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Abstract

This development provides a formalization of undirected graphs
and simple graphs, which are based on Benedikt Nordhoff and Peter
Lammich’s simple formalization of labelled directed graphs [4] in the
archive. Then, with our formalization of graphs, we have shown both
necessary and sufficient conditions for Eulerian trails and circuits [2]
as well as the fact that the Königsberg Bridge problem does not have
a solution. In addition, we have also shown the Friendship Theorem
in simple graphs[1, 3].
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theory MoreGraph imports Complex-Main Dijkstra-Shortest-Path.Graph
begin

1 Undirected Multigraph and undirected trails
locale valid-unMultigraph=valid-graph G for G::( ′v, ′w) graph+

assumes corres[simp]: (v,w,u ′) ∈ edges G ←→ (u ′,w,v) ∈ edges G
and no-id[simp]:(v,w,v) /∈ edges G

fun (in valid-unMultigraph) is-trail :: ′v ⇒ ( ′v, ′w) path ⇒ ′v ⇒ bool where
is-trail v [] v ′←→ v=v ′ ∧ v ′∈ V |
is-trail v ((v1 ,w,v2 )#ps) v ′←→ v=v1 ∧ (v1 ,w,v2 )∈E ∧

(v1 ,w,v2 )/∈set ps ∧(v2 ,w,v1 )/∈set ps ∧ is-trail v2 ps v ′

2 Degrees and related properties
definition degree :: ′v ⇒ ( ′v, ′w) graph ⇒ nat where

degree v g≡ card({e. e∈edges g ∧ fst e=v})

definition odd-nodes-set :: ( ′v, ′w) graph ⇒ ′v set where
odd-nodes-set g ≡ {v. v∈nodes g ∧ odd(degree v g)}

definition num-of-odd-nodes :: ( ′v, ′w) graph ⇒ nat where
num-of-odd-nodes g≡ card( odd-nodes-set g)

definition num-of-even-nodes :: ( ′v, ′w) graph ⇒ nat where
num-of-even-nodes g≡ card( {v. v∈nodes g ∧ even(degree v g)})

definition del-unEdge where del-unEdge v e v ′ g ≡ (|
nodes = nodes g, edges = edges g − {(v,e,v ′),(v ′,e,v)} |)

definition rev-path :: ( ′v, ′w) path ⇒ ( ′v, ′w) path where
rev-path ps ≡ map (λ(a,b,c).(c,b,a)) (rev ps)

fun rem-unPath:: ( ′v, ′w) path ⇒ ( ′v, ′w) graph ⇒ ( ′v, ′w) graph where
rem-unPath [] g= g|
rem-unPath ((v,w,v ′)#ps) g=

rem-unPath ps (del-unEdge v w v ′ g)

lemma del-undirected: del-unEdge v e v ′ g = delete-edge v ′ e v (delete-edge v e v ′

g)
unfolding del-unEdge-def delete-edge-def by auto

lemma delete-edge-sym: del-unEdge v e v ′ g = del-unEdge v ′ e v g
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unfolding del-unEdge-def by auto

lemma del-unEdge-valid[simp]: assumes valid-unMultigraph g
shows valid-unMultigraph (del-unEdge v e v ′ g)

proof −
interpret valid-unMultigraph g by fact
show ?thesis

unfolding del-unEdge-def
by unfold-locales (auto dest: E-validD)

qed

lemma set-compre-diff :{x ∈ A − B. P x}={x ∈ A. P x} − {x ∈ B . P x} by
blast
lemma set-compre-subset: B ⊆ A =⇒ {x ∈ B. P x} ⊆ {x ∈ A. P x} by blast

lemma del-edge-undirected-degree-plus: finite (edges g) =⇒ (v,e,v ′) ∈ edges g
=⇒ (v ′,e,v) ∈ edges g =⇒ degree v (del-unEdge v e v ′ g) + 1=degree v g

proof −
assume assms: finite (edges g) (v,e,v ′) ∈ edges g (v ′,e,v) ∈ edges g
have degree v (del-unEdge v e v ′ g) + 1

= card ({ea ∈ edges g − {(v, e, v ′), (v ′, e, v)}. fst ea = v}) + 1
unfolding del-unEdge-def degree-def by simp

also have ...=card ({ea ∈ edges g. fst ea = v} − {ea ∈ {(v, e, v ′), (v ′, e, v)}.
fst ea = v})+1

by (metis set-compre-diff )
also have ...=card ({ea ∈ edges g. fst ea = v}) − card({ea ∈ {(v, e, v ′), (v ′, e,

v)}.
fst ea = v})+1

proof −
have {(v, e, v ′), (v ′, e, v)} ⊆ edges g using ‹(v,e,v ′) ∈ edges g› ‹(v ′,e,v) ∈

edges g›
by auto

hence {ea ∈ {(v, e, v ′), (v ′, e, v)}. fst ea = v} ⊆ {ea ∈ edges g. fst ea = v}
by auto

moreover have finite {ea ∈ {(v, e, v ′), (v ′, e, v)}. fst ea = v} by auto
ultimately have card ({ea ∈ edges g. fst ea = v} − {ea ∈ {(v, e, v ′), (v ′, e,

v)}.
fst ea = v})=card {ea ∈ edges g. fst ea = v} − card {ea ∈ {(v, e, v ′), (v ′,

e, v)}.
fst ea = v}

using card-Diff-subset by blast
thus ?thesis by auto

qed
also have ...=card ({ea ∈ edges g. fst ea = v})

proof −
have {ea ∈ {(v, e, v ′), (v ′, e, v)}. fst ea = v}={(v,e,v ′)} by auto
hence card {ea ∈ {(v, e, v ′), (v ′, e, v)}. fst ea = v} = 1 by auto
moreover have card {ea ∈ edges g. fst ea = v}6=0
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by (metis (lifting, mono-tags) Collect-empty-eq assms(1 ) assms(2 )
card-eq-0-iff fst-conv mem-Collect-eq rev-finite-subset subsetI )

ultimately show ?thesis by arith
qed

finally have degree v (del-unEdge v e v ′ g) + 1=card ({ea ∈ edges g. fst ea =
v}) .

thus ?thesis unfolding degree-def .
qed

lemma del-edge-undirected-degree-plus ′: finite (edges g) =⇒ (v,e,v ′) ∈ edges g
=⇒ (v ′,e,v) ∈ edges g =⇒ degree v ′ (del-unEdge v e v ′ g) + 1=degree v ′ g

by (metis del-edge-undirected-degree-plus delete-edge-sym)

lemma del-edge-undirected-degree-minus[simp]: finite (edges g) =⇒ (v,e,v ′) ∈ edges
g

=⇒ (v ′,e,v) ∈ edges g =⇒ degree v (del-unEdge v e v ′ g) =degree v g− (1 ::nat)

using del-edge-undirected-degree-plus by (metis add-diff-cancel-left ′ add.commute)

lemma del-edge-undirected-degree-minus ′[simp]: finite (edges g) =⇒ (v,e,v ′) ∈ edges
g

=⇒ (v ′,e,v) ∈ edges g =⇒ degree v ′ (del-unEdge v e v ′ g) =degree v ′ g− (1 ::nat)
by (metis del-edge-undirected-degree-minus delete-edge-sym)

lemma del-unEdge-com: del-unEdge v w v ′ (del-unEdge n e n ′ g)
= del-unEdge n e n ′ (del-unEdge v w v ′ g)

unfolding del-unEdge-def by auto

lemma rem-unPath-com: rem-unPath ps (del-unEdge v w v ′ g)
= del-unEdge v w v ′ (rem-unPath ps g)

proof (induct ps arbitrary: g)
case Nil
thus ?case by (metis rem-unPath.simps(1 ))

next
case (Cons a ps ′)
thus ?case using del-unEdge-com

by (metis prod-cases3 rem-unPath.simps(1 ) rem-unPath.simps(2 ))
qed

lemma rem-unPath-valid[intro]:
valid-unMultigraph g =⇒ valid-unMultigraph (rem-unPath ps g)

proof (induct ps )
case Nil
thus ?case by simp

next
case (Cons x xs)
thus ?case

proof −
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have valid-unMultigraph (rem-unPath (x # xs) g) = valid-unMultigraph
(del-unEdge (fst x) (fst (snd x)) (snd (snd x)) (rem-unPath xs g))

using rem-unPath-com by (metis prod.collapse rem-unPath.simps(2 ))
also have ...=valid-unMultigraph (rem-unPath xs g)

by (metis Cons.hyps Cons.prems del-unEdge-valid)
also have ...=True

using Cons by auto
finally have ?case=True .
thus ?case by simp
qed

qed

lemma (in valid-unMultigraph) degree-frame:
assumes finite (edges G) x /∈ {v, v ′}
shows degree x (del-unEdge v w v ′ G) = degree x G (is ?L=?R)

proof (cases (v,w,v ′) ∈ edges G)
case True
have ?L=card({e. e∈edges G − {(v,w,v ′),(v ′,w,v)} ∧ fst e=x})

by (simp add:del-unEdge-def degree-def )
also have ...=card({e. e∈edges G ∧ fst e=x}−{e. e∈{(v,w,v ′),(v ′,w,v)} ∧ fst

e=x})
by (metis set-compre-diff )

also have ...=card({e. e∈edges G ∧ fst e=x}) using ‹x /∈ {v, v ′}›
proof −

have x 6=v ∧ x 6= v ′ using ‹x /∈{v,v ′}›by simp
hence {e. e∈{(v,w,v ′),(v ′,w,v)} ∧ fst e=x}={} by auto
thus ?thesis by (metis Diff-empty)

qed
also have ...=?R by (simp add:degree-def )
finally show ?thesis .

