
Kruskal’s Algorithm for Minimum Spanning Forest

Maximilian P.L. Haslbeck, Peter Lammich, Julian Biendarra

March 17, 2025

Abstract

This Isabelle/HOL formalization defines a greedy algorithm for
finding a minimum weight basis on a weighted matroid and proves
its correctness. This algorithm is an abstract version of Kruskal’s al-
gorithm.

We interpret the abstract algorithm for the cycle matroid (i.e.
forests in a graph) and refine it to imperative executable code using
an efficient union-find data structure.

Our formalization can be instantiated for different graph represen-
tations. We provide instantiations for undirected graphs and symmet-
ric directed graphs.

Contents
1 Minimum Weight Basis 1

1.1 Preparations . 1
1.1.1 Weight restricted set 3
1.1.2 The greedy idea . 3

1.2 Minimum Weight Basis algorithm 4
1.3 The heart of the argument . 5
1.4 The Invariant . 7
1.5 Invariant proofs . 8
1.6 The refinement lemma . 9

2 Kruskal interface 9
2.1 Derived facts . 10
2.2 The edge set and forest form the cycle matroid 12

3 Refine Kruskal 13
3.1 Refinement I: cycle check by connectedness 14
3.2 Refinement II: connectedness by PER operation 15

1

4 Kruskal Implementation 16
4.1 Refinement III: concrete edges 16
4.2 Refinement to Imperative/HOL with Sepref-Tool 18

4.2.1 Refinement IV: given an edge set 19
4.2.2 Synthesis of Kruskal by SepRef 21

5 UGraph - undirected graph with Uprod edges 23
5.1 Edge path . 23
5.2 Distinct edge path . 26
5.3 Connectivity in undirected Graphs 27
5.4 Forest . 29
5.5 uGraph locale . 32

6 Kruskal on UGraphs 37
6.1 Interpreting Kruskl-Impl with a UGraph 37
6.2 Kruskal on UGraph from list of concrete edges 41
6.3 Outside the locale . 42
6.4 Kruskal with input check . 43
6.5 Code export . 44

7 Undirected Graphs as symmetric directed graphs 45
7.1 Definition . 45
7.2 Helping lemmas . 46
7.3 Auxiliary lemmas for graphs 62

8 Kruskal on Symmetric Directed Graph 69
8.1 Interpreting Kruskl-Impl . 69
8.2 Showing the equivalence of minimum spanning forest definitions 73
8.3 Outside the locale . 75
8.4 Code export . 76

1 Minimum Weight Basis
theory MinWeightBasis

imports Refine-Monadic.Refine-Monadic Matroids.Matroid
begin

For a matroid together with a weight function, assigning each element of
the carrier set an weight, we construct a greedy algorithm that determines
a minimum weight basis.
locale weighted-matroid = matroid carrier indep for carrier :: ′a set and indep +

fixes weight :: ′a ⇒ ′b::{linorder , ordered-comm-monoid-add}
begin

definition minBasis where
minBasis B ≡ basis B ∧ (∀B ′. basis B ′ −→ sum weight B ≤ sum weight B ′)

2

1.1 Preparations
fun in-sort-edge where

in-sort-edge x [] = [x]
| in-sort-edge x (y#ys) = (if weight x ≤ weight y then x#y#ys else y# in-sort-edge
x ys)

lemma [simp]: set (in-sort-edge x L) = insert x (set L) by (induct L, auto)

lemma in-sort-edge: sorted-wrt (λe1 e2 . weight e1 ≤ weight e2) L
=⇒ sorted-wrt (λe1 e2 . weight e1 ≤ weight e2) (in-sort-edge x L)

by (induct L, auto)

lemma in-sort-edge-distinct: x /∈ set L =⇒ distinct L =⇒ distinct (in-sort-edge x
L)

by (induct L, auto)

lemma finite-sorted-edge-distinct:
assumes finite S
obtains L where distinct L sorted-wrt (λe1 e2 . weight e1 ≤ weight e2) L S =

set L
proof −

{
have ∃L. distinct L ∧ sorted-wrt (λe1 e2 . weight e1 ≤ weight e2) L ∧ S =

set L
using assms
apply(induct S)
apply(clarsimp)

apply(clarsimp)
subgoal for x L apply(rule exI [where x=in-sort-edge x L])

by (auto simp: in-sort-edge in-sort-edge-distinct)
done

}
with that show ?thesis by blast

qed

abbreviation wsorted == sorted-wrt (λe1 e2 . weight e1 ≤ weight e2)

lemma sum-list-map-cons:
sum-list (map weight (y # ys)) = weight y + sum-list (map weight ys)
by auto

lemma exists-greater :
assumes len: length F = length F ′

and sum: sum-list (map weight F) > sum-list (map weight F ′)
shows ∃ i<length F . weight (F ! i) > weight (F ′ ! i)

using len sum
proof (induct rule: list-induct2)

case (Cons x xs y ys)
from Cons(3)

3

have ∗: ∼ weight y < weight x =⇒ sum-list (map weight ys) < sum-list (map
weight xs)

by (metis add-mono not-less sum-list-map-cons)
show ?case

using Cons ∗
by (cases weight y < weight x, auto)

qed simp

lemma wsorted-nth-mono: assumes wsorted L i≤j j<length L
shows weight (L!i) ≤ weight (L!j)
using assms by (induct L arbitrary: i j rule: list.induct, auto simp: nth-Cons ′)

1.1.1 Weight restricted set

limi T g is the set T restricted to elements only with weight strictly smaller
than g.
definition limi T g == {e. e∈T ∧ weight e < g}

lemma limi-subset: limi T g ⊆ T by (auto simp: limi-def)

lemma limi-mono: A ⊆ B =⇒ limi A g ⊆ limi B g by (auto simp: limi-def)

1.1.2 The greedy idea
definition no-smallest-element-skipped E F

= (∀ e∈carrier − E . ∀ g>weight e. indep (insert e (limi F g)) −→ (e ∈ limi F
g))

let F be a set of elements limi F g is F restricted to elements with weight
smaller than g let E be a set of elements we want to exclude.

no-smallest-element-skipped E F expresses, that going greedily over car-
rier − E, every element that did not render the accumulated set dependent,
was added to the set F.
lemma no-smallest-element-skipped-empty[simp]: no-smallest-element-skipped car-
rier {}

by(auto simp: no-smallest-element-skipped-def)

lemma no-smallest-element-skippedD:
assumes no-smallest-element-skipped E F e ∈carrier − E

weight e < g (indep (insert e (limi F g)))
shows e∈ limi F g
using assms by(auto simp: no-smallest-element-skipped-def)

lemma no-smallest-element-skipped-skip:
assumes createsCycle: ¬ indep (insert e F)

and I : no-smallest-element-skipped (E∪{e}) F
and sorted: (∀ x∈F .∀ y∈(E∪{e}). weight x ≤ weight y)

4

shows no-smallest-element-skipped E F
unfolding no-smallest-element-skipped-def

proof (clarsimp)
fix x g
assume x: x ∈ carrier x /∈ E weight x < g
assume f : indep (insert x (limi F g))
show (x ∈ limi F g)
proof (cases x=e)

case True
from True have limi F g = F

unfolding limi-def using ‹weight x < g› sorted by fastforce
with createsCycle f True have False by auto
then show ?thesis by simp

next
case False
show ?thesis
apply(rule I [THEN no-smallest-element-skippedD, OF - ‹weight x < g›])
using x f False
by auto

qed
qed

lemma no-smallest-element-skipped-add:
assumes I : no-smallest-element-skipped (E∪{e}) F
shows no-smallest-element-skipped E (insert e F)
unfolding no-smallest-element-skipped-def

proof (clarsimp)
fix x g
assume xc: x ∈ carrier
assume x: x /∈ E
assume wx: weight x < g
assume f : indep (insert x (limi (insert e F) g))
show (x ∈ limi (insert e F) g)
proof(cases x=e)

case True
then show ?thesis unfolding limi-def

using wx by blast
next

case False
have ind: indep (insert x (limi F g))

apply(rule indep-subset[OF f]) using limi-mono by blast
have indep (insert x (limi F g)) =⇒ x ∈ limi F g

apply(rule I [THEN no-smallest-element-skippedD]) using False xc wx x by
auto

with ind show ?thesis using limi-mono by blast
qed

qed

5

1.2 Minimum Weight Basis algorithm
definition obtain-sorted-carrier ≡ SPEC (λL. wsorted L ∧ set L = carrier)

abbreviation empty-basis ≡ {}

To compute a minimum weight basis one obtains a list of the carrier set
sorted ascendingly by the weight function. Then one iterates over the list
and adds an elements greedily to the independent set if it does not render
the set dependet.
definition minWeightBasis where

minWeightBasis ≡ do {
l ← obtain-sorted-carrier ;
ASSERT (set l = carrier);
T ← nfoldli l (λ-. True)
(λe T . do {

ASSERT (indep T ∧ e∈carrier ∧ T⊆carrier);
if indep (insert e T) then

RETURN (insert e T)
else

RETURN T
}) empty-basis;
RETURN T
}

1.3 The heart of the argument
The algorithmic idea above is correct, as an independent set, which is in-
clusion maximal and has not skipped any smaller element, is a minimum
weight basis.
lemma greedy-approach-leads-to-minBasis: assumes indep: indep F

and inclmax: ∀ e∈carrier − F . ¬ indep (insert e F)
and no-smallest-element-skipped {} F
shows minBasis F

proof (rule ccontr)
— from our assumptions we have that F is a basis
from indep inclmax have bF : basis F using indep-not-basis by blast
— towards a contradiction, assume F is not a minimum Basis
assume notmin: ¬ minBasis F
— then we can get a smaller Basis B
from bF notmin[unfolded minBasis-def] obtain B

where bB: basis B and sum: sum weight B < sum weight F
by force

— lets us obtain two sorted lists for the bases F and B
from bF basis-finite finite-sorted-edge-distinct
obtain FL where dF [simp]: distinct FL and wF [simp]: wsorted FL

and sF [simp]: F = set FL
by blast

from bB basis-finite finite-sorted-edge-distinct

6

obtain BL where dB[simp]: distinct BL and wB[simp]: wsorted BL
and sB[simp]: B = set BL

by blast
— as basis F has more total weight than basis B (and the basis have the same

length) ...
from sum have suml: sum-list (map weight BL) < sum-list (map weight FL)

by(simp add: sum.distinct-set-conv-list[symmetric])
from bB bF have card B = card F using basis-card by blast
then have l: length FL = length BL by (simp add: distinct-card)
— ... there exists an index i such that the ith element of the BL is strictly smaller

than the ith element of FL
from exists-greater [OF l suml] obtain i where i: i<length FL

and gr : weight (BL ! i) < weight (FL ! i)
by auto

let ?FL-restricted = limi (set FL) (weight (FL ! i))

— now let us look at the two independent sets X and Y: let X and Y be the set if
we take the first i-1 elements of BL and the first i elements of FL respectively. We
want to use the augment property of Matroids in order to show that we must have
skipped and optimal element, which then contradicts our assumption.

let ?X = take i FL
have X-size: card (set ?X) = i using i

by (simp add: distinct-card)
have X-indep: indep (set ?X) using bF

using indep-iff-subset-basis set-take-subset by force

let ?Y = take (Suc i) BL
have Y-size: card (set ?Y) = Suc i using i l

by (simp add: distinct-card)
have Y-indep: indep (set ?Y) using bB

using indep-iff-subset-basis set-take-subset by force

have card (set ?X) < card (set ?Y) using X-size Y-size by simp

— X and Y are independent and X is smaller than Y, thus we can augment X
with some element x

with Y-indep X-indep
obtain x where x: x∈set (take (Suc i) BL) − set ?X

and indepX : indep (insert x (set ?X))
using augment by auto

— we know many things about x now, i.e. x weights strictly less than the ith
element of FL ...

have x∈carrier using indepX indep-subset-carrier by blast
from x have xs: x∈set (take (Suc i) BL) and xnX : x /∈ set ?X by auto
from xs obtain j where x=(take (Suc i) BL)!j and ij: j≤i

by (metis i in-set-conv-nth l length-take less-Suc-eq-le min-Suc-gt(2))
then have x: x=BL!j by auto
have il: i < length BL using i l by simp

7

have weight x ≤ weight (BL ! i)
unfolding x apply(rule wsorted-nth-mono) by fact+

then have k: weight x < weight (FL ! i) using gr by auto

— ... and that adding x to X gives us an independent set
have ?FL-restricted ⊆ set ?X

unfolding limi-def apply safe
by (metis (no-types, lifting) i in-set-conv-nth length-take

min-simps(2) not-less nth-take wF wsorted-nth-mono)
have z ′: insert x ?FL-restricted ⊆ insert x (set ?X)

using xnX ‹?FL-restricted ⊆ set (take i FL)› by auto
from indep-subset[OF indepX z ′] have add-x-stay-indep: indep (insert x ?FL-restricted)

.

— ... finally this means that we must have taken the element during our greedy
algorithm

from ‹no-smallest-element-skipped {} F›
‹x∈carrier› ‹weight x < weight (FL ! i)› add-x-stay-indep

have x ∈ ?FL-restricted by (auto dest: no-smallest-element-skippedD)
with ‹?FL-restricted ⊆ set ?X› have x ∈ set ?X by auto

— ... but we actually didn’t. This finishes our proof by contradiction.
with xnX show False by auto

qed

1.4 The Invariant
The following predicate is invariant during the execution of the minimum
weight basis algorithm, and implies that its result is a minimum weight basis.
definition I-minWeightBasis where

I-minWeightBasis == λ(T ,E). indep T
∧ T ⊆ carrier
∧ E ⊆ carrier
∧ (∀ x∈T .∀ y∈E . weight x ≤ weight y)
∧ (∀ e∈carrier−E−T . ∼indep (insert e T))
∧ no-smallest-element-skipped E T

lemma I-minWeightBasisD:
assumes
I-minWeightBasis (T ,E)

showsindep T
∧

e. e∈carrier−E−T =⇒ ∼indep (insert e T)
E ⊆ carrier

∧
x y. x∈T =⇒ y∈E =⇒ weight x ≤ weight y T ⊆ carrier

no-smallest-element-skipped E T
using assms by(auto simp: no-smallest-element-skipped-def I-minWeightBasis-def)

lemma I-minWeightBasisI :
assumes indep T

∧
e. e∈carrier−E−T =⇒ ∼indep (insert e T)

E ⊆ carrier
∧

x y. x∈T =⇒ y∈E =⇒ weight x ≤ weight y T ⊆ carrier
no-smallest-element-skipped E T

8

shows I-minWeightBasis (T ,E)
using assms by(auto simp: no-smallest-element-skipped-def I-minWeightBasis-def)

lemma I-minWeightBasisG: I-minWeightBasis (T ,E) =⇒ no-smallest-element-skipped
E T

by(auto simp: I-minWeightBasis-def)

lemma I-minWeightBasis-sorted: I-minWeightBasis (T ,E) =⇒ (∀ x∈T .∀ y∈E . weight
x ≤ weight y)

by(auto simp: I-minWeightBasis-def)

1.5 Invariant proofs
lemma I-minWeightBasis-empty: I-minWeightBasis ({}, carrier)

by (auto simp: I-minWeightBasis-def)

lemma I-minWeightBasis-final: I-minWeightBasis (T , {}) =⇒ minBasis T
by(auto simp: greedy-approach-leads-to-minBasis I-minWeightBasis-def)

lemma indep-aux:
assumes e ∈ E ∀ e∈carrier − E − F . ¬ indep (insert e F)

and x∈carrier − (E − {e}) − insert e F
shows ¬ indep (insert x (insert e F))

using assms indep-iff-subset-basis by auto

lemma preservation-if : wsorted x =⇒ set x = carrier =⇒
x = l1 @ xa # l2 =⇒ I-minWeightBasis (σ, set (xa # l2)) =⇒ indep σ
=⇒ xa ∈ carrier =⇒ indep (insert xa σ) =⇒ I-minWeightBasis (insert xa σ,

set l2)
apply(rule I-minWeightBasisI)
subgoal by simp
subgoal unfolding I-minWeightBasis-def apply(rule indep-aux[where E=set

(xa # l2)])
by simp-all

subgoal by auto
subgoal by (metis insert-iff list.set(2) I-minWeightBasis-sorted

sorted-wrt-append sorted-wrt.simps(2))
subgoal by(auto simp: I-minWeightBasis-def)
subgoal apply (rule no-smallest-element-skipped-add)

by(auto intro!: simp: I-minWeightBasis-def)
done

lemma preservation-else: set x = carrier =⇒
x = l1 @ xa # l2 =⇒ I-minWeightBasis (σ, set (xa # l2))
=⇒ indep σ =⇒ ¬ indep (insert xa σ) =⇒ I-minWeightBasis (σ, set l2)

apply(rule I-minWeightBasisI)
subgoal by simp
subgoal by (auto simp: DiffD2 I-minWeightBasis-def)
subgoal by auto

9

subgoal by(auto simp: I-minWeightBasis-def)
subgoal by(auto simp: I-minWeightBasis-def)
subgoal apply (rule no-smallest-element-skipped-skip)

by(auto intro!: simp: I-minWeightBasis-def)
done

1.6 The refinement lemma
theorem minWeightBasis-refine: (minWeightBasis, SPEC minBasis)∈〈Id〉nres-rel

unfolding minWeightBasis-def obtain-sorted-carrier-def
apply(refine-vcg nfoldli-rule[where I=λl1 l2 s. I-minWeightBasis (s,set l2)])
subgoal by auto
subgoal by (auto simp: I-minWeightBasis-empty)

— asserts
subgoal by (auto simp: I-minWeightBasis-def)
subgoal by (auto simp: I-minWeightBasis-def)
subgoal by (auto simp: I-minWeightBasis-def)

— branches
subgoal apply(rule preservation-if) by auto
subgoal apply(rule preservation-else) by auto

— final
subgoal by auto
subgoal by (auto simp: I-minWeightBasis-final)
done

end — locale minWeightBasis

end

2 Kruskal interface
theory Kruskal
imports Kruskal-Misc MinWeightBasis
begin

In order to instantiate Kruskal’s algorithm for different graph formal-
izations we provide an interface consisting of the relevant concepts needed
for the algorithm, but hiding the concrete structure of the graph formaliza-
tion. We thus enable using both undirected graphs and symmetric directed
graphs.

