 0 using l0 find-exponent[OF p.m1]
unfolding ll-def Let-def by auto

lemma pll1 : p^ll > 1 using ll0 p.m1 by auto

interpretation pll: poly-mod-2 p^ll
using ll0 p.m1 by (unfold-locales, auto)

lemma pll0 : p^ll 6= 0 using p by auto

lemma dvdm-l-ll: assumes pl.dvdm a b
shows pll.dvdm a b

57

proof −
have id: p^l = p^ll ∗ p ^ (l − ll) using ll unfolding power-add[symmetric] by

auto
from assms[unfolded pl.dvdm-def] obtain c where eq: pl.eq-m b (a ∗ c) by blast
from pll.Mp-shrink-modulus[OF eq[unfolded id]] p have pll.eq-m b (a ∗ c) by

auto
thus ?thesis unfolding pll.dvdm-def ..

qed

private definition g ≡ LLL-short-polynomial (p^ll) j u

lemma deg-g-j: degree g < j
and g0 : g 6= 0
and ug :pll.dvdm u g
and short-g: h 6= 0 =⇒ pll.dvdm u h =⇒ degree h ≤ j ′ =⇒ ‖g‖2 ≤ 2 ^ j ′ ∗

‖h‖2
proof (atomize(full), goal-cases)

case 1
from deg-u have degu0 : degree u 6= 0 by auto
have ju: j ≥ degree u using d-def dj ′ le-Suc-eq by blast
have ju ′: j > degree u using d-def dj ′ by auto
note short = LLL-short-polynomial[OF degu0 ju pll1 u, folded g-def]
from short(1−3) short(4)[OF ju ′] show ?case by auto

qed

lemma LLL-reconstruction-inner-simps: LLL-reconstruction-inner p l gs f u Degs
j
= (if j ′ /∈ Degs then None else if p ^ ll ≤ |lead-coeff g| then None
else case div-int-poly f (primitive-part g) of None ⇒ None
| Some f ′ ⇒ Some ([gi←gs . ¬ p.dvdm gi (primitive-part g)], lead-coeff f ′,

f ′, primitive-part g))
proof −

have Suc: Suc j ′ − 1 = j ′ by simp
show ?thesis unfolding LLL-reconstruction-inner-def Suc Let-def ll-def [unfolded

Let-def , symmetric]
g-def [unfolded Let-def , symmetric] by simp

qed

lemma LLL-reconstruction-inner-complete:
assumes ret: LLL-reconstruction-inner p l gs f u Degs j = None
shows

∧
factor . p.dvdm u factor =⇒ factor dvd f =⇒ degree factor ≥ j

proof (rule ccontr)
fix factor
assume pu-factor : p.dvdm u factor

and factor-f : factor dvd f
and deg-factor2 : ¬ j ≤ degree factor

with deg[OF this(1 ,2)] have deg-factor-j [simp]: degree factor = j ′ and deg-factor-lt-j:
degree factor < j by auto

from Degs[OF factor-f pu-factor] have Degs: (j ′ /∈ Degs) = False by auto

58

from dvdm-power [OF factor-f] pu-factor have u-factor : pl.dvdm u factor by
auto

from dvdm-l-ll[OF u-factor] have pll-u-factor : pll.dvdm u factor by auto
have deg-factor : degree factor > 0

using d0 deg-factor-j dj ′ by linarith
from f0 deg-factor divides-degree[OF factor-f] have deg-f : degree f > 0 by auto
from deg-factor have j ′0 : j ′ > 0 by simp
from factor-f f0 have factor0 : factor 6= 0 by auto
from factor-f obtain f2 where f : f = factor ∗ f2 unfolding dvd-def by auto
from deg-u have deg-u0 : degree u 6= 0 by auto
from pu-factor u have u-j ′: degree u ≤ j ′ unfolding deg-factor-j[symmetric]

using d-def deg-factor-j dj ′ by blast
hence u-j: degree u ≤ j degree u < j by auto
note LLL = LLL-short-polynomial[OF deg-u0 u-j(1) pll1 u, folded g-def]
note ret = ret[unfolded LLL-reconstruction-inner-simps Degs if-False]
note LLL = LLL(1−3) LLL(4)[OF u-j(2) factor0 pll-u-factor deg-factor-lt-j]
hence deg-g: degree g ≤ j ′ by simp
from LLL(2) have normg: ‖g‖2 ≥ 1 using sq-norm-poly-pos[of g] by presburger
from f0 have normf : ‖f ‖2 ≥ 1 using sq-norm-poly-pos[of f] by presburger
from factor0 have normf1 : ‖factor‖2 ≥ 1 using sq-norm-poly-pos[of factor] by

presburger
from F0 have normF : ‖F‖2 ≥ 1 using sq-norm-poly-pos[of F] by presburger
from factor-f ‹f dvd F› have factor-F : factor dvd F by (rule dvd-trans)
have ‖factor‖2 ^ degree g ∗ ‖g‖2 ^ degree factor ≤ ‖factor‖2 ^ j ′ ∗ ‖g‖2 ^ j ′

by (rule mult-mono[OF power-increasing], insert normg normf1 deg-g, auto)
also have . . . = (‖factor‖2 ∗ ‖g‖2)^j ′ by (simp add: power-mult-distrib)
also have . . . ≤ (‖factor‖2 ∗ (2 ^ j ′ ∗ ‖factor‖2))^j ′

by (rule power-mono[OF mult-left-mono], insert LLL(4), auto)
also have . . . = ‖factor‖2 ^ (2 ∗ j ′) ∗ 2 ^ (j ′ ∗ j ′)

unfolding power-mult-distrib power-mult power-add mult-2 by simp
finally have approx-part-1 : ‖factor‖2 ^ degree g ∗ ‖g‖2 ^ degree factor ≤ ‖fac-

tor‖2 ^ (2 ∗ j ′) ∗ 2 ^ (j ′ ∗ j ′) .
{

fix f :: int poly
assume ∗: factor dvd f f 6= 0
note approx-part-1
also have ‖factor‖2 ^ (2 ∗ j ′) ∗ 2 ^ (j ′ ∗ j ′) ≤ (2^(2∗j ′) ∗ ‖f ‖2) ^ (2 ∗ j ′) ∗

2 ^ (j ′ ∗ j ′)
by (rule mult-right-mono[OF power-mono], insert sq-norm-factor-bound[OF

∗], auto)
also have . . . = ‖f ‖2 ^ (2 ∗ j ′) ∗ 2 ^ (2∗j ′ ∗ 2∗j ′ + j ′ ∗ j ′)
unfolding power-mult-distrib power-add by (simp add: power-mult[symmetric])
also have 2∗j ′ ∗ 2∗j ′ + j ′ ∗ j ′ = 5 ∗ j ′ ∗ j ′ by simp
finally have ‖factor‖2 ^ degree g ∗ ‖g‖2 ^ degree factor ≤ ‖f ‖2 ^ (2 ∗ j ′) ∗ 2

^ (5 ∗ j ′ ∗ j ′) .
} note approx = this
note approx-1 = approx[OF factor-f f0]
note approx-2-part = approx[OF factor-F F0]
have large: ‖factor‖2 ^ degree g ∗ ‖g‖2 ^ degree factor < (p^ll)2

