The Kuratowski Closure-Complement Theorem

Peter Gammie and Gianpaolo Gioiosa

March 17, 2025

Contents

1	Introduction	1
2	Interiors and unions	1
3	Additional facts about the rationals and reals	2
4	Kuratowski's result	3
5	A corollary of Kuratowski's result	5
6	Chagrov's result	6
	6.1 Discrete spaces	7
	6.2 Partition spaces	8
	6.3 Extremally disconnected and open unresolvable spaces	Ĉ
	6.4 Extremally disconnected spaces	12
	6.5 Open unresolvable spaces	14
	6.6 Kuratowski spaces	15
	6.7 Chagrov's theorem	16
\mathbf{R}	forences	16

1 Introduction

We discuss a topological curiosity discovered by Kuratowski (1922): the fact that the number of distinct operators on a topological space generated by compositions of closure and complement never exceeds 14, and is exactly 14 in the case of \mathbb{R} . In addition, we prove a theorem due to Chagrov (1982) that classifies topological spaces according to the number of such operators they support.

Kuratowski's result, which is exposited in Whitty (2015) and Chapter 7 of Chamberland (2015), has already been treated in Mizar — see Bagińska and Grabowski (2003) and Grabowski (2004). To the best of our knowledge, we are the first to mechanize Chagrov's result.

Our work is based on a presentation of Kuratowski's and Chagrov's results by Gardner and Jackson (2008).

We begin with some preliminary facts pertaining to the relationship between interiors of unions and unions of interiors ($\S 2$) and the relationship between $\mathbb Q$ and $\mathbb R$ ($\S 3$). We then prove Kuratowski's result ($\S 4$) and the corollary that at most 7 distinct operators on a topological space can be generated by compositions of closure and interior ($\S 5$). Finally, we prove Chagrov's result ($\S 6$).

2 Interiors and unions

definition

 $boundary :: 'a::topological_space \ set \Rightarrow 'a \ set$ \mathbf{where} $boundary \ X = closure \ X - interior \ X$

```
lemma boundary empty:
 shows boundary \{\} = \{\}
\langle proof \rangle
definition
  exterior :: 'a::topological space set \Rightarrow 'a set
where
  exterior X = - (interior X \cup boundary X)
lemma interior_union_boundary:
 shows interior (X \cup Y) = interior X \cup interior Y
           \longleftrightarrow boundary X \cap boundary Y \subseteq boundary (X \cup Y) (is (?lhs1 = ?lhs2) \longleftrightarrow ?rhs)
\langle proof \rangle
\mathbf{lemma}\ interior\_union\_closed\_intervals:
 fixes a :: 'a::ordered euclidean space
 assumes b < c
 shows interior (\{a..b\} \cup \{c..d\}) = interior \{a..b\} \cup interior \{c..d\}
\langle proof \rangle
3
      Additional facts about the rationals and reals
lemma Rat_real_limpt:
 fixes x :: real
 shows x is limpt \mathbb{Q}
\langle proof \rangle
lemma Rat_closure:
 shows closure \mathbb{Q} = (UNIV :: real \ set)
\langle proof \rangle
lemma Rat_interval_closure:
 fixes x :: real
 assumes x < y
 shows closure (\{x < ... < y\} \cap \mathbb{Q}) = \{x ... y\}
\langle proof \rangle
lemma Rat not open:
 fixes T :: real \ set
 assumes open T
 assumes T \neq \{\}
 shows \neg T \subseteq \mathbb{Q}
\langle proof \rangle
\mathbf{lemma} \ \mathit{Irrat\_dense\_in\_real} :
 fixes x :: real
 assumes x < y
 shows \exists r \in \mathbb{Q}. x < r \land r < y
\langle proof \rangle
lemma closed_interval_Int_compl:
 fixes x :: real
 assumes x < y
 assumes y < z
 shows -\{x..y\} \cap -\{y..z\} = -\{x..z\}
\langle proof \rangle
```

