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1 Introduction

We discuss a topological curiosity discovered by Kuratowski (1922): the fact that the number of distinct operators
on a topological space generated by compositions of closure and complement never exceeds 14, and is exactly 14 in
the case of R. In addition, we prove a theorem due to Chagrov (1982) that classifies topological spaces according
to the number of such operators they support.

Kuratowski’s result, which is exposited in Whitty (2015) and Chapter 7 of Chamberland (2015), has already been
treated in Mizar — see Baginska and Grabowski (2003) and Grabowski (2004). To the best of our knowledge, we
are the first to mechanize Chagrov’s result.

Our work is based on a presentation of Kuratowski’s and Chagrov’s results by Gardner and Jackson (2008).

We begin with some preliminary facts pertaining to the relationship between interiors of unions and unions of
interiors (§2) and the relationship between Q and R (§3). We then prove Kuratowski’s result (§4) and the corollary
that at most 7 distinct operators on a topological space can be generated by compositions of closure and interior
(§5). Finally, we prove Chagrov’s result (§6).

2 Interiors and unions

definition

boundary :: 'a::topological__space set = 'a set
where

boundary X = closure X — interior X



lemma boundary__empty:
shows boundary {} = {}

(proof)
definition

exterior :: 'a::topological _space set = 'a set
where

exterior X = — (interior X U boundary X)

lemma interior__union__boundary:
shows interior (X U Y) = interior X U interior Y
< boundary X N boundary Y C boundary (X U Y) (is (?lhsl = ?lhs2) «— ?rhs)

(proof)

lemma interior _union_closed__intervals:
fixes a :: 'a::ordered euclidean space
assumes b < ¢
shows interior ({a..b} U {c..d}) = interior {a..b} U interior {c..d}

(proof )

3 Additional facts about the rationals and reals

lemma Rat_real limpt:
fixes z :: real
shows z islimpt Q

(proof )

lemma Rat_closure:
shows closure Q = (UNIV :: real set)

(proof)

lemma Rat interval closure:
fixes z :: real
assumes r < y
shows closure ({z<..<y} N Q) = {z..y}

(proof)

lemma Rat_not_open:
fixes T :: real set
assumes open T
assumes T # {}
shows =T C Q

(proof)

lemma Irrat dense_in_ real:
fixes z :: real
assumes r < y
shows dre—Q. z < rAr <y

(proof)

lemma closed_interval Int_compl:
fixes z :: real
assumes r < Yy
assumes y < 2z
shows — {z..y} N — {y..2} = — {z..2}
(proof)



4 Kuratowski’s result

We prove that at most 14 distinct operators can be generated by compositions of closure and complement. For
convenience, we give these operators short names and try to avoid pointwise reasoning. We treat the interior
operator at the same time.

declare o__apply[simp del]

definition C :: ‘a::topological _space set = 'a set where C X = — X
definition K :: ‘a::topological_space set = 'a set where K X = closure X
definition I :: ’a::topological_space set = 'a set where I X = interior X

lemma C C:
shows C o C = id
(proof )

lemma K K:
shows K o K = K

(proof)

lemma [ I:
shows [ o [ =1

(proof)

lemma I K:
shows ] = C o K o C
(proof)

lemma K I:
shows K = C ol o C
(proof )

lemma K I K I:
shows K o lo Kol =Kol
(proof )

lemma I K I K:
shows o KoloK=10K
(proof )

lemma K mono:
assumes z C y
shows Kz C K y

(proof)
The following lemma embodies the crucial observation about compositions of C' and K:
lemma KCKCKCK KCK:
shows Ko CoKo(CoKo(CoK=KoCoK (is ?lhs = ?rhs)
(proof)

The inductive set CK captures all operators that can be generated by compositions of C' and K. We shallowly
embed the operators; that is, we identify operators up to extensional equality.

inductive CK :: (‘a::topological_space set = 'a set) = bool where
CK C

| CK K

| [CKf; CKg] = CK (foyg)



declare CK.intros|intro!]

lemma CK_id[introl]:
CK id
(proof)

The inductive set CK_ nf captures the normal forms for the 14 distinct operators.

inductive CK_nf :: (‘a::topological__space set = 'a set) = bool where
CK_nfid
| CK_nf C
| CK_nf K
| CK_nf (C o K)
| CK_nf (K o C)
K nf (Co Ko ()
"~ nf (Ko CoK)
" nf (Co Ko (ColK)
" nf (Ko CoKo()
" nf (CoKoCoKoC )
(
(
(
(