Based on the interface, we show that the set of edges together with the
predicate of being cycle free (i.e. a forest) forms the cycle matroid. Together
with a weight function on the edges we obtain a weighted-matroid and thus
an instance of the minimum weight basis algorithm, which is an abstract
version of Kruskal.
locale Kruskal-interface =

fixes E :: ′edge set
and V :: ′a set

10

and vertices :: ′edge ⇒ ′a set
and joins :: ′a ⇒ ′a ⇒ ′edge ⇒ bool
and forest :: ′edge set ⇒ bool
and connected :: ′edge set ⇒ (′a∗ ′a) set
and weight :: ′edge ⇒ ′b::{linorder , ordered-comm-monoid-add}

assumes
finiteE [simp]: finite E

and forest-subE : forest E ′ =⇒ E ′ ⊆ E
and forest-empty: forest {}
and forest-mono: forest X =⇒ Y ⊆ X =⇒ forest Y
and connected-same: (u,v) ∈ connected {} ←→ u=v ∧ v∈V
and findaugmenting-aux: E1 ⊆ E =⇒ E2 ⊆ E =⇒ (u,v) ∈ connected E1 =⇒

(u,v)/∈ connected E2
=⇒ ∃ a b e. (a,b) /∈ connected E2 ∧ e /∈ E2 ∧ e ∈ E1 ∧ joins a b e

and augment-forest: forest F =⇒ e ∈ E−F =⇒ joins u v e
=⇒ forest (insert e F) ←→ (u,v) /∈ connected F

and equiv: F ⊆ E =⇒ equiv V (connected F)
and connected-in: F ⊆ E =⇒ connected F ⊆ V × V
and insert-reachable: x ∈ V =⇒ y ∈ V =⇒ F ⊆ E =⇒ e∈E =⇒ joins x y e

=⇒ connected (insert e F) = per-union (connected F) x y
and exhaust:

∧
x. x∈E =⇒ ∃ a b. joins a b x

and vertices-constr :
∧

a b e. joins a b e =⇒ {a,b} ⊆ vertices e
and joins-sym:

∧
a b e. joins a b e = joins b a e

and selfloop-no-forest:
∧

e. e∈E =⇒ joins a a e =⇒ ∼forest (insert e F)
and finite-vertices:

∧
e. e∈E =⇒ finite (vertices e)

and edgesinvertices:
⋃

(vertices ‘ E) ⊆ V
and finiteV [simp]: finite V
and joins-connected: joins a b e =⇒ T⊆E =⇒ e∈T =⇒ (a,b) ∈ connected T

begin

2.1 Derived facts
lemma joins-in-V : joins a b e =⇒ e∈E =⇒ a∈V ∧ b∈V

apply(frule vertices-constr) using edgesinvertices by blast

lemma finiteE-finiteV : finite E =⇒ finite V
using finite-vertices by auto

lemma E-inV :
∧

e. e∈E =⇒ vertices e ⊆ V
using edgesinvertices by auto

definition CC E ′ x = (connected E ′)‘‘{x}

lemma sameCC-reachable: E ′ ⊆ E =⇒ u∈V =⇒ v∈V =⇒ CC E ′ u = CC E ′ v
←→ (u,v) ∈ connected E ′

unfolding CC-def using equiv-class-eq-iff [OF equiv] by auto

11

definition CCs E ′ = quotient V (connected E ′)

lemma quotient V Id = {{v}|v. v∈V } unfolding quotient-def by auto

lemma CCs-empty: CCs {} = {{v}|v. v∈V }
unfolding CCs-def unfolding quotient-def using connected-same by auto

lemma CCs-empty-card: card (CCs {}) = card V
proof −

have i: {{v}|v. v∈V } = (λv. {v})‘V
by blast

have card (CCs {}) = card {{v}|v. v∈V }
using CCs-empty by auto

also have . . . = card ((λv. {v})‘V) by(simp only: i)
also have . . . = card V

apply(rule card-image)
unfolding inj-on-def by auto

finally show ?thesis .
qed

lemma CCs-imageCC : CCs F = (CC F) ‘ V
unfolding CCs-def CC-def quotient-def
by blast

lemma union-eqclass-decreases-components:
assumes CC F x 6= CC F y e /∈ F x∈V y∈V F ⊆ E e∈E joins x y e
shows Suc (card (CCs (insert e F))) = card (CCs F)

proof −
from assms(1) have xny: x 6=y by blast
show ?thesis unfolding CCs-def

apply(simp only: insert-reachable[OF assms(3−7)])
apply(rule unify2EquivClasses-alt)

apply(fact assms(1)[unfolded CC-def])
apply fact+

apply (rule connected-in)
apply fact

apply(rule equiv)
apply fact

by (fact finiteV)
qed

lemma forest-CCs: assumes forest E ′ shows card (CCs E ′) + card E ′ = card V
proof −

from assms have finite E ′ using forest-subE
using finiteE finite-subset by blast

from this assms show ?thesis
proof(induct E ′)

case (insert x F)

12

then have xE : x∈E using forest-subE by auto
from this obtain a b where xab: joins a b x using exhaust by blast
{ assume a=b

with xab xE selfloop-no-forest insert(4) have False by auto
}
then have xab ′: a 6=b by auto
from insert(4) forest-mono have fF : forest F by auto
with insert(3) have eq: card (CCs F) + card F = card V by auto

from insert(4) forest-subE have k: F ⊆ E by auto
from xab xab ′ have abV : a∈V b∈V using vertices-constr E-inV xE by fast-

force+

have (a,b) /∈ connected F
apply(subst augment-forest[symmetric])

apply (rule fF)
using xE xab xab insert by auto

with k abV sameCC-reachable have CC F a 6= CC F b by auto
have Suc (card (CCs (insert x F))) = card (CCs F)

apply(rule union-eqclass-decreases-components)
by fact+

then show ?case using xab insert(1 ,2) eq by auto
qed (simp add: CCs-empty-card)

qed

lemma pigeonhole-CCs:
assumes finiteV : finite V and cardlt: card (CCs E1) < card (CCs E2)
shows (∃ u v. u∈V ∧ v∈V ∧ CC E1 u = CC E1 v ∧ CC E2 u 6= CC E2 v)

proof (rule ccontr , clarsimp)
assume ∀ u. u ∈ V −→ (∀ v. CC E1 u = CC E1 v −→ v ∈ V −→ CC E2 u =

CC E2 v)
then have

∧
u v. u∈V =⇒ v∈V =⇒ CC E1 u = CC E1 v =⇒ CC E2 u = CC

E2 v by blast

with coarser [OF finiteV] have card ((CC E1) ‘ V) ≥ card ((CC E2) ‘ V) by
blast

with CCs-imageCC cardlt show False by auto
qed

2.2 The edge set and forest form the cycle matroid
theorem assumes f1 : forest E1

and f2 : forest E2
and c: card E1 > card E2

shows augment: ∃ e∈E1−E2 . forest (insert e E2)
proof −

— as E1 and E2 are both forests, and E1 has more edges than E2, E2 has more
connected components than E1

13

from forest-CCs[OF f1] forest-CCs[OF f2] c have card (CCs E1) < card (CCs
E2) by linarith

— by an pigeonhole argument, we can obtain two vertices u and v that are in the
same components of E1, but in different components of E2

then obtain u v where sameCCinE1 : CC E1 u = CC E1 v and
diffCCinE2 : CC E2 u 6= CC E2 v and k: u ∈ V v ∈ V
using pigeonhole-CCs[OF finiteV] by blast

from diffCCinE2 have unv: u 6= v by auto

— this means that there is a path from u to v in E1 ...
from f1 forest-subE have e1 : E1 ⊆ E by auto
with sameCC-reachable k sameCCinE1 have pathinE1 : (u, v) ∈ connected E1

by auto
— ... but none in E2

from f2 forest-subE have e2 : E2 ⊆ E by auto
with sameCC-reachable k diffCCinE2
have nopathinE2 : (u, v) /∈ connected E2

by auto

— hence, we can find vertices a and b that are not connected in E2, but are
connected by an edge in E1

obtain a b e where pe: (a,b) /∈ connected E2 and abE2 : e /∈ E2
and abE1 : e ∈ E1 and joins a b e
using findaugmenting-aux[OF e1 e2 pathinE1 nopathinE2] by auto

with forest-subE [OF f1] have e ∈ E by auto
from abE1 abE2 have abdif : e ∈ E1 − E2 by auto
with e1 have e ∈ E − E2 by auto

— we can savely add this edge between a and b to E2 and obtain a bigger forest

have forest (insert e E2) apply(subst augment-forest)
by fact+

then show ∃ e∈E1−E2 . forest (insert e E2) using abdif
by blast

qed

sublocale weighted-matroid E forest weight
proof

have forest {} using forest-empty by auto
then show ∃X . forest X by blast

qed (auto simp: forest-subE forest-mono augment)

end — locale Kruskal-interface

end

14

3 Refine Kruskal
theory Kruskal-Refine
imports Kruskal SeprefUF
begin

3.1 Refinement I: cycle check by connectedness
As a first refinement step, the check for introduction of a cycle when adding
an edge e can be replaced by checking whether the edge’s endpoints are
already connected. By this we can shift from an edge-centric perspective to
a vertex-centric perspective.
context Kruskal-interface
begin

abbreviation empty-forest ≡ {}

abbreviation a-endpoints e ≡ SPEC (λ(a,b). joins a b e)

definition kruskal0
where kruskal0 ≡ do {

l ← obtain-sorted-carrier ;
spanning-forest ← nfoldli l (λ-. True)

(λe T . do {
ASSERT (e ∈ E);
(a,b) ← a-endpoints e;
ASSERT (joins a b e ∧ forest T ∧ e∈E ∧ T ⊆ E);
if ¬ (a,b) ∈ connected T then

do {
ASSERT (e/∈T);
RETURN (insert e T)
}

else
RETURN T

}) empty-forest;
RETURN spanning-forest
}

lemma if-subst: (if indep (insert e T) then
RETURN (insert e T)

else
RETURN T)

= (if e/∈ T ∧ indep (insert e T) then
RETURN (insert e T)

else
RETURN T)

by auto

15

lemma kruskal0-refine: (kruskal0 , minWeightBasis) ∈ 〈Id〉nres-rel
unfolding kruskal0-def minWeightBasis-def
apply(subst if-subst)
apply refine-vcg

apply refine-dref-type
apply (all ‹(auto; fail)?›)

apply clarsimp
apply (auto simp: augment-forest)

using augment-forest joins-connected by blast+

3.2 Refinement II: connectedness by PER operation
Connectedness in the subgraph spanned by a set of edges is a partial equiva-
lence relation and can be represented in a disjoint sets. This data structure
is maintained while executing Kruskal’s algorithm and can be used to effi-
ciently check for connectedness (per-compare.
definition corresponding-union-find :: ′a per ⇒ ′edge set ⇒ bool where

corresponding-union-find uf T ≡ (∀ a∈V . ∀ b∈V . per-compare uf a b ←→ ((a,b)∈
connected T))

definition uf-graph-invar uf-T
≡ case uf-T of (uf , T) ⇒ corresponding-union-find uf T ∧ Domain uf = V

lemma uf-graph-invarD: uf-graph-invar (uf , T) =⇒ corresponding-union-find uf
T

unfolding uf-graph-invar-def by simp

definition uf-graph-rel ≡ br snd uf-graph-invar

lemma uf-graph-relsndD: ((a,b),c) ∈ uf-graph-rel =⇒ b=c
by(auto simp: uf-graph-rel-def in-br-conv)

lemma uf-graph-relD: ((a,b),c) ∈ uf-graph-rel =⇒ b=c ∧ uf-graph-invar (a,b)
by(auto simp: uf-graph-rel-def in-br-conv)

definition kruskal1
where kruskal1 ≡ do {

l ← obtain-sorted-carrier ;
let initial-union-find = per-init V ;
(per , spanning-forest) ← nfoldli l (λ-. True)

(λe (uf , T). do {
ASSERT (e ∈ E);
(a,b) ← a-endpoints e;
ASSERT (a∈V ∧ b∈V ∧ a ∈ Domain uf ∧ b ∈ Domain uf ∧ T⊆E);
if ¬ per-compare uf a b then

do {
let uf = per-union uf a b;
ASSERT (e/∈T);
RETURN (uf , insert e T)

16

}
else

RETURN (uf ,T)
}) (initial-union-find, empty-forest);
RETURN spanning-forest
}

lemma corresponding-union-find-empty:
shows corresponding-union-find (per-init V) empty-forest
by(auto simp: corresponding-union-find-def connected-same per-init-def)

lemma empty-forest-refine: ((per-init V , empty-forest), empty-forest)∈uf-graph-rel
using corresponding-union-find-empty
unfolding uf-graph-rel-def uf-graph-invar-def
by (auto simp: in-br-conv per-init-def)

lemma uf-graph-invar-preserve:
assumes uf-graph-invar (uf , T) a∈V b∈V

joins a b e e∈E T⊆E
shows uf-graph-invar (per-union uf a b, insert e T)
using assms
by(auto simp add: uf-graph-invar-def corresponding-union-find-def

insert-reachable per-union-def)

theorem kruskal1-refine: (kruskal1 , kruskal0)∈〈Id〉nres-rel
unfolding kruskal1-def kruskal0-def Let-def
apply (refine-rcg empty-forest-refine)

apply refine-dref-type
apply (auto dest: uf-graph-relD E-inV uf-graph-invarD

simp: corresponding-union-find-def uf-graph-rel-def
simp: in-br-conv uf-graph-invar-preserve)

by (auto simp: uf-graph-invar-def dest: joins-in-V)

end

end

4 Kruskal Implementation
theory Kruskal-Impl
imports Kruskal-Refine Refine-Imperative-HOL.IICF
begin

4.1 Refinement III: concrete edges
Given a concrete representation of edges and their endpoints as a pair, we
refine Kruskal’s algorithm to work on these concrete edges.

17

locale Kruskal-concrete = Kruskal-interface E V vertices joins forest connected
weight

for E V vertices joins forest connected and weight :: ′edge ⇒ int +
fixes
α :: ′cedge ⇒ ′edge
and endpoints :: ′cedge ⇒ (′a∗ ′a) nres

assumes
endpoints-refine: α xi = x =⇒ endpoints xi ≤ ⇓ Id (a-endpoints x)

begin

definition wsorted ′ where wsorted ′ == sorted-wrt (λx y. weight (α x) ≤ weight
(α y))

lemma wsorted-mapα[simp]: wsorted ′ s =⇒ wsorted (map α s)
by(auto simp: wsorted ′-def sorted-wrt-map)

definition obtain-sorted-carrier ′ == SPEC (λL. wsorted ′ L ∧ α ‘ set L = E)

abbreviation concrete-edge-rel :: (′cedge × ′edge) set where
concrete-edge-rel ≡ br α (λ-. True)

lemma obtain-sorted-carrier ′-refine:
(obtain-sorted-carrier ′, obtain-sorted-carrier) ∈ 〈〈concrete-edge-rel〉list-rel〉nres-rel
unfolding obtain-sorted-carrier ′-def obtain-sorted-carrier-def
apply refine-vcg
apply (auto intro!: RES-refine simp:)
subgoal for s apply(rule exI [where x=map α s])

by(auto simp: map-in-list-rel-conv in-br-conv)
done

definition kruskal2
where kruskal2 ≡ do {

l ← obtain-sorted-carrier ′;
let initial-union-find = per-init V ;
(per , spanning-forest) ← nfoldli l (λ-. True)

(λce (uf , T). do {
ASSERT (α ce ∈ E);
(a,b) ← endpoints ce;
ASSERT (a∈V ∧ b∈V ∧ a ∈ Domain uf ∧ b ∈ Domain uf);
if ¬ per-compare uf a b then

do {
let uf = per-union uf a b;
ASSERT (ce /∈ set T);
RETURN (uf , T@[ce])
}

else
RETURN (uf ,T)

}) (initial-union-find, []);
RETURN spanning-forest

18

}

lemma lst-graph-rel-empty[simp]: ([], {}) ∈ 〈concrete-edge-rel〉list-set-rel
unfolding list-set-rel-def apply(rule relcompI [where b=[]])
by (auto simp add: in-br-conv)

lemma loop-initial-rel:
((per-init V , []), per-init V , {}) ∈ Id ×r 〈concrete-edge-rel〉list-set-rel
by simp

lemma concrete-edge-rel-list-set-rel:
(a, b) ∈ 〈concrete-edge-rel〉list-set-rel =⇒ α ‘ (set a) = b
by (auto simp: in-br-conv list-set-rel-def dest: list-relD2)

theorem kruskal2-refine: (kruskal2 , kruskal1)∈〈〈concrete-edge-rel〉list-set-rel〉nres-rel
unfolding kruskal1-def kruskal2-def Let-def
apply (refine-rcg obtain-sorted-carrier ′-refine[THEN nres-relD]

endpoints-refine loop-initial-rel)
by (auto intro!: list-set-rel-append

dest: concrete-edge-rel-list-set-rel
simp: in-br-conv)

end

4.2 Refinement to Imperative/HOL with Sepref-Tool
Given implementations for the operations of getting a list of concrete edges
and getting the endpoints of a concrete edge we synthesize Kruskal in Im-
perative/HOL.
locale Kruskal-Impl = Kruskal-concrete E V vertices joins forest connected weight
α endpoints

for E V vertices joins forest connected and weight :: ′edge ⇒ int
and α and endpoints :: nat × int × nat ⇒ (nat × nat) nres
+

fixes getEdges :: (nat × int × nat) list nres
and getEdges-impl :: (nat × int × nat) list Heap
and superE :: (nat × int × nat) set
and endpoints-impl :: (nat × int × nat) ⇒ (nat × nat) Heap

assumes
getEdges-refine: getEdges ≤ SPEC (λL. α ‘ set L = E

∧ (∀ (a,wv,b)∈set L. weight (α (a,wv,b)) = wv) ∧ set L ⊆
superE)

and
getEdges-impl: (uncurry0 getEdges-impl, uncurry0 getEdges)

∈ unit-assnk →a list-assn (nat-assn ×a int-assn ×a nat-assn)
and
max-node-is-Max-V : E = α ‘ set la =⇒ max-node la = Max (insert 0 V)
and
endpoints-impl: (endpoints-impl, endpoints)

19

∈ (nat-assn ×a int-assn ×a nat-assn)k →a (nat-assn ×a nat-assn)
begin

lemma this-loc: Kruskal-Impl E V vertices joins forest connected weight
α endpoints getEdges getEdges-impl superE endpoints-impl by un-

fold-locales

4.2.1 Refinement IV: given an edge set

We now assume to have an implementation of the operation to obtain a list
of the edges of a graph. By sorting this list we refine obtain-sorted-carrier ′.

definition obtain-sorted-carrier ′′ = do {
l ← SPEC (λL. α ‘ set L = E

∧ (∀ (a,wv,b)∈set L. weight (α (a,wv,b)) = wv) ∧ set L ⊆
superE);

SPEC (λL. sorted-wrt edges-less-eq L ∧ set L = set l)
}

lemma wsorted ′-sorted-wrt-edges-less-eq:
assumes ∀ (a,wv,b)∈set s. weight (α (a,wv,b)) = wv

sorted-wrt edges-less-eq s
shows wsorted ′ s
using assms apply −
unfolding wsorted ′-def unfolding edges-less-eq-def
apply(rule sorted-wrt-mono-rel)
by (auto simp: case-prod-beta)

lemma obtain-sorted-carrier ′′-refine:
(obtain-sorted-carrier ′′, obtain-sorted-carrier ′) ∈ 〈Id〉nres-rel
unfolding obtain-sorted-carrier ′′-def obtain-sorted-carrier ′-def
apply refine-vcg
apply(auto simp: in-br-conv wsorted ′-sorted-wrt-edges-less-eq

distinct-map map-in-list-rel-conv)
done

definition obtain-sorted-carrier ′′′ =
do {

l ← getEdges;
RETURN (quicksort-by-rel edges-less-eq [] l, max-node l)

}

definition add-size-rel = br fst (λ(l,n). n= Max (insert 0 V))

lemma obtain-sorted-carrier ′′′-refine:
(obtain-sorted-carrier ′′′, obtain-sorted-carrier ′′) ∈ 〈add-size-rel〉nres-rel
unfolding obtain-sorted-carrier ′′′-def obtain-sorted-carrier ′′-def
apply (refine-rcg getEdges-refine)

by (auto intro!: RETURN-SPEC-refine simp: quicksort-by-rel-distinct sort-edges-correct
add-size-rel-def in-br-conv max-node-is-Max-V