4 Kuratowski's result

declare $o_apply[simp \ del]$

We prove that at most 14 distinct operators can be generated by compositions of *closure* and complement. For convenience, we give these operators short names and try to avoid pointwise reasoning. We treat the *interior* operator at the same time.

```
definition C :: 'a::topological\_space set \Rightarrow 'a set where <math>C X = -X
definition K :: 'a::topological space set <math>\Rightarrow 'a set where K X = closure X
definition I :: 'a::topological\_space set \Rightarrow 'a set where <math>I X = interior X
lemma C C:
 shows C \circ C = id
\langle proof \rangle
lemma K K:
 shows K \circ K = K
\langle proof \rangle
lemma I I:
 shows I \circ I = I
\langle proof \rangle
lemma I K:
 shows I = C \circ K \circ C
\langle proof \rangle
lemma K I:
 shows K = C \circ I \circ C
\langle proof \rangle
lemma K I K I:
 shows K \circ I \circ K \circ I = K \circ I
\langle proof \rangle
lemma I_K_I_K:
 shows I \circ K \circ I \circ K = I \circ K
\langle proof \rangle
lemma K_{\underline{\phantom{M}}mono}:
 assumes x \subseteq y
 shows K x \subseteq K y
\langle proof \rangle
The following lemma embodies the crucial observation about compositions of C and K:
lemma KCKCKCK KCK:
 shows K \circ C \circ K \circ C \circ K \circ C \circ K = K \circ C \circ K (is ?lhs = ?rhs)
\langle proof \rangle
```

The inductive set CK captures all operators that can be generated by compositions of C and K. We shallowly embed the operators; that is, we identify operators up to extensional equality.

```
declare CK.intros[intro!]
```

```
lemma CK\_id[intro!]: CK\ id \langle proof \rangle
```

The inductive set CK nf captures the normal forms for the 14 distinct operators.

declare CK_nf.intros[intro!]

```
lemma CK_nf_set:
```

That each operator generated by compositions of C and K is extensionally equivalent to one of the normal forms captured by CK_nf is demonstrated by means of an induction over the construction of CK_nf and an appeal to the facts proved above.

```
theorem CK\_nf:

CK\ f \longleftrightarrow CK\_nf\ f

\langle proof \rangle

theorem CK\ card:
```

```
shows card \{f. \ CK \ f\} \le 14
\langle proof \rangle
```

We show, using the following subset of \mathbb{R} (an example taken from Rusin (2001)) as a witness, that there exist topological spaces on which all 14 operators are distinct.

definition

```
RRR :: real \ set
where
RRR = \{0 < ... < 1\} \cup \{1 < ... < 2\} \cup \{3\} \cup (\{5 < ... < 7\} \cap \mathbb{Q})
```

The following facts allow the required proofs to proceed by simp:

```
lemma RRR\_closure:

shows closure RRR = \{0..2\} \cup \{3\} \cup \{5..7\}

\langle proof \rangle
```

```
lemma RRR\_interior: interior RRR = \{0 < ... < 1\} \cup \{1 < ... < 2\}  (is ?lhs = ?rhs) \langle proof \rangle
```

```
lemma RRR interior closure[simplified]:
 shows interior (\{0::real..2\} \cup \{3\} \cup \{5..7\}) = \{0 < ... < 2\} \cup \{5 < ... < 7\} (is ?lhs = ?rhs)
\langle proof \rangle
The operators can be distinguished by testing which of the points in \{1,2,3,4,6\} belong to their results.
definition
  test :: (real \ set \Rightarrow real \ set) \Rightarrow bool \ list
where
  test f \equiv map (\lambda x. \ x \in f RRR) [1,2,3,4,6]
lemma RRR test:
 assumes fRRR = gRRR
 shows test f = test g
\langle proof \rangle
lemma nf RRR:
 shows
    test id = [False, False, True, False, True]
    test \ C = [True, True, False, True, False]
    test K = [True, True, True, False, True]
    test\ (K\circ C)=[True,\ True,\ True,\ True,\ True]
    test\ (C\circ K)=[False,\ False,\ False,\ True,\ False]
    test\ (C \circ K \circ C) = [False, False, False, False, False]
    test\ (K\circ C\circ K)=[False,\ True,\ True,\ True,\ False]
    test\ (C \circ K \circ C \circ K) = [True, False, False, False, True]
    test\ (K\circ C\circ K\circ C)=[\mathit{True}, \mathit{True}, \mathit{False}, \mathit{False}, \mathit{False}]
    test\ (C \circ K \circ C \circ K \circ C) = [False, False, True, True, True]
    test\ (K\circ C\circ K\circ C\circ K)=[True,\ True,\ False,\ False,\ True]
    test\ (C \circ K \circ C \circ K \circ C \circ K) = [False, False, True, True, False]
    test\ (K \circ C \circ K \circ C \circ K \circ C) = [False,\ True,\ True,\ True,\ True]
    test\ (C \circ K \circ C \circ K \circ C \circ K \circ C) = [True, False, False, False, False]
\langle proof \rangle
theorem CK\_nf\_real\_card:
 shows card ((\lambda f. fRRR) ' \{f. CK\_nff\}) = 14
\langle proof \rangle
theorem CK_real_card:
 shows card \{f::real\ set\Rightarrow real\ set.\ CK\ f\}=14\ (is\ ?lhs=?rhs)
\langle proof \rangle
```