Q

" nf (Ko CoKoCoK)
" nf(CoKoCoKo(ColK)
nf (Ko CoKoCoKoC )

\
\
\
\
\
\
\
\
| " nf (CoKoCoKoCoKoC ()
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declare CK nf.intros[intro!]

lemma CK_nf set:

shows {f . CK_nff} ={id, C,K,CoK, Ko (C,CoKoC,KoCoK,CoKoCoK,KoCoKoC C,
CoKoCoKo(CU, KoCoKo(CoK, CoKoCoKo(CoK, Ko(CoKoCoKoC(C,CoKoCokK
o CoKoC}

(proof )

That each operator generated by compositions of C and K is extensionally equivalent to one of the normal forms
captured by CK_ nf is demonstrated by means of an induction over the construction of CK_nf and an appeal to
the facts proved above.

theorem CK_ nf:
CKf+— CK nff
(proof)

theorem CK card:
shows card {f. CK f} < 14

(proof)

We show, using the following subset of R (an example taken from Rusin (2001)) as a witness, that there exist
topological spaces on which all 14 operators are distinct.

definition
RRR :: real set
where

RRR = {0<.<1} U{I<.<2} U {3} U ({5<.<7} N Q)
The following facts allow the required proofs to proceed by simp:

lemma RRR closure:
shows closure RRR = {0..2} U {3} U {5..7}

(proof )

lemma RRR__interior:
interior RRR = {0<..<1} U{1<..<2} (is ?lhs = ?rhs)

(proof )



lemma RRR_interior_closure|simplified):
shows interior ({0:real..2} U {3} U {5..7}) = {0<..<2} U {5<..<7} (is Zlhs = ?rhs)

(proof)
The operators can be distinguished by testing which of the points in {1,2,3,4,6} belong to their results.

definition
test :: (real set = real set) = bool list
where

test f = map (Az. z € f RRR) [1,2,3,4,0]

lemma RRR_test:
assumes f RRR = ¢ RRR
shows test f = test g

(proof)

lemma nf RRR:
shows

test id = [False, False, True, False, True]
test C = [True, True, False, True, False]
test K = [True, True, True, False, True]
test (K o C) = [True, True, True, True, True]
test (C o K) = [Fulse, False, False, True, False]
test (C o K o (') = [False, False, False, False, False]
test (K o C o K) = [False, True, True, True, False]
test (C o K o C o K) = [True, False, False, False, True]
test (K o C o K o C) = [True, True, False, False, False]
test (C o K o C o K o C) = [False, False, True, True, True]
test (K o C o K o C o K) = [True, True, False, False, True]
test (C o K o C o K o C o K) = [False, False, True, True, False]
test (K o C o Ko Co K o C)=|[False, True, True, True, True]
test (C o Ko Co Ko CoKoCC)=]|True, Fualse, False, False, False]

(proof)

theorem CK_nf real card:
shows card ((A f. f RRR) ‘{f . CK_nff}) = 14
(proof)

theorem CK real card:
shows card {f::real set = real set. CK f} = 14 (is ?lhs = ?rhs)

(proof)

5 A corollary of Kuratowski’s result

We show that it is a corollary of CK_ real card that at most 7 distinct operators on a topological space can
be generated by compositions of closure and interior. In the case of R, exactly 7 distinct operators can be so
generated.

inductive IK :: ('a::topological _space set = 'a set) = bool where
IK id

| IK I

| IK K

| [IK f; IK g ] = IK (f © g)

inductive IK_nf :: (‘a::topological _space set = 'a set) = bool where
IK_nf id

| IK nf I

| IK nf K

| IK nf (I o K)



| IK nf (K o)
| IK nf (I o K ol)
| IK nf (KoloK)

declare IK .intros[intro!]
declare IK nf.intros[intro!]

lemma [K nf set:
{f IK_nff}={{id, I, K, IToK, Kol, loKolI KoloK}
(proof)

theorem IK_ nf:
IKf «— IK nff
(proof)

theorem IK card:
shows card {f. IK f} < 7

(proof)

theorem IK nf real card:
shows card (A f. f RRR) ‘{f . IK_nff}) =7
(proof )

theorem IK real card:
shows card {f::real set = real set. IK f} = 7 (is ?lhs = ?rhs)

(proof )

6 Chagrov’s result

Chagrov’s theorem, which is discussed in Section 2.1 of Gardner and Jackson (2008), states that the number of
distinct operators on a topological space that can be generated by compositions of closure and complement is one
of 2, 6, 8, 10 or 14.

