
The Königsberg Bridge Problem and the Friendship
Theorem

Wenda Li

March 17, 2025

Abstract

This development provides a formalization of undirected graphs
and simple graphs, which are based on Benedikt Nordhoff and Peter
Lammich’s simple formalization of labelled directed graphs [4] in the
archive. Then, with our formalization of graphs, we have shown both
necessary and sufficient conditions for Eulerian trails and circuits [2]
as well as the fact that the Königsberg Bridge problem does not have
a solution. In addition, we have also shown the Friendship Theorem
in simple graphs[1, 3].

Contents
1 Undirected Multigraph and undirected trails 2

2 Degrees and related properties 2

3 Connectivity 30

4 Adjacent nodes 45

5 Undirected simple graph 46

6 Definition of Eulerian trails and circuits 49

7 Necessary conditions for Eulerian trails and circuits 49

8 Specific case of the Konigsberg Bridge Problem 51

9 Sufficient conditions for Eulerian trails and circuits 53

10 Common steps 72

1

11 Exclusive steps for combinatorial proofs 84

theory MoreGraph imports Complex-Main Dijkstra-Shortest-Path.Graph
begin

1 Undirected Multigraph and undirected trails
locale valid-unMultigraph=valid-graph G for G::(′v, ′w) graph+

assumes corres[simp]: (v,w,u ′) ∈ edges G ←→ (u ′,w,v) ∈ edges G
and no-id[simp]:(v,w,v) /∈ edges G

fun (in valid-unMultigraph) is-trail :: ′v ⇒ (′v, ′w) path ⇒ ′v ⇒ bool where
is-trail v [] v ′←→ v=v ′ ∧ v ′∈ V |
is-trail v ((v1 ,w,v2)#ps) v ′←→ v=v1 ∧ (v1 ,w,v2)∈E ∧

(v1 ,w,v2)/∈set ps ∧(v2 ,w,v1)/∈set ps ∧ is-trail v2 ps v ′

2 Degrees and related properties
definition degree :: ′v ⇒ (′v, ′w) graph ⇒ nat where

degree v g≡ card({e. e∈edges g ∧ fst e=v})

definition odd-nodes-set :: (′v, ′w) graph ⇒ ′v set where
odd-nodes-set g ≡ {v. v∈nodes g ∧ odd(degree v g)}

definition num-of-odd-nodes :: (′v, ′w) graph ⇒ nat where
num-of-odd-nodes g≡ card(odd-nodes-set g)

definition num-of-even-nodes :: (′v, ′w) graph ⇒ nat where
num-of-even-nodes g≡ card({v. v∈nodes g ∧ even(degree v g)})

definition del-unEdge where del-unEdge v e v ′ g ≡ (|
nodes = nodes g, edges = edges g − {(v,e,v ′),(v ′,e,v)} |)

definition rev-path :: (′v, ′w) path ⇒ (′v, ′w) path where
rev-path ps ≡ map (λ(a,b,c).(c,b,a)) (rev ps)

fun rem-unPath:: (′v, ′w) path ⇒ (′v, ′w) graph ⇒ (′v, ′w) graph where
rem-unPath [] g= g|
rem-unPath ((v,w,v ′)#ps) g=

rem-unPath ps (del-unEdge v w v ′ g)

lemma del-undirected: del-unEdge v e v ′ g = delete-edge v ′ e v (delete-edge v e v ′

g)
unfolding del-unEdge-def delete-edge-def by auto

lemma delete-edge-sym: del-unEdge v e v ′ g = del-unEdge v ′ e v g

2

unfolding del-unEdge-def by auto

lemma del-unEdge-valid[simp]: assumes valid-unMultigraph g
shows valid-unMultigraph (del-unEdge v e v ′ g)

proof −
interpret valid-unMultigraph g by fact
show ?thesis

unfolding del-unEdge-def
by unfold-locales (auto dest: E-validD)

qed

lemma set-compre-diff :{x ∈ A − B. P x}={x ∈ A. P x} − {x ∈ B . P x} by
blast
lemma set-compre-subset: B ⊆ A =⇒ {x ∈ B. P x} ⊆ {x ∈ A. P x} by blast

lemma del-edge-undirected-degree-plus: finite (edges g) =⇒ (v,e,v ′) ∈ edges g
=⇒ (v ′,e,v) ∈ edges g =⇒ degree v (del-unEdge v e v ′ g) + 1=degree v g

proof −
assume assms: finite (edges g) (v,e,v ′) ∈ edges g (v ′,e,v) ∈ edges g
have degree v (del-unEdge v e v ′ g) + 1

= card ({ea ∈ edges g − {(v, e, v ′), (v ′, e, v)}. fst ea = v}) + 1
unfolding del-unEdge-def degree-def by simp

also have ...=card ({ea ∈ edges g. fst ea = v} − {ea ∈ {(v, e, v ′), (v ′, e, v)}.
fst ea = v})+1

by (metis set-compre-diff)
also have ...=card ({ea ∈ edges g. fst ea = v}) − card({ea ∈ {(v, e, v ′), (v ′, e,

v)}.
fst ea = v})+1

proof −
have {(v, e, v ′), (v ′, e, v)} ⊆ edges g using ‹(v,e,v ′) ∈ edges g› ‹(v ′,e,v) ∈

edges g›
by auto

hence {ea ∈ {(v, e, v ′), (v ′, e, v)}. fst ea = v} ⊆ {ea ∈ edges g. fst ea = v}
by auto

moreover have finite {ea ∈ {(v, e, v ′), (v ′, e, v)}. fst ea = v} by auto
ultimately have card ({ea ∈ edges g. fst ea = v} − {ea ∈ {(v, e, v ′), (v ′, e,

v)}.
fst ea = v})=card {ea ∈ edges g. fst ea = v} − card {ea ∈ {(v, e, v ′), (v ′,

e, v)}.
fst ea = v}

using card-Diff-subset by blast
thus ?thesis by auto

qed
also have ...=card ({ea ∈ edges g. fst ea = v})

proof −
have {ea ∈ {(v, e, v ′), (v ′, e, v)}. fst ea = v}={(v,e,v ′)} by auto
hence card {ea ∈ {(v, e, v ′), (v ′, e, v)}. fst ea = v} = 1 by auto
moreover have card {ea ∈ edges g. fst ea = v}6=0

3

by (metis (lifting, mono-tags) Collect-empty-eq assms(1) assms(2)
card-eq-0-iff fst-conv mem-Collect-eq rev-finite-subset subsetI)

ultimately show ?thesis by arith
qed

finally have degree v (del-unEdge v e v ′ g) + 1=card ({ea ∈ edges g. fst ea =
v}) .

thus ?thesis unfolding degree-def .
qed

lemma del-edge-undirected-degree-plus ′: finite (edges g) =⇒ (v,e,v ′) ∈ edges g
=⇒ (v ′,e,v) ∈ edges g =⇒ degree v ′ (del-unEdge v e v ′ g) + 1=degree v ′ g

by (metis del-edge-undirected-degree-plus delete-edge-sym)

lemma del-edge-undirected-degree-minus[simp]: finite (edges g) =⇒ (v,e,v ′) ∈ edges
g

=⇒ (v ′,e,v) ∈ edges g =⇒ degree v (del-unEdge v e v ′ g) =degree v g− (1 ::nat)

using del-edge-undirected-degree-plus by (metis add-diff-cancel-left ′ add.commute)

lemma del-edge-undirected-degree-minus ′[simp]: finite (edges g) =⇒ (v,e,v ′) ∈ edges
g

=⇒ (v ′,e,v) ∈ edges g =⇒ degree v ′ (del-unEdge v e v ′ g) =degree v ′ g− (1 ::nat)
by (metis del-edge-undirected-degree-minus delete-edge-sym)

lemma del-unEdge-com: del-unEdge v w v ′ (del-unEdge n e n ′ g)
= del-unEdge n e n ′ (del-unEdge v w v ′ g)

unfolding del-unEdge-def by auto

lemma rem-unPath-com: rem-unPath ps (del-unEdge v w v ′ g)
= del-unEdge v w v ′ (rem-unPath ps g)

proof (induct ps arbitrary: g)
case Nil
thus ?case by (metis rem-unPath.simps(1))

next
case (Cons a ps ′)
thus ?case using del-unEdge-com

by (metis prod-cases3 rem-unPath.simps(1) rem-unPath.simps(2))
qed

lemma rem-unPath-valid[intro]:
valid-unMultigraph g =⇒ valid-unMultigraph (rem-unPath ps g)

proof (induct ps)
case Nil
thus ?case by simp

next
case (Cons x xs)
thus ?case

proof −

4

have valid-unMultigraph (rem-unPath (x # xs) g) = valid-unMultigraph
(del-unEdge (fst x) (fst (snd x)) (snd (snd x)) (rem-unPath xs g))

using rem-unPath-com by (metis prod.collapse rem-unPath.simps(2))
also have ...=valid-unMultigraph (rem-unPath xs g)

by (metis Cons.hyps Cons.prems del-unEdge-valid)
also have ...=True

using Cons by auto
finally have ?case=True .
thus ?case by simp
qed

qed

lemma (in valid-unMultigraph) degree-frame:
assumes finite (edges G) x /∈ {v, v ′}
shows degree x (del-unEdge v w v ′ G) = degree x G (is ?L=?R)

proof (cases (v,w,v ′) ∈ edges G)
case True
have ?L=card({e. e∈edges G − {(v,w,v ′),(v ′,w,v)} ∧ fst e=x})

by (simp add:del-unEdge-def degree-def)
also have ...=card({e. e∈edges G ∧ fst e=x}−{e. e∈{(v,w,v ′),(v ′,w,v)} ∧ fst

e=x})
by (metis set-compre-diff)

also have ...=card({e. e∈edges G ∧ fst e=x}) using ‹x /∈ {v, v ′}›
proof −

have x 6=v ∧ x 6= v ′ using ‹x /∈{v,v ′}›by simp
hence {e. e∈{(v,w,v ′),(v ′,w,v)} ∧ fst e=x}={} by auto
thus ?thesis by (metis Diff-empty)

qed
also have ...=?R by (simp add:degree-def)
finally show ?thesis .

next
case False
moreover hence (v ′,w,v)/∈E using corres by auto
ultimately have E− {(v,w,v ′),(v ′,w,v)}=E by blast
hence del-unEdge v w v ′ G=G by (auto simp add:del-unEdge-def)
thus ?thesis by auto

qed

lemma [simp]: rev-path [] = [] unfolding rev-path-def by simp
lemma rev-path-append[simp]: rev-path (xs@ys) = (rev-path ys) @ (rev-path xs)

unfolding rev-path-def rev-append by auto
lemma rev-path-double[simp]: rev-path(rev-path xs)=xs

unfolding rev-path-def by (induct xs,auto)

lemma del-UnEdge-node[simp]: v∈nodes (del-unEdge u e u ′ G) ←→ v∈nodes G
by (metis del-unEdge-def select-convs(1))

lemma [intro!]: finite (edges G) =⇒ finite (edges (del-unEdge u e u ′ G))

5

by (metis del-unEdge-def finite-Diff select-convs(2))

lemma [intro!]: finite (nodes G) =⇒ finite (nodes (del-unEdge u e u ′ G))
by (metis del-unEdge-def select-convs(1))

lemma [intro!]: finite (edges G) =⇒ finite (edges (rem-unPath ps G))
proof (induct ps arbitrary:G)

case Nil
thus ?case by simp

next
case (Cons x xs)
hence finite (edges (rem-unPath (x # xs) G)) = finite (edges (del-unEdge

(fst x) (fst (snd x)) (snd (snd x)) (rem-unPath xs G)))
by (metis rem-unPath.simps(2) rem-unPath-com surjective-pairing)

also have ...=finite (edges (rem-unPath xs G))
using del-unEdge-def
by (metis finite.emptyI finite-Diff2 finite-Diff-insert select-convs(2))

also have ...=True using Cons by auto
finally have ?case = True .
thus ?case by simp

qed

lemma del-UnEdge-frame[intro]:
x∈edges g =⇒ x 6=(v,e,v ′) =⇒x 6=(v ′,e,v) =⇒ x∈edges (del-unEdge v e v ′ g)
unfolding del-unEdge-def by auto

lemma [intro!]: finite (nodes G) =⇒ finite (odd-nodes-set G)
by (metis (lifting) mem-Collect-eq odd-nodes-set-def rev-finite-subset subsetI)

lemma [simp]: nodes (del-unEdge u e u ′ G)=nodes G
by (metis del-unEdge-def select-convs(1))

lemma [simp]: nodes (rem-unPath ps G) = nodes G
proof (induct ps)

case Nil
show ?case by simp

next
case (Cons x xs)
have nodes (rem-unPath (x # xs) G)=nodes (del-unEdge

(fst x) (fst (snd x)) (snd (snd x)) (rem-unPath xs G))
by (metis rem-unPath.simps(2) rem-unPath-com surjective-pairing)

also have ...=nodes (rem-unPath xs G) by auto
also have ...=nodes G using Cons by auto
finally show ?case .

qed

lemma [intro!]: finite (nodes G) =⇒ finite (nodes (rem-unPath ps G)) by auto

lemma in-set-rev-path[simp]: (v ′,w,v)∈set (rev-path ps) ←→ (v,w,v ′)∈set ps

6

proof (induct ps)
case Nil
thus ?case unfolding rev-path-def by auto

next
case (Cons x xs)
obtain x1 x2 x3 where x:x=(x1 ,x2 ,x3) by (metis prod-cases3)
have set (rev-path (x # xs))=set ((rev-path xs)@[(x3 ,x2 ,x1)])

unfolding rev-path-def
using x by auto

also have ...=set (rev-path xs) ∪ {(x3 ,x2 ,x1)} by auto
finally have set (rev-path (x # xs)) =set (rev-path xs) ∪ {(x3 ,x2 ,x1)} .
moreover have set (x#xs)= set xs ∪ {(x1 ,x2 ,x3)}

by (metis List.set-simps(2) insert-is-Un sup-commute x)
ultimately show ?case using Cons by auto

qed

lemma rem-unPath-edges:
edges(rem-unPath ps G) = edges G − (set ps ∪ set (rev-path ps))

proof (induct ps)
case Nil
show ?case unfolding rev-path-def by auto

next
case (Cons x xs)
obtain x1 x2 x3 where x: x=(x1 ,x2 ,x3) by (metis prod-cases3)
hence edges(rem-unPath (x#xs) G)= edges(del-unEdge x1 x2 x3 (rem-unPath

xs G))
by (metis rem-unPath.simps(2) rem-unPath-com)

also have ...=edges(rem-unPath xs G)−{(x1 ,x2 ,x3),(x3 ,x2 ,x1)}
by (metis del-unEdge-def select-convs(2))

also have ...= edges G − (set xs ∪ set (rev-path xs))−{(x1 ,x2 ,x3),(x3 ,x2 ,x1)}
by (metis Cons.hyps)

also have ...=edges G − (set (x#xs) ∪ set (rev-path (x#xs)))
proof −

have set (rev-path xs) ∪ {(x3 ,x2 ,x1)}=set ((rev-path xs)@[(x3 ,x2 ,x1)])
by (metis List.set-simps(2) empty-set set-append)

also have ...=set (rev-path (x#xs)) unfolding rev-path-def using x by auto
finally have set (rev-path xs) ∪ {(x3 ,x2 ,x1)}=set (rev-path (x#xs)) .
moreover have set xs ∪ {(x1 ,x2 ,x3)}=set (x#xs)

by (metis List.set-simps(2) insert-is-Un sup-commute x)
moreover have edges G − (set xs ∪ set (rev-path xs))−{(x1 ,x2 ,x3),(x3 ,x2 ,x1)}

=
edges G − ((set xs ∪ {(x1 ,x2 ,x3)}) ∪ (set (rev-path xs) ∪

{(x3 ,x2 ,x1)}))
by auto

ultimately show ?thesis by auto
qed

finally show ?case .
qed

7

lemma rem-unPath-graph [simp]:
rem-unPath (rev-path ps) G=rem-unPath ps G

proof −
have nodes(rem-unPath (rev-path ps) G)=nodes(rem-unPath ps G)

by auto
moreover have edges(rem-unPath (rev-path ps) G)=edges(rem-unPath ps G)

proof −
have set (rev-path ps) ∪ set (rev-path (rev-path ps)) = set ps ∪ set (rev-path

ps)
by auto

thus ?thesis by (metis rem-unPath-edges)
qed

ultimately show ?thesis by auto
qed

lemma distinct-rev-path[simp]: distinct (rev-path ps) ←→distinct ps
proof (induct ps)

case Nil
show ?case by auto

next
case (Cons x xs)
obtain x1 x2 x3 where x: x=(x1 ,x2 ,x3) by (metis prod-cases3)
hence distinct (rev-path (x # xs))=distinct ((rev-path xs)@[(x3 ,x2 ,x1)])

unfolding rev-path-def by auto
also have ...= (distinct (rev-path xs) ∧ (x3 ,x2 ,x1)/∈set (rev-path xs))

by (metis distinct.simps(2) distinct1-rotate rotate1 .simps(2))
also have ...=distinct (x#xs)

by (metis Cons.hyps distinct.simps(2) in-set-rev-path x)
finally have distinct (rev-path (x # xs))=distinct (x#xs) .
thus ?case .

qed

lemma (in valid-unMultigraph) is-path-rev: is-path v ′ (rev-path ps) v ←→ is-path
v ps v ′

proof (induct ps arbitrary: v)
case Nil
show ?case by auto

next
case (Cons x xs)
obtain x1 x2 x3 where x: x=(x1 ,x2 ,x3) by (metis prod-cases3)
hence is-path v ′ (rev-path (x # xs)) v=is-path v ′ ((rev-path xs) @[(x3 ,x2 ,x1)]) v

unfolding rev-path-def by auto
also have ...=(is-path v ′ (rev-path xs) x3 ∧ (x3 ,x2 ,x1)∈E ∧ is-path x1 [] v) by

auto
also have ...=(is-path x3 xs v ′ ∧ (x3 ,x2 ,x1)∈E ∧ is-path x1 [] v) using Cons.hyps

by auto
also have ...=is-path v (x#xs) v ′

8

by (metis corres is-path.simps(1) is-path.simps(2) is-path-memb x)
finally have is-path v ′ (rev-path (x # xs)) v=is-path v (x#xs) v ′ .
thus ?case .

qed

lemma (in valid-unMultigraph) singleton-distinct-path [intro]:
(v,w,v ′)∈E =⇒ is-trail v [(v,w,v ′)] v ′

by (metis E-validD(2) all-not-in-conv is-trail.simps set-empty)

lemma (in valid-unMultigraph) is-trail-path:
is-trail v ps v ′ ←→ is-path v ps v ′ ∧ distinct ps ∧ (set ps ∩ set (rev-path ps) =
{})
proof (induct ps arbitrary:v)

case Nil
show ?case by auto

next
case (Cons x xs)
obtain x1 x2 x3 where x: x=(x1 ,x2 ,x3) by (metis prod-cases3)
hence is-trail v (x#xs) v ′= (v=x1 ∧ (x1 ,x2 ,x3)∈E ∧

(x1 ,x2 ,x3)/∈set xs ∧(x3 ,x2 ,x1)/∈set xs ∧ is-trail x3 xs v ′)
by (metis is-trail.simps(2))

also have ...=(v=x1 ∧ (x1 ,x2 ,x3)∈E ∧ (x1 ,x2 ,x3)/∈set xs ∧(x3 ,x2 ,x1)/∈set xs
∧ is-path x3 xs v ′

∧ distinct xs ∧ (set xs ∩ set (rev-path xs)={}))
using Cons.hyps by auto

also have ...=(is-path v (x#xs) v ′ ∧ (x1 ,x2 ,x3) 6= (x3 ,x2 ,x1) ∧ (x1 ,x2 ,x3)/∈set
xs

∧(x3 ,x2 ,x1)/∈set xs ∧ distinct xs ∧ (set xs ∩ set (rev-path xs)={}))
by (metis append-Nil is-path.simps(1) is-path-simps(2) is-path-split ′ no-id x)

also have ...=(is-path v (x#xs) v ′ ∧ (x1 ,x2 ,x3) 6= (x3 ,x2 ,x1) ∧(x3 ,x2 ,x1)/∈set
xs

∧ distinct (x#xs) ∧ (set xs ∩ set (rev-path xs)={}))
by (metis (full-types) distinct.simps(2) x)

also have ...=(is-path v (x#xs) v ′ ∧ (x1 ,x2 ,x3) 6= (x3 ,x2 ,x1) ∧ distinct (x#xs)

∧ (x3 ,x2 ,x1)/∈set xs ∧ set xs ∩ set (rev-path (x#xs))={})
proof −

have set (rev-path (x#xs)) = set ((rev-path xs)@[(x3 ,x2 ,x1)]) using x by
auto

also have ... = set (rev-path xs) ∪ {(x3 ,x2 ,x1)} by auto
finally have set (rev-path (x#xs))=set (rev-path xs) ∪ {(x3 ,x2 ,x1)} .
thus ?thesis by blast

qed
also have ...=(is-path v (x#xs) v ′∧ distinct (x#xs) ∧ (set (x#xs) ∩ set (rev-path

(x#xs))={}))
proof −
have (x3 ,x2 ,x1)/∈set xs←→ (x1 ,x2 ,x3)/∈ set (rev-path xs) using in-set-rev-path

by auto

9

moreover have set (rev-path (x#xs))=set (rev-path xs) ∪ {(x3 ,x2 ,x1)}
unfolding rev-path-def using x by auto

ultimately have (x1 ,x2 ,x3) 6= (x3 ,x2 ,x1)∧ (x3 ,x2 ,x1)/∈set xs
←→ (x1 ,x2 ,x3)/∈ set (rev-path (x#xs)) by blast

thus ?thesis
by (metis (mono-tags) Int-iff Int-insert-left-if0 List.set-simps(2) empty-iff

insertI1 x)
qed

finally have is-trail v (x#xs) v ′←→(is-path v (x#xs) v ′∧ distinct (x#xs)
∧ (set (x#xs) ∩ set (rev-path (x#xs))={})) .

thus ?case .
qed

lemma (in valid-unMultigraph) is-trail-rev:
is-trail v ′ (rev-path ps) v ←→ is-trail v ps v ′

using rev-path-append is-trail-path is-path-rev distinct-rev-path
by (metis Int-commute distinct-append)

lemma (in valid-unMultigraph) is-trail-intro[intro]:
is-trail v ′ ps v =⇒ is-path v ′ ps v by (induct ps arbitrary:v ′,auto)

lemma (in valid-unMultigraph) is-trail-split:
is-trail v (p1@p2) v ′ =⇒ (∃ u. is-trail v p1 u ∧ is-trail u p2 v ′)

apply (induct p1 arbitrary: v,auto)
apply (metis is-trail-intro is-path-memb)
done

lemma (in valid-unMultigraph) is-trail-split ′:is-trail v (p1@(u,w,u ′)#p2) v ′

=⇒ is-trail v p1 u ∧ (u,w,u ′)∈E ∧ is-trail u ′ p2 v ′

by (metis is-trail.simps(2) is-trail-split)

lemma (in valid-unMultigraph) distinct-elim[simp]:
assumes is-trail v ((v1 ,w,v2)#ps) v ′

shows (v1 ,w,v2)∈edges(rem-unPath ps G) ←→ (v1 ,w,v2)∈E
proof

assume (v1 , w, v2) ∈ edges (rem-unPath ps G)
thus (v1 , w, v2) ∈ E by (metis assms is-trail.simps(2))

next
assume (v1 , w, v2) ∈ E
have (v1 ,w,v2)/∈set ps ∧ (v2 ,w,v1)/∈set ps by (metis assms is-trail.simps(2))
hence (v1 ,w,v2)/∈set ps ∧ (v1 ,w,v2)/∈set (rev-path ps) by simp
hence (v1 ,w,v2)/∈set ps ∪ set (rev-path ps) by simp
hence (v1 ,w,v2)∈edges G − (set ps ∪ set (rev-path ps))

using ‹(v1 , w, v2) ∈ E› by auto
thus (v1 ,w,v2)∈edges(rem-unPath ps G)

by (metis rem-unPath-edges)
qed

lemma distinct-path-subset:

10

assumes valid-unMultigraph G1 valid-unMultigraph G2 edges G1 ⊆edges G2
nodes G1 ⊆nodes G2

assumes distinct-G1 :valid-unMultigraph.is-trail G1 v ps v ′

shows valid-unMultigraph.is-trail G2 v ps v ′ using distinct-G1
proof (induct ps arbitrary:v)

case Nil
hence v=v ′∧v ′∈nodes G1

by (metis (full-types) assms(1) valid-unMultigraph.is-trail.simps(1))
hence v=v ′∧v ′∈nodes G2 using ‹nodes G1 ⊆ nodes G2 › by auto
thus ?case by (metis assms(2) valid-unMultigraph.is-trail.simps(1))

next
case (Cons x xs)
obtain x1 x2 x3 where x:x=(x1 ,x2 ,x3) by (metis prod-cases3)
hence valid-unMultigraph.is-trail G1 x3 xs v ′

by (metis Cons.prems assms(1) valid-unMultigraph.is-trail.simps(2))
hence valid-unMultigraph.is-trail G2 x3 xs v ′ using Cons by auto
moreover have x∈edges G1

by (metis Cons.prems assms(1) valid-unMultigraph.is-trail.simps(2) x)
hence x∈edges G2 using ‹edges G1 ⊆ edges G2 › by auto
moreover have v=x1∧(x1 ,x2 ,x3)/∈set xs∧(x3 ,x2 ,x1)/∈set xs

by (metis Cons.prems assms(1) valid-unMultigraph.is-trail.simps(2) x)
hence v=x1 (x1 ,x2 ,x3)/∈set xs (x3 ,x2 ,x1)/∈set xs by auto
ultimately show ?case by (metis assms(2) valid-unMultigraph.is-trail.simps(2)

x)
qed

lemma (in valid-unMultigraph) distinct-path-intro ′:
assumes valid-unMultigraph.is-trail (rem-unPath p G) v ps v ′

shows is-trail v ps v ′

proof −
have valid:valid-unMultigraph (rem-unPath p G)

using rem-unPath-valid[OF valid-unMultigraph-axioms,of p] by auto
moreover have nodes (rem-unPath p G) ⊆ V by auto
moreover have edges (rem-unPath p G) ⊆ E

using rem-unPath-edges by auto
ultimately show ?thesis

using distinct-path-subset[of rem-unPath p G G] valid-unMultigraph-axioms
assms

by auto
qed

lemma (in valid-unMultigraph) distinct-path-intro:
assumes valid-unMultigraph.is-trail (del-unEdge x1 x2 x3 G) v ps v ′

shows is-trail v ps v ′

by (metis (full-types) assms distinct-path-intro ′ rem-unPath.simps(1)
rem-unPath.simps(2))

lemma (in valid-unMultigraph) distinct-elim-rev[simp]:
assumes is-trail v ((v1 ,w,v2)#ps) v ′

11

shows (v2 ,w,v1)∈edges(rem-unPath ps G) ←→ (v2 ,w,v1)∈E
proof −

have valid-unMultigraph (rem-unPath ps G) using valid-unMultigraph-axioms
by auto

hence (v2 ,w,v1)∈edges(rem-unPath ps G)←→(v1 ,w,v2)∈edges(rem-unPath ps
G)

by (metis valid-unMultigraph.corres)
moreover have (v2 ,w,v1)∈E←→(v1 ,w,v2)∈E using corres by simp
ultimately show ?thesis using distinct-elim by (metis assms)

qed

lemma (in valid-unMultigraph) del-UnEdge-even:
assumes (v,w,v ′) ∈ E finite E
shows v∈odd-nodes-set(del-unEdge v w v ′ G) ←→ even (degree v G)

proof −
have degree v (del-unEdge v w v ′ G) + 1=degree v G

using del-edge-undirected-degree-plus corres by (metis assms)
from this [symmetric] have odd (degree v (del-unEdge v w v ′ G)) = even (degree

v G)
by simp

moreover have v∈nodes (del-unEdge v w v ′ G) by (metis E-validD(1) assms(1)
del-UnEdge-node)

ultimately show ?thesis unfolding odd-nodes-set-def by auto
qed

lemma (in valid-unMultigraph) del-UnEdge-even ′:
assumes (v,w,v ′) ∈ E finite E
shows v ′∈odd-nodes-set(del-unEdge v w v ′ G) ←→ even (degree v ′ G)

proof −
show ?thesis by (metis (full-types) assms corres del-UnEdge-even delete-edge-sym)

qed

lemma del-UnEdge-even-even:
assumes valid-unMultigraph G finite(edges G) finite(nodes G) (v, w, v ′)∈edges

G
assumes parity-assms: even (degree v G) even (degree v ′ G)
shows num-of-odd-nodes(del-unEdge v w v ′ G)=num-of-odd-nodes G + 2

proof −
interpret G:valid-unMultigraph by fact
have v∈odd-nodes-set(del-unEdge v w v ′ G)

by (metis G.del-UnEdge-even assms(2) assms(4) parity-assms(1))
moreover have v ′∈odd-nodes-set(del-unEdge v w v ′ G)

by (metis G.del-UnEdge-even ′ assms(2) assms(4) parity-assms(2))
ultimately have extra-odd-nodes:{v,v ′} ⊆ odd-nodes-set(del-unEdge v w v ′ G)

unfolding odd-nodes-set-def by auto
moreover have v /∈odd-nodes-set G and v ′/∈odd-nodes-set G

using parity-assms unfolding odd-nodes-set-def by auto
hence vv ′-odd-disjoint: {v,v ′} ∩ odd-nodes-set G = {} by auto

12

moreover have odd-nodes-set(del-unEdge v w v ′ G) −{v,v ′}⊆odd-nodes-set G
proof

fix x
assume x-odd-set: x ∈ odd-nodes-set (del-unEdge v w v ′ G) − {v, v ′}
hence degree x (del-unEdge v w v ′ G) = degree x G

by (metis Diff-iff G.degree-frame assms(2))
hence odd(degree x G) using x-odd-set

unfolding odd-nodes-set-def by auto
moreover have x ∈ nodes G using x-odd-set unfolding odd-nodes-set-def

by auto
ultimately show x ∈ odd-nodes-set G unfolding odd-nodes-set-def by auto

qed
moreover have odd-nodes-set G ⊆ odd-nodes-set(del-unEdge v w v ′ G)

proof
fix x
assume x-odd-set: x ∈ odd-nodes-set G
hence x /∈{v,v ′} =⇒ odd(degree x (del-unEdge v w v ′ G))
by (metis (lifting) G.degree-frame assms(2) mem-Collect-eq odd-nodes-set-def)
hence x /∈{v,v ′} =⇒ x∈odd-nodes-set(del-unEdge v w v ′ G)

using x-odd-set del-UnEdge-node unfolding odd-nodes-set-def by auto
moreover have x∈{v,v ′} =⇒ x∈odd-nodes-set(del-unEdge v w v ′ G)

using extra-odd-nodes by auto
ultimately show x ∈ odd-nodes-set (del-unEdge v w v ′ G) by auto

qed
ultimately have odd-nodes-set(del-unEdge v w v ′ G)=odd-nodes-set G ∪ {v,v ′}

by auto
thus num-of-odd-nodes(del-unEdge v w v ′ G) = num-of-odd-nodes G + 2

proof −
assume odd-nodes-set(del-unEdge v w v ′ G)=odd-nodes-set G ∪ {v,v ′}
moreover have v 6=v ′ using G.no-id ‹(v,w,v ′)∈edges G› by auto
hence card{v,v ′}=2 by simp
moreover have odd-nodes-set G ∩ {v,v ′} = {}

using vv ′-odd-disjoint by auto
moreover have finite(odd-nodes-set G)
by (metis (lifting) assms(3) mem-Collect-eq odd-nodes-set-def rev-finite-subset

subsetI)
moreover have finite {v,v ′} by auto

ultimately show ?thesis unfolding num-of-odd-nodes-def using card-Un-disjoint
by metis

qed
qed

lemma del-UnEdge-even-odd:
assumes valid-unMultigraph G finite(edges G) finite(nodes G) (v, w, v ′)∈edges

G
assumes parity-assms: even (degree v G) odd (degree v ′ G)
shows num-of-odd-nodes(del-unEdge v w v ′ G)=num-of-odd-nodes G

proof −
interpret G : valid-unMultigraph by fact

13

have odd-v:v∈odd-nodes-set(del-unEdge v w v ′ G)
by (metis G.del-UnEdge-even assms(2) assms(4) parity-assms(1))

have not-odd-v ′:v ′/∈odd-nodes-set(del-unEdge v w v ′ G)
by (metis G.del-UnEdge-even ′ assms(2) assms(4) parity-assms(2))

have odd-nodes-set(del-unEdge v w v ′ G) ∪ {v ′} ⊆odd-nodes-set G ∪ {v}
proof

fix x
assume x-prems: x ∈ odd-nodes-set (del-unEdge v w v ′ G) ∪ {v ′}
have x=v ′ =⇒x∈odd-nodes-set G ∪ {v}

using parity-assms
by (metis (lifting) G.E-validD(2) Un-def assms(4) mem-Collect-eq odd-nodes-set-def

)
moreover have x=v =⇒ x∈odd-nodes-set G ∪ {v}

by (metis insertI1 insert-is-Un sup-commute)
moreover have x /∈{v,v ′} =⇒ x ∈ odd-nodes-set (del-unEdge v w v ′ G)

using x-prems by auto
hence x /∈{v,v ′} =⇒ x ∈ odd-nodes-set G unfolding odd-nodes-set-def

using G.degree-frame ‹finite (edges G)› by auto
hence x /∈{v,v ′} =⇒ x∈odd-nodes-set G ∪ {v} by simp
ultimately show x ∈ odd-nodes-set G ∪ {v} by auto

qed
moreover have odd-nodes-set G ∪ {v} ⊆ odd-nodes-set(del-unEdge v w v ′ G) ∪
{v ′}

proof
fix x
assume x-prems: x ∈ odd-nodes-set G ∪ {v}
have x=v =⇒ x ∈ odd-nodes-set (del-unEdge v w v ′ G) ∪ {v ′}

by (metis UnI1 odd-v)
moreover have x=v ′ =⇒ x ∈ odd-nodes-set (del-unEdge v w v ′ G) ∪ {v ′}

by auto
moreover have x /∈{v,v ′} =⇒ x ∈ odd-nodes-set G ∪ {v} using x-prems by

auto
hence x /∈{v,v ′} =⇒ x∈odd-nodes-set (del-unEdge v w v ′ G) unfolding

odd-nodes-set-def
using G.degree-frame ‹finite (edges G)› by auto

hence x /∈{v,v ′} =⇒ x ∈ odd-nodes-set (del-unEdge v w v ′ G) ∪ {v ′} by simp
ultimately show x ∈ odd-nodes-set (del-unEdge v w v ′ G) ∪ {v ′} by auto

qed
ultimately have odd-nodes-set(del-unEdge v w v ′ G) ∪ {v ′} = odd-nodes-set G
∪ {v}

by auto
moreover have odd-nodes-set G ∩ {v} = {}

using parity-assms unfolding odd-nodes-set-def by auto
moreover have odd-nodes-set(del-unEdge v w v ′ G) ∩ {v ′}={}

by (metis Int-insert-left-if0 inf-bot-left inf-commute not-odd-v ′)
moreover have finite (odd-nodes-set(del-unEdge v w v ′ G))

using ‹finite (nodes G)› by auto
moreover have finite (odd-nodes-set G) using ‹finite (nodes G)› by auto
ultimately have card(odd-nodes-set G) + card {v} =