5 A corollary of Kuratowski's result

We show that it is a corollary of CK_real_card that at most 7 distinct operators on a topological space can be generated by compositions of closure and interior. In the case of \mathbb{R} , exactly 7 distinct operators can be so generated.

```
inductive IK :: ('a::topological\_space\ set\ \Rightarrow\ 'a\ set)\ \Rightarrow\ bool\ \mathbf{where}
IK\ id
|\ IK\ I
|\ IK\ K
|\ [\ IK\ f;\ IK\ g\ ]]\ \Longrightarrow\ IK\ (f\circ g)
inductive IK\_nf: ('a::topological\_space\ set\ \Rightarrow\ 'a\ set)\ \Rightarrow\ bool\ \mathbf{where}
IK\_nf\ id
|\ IK\_nf\ I
|\ IK\_nf\ K
|\ IK\_nf\ (I\circ K)
```

```
| IK\_nf (K \circ I) |
| IK \ nf \ (I \circ K \circ I)
\mid IK\_nf (K \circ I \circ K)
declare IK.intros[intro!]
declare IK nf.intros[intro!]
lemma IK\_nf\_set:
  \{f : IK\_nff\} = \{id, I, K, I \circ K, K \circ I, I \circ K \circ I, K \circ I \circ K\}
\langle proof \rangle
theorem IK nf:
  IK f \longleftrightarrow IK\_nf f
\langle proof \rangle
theorem IK card:
  shows card \{f.\ IK\ f\} \leq 7
\langle proof \rangle
theorem IK_nf_real_card:
  shows card ((\lambda f. fRRR) ' \{f . IK\_nff\}) = 7
\langle proof \rangle
theorem IK_real_card:
  shows card \{f::real\ set\Rightarrow real\ set.\ IK\ f\}=7\ (is\ ?lhs=?rhs)
\langle proof \rangle
```

Chagrov's result 6

Chagrov's theorem, which is discussed in Section 2.1 of Gardner and Jackson (2008), states that the number of distinct operators on a topological space that can be generated by compositions of closure and complement is one of 2, 6, 8, 10 or 14.

We begin by observing that the set of normal forms CK_nf can be split into two disjoint sets, CK_nf_pos and CK_nf_neg, which we define in terms of interior and closure.

```
CK\_nf\_pos\ id
\mid CK \mid nf \mid pos \mid I
 CK\_nf\_pos\ K
 CK\_nf\_pos(I \circ K)
 CK\_nf\_pos(K \circ I)
 CK\_nf\_pos (I \circ K \circ I)
CK_nf_pos(K \circ I \circ K)
declare CK_nf_pos.intros[intro!]
lemma CK_nf_pos_set:
 shows \{f : CK\_nf\_pos f\} = \{id, I, K, I \circ K, K \circ I, I \circ K \circ I, K \circ I \circ K\}
\langle proof \rangle
definition
  CK\_nf\_neg :: ('a::topological\_space set \Rightarrow 'a set) \Rightarrow bool
  CK\_nf\_neg \ f \longleftrightarrow (\exists \ g. \ CK\_nf\_pos \ g \land f = C \circ g)
lemma CK_nf_pos_neg_disjoint:
 assumes CK_nf_pos f
                                                                    6
```

inductive $CK_nf_pos :: ('a::topological_space set \Rightarrow 'a set) \Rightarrow bool where$

```
assumes CK\_nf\_neg\ g

shows f \neq g

\langle proof \rangle

lemma CK\_nf\_pos\_neg\_CK\_nf:

CK\_nf\ f \longleftrightarrow CK\_nf\_pos\ f \lor CK\_nf\_neg\ f\ (is\ ?lhs \longleftrightarrow ?rhs)

\langle proof \rangle
```

We now focus on CK_nf_pos . In particular, we show that its cardinality for any given topological space is one of 1, 3, 4, 5 or 7.