We begin by observing that the set of normal forms CK_ nf can be split into two disjoint sets, CK_ nf pos and
CK_nf neg, which we define in terms of interior and closure.

inductive CK_nf pos :: (‘a::topological__space set = 'a set) = bool where
CK_nf pos id

| CK_nf pos I

| CK_nf _pos K

| CK_nf pos (I o K)

| CK_nf pos (K o I)

| CK_nf pos (I oK ol)

| CK_nf pos (K oI o K)

declare CK_nf pos.intros|intro!]

lemma CK_nf pos_set:
shows {f . CK_nf posf} ={id, I, K, Io K, Kol,IoKolI, KoloK}
(proof )

definition

CK_nf neg :: ('a::topological__space set = 'a set) = bool
where

CK_nf negf <— (3g. CK_nf posg N f= C og)

lemma CK_nf pos mneq disjoint:
assumes CK nf pos f



assumes CK nf neg g

shows f # ¢
(proof)

lemma CK_ nf pos neg CK_ nf:
CK_nff +— CK_nf posfV CK_nf negf (is ?lhs +— 9rhs)
(proof)

We now focus on CK_nf pos. In particular, we show that its cardinality for any given topological space is one of
1,3,4,50r 7.

The proof consists of exhibiting normal forms for the operators supported by each of six classes of topological
spaces. These are sublattices of the following lattice of CK_ nf pos operators:

lemmas K I K _subseteq K = closure_mono|OF interior_subset, of closure X, simplified] for X

lemma CK_ nf pos_lattice:
shows

I < (id :: 'a::topological__space set = 'a set)
id < (K :: 'a::topological _space set = 'a set)
I < 1o K o (I: 'a:topological _space set = 'a set)
IToKol<TIo(K : a:topological space set = 'a set)
I'oKol<Ko/(I: a:topological space set = 'a set)
IoK < Kolo (K : 'a:topological _space set = 'a set)
Kol<Kolo(K : 'a:topological _space set = 'a set)

K oI o K < (K :: 'a:topological _space set = 'a set)

(proof )

We define the six classes of topological spaces in question, and show that they are related by inclusion in the
following way (as shown in Figure 2.3 of Gardner and Jackson (2008)):

Kuratowski spaces

\
/

Extremally disconnected spaces Open unresolvable spaces

Partition spaces  Extremally disconnected and open unresolvable spaces

/
\

Discrete spaces

6.1 Discrete spaces

definition
discrete (X :: 'a::topological__space set) +— I = (id::'a set = 'a set)

lemma discrete eqs:
assumes discrete (X :: 'a::topological _space set)
shows
I = (id::'a set = 'a set)
K = (id:'a set = 'a set)
(proof )



lemma discrete_ card:
assumes discrete (X :: 'a::topological _space set)
shows card {f. CK_nf _pos (f::'a set = 'a set)} = 1
(proof)

lemma discrete__discrete__topology:
fixes X :: 'a::topological _space set
assumes A\ Y::'a set. open Y
shows discrete X

(proof)

6.2 Partition spaces

definition
part (X :: 'a::topological _space set) +— K o I = (I :: 'a set = 'a set)

lemma discrete part:
assumes discrete X
shows part X

(proof )

lemma part _egs:
assumes part (X :: 'a::topological _space set)
shows
Kol=(I:"aset= "aset)
IoK=(K:'aset = "aset)
(proof)

lemma part_not_discrete_card:
assumes part (X :: 'a::topological _space set)
assumes —discrete X
shows card {f. CK_nf _pos (f::'a set = 'a set)} = 3
(proof )

A partition space is a topological space whose basis consists of the empty set and the equivalence classes of points
of the space induced by some equivalence relation R on the underlying set of the space. Equivalently, a partition
space is one in which every open set is closed. Thus, for example, the class of partition spaces includes every
topological space whose open sets form a boolean algebra.