59

proof (cases ll = l)
case False
let ?n = ‖f ‖2 ^ (2 ∗ j ′) ∗ 2 ^ (5 ∗ j ′ ∗ j ′)
have n: ?n ≥ 0 by auto
let ?s = sqrt-int-ceiling ?n
from False have ll = find-exponent p ?s unfolding ll-def Let-def by auto
hence spll: ?s < p^ll using find-exponent(1)[OF p.m1] by auto
have sqrt ?n ≥ 0 by auto
hence sqrt: sqrt ?n > −1 by linarith
have ns: ?n ≤ ?s^2 using sqrt-int-ceiling-bound[OF n] .
also have . . . < (p^ll)^2

by (rule power-strict-mono[OF spll], insert sqrt, auto)
finally show ?thesis using approx-1 by auto

next
case True
hence ll: p^ll = p^l by simp
show ?thesis unfolding ll
proof (rule less-le-trans[OF le-less-trans[OF approx-2-part] bound-l])

have ‖F‖2 ^ (2 ∗ j ′) ∗ 2 ^ (5 ∗ j ′ ∗ j ′)
= 2 ^ (2 ∗ j ′ ∗ j ′ + 3 ∗ j ′ ∗ j ′) ∗ ‖F‖2 ^ (j ′ + j ′)

unfolding mult-2 by simp
also have . . . < 2 ^ (N 2 + 4 ∗ N∗N) ∗ ‖F‖2 ^ (2 ∗ N)
proof (rule mult-less-le-imp-less[OF power-strict-increasing pow-mono-exp])

show 1 ≤ ‖F‖2 by (rule normF)
have jN ′: j ′ < N and jN : j ′ ≤ N using jn divides-degree[OF ‹f dvd F›] F0

by auto
have j ′ + j ′ ≤ j ′ + j ′ using deg-g j ′n by auto
also have . . . = 2 ∗ j ′ by auto
also have . . . ≤ 2 ∗ N using jN by auto
finally show j ′ + j ′ ≤ 2 ∗ N .
show 0 < ‖F‖2 ^ (j ′ + j ′)

by (rule zero-less-power , insert normF , auto)
have 2 ∗ j ′ ∗ j ′ + 3 ∗ j ′ ∗ j ′ ≤ 2 ∗ j ′ ∗ j ′ + 3 ∗ j ′ ∗ j ′ by auto
also have . . . = 5 ∗ (j ′ ∗ j ′) by auto
also have . . . < 5 ∗ (N ∗ N)

by (rule mult-strict-left-mono[OF mult-strict-mono], insert jN ′, auto)
also have . . . = N 2 + 4 ∗ N ∗ N by (simp add: power2-eq-square)
finally show 2 ∗ j ′ ∗ j ′ + 3 ∗ j ′ ∗ j ′ < N 2 + 4 ∗ N ∗ N .

qed auto
also have . . . = 2 ^ N 2 ∗ (2 ^ (2 ∗ N) ∗ ‖F‖2) ^ (2 ∗ N)
unfolding power-mult-distrib power-add by (simp add: power-mult[symmetric])
finally show ‖F‖2 ^ (2 ∗ j ′) ∗ 2 ^ (5 ∗ j ′ ∗ j ′) < 2 ^ N 2 ∗ B2-LLL F ^ (2

∗ N)
unfolding B2-LLL-def by simp

qed
qed
have (|lead-coeff g|)^2 < (p^ll)^2
proof (rule le-less-trans[OF - large])

have 1 ∗ (|lead-coeff g|2)^1 ≤ ‖factor‖2 ^ degree g ∗ ‖g‖2 ^ degree factor

60

by (rule mult-mono[OF - order .trans[OF power-mono pow-mono-exp]],
insert normg normf1 deg-f g0 coeff-le-sq-norm[of g] j ′0 ,
auto intro: pow-mono-one)

thus |lead-coeff g|2 ≤ ‖factor‖2 ^ degree g ∗ ‖g‖2 ^ degree factor by simp
qed
hence (lead-coeff g)^2 < (p^ll)^2 by simp
hence |lead-coeff g| < p^ll using p.m1 abs-le-square-iff [of p^ll lead-coeff g] by

auto
hence (p^ll ≤ |lead-coeff g|) = False by auto
note ret = ret[unfolded this if-False]
have deg-f : degree f > 0 using n0 by auto
have deg-ug: degree u ≤ degree g
proof (rule pll.dvdm-degree[OF u LLL(3)], standard)

assume pll.Mp g = 0
from arg-cong[OF this, of λ p. coeff p (degree g)]
have pll.M (coeff g (degree g)) = 0 by (auto simp: pll.Mp-def coeff-map-poly)
from this[unfolded pll.M-def] obtain c where lg: lead-coeff g = p^ll ∗ c by

auto
with LLL(2) have c0 : c 6= 0 by auto
hence (p^ll)^2 ≤ (lead-coeff g)^2 unfolding lg abs-le-square-iff [symmetric]

by (rule aux-abs-int)
also have . . . ≤ ‖g‖2 using coeff-le-sq-norm[of g] by auto
also have . . . = ‖g‖2 ^ 1 by simp
also have . . . ≤ ‖g‖2 ^ degree factor

by (rule pow-mono-exp, insert deg-f normg j ′0 , auto)
also have . . . = 1 ∗ . . . by simp
also have . . . ≤ ‖factor‖2 ^ degree g ∗ ‖g‖2 ^ degree factor

by (rule mult-right-mono, insert normf1 , auto)
also have . . . < (p^ll)2 by (rule large)
finally show False by auto

qed
with deg-u have deg-g: degree g > 0 by simp
from j ′0 have deg-factor : degree factor > 0 by simp
let ?g = gcd factor g
from common-factor-via-short[OF deg-factor deg-g u deg-u pll-u-factor LLL(3)

large] pll.m1
have gcd: 0 < degree ?g by auto
have gcd-factor : ?g dvd factor by auto
from dvd-trans[OF this factor-f] have gcd-f : ?g dvd f .
from deg-g have g0 : g 6= 0 by auto
have gcd-g: degree ?g ≤ degree g using g0 using divides-degree by blast
from gcd-g LLL(1) have hj ′: degree ?g ≤ j ′ by auto
let ?pp = primitive-part g
from ret have div-int-poly f ?pp = None by (auto split: option.splits)
from div-int-poly[of f ?pp, unfolded this] g0
have ppf : ¬ ?pp dvd f unfolding dvd-def by (auto simp: ac-simps)
have irr-f1 : irreducibled factor

by (rule factor-irreducibledI [OF factor-f pu-factor deg-factor], simp)
from gcd-factor obtain h where factor : factor = ?g ∗ h unfolding dvd-def by

61

auto
from irreducibledD(2)[OF irr-f1 , of ?g h, folded factor] have ¬ (degree ?g < j ′
∧ degree h < j ′)

by auto
moreover have j ′ = degree ?g + degree h using factor0 arg-cong[OF factor , of

degree]
by (subst (asm) degree-mult-eq, insert j ′0 , auto)

ultimately have degree h = 0 using gcd by linarith
from degree0-coeffs[OF this] factor factor0
obtain c where h: h = [:c:] and c: c 6= 0 by fastforce
from arg-cong[OF factor , of degree] have id: degree ?g = degree factor

unfolding h using c by auto
moreover have degree ?g ≤ degree g

by (subst gcd.commute, rule degree-gcd1 [OF g0])
ultimately have degree g ≥ degree factor by auto
with id deg-factor2 deg-g-j have deg: degree ?g = degree g

and degree g = degree factor by auto
have ?g dvd g by auto
then obtain q where g: g = ?g ∗ q unfolding dvd-def by auto
from arg-cong[OF this, of degree] deg
have degree q = 0

by (subst (asm) degree-mult-eq, insert g g0 , force, force) simp
from degree0-coeffs[OF this] g g0
obtain d where p: q = [:d:] and d: d 6= 0 by fastforce
from arg-cong[OF factor , of (∗) q]
have q ∗ factor = h ∗ g

by (subst g, auto simp: ac-simps)
hence smult d factor = h ∗ g unfolding p h by auto
hence g dvd smult d factor by simp
from dvd-smult-int[OF d this]
have primitive-part g dvd factor .
from dvd-trans[OF this factor-f] ppf show False by auto

qed

lemma LLL-reconstruction-inner-sound:
assumes ret: LLL-reconstruction-inner p l gs f u Degs j = Some (gs ′,b ′,f ′,h)
shows f = f ′ ∗ h (is ?g1)

and irreducibled h (is ?g2)
and b ′ = lead-coeff f ′ (is ?g3)
and pl.unique-factorization-m f ′ (lead-coeff f ′, mset gs ′) (is ?g4)
and p.dvdm u h (is ?g5)
and degree h = j ′ (is ?g6)
and length gs ′ < length gs (is ?g7)
and set gs ′ ⊆ set gs (is ?g8)
and gs ′ 6= [] (is ?g9)

proof −
let ?ppg = primitive-part g
note ret = ret[unfolded LLL-reconstruction-inner-simps]
from ret have lc: abs (lead-coeff g) < p^ll by (auto split: if-splits)