The proof consists of exhibiting normal forms for the operators supported by each of six classes of topological spaces. These are sublattices of the following lattice of CK_nf_pos operators:

lemmas $K_I_K_subseteq_K = closure_mono[OF\ interior_subset,\ of\ closure\ X,\ simplified]$ for X

```
lemma CK\_nf\_pos\_lattice:
shows
I \leq (id :: 'a::topological\_space \ set \Rightarrow 'a \ set)
id \leq (K :: 'a::topological\_space \ set \Rightarrow 'a \ set)
I \leq I \circ K \circ (I :: 'a::topological\_space \ set \Rightarrow 'a \ set)
I \circ K \circ I \leq I \circ (K :: 'a::topological\_space \ set \Rightarrow 'a \ set)
I \circ K \circ I \leq K \circ (I :: 'a::topological\_space \ set \Rightarrow 'a \ set)
I \circ K \leq K \circ I \circ (K :: 'a::topological\_space \ set \Rightarrow 'a \ set)
K \circ I \leq K \circ I \circ (K :: 'a::topological\_space \ set \Rightarrow 'a \ set)
K \circ I \leq K \circ I \circ (K :: 'a::topological\_space \ set \Rightarrow 'a \ set)
K \circ I \circ K \leq (K :: 'a::topological\_space \ set \Rightarrow 'a \ set)
\langle proof \rangle
```

We define the six classes of topological spaces in question, and show that they are related by inclusion in the following way (as shown in Figure 2.3 of Gardner and Jackson (2008)):

6.1 Discrete spaces

definition

 $\langle proof \rangle$

```
\begin{array}{l} \textit{discrete} \; (X :: 'a :: topological\_space \; set) \longleftrightarrow I = (id :: 'a \; set \Rightarrow 'a \; set) \\ \\ \textbf{lemma} \; \textit{discrete}\_\textit{eqs} : \\ \textbf{assumes} \; \textit{discrete} \; (X :: 'a :: topological\_space \; set) \\ \textbf{shows} \\ I = (id :: 'a \; set \Rightarrow 'a \; set) \\ K = (id :: 'a \; set \Rightarrow 'a \; set) \end{array}
```

```
lemma discrete card:
 assumes discrete (X :: 'a::topological space set)
 shows card \{f. CK\_nf\_pos (f::'a set \Rightarrow 'a set)\} = 1
\langle proof \rangle
lemma discrete discrete topology:
 fixes X :: 'a::topological\_space set
 assumes \bigwedge Y :: 'a \ set. \ open \ Y
 shows discrete X
\langle proof \rangle
6.2
       Partition spaces
definition
 part\ (X :: 'a::topological\_space\ set) \longleftrightarrow K \circ I = (I :: 'a\ set \Rightarrow 'a\ set)
lemma discrete_part:
 assumes discrete X
 shows part X
\langle proof \rangle
lemma part_eqs:
 assumes part (X :: 'a::topological\_space set)
 shows
   K \circ I = (I :: 'a \ set \Rightarrow 'a \ set)
   I \circ K = (K :: 'a \ set \Rightarrow 'a \ set)
\langle proof \rangle
lemma part_not_discrete_card:
 assumes part (X :: 'a::topological\_space set)
 assumes \neg discrete\ X
 shows card \{f. CK\_nf\_pos (f::'a set \Rightarrow 'a set)\} = 3
\langle proof \rangle
A partition space is a topological space whose basis consists of the empty set and the equivalence classes of points
of the space induced by some equivalence relation R on the underlying set of the space. Equivalently, a partition
space is one in which every open set is closed. Thus, for example, the class of partition spaces includes every
topological space whose open sets form a boolean algebra.
datatype part witness = a \mid b \mid c
lemma part witness UNIV:
 shows UNIV = set [a, b, c]
\langle proof \rangle
lemmas part witness pow = subset subseqs[OF subset trans[OF subset UNIV Set.equalityD1]OF part witness UNIV
lemmas \ part\_witness\_Compl = Compl\_eq\_Diff\_UNIV[where 'a=part\_witness, unfolded \ part\_witness\_UNIV]
simplified
instantiation part_witness :: topological_space
begin
definition open part witness X \longleftrightarrow X \in \{\{\}, \{a\}, \{b, c\}, \{a, b, c\}\}
lemma part witness ball:
 (\forall s \in S. \ s \in \{\{\}, \{a\}, \{b, c\}, \{a, b, c\}\}) \longleftrightarrow S \subseteq set [\{\}, \{a\}, \{b, c\}, \{a, b, c\}]\}
```