next
case False
moreover hence (v ′,w,v)/∈E using corres by auto
ultimately have E− {(v,w,v ′),(v ′,w,v)}=E by blast
hence del-unEdge v w v ′ G=G by (auto simp add:del-unEdge-def )
thus ?thesis by auto

qed

lemma [simp]: rev-path [] = [] unfolding rev-path-def by simp
lemma rev-path-append[simp]: rev-path (xs@ys) = (rev-path ys) @ (rev-path xs)

unfolding rev-path-def rev-append by auto
lemma rev-path-double[simp]: rev-path(rev-path xs)=xs

unfolding rev-path-def by (induct xs,auto)

lemma del-UnEdge-node[simp]: v∈nodes (del-unEdge u e u ′ G) ←→ v∈nodes G
by (metis del-unEdge-def select-convs(1 ))

lemma [intro!]: finite (edges G) =⇒ finite (edges (del-unEdge u e u ′ G))
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by (metis del-unEdge-def finite-Diff select-convs(2 ))

lemma [intro!]: finite (nodes G) =⇒ finite (nodes (del-unEdge u e u ′ G))
by (metis del-unEdge-def select-convs(1 ))

lemma [intro!]: finite (edges G) =⇒ finite (edges (rem-unPath ps G))
proof (induct ps arbitrary:G)

case Nil
thus ?case by simp

next
case (Cons x xs)
hence finite (edges (rem-unPath (x # xs) G)) = finite (edges (del-unEdge

(fst x) (fst (snd x)) (snd (snd x)) (rem-unPath xs G)))
by (metis rem-unPath.simps(2 ) rem-unPath-com surjective-pairing)

also have ...=finite (edges (rem-unPath xs G))
using del-unEdge-def
by (metis finite.emptyI finite-Diff2 finite-Diff-insert select-convs(2 ))

also have ...=True using Cons by auto
finally have ?case = True .
thus ?case by simp

qed

lemma del-UnEdge-frame[intro]:
x∈edges g =⇒ x 6=(v,e,v ′) =⇒x 6=(v ′,e,v) =⇒ x∈edges (del-unEdge v e v ′ g)
unfolding del-unEdge-def by auto

lemma [intro!]: finite (nodes G) =⇒ finite (odd-nodes-set G)
by (metis (lifting) mem-Collect-eq odd-nodes-set-def rev-finite-subset subsetI )

lemma [simp]: nodes (del-unEdge u e u ′ G)=nodes G
by (metis del-unEdge-def select-convs(1 ))

lemma [simp]: nodes (rem-unPath ps G) = nodes G
proof (induct ps)

case Nil
show ?case by simp

next
case (Cons x xs)
have nodes (rem-unPath (x # xs) G)=nodes (del-unEdge

(fst x) (fst (snd x)) (snd (snd x)) (rem-unPath xs G))
by (metis rem-unPath.simps(2 ) rem-unPath-com surjective-pairing)

also have ...=nodes (rem-unPath xs G) by auto
also have ...=nodes G using Cons by auto
finally show ?case .

qed

lemma [intro!]: finite (nodes G) =⇒ finite (nodes (rem-unPath ps G)) by auto

lemma in-set-rev-path[simp]: (v ′,w,v )∈set (rev-path ps) ←→ (v,w,v ′)∈set ps
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proof (induct ps)
case Nil
thus ?case unfolding rev-path-def by auto

next
case (Cons x xs)
obtain x1 x2 x3 where x:x=(x1 ,x2 ,x3 ) by (metis prod-cases3 )
have set (rev-path (x # xs))=set ((rev-path xs)@[(x3 ,x2 ,x1 )])

unfolding rev-path-def
using x by auto

also have ...=set (rev-path xs) ∪ {(x3 ,x2 ,x1 )} by auto
finally have set (rev-path (x # xs)) =set (rev-path xs) ∪ {(x3 ,x2 ,x1 )} .
moreover have set (x#xs)= set xs ∪ {(x1 ,x2 ,x3 )}

by (metis List.set-simps(2 ) insert-is-Un sup-commute x)
ultimately show ?case using Cons by auto

qed

lemma rem-unPath-edges:
edges(rem-unPath ps G) = edges G − (set ps ∪ set (rev-path ps))

proof (induct ps)
case Nil
show ?case unfolding rev-path-def by auto

next
case (Cons x xs)
obtain x1 x2 x3 where x: x=(x1 ,x2 ,x3 ) by (metis prod-cases3 )
hence edges(rem-unPath (x#xs) G)= edges(del-unEdge x1 x2 x3 (rem-unPath

xs G))
by (metis rem-unPath.simps(2 ) rem-unPath-com)

also have ...=edges(rem-unPath xs G)−{(x1 ,x2 ,x3 ),(x3 ,x2 ,x1 )}
by (metis del-unEdge-def select-convs(2 ))

also have ...= edges G − (set xs ∪ set (rev-path xs))−{(x1 ,x2 ,x3 ),(x3 ,x2 ,x1 )}
by (metis Cons.hyps)

also have ...=edges G − (set (x#xs) ∪ set (rev-path (x#xs)))
proof −

have set (rev-path xs) ∪ {(x3 ,x2 ,x1 )}=set ((rev-path xs)@[(x3 ,x2 ,x1 )])
by (metis List.set-simps(2 ) empty-set set-append)

also have ...=set (rev-path (x#xs)) unfolding rev-path-def using x by auto
finally have set (rev-path xs) ∪ {(x3 ,x2 ,x1 )}=set (rev-path (x#xs)) .
moreover have set xs ∪ {(x1 ,x2 ,x3 )}=set (x#xs)

by (metis List.set-simps(2 ) insert-is-Un sup-commute x)
moreover have edges G − (set xs ∪ set (rev-path xs))−{(x1 ,x2 ,x3 ),(x3 ,x2 ,x1 )}

=
edges G − ((set xs ∪ {(x1 ,x2 ,x3 )}) ∪ (set (rev-path xs) ∪

{(x3 ,x2 ,x1 )}))
by auto

ultimately show ?thesis by auto
qed

finally show ?case .
qed
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lemma rem-unPath-graph [simp]:
rem-unPath (rev-path ps) G=rem-unPath ps G

proof −
have nodes(rem-unPath (rev-path ps) G)=nodes(rem-unPath ps G)

by auto
moreover have edges(rem-unPath (rev-path ps) G)=edges(rem-unPath ps G)

proof −
have set (rev-path ps) ∪ set (rev-path (rev-path ps)) = set ps ∪ set (rev-path

ps)
by auto

thus ?thesis by (metis rem-unPath-edges)
qed

ultimately show ?thesis by auto
qed

lemma distinct-rev-path[simp]: distinct (rev-path ps) ←→distinct ps
proof (induct ps)

case Nil
show ?case by auto

next
case (Cons x xs)
obtain x1 x2 x3 where x: x=(x1 ,x2 ,x3 ) by (metis prod-cases3 )
hence distinct (rev-path (x # xs))=distinct ((rev-path xs)@[(x3 ,x2 ,x1 )])

unfolding rev-path-def by auto
also have ...= (distinct (rev-path xs) ∧ (x3 ,x2 ,x1 )/∈set (rev-path xs))

by (metis distinct.simps(2 ) distinct1-rotate rotate1 .simps(2 ))
also have ...=distinct (x#xs)

by (metis Cons.hyps distinct.simps(2 ) in-set-rev-path x)
finally have distinct (rev-path (x # xs))=distinct (x#xs) .
thus ?case .

qed

lemma (in valid-unMultigraph) is-path-rev: is-path v ′ (rev-path ps) v ←→ is-path
v ps v ′

proof (induct ps arbitrary: v)
case Nil
show ?case by auto

next
case (Cons x xs)
obtain x1 x2 x3 where x: x=(x1 ,x2 ,x3 ) by (metis prod-cases3 )
hence is-path v ′ (rev-path (x # xs)) v=is-path v ′ ((rev-path xs) @[(x3 ,x2 ,x1 )]) v

unfolding rev-path-def by auto
also have ...=(is-path v ′ (rev-path xs) x3 ∧ (x3 ,x2 ,x1 )∈E ∧ is-path x1 [] v) by

auto
also have ...=(is-path x3 xs v ′ ∧ (x3 ,x2 ,x1 )∈E ∧ is-path x1 [] v) using Cons.hyps

by auto
also have ...=is-path v (x#xs) v ′
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by (metis corres is-path.simps(1 ) is-path.simps(2 ) is-path-memb x)
finally have is-path v ′ (rev-path (x # xs)) v=is-path v (x#xs) v ′ .
thus ?case .

qed

lemma (in valid-unMultigraph) singleton-distinct-path [intro]:
(v,w,v ′)∈E =⇒ is-trail v [(v,w,v ′)] v ′

by (metis E-validD(2 ) all-not-in-conv is-trail.simps set-empty)

lemma (in valid-unMultigraph) is-trail-path:
is-trail v ps v ′ ←→ is-path v ps v ′ ∧ distinct ps ∧ (set ps ∩ set (rev-path ps) =
{})
proof (induct ps arbitrary:v)

case Nil
show ?case by auto

next
case (Cons x xs)
obtain x1 x2 x3 where x: x=(x1 ,x2 ,x3 ) by (metis prod-cases3 )
hence is-trail v (x#xs) v ′= (v=x1 ∧ (x1 ,x2 ,x3 )∈E ∧

(x1 ,x2 ,x3 )/∈set xs ∧(x3 ,x2 ,x1 )/∈set xs ∧ is-trail x3 xs v ′)
by (metis is-trail.simps(2 ))

also have ...=(v=x1 ∧ (x1 ,x2 ,x3 )∈E ∧ (x1 ,x2 ,x3 )/∈set xs ∧(x3 ,x2 ,x1 )/∈set xs
∧ is-path x3 xs v ′