datatype part_witness = a | b | ¢

lemma part_witness UNIV:
shows UNIV = set [a, b, (]
(proof)

lemmas part_witness_pow = subset__subseqs|OF subset__trans|OF subset_UNIV Set.equalityD1[OF part_witness_UNIV

lemmas part_witness_Compl = Compl_eq Diff UNIV[where ‘a=part_witness, unfolded part_witness UNIV,
simplified]

instantiation part witness :: topological _space
begin

definition open_part witness X +— X € {{}, {a}, {b, ¢}, {a, b, c}}

lemma part_witness_ball:

< (Vs;S. s e {{}, {a}, {b, ¢}, {a, b, c¢}}) «— S C set [{}, {a}, {0, ¢}, {a, b, c}]
proo



lemmas part_witness__subsets_pow = subset__subseqs|OF iffD1[OF part_witness__ball]|
instance (proof)
end

lemma part_witness__interior__simps:
shows
interior {a} = {a}
interior {b} = {}
interior {c} = {}
interior {a, b} = {a}
interior {a, ¢} = {a}
interior {b, ¢} = {b, c}
interior {a, b, ¢} = {a, b, ¢}

(proof)

lemma part_witness part:
fixes X :: part_witness set
shows part X

(proof )

lemma part_witness not__discrete:
fixes X :: part_witness set
shows —discrete X

(proof )

lemma part witness card:
shows card {f. CK_nf_pos (f::part_witness set = part_witness set)} = 3

(proof )

6.3 Extremally disconnected and open unresolvable spaces

definition
ed_ou (X :: 'a::topological__space set) +— I o K = K o (I :: 'a set = 'a set)

lemma discrete__ed_ou:
assumes discrete X
shows ed ou X

(proof)

lemma ed ou_egs:
assumes ed_ou (X :: 'a::topological _space set)
shows
IToKol=Ko(I: 'aset= "aset)
KoloK=Ko(I:'aset= "aset)
IToK=Ko(I:'aset= "aset)

(proof )

lemma ed_ou_negs:
assumes ed_ou (X :: 'a::topological _space set)
assumes —discrete X
shows
I # (K :: 'a set = 'a set)
I+ Ko (I:'aset= "aset)
K # K o (I ::'a set = 'a set)
I # (id :: 'a set = 'a set)



K # (id :: 'a set = 'a set)
(proof)

lemma ed ou not discrete card:
assumes ed_ou (X :: 'a::topological _space set)
assumes —discrete X
shows card {f. CK_nf pos (f::'a set = 'a set)} = 4
(proof)

We consider an example extremally disconnected and open unresolvable topological space.

datatype ed _ou_witness =a | b|c|d]e

lemma ed ou_ witness UNIV:
shows UNIV = set [a, b, ¢, d, €]
(proof)

lemmas ed_ou_witness_pow = subset__subseqs| OF subset__trans[OF subset_UNIV Set.equalityD1[OF ed__ou_ witness_ U

lemmas ed_ou_witness__Compl = Compl_eq_Diff UNIV|[where 'a=ed_ou_witness, unfolded ed__ou_ witness_UNIV,
simplified]

instance ed ou_witness :: finite

(proof)

instantiation ed ou_witness :: topological _space
begin

inductive open__ed_ou_witness :: ed_ou_witness set = bool where
open__ed__ou__witness {}

| open__ed_ou_witness {a}

| open__ed_ou_witness {b}

| open__ed ou_witness {e}

| open__ed_ou_witness {a, c}

| open__ed _ou_witness {b, d}

| open__ed ou_witness {a, ¢, e}

| open__ed_ou_witness {a, b}
| open__ed ou_witness {a, e}
| open__ed ou_witness {b, e}
| open__ed_ou_witness {a, b, c}
| open__ed ou_witness {a, b, d}
| open__ed ou_witness {a, b, e}
| open__ed ou__witness {b, e}

ol SIS S

| open__ed_ou_witness {a, b, ¢, d}
| open__ed ou_witness {a, b, ¢, e}
| open__ed_ou_witness {a, b, d, e}
| open__ed_ou_witness {a, b, ¢, d, e}

declare open__ed_ou_witness.intros|intro!]

lemma ed ou_ witness inter:
fixes S :: ed ou_witness set
assumes open S
assumes open T
shows open (S N T)

(proof)

lemma ed ou_ witness union:
10



fixes X :: ed ou_witness set set
assumes VzeX. open
shows open (U X)