 $\langle proof \rangle$

```
lemmas part witness subsets pow = subset subseqs[OF iffD1[OF part witness ball]]
instance \langle proof \rangle
\mathbf{end}
lemma part_witness_interior_simps:
 shows
    interior \{a\} = \{a\}
    interior \{b\} = \{\}
    interior \{c\} = \{\}
    interior \{a, b\} = \{a\}
    interior \{a, c\} = \{a\}
    interior \{b, c\} = \{b, c\}
    interior \{a, b, c\} = \{a, b, c\}
\langle proof \rangle
lemma part witness part:
 \mathbf{fixes}\ X :: \mathit{part\_witness}\ \mathit{set}
 shows part X
\langle proof \rangle
lemma part witness not discrete:
 fixes X :: part\_witness set
 shows \neg discrete X
\langle proof \rangle
lemma part witness card:
 shows card \{f.\ CK\_nf\_pos\ (f::part\_witness\ set \Rightarrow part\_witness\ set)\} = 3
\langle proof \rangle
6.3
       Extremally disconnected and open unresolvable spaces
definition
  ed\_ou\ (X :: 'a :: topological\_space\ set) \longleftrightarrow I \circ K = K \circ (I :: 'a\ set \Rightarrow 'a\ set)
lemma discrete ed ou:
 assumes discrete X
 shows ed ou X
\langle proof \rangle
lemma ed_ou_eqs:
 assumes ed\_ou (X :: 'a::topological\_space set)
 shows
    I \circ K \circ I = K \circ (I :: 'a \ set \Rightarrow 'a \ set)
   K \circ I \circ K = K \circ (I :: 'a \ set \Rightarrow 'a \ set)
    I \circ K = K \circ (I :: 'a \ set \Rightarrow 'a \ set)
\langle proof \rangle
lemma ed_ou_negs:
 assumes ed\_ou (X :: 'a::topological\_space set)
 assumes \neg discrete\ X
 shows
    I \neq (K :: 'a \ set \Rightarrow 'a \ set)
   I \neq K \circ (I :: 'a \ set \Rightarrow 'a \ set)
    K \neq K \circ (I :: 'a \ set \Rightarrow 'a \ set)
    I \neq (id :: 'a \ set \Rightarrow 'a \ set)
```

```
K \neq (id :: 'a \ set \Rightarrow 'a \ set)
\langle proof \rangle
lemma ed_ou_not_discrete_card:
 assumes ed\_ou (X :: 'a::topological\_space set)
 assumes \neg discrete\ X
 shows card \{f.\ CK\_nf\_pos\ (f::'a\ set \Rightarrow 'a\ set)\} = 4
\langle proof \rangle
We consider an example extremally disconnected and open unresolvable topological space.
datatype ed\_ou\_witness = a \mid b \mid c \mid d \mid e
lemma ed_ou_witness_UNIV:
 shows UNIV = set [a, b, c, d, e]
\langle proof \rangle
\mathbf{lemmas}\ ed\_ou\_witness\_pow = subset\_subseqs[OF\ subset\_trans[OF\ subset\_UNIV\ Set.equalityD1[OF\ ed\_ou\_witness\_UNIV\ Set.equalityD1]]
\mathbf{lemmas}\ ed\_ou\_witness\_Compl = Compl\_eq\_Diff\_UNIV[\mathbf{where}\ 'a = ed\_ou\_witness,\ unfolded\ ed\_ou\_witness\_UNIV,
simplified
instance \ ed\_ou\_witness :: finite
\langle proof \rangle
instantiation \ ed\_ou\_witness :: topological\_space
begin
inductive open\_ed\_ou\_witness :: ed\_ou\_witness set \Rightarrow bool where
 open_ed_ou_witness {}
 open\_ed\_ou\_witness \{a\}
 open\_ed\_ou\_witness \{b\}
 open\_ed\_ou\_witness \{e\}
 open\_ed\_ou\_witness \{a, c\}
 open\_ed\_ou\_witness \{b, d\}
 open\_ed\_ou\_witness \{a, c, e\}
 open\_ed\_ou\_witness \{a, b\}
 open\_ed\_ou\_witness \{a, e\}
 open\_ed\_ou\_witness \{b, e\}
 open\_ed\_ou\_witness \{a, b, c\}
 open\_ed\_ou\_witness \{a, b, d\}
 open\_ed\_ou\_witness~\{a,~b,~e\}
 open\_ed\_ou\_witness\ \{b,\ d,\ e\}
 open\_ed\_ou\_witness \{a, b, c, d\}
 open\_ed\_ou\_witness \{a, b, c, e\}
 open\_ed\_ou\_witness \{a, b, d, e\}
 open\_ed\_ou\_witness \{a, b, c, d, e\}
declare open_ed_ou_witness.intros[intro!]
lemma ed_ou_witness_inter:
 fixes S :: ed\_ou\_witness set
 assumes open S
 assumes open T
 shows open (S \cap T)
\langle proof \rangle
```