62

from ret obtain rest where rest: div-int-poly f (primitive-part g) = Some rest
by (auto split: if-splits option.splits)

from ret[unfolded this] div-int-then-rqp[OF this] lc
have out [simp]: h = ?ppg gs ′ = filter (λ gi. ¬ p.dvdm gi ?ppg) gs

f ′ = rest b ′ = lead-coeff rest
and f : f = ?ppg ∗ rest by (auto split: if-splits)

with div-int-then-rqp[OF rest] show ?g1 ?g3 by auto
from ‹?g1 › f0 have h0 : h 6= 0 by auto
let ?c = content g
from g0 have ct0 : ?c 6= 0 by auto
have |?c| ≤ |lead-coeff g| by (rule content-le-lead-coeff)
also have . . . < p^ll by fact
finally have ct-pl: |?c| < p^ll .
from ug have pll.dvdm u (smult ?c ?ppg) by simp
from poly-mod-dvd-drop-smult[OF u p ct0 ct-pl this]
show puh: p.dvdm u h by simp
with dvdm-power [of h] f
have uh: pl.dvdm u h by (auto simp: dvd-def)
from f have hf : h dvd f by (auto intro:dvdI)
have degh: degree h > 0

by (metis d-def deg deg-u puh dj ′ hf le-neq-implies-less not-less0 neq0-conv)
show irr-h: ?g2

by (intro factor-irreducibledI degh hf puh, insert deg-g-j, simp)
show deg-h: ?g6 using deg deg-g-j g-def hf le-less-Suc-eq puh degree-primitive-part

by force
show ?g7 unfolding out

by (rule length-filter-less[of u], insert pl-dvdm-imp-p-dvdm[OF uh] u-gs, auto)
show ?g8 by auto
from f out have fh: f = h ∗ f ′ and gs ′: gs ′ = [gi ← gs. ¬ p.dvdm gi h] by auto
note [simp del] = out
let ?fs = filter (λgi. p.dvdm gi h) gs
have part: List.partition (λgi. p.dvdm gi h) gs = (?fs, gs ′)

unfolding gs ′ by (auto simp: o-def)
from p.unique-factorization-m-factor-partition[OF l0 f-gs fh cop sf part]
show uf : pl.unique-factorization-m f ′ (lead-coeff f ′, mset gs ′) by auto
show ?g9
proof

assume gs ′ = []
with pl.unique-factorization-m-imp-factorization[OF uf , unfolded pl.factorization-m-def]
have pl.Mp f ′ = pl.Mp (smult (lead-coeff f ′) 1) by auto
from arg-cong[OF this, of degree] pl.degree-m-le[of smult (lead-coeff f ′) 1]
have pl.degree-m f ′ = 0 by simp
also have pl.degree-m f ′ = degree f ′

proof (rule poly-mod.degree-m-eq[OF - pl.m1])
have coprime (lead-coeff f ′) p

by (rule p.coprime-lead-coeff-factor [OF p.prime cop[unfolded fh]])
thus lead-coeff f ′ mod p ^ l 6= 0 using l0 p.prime by fastforce

qed
finally have degf ′: degree f ′ = 0 by auto

63

from degree0-coeffs[OF this] f0 fh obtain c where f ′ = [:c:] and c: c 6= 0 and
fch: f = smult c h

by auto
from ‹irreducibled h› have irr-f : irreducibled f

using irreducibled-smult-int[OF c, of h] unfolding fch by auto
have degree f = j ′ using hf irr-h deg-h

using irr-f ‹n ≡ degree f › degh j ′n
by (metis add.right-neutral degf ′ degree-mult-eq f0 fh mult-not-zero)

thus False using j ′n by auto
qed

qed
end

interpretation LLL d .

lemma LLL-reconstruction-inner-None-upt-j ′:
assumes ij: ∀ i∈{d+1 ..j}. LLL-reconstruction-inner p l gs f u Degs i = None

and dj: d<j and j≤n
shows

∧
factor . p.dvdm u factor =⇒ factor dvd f =⇒ degree factor ≥ j

using assms
proof (induct j)

case (Suc j)
show ?case
proof (rule LLL-reconstruction-inner-complete)

show
∧

factor2 . p.dvdm u factor2 =⇒ factor2 dvd f =⇒ j ≤ degree factor2
proof (cases d = j)

case False
show

∧
factor2 . p.dvdm u factor2 =⇒ factor2 dvd f =⇒ j ≤ degree factor2

by (rule Suc.hyps, insert Suc.prems False, auto)
next

case True
then show

∧
factor2 . p.dvdm u factor2 =⇒ factor2 dvd f =⇒ j ≤ degree

factor2
using degree-factor-ge-degree-u by auto

qed
qed (insert Suc.prems, auto)

qed auto

corollary LLL-reconstruction-inner-None-upt-j:
assumes ij: ∀ i∈{d+1 ..j}. LLL-reconstruction-inner p l gs f u Degs i = None

and dj: d≤j and jn: j≤n
shows

∧
factor . p.dvdm u factor =⇒ factor dvd f =⇒ degree factor ≥ j

proof (cases d=j)
case True
then show

∧
factor . p.dvdm u factor =⇒ factor dvd f =⇒ d = j =⇒ j ≤ degree

factor
using degree-factor-ge-degree-u by auto

next
case False

64

hence dj2 : d<j using dj by auto
then show

∧
factor . p.dvdm u factor =⇒ factor dvd f =⇒ d 6= j =⇒ j ≤ degree

factor
using LLL-reconstruction-inner-None-upt-j ′[OF ij dj2 jn] by auto

qed

lemma LLL-reconstruction-inner-all-None-imp-irreducible:
assumes i: ∀ i∈{d+1 ..n}. LLL-reconstruction-inner p l gs f u Degs i = None
shows irreducibled f

proof −
obtain factor

where irreducible-factor : irreducibled factor
and dvdp-u-factor : p.dvdm u factor and factor-dvd-f : factor dvd f

using exists-reconstruction by blast
have f0 : f 6= 0 using n0 by auto
have deg-factor1 : degree u ≤ degree factor

by (rule degree-factor-ge-degree-u[OF dvdp-u-factor factor-dvd-f])
hence factor-not0 : factor 6= 0 using d0 by auto
hence deg-factor2 : degree factor ≤ degree f using divides-degree[OF factor-dvd-f]

f0 by auto
let ?j = degree factor
show ?thesis
proof (cases degree factor = degree f)

case True
from factor-dvd-f obtain g where f-factor : f = factor ∗ g unfolding dvd-def

by auto
from True[unfolded f-factor] f0 [unfolded f-factor] have degree g = 0 g 6= 0

by (subst (asm) degree-mult-eq, auto)
from degree0-coeffs[OF this(1)] this(2) obtain c where g = [:c:] and c: c 6=

0 by auto
with f-factor have fc: f = smult c factor by auto
from irreducible-factor irreducibled-smult-int[OF c, of factor , folded fc]
show ?thesis by simp

next
case False
hence Suc-j: Suc ?j ≤ degree f using deg-factor2 by auto
have Suc ?j ≤ degree factor
proof (rule LLL-reconstruction-inner-None-upt-j[OF - - - dvdp-u-factor fac-

tor-dvd-f])
show d ≤ Suc ?j using deg-factor1 by auto
show ∀ i∈{d + 1 ..(Suc ?j)}. LLL-reconstruction-inner p l gs f u Degs i =