14

card(odd-nodes-set(del-unEdge v w v ′ G)) + card {v ′}
using card-Un-disjoint[of odd-nodes-set (del-unEdge v w v ′ G) {v ′}]

card-Un-disjoint[of odd-nodes-set G {v}]
by auto

thus ?thesis unfolding num-of-odd-nodes-def by simp
qed

lemma del-UnEdge-odd-even:
assumes valid-unMultigraph G finite(edges G) finite(nodes G) (v, w, v ′)∈edges

G
assumes parity-assms: odd (degree v G) even (degree v ′ G)
shows num-of-odd-nodes(del-unEdge v w v ′ G)=num-of-odd-nodes G

by (metis assms del-UnEdge-even-odd delete-edge-sym parity-assms valid-unMultigraph.corres)

lemma del-UnEdge-odd-odd:
assumes valid-unMultigraph G finite(edges G) finite(nodes G) (v, w, v ′)∈edges

G
assumes parity-assms: odd (degree v G) odd (degree v ′ G)
shows num-of-odd-nodes G=num-of-odd-nodes(del-unEdge v w v ′ G)+2

proof −
interpret G:valid-unMultigraph by fact
have v /∈odd-nodes-set(del-unEdge v w v ′ G)

by (metis G.del-UnEdge-even assms(2) assms(4) parity-assms(1))
moreover have v ′/∈odd-nodes-set(del-unEdge v w v ′ G)

by (metis G.del-UnEdge-even ′ assms(2) assms(4) parity-assms(2))
ultimately have vv ′-disjoint: {v,v ′} ∩ odd-nodes-set(del-unEdge v w v ′ G) = {}

by (metis (full-types) Int-insert-left-if0 inf-bot-left)
moreover have extra-odd-nodes:{v,v ′} ⊆ odd-nodes-set(G)

unfolding odd-nodes-set-def
using ‹(v,w,v ′)∈edges G›
by (metis (lifting) G.E-validD empty-subsetI insert-subset mem-Collect-eq par-

ity-assms)
moreover have odd-nodes-set G −{v,v ′}⊆odd-nodes-set (del-unEdge v w v ′ G)

proof
fix x
assume x-odd-set: x ∈ odd-nodes-set G − {v, v ′}
hence degree x G = degree x (del-unEdge v w v ′ G)

by (metis Diff-iff G.degree-frame assms(2))
hence odd(degree x (del-unEdge v w v ′ G)) using x-odd-set

unfolding odd-nodes-set-def by auto
moreover have x ∈ nodes (del-unEdge v w v ′ G)

using x-odd-set unfolding odd-nodes-set-def by auto
ultimately show x ∈ odd-nodes-set (del-unEdge v w v ′ G)

unfolding odd-nodes-set-def by auto
qed

moreover have odd-nodes-set (del-unEdge v w v ′ G) ⊆ odd-nodes-set G
proof

15

fix x
assume x-odd-set: x ∈ odd-nodes-set (del-unEdge v w v ′ G)
hence x /∈{v,v ′} =⇒ odd(degree x G)

using assms G.degree-frame unfolding odd-nodes-set-def
by auto

hence x /∈{v,v ′} =⇒ x∈odd-nodes-set G
using x-odd-set del-UnEdge-node unfolding odd-nodes-set-def
by auto

moreover have x∈{v,v ′} =⇒ x∈odd-nodes-set G
using extra-odd-nodes by auto

ultimately show x ∈ odd-nodes-set G by auto
qed

ultimately have odd-nodes-set G=odd-nodes-set (del-unEdge v w v ′ G) ∪ {v,v ′}

by auto
thus ?thesis

proof −
assume odd-nodes-set G=odd-nodes-set (del-unEdge v w v ′ G) ∪ {v,v ′}
moreover have odd-nodes-set (del-unEdge v w v ′ G) ∩ {v,v ′} = {}

using vv ′-disjoint by auto
moreover have finite(odd-nodes-set (del-unEdge v w v ′ G))

using assms del-UnEdge-node finite-subset unfolding odd-nodes-set-def
by auto

moreover have finite {v,v ′} by auto
ultimately have card(odd-nodes-set G)

= card(odd-nodes-set (del-unEdge v w v ′ G)) + card{v,v ′}
unfolding num-of-odd-nodes-def
using card-Un-disjoint
by metis

moreover have v 6=v ′ using G.no-id ‹(v,w,v ′)∈edges G› by auto
hence card{v,v ′}=2 by simp
ultimately show ?thesis unfolding num-of-odd-nodes-def by simp

qed
qed

lemma (in valid-unMultigraph) rem-UnPath-parity-v ′:
assumes finite E is-trail v ps v ′

shows v 6=v ′←→ (odd (degree v ′ (rem-unPath ps G)) = even(degree v ′ G)) using
assms
proof (induct ps arbitrary:v)

case Nil
thus ?case by (metis is-trail.simps(1) rem-unPath.simps(1))

next
case (Cons x xs) print-cases
obtain x1 x2 x3 where x: x=(x1 ,x2 ,x3) by (metis prod-cases3)
hence rem-x:odd (degree v ′ (rem-unPath (x#xs) G)) = odd(degree v ′ (del-unEdge

x1 x2 x3 (rem-unPath xs G)))
by (metis rem-unPath.simps(2) rem-unPath-com)

have x3=v ′ =⇒ ?case

16

proof (cases v=v ′)
case True
assume x3=v ′

have x1=v ′ using x by (metis Cons.prems(2) True is-trail.simps(2))
thus ?thesis using ‹x3=v ′› by (metis Cons.prems(2) is-trail.simps(2) no-id

x)
next

case False
assume x3=v ′

have odd (degree v ′ (rem-unPath (x # xs) G)) =odd(degree v ′ (
del-unEdge x1 x2 x3 (rem-unPath xs G))) using rem-x .

also have ...=odd(degree v ′ (rem-unPath xs G) − 1)
proof −

have finite (edges (rem-unPath xs G))
by (metis (full-types) assms(1) finite-Diff rem-unPath-edges)

moreover have (x1 ,x2 ,x3) ∈edges(rem-unPath xs G)
by (metis Cons.prems(2) distinct-elim is-trail.simps(2) x)

moreover have (x3 ,x2 ,x1) ∈edges(rem-unPath xs G)
by (metis Cons.prems(2) corres distinct-elim-rev is-trail.simps(2) x)

ultimately show ?thesis
by (metis ‹x3 = v ′› del-edge-undirected-degree-minus delete-edge-sym x)

qed
also have ...=even(degree v ′ (rem-unPath xs G))

proof −
have (x1 ,x2 ,x3)∈E by (metis Cons.prems(2) is-trail.simps(2) x)
hence (x3 ,x2 ,x1)∈edges (rem-unPath xs G)

by (metis Cons.prems(2) corres distinct-elim-rev x)
hence (x3 ,x2 ,x1)∈{e ∈ edges (rem-unPath xs G). fst e = v ′}

using ‹x3=v ′› by (metis (mono-tags) fst-conv mem-Collect-eq)
moreover have finite {e ∈ edges (rem-unPath xs G). fst e = v ′}

using ‹finite E› by auto
ultimately have degree v ′ (rem-unPath xs G)6=0

unfolding degree-def by auto
thus ?thesis by auto

qed
also have ...=even (degree v ′ G)

using ‹x3 = v ′› assms
by (metis (mono-tags) Cons.hyps Cons.prems(2) is-trail.simps(2) x)

finally have odd (degree v ′ (rem-unPath (x # xs) G))=even (degree v ′ G) .
thus ?thesis by (metis False)

qed
moreover have x3 6=v ′=⇒?case

proof (cases v=v ′)
case True
assume x3 6=v ′

have odd (degree v ′ (rem-unPath (x # xs) G)) =odd(degree v ′ (
del-unEdge x1 x2 x3 (rem-unPath xs G))) using rem-x .

also have ...=odd(degree v ′ (rem-unPath xs G) − 1)
proof −

17

have finite (edges (rem-unPath xs G))
by (metis (full-types) assms(1) finite-Diff rem-unPath-edges)

moreover have (x1 ,x2 ,x3) ∈edges(rem-unPath xs G)
by (metis Cons.prems(2) distinct-elim is-trail.simps(2) x)

moreover have (x3 ,x2 ,x1) ∈edges(rem-unPath xs G)
by (metis Cons.prems(2) corres distinct-elim-rev is-trail.simps(2) x)

ultimately show ?thesis
using True x

by (metis Cons.prems(2) del-edge-undirected-degree-minus is-trail.simps(2))
qed

also have ...=even(degree v ′ (rem-unPath xs G))
proof −

have (x1 ,x2 ,x3)∈E by (metis Cons.prems(2) is-trail.simps(2) x)
hence (x1 ,x2 ,x3)∈edges (rem-unPath xs G)

by (metis Cons.prems(2) distinct-elim x)
hence (x1 ,x2 ,x3)∈{e ∈ edges (rem-unPath xs G). fst e = v ′}

using ‹v=v ′› x Cons
by (metis (lifting, mono-tags) fst-conv is-trail.simps(2) mem-Collect-eq)

moreover have finite {e ∈ edges (rem-unPath xs G). fst e = v ′}
using ‹finite E› by auto

ultimately have degree v ′ (rem-unPath xs G)6=0
unfolding degree-def by auto

thus ?thesis by auto
qed

also have ...6=even (degree v ′ G)
using ‹x3 6= v ′› assms
by (metis Cons.hyps Cons.prems(2)is-trail.simps(2) x)

finally have odd (degree v ′ (rem-unPath (x # xs) G))6=even (degree v ′ G) .
thus ?thesis by (metis True)

next
case False
assume x3 6=v ′

have odd (degree v ′ (rem-unPath (x # xs) G)) =odd(degree v ′ (
del-unEdge x1 x2 x3 (rem-unPath xs G))) using rem-x .

also have ...=odd(degree v ′ (rem-unPath xs G))
proof −

have v=x1 by (metis Cons.prems(2) is-trail.simps(2) x)
hence v ′/∈{x1 ,x3} by (metis (mono-tags) False ‹x3 6= v ′› empty-iff

insert-iff)
moreover have valid-unMultigraph (rem-unPath xs G)

using valid-unMultigraph-axioms by auto
moreover have finite (edges (rem-unPath xs G))

by (metis (full-types) assms(1) finite-Diff rem-unPath-edges)
ultimately have degree v ′ (del-unEdge x1 x2 x3 (rem-unPath xs G))

=degree v ′ (rem-unPath xs G) using degree-frame
by (metis valid-unMultigraph.degree-frame)

thus ?thesis by simp
qed

also have ...=even (degree v ′ G)

18

using assms x ‹x3 6= v ′›
by (metis Cons.hyps Cons.prems(2) is-trail.simps(2))

finally have odd (degree v ′ (rem-unPath (x # xs) G))=even (degree v ′ G) .
thus ?thesis by (metis False)

qed
ultimately show ?case by auto

qed

lemma (in valid-unMultigraph) rem-UnPath-parity-v:
assumes finite E is-trail v ps v ′

shows v 6=v ′←→ (odd (degree v (rem-unPath ps G)) = even(degree v G))
by (metis assms is-trail-rev rem-UnPath-parity-v ′ rem-unPath-graph)

lemma (in valid-unMultigraph) rem-UnPath-parity-others:
assumes finite E is-trail v ps v ′ n /∈{v,v ′}
shows even (degree n (rem-unPath ps G)) = even(degree n G) using assms

proof (induct ps arbitrary: v)
case Nil
thus ?case by auto

next
case (Cons x xs)
obtain x1 x2 x3 where x:x=(x1 ,x2 ,x3) by (metis prod-cases3)
hence even (degree n (rem-unPath (x#xs) G))= even (degree n (

del-unEdge x1 x2 x3 (rem-unPath xs G)))
by (metis rem-unPath.simps(2) rem-unPath-com)

have n=x3 =⇒?case
proof −

assume n=x3
have even (degree n (rem-unPath (x#xs) G))= even (degree n (

del-unEdge x1 x2 x3 (rem-unPath xs G)))
by (metis rem-unPath.simps(2) rem-unPath-com x)

also have ...=even(degree n (rem-unPath xs G) − 1)
proof −

have finite (edges (rem-unPath xs G))
by (metis (full-types) assms(1) finite-Diff rem-unPath-edges)

moreover have (x1 ,x2 ,x3) ∈edges(rem-unPath xs G)
by (metis Cons.prems(2) distinct-elim is-trail.simps(2) x)

moreover have (x3 ,x2 ,x1) ∈edges(rem-unPath xs G)
by (metis Cons.prems(2) corres distinct-elim-rev is-trail.simps(2) x)

ultimately show ?thesis
using ‹n = x3 › del-edge-undirected-degree-minus ′

by auto
qed

also have ...=odd(degree n (rem-unPath xs G))
proof −

have (x1 ,x2 ,x3)∈E by (metis Cons.prems(2) is-trail.simps(2) x)
hence (x3 ,x2 ,x1)∈edges (rem-unPath xs G)

by (metis Cons.prems(2) corres distinct-elim-rev x)
hence (x3 ,x2 ,x1)∈{e ∈ edges (rem-unPath xs G). fst e = n}

19

using ‹n=x3 › by (metis (mono-tags) fst-conv mem-Collect-eq)
moreover have finite {e ∈ edges (rem-unPath xs G). fst e = n}

using ‹finite E› by auto
ultimately have degree n (rem-unPath xs G) 6=0

unfolding degree-def by auto
thus ?thesis by auto

qed
also have ...=even(degree n G)

proof −
have x3 6=v ′ by (metis ‹n = x3 › assms(3) insert-iff)
hence odd (degree x3 (rem-unPath xs G)) = even(degree x3 G)

using Cons assms
by (metis is-trail.simps(2) rem-UnPath-parity-v x)

thus ?thesis using ‹n=x3 › by auto
qed

finally have even (degree n (rem-unPath (x#xs) G))=even(degree n G) .
thus ?thesis .

qed
moreover have n 6=x3 =⇒?case

proof −
assume n 6=x3
have even (degree n (rem-unPath (x#xs) G))= even (degree n (

del-unEdge x1 x2 x3 (rem-unPath xs G)))
by (metis rem-unPath.simps(2) rem-unPath-com x)

also have ...=even(degree n (rem-unPath xs G))
proof −

have v=x1 by (metis Cons.prems(2) is-trail.simps(2) x)
hence n /∈{x1 ,x3} by (metis Cons.prems(3) ‹n 6= x3 › insertE insertI1

singletonE)
moreover have valid-unMultigraph (rem-unPath xs G)

using valid-unMultigraph-axioms by auto
moreover have finite (edges (rem-unPath xs G))

by (metis (full-types) assms(1) finite-Diff rem-unPath-edges)
ultimately have degree n (del-unEdge x1 x2 x3 (rem-unPath xs G))

=degree n (rem-unPath xs G) using degree-frame
by (metis valid-unMultigraph.degree-frame)

thus ?thesis by simp
qed

also have ...=even(degree n G)
using Cons assms ‹n 6= x3 › x by auto

finally have even (degree n (rem-unPath (x#xs) G))=even(degree n G) .
thus ?thesis .

qed
ultimately show ?case by auto

qed

lemma (in valid-unMultigraph) rem-UnPath-even:
assumes finite E finite V is-trail v ps v ′

assumes parity-assms: even (degree v ′ G)

20

shows num-of-odd-nodes (rem-unPath ps G) = num-of-odd-nodes G
+ (if even (degree v G)∧ v 6=v ′ then 2 else 0) using assms

proof (induct ps arbitrary:v)
case Nil
thus ?case by auto

next
case (Cons x xs)
obtain x1 x2 x3 where x:x=(x1 ,x2 ,x3) by (metis prod-cases3)
have fin-nodes: finite (nodes (rem-unPath xs G)) using Cons by auto
have fin-edges: finite (edges (rem-unPath xs G)) using Cons by auto
have valid-rem-xs: valid-unMultigraph (rem-unPath xs G) using valid-unMultigraph-axioms

by auto
have x-in:(x1 ,x2 ,x3)∈edges (rem-unPath xs G)

by (metis (full-types) Cons.prems(3) distinct-elim is-trail.simps(2) x)
have even (degree x1 (rem-unPath xs G))

=⇒ even(degree x3 (rem-unPath xs G)) =⇒ ?case
proof −

assume parity-x1-x3 : even (degree x1 (rem-unPath xs G))
even(degree x3 (rem-unPath xs G))

have num-of-odd-nodes (rem-unPath (x#xs) G)= num-of-odd-nodes
(del-unEdge x1 x2 x3 (rem-unPath xs G))

by (metis rem-unPath.simps(2) rem-unPath-com x)
also have ... =num-of-odd-nodes (rem-unPath xs G)+2
using parity-x1-x3 fin-nodes fin-edges valid-rem-xs x-in del-UnEdge-even-even

by metis
also have ...=num-of-odd-nodes G+(if even(degree x3 G) ∧ x3 6=v ′ then 2 else

0)+2
using Cons.hyps[OF ‹finite E› ‹finite V ›, of x3] ‹is-trail v (x # xs) v ′›

‹even (degree v ′ G)› x
by auto

also have ...=num-of-odd-nodes G+2
proof −
have even(degree x3 G) ∧ x3 6=v ′←→ odd (degree x3 (rem-unPath xs G))

using Cons.prems assms
by (metis is-trail.simps(2) parity-x1-x3 (2) rem-UnPath-parity-v x)

thus ?thesis using parity-x1-x3 (2) by auto
qed

also have ...=num-of-odd-nodes G+(if even(degree v G) ∧ v 6=v ′ then 2 else
0)

proof −
have x1 6=x3 by (metis valid-rem-xs valid-unMultigraph.no-id x-in)
moreover hence x1 6=v ′

using Cons assms
by (metis is-trail.simps(2) parity-x1-x3 (1) rem-UnPath-parity-v ′ x)

ultimately have x1 /∈{x3 ,v ′} by auto
hence even(degree x1 G)

using Cons.prems(3) assms(1) assms(2) parity-x1-x3 (1)

21

by (metis (full-types) is-trail.simps(2) rem-UnPath-parity-others x)
hence even(degree x1 G) ∧ x1 6=v ′ using ‹x1 6= v ′› by auto

hence even(degree v G) ∧ v 6=v ′ by (metis Cons.prems(3) is-trail.simps(2)
x)

thus ?thesis by auto
qed

finally have num-of-odd-nodes (rem-unPath (x#xs) G)=
num-of-odd-nodes G+(if even(degree v G) ∧ v 6=v ′ then 2 else

0) .
thus ?thesis .

qed
moreover have even (degree x1 (rem-unPath xs G)) =⇒

odd(degree x3 (rem-unPath xs G)) =⇒ ?case
proof −

assume parity-x1-x3 : even (degree x1 (rem-unPath xs G))
odd (degree x3 (rem-unPath xs G))

have num-of-odd-nodes (rem-unPath (x#xs) G)= num-of-odd-nodes
(del-unEdge x1 x2 x3 (rem-unPath xs G))

by (metis rem-unPath.simps(2) rem-unPath-com x)
also have ... =num-of-odd-nodes (rem-unPath xs G)

using parity-x1-x3 fin-nodes fin-edges valid-rem-xs x-in
by (metis del-UnEdge-even-odd)

also have ...=num-of-odd-nodes G+(if even(degree x3 G) ∧ x3 6=v ′ then 2 else
0)

using Cons.hyps Cons.prems(3) assms(1) assms(2) parity-assms x
by auto

also have ...=num-of-odd-nodes G+2
proof −
have even(degree x3 G) ∧ x3 6=v ′←→ odd (degree x3 (rem-unPath xs G))

using Cons.prems assms
by (metis is-trail.simps(2) parity-x1-x3 (2) rem-UnPath-parity-v x)

thus ?thesis using parity-x1-x3 (2) by auto
qed

also have ...=num-of-odd-nodes G+(if even(degree v G) ∧ v 6=v ′ then 2 else
0)

proof −
have x1 6=x3 by (metis valid-rem-xs valid-unMultigraph.no-id x-in)
moreover hence x1 6=v ′

using Cons assms
by (metis is-trail.simps(2) parity-x1-x3 (1) rem-UnPath-parity-v ′ x)

ultimately have x1 /∈{x3 ,v ′} by auto
hence even(degree x1 G)

using Cons.prems(3) assms(1) assms(2) parity-x1-x3 (1)
by (metis (full-types) is-trail.simps(2) rem-UnPath-parity-others x)

hence even(degree x1 G) ∧ x1 6=v ′ using ‹x1 6= v ′› by auto
hence even(degree v G) ∧ v 6=v ′ by (metis Cons.prems(3) is-trail.simps(2)

x)
thus ?thesis by auto

qed

22

finally have num-of-odd-nodes (rem-unPath (x#xs) G)=
num-of-odd-nodes G+(if even(degree v G) ∧ v 6=v ′ then 2 else

0) .
thus ?thesis .

qed
moreover have odd (degree x1 (rem-unPath xs G)) =⇒

even(degree x3 (rem-unPath xs G)) =⇒ ?case
proof −

assume parity-x1-x3 : odd (degree x1 (rem-unPath xs G))
even (degree x3 (rem-unPath xs G))

have num-of-odd-nodes (rem-unPath (x#xs) G)= num-of-odd-nodes
(del-unEdge x1 x2 x3 (rem-unPath xs G))

by (metis rem-unPath.simps(2) rem-unPath-com x)
also have ... =num-of-odd-nodes (rem-unPath xs G)

using parity-x1-x3 fin-nodes fin-edges valid-rem-xs x-in
by (metis del-UnEdge-odd-even)

also have ...=num-of-odd-nodes G+(if even(degree x3 G) ∧ x3 6=v ′ then 2 else
0)

using Cons.hyps Cons.prems(3) assms(1) assms(2) parity-assms x
by auto

also have ...=num-of-odd-nodes G
proof −
have even(degree x3 G) ∧ x3 6=v ′←→ odd (degree x3 (rem-unPath xs G))

using Cons.prems assms
by (metis is-trail.simps(2) parity-x1-x3 (2) rem-UnPath-parity-v x)

thus ?thesis using parity-x1-x3 (2) by auto
qed

also have ...=num-of-odd-nodes G+(if even(degree v G) ∧ v 6=v ′ then 2 else
0)

proof (cases v 6=v ′)
case True
have x1 6=x3 by (metis valid-rem-xs valid-unMultigraph.no-id x-in)
moreover have is-trail x3 xs v ′

by (metis Cons.prems(3) is-trail.simps(2) x)
ultimately have odd (degree x1 (rem-unPath xs G))

←→ odd(degree x1 G)
using True parity-x1-x3 (1) rem-UnPath-parity-others x Cons.prems(3)

assms(1) assms(2)
by auto

hence odd(degree x1 G) by (metis parity-x1-x3 (1))
thus ?thesis

by (metis (mono-tags) Cons.prems(3) Nat.add-0-right is-trail.simps(2)
x)

next
case False
then show ?thesis by auto

qed
finally have num-of-odd-nodes (rem-unPath (x#xs) G)=

num-of-odd-nodes G+(if even(degree v G) ∧ v 6=v ′ then 2 else

23

0) .
thus ?thesis .

qed
moreover have odd (degree x1 (rem-unPath xs G)) =⇒

odd(degree x3 (rem-unPath xs G)) =⇒ ?case
proof −

assume parity-x1-x3 : odd (degree x1 (rem-unPath xs G))
odd (degree x3 (rem-unPath xs G))

have num-of-odd-nodes (rem-unPath (x#xs) G)= num-of-odd-nodes
(del-unEdge x1 x2 x3 (rem-unPath xs G))

by (metis rem-unPath.simps(2) rem-unPath-com x)
also have ... =num-of-odd-nodes (rem-unPath xs G)−(2 ::nat)

using del-UnEdge-odd-odd
by (metis add-implies-diff fin-edges fin-nodes parity-x1-x3 valid-rem-xs x-in)

also have ...=num-of-odd-nodes G+(if even(degree x3 G) ∧ x3 6=v ′ then 2 else
0)−(2 ::nat)

using Cons assms
by (metis is-trail.simps(2) x)

also have ...=num-of-odd-nodes G
proof −
have even(degree x3 G) ∧ x3 6=v ′←→ odd (degree x3 (rem-unPath xs G))

using Cons.prems assms
by (metis is-trail.simps(2) parity-x1-x3 (2) rem-UnPath-parity-v x)

thus ?thesis using parity-x1-x3 (2) by auto
qed

also have ...=num-of-odd-nodes G+(if even(degree v G) ∧ v 6=v ′ then 2 else
0)

proof (cases v 6=v ′)
case True
have x1 6=x3 by (metis valid-rem-xs valid-unMultigraph.no-id x-in)
moreover have is-trail x3 xs v ′

by (metis Cons.prems(3) is-trail.simps(2) x)
ultimately have odd (degree x1 (rem-unPath xs G))

←→ odd(degree x1 G)
using True Cons.prems(3) assms(1) assms(2) parity-x1-x3 (1) rem-UnPath-parity-others

x
by auto

hence odd(degree x1 G) by (metis parity-x1-x3 (1))
thus ?thesis

by (metis (mono-tags) Cons.prems(3) Nat.add-0-right is-trail.simps(2)
x)

next
case False
thus ?thesis by (metis (mono-tags) add-0-iff)

qed
finally have num-of-odd-nodes (rem-unPath (x#xs) G)=

num-of-odd-nodes G+(if even(degree v G) ∧ v 6=v ′ then 2 else
0) .

24

thus ?thesis .
qed

ultimately show ?case by metis
qed

lemma (in valid-unMultigraph) rem-UnPath-odd:
assumes finite E finite V is-trail v ps v ′

assumes parity-assms: odd (degree v ′ G)
shows num-of-odd-nodes (rem-unPath ps G) = num-of-odd-nodes G

+ (if odd (degree v G)∧ v 6=v ′ then −2 else 0) using assms
proof (induct ps arbitrary:v)

case Nil
thus ?case by auto

next
case (Cons x xs)
obtain x1 x2 x3 where x:x=(x1 ,x2 ,x3) by (metis prod-cases3)
have fin-nodes: finite (nodes (rem-unPath xs G)) using Cons by auto
have fin-edges: finite (edges (rem-unPath xs G)) using Cons by auto
have valid-rem-xs: valid-unMultigraph (rem-unPath xs G) using valid-unMultigraph-axioms

by auto
have x-in:(x1 ,x2 ,x3)∈edges (rem-unPath xs G)

by (metis (full-types) Cons.prems(3) distinct-elim is-trail.simps(2) x)
have even (degree x1 (rem-unPath xs G))

=⇒ even(degree x3 (rem-unPath xs G)) =⇒ ?case
proof −

assume parity-x1-x3 : even (degree x1 (rem-unPath xs G))
even (degree x3 (rem-unPath xs G))

have num-of-odd-nodes (rem-unPath (x#xs) G)= num-of-odd-nodes
(del-unEdge x1 x2 x3 (rem-unPath xs G))

by (metis rem-unPath.simps(2) rem-unPath-com x)
also have ... =num-of-odd-nodes (rem-unPath xs G)+2
using parity-x1-x3 fin-nodes fin-edges valid-rem-xs x-in del-UnEdge-even-even

by metis
also have ...=num-of-odd-nodes G+(if odd(degree x3 G) ∧ x3 6=v ′ then − 2

else 0)+2
using Cons.hyps[OF ‹finite E› ‹finite V ›,of x3] ‹is-trail v (x # xs) v ′›

‹odd (degree v ′ G)› x
by auto

also have ...=num-of-odd-nodes G
proof −
have odd (degree x3 G) ∧ x3 6=v ′←→ even (degree x3 (rem-unPath xs G))

using Cons.prems assms
by (metis is-trail.simps(2) parity-x1-x3 (2) rem-UnPath-parity-v x)

thus ?thesis using parity-x1-x3 (2) by auto
qed

also have ...=num-of-odd-nodes G+(if odd(degree v G) ∧ v 6=v ′ then −2 else

25

0)
proof (cases v 6=v ′)
case True
have x1 6=x3 by (metis valid-rem-xs valid-unMultigraph.no-id x-in)
moreover have is-trail x3 xs v ′

by (metis Cons.prems(3) is-trail.simps(2) x)
ultimately have even (degree x1 (rem-unPath xs G))

←→ even (degree x1 G)
using True Cons.prems(3) assms(1) assms(2) parity-x1-x3 (1)

rem-UnPath-parity-others x
by auto

hence even (degree x1 G) by (metis parity-x1-x3 (1))
thus ?thesis

by (metis (opaque-lifting, mono-tags) Cons.prems(3) is-trail.simps(2)
monoid-add-class.add.right-neutral x)

next
case False
then show ?thesis by auto

qed
finally have num-of-odd-nodes (rem-unPath (x#xs) G)=

num-of-odd-nodes G+(if odd(degree v G) ∧ v 6=v ′ then −2 else
0) .

thus ?thesis .
qed

moreover have even (degree x1 (rem-unPath xs G)) =⇒
odd(degree x3 (rem-unPath xs G)) =⇒ ?case

proof −
assume parity-x1-x3 : even (degree x1 (rem-unPath xs G))

odd (degree x3 (rem-unPath xs G))
have num-of-odd-nodes (rem-unPath (x#xs) G)= num-of-odd-nodes

(del-unEdge x1 x2 x3 (rem-unPath xs G))
by (metis rem-unPath.simps(2) rem-unPath-com x)

also have ... =num-of-odd-nodes (rem-unPath xs G)
using parity-x1-x3 fin-nodes fin-edges valid-rem-xs x-in
by (metis del-UnEdge-even-odd)

also have ...=num-of-odd-nodes G+(if odd(degree x3 G) ∧ x3 6=v ′ then − 2
else 0)

using Cons.hyps[OF ‹finite E› ‹finite V ›, of x3] Cons.prems(3) assms(1)
assms(2)

parity-assms x
by auto

also have ...=num-of-odd-nodes G
proof −
have odd(degree x3 G) ∧ x3 6=v ′←→ even (degree x3 (rem-unPath xs G))

using Cons.prems assms
by (metis is-trail.simps(2) parity-x1-x3 (2) rem-UnPath-parity-v x)

thus ?thesis using parity-x1-x3 (2) by auto
qed

also have ...= num-of-odd-nodes G+(if odd(degree v G) ∧ v 6=v ′ then −2 else

26

0)
proof (cases v 6=v ′)
case True
have x1 6=x3 by (metis valid-rem-xs valid-unMultigraph.no-id x-in)
moreover have is-trail x3 xs v ′

by (metis Cons.prems(3) is-trail.simps(2) x)
ultimately have even (degree x1 (rem-unPath xs G))

←→ even (degree x1 G)
using True Cons.prems(3) assms(1) assms(2) parity-x1-x3 (1)

rem-UnPath-parity-others x
by auto

hence even (degree x1 G) by (metis parity-x1-x3 (1))
with Cons.prems(3) x show ?thesis by auto

next
case False
then show ?thesis by auto

qed
finally have num-of-odd-nodes (rem-unPath (x#xs) G)=

num-of-odd-nodes G+(if odd(degree v G) ∧ v 6=v ′ then −2 else
0) .

thus ?thesis .
qed

moreover have odd (degree x1 (rem-unPath xs G)) =⇒
even(degree x3 (rem-unPath xs G)) =⇒ ?case

proof −
assume parity-x1-x3 : odd (degree x1 (rem-unPath xs G))

even (degree x3 (rem-unPath xs G))
have num-of-odd-nodes (rem-unPath (x#xs) G)= num-of-odd-nodes

(del-unEdge x1 x2 x3 (rem-unPath xs G))
by (metis rem-unPath.simps(2) rem-unPath-com x)

also have ... =num-of-odd-nodes (rem-unPath xs G)
using parity-x1-x3 fin-nodes fin-edges valid-rem-xs x-in
by (metis del-UnEdge-odd-even)

also have ...=num-of-odd-nodes G+(if odd(degree x3 G) ∧ x3 6=v ′ then −2
else 0)

using Cons.hyps Cons.prems(3) assms(1) assms(2) parity-assms x
by auto

also have ...=num-of-odd-nodes G + (− 2)
proof −
have odd(degree x3 G) ∧ x3 6=v ′←→ even (degree x3 (rem-unPath xs G))

using Cons.prems assms
by (metis is-trail.simps(2) parity-x1-x3 (2) rem-UnPath-parity-v x)

hence odd(degree x3 G) ∧ x3 6=v ′ by (metis parity-x1-x3 (2))
thus ?thesis by auto

qed
also have ...=num-of-odd-nodes G+(if odd(degree v G) ∧ v 6=v ′ then −2 else

0)
proof −
have x1 6=x3 by (metis valid-rem-xs valid-unMultigraph.no-id x-in)

27

moreover hence x1 6=v ′

using Cons assms
by (metis is-trail.simps(2) parity-x1-x3 (1) rem-UnPath-parity-v ′ x)

ultimately have x1 /∈{x3 ,v ′} by auto
hence odd(degree x1 G)

using Cons.prems(3) assms(1) assms(2) parity-x1-x3 (1)
by (metis (full-types) is-trail.simps(2) rem-UnPath-parity-others x)

hence odd(degree x1 G) ∧ x1 6=v ′ using ‹x1 6= v ′› by auto
hence odd(degree v G) ∧ v 6=v ′ by (metis Cons.prems(3) is-trail.simps(2)

x)
thus ?thesis by auto

qed
finally have num-of-odd-nodes (rem-unPath (x#xs) G)=

num-of-odd-nodes G+(if odd(degree v G) ∧ v 6=v ′ then −2 else
0) .

thus ?thesis .
qed

moreover have odd (degree x1 (rem-unPath xs G)) =⇒
odd(degree x3 (rem-unPath xs G)) =⇒ ?case

proof −
assume parity-x1-x3 : odd (degree x1 (rem-unPath xs G))

odd (degree x3 (rem-unPath xs G))
have num-of-odd-nodes (rem-unPath (x#xs) G)= num-of-odd-nodes

(del-unEdge x1 x2 x3 (rem-unPath xs G))
by (metis rem-unPath.simps(2) rem-unPath-com x)

also have ... =num-of-odd-nodes (rem-unPath xs G)−(2 ::nat)
using del-UnEdge-odd-odd

by (metis add-implies-diff fin-edges fin-nodes parity-x1-x3 valid-rem-xs x-in)

also have ...=num-of-odd-nodes G −(2 ::nat)
proof −
have odd(degree x3 G) ∧ x3 6=v ′←→ even (degree x3 (rem-unPath xs G))

using Cons.prems assms
by (metis is-trail.simps(2) parity-x1-x3 (2) rem-UnPath-parity-v x)

hence ¬(odd(degree x3 G) ∧ x3 6=v ′) by (metis parity-x1-x3 (2))
have num-of-odd-nodes (rem-unPath xs G)=

num-of-odd-nodes G+(if odd(degree x3 G) ∧ x3 6=v ′ then −2 else 0)
by (metis Cons.hyps Cons.prems(3) assms(1) assms(2)

is-trail.simps(2) parity-assms x)
thus ?thesis

using ‹¬ (odd (degree x3 G) ∧ x3 6= v ′)› by auto
qed

also have ...=num-of-odd-nodes G+(if odd(degree v G) ∧ v 6=v ′ then −2 else
0)

proof −
have x1 6=x3 by (metis valid-rem-xs valid-unMultigraph.no-id x-in)
moreover hence x1 6=v ′

using Cons assms
by (metis is-trail.simps(2) parity-x1-x3 (1) rem-UnPath-parity-v ′ x)