20

dest!: distinct-mapI)

lemmas osc-refine = obtain-sorted-carrier ′′′-refine[FCOMP obtain-sorted-carrier ′′-refine,
to-foparam, simplified]

definition kruskal3 :: (nat × int × nat) list nres
where kruskal3 ≡ do {
(sl,mn) ← obtain-sorted-carrier ′′′;
let initial-union-find = per-init ′ (mn + 1);
(per , spanning-forest) ← nfoldli sl (λ-. True)

(λce (uf , T). do {
ASSERT (α ce ∈ E);
(a,b) ← endpoints ce;
ASSERT (a ∈ Domain uf ∧ b ∈ Domain uf);
if ¬ per-compare uf a b then

do {
let uf = per-union uf a b;
ASSERT (ce/∈set T);
RETURN (uf , T@[ce])
}

else
RETURN (uf ,T)

}) (initial-union-find, []);
RETURN spanning-forest
}

lemma endpoints-spec: endpoints ce ≤ SPEC (λ-. True)
by(rule order .trans[OF endpoints-refine], auto)

lemma kruskal3-subset:
shows kruskal3 ≤n SPEC (λT . distinct T ∧ set T ⊆ superE)
unfolding kruskal3-def obtain-sorted-carrier ′′′-def
apply (refine-vcg getEdges-refine[THEN leof-lift] endpoints-spec[THEN leof-lift]

nfoldli-leof-rule[where I=λ- - (-, T). distinct T ∧ set T ⊆ superE])
apply auto

subgoal
by (metis append-self-conv in-set-conv-decomp set-quicksort-by-rel subset-iff)

done

definition per-supset-rel :: (′a per × ′a per) set where
per-supset-rel
≡ {(p1 ,p2). p1 ∩ Domain p2 × Domain p2 = p2 ∧ p1 − (Domain p2 ×

Domain p2) ⊆ Id}

lemma per-supset-rel-dom: (p1 , p2) ∈ per-supset-rel =⇒ Domain p1 ⊇ Domain
p2

by (auto simp: per-supset-rel-def)

21

lemma per-supset-compare:
(p1 , p2) ∈ per-supset-rel =⇒ x1∈Domain p2 =⇒ x2∈Domain p2

=⇒ per-compare p1 x1 x2 ←→ per-compare p2 x1 x2
by (auto simp: per-supset-rel-def)

lemma per-supset-union: (p1 , p2) ∈ per-supset-rel =⇒ x1∈Domain p2 =⇒
x2∈Domain p2 =⇒

(per-union p1 x1 x2 , per-union p2 x1 x2) ∈ per-supset-rel
apply (clarsimp simp: per-supset-rel-def per-union-def Domain-unfold)
apply (intro subsetI conjI)
apply blast

apply force
done

lemma per-initN-refine: (per-init ′ (Max (insert 0 V) + 1), per-init V) ∈ per-supset-rel
unfolding per-supset-rel-def per-init ′-def per-init-def max-node-def
by (auto simp: less-Suc-eq-le)

theorem kruskal3-refine: (kruskal3 , kruskal2)∈〈Id〉nres-rel
unfolding kruskal2-def kruskal3-def Let-def
apply (refine-rcg osc-refine[THEN nres-relD])

supply RELATESI [where R=per-supset-rel::(nat per × -) set,
refine-dref-RELATES]

apply refine-dref-type
subgoal by (simp add: add-size-rel-def in-br-conv)
subgoal using per-initN-refine by (simp add: add-size-rel-def in-br-conv)

by (auto simp add: add-size-rel-def in-br-conv per-supset-compare per-supset-union
dest: per-supset-rel-dom
simp del: per-compare-def)

4.2.2 Synthesis of Kruskal by SepRef
lemma [sepref-import-param]: (sort-edges,sort-edges)∈〈Id×rId×rId〉list-rel →〈Id×rId×rId〉list-rel

by simp
lemma [sepref-import-param]: (max-node, max-node) ∈ 〈Id×rId×rId〉list-rel →

nat-rel by simp

sepref-register getEdges :: (nat × int × nat) list nres
sepref-register endpoints :: (nat × int × nat) ⇒ (nat∗nat) nres

declare getEdges-impl [sepref-fr-rules]
declare endpoints-impl [sepref-fr-rules]

schematic-goal kruskal-impl:
(uncurry0 ?c, uncurry0 kruskal3) ∈ (unit-assn)k →a list-assn (nat-assn ×a

int-assn ×a nat-assn)
unfolding kruskal3-def obtain-sorted-carrier ′′′-def

22

unfolding sort-edges-def [symmetric]
apply (rewrite at nfoldli - - - (-,rewrite-HOLE) HOL-list.fold-custom-empty)
by sepref

concrete-definition (in −) kruskal uses Kruskal-Impl.kruskal-impl
prepare-code-thms (in −) kruskal-def
lemmas kruskal-refine = kruskal.refine[OF this-loc]

abbreviation MSF == minBasis
abbreviation SpanningForest == basis
lemmas SpanningForest-def = basis-def
lemmas MSF-def = minBasis-def

lemmas kruskal3-ref-spec- = kruskal3-refine[FCOMP kruskal2-refine, FCOMP
kruskal1-refine,

FCOMP kruskal0-refine,
FCOMP minWeightBasis-refine]

lemma kruskal3-ref-spec ′:
(uncurry0 kruskal3 , uncurry0 (SPEC (λr . MSF (α ‘ set r)))) ∈ unit-rel →f

〈Id〉nres-rel
unfolding fref-def
apply auto
apply(rule nres-relI)

apply(rule order .trans[OF kruskal3-ref-spec-[unfolded fref-def , simplified, THEN
nres-relD]])

by (auto simp: conc-fun-def list-set-rel-def in-br-conv dest!: list-relD2)

lemma kruskal3-ref-spec:
(uncurry0 kruskal3 ,

uncurry0 (SPEC (λr . distinct r ∧ set r ⊆ superE ∧ MSF (α ‘ set r))))
∈ unit-rel →f 〈Id〉nres-rel

unfolding fref-def
apply auto
apply(rule nres-relI)
apply simp
using SPEC-rule-conj-leofI2 [OF kruskal3-subset kruskal3-ref-spec ′

[unfolded fref-def , simplified, THEN nres-relD, simplified]]
by simp

lemma [fcomp-norm-simps]: list-assn (nat-assn ×a int-assn ×a nat-assn) =
id-assn

by (auto simp: list-assn-pure-conv)

lemmas kruskal-ref-spec = kruskal-refine[FCOMP kruskal3-ref-spec]

The final correctness lemma for Kruskal’s algorithm.

23

lemma kruskal-correct-forest:
shows <emp> kruskal getEdges-impl endpoints-impl ()

<λr . ↑(distinct r ∧ set r ⊆ superE ∧ MSF (set (map α r)))>t

proof −
show ?thesis

using kruskal-ref-spec[to-hnr]
unfolding hn-refine-def
apply clarsimp
apply (erule cons-post-rule)

by (sep-auto simp: hn-ctxt-def pure-def list-set-rel-def in-br-conv dest: list-relD)

qed

end — locale Kruskal-Impl

end

5 UGraph - undirected graph with Uprod edges
theory UGraph

imports
Automatic-Refinement.Misc
Collections.Partial-Equivalence-Relation
HOL−Library.Uprod

begin

5.1 Edge path
fun epath :: ′a uprod set ⇒ ′a ⇒ (′a uprod) list ⇒ ′a ⇒ bool where

epath E u [] v = (u = v)
| epath E u (x#xs) v ←→ (∃w. u 6=w ∧ Upair u w = x ∧ epath E w xs v) ∧ x∈E

lemma [simp,intro!]: epath E u [] u by simp

lemma epath-subset-E : epath E u p v =⇒ set p ⊆ E
apply(induct p arbitrary: u) by auto

lemma path-append-conv[simp]: epath E u (p@q) v ←→ (∃w. epath E u p w ∧
epath E w q v)

apply(induct p arbitrary: u) by auto

lemma epath-rev[simp]: epath E y (rev p) x = epath E x p y
apply(induct p arbitrary: x) by auto

lemma epath E x p y =⇒ ∃ p. epath E y p x
apply(rule exI [where x=rev p]) by simp

lemma epath-mono: E ⊆ E ′ =⇒ epath E u p v =⇒ epath E ′ u p v
apply(induct p arbitrary: u) by auto

24

lemma epath-restrict: set p ⊆ I =⇒ epath E u p v =⇒ epath (E∩I) u p v
apply(induct p arbitrary: u)
by auto

lemma assumes A⊆A ′ ∼ epath A u p v epath A ′ u p v
shows epath-diff-edge: (∃ e. e∈set p − A)

proof (rule ccontr)
assume ¬(∃ e. e ∈ set p − A)
then have i: set p ⊆ A

by auto
have ii: A = A ′ ∩ A using assms(1) by auto
have epath A u p v

apply(subst ii)
apply(rule epath-restrict) by fact+

with assms(2) show False by auto
qed

lemma epath-restrict ′: epath (insert e E) u p v =⇒ e/∈set p =⇒ epath E u p v
proof −

assume a: epath (insert e E) u p v and e/∈set p
then have b: set p ⊆ E by(auto dest: epath-subset-E)
have e: insert e E ∩ E = E by auto
show ?thesis apply(rule epath-restrict[where I=E and E=insert e E , simplified

e])
using a b by auto

qed

lemma epath-not-direct:
assumes ep: epath E u p v and unv: u 6= v

and edge-notin: Upair u v /∈ E
shows length p ≥ 2

proof (rule ccontr)
from ep have setp: set p ⊆ E using epath-subset-E by fast
assume ¬length p ≥ 2
then have length p <2 by auto
moreover
{

assume length p = 0
then have p=[] by auto
with ep unv have False by auto

} moreover {
assume length p = 1
then obtain e where p: p = [e]

using list-decomp-1 by blast
with ep have i: e=Upair u v by auto
from p i setp and edge-notin have False by auto

}

25

ultimately show False by linarith
qed

lemma epath-decompose:
assumes e: epath G v p v ′

and elem :Upair a b ∈ set p
shows ∃ u u ′ p ′ p ′′ . u ∈ {a, b} ∧ u ′ ∈ {a, b} ∧ epath G v p ′ u ∧ epath G u ′

p ′′ v ′ ∧
length p ′ < length p ∧ length p ′′ < length p

proof −
from elem obtain p ′ p ′′ where p: p = p ′@ (Upair a b) # p ′′ using in-set-conv-decomp

by metis
from p have epath G v (p ′ @ (Upair a b) # p ′′) v ′ using e by auto
then obtain z z ′ where pr : epath G v p ′ z epath G z ′ p ′′ v ′ and u: Upair z

z ′=Upair a b by auto
from u have u ′: z ∈ {a, b} ∧ z ′ ∈ {a, b} by auto
have len: length p ′ < length p length p ′′ < length p using p by auto
from len pr u ′ show ?thesis by auto

qed

lemma epath-decompose ′:
assumes e: epath G v p v ′

and elem :Upair a b ∈ set p
shows ∃ u u ′ p ′ p ′′ . Upair a b = Upair u u ′ ∧ epath G v p ′ u ∧ epath G u ′ p ′′

v ′ ∧
length p ′ < length p ∧ length p ′′ < length p

proof −
from elem obtain p ′ p ′′ where p: p = p ′@ (Upair a b) # p ′′ using in-set-conv-decomp

by metis
from p have epath G v (p ′ @ (Upair a b) # p ′′) v ′ using e by auto
then obtain z z ′ where pr : epath G v p ′ z epath G z ′ p ′′ v ′ and u: Upair z

z ′=Upair a b by auto
have len: length p ′ < length p length p ′′ < length p using p by auto
from len pr u show ?thesis by auto

qed

lemma epath-split-distinct:
assumes epath G v p v ′

assumes Upair a b ∈ set p
shows (∃ p ′ p ′′ u u ′.

epath G v p ′ u ∧ epath G u ′ p ′′ v ′ ∧
length p ′ < length p ∧ length p ′′ < length p ∧
(u ∈ {a, b} ∧ u ′ ∈ {a, b}) ∧
Upair a b /∈ set p ′ ∧ Upair a b /∈ set p ′′)

using assms
proof (induction n == length p arbitrary: p v v ′ rule: nat-less-induct)

26

case 1
obtain u u ′ p ′ p ′′ where u: u ∈ {a, b} ∧ u ′ ∈ {a, b}

and p ′: epath G v p ′ u and p ′′: epath G u ′ p ′′ v ′

and len-p ′: length p ′ < length p and len-p ′′: length p ′′ < length p
using epath-decompose[OF 1 (2 ,3)] by blast

from 1 len-p ′ p ′ have Upair a b ∈ set p ′ −→ (∃ p ′2 u2 .
epath G v p ′2 u2 ∧
length p ′2 < length p ′ ∧
u2 ∈ {a, b} ∧
Upair a b /∈ set p ′2)

by metis
with len-p ′ p ′ u have p ′: ∃ p ′ u. epath G v p ′ u ∧ length p ′ < length p ∧

u ∈ {a,b} ∧ Upair a b /∈ set p ′ ∧ Upair a b /∈ set p ′

by fastforce
from 1 len-p ′′ p ′′ have Upair a b ∈ set p ′′ −→ (∃ p ′′2 u ′2 .

epath G u ′2 p ′′2 v ′ ∧
length p ′′2 < length p ′′ ∧
u ′2 ∈ {a, b} ∧
Upair a b /∈ set p ′′2 ∧ Upair a b /∈ set p ′′2)

by metis
with len-p ′′ p ′′ u have ∃ p ′′ u ′. epath G u ′ p ′′ v ′∧ length p ′′ < length p ∧

u ′ ∈ {a,b} ∧ Upair a b /∈ set p ′′ ∧ Upair a b /∈ set p ′′

by fastforce
with p ′ show ?case by auto

qed

5.2 Distinct edge path
definition depath E u dp v ≡ epath E u dp v ∧ distinct dp

lemma epath-to-depath: set p ⊆ I =⇒ epath E u p v =⇒ ∃ dp. depath E u dp v ∧
set dp ⊆ I
proof (induction p rule: length-induct)

case (1 p)
hence IH :

∧
p ′. [[length p ′ < length p; set p ′ ⊆ I ; epath E u p ′ v]]

=⇒ ∃ p ′. depath E u p ′ v ∧ set p ′ ⊆ I
and PATH : epath E u p v
and set: set p ⊆ I
by auto

show ∃ p. depath E u p v ∧ set p ⊆ I
proof cases

assume distinct p
thus ?thesis using PATH set by (auto simp: depath-def)

next
assume ¬(distinct p)
then obtain pv1 pv2 pv3 w where p: p = pv1@w#pv2@w#pv3

by (auto dest: not-distinct-decomp)
with PATH obtain a where 1 : epath E u pv1 a and 2 :epath E a (w#pv2@w#pv3)

27

v by auto
then obtain b where ab: w=Upair a b a 6=b by auto
with 2 have epath E b (pv2@w#pv3) v by auto
then obtain c where 3 : epath E b pv2 c and 4 : epath E c (w#pv3) v by auto
then have cw: c∈set-uprod w by auto
{ assume c=a

then have length (pv1@w#pv3) < length p set (pv1@w#pv3) ⊆ I epath E
u (pv1@w#pv3) v

using 1 4 p set by auto
hence ∃ p ′. depath E u p ′ v ∧ set p ′ ⊆ I by (rule IH)

}
moreover
{ assume c 6=a

with ab cw have c=b by auto
with 4 ab have epath E a pv3 v by auto

then have length (pv1@pv3) < length p set (pv1@pv3) ⊆ I epath E u
(pv1@pv3) v using p 1 set by auto

hence ∃ p ′. depath E u p ′ v ∧ set p ′ ⊆ I by (rule IH)
}
ultimately show ?case by auto

qed
qed

lemma epath-to-depath ′: epath E u p v =⇒ ∃ dp. depath E u dp v
using epath-to-depath[where I=set p] by blast

definition decycle E u p == epath E u p u ∧ length p > 2 ∧ distinct p

5.3 Connectivity in undirected Graphs
definition uconnected E ≡ {(u,v). ∃ p. epath E u p v}

lemma uconnectedempty: uconnected {} = {(a,a)|a. True}
unfolding uconnected-def
using epath.elims(2) by fastforce

lemma uconnected-refl: refl (uconnected E)
by(auto simp: refl-on-def uconnected-def)

lemma uconnected-sym: sym (uconnected E)
apply(clarsimp simp: sym-def uconnected-def)
subgoal for x y p apply (rule exI [where x=rev p]) by (auto) done

lemma uconnected-trans: trans (uconnected E)
apply(clarsimp simp: trans-def uconnected-def)
subgoal for x y p z q by (rule exI [where x=p@q], auto) done

lemma uconnected-symI : (u,v) ∈ uconnected E =⇒ (v,u) ∈ uconnected E
using uconnected-sym sym-def by fast

28

lemma equiv UNIV (uconnected E)
apply (rule equivI)
subgoal by (auto simp: refl-on-def uconnected-def)
subgoal apply(clarsimp simp: sym-def uconnected-def) subgoal for x y p apply

(rule exI [where x=rev p]) by auto done
by (fact uconnected-trans)

lemma uconnected-refcl: (uconnected E)∗ = (uconnected E)=

apply(rule trans-rtrancl-eq-reflcl)
by (fact uconnected-trans)

lemma uconnected-transcl: (uconnected E)∗ = uconnected E
apply (simp only: uconnected-refcl)
by (auto simp: uconnected-def)

lemma uconnected-mono: A⊆A ′ =⇒ uconnected A ⊆ uconnected A ′

unfolding uconnected-def apply(auto)
using epath-mono by metis

lemma findaugmenting-edge: assumes epath E1 u p v
and ¬(∃ p. epath E2 u p v)

shows ∃ a b. (a,b) /∈ uconnected E2 ∧ Upair a b /∈ E2 ∧ Upair a b ∈ E1
using assms

proof (induct p arbitrary: u)
case Nil
then show ?case by auto

next
case (Cons a p)
then obtain w where axy: a=Upair u w u 6=w and e ′: epath E1 w p v

and uwE1 : Upair u w ∈ E1 by auto
show ?case
proof (cases a∈E2)

case True
have e2 ′: ¬(∃ p. epath E2 w p v)
proof (rule ccontr , clarsimp)

fix p2
assume epath E2 w p2 v
with True axy have epath E2 u (a#p2) v by auto
with Cons(3) show False by blast

qed
from Cons(1)[OF e ′ e2 ′] show ?thesis .

next
case False
{

assume e2 ′: ¬(∃ p. epath E2 w p v)
from Cons(1)[OF e ′ e2 ′] have ?thesis .