∧ distinct xs ∧ (set xs ∩ set (rev-path xs)={}))
using Cons.hyps by auto

also have ...=(is-path v (x#xs) v ′ ∧ (x1 ,x2 ,x3 ) 6= (x3 ,x2 ,x1 ) ∧ (x1 ,x2 ,x3 )/∈set
xs

∧(x3 ,x2 ,x1 )/∈set xs ∧ distinct xs ∧ (set xs ∩ set (rev-path xs)={}))
by (metis append-Nil is-path.simps(1 ) is-path-simps(2 ) is-path-split ′ no-id x)

also have ...=(is-path v (x#xs) v ′ ∧ (x1 ,x2 ,x3 ) 6= (x3 ,x2 ,x1 ) ∧(x3 ,x2 ,x1 )/∈set
xs

∧ distinct (x#xs) ∧ (set xs ∩ set (rev-path xs)={}))
by (metis (full-types) distinct.simps(2 ) x)

also have ...=(is-path v (x#xs) v ′ ∧ (x1 ,x2 ,x3 ) 6= (x3 ,x2 ,x1 ) ∧ distinct (x#xs)

∧ (x3 ,x2 ,x1 )/∈set xs ∧ set xs ∩ set (rev-path (x#xs))={})
proof −

have set (rev-path (x#xs)) = set ((rev-path xs)@[(x3 ,x2 ,x1 )]) using x by
auto

also have ... = set (rev-path xs) ∪ {(x3 ,x2 ,x1 )} by auto
finally have set (rev-path (x#xs))=set (rev-path xs) ∪ {(x3 ,x2 ,x1 )} .
thus ?thesis by blast

qed
also have ...=(is-path v (x#xs) v ′∧ distinct (x#xs) ∧ (set (x#xs) ∩ set (rev-path

(x#xs))={}))
proof −
have (x3 ,x2 ,x1 )/∈set xs←→ (x1 ,x2 ,x3 )/∈ set (rev-path xs) using in-set-rev-path

by auto
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moreover have set (rev-path (x#xs))=set (rev-path xs) ∪ {(x3 ,x2 ,x1 )}
unfolding rev-path-def using x by auto

ultimately have (x1 ,x2 ,x3 ) 6= (x3 ,x2 ,x1 )∧ (x3 ,x2 ,x1 )/∈set xs
←→ (x1 ,x2 ,x3 )/∈ set (rev-path (x#xs)) by blast

thus ?thesis
by (metis (mono-tags) Int-iff Int-insert-left-if0 List.set-simps(2 ) empty-iff

insertI1 x)
qed

finally have is-trail v (x#xs) v ′←→(is-path v (x#xs) v ′∧ distinct (x#xs)
∧ (set (x#xs) ∩ set (rev-path (x#xs))={})) .

thus ?case .
qed

lemma (in valid-unMultigraph) is-trail-rev:
is-trail v ′ (rev-path ps) v ←→ is-trail v ps v ′

using rev-path-append is-trail-path is-path-rev distinct-rev-path
by (metis Int-commute distinct-append)

lemma (in valid-unMultigraph) is-trail-intro[intro]:
is-trail v ′ ps v =⇒ is-path v ′ ps v by (induct ps arbitrary:v ′,auto)

lemma (in valid-unMultigraph) is-trail-split:
is-trail v (p1@p2 ) v ′ =⇒ (∃ u. is-trail v p1 u ∧ is-trail u p2 v ′)

apply (induct p1 arbitrary: v,auto)
apply (metis is-trail-intro is-path-memb)
done

lemma (in valid-unMultigraph) is-trail-split ′:is-trail v (p1@(u,w,u ′)#p2 ) v ′

=⇒ is-trail v p1 u ∧ (u,w,u ′)∈E ∧ is-trail u ′ p2 v ′

by (metis is-trail.simps(2 ) is-trail-split)

lemma (in valid-unMultigraph) distinct-elim[simp]:
assumes is-trail v ((v1 ,w,v2 )#ps) v ′

shows (v1 ,w,v2 )∈edges(rem-unPath ps G) ←→ (v1 ,w,v2 )∈E
proof

assume (v1 , w, v2 ) ∈ edges (rem-unPath ps G)
thus (v1 , w, v2 ) ∈ E by (metis assms is-trail.simps(2 ))

next
assume (v1 , w, v2 ) ∈ E
have (v1 ,w,v2 )/∈set ps ∧ (v2 ,w,v1 )/∈set ps by (metis assms is-trail.simps(2 ))
hence (v1 ,w,v2 )/∈set ps ∧ (v1 ,w,v2 )/∈set (rev-path ps) by simp
hence (v1 ,w,v2 )/∈set ps ∪ set (rev-path ps) by simp
hence (v1 ,w,v2 )∈edges G − (set ps ∪ set (rev-path ps))

using ‹(v1 , w, v2 ) ∈ E› by auto
thus (v1 ,w,v2 )∈edges(rem-unPath ps G)

by (metis rem-unPath-edges)
qed

lemma distinct-path-subset:
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assumes valid-unMultigraph G1 valid-unMultigraph G2 edges G1 ⊆edges G2
nodes G1 ⊆nodes G2

assumes distinct-G1 :valid-unMultigraph.is-trail G1 v ps v ′

shows valid-unMultigraph.is-trail G2 v ps v ′ using distinct-G1
proof (induct ps arbitrary:v)

case Nil
hence v=v ′∧v ′∈nodes G1

by (metis (full-types) assms(1 ) valid-unMultigraph.is-trail.simps(1 ))
hence v=v ′∧v ′∈nodes G2 using ‹nodes G1 ⊆ nodes G2 › by auto
thus ?case by (metis assms(2 ) valid-unMultigraph.is-trail.simps(1 ))

next
case (Cons x xs)
obtain x1 x2 x3 where x:x=(x1 ,x2 ,x3 ) by (metis prod-cases3 )
hence valid-unMultigraph.is-trail G1 x3 xs v ′

by (metis Cons.prems assms(1 ) valid-unMultigraph.is-trail.simps(2 ))
hence valid-unMultigraph.is-trail G2 x3 xs v ′ using Cons by auto
moreover have x∈edges G1

by (metis Cons.prems assms(1 ) valid-unMultigraph.is-trail.simps(2 ) x)
hence x∈edges G2 using ‹edges G1 ⊆ edges G2 › by auto
moreover have v=x1∧(x1 ,x2 ,x3 )/∈set xs∧(x3 ,x2 ,x1 )/∈set xs

by (metis Cons.prems assms(1 ) valid-unMultigraph.is-trail.simps(2 ) x)
hence v=x1 (x1 ,x2 ,x3 )/∈set xs (x3 ,x2 ,x1 )/∈set xs by auto
ultimately show ?case by (metis assms(2 ) valid-unMultigraph.is-trail.simps(2 )

x)
qed

lemma (in valid-unMultigraph) distinct-path-intro ′:
assumes valid-unMultigraph.is-trail (rem-unPath p G) v ps v ′

shows is-trail v ps v ′

proof −
have valid:valid-unMultigraph (rem-unPath p G)

using rem-unPath-valid[OF valid-unMultigraph-axioms,of p] by auto
moreover have nodes (rem-unPath p G) ⊆ V by auto
moreover have edges (rem-unPath p G) ⊆ E

using rem-unPath-edges by auto
ultimately show ?thesis

using distinct-path-subset[of rem-unPath p G G] valid-unMultigraph-axioms
assms

by auto
qed

lemma (in valid-unMultigraph) distinct-path-intro:
assumes valid-unMultigraph.is-trail (del-unEdge x1 x2 x3 G) v ps v ′

shows is-trail v ps v ′

by (metis (full-types) assms distinct-path-intro ′ rem-unPath.simps(1 )
rem-unPath.simps(2 ))

lemma (in valid-unMultigraph) distinct-elim-rev[simp]:
assumes is-trail v ((v1 ,w,v2 )#ps) v ′
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shows (v2 ,w,v1 )∈edges(rem-unPath ps G) ←→ (v2 ,w,v1 )∈E
proof −

have valid-unMultigraph (rem-unPath ps G) using valid-unMultigraph-axioms
by auto

hence (v2 ,w,v1 )∈edges(rem-unPath ps G)←→(v1 ,w,v2 )∈edges(rem-unPath ps
G)

by (metis valid-unMultigraph.corres)
moreover have (v2 ,w,v1 )∈E←→(v1 ,w,v2 )∈E using corres by simp
ultimately show ?thesis using distinct-elim by (metis assms)

qed

lemma (in valid-unMultigraph) del-UnEdge-even:
assumes (v,w,v ′) ∈ E finite E
shows v∈odd-nodes-set(del-unEdge v w v ′ G) ←→ even (degree v G)

proof −
have degree v (del-unEdge v w v ′ G) + 1=degree v G

using del-edge-undirected-degree-plus corres by (metis assms)
from this [symmetric] have odd (degree v (del-unEdge v w v ′ G)) = even (degree

v G)
by simp

moreover have v∈nodes (del-unEdge v w v ′ G) by (metis E-validD(1 ) assms(1 )
del-UnEdge-node)

ultimately show ?thesis unfolding odd-nodes-set-def by auto
qed

lemma (in valid-unMultigraph) del-UnEdge-even ′:
assumes (v,w,v ′) ∈ E finite E
shows v ′∈odd-nodes-set(del-unEdge v w v ′ G) ←→ even (degree v ′ G)

proof −
show ?thesis by (metis (full-types) assms corres del-UnEdge-even delete-edge-sym)

qed

lemma del-UnEdge-even-even:
assumes valid-unMultigraph G finite(edges G) finite(nodes G) (v, w, v ′)∈edges