28

ultimately have x1 /∈{x3 ,v ′} by auto
hence odd(degree x1 G)

using Cons.prems(3) assms(1) assms(2) parity-x1-x3 (1)
by (metis (full-types) is-trail.simps(2) rem-UnPath-parity-others x)

hence odd(degree x1 G) ∧ x1 6=v ′ using ‹x1 6= v ′› by auto
hence odd(degree v G) ∧ v 6=v ′ by (metis Cons.prems(3) is-trail.simps(2)

x)
hence v∈odd-nodes-set G

using Cons.prems(3) E-validD(1) x unfolding odd-nodes-set-def
by auto

moreover have v ′∈odd-nodes-set G
using is-path-memb[OF is-trail-intro[OF assms(3)]] parity-assms
unfolding odd-nodes-set-def
by auto

ultimately have {v,v ′}⊆odd-nodes-set G by auto
moreover have v 6=v ′ by (metis ‹odd (degree v G) ∧ v 6= v ′›)
hence card{v,v ′}=2 by auto
moreover have finite(odd-nodes-set G)

using ‹finite V › unfolding odd-nodes-set-def
by auto

ultimately have num-of-odd-nodes G≥2 by (metis card-mono num-of-odd-nodes-def)

thus ?thesis using ‹odd (degree v G) ∧ v 6= v ′› by auto
qed

finally have num-of-odd-nodes (rem-unPath (x#xs) G)=
num-of-odd-nodes G+(if odd(degree v G) ∧ v 6=v ′ then −2 else

0) .
thus ?thesis .

qed
ultimately show ?case by metis

qed

lemma (in valid-unMultigraph) rem-UnPath-cycle:
assumes finite E finite V is-trail v ps v ′ v=v ′

shows num-of-odd-nodes (rem-unPath ps G) = num-of-odd-nodes G (is ?L=?R)
proof (cases even(degree v ′ G))

case True
hence ?L = num-of-odd-nodes G + (if even (degree v G)∧ v 6=v ′ then 2 else 0)

by (metis assms(1) assms(2) assms(3) rem-UnPath-even)
with assms show ?thesis by auto

next
case False
hence ?L = num-of-odd-nodes G + (if odd (degree v G)∧ v 6=v ′ then −2 else 0)

by (metis assms(1) assms(2) assms(3) rem-UnPath-odd)
thus ?thesis using ‹v = v ′› by auto

qed

29

3 Connectivity
definition (in valid-unMultigraph) connected::bool where

connected ≡ ∀ v∈V . ∀ v ′∈V . v 6=v ′ −→ (∃ ps. is-path v ps v ′)

lemma (in valid-unMultigraph) connected =⇒ ∀ v∈V . ∀ v ′∈V . v 6=v ′−→(∃ ps. is-trail
v ps v ′)
proof (rule,rule,rule)

fix v v ′

assume v∈V v ′∈V v 6=v ′

assume connected
obtain ps where is-path v ps v ′ by (metis ‹connected› ‹v ∈ V › ‹v ′ ∈ V › ‹v 6=v ′›

connected-def)
then obtain ps ′ where is-trail v ps ′ v ′

proof (induct ps arbitrary:v)
case Nil
thus ?case by (metis is-trail.simps(1) is-path.simps(1))

next
case (Cons x xs)
obtain x1 x2 x3 where x:x=(x1 ,x2 ,x3) by (metis prod-cases3)
have is-path x3 xs v ′ by (metis Cons.prems(2) is-path.simps(2) x)
moreover have

∧
ps ′. is-trail x3 ps ′ v ′ =⇒ thesis

proof −
fix ps ′

assume is-trail x3 ps ′ v ′

hence (x1 ,x2 ,x3)/∈set ps ′ ∧ (x3 ,x2 ,x1)/∈set ps ′ =⇒is-trail v (x#ps ′) v ′

by (metis Cons.prems(2) is-trail.simps(2) is-path.simps(2) x)
moreover have (x1 ,x2 ,x3)∈set ps ′ =⇒ ∃ ps1 . is-trail v ps1 v ′

proof −
assume (x1 ,x2 ,x3)∈set ps ′

then obtain ps1 ps2 where ps ′=ps1@(x1 ,x2 ,x3)#ps2 by (metis
split-list)

hence is-trail v (x#ps2) v ′

using ‹is-trail x3 ps ′ v ′› x
by (metis Cons.prems(2) is-trail.simps(2)

is-trail-split is-path.simps(2))
thus ?thesis by rule

qed
moreover have (x3 ,x2 ,x1)∈set ps ′ =⇒ ∃ ps1 . is-trail v ps1 v ′

proof −
assume (x3 ,x2 ,x1)∈set ps ′

then obtain ps1 ps2 where ps ′=ps1@(x3 ,x2 ,x1)#ps2 by (metis
split-list)

hence is-trail v ps2 v ′

using ‹is-trail x3 ps ′ v ′› x
by (metis Cons.prems(2) is-trail.simps(2)

is-trail-split is-path.simps(2))
thus ?thesis by rule

qed

30

ultimately show thesis using Cons by auto
qed

ultimately show ?case using Cons by auto
qed

thus ∃ ps. is-trail v ps v ′ by rule
qed

lemma (in valid-unMultigraph) no-rep-length: is-trail v ps v ′=⇒length ps=card(set
ps)

by (induct ps arbitrary:v, auto)

lemma (in valid-unMultigraph) path-in-edges:is-trail v ps v ′ =⇒ set ps ⊆ E
proof (induct ps arbitrary:v)

case Nil
show ?case by auto

next
case (Cons x xs)
obtain x1 x2 x3 where x:x=(x1 ,x2 ,x3) by (metis prod-cases3)
hence is-trail x3 xs v ′ using Cons by auto
hence set xs ⊆ E using Cons by auto
moreover have x∈E using Cons by (metis is-trail-intro is-path.simps(2) x)
ultimately show ?case by auto

qed

lemma (in valid-unMultigraph) trail-bound:
assumes finite E is-trail v ps v ′

shows length ps ≤card E
by (metis (opaque-lifting, no-types) assms(1) assms(2) card-mono no-rep-length
path-in-edges)

definition (in valid-unMultigraph) exist-path-length:: ′v ⇒ nat ⇒bool where
exist-path-length v l≡∃ v ′ ps. is-trail v ′ ps v ∧ length ps=l

lemma (in valid-unMultigraph) longest-path:
assumes finite E n ∈ V
shows ∃ v. ∃max-path. is-trail v max-path n ∧

(∀ v ′. ∀ e∈E . ¬is-trail v ′ (e#max-path) n)
proof (rule ccontr)

assume contro:¬ (∃ v max-path. is-trail v max-path n
∧ (∀ v ′. ∀ e∈E . ¬is-trail v ′ (e#max-path) n))

hence induct:(∀ v max-path. is-trail v max-path n
−→ (∃ v ′. ∃ e∈E . is-trail v ′ (e#max-path) n)) by auto

have is-trail n [] n using ‹n ∈ V › by auto
hence exist-path-length n 0 unfolding exist-path-length-def by auto
moreover have ∀ y. exist-path-length n y −→ y ≤ card E

using trail-bound[OF ‹finite E›] unfolding exist-path-length-def
by auto

hence bound:∀ y. exist-path-length n y −→ y ≤ card E by auto

31

ultimately have exist-path-length n (GREATEST x. exist-path-length n x)
using GreatestI-nat by auto

then obtain v max-path where
max-path:is-trail v max-path n length max-path=(GREATEST x. exist-path-length

n x)
by (metis exist-path-length-def)

hence ∃ v ′ e. is-trail v ′ (e#max-path) n using induct by metis
hence exist-path-length n (length max-path +1)

by (metis One-nat-def exist-path-length-def list.size(4))
hence length max-path + 1 ≤ (GREATEST x. exist-path-length n x)
by (metis Greatest-le-nat bound)

hence length max-path + 1 ≤ length max-path using max-path by auto
thus False by auto

qed

lemma even-card ′:
assumes even(card A) x∈A
shows ∃ y∈A. y 6=x

proof (rule ccontr)
assume ¬ (∃ y∈A. y 6= x)
hence ∀ y∈A. y=x by auto
hence A={x} by (metis all-not-in-conv assms(2) insertI2 mk-disjoint-insert)
hence card(A)=1 by auto
thus False using ‹even(card A)› by auto

qed

lemma odd-card:
assumes finite A odd(card A)
shows ∃ x. x∈A

by (metis all-not-in-conv assms(2) card.empty even-zero)

lemma (in valid-unMultigraph) extend-distinct-path:
assumes finite E is-trail v ′ ps v
assumes parity-assms:(even (degree v ′ G)∧v ′6=v)∨(odd (degree v ′ G)∧v ′=v)
shows ∃ e v1 . is-trail v1 (e#ps) v

proof −
have (even (degree v ′ G)∧v ′6=v) =⇒ odd(degree v ′ (rem-unPath ps G))

by (metis assms(1) assms(2) rem-UnPath-parity-v)
moreover have (odd (degree v ′ G)∧v ′=v) =⇒ odd(degree v ′ (rem-unPath ps

G))
by (metis assms(1) assms(2) rem-UnPath-parity-v ′)

ultimately have odd(degree v ′ (rem-unPath ps G)) using parity-assms by auto
hence odd (card {e. fst e=v ′ ∧ e∈edges G − (set ps ∪ set (rev-path ps))})

using rem-unPath-edges unfolding degree-def
by (metis (lifting, no-types) Collect-cong)

hence {e. fst e=v ′ ∧ e∈E − (set ps ∪ set (rev-path ps))}6={}
by (metis empty-iff finite.emptyI odd-card)

then obtain v0 w where v0w: (v ′,w,v0)∈E (v ′,w,v0)/∈set ps ∪ set (rev-path

32

ps) by auto
hence is-trail v0 ((v0 ,w,v ′)#ps) v

by (metis (opaque-lifting, mono-tags) Un-iff assms(2) corres in-set-rev-path
is-trail.simps(2))

thus ?thesis by metis
qed

replace an edge (or its reverse in a path) by another path (in an undi-
rected graph)
fun replace-by-UnPath:: (′v, ′w) path ⇒ ′v × ′w × ′v ⇒ (′v, ′w) path ⇒ (′v, ′w) path
where

replace-by-UnPath [] - - = [] |
replace-by-UnPath (x#xs) (v,e,v ′) ps =
(if x=(v,e,v ′) then ps@replace-by-UnPath xs (v,e,v ′) ps
else if x=(v ′,e,v) then (rev-path ps)@replace-by-UnPath xs (v,e,v ′) ps
else x#replace-by-UnPath xs (v,e,v ′) ps)

lemma (in valid-unMultigraph) del-unEdge-connectivity:
assumes connected ∃ ps. valid-graph.is-path (del-unEdge v e v ′ G) v ps v ′

shows valid-unMultigraph.connected (del-unEdge v e v ′ G)
proof −

have valid-unMulti:valid-unMultigraph (del-unEdge v e v ′ G)
using valid-unMultigraph-axioms by simp

have valid-graph: valid-graph (del-unEdge v e v ′ G)
using valid-graph-axioms del-undirected by (metis delete-edge-valid)

obtain ex-path where ex-path:valid-graph.is-path (del-unEdge v e v ′ G) v ex-path
v ′

by (metis assms(2))
show ?thesis unfolding valid-unMultigraph.connected-def [OF valid-unMulti]
proof (rule,rule,rule)

fix n n ′

assume n : n ∈nodes (del-unEdge v e v ′ G)
assume n ′: n ′∈nodes (del-unEdge v e v ′ G)
assume n 6=n ′

obtain ps where ps:is-path n ps n ′

by (metis ‹n 6=n ′› n n ′ ‹connected› connected-def del-UnEdge-node)
hence valid-graph.is-path (del-unEdge v e v ′ G)

n (replace-by-UnPath ps (v,e,v ′) ex-path) n ′

proof (induct ps arbitrary:n)
case Nil

thus ?case by (metis is-path.simps(1) n ′ replace-by-UnPath.simps(1)
valid-graph

valid-graph.is-path-simps(1))
next

case (Cons x xs)
obtain x1 x2 x3 where x:x=(x1 ,x2 ,x3) by (metis prod-cases3)
have x=(v,e,v ′) =⇒ ?case

proof −
assume x=(v,e,v ′)

33

hence valid-graph.is-path (del-unEdge v e v ′ G)
n (replace-by-UnPath (x#xs) (v,e,v ′) ex-path) n ′

= valid-graph.is-path (del-unEdge v e v ′ G)
n (ex-path@(replace-by-UnPath xs (v,e,v ′) ex-path)) n ′

by (metis replace-by-UnPath.simps(2))
also have ...=True
by (metis Cons.hyps Cons.prems ‹x = (v, e, v ′)› ex-path is-path.simps(2)

valid-graph
valid-graph.is-path-split)

finally show ?thesis by simp
qed

moreover have x=(v ′,e,v) =⇒ ?case
proof −

assume x=(v ′,e,v)
hence valid-graph.is-path (del-unEdge v e v ′ G)

n (replace-by-UnPath (x#xs) (v,e,v ′) ex-path) n ′

= valid-graph.is-path (del-unEdge v e v ′ G)
n ((rev-path ex-path)@(replace-by-UnPath xs (v,e,v ′) ex-path)) n ′

by (metis Cons.prems is-path.simps(2) no-id replace-by-UnPath.simps(2))
also have ...=True

by (metis Cons.hyps Cons.prems ‹x = (v ′, e, v)› is-path.simps(2)
ex-path valid-graph

valid-graph.is-path-split valid-unMulti valid-unMultigraph.is-path-rev)
finally show ?thesis by simp

qed
moreover have x 6=(v,e,v ′)∧x 6=(v ′,e,v)=⇒?case

by (metis Cons.hyps Cons.prems del-UnEdge-frame is-path.simps(2)
replace-by-UnPath.simps(2)

valid-graph valid-graph.is-path.simps(2) x)
ultimately show ?case by auto

qed
thus ∃ ps. valid-graph.is-path (del-unEdge v e v ′ G) n ps n ′ by auto

qed
qed

lemma (in valid-unMultigraph) path-between-odds:
assumes odd(degree v G) odd(degree v ′ G) finite E v 6=v ′ num-of-odd-nodes G=2
shows ∃ ps. is-trail v ps v ′

proof −
have v∈V
proof (rule ccontr)

assume v /∈V
hence ∀ e ∈ E . fst e 6= v by (metis E-valid(1) imageI subsetD)
hence degree v G=0 unfolding degree-def using ‹finite E›

by force
thus False using ‹odd(degree v G)› by auto

qed
have v ′∈V

proof (rule ccontr)

34

assume v ′/∈V
hence ∀ e ∈ E . fst e 6= v ′ by (metis E-valid(1) imageI subsetD)
hence degree v ′ G=0 unfolding degree-def using ‹finite E›

by force
thus False using ‹odd(degree v ′ G)› by auto

qed
then obtain max-path v0 where max-path:

is-trail v0 max-path v ′

(∀n. ∀w∈E . ¬is-trail n (w#max-path) v ′)
using longest-path[of v ′] by (metis assms(3))

have even(degree v0 G)=⇒v0=v ′ =⇒ v0=v
by (metis assms(2))

moreover have even(degree v0 G)=⇒v0 6=v ′ =⇒ v0=v
proof −

assumeeven(degree v0 G) v0 6=v ′

hence ∃w v1 . is-trail
v1 (w#max-path) v ′

by (metis assms(3) extend-distinct-path max-path(1))
thus ?thesis by (metis (full-types) is-trail.simps(2) max-path(2) prod.exhaust)
qed

moreover have odd(degree v0 G)=⇒v0=v ′=⇒v0=v
proof −

assumeodd(degree v0 G) v0=v ′

hence ∃w v1 . is-trail v1 (w#max-path) v ′

by (metis assms(3) extend-distinct-path max-path(1))
thus ?thesis by (metis (full-types) List.set-simps(2) insert-subset max-path(2)

path-in-edges)
qed

moreover have odd(degree v0 G)=⇒v0 6=v ′=⇒v0=v
proof (rule ccontr)

assume v0 6= v odd(degree v0 G) v0 6=v ′

moreover have v∈odd-nodes-set G
using ‹v ∈ V › ‹ odd (degree v G)› unfolding odd-nodes-set-def
by auto

moreover have v ′∈odd-nodes-set G
using ‹v ′ ∈ V › ‹odd (degree v ′ G)›
unfolding odd-nodes-set-def
by auto

ultimately have {v,v ′,v0} ⊆ odd-nodes-set G
using is-path-memb[OF is-trail-intro[OF ‹is-trail v0 max-path v ′›]]

max-path(1)
unfolding odd-nodes-set-def
by auto

moreover have card {v,v ′,v0}=3 using ‹v0 6=v› ‹v 6=v ′› ‹v0 6=v ′› by auto
moreover have finite (odd-nodes-set G)
using assms(5) card-eq-0-iff [of odd-nodes-set G] unfolding num-of-odd-nodes-def

by auto
ultimately have 3≤card(odd-nodes-set G) by (metis card-mono)

35

thus False using ‹num-of-odd-nodes G=2 › unfolding num-of-odd-nodes-def
by auto

qed
ultimately have v0=v by auto
thus ?thesis by (metis max-path(1))

qed

lemma (in valid-unMultigraph) del-unEdge-even-connectivity:
assumes finite E finite V connected ∀n∈V . even(degree n G) (v,e,v ′)∈E
shows valid-unMultigraph.connected (del-unEdge v e v ′ G)

proof −
have valid-unMulti:valid-unMultigraph (del-unEdge v e v ′ G)

using valid-unMultigraph-axioms by simp
have valid-graph: valid-graph (del-unEdge v e v ′ G)

using valid-graph-axioms del-undirected by (metis delete-edge-valid)
have fin-E ′: finite(edges (del-unEdge v e v ′ G))

by (metis (opaque-lifting, no-types) assms(1) del-undirected delete-edge-def
finite-Diff select-convs(2))

have fin-V ′: finite(nodes (del-unEdge v e v ′ G))
by (metis (mono-tags) assms(2) del-undirected delete-edge-def select-convs(1))

have all-even: ∀n∈nodes (del-unEdge v e v ′ G). n /∈{v,v ′}
−→even(degree n (del-unEdge v e v ′ G))

by (metis (full-types) assms(1) assms(4) degree-frame del-UnEdge-node)
have even (degree v G) by (metis (full-types) E-validD(1) assms(4) assms(5))
moreover have even (degree v ′ G) by (metis (full-types) E-validD(2) assms(4)

assms(5))
moreover have num-of-odd-nodes G = 0

using ‹∀n∈V . even(degree n G)› ‹finite V ›
unfolding num-of-odd-nodes-def odd-nodes-set-def by auto

ultimately have num-of-odd-nodes (del-unEdge v e v ′ G) = 2
using del-UnEdge-even-even[of G v e v ′,OF valid-unMultigraph-axioms]
by (metis assms(1) assms(2) assms(5) monoid-add-class.add.left-neutral)

moreover have odd (degree v (del-unEdge v e v ′ G))
using ‹even (degree v G)› del-UnEdge-even[OF ‹(v,e,v ′)∈E› ‹finite E›]
unfolding odd-nodes-set-def
by auto

moreover have odd (degree v ′ (del-unEdge v e v ′ G))
using ‹even (degree v ′ G)› del-UnEdge-even ′[OF ‹(v,e,v ′)∈E› ‹finite E›]
unfolding odd-nodes-set-def
by auto

moreover have finite (edges (del-unEdge v e v ′ G))
using ‹finite E› by auto

moreover have v 6=v ′ using no-id ‹(v,e,v ′)∈E› by auto
ultimately have ∃ ps. valid-unMultigraph.is-trail (del-unEdge v e v ′ G) v ps v ′

using valid-unMultigraph.path-between-odds[OF valid-unMulti,of v v ′]
by auto

thus ?thesis
by (metis (full-types) assms(3) del-unEdge-connectivity valid-unMulti

valid-unMultigraph.is-trail-intro)

36

qed

lemma (in valid-graph) path-end:ps 6=[] =⇒ is-path v ps v ′ =⇒ v ′=snd (snd(last
ps))

by (induct ps arbitrary:v,auto)

lemma (in valid-unMultigraph) connectivity-split:
assumes connected ¬valid-unMultigraph.connected (del-unEdge v w v ′ G)

(v,w,v ′)∈E
obtains G1 G2 where

nodes G1={n. ∃ ps. valid-graph.is-path (del-unEdge v w v ′ G) n ps v}
and edges G1={(n,e,n ′). (n,e,n ′)∈edges (del-unEdge v w v ′ G)
∧ n∈nodes G1 ∧ n ′∈nodes G1}

and nodes G2={n. ∃ ps. valid-graph.is-path (del-unEdge v w v ′ G) n ps v ′}
and edges G2={(n,e,n ′). (n,e,n ′)∈edges (del-unEdge v w v ′ G)
∧ n∈nodes G2 ∧ n ′∈nodes G2}

and edges G1 ∪ edges G2 = edges (del-unEdge v w v ′ G)
and edges G1 ∩ edges G2={}
and nodes G1 ∪ nodes G2=nodes (del-unEdge v w v ′ G)
and nodes G1 ∩ nodes G2={}
and valid-unMultigraph G1
and valid-unMultigraph G2
and valid-unMultigraph.connected G1
and valid-unMultigraph.connected G2

proof −
have valid0 :valid-graph (del-unEdge v w v ′ G) using valid-graph-axioms

by (metis del-undirected delete-edge-valid)
have valid0 ′:valid-unMultigraph (del-unEdge v w v ′ G) using valid-unMultigraph-axioms

by (metis del-unEdge-valid)
obtain G1-nodes where G1-nodes:G1-nodes=
{n. ∃ ps. valid-graph.is-path (del-unEdge v w v ′ G) n ps v}

by metis
then obtain G1 where G1 :G1=

(|nodes=G1-nodes, edges={(n,e,n ′). (n,e,n ′)∈edges (del-unEdge v w v ′ G)
∧ n∈G1-nodes ∧ n ′∈G1-nodes}|)

by metis
obtain G2-nodes where G2-nodes:G2-nodes=
{n. ∃ ps. valid-graph.is-path (del-unEdge v w v ′ G) n ps v ′}

by metis
then obtain G2 where G2 :G2=

(|nodes=G2-nodes, edges={(n,e,n ′). (n,e,n ′)∈edges (del-unEdge v w v ′ G)
∧ n∈G2-nodes ∧ n ′∈G2-nodes}|)

by metis
have valid-G1 :valid-unMultigraph G1

using G1 valid-unMultigraph.corres[OF valid0 ′] valid-unMultigraph.no-id[OF
valid0 ′]

by (unfold-locales,auto)

37

hence valid-G1 ′:valid-graph G1 using valid-unMultigraph-def by auto
have valid-G2 :valid-unMultigraph G2

using G2 valid-unMultigraph.corres[OF valid0 ′] valid-unMultigraph.no-id[OF
valid0 ′]

by (unfold-locales,auto)
hence valid-G2 ′: valid-graph G2 using valid-unMultigraph-def by auto
have nodes G1={n. ∃ ps. valid-graph.is-path (del-unEdge v w v ′ G) n ps v}

using G1-nodes G1 by auto
moreover have edges G1={(n,e,n ′). (n,e,n ′)∈edges (del-unEdge v w v ′ G)

∧ n∈nodes G1 ∧ n ′∈nodes G1}
using G1-nodes G1 by auto

moreover have nodes G2={n. ∃ ps. valid-graph.is-path (del-unEdge v w v ′ G)
n ps v ′}

using G2-nodes G2 by auto
moreover have edges G2={(n,e,n ′). (n,e,n ′)∈edges (del-unEdge v w v ′ G)

∧ n∈nodes G2 ∧ n ′∈nodes G2}
using G2-nodes G2 by auto

moreover have nodes G1 ∪ nodes G2=nodes (del-unEdge v w v ′ G)
proof (rule ccontr)

assume nodes G1 ∪ nodes G2 6= nodes (del-unEdge v w v ′ G)
moreover have nodes G1 ⊆ nodes (del-unEdge v w v ′ G)

using valid-graph.is-path-memb[OF valid0] G1 G1-nodes by auto
moreover have nodes G2 ⊆ nodes (del-unEdge v w v ′ G)

using valid-graph.is-path-memb[OF valid0] G2 G2-nodes by auto
ultimately obtain n where n:

n∈nodes (del-unEdge v w v ′ G) n /∈nodes G1 n /∈nodes G2
by auto

hence n-neg-v : ¬(∃ ps. valid-graph.is-path (del-unEdge v w v ′ G) n ps v) and
n-neg-v ′: ¬(∃ ps. valid-graph.is-path (del-unEdge v w v ′ G) n ps v ′)

using G1 G1-nodes G2 G2-nodes by auto
hence n 6=v by (metis n(1) valid0 valid-graph.is-path-simps(1))
then obtain nvs where nvs: is-path n nvs v using ‹connected›

by (metis E-validD(1) assms(3) connected-def del-UnEdge-node n(1))
then obtain nvs ′ where nvs ′: nvs ′=takeWhile (λx. x 6=(v,w,v ′)∧x 6=(v ′,w,v))

nvs by auto
moreover have nvs-nvs ′:nvs=nvs ′@dropWhile (λx. x 6=(v,w,v ′)∧x 6=(v ′,w,v))

nvs
using nvs ′ takeWhile-dropWhile-id by auto

ultimately obtain n ′ where is-path-nvs ′: is-path n nvs ′ n ′

and is-path n ′ (dropWhile (λx. x 6=(v,w,v ′)∧x 6=(v ′,w,v)) nvs) v
using nvs is-path-split[of n nvs ′ dropWhile (λx. x 6=(v,w,v ′)∧x 6=(v ′,w,v)) nvs]

by auto
have n ′=v ∨ n ′=v ′

proof (cases dropWhile (λx. x 6=(v,w,v ′)∧x 6=(v ′,w,v)) nvs)
case Nil
hence nvs=nvs ′ using nvs-nvs ′ by (metis append-Nil2)

hence n ′=v using nvs is-path-nvs ′ path-end by (metis (mono-tags)
is-path.simps(1))

thus ?thesis by auto

38

next
case (Cons x xs)
hence dropWhile (λx. x 6=(v,w,v ′)∧x 6=(v ′,w,v)) nvs 6=[] by auto
hence hd (dropWhile (λx. x 6=(v,w,v ′)∧x 6=(v ′,w,v)) nvs)=(v,w,v ′)

∨ hd (dropWhile (λx. x 6=(v,w,v ′)∧x 6=(v ′,w,v)) nvs)=(v ′,w,v)
by (metis (lifting, full-types) hd-dropWhile)

hence x=(v,w,v ′)∨x=(v ′,w,v) using Cons by auto
thus ?thesis

using ‹is-path n ′ (dropWhile (λx. x 6= (v, w, v ′) ∧ x 6= (v ′, w, v)) nvs)
v›

by (metis Cons is-path.simps(2))
qed

moreover have valid-graph.is-path (del-unEdge v w v ′ G) n nvs ′ n ′

using is-path-nvs ′ nvs ′

proof (induct nvs ′ arbitrary:n nvs)
case Nil

thus ?case by (metis del-UnEdge-node is-path.simps(1) valid0 valid-graph.is-path-simps(1))
next

case (Cons x xs)
obtain x1 x2 x3 where x:x=(x1 ,x2 ,x3) by (metis prod-cases3)
hence is-path x3 xs n ′ using Cons by auto
moreover have xs = takeWhile (λx. x 6= (v, w, v ′) ∧ x 6= (v ′, w, v)) (tl

nvs)
using ‹x # xs = takeWhile (λx. x 6= (v, w, v ′) ∧ x 6= (v ′, w, v)) nvs›

by (metis (lifting, no-types) append-Cons list.distinct(1) takeWhile.simps(2)

takeWhile-dropWhile-id list.sel(3))
ultimately have valid-graph.is-path (del-unEdge v w v ′ G) x3 xs n ′

using Cons by auto
moreover have x 6=(v,w,v ′) ∧ x 6=(v ′,w,v)
using Cons(3) set-takeWhileD[of x (λx. x 6= (v, w, v ′) ∧ x 6= (v ′, w, v))

nvs]
by (metis List.set-simps(2) insertI1)

hence x∈edges (del-unEdge v w v ′ G)
by (metis Cons.prems(1) del-UnEdge-frame is-path.simps(2) x)

ultimately show ?case using x
by (metis Cons.prems(1) is-path.simps(2) valid0 valid-graph.is-path.simps(2))
qed

ultimately show False using n-neg-v n-neg-v ′ by auto
qed

moreover have nodes G1 ∩ nodes G2={}
proof (rule ccontr)

assume nodes G1 ∩ nodes G2 6= {}
then obtain n where n:n∈nodes G1 n∈nodes G2 by auto
then obtain nvs nv ′s where

nvs : valid-graph.is-path (del-unEdge v w v ′ G) n nvs v and
nv ′s : valid-graph.is-path (del-unEdge v w v ′ G) n nv ′s v ′

using G1 G2 G1-nodes G2-nodes by auto
hence valid-graph.is-path (del-unEdge v w v ′ G) v ((rev-path nvs)@nv ′s) v ′

39

using valid-unMultigraph.is-path-rev[OF valid0 ′] valid-graph.is-path-split[OF
valid0]

by auto
hence valid-unMultigraph.connected (del-unEdge v w v ′ G)

by (metis assms(1) del-unEdge-connectivity)
thus False by (metis assms(2))

qed
moreover have edges G1 ∪ edges G2 = edges (del-unEdge v w v ′ G)

proof (rule ccontr)
assume edges G1 ∪ edges G2 6= edges (del-unEdge v w v ′ G)
moreover have edges G1 ⊆ edges (del-unEdge v w v ′ G) using G1 by auto
moreover have edges G2 ⊆ edges (del-unEdge v w v ′ G) using G2 by auto
ultimately obtain n e n ′ where

nen ′:
(n,e,n ′)∈edges (del-unEdge v w v ′ G)
(n,e,n ′)/∈edges G1 (n,e,n ′)/∈edges G2

by auto
moreover have n∈nodes (del-unEdge v w v ′ G)

by (metis nen ′(1) valid0 valid-graph.E-validD(1))
moreover have n ′∈nodes (del-unEdge v w v ′ G)

by (metis nen ′(1) valid0 valid-graph.E-validD(2))
ultimately have (n∈nodes G1 ∧ n ′∈nodes G2)∨(n∈nodes G2∧n ′∈nodes

G1)
using G1 G2 ‹nodes G1 ∪ nodes G2=nodes (del-unEdge v w v ′ G)› by auto

moreover have n∈nodes G1 =⇒ n ′∈nodes G2 =⇒ False
proof −

assume n∈nodes G1 n ′∈nodes G2
then obtain nvs nv ′s where

nvs : valid-graph.is-path (del-unEdge v w v ′ G) n nvs v and
nv ′s : valid-graph.is-path (del-unEdge v w v ′ G) n ′ nv ′s v ′

using G1 G2 G1-nodes G2-nodes by auto
hence valid-graph.is-path (del-unEdge v w v ′ G) v

((rev-path nvs)@(n,e,n ′)#nv ′s) v ′

using valid-unMultigraph.is-path-rev[OF valid0 ′] valid-graph.is-path-split ′[OF
valid0]

‹(n,e,n ′)∈edges (del-unEdge v w v ′ G)›
by auto

hence valid-unMultigraph.connected (del-unEdge v w v ′ G)
by (metis assms(1) del-unEdge-connectivity)

thus False by (metis assms(2))
qed

moreover have n∈nodes G2 =⇒ n ′∈nodes G1 =⇒ False
proof −

assume n ′∈nodes G1 n∈nodes G2
then obtain n ′vs nvs where

n ′vs : valid-graph.is-path (del-unEdge v w v ′ G) n ′ n ′vs v and
nvs : valid-graph.is-path (del-unEdge v w v ′ G) n nvs v ′

using G1 G2 G1-nodes G2-nodes by auto
moreover have (n ′,e,n)∈edges (del-unEdge v w v ′ G)

40

by (metis nen ′(1) valid0 ′ valid-unMultigraph.corres)
ultimately have valid-graph.is-path (del-unEdge v w v ′ G) v

((rev-path n ′vs)@(n ′,e,n)#nvs) v ′

using valid-unMultigraph.is-path-rev[OF valid0 ′] valid-graph.is-path-split ′[OF
valid0]

by auto
hence valid-unMultigraph.connected (del-unEdge v w v ′ G)

by (metis assms(1) del-unEdge-connectivity)
thus False by (metis assms(2))

qed
ultimately show False by auto

qed
moreover have edges G1 ∩ edges G2={}

proof (rule ccontr)
assume edges G1 ∩ edges G2 6= {}
then obtain n e n ′ where (n,e,n ′)∈edges G1 (n,e,n ′)∈edges G2 by auto
hence n∈nodes G1 n∈nodes G2 using G1 G2 by auto
thus False using ‹nodes G1 ∩ nodes G2={}› by auto

qed
moreover have valid-unMultigraph.connected G1

unfolding valid-unMultigraph.connected-def [OF valid-G1]
proof (rule,rule,rule)

fix n n ′

assume n : n ∈nodes G1
assume n ′: n ′∈nodes G1
assume n 6=n ′

obtain ps where valid-graph.is-path (del-unEdge v w v ′ G) n ps v
using G1 G1-nodes n by auto

hence ps:valid-graph.is-path G1 n ps v
proof (induct ps arbitrary:n)

case Nil
moreover have v∈nodes G1 using G1 G1-nodes valid0

by (metis (lifting, no-types) calculation mem-Collect-eq select-convs(1)
valid-graph.is-path.simps(1))

ultimately show ?case
by (metis valid0 valid-G1 valid-unMultigraph.is-trail.simps(1)

valid-graph.is-path.simps(1) valid-unMultigraph.is-trail-intro)
next

case (Cons x xs)
obtain x1 x2 x3 where x:x=(x1 ,x2 ,x3) by (metis prod-cases3)
have x1∈nodes G1 using G1 G1-nodes Cons.prems x

by (metis (lifting) mem-Collect-eq select-convs(1) valid0 valid-graph.is-path.simps(2))
moreover have (x1 ,x2 ,x3)∈edges (del-unEdge v w v ′ G)

by (metis Cons.prems valid0 valid-graph.is-path.simps(2) x)
ultimately have (x1 ,x2 ,x3)∈edges G1

using G1 G2 ‹nodes G1 ∩ nodes G2={}› ‹edges G1 ∪ edges G2=edges
(del-unEdge v w v ′ G)›

by (metis (full-types) IntI Un-iff bex-empty valid-G2 ′ valid-graph.E-validD(1)
)