lemma ed_ou_witness_union:

```
fixes X :: ed ou witness set set
 assumes \forall x \in X. open x
 shows open(\bigcup X)
\langle proof \rangle
instance
\langle proof \rangle
\mathbf{end}
lemma ed_ou_witness_interior_simps:
 shows
   interior \{a\} = \{a\}
   interior \{b\} = \{b\}
   interior \{c\} = \{\}
   interior \{d\} = \{\}
   interior \{e\} = \{e\}
   interior \{a, b\} = \{a, b\}
   interior \{a, c\} = \{a, c\}
   interior \{a, d\} = \{a\}
   interior \{a, e\} = \{a, e\}
   interior \{b, c\} = \{b\}
   interior \{b, d\} = \{b, d\}
   interior \{b, e\} = \{b, e\}
   interior \{c, d\} = \{\}
   interior \{c, e\} = \{e\}
   interior \{d, e\} = \{e\}
   interior \{a, b, c\} = \{a, b, c\}
   interior \{a, b, d\} = \{a, b, d\}
   interior \{a, b, e\} = \{a, b, e\}
   interior \{a, c, d\} = \{a, c\}
   interior \{a, c, e\} = \{a, c, e\}
   interior \{a, d, e\} = \{a, e\}
   interior \{b, c, d\} = \{b, d\}
   interior \{b, c, e\} = \{b, e\}
   interior \{b, d, e\} = \{b, d, e\}
   interior \{c, d, e\} = \{e\}
   interior \{a, b, c, d\} = \{a, b, c, d\}
   interior \{a, b, c, e\} = \{a, b, c, e\}
   interior \{a, b, d, e\} = \{a, b, d, e\}
   interior \{a, b, c, d, e\} = \{a, b, c, d, e\}
   interior \{a, c, d, e\} = \{a, c, e\}
   interior \{b, c, d, e\} = \{b, d, e\}
\langle proof \rangle
lemma ed_ou_witness_not_discrete:
 fixes X :: ed \ ou \ witness \ set
 shows \neg discrete X
\langle proof \rangle
\mathbf{lemma}\ ed\_ou\_witness\_ed\_ou:
 fixes X :: ed\_ou\_witness\ set
 shows ed ou X
\langle proof \rangle
\mathbf{lemma}\ ed\_ou\_witness\_card:
 shows card \{f.\ CK\_nf\_pos\ (f::ed\_ou\_witness\ set \Rightarrow ed\_ou\_witness\ set)\} = 4
\langle proof \rangle
```

6.4 Extremally disconnected spaces

```
definition
 extremally\_disconnected\ (X:: 'a::topological\_space\ set) \longleftrightarrow K \circ I \circ K = I \circ (K:: 'a\ set \Rightarrow 'a\ set)
lemma ed_ou_part_extremally_disconnected:
 assumes ed\_ou X
 assumes part X
 shows extremally disconnected X
\langle proof \rangle
lemma extremally_disconnected_eqs:
 fixes X :: 'a::topological space set
 assumes extremally disconnected X
   I \circ K \circ I = K \circ (I :: 'a \ set \Rightarrow 'a \ set)
   K \circ I \circ K = I \circ (K :: 'a \ set \Rightarrow 'a \ set)
lemma extremally_disconnected_not_part_not_ed_ou_card:
 fixes X :: 'a::topological\_space set
 assumes extremally disconnected X
 assumes \neg part X
 assumes \neg ed ou X
 shows card \{f. CK\_nf\_pos (f::'a set \Rightarrow 'a set)\} = 5
\langle proof \rangle
Any topological space having an infinite underlying set and whose topology consists of the empty set and every
cofinite subset of the underlying set is extremally disconnected. We consider an example such space having a
countably infinite underlying set.
datatype 'a cofinite = cofinite 'a
instantiation cofinite :: (type) topological_space
begin
definition open cofinite = (\lambda X::'a \text{ cofinite set. finite } (-X) \vee X = \{\})
instance
\langle proof \rangle
end
lemma cofinite_closure_finite:
 fixes X :: 'a \ cofinite \ set
 assumes finite X
 shows closure X = X
\langle proof \rangle
lemma cofinite_closure_infinite:
 fixes X :: 'a \ cofinite \ set
 assumes infinite X
 shows closure X = UNIV
\langle proof \rangle
lemma cofinite interior finite:
 fixes X :: 'a \ cofinite \ set
 assumes finite X
```