29

} moreover {
assume e2 ′: ∃ p. epath E2 w p v
then obtain p1 where p1 : epath E2 w p1 v by auto

from False axy have Upair u w /∈E2 by auto
moreover
have (u,w) /∈ uconnected E2
proof(rule ccontr , auto simp add: uconnected-def)

fix p2
assume epath E2 u p2 w
with p1 have epath E2 u (p2@p1) v by auto
then show False using Cons(3) by blast

qed
moreover
note uwE1
ultimately have ?thesis by auto

}
ultimately show ?thesis by auto

qed
qed

5.4 Forest
definition forest E ≡ ∼(∃ u p. decycle E u p)

lemma forest-mono: Y ⊆ X =⇒ forest X =⇒ forest Y
unfolding forest-def decycle-def apply (auto) using epath-mono by metis

lemma forrest2-E : assumes (u,v) ∈ uconnected E
and Upair u v /∈ E
and u 6= v

shows ∼ forest (insert (Upair u v) E)
proof −

from assms[unfolded uconnected-def] obtain p ′ where epath E u p ′ v by blast
then obtain p where ep: epath E u p v and dep: distinct p using epath-to-depath ′

unfolding depath-def by fast
from ep have setp: set p ⊆ E using epath-subset-E by fast

have lengthp: length p ≥ 2 apply(rule epath-not-direct) by fact+

from epath-mono[OF - ep] have ep ′: epath (insert (Upair u v) E) u p v by auto

have epath (insert (Upair u v) E) v ((Upair u v)#p) v length ((Upair u v)#p)
> 2 distinct ((Upair u v)#p)

using ep ′ assms(3) lengthp dep setp assms(2) by auto
then have decycle (insert (Upair u v) E) v ((Upair u v)#p) unfolding decy-

cle-def by auto
then show ?thesis unfolding forest-def by auto

qed

30

lemma insert-stays-forest-means-not-connected: assumes forest (insert (Upair u
v) E)

and (Upair u v) /∈ E
and u 6= v

shows ∼ (u,v) ∈ uconnected E
using forrest2-E assms by metis

lemma epath-singleton: epath F a [e] b =⇒ e = Upair a b
by auto

lemma forest-alt1 :
assumes Upair a b ∈ F forest F

∧
e. e∈F =⇒ proper-uprod e

shows (a,b) /∈ uconnected (F − {Upair a b})
proof (rule ccontr)

from assms(1 ,3) have anb: a 6=b by force
assume ¬ (a, b) /∈ uconnected (F − {Upair a b})
then obtain p where epath (F − {Upair a b}) a p b unfolding uconnected-def

by blast
then obtain p ′ where dp: depath (F − {Upair a b}) a p ′ b using epath-to-depath ′

by force
then have ab: Upair a b /∈ set p ′ by(auto simp: depath-def dest: epath-subset-E)
from anb dp have n0 : length p ′ 6= 0 by (auto simp: depath-def)
from ab dp have n1 : length p ′ 6= 1 by (auto simp: depath-def simp del: One-nat-def

dest!: list-decomp-1)
from n0 n1 have l: length p ′ ≥ 2 by linarith
from dp have epath F a p ′ b by (auto intro: epath-mono simp: depath-def)
then have e: epath F b (Upair a b#p ′) b using assms(1) anb by auto
from dp ab have d: distinct (Upair a b#p ′) by (auto simp: depath-def)
from d e l have decycle F b (Upair a b#p ′) by (auto simp: decycle-def)
with assms(2) show False by (simp add: forest-def)

qed

lemma forest-alt2 :
assumes

∧
e. e∈F =⇒ proper-uprod e

and
∧

a b. Upair a b ∈ F =⇒ (a,b) /∈ uconnected (F − {Upair a b})
shows forest F

proof (rule ccontr)
assume ¬ forest F
then obtain a p where e: epath F a p a length p > 2 distinct p

unfolding decycle-def forest-def by auto
then obtain b p ′ where p ′: p = Upair a b # p ′

by (metis Suc-1 epath.simps(2) less-imp-not-less list.size(3) neq-NilE zero-less-Suc)
then have u: Upair a b∈F using e(1) by auto
then have F : (insert (Upair a b) F) = F by auto
have epath (F − {Upair a b}) b p ′ a

apply(rule epath-restrict ′[where e=Upair a b]) using e p ′ by (auto simp: F)
then have epath (F − {Upair a b}) a (rev p ′) b by auto

31

with assms(2)[OF u]
show False unfolding uconnected-def by blast

qed

lemma forest-alt:
assumes

∧
e. e∈F =⇒ proper-uprod e

shows forest F ←→ (∀ a b. Upair a b ∈ F −→ (a,b) /∈ uconnected (F − {Upair
a b}))

using assms forest-alt1 forest-alt2
by metis

lemma augment-forest-overedges:
assumes F⊆E forest F (Upair u v) ∈ E (u,v) /∈ uconnected F

and notsame: u 6=v
shows forest (insert (Upair u v) F)
unfolding forest-def

proof (rule ccontr , clarsimp simp: decycle-def)
fix w p
assume d: distinct p and v: epath (insert (Upair u v) F) w p w and p: 2 <

length p

have setep: set p ⊆ insert (Upair u v) F using epath-subset-E v
by metis

have uvF : (Upair u v)/∈F
proof(rule ccontr , clarsimp)

assume (Upair u v) ∈ F
then have epath F u [(Upair u v)] v using notsame by auto
then have (u,v) ∈ uconnected F unfolding uconnected-def by blast
then show False using assms(4) by auto

qed
have k: insert (Upair u v) F ∩ F = F by auto

show False
proof (cases)

assume (Upair u v) ∈ set p
then obtain as bs where ep: p = as @ (Upair u v) # bs using in-set-conv-decomp

by metis
then have epath (insert (Upair u v) F) w (as @ (Upair u v) # bs) w using v

by auto
then obtain z where pr : epath (insert (Upair u v) F) w as z epath (insert

(Upair u v) F) z ((Upair u v) # bs) w by auto
from d ep have uvas: (Upair u v) /∈ set (as@bs) by auto
then have setasbs: set (bs@as) ⊆ F using ep setep by auto
{ assume z=u

with pr have epath (insert (Upair u v) F) w as u epath (insert(Upair u v)

32

F) v bs w by auto
then have epath (insert (Upair u v) F) v (bs@as) u by auto
from epath-restrict[where I=F , OF setasbs this] have epath F v (bs@as) u

using uvF by auto
then have (v,u) ∈ uconnected F using uconnected-def

by blast
then have (u,v) ∈ uconnected F by (rule uconnected-symI)

} moreover
{ assume z 6=u

then have z=v using pr(2) by auto
with pr have epath (insert (Upair u v) F) w as v epath (insert (Upair u v)

F) u bs w by auto
then have epath (insert (Upair u v) F) u (bs@as) v by auto
from epath-restrict[where I=F , OF setasbs this] have epath F u (bs@as) v

using uvF by auto
then have (u,v) ∈ uconnected F using uconnected-def

by fast
}
ultimately have (u,v) ∈ uconnected F by auto
then show False using assms by auto

next
assume (Upair u v) /∈ set p
with setep have set p ⊆ F by auto
then have epath (insert (Upair u v) F ∩ F) w p w using epath-restrict[OF -

v, where I=F] by auto
then have epath F w p w using k by auto
with ‹forest F› show False unfolding forest-def decycle-def using p d

by auto
qed

qed

5.5 uGraph locale
locale uGraph =

fixes E :: ′a uprod set
and w :: ′a uprod ⇒ ′c::{linorder , ordered-comm-monoid-add}

assumes ecard2 :
∧

e. e∈E =⇒ proper-uprod e
and finiteE [simp]: finite E

begin

abbreviation uconnected-on E ′ V ≡ uconnected E ′ ∩ (V×V)

abbreviation verts ≡
⋃
(set-uprod ‘ E)

lemma set-uprod-nonemptyY [simp]: set-uprod x 6= {} apply(cases x) by auto

abbreviation uconnectedV E ′ ≡ Restr (uconnected E ′) verts

33

lemma equiv-unconnected-on: equiv V (uconnected-on E ′ V)
apply (rule equivI)
subgoal by (auto simp: refl-on-def uconnected-def)
subgoal apply(clarsimp simp: sym-def uconnected-def) subgoal for x y p apply

(rule exI [where x=rev p]) by (auto) done
subgoal apply(clarsimp simp: trans-def uconnected-def) subgoal for x y z p q

apply (rule exI [where x=p@q]) by auto done
done

lemma uconnectedV-refl: E ′⊆E =⇒ refl-on verts (uconnectedV E ′)
by(auto simp: refl-on-def uconnected-def)

lemma uconnectedV-trans: trans (uconnectedV E ′)
apply(clarsimp simp: trans-def uconnected-def) subgoal for x y z p a b c q

apply (rule exI [where x=p@q]) by auto done
lemma uconnectedV-sym: sym (uconnectedV E ′)

apply(clarsimp simp: sym-def uconnected-def) subgoal for x y p apply (rule
exI [where x=rev p]) by (auto) done

lemma equiv-vert-uconnected: equiv verts (uconnectedV E ′)
using equiv-unconnected-on by auto

lemma uconnectedV-tracl: (uconnectedV F)∗ = (uconnectedV F)=

apply(rule trans-rtrancl-eq-reflcl)
by (fact uconnectedV-trans)

lemma uconnectedV-cl: (uconnectedV F)+ = (uconnectedV F)
apply(rule trancl-id)
by (fact uconnectedV-trans)

lemma uconnectedV-Restrcl: Restr ((uconnectedV F)∗) verts = (uconnectedV F)
apply(simp only: uconnectedV-tracl)
apply auto unfolding uconnected-def by auto

lemma restr-ucon: F ⊆ E =⇒ uconnected F = uconnectedV F ∪ Id
unfolding uconnected-def apply auto

proof (goal-cases)
case (1 a b p)
then have p 6=[] by auto
then obtain e es where p=e#es

using list.exhaust by blast
with 1 (2) have a∈ set-uprod e e∈F by auto
then show ?case using 1 (1)

by blast
next

case (2 a b p)

34

then have rev p 6=[] epath F b (rev p) a by auto
then obtain e es where rev p=e#es

using list.exhaust by metis
with 2 (2) have b∈ set-uprod e e∈F by auto
then show ?case using 2 (1)

by blast
qed

lemma relI :
assumes

∧
a b. (a,b) ∈ F =⇒ (a,b) ∈ G

and
∧

a b. (a,b) ∈ G =⇒ (a,b) ∈ F shows F=G
using assms by auto

lemma in-per-union: u ∈ {x, y} =⇒ u ′ ∈ {x, y} =⇒ x∈V =⇒ y∈V =⇒
refl-on V R =⇒ part-equiv R =⇒ (u, u ′) ∈ per-union R x y

by (auto simp: per-union-def dest: refl-onD)

lemma uconnectedV-mono: (a,b)∈uconnectedV F =⇒ F⊆F ′=⇒ (a,b)∈uconnectedV
F ′

unfolding uconnected-def by (auto intro: epath-mono)

lemma per-union-subs: x ∈ S =⇒ y∈S =⇒ R⊆S × S =⇒ per-union R x y ⊆ S
× S

unfolding per-union-def by auto

lemma insert-uconnectedV-per :
assumes x 6=y and inV : x∈verts y∈verts and subE : F⊆E
shows uconnectedV (insert (Upair x y) F) = per-union (uconnectedV F) x y
(is uconnectedV ?F ′ = per-union ?uf x y)

proof −
have PER: part-equiv (uconnectedV F) unfolding part-equiv-def

using uconnectedV-sym uconnectedV-trans by auto
from PER have PER ′: part-equiv (per-union (uconnectedV F) x y)

by (auto simp: union-part-equivp)
have ref : refl-on verts (uconnectedV F) using uconnectedV-refl assms(4) by

auto

show ?thesis
proof (rule relI)

fix a b
assume (a,b) ∈ uconnectedV ?F ′

then obtain p where p: epath ?F ′ a p b and ab: a∈verts b∈verts
unfolding uconnected-def
by blast

show (a,b)∈per-union (uconnectedV F) x y
proof (cases Upair x y∈set p)

case True
obtain p ′ p ′′ u u ′ where

35

epath ?F ′ a p ′ u epath ?F ′ u ′ p ′′ band
u: u∈{x,y} ∧ u ′∈{x,y} and
Upair x y /∈ set p ′ Upair x y /∈ set p ′′

using epath-split-distinct[OF p True] by blast
then have epath F a p ′ u epath F u ′ p ′′ b by(auto intro: epath-restrict ′)
then have a: (a,u)∈(uconnectedV F) and b: (u ′,b)∈(uconnectedV F)

unfolding uconnected-def using u ab assms by auto

from a
have (a,u)∈per-union ?uf x y by (auto simp: per-union-def)
also
have (u,u ′)∈per-union ?uf x y apply (rule in-per-union) using u inV ref

PER by auto
also (part-equiv-trans[OF PER ′])
have (u ′,b)∈per-union ?uf x y using b by (auto simp: per-union-def)
finally (part-equiv-trans[OF PER ′])
show (a,b)∈per-union ?uf x y .

next
case False
with p have epath F a p b by(auto intro: epath-restrict ′)
then have (a,b)∈uconnectedV F using ab by (auto simp: uconnected-def)
then show ?thesis unfolding per-union-def by auto

qed
next

fix a b
assume asm: (a,b)∈per-union ?uf x y
have per-union ?uf x y ⊆ verts × verts apply(rule per-union-subs)

using inV by auto
with asm have ab: a∈verts b∈verts by auto
have Upair x y ∈ ?F ′ by simp
show (a,b) ∈ uconnectedV ?F ′

proof (cases (a, b) ∈ ?uf)
case True
then show ?thesis using uconnectedV-mono by blast

next
case False
with asm part-equiv-sym[OF PER]
have (a,x) ∈ ?uf ∧ (y,b) ∈ ?uf ∨ (a,y) ∈ ?uf ∧ (x,b) ∈ ?uf

by (auto simp: per-union-def)
with assms(1) ‹x∈verts› ‹y∈verts› inV obtain p q p ′ q ′

where epath F a p x ∧ epath F y q b ∨ epath F a p ′ y ∧ epath F x q ′ b
unfolding uconnected-def
by fastforce

then have epath ?F ′ a p x ∧ epath ?F ′ y q b ∨ epath ?F ′ a p ′ y ∧ epath
?F ′ x q ′ b

by (auto intro: epath-mono)
then have 2 : epath ?F ′ a (p @ Upair x y # q) b ∨ epath ?F ′ a (p ′ @ Upair

x y # q ′) b
using assms(1) by auto

36

then show ?thesis unfolding uconnected-def
using ab by blast

qed
qed

qed

lemma epath-filter-selfloop: epath (insert (Upair x x) F) a p b =⇒ ∃ p. epath F a
p b
proof (induction n == length p arbitrary: p rule: nat-less-induct)

case 1
from 1 (1) have indhyp:∧

xa. length xa < length p =⇒ epath (insert (Upair x x) F) a xa b =⇒ (∃ p.
epath F a p b) by auto

from 1 (2) have k: set p ⊆ (insert (Upair x x) F) using epath-subset-E by fast
{ assume a: set p ⊆ F

have F : (insert (Upair x x) F ∩ F) = F by auto
from epath-restrict[OF a 1 (2)] F have epath F a p b by simp
then have (∃ p. epath F a p b) by auto

} moreover
{ assume ¬ set p ⊆ F

with k have Upair x x ∈ set p by auto
then obtain xs ys where p: p = xs @ Upair x x # ys

by (meson split-list-last)
then have epath (insert (Upair x x) F) a xs x epath (insert (Upair x x) F) x

ys b
using 1 .prems by auto

then have epath (insert (Upair x x) F) a (xs@ys) b by auto
from indhyp[OF - this] p have (∃ p. epath F a p b) by simp

}
ultimately show ?thesis by auto

qed

lemma uconnectedV-insert-selfloop: x∈verts =⇒ uconnectedV (insert (Upair x x)
F) = uconnectedV F

apply(rule)
apply auto
subgoal unfolding uconnected-def apply auto using epath-filter-selfloop by

metis
subgoal by (meson subsetCE subset-insertI uconnected-mono)
done

lemma equiv-selfloop-per-union-id: equiv S F =⇒ x∈S =⇒ per-union F x x = F
apply rule
subgoal unfolding per-union-def

using equiv-class-eq-iff by fastforce
subgoal unfolding per-union-def by auto

37

done

lemma insert-uconnectedV-per-eq:
assumes inV : x∈verts and subE : F⊆E
shows uconnectedV (insert (Upair x x) F) = per-union (uconnectedV F) x x
using assms
by(simp add: uconnectedV-insert-selfloop equiv-selfloop-per-union-id[OF equiv-vert-uconnected])

lemma insert-uconnectedV-per ′:
assumes inV : x∈verts y∈verts and subE : F⊆E
shows uconnectedV (insert (Upair x y) F) = per-union (uconnectedV F) x y
apply(cases x=y)
subgoal using assms insert-uconnectedV-per-eq by simp
subgoal using assms insert-uconnectedV-per by simp
done

definition subforest F ≡ forest F ∧ F ⊆ E

definition spanningForest where spanningForest X ←→ subforest X ∧ (∀ x ∈ E
− X . ¬ subforest (insert x X))

definition minSpanningForest F ≡ spanningForest F ∧ (∀F ′. spanningForest F ′

−→ sum w F ≤ sum w F ′)

end

end

6 Kruskal on UGraphs
theory UGraph-Impl
imports
Kruskal-Impl UGraph

begin

definition α = (λ(u,w,v). Upair u v)

6.1 Interpreting Kruskl-Impl with a UGraph
abbreviation (in uGraph)

getEdges-SPEC csuper-E
≡ (SPEC (λL. distinct (map α L) ∧ α ‘ set L = E

∧ (∀ (a, wv, b)∈set L. w (α (a, wv, b)) = wv) ∧ set L ⊆ csuper-E))

locale uGraph-impl = uGraph E w for E :: nat uprod set and w :: nat uprod ⇒
int +

fixes getEdges-impl :: (nat × int × nat) list Heap and csuper-E :: (nat × int ×

38

nat) set
assumes getEdges-impl:
(uncurry0 getEdges-impl, uncurry0 (getEdges-SPEC csuper-E))
∈ unit-assnk →a list-assn (nat-assn ×a int-assn ×a nat-assn)

begin

abbreviation V ≡
⋃

(set-uprod ‘ E)

lemma max-node-is-Max-V : E = α ‘ set la =⇒ max-node la = Max (insert 0
V)

proof −
assume E : E = α ‘ set la
have ∗: fst ‘ set la ∪ (snd ◦ snd) ‘ set la = (

⋃
x∈set la. case x of (x1 , x1a,

x2a) ⇒ {x1 , x2a})
by auto force

show ?thesis
unfolding E using ∗
by (auto simp add: α-def max-node-def prod.case-distrib)

qed

sublocale s: Kruskal-Impl E
⋃
(set-uprod ‘ E) set-uprod λu v e. Upair u v = e

subforest uconnectedV w α PR-CONST (λ(u,w,v). RETURN (u,v))
PR-CONST (getEdges-SPEC csuper-E)

getEdges-impl csuper-E (λ(u,w,v). return (u,v))
unfolding subforest-def

proof (unfold-locales, goal-cases)
show finite E by simp

next
fix E ′

assume forest E ′ ∧ E ′ ⊆ E
then show E ′ ⊆ E by auto

next
show forest {} ∧ {} ⊆ E apply (auto simp: decycle-def forest-def)

using epath.elims(2) by fastforce
next

fix X Y
assume forest X ∧ X ⊆ E Y ⊆ X
then show forest Y ∧ Y ⊆ E using forest-mono by auto

next
case (5 u v)
then show ?case unfolding uconnected-def apply auto

using epath.elims(2) by force
next

39

case (6 E1 E2 u v)
then have (u, v) ∈ (uconnected E1) and uv: u ∈ V v ∈ V

by auto
then obtain p where 1 : epath E1 u p v unfolding uconnected-def by auto
from 6 uv have 2 : ¬(∃ p. epath E2 u p v) unfolding uconnected-def by auto
from 1 2 have ∃ a b. (a, b) /∈ uconnected E2