None
using Suc-j i by auto

show Suc ?j ≤ n using Suc-j by simp
qed
then show ?thesis by auto

qed
qed

65

lemma irreducible-imp-LLL-reconstruction-inner-all-None:
assumes irr-f : irreducibled f
shows ∀ i∈{d+1 ..n}. LLL-reconstruction-inner p l gs f u Degs i = None

proof (rule ccontr)
let ?LLL-inner = λi. LLL-reconstruction-inner p l gs f u Degs i
let ?G ={j. j ∈ {d + 1 ..n} ∧ ?LLL-inner j 6= None}
assume ¬ (∀ i∈{d + 1 ..n}. ?LLL-inner i = None)
hence G-not-empty: ?G 6= {} by auto
define j where j = Min ?G
have j-in-G: j ∈ ?G by (unfold j-def , rule Min-in[OF - G-not-empty], simp)
hence j: j ∈ {d + 1 ..n} and LLL-not-None: ?LLL-inner j 6= None using j-in-G

by auto
have ∀ i∈{d+1 ..<j}. ?LLL-inner i = None
proof (rule ccontr)

assume ¬ (∀ i∈{d + 1 ..<j}. ?LLL-inner i = None)
from this obtain i where i: i ∈ {d + 1 ..<j} and LLL-i: ?LLL-inner i 6=

None by auto
hence iG: i ∈ ?G using j-def G-not-empty by auto
have i<j using i by auto
moreover have j≤i using iG j-def by auto
ultimately show False by linarith

qed
hence all-None: ∀ i∈{d+1 ..j−1}. ?LLL-inner i = None by auto
obtain gs ′ b ′ f ′ factor where LLL-inner-eq: ?LLL-inner j = Some (gs ′, b ′, f ′,

factor)
using LLL-not-None by force

have Suc-j1-eq: Suc (j − 1) = j using j d0 by auto
have jn: j − 1 < n using j by auto
have dj: d ≤ j−1 using j d0 by auto
have degree:

∧
factor . p.dvdm u factor =⇒ factor dvd f =⇒ j − 1 ≤ degree factor

by (rule LLL-reconstruction-inner-None-upt-j[OF all-None dj], insert jn, auto)

have LLL-inner-Some: ?LLL-inner (Suc (j − 1)) = Some (gs ′, b ′, f ′, factor)
using LLL-inner-eq Suc-j1-eq by auto

have deg-factor : degree factor = j−1
and ff ′: f = f ′ ∗ factor
and irreducible-factor : irreducibled factor
using LLL-reconstruction-inner-sound[OF dj jn degree LLL-inner-Some] by

(metis+)
have degree f ′ = n − (j − 1) using arg-cong[OF ff ′, of degree]

by (subst (asm) degree-mult-eq, insert f0 ff ′ deg-factor , auto)
also have . . . < n using irreducible-factor jn unfolding irreducibled-def deg-factor

by auto
finally have deg-f ′: degree f ′ < degree f by auto
from ff ′ have factor-dvd-f : factor dvd f by auto
have ¬ irreducibled f

by (rule reducibledI , rule exI [of - f ′], rule exI [of - factor],
intro conjI ff ′, insert deg-factor jn deg-f ′, auto)

66

thus False using irr-f by contradiction
qed

lemma LLL-reconstruction-inner-all-None:
assumes i: ∀ i∈{d+1 ..n}. LLL-reconstruction-inner p l gs f u Degs i = None
and dj: d<j

shows LLL-reconstruction-inner-loop p l gs f u Degs j = ([],1 ,1 ,f)
using dj

proof (induct j rule: LLL-reconstruction-inner-loop.induct[of f p l gs u Degs])
case (1 j)
let ?innerl = LLL-reconstruction-inner-loop p l gs f u Degs
let ?inner = LLL-reconstruction-inner p l gs f u Degs
note hyp = 1 .hyps
note dj = 1 .prems(1)
show ?case
proof (cases j≤n)

case True note jn = True
have step: ?inner j = None

by (cases d=j, insert i jn dj, auto)
have ?innerl j = ?innerl (j+1)

using jn step by auto
also have ... = ([], 1 , 1 , f)

by (rule hyp[OF - step], insert jn dj, auto simp add: jn dj)
finally show ?thesis .

qed auto
qed

corollary irreducible-imp-LLL-reconstruction-inner-loop-f :
assumes irr-f : irreducibled f and dj: d<j

shows LLL-reconstruction-inner-loop p l gs f u Degs j = ([],1 ,1 ,f)
using irreducible-imp-LLL-reconstruction-inner-all-None[OF irr-f]
using LLL-reconstruction-inner-all-None[OF - dj] by auto

lemma exists-index-LLL-reconstruction-inner-Some:
assumes inner-loop: LLL-reconstruction-inner-loop p l gs f u Degs j = (gs ′,b ′,f ′,factor)

and i: ∀ i∈{d+1 ..<j}. LLL-reconstruction-inner p l gs f u Degs i = None
and dj: d<j and jn: j≤n and f : ¬ irreducibled f

shows ∃ j ′. j ≤ j ′ ∧ j ′≤n ∧ d<j ′
∧ (LLL-reconstruction-inner p l gs f u Degs j ′ = Some (gs ′, b ′, f ′, factor))
∧ (∀ i∈{d+1 ..<j ′}. LLL-reconstruction-inner p l gs f u Degs i = None)

using inner-loop i dj jn
proof (induct j rule: LLL-reconstruction-inner-loop.induct[of f p l gs u Degs])

case (1 j)
let ?innerl = LLL-reconstruction-inner-loop p l gs f u Degs
let ?inner = LLL-reconstruction-inner p l gs f u Degs
note hyp = 1 .hyps
note 1 = 1 .prems(1)
note 2 = 1 .prems(2)
note dj = 1 .prems(3)

67

note jn = 1 .prems(4)
show ?case
proof (cases ?inner j = None)

case True
show ?thesis
proof (cases j=n)

case True note j-eq-n = True
show ?thesis
proof (cases ?inner n = None)

case True
have i2 : ∀ i∈{d + 1 ..n}. ?inner i = None

using 2 j-eq-n True by auto
have irreducibled f

by(rule LLL-reconstruction-inner-all-None-imp-irreducible[OF i2])
thus ?thesis using f by simp

next
case False
have ?inner n = Some (gs ′, b ′, f ′, factor)

using False 1 j-eq-n by auto
moreover have ∀ i∈{d + 1 ..<n}. ?inner i = None

using 2 j-eq-n by simp
moreover have d < n using 1 2 jn j-eq-n

using False dn nat-less-le
using d-def dj by auto

ultimately show ?thesis using j-eq-n by fastforce
qed

next
case False
have ∃ j ′≥j + 1 . j ′ ≤ n ∧ d < j ′ ∧

?inner j ′ = Some (gs ′, b ′, f ′, factor) ∧
(∀ i∈{d + 1 ..<j ′}. ?inner i = None)

proof (rule hyp)
show ¬ degree f < j using jn by auto
show ?inner j = None using True by auto
show ?innerl (j + 1) = (gs ′, b ′, f ′, factor)

using 1 True jn by auto
show ∀ i∈{d + 1 ..<j + 1}. ?inner i = None

by (metis 2 One-nat-def True add.comm-neutral add-Suc-right atLeast-
LessThan-iff

le-neq-implies-less less-Suc-eq-le)
show d < j + 1 using dj by auto
show j + 1 ≤ n using jn False by auto

qed
from this obtain j ′ where a1 : j ′≥j + 1 and a2 : j ′ ≤ n and a3 : d < j ′

and a4 : ?inner j ′ = Some (gs ′, b ′, f ′, factor)
and a5 : (∀ i∈{d + 1 ..<j ′}. ?inner i = None) by auto

moreover have j ′≥j using a1 by auto
ultimately show ?thesis by fastforce

qed

68

next
case False
have 1 : ?inner j = Some (gs ′, b ′, f ′, factor)

using False 1 jn by auto
moreover have 2 : (∀ i∈{d + 1 ..<j}. ?inner i = None)

by (rule 2)
moreover have 3 : j ≤ n using jn by auto
moreover have 4 : d < j using 2 False dj jn

using le-neq-implies-less by fastforce
ultimately show ?thesis by auto

qed
qed

lemma unique-factorization-m-1 : pl.unique-factorization-m 1 (1 , {#})
proof (intro pl.unique-factorization-mI)

fix d gs
assume pl: pl.factorization-m 1 (d,gs)
from pl.factorization-m-degree[OF this] have deg0 :