assumes infinite (UNIV::'a cofinite set)

```
shows interior X = \{\}
\langle proof \rangle
\mathbf{lemma} \ \ cofinite\_interior\_infinite:
  fixes X :: 'a \ cofinite \ set
  assumes infinite X
  assumes infinite(-X)
  shows interior X = \{\}
\langle proof \rangle
abbreviation evens :: nat cofinite set \equiv \{cofinite \ n \mid n. \ \exists i. \ n=2*i\}
lemma evens infinite:
  shows infinite evens
\langle proof \rangle
lemma cofinite nat infinite:
  shows infinite (UNIV::nat cofinite set)
\langle proof \rangle
lemma evens_Compl_infinite:
  shows infinite (- evens)
\langle proof \rangle
lemma evens_closure:
  shows closure evens = UNIV
\langle proof \rangle
lemma evens_interior:
  shows interior\ evens = \{\}
\langle proof \rangle
lemma cofinite_not_part:
  fixes X :: nat \ cofinite \ set
  shows \neg part X
\langle proof \rangle
lemma cofinite\_not\_ed\_ou:
  fixes X :: nat \ cofinite \ set
  shows \neg ed ou X
\langle proof \rangle
\mathbf{lemma}\ cofinite\_extremally\_disconnected\_aux:
  fixes X :: nat \ cofinite \ set
  shows closure (interior (closure X)) \subseteq interior (closure X)
\langle proof \rangle
lemma\ cofinite\_extremally\_disconnected:
  fixes X :: nat \ cofinite \ set
  shows extremally_disconnected X
\langle proof \rangle
lemma cofinite_card:
  shows card \{f.\ CK\_nf\_pos\ (f::nat\ cofinite\ set\ \Rightarrow\ nat\ cofinite\ set)\}=5
\langle proof \rangle
```

6.5 Open unresolvable spaces

 $\langle proof \rangle$

```
definition
  open\_unresolvable\ (X :: 'a::topological\_space\ set) \longleftrightarrow K \circ I \circ K = K \circ (I :: 'a\ set \Rightarrow 'a\ set)
lemma ed_ou_open_unresolvable:
 assumes ed\_ou X
 shows open\_unresolvable X
\langle proof \rangle
lemma open unresolvable eqs:
 assumes open\_unresolvable (X :: 'a::topological\_space set)
 shows
   I \circ K \circ I = I \circ (K :: 'a \ set \Rightarrow 'a \ set)
   K \circ I \circ K = K \circ (I :: 'a \ set \Rightarrow 'a \ set)
\langle proof \rangle
lemma not_ed_ou_negs:
 assumes \neg ed\_ou (X :: 'a::topological\_space set)
 shows
   I \neq I \circ (K :: 'a \ set \Rightarrow 'a \ set)
   K \neq K \circ (I :: 'a \ set \Rightarrow 'a \ set)
\langle proof \rangle
\mathbf{lemma} \ open\_unresolvable\_not\_ed\_ou\_card:
 assumes open unresolvable (X :: 'a::topological space set)
 assumes \neg ed ou X
 shows card \{f.\ CK\ nf\ pos\ (f::'a\ set \Rightarrow 'a\ set)\} = 5
\langle proof \rangle
We show that the class of open unresolvable spaces is non-empty by exhibiting an example of such a space.
datatype ou\_witness = a \mid b \mid c
lemma ou witness UNIV:
 shows UNIV = set [a, b, c]
\langle proof \rangle
instantiation ou witness :: topological space
begin
definition open ou witness X \longleftrightarrow a \notin X \lor X = UNIV
instance
\langle proof \rangle
end
lemma ou_witness_closure_simps:
 shows
   closure \{a\} = \{a\}
   closure \{b\} = \{a, b\}
   closure \{c\} = \{a, c\}
   closure \{a, b\} = \{a, b\}
   closure \{a, c\} = \{a, c\}
   closure \{a, b, c\} = \{a, b, c\}
   closure \{b, c\} = \{a, b, c\}
```

```
lemma ou witness open unresolvable:
  fixes X :: ou \quad witness \ set
  shows open unresolvable X
\langle proof \rangle
lemma ou\_witness\_not\_ed\_ou:
  fixes X :: ou \ witness \ set
  shows \neg ed ou X
\langle proof \rangle
lemma ou witness card:
  shows card \{f.\ CK\_nf\_pos\ (f::ou\_witness\ set \Rightarrow ou\_witness\ set)\} = 5
\langle proof \rangle
6.6
        Kuratowski spaces
definition
  kuratowski \ (X :: 'a::topological\_space \ set) \longleftrightarrow
    \neg extremally\_disconnected\ X \land \neg open\_unresolvable\ X
A Kuratowski space distinguishes all 7 positive operators.
lemma part closed open:
  fixes X :: 'a::topological\_space set
  assumes I \circ K \circ I = (I::'a \ set \Rightarrow 'a \ set)
  assumes closed X
  shows open X
\langle proof \rangle
lemma part I K I:
  assumes I \circ K \circ I = (I::'a::topological space set <math>\Rightarrow 'a set)
  shows I \circ K = (K::'a \ set \Rightarrow 'a \ set)
\langle proof \rangle
lemma part K I I:
  assumes I \circ K \circ I = (I::'a::topological\_space set \Rightarrow 'a set)
  shows K \circ I = (I::'a \ set \Rightarrow 'a \ set)
\langle proof \rangle
lemma kuratowski negs:
  assumes kuratowski (X :: 'a::topological_space set)
  shows
    I \neq I \circ K \circ (I :: 'a \ set \Rightarrow 'a \ set)
    I \circ K \circ I \neq K \circ (I :: 'a \ set \Rightarrow 'a \ set)
    I \circ K \circ I \neq I \circ (K :: 'a \ set \Rightarrow 'a \ set)
    I \circ K \neq K \circ I \circ (K :: 'a \ set \Rightarrow 'a \ set)
    K \circ I \neq K \circ I \circ (K :: 'a \ set \Rightarrow 'a \ set)
    K \circ I \circ K \neq (K :: 'a \ set \Rightarrow 'a \ set)
    I \circ K \neq K \circ (I :: 'a \ set \Rightarrow 'a \ set)
    I \neq (id :: 'a \ set \Rightarrow 'a \ set)
    K \neq (id :: 'a \ set \Rightarrow 'a \ set)
    I \circ K \circ I \neq (id :: 'a \ set \Rightarrow 'a \ set)
    K \circ I \circ K \neq (id :: 'a \ set \Rightarrow 'a \ set)
\langle proof \rangle
lemma kuratowski card:
  assumes kuratowski (X :: 'a::topological\_space set)
  shows card \{f.\ CK\_nf\_pos\ (f::'a\ set \Rightarrow 'a\ set)\} = 7
\langle proof \rangle
```

```
\mathbb{R} is a Kuratowski space.
```

```
lemma kuratowski\_reals:

shows kuratowski (\mathbb{R} :: real set)

\langle proof \rangle
```