41

moreover have valid-graph.is-path (del-unEdge v w v ′ G) x3 xs v
by (metis Cons.prems valid0 valid-graph.is-path.simps(2) x)

hence valid-graph.is-path G1 x3 xs v using Cons.hyps by auto
moreover have x1=n by (metis Cons.prems valid0 valid-graph.is-path.simps(2)

x)
ultimately show ?case using x valid-G1 ′ by (metis valid-graph.is-path.simps(2))

qed
obtain ps ′ where valid-graph.is-path (del-unEdge v w v ′ G) n ′ ps ′ v

using G1 G1-nodes n ′ by auto
hence ps ′:valid-graph.is-path G1 n ′ ps ′ v

proof (induct ps ′ arbitrary:n ′)
case Nil
moreover have v∈nodes G1 using G1 G1-nodes valid0

by (metis (lifting, no-types) calculation mem-Collect-eq select-convs(1)
valid-graph.is-path.simps(1))

ultimately show ?case
by (metis valid0 valid-G1 valid-unMultigraph.is-trail.simps(1)

valid-graph.is-path.simps(1) valid-unMultigraph.is-trail-intro)
next

case (Cons x xs)
obtain x1 x2 x3 where x:x=(x1 ,x2 ,x3) by (metis prod-cases3)
have x1∈nodes G1 using G1 G1-nodes Cons.prems x

by (metis (lifting) mem-Collect-eq select-convs(1) valid0 valid-graph.is-path.simps(2))
moreover have (x1 ,x2 ,x3)∈edges (del-unEdge v w v ′ G)

by (metis Cons.prems valid0 valid-graph.is-path.simps(2) x)
ultimately have (x1 ,x2 ,x3)∈edges G1

using G1 G2 ‹nodes G1 ∩ nodes G2={}›
‹edges G1 ∪ edges G2=edges (del-unEdge v w v ′ G)›

by (metis (full-types) IntI Un-iff bex-empty valid-G2 ′ valid-graph.E-validD(1))
moreover have valid-graph.is-path (del-unEdge v w v ′ G) x3 xs v

by (metis Cons.prems valid0 valid-graph.is-path.simps(2) x)
hence valid-graph.is-path G1 x3 xs v using Cons.hyps by auto

moreover have x1=n ′ by (metis Cons.prems valid0 valid-graph.is-path.simps(2)
x)

ultimately show ?case using x valid-G1 ′ by (metis valid-graph.is-path.simps(2))

qed
hence valid-graph.is-path G1 v (rev-path ps ′) n ′

using valid-unMultigraph.is-path-rev[OF valid-G1]
by auto

hence valid-graph.is-path G1 n (ps@(rev-path ps ′)) n ′

using ps valid-graph.is-path-split[OF valid-G1 ′,of n ps rev-path ps ′ n ′]
by auto

thus ∃ ps. valid-graph.is-path G1 n ps n ′ by auto
qed

moreover have valid-unMultigraph.connected G2
unfolding valid-unMultigraph.connected-def [OF valid-G2]
proof (rule,rule,rule)

42

fix n n ′

assume n : n ∈nodes G2
assume n ′: n ′∈nodes G2
assume n 6=n ′

obtain ps where valid-graph.is-path (del-unEdge v w v ′ G) n ps v ′

using G2 G2-nodes n by auto
hence ps:valid-graph.is-path G2 n ps v ′

proof (induct ps arbitrary:n)
case Nil
moreover have v ′∈nodes G2 using G2 G2-nodes valid0

by (metis (lifting, no-types) calculation mem-Collect-eq select-convs(1)
valid-graph.is-path.simps(1))

ultimately show ?case
by (metis valid0 valid-G2 valid-unMultigraph.is-trail.simps(1)

valid-graph.is-path.simps(1) valid-unMultigraph.is-trail-intro)
next

case (Cons x xs)
obtain x1 x2 x3 where x:x=(x1 ,x2 ,x3) by (metis prod-cases3)
have x1∈nodes G2 using G2 G2-nodes Cons.prems x

by (metis (lifting) mem-Collect-eq select-convs(1) valid0 valid-graph.is-path.simps(2))
moreover have (x1 ,x2 ,x3)∈edges (del-unEdge v w v ′ G)

by (metis Cons.prems valid0 valid-graph.is-path.simps(2) x)
ultimately have (x1 ,x2 ,x3)∈edges G2

using ‹nodes G1 ∩ nodes G2={}› ‹edges G1 ∪ edges G2=edges
(del-unEdge v w v ′ G)›

by (metis IntI Un-iff assms(1) bex-empty connected-def del-UnEdge-node
valid0 valid0 ′

valid-G1 ′ valid-graph.E-validD(1) valid-graph.E-validD(2) valid-unMultigraph.no-id)
moreover have valid-graph.is-path (del-unEdge v w v ′ G) x3 xs v ′

by (metis Cons.prems valid0 valid-graph.is-path.simps(2) x)
hence valid-graph.is-path G2 x3 xs v ′ using Cons.hyps by auto

moreover have x1=n by (metis Cons.prems valid0 valid-graph.is-path.simps(2)
x)

ultimately show ?case using x valid-G2 ′ by (metis valid-graph.is-path.simps(2))

qed
obtain ps ′ where valid-graph.is-path (del-unEdge v w v ′ G) n ′ ps ′ v ′

using G2 G2-nodes n ′ by auto
hence ps ′:valid-graph.is-path G2 n ′ ps ′ v ′

proof (induct ps ′ arbitrary:n ′)
case Nil
moreover have v ′∈nodes G2 using G2 G2-nodes valid0

by (metis (lifting, no-types) calculation mem-Collect-eq select-convs(1)
valid-graph.is-path.simps(1))

ultimately show ?case
by (metis valid0 valid-G2 valid-unMultigraph.is-trail.simps(1)

valid-graph.is-path.simps(1) valid-unMultigraph.is-trail-intro)
next

case (Cons x xs)

43

obtain x1 x2 x3 where x:x=(x1 ,x2 ,x3) by (metis prod-cases3)
have x1∈nodes G2 using G2 G2-nodes Cons.prems x

by (metis (lifting) mem-Collect-eq select-convs(1) valid0 valid-graph.is-path.simps(2))
moreover have (x1 ,x2 ,x3)∈edges (del-unEdge v w v ′ G)

by (metis Cons.prems valid0 valid-graph.is-path.simps(2) x)
ultimately have (x1 ,x2 ,x3)∈edges G2

using ‹nodes G1 ∩ nodes G2={}› ‹edges G1 ∪ edges G2=edges
(del-unEdge v w v ′ G)›

by (metis IntI Un-iff assms(1) bex-empty connected-def del-UnEdge-node
valid0 valid0 ′

valid-G1 ′ valid-graph.E-validD(1) valid-graph.E-validD(2) valid-unMultigraph.no-id)
moreover have valid-graph.is-path (del-unEdge v w v ′ G) x3 xs v ′

by (metis Cons.prems valid0 valid-graph.is-path.simps(2) x)
hence valid-graph.is-path G2 x3 xs v ′ using Cons.hyps by auto

moreover have x1=n ′ by (metis Cons.prems valid0 valid-graph.is-path.simps(2)
x)

ultimately show ?case using x valid-G2 ′ by (metis valid-graph.is-path.simps(2))

qed
hence valid-graph.is-path G2 v ′ (rev-path ps ′) n ′

using valid-unMultigraph.is-path-rev[OF valid-G2]
by auto

hence valid-graph.is-path G2 n (ps@(rev-path ps ′)) n ′

using ps valid-graph.is-path-split[OF valid-G2 ′,of n ps rev-path ps ′ n ′]
by auto

thus ∃ ps. valid-graph.is-path G2 n ps n ′ by auto
qed

ultimately show ?thesis using valid-G1 valid-G2 that by auto
qed

lemma sub-graph-degree-frame:
assumes valid-graph G2 edges G1 ∪ edges G2 =edges G nodes G1 ∩ nodes

G2={} n∈nodes G1
shows degree n G=degree n G1

proof −
have {e ∈ edges G. fst e = n}⊆{e ∈ edges G1 . fst e = n}

proof
fix e assume e ∈ {e ∈ edges G. fst e = n}
hence e∈edges G fst e=n by auto
moreover have n /∈nodes G2

using ‹nodes G1 ∩ nodes G2={}› ‹n∈nodes G1 ›
by auto

hence e/∈edges G2 using valid-graph.E-validD[OF ‹valid-graph G2 ›] ‹fst e=n›

by (metis prod.exhaust fst-conv)
ultimately have e∈edges G1 using ‹edges G1 ∪ edges G2 =edges G› by

auto
thus e ∈ {e ∈ edges G1 . fst e = n} using ‹fst e=n› by auto

44

qed
moreover have {e ∈ edges G1 . fst e = n}⊆{e ∈ edges G. fst e = n}

by (metis (lifting) Collect-mono Un-iff assms(2))
ultimately show ?thesis unfolding degree-def by auto

qed

lemma odd-nodes-no-edge[simp]: finite (nodes g) =⇒ num-of-odd-nodes (g (|edges:={}
|)) = 0

unfolding num-of-odd-nodes-def odd-nodes-set-def degree-def by simp

4 Adjacent nodes
definition (in valid-unMultigraph) adjacent:: ′v ⇒ ′v ⇒ bool where

adjacent v v ′ ≡ ∃w. (v,w,v ′)∈E

lemma (in valid-unMultigraph) adjacent-sym: adjacent v v ′←→ adjacent v ′ v
unfolding adjacent-def by auto

lemma (in valid-unMultigraph) adjacent-no-loop[simp]: adjacent v v ′ =⇒ v 6=v ′

unfolding adjacent-def by auto

lemma (in valid-unMultigraph) adjacent-V [simp]:
assumes adjacent v v ′

shows v∈V v ′∈V
using assms E-validD unfolding adjacent-def by auto

lemma (in valid-unMultigraph) adjacent-finite:
finite E =⇒ finite {n. adjacent v n}

proof −
assume finite E
{ fix S v

have finite S =⇒ finite {n. ∃w. (v,w,n)∈S}
proof (induct S rule: finite-induct)

case empty
thus ?case by auto

next
case (insert x F)
obtain x1 x2 x3 where x: x=(x1 ,x2 ,x3) by (metis prod-cases3)
have x1=v =⇒ ?case

proof −
assume x1=v

hence {n. ∃w. (v, w, n) ∈ insert x F}=insert x3 {n. ∃w. (v, w, n) ∈ F}
using x by auto

thus ?thesis using insert by auto
qed

moreover have x1 6=v =⇒ ?case
proof −

assume x1 6=v

45

hence {n. ∃w. (v, w, n) ∈ insert x F}={n. ∃w. (v, w, n) ∈ F} using
x by auto

thus ?thesis using insert by auto
qed

ultimately show ?case by auto
qed }

note aux=this
show ?thesis using aux[OF ‹finite E›, of v] unfolding adjacent-def by auto

qed

5 Undirected simple graph
locale valid-unSimpGraph=valid-unMultigraph G for G::(′v, ′w) graph+

assumes no-multi[simp]: (v,w,u) ∈ edges G =⇒ (v,w ′,u) ∈edges G =⇒
w = w ′

lemma (in valid-unSimpGraph) finV-to-finE [simp]:
assumes finite V
shows finite E

proof (cases {(v1 ,v2). adjacent v1 v2}={})
case True
hence E={} unfolding adjacent-def by auto
thus finite E by auto

next
case False
have {(v1 ,v2). adjacent v1 v2} ⊆ V × V using adjacent-V by auto
moreover have finite (V × V) using ‹finite V › by auto
ultimately have finite {(v1 ,v2). adjacent v1 v2} using finite-subset by auto
hence card {(v1 ,v2). adjacent v1 v2}6=0 using False card-eq-0-iff by auto
moreover have card E=card {(v1 ,v2). adjacent v1 v2}

proof −
have (λ(v1 ,w,v2). (v1 ,v2))‘E = {(v1 ,v2). adjacent v1 v2}

proof −
have

∧
x. x∈(λ(v1 ,w,v2). (v1 ,v2))‘E =⇒ x∈ {(v1 ,v2). adjacent v1 v2}

unfolding adjacent-def by auto
moreover have

∧
x. x∈{(v1 ,v2). adjacent v1 v2} =⇒ x∈(λ(v1 ,w,v2).

(v1 ,v2))‘E
unfolding adjacent-def by force

ultimately show ?thesis by force
qed
moreover have inj-on (λ(v1 ,w,v2). (v1 ,v2)) E unfolding inj-on-def by

auto
ultimately show ?thesis by (metis card-image)

qed
ultimately show finite E by (metis card.infinite)

qed

lemma del-unEdge-valid ′[simp]:valid-unSimpGraph G=⇒

46

valid-unSimpGraph (del-unEdge v w u G)
proof −

assume valid-unSimpGraph G
hence valid-unMultigraph (del-unEdge v w u G)

using valid-unSimpGraph-def [of G] del-unEdge-valid[of G] by auto
moreover have valid-unSimpGraph-axioms (del-unEdge v w u G)

using valid-unSimpGraph.no-multi[OF ‹valid-unSimpGraph G›]
unfolding valid-unSimpGraph-axioms-def del-unEdge-def by auto

ultimately show valid-unSimpGraph (del-unEdge v w u G) using valid-unSimpGraph-def
by auto

qed

lemma (in valid-unSimpGraph) del-UnEdge-non-adj:
(v,w,u)∈E =⇒ ¬valid-unMultigraph.adjacent (del-unEdge v w u G) v u

proof
assume (v, w, u) ∈ E

and ccontr :valid-unMultigraph.adjacent (del-unEdge v w u G) v u
have valid:valid-unMultigraph (del-unEdge v w u G)

using valid-unMultigraph-axioms by auto
then obtain w ′ where vw ′u:(v,w ′,u)∈edges (del-unEdge v w u G)

using ccontr unfolding valid-unMultigraph.adjacent-def [OF valid] by auto
hence (v,w ′,u)/∈{(v,w,u),(u,w,v)} unfolding del-unEdge-def by auto
hence w ′6=w by auto
moreover have (v,w ′,u)∈E using vw ′u unfolding del-unEdge-def by auto
ultimately show False using no-multi[of v w u w ′] ‹(v, w, u) ∈ E› by auto

qed

lemma (in valid-unSimpGraph) degree-adjacent: finite E =⇒ degree v G=card {n.
adjacent v n}

using valid-unSimpGraph-axioms
proof (induct degree v G arbitrary: G)

case 0
note valid3=‹valid-unSimpGraph G›
hence valid2 : valid-unMultigraph G using valid-unSimpGraph-def by auto
have {a. valid-unMultigraph.adjacent G v a}={}

proof (rule ccontr)
assume {a. valid-unMultigraph.adjacent G v a} 6= {}
then obtain w u where (v,w,u)∈edges G

unfolding valid-unMultigraph.adjacent-def [OF valid2] by auto
hence degree v G 6=0 using ‹finite (edges G)› unfolding degree-def by auto
thus False using ‹0 = degree v G› by auto

qed
thus ?case by (metis 0 .hyps card.empty)

next
case (Suc n)
hence {e ∈ edges G. fst e = v}6={} using card.empty unfolding degree-def by

force
then obtain w u where (v,w,u)∈edges G by auto
have valid:valid-unMultigraph G using ‹valid-unSimpGraph G› valid-unSimpGraph-def

47

by auto
hence valid ′:valid-unMultigraph (del-unEdge v w u G) by auto
have valid-unSimpGraph (del-unEdge v w u G)

using del-unEdge-valid ′ ‹valid-unSimpGraph G› by auto
moreover have n = degree v (del-unEdge v w u G)
using ‹Suc n = degree v G›‹(v, w, u) ∈ edges G› del-edge-undirected-degree-plus[of

G v w u]
by (metis Suc.prems(1) Suc-eq-plus1 diff-Suc-1 valid valid-unMultigraph.corres)

moreover have finite (edges (del-unEdge v w u G))
using ‹finite (edges G)› unfolding del-unEdge-def
by auto

ultimately have degree v (del-unEdge v w u G)
= card (Collect (valid-unMultigraph.adjacent (del-unEdge v w u G) v))

using Suc.hyps by auto
moreover have Suc(card ({n. valid-unMultigraph.adjacent (del-unEdge v w u

G)
v n})) = card ({n. valid-unMultigraph.adjacent G v n})

using valid-unMultigraph.adjacent-def [OF valid ′]
proof −

have {n. valid-unMultigraph.adjacent (del-unEdge v w u G) v n} ⊆
{n. valid-unMultigraph.adjacent G v n}

using del-unEdge-def [of v w u G]
unfolding valid-unMultigraph.adjacent-def [OF valid ′]

valid-unMultigraph.adjacent-def [OF valid]
by auto

moreover have u∈{n. valid-unMultigraph.adjacent G v n}
using ‹(v,w,u)∈edges G› unfolding valid-unMultigraph.adjacent-def [OF

valid] by auto
ultimately have {n. valid-unMultigraph.adjacent (del-unEdge v w u G) v n}

∪ {u}
⊆ {n. valid-unMultigraph.adjacent G v n} by auto

moreover have {n. valid-unMultigraph.adjacent G v n} − {u}
⊆ {n. valid-unMultigraph.adjacent (del-unEdge v w u G) v n}

using del-unEdge-def [of v w u G]
unfolding valid-unMultigraph.adjacent-def [OF valid ′]

valid-unMultigraph.adjacent-def [OF valid]
by auto

ultimately have {n. valid-unMultigraph.adjacent (del-unEdge v w u G) v n}
∪ {u}

= {n. valid-unMultigraph.adjacent G v n} by auto
moreover have u /∈{n. valid-unMultigraph.adjacent (del-unEdge v w u G) v

n}
using valid-unSimpGraph.del-UnEdge-non-adj[OF ‹valid-unSimpGraph G›

‹(v,w,u)∈edges G›]
by auto

moreover have finite {n. valid-unMultigraph.adjacent G v n}
using valid-unMultigraph.adjacent-finite[OF valid ‹finite (edges G)›] by simp

ultimately show ?thesis

48

by (metis Un-insert-right card-insert-disjoint finite-Un sup-bot-right)
qed

ultimately show ?case by (metis Suc.hyps(2) ‹n = degree v (del-unEdge v w u
G)›)
qed

end

theory KoenigsbergBridge imports MoreGraph
begin

6 Definition of Eulerian trails and circuits
definition (in valid-unMultigraph) is-Eulerian-trail:: ′v⇒(′v, ′w) path⇒ ′v⇒ bool
where

is-Eulerian-trail v ps v ′≡ is-trail v ps v ′ ∧ edges (rem-unPath ps G) = {}

definition (in valid-unMultigraph) is-Eulerian-circuit:: ′v ⇒ (′v, ′w) path ⇒ ′v ⇒
bool where

is-Eulerian-circuit v ps v ′≡ (v=v ′) ∧ (is-Eulerian-trail v ps v ′)

7 Necessary conditions for Eulerian trails and cir-
cuits

lemma (in valid-unMultigraph) euclerian-rev:
is-Eulerian-trail v ′ (rev-path ps) v=is-Eulerian-trail v ps v ′

proof −
have is-trail v ′ (rev-path ps) v=is-trail v ps v ′

by (metis is-trail-rev)
moreover have edges (rem-unPath (rev-path ps) G)=edges (rem-unPath ps G)

by (metis rem-unPath-graph)
ultimately show ?thesis unfolding is-Eulerian-trail-def by auto

qed

theorem (in valid-unMultigraph) euclerian-cycle-ex:
assumes is-Eulerian-circuit v ps v ′ finite V finite E
shows ∀ v∈V . even (degree v G)

proof −
obtain v ps v ′ where cycle:is-Eulerian-circuit v ps v ′ using assms by auto
hence edges (rem-unPath ps G) = {}

unfolding is-Eulerian-circuit-def is-Eulerian-trail-def
by simp

moreover have nodes (rem-unPath ps G)=nodes G by auto
ultimately have rem-unPath ps G = G (|edges:={}|) by auto
hence num-of-odd-nodes (rem-unPath ps G) = 0 by (metis assms(2) odd-nodes-no-edge)
moreover have v=v ′

49

by (metis ‹is-Eulerian-circuit v ps v ′› is-Eulerian-circuit-def)
hence num-of-odd-nodes (rem-unPath ps G)=num-of-odd-nodes G

by (metis assms(2) assms(3) cycle is-Eulerian-circuit-def
is-Eulerian-trail-def rem-UnPath-cycle)

ultimately have num-of-odd-nodes G=0 by auto
moreover have finite(odd-nodes-set G)

using ‹finite V › unfolding odd-nodes-set-def by auto
ultimately have odd-nodes-set G = {} unfolding num-of-odd-nodes-def by

auto
thus ?thesis unfolding odd-nodes-set-def by auto

qed

theorem (in valid-unMultigraph) euclerian-path-ex:
assumes is-Eulerian-trail v ps v ′ finite V finite E
shows (∀ v∈V . even (degree v G)) ∨ (num-of-odd-nodes G =2)

proof −
obtain v ps v ′ where path:is-Eulerian-trail v ps v ′ using assms by auto
hence edges (rem-unPath ps G) = {}

unfolding is-Eulerian-trail-def
by simp

moreover have nodes (rem-unPath ps G)=nodes G by auto
ultimately have rem-unPath ps G = G (|edges:={}|) by auto
hence odd-nodes: num-of-odd-nodes (rem-unPath ps G) = 0

by (metis assms(2) odd-nodes-no-edge)
have v 6=v ′ =⇒ ?thesis

proof (cases even(degree v ′ G))
case True
assume v 6=v ′

have is-trail v ps v ′ by (metis is-Eulerian-trail-def path)
hence num-of-odd-nodes (rem-unPath ps G) = num-of-odd-nodes G

+ (if even (degree v G) then 2 else 0)
using rem-UnPath-even True ‹finite V › ‹finite E› ‹v 6=v ′› by auto

hence num-of-odd-nodes G + (if even (degree v G) then 2 else 0)=0
using odd-nodes by auto

hence num-of-odd-nodes G = 0 by auto
moreover have finite(odd-nodes-set G)

using ‹finite V › unfolding odd-nodes-set-def by auto
ultimately have odd-nodes-set G = {} unfolding num-of-odd-nodes-def by

auto
thus ?thesis unfolding odd-nodes-set-def by auto

next
case False
assume v 6=v ′

have is-trail v ps v ′ by (metis is-Eulerian-trail-def path)
hence num-of-odd-nodes (rem-unPath ps G) = num-of-odd-nodes G

+ (if odd (degree v G) then −2 else 0)
using rem-UnPath-odd False ‹finite V › ‹finite E› ‹v 6=v ′› by auto

hence odd-nodes-if : num-of-odd-nodes G + (if odd (degree v G) then −2 else

50

0)=0
using odd-nodes by auto

have odd (degree v G) =⇒ ?thesis
proof −

assume odd (degree v G)
hence num-of-odd-nodes G = 2 using odd-nodes-if by auto
thus ?thesis by simp

qed
moreover have even(degree v G) =⇒ ?thesis

proof −
assume even (degree v G)
hence num-of-odd-nodes G = 0 using odd-nodes-if by auto
moreover have finite(odd-nodes-set G)

using ‹finite V › unfolding odd-nodes-set-def by auto
ultimately have odd-nodes-set G = {} unfolding num-of-odd-nodes-def

by auto
thus ?thesis unfolding odd-nodes-set-def by auto

qed
ultimately show ?thesis by auto

qed
moreover have v=v ′=⇒ ?thesis

by (metis assms(2) assms(3) euclerian-cycle-ex is-Eulerian-circuit-def path)
ultimately show ?thesis by auto

qed

8 Specific case of the Konigsberg Bridge Problem
datatype kon-node = a | b | c | d

datatype kon-bridge = ab1 | ab2 | ac1 | ac2 | ad1 | bd1 | cd1

definition kon-graph :: (kon-node,kon-bridge) graph where
kon-graph≡(|nodes={a,b,c,d},

edges={(a,ab1 ,b), (b,ab1 ,a),
(a,ab2 ,b), (b,ab2 ,a),
(a,ac1 ,c), (c,ac1 ,a),
(a,ac2 ,c), (c,ac2 ,a),
(a,ad1 ,d), (d,ad1 ,a),
(b,bd1 ,d), (d,bd1 ,b),
(c,cd1 ,d), (d,cd1 ,c)} |)

instantiation kon-node :: enum
begin
definition [simp]: enum-class.enum =[a,b,c,d]
definition [simp]: enum-class.enum-all P ←→ P a ∧ P b ∧ P c ∧ P d
definition [simp]:enum-class.enum-ex P ←→ P a ∨ P b ∨ P c ∨ P d
instance proof qed (auto,(case-tac x,auto)+)
end

51

instantiation kon-bridge :: enum
begin
definition [simp]:enum-class.enum =[ab1 ,ab2 ,ac1 ,ac2 ,ad1 ,cd1 ,bd1]
definition [simp]:enum-class.enum-all P ←→ P ab1 ∧ P ab2 ∧ P ac1 ∧ P ac2
∧ P ad1 ∧ P bd1
∧ P cd1

definition [simp]:enum-class.enum-ex P ←→ P ab1 ∨ P ab2 ∨ P ac1 ∨ P ac2
∨ P ad1 ∨ P bd1
∨ P cd1

instance proof qed (auto,(case-tac x,auto)+)
end

interpretation kon-graph: valid-unMultigraph kon-graph
proof (unfold-locales)

show fst ‘ edges kon-graph ⊆ nodes kon-graph by eval
next

show snd ‘ snd ‘ edges kon-graph ⊆ nodes kon-graph by eval
next

have ∀ v w u ′. ((v, w, u ′) ∈ edges kon-graph) = ((u ′, w, v) ∈ edges kon-graph)
by eval

thus
∧

v w u ′. ((v, w, u ′) ∈ edges kon-graph) = ((u ′, w, v) ∈ edges kon-graph)
by simp
next

have ∀ v w. (v, w, v) /∈ edges kon-graph by eval
thus

∧
v w. (v, w, v) /∈ edges kon-graph by simp

qed

theorem ¬kon-graph.is-Eulerian-trail v1 p v2
proof

assume kon-graph.is-Eulerian-trail v1 p v2
moreover have finite (nodes kon-graph) by (metis finite-code)
moreover have finite (edges kon-graph) by (metis finite-code)
ultimately have contra:
(∀ v∈nodes kon-graph. even (degree v kon-graph)) ∨(num-of-odd-nodes kon-graph

=2)
by (metis kon-graph.euclerian-path-ex)

have odd(degree a kon-graph) by eval
moreover have odd(degree b kon-graph) by eval
moreover have odd(degree c kon-graph) by eval
moreover have odd(degree d kon-graph) by eval
ultimately have ¬(num-of-odd-nodes kon-graph =2) by eval
moreover have ¬(∀ v∈nodes kon-graph. even (degree v kon-graph)) by eval
ultimately show False using contra by auto

qed

52

9 Sufficient conditions for Eulerian trails and cir-
cuits

lemma (in valid-unMultigraph) eulerian-cons:
assumes

valid-unMultigraph.is-Eulerian-trail (del-unEdge v0 w v1 G) v1 ps v2
(v0 ,w,v1)∈ E

shows is-Eulerian-trail v0 ((v0 ,w,v1)#ps) v2
proof −

have valid:valid-unMultigraph (del-unEdge v0 w v1 G)
using valid-unMultigraph-axioms by auto

hence distinct:valid-unMultigraph.is-trail (del-unEdge v0 w v1 G) v1 ps v2
using assms unfolding valid-unMultigraph.is-Eulerian-trail-def [OF valid]
by auto

hence set ps ⊆ edges (del-unEdge v0 w v1 G)
using valid-unMultigraph.path-in-edges[OF valid] by auto

moreover have (v0 ,w,v1)/∈edges (del-unEdge v0 w v1 G)
unfolding del-unEdge-def by auto

moreover have (v1 ,w,v0)/∈edges (del-unEdge v0 w v1 G)
unfolding del-unEdge-def by auto

ultimately have (v0 ,w,v1)/∈set ps (v1 ,w,v0)/∈set ps by auto
moreover have is-trail v1 ps v2

using distinct-path-intro[OF distinct] .
ultimately have is-trail v0 ((v0 ,w,v1)#ps) v2

using ‹(v0 ,w,v1)∈ E› by auto
moreover have edges (rem-unPath ps (del-unEdge v0 w v1 G)) ={}

using assms unfolding valid-unMultigraph.is-Eulerian-trail-def [OF valid]
by auto

hence edges (rem-unPath ((v0 ,w,v1)#ps) G)={}
by (metis rem-unPath.simps(2))

ultimately show ?thesis unfolding is-Eulerian-trail-def by auto
qed

lemma (in valid-unMultigraph) eulerian-cons ′:
assumes

valid-unMultigraph.is-Eulerian-trail (del-unEdge v2 w v3 G) v1 ps v2
(v2 ,w,v3)∈ E

shows is-Eulerian-trail v1 (ps@[(v2 ,w,v3)]) v3
proof −

have valid:valid-unMultigraph (del-unEdge v3 w v2 G)
using valid-unMultigraph-axioms del-unEdge-valid by auto

have del-unEdge v2 w v3 G=del-unEdge v3 w v2 G
by (metis delete-edge-sym)

hence valid-unMultigraph.is-Eulerian-trail (del-unEdge v3 w v2 G) v2
(rev-path ps) v1 using assms valid-unMultigraph.euclerian-rev[OF valid]

by auto
hence is-Eulerian-trail v3 ((v3 ,w,v2)#(rev-path ps)) v1

using eulerian-cons by (metis assms(2) corres)
hence is-Eulerian-trail v1 (rev-path((v3 ,w,v2)#(rev-path ps))) v3

53

using euclerian-rev by auto
moreover have rev-path((v3 ,w,v2)#(rev-path ps)) = rev-path(rev-path ps)@[(v2 ,w,v3)]

unfolding rev-path-def by auto
hence rev-path((v3 ,w,v2)#(rev-path ps))=ps@[(v2 ,w,v3)] by auto
ultimately show ?thesis by auto

qed

lemma eulerian-split:
assumes nodes G1 ∩ nodes G2 = {} edges G1 ∩ edges G2={}

valid-unMultigraph G1 valid-unMultigraph G2
valid-unMultigraph.is-Eulerian-trail G1 v1 ps1 v1 ′

valid-unMultigraph.is-Eulerian-trail G2 v2 ps2 v2 ′

shows valid-unMultigraph.is-Eulerian-trail (|nodes=nodes G1 ∪ nodes G2 ,
edges=edges G1 ∪ edges G2 ∪ {(v1 ′,w,v2),(v2 ,w,v1 ′)}|) v1 (ps1@(v1 ′,w,v2)#ps2)

v2 ′

proof −
have valid-graph G1 using ‹valid-unMultigraph G1 › valid-unMultigraph-def by

auto
have valid-graph G2 using ‹valid-unMultigraph G2 › valid-unMultigraph-def by

auto
obtain G where G:G=(|nodes=nodes G1 ∪ nodes G2 , edges=edges G1 ∪ edges

G2
∪ {(v1 ′,w,v2),(v2 ,w,v1 ′)}|)

by metis
have v1 ′∈nodes G1
by (metis (full-types) ‹valid-graph G1 › assms(3) assms(5) valid-graph.is-path-memb

valid-unMultigraph.is-trail-intro valid-unMultigraph.is-Eulerian-trail-def)
moreover have v2∈nodes G2
by (metis (full-types) ‹valid-graph G2 › assms(4) assms(6) valid-graph.is-path-memb

valid-unMultigraph.is-trail-intro valid-unMultigraph.is-Eulerian-trail-def)
moreover have ‹ba ∈ nodes G1 › if ‹(aa, ab, ba) ∈ edges G1 ›

for aa ab ba
using that
by (meson ‹valid-graph G1 › valid-graph.E-validD(2))

ultimately have valid-unMultigraph (|nodes=nodes G1 ∪ nodes G2 , edges=edges
G1 ∪ edges G2 ∪

{(v1 ′,w,v2),(v2 ,w,v1 ′)}|)
using

valid-unMultigraph.corres[OF ‹valid-unMultigraph G1 ›]
valid-unMultigraph.no-id[OF ‹valid-unMultigraph G1 ›]
valid-unMultigraph.corres[OF ‹valid-unMultigraph G2 ›]
valid-unMultigraph.no-id[OF ‹valid-unMultigraph G2 ›]
valid-graph.E-validD[OF ‹valid-graph G1 ›]
valid-graph.E-validD[OF ‹valid-graph G2 ›]
‹nodes G1 ∩ nodes G2 = {}›

by unfold-locales auto
hence valid: valid-unMultigraph G using G by auto
hence valid ′:valid-graph G using valid-unMultigraph-def by auto
moreover have valid-unMultigraph.is-trail G v1 (ps1@((v1 ′,w,v2)#ps2)) v2 ′

54

proof −
have ps1-G:valid-unMultigraph.is-trail G v1 ps1 v1 ′

proof −
have valid-unMultigraph.is-trail G1 v1 ps1 v1 ′ using assms

by (metis valid-unMultigraph.is-Eulerian-trail-def)
moreover have edges G1 ⊆ edges G by (metis G UnI1 Un-assoc

select-convs(2) subrelI)
moreover have nodes G1 ⊆ nodes G by (metis G inf-sup-absorb le-iff-inf

select-convs(1))
ultimately show ?thesis

using distinct-path-subset[of G1 G,OF ‹valid-unMultigraph G1 › valid]
by auto

qed
have ps2-G:valid-unMultigraph.is-trail G v2 ps2 v2 ′

proof −
have valid-unMultigraph.is-trail G2 v2 ps2 v2 ′ using assms

by (metis valid-unMultigraph.is-Eulerian-trail-def)
moreover have edges G2 ⊆ edges G by (metis G inf-sup-ord(3) le-supE

select-convs(2))
moreover have nodes G2 ⊆ nodes G by (metis G inf-sup-ord(4) se-

lect-convs(1))
ultimately show ?thesis

using distinct-path-subset[of G2 G,OF ‹valid-unMultigraph G2 › valid]
by auto

qed
have valid-graph.is-path G v1 (ps1@((v1 ′,w,v2)#ps2)) v2 ′

proof −
have valid-graph.is-path G v1 ps1 v1 ′

by (metis ps1-G valid valid-unMultigraph.is-trail-intro)
moreover have valid-graph.is-path G v2 ps2 v2 ′

by (metis ps2-G valid valid-unMultigraph.is-trail-intro)
moreover have (v1 ′,w,v2) ∈ edges G

using G by auto
ultimately show ?thesis

using valid-graph.is-path-split ′[OF valid ′,of v1 ps1 v1 ′ w v2 ps2 v2 ′] by
auto

qed
moreover have distinct (ps1@((v1 ′,w,v2)#ps2))

proof −
have distinct ps1 by (metis ps1-G valid valid-unMultigraph.is-trail-path)
moreover have distinct ps2

by (metis ps2-G valid valid-unMultigraph.is-trail-path)
moreover have set ps1 ∩ set ps2 = {}

proof −
have set ps1 ⊆edges G1
by (metis assms(3) assms(5) valid-unMultigraph.is-Eulerian-trail-def

valid-unMultigraph.path-in-edges)
moreover have set ps2 ⊆ edges G2
by (metis assms(4) assms(6) valid-unMultigraph.is-Eulerian-trail-def

55

valid-unMultigraph.path-in-edges)
ultimately show ?thesis using ‹edges G1 ∩ edges G2={}› by auto

qed
moreover have (v1 ′,w,v2)/∈edges G1

using ‹v2 ∈ nodes G2 › ‹valid-graph G1 ›
by (metis Int-iff all-not-in-conv assms(1) valid-graph.E-validD(2))

hence (v1 ′,w,v2)/∈set ps1
by (metis (full-types) assms(3) assms(5) subsetD valid-unMultigraph.path-in-edges

valid-unMultigraph.is-Eulerian-trail-def)
moreover have (v1 ′,w,v2)/∈edges G2

using ‹v1 ′ ∈ nodes G1 › ‹valid-graph G2 ›
by (metis assms(1) disjoint-iff-not-equal valid-graph.E-validD(1))

hence (v1 ′,w,v2)/∈set ps2
by (metis (full-types) assms(4) assms(6) in-mono valid-unMultigraph.path-in-edges

valid-unMultigraph.is-Eulerian-trail-def)
ultimately show ?thesis using distinct-append by auto

qed
moreover have set (ps1@((v1 ′,w,v2)#ps2)) ∩ set (rev-path (ps1@((v1 ′,w,v2)#ps2)))