∧
g. g ∈# gs =⇒ pl.degree-m

g = 0 by auto
{

assume gs 6= {#}
then obtain g hs where gs: gs = {# g #} + hs by (cases gs, auto)
with pl have ∗: pl.irreducibled-m (pl.Mp g)

monic (pl.Mp g) by (auto simp: pl.factorization-m-def)
with deg0 [of g, unfolded gs] have False by (auto simp: pl.irreducibled-m-def)

}
hence gs = {#} by auto
with pl show pl.Mf (d, gs) = pl.Mf (1 , {#}) by (cases d = 0 ,

auto simp: pl.factorization-m-def pl.Mf-def pl.Mp-def)
qed (auto simp: pl.factorization-m-def)

lemma LLL-reconstruction-inner-loop-j-le-n:
assumes ret: LLL-reconstruction-inner-loop p l gs f u Degs j = (gs ′,b ′,f ′,factor)

and ij: ∀ i∈{d+1 ..<j}. LLL-reconstruction-inner p l gs f u Degs i = None
and n: n = degree f
and jn: j ≤ n
and dj: d < j

shows f = f ′ ∗ factor (is ?g1)
and irreducibled factor (is ?g2)
and b ′ = lead-coeff f ′ (is ?g3)
and pl.unique-factorization-m f ′ (b ′, mset gs ′) (is ?g4)
and p.dvdm u factor (is ?g5)
and gs 6= [] −→ length gs ′ < length gs (is ?g6)
and factor dvd f (is ?g7)
and f ′ dvd f (is ?g8)
and set gs ′ ⊆ set gs (is ?g9)
and gs ′ = [] −→ f ′ = 1 (is ?g10)

using ret ij jn dj

69

proof (atomize(full), induct j)
case 0
then show ?case using deg-u by auto

next
case (Suc j)
let ?innerl = LLL-reconstruction-inner-loop p l gs f u Degs
let ?inner = LLL-reconstruction-inner p l gs f u Degs
have ij: ∀ i∈{d+1 ..j}. ?inner i = None

using Suc.prems by auto
have dj: d ≤ j using Suc.prems by auto
have jn: j<n using Suc.prems by auto
have deg: Suc j ≤ degree f using Suc.prems by auto
have c:

∧
factor . p.dvdm u factor =⇒ factor dvd f =⇒ j ≤ degree factor

by (rule LLL-reconstruction-inner-None-upt-j[OF ij dj], insert n jn, auto)
have 1 : ?innerl (Suc j) = (gs ′, b ′, f ′, factor)

using Suc.prems by auto
show ?case
proof (cases ?inner (Suc j) = None)

case False
have LLL-rw: ?inner (Suc j) = Some (gs ′, b ′, f ′, factor)

using False deg Suc.prems by auto
show ?thesis using LLL-reconstruction-inner-sound[OF dj jn c LLL-rw] by

fastforce
next

case True note Suc-j-None = True
show ?thesis
proof (cases d = j)

case False
have nj: j ≤ degree f using Suc.prems False by auto
moreover have dj2 : d < j using Suc.prems False by auto
ultimately show ?thesis using Suc.prems Suc.hyps by fastforce

next
case True note d-eq-j = True
show ?thesis
proof (cases irreducibled f)

case True
have pl-Mp-1 : pl.Mp 1 = 1 by auto
have d-Suc-j: d < Suc j using Suc.prems by auto
have ?innerl (Suc j) = ([],1 ,1 ,f)
by (rule irreducible-imp-LLL-reconstruction-inner-loop-f [OF True d-Suc-j])
hence result-eq: ([],1 ,1 ,f) = (gs ′, b ′, f ′, factor) using Suc.prems by auto
moreover have thesis1 : p.dvdm u factor using u-f result-eq by auto
moreover have thesis2 : f ′ = pl.Mp (Polynomial.smult b ′ (prod-list gs ′))

using result-eq pl-Mp-1 by auto
ultimately show ?thesis using True by (auto simp: unique-factorization-m-1)
next

case False note irreducible-f = False
have ∃ j ′. Suc j ≤ j ′ ∧ j ′≤n ∧ d<j ′
∧ (?inner j ′ = Some (gs ′, b ′, f ′, factor))

70

∧ (∀ i∈{d+1 ..<j ′}. ?inner i = None)
proof (rule exists-index-LLL-reconstruction-inner-Some[OF - - - - False])

show ?innerl (Suc j) = (gs ′, b ′, f ′, factor)
using Suc.prems by auto

show ∀ i ∈ {d + 1 ..<Suc j}. ?inner i = None
using Suc.prems by auto

show Suc j ≤ n using jn by auto
show d < Suc j using Suc.prems by auto

qed
from this obtain a where da: d < a and an: a ≤ n and ja: j ≤ a

and a1 : ?inner a = Some (gs ′, b ′, f ′, factor)
and a2 : ∀ i∈{d+1 ..<a}. ?inner i = None by auto

define j ′ where j ′[simp]: j ′≡a−1
have dj ′: d ≤ j ′ using da by auto
have j ′: j ′ 6= 0 using dj ′ d0 by auto
hence j ′n: j ′ < n using an by auto
have LLL: ?inner (Suc j ′) = Some (gs ′, b ′, f ′, factor)

using a1 j ′ by auto
have prev-None: ∀ i∈{d+1 ..j ′}. ?inner i = None

using a2 j ′ by auto
have Suc-rw: Suc (j ′− 1) = j ′ using j ′ by auto

have c:
∧

factor . p.dvdm u factor =⇒ factor dvd f =⇒ Suc (j ′ − 1) ≤
degree factor

by (rule LLL-reconstruction-inner-None-upt-j, insert dj ′ Suc-rw j ′n
prev-None, auto)

hence c2 :
∧

factor . p.dvdm u factor =⇒ factor dvd f =⇒ j ′ ≤ degree factor
using j ′ by force

show ?thesis using LLL-reconstruction-inner-sound[OF dj ′ j ′n c2 LLL] by
fastforce

qed
qed

qed
qed

lemma LLL-reconstruction-inner-loop-j-ge-n:
assumes ret: LLL-reconstruction-inner-loop p l gs f u Degs j = (gs ′,b ′,f ′,factor)

and ij: ∀ i∈{d+1 ..n}. LLL-reconstruction-inner p l gs f u Degs i = None
and dj: d < j
and jn: j>n

shows f = f ′ ∗ factor (is ?g1)
and irreducibled factor (is ?g2)
and b ′ = lead-coeff f ′ (is ?g3)
and pl.unique-factorization-m f ′ (b ′, mset gs ′) (is ?g4)
and p.dvdm u factor (is ?g5)
and gs 6= [] −→ length gs ′ < length gs (is ?g6)
and factor dvd f (is ?g7)
and f ′ dvd f (is ?g8)
and set gs ′ ⊆ set gs (is ?g9)