6.7 Chagrov's theorem

```
theorem chagrov:
fixes X :: 'a::topological_space set
obtains discrete X

|\neg discrete\ X \land part\ X|
|\neg discrete\ X \land ed\_ou\ X|
|\neg ed\_ou\ X \land open\_unresolvable\ X|
|\neg ed\_ou\ X \land \neg part\ X \land extremally\_disconnected\ X|
| kuratowski\ X|
\langle proof \rangle

corollary chagrov\_card:
shows card \{f.\ CK\_nf\_pos\ (f::'a::topological\_space\ set\ \Rightarrow\ 'a\ set)\} \in \{1,3,4,5,7\}
\langle proof \rangle
```

References

- L. K. Bagińska and A. Grabowski. On the Kuratowski closure-complement problem. *Journal of Formalized Mathematics*, 15, 2003. URL http://mizar.org/JFM/Vol15/kurato 1.html. MML Identifier: KURATO 1.
- A. V. Chagrov. Kuratowski numbers. Application of functional analysis in approximation theory, pages 186–190, 1982. Gos. Univ., Kalinin [Russian].
- M. Chamberland. Single Digits: In Praise of Small Numbers. Princeton University Press, 2015.
- B.J. Gardner and M. Jackson. The Kuratowski closure-complement theorem. New Zealand Journal of Mathematics, 38:9–44, 2008. URL http://nzjm.math.auckland.ac.nz/images/6/63/The_Kuratowski_Closure-Complement_Theorem.pdf.
- A. Grabowski. Solving two problems in general topology via types. In J.-C. Filliâtre, C. Paulin-Mohring, and B. Werner, editors, *TYPES 2004*, volume 3839 of *LNCS*, pages 138–153. Springer, 2004.
- K. Kuratowski. Sur l'opération A de l'analysis situs. Fundamenta Mathematicae, (3):182–199, 1922.
- D. Rusin, June 2001. URL http://web.archive.org/web/20031011151110/http://www.math.niu.edu/~rusin/known-math/94/kuratowski.
- R. Whitty. Kuratowski's 14-set theorem, 2015. URL http://www.theoremoftheday.org/Topology/Kuratowski14/TotDKuratowski14.pdf.