(proof)

instance

(proof )

end

lemma ed_ou_witness interior__simps:
shows

interior {a} = {a}
interior {b} = {b}
interior {c} = {}
interior {d} = {}
interior {e} = {e}
interior {a, b} = {a, b}
interior {a, ¢} = {a, c}
interior {a, d} = {a}
interior {a, e} = {a, e}
interior {b, ¢} = {b}
interior {b, d} = {b, d}
interior {b, e} = {b, e}
interior {c, d} = {}
interior {c, e} = {e}
interior {d, e} = {e}

interior {a, b, ¢} = {a, b, ¢}
interior {a, b, d} = {a, b, d}
interior {a, b, e} = {a, b, e}

d} = {a, ¢}

e} ={a, ¢, ¢}

e} = {a, e}

d} = {b, d}

et = {b, e}

e} ={b, d, e}

e} = {e}

¢, dy ={a, b, ¢, d}

C’ e} = {a7 b7 C? 6}

d, e} ={a, b, d, e}
interior {a, b, ¢, d, e} = {a, b, ¢, d, e}
interior {a, ¢, d, e} = {a, ¢, e}
interior {b, ¢, d, e} = {b, d, e}

(proof)

interior {a,
interior {a,
interior {a,
interior {b,
interior {b,
interior {b,
interior {c,
interior {a,
interior {a,
interior {a,

S o a0 0 oo

QQ‘@‘Q‘\_@‘&&QQ

lemma ed ou_ witness not_discrete:
fixes X :: ed _ou_witness set
shows —discrete X

(proof )

lemma ed ou_witness _ed_ou:
fixes X :: ed ou_witness set
shows ed_ou X

(proof)

lemma ed ou_ witness card:
shows card {f. CK_nf_pos (f::ed_ou_witness set = ed__ou_ witness set)} = 4
(proof)
11



6.4 Extremally disconnected spaces

definition
extremally__disconnected (X :: 'a::topological _space set) «— K oI o K =1 o (K :: 'a set = 'a set)

lemma ed_ou_ part _extremally disconnected:
assumes ed_ou X
assumes part X
shows extremally disconnected X

(proof)

lemma extremally disconnected__eqs:
fixes X :: 'a::topological _space set
assumes eztremally disconnected X
shows
IToKol=Ko(I: 'aset= "a set)
KoloK=10(K :'aset= "aset)

(proof )

lemma extremally disconnected_not_part not ed_ou_ card:
fixes X :: 'a::topological space set
assumes extremally_disconnected X
assumes —part X
assumes —ed_ou X

shows card {f. CK_nf pos (f::'a set = 'a set)} = 5
(proof)

Any topological space having an infinite underlying set and whose topology consists of the empty set and every
cofinite subset of the underlying set is extremally disconnected. We consider an example such space having a
countably infinite underlying set.

datatype a cofinite = cofinite 'a

instantiation cofinite :: (type) topological__space
begin

definition open_ cofinite = (AX::'a cofinite set. finite (—X) V X = {})

instance

(proof)

end

lemma cofinite_ closure_finite:
fixes X :: 'a cofinite set
assumes finite X
shows closure X = X

(proof)

lemma cofinite_ closure__infinite:
fixes X :: 'a cofinite set
assumes infinite X
shows closure X = UNIV

(proof )

lemma cofinite_interior_finite:
fixes X :: 'a cofinite set
assumes finite X
assumes infinite (UNIV::'a cofinite set)

12



shows interior X = {}

(proof )

lemma cofinite_interior_infinite:
fixes X :: 'a cofinite set
assumes infinite X
assumes infinite (—X)
shows interior X = {}

(proof)
abbreviation evens :: nat cofinite set = {cofinite n | n. Ii. n=2xi}

lemma evens infinite:
shows infinite evens

(proof)

lemma cofinite_nat__infinite:
shows infinite (UNIV::nat cofinite set)
(proof)

lemma evens Compl infinite:
shows infinite (— evens)

(proof)

lemma evens closure:
shows closure evens = UNIV

(proof )

lemma evens__interior:
shows interior evens = {}

(proof )

lemma cofinite__not_ part:
fixes X :: nat cofinite set
shows —part X

(proof)

lemma cofinite_not_ed ou:
fixes X :: nat cofinite set
shows —ed_ou X

(proof)

lemma cofinite__extremally disconnected__auz:
fixes X :: nat cofinite set
shows closure (interior (closure X)) C interior (closure X)