71

and f ′ = 1 (is ?g10)
proof −

have LLL-reconstruction-inner-loop p l gs f u Degs j = ([],1 ,1 ,f) using jn by
auto

hence gs ′: gs ′=[] and b ′: b ′=1 and f ′: f ′ = 1 and factor : factor = f using ret
by auto

have irreducibled f
by (rule LLL-reconstruction-inner-all-None-imp-irreducible[OF ij])

thus ?g1 ?g2 ?g3 ?g4 ?g5 ?g6 ?g7 ?g8 ?g9 ?g10 using f ′ factor b ′ gs ′ u-f
by (auto simp: unique-factorization-m-1)

qed

lemma LLL-reconstruction-inner-loop:
assumes ret: LLL-reconstruction-inner-loop p l gs f u Degs j = (gs ′,b ′,f ′,factor)

and ij: ∀ i∈{d+1 ..<j}. LLL-reconstruction-inner p l gs f u Degs i = None
and n: n = degree f
and dj: d < j

shows f = f ′ ∗ factor (is ?g1)
and irreducibled factor (is ?g2)
and b ′ = lead-coeff f ′ (is ?g3)
and pl.unique-factorization-m f ′ (b ′, mset gs ′) (is ?g4)
and p.dvdm u factor (is ?g5)
and gs 6= [] −→ length gs ′ < length gs (is ?g6)
and factor dvd f (is ?g7)
and f ′ dvd f (is ?g8)
and set gs ′ ⊆ set gs (is ?g9)
and gs ′ = [] −→ f ′ = 1 (is ?g10)

proof (atomize(full),(cases j>n; intro conjI))
case True
have ij2 : ∀ i∈{d + 1 ..n}. LLL-reconstruction-inner p l gs f u Degs i = None

using ij True by auto
show ?g1 ?g2 ?g3 ?g4 ?g5 ?g6 ?g7 ?g8 ?g9 ?g10

using LLL-reconstruction-inner-loop-j-ge-n[OF ret ij2 dj True] by blast+
next

case False
hence jn: j≤n by simp
show ?g1 ?g2 ?g3 ?g4 ?g5 ?g6 ?g7 ?g8 ?g9 ?g10

using LLL-reconstruction-inner-loop-j-le-n[OF ret ij n jn dj] by blast+
qed
end

7.3.3 Outer loop
lemma LLL-reconstruction ′′:

assumes 1 : LLL-reconstruction ′′ p l gs b f G = G ′

and irreducible-G:
∧

factor . factor ∈ set G =⇒ irreducibled factor
and 3 : F = f ∗ prod-list G
and 4 : pl.unique-factorization-m f (lead-coeff f , mset gs)
and 5 : gs 6= []

72

and 6 :
∧

gi. gi ∈ set gs =⇒ pl.Mp gi = gi
and 7 :

∧
gi. gi ∈ set gs =⇒ p.irreducibled-m gi

and 8 : p.square-free-m f
and 9 : coprime (lead-coeff f) p
and sf-F : square-free F

shows (∀ g ∈ set G ′. irreducibled g) ∧ F = prod-list G ′

using 1 irreducible-G 3 4 5 6 7 8 9
proof (induction gs arbitrary: b f G G ′ rule: length-induct)

case (1 gs)
note LLL-f ′ = 1 .prems(1)
note irreducible-G = 1 .prems(2)
note F-f-G = 1 .prems (3)
note f-gs-factor = 1 .prems (4)
note gs-not-empty = 1 .prems (5)
note norm = 1 .prems(6)
note irred-p = 1 .prems(7)
note sf = 1 .prems(8)
note cop = 1 .prems(9)
obtain u where choose-u-result: choose-u gs = u by auto
from choose-u-member [OF gs-not-empty, unfolded choose-u-result]
have u-gs: u ∈ set gs by auto
define d n where [simp]: d = degree u n = degree f
hence n-def : n = degree f n ≡ degree f by auto
define gs ′′ where gs ′′ = remove1 u gs
define degs where degs = map degree gs ′′

define Degs where Degs = (+) d ‘ sub-mset-sums degs
obtain gs ′ b ′ h factor where inner-loop-result:

LLL-reconstruction-inner-loop p l gs f u Degs (d+1) = (gs ′,b ′,h,factor)
by (metis prod-cases4)

have a1 :
LLL-reconstruction-inner-loop p l gs f u Degs (d+1) = (gs ′, b ′, h, factor)
using inner-loop-result by auto

have a2 :
∀ i∈{degree u + 1 ..<(d+1)}. LLL-reconstruction-inner p l gs f u Degs i = None
by auto

have LLL-reconstruction ′′ p l gs b f G = LLL-reconstruction ′′ p l gs ′ b ′ h (factor
G)

unfolding LLL-reconstruction ′′.simps[of p l gs] using gs-not-empty
unfolding Let-def using choose-u-result inner-loop-result unfolding Degs-def

degs-def gs ′′-def by auto
hence LLL-eq: LLL-reconstruction ′′ p l gs ′ b ′ h (factor # G) = G ′ using LLL-f ′

by auto
from pl.unique-factorization-m-imp-factorization[OF f-gs-factor ,

unfolded pl.factorization-m-def] norm
have f-gs: pl.eq-m f (smult (lead-coeff f) (prod-mset (mset gs))) and

mon: g ∈ set gs =⇒ monic g and irred: g ∈ set gs =⇒ pl.irreducibled-m g for
g by auto

{
from split-list[OF u-gs] obtain gs1 gs2 where gs: gs = gs1 @ u # gs2 by

73

auto
from f-gs[unfolded gs] have pl.dvdm u f unfolding pl.dvdm-def

by (intro exI [of - smult (lead-coeff f) (prod-mset (mset (gs1 @ gs2)))], auto)
} note pl-uf = this
hence p-uf : p.dvdm u f by (rule pl-dvdm-imp-p-dvdm)
have monic-u: monic u using mon[OF u-gs] .
have irred-u: p.irreducible-m u using irred-p[OF u-gs] by auto
have degree-m-u: p.degree-m u = degree u using monic-u by simp
have degree-u[simp]: 0 < degree u

using irred-u by (fold degree-m-u, auto simp add: p.irreducible-degree)
have deg-u-d: degree u < d + 1 by auto
from F-f-G have f-dvd-F : f dvd F by auto
from square-free-factor [OF f-dvd-F sf-F] have sf-f : square-free f .
from norm have norm-map: map pl.Mp gs = gs by (induct gs, auto)
{

fix factor
assume factor-f : factor dvd f and u-factor : p.dvdm u factor
from factor-f obtain h where f : f = factor ∗ h unfolding dvd-def by auto
obtain gs1 gs2 where part: List.partition (λgi. p.dvdm gi factor) gs = (gs1 ,

gs2) by force
from p.unique-factorization-m-factor-partition[OF l0 f-gs-factor f cop sf part]
have factor : pl.unique-factorization-m factor (lead-coeff factor , mset gs1) by

auto
from u-factor part u-gs have u-gs1 : u ∈ set gs1 by auto
define gs1 ′ where gs1 ′ = remove1 u gs1
from remove1-mset[OF u-gs1 , folded gs1 ′-def]
have gs1 : mset gs1 = add-mset u (mset gs1 ′) by auto
from remove1-mset[OF u-gs, folded gs ′′-def]
have gs: mset gs = add-mset u (mset gs ′′) by auto
from part have filter : gs1 = [gi←gs . p.dvdm gi factor] by auto
have mset gs1 ⊆# mset gs unfolding filter mset-filter by simp
hence sub: mset gs1 ′ ⊆# mset gs ′′ unfolding gs gs1 by auto
from p.coprime-lead-coeff-factor [OF ‹prime p› cop[unfolded f]]
have cop ′: coprime (lead-coeff factor) p by auto
have p-factor0 : p.Mp factor 6= 0

by (metis f p.Mp-0 p.square-free-m-def poly-mod.square-free-m-factor(1) sf)
have pl-factor0 : pl.Mp factor 6= 0 using p-factor0 l0