G
assumes parity-assms: even (degree v G) even (degree v ′ G)
shows num-of-odd-nodes(del-unEdge v w v ′ G)=num-of-odd-nodes G + 2

proof −
interpret G:valid-unMultigraph by fact
have v∈odd-nodes-set(del-unEdge v w v ′ G)

by (metis G.del-UnEdge-even assms(2 ) assms(4 ) parity-assms(1 ))
moreover have v ′∈odd-nodes-set(del-unEdge v w v ′ G)

by (metis G.del-UnEdge-even ′ assms(2 ) assms(4 ) parity-assms(2 ))
ultimately have extra-odd-nodes:{v,v ′} ⊆ odd-nodes-set(del-unEdge v w v ′ G)

unfolding odd-nodes-set-def by auto
moreover have v /∈odd-nodes-set G and v ′/∈odd-nodes-set G

using parity-assms unfolding odd-nodes-set-def by auto
hence vv ′-odd-disjoint: {v,v ′} ∩ odd-nodes-set G = {} by auto
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moreover have odd-nodes-set(del-unEdge v w v ′ G) −{v,v ′}⊆odd-nodes-set G
proof

fix x
assume x-odd-set: x ∈ odd-nodes-set (del-unEdge v w v ′ G) − {v, v ′}
hence degree x (del-unEdge v w v ′ G) = degree x G

by (metis Diff-iff G.degree-frame assms(2 ))
hence odd(degree x G) using x-odd-set

unfolding odd-nodes-set-def by auto
moreover have x ∈ nodes G using x-odd-set unfolding odd-nodes-set-def

by auto
ultimately show x ∈ odd-nodes-set G unfolding odd-nodes-set-def by auto

qed
moreover have odd-nodes-set G ⊆ odd-nodes-set(del-unEdge v w v ′ G)

proof
fix x
assume x-odd-set: x ∈ odd-nodes-set G
hence x /∈{v,v ′} =⇒ odd(degree x (del-unEdge v w v ′ G))
by (metis (lifting) G.degree-frame assms(2 ) mem-Collect-eq odd-nodes-set-def )
hence x /∈{v,v ′} =⇒ x∈odd-nodes-set(del-unEdge v w v ′ G)

using x-odd-set del-UnEdge-node unfolding odd-nodes-set-def by auto
moreover have x∈{v,v ′} =⇒ x∈odd-nodes-set(del-unEdge v w v ′ G)

using extra-odd-nodes by auto
ultimately show x ∈ odd-nodes-set (del-unEdge v w v ′ G) by auto

qed
ultimately have odd-nodes-set(del-unEdge v w v ′ G)=odd-nodes-set G ∪ {v,v ′}

by auto
thus num-of-odd-nodes(del-unEdge v w v ′ G) = num-of-odd-nodes G + 2

proof −
assume odd-nodes-set(del-unEdge v w v ′ G)=odd-nodes-set G ∪ {v,v ′}
moreover have v 6=v ′ using G.no-id ‹(v,w,v ′)∈edges G› by auto
hence card{v,v ′}=2 by simp
moreover have odd-nodes-set G ∩ {v,v ′} = {}

using vv ′-odd-disjoint by auto
moreover have finite(odd-nodes-set G)
by (metis (lifting) assms(3 ) mem-Collect-eq odd-nodes-set-def rev-finite-subset

subsetI )
moreover have finite {v,v ′} by auto

ultimately show ?thesis unfolding num-of-odd-nodes-def using card-Un-disjoint
by metis

qed
qed

lemma del-UnEdge-even-odd:
assumes valid-unMultigraph G finite(edges G) finite(nodes G) (v, w, v ′)∈edges

G
assumes parity-assms: even (degree v G) odd (degree v ′ G)
shows num-of-odd-nodes(del-unEdge v w v ′ G)=num-of-odd-nodes G

proof −
interpret G : valid-unMultigraph by fact
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have odd-v:v∈odd-nodes-set(del-unEdge v w v ′ G)
by (metis G.del-UnEdge-even assms(2 ) assms(4 ) parity-assms(1 ))

have not-odd-v ′:v ′/∈odd-nodes-set(del-unEdge v w v ′ G)
by (metis G.del-UnEdge-even ′ assms(2 ) assms(4 ) parity-assms(2 ))

have odd-nodes-set(del-unEdge v w v ′ G) ∪ {v ′} ⊆odd-nodes-set G ∪ {v}
proof

fix x
assume x-prems: x ∈ odd-nodes-set (del-unEdge v w v ′ G) ∪ {v ′}
have x=v ′ =⇒x∈odd-nodes-set G ∪ {v}

using parity-assms
by (metis (lifting) G.E-validD(2 ) Un-def assms(4 ) mem-Collect-eq odd-nodes-set-def

)
moreover have x=v =⇒ x∈odd-nodes-set G ∪ {v}

by (metis insertI1 insert-is-Un sup-commute)
moreover have x /∈{v,v ′} =⇒ x ∈ odd-nodes-set (del-unEdge v w v ′ G)

using x-prems by auto
hence x /∈{v,v ′} =⇒ x ∈ odd-nodes-set G unfolding odd-nodes-set-def

using G.degree-frame ‹finite (edges G)› by auto
hence x /∈{v,v ′} =⇒ x∈odd-nodes-set G ∪ {v} by simp
ultimately show x ∈ odd-nodes-set G ∪ {v} by auto

qed
moreover have odd-nodes-set G ∪ {v} ⊆ odd-nodes-set(del-unEdge v w v ′ G) ∪
{v ′}

proof
fix x
assume x-prems: x ∈ odd-nodes-set G ∪ {v}
have x=v =⇒ x ∈ odd-nodes-set (del-unEdge v w v ′ G) ∪ {v ′}

by (metis UnI1 odd-v)
moreover have x=v ′ =⇒ x ∈ odd-nodes-set (del-unEdge v w v ′ G) ∪ {v ′}

by auto
moreover have x /∈{v,v ′} =⇒ x ∈ odd-nodes-set G ∪ {v} using x-prems by

auto
hence x /∈{v,v ′} =⇒ x∈odd-nodes-set (del-unEdge v w v ′ G) unfolding

odd-nodes-set-def
using G.degree-frame ‹finite (edges G)› by auto

hence x /∈{v,v ′} =⇒ x ∈ odd-nodes-set (del-unEdge v w v ′ G) ∪ {v ′} by simp
ultimately show x ∈ odd-nodes-set (del-unEdge v w v ′ G) ∪ {v ′} by auto

qed
ultimately have odd-nodes-set(del-unEdge v w v ′ G) ∪ {v ′} = odd-nodes-set G
∪ {v}

by auto
moreover have odd-nodes-set G ∩ {v} = {}

using parity-assms unfolding odd-nodes-set-def by auto
moreover have odd-nodes-set(del-unEdge v w v ′ G) ∩ {v ′}={}

by (metis Int-insert-left-if0 inf-bot-left inf-commute not-odd-v ′)
moreover have finite (odd-nodes-set(del-unEdge v w v ′ G))

using ‹finite (nodes G)› by auto
moreover have finite (odd-nodes-set G) using ‹finite (nodes G)› by auto
ultimately have card(odd-nodes-set G) + card {v} =
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card(odd-nodes-set(del-unEdge v w v ′ G)) + card {v ′}
using card-Un-disjoint[of odd-nodes-set (del-unEdge v w v ′ G) {v ′}]

card-Un-disjoint[of odd-nodes-set G {v}]
by auto

thus ?thesis unfolding num-of-odd-nodes-def by simp
qed

lemma del-UnEdge-odd-even:
assumes valid-unMultigraph G finite(edges G) finite(nodes G) (v, w, v ′)∈edges

G
assumes parity-assms: odd (degree v G) even (degree v ′ G)
shows num-of-odd-nodes(del-unEdge v w v ′ G)=num-of-odd-nodes G

by (metis assms del-UnEdge-even-odd delete-edge-sym parity-assms valid-unMultigraph.corres)

lemma del-UnEdge-odd-odd:
assumes valid-unMultigraph G finite(edges G) finite(nodes G) (v, w, v ′)∈edges

G
assumes parity-assms: odd (degree v G) odd (degree v ′ G)
shows num-of-odd-nodes G=num-of-odd-nodes(del-unEdge v w v ′ G)+2

proof −
interpret G:valid-unMultigraph by fact
have v /∈odd-nodes-set(del-unEdge v w v ′ G)

by (metis G.del-UnEdge-even assms(2 ) assms(4 ) parity-assms(1 ))
moreover have v ′/∈odd-nodes-set(del-unEdge v w v ′ G)

by (metis G.del-UnEdge-even ′ assms(2 ) assms(4 ) parity-assms(2 ))
ultimately have vv ′-disjoint: {v,v ′} ∩ odd-nodes-set(del-unEdge v w v ′ G) = {}

by (metis (full-types) Int-insert-left-if0 inf-bot-left)
moreover have extra-odd-nodes:{v,v ′} ⊆ odd-nodes-set( G)

unfolding odd-nodes-set-def
using ‹(v,w,v ′)∈edges G›
by (metis (lifting) G.E-validD empty-subsetI insert-subset mem-Collect-eq par-

ity-assms)
moreover have odd-nodes-set G −{v,v ′}⊆odd-nodes-set (del-unEdge v w v ′ G)

proof
fix x
assume x-odd-set: x ∈ odd-nodes-set G − {v, v ′}
hence degree x G = degree x (del-unEdge v w v ′ G)

by (metis Diff-iff G.degree-frame assms(2 ))
hence odd(degree x (del-unEdge v w v ′ G)) using x-odd-set