(proof )

lemma cofinite__extremally__disconnected:
fixes X :: nat cofinite set
shows extremally disconnected X

(proof )

lemma cofinite card:
shows card {f. CK_nf _pos (f::nat cofinite set = nat cofinite set)} = 5
(proof)

13



6.5 Open unresolvable spaces

definition
open__unresolvable (X :: 'a::topological _space set) «— K oI o K = K o (I :: 'a set = 'a set)

lemma ed_ou__open__unresolvable:
assumes ed_ou X
shows open__unresolvable X

(proof)

lemma open__unresolvable__eqs:
assumes open__unresolvable (X :: 'a::topological _space set)
shows
ToKolI=10(K:'aset= "aset)
KoloK=Ko(I:'aset= "aset)
(proof )

lemma not_ed_ou_negs:
assumes —ed_ou (X :: 'a::topological _space set)
shows
I #1710 (K : 'aset="aset)
K # K o (I ::'a set = 'a set)
(proof)

lemma open_unresolvable not_ed_ ou_ card:
assumes open__unresolvable (X :: 'a::topological _space set)
assumes —ed_ou X
shows card {f. CK_nf _pos (f::'a set = 'a set)} = 5

(proof )

We show that the class of open unresolvable spaces is non-empty by exhibiting an example of such a space.

datatype ou_witness = a | b | ¢

lemma ou witness UNIV:
shows UNIV = set [a, b, (]

(proof)

instantiation ou_ witness :: topological _space
begin

definition open_ou_witness X +— a ¢ X V X = UNIV

instance

(proof )

end

lemma ou_witness closure__simps:
shows

closure {a} = {a}

closure {b} = {a, b}

closure {c} = {a, c}

closure {a, b} = {a, b}

closure {a, c} = {a, c}

closure {a, b, ¢} = {a, b, c}

closure {b, ¢} = {a, b, c}
(proof)

14



lemma ou_witness open__unresolvable:
fixes X :: ou_witness set
shows open__unresolvable X

(proof)

lemma ou_ witness _not _ed ou:
fixes X :: ou_witness set
shows —ed_ou X

(proof )

lemma ou_witness_card:
shows card {f. CK_nf pos (f::ou_witness set = ou_witness set)} = 5

(proof)

6.6 Kuratowski spaces

definition
kuratowski (X :: 'a::topological__space set) «—
—extremally disconnected X N —open__unresolvable X

A Kuratowski space distinguishes all 7 positive operators.

lemma part_closed__open:
fixes X :: 'a::topological space set
assumes [ o K o [ = (I::'a set = 'a set)
assumes closed X
shows open X

(proof )

lemma part I K I:
assumes [ o K o [ = (I::'a::topological__space set = 'a set)
shows I o K = (K::'a set = 'a set)

(proof)

lemma part K I I:
assumes [ o K o [ = (I::'a::topological__space set = 'a set)
shows K o [ = (I::'a set = 'a set)

(proof)

lemma kuratowski_neqs:

assumes kuratowski (X :: 'a::topological _space set)

shows
I#1oKo(I:'aset= "aset)
ToKol#Ko(I: 'aset= "aset)
IToKol#1o (K : 'aset= "aset)
ToK+#Kolo (K :'aset= "aset)
Kol# Kolo(K:'aset= "aset)
KoloK # (K : 'aset="aset)
IToK=#Ko(I:'aset= "aset)
I # (id :: 'a set = 'a set)
K # (id :: 'a set = 'a set)
IoKol¢#(id: 'aset = 'a set)
KoloK # (id: 'aset = 'a set)

(proof)

lemma kuratowski card:
assumes kuratowski (X :: 'a::topological _space set)
shows card {f. CK_nf _pos (f::'a set = 'a set)} = 7
(proof)
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R is a Kuratowski space.

lemma kuratowski reals:
shows kuratowski (R :: real set)

(proof)

6.7 Chagrov’s theorem

theorem chagrov:

fixes X :: 'a::topological space set

obtains discrete X
| —discrete X A part X
| —discrete X N ed_ou X
| med_ou X A open__unresolvable X
| med_ou X A —part X A extremally__disconnected X
| kuratowski X

(proof)

corollary chagrov_ card:
shows card {f. CK_nf _pos (f::'a::topological_space set = 'a set)} € {1,3,4,5,7}
(proof )
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