by (metis p.Mp-0 p-Mp-pl-Mp)
from pl.factorization-m-degree[OF pl.unique-factorization-m-imp-factorization[OF

factor] pl-factor0]
have pl.degree-m factor = sum-mset (image-mset pl.degree-m (mset gs1)) .
also have image-mset pl.degree-m (mset gs1) = image-mset degree (mset gs1)

by (rule image-mset-cong, rule pl.monic-degree-m[OF mon], insert part, auto)
also have pl.degree-m factor = degree factor

by (rule pl.degree-m-eq[OF p.coprime-exp-mod[OF cop ′ l0] pl.m1])
finally have degree factor = d + sum-mset (image-mset degree (mset gs1 ′))

unfolding gs1 by auto
moreover have sum-mset (image-mset degree (mset gs1 ′)) ∈ sub-mset-sums

degs unfolding degs-def

74

sub-mset-sums mset-map
by (intro imageI CollectI image-mset-subseteq-mono[OF sub])

ultimately have degree factor ∈ Degs unfolding Degs-def by auto
} note Degs = this
have length-less: length gs ′ < length gs

and irreducible-factor : irreducibled factor
and h-dvd-f : h dvd f
and f-h-factor : f = h ∗ factor
and h-eq: pl.unique-factorization-m h (b ′, mset gs ′)
and gs ′-gs: set gs ′ ⊆ set gs
and b ′: b ′ = lead-coeff h
and h1 : gs ′ = [] −→ h = 1
using LLL-reconstruction-inner-loop[OF degree-u monic-u irred-u p-uf f-dvd-F

n-def (2)
f-gs-factor cop sf sf-f u-gs norm-map Degs
a1 a2 n-def (1)] deg-u-d gs-not-empty by metis+

have F-h-factor-G: F = h ∗ prod-list (factor # G)
using F-f-G f-h-factor by auto

hence h-dvd-F : h dvd F using f-dvd-F dvd-trans by auto
have irreducible-factor-G:

∧
x. x ∈ set (factor # G) =⇒ irreducibled x

using irreducible-factor irreducible-G by auto
from p.coprime-lead-coeff-factor [OF ‹prime p› cop[unfolded f-h-factor]]
have cop ′: coprime (lead-coeff h) p by auto
have lc ′: lead-coeff (smult (lead-coeff h) (prod-list gs ′)) = lead-coeff h

by (insert gs ′-gs, auto intro!: monic-prod-list intro: mon)
have lc: lead-coeff (pl.Mp (smult (lead-coeff h) (prod-list gs ′))) = pl.M (lead-coeff

h)
proof (subst pl.degree-m-eq-lead-coeff [OF pl.degree-m-eq[OF - pl.m1]]; unfold lc ′)

show lead-coeff h mod p^l 6= 0 using p.coprime-exp-mod[OF cop ′ l0] by auto
qed auto
have uh: pl.unique-factorization-m h (lead-coeff h, mset gs ′) using h-eq unfold-

ing b ′ .
from p.square-free-m-factor [OF sf [unfolded f-h-factor]] have sf ′: p.square-free-m

h by auto
show ?case
proof (cases gs ′ 6= [])

case gs ′-not-empty: True
show ?thesis
by (rule 1 .IH [rule-format, OF length-less LLL-eq irreducible-factor-G F-h-factor-G

uh gs ′-not-empty norm irred-p sf ′ cop ′], insert gs ′-gs, auto)
next

case False
have pl-ge0 : p^l > 0 using p1 by auto

have G ′-eq: G ′= factor # G using LLL-eq False using LLL-reconstruction ′′.simps
by auto

have condition1 : (∀ a∈set G ′. irreducibled a) using irreducible-factor-G G ′-eq
by auto

have h-eq2 : pl.Mp h = pl.Mp [:b ′:] using h-eq False

75

unfolding pl.unique-factorization-m-alt-def pl.factorization-m-def by auto
have Mp-const-rw[simp]: pl.Mp [:b ′:] = [:b ′ mod p^l:] using pl.Mp-const-poly

by blast
have condition2 : F = prod-list G ′ using h1 False f-h-factor G ′-eq F-h-factor-G

by auto
show ?thesis using condition1 condition2 by auto

qed
qed

context
fixes gs :: int poly list
assumes gs-hen: berlekamp-hensel p l F = gs
and cop: coprime (lead-coeff F) p
and sf : poly-mod.square-free-m p F
and sf-F : square-free F

begin

lemma gs-not-empty: gs 6= []
proof (rule ccontr , simp)

assume gs: gs = []
obtain c fs where c-fs: finite-field-factorization-int p F = (c, fs) by force
have sort (map degree fs) = sort (map degree gs)

by (rule p.berlekamp-hensel-main(2)[OF - gs-hen cop sf c-fs], simp add: l0)
hence fs-empty: fs = [] using gs by (cases fs, auto)
hence fs: mset fs = {#} by auto
have p.unique-factorization-m F (c, mset fs) and c: c ∈ {0 ..<p}

using p.finite-field-factorization-int[OF sf c-fs] by auto
hence p.factorization-m F (c, mset fs)

using p.unique-factorization-m-imp-factorization by auto
hence eq-m-F : p.eq-m F [:c:] unfolding fs p.factorization-m-def by auto
hence 0 = p.degree-m F by (simp add: p.Mp-const-poly)
also have ... = degree F by (rule p.degree-m-eq[OF - p1], insert cop p1 , auto)
finally have degree F = 0 ..
thus False using N0 by simp

qed

lemma reconstruction-of-algorithm-16-22 :
assumes 1 : reconstruction-of-algorithm-16-22 p l gs F = G
shows (∀ g∈set G. irreducibled g) ∧ F = prod-list G

proof −
note ∗ = p.berlekamp-hensel-unique[OF cop sf gs-hen l0]
obtain c fs where finite-field-factorization-int p F = (c, fs) by force
from p.berlekamp-hensel-main[OF l0 gs-hen cop sf this]
show ?thesis

using 1 unfolding reconstruction-of-algorithm-16-22-def Let-def
by (intro LLL-reconstruction ′′[OF - - - - gs-not-empty], insert ∗ sf sf-F cop,

auto)
qed
end

76

end

7.3.4 Final statement
lemma factorization-algorithm-16-22 :

assumes res: factorization-algorithm-16-22 f = G
and sff : square-free f
and deg: degree f > 0
shows (∀ g∈set G. irreducibled g) ∧ f = prod-list G

proof −
let ?lc = lead-coeff f
define p where p ≡ suitable-prime-bz f
obtain c gs where fff : finite-field-factorization-int p f = (c,gs) by force
let ?degs = map degree gs
note res = res[unfolded factorization-algorithm-16-22-def Let-def , folded p-def ,

unfolded fff split, folded]
from suitable-prime-bz[OF sff refl]
have prime: prime p and cop: coprime ?lc p and sf : poly-mod.square-free-m p f

unfolding p-def by auto
note res
from prime interpret poly-mod-prime p by unfold-locales
define K where K = 2 ^ (5 ∗ degree f ∗ degree f) ∗