= {}
proof −

have set ps1 ∩ set (rev-path ps1) = {}
by (metis ps1-G valid valid-unMultigraph.is-trail-path)

moreover have set (rev-path ps2) ⊆ edges G2
by (metis assms(4) assms(6) valid-unMultigraph.is-trail-rev
valid-unMultigraph.is-Eulerian-trail-def valid-unMultigraph.path-in-edges)

hence set ps1 ∩ set (rev-path ps2) = {}
using assms
valid-unMultigraph.path-in-edges[OF ‹valid-unMultigraph G1 ›, of v1 ps1

v1 ′]
valid-unMultigraph.path-in-edges[OF ‹valid-unMultigraph G2 ›, of v2 ps2

v2 ′]
unfolding valid-unMultigraph.is-Eulerian-trail-def [OF ‹valid-unMultigraph

G1 ›]
valid-unMultigraph.is-Eulerian-trail-def [OF ‹valid-unMultigraph G2 ›]

by auto
moreover have set ps2 ∩ set (rev-path ps2) = {}

by (metis ps2-G valid valid-unMultigraph.is-trail-path)
moreover have set (rev-path ps1) ⊆edges G1

by (metis assms(3) assms(5) valid-unMultigraph.is-Eulerian-trail-def
valid-unMultigraph.path-in-edges valid-unMultigraph.euclerian-rev)

hence set ps2 ∩ set (rev-path ps1) = {}
by (metis calculation(2) distinct-append distinct-rev-path ps1-G ps2-G

rev-path-append
rev-path-double valid valid-unMultigraph.is-trail-path)

moreover have (v2 ,w,v1 ′)/∈set (ps1@((v1 ′,w,v2)#ps2))
proof −

have (v2 ,w,v1 ′)/∈edges G1
using ‹v2 ∈ nodes G2 › ‹valid-graph G1 ›
by (metis Int-iff all-not-in-conv assms(1) valid-graph.E-validD(1))

56

hence (v2 ,w,v1 ′)/∈set ps1
by (metis assms(3) assms(5) split-list valid-unMultigraph.is-trail-split ′

valid-unMultigraph.is-Eulerian-trail-def)
moreover have (v2 ,w,v1 ′)/∈edges G2

using ‹v1 ′ ∈ nodes G1 › ‹valid-graph G2 ›
by (metis IntI assms(1) empty-iff valid-graph.E-validD(2))

hence (v2 ,w,v1 ′)/∈set ps2
by (metis (full-types) assms(4) assms(6) in-mono valid-unMultigraph.path-in-edges

valid-unMultigraph.is-Eulerian-trail-def)
moreover have (v2 ,w,v1 ′) 6=(v1 ′,w,v2)

using ‹v1 ′ ∈ nodes G1 › ‹v2 ∈ nodes G2 ›
by (metis IntI Pair-inject assms(1) assms(5) bex-empty)

ultimately show ?thesis by auto
qed

ultimately show ?thesis using rev-path-append by auto
qed

ultimately show ?thesis using valid-unMultigraph.is-trail-path[OF valid]
by auto

qed
moreover have edges (rem-unPath (ps1@((v1 ′,w,v2)#ps2)) G)= {}

proof −
have edges (rem-unPath (ps1@((v1 ′,w,v2)#ps2)) G)=edges G −

(set (ps1@((v1 ′,w,v2)#ps2)) ∪ set (rev-path (ps1@((v1 ′,w,v2)#ps2))))
by (metis rem-unPath-edges)

also have ...=edges G − (set ps1 ∪ set ps2 ∪ set (rev-path ps1) ∪ set (rev-path
ps2)

∪ {(v1 ′,w,v2),(v2 ,w,v1 ′)}) using rev-path-append by auto
finally have edges (rem-unPath (ps1@((v1 ′,w,v2)#ps2)) G) = edges G −

(set ps1 ∪
set ps2 ∪ set (rev-path ps1) ∪ set (rev-path ps2) ∪ {(v1 ′,w,v2),(v2 ,w,v1 ′)})

.
moreover have edges (rem-unPath ps1 G1)={}

by (metis assms(3) assms(5) valid-unMultigraph.is-Eulerian-trail-def)
hence edges G1 − (set ps1 ∪ set (rev-path ps1))={}

by (metis rem-unPath-edges)
moreover have edges (rem-unPath ps2 G2)={}

by (metis assms(4) assms(6) valid-unMultigraph.is-Eulerian-trail-def)
hence edges G2 − (set ps2 ∪ set (rev-path ps2))={}

by (metis rem-unPath-edges)
ultimately show ?thesis using G by auto

qed
ultimately show ?thesis by (metis G valid valid-unMultigraph.is-Eulerian-trail-def)

qed

lemma (in valid-unMultigraph) eulerian-sufficient:
assumes finite V finite E connected V 6={}
shows num-of-odd-nodes G = 2 =⇒
(∃ v∈V .∃ v ′∈V .∃ ps. odd(degree v G)∧odd(degree v ′ G)∧(v 6=v ′)∧is-Eulerian-trail

v ps v ′)

57

and num-of-odd-nodes G=0 =⇒ (∀ v∈V .∃ ps. is-Eulerian-circuit v ps v)
using ‹finite E› ‹finite V › valid-unMultigraph-axioms ‹V 6={}› ‹connected›

proof (induct card E arbitrary: G rule: less-induct)
case less
assume finite (edges G) and finite (nodes G) and valid-unMultigraph G and

nodes G 6={}
and valid-unMultigraph.connected G and num-of-odd-nodes G = 2

have valid-graph G using ‹valid-unMultigraph G› valid-unMultigraph-def by
auto

obtain n1 n2 where
n1 : n1∈nodes G odd(degree n1 G)
and n2 : n2∈nodes G odd(degree n2 G)
and n1 6=n2 unfolding num-of-odd-nodes-def odd-nodes-set-def

proof −
have ∀S . card S=2 −→ (∃n1 n2 . n1∈S∧n2∈S∧n1 6=n2)

by (metis card-eq-0-iff equals0I even-card ′ even-numeral zero-neq-numeral)
then obtain t1 t2

where t1∈{v ∈ nodes G. odd (degree v G)} t2∈{v ∈ nodes G. odd (degree
v G)} t1 6=t2

using ‹num-of-odd-nodes G = 2 › unfolding num-of-odd-nodes-def odd-nodes-set-def
by force

thus ?thesis by (metis (lifting) that mem-Collect-eq)
qed

have even-except-two:
∧

n. n∈nodes G=⇒ n 6=n1 =⇒ n 6=n2 =⇒ even(degree n
G)

proof (rule ccontr)
fix n assume n ∈ nodes G n 6= n1 n 6= n2 odd (degree n G)
have n∈ odd-nodes-set G

by (metis (mono-tags) ‹n ∈ nodes G› ‹odd (degree n G)› mem-Collect-eq
odd-nodes-set-def)

moreover have n1 ∈ odd-nodes-set G
by (metis (mono-tags) mem-Collect-eq n1 (1) n1 (2) odd-nodes-set-def)

moreover have n2 ∈ odd-nodes-set G
using n2 (1) n2 (2) unfolding odd-nodes-set-def by auto

ultimately have {n,n1 ,n2}⊆ odd-nodes-set G by auto
moreover have card{n,n1 ,n2} ≥3 using ‹n1 6=n2 › ‹n 6=n1 › ‹n 6=n2 › by auto
moreover have finite (odd-nodes-set G)

using ‹finite (nodes G)› unfolding odd-nodes-set-def by auto
ultimately have card (odd-nodes-set G) ≥ 3

using card-mono[of odd-nodes-set G {n, n1 , n2}] by auto
thus False using ‹num-of-odd-nodes G = 2 › unfolding num-of-odd-nodes-def

by auto
qed

have {e ∈ edges G. fst e = n1}6={}
using n1
by (metis (full-types) degree-def empty-iff finite.emptyI odd-card)

then obtain v ′ w where (n1 ,w,v ′)∈edges G by auto
have v ′=n2 =⇒ (∃ v∈nodes G. ∃ v ′∈nodes G.∃ ps. odd (degree v G) ∧ odd (degree

v ′ G) ∧ v 6= v ′

58

∧ valid-unMultigraph.is-Eulerian-trail G v ps v ′)
proof (cases valid-unMultigraph.connected (del-unEdge n1 w n2 G))

assume v ′=n2
assume conneted ′:valid-unMultigraph.connected (del-unEdge n1 w n2 G)
moreover have num-of-odd-nodes (del-unEdge n1 w n2 G) = 0

using ‹(n1 , w, v ′) ∈ edges G› ‹finite (edges G)› ‹finite (nodes G)› ‹v ′ =
n2 ›

‹num-of-odd-nodes G = 2 › ‹valid-unMultigraph G› del-UnEdge-odd-odd
n1 (2) n2 (2)

by force
moreover have finite (edges (del-unEdge n1 w n2 G))

using ‹finite (edges G)› by auto
moreover have finite (nodes (del-unEdge n1 w n2 G))

using ‹finite (nodes G)› by auto
moreover have edges G − {(n1 ,w,n2),(n2 ,w,n1)} ⊂ edges G

using Diff-iff Diff-subset ‹(n1 , w, v ′) ∈ edges G› ‹v ′ = n2 ›
by fast

hence card (edges (del-unEdge n1 w n2 G)) < card (edges G)
using ‹finite (edges G)› psubset-card-mono[of edges G edges G − {(n1 ,w,n2),(n2 ,w,n1)}]

unfolding del-unEdge-def by auto
moreover have valid-unMultigraph (del-unEdge n1 w n2 G)

using ‹valid-unMultigraph G› del-unEdge-valid by auto
moreover have nodes (del-unEdge n1 w n2 G) 6= {}

by (metis (full-types) del-UnEdge-node empty-iff n1 (1))
ultimately have ∀ v∈nodes (del-unEdge n1 w n2 G). ∃ ps. valid-unMultigraph.is-Eulerian-circuit

(del-unEdge n1 w n2 G) v ps v
using less.hyps[of del-unEdge n1 w n2 G] by auto

thus ?thesis using eulerian-cons
by (metis ‹(n1 , w, v ′) ∈ edges G› ‹n1 6= n2 › ‹v ′ = n2 › ‹valid-unMultigraph

G›
‹valid-unMultigraph (del-unEdge n1 w n2 G)› del-UnEdge-node n1 (1)

n1 (2) n2 (1) n2 (2)
valid-unMultigraph.eulerian-cons valid-unMultigraph.is-Eulerian-circuit-def)

next
assume v ′=n2
assume not-conneted:¬valid-unMultigraph.connected (del-unEdge n1 w n2 G)
have valid0 :valid-unMultigraph (del-unEdge n1 w n2 G)

using ‹valid-unMultigraph G› del-unEdge-valid by auto
hence valid0 ′:valid-graph (del-unEdge n1 w n2 G)

using valid-unMultigraph-def by auto
have all-even:∀n∈nodes (del-unEdge n1 w n2 G). even(degree n (del-unEdge

n1 w n2 G))
proof −

have even (degree n1 (del-unEdge n1 w n2 G))
using ‹(n1 , w, v ′) ∈ edges G› ‹finite (edges G)› ‹v ′= n2 › ‹valid-unMultigraph

G› n1
by (auto simp add: valid-unMultigraph.corres)

moreover have even (degree n2 (del-unEdge n1 w n2 G))
using ‹(n1 , w, v ′) ∈ edges G› ‹finite (edges G)› ‹v ′= n2 › ‹valid-unMultigraph

59

G› n2
by (auto simp add: valid-unMultigraph.corres)

moreover have
∧

n. n ∈ nodes (del-unEdge n1 w n2 G) =⇒ n 6= n1 =⇒
n 6= n2 =⇒

even (degree n (del-unEdge n1 w n2 G))
using valid-unMultigraph.degree-frame[OF ‹valid-unMultigraph G›,

of - n1 n2 w] even-except-two
by (metis (no-types) ‹finite (edges G)› del-unEdge-def empty-iff insert-iff

select-convs(1))
ultimately show ?thesis by auto

qed
have (n1 ,w,n2)∈edges G by (metis ‹(n1 , w, v ′) ∈ edges G› ‹v ′ = n2 ›)

hence (n2 ,w,n1)∈edges G by (metis ‹valid-unMultigraph G› valid-unMultigraph.corres)
obtain G1 G2 where

G1-nodes: nodes G1={n. ∃ ps. valid-graph.is-path (del-unEdge n1 w n2 G)
n ps n1}

and G1-edges: edges G1={(n,e,n ′). (n,e,n ′)∈edges (del-unEdge n1 w n2
G)

∧ n∈nodes G1 ∧ n ′∈nodes G1}
and G2-nodes:nodes G2={n. ∃ ps. valid-graph.is-path (del-unEdge n1 w

n2 G) n ps n2}
and G2-edges:edges G2={(n,e,n ′). (n,e,n ′)∈edges (del-unEdge n1 w n2 G)

∧ n∈nodes G2
∧ n ′∈nodes G2}

and G1-G2-edges-union:edges G1 ∪ edges G2 = edges (del-unEdge n1 w
n2 G)

and edges G1 ∩ edges G2={}
and G1-G2-nodes-union:nodes G1 ∪ nodes G2=nodes (del-unEdge n1 w

n2 G)
and nodes G1 ∩ nodes G2={}
and valid-unMultigraph G1
and valid-unMultigraph G2
and valid-unMultigraph.connected G1
and valid-unMultigraph.connected G2

using valid-unMultigraph.connectivity-split[OF ‹valid-unMultigraph G›
‹valid-unMultigraph.connected G› ‹¬ valid-unMultigraph.connected (del-unEdge

n1 w n2 G)›
‹(n1 , w, n2) ∈ edges G›] .

have edges (del-unEdge n1 w n2 G) ⊂ edges G
unfolding del-unEdge-def using ‹(n1 , w, n2)∈edges G› ‹(n2 , w, n1)∈edges

G› by auto
hence card (edges G1) < card (edges G) using G1-G2-edges-union

by (metis (full-types) ‹finite (edges G)› inf-sup-absorb less-infI2 psub-
set-card-mono)

moreover have finite (edges G1)
using G1-G2-edges-union ‹finite (edges G)›
by (metis ‹edges (del-unEdge n1 w n2 G) ⊂ edges G› finite-Un less-imp-le

rev-finite-subset)
moreover have nodes G1 ⊆ nodes (del-unEdge n1 w n2 G)

60

by (metis G1-G2-nodes-union Un-upper1)
hence finite (nodes G1)

using ‹finite (nodes G)› del-UnEdge-node rev-finite-subset by auto
moreover have n1 ∈ nodes G1

proof −
have n1∈nodes (del-unEdge n1 w n2 G) using ‹n1∈nodes G› by auto
hence valid-graph.is-path (del-unEdge n1 w n2 G) n1 [] n1

using valid0 ′ by (metis valid-graph.is-path-simps(1))
thus ?thesis using G1-nodes by auto

qed
hence nodes G1 6= {} by auto
moreover have num-of-odd-nodes G1 = 0

proof −
have valid-graph G2 using ‹valid-unMultigraph G2 › valid-unMultigraph-def

by auto
hence ∀n∈nodes G1 . degree n G1 = degree n (del-unEdge n1 w n2 G)
using sub-graph-degree-frame[of G2 G1 (del-unEdge n1 w n2 G)]

by (metis G1-G2-edges-union ‹nodes G1 ∩ nodes G2 = {}›)
hence ∀n∈nodes G1 . even(degree n G1) using all-even

by (metis G1-G2-nodes-union Un-iff)
thus ?thesis

unfolding num-of-odd-nodes-def odd-nodes-set-def
by (metis (lifting) Collect-empty-eq card-eq-0-iff)

qed
ultimately have ∀ v∈nodes G1 . ∃ ps. valid-unMultigraph.is-Eulerian-circuit

G1 v ps v
using less.hyps[of G1] ‹valid-unMultigraph G1 › ‹valid-unMultigraph.connected

G1 ›
by auto

then obtain ps1 where ps1 :valid-unMultigraph.is-Eulerian-trail G1 n1 ps1
n1

using ‹n1∈nodes G1 ›
by (metis (full-types) ‹valid-unMultigraph G1 › valid-unMultigraph.is-Eulerian-circuit-def)
have card (edges G2) < card (edges G)

using G1-G2-edges-union ‹edges (del-unEdge n1 w n2 G) ⊂ edges G›
by (metis (full-types) ‹finite (edges G)› inf-sup-ord(4) le-less-trans psub-

set-card-mono)
moreover have finite (edges G2)

using G1-G2-edges-union ‹finite (edges G)›
by (metis ‹edges (del-unEdge n1 w n2 G) ⊂ edges G› finite-Un less-imp-le

rev-finite-subset)
moreover have nodes G2 ⊆ nodes (del-unEdge n1 w n2 G)

by (metis G1-G2-nodes-union Un-upper2)
hence finite (nodes G2)

using ‹finite (nodes G)› del-UnEdge-node rev-finite-subset by auto
moreover have n2 ∈ nodes G2

proof −
have n2∈nodes (del-unEdge n1 w n2 G)

using ‹n2∈nodes G› by auto

61

hence valid-graph.is-path (del-unEdge n1 w n2 G) n2 [] n2
using valid0 ′ by (metis valid-graph.is-path-simps(1))

thus ?thesis using G2-nodes by auto
qed

hence nodes G2 6= {} by auto
moreover have num-of-odd-nodes G2 = 0

proof −
have valid-graph G1 using ‹valid-unMultigraph G1 › valid-unMultigraph-def

by auto
hence ∀n∈nodes G2 . degree n G2 = degree n (del-unEdge n1 w n2 G)

using sub-graph-degree-frame[of G1 G2 (del-unEdge n1 w n2 G)]
by (metis G1-G2-edges-union ‹nodes G1 ∩ nodes G2 = {}› inf-commute

sup-commute)
hence ∀n∈nodes G2 . even(degree n G2) using all-even

by (metis G1-G2-nodes-union Un-iff)
thus ?thesis

unfolding num-of-odd-nodes-def odd-nodes-set-def
by (metis (lifting) Collect-empty-eq card-eq-0-iff)

qed
ultimately have ∀ v∈nodes G2 . ∃ ps. valid-unMultigraph.is-Eulerian-circuit

G2 v ps v
using less.hyps[of G2] ‹valid-unMultigraph G2 › ‹valid-unMultigraph.connected

G2 ›
by auto

then obtain ps2 where ps2 :valid-unMultigraph.is-Eulerian-trail G2 n2 ps2
n2

using ‹n2∈nodes G2 ›
by (metis (full-types) ‹valid-unMultigraph G2 › valid-unMultigraph.is-Eulerian-circuit-def)
have (|nodes = nodes G1 ∪ nodes G2 , edges = edges G1 ∪ edges G2 ∪ {(n1 ,

w, n2),
(n2 , w, n1)}|)=G

proof −
have edges (del-unEdge n1 w n2 G) ∪ {(n1 , w, n2),(n2 , w, n1)} =edges

G
using ‹(n1 ,w,n2)∈edges G› ‹(n2 ,w,n1)∈edges G›
unfolding del-unEdge-def by auto

moreover have nodes (del-unEdge n1 w n2 G)=nodes G
unfolding del-unEdge-def by auto

ultimately have (|nodes = nodes (del-unEdge n1 w n2 G), edges =
edges (del-unEdge n1 w n2 G) ∪ {(n1 , w, n2), (n2 , w, n1)}|)=G

by auto
moreover have (|nodes = nodes G1 ∪ nodes G2 , edges = edges G1 ∪

edges G2 ∪
{(n1 , w, n2),(n2 , w, n1)}|)=(|nodes = nodes (del-unEdge n1 w n2

G),edges
= edges (del-unEdge n1 w n2 G) ∪ {(n1 , w, n2), (n2 , w, n1)}|)

by (metis G1-G2-edges-union G1-G2-nodes-union)
ultimately show ?thesis by auto

qed

62

moreover have valid-unMultigraph.is-Eulerian-trail (|nodes = nodes G1 ∪
nodes G2 ,

edges = edges G1 ∪ edges G2 ∪ {(n1 , w, n2), (n2 , w, n1)}|) n1 (ps1 @
(n1 , w, n2) # ps2) n2

using eulerian-split[of G1 G2 n1 ps1 n1 n2 ps2 n2 w]
by (metis ‹edges G1 ∩ edges G2 = {}› ‹nodes G1 ∩ nodes G2 = {}›

‹valid-unMultigraph G1 ›
‹valid-unMultigraph G2 › ps1 ps2)

ultimately show ?thesis by (metis ‹n1 6= n2 › n1 (1) n1 (2) n2 (1) n2 (2))
qed

moreover have v ′6=n2 =⇒ (∃ v∈nodes G. ∃ v ′∈nodes G.∃ ps. odd (degree v G)
∧ odd (degree v ′ G)

∧ v 6= v ′ ∧ valid-unMultigraph.is-Eulerian-trail G v ps v ′)
proof (cases valid-unMultigraph.connected (del-unEdge n1 w v ′ G))

case True
assume v ′ 6= n2
assume connected ′:valid-unMultigraph.connected (del-unEdge n1 w v ′ G)
have n1 ∈ nodes (del-unEdge n1 w v ′ G) by (metis del-UnEdge-node n1 (1))
hence even-n1 :even(degree n1 (del-unEdge n1 w v ′ G))
using valid-unMultigraph.del-UnEdge-even[OF ‹valid-unMultigraph G› ‹(n1 ,

w, v ′) ∈ edges G›
‹finite (edges G)›] ‹odd (degree n1 G)›

unfolding odd-nodes-set-def by auto
moreover have odd-n2 :odd(degree n2 (del-unEdge n1 w v ′ G))

using valid-unMultigraph.degree-frame[OF ‹valid-unMultigraph G› ‹finite
(edges G)›,

of n2 n1 v ′ w] ‹n1 6= n2 › ‹v ′ 6= n2 ›
by (metis empty-iff insert-iff n2 (2))

moreover have even (degree v ′ G)
using even-except-two[of v ′]
by (metis (full-types) ‹(n1 , w, v ′) ∈ edges G› ‹v ′ 6= n2 › ‹valid-graph G›

‹valid-unMultigraph G› valid-graph.E-validD(2) valid-unMultigraph.no-id)
hence odd-v ′:odd(degree v ′ (del-unEdge n1 w v ′ G))
using valid-unMultigraph.del-UnEdge-even ′[OF ‹valid-unMultigraph G› ‹(n1 ,

w, v ′) ∈ edges G›
‹finite (edges G)›]

unfolding odd-nodes-set-def by auto
ultimately have two-odds:num-of-odd-nodes (del-unEdge n1 w v ′ G) = 2

by (metis (lifting) ‹v ′ 6= n2 › ‹valid-graph G› ‹valid-unMultigraph G›
‹(n1 , w, v ′) ∈ edges G› ‹finite (edges G)› ‹finite (nodes G)› ‹num-of-odd-nodes

G = 2 ›
del-UnEdge-odd-even even-except-two n1 (2) valid-graph.E-validD(2))

moreover have valid0 :valid-unMultigraph (del-unEdge n1 w v ′ G)
using del-unEdge-valid ‹valid-unMultigraph G› by auto

moreover have edges G − {(n1 , w, v ′), (v ′, w, n1)} ⊂ edges G
using ‹(n1 ,w,v ′)∈edges G› by auto

hence card (edges (del-unEdge n1 w v ′ G)) < card (edges G)
using ‹finite (edges G)› unfolding del-unEdge-def
by (metis (opaque-lifting, no-types) psubset-card-mono select-convs(2))

63

moreover have finite (edges (del-unEdge n1 w v ′ G))
unfolding del-unEdge-def
by (metis (full-types) ‹finite (edges G)› finite-Diff select-convs(2))

moreover have finite (nodes (del-unEdge n1 w v ′ G))
unfolding del-unEdge-def by (metis ‹finite (nodes G)› select-convs(1))

moreover have nodes (del-unEdge n1 w v ′ G) 6= {}
by (metis (full-types) del-UnEdge-node empty-iff n1 (1))

ultimately obtain s t ps where
s: s∈nodes (del-unEdge n1 w v ′ G) odd (degree s (del-unEdge n1 w v ′ G))
and t:t∈nodes (del-unEdge n1 w v ′ G) odd (degree t (del-unEdge n1 w v ′

G))
and s 6= t
and s-ps-t: valid-unMultigraph.is-Eulerian-trail (del-unEdge n1 w v ′ G) s

ps t
using connected ′ less.hyps[of (del-unEdge n1 w v ′ G)] by auto

hence (s=n2∧t=v ′)∨(s=v ′∧t=n2)
using odd-n2 odd-v ′ two-odds ‹finite (edges G)›‹valid-unMultigraph G›
by (metis (mono-tags) del-UnEdge-node empty-iff even-except-two even-n1

insert-iff
valid-unMultigraph.degree-frame)

moreover have s=n2=⇒t=v ′=⇒?thesis
by (metis ‹(n1 , w, v ′) ∈ edges G› ‹n1 6= n2 › ‹valid-unMultigraph G› n1 (1)

n1 (2) n2 (1) n2 (2)
s-ps-t valid0 valid-unMultigraph.euclerian-rev valid-unMultigraph.eulerian-cons)

moreover have s=v ′=⇒t=n2=⇒?thesis
by (metis ‹(n1 , w, v ′) ∈ edges G› ‹n1 6= n2 › ‹valid-unMultigraph G› n1 (1)

n1 (2) n2 (1) n2 (2)
s-ps-t valid-unMultigraph.eulerian-cons)

ultimately show ?thesis by auto
next

case False
assume v ′6=n2
assume not-conneted:¬valid-unMultigraph.connected (del-unEdge n1 w v ′ G)
have (v ′,w,n1)∈edges G using ‹(n1 ,w,v ′)∈edges G›

by (metis ‹valid-unMultigraph G› valid-unMultigraph.corres)
have valid0 :valid-unMultigraph (del-unEdge n1 w v ′ G)

using ‹valid-unMultigraph G› del-unEdge-valid by auto
hence valid0 ′:valid-graph (del-unEdge n1 w v ′ G)

using valid-unMultigraph-def by auto
have even-n1 :even(degree n1 (del-unEdge n1 w v ′ G))

using valid-unMultigraph.del-UnEdge-even[OF ‹valid-unMultigraph G›
‹(n1 ,w,v ′)∈edges G›

‹finite (edges G)›] n1
unfolding odd-nodes-set-def by auto

moreover have odd-n2 :odd(degree n2 (del-unEdge n1 w v ′ G))
using ‹n1 6= n2 › ‹v ′ 6= n2 › n2 valid-unMultigraph.degree-frame[OF ‹valid-unMultigraph

G›
‹finite (edges G)›, of n2 n1 v ′ w]

by auto

64

moreover have v ′6=n1
using valid-unMultigraph.no-id[OF ‹valid-unMultigraph G›] ‹(n1 ,w,v ′)∈edges

G› by auto
hence odd-v ′:odd(degree v ′ (del-unEdge n1 w v ′ G))

using ‹v ′ 6= n2 › even-except-two[of v ′]
valid-graph.E-validD(2)[OF ‹valid-graph G› ‹(n1 , w, v ′) ∈ edges G›]
valid-unMultigraph.del-UnEdge-even ′[OF ‹valid-unMultigraph G› ‹(n1 , w,

v ′) ∈ edges G›
‹finite (edges G)›]

unfolding odd-nodes-set-def by auto
ultimately have even-except-two ′:

∧
n. n∈nodes (del-unEdge n1 w v ′ G)=⇒

n 6=n2
=⇒ n 6=v ′=⇒ even(degree n (del-unEdge n1 w v ′ G))

using del-UnEdge-node[of - n1 w v ′ G] even-except-two valid-unMultigraph.degree-frame[OF
‹valid-unMultigraph G› ‹finite (edges G)›, of - n1 v ′ w]

by force
obtain G1 G2 where

G1-nodes: nodes G1={n. ∃ ps. valid-graph.is-path (del-unEdge n1 w v ′ G)
n ps n1}

and G1-edges: edges G1={(n,e,n ′). (n,e,n ′)∈edges (del-unEdge n1 w v ′ G)
∧ n∈nodes G1

∧ n ′∈nodes G1}
and G2-nodes:nodes G2={n. ∃ ps. valid-graph.is-path (del-unEdge n1 w v ′

G) n ps v ′}
and G2-edges:edges G2={(n,e,n ′). (n,e,n ′)∈edges (del-unEdge n1 w v ′ G)

∧ n∈nodes G2
∧ n ′∈nodes G2}

and G1-G2-edges-union:edges G1 ∪ edges G2 = edges (del-unEdge n1 w
v ′ G)

and edges G1 ∩ edges G2={}
and G1-G2-nodes-union:nodes G1 ∪ nodes G2=nodes (del-unEdge n1 w

v ′ G)
and nodes G1 ∩ nodes G2={}
and valid-unMultigraph G1
and valid-unMultigraph G2
and valid-unMultigraph.connected G1
and valid-unMultigraph.connected G2

using valid-unMultigraph.connectivity-split[OF ‹valid-unMultigraph G›
‹valid-unMultigraph.connected G› not-conneted ‹(n1 ,w,v ′)∈edges G›]

.
have n2∈nodes G2 using extend-distinct-path

proof −
have finite (edges (del-unEdge n1 w v ′ G))

unfolding del-unEdge-def using ‹finite (edges G)› by auto
moreover have num-of-odd-nodes (del-unEdge n1 w v ′ G) = 2

by (metis ‹(n1 , w, v ′) ∈ edges G› ‹(v ′, w, n1) ∈ edges G› ‹num-of-odd-nodes
G = 2 ›

‹v ′ 6= n2 › ‹valid-graph G› del-UnEdge-even-odd delete-edge-sym
even-except-two

65

‹finite (edges G)› ‹finite (nodes G)› ‹valid-unMultigraph G›
n1 (2) valid-graph.E-validD(2) valid-unMultigraph.no-id)

ultimately have ∃ ps. valid-unMultigraph.is-trail (del-unEdge n1 w v ′ G)
n2 ps v ′

using valid-unMultigraph.path-between-odds[OF valid0 ,of n2 v ′,OF odd-n2
odd-v ′] ‹v ′6=n2 ›

by auto
hence ∃ ps. valid-graph.is-path (del-unEdge n1 w v ′ G) n2 ps v ′

by (metis valid0 valid-unMultigraph.is-trail-intro)
thus ?thesis using G2-nodes by auto

qed
have v ′∈nodes G2

proof −
have valid-graph.is-path (del-unEdge n1 w v ′ G) v ′ [] v ′

by (metis (full-types) ‹(n1 , w, v ′) ∈ edges G› ‹valid-graph G› del-UnEdge-node
valid0 ′ valid-graph.E-validD(2) valid-graph.is-path-simps(1))

thus ?thesis by (metis (lifting) G2-nodes mem-Collect-eq)
qed

have edges-subset:edges (del-unEdge n1 w v ′ G) ⊂ edges G
using ‹(n1 ,w,v ′)∈edges G› ‹(v ′,w,n1)∈edges G›
unfolding del-unEdge-def by auto

hence card (edges G1) < card (edges G)
by (metis G1-G2-edges-union inf-sup-absorb ‹finite (edges G)› less-infI2

psubset-card-mono)
moreover have finite (edges G1)
by (metis (full-types) G1-G2-edges-union edges-subset finite-Un finite-subset

‹finite (edges G)› less-imp-le)
moreover have finite (nodes G1)

using G1-G2-nodes-union ‹finite (nodes G)›
unfolding del-unEdge-def
by (metis (full-types) finite-Un select-convs(1))

moreover have n1∈nodes G1
proof −

have valid-graph.is-path (del-unEdge n1 w v ′ G) n1 [] n1
by (metis (full-types) del-UnEdge-node n1 (1) valid0 ′ valid-graph.is-path-simps(1))
thus ?thesis by (metis (lifting) G1-nodes mem-Collect-eq)

qed
moreover hence nodes G1 6= {} by auto
moreover have num-of-odd-nodes G1 = 0

proof −
have ∀n∈nodes G1 . even(degree n (del-unEdge n1 w v ′ G))
using even-except-two ′ odd-v ′ odd-n2 ‹n2∈nodes G2 › ‹nodes G1 ∩ nodes

G2 = {}›
‹v ′∈nodes G2 ›

by (metis (full-types) G1-G2-nodes-union Un-iff disjoint-iff-not-equal)
moreover have valid-graph G2

using ‹valid-unMultigraph G2 › valid-unMultigraph-def
by auto

ultimately have ∀n∈nodes G1 . even(degree n G1)

66

using sub-graph-degree-frame[of G2 G1 del-unEdge n1 w v ′ G]
by (metis G1-G2-edges-union ‹nodes G1 ∩ nodes G2 = {}›)

thus ?thesis unfolding num-of-odd-nodes-def odd-nodes-set-def
by (metis (lifting) card-eq-0-iff empty-Collect-eq)

qed
ultimately obtain ps1 where ps1 :valid-unMultigraph.is-Eulerian-trail G1

n1 ps1 n1
using ‹valid-unMultigraph G1 › ‹valid-unMultigraph.connected G1 › less.hyps[of

G1]
by (metis valid-unMultigraph.is-Eulerian-circuit-def)

have card (edges G2) < card (edges G)
by (metis G1-G2-edges-union ‹finite (edges G)› edges-subset inf-sup-absorb

less-infI2
psubset-card-mono sup-commute)

moreover have finite (edges G2)
by (metis (full-types) G1-G2-edges-union edges-subset finite-Un ‹finite (edges

G)› less-le
rev-finite-subset)

moreover have finite (nodes G2)
by (metis (mono-tags) G1-G2-nodes-union del-UnEdge-node le-sup-iff ‹finite

(nodes G)›
rev-finite-subset subsetI)

moreover have nodes G2 6= {} using ‹v ′∈nodes G2 › by auto
moreover have num-of-odd-nodes G2 = 2

proof −
have ∀n∈nodes G2 . n /∈{n2 ,v ′}−→even(degree n (del-unEdge n1 w v ′ G))

using even-except-two ′

by (metis (full-types) G1-G2-nodes-union Un-iff insert-iff)
moreover have valid-graph G1

using ‹valid-unMultigraph G1 › valid-unMultigraph-def by auto
ultimately have ∀n∈nodes G2 . n /∈{n2 ,v ′}−→even(degree n G2)

using sub-graph-degree-frame[of G1 G2 del-unEdge n1 w v ′ G]
by (metis G1-G2-edges-union Int-commute Un-commute ‹nodes G1 ∩

nodes G2 = {}›)
hence ∀n∈nodes G2 . n /∈{n2 ,v ′}−→n /∈{v ∈ nodes G2 . odd (degree v G2)}

by (metis (lifting) mem-Collect-eq)
moreover have odd(degree n2 G2)

using sub-graph-degree-frame[of G1 G2 del-unEdge n1 w v ′ G]
by (metis (opaque-lifting, no-types) G1-G2-edges-union ‹nodes G1 ∩

nodes G2 = {}›
‹valid-graph G1 › ‹n2 ∈ nodes G2 › inf-assoc inf-bot-right inf-sup-absorb

odd-n2 sup-bot-right sup-commute)
hence n2∈{v ∈ nodes G2 . odd (degree v G2)}

by (metis (lifting) ‹n2 ∈ nodes G2 › mem-Collect-eq)
moreover have odd(degree v ′ G2)

using sub-graph-degree-frame[of G1 G2 del-unEdge n1 w v ′ G]
by (metis G1-G2-edges-union Int-commute Un-commute ‹nodes G1 ∩

nodes G2 = {}›
‹v ′ ∈ nodes G2 › ‹valid-graph G1 › odd-v ′)