unfolding odd-nodes-set-def by auto
moreover have x ∈ nodes (del-unEdge v w v ′ G)

using x-odd-set unfolding odd-nodes-set-def by auto
ultimately show x ∈ odd-nodes-set (del-unEdge v w v ′ G)

unfolding odd-nodes-set-def by auto
qed

moreover have odd-nodes-set (del-unEdge v w v ′ G) ⊆ odd-nodes-set G
proof
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fix x
assume x-odd-set: x ∈ odd-nodes-set (del-unEdge v w v ′ G)
hence x /∈{v,v ′} =⇒ odd(degree x G)

using assms G.degree-frame unfolding odd-nodes-set-def
by auto

hence x /∈{v,v ′} =⇒ x∈odd-nodes-set G
using x-odd-set del-UnEdge-node unfolding odd-nodes-set-def
by auto

moreover have x∈{v,v ′} =⇒ x∈odd-nodes-set G
using extra-odd-nodes by auto

ultimately show x ∈ odd-nodes-set G by auto
qed

ultimately have odd-nodes-set G=odd-nodes-set (del-unEdge v w v ′ G) ∪ {v,v ′}

by auto
thus ?thesis

proof −
assume odd-nodes-set G=odd-nodes-set (del-unEdge v w v ′ G) ∪ {v,v ′}
moreover have odd-nodes-set (del-unEdge v w v ′ G) ∩ {v,v ′} = {}

using vv ′-disjoint by auto
moreover have finite(odd-nodes-set (del-unEdge v w v ′ G))

using assms del-UnEdge-node finite-subset unfolding odd-nodes-set-def
by auto

moreover have finite {v,v ′} by auto
ultimately have card(odd-nodes-set G)

= card(odd-nodes-set (del-unEdge v w v ′ G)) + card{v,v ′}
unfolding num-of-odd-nodes-def
using card-Un-disjoint
by metis

moreover have v 6=v ′ using G.no-id ‹(v,w,v ′)∈edges G› by auto
hence card{v,v ′}=2 by simp
ultimately show ?thesis unfolding num-of-odd-nodes-def by simp

qed
qed

lemma (in valid-unMultigraph) rem-UnPath-parity-v ′:
assumes finite E is-trail v ps v ′

shows v 6=v ′←→ (odd (degree v ′ (rem-unPath ps G)) = even(degree v ′ G)) using
assms
proof (induct ps arbitrary:v)

case Nil
thus ?case by (metis is-trail.simps(1 ) rem-unPath.simps(1 ))

next
case (Cons x xs) print-cases
obtain x1 x2 x3 where x: x=(x1 ,x2 ,x3 ) by (metis prod-cases3 )
hence rem-x:odd (degree v ′ (rem-unPath (x#xs) G)) = odd(degree v ′ (del-unEdge

x1 x2 x3 (rem-unPath xs G)))
by (metis rem-unPath.simps(2 ) rem-unPath-com)

have x3=v ′ =⇒ ?case
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proof (cases v=v ′)
case True
assume x3=v ′

have x1=v ′ using x by (metis Cons.prems(2 ) True is-trail.simps(2 ))
thus ?thesis using ‹x3=v ′› by (metis Cons.prems(2 ) is-trail.simps(2 ) no-id

x)
next

case False
assume x3=v ′

have odd (degree v ′ (rem-unPath (x # xs) G)) =odd(degree v ′ (
del-unEdge x1 x2 x3 (rem-unPath xs G))) using rem-x .

also have ...=odd(degree v ′ (rem-unPath xs G) − 1 )
proof −

have finite (edges (rem-unPath xs G))
by (metis (full-types) assms(1 ) finite-Diff rem-unPath-edges)

moreover have (x1 ,x2 ,x3 ) ∈edges( rem-unPath xs G)
by (metis Cons.prems(2 ) distinct-elim is-trail.simps(2 ) x)

moreover have (x3 ,x2 ,x1 ) ∈edges( rem-unPath xs G)
by (metis Cons.prems(2 ) corres distinct-elim-rev is-trail.simps(2 ) x)

ultimately show ?thesis
by (metis ‹x3 = v ′› del-edge-undirected-degree-minus delete-edge-sym x)

qed
also have ...=even(degree v ′ (rem-unPath xs G))

proof −
have (x1 ,x2 ,x3 )∈E by (metis Cons.prems(2 ) is-trail.simps(2 ) x)
hence (x3 ,x2 ,x1 )∈edges (rem-unPath xs G)

by (metis Cons.prems(2 ) corres distinct-elim-rev x)
hence (x3 ,x2 ,x1 )∈{e ∈ edges (rem-unPath xs G). fst e = v ′}

using ‹x3=v ′› by (metis (mono-tags) fst-conv mem-Collect-eq)
moreover have finite {e ∈ edges (rem-unPath xs G). fst e = v ′}

using ‹finite E› by auto
ultimately have degree v ′ (rem-unPath xs G)6=0

unfolding degree-def by auto
thus ?thesis by auto

qed
also have ...=even (degree v ′ G)

using ‹x3 = v ′› assms
by (metis (mono-tags) Cons.hyps Cons.prems(2 ) is-trail.simps(2 ) x)

finally have odd (degree v ′ (rem-unPath (x # xs) G))=even (degree v ′ G) .
thus ?thesis by (metis False)

qed
moreover have x3 6=v ′=⇒?case

proof (cases v=v ′)
case True
assume x3 6=v ′

have odd (degree v ′ (rem-unPath (x # xs) G)) =odd(degree v ′ (
del-unEdge x1 x2 x3 (rem-unPath xs G))) using rem-x .

also have ...=odd(degree v ′ (rem-unPath xs G) − 1 )
proof −
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have finite (edges (rem-unPath xs G))
by (metis (full-types) assms(1 ) finite-Diff rem-unPath-edges)

moreover have (x1 ,x2 ,x3 ) ∈edges( rem-unPath xs G)
by (metis Cons.prems(2 ) distinct-elim is-trail.simps(2 ) x)

moreover have (x3 ,x2 ,x1 ) ∈edges( rem-unPath xs G)
by (metis Cons.prems(2 ) corres distinct-elim-rev is-trail.simps(2 ) x)

ultimately show ?thesis
using True x

by (metis Cons.prems(2 ) del-edge-undirected-degree-minus is-trail.simps(2 ))
qed

also have ...=even(degree v ′ (rem-unPath xs G))
proof −

have (x1 ,x2 ,x3 )∈E by (metis Cons.prems(2 ) is-trail.simps(2 ) x)
hence (x1 ,x2 ,x3 )∈edges (rem-unPath xs G)

by (metis Cons.prems(2 ) distinct-elim x)
hence (x1 ,x2 ,x3 )∈{e ∈ edges (rem-unPath xs G). fst e = v ′}

using ‹v=v ′› x Cons
by (metis (lifting, mono-tags) fst-conv is-trail.simps(2 ) mem-Collect-eq)

moreover have finite {e ∈ edges (rem-unPath xs G). fst e = v ′}
using ‹finite E› by auto

ultimately have degree v ′ (rem-unPath xs G)6=0
unfolding degree-def by auto

thus ?thesis by auto
qed

also have ...6=even (degree v ′ G)
using ‹x3 6= v ′› assms
by (metis Cons.hyps Cons.prems(2 )is-trail.simps(2 ) x)

finally have odd (degree v ′ (rem-unPath (x # xs) G))6=even (degree v ′ G) .
thus ?thesis by (metis True)

next
case False
assume x3 6=v ′

have odd (degree v ′ (rem-unPath (x # xs) G)) =odd(degree v ′ (
del-unEdge x1 x2 x3 (rem-unPath xs G))) using rem-x .

also have ...=odd(degree v ′ (rem-unPath xs G))
proof −

have v=x1 by (metis Cons.prems(2 ) is-trail.simps(2 ) x)
hence v ′/∈{x1 ,x3} by (metis (mono-tags) False ‹x3 6= v ′› empty-iff

insert-iff )
moreover have valid-unMultigraph (rem-unPath xs G)

using valid-unMultigraph-axioms by auto
moreover have finite (edges (rem-unPath xs G))

by (metis (full-types) assms(1 ) finite-Diff rem-unPath-edges)
ultimately have degree v ′ (del-unEdge x1 x2 x3 (rem-unPath xs G))