‖f ‖2 ^ (2 ∗ degree f)
define N where N = sqrt-int-ceiling K
have K0 : K ≥ 0 unfolding K-def by auto
have N0 : N ≥ 0 unfolding N-def sqrt-int-ceiling using K0

by (smt of-int-nonneg real-sqrt-ge-0-iff zero-le-ceiling)
define n where n = find-exponent p N
note res = res[folded n-def [unfolded N-def K-def]]
note n = find-exponent[OF m1 , of N , folded n-def]
note bh = berlekamp-and-hensel-separated[OF cop sf refl fff n(2)]
note res = res[folded bh(1)]
show ?thesis
proof (rule reconstruction-of-algorithm-16-22 [OF prime deg - refl cop sf sff res])

from n(1) have N ≤ p ^ n by simp
hence ∗: N^2 ≤ (p^n)^2

by (intro power-mono N0 , auto)
show 2 ^ (degree f)2 ∗ B2-LLL f ^ (2 ∗ degree f) ≤ (p ^ n)2
proof (rule order .trans[OF - ∗])

have 2 ^ (degree f)2 ∗ B2-LLL f ^ (2 ∗ degree f) = K
unfolding K-def B2-LLL-def by (simp add: ac-simps

power-mult-distrib power2-eq-square power-mult[symmetric] power-add[symmetric])
also have . . . ≤ N 2 unfolding N-def by (rule sqrt-int-ceiling-bound[OF K0])
finally show 2 ^ (degree f)2 ∗ B2-LLL f ^ (2 ∗ degree f) ≤ N 2 .

qed
qed

qed

lift-definition increasing-lattices-LLL-factorization :: int-poly-factorization-algorithm

77

is factorization-algorithm-16-22 using factorization-algorithm-16-22 by auto

thm factorize-int-poly[of increasing-lattices-LLL-factorization]

end

8 Mistakes in the textbook Modern Computer Al-
gebra (2nd edition)

theory Modern-Computer-Algebra-Problem
imports Factorization-Algorithm-16-22

begin

fun max-degree-poly :: int poly ⇒ int poly ⇒ int poly
where max-degree-poly a b = (if degree a ≥ degree b then a else b)

fun choose-u :: int poly list ⇒ int poly
where choose-u [] = undefined
| choose-u [gi] = gi
| choose-u (gi # gj # gs) = max-degree-poly gi (choose-u (gj # gs))

8.1 A real problem of Algorithm 16.22

Bogus example for Modern Computer Algebra (2nd edition), Algorithm
16.22, step 9: After having detected the factor [:1 , 1 , 0 , 1 :], the remaining
polynomial f∗ will be 1, and the remaining list of modular factors will be
empty.
lemma let f = [:1 ,1 :] ∗ [:1 ,1 ,0 ,1 :];

p = suitable-prime-bz f ;
b = lead-coeff f ;
A = linf-norm-poly f ; n = degree f ; B = sqrt-int-ceiling (n+1) ∗ 2^n ∗ A;
Bnd = 2^(n^2 div 2) ∗ B^(2∗n); l = log-ceiling p Bnd;
(-, fs) = finite-field-factorization-int p f ;
gs = hensel-lifting p l f fs;
u = choose-u gs;
d = degree u;
g-star = [:2 ,2 ,0 ,2 :: int :];
(gs ′,hs ′) = List.partition (λgi. poly-mod.dvdm p gi g-star) gs;
h-star = smult b (prod-list hs ′);
f-star = primitive-part h-star

in (hs ′ = [] ∧ f-star = 1) by eval

8.2 Another potential problem of Algorithm 16.22

Suppose that g∗ is pl. (It is is not yet clear whether lattices exists where
this g∗ is short enough). Then pp(g∗) = 1 is detected as irreducible factor
and the algorithm stops.

78

definition input-poly = [: 1 ,0 ,0 ,0 ,1 ,1 ,0 ,0 ,1 ,0 ,1 ,0 ,1 :: int :]

For input-poly the factorization will result in a lattice where each initial basis
element has a Euclidean norm of at least pl (since the input polynomial u
has a norm larger than pl.) So, just from the norm of the basis one cannot
infer that the lattice contains small vectors.
lemma let f = input-poly;

p = suitable-prime-bz f ;
b = lead-coeff f ;
A = linf-norm-poly f ; n = degree f ; B = sqrt-int-ceiling (n+1) ∗ 2^n ∗ A;
Bnd = 2^(n^2 div 2) ∗ B^(2∗n); l = log-ceiling p Bnd;
(-, fs) = finite-field-factorization-int p f ;
gs = hensel-lifting p l f fs;
u = choose-u gs;
pl = p^l;
pl2 = pl div 2 ;
u ′ = poly-mod.inv-Mp2 pl pl2 (poly-mod.Mp pl (smult b u))

in sqrt-int-floor (sq-norm u ′) > pl by eval

The following calculation will show that the norm of g∗ is not that much
shorter than pl which is an indication that it is not obvious that in general
pl cannot be chosen as short polynomial.
definition compute-norms = (let f = input-poly;

p = suitable-prime-bz f ;
b = lead-coeff f ;
A = linf-norm-poly f ; n = degree f ; B = sqrt-int-ceiling (n+1) ∗ 2^n ∗ A;
Bnd = 2^(n^2 div 2) ∗ B^(2∗n); l = log-ceiling p Bnd;
(-, fs) = finite-field-factorization-int p f ;
gs = hensel-lifting p l f fs;
u = choose-u gs;
pl = p^l;
pl2 = pl div 2 ;
u ′ = poly-mod.inv-Mp2 pl pl2 (poly-mod.Mp pl (smult b u));
d = degree u;
pl = p^l;
L = factorization-lattice u ′ 1 pl;
g-star = short-vector 2 L

in (
′′p^l: ′′ @ show pl @ shows-nl [] @
′′norm u: ′′ @ show (sqrt-int-floor (sq-norm-poly u ′)) @ shows-nl [] @
′′norm g-star : ′′ @ show (sqrt-int-floor (sq-norm-vec g-star)) @ shows-nl [] @

shows-nl []
))

export-code compute-norms in Haskell

• pl:≈ 6.61056·10122, namely 661055968790248598951915308032771039828404682964281219284648795274405791236311345825189210439715284847591212025023358304256

79

• norm u:≈ 6.67555·10122, namely 667555058938127908386141559707490406617756492853269306735125739182352318769782701477339940304992057299993307341153235059302

• norm g-star :≈ 5.02568·10110, namely 502567871888893789258107599397950338997348731386301514804539180088146716526330518979464688385872213886910747667

8.3 Verified wrong results

An equality in example 16.24 of the textbook which is not valid.
lemma let g2 = [:−984 ,1 :];

g3 = [:−72 ,1 :];
g4 = [:−6828 ,1 :];
rhs = [:−1728 ,−840 ,−420 ,6 :]

in ¬ poly-mod.eq-m (5^6) (smult 6 (g2∗g3∗g4)) (rhs) by eval

end

References

[1] J. Divasón, S. J. C. Joosten, R. Thiemann, and A. Yamada. A formal-
ization of the Berlekamp–Zassenhaus factorization algorithm. In CPP
2017, pages 17–29. ACM, 2017.

[2] J. v. z. Gathen and J. Gerhard. Modern Computer Algebra. Cambridge
University Press, New York, NY, USA, 2nd edition, 2003.

[3] A. K. Lenstra, H. W. Lenstra, and L. Lovász. Factoring polynomials
with rational coefficients. Mathematische Annalen, 261:515–534, 1982.

80

	Introduction
	Factor bound
	Executable dvdm operation
	Uniqueness of division algorithm for polynomials
	Executable division operation modulo m for polynomials

	The LLL factorization algorithm
	Correctness of the LLL factorization algorithm
	Basic facts about the auxiliary functions
	Facts about Sylvester matrices and norms
	Proof of the key lemma 16.20
	Properties of the computed lattice and its connection with Sylvester matrices
	Proving that 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 factorization-lattice returns a basis of the lattice
	Being in the lattice is being a multiple modulo
	Soundness of the LLL factorization algorithm

	Calculating All Possible Sums of Sub-Multisets
	Implementation and soundness of a modified version of Algorithm 16.22
	Previous lemmas obtained using local type definitions
	The modified version of Algorithm 16.22
	Soundness proof
	Starting the proof
	Inner loop
	Outer loop
	Final statement

	Mistakes in the textbook Modern Computer Algebra (2nd edition)
	A real problem of Algorithm 16.22
	Another potential problem of Algorithm 16.22
	Verified wrong results