67

hence v ′∈{v ∈ nodes G2 . odd (degree v G2)}
by (metis (full-types) Collect-conj-eq Collect-mem-eq Int-Collect ‹v ′ ∈

nodes G2 ›)
ultimately have {v ∈ nodes G2 . odd (degree v G2)}={n2 ,v ′}

using ‹finite (nodes G2)› by (induct G2 ,auto)
thus ?thesis using ‹v ′6=n2 ›

unfolding num-of-odd-nodes-def odd-nodes-set-def by auto
qed

ultimately obtain s t ps2 where
s: s∈nodes G2 odd (degree s G2)
and t:t∈nodes G2 odd (degree t G2)
and s 6= t
and s-ps2-t: valid-unMultigraph.is-Eulerian-trail G2 s ps2 t

using ‹valid-unMultigraph G2 › ‹valid-unMultigraph.connected G2 › less.hyps[of
G2]

by auto
moreover have valid-graph G1

using ‹valid-unMultigraph G1 › valid-unMultigraph-def by auto
ultimately have (s=n2∧t=v ′)∨(s=v ′∧t=n2)

using odd-n2 odd-v ′ even-except-two ′

sub-graph-degree-frame[of G1 G2 (del-unEdge n1 w v ′ G)]
by (metis G1-G2-edges-union G1-G2-nodes-union UnI1 ‹nodes G1 ∩ nodes

G2 = {}› inf-commute
sup.commute)

moreover have merge-G1-G2 :(|nodes = nodes G1 ∪ nodes G2 , edges = edges
G1 ∪ edges G2 ∪

{(n1 , w,v ′),(v ′, w, n1)}|)=G
proof −

have edges (del-unEdge n1 w v ′ G) ∪ {(n1 , w, v ′),(v ′, w, n1)} =edges G
using ‹(n1 ,w,v ′)∈edges G› ‹(v ′,w,n1)∈edges G›
unfolding del-unEdge-def by auto

moreover have nodes (del-unEdge n1 w v ′ G)=nodes G
unfolding del-unEdge-def by auto

ultimately have (|nodes = nodes (del-unEdge n1 w v ′ G), edges =
edges (del-unEdge n1 w v ′ G) ∪ {(n1 , w, v ′), (v ′, w, n1)}|)=G

by auto
moreover have (|nodes = nodes G1 ∪ nodes G2 , edges = edges G1 ∪

edges G2 ∪
{(n1 , w, v ′),(v ′, w, n1)}|)=(|nodes = nodes (del-unEdge n1 w v ′ G),edges
= edges (del-unEdge n1 w v ′ G) ∪ {(n1 , w, v ′), (v ′, w, n1)}|)

by (metis G1-G2-edges-union G1-G2-nodes-union)
ultimately show ?thesis by auto

qed
moreover have s=n2=⇒t=v ′=⇒?thesis
using eulerian-split[of G1 G2 n1 ps1 n1 v ′ (rev-path ps2) n2 w] merge-G1-G2

by (metis ‹edges G1 ∩ edges G2 = {}› ‹n1 6= n2 › ‹nodes G1 ∩ nodes G2
= {}›

‹valid-unMultigraph G1 › ‹valid-unMultigraph G2 › n1 (1) n1 (2) n2 (1)
n2 (2) ps1 s-ps2-t

68

valid-unMultigraph.euclerian-rev)
moreover have s=v ′=⇒t=n2=⇒?thesis

using eulerian-split[of G1 G2 n1 ps1 n1 v ′ ps2 n2 w] merge-G1-G2
by (metis ‹edges G1 ∩ edges G2 = {}› ‹n1 6= n2 › ‹nodes G1 ∩ nodes G2

= {}›
‹valid-unMultigraph G1 › ‹valid-unMultigraph G2 › n1 (1) n1 (2) n2 (1)

n2 (2) ps1 s-ps2-t)
ultimately show ?thesis by auto

qed
ultimately show ∃ v∈nodes G. ∃ v ′∈nodes G.∃ ps. odd (degree v G) ∧ odd (degree

v ′ G) ∧ v 6= v ′

∧ valid-unMultigraph.is-Eulerian-trail G v ps v ′

by auto
next

case less
assume finite (edges G) and finite (nodes G) and valid-unMultigraph G and

nodes G 6={}
and valid-unMultigraph.connected G and num-of-odd-nodes G = 0

show ∀ v∈nodes G. ∃ ps. valid-unMultigraph.is-Eulerian-circuit G v ps v
proof (rule,cases card (nodes G)=1)

fix v assume v∈nodes G
assume card (nodes G) = 1
hence nodes G={v}

using ‹v ∈ nodes G› card-Suc-eq[of nodes G 0] empty-iff insert-iff [of - v]
by auto

have edges G={}
proof (rule ccontr)

assume edges G 6= {}
then obtain e1 e2 e3 where e:(e1 ,e2 ,e3)∈edges G by (metis ex-in-conv

prod-cases3)
hence e1=e3 using ‹nodes G={v}›

by (metis (opaque-lifting, no-types) append-Nil2 valid-unMultigraph.is-trail-rev
valid-unMultigraph.is-trail.simps(1) ‹valid-unMultigraph G› singletonE

valid-unMultigraph.is-trail-split valid-unMultigraph.singleton-distinct-path)
thus False by (metis e ‹valid-unMultigraph G› valid-unMultigraph.no-id)

qed
hence valid-unMultigraph.is-Eulerian-circuit G v [] v
by (metis ‹nodes G = {v}› insert-subset ‹valid-unMultigraph G› rem-unPath.simps(1)

subsetI valid-unMultigraph.is-trail.simps(1)
valid-unMultigraph.is-Eulerian-circuit-def
valid-unMultigraph.is-Eulerian-trail-def)

thus ∃ ps. valid-unMultigraph.is-Eulerian-circuit G v ps v by auto
next

fix v assume v∈nodes G
assume card (nodes G) 6= 1
moreover have card (nodes G) 6=0 using ‹nodes G 6={}›

by (metis card-eq-0-iff ‹finite (nodes G)›)
ultimately have card (nodes G) ≥2 by auto
then obtain n where card (nodes G) = Suc (Suc n)

69

by (metis le-iff-add add-2-eq-Suc)
hence ∃n∈nodes G. n 6=v by (auto dest!: card-eq-SucD)
then obtain v ′ w where (v,w,v ′)∈edges G

proof −
assume pre:

∧
w v ′. (v, w, v ′) ∈ edges G =⇒ thesis

assume ∃n∈nodes G. n 6= v
then obtain ps where ps:∃ v ′. valid-graph.is-path G v ps v ′ ∧ ps 6=Nil

using valid-unMultigraph-def
by (metis (full-types) ‹v ∈ nodes G› ‹valid-unMultigraph G› valid-graph.is-path.simps(1)

‹valid-unMultigraph.connected G› valid-unMultigraph.connected-def)
then obtain v0 w v ′ where ∃ ps ′. ps=Cons (v0 ,w,v ′) ps ′ by (metis

neq-Nil-conv prod-cases3)
hence v0=v

using valid-unMultigraph-def
by (metis ‹valid-unMultigraph G› ps valid-graph.is-path.simps(2))

hence (v,w,v ′)∈edges G
using valid-unMultigraph-def
by (metis ‹∃ ps ′. ps = (v0 , w, v ′) # ps ′› ‹valid-unMultigraph G› ps

valid-graph.is-path.simps(2))
thus ?thesis by (metis pre)

qed
have all-even:∀ x∈nodes G. even(degree x G)

using ‹finite (nodes G)› ‹num-of-odd-nodes G = 0 ›
unfolding num-of-odd-nodes-def odd-nodes-set-def by auto

have odd-v: odd (degree v (del-unEdge v w v ′ G))
using ‹v ∈ nodes G› all-even valid-unMultigraph.del-UnEdge-even[OF

‹valid-unMultigraph G›
‹(v, w, v ′) ∈ edges G› ‹finite (edges G)›]

unfolding odd-nodes-set-def by auto
have odd-v ′: odd (degree v ′ (del-unEdge v w v ′ G))
using valid-unMultigraph.del-UnEdge-even ′[OF ‹valid-unMultigraph G› ‹(v,

w, v ′) ∈ edges G›
‹finite (edges G)›]

all-even valid-graph.E-validD(2)[OF - ‹(v, w, v ′) ∈ edges G›]
‹valid-unMultigraph G›

unfolding valid-unMultigraph-def odd-nodes-set-def
by auto

have valid-unMulti:valid-unMultigraph (del-unEdge v w v ′ G)
by (metis del-unEdge-valid ‹valid-unMultigraph G›)

moreover have valid-graph: valid-graph (del-unEdge v w v ′ G)
using valid-unMultigraph-def del-undirected
by (metis ‹valid-unMultigraph G› delete-edge-valid)

moreover have fin-E ′: finite(edges (del-unEdge v w v ′ G))
using ‹finite(edges G)› unfolding del-unEdge-def by auto

moreover have fin-V ′: finite(nodes (del-unEdge v w v ′ G))
using ‹finite(nodes G)› unfolding del-unEdge-def by auto

moreover have less-card:card(edges (del-unEdge v w v ′ G))<card(edges G)
unfolding del-unEdge-def using ‹(v,w,v ′)∈edges G›
by (metis Diff-insert2 card-Diff2-less ‹finite (edges G)› ‹valid-unMultigraph

70

G›
select-convs(2) valid-unMultigraph.corres)

moreover have num-of-odd-nodes (del-unEdge v w v ′ G) = 2
using ‹valid-unMultigraph G› ‹num-of-odd-nodes G = 0 › ‹v ∈ nodes G›

all-even
del-UnEdge-even-even[OF ‹valid-unMultigraph G› ‹finite (edges G)› ‹finite

(nodes G)›
‹(v, w, v ′) ∈ edges G›] valid-graph.E-validD(2)[OF - ‹(v, w, v ′) ∈ edges

G›]
unfolding valid-unMultigraph-def
by auto

moreover have valid-unMultigraph.connected (del-unEdge v w v ′ G)
using ‹finite (edges G)› ‹finite (nodes G)› ‹valid-unMultigraph G›

‹valid-unMultigraph.connected G›
by (metis ‹(v, w, v ′) ∈ edges G› all-even valid-unMultigraph.del-unEdge-even-connectivity)
moreover have nodes(del-unEdge v w v ′ G) 6={}

by (metis ‹v ∈ nodes G› del-UnEdge-node emptyE)
ultimately obtain n1 n2 ps where

n1-n2 :
n1∈nodes (del-unEdge v w v ′ G)
n2∈nodes (del-unEdge v w v ′ G)
odd (degree n1 (del-unEdge v w v ′ G))
odd (degree n2 (del-unEdge v w v ′ G))
n1 6=n2
and
ps-eulerian:
valid-unMultigraph.is-Eulerian-trail (del-unEdge v w v ′ G) n1 ps n2

by (metis ‹num-of-odd-nodes (del-unEdge v w v ′ G) = 2 › less.hyps(1))
have n1=v=⇒n2=v ′=⇒valid-unMultigraph.is-Eulerian-circuit G v (ps@[(v ′,w,v)])

v
using ps-eulerian
by (metis ‹(v, w, v ′) ∈ edges G› delete-edge-sym ‹valid-unMultigraph G›

valid-unMultigraph.corres valid-unMultigraph.eulerian-cons ′

valid-unMultigraph.is-Eulerian-circuit-def)
moreover have n1=v ′=⇒n2=v=⇒∃ ps. valid-unMultigraph.is-Eulerian-circuit

G v ps v
by (metis ‹(v, w, v ′) ∈ edges G› ‹valid-unMultigraph G› ps-eulerian
valid-unMultigraph.eulerian-cons valid-unMultigraph.is-Eulerian-circuit-def)

moreover have (n1=v∧n2=v ′)∨(n2=v∧n1=v ′)
by (metis (mono-tags) all-even del-UnEdge-node insert-iff ‹finite (edges G)›

‹valid-unMultigraph G› n1-n2 (1) n1-n2 (2) n1-n2 (3) n1-n2 (4) n1-n2 (5)
singletonE

valid-unMultigraph.degree-frame)
ultimately show ∃ ps. valid-unMultigraph.is-Eulerian-circuit G v ps v by

auto
qed

qed
end

71

theory FriendshipTheory
imports MoreGraph HOL−Number-Theory.Number-Theory

begin

10 Common steps
definition (in valid-unSimpGraph) non-adj :: ′v ⇒ ′v ⇒ bool where

non-adj v v ′ ≡ v∈V ∧ v ′∈V ∧ v 6=v ′ ∧ ¬adjacent v v ′

lemma (in valid-unSimpGraph) no-quad:
assumes

∧
v u. v∈V =⇒ u∈V =⇒ v 6=u =⇒ ∃ ! n. adjacent v n ∧ adjacent u n

shows ¬ (∃ v1 v2 v3 v4 . v2 6=v4 ∧ v1 6=v3 ∧ adjacent v1 v2 ∧ adjacent v2 v3 ∧
adjacent v3 v4

∧ adjacent v4 v1)
proof

assume ∃ v1 v2 v3 v4 . v2 6=v4 ∧ v1 6=v3 ∧ adjacent v1 v2 ∧ adjacent v2 v3 ∧
adjacent v3 v4 ∧ adjacent v4 v1

then obtain v1 v2 v3 v4 where
v2 6=v4 v1 6=v3 adjacent v1 v2 adjacent v2 v3 adjacent v3 v4 adjacent v4 v1
by auto

hence ∃ !n. adjacent v1 n ∧ adjacent v3 n using assms[of v1 v3] by auto
thus False

by (metis ‹adjacent v1 v2 › ‹adjacent v2 v3 › ‹adjacent v3 v4 › ‹adjacent v4 v1 ›
‹v2 6= v4 ›

adjacent-sym)
qed

lemma even-card-set:
assumes finite A and ∀ x∈A. f x∈A ∧ f x 6= x ∧ f (f x)=x
shows even(card A) using assms

proof (induct card A arbitrary:A rule:less-induct)
case less
have A={}=⇒?case by auto
moreover have A 6={}=⇒?case

proof −
assume A 6={}
then obtain x where x∈A by auto
hence f x∈A and f x 6=x by (metis less.prems(2))+
obtain B where B:B=A−{x,f x} by auto
hence finite B using ‹finite A› by auto
moreover have card B<card A using B ‹finite A›

by (metis Diff-insert ‹f x ∈ A› ‹x ∈ A› card-Diff2-less)
moreover have ∀ x∈B. f x ∈ B ∧ f x 6= x ∧ f (f x) = x

proof
fix y assume y∈B
hence y∈A using B by auto
hence f y 6=y and f (f y)=y by (metis less.prems(2))+
moreover have f y∈B

72

proof (rule ccontr)
assume f y /∈B
have f y∈A by (metis ‹y ∈ A› less.prems(2))
hence f y∈{x, f x} by (metis B DiffI ‹f y /∈ B›)
moreover have f y=x =⇒ False

by (metis B Diff-iff Diff-insert2 ‹f (f y) = y› ‹y ∈ B› singleton-iff)
moreover have f y= f x=⇒ False

by (metis B Diff-iff ‹x ∈ A› ‹y ∈ B› insertCI less.prems(2))
ultimately show False by auto

qed
ultimately show f y ∈ B ∧ f y 6= y ∧ f (f y) = y by auto

qed
ultimately have even (card B) by (metis (full-types) less.hyps)
moreover have {x,f x}⊆A using ‹f x∈A› ‹x∈A› by auto
moreover have card {x, f x} = 2 using ‹f x 6=x› by auto
ultimately show ?case using B ‹finite A› card-mono [of A {x, f x}]

by (simp add: card-Diff-subset)
qed

ultimately show ?case by metis
qed

lemma (in valid-unSimpGraph) even-degree:
assumes friend-assm:

∧
v u. v∈V =⇒ u∈V =⇒ v 6=u =⇒ ∃ ! n. adjacent v n ∧

adjacent u n
and finite E

shows ∀ v∈V . even(degree v G)
proof

fix v assume v∈V
obtain f where f :f = (λn. (SOME v ′. n∈V −→n 6=v−→adjacent n v ′ ∧ adjacent

v v ′)) by auto
have

∧
n. n∈V −→ n 6=v −→ (∃ v ′. adjacent n v ′ ∧ adjacent v v ′)

proof (rule,rule)
fix n assume n ∈ V n 6= v
hence ∃ !v ′. adjacent n v ′ ∧ adjacent v v ′

using friend-assm[of n v] ‹v∈V › unfolding non-adj-def by auto
thus ∃ v ′. adjacent n v ′ ∧ adjacent v v ′ by auto

qed
hence f-ex:

∧
n. (∃ v ′. n∈V −→ n 6=v −→ adjacent n v ′ ∧ adjacent v v ′) by auto

have ∀ x∈{n. adjacent v n}. f x∈{n. adjacent v n} ∧ f x 6= x ∧ f (f x)=x
proof

fix x assume x ∈ {n. adjacent v n}
hence adjacent v x by auto
have f x∈{n. adjacent v n}

using someI-ex[OF f-ex,of x]
by (metis ‹adjacent v x› adjacent-V (2) adjacent-no-loop f mem-Collect-eq)

moreover have f x 6=x
using someI-ex[OF f-ex,of x]
by (metis ‹adjacent v x› adjacent-V (2) adjacent-no-loop f)

moreover have f (f x)=x

73

proof (rule ccontr)
assume f (f x)6=x
have adjacent (f x) (f (f x))

using someI-ex[OF f-ex,of f x]
by (metis (full-types) adjacent-V (2) adjacent-no-loop calculation(1) f

mem-Collect-eq)
moreover have adjacent (f (f x)) v

using someI-ex[OF f-ex,of f x] by (metis adjacent-V (1) adjacent-sym
calculation f)

moreover have adjacent x (f x)
using someI-ex[OF f-ex ,of x] by (metis ‹adjacent v x› adjacent-V (2)

adjacent-no-loop f)
moreover have v 6=f x

by (metis ‹f x ∈ {n. adjacent v n}› adjacent-no-loop mem-Collect-eq)
ultimately show False

using no-quad[OF friend-assm] using ‹adjacent v x› ‹f (f x) 6=x›
by metis

qed
ultimately show f x ∈ {n. adjacent v n} ∧ f x 6= x ∧ f (f x) = x by auto

qed
moreover have finite {n. adjacent v n} by (metis adjacent-finite assms(2))
ultimately have even (card {n. adjacent v n})

using even-card-set[of {n. adjacent v n} f] by auto
thus even(degree v G) by (metis assms(2) degree-adjacent)

qed

lemma (in valid-unSimpGraph) degree-two-windmill:
assumes friend-assm:

∧
v u. v∈V =⇒ u∈V =⇒ v 6=u =⇒ ∃ ! n. adjacent v n ∧

adjacent u n
and finite E and card V≥2

shows (∃ v∈V . degree v G = 2) ←→(∃ v. ∀n∈V . n 6=v −→ adjacent v n)
proof

assume ∃ v∈V . degree v G = 2
then obtain v where degree v G=2 by auto
hence card {n. adjacent v n}=2 using degree-adjacent[OF ‹finite E›,of v] by

auto
then obtain v1 v2 where v1v2 :{n. adjacent v n}={v1 ,v2} and v1 6=v2

proof −
obtain v1 S where {n. adjacent v n} = insert v1 S and v1 /∈ S and card

S = 1
using ‹card {n. adjacent v n}=2 › card-Suc-eq[of {n. adjacent v n} 1] by

auto
then obtain v2 where S=insert v2 {}

using card-Suc-eq[of S 0] by auto
hence {n. adjacent v n}={v1 ,v2} and v1 6=v2

using ‹{n. adjacent v n} = insert v1 S› ‹v1 /∈ S› by auto
thus ?thesis using that[of v1 v2] by auto

qed
have adjacent v1 v2

74

proof −
obtain n where adjacent v n adjacent v1 n using friend-assm[of v v1]

by (metis (full-types) adjacent-V (2) adjacent-sym insertI1 mem-Collect-eq
v1v2)

hence n∈{n. adjacent v n} by auto
moreover have n 6=v1 by (metis ‹adjacent v1 n› adjacent-no-loop)
ultimately have n=v2 using v1v2 by auto
thus ?thesis by (metis ‹adjacent v1 n›)

qed
have v1v2-adj:∀ x∈V . x∈{n. adjacent v1 n} ∪ {n. adjacent v2 n}

proof
fix x assume x∈V
have x=v =⇒ x ∈ {n. adjacent v1 n} ∪ {n. adjacent v2 n}

by (metis Un-iff adjacent-sym insertI1 mem-Collect-eq v1v2)
moreover have x 6=v =⇒ x ∈ {n. adjacent v1 n} ∪ {n. adjacent v2 n}

proof −
assume x 6=v
then obtain y where adjacent v y adjacent x y

using friend-assm[of v x]
by (metis Collect-empty-eq ‹x ∈ V › adjacent-V (1) all-not-in-conv insertCI

v1v2)
hence y=v1 ∨ y=v2 using v1v2 by auto
thus x ∈ {n. adjacent v1 n} ∪ {n. adjacent v2 n} using ‹adjacent x y›

by (metis UnI1 UnI2 adjacent-sym mem-Collect-eq)
qed

ultimately show x ∈ {n. adjacent v1 n} ∪ {n. adjacent v2 n} by auto
qed

have {n. adjacent v1 n}−{v2 ,v}={} =⇒ ∃ v. ∀n∈V . n 6= v −→ adjacent v n
proof (rule exI [of - v2],rule,rule)

fix n assume v1-adj:{n. adjacent v1 n} − {v2 , v} = {} and n ∈ V and n
6= v2

have n∈{n. adjacent v2 n}
proof (cases n=v)

case True
show ?thesis by (metis True adjacent-sym insertI1 insert-commute

mem-Collect-eq v1v2)
next

case False
have n /∈{n. adjacent v1 n} by (metis DiffI False ‹n 6= v2 › empty-iff

insert-iff v1-adj)
thus ?thesis by (metis Un-iff ‹n ∈ V › v1v2-adj)

qed
thus adjacent v2 n by auto

qed
moreover have {n. adjacent v2 n}−{v1 ,v}={} =⇒ ∃ v. ∀n∈V . n 6= v −→

adjacent v n
proof (rule exI [of - v1],rule,rule)

fix n assume v2-adj:{n. adjacent v2 n} − {v1 , v} = {} and n ∈ V and n
6= v1

75

have n∈{n. adjacent v1 n}
proof (cases n=v)

case True
show ?thesis by (metis True adjacent-sym insertI1 mem-Collect-eq v1v2)

next
case False

have n /∈{n. adjacent v2 n} by (metis DiffI False ‹n 6= v1 › empty-iff
insert-iff v2-adj)

thus ?thesis by (metis Un-iff ‹n ∈ V › v1v2-adj)
qed

thus adjacent v1 n by auto
qed

moreover have {n. adjacent v1 n}−{v2 ,v}6={} =⇒ {n. adjacent v2 n}−{v1 ,v}6={}
=⇒False

proof −
assume {n. adjacent v1 n} − {v2 , v} 6= {} {n. adjacent v2 n} − {v1 , v} 6=

{}
then obtain a b where a:a∈{n. adjacent v1 n} − {v2 , v}

and b:b∈{n. adjacent v2 n} − {v1 , v}
by auto

have a=b =⇒ False
proof −

assume a=b
have adjacent v1 a using a by auto
moreover have adjacent a v2 using b ‹a=b› adjacent-sym by auto

moreover have a 6=v by (metis DiffD2 ‹a = b› b doubleton-eq-iff insertI1)
moreover have adjacent v2 v

by (metis (full-types) adjacent-sym inf-sup-aci(5) insertI1 insert-is-Un
mem-Collect-eq

v1v2)
moreover have adjacent v v1 by (metis (full-types) insertI1 mem-Collect-eq

v1v2)
ultimately show False using no-quad[OF friend-assm]

using ‹v1 6=v2 › by auto
qed

moreover have a 6=b=⇒False
proof −

assume a 6=b
moreover have a∈V using a by (metis DiffD1 adjacent-V (2) mem-Collect-eq)
moreover have b∈V using b by (metis DiffD1 adjacent-V (2) mem-Collect-eq)

ultimately obtain c where adjacent a c adjacent b c
using friend-assm[of a b] by auto

hence c∈{n. adjacent v1 n} ∪ {n. adjacent v2 n}
by (metis (full-types) adjacent-V (2) v1v2-adj)

moreover have c∈{n. adjacent v1 n} =⇒ False
proof −

assume c∈{n. adjacent v1 n}
hence adjacent v1 c by auto
moreover have adjacent c b by (metis ‹adjacent b c› adjacent-sym)

76

moreover have adjacent b v2
by (metis (full-types) Diff-iff adjacent-sym b mem-Collect-eq)

moreover have adjacent v2 v1 by (metis ‹adjacent v1 v2 › adjacent-sym)
moreover have c 6=v2

proof (rule ccontr)
assume ¬ c 6= v2
hence c=v2 by auto
hence adjacent v2 a by (metis ‹adjacent a c› adjacent-sym)
moreover have adjacent v2 v

by (metis adjacent-sym insert-iff mem-Collect-eq v1v2)
moreover have adjacent v1 v

using adjacent-sym v1v2 by auto
moreover have adjacent v1 a by (metis (full-types) Diff-iff a

mem-Collect-eq)
ultimately have a=v using friend-assm[of v1 v2]

by (metis ‹v1 6= v2 › adjacent-V (1))
thus False using a by auto

qed
moreover have b 6=v1 by (metis DiffD2 b insertI1)
ultimately show False using no-quad[OF friend-assm] by auto

qed
moreover have c∈{n. adjacent v2 n} =⇒ False

proof −
assume c∈{n. adjacent v2 n}
hence adjacent c v2 by (metis adjacent-sym mem-Collect-eq)
moreover have adjacent a c using ‹adjacent a c› .

moreover have adjacent v1 a by (metis (full-types) Diff-iff a
mem-Collect-eq)

moreover have adjacent v2 v1 by (metis ‹adjacent v1 v2 › adjacent-sym)
moreover have c 6=v1

proof (rule ccontr)
assume ¬ c 6= v1
hence c=v1 by auto
hence adjacent v1 b by (metis ‹adjacent b c› adjacent-sym)
moreover have adjacent v2 v

by (metis adjacent-sym insert-iff mem-Collect-eq v1v2)
moreover have adjacent v1 v

using adjacent-sym v1v2 by auto
moreover have adjacent v2 b by (metis Diff-iff b mem-Collect-eq)
ultimately have b=v using friend-assm[of v1 v2]

by (metis ‹v1 6= v2 › adjacent-V (1))
thus False using b by auto

qed
moreover have a 6=v2 by (metis DiffD2 a insertI1)
ultimately show False using no-quad[OF friend-assm] by auto

qed
ultimately show False by auto

qed
ultimately show False by auto

77

qed
ultimately show ∃ v. ∀n∈V . n 6= v −→ adjacent v n by auto

next
assume ∃ v. ∀n∈V . n 6= v −→ adjacent v n
then obtain v where v:∀n∈V . n 6= v −→ adjacent v n by auto
obtain v1 where v1∈V v1 6=v

proof (cases v∈V)
case False
have V 6={} using ‹2≤card V › by auto
then obtain v1 where v1∈V by auto
thus ?thesis using False that[of v1] by auto

next
case True
then obtain S where V = insert v S v /∈ S

using mk-disjoint-insert[OF True] by auto
moreover have finite V using ‹2≤card V ›

by (metis add-leE card.infinite not-one-le-zero numeral-Bit0 numeral-One)
ultimately have 1≤card S

using ‹2≤card V › card.insert[of S v] finite-insert[of v S] by auto
hence S 6={} by auto
then obtain v1 where v1∈S by auto
hence v1 6=v using ‹v /∈S› by auto
thus thesis using that[of v1] ‹v1∈S› ‹V=insert v S› by auto

qed
hence v∈V using v by (metis adjacent-V (1))
then obtain v2 where adjacent v1 v2 adjacent v v2 using friend-assm[of v v1]

by (metis ‹v1 ∈ V › ‹v1 6= v›)
have degree v1 G 6=2 =⇒ False

proof −
assume degree v1 G 6=2
hence card {n. adjacent v1 n}6=2 by (metis assms(2) degree-adjacent)
have {v,v2} ⊆ {n. adjacent v1 n}

by (metis ‹ adjacent v1 v2 › ‹ v1 ∈ V › ‹ v1 6= v › adjacent-sym bot-least
insert-subset

mem-Collect-eq v)
moreover have v 6=v2 using ‹adjacent v v2 › adjacent-no-loop by auto
hence card {v,v2} = 2 by auto
ultimately have card {n. adjacent v1 n} ≥2

using adjacent-finite[OF ‹finite E›, of v1] by (metis card-mono)
hence card {n. adjacent v1 n} ≥3 using ‹card {n. adjacent v1 n}6=2 › by

auto
then obtain v3 where v3∈{n. adjacent v1 n} and v3 /∈{v,v2}

using ‹{v,v2} ⊆ {n. adjacent v1 n}› ‹card {v, v2} = 2 ›
by (metis ‹card {n. adjacent v1 n} 6= 2 › subsetI subset-antisym)

hence adjacent v1 v3 by auto
moreover have adjacent v3 v using v

by (metis ‹v3 /∈ {v, v2}› adjacent-V (2) adjacent-sym calculation insertCI)
moreover have adjacent v v2 using ‹adjacent v v2 › .

78

moreover have adjacent v2 v1 using ‹adjacent v1 v2 › adjacent-sym by auto
moreover have v1 6=v using ‹v1 6= v› .

moreover have v3 6=v2 by (metis ‹v3 /∈ {v, v2}› insert-subset subset-insertI)
ultimately show False using no-quad[OF friend-assm] by auto

qed
thus ∃ v∈V . degree v G = 2 using ‹v1∈V › by auto

qed

lemma (in valid-unSimpGraph) regular :
assumes friend-assm:

∧
v u. v∈V =⇒ u∈V =⇒ v 6=u =⇒ ∃ ! n. adjacent v n ∧

adjacent u n
and finite E and finite V and ¬(∃ v∈V . degree v G = 2)

shows ∃ k. ∀ v∈V . degree v G = k
proof −

{ fix v u assume non-adj v u
obtain v-adj where v-adj:v-adj={n. adjacent v n} by auto
obtain u-adj where u-adj:u-adj={n. adjacent u n} by auto

obtain f where f :f = (λn. (SOME v ′. n∈V −→n 6=u−→adjacent n v ′ ∧ adjacent
u v ′)) by auto

have
∧

n. n∈V −→ n 6=u −→ (∃ v ′. adjacent n v ′ ∧ adjacent u v ′)
proof (rule,rule)

fix n assume n ∈ V n 6= u
hence ∃ !v ′. adjacent n v ′ ∧ adjacent u v ′

using friend-assm[of n u] ‹non-adj v u› unfolding non-adj-def by auto
thus ∃ v ′. adjacent n v ′ ∧ adjacent u v ′ by auto

qed
hence f-ex:

∧
n. (∃ v ′. n∈V −→ n 6=u −→ adjacent n v ′ ∧ adjacent u v ′) by

auto
obtain v-adj-u where v-adj-u:v-adj-u= f ‘ v-adj by auto
have finite u-adj using u-adj adjacent-finite[OF ‹finite E›] by auto
have finite v-adj using v-adj adjacent-finite[OF ‹finite E›] by auto
hence finite v-adj-u using v-adj-u adjacent-finite[OF ‹finite E›] by auto
have inj-on f v-adj unfolding inj-on-def

proof (rule ccontr)
assume ¬ (∀ x∈v-adj. ∀ y∈v-adj. f x = f y −→ x = y)
then obtain x y where x∈v-adj y∈v-adj f x=f y x 6=y by auto
have x∈V by (metis ‹x ∈ v-adj› adjacent-V (2) mem-Collect-eq v-adj)
moreover have x 6=u by (metis ‹non-adj v u› ‹x ∈ v-adj› mem-Collect-eq

non-adj-def v-adj)
ultimately have adjacent (f x) u and adjacent x (f x)

using someI-ex[OF f-ex[of x]] adjacent-sym by (metis f)+
hence f x 6= v by (metis ‹non-adj v u› non-adj-def)
have y∈V by (metis ‹y ∈ v-adj› adjacent-V (2) mem-Collect-eq v-adj)
moreover have y 6=u by (metis ‹non-adj v u› ‹y ∈ v-adj› mem-Collect-eq

non-adj-def v-adj)
ultimately have adjacent y (f y) using someI-ex[OF f-ex[of y]] by (metis

f)
hence x 6= y ∧ v 6= f x ∧ adjacent v x ∧ adjacent x (f x) ∧ adjacent (f x) y
∧ adjacent y v

79

using ‹x∈v-adj› ‹y∈v-adj› ‹f x=f y› ‹x 6=y› ‹adjacent x (f x)› v-adj
adjacent-sym ‹f x 6= v›

by auto
thus False using no-quad[OF friend-assm] by auto

qed
then have card v-adj =card v-adj-u by (metis card-image v-adj-u)
moreover have v-adj-u ⊆ u-adj

proof
fix x assume x∈v-adj-u
then obtain y where y∈v-adj

and x = (SOME v ′. y ∈ V −→ y 6= u −→ adjacent y v ′ ∧ adjacent u v ′)
using f image-def v-adj-u by auto

hence y ∈ V −→ y 6= u −→ adjacent y x ∧ adjacent u x using someI-ex[OF
f-ex[of y]]

by auto
moreover have y∈V by (metis ‹y ∈ v-adj› adjacent-V (2) mem-Collect-eq

v-adj)
moreover have y 6=u by (metis ‹non-adj v u› ‹y ∈ v-adj› mem-Collect-eq

non-adj-def v-adj)
ultimately have adjacent u x by auto
thus x∈u-adj unfolding u-adj by auto

qed
moreover have card v-adj=degree v G using degree-adjacent[OF ‹finite E›,

of v] v-adj by auto
moreover have card u-adj=degree u G using degree-adjacent[OF ‹finite E›,

of u] u-adj by auto
ultimately have degree v G ≤ degree u G using ‹finite u-adj›

by (metis ‹inj-on f v-adj› card-inj-on-le v-adj-u) }
hence non-adj-degree:

∧
v u. non-adj v u =⇒ degree v G = degree u G

by (metis adjacent-sym antisym non-adj-def)
have card V=3 =⇒ ?thesis

proof
assume card V=3
then obtain v1 v2 v3 where V={v1 ,v2 ,v3} v1 6=v2 v2 6=v3 v1 6=v3

proof −
obtain v1 S1 where VS1 :V = insert v1 S1 and v1 /∈ S1 and card S1

= 2
using card-Suc-eq[of V 2] ‹card V=3 › by auto

then obtain v2 S2 where S1S2 :S1 = insert v2 S2 and v2 /∈ S2 and
card S2 = 1

using card-Suc-eq[of S1 1] by auto
then obtain v3 where S2={v3}

using card-Suc-eq[of S2 0] by auto
hence V={v1 ,v2 ,v3} using VS1 S1S2 by auto
moreover have v1 6=v2 v2 6=v3 v1 6=v3using VS1 S1S2 ‹v1 /∈S1 › ‹v2 /∈S2 ›