∧ Upair a b /∈ E2 ∧ Upair a b ∈ E1 by(rule findaugmenting-edge)
then show ?case by auto

next
case (7 F e u v)
note f = ‹forest F ∧ F ⊆ E›
note notin = ‹e ∈ E − F› ‹Upair u v = e›
from notin ecard2 have unv: u 6=v by fastforce
show (forest (insert e F) ∧ insert e F ⊆ E) = ((u, v) /∈ uconnectedV F)
proof

assume a: forest (insert e F) ∧ insert e F ⊆ E
have (u, v) /∈ uconnected F apply(rule insert-stays-forest-means-not-connected)

using notin a unv by auto
then show ((u, v) /∈ Restr (uconnected F) V) by auto

next
assume a: (u, v) /∈ Restr (uconnected F) V
have forest (insert (Upair u v) F) apply(rule augment-forest-overedges[where

E=E])
using notin f a unv by auto

moreover have insert e F ⊆ E
using notin f by auto

ultimately show forest (insert e F) ∧ insert e F ⊆ E using notin by auto
qed

next
fix F
assume F⊆E
show equiv V (uconnectedV F) by(rule equiv-vert-uconnected)

next
case (9 F)
then show ?case by auto

next
case (10 x y F)
then show ?case using insert-uconnectedV-per ′ by metis

next
case (11 x)
then show ?case apply(cases x) by auto

next
case (12 u v e)
then show ?case by auto

next
case (13 u v e)
then show ?case by auto

next
case (14 a F e)

40

then show ?case using ecard2 by force
next

case (15 v)
then show ?case using ecard2 by auto

next
case 16
show V ⊆ V by auto

next
case 17
show finite V by simp

next
case (18 a b e T)
then show ?case

apply auto
subgoal unfolding uconnected-def apply auto apply(rule exI [where x=[e]])

apply simp
using ecard2 by force

subgoal by force
subgoal by force
done

next
case (19 xi x)
then show ?case by (auto split: prod.splits simp: α-def)

next
case 20
show ?case by auto

next
case 21
show ?case using getEdges-impl by simp

next
case (22 l)
from max-node-is-Max-V [OF 22] show max-node l = Max (insert 0 V) .

next
case (23)
then show ?case

apply sepref-to-hoare by sep-auto
qed

lemma spanningForest-eq-basis: spanningForest = s.basis
unfolding spanningForest-def s.basis-def by auto

lemma minSpanningForest-eq-minbasis: minSpanningForest = s.minBasis
unfolding minSpanningForest-def s.MSF-def spanningForest-eq-basis by auto

lemma kruskal-correct ′:
<emp> kruskal getEdges-impl (λ(u,w,v). return (u,v)) ()
<λr . ↑ (distinct r ∧ set r ⊆ csuper-E ∧ s.MSF (set (map α r)))>t

using s.kruskal-correct-forest by auto

41

lemma kruskal-correct:
<emp> kruskal getEdges-impl (λ(u,w,v). return (u,v)) ()
<λr . ↑ (distinct r ∧ set r ⊆ csuper-E ∧ minSpanningForest (set (map α r)))>t

using s.kruskal-correct-forest minSpanningForest-eq-minbasis by auto

end

6.2 Kruskal on UGraph from list of concrete edges
definition uGraph-from-list-α-weight L e = (THE w. ∃ a ′ b ′. Upair a ′ b ′ = e ∧
(a ′, w, b ′) ∈ set L)
abbreviation uGraph-from-list-α-edges L ≡ α ‘ set L

locale fromlist = fixes
L :: (nat × int × nat) list

assumes dist: distinct (map α L) and no-selfloop: ∀ u w v. (u,w,v)∈set L −→ u 6=v
begin

lemma not-distinct-map: a∈set l =⇒ b∈set l =⇒ a 6=b =⇒ α a = α b =⇒ ¬
distinct (map α l)

by (meson distinct-map-eq)

lemma ii: (a, aa, b) ∈ set L =⇒ uGraph-from-list-α-weight L (Upair a b) = aa
unfolding uGraph-from-list-α-weight-def
apply rule
subgoal by auto
apply clarify
subgoal for w a ′ b ′

apply(auto)
subgoal using distinct-map-eq[OF dist, of (a, aa, b) (a, w, b)]

unfolding α-def by auto
subgoal using distinct-map-eq[OF dist, of (a, aa, b) (a ′, w, b ′)]

unfolding α-def by fastforce
done

done

sublocale uGraph-impl α ‘ set L uGraph-from-list-α-weight L return L set L
proof (unfold-locales)

fix e assume ∗: e ∈ α ‘ set L
from ∗ obtain u w v where (u,w,v) ∈ set L e = α (u, w, v) by auto
then show proper-uprod e using no-selfloop unfolding α-def by auto

next
show finite (α ‘ set L) by auto

next
show (uncurry0 (return L),uncurry0 ((SPEC

(λLa. distinct (map α La) ∧ α ‘ set La = α ‘ set L
∧ (∀ (aa, wv, ba)∈set La. uGraph-from-list-α-weight L (α (aa, wv, ba)) = wv)
∧ set La ⊆ set L))))

42

∈ unit-assnk →a list-assn (nat-assn ×a int-assn ×a nat-assn)
apply sepref-to-hoare using dist apply sep-auto
subgoal using ii unfolding α-def by auto
subgoal by simp
subgoal by (auto simp: pure-fold list-assn-emp)
done

qed

lemmas kruskal-correct = kruskal-correct

definition (in −) kruskal-algo L = kruskal (return L) (λ(u,w,v). return (u,v)) ()

end

6.3 Outside the locale
definition uGraph-from-list-invar :: (nat×int×nat) list ⇒ bool where

uGraph-from-list-invar L = (distinct (map α L) ∧ (∀ p∈set L. case p of (u,w,v)
⇒u 6=v))

lemma uGraph-from-list-invar-conv: uGraph-from-list-invar L = fromlist L
by(auto simp add: uGraph-from-list-invar-def fromlist-def)

lemma uGraph-from-list-invar-subset:
uGraph-from-list-invar L =⇒ set L ′⊆ set L =⇒ distinct L ′=⇒ uGraph-from-list-invar

L ′

unfolding uGraph-from-list-invar-def by (auto simp: distinct-map inj-on-subset)

lemma uGraph-from-list-α-inj-on: uGraph-from-list-invar E =⇒ inj-on α (set E)
by(auto simp: distinct-map uGraph-from-list-invar-def)

lemma sum-easier : uGraph-from-list-invar L
=⇒ set E ⊆ set L
=⇒ sum (uGraph-from-list-α-weight L) (uGraph-from-list-α-edges E) = sum

(λ(u,w,v). w) (set E)
proof −
assume a: uGraph-from-list-invar L
assume b: set E ⊆ set L

have ∗:
∧

e. e∈set E =⇒
((λe. THE w. ∃ a ′ b ′. Upair a ′ b ′ = e ∧ (a ′, w, b ′) ∈ set L) ◦ α) e

= (case e of (u, w, v) ⇒ w)
apply simp
apply(rule the-equality)
subgoal using b by(auto simp: α-def split: prod.splits)
subgoal using a b apply(auto simp: uGraph-from-list-invar-def distinct-map

split: prod.splits)

43

using α-def
by (smt α-def inj-onD old.prod.case prod.inject set-mp)

done

have inj-on-E : inj-on α (set E)
apply(rule inj-on-subset)
apply(rule uGraph-from-list-α-inj-on) by fact+

show ?thesis
unfolding uGraph-from-list-α-weight-def
apply(subst sum.reindex[OF inj-on-E])
using ∗ by auto

qed

lemma corr : uGraph-from-list-invar L =⇒
<emp> kruskal-algo L

<λF . ↑ (uGraph-from-list-invar F ∧ set F ⊆ set L ∧
uGraph.minSpanningForest (uGraph-from-list-α-edges L)
(uGraph-from-list-α-weight L) (uGraph-from-list-α-edges F))>t

apply(sep-auto heap: fromlist.kruskal-correct
simp: uGraph-from-list-invar-conv kruskal-algo-def)

using uGraph-from-list-invar-subset uGraph-from-list-invar-conv by simp

lemma uGraph-from-list-invar L =⇒
<emp> kruskal-algo L

<λF . ↑ (uGraph-from-list-invar F ∧ set F ⊆ set L ∧
uGraph.spanningForest (uGraph-from-list-α-edges L) (uGraph-from-list-α-edges

F)
∧ (∀F ′. uGraph.spanningForest (uGraph-from-list-α-edges L) (uGraph-from-list-α-edges

F ′)
−→ set F ′ ⊆ set L −→ sum (λ(u,w,v). w) (set F) ≤ sum (λ(u,w,v). w)

(set F ′)))>t

proof −
assume a: uGraph-from-list-invar L
then interpret fromlist L apply unfold-locales by (auto simp: uGraph-from-list-invar-def)
from a show ?thesis

by(sep-auto heap: corr simp: minSpanningForest-def sum-easier)
qed

6.4 Kruskal with input check
definition kruskal ′ L = kruskal (return L) (λ(u,w,v). return (u,v)) ()

definition kruskal-checked L = (if uGraph-from-list-invar L
then do { F ← kruskal ′ L; return (Some F) }

44

else return None)

lemma <emp> kruskal-checked L <λ
Some F ⇒ ↑ (uGraph-from-list-invar L ∧ set F ⊆ set L
∧ uGraph.minSpanningForest (uGraph-from-list-α-edges L) (uGraph-from-list-α-weight

L)
(uGraph-from-list-α-edges F))

| None ⇒ ↑ (¬ uGraph-from-list-invar L)>t

unfolding kruskal-checked-def
apply(cases uGraph-from-list-invar L) apply simp-all
subgoal proof −

assume [simp]: uGraph-from-list-invar L
then interpret fromlist L apply unfold-locales by(auto simp: uGraph-from-list-invar-def)
show ?thesis unfolding kruskal ′-def by (sep-auto heap: kruskal-correct)

qed
subgoal by sep-auto
done

6.5 Code export
export-code uGraph-from-list-invar checking SML-imp
export-code kruskal-checked checking SML-imp

ML-val ‹
val export-nat = @{code integer-of-nat}
val import-nat = @{code nat-of-integer}
val export-int = @{code integer-of-int}
val import-int = @{code int-of-integer}
val import-list = map (fn (a,b,c) => (import-nat a, (import-int b, import-nat

c)))
val export-list = map (fn (a,(b,c)) => (export-nat a, export-int b, export-nat c))
val export-Some-list = (fn SOME l => SOME (export-list l) | NONE => NONE)

fun kruskal l = @{code kruskal} (fn () => import-list l) (fn (a,(-,c)) => fn ()
=> (a,c)) () ()

|> export-list
fun kruskal-checked l = @{code kruskal-checked} (import-list l) () |> export-Some-list

val result = kruskal [(1 ,∼9 ,2),(2 ,∼3 ,3),(3 ,∼4 ,1)]
val result4 = kruskal [(1 ,∼100 ,4), (3 ,64 ,5), (1 ,13 ,2), (3 ,20 ,2), (2 ,5 ,5), (4 ,80 ,3),

(4 ,40 ,5)]

val result ′ = kruskal-checked [(1 ,∼9 ,2),(2 ,∼3 ,3),(3 ,∼4 ,1)]
val result1 ′ = kruskal-checked [(1 ,∼9 ,2),(2 ,∼3 ,3),(3 ,∼4 ,1),(1 ,5 ,3)]
val result2 ′ = kruskal-checked [(1 ,∼9 ,2),(2 ,∼3 ,3),(3 ,∼4 ,1),(3 ,∼4 ,1)]
val result3 ′ = kruskal-checked [(1 ,∼9 ,2),(2 ,∼3 ,3),(3 ,∼4 ,1),(1 ,∼4 ,1)]
val result4 ′ = kruskal-checked [(1 ,∼100 ,4), (3 ,64 ,5), (1 ,13 ,2), (3 ,20 ,2),

45

(2 ,5 ,5), (4 ,80 ,3), (4 ,40 ,5)]
›

end

7 Undirected Graphs as symmetric directed graphs
theory Graph-Definition

imports
Dijkstra-Shortest-Path.Graph
Dijkstra-Shortest-Path.Weight

begin

7.1 Definition
fun is-path-undir :: (′v, ′w) graph ⇒ ′v ⇒ (′v, ′w) path ⇒ ′v ⇒ bool where

is-path-undir G v [] v ′←→ v=v ′ ∧ v ′∈nodes G |
is-path-undir G v ((v1 ,w,v2)#p) v ′

←→ v=v1 ∧ ((v1 ,w,v2)∈edges G ∨ (v2 ,w,v1)∈edges G) ∧ is-path-undir G
v2 p v ′

abbreviation nodes-connected G a b ≡ ∃ p. is-path-undir G a p b

definition degree :: (′v, ′w) graph ⇒ ′v ⇒ nat where
degree G v = card {e∈edges G. fst e = v ∨ snd (snd e) = v}

locale forest = valid-graph G
for G :: (′v, ′w) graph +
assumes cycle-free:
∀ (a,w,b)∈E . ¬ nodes-connected (delete-edge a w b G) a b

locale connected-graph = valid-graph G
for G :: (′v, ′w) graph +
assumes connected:
∀ v∈V . ∀ v ′∈V . nodes-connected G v v ′

locale tree = forest + connected-graph

locale finite-graph = valid-graph G
for G :: (′v, ′w) graph +
assumes finite-E : finite E and

finite-V : finite V

locale finite-weighted-graph = finite-graph G
for G :: (′v, ′w::weight) graph

definition subgraph :: (′v, ′w) graph ⇒ (′v, ′w) graph ⇒ bool where
subgraph G H ≡ nodes G = nodes H ∧ edges G ⊆ edges H

46

definition edge-weight :: (′v, ′w) graph ⇒ ′w::weight where
edge-weight G ≡ sum (fst o snd) (edges G)

definition edges-less-eq :: (′a × ′w::weight × ′a) ⇒ (′a × ′w × ′a) ⇒ bool
where edges-less-eq a b ≡ fst(snd a) ≤ fst(snd b)

definition maximally-connected :: (′v, ′w) graph ⇒ (′v, ′w) graph ⇒ bool where
maximally-connected H G ≡ ∀ v∈nodes G. ∀ v ′∈nodes G.
(nodes-connected G v v ′) −→ (nodes-connected H v v ′)

definition spanning-forest :: (′v, ′w) graph ⇒ (′v, ′w) graph ⇒ bool where
spanning-forest F G ≡ forest F ∧ maximally-connected F G ∧ subgraph F G

definition optimal-forest :: (′v, ′w::weight) graph ⇒ (′v, ′w) graph ⇒ bool where
optimal-forest F G ≡ (∀F ′::(′v, ′w) graph.

spanning-forest F ′ G −→ edge-weight F ≤ edge-weight F ′)

definition minimum-spanning-forest :: (′v, ′w::weight) graph ⇒ (′v, ′w) graph ⇒
bool where

minimum-spanning-forest F G ≡ spanning-forest F G ∧ optimal-forest F G

definition spanning-tree :: (′v, ′w) graph ⇒ (′v, ′w) graph ⇒ bool where
spanning-tree F G ≡ tree F ∧ subgraph F G

definition optimal-tree :: (′v, ′w::weight) graph ⇒ (′v, ′w) graph ⇒ bool where
optimal-tree F G ≡ (∀F ′::(′v, ′w) graph.

spanning-tree F ′ G −→ edge-weight F ≤ edge-weight F ′)

definition minimum-spanning-tree :: (′v, ′w::weight) graph ⇒ (′v, ′w) graph ⇒
bool where

minimum-spanning-tree F G ≡ spanning-tree F G ∧ optimal-tree F G

7.2 Helping lemmas
lemma nodes-delete-edge[simp]:

nodes (delete-edge v e v ′ G) = nodes G
by (simp add: delete-edge-def)

lemma edges-delete-edge[simp]:
edges (delete-edge v e v ′ G) = edges G − {(v,e,v ′)}
by (simp add: delete-edge-def)

lemma subgraph-node:
assumes subgraph H G
shows v ∈ nodes G ←→ v ∈ nodes H
using assms
unfolding subgraph-def
by simp

47

lemma delete-add-edge:
assumes a ∈ nodes H
assumes c ∈ nodes H
assumes (a, w, c) /∈ edges H
shows delete-edge a w c (add-edge a w c H) = H
using assms unfolding delete-edge-def add-edge-def
by (simp add: insert-absorb)

lemma swap-delete-add-edge:
assumes (a, b, c) 6= (x, y, z)
shows delete-edge a b c (add-edge x y z H) = add-edge x y z (delete-edge a b c

H)
using assms unfolding delete-edge-def add-edge-def
by auto

lemma swap-delete-edges: delete-edge a b c (delete-edge x y z H)
= delete-edge x y z (delete-edge a b c H)

unfolding delete-edge-def
by auto

context valid-graph
begin

lemma valid-subgraph:
assumes subgraph H G
shows valid-graph H
using assms E-valid unfolding subgraph-def valid-graph-def
by blast

lemma is-path-undir-simps[simp, intro!]:
is-path-undir G v [] v ←→ v∈V
is-path-undir G v [(v,w,v ′)] v ′←→ (v,w,v ′)∈E ∨ (v ′,w,v)∈E
by (auto dest: E-validD)

lemma is-path-undir-memb[simp]:
is-path-undir G v p v ′ =⇒ v∈V ∧ v ′∈V
apply (induct p arbitrary: v)
apply (auto dest: E-validD)

done

lemma is-path-undir-memb-edges:
assumes is-path-undir G v p v ′

shows ∀ (a,w,b) ∈ set p. (a,w,b) ∈ E ∨ (b,w,a) ∈ E
using assms
by (induct p arbitrary: v) fastforce+

lemma is-path-undir-split:
is-path-undir G v (p1@p2) v ′←→ (∃ u. is-path-undir G v p1 u ∧ is-path-undir

G u p2 v ′)

48

by (induct p1 arbitrary: v) auto

lemma is-path-undir-split ′[simp]:
is-path-undir G v (p1@(u,w,u ′)#p2) v ′

←→ is-path-undir G v p1 u ∧ ((u,w,u ′)∈E ∨ (u ′,w,u)∈E) ∧ is-path-undir G
u ′ p2 v ′

by (auto simp add: is-path-undir-split)

lemma is-path-undir-sym:
assumes is-path-undir G v p v ′

shows is-path-undir G v ′ (rev (map (λ(u, w, u ′). (u ′, w, u)) p)) v
using assms
by (induct p arbitrary: v) (auto simp: E-validD)

lemma is-path-undir-subgraph:
assumes is-path-undir H x p y
assumes subgraph H G
shows is-path-undir G x p y
using assms is-path-undir .simps
unfolding subgraph-def
by (induction p arbitrary: x y) auto

lemma no-path-in-empty-graph:
assumes E = {}
assumes p 6= []
shows ¬is-path-undir G v p v
using assms by (cases p) auto

lemma is-path-undir-split-distinct:
assumes is-path-undir G v p v ′

assumes (a, w, b) ∈ set p ∨ (b, w, a) ∈ set p
shows (∃ p ′ p ′′ u u ′.