=degree v ′ (rem-unPath xs G) using degree-frame
by (metis valid-unMultigraph.degree-frame)

thus ?thesis by simp
qed

also have ...=even (degree v ′ G)
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using assms x ‹x3 6= v ′›
by (metis Cons.hyps Cons.prems(2 ) is-trail.simps(2 ))

finally have odd (degree v ′ (rem-unPath (x # xs) G))=even (degree v ′ G) .
thus ?thesis by (metis False)

qed
ultimately show ?case by auto

qed

lemma (in valid-unMultigraph) rem-UnPath-parity-v:
assumes finite E is-trail v ps v ′

shows v 6=v ′←→ (odd (degree v (rem-unPath ps G)) = even(degree v G))
by (metis assms is-trail-rev rem-UnPath-parity-v ′ rem-unPath-graph)

lemma (in valid-unMultigraph) rem-UnPath-parity-others:
assumes finite E is-trail v ps v ′ n /∈{v,v ′}
shows even (degree n (rem-unPath ps G)) = even(degree n G) using assms

proof (induct ps arbitrary: v)
case Nil
thus ?case by auto

next
case (Cons x xs)
obtain x1 x2 x3 where x:x=(x1 ,x2 ,x3 ) by (metis prod-cases3 )
hence even (degree n (rem-unPath (x#xs) G))= even (degree n (

del-unEdge x1 x2 x3 (rem-unPath xs G)))
by (metis rem-unPath.simps(2 ) rem-unPath-com)

have n=x3 =⇒?case
proof −

assume n=x3
have even (degree n (rem-unPath (x#xs) G))= even (degree n (

del-unEdge x1 x2 x3 (rem-unPath xs G)))
by (metis rem-unPath.simps(2 ) rem-unPath-com x)

also have ...=even(degree n (rem-unPath xs G) − 1 )
proof −

have finite (edges (rem-unPath xs G))
by (metis (full-types) assms(1 ) finite-Diff rem-unPath-edges)

moreover have (x1 ,x2 ,x3 ) ∈edges( rem-unPath xs G)
by (metis Cons.prems(2 ) distinct-elim is-trail.simps(2 ) x)

moreover have (x3 ,x2 ,x1 ) ∈edges( rem-unPath xs G)
by (metis Cons.prems(2 ) corres distinct-elim-rev is-trail.simps(2 ) x)

ultimately show ?thesis
using ‹n = x3 › del-edge-undirected-degree-minus ′

by auto
qed

also have ...=odd(degree n (rem-unPath xs G))
proof −

have (x1 ,x2 ,x3 )∈E by (metis Cons.prems(2 ) is-trail.simps(2 ) x)
hence (x3 ,x2 ,x1 )∈edges (rem-unPath xs G)

by (metis Cons.prems(2 ) corres distinct-elim-rev x)
hence (x3 ,x2 ,x1 )∈{e ∈ edges (rem-unPath xs G). fst e = n}
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using ‹n=x3 › by (metis (mono-tags) fst-conv mem-Collect-eq)
moreover have finite {e ∈ edges (rem-unPath xs G). fst e = n}

using ‹finite E› by auto
ultimately have degree n (rem-unPath xs G) 6=0

unfolding degree-def by auto
thus ?thesis by auto

qed
also have ...=even(degree n G)

proof −
have x3 6=v ′ by (metis ‹n = x3 › assms(3 ) insert-iff )
hence odd (degree x3 (rem-unPath xs G)) = even(degree x3 G)

using Cons assms
by (metis is-trail.simps(2 ) rem-UnPath-parity-v x)

thus ?thesis using ‹n=x3 › by auto
qed

finally have even (degree n (rem-unPath (x#xs) G))=even(degree n G) .
thus ?thesis .

qed
moreover have n 6=x3 =⇒?case

proof −
assume n 6=x3
have even (degree n (rem-unPath (x#xs) G))= even (degree n (

del-unEdge x1 x2 x3 (rem-unPath xs G)))
by (metis rem-unPath.simps(2 ) rem-unPath-com x)

also have ...=even(degree n (rem-unPath xs G))
proof −

have v=x1 by (metis Cons.prems(2 ) is-trail.simps(2 ) x)
hence n /∈{x1 ,x3} by (metis Cons.prems(3 ) ‹n 6= x3 › insertE insertI1

singletonE)
moreover have valid-unMultigraph (rem-unPath xs G)

using valid-unMultigraph-axioms by auto
moreover have finite (edges (rem-unPath xs G))

by (metis (full-types) assms(1 ) finite-Diff rem-unPath-edges)
ultimately have degree n (del-unEdge x1 x2 x3 (rem-unPath xs G))

=degree n (rem-unPath xs G) using degree-frame
by (metis valid-unMultigraph.degree-frame)

thus ?thesis by simp
qed

also have ...=even(degree n G)
using Cons assms ‹n 6= x3 › x by auto

finally have even (degree n (rem-unPath (x#xs) G))=even(degree n G) .
thus ?thesis .

qed
ultimately show ?case by auto

qed

lemma (in valid-unMultigraph) rem-UnPath-even:
assumes finite E finite V is-trail v ps v ′

assumes parity-assms: even (degree v ′ G)
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shows num-of-odd-nodes (rem-unPath ps G) = num-of-odd-nodes G
+ (if even (degree v G)∧ v 6=v ′ then 2 else 0 ) using assms

proof (induct ps arbitrary:v)
case Nil
thus ?case by auto

next
case (Cons x xs)
obtain x1 x2 x3 where x:x=(x1 ,x2 ,x3 ) by (metis prod-cases3 )
have fin-nodes: finite (nodes (rem-unPath xs G)) using Cons by auto
have fin-edges: finite (edges (rem-unPath xs G)) using Cons by auto
have valid-rem-xs: valid-unMultigraph (rem-unPath xs G) using valid-unMultigraph-axioms

by auto
have x-in:(x1 ,x2 ,x3 )∈edges (rem-unPath xs G)

by (metis (full-types) Cons.prems(3 ) distinct-elim is-trail.simps(2 ) x)
have even (degree x1 (rem-unPath xs G))

=⇒ even(degree x3 (rem-unPath xs G)) =⇒ ?case
proof −

assume parity-x1-x3 : even (degree x1 (rem-unPath xs G))
even(degree x3 (rem-unPath xs G))

have num-of-odd-nodes (rem-unPath (x#xs) G)= num-of-odd-nodes
(del-unEdge x1 x2 x3 (rem-unPath xs G))

by (metis rem-unPath.simps(2 ) rem-unPath-com x)
also have ... =num-of-odd-nodes (rem-unPath xs G)+2
using parity-x1-x3 fin-nodes fin-edges valid-rem-xs x-in del-UnEdge-even-even

by metis
also have ...=num-of-odd-nodes G+(if even(degree x3 G) ∧ x3 6=v ′ then 2 else

0 )+2
using Cons.hyps[OF ‹finite E› ‹finite V ›, of x3 ] ‹is-trail v (x # xs) v ′›

‹even (degree v ′ G)› x
by auto

also have ...=num-of-odd-nodes G+2
proof −
have even(degree x3 G) ∧ x3 6=v ′←→ odd (degree x3 (rem-unPath xs G))

using Cons.prems assms
by (metis is-trail.simps(2 ) parity-x1-x3 (2 ) rem-UnPath-parity-v x)

thus ?thesis using parity-x1-x3 (2 ) by auto
qed

also have ...=num-of-odd-nodes G+(if even(degree v G) ∧ v 6=v ′ then 2 else
0 )

proof −
have x1 6=x3 by (metis valid-rem-xs valid-unMultigraph.no-id x-in)
moreover hence x1 6=v ′

using Cons assms
by (metis is-trail.simps(2 ) parity-x1-x3 (1 ) rem-UnPath-parity-v ′ x)

ultimately have x1 /∈{x3 ,v ′} by auto
hence even(degree x1 G)

using Cons.prems(3 ) assms(1 ) assms(2 ) parity-x1-x3 (1 )
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by (metis (full-types) is-trail.simps(2 ) rem-UnPath-parity-others x)
hence even(degree x1 G) ∧ x1 6=v ′ using ‹x1 6= v ′› by auto

hence even(degree v G) ∧ v 6=v ′ by (metis Cons.prems(3 ) is-trail.simps(2 )
x)

thus ?thesis by auto
qed

finally have num-of-odd-nodes (rem-unPath (x#xs) G)=
num-of-odd-nodes G+(if even(degree v G) ∧ v 6=v ′ then 2 else

0 ) .
thus ?thesis .

qed
moreover have even (degree x1 (rem-unPath xs G)) =⇒

odd(degree x3 (rem-unPath xs G)) =⇒ ?case
proof −

assume parity-x1-x3 : even (degree x1 (rem-unPath xs G))
odd (degree x3 (rem-unPath xs G))

have num-of-odd-nodes (rem-unPath (x#xs) G)= num-of-odd-nodes
(del-unEdge x1 x2 x3 (rem-unPath xs G))

by (metis rem-unPath.simps(2 ) rem-unPath-com x)
also have ... =num-of-odd-nodes (rem-unPath xs G)

using parity-x1-x3 fin-nodes fin-edges valid-rem-xs x-in
by (metis del-UnEdge-even-odd)

also have ...=num-of-odd-nodes G+(if even(degree x3 G) ∧ x3 6=v ′ then 2 else
0 )

using Cons.hyps Cons.prems(3 ) assms(1 ) assms(2 ) parity-assms x
by auto

also have ...=num-of-odd-nodes G+2
proof −
have even(degree x3 G) ∧ x3 6=v ′←→ odd (degree x3 (rem-unPath xs G))

using Cons.prems assms
by (metis is-trail.simps(2 ) parity-x1-x3 (2 ) rem-UnPath-parity-v x)

thus ?thesis using parity-x1-x3 (2 ) by auto
qed

also have ...=num-of-odd-nodes G+(if even(degree v G) ∧ v 6=v ′ then 2 else
0 )

proof −
have x1 6=x3 by (metis valid-rem-xs valid-unMultigraph.no-id x-in)
moreover hence x1 6=v ′

using Cons assms
by (metis is-trail.simps(2 ) parity-x1-x3 (1 ) rem-UnPath-parity-v ′ x)

ultimately have x1 /∈{x3 ,v ′} by auto
hence even(degree x1 G)

using Cons.prems(3 ) assms(1 ) assms(2 ) parity-x1-x3 (1 )
by (metis (full-types) is-trail.simps(2 ) rem-UnPath-parity-others x)

hence even(degree x1 G) ∧ x1 6=v ′ using ‹x1 6= v ′› by auto
hence even(degree v G) ∧ v 6=v ′ by (metis Cons.prems(3 ) is-trail.simps(2 )

x)
thus ?thesis by auto

qed
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finally have num-of-odd-nodes (rem-unPath (x#xs) G)=
num-of-odd-nodes G+(if even(degree v G) ∧ v 6=v ′ then 2 else

0 ) .
thus ?thesis .