‹S2={v3}› by auto
ultimately show ?thesis using that by auto

qed
obtain n where adjacent v1 n adjacent v2 n

80

using friend-assm[of v1 v2] by (metis ‹V = {v1 , v2 , v3}› ‹v1 6= v2 › insertI1
insertI2)

moreover hence n=v3
using ‹V = {v1 , v2 , v3}› adjacent-V (2) adjacent-no-loop
by (metis (mono-tags) empty-iff insertE)

moreover obtain n ′ where adjacent v2 n ′ adjacent v3 n ′

using friend-assm[of v2 v3] by (metis ‹V = {v1 , v2 , v3}› ‹v2 6= v3 › insertI1
insertI2)

moreover hence n ′=v1
using ‹V = {v1 , v2 , v3}› adjacent-V (2) adjacent-no-loop
by (metis (mono-tags) empty-iff insertE)

ultimately have adjacent v1 v2 and adjacent v2 v3 and adjacent v3 v1
using adjacent-sym by auto

have degree v1 G=2
proof −

have v2∈{n. adjacent v1 n} and v3∈{n. adjacent v1 n} and v1 /∈{n.
adjacent v1 n}

using ‹adjacent v1 v2 › ‹adjacent v3 v1 › adjacent-sym
by (auto,metis adjacent-no-loop)

hence {n. adjacent v1 n}={v2 ,v3} using ‹V={v1 ,v2 ,v3}› by auto
thus ?thesis using degree-adjacent[OF ‹finite E›,of v1] ‹v2 6=v3 › by auto

qed
moreover have degree v2 G=2

proof −
have v1∈{n. adjacent v2 n} and v3∈{n. adjacent v2 n} and v2 /∈{n.

adjacent v2 n}
using ‹adjacent v1 v2 › ‹adjacent v2 v3 › adjacent-sym
by (auto,metis adjacent-no-loop)

hence {n. adjacent v2 n}={v1 ,v3} using ‹V={v1 ,v2 ,v3}› by force
thus ?thesis using degree-adjacent[OF ‹finite E›,of v2] ‹v1 6=v3 › by auto

qed
moreover have degree v3 G=2

proof −
have v1∈{n. adjacent v3 n} and v2∈{n. adjacent v3 n} and v3 /∈{n.

adjacent v3 n}
using ‹adjacent v3 v1 › ‹adjacent v2 v3 › adjacent-sym
by (auto,metis adjacent-no-loop)

hence {n. adjacent v3 n}={v1 ,v2} using ‹V={v1 ,v2 ,v3}› by force
thus ?thesis using degree-adjacent[OF ‹finite E›,of v3] ‹v1 6=v2 › by auto

qed
ultimately show ∀ v∈V . degree v G = 2 using ‹V={v1 ,v2 ,v3}› by auto

qed
moreover have card V=2 =⇒ False

proof −
assume card V=2
obtain v1 v2 where V={v1 ,v2} v1 6=v2

proof −
obtain v1 S1 where VS1 :V = insert v1 S1 and v1 /∈ S1 and card S1

81

= 1
using card-Suc-eq[of V 1] ‹card V=2 › by auto

then obtain v2 where S1={v2}
using card-Suc-eq[of S1 0] by auto

hence V={v1 ,v2} using VS1 by auto
moreover have v1 6=v2 using ‹v1 /∈S1 › ‹S1={v2}› by auto
ultimately show ?thesis using that by auto

qed
then obtain v3 where adjacent v1 v3 adjacent v2 v3

using friend-assm[of v1 v2] by auto
hence v3 6=v2 and v3 6=v1 by (metis adjacent-no-loop)+
hence v3 /∈V using ‹V={v1 ,v2}› by auto
thus False using ‹adjacent v1 v3 › by (metis (full-types) adjacent-V (2))

qed
moreover have card V=1 =⇒ ?thesis

proof
assume card V=1
then obtain v1 where V={v1} using card-eq-SucD[of V 0] by auto
have E={}

proof (rule ccontr)
assume E 6={}
then obtain x1 x2 x3 where x:(x1 ,x2 ,x3)∈E by auto
hence x1=v1 and x3=v1 using ‹V={v1}› E-validD by auto
thus False using no-id x by auto

qed
hence degree v1 G=0 unfolding degree-def by auto
thus ∀ v∈V . degree v G =0 using ‹V={v1}›by auto

qed
moreover have card V=0 =⇒ ?thesis

proof −
assume card V=0
hence V={} using ‹finite V › by auto
thus ?thesis by auto

qed
moreover have card V ≥4 =⇒ ¬(∃ v u. non-adj v u) =⇒ False

proof −
assume ¬(∃ v u. non-adj v u) card V≥4
hence non-non-adj:

∧
v u. v /∈V ∨ u /∈V ∨ v=u ∨ adjacent v u unfolding

non-adj-def by auto
obtain v1 v2 v3 v4 where v1∈V v2∈V v3∈V v4∈V v1 6=v2 v1 6=v3 v1 6=v4

v2 6=v3 v2 6=v4 v3 6=v4
proof −

obtain v1 B1 where V = insert v1 B1 v1 /∈ B1 card B1 ≥3
using ‹card V≥4 › card-le-Suc-iff [of 3 V] by auto

then obtain v2 B2 where B1 = insert v2 B2 v2 /∈ B2 card B2 ≥2
using card-le-Suc-iff [of 2 B1] by auto

then obtain v3 B3 where B2= insert v3 B3 v3 /∈B3 card B3≥1
using card-le-Suc-iff [of 1 B2] by auto

then obtain v4 B4 where B3=insert v4 B4 v4 /∈B4

82

using card-le-Suc-iff [of 0 B3] by auto
have v1∈V by (metis ‹V = insert v1 B1 › insert-subset order-refl)
moreover have v2∈V

by (metis ‹B1 = insert v2 B2 › ‹V = insert v1 B1 › insert-subset
subset-insertI)

moreover have v3∈V
by (metis ‹B1 = insert v2 B2 › ‹B2 = insert v3 B3 › ‹V = insert v1 B1 ›

insert-iff)
moreover have v4∈V

by (metis ‹B1 = insert v2 B2 › ‹B2 = insert v3 B3 › ‹B3 = insert v4
B4 ›

‹V = insert v1 B1 › insert-iff)
moreover have v1 6=v2

by (metis (full-types) ‹B1 = insert v2 B2 › ‹v1 /∈ B1 › insertI1)
moreover have v1 6=v3
by (metis ‹B1 = insert v2 B2 › ‹B2 = insert v3 B3 › ‹v1 /∈ B1 › insert-iff)
moreover have v1 6=v4

by (metis ‹B1 = insert v2 B2 › ‹B2 = insert v3 B3 › ‹B3 = insert v4
B4 › ‹v1 /∈ B1 ›

insert-iff)
moreover have v2 6=v3

by (metis (full-types) ‹B2 = insert v3 B3 › ‹v2 /∈ B2 › insertI1)
moreover have v2 6=v4
by (metis ‹B2 = insert v3 B3 › ‹B3 = insert v4 B4 › ‹v2 /∈ B2 › insert-iff)
moreover have v3 6=v4

by (metis (full-types) ‹B3 = insert v4 B4 › ‹v3 /∈ B3 › insertI1)
ultimately show ?thesis using that by auto

qed
hence adjacent v1 v2 using non-non-adj by auto
moreover have adjacent v2 v3 using non-non-adj by (metis ‹v2 ∈ V › ‹v2

6= v3 › ‹v3 ∈ V ›)
moreover have adjacent v3 v4 using non-non-adj by (metis ‹v3 ∈ V › ‹v3

6= v4 › ‹v4 ∈ V ›)
moreover have adjacent v4 v1 using non-non-adj by (metis ‹v1 ∈ V › ‹v1

6= v4 › ‹v4 ∈ V ›)
ultimately show False using no-quad[OF friend-assm]

by (metis ‹v1 6= v3 › ‹v2 6= v4 ›)
qed

moreover have card V≥4 =⇒ (∃ v u. non-adj v u) =⇒ ?thesis
proof −

assume (∃ v u. non-adj v u) card V≥4
then obtain v u where non-adj v u by auto
then obtain w where adjacent v w and adjacent u w

and unique:∀n. adjacent v n ∧ adjacent u n −→ n=w
using friend-assm[of v u] unfolding non-adj-def by auto

have ∀n∈V . degree n G = degree v G
proof

fix n assume n∈V
moreover have n=v =⇒ degree n G = degree v G by auto

83

moreover have n=u =⇒ degree n G = degree v G
using non-adj-degree ‹non-adj v u› by auto

moreover have n 6=v =⇒ n 6=u =⇒ n 6=w =⇒ degree n G = degree v G
proof −

assume n 6=v n 6=u n 6=w
have non-adj v n =⇒ degree n G = degree v G by (metis non-adj-degree)

moreover have non-adj u n =⇒ degree n G = degree v G
by (metis ‹non-adj v u› non-adj-degree)
moreover have ¬non-adj u n =⇒ ¬non-adj v n =⇒ degree n G =

degree v G
by (metis ‹n ∈ V › ‹n 6= w› ‹non-adj v u› non-adj-def unique)

ultimately show degree n G = degree v G by auto
qed

moreover have n=w =⇒ degree n G = degree v G
proof −

assume n=w
moreover have ¬(∃ v. ∀n∈V . n 6=v −→ adjacent v n)
using ‹card V≥4 › degree-two-windmill assms(2) assms(4) friend-assm

by auto
ultimately obtain w1 where w1∈V w1 6=w non-adj w w1

by (metis ‹n∈V › non-adj-def)
have w1=v =⇒ degree n G = degree v G

by (metis ‹n = w› ‹non-adj w w1 › non-adj-degree)
moreover have w1=u =⇒ degree n G = degree v G

by (metis ‹adjacent u w› ‹non-adj w w1 › adjacent-sym non-adj-def)
moreover have w1 6=u =⇒ w1 6=v =⇒ degree n G = degree v G

by (metis ‹n = w› ‹non-adj v u› ‹non-adj w w1 › non-adj-def
non-adj-degree unique)

ultimately show degree n G = degree v G by auto
qed

ultimately show degree n G = degree v G by auto
qed

thus ?thesis by auto
qed

ultimately show ?thesis by force
qed

11 Exclusive steps for combinatorial proofs
fun (in valid-unSimpGraph) adj-path:: ′v ⇒ ′v list ⇒bool where

adj-path v [] = (v∈V)
| adj-path v (u#us)= (adjacent v u ∧ adj-path u us)

lemma (in valid-unSimpGraph) adj-path-butlast:
adj-path v ps =⇒ adj-path v (butlast ps)

by (induct ps arbitrary:v,auto)

lemma (in valid-unSimpGraph) adj-path-V :
adj-path v ps =⇒ set ps ⊆ V

84

by (induct ps arbitrary:v, auto)

lemma (in valid-unSimpGraph) adj-path-V ′:
adj-path v ps =⇒ v∈ V

by (induct ps arbitrary:v, auto)

lemma (in valid-unSimpGraph) adj-path-app:
adj-path v ps =⇒ ps 6=[] =⇒ adjacent (last ps) u =⇒ adj-path v (ps@[u])

proof (induct ps arbitrary:v)
case Nil
thus ?case by auto

next
case (Cons x xs)
thus ?case by (cases xs,auto)

qed

lemma (in valid-unSimpGraph) adj-path-app ′:
adj-path v (ps @ [q]) =⇒ ps 6= [] =⇒ adjacent (last ps) q

proof (induct ps arbitrary:v)
case Nil
thus ?case by auto

next
case (Cons x xs)
thus ?case by (cases xs,auto)

qed

lemma card-partition ′:
assumes ∀ v∈A. card {n. R v n} = k k>0 finite A
∀ v1 v2 . v1 6=v2 −→ {n. R v1 n} ∩ {n. R v2 n}={}

shows card (
⋃

v∈A. {n. R v n}) = k ∗ card A
proof −

have
∧

C . C ∈ (λx. {n. R x n}) ‘ A =⇒ card C = k
proof −

fix C assume C ∈ (λx. {n. R x n}) ‘ A
show card C=k by (metis (mono-tags) ‹C ∈ (λx. {n. R x n}) ‘ A› assms(1)

imageE)
qed

moreover have
∧

C1 C2 . C1 ∈(λx. {n. R x n}) ‘ A =⇒ C2 ∈ (λx. {n. R x
n}) ‘ A =⇒ C1 6= C2

=⇒ C1 ∩ C2 = {}
proof −

fix C1 C2 assume C1 ∈ (λx. {n. R x n}) ‘ A C2 ∈ (λx. {n. R x n}) ‘ A
C1 6= C2

obtain v1 where v1∈A C1={n. R v1 n} by (metis ‹C1 ∈ (λx. {n. R x n})
‘ A› imageE)

obtain v2 where v2∈A C2={n. R v2 n} by (metis ‹C2 ∈ (λx. {n. R x n})
‘ A› imageE)

have v1 6=v2 by (metis ‹C1 = {n. R v1 n}› ‹C1 6= C2 › ‹C2 = {n. R v2 n}›)

85

thus C1 ∩ C2 ={} by (metis ‹C1 = {n. R v1 n}› ‹C2 = {n. R v2 n}›
assms(4))

qed
moreover have

⋃
((λx. {n. R x n}) ‘ A) = (

⋃
x∈A. {n. R x n}) by auto

moreover have finite ((λx. {n. R x n}) ‘ A) by (metis assms(3) finite-imageI)
moreover have finite (

⋃
((λx. {n. R x n}) ‘ A)) by (metis (full-types) assms(1)

assms(2) assms(3) card-eq-0-iff finite-UN-I less-nat-zero-code)
moreover have card A = card ((λx. {n. R x n}) ‘ A)

proof −
have inj-on (λx. {n. R x n}) A unfolding inj-on-def

using ‹∀ v1 v2 . v1 6=v2 −→ {n. R v1 n} ∩ {n. R v2 n}={}›
by (metis assms(1) assms(2) card.empty inf .idem less-le)

thus ?thesis by (metis card-image)
qed

ultimately show ?thesis using card-partition[of (λx. {n. R x n}) ‘ A] by auto
qed

lemma (in valid-unSimpGraph) path-count:
assumes k-adj:

∧
v. v∈V =⇒ card {n. adjacent v n} = k and v∈V and finite

V and k>0
shows card {ps. length ps=l ∧ adj-path v ps}=k^l

proof (induct l rule:nat.induct)
case zero
have {ps. length ps=0 ∧ adj-path v ps}={[]} using ‹v∈V › by auto
thus ?case by auto

next
case (Suc n)
obtain ext where ext: ext=(λps ps ′. ps ′6=[] ∧ (butlast ps ′=ps) ∧ adj-path v ps ′)

by auto
have ∀ ps∈{ps. length ps = n ∧ adj-path v ps}. card {ps ′. ext ps ps ′} = k

proof
fix ps assume ps∈{ps. length ps = n ∧ adj-path v ps}
hence adj-path v ps and length ps = n by auto
obtain qs where qs:qs = {n. if ps=[] then adjacent v n else adjacent (last

ps) n} by auto
hence card qs = k

proof (cases ps=[])
case True
thus ?thesis using qs k-adj[OF ‹v∈V ›] by auto

next
case False

have last ps ∈ V using adj-path-V by (metis False ‹adj-path v ps›
last-in-set subsetD)

thus ?thesis using k-adj[of last ps] False qs by auto
qed

obtain app where app:app=(λq. ps@[q]) by auto
have app ‘ qs = {ps ′. ext ps ps ′}

proof −

86

have
∧

xs. xs∈ app ‘ qs =⇒ xs ∈ {ps ′. ext ps ps ′}
proof (rule,cases ps=[])

case True
fix xs assume xs∈ app ‘ qs
then obtain q where q∈ qs app q=xs by (metis imageE)
hence adjacent v q and xs=ps@[q] using qs app True by auto
hence adj-path v xs

by (metis True adj-path.simps(1) adj-path.simps(2) adjacent-V (2)
append-Nil)

moreover have butlast xs = ps using ‹xs=ps@[q]› by auto
ultimately show ext ps xs using ext ‹xs=ps@[q]› by auto

next
case False
fix xs assume xs∈ app ‘ qs
then obtain q where q∈ qs app q=xs by (metis imageE)
hence adjacent (last ps) q using qs app False by auto

hence adj-path v (ps@[q]) using ‹adj-path v ps› False adj-path-app by
auto

hence adj-path v xs by (metis ‹app q = xs› app)
moreover have butlast xs=ps by (metis ‹app q = xs› app butlast-snoc)
ultimately show ext ps xs by (metis False butlast.simps(1) ext)

qed
moreover have

∧
xs. xs∈{ps ′. ext ps ps ′} =⇒ xs∈ app ‘ qs

proof (cases ps=[])
case True
hence qs = {n. adjacent v n } using qs by auto
fix xs assume xs ∈ {ps ′. ext ps ps ′}
hence xs 6=[] and (butlast xs=ps) and adj-path v xs using ext by auto
thus xs ∈ app ‘ qs

using True app ‹qs = {n. adjacent v n}›
by (metis adj-path.simps(2) append-butlast-last-id append-self-conv2

image-iff
mem-Collect-eq)

next
case False
fix xs assume xs ∈ {ps ′. ext ps ps ′}
hence xs 6=[] and (butlast xs=ps) and adj-path v xs using ext by auto
then obtain q where xs=ps@[q] by (metis append-butlast-last-id)

hence adjacent (last ps) q using ‹adj-path v xs› False adj-path-app ′ by
auto

thus xs ∈ app ‘ qs using qs
by (metis (lifting, full-types) False ‹xs = ps @ [q]› app imageI

mem-Collect-eq)
qed

ultimately show ?thesis by auto
qed

moreover have inj-on app qs using app unfolding inj-on-def by auto
ultimately show card {ps ′. ext ps ps ′}=k by (metis ‹card qs = k› card-image)
qed

87

moreover have ∀ ps1 ps2 . ps1 6=ps2 −→ {n. ext ps1 n} ∩ {n. ext ps2 n}={}
using ext by auto

moreover have finite {ps. length ps = n ∧ adj-path v ps}
using Suc.hyps assms by (auto intro: card-ge-0-finite)

ultimately have card (
⋃

v∈{ps. length ps = n ∧ adj-path v ps}. {n. ext v n})
= k ∗ card {ps. length ps = n ∧ adj-path v ps}

using card-partition ′[of {ps. length ps = n ∧ adj-path v ps} ext k] ‹k>0 › by
auto

moreover have {ps. length ps = n+1 ∧ adj-path v ps}
=(

⋃
ps∈{ps. length ps = n ∧ adj-path v ps}. {ps ′. ext ps ps ′})

proof −
have

∧
xs. xs ∈ {ps. length ps = n + 1 ∧ adj-path v ps} =⇒

xs ∈ (
⋃

ps∈{ps. length ps = n ∧ adj-path v ps}. {ps ′. ext ps ps ′})
proof −

fix xs assume xs ∈ {ps. length ps = n + 1 ∧ adj-path v ps}
hence length xs = n +1 and adj-path v xs by auto
hence butlast xs ∈{ps. length ps = n ∧ adj-path v ps}

using adj-path-butlast length-butlast mem-Collect-eq by auto
thus xs ∈ (

⋃
ps∈{ps. length ps = n ∧ adj-path v ps}. {ps ′. ext ps ps ′})

using ‹adj-path v xs› ‹length xs = n + 1 › UN-iff ext length-greater-0-conv

mem-Collect-eq
by auto

qed
moreover have

∧
xs . xs∈(

⋃
ps∈{ps. length ps = n ∧ adj-path v ps}. {ps ′.

ext ps ps ′}) =⇒
xs ∈ {ps. length ps = n + 1 ∧ adj-path v ps}

proof −
fix xs assume xs∈(

⋃
ps∈{ps. length ps = n ∧ adj-path v ps}. {ps ′. ext ps

ps ′})
then obtain ys where length ys=n adj-path v ys ext ys xs by auto
hence length xs=n+1 using ext by auto
thus xs∈{ps. length ps = n + 1 ∧ adj-path v ps}

by (metis (lifting, full-types) ‹ext ys xs› ext mem-Collect-eq)
qed

ultimately show ?thesis by fast
qed

ultimately show card {ps. length ps = (Suc n) ∧ adj-path v ps} = k ^ (Suc n)
using Suc.hyps by auto

qed

lemma (in valid-unSimpGraph) total-v-num:
assumes friend-assm:

∧
v u. v∈V =⇒ u∈V =⇒ v 6=u =⇒ ∃ ! n. adjacent v n ∧

adjacent u n
and finite E and finite V and V 6={} and ∀ v∈V . degree v G = k and k>0

shows card V= k∗k − k +1
proof −

have k-adj:
∧

v. v∈V=⇒card ({n. adjacent v n})=k by (metis assms(2) assms(5)
degree-adjacent)

88

obtain v where v∈V using ‹V 6={}› by auto
obtain l2-eq-v where l2-eq-v: l2-eq-v={ps. length ps=2 ∧ adj-path v ps ∧ last

ps=v} by auto
have card l2-eq-v=k

proof −
obtain hds where hds:hds= hd‘ l2-eq-v by auto
moreover have hds={n. adjacent v n}

proof −
have

∧
x. x∈hds =⇒ x∈ {n. adjacent v n}

proof
fix x assume x∈hds
then obtain ps where hd ps=x length ps=2 adj-path v ps last ps=v

using hds l2-eq-v by auto
thus adjacent v x

by (metis (full-types) adj-path.simps(2) list.sel(1) length-0-conv
neq-Nil-conv

zero-neq-numeral)
qed

moreover have
∧

x. x∈{n. adjacent v n} =⇒ x∈hds
proof −

fix x assume x∈{n. adjacent v n}
obtain ps where ps=[x,v] by auto
hence hd ps=x and length ps=2 and adj-path v ps and last ps=v

using ‹x∈{n. adjacent v n}› adjacent-sym by auto
thus x∈hds by (metis (lifting, mono-tags) hds image-eqI l2-eq-v

mem-Collect-eq)
qed

ultimately show hds={n. adjacent v n} by auto
qed

moreover have inj-on hd l2-eq-v unfolding inj-on-def
proof (rule+)

fix x y assume x ∈ l2-eq-v y ∈ l2-eq-v hd x = hd y
hence length x=2 and last x=last y and length y=2

using l2-eq-v by auto
hence x!1=y!1

using last-conv-nth[of x] last-conv-nth[of y] by force
moreover have x!0=y!0

using ‹hd x=hd y› ‹length x=2 › ‹length y=2 ›
by(metis hd-conv-nth length-greater-0-conv)

ultimately show x=y using ‹length x=2 › ‹length y=2 ›
using nth-equalityI [of x y]
by (metis One-nat-def less-2-cases)

qed
ultimately show card l2-eq-v=k using k-adj[OF ‹v∈V ›] by (metis card-image)
qed

obtain l2-neq-v where l2-neq-v:l2-neq-v={ps. length ps=2 ∧ adj-path v ps ∧ last
ps 6=v} by auto

have card l2-neq-v = k∗k−k
proof −

89

obtain l2-v where l2-v:l2-v={ps. length ps=2∧ adj-path v ps} by auto
hence card l2-v=k∗k using path-count[OF k-adj,of v 2] ‹0<k› ‹finite V ›

‹v∈V ›
by (simp add: power2-eq-square)

hence finite l2-v using ‹k>0 › by (metis card.infinite mult-is-0 neq0-conv)
moreover have l2-v=l2-neq-v ∪ l2-eq-v using l2-v l2-neq-v l2-eq-v by auto
moreover have l2-neq-v ∩ l2-eq-v ={} using l2-neq-v l2-eq-v by auto
ultimately have card l2-neq-v = card l2-v − card l2-eq-v

by (metis Int-commute Nat.add-0-right Un-commute card-Diff-subset-Int
card-Un-Int

card-gt-0-iff diff-add-inverse finite-Diff finite-Un inf-sup-absorb
less-nat-zero-code)

thus card l2-neq-v = k∗k−k using ‹card l2-eq-v=k› using ‹card l2-v=k∗k›
by auto

qed
moreover have bij-betw last l2-neq-v {n. n∈V ∧ n 6=v}

proof −
have last ‘ l2-neq-v = {n. n∈V ∧ n 6=v}

proof −
have

∧
x. x∈ last‘ l2-neq-v =⇒ x∈{n. n∈V ∧ n 6=v}

proof
fix x assume x∈last‘ l2-neq-v

then obtain ps where length ps = 2 adj-path v ps last ps=x last ps 6=v
using l2-neq-v by auto

hence (last ps)∈V
by (metis (full-types) adj-path-V last-in-set length-0-conv rev-subsetD

zero-neq-numeral)
thus x ∈ V ∧ x 6= v using ‹last ps=x› ‹last ps 6=v› by auto

qed
moreover have

∧
x. x∈{n. n∈V ∧ n 6=v} =⇒ x∈ last‘ l2-neq-v

proof −
fix x assume x:x ∈ {n ∈ V . n 6= v}
then obtain y where adjacent v y adjacent x y

using friend-assm[of v x] ‹v∈V › by auto
hence adj-path v [y,x] using adjacent-sym[of x y]by auto
hence [y,x]∈l2-neq-v using l2-neq-v x by auto
thus x∈ last‘ l2-neq-v by (metis imageI last.simps not-Cons-self2)

qed
ultimately show ?thesis by fast

qed
moreover have inj-on last l2-neq-v unfolding inj-on-def

proof (rule,rule,rule)
fix x y assume x ∈ l2-neq-v y ∈ l2-neq-v last x = last y
hence length x=2 and adj-path v x and last x 6=v and length y=2 and

adj-path v y
and last y 6=v

using l2-neq-v by auto
obtain x1 x2 y1 y2 where x:x=[x1 ,x2] and y:y=[y1 ,y2]

proof −

90

{ fix l assume length l=2
obtain h1 t where l=h1#t and length t=1

using ‹length l=2 › Suc-length-conv[of 1 l] by auto
then obtain h2 where t=[h2]

using Suc-length-conv[of 0 t] by auto
have ∃ h1 h2 . l=[h1 ,h2] using ‹l=h1#t› ‹t=[h2]› by auto }

thus ?thesis using that ‹length x=2 › ‹length y=2 › by metis
qed

hence x2 6=v and y2 6=v using ‹last x 6=v› ‹last y 6=v› by auto
moreover have adjacent v x1 and adjacent x2 x1 and x2∈V

using ‹adj-path v x› x adjacent-sym by auto
moreover have adjacent v y1 and adjacent y2 y1 and y2∈V

using ‹adj-path v y› y adjacent-sym by auto
ultimately have x1=y1 using friend-assm ‹v∈V ›

by (metis ‹last x = last y› last-ConsL last-ConsR not-Cons-self2 x y)
thus x=y using x y ‹last x = last y› by auto

qed
ultimately show ?thesis unfolding bij-betw-def by auto

qed
hence card l2-neq-v = card {n. n∈V ∧ n 6=v} by (metis bij-betw-same-card)
ultimately have card {n. n∈V ∧ n 6=v}=k∗k−k by auto
moreover have card V = card {n. n∈V∧n 6=v} + card {v}

proof −
have V={n. n∈V ∧ n 6=v} ∪ {v} using ‹v∈V › by auto
moreover have {n. n∈V ∧ n 6=v} ∩ {v}={} by auto
ultimately show ?thesis

using ‹finite V › card-Un-disjoint[of {n ∈ V . n 6= v} {v}] finite-Un
by auto

qed
ultimately show card V = k∗k−k+1 by auto

qed

lemma rotate-eq:rotate1 xs=rotate1 ys =⇒ xs=ys
proof (induct xs arbitrary:ys)

case Nil
thus ?case by (metis rotate1-is-Nil-conv)

next
case (Cons n ns)
hence ys 6=[] by (metis list.distinct(1) rotate1-is-Nil-conv)
thus ?case using Cons by (metis butlast-snoc last-snoc list.exhaust rotate1 .simps(2))

qed

lemma rotate-diff :rotate m xs=rotate n xs =⇒rotate (m−n) xs = xs
proof (induct m arbitrary:n)

case 0
thus ?case by auto

next
case (Suc m ′)

91

hence n=0 =⇒ ?case by auto
moreover have n 6=0 =⇒?case

proof −
assume n 6=0
then obtain n ′ where n ′: n = Suc n ′ by (metis nat.exhaust)
hence rotate m ′ xs = rotate n ′ xs

using ‹rotate (Suc m ′) xs = rotate n xs› rotate-eq rotate-Suc
by auto

hence rotate (m ′ − n ′) xs = xs by (metis Suc.hyps)
moreover have Suc m ′ − n = m ′−n ′

by (metis n ′ diff-Suc-Suc)
ultimately show ?case by auto

qed
ultimately show ?case by fast

qed

lemma (in valid-unSimpGraph) exist-degree-two:
assumes friend-assm:

∧
v u. v∈V =⇒ u∈V =⇒ v 6=u =⇒ ∃ ! n. adjacent v n ∧

adjacent u n
and finite E and finite V and card V≥2

shows ∃ v∈V . degree v G = 2
proof (rule ccontr)

assume ¬ (∃ v∈V . degree v G = 2)
hence

∧
v. v∈V =⇒ degree v G 6=2 by auto

obtain k where k-adj:
∧

v. v∈V=⇒ card {n. adjacent v n}=k using regular [OF
friend-assm]

by (metis ‹¬ (∃ v∈V . degree v G = 2)› assms(2) assms(3) degree-adjacent)
have k≥4

proof −
obtain v1 v2 where v1∈V v2∈V v1 6=v2

using ‹card V≥2 › by (metis ‹¬(∃ v∈V . degree v G = 2)› assms(2) de-
gree-two-windmill)

have k 6=0
proof

assume k=0
obtain v3 where adjacent v1 v3 using friend-assm[OF ‹v1∈V › ‹v2∈V ›

‹v1 6=v2 ›] by auto
hence card {n. adjacent v1 n} 6= 0 using adjacent-finite[OF ‹finite E›]

by auto
moreover have card {n. adjacent v1 n} = 0 using k-adj[OF ‹v1∈V ›]

by (metis ‹k = 0 ›)
ultimately show False by simp

qed
moreover have even k using even-degree[OF friend-assm]

by (metis ‹v1 ∈ V › assms(2) degree-adjacent k-adj)
hence k 6=1 and k 6=3 by auto
moreover have k 6=2 using ‹

∧
v. v∈V =⇒ degree v G 6=2 › degree-adjacent

k-adj
by (metis ‹v1 ∈ V › assms(2))

92

ultimately show ?thesis by auto
qed

obtain T where T :T=(λl::nat. {ps. length ps = l+1 ∧ adj-path (hd ps) (tl ps)})
by auto

have T-count:
∧

l::nat. card (T l) = (k∗k−k+1)∗k^l using card-partition ′

proof −
fix l::nat

obtain ext where ext:ext=(λv ps. adj-path v (tl ps) ∧ hd ps=v ∧ length
ps=l+1) by auto

have ∀ v∈V . card {ps. ext v ps} = k^l
proof

fix v assume v ∈ V
have

∧
ps. ps∈tl ‘ {ps. ext v ps} =⇒ ps∈{ps. length ps=l ∧ adj-path v ps}

proof −
fix ps assume ps ∈ tl ‘ {ps. ext v ps}

then obtain ps ′ where adj-path v (tl ps ′) hd ps ′=v length ps ′=l+1
ps=tl ps ′

using ext by auto
hence adj-path v ps and length ps=l by auto
thus ps∈{ps. length ps=l ∧ adj-path v ps} by auto

qed
moreover have

∧
ps. ps∈{ps. length ps=l ∧ adj-path v ps} =⇒ ps∈ tl ‘

{ps. ext v ps}
proof −

fix ps assume ps ∈ {ps. length ps = l ∧ adj-path v ps}
hence length ps=l and adj-path v ps by auto
moreover obtain ps ′ where ps ′=v#ps by auto
ultimately have adj-path v (tl ps ′) and hd ps ′=v and length ps ′=l+1

by auto
thus ps ∈ tl ‘ {ps. ext v ps}

by (metis ‹ps ′ = v # ps› ext imageI mem-Collect-eq list.sel(3))
qed

ultimately have tl ‘ {ps. ext v ps} = {ps. length ps=l ∧ adj-path v ps}
by fast

moreover have inj-on tl {ps. ext v ps} unfolding inj-on-def
proof (rule,rule,rule)

fix x y assume x ∈ Collect (ext v) y ∈ Collect (ext v) tl x = tl y
hence hd x=hd y and x 6=[] and y 6=[]using ext by auto
thus x=y using ‹tl x= tl y› by (metis list.sel(1 ,3) list.exhaust)

qed
moreover have card {ps. length ps=l ∧ adj-path v ps} = k^l

using path-count[OF k-adj,of v l] ‹4 ≤ k› ‹v ∈ V › assms(3)
by auto

ultimately show card {ps. ext v ps} = k ^ l by (metis card-image)
qed

moreover have ∀ v1 v2 . v1 6= v2 −→ {n. ext v1 n} ∩ {n. ext v2 n} = {}
using ext by auto

moreover have (
⋃

v∈V . {n. ext v n})=T l

93

proof −
have

∧
ps. ps∈(

⋃
v∈V . {n. ext v n}) =⇒ ps∈T l using T

proof −
fix ps assume ps∈(

⋃
v∈V . {n. ext v n})

then obtain v where v∈V adj-path v (tl ps) hd ps = v length ps = l
+ 1

using ext by auto
hence length ps = l + 1 and adj-path (hd ps) (tl ps) by auto
thus ps∈T l using T by auto

qed
moreover have

∧
ps. ps∈T l =⇒ ps∈(

⋃
v∈V . {n. ext v n})

proof −
fix ps assume ps∈T l

hence length ps = l + 1 and adj-path (hd ps) (tl ps) using T by auto
moreover then obtain v where v=hd ps v∈V

by (metis adj-path.simps(1) adj-path.simps(2) adjacent-V (1)
list.exhaust)

ultimately show ps∈(
⋃

v∈V . {n. ext v n}) using ext by auto
qed

ultimately show ?thesis by auto
qed

ultimately have card (T l) = card V ∗ k^l
using card-partition ′[of V ext k^l] ‹ 4 ≤ k › assms(3) mult.commute

nat-one-le-power
by auto

moreover have card V=(k ∗ k − k + 1)
using total-v-num[OF friend-assm,of k] k-adj degree-adjacent ‹finite E›

‹finite V ›
‹card V≥2 › ‹4 ≤ k› card-gt-0-iff

by force
ultimately show card (T l) = (k ∗ k − k + 1) ∗ k ^ l by auto

qed
obtain C where C :C=(λl::nat. {ps. length ps = l+1 ∧ adj-path (hd ps) (tl ps)
∧ adjacent (last ps) (hd ps)}) by auto

obtain C-star where C-star :C-star=(λl::nat. {ps. length ps = l+1 ∧ adj-path
(hd ps) (tl ps)

∧ (last ps) = (hd ps)}) by auto
have

∧
l::nat. card (C (l+1)) = k∗ card (C-star l) + card (T l − C-star l)

proof −
fix l::nat
have C (l+1) = {ps. length ps = l+2 ∧ adj-path (hd ps) (tl ps) ∧ adjacent

(last ps) (hd ps)
∧ last (butlast ps)=hd ps} ∪ {ps. length ps = l+2 ∧ adj-path (hd ps) (tl

ps) ∧
adjacent (last ps) (hd ps) ∧ last (butlast ps) 6=hd ps} using C by auto

moreover have {ps. length ps = l+2 ∧ adj-path (hd ps) (tl ps) ∧ adjacent
(last ps) (hd ps)