is-path-undir G v p ′ u ∧ is-path-undir G u ′ p ′′ v ′ ∧
length p ′ < length p ∧ length p ′′ < length p ∧
(u ∈ {a, b} ∧ u ′ ∈ {a, b}) ∧
(a, w, b) /∈ set p ′ ∧ (b, w, a) /∈ set p ′ ∧
(a, w, b) /∈ set p ′′ ∧ (b, w, a) /∈ set p ′′)

using assms
proof (induction n == length p arbitrary: p v v ′ rule: nat-less-induct)

case 1
then obtain u u ′ where (u, w, u ′) ∈ set p and u: u ∈ {a, b} ∧ u ′ ∈ {a, b}

by blast
with split-list obtain p ′ p ′′

where p: p = p ′ @ (u, w, u ′) # p ′′

by fast
then have len-p ′: length p ′ < length p and len-p ′′: length p ′′ < length p

by auto
from 1 p have p ′: is-path-undir G v p ′ u and p ′′: is-path-undir G u ′ p ′′ v ′

by auto

49

from 1 len-p ′ p ′ have (a, w, b) ∈ set p ′ ∨ (b, w, a) ∈ set p ′ −→ (∃ p ′2 u2 .
is-path-undir G v p ′2 u2 ∧
length p ′2 < length p ′ ∧
u2 ∈ {a, b} ∧
(a, w, b) /∈ set p ′2 ∧ (b, w, a) /∈ set p ′2)

by metis
with len-p ′ p ′ u have p ′: ∃ p ′ u. is-path-undir G v p ′ u ∧ length p ′ < length p

∧
u ∈ {a,b} ∧ (a, w, b) /∈ set p ′ ∧ (b, w, a) /∈ set p ′

by fastforce
from 1 len-p ′′ p ′′ have (a, w, b) ∈ set p ′′ ∨ (b, w, a) ∈ set p ′′ −→ (∃ p ′′2 u ′2 .

is-path-undir G u ′2 p ′′2 v ′ ∧
length p ′′2 < length p ′′ ∧
u ′2 ∈ {a, b} ∧
(a, w, b) /∈ set p ′′2 ∧ (b, w, a) /∈ set p ′′2)

by metis
with len-p ′′ p ′′ u have ∃ p ′′ u ′. is-path-undir G u ′ p ′′ v ′∧ length p ′′ < length

p ∧
u ′ ∈ {a,b} ∧ (a, w, b) /∈ set p ′′ ∧ (b, w, a) /∈ set p ′′

by fastforce
with p ′ show ?case by auto

qed

lemma add-edge-is-path:
assumes is-path-undir G x p y
shows is-path-undir (add-edge a b c G) x p y

proof −
from E-valid have valid-graph (add-edge a b c G)

unfolding valid-graph-def add-edge-def
by auto

with assms is-path-undir .simps[of add-edge a b c G]
show is-path-undir (add-edge a b c G) x p y

by (induction p arbitrary: x y) auto
qed

lemma add-edge-was-path:
assumes is-path-undir (add-edge a b c G) x p y
assumes (a, b, c) /∈ set p
assumes (c, b, a) /∈ set p
assumes a ∈ V
assumes c ∈ V
shows is-path-undir G x p y

proof −
from E-valid have valid-graph (add-edge a b c G)

unfolding valid-graph-def add-edge-def
by auto

with assms is-path-undir .simps[of add-edge a b c G]
show is-path-undir G x p y

by (induction p arbitrary: x y) auto

50

qed

lemma delete-edge-is-path:
assumes is-path-undir G x p y
assumes (a, b, c) /∈ set p
assumes (c, b, a) /∈ set p
shows is-path-undir (delete-edge a b c G) x p y

proof −
from E-valid have valid-graph (delete-edge a b c G)

unfolding valid-graph-def delete-edge-def
by auto

with assms is-path-undir .simps[of delete-edge a b c G]
show ?thesis

by (induction p arbitrary: x y) auto
qed

lemma delete-node-is-path:
assumes is-path-undir G x p y
assumes x 6= v
assumes v /∈ fst‘set p ∪ snd‘snd‘set p
shows is-path-undir (delete-node v G) x p y
using assms
unfolding delete-node-def
by (induction p arbitrary: x y) auto

lemma delete-edge-was-path:
assumes is-path-undir (delete-edge a b c G) x p y
shows is-path-undir G x p y
using assms
by (induction p arbitrary: x y) auto

lemma subset-was-path:
assumes is-path-undir H x p y
assumes edges H ⊆ E
assumes nodes H ⊆ V
shows is-path-undir G x p y
using assms
by (induction p arbitrary: x y) auto

lemma delete-node-was-path:
assumes is-path-undir (delete-node v G) x p y
shows is-path-undir G x p y
using assms
unfolding delete-node-def
by (induction p arbitrary: x y) auto

lemma add-edge-preserve-subgraph:
assumes subgraph H G
assumes (a, w, b) ∈ E

51

shows subgraph (add-edge a w b H) G
proof −

from assms E-validD have a ∈ nodes H ∧ b ∈ nodes H
unfolding subgraph-def by simp

with assms show ?thesis
unfolding subgraph-def
by auto

qed

lemma delete-edge-preserve-subgraph:
assumes subgraph H G
shows subgraph (delete-edge a w b H) G
using assms
unfolding subgraph-def
by auto

lemma add-delete-edge:
assumes (a, w, c) ∈ E
shows add-edge a w c (delete-edge a w c G) = G
using assms E-validD unfolding delete-edge-def add-edge-def
by (simp add: insert-absorb)

lemma swap-add-edge-in-path:
assumes is-path-undir (add-edge a w b G) v p v ′

assumes (a,w ′,a ′) ∈ E ∨ (a ′,w ′,a) ∈ E
shows ∃ p. is-path-undir (add-edge a ′ w ′′ b G) v p v ′

using assms(1)
proof (induction p arbitrary: v)

case Nil
with assms(2) E-validD
have is-path-undir (add-edge a ′ w ′′ b G) v [] v ′

by auto
then show ?case

by blast
next

case (Cons e p ′)
then obtain v2 x e-w where e = (v2 , e-w, x)

using prod-cases3 by blast
with Cons(2)
have e: e = (v, e-w, x) and

edge-e: (v, e-w, x) ∈ edges (add-edge a w b G)
∨ (x, e-w, v) ∈ edges (add-edge a w b G) and

p ′: is-path-undir (add-edge a w b G) x p ′ v ′

by auto
have ∃ p. is-path-undir (add-edge a ′ w ′′ b G) v p x
proof (cases e = (a, w, b) ∨ e = (b, w, a))

case True
from True e assms(2) E-validD
have is-path-undir (add-edge a ′ w ′′ b G) v [(a,w ′,a ′), (a ′,w ′′,b)] x

52

∨ is-path-undir (add-edge a ′ w ′′ b G) v [(b,w ′′,a ′), (a ′,w ′,a)] x
by auto

then show ?thesis
by blast

next
case False
with edge-e e
have is-path-undir (add-edge a ′ w ′′ b G) v [e] x

by (auto simp: E-validD)
then show ?thesis

by auto
qed
with p ′ Cons.IH
and valid-graph.is-path-undir-split[OF add-edge-valid[OF valid-graph.intro[OF

E-valid]]]
show ?case

by blast
qed

lemma induce-maximally-connected:
assumes subgraph H G
assumes ∀ (a,w,b)∈E . nodes-connected H a b
shows maximally-connected H G

proof −
from valid-subgraph[OF ‹subgraph H G›]
have valid-H : valid-graph H .
have (nodes-connected G v v ′) −→ (nodes-connected H v v ′) (is ?lhs −→ ?rhs)

if v∈V and v ′∈V for v v ′

proof
assume ?lhs
then obtain p where is-path-undir G v p v ′

by blast
then show ?rhs
proof (induction p arbitrary: v v ′)

case Nil
with subgraph-node[OF assms(1)] show ?case

by (metis is-path-undir .simps(1))
next

case (Cons e p)
from prod-cases3 obtain a w b where awb: e = (a, w, b) .
with assms Cons.prems valid-graph.is-path-undir-sym[OF valid-H , of b - a]
obtain p ′ where p ′: is-path-undir H a p ′ b

by fastforce
from assms awb Cons.prems Cons.IH [of b v ′]
obtain p ′′ where is-path-undir H b p ′′ v ′

unfolding subgraph-def by auto
with Cons.prems awb assms p ′ valid-graph.is-path-undir-split[OF valid-H]

have is-path-undir H v (p ′@p ′′) v ′

by auto

53

then show ?case ..
qed

qed
with assms show ?thesis

unfolding maximally-connected-def
by auto

qed

lemma add-edge-maximally-connected:
assumes maximally-connected H G
assumes subgraph H G
assumes (a, w, b) ∈ E
shows maximally-connected (add-edge a w b H) G

proof −
have (nodes-connected G v v ′) −→ (nodes-connected (add-edge a w b H) v v ′)
(is ?lhs −→ ?rhs) if vv ′: v ∈ V v ′ ∈ V for v v ′

proof
assume ?lhs
with ‹maximally-connected H G› vv ′ obtain p where is-path-undir H v p v ′

unfolding maximally-connected-def
by auto

with valid-graph.add-edge-is-path[OF valid-subgraph[OF ‹subgraph H G›] this]
show ?rhs

by auto
qed
then show ?thesis

unfolding maximally-connected-def
by auto

qed

lemma delete-edge-maximally-connected:
assumes maximally-connected H G
assumes subgraph H G
assumes pab: is-path-undir (delete-edge a w b H) a pab b
shows maximally-connected (delete-edge a w b H) G

proof −
from valid-subgraph[OF ‹subgraph H G›]
have valid-H : valid-graph H .
have (nodes-connected G v v ′) −→ (nodes-connected (delete-edge a w b H) v

v ′)
(is ?lhs −→ ?rhs) if vv ′: v ∈ V v ′ ∈ V for v v ′

proof
assume ?lhs
with ‹maximally-connected H G› vv ′ obtain p where p: is-path-undir H v p

v ′

unfolding maximally-connected-def
by auto

show ?rhs
proof (cases (a, w, b) ∈ set p ∨ (b, w, a) ∈ set p)

54

case True
with p valid-graph.is-path-undir-split-distinct[OF valid-H p, of a w b] obtain

p ′ p ′′ u u ′

where is-path-undir H v p ′ u ∧ is-path-undir H u ′ p ′′ v ′ and
u: (u ∈ {a, b} ∧ u ′ ∈ {a, b}) and
(a, w, b) /∈ set p ′ ∧ (b, w, a) /∈ set p ′ ∧
(a, w, b) /∈ set p ′′ ∧ (b, w, a) /∈ set p ′′

by auto
with valid-graph.delete-edge-is-path[OF valid-H] obtain p ′ p ′′

where p ′: is-path-undir (delete-edge a w b H) v p ′ u ∧
is-path-undir (delete-edge a w b H) u ′ p ′′ v ′

by blast
note dev-H = delete-edge-valid[OF valid-H]
note ∗ = valid-graph.is-path-undir-split[OF dev-H , of a w b v]
from valid-graph.is-path-undir-sym[OF delete-edge-valid[OF valid-H] pab]

obtain pab ′

where is-path-undir (delete-edge a w b H) b pab ′ a
by auto

with assms u p ′ valid-graph.is-path-undir-split[OF dev-H , of a w b v p ′ p ′′

v ′]
∗[of p ′ pab b] ∗[of p ′@pab p ′′ v ′] ∗[of p ′ pab ′ a] ∗[of p ′@pab ′ p ′′ v ′]

show ?thesis by auto
next

case False
with valid-graph.delete-edge-is-path[OF valid-H p] show ?thesis

by auto
qed

qed
then show ?thesis

unfolding maximally-connected-def
by auto

qed

lemma connected-impl-maximally-connected:
assumes connected-graph H
assumes subgraph: subgraph H G
shows maximally-connected H G
using assms

unfolding connected-graph-def connected-graph-axioms-def maximally-connected-def
subgraph-def

by blast

lemma add-edge-is-connected:
nodes-connected (add-edge a b c G) a c
nodes-connected (add-edge a b c G) c a

using valid-graph.is-path-undir-simps(2)[OF
add-edge-valid[OF valid-graph-axioms], of a b c a b c]

valid-graph.is-path-undir-simps(2)[OF
add-edge-valid[OF valid-graph-axioms], of a b c c b a]

55

by fastforce+

lemma swap-edges:
assumes nodes-connected (add-edge a w b G) v v ′

assumes a ∈ V
assumes b ∈ V
assumes ¬ nodes-connected G v v ′

shows nodes-connected (add-edge v w ′ v ′ G) a b
proof −

from assms(1) obtain p where p: is-path-undir (add-edge a w b G) v p v ′

by auto
have awb: (a, w, b) ∈ set p ∨ (b, w, a) ∈ set p
proof (rule ccontr)

assume ¬ ((a, w, b) ∈ set p ∨ (b, w, a) ∈ set p)
with add-edge-was-path[OF p - - assms(2 ,3)] assms(4)
show False

by auto
qed
from valid-graph.is-path-undir-split-distinct[OF

add-edge-valid[OF valid-graph-axioms] p awb]
obtain p ′ p ′′ u u ′ where

is-path-undir (add-edge a w b G) v p ′ u ∧
is-path-undir (add-edge a w b G) u ′ p ′′ v ′ and
u: u ∈ {a, b} ∧ u ′ ∈ {a, b} and
(a, w, b) /∈ set p ′ ∧ (b, w, a) /∈ set p ′ ∧
(a, w, b) /∈ set p ′′ ∧ (b, w, a) /∈ set p ′′

by auto
with assms(2 ,3) add-edge-was-path
have paths: is-path-undir G v p ′ u ∧

is-path-undir G u ′ p ′′ v ′

by blast
with is-path-undir-split[of v p ′ p ′′ v ′] assms(4)
have u 6= u ′

by blast
from paths assms add-edge-is-path
have paths ′: is-path-undir (add-edge v w ′ v ′ G) v p ′ u ∧

is-path-undir (add-edge v w ′ v ′ G) u ′ p ′′ v ′

by blast
note ∗ = add-edge-valid[OF valid-graph-axioms]
from add-edge-is-connected obtain p ′′′ where

is-path-undir (add-edge v w ′ v ′ G) v ′ p ′′′ v
by blast

with paths ′ valid-graph.is-path-undir-split[OF ∗, of v w ′ v ′ u ′ p ′′ p ′′′ v]
have is-path-undir (add-edge v w ′ v ′ G) u ′ (p ′′@p ′′′) v

by auto
with paths ′ valid-graph.is-path-undir-split[OF ∗, of v w ′ v ′ u ′ p ′′@p ′′′ p ′ u]
have is-path-undir (add-edge v w ′ v ′ G) u ′ (p ′′@p ′′′@p ′) u

by auto
with u ‹u 6= u ′› valid-graph.is-path-undir-sym[OF ∗ this]

56

show ?thesis
by auto

qed

lemma subgraph-impl-connected:
assumes connected-graph H
assumes subgraph: subgraph H G
shows connected-graph G
using assms is-path-undir-subgraph[OF - subgraph] valid-graph-axioms

unfolding connected-graph-def connected-graph-axioms-def maximally-connected-def
subgraph-def

by blast

lemma add-node-connected:
assumes ∀ a∈V − {v}. ∀ b∈V − {v}. nodes-connected G a b
assumes (v, w, v ′) ∈ E ∨ (v ′, w, v) ∈ E
assumes v 6= v ′

shows ∀ a∈V . ∀ b∈V . nodes-connected G a b
proof −

have nodes-connected G a b if a: a∈V and b: b∈V for a b
proof (cases a = v)

case True
show ?thesis
proof (cases b = v)

case True
with ‹a = v› a is-path-undir-simps(1) show ?thesis

by blast
next

case False
from assms(2) have v ′ ∈ V

by (auto simp: E-validD)
with b assms(1) ‹b 6= v› ‹v 6= v ′› have nodes-connected G v ′ b

by blast
with assms(2) ‹a = v› is-path-undir .simps(2)[of G v v w v ′ - b]
show ?thesis

by blast
qed

next
case False
show ?thesis
proof (cases b = v)

case True
from assms(2) have v ′ ∈ V

by (auto simp: E-validD)
with a assms(1) ‹a 6= v› ‹v 6= v ′› have nodes-connected G a v ′

by blast
with assms(2) ‹b = v› is-path-undir .simps(2)[of G v v w v ′ - a]

is-path-undir-sym
show ?thesis

57

by blast
next

case False
with ‹a 6= v› assms(1) a b show ?thesis

by simp
qed

qed
then show ?thesis by simp

qed
end

context connected-graph
begin

lemma maximally-connected-impl-connected:
assumes maximally-connected H G
assumes subgraph: subgraph H G
shows connected-graph H
using assms connected-graph-axioms valid-subgraph[OF subgraph]

unfolding connected-graph-def connected-graph-axioms-def maximally-connected-def
subgraph-def

by auto
end

context forest
begin

lemmas delete-edge-valid ′ = delete-edge-valid[OF valid-graph-axioms]

lemma delete-edge-from-path:
assumes nodes-connected G a b
assumes subgraph H G
assumes ¬ nodes-connected H a b
shows ∃ (x, w, y) ∈ E − edges H . (¬ nodes-connected (delete-edge x w y G)

a b) ∧
(nodes-connected (add-edge a w ′ b (delete-edge x w y G)) x y)

proof −
from assms(1) obtain p where is-path-undir G a p b

by auto
from this assms(3) show ?thesis
proof (induction n == length p arbitrary: p a b rule: nat-less-induct)

case 1
from valid-subgraph[OF assms(2)] have valid-H : valid-graph H .
show ?case
proof (cases p)

case Nil
with 1 (2) have a = b

by simp
with 1 (2) assms(2) have is-path-undir H a [] b

unfolding subgraph-def

58

by auto
with 1 (3) show ?thesis

by blast
next

case (Cons e p ′)
obtain a2 a ′ w where e = (a2 , w, a ′)

using prod-cases3 by blast
with 1 (2) Cons have e: e = (a, w, a ′)

by simp
with 1 (2) Cons obtain e1 e2 where e12 : e = (e1 , w, e2) ∨ e = (e2 , w,

e1) and
edge-e12 : (e1 , w, e2) ∈ E
by auto

from 1 (2) Cons e have is-path-undir G a ′ p ′ b
by simp

with is-path-undir-split-distinct[OF this, of a w a ′] Cons
obtain p ′-dst u ′ where p ′-dst: is-path-undir G u ′ p ′-dst b ∧ u ′ ∈ {a, a ′}

and
e-not-in-p ′: (a, w, a ′) /∈ set p ′-dst ∧ (a ′, w, a) /∈ set p ′-dst and
len-p ′: length p ′-dst < length p

by fastforce
show ?thesis
proof (cases u ′ = a ′)

case False
with 1 len-p ′ p ′-dst show ?thesis

by auto
next

case True
with p ′-dst have path-p ′: is-path-undir G a ′ p ′-dst b

by auto
show ?thesis
proof (cases (e1 , w, e2) ∈ edges H)

case True
have ¬ nodes-connected H a ′ b
proof

assume nodes-connected H a ′ b
then obtain p-H where is-path-undir H a ′ p-H b

by auto
with True e12 e have is-path-undir H a (e#p-H) b

by auto
with 1 (3) show False

by simp
qed
with path-p ′ 1 (1) len-p ′ obtain x z y where xy: (x, z, y) ∈ E − edges

H and
IH1 : (¬nodes-connected (delete-edge x z y G) a ′ b) and
IH2 : (nodes-connected (add-edge a ′ w ′ b (delete-edge x z y G)) x y)
by blast

with True have xy-neq-e: (x,z,y) 6= (e1 , w, e2)