qed
moreover have odd (degree x1 (rem-unPath xs G)) =⇒

even(degree x3 (rem-unPath xs G)) =⇒ ?case
proof −

assume parity-x1-x3 : odd (degree x1 (rem-unPath xs G))
even (degree x3 (rem-unPath xs G))

have num-of-odd-nodes (rem-unPath (x#xs) G)= num-of-odd-nodes
(del-unEdge x1 x2 x3 (rem-unPath xs G))

by (metis rem-unPath.simps(2 ) rem-unPath-com x)
also have ... =num-of-odd-nodes (rem-unPath xs G)

using parity-x1-x3 fin-nodes fin-edges valid-rem-xs x-in
by (metis del-UnEdge-odd-even)

also have ...=num-of-odd-nodes G+(if even(degree x3 G) ∧ x3 6=v ′ then 2 else
0 )

using Cons.hyps Cons.prems(3 ) assms(1 ) assms(2 ) parity-assms x
by auto

also have ...=num-of-odd-nodes G
proof −
have even(degree x3 G) ∧ x3 6=v ′←→ odd (degree x3 (rem-unPath xs G))

using Cons.prems assms
by (metis is-trail.simps(2 ) parity-x1-x3 (2 ) rem-UnPath-parity-v x)

thus ?thesis using parity-x1-x3 (2 ) by auto
qed

also have ...=num-of-odd-nodes G+(if even(degree v G) ∧ v 6=v ′ then 2 else
0 )

proof (cases v 6=v ′)
case True
have x1 6=x3 by (metis valid-rem-xs valid-unMultigraph.no-id x-in)
moreover have is-trail x3 xs v ′

by (metis Cons.prems(3 ) is-trail.simps(2 ) x)
ultimately have odd (degree x1 (rem-unPath xs G))

←→ odd(degree x1 G)
using True parity-x1-x3 (1 ) rem-UnPath-parity-others x Cons.prems(3 )

assms(1 ) assms(2 )
by auto

hence odd(degree x1 G) by (metis parity-x1-x3 (1 ))
thus ?thesis

by (metis (mono-tags) Cons.prems(3 ) Nat.add-0-right is-trail.simps(2 )
x)

next
case False
then show ?thesis by auto

qed
finally have num-of-odd-nodes (rem-unPath (x#xs) G)=

num-of-odd-nodes G+(if even(degree v G) ∧ v 6=v ′ then 2 else
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0 ) .
thus ?thesis .

qed
moreover have odd (degree x1 (rem-unPath xs G)) =⇒

odd(degree x3 (rem-unPath xs G)) =⇒ ?case
proof −

assume parity-x1-x3 : odd (degree x1 (rem-unPath xs G))
odd (degree x3 (rem-unPath xs G))

have num-of-odd-nodes (rem-unPath (x#xs) G)= num-of-odd-nodes
(del-unEdge x1 x2 x3 (rem-unPath xs G))

by (metis rem-unPath.simps(2 ) rem-unPath-com x)
also have ... =num-of-odd-nodes (rem-unPath xs G)−(2 ::nat)

using del-UnEdge-odd-odd
by (metis add-implies-diff fin-edges fin-nodes parity-x1-x3 valid-rem-xs x-in)

also have ...=num-of-odd-nodes G+(if even(degree x3 G) ∧ x3 6=v ′ then 2 else
0 )−(2 ::nat)

using Cons assms
by (metis is-trail.simps(2 ) x)

also have ...=num-of-odd-nodes G
proof −
have even(degree x3 G) ∧ x3 6=v ′←→ odd (degree x3 (rem-unPath xs G))

using Cons.prems assms
by (metis is-trail.simps(2 ) parity-x1-x3 (2 ) rem-UnPath-parity-v x)

thus ?thesis using parity-x1-x3 (2 ) by auto
qed

also have ...=num-of-odd-nodes G+(if even(degree v G) ∧ v 6=v ′ then 2 else
0 )

proof (cases v 6=v ′)
case True
have x1 6=x3 by (metis valid-rem-xs valid-unMultigraph.no-id x-in)
moreover have is-trail x3 xs v ′

by (metis Cons.prems(3 ) is-trail.simps(2 ) x)
ultimately have odd (degree x1 (rem-unPath xs G))

←→ odd(degree x1 G)
using True Cons.prems(3 ) assms(1 ) assms(2 ) parity-x1-x3 (1 ) rem-UnPath-parity-others

x
by auto

hence odd(degree x1 G) by (metis parity-x1-x3 (1 ))
thus ?thesis

by (metis (mono-tags) Cons.prems(3 ) Nat.add-0-right is-trail.simps(2 )
x)

next
case False
thus ?thesis by (metis (mono-tags) add-0-iff )

qed
finally have num-of-odd-nodes (rem-unPath (x#xs) G)=

num-of-odd-nodes G+(if even(degree v G) ∧ v 6=v ′ then 2 else
0 ) .
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thus ?thesis .
qed

ultimately show ?case by metis
qed

lemma (in valid-unMultigraph) rem-UnPath-odd:
assumes finite E finite V is-trail v ps v ′

assumes parity-assms: odd (degree v ′ G)
shows num-of-odd-nodes (rem-unPath ps G) = num-of-odd-nodes G

+ (if odd (degree v G)∧ v 6=v ′ then −2 else 0 ) using assms
proof (induct ps arbitrary:v)

case Nil
thus ?case by auto

next
case (Cons x xs)
obtain x1 x2 x3 where x:x=(x1 ,x2 ,x3 ) by (metis prod-cases3 )
have fin-nodes: finite (nodes (rem-unPath xs G)) using Cons by auto
have fin-edges: finite (edges (rem-unPath xs G)) using Cons by auto
have valid-rem-xs: valid-unMultigraph (rem-unPath xs G) using valid-unMultigraph-axioms

by auto
have x-in:(x1 ,x2 ,x3 )∈edges (rem-unPath xs G)

by (metis (full-types) Cons.prems(3 ) distinct-elim is-trail.simps(2 ) x)
have even (degree x1 (rem-unPath xs G))

=⇒ even(degree x3 (rem-unPath xs G)) =⇒ ?case
proof −

assume parity-x1-x3 : even (degree x1 (rem-unPath xs G))
even (degree x3 (rem-unPath xs G))

have num-of-odd-nodes (rem-unPath (x#xs) G)= num-of-odd-nodes
(del-unEdge x1 x2 x3 (rem-unPath xs G))

by (metis rem-unPath.simps(2 ) rem-unPath-com x)
also have ... =num-of-odd-nodes (rem-unPath xs G)+2
using parity-x1-x3 fin-nodes fin-edges valid-rem-xs x-in del-UnEdge-even-even

by metis
also have ...=num-of-odd-nodes G+(if odd(degree x3 G) ∧ x3 6=v ′ then − 2

else 0 )+2
using Cons.hyps[OF ‹finite E› ‹finite V ›,of x3 ] ‹is-trail v (x # xs) v ′›

‹odd (degree v ′ G)› x
by auto

also have ...=num-of-odd-nodes G
proof −
have odd (degree x3 G) ∧ x3 6=v ′←→ even (degree x3 (rem-unPath xs G))

using Cons.prems assms
by (metis is-trail.simps(2 ) parity-x1-x3 (2 ) rem-UnPath-parity-v x)

thus ?thesis using parity-x1-x3 (2 ) by auto
qed

also have ...=num-of-odd-nodes G+(if odd(degree v G) ∧ v 6=v ′ then −2 else
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0 )
proof (cases v 6=v ′)
case True
have x1 6=x3 by (metis valid-rem-xs valid-unMultigraph.no-id x-in)
moreover have is-trail x3 xs v ′

by (metis Cons.prems(3 ) is-trail.simps(2 ) x)
ultimately have even (degree x1 (rem-unPath xs G))

←→ even (degree x1 G)
using True Cons.prems(3 ) assms(1 ) assms(2 ) parity-x1-x3 (1 )

rem-UnPath-parity-others x
by auto

hence even (degree x1 G) by (metis parity-x1-x3 (1 ))
thus ?thesis

by (metis (opaque-lifting, mono-tags) Cons.prems(3 ) is-trail.simps(2 )
monoid-add-class.add.right-neutral x)

next
case False
then show ?thesis by auto

qed
finally have num-of-odd-nodes (rem-unPath (x#xs) G)=

num-of-odd-nodes G+(if odd(degree v G) ∧ v 6=v ′ then −2 else
0 ) .

thus ?thesis .
qed

moreover have even (degree x1 (rem-unPath xs G)) =⇒
odd(degree x3 (rem-unPath xs G)) =⇒ ?case

proof −
assume parity-x1-x3 : even (degree x1 (rem-unPath xs G))

odd (degree x3 (rem-unPath xs G))
have num-of-odd-nodes (rem-unPath (x#xs) G)= num-of-odd-nodes

(del-unEdge x1 x2 x3 (rem-unPath xs G))
by (metis rem-unPath.simps(2 ) rem-unPath-com x)

also have ... =num-of-odd-nodes (rem-unPath xs G)
using parity-x1-x3 fin-nodes fin-edges valid-rem-xs x-in
by (metis del-UnEdge-even-odd)

also have ...=num-of-odd-nodes G+(if odd(degree x3 G) ∧ x3 6=v ′ then − 2
else 0 )

using Cons.hyps[OF ‹finite E› ‹finite V ›, of x3 ] Cons.prems(3 ) assms(1 )
assms(2 )

parity-assms x
by auto

also have ...=num-of-odd-nodes G
proof −
have odd(degree x3 G) ∧ x3 6=v ′←→ even (degree x3 (rem-unPath xs G))

using Cons.prems assms
by (metis is-trail.simps(2 ) parity-x1-x3 (2 ) rem-UnPath-parity-v x)

thus ?thesis using parity-x1-x3 (2 ) by auto
qed

also have ...= num-of-odd-nodes G+(if odd(degree v G) ∧ v 6=v ′ then −2 else

26



0 )
proof (cases v 6=v ′)
case True
have x1 6=x3 by (metis valid-rem-xs valid-unMultigraph.no-id x-in)
moreover have is-trail x3 xs v ′

by (metis Cons.prems(3 ) is-trail.simps(2 ) x)
ultimately have even (degree x1 (rem-unPath xs G))