∧ last (butlast ps)=hd ps} ∩ {ps. length ps = l+2 ∧ adj-path (hd ps) (tl
ps) ∧

94

adjacent (last ps) (hd ps) ∧ last (butlast ps) 6=hd ps} ={} by auto
moreover have finite (C (l+1))

proof −
have C (l+1) ⊆ T (l+1) using C T by auto
moreover have (k ∗ k − k + 1) ∗ k ^ (l + 1) 6=0 using ‹k≥4 › by auto
hence finite (T (l+1)) using T-count[of l+1] by (metis card.infinite)
ultimately show ?thesis by (metis finite-subset)

qed
ultimately have card (C (l+1)) = card {ps. length ps = l+2 ∧ adj-path (hd

ps) (tl ps)
∧ adjacent (last ps) (hd ps) ∧ last (butlast ps)=hd ps} + card {ps. length

ps = l+2 ∧
adj-path (hd ps) (tl ps) ∧ adjacent (last ps) (hd ps) ∧ last (butlast ps) 6=hd

ps}
using card-Un-disjoint[of {ps. length ps = l + 2 ∧ adj-path (hd ps) (tl ps)

∧ adjacent
(last ps) (hd ps) ∧ last (butlast ps) = hd ps} {ps. length ps = l + 2 ∧

adj-path (hd ps)
(tl ps) ∧ adjacent (last ps) (hd ps) ∧ last (butlast ps) 6= hd ps}] finite-Un

by auto
moreover have card {ps. length ps = l+2 ∧ adj-path (hd ps) (tl ps)
∧ adjacent (last ps) (hd ps) ∧ last (butlast ps)=hd ps}=k ∗ card (C-star l)

proof −
obtain ext where ext: ext=(λps ps ′. ps ′6=[] ∧ (butlast ps ′=ps)
∧ adj-path (hd ps ′) (tl ps ′)) by auto

have ∀ ps∈(C-star l). card {ps ′. ext ps ps ′} = k
proof

fix ps assume ps∈C-star l
hence length ps = l + 1 and adj-path (hd ps) (tl ps) and last ps = hd

ps
using C-star by auto

obtain qs where qs:qs={v. adjacent (last ps) v} by auto
obtain app where app:app=(λv. ps@[v]) by auto
have app ‘ qs = {ps ′. ext ps ps ′}

proof −
have

∧
x. x∈app‘qs =⇒ x∈{ps ′. ext ps ps ′}

proof
fix x assume x ∈ app ‘ qs
then obtain y where adjacent (last ps) y x=ps@[y] using qs

app by auto
moreover hence adj-path (hd x) (tl x)
by (cases tl ps = [], metis adj-path.simps(1) adj-path.simps(2)

adjacent-V (2) append-Nil list.sel(1 ,3) hd-append snoc-eq-iff-butlast

tl-append2 , metis ‹adj-path (hd ps) (tl ps)› adj-path-app
hd-append

last-tl list.sel(2) tl-append2)
ultimately show ext ps x using ext by (metis snoc-eq-iff-butlast)
qed

95

moreover have
∧

x. x∈{ps ′. ext ps ps ′}=⇒ x∈ app‘qs
proof −

fix x assume x ∈ {ps ′. ext ps ps ′}
hence x 6=[] and butlast x=ps and adj-path (hd x) (tl x)

using ext by auto
have adjacent (last ps) (last x)

proof (cases length ps=1)
case True
hence length x=2 using ‹butlast x=ps› by auto
then obtain x1 t1 where x=x1#t1 and length t1=1

using Suc-length-conv[of 1 x] by auto
then obtain x2 where t1=[x2]

using Suc-length-conv[of 0 t1] by auto
have x=[x1 ,x2] using ‹x=x1#t1 › ‹t1=[x2]› by auto
thus adjacent (last ps) (last x)

using ‹adj-path (hd x) (tl x)› ‹butlast x=ps› by auto
next

case False
hence tl ps 6=[]
by (metis ‹length ps = l + 1 › add-0-iff add-diff-cancel-left ′

length-0-conv length-tl add.commute)
moreover have adj-path (hd x) (tl ps @ [last x])

using ‹adj-path (hd x) (tl x)› ‹butlast x=ps› ‹x 6= []›
by (metis append-butlast-last-id calculation list.sel(2)

tl-append2)
ultimately have adjacent (last (tl ps)) (last x)

using adj-path-app ′[of hd x tl ps last x]
by auto

thus adjacent (last ps) (last x) by (metis ‹tl ps 6= []› last-tl)
qed

thus x ∈ app ‘ qs using app qs
by (metis ‹butlast x = ps› ‹x 6= []› append-butlast-last-id

mem-Collect-eq
rev-image-eqI)

qed
ultimately show ?thesis by auto

qed
moreover have inj-on app qs using app unfolding inj-on-def by

auto
moreover have last ps∈V

using ‹length ps = l + 1 › ‹adj-path (hd ps) (tl ps)› adj-path-V
by (metis ‹last ps = hd ps› adj-path.simps(1) last-in-set last-tl

subset-code(1))
hence card qs=k using qs k-adj by auto
ultimately show card {ps ′. ext ps ps ′} = k by (metis card-image)

qed
moreover have finite (C-star l)

proof −
have C-star l ⊆ T l using C-star T by auto

96

moreover have (k ∗ k − k + 1) ∗ k ^ l 6=0 using ‹k≥4 › by auto
hence finite (T l) using T-count[of l] by (metis card.infinite)
ultimately show ?thesis by (metis finite-subset)

qed
moreover have ∀ ps1 ps2 . ps1 6= ps2 −→ {ps ′. ext ps1 ps ′} ∩ {ps ′. ext

ps2 ps ′} = {}
using ext by auto

moreover have (
⋃

ps∈(C-star l). {ps ′. ext ps ps ′}) = {ps. length ps =
l+2

∧ adj-path (hd ps) (tl ps) ∧ adjacent (last ps) (hd ps) ∧ last (butlast
ps)=hd ps}

proof −
have

∧
x. x∈(

⋃
ps∈(C-star l). {ps ′. ext ps ps ′}) =⇒ x∈{ps. length ps

= l+2
∧ adj-path (hd ps) (tl ps) ∧ adjacent (last ps) (hd ps) ∧ last (butlast

ps)=hd ps}
proof

fix x assume x ∈ (
⋃

ps∈C-star l. {ps ′. ext ps ps ′})
then obtain ps where ps∈C-star l ext ps x by auto
hence length ps = l + 1 and adj-path (hd ps) (tl ps) and last ps

= hd ps
and x 6= [] and butlast x = ps adj-path (hd x) (tl x)

using C-star ext by auto
have length x = l + 2

using ‹ butlast x = ps › ‹ length ps = l + 1 › length-butlast by
auto

moreover have adj-path (hd x) (tl x) by (metis ‹adj-path (hd x)
(tl x)›)

moreover have adjacent (last x) (hd x)
proof −

have length x≥2 using ‹length x=l+2 › by auto
hence adjacent (last (butlast x)) (last x) using ‹adj-path (hd x)

(tl x)›
by (induct x,auto, metis adj-path.simps(2) append-butlast-last-id

append-eq-Cons-conv, metis adj-path-app ′ append-butlast-last-id)
hence adjacent (last ps) (last x) using ‹butlast x=ps› by auto
hence adjacent (hd ps) (last x) using ‹last ps=hd ps› by auto
hence adjacent (hd x) (last x)

using ‹butlast x=ps› ‹length ps=l+1 ›
by (cases x) auto

thus ?thesis using adjacent-sym by auto
qed

moreover have last (butlast x) = hd x
by (metis ‹butlast x = ps› ‹last ps = hd ps› ‹x 6= []› adjacent-no-loop

butlast.simps(2) calculation(3) list.sel(1) last-ConsL neq-Nil-conv)
ultimately show length x = l + 2 ∧ adj-path (hd x) (tl x)
∧ adjacent (last x) (hd x) ∧ last (butlast x) = hd x

97

by auto
qed

moreover have
∧

x. x∈{ps. length ps = l+2 ∧ adj-path (hd ps) (tl ps)
∧ adjacent (last ps) (hd ps) ∧ last (butlast ps)=hd ps} =⇒
x∈(

⋃
ps∈(C-star l). {ps ′. ext ps ps ′})

proof −
fix x assume x∈{ps. length ps = l+2 ∧ adj-path (hd ps) (tl ps)
∧ adjacent (last ps) (hd ps) ∧ last (butlast ps)=hd ps}

hence length x=l+2 and adj-path (hd x) (tl x) and adjacent (last
x) (hd x)

and last (butlast x)=hd x by auto
obtain ps where ps:ps=butlast x by auto
have ps∈C-star l

proof −
have length ps = l + 1 using ps ‹length x=l+2 › by auto
moreover have hd ps=hd x

using ps ‹length x=l+2 ›
by (metis (full-types) ‹ adjacent (last x) (hd x) › adjacent-no-loop

append-Nil append-butlast-last-id butlast.simps(1) list.sel(1)
hd-append2)

hence adj-path (hd ps) (tl ps) using adj-path-butlast
by (metis ‹adj-path (hd x) (tl x)› butlast-tl ps)

moreover have last ps = hd ps
by (metis ‹hd ps = hd x› ‹last (butlast x) = hd x› ps)

ultimately show ?thesis using C-star by auto
qed

moreover have ext ps x using ext
by (metis ‹adj-path (hd x) (tl x)› ‹adjacent (last x) (hd x)›

‹last (butlast x) = hd x› adjacent-no-loop butlast.simps(1) ps)
ultimately show x∈(

⋃
ps∈(C-star l). {ps ′. ext ps ps ′}) by auto

qed
ultimately show ?thesis by fast

qed
ultimately show ?thesis using card-partition ′[of C-star l ext k] ‹k≥4 ›

by auto
qed

moreover have card {ps. length ps = l+2 ∧ adj-path (hd ps) (tl ps) ∧
adjacent (last ps) (hd ps) ∧ last (butlast ps) 6=hd ps}=card (T l − C-star

l)
proof −

obtain app where app:app=(λps. ps@[SOME n. adjacent (last ps) n ∧
adjacent (hd ps) n])

by auto
have

∧
x. x∈app‘(T l − C-star l) =⇒ x∈{ps. length ps = l+2 ∧ adj-path

(hd ps) (tl ps) ∧
adjacent (last ps) (hd ps) ∧ last (butlast ps)6=hd ps}

proof
fix x assume x ∈ app ‘ (T l − C-star l)

98

then obtain ps where length ps = l + 1 adj-path (hd ps) (tl ps) last
ps 6= hd ps

x=app ps
using T C-star by auto

hence last ps∈V
using adj-path-V [OF ‹adj-path (hd ps) (tl ps)›]
by (cases ps) auto

hence ∃n. adjacent (last ps) n ∧ adjacent (hd ps) n
using adj-path-V ′[OF ‹adj-path (hd ps) (tl ps)›] ‹last ps 6=hd ps›

friend-assm[of last ps hd ps]
by auto

moreover have last x=(SOME n. adjacent (last ps) n ∧ adjacent (hd
ps) n)

using app ‹x=app ps› by auto
ultimately have adjacent (last ps) (last x) and adjacent (hd ps) (last

x)
using someI-ex by (metis (lifting))+

have hd x=hd ps using ‹x=app ps› ‹length ps=l+1 › app
by (cases ps) auto

have length x = l + 2 using ‹x=app ps› ‹length ps=l+1 › app by auto
moreover have adj-path (hd x) (tl x)

proof −
have last (tl ps)=last ps using ‹length ps=l+1 ›

by (metis ‹last ps 6= hd ps› list.sel(1 ,3) last-ConsL last-tl
neq-Nil-conv)

moreover have length ps 6=1 using ‹last ps 6= hd ps›
by (metis Suc-eq-plus1-left gen-length-code(1) gen-length-def

list.sel(1)
last-ConsL length-Suc-conv neq-Nil-conv)

hence tl ps 6=[] using ‹length ps=l+1 ›
by(auto simp: length-Suc-conv)

ultimately have adj-path (hd ps) (tl ps @ [last x])
using adj-path-app[OF ‹adj-path (hd ps) (tl ps)›,of last x]

‹adjacent (last ps) (last x)›
by auto

moreover have tl ps @ [last x]=tl x
using ‹x=app ps› app

by (metis ‹ last x = (SOME n. adjacent (last ps) n ∧ adjacent (hd
ps) n) ›

‹ tl ps 6= [] › list.sel(2) tl-append2)
ultimately show ?thesis using ‹hd x=hd ps› by auto

qed
moreover have adjacent (last x) (hd x)
using ‹hd x=hd ps› ‹adjacent (hd ps) (last x)› adjacent-sym by auto

moreover have last (butlast x) 6= hd x
using ‹last ps 6= hd ps› ‹hd x=hd ps›
by (metis ‹x = app ps› app butlast-snoc)

ultimately show length x = l + 2 ∧ adj-path (hd x) (tl x) ∧ adjacent
(last x) (hd x)

99

∧ last (butlast x) 6= hd x
by auto

qed
moreover have

∧
x. x∈{ps. length ps = l+2 ∧ adj-path (hd ps) (tl ps) ∧

adjacent (last ps) (hd ps) ∧ last (butlast ps)6=hd ps}=⇒ x∈app‘(T l −
C-star l)

proof −
fix x assume x∈{ps. length ps = l+2 ∧ adj-path (hd ps) (tl ps) ∧

adjacent (last ps) (hd ps) ∧ last (butlast ps)6=hd ps}
hence length x=l+2 and adj-path (hd x) (tl x) and adjacent (last x)

(hd x)
and last (butlast x)6=hd x

by auto
hence butlast x∈T l − C-star l

proof −
have length (butlast x) = l + 1

using ‹length x = l + 2 › length-butlast by auto
moreover have hd (butlast x)=hd x

using ‹length x=l+2 ›
by (metis append-butlast-last-id butlast.simps(1) calculation

diff-add-inverse
diff-cancel2 hd-append length-butlast add.commute num.distinct(1)

one-eq-numeral-iff)
hence adj-path (hd (butlast x)) (tl (butlast x))
using ‹adj-path (hd x) (tl x)› by (metis adj-path-butlast butlast-tl)

moreover have last (butlast x) 6= hd (butlast x)
using ‹last (butlast x) 6=hd x› ‹hd (butlast x)=hd x› by auto

ultimately show ?thesis using T C-star by auto
qed

moreover have app (butlast x)=x using app
proof −

have last (butlast x)∈V
proof (cases length x≥3)

case True
hence last (butlast x)∈set (tl x)

proof (induct x)
case Nil
thus ?case by auto

next
case (Cons x1 t1)
have length t1<3 =⇒?case

proof −
assume length t1<3

hence length t1=2 using ‹3 ≤ length (x1 # t1)› by auto
then obtain x2 t2 where t1=x2#t2 length t2=1

using Suc-length-conv[of 1 t1] by auto
then obtain x3 where t2=[x3]

using Suc-length-conv[of 0 t2] by auto

100

have t1=[x2 ,x3] using ‹t1=x2#t2 › ‹t2=[x3]› by auto
thus ?case by auto

qed
moreover have length t1≥3=⇒?case

proof −
assume length t1≥3
hence last (butlast t1) ∈ set (tl t1)

using Cons.hyps by auto
thus ?case

by (metis butlast.simps(2) in-set-butlastD last.simps
last-in-set

length-butlast length-greater-0-conv length-pos-if-in-set
length-tl list.sel(3))

qed
ultimately show ?case by force

qed
thus ?thesis using adj-path-V [OF ‹adj-path (hd x) (tl x)›] by

auto
next

case False
hence length x=2 using ‹length x=l+2 › by auto
then obtain x1 x2 where x=[x1 ,x2]

proof −
obtain x1 t1 where x=x1#t1 length t1=1

using Suc-length-conv[of 1 x] ‹length x=2 › by auto
then obtain x2 where t1=[x2]

using Suc-length-conv[of 0 t1] by auto
have x=[x1 ,x2] using ‹x=x1#t1 › ‹t1=[x2]› by auto
thus ?thesis using that by auto

qed
hence last (butlast x)=hd x by auto
thus ?thesis using adj-path-V ′[OF ‹adj-path (hd x) (tl x)›] by

auto
qed

moreover have hd (butlast x)=hd x using ‹length x=l+2 ›
by (metis ‹adjacent (last x) (hd x)› adjacent-no-loop ap-

pend-butlast-last-id
butlast.simps(1) list.sel(1) hd-append)

hence hd (butlast x)∈V using adj-path-V ′[OF ‹adj-path (hd x) (tl
x)›] by auto

moreover have last (butlast x)6=hd (butlast x)
using ‹last (butlast x) 6=hd x› ‹hd (butlast x)=hd x› by auto

ultimately have ∃ ! n. adjacent (last (butlast x)) n ∧ adjacent (hd
(butlast x)) n

using friend-assm by auto
moreover have length x≥2 using ‹length x=l+2 › by auto
hence adjacent (last (butlast x)) (last x)

using ‹adj-path (hd x) (tl x)›
by (induct x,auto, metis (full-types) adj-path.simps(2) append-Nil

101

append-butlast-last-id, metis adj-path-app ′ append-butlast-last-id)
moreover have adjacent (hd (butlast x)) (last x)
using ‹adjacent (last x) (hd x)› ‹hd (butlast x)=hd x› adjacent-sym

by auto
ultimately have (SOME n. adjacent (last (butlast x)) n
∧ adjacent (hd (butlast x)) n) = last x

using some1-equality by fast
moreover have x=(butlast x)@[last x]

by (metis ‹adjacent (last (butlast x)) (last x)› adjacent-no-loop
append-butlast-last-id butlast.simps(1))

ultimately show ?thesis using app by auto
qed

ultimately show x∈app‘(T l − C-star l) by (metis image-iff)
qed

ultimately have app‘(T l − C-star l)={ps. length ps = l+2 ∧ adj-path
(hd ps) (tl ps) ∧

adjacent (last ps) (hd ps) ∧ last (butlast ps)6=hd ps} by fast
moreover have inj-on app (T l − C-star l) using app unfolding inj-on-def

by auto
ultimately show ?thesis by (metis card-image)

qed
ultimately show card (C (l + 1)) = k ∗ card (C-star l) + card (T l −

C-star l) by auto
qed

hence
∧

l::nat. card (C (l+1)) mod (k−(1 ::nat))=1
proof −

fix l::nat
have C-star l ⊆ T l using C-star T by auto
moreover have card (T l) 6=0 using T-count ‹k≥4 › by auto
hence finite (T l) using ‹k≥4 › by (metis card.infinite)
ultimately have card (T l − C-star l)=card(T l) − card(C-star l)

by (metis card-Diff-subset rev-finite-subset)
hence card (C (l + 1))=k∗card (C-star l) + (card (T l) − card (C-star l))

using ‹
∧

l::nat. card (C (l+1)) = k∗ card (C-star l) + card (T l − C-star
l)›

by auto
also have ...=k∗card (C-star l) + card (T l) − card (C-star l)

proof −
have card (T l) ≥ card (C-star l)

using ‹C-star l ⊆ T l› ‹finite (T l)› by (metis card-mono)
thus ?thesis by auto

qed
also have ...=k∗card (C-star l) − card (C-star l) + card (T l)

proof −
have card (T l) ≥ card (C-star l)

using ‹C-star l ⊆ T l› ‹finite (T l)› by (metis card-mono)
moreover have k∗card (C-star l) ≥ card (C-star l) using ‹k≥4 › by auto
ultimately show ?thesis by auto

qed

102

also have ...=(k−(1 ::nat))∗card(C-star l)+card(T l) using ‹k≥4 ›
by (metis monoid-mult-class.mult.left-neutral diff-mult-distrib)

finally have card (C (l + 1))=(k−(1 ::nat))∗card(C-star l)+card(T l) .
hence card (C (l+1)) mod (k−(1 ::nat)) = card(T l) mod (k−(1 ::nat)) using

‹k>=4 ›
by (metis mod-mult-self3 mult.commute)

also have ...=((k∗k−k+1)∗k^l) mod (k−(1 ::nat)) using T-count by auto
also have ...=((k−(1 ::nat))∗k+1)∗k^l mod (k−(1 ::nat))

proof −
have k∗k−k+1=(k−(1 ::nat))∗k+1 using ‹k≥4 › by (metis diff-mult-distrib

nat-mult-1)
thus ?thesis by auto

qed
also have ...=1∗k^l mod (k−(1 ::nat))

by (metis mod-mult-right-eq mod-mult-self1 add.commute mult.commute)
also have ...=k^l mod (k−(1 ::nat)) by auto
also have ...=(k−(1 ::nat)+1)^l mod (k−(1 ::nat)) using ‹k≥4 › by auto
also have ...=1^l mod (k−(1 ::nat)) by (metis mod-add-self2 add.commute

power-mod)
also have ...=1 mod (k−(1 ::nat)) by auto
also have ...=1 using ‹k≥4 › by auto
finally show card (C (l+1)) mod (k−(1 ::nat)) =1 .

qed
obtain p::nat where prime p p dvd (k−(1 ::nat)) using ‹k≥4 ›

by (metis Suc-eq-plus1 Suc-numeral add-One-commute eq-iff le-diff-conv nu-
meral-le-iff

one-le-numeral one-plus-BitM prime-factor-nat semiring-norm(69) semir-
ing-norm(71))

hence p-minus-1 :p−(1 ::nat)+1=p
by (metis add-diff-inverse add.commute not-less-iff-gr-or-eq prime-nat-iff)

hence ∗:
∧

l::nat. card (C (l+1)) mod p=1
using ‹

∧
l::nat. card (C (l+1)) mod (k−(1 ::nat))=1 › mod-mod-cancel[OF ‹p

dvd (k−(1 ::nat))›]
‹prime p›

by (metis mod-if prime-gt-1-nat)
have card (C (p − 1)) mod p = 1
proof (cases 2 ≤ p)

case True with ∗ [of p − 2] show ?thesis
by (metis Nat.add-diff-assoc2 add-le-cancel-right diff-diff-left one-add-one

p-minus-1)
next

case False with ∗ [of p − 2] ‹prime p› prime-ge-2-nat show ?thesis
by blast

qed
moreover have card (C (p−(1 ::nat))) mod p=0 using C

proof −
have closure1 :

∧
x. x∈C (p−(1 ::nat))=⇒ rotate1 x ∈C (p−(1 ::nat))

proof −
fix x assume x∈C (p−(1 ::nat))

103

hence length x = p and adj-path (hd x) (tl x) and adjacent (last x) (hd
x)

using C p-minus-1 by auto
have adjacent (last (rotate1 x)) (hd (rotate1 x))

proof −
have x 6=[] using ‹length x=p› ‹prime p› by auto
hence adjacent (last (rotate1 x)) (hd (rotate1 x))=adjacent (hd x) (hd

(tl x))
by (metis ‹ adjacent (last x) (hd x) › adjacent-no-loop append-Nil

list.sel(1 ,3)
hd-append2 last-snoc list.exhaust rotate1-hd-tl)

also have ...=True using ‹adj-path (hd x) (tl x)›
using ‹adjacent (last x) (hd x)› ‹x 6= []›

by (metis adj-path.simps(2) adjacent-no-loop append1-eq-conv
append-Nil

append-butlast-last-id list.sel(1 ,3) list.exhaust)
finally show ?thesis by auto

qed
moreover have adj-path (hd (rotate1 x)) (tl (rotate1 x))

proof −
have x 6=[] using ‹length x=p› ‹prime p› by auto
then obtain y ys where y=hd x ys=tl x by auto
hence adj-path y ys and adjacent (last ys) y and ys 6=[]

by (metis ‹adj-path (hd x) (tl x)›, metis ‹adjacent (last x) (hd x)› ‹y
= hd x›

‹ys = tl x› adjacent-no-loop list.sel(1 ,3) last.simps last-tl list.exhaust
, metis ‹adjacent (last x) (hd x)› ‹x 6= []› ‹ys = tl x› adjacent-no-loop

list.sel(1 ,3)
last-ConsL neq-Nil-conv)

hence adj-path (hd (rotate1 x)) (tl (rotate1 x))
=adj-path (hd (ys@[y])) (tl (ys@[y]))

using ‹x 6=[]› ‹y=hd x› ‹ys=tl x› by (metis rotate1-hd-tl)
also have ...=adj-path (hd ys) ((tl ys)@[y])

by (metis ‹ys 6= []› hd-append tl-append2)
also have ...=True

using adj-path-app[OF ‹adj-path y ys› ‹ys 6=[]› ‹adjacent (last ys) y›]
‹ys 6=[]›

by (metis adj-path.simps(2) append-Cons list.sel(1 ,3) list.exhaust)
finally show ?thesis by auto

qed
moreover have length (rotate1 x) = p using ‹length x=p› by auto

ultimately show rotate1 x ∈ C (p−(1 ::nat)) using C p-minus-1 by auto
qed

have closure:
∧

n x. x∈C (p−(1 ::nat))=⇒ rotate n x ∈C (p−(1 ::nat))
proof −

fix n x assume x∈C (p−(1 ::nat))
thus rotate n x ∈C (p−(1 ::nat))

by (induct n,auto,metis One-nat-def closure1)
qed

104

obtain r where r :r={(x,y). x∈C (p−(1 ::nat)) ∧ (∃n<p. rotate n x=y)} by
auto

have
∧

x. x∈C (p−(1 ::nat)) =⇒ p dvd card {y.(∃n<p. rotate n x=y)}
proof −

fix x assume x ∈ C (p−(1 ::nat))
hence length x=p using C p-minus-1 by auto
have {y. (∃n<p. rotate n x=y)}= (λn. rotate n x)‘ {0 ..<p} by auto
moreover have

∧
n1 n2 . n1∈{0 ..<p} =⇒ n2∈{0 ..<p} =⇒ n1 6=n2 =⇒

rotate n1 x 6=rotate n2 x
proof

fix n1 n2 assume n1 ∈ {0 ..<p} n2 ∈ {0 ..<p} n1 6= n2 rotate n1 x
= rotate n2 x

{ fix n1 n2
assume n1 ∈ {0 ..<p} n2 ∈ {0 ..<p} rotate n1 x = rotate n2 x n1>n2

obtain s::nat where s∗(n1−n2) mod p=1 s>0
proof −

have n1−n2>0 and n1−n2<p
using ‹n1 ∈ {0 ..<p}› ‹n2 ∈ {0 ..<p}› ‹n1>n2 › by auto

with ‹prime p› have coprime (n1 − n2) p
by (simp add: prime-nat-iff ′′ coprime-commute [of p])

then have ∃ x. [(n1 − n2) ∗ x = 1] (mod p)
by (simp add: cong-solve-coprime-nat)

then obtain s where s ∗ (n1 − n2) mod p = 1
using ‹prime p› prime-gt-1-nat [of p]
by (auto simp add: cong-def ac-simps)

moreover hence s>0 by (metis mod-0 mult-0 neq0-conv
zero-neq-one)

ultimately show ?thesis using that by auto
qed

have rotate (s∗n1) x=rotate (s∗n2) x
using ‹rotate n1 x=rotate n2 x›
apply (induct s)
apply (auto simp add: algebra-simps)
by (metis add.commute rotate-rotate)

hence rotate (s∗n1 − s∗n2) x= x
using rotate-diff by auto

hence rotate (s∗(n1−n2)) x=x by (metis diff-mult-distrib mult.commute)
hence rotate 1 x = x using ‹s∗(n1−n2) mod p=1 › ‹length x=p›

by (metis rotate-conv-mod)
hence rotate1 x=x by auto
have hd x=hd (tl x) using ‹prime p› ‹length x=p›

proof −
have length x≥2 using ‹prime p› ‹length x=p› using prime-ge-2-nat

by blast
hence length (tl x)≥1 by force
hence x 6=[] and tl x 6=[] by auto+
hence x=(hd x)#(hd (tl x))#(tl (tl x)) using hd-Cons-tl by auto
hence (hd (tl x))#(tl (tl x))@[hd x]=(hd x)#(hd (tl x))#(tl (tl x))
using ‹rotate1 x = x› by (metis Cons-eq-appendI rotate1 .simps(2))

105

thus ?thesis by auto
qed

moreover have hd x 6=hd (tl x)
proof −
have adj-path (hd x) (tl x) using ‹x ∈ C (p−(1 ::nat))› C by auto
moreover have length x≥2 using ‹prime p› ‹length x=p› using

prime-ge-2-nat by blast
hence length (tl x)≥1 by force
hence tl x 6=[] by force
ultimately have adjacent (hd x) (hd (tl x))

by (metis adj-path.simps(2) list.sel(1) list.exhaust)
thus ?thesis by (metis adjacent-no-loop)

qed
ultimately have False by auto }

thus False
by (metis ‹n1 ∈ {0 ..<p}› ‹n1 6= n2 › ‹n2 ∈ {0 ..<p}› ‹rotate n1 x =

rotate n2 x›
less-linear)

qed
hence inj-on (λn. rotate n x) {0 ..<p} unfolding inj-on-def by fast

ultimately have card {y. (∃n<p. rotate n x=y)}=card {0 ..<p} by (metis
card-image)

hence card {y. (∃n<p. rotate n x=y)}=p by auto
thus p dvd card {y. (∃n<p. rotate n x=y)} by auto

qed
hence ∀X∈C (p−(1 ::nat)) // r . p dvd card X unfolding quotient-def Im-

age-def r by auto
moreover have refl-on (C (p − 1)) r

proof −
have r ⊆ C (p − 1) × C (p − 1)

proof
fix x assume x∈r
hence fst x∈C (p − 1) and ∃n. snd x=rotate n (fst x) using r by

auto
moreover then obtain n where snd x=rotate n (fst x) by auto
ultimately have snd x∈C (p − 1) using closure by auto
moreover have x=(fst x,snd x) using ‹x∈r› r by auto
ultimately show x ∈ C (p − 1) × C (p − 1) using ‹fst x∈ C (p −

1)›
by (metis SigmaI)

qed
moreover have ∀ x∈C (p − 1). (x, x) ∈ r

proof
fix x assume x ∈ C (p − 1)
hence rotate 0 x ∈ C (p − 1) using closure by auto
moreover have 0<p using ‹prime p› by (auto intro: prime-gt-0-nat)
ultimately have (x,rotate 0 x)∈ r using ‹x∈C (p − 1)› r by auto
moreover have rotate 0 x=x by auto
ultimately show (x,x)∈r by auto

106

qed
ultimately show ?thesis using refl-on-def by auto

qed
moreover have sym r unfolding sym-def

proof (rule,rule,rule)
fix x y assume (x, y) ∈ r
hence x∈C (p − 1) using r by auto
hence length x=p using C p-minus-1 by auto
obtain n where n<p rotate n x = y using ‹(x,y)∈r› r by auto
hence y∈ C (p − 1) using closure[OF ‹x∈ C (p − 1)›] by auto
have n=0=⇒(y, x) ∈ r

proof −
assume n=0
hence x=y using ‹rotate n x=y› by auto

thus (y,x)∈r using ‹refl-on (C (p − 1)) r› ‹y ∈ C (p − 1)› refl-on-def
by fast

qed
moreover have n 6=0 =⇒ (y,x)∈r

proof −
assume n 6=0
have rotate (p−n) y = x

proof −
have rotate (p−n) y = rotate (p−n) (rotate n x)

using ‹rotate n x=y› by auto
also have rotate (p−n) (rotate n x)=rotate (p−n+n) x

using rotate-rotate by auto
also have ...=rotate p x using ‹n<p› by auto
also have ...=rotate 0 x using ‹length x=p› by auto
also have ...=x by auto
finally show ?thesis .

qed
moreover have p−n<p using ‹n<p› ‹n 6=0 › by auto
ultimately show (y,x)∈r using r ‹y∈ C (p − 1)› by auto

qed
ultimately show (y,x)∈r by auto

qed
moreover have trans r unfolding trans-def

proof (rule,rule,rule,rule,rule)
fix x y z assume (x, y) ∈ r (y, z) ∈ r
hence x∈C (p − 1) using r by auto
hence length x=p using C p-minus-1 by auto
obtain n1 n2 where n1<p n2<p y=rotate n1 x z=rotate n2 y

using r ‹(x,y)∈r› ‹(y,z)∈r› by auto
hence z=rotate (n2+n1) x by (metis rotate-rotate)

hence z=rotate ((n2+n1) mod p) x using ‹length x=p› by (metis
rotate-conv-mod)

moreover have (n2+n1) mod p < p by (metis ‹prime p› mod-less-divisor
prime-gt-0-nat)

ultimately show (x,z)∈r using ‹x∈ C (p − 1)› r by auto

107

qed
moreover have finite (C (p − 1))

by (metis ‹card (C (p − 1)) mod p = 1 › card-eq-0-iff mod-0 zero-neq-one)
ultimately have p dvd card (C (p−(1 ::nat))) using equiv-imp-dvd-card

equiv-def by fast
thus card (C (p−(1 ::nat))) mod p=0 by (metis dvd-eq-mod-eq-0)

qed
ultimately show False by auto

qed

theorem (in valid-unSimpGraph) friendship-thm:
assumes friend-assm:

∧
v u. v∈V =⇒ u∈V =⇒ v 6=u =⇒ ∃ ! n. adjacent v n ∧

adjacent u n
and finite V

shows ∃ v. ∀n∈V . n 6=v −→ adjacent v n
proof −

have card V=0 =⇒ ?thesis
using ‹finite V ›
by (metis all-not-in-conv card-seteq empty-subsetI le0)

moreover have card V=1 =⇒ ?thesis
proof −

assume card V=1
then obtain v where V={v}

using card-eq-SucD[of V 0] by auto
hence ∀n∈V . n=v by auto
thus ∃ v. ∀n∈V . n 6= v −→ adjacent v n by auto

qed
moreover have card V≥2 =⇒ ?thesis

proof −
assume card V≥2
hence ∃ v∈V . degree v G = 2

using exist-degree-two[OF friend-assm] ‹finite V › by auto
thus ?thesis

using degree-two-windmill[OF friend-assm] ‹card V≥2 › ‹finite V › by auto
qed

ultimately show ?thesis by force
qed

end

References
[1] J. Q. Longyear and T. Parsons. The friendship theorem. Indagationes

Mathematicae (Proceedings), 75(3):257 – 262, 1972.

[2] F. Martin. The Seven Bridges of Königsberg. http://www.ugr.es/
~fmartin/gi/bridges.pdf.

[3] G. B. Mertzios and W. Unger. The friendship problem on graphs. 2008.

108

http://www.ugr.es/~fmartin/gi/bridges.pdf
http://www.ugr.es/~fmartin/gi/bridges.pdf

[4] B. Nordhoff and P. Lammich. Dijkstra’s shortest path algorithm. Archive
of Formal Proofs, June 2012. http://isa-afp.org/entries/Dijkstra_
Shortest_Path.shtml, Formal proof development.

109

http://isa-afp.org/entries/Dijkstra_Shortest_Path.shtml
http://isa-afp.org/entries/Dijkstra_Shortest_Path.shtml

	Undirected Multigraph and undirected trails
	Degrees and related properties
	Connectivity
	Adjacent nodes
	Undirected simple graph
	Definition of Eulerian trails and circuits
	Necessary conditions for Eulerian trails and circuits
	Specific case of the Konigsberg Bridge Problem
	Sufficient conditions for Eulerian trails and circuits
	Common steps
	Exclusive steps for combinatorial proofs