59

by auto
have thm1 : ¬ nodes-connected (delete-edge x z y G) a b
proof

assume nodes-connected (delete-edge x z y G) a b
then obtain p-e where is-path-undir (delete-edge x z y G) a p-e b

by auto
with edge-e12 e12 e xy-neq-e
have is-path-undir (delete-edge x z y G) a ′ ((a ′, w, a)#p-e) b

by auto
with IH1 show False

by blast
qed
from IH2 obtain p-xy

where is-path-undir (add-edge a ′ w ′ b (delete-edge x z y G)) x p-xy y
by auto

from valid-graph.swap-add-edge-in-path[OF delete-edge-valid ′ this, of w
a w ′] edge-e12

e12 e edges-delete-edge[of x z y G] xy-neq-e
have thm2 : nodes-connected (add-edge a w ′ b (delete-edge x z y G)) x y

by blast
with thm1 show ?thesis

using xy by auto
next

case False
have thm1 : ¬ nodes-connected (delete-edge e1 w e2 G) a b
proof

assume nodes-connected (delete-edge e1 w e2 G) a b
then obtain p-e where p-e: is-path-undir (delete-edge e1 w e2 G) a

p-e b
by auto

from delete-edge-is-path[OF path-p ′, of e1 w e2] e-not-in-p ′ e12 e
have is-path-undir (delete-edge e1 w e2 G) a ′ p ′-dst b

by auto
with valid-graph.is-path-undir-sym[OF delete-edge-valid ′ this]
obtain p-rev where is-path-undir (delete-edge e1 w e2 G) b p-rev a ′

by auto
with p-e valid-graph.is-path-undir-split[OF delete-edge-valid ′]
have is-path-undir (delete-edge e1 w e2 G) a (p-e@p-rev) a ′

by auto
with cycle-free edge-e12 e12 e

and valid-graph.is-path-undir-sym[OF delete-edge-valid ′ this]
show False

unfolding valid-graph-def
by auto

qed
note ∗∗ = delete-edge-is-path[OF path-p ′, of e1 w e2]

from valid-graph.is-path-undir-split[OF add-edge-valid[OF delete-edge-valid ′]]
valid-graph.add-edge-is-path[OF delete-edge-valid ′ ∗∗, of a w ′ b]

valid-graph.is-path-undir-simps(2)[OF add-edge-valid[OF delete-edge-valid ′],

60

of a w ′ b e1 w e2 b w ′ a]
e-not-in-p ′ e12 e

have is-path-undir (add-edge a w ′ b (delete-edge e1 w e2 G)) a ′

(p ′-dst@[(b,w ′,a)]) a
by auto

with valid-graph.is-path-undir-sym[OF add-edge-valid[OF delete-edge-valid ′]
this]

e12 e
have nodes-connected (add-edge a w ′ b (delete-edge e1 w e2 G)) e1 e2

by blast
with thm1 show ?thesis

using False edge-e12 by auto
qed

qed
qed

qed
qed

lemma forest-add-edge:
assumes a ∈ V
assumes b ∈ V
assumes ¬ nodes-connected G a b
shows forest (add-edge a w b G)

proof −
from assms(3) have ¬ is-path-undir G a [(a, w, b)] b

by blast
with assms(2) have awb: (a, w, b) /∈ E ∧ (b, w, a) /∈ E

by auto
have ¬ nodes-connected (delete-edge v w ′ v ′ (add-edge a w b G)) v v ′

if e: (v,w ′,v ′)∈ edges (add-edge a w b G) for v w ′ v ′

proof (cases (v,w ′,v ′) = (a, w, b))
case True
with assms awb delete-add-edge[of a G b w]
show ?thesis by simp

next
case False
with e have e ′: (v,w ′,v ′)∈ edges G

by auto
show ?thesis
proof

assume asm: nodes-connected (delete-edge v w ′ v ′ (add-edge a w b G)) v v ′

with swap-delete-add-edge[OF False, of G]
valid-graph.swap-edges[OF delete-edge-valid ′, of a w b v w ′ v ′ v v ′ w ′]
add-delete-edge[OF e ′] cycle-free assms(1 ,2) e ′

have nodes-connected G a b
by force

with assms show False
by simp

qed

61

qed
with cycle-free add-edge-valid[OF valid-graph-axioms] show ?thesis

unfolding forest-def forest-axioms-def by auto
qed

lemma forest-subsets:
assumes valid-graph H
assumes edges H ⊆ E
assumes nodes H ⊆ V
shows forest H

proof −
have ¬ nodes-connected (delete-edge a w b H) a b

if e: (a, w, b)∈edges H for a w b
proof

assume asm: nodes-connected (delete-edge a w b H) a b
from ‹edges H ⊆ E›
have edges: edges (delete-edge a w b H) ⊆ edges (delete-edge a w b G)

by auto
from ‹nodes H ⊆ V ›
have nodes: nodes (delete-edge a w b H) ⊆ nodes (delete-edge a w b G)

by auto
from asm valid-graph.subset-was-path[OF delete-edge-valid ′ - edges nodes]
have nodes-connected (delete-edge a w b G) a b

by auto
with cycle-free e ‹edges H ⊆ E› show False

by blast
qed
with assms(1) show ?thesis
unfolding forest-def forest-axioms-def
by auto

qed

lemma subgraph-forest:
assumes subgraph H G
shows forest H
using assms forest-subsets valid-subgraph
unfolding subgraph-def
by simp

lemma forest-delete-edge: forest (delete-edge a w c G)
using forest-subsets[OF delete-edge-valid ′]
unfolding delete-edge-def
by auto

lemma forest-delete-node: forest (delete-node n G)
using forest-subsets[OF delete-node-valid[OF valid-graph-axioms]]
unfolding delete-node-def
by auto

end

62

context finite-graph
begin

lemma finite-subgraphs: finite {T . subgraph T G}
proof −

from finite-E have finite {E ′. E ′ ⊆ E}
by simp

then have finite {(|nodes = V , edges = E ′|)| E ′. E ′ ⊆ E}
by simp

also have {(|nodes = V , edges = E ′|)| E ′. E ′ ⊆ E} = {T . subgraph T G}
unfolding subgraph-def
by (metis (mono-tags, lifting) old.unit.exhaust select-convs(1) select-convs(2)

surjective)
finally show ?thesis .

qed

end

lemma minimum-spanning-forest-impl-tree:
assumes minimum-spanning-forest F G
assumes valid-G: valid-graph G
assumes connected-graph F
shows minimum-spanning-tree F G
using assms valid-graph.connected-impl-maximally-connected[OF valid-G]
unfolding minimum-spanning-forest-def minimum-spanning-tree-def

spanning-forest-def spanning-tree-def tree-def
optimal-forest-def optimal-tree-def

by auto

lemma minimum-spanning-forest-impl-tree2 :
assumes minimum-spanning-forest F G
assumes connected-G: connected-graph G
shows minimum-spanning-tree F G
using assms connected-graph.maximally-connected-impl-connected[OF connected-G]

minimum-spanning-forest-impl-tree connected-graph.axioms(1)[OF connected-G]
unfolding minimum-spanning-forest-def spanning-forest-def
by auto

end

7.3 Auxiliary lemmas for graphs
theory Graph-Definition-Aux
imports Graph-Definition SeprefUF
begin

context valid-graph

63

begin

lemma nodes-connected-sym: nodes-connected G a b = nodes-connected G b a
using is-path-undir-sym by auto

lemma Domain-nodes-connected: Domain {(x, y) |x y. nodes-connected G x y} =
V

apply auto subgoal for x apply(rule exI [where x=x]) apply(rule exI [where
x=[]]) by auto

done
lemma Range-nodes-connected: Range {(x, y) |x y. nodes-connected G x y} = V

apply auto subgoal for x apply(rule exI [where x=x]) apply(rule exI [where
x=[]]) by auto

done

— adaptation of a proof by Julian Biendarra
lemma nodes-connected-insert-per-union:
(nodes-connected (add-edge a w b H) x y) ←→ (x,y) ∈ per-union {(x,y)| x y.

nodes-connected H x y} a b
if subgraph H G and PER: part-equiv {(x,y)| x y. nodes-connected H x y}

and V : a∈V b∈V for x y
proof −

let ?uf = {(x,y)| x y. nodes-connected H x y}
from valid-subgraph[OF ‹subgraph H G›]
have valid-H : valid-graph H .
from ‹subgraph H G›
have nodes-H : nodes H = V

unfolding subgraph-def ..
with ‹a∈V › ‹b∈V ›
have nodes-add-H : nodes (add-edge a w b H) = nodes H

by auto
have Domain ?uf = nodes H using valid-graph.Domain-nodes-connected[OF

valid-H] .
show ?thesis
proof

assume nodes-connected (add-edge a w b H) x y
then obtain p where p: is-path-undir (add-edge a w b H) x p y

by blast
from ‹a∈V › ‹b∈V › ‹Domain {(x,y)| x y. nodes-connected H x y} = nodes H ›

nodes-H
have [simp]: a∈Domain (per-union ?uf a b) b∈Domain (per-union ?uf a b)

by auto
from PER have PER ′: part-equiv (per-union ?uf a b)

by (auto simp: union-part-equivp)
show (x,y) ∈ per-union ?uf a b
proof (cases (a, w, b) ∈ set p ∨ (b, w, a) ∈ set p)

case True
from valid-graph.is-path-undir-split-distinct[OF add-edge-valid[OF valid-H] p

True]

64

obtain p ′ p ′′ u u ′ where
is-path-undir (add-edge a w b H) x p ′ u ∧
is-path-undir (add-edge a w b H) u ′ p ′′ y and
u: u∈{a,b} ∧ u ′∈{a,b} and
(a, w, b) /∈ set p ′ ∧ (b, w, a) /∈ set p ′ ∧
(a, w, b) /∈ set p ′′ ∧ (b, w, a) /∈ set p ′′

by auto
with ‹a∈V › ‹b∈V › ‹Domain ?uf = nodes H › ‹subgraph H G›

valid-graph.add-edge-was-path[OF valid-H]
have is-path-undir H x p ′ u ∧ is-path-undir H u ′ p ′′ y

unfolding subgraph-def by auto
with V u nodes-H have comps: (x,u) ∈ ?uf ∧ (u ′, y) ∈ ?uf by auto
from comps have (x,u) ∈ per-union ?uf a b apply(intro per-union-impl)

by auto
also from u ‹a∈V › ‹b∈V › ‹Domain ?uf = nodes H › nodes-H

part-equiv-refl ′[OF PER ′ ‹a∈Domain (per-union ?uf a b)›]
part-equiv-refl ′[OF PER ′ ‹b∈Domain (per-union ?uf a b)›] part-equiv-sym[OF

PER ′]
per-union-related[OF PER]

have (u,u ′) ∈ per-union ?uf a b
by auto

also (part-equiv-trans[OF PER ′]) from comps
have (u ′,y) ∈ per-union ?uf a b apply(intro per-union-impl)

by auto
finally (part-equiv-trans[OF PER ′]) show ?thesis by simp

next
case False
with ‹a∈V › ‹b∈V › nodes-H valid-graph.add-edge-was-path[OF valid-H p(1)]
have is-path-undir H x p y

by auto
with nodes-add-H have (x,y)∈?uf by auto
from per-union-impl[OF this] show ?thesis .

qed
next

assume asm: (x, y) ∈ per-union ?uf a b
show nodes-connected (add-edge a w b H) x y

proof (cases (x, y) ∈ ?uf)
case True
with nodes-add-H have nodes-connected H x y

by auto
with valid-graph.add-edge-is-path[OF valid-H] show ?thesis

by blast
next

case False
with asm part-equiv-sym[OF PER]
have (x,a) ∈ ?uf ∧ (b,y) ∈ ?uf ∨

(x,b) ∈ ?uf ∧ (a,y) ∈ ?uf
unfolding per-union-def
by auto

65

with ‹a∈V › ‹b∈V › nodes-H nodes-add-H obtain p q p ′ q ′

where is-path-undir H x p a ∧ is-path-undir H b q y ∨
is-path-undir H x p ′ b ∧ is-path-undir H a q ′ y

by fastforce
with valid-graph.add-edge-is-path[OF valid-H]
have is-path-undir (add-edge a w b H) x p a ∧

is-path-undir (add-edge a w b H) b q y ∨
is-path-undir (add-edge a w b H) x p ′ b ∧
is-path-undir (add-edge a w b H) a q ′ y

by blast
with valid-graph.is-path-undir-split ′[OF add-edge-valid[OF valid-H]]
have is-path-undir (add-edge a w b H) x (p @ (a, w, b) # q) y ∨

is-path-undir (add-edge a w b H) x (p ′ @ (b, w, a) # q ′) y
by auto

with valid-graph.is-path-undir-sym[OF add-edge-valid[OF valid-H]]
show ?thesis

by blast
qed

qed
qed

lemma is-path-undir-append: is-path-undir G v p1 u =⇒ is-path-undir G u p2 w
=⇒ is-path-undir G v (p1@p2) w

using is-path-undir-split by auto

lemma
augment-edge:
assumes sg: subgraph G1 G subgraph G2 G and

p: (u, v) ∈ {(a, b) |a b. nodes-connected G1 a b}
and notinE2 : (u, v) /∈ {(a, b) |a b. nodes-connected G2 a b}

shows ∃ a b e. (a, b) /∈ {(a, b) |a b. nodes-connected G2 a b} ∧ e /∈ edges G2 ∧ e
∈ edges G1 ∧ (case e of (aa, w, ba) ⇒ a=aa ∧ b=ba ∨ a=ba ∧ b=aa)
proof −

from sg have [simp]: nodes G1 = nodes G nodes G2 = nodes G unfolding
subgraph-def by auto

from p obtain p where a: is-path-undir G1 u p v by blast
from notinE2 have b: ∼(∃ p. is-path-undir G2 u p v) by auto
from a b show ?thesis
proof (induct p arbitrary: u)

case Nil
then have u=v u∈nodes G1 by auto
then have is-path-undir G2 u [] v by auto
have (u, v) ∈ {(a, b) |a b. nodes-connected G2 a b}

apply auto
apply(rule exI [where x=[]]) by fact

with Nil(2) show ?case by blast

66

next
case (Cons a p)
from Cons(2) obtain w x y u ′ where axy: a=(u,w,u ′) and 2 : (x=u ∧ y=u ′) ∨

(x=u ′ ∧ y=u) and e ′: is-path-undir G1 u ′ p v
and uwE1 : (x,w,y) ∈ edges G1 apply(cases a) by auto

show ?case
proof (cases (x,w,y)∈edges G2 ∨ (y,w,x)∈edges G2)

case True
have e2 ′: ∼(∃ p. is-path-undir G2 u ′ p v)
proof (rule ccontr , clarsimp)

fix p2
assume is-path-undir G2 u ′ p2 v
with True axy 2 have is-path-undir G2 u (a#p2) v by auto
with Cons(3) show False by blast

qed
from Cons(1)[OF e ′ e2 ′] show ?thesis .

next
case False
{

assume e2 ′: ∼(∃ p. is-path-undir G2 u ′ p v)
from Cons(1)[OF e ′ e2 ′] have ?thesis .

} moreover {
assume e2 ′: ∃ p. is-path-undir G2 u ′ p v
then obtain p1 where p1 : is-path-undir G2 u ′ p1 v by auto

from False axy have (x, w, y)/∈edges G2 by auto
moreover
have (u,u ′) /∈ {(a, b) |a b. nodes-connected G2 a b}
proof(rule ccontr , auto simp add:)

fix p2
assume is-path-undir G2 u p2 u ′

with p1 have is-path-undir G2 u (p2@p1) v
using valid-graph.is-path-undir-append[OF valid-subgraph[OF assms(2)]]
by auto

then show False using Cons(3) by blast
qed
moreover
note uwE1
ultimately have ?thesis

apply −
apply(rule exI [where x=u])
apply(rule exI [where x=u ′])
apply(rule exI [where x=(x,w,y)])
using 2 by fastforce

}
ultimately show ?thesis by auto

qed
qed
qed

67

lemma nodes-connected-refl: a∈V =⇒ nodes-connected G a a
apply(rule exI [where x=[]]) by auto

lemma assumes sg: subgraph H G
shows connected-VV : {(x, y) |x y. nodes-connected H x y} ⊆ V×V

and connected-refl: refl-on V {(x, y) |x y. nodes-connected H x y}
and connected-trans: trans {(x, y) |x y. nodes-connected H x y}
and connected-sym: sym {(x, y) |x y. nodes-connected H x y}
and connected-equiv: equiv V {(x, y) |x y. nodes-connected H x y}

proof −
have ∗:

∧
R S . Domain R ⊆ S =⇒ Range R ⊆ S =⇒ R ⊆ S×S by auto

from sg have [simp]: nodes H = V by (auto simp: subgraph-def)
from sg valid-subgraph have v: valid-graph H by auto

from valid-graph.Domain-nodes-connected[OF this] valid-graph.Range-nodes-connected[OF
this]

show i: {(x, y) |x y. nodes-connected H x y} ⊆ V×V apply(intro ∗) by auto

have ii:
∧

x. x ∈ V =⇒ (x, x) ∈ {(x, y) |x y. nodes-connected H x y}
using valid-graph.nodes-connected-refl[OF v] by auto

show refl-on V {(x, y) |x y. nodes-connected H x y}
apply(rule refl-onI) by fact+

from valid-graph.is-path-undir-append[OF v]
show trans {(x, y) |x y. nodes-connected H x y} unfolding trans-def by fast

from valid-graph.nodes-connected-sym[OF v]
show sym {(x, y) |x y. nodes-connected H x y} unfolding sym-def by fast

show equiv V {(x, y) |x y. nodes-connected H x y} apply (rule equivI) by fact+
qed

lemma forest-maximally-connected-incl-max1 :
assumes

forest H
subgraph H G

shows (∀ (a,w,b)∈edges G − edges H . ¬ (forest (add-edge a w b H))) =⇒ maxi-
mally-connected H G
proof −

from assms(2) have V [simp]: nodes H = nodes G unfolding subgraph-def by
auto

assume pff : (∀ (a,w,b)∈E − edges H . ¬ (forest (add-edge a w b H)))
{ fix u v

assume uv: v∈V u∈V
assume nodes-connected G u v

68

then have i: (u, v) ∈ {(a, b) |a b. nodes-connected G a b} by auto

have nodes-connected H u v
proof (rule ccontr)

assume ¬nodes-connected H u v
then have ii: (u, v) /∈ {(a, b) |a b. nodes-connected H a b} by auto
have subgraph G G by(auto simp: subgraph-def)
from augment-edge[OF this assms(2) i ii] obtain e a b where

k: (a, b) /∈ {(a, b) |a b. nodes-connected H a b}
and nn: e /∈ edges H e ∈ E and ee: (case e of (aa, w, ba) ⇒ a=aa ∧ b=ba

∨ a=ba ∧ b=aa)
by blast

obtain x w y where e: e=(x,w,y) apply(cases e) by auto
from e ee have x=a ∧ y=b ∨ x=b ∧ y=a by auto
with k have k ′: ¬ nodes-connected H x y
using valid-graph.nodes-connected-sym[OF valid-subgraph[OF assms(2)]] by

auto
have xy: x∈V y∈V using e nn(2) by (auto dest: E-validD)
then have nxy: x∈nodes H y∈nodes H by auto
from forest.forest-add-edge[OF assms(1) nxy k ′] have

forest (add-edge x w y H) .
moreover have (x,w,y)∈E−edges H using nn e by auto
ultimately show False using pff by blast

qed
}
then show maximally-connected H G

unfolding maximally-connected-def by auto
qed

lemma forest-maximally-connected-incl-max2 :
assumes

forest H
subgraph H G

shows maximally-connected H G =⇒ (∀ (a,w,b)∈E − edges H . ¬ (forest (add-edge
a w b H)))
proof −

from assms(2) have V [simp]: nodes H = nodes G unfolding subgraph-def by
auto

assume mc: maximally-connected H G
then have k:

∧
v v ′. v∈V =⇒ v ′∈V =⇒

nodes-connected G v v ′ =⇒ nodes-connected H v v ′

unfolding maximally-connected-def by auto

show (∀ (a,w,b)∈E − edges H . ¬ (forest (add-edge a w b H)))
proof (safe)

fix x w y
assume i: (x, w, y) ∈ E and ni: (x, w, y) /∈ edges H

and f : forest (add-edge x w y H)

69

from i have xy: x∈V y∈V by (auto dest: E-validD)
from f have ∀ (a,wa,b)∈insert (x, w, y) (edges H). ¬ nodes-connected (delete-edge

a wa b (add-edge x w y H)) a b
unfolding forest-def forest-axioms-def by auto

then have ¬ nodes-connected (delete-edge x w y (add-edge x w y H)) x y
by auto

moreover have (delete-edge x w y (add-edge x w y H)) = H
using ni xy by(auto simp: add-edge-def delete-edge-def insert-absorb)

ultimately have ¬ nodes-connected H x y by auto
moreover from i have nodes-connected G x y apply − apply(rule exI [where

x=[(x,w,y)]])
by (auto dest: E-validD)

ultimately show False using k[OF xy] by simp
qed

qed

lemma forest-maximally-connected-incl-max-conv:
assumes

forest H
subgraph H G

shows maximally-connected H G = (∀ (a,w,b)∈E − edges H . ¬ (forest (add-edge
a w b H)))
using assms forest-maximally-connected-incl-max2 forest-maximally-connected-incl-max1

by blast

end

end

8 Kruskal on Symmetric Directed Graph
theory Graph-Definition-Impl
imports
Kruskal-Impl Graph-Definition-Aux

begin

8.1 Interpreting Kruskl-Impl
locale fromlist = fixes

L :: (nat × int × nat) list
begin

abbreviation E≡set L
abbreviation V≡fst ‘ E ∪ (snd ◦ snd) ‘ E
abbreviation ind (E ′::(nat × int × nat) set) ≡ (|nodes=V , edges=E ′|)
abbreviation subforest E ′ ≡ forest (ind E ′) ∧ subgraph (ind E ′) (ind E)

70

lemma max-node-is-Max-V : E = set la =⇒ max-node la = Max (insert 0 V)
proof −

assume E : E = set la
have ∗: fst ‘ set la ∪ (snd ◦ snd) ‘ set la

= (
⋃

x∈set la. case x of (x1 , x1a, x2a) ⇒ {x1 , x2a})
by auto force

show ?thesis
unfolding E
by (auto simp add: max-node-def prod.case-distrib ∗)

qed

lemma ind-valid-graph:
∧

E ′. E ′ ⊆ E =⇒ valid-graph (ind E ′)
unfolding valid-graph-def by force

lemma vE : valid-graph (ind E) apply(rule ind-valid-graph) by simp

lemma ind-valid-graph ′:
∧

E ′. subgraph (ind E ′) (ind E) =⇒ valid-graph (ind
E ′)

apply(rule ind-valid-graph) by(auto simp: subgraph-def)

lemma add-edge-ind: (a,w,b)∈E =⇒ add-edge a w b (ind F) = ind (insert (a,w,b)
F)

unfolding add-edge-def by force

lemma nodes-connected-ind-sym: F⊆E =⇒ sym {(x, y) |x y. nodes-connected
(ind F) x y}

apply(frule ind-valid-graph)
unfolding sym-def using valid-graph.nodes-connected-sym by fast

lemma nodes-connected-ind-trans: F⊆E =⇒ trans {(x, y) |x y. nodes-connected
(ind F) x y}

apply(frule ind-valid-graph)
unfolding trans-def using valid-graph.is-path-undir-append by fast

lemma part-equiv-nodes-connected-ind:
F⊆E =⇒ part-equiv {(x, y) |x y. nodes-connected (ind F) x y}
apply(rule) using nodes-connected-ind-trans nodes-connected-ind-sym by auto

sublocale s: Kruskal-Impl E V
λe. {fst e, snd (snd e)} λu v (a,w,b). u=a ∧ v=b ∨ u=b ∧ v=a
subforest
λE ′. { (a,b) |a b. nodes-connected (ind E ′) a b}
λ(u,w,v). w id PR-CONST (λ(u,w,v). RETURN (u,v))
PR-CONST (RETURN L) return L set L (λ(u,w,v). return (u,v))

proof (unfold-locales, goal-cases)
show finite E by simp

71

next
fix E ′

assume forest (ind E ′) ∧ subgraph (ind E ′) (|nodes=V , edges=E |)
then show E ′ ⊆ E unfolding subgraph-def by auto

next
show subforest {} by (auto simp: subgraph-def forest-def valid-graph-def for-

est-axioms-def)
next

case (4 X Y)
then have ∗: subgraph (ind Y) (ind X) subgraph (ind Y) (ind E)

unfolding subgraph-def by auto
with 4 show ?case using forest.subgraph-forest by auto

next
case (5 u v)
have k: valid-graph (ind {}) apply(rule ind-valid-graph) by simp
show ?case

apply auto
subgoal for p apply(cases p) by auto
subgoal for p apply(cases p) by auto
subgoal apply(rule exI [where x=[]]) by auto
subgoal apply(rule exI [where x=[]]) by force
done

next
case (6 E1 E2 u v)
have ∗: valid-graph (ind E) apply(rule ind-valid-graph) by simp
from 6 show ?case using valid-graph.augment-edge[of ind E ind E1 ind E2 u

v, OF ∗]
unfolding subgraph-def by simp

next
case (7 F e u v)
then have f : forest (ind F) and s: subgraph (ind F) (ind E) by auto
from 7 have uv: u∈V v∈V by force+
obtain a w b where e: e=(a,w,b) apply(cases e) by auto
from e 7 (3) have abuv: u=a ∧ v=b ∨ u=b ∧ v=a by auto
show ?case
proof

assume forest (ind (insert e F)) ∧ subgraph (ind (insert e F)) (ind E)
then have (∀ (a, w, b)∈ insert e F .

¬nodes-connected (delete-edge a w b (ind (insert e F))) a b)
unfolding forest-def forest-axioms-def by auto

with e have i: ¬ nodes-connected (delete-edge a w b (ind (insert e F))) a b
by auto

have ii: (delete-edge a w b (ind (insert e F))) = ind F
using 7 (2) e by (auto simp: delete-edge-def)

from i have ¬ nodes-connected (ind F) a b using ii by auto
then show (u, v) /∈ {(a, b) |a b. nodes-connected (ind F) a b}

using 7 (3) valid-graph.nodes-connected-sym[OF ind-valid-graph ′[OF s]] e
by auto

next

72

from s 7 (2) have sg: subgraph (ind (insert e F)) (ind E)
unfolding subgraph-def by auto

assume (u, v) /∈ {(a, b) |a b. nodes-connected (ind F) a b}
with abuv have (a, b) /∈ {(a, b) |a b. nodes-connected (ind F) a b}

using valid-graph.nodes-connected-sym[OF ind-valid-graph ′[OF s]]
by auto

then have nn: ∼nodes-connected (ind F) a b by auto
have forest (add-edge a w b (ind F)) apply(rule forest.forest-add-edge[OF f

- - nn])
using uv abuv by auto

then have f ′: forest (ind (insert e F)) using 7 (2) add-edge-ind by (auto
simp add: e)

from f ′ sg show forest (ind (insert e F)) ∧ subgraph (ind (insert e F)) (ind
E)

by auto
qed

next
case (8 F)
then have s: subgraph (ind F) (ind E) unfolding subgraph-def by auto
from valid-graph.connected-VV [OF vE s]

show i: {(x, y) |x y. nodes-connected (ind F) x y} ⊆ V×V by simp

from valid-graph.connected-equiv[OF vE s]
show equiv V {(x, y) |x y. nodes-connected (ind F) x y} by simp

next
case (10 x y F e)
from 10 have xy: x∈V y∈V by force+
obtain a w b where e: e=(a,w,b) apply(cases e) by auto

from 10 (4) have ad-eq: add-edge a w b (ind F) = ind (insert e F)
using e unfolding add-edge-def by (auto simp add: rev-image-eqI)

have ∗:
∧

x y. nodes-connected (add-edge a w b (ind F)) x y
= ((x, y) ∈ per-union {(x, y) |x y. nodes-connected (ind F) x y} a b)

apply(rule valid-graph.nodes-connected-insert-per-union[of ind E])
subgoal apply(rule ind-valid-graph) by simp
subgoal using 10 (3) by(auto simp: subgraph-def)
subgoal apply(rule part-equiv-nodes-connected-ind) by fact
using xy e 10 (5) by auto

show ?case
using 10 (5) e ∗ ad-eq by auto

next
case 11
then show ?case by auto

next
case 12
then show ?case by auto

next
case 13
then show ?case by auto

73

next
case (14 a F e)
then obtain w where e=(a,w,a) by auto
with 14 have a∈V and p: (a,w,a): edges (ind (insert e F)) by auto
then have ∗: nodes-connected (delete-edge a w a (ind (insert e F))) a a

apply (intro exI [where x=[]]) by simp
have ∃ (a, w, b)∈edges (ind (insert e F)).

nodes-connected (delete-edge a w b (ind (insert e F))) a b
apply (rule bexI [where x=(a,w,a)])
using ∗ p by auto

then
have ¬ forest (ind (insert e F))

unfolding forest-def forest-axioms-def by blast
then show ?case by auto

next
case (15 e)
then show ?case by auto

next
case 16
thus ?case by force

next
case 17
thus ?case by auto

next
case (18 a b)
then show ?case apply auto

subgoal for w apply(rule exI [where x=[(a, w, b)]]) by force
subgoal for w apply(rule exI [where x=[(a, w, b)]]) apply simp by blast
done

next
case 19
thus ?case by (auto split: prod.split)

next
case 20
thus ?case by auto

next
case 21

thus ?case apply sepref-to-hoare apply sep-auto by(auto simp: pure-fold
list-assn-emp)

next
case (22 l)
then show ?case using max-node-is-Max-V by auto

next
case 23
then show ?case apply sepref-to-hoare by sep-auto

qed

74

8.2 Showing the equivalence of minimum spanning forest
definitions

As the definition of the minimum spanning forest from the minWeightBasis
algorithm differs from the one of our graph formalization, we new show their
equivalence.

lemma spanning-forest-eq: s.SpanningForest E ′ = spanning-forest (ind E ′) (ind
E)

proof rule
assume t: s.SpanningForest E ′

have f : (forest (ind E ′)) and sub: subgraph (ind E ′) (ind E) and
n: (∀ x∈E − E ′. ¬ (forest (ind (insert x E ′)) ∧ subgraph (ind (insert x

E ′)) (ind E)))
using t[unfolded s.SpanningForest-def] by auto

have vE : valid-graph (ind E) apply(rule ind-valid-graph) by simp

have
∧

x. x∈E−E ′ =⇒ subgraph (ind (insert x E ′)) (ind E)
using sub unfolding subgraph-def by auto

with n have (∀ x∈E − E ′. ¬ (forest (ind (insert x E ′)))) by blast
then have n ′: (∀ (a,w,b)∈edges (ind E) − edges (ind E ′). ¬ (forest (add-edge

a w b (ind E ′))))
using valid-graph.E-validD[OF vE] by(auto simp: add-edge-def insert-absorb)

have mc: maximally-connected (ind E ′) (ind E)
apply(rule valid-graph.forest-maximally-connected-incl-max1) by fact+

show spanning-forest (ind E ′) (ind E)
unfolding spanning-forest-def using f sub mc by blast

next
assume t: spanning-forest (ind E ′) (ind E)
have f : (forest (ind E ′)) and sub: subgraph (ind E ′) (ind E) and

n: maximally-connected (ind E ′) (ind E) using t[unfolded spanning-forest-def]
by auto

have i:
∧

x. x∈E−E ′ =⇒ subgraph (ind (insert x E ′)) (ind E)
using sub unfolding subgraph-def by auto

have vE : valid-graph (ind E) apply(rule ind-valid-graph) by simp

have ∀ (a, w, b)∈edges (ind E) − edges (ind E ′). ¬ forest (add-edge a w b (ind
E ′))

apply(rule valid-graph.forest-maximally-connected-incl-max2) by fact+
then have t:

∧
a w b. (a, w, b)∈edges (ind E) − edges (ind E ′)

=⇒ ¬ forest (add-edge a w b (ind E ′))
by blast

have ii: (∀ x∈E − E ′. ¬ (forest (ind (insert x E ′))))
apply (auto simp: add-edge-def)

75

subgoal for a w b using t[of a w b] valid-graph.E-validD[OF vE]
by(auto simp: add-edge-def insert-absorb)

done

from i ii have
iii: (∀ x∈E − E ′. ¬(forest (ind (insert x E ′)) ∧ subgraph (ind (insert x E ′))

(ind E)))
by blast

show s.SpanningForest E ′

unfolding s.SpanningForest-def using iii f sub by blast
qed

lemma edge-weight-alt: edge-weight G = sum (λ(u,w,v). w) (edges G)
proof −

have f : fst o snd = (λ(u,w,v). w) by auto
show ?thesis unfolding edge-weight-def f by (auto cong:)

qed

lemma MSF-eq: s.MSF E ′ = minimum-spanning-forest (ind E ′) (ind E)
unfolding s.MSF-def minimum-spanning-forest-def optimal-forest-def
unfolding spanning-forest-eq edge-weight-alt

proof safe
fix F ′

assume spanning-forest (ind E ′) (ind E)
and B: (∀B ′. spanning-forest (ind B ′) (ind E)

−→ (
∑

(u, w, v)∈E ′. w) ≤ (
∑

(u, w, v)∈B ′. w))
and sf : spanning-forest F ′ (ind E)

from sf have subgraph F ′ (ind E) by(auto simp: spanning-forest-def)
then have F ′ = ind (edges F ′) unfolding subgraph-def by auto
with B sf show (

∑
(u, w, v)∈edges (ind E ′). w) ≤ (

∑
(u, w, v)∈edges F ′. w)

by auto
qed auto

lemma kruskal-correct:
<emp> kruskal (return L) (λ(u,w,v). return (u,v)) ()

<λF . ↑ (distinct F ∧ set F ⊆ E ∧ minimum-spanning-forest (ind (set F))
(ind E))>t

using s.kruskal-correct-forest unfolding MSF-eq by auto

definition (in −) kruskal-algo L = kruskal (return L) (λ(u,w,v). return (u,v))
()

end

8.3 Outside the locale
definition GD-from-list-α-weight L e = (case e of (u,w,v) ⇒ w)
abbreviation GD-from-list-α-graph G L ≡ (|nodes=fst ‘ (set G) ∪ (snd ◦ snd) ‘

76

(set G), edges=set L|)

lemma corr :
<emp> kruskal-algo L

<λF . ↑ (set F ⊆ set L ∧
minimum-spanning-forest (GD-from-list-α-graph L F) (GD-from-list-α-graph

L L))>t

by(sep-auto heap: fromlist.kruskal-correct simp: kruskal-algo-def)

lemma kruskal-correct: <emp> kruskal-algo L
<λF . ↑ (set F ⊆ set L ∧

spanning-forest (GD-from-list-α-graph L F) (GD-from-list-α-graph L L)
∧ (∀F ′. spanning-forest (GD-from-list-α-graph L F ′) (GD-from-list-α-graph L

L)
−→ sum (λ(u,w,v). w) (set F) ≤ sum (λ(u,w,v). w) (set F ′)))>t

proof −
interpret fromlist L by unfold-locales
have ∗:

∧
F ′. edge-weight (ind F ′) = sum (λ(u,w,v). w) F ′

unfolding edge-weight-def apply auto by (metis fn-snd-conv fst-def)
show ?thesis using ∗

by (sep-auto heap: corr simp: minimum-spanning-forest-def optimal-forest-def)
qed

8.4 Code export
export-code kruskal-algo checking SML-imp

ML-val ‹
val export-nat = @{code integer-of-nat}
val import-nat = @{code nat-of-integer}
val export-int = @{code integer-of-int}
val import-int = @{code int-of-integer}
val import-list = map (fn (a,b,c) => (import-nat a, (import-int b, import-nat

c)))
val export-list = map (fn (a,(b,c)) => (export-nat a, export-int b, export-nat c))
val export-Some-list = (fn SOME l => SOME (export-list l) | NONE => NONE)

fun kruskal l = @{code kruskal} (fn () => import-list l) (fn (a,(-,c)) => fn ()
=> (a,c)) () ()

|> export-list
fun kruskal-algo l = @{code kruskal-algo} (import-list l) () |> export-list

val result = kruskal [(1 ,∼9 ,2),(2 ,∼3 ,3),(3 ,∼4 ,1)]
val result4 = kruskal [(1 ,∼100 ,4), (3 ,64 ,5), (1 ,13 ,2), (3 ,20 ,2), (2 ,5 ,5), (4 ,80 ,3),

(4 ,40 ,5)]

val result ′ = kruskal-algo [(1 ,∼9 ,2),(2 ,∼3 ,3),(3 ,∼4 ,1)]
val result1 ′ = kruskal-algo [(1 ,∼9 ,2),(2 ,∼3 ,3),(3 ,∼4 ,1),(1 ,5 ,3)]

77

val result2 ′ = kruskal-algo [(1 ,∼9 ,2),(2 ,∼3 ,3),(3 ,∼4 ,1),(1 ,∼4 ,3)]
val result3 ′ = kruskal-algo [(1 ,∼9 ,2),(2 ,∼3 ,3),(3 ,∼4 ,1),(1 ,∼4 ,1)]
val result4 ′ = kruskal-algo [(1 ,∼100 ,4), (3 ,64 ,5), (1 ,13 ,2), (3 ,20 ,2),

(2 ,5 ,5), (4 ,80 ,3), (4 ,40 ,5)]
›

end

78

	Minimum Weight Basis
	Preparations
	Weight restricted set
	The greedy idea

	Minimum Weight Basis algorithm
	The heart of the argument
	The Invariant
	Invariant proofs
	The refinement lemma

	Kruskal interface
	Derived facts
	The edge set and forest form the cycle matroid

	Refine Kruskal
	Refinement I: cycle check by connectedness
	Refinement II: connectedness by PER operation

	Kruskal Implementation
	Refinement III: concrete edges
	Refinement to Imperative/HOL with Sepref-Tool
	Refinement IV: given an edge set
	Synthesis of Kruskal by SepRef

	UGraph - undirected graph with Uprod edges
	Edge path
	Distinct edge path
	Connectivity in undirected Graphs
	Forest
	uGraph locale

	Kruskal on UGraphs
	Interpreting 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 Kruskl-Impl with a UGraph
	Kruskal on UGraph from list of concrete edges
	Outside the locale
	Kruskal with input check
	Code export

	Undirected Graphs as symmetric directed graphs
	Definition
	Helping lemmas
	Auxiliary lemmas for graphs

	Kruskal on Symmetric Directed Graph
	Interpreting 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 Kruskl-Impl
	Showing the equivalence of minimum spanning forest definitions
	Outside the locale
	Code export