←→ even (degree x1 G)
using True Cons.prems(3 ) assms(1 ) assms(2 ) parity-x1-x3 (1 )

rem-UnPath-parity-others x
by auto

hence even (degree x1 G) by (metis parity-x1-x3 (1 ))
with Cons.prems(3 ) x show ?thesis by auto

next
case False
then show ?thesis by auto

qed
finally have num-of-odd-nodes (rem-unPath (x#xs) G)=

num-of-odd-nodes G+(if odd(degree v G) ∧ v 6=v ′ then −2 else
0 ) .

thus ?thesis .
qed

moreover have odd (degree x1 (rem-unPath xs G)) =⇒
even(degree x3 (rem-unPath xs G)) =⇒ ?case

proof −
assume parity-x1-x3 : odd (degree x1 (rem-unPath xs G))

even (degree x3 (rem-unPath xs G))
have num-of-odd-nodes (rem-unPath (x#xs) G)= num-of-odd-nodes

(del-unEdge x1 x2 x3 (rem-unPath xs G))
by (metis rem-unPath.simps(2 ) rem-unPath-com x)

also have ... =num-of-odd-nodes (rem-unPath xs G)
using parity-x1-x3 fin-nodes fin-edges valid-rem-xs x-in
by (metis del-UnEdge-odd-even)

also have ...=num-of-odd-nodes G+(if odd(degree x3 G) ∧ x3 6=v ′ then −2
else 0 )

using Cons.hyps Cons.prems(3 ) assms(1 ) assms(2 ) parity-assms x
by auto

also have ...=num-of-odd-nodes G + (− 2 )
proof −
have odd(degree x3 G) ∧ x3 6=v ′←→ even (degree x3 (rem-unPath xs G))

using Cons.prems assms
by (metis is-trail.simps(2 ) parity-x1-x3 (2 ) rem-UnPath-parity-v x)

hence odd(degree x3 G) ∧ x3 6=v ′ by (metis parity-x1-x3 (2 ))
thus ?thesis by auto

qed
also have ...=num-of-odd-nodes G+(if odd(degree v G) ∧ v 6=v ′ then −2 else

0 )
proof −
have x1 6=x3 by (metis valid-rem-xs valid-unMultigraph.no-id x-in)
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moreover hence x1 6=v ′

using Cons assms
by (metis is-trail.simps(2 ) parity-x1-x3 (1 ) rem-UnPath-parity-v ′ x)

ultimately have x1 /∈{x3 ,v ′} by auto
hence odd(degree x1 G)

using Cons.prems(3 ) assms(1 ) assms(2 ) parity-x1-x3 (1 )
by (metis (full-types) is-trail.simps(2 ) rem-UnPath-parity-others x)

hence odd(degree x1 G) ∧ x1 6=v ′ using ‹x1 6= v ′› by auto
hence odd(degree v G) ∧ v 6=v ′ by (metis Cons.prems(3 ) is-trail.simps(2 )

x)
thus ?thesis by auto

qed
finally have num-of-odd-nodes (rem-unPath (x#xs) G)=

num-of-odd-nodes G+(if odd(degree v G) ∧ v 6=v ′ then −2 else
0 ) .

thus ?thesis .
qed

moreover have odd (degree x1 (rem-unPath xs G)) =⇒
odd(degree x3 (rem-unPath xs G)) =⇒ ?case

proof −
assume parity-x1-x3 : odd (degree x1 (rem-unPath xs G))

odd (degree x3 (rem-unPath xs G))
have num-of-odd-nodes (rem-unPath (x#xs) G)= num-of-odd-nodes

(del-unEdge x1 x2 x3 (rem-unPath xs G))
by (metis rem-unPath.simps(2 ) rem-unPath-com x)

also have ... =num-of-odd-nodes (rem-unPath xs G)−(2 ::nat)
using del-UnEdge-odd-odd

by (metis add-implies-diff fin-edges fin-nodes parity-x1-x3 valid-rem-xs x-in)

also have ...=num-of-odd-nodes G −(2 ::nat)
proof −
have odd(degree x3 G) ∧ x3 6=v ′←→ even (degree x3 (rem-unPath xs G))

using Cons.prems assms
by (metis is-trail.simps(2 ) parity-x1-x3 (2 ) rem-UnPath-parity-v x)

hence ¬(odd(degree x3 G) ∧ x3 6=v ′) by (metis parity-x1-x3 (2 ))
have num-of-odd-nodes (rem-unPath xs G)=

num-of-odd-nodes G+(if odd(degree x3 G) ∧ x3 6=v ′ then −2 else 0 )
by (metis Cons.hyps Cons.prems(3 ) assms(1 ) assms(2 )

is-trail.simps(2 ) parity-assms x)
thus ?thesis

using ‹¬ (odd (degree x3 G) ∧ x3 6= v ′)› by auto
qed

also have ...=num-of-odd-nodes G+(if odd(degree v G) ∧ v 6=v ′ then −2 else
0 )

proof −
have x1 6=x3 by (metis valid-rem-xs valid-unMultigraph.no-id x-in)
moreover hence x1 6=v ′

using Cons assms
by (metis is-trail.simps(2 ) parity-x1-x3 (1 ) rem-UnPath-parity-v ′ x)
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ultimately have x1 /∈{x3 ,v ′} by auto
hence odd(degree x1 G)

using Cons.prems(3 ) assms(1 ) assms(2 ) parity-x1-x3 (1 )
by (metis (full-types) is-trail.simps(2 ) rem-UnPath-parity-others x)

hence odd(degree x1 G) ∧ x1 6=v ′ using ‹x1 6= v ′› by auto
hence odd(degree v G) ∧ v 6=v ′ by (metis Cons.prems(3 ) is-trail.simps(2 )

x)
hence v∈odd-nodes-set G

using Cons.prems(3 ) E-validD(1 ) x unfolding odd-nodes-set-def
by auto

moreover have v ′∈odd-nodes-set G
using is-path-memb[OF is-trail-intro[OF assms(3 )]] parity-assms
unfolding odd-nodes-set-def
by auto

ultimately have {v,v ′}⊆odd-nodes-set G by auto
moreover have v 6=v ′ by (metis ‹odd (degree v G) ∧ v 6= v ′›)
hence card{v,v ′}=2 by auto
moreover have finite(odd-nodes-set G)

using ‹finite V › unfolding odd-nodes-set-def
by auto

ultimately have num-of-odd-nodes G≥2 by (metis card-mono num-of-odd-nodes-def )

thus ?thesis using ‹odd (degree v G) ∧ v 6= v ′› by auto
qed

finally have num-of-odd-nodes (rem-unPath (x#xs) G)=
num-of-odd-nodes G+(if odd(degree v G) ∧ v 6=v ′ then −2 else

0 ) .
thus ?thesis .

qed
ultimately show ?case by metis

qed

lemma (in valid-unMultigraph) rem-UnPath-cycle:
assumes finite E finite V is-trail v ps v ′ v=v ′

shows num-of-odd-nodes (rem-unPath ps G) = num-of-odd-nodes G (is ?L=?R)
proof (cases even(degree v ′ G))

case True
hence ?L = num-of-odd-nodes G + (if even (degree v G)∧ v 6=v ′ then 2 else 0 )

by (metis assms(1 ) assms(2 ) assms(3 ) rem-UnPath-even)
with assms show ?thesis by auto

next
case False
hence ?L = num-of-odd-nodes G + (if odd (degree v G)∧ v 6=v ′ then −2 else 0 )

by (metis assms(1 ) assms(2 ) assms(3 ) rem-UnPath-odd)
thus ?thesis using ‹v = v ′› by auto

qed
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3 Connectivity
definition (in valid-unMultigraph) connected::bool where

connected ≡ ∀ v∈V . ∀ v ′∈V . v 6=v ′ −→ (∃ ps. is-path v ps v ′)

lemma (in valid-unMultigraph) connected =⇒ ∀ v∈V . ∀ v ′∈V . v 6=v ′−→(∃ ps. is-trail
v ps v ′)
proof (rule,rule,rule)

fix v v ′

assume v∈V v ′∈V v 6=v ′

assume connected
obtain ps where is-path v ps v ′ by (metis ‹connected› ‹v ∈ V › ‹v ′ ∈ V › ‹v 6=v ′›

connected-def )
then obtain ps ′ where is-trail v ps ′ v ′

proof (induct ps arbitrary:v )
case Nil
thus ?case by (metis is-trail.simps(1 ) is-path.simps(1 ))

next
case (Cons x xs)
obtain x1 x2 x3 where x:x=(x1 ,x2 ,x3 ) by (metis prod-cases3 )
have is-path x3 xs v ′ by (metis Cons.prems(2 ) is-path.simps(2 ) x)
moreover have

∧
ps ′. is-trail x3 ps ′ v ′ =⇒ thesis

proof −
fix ps ′

assume is-trail x3 ps ′ v ′

hence (x1 ,x2 ,x3 )/∈set ps ′ ∧ (x3 ,x2 ,x1 )/∈set ps ′ =⇒is-trail v (x#ps ′) v ′

by (metis Cons.prems(2 ) is-trail.simps(2 ) is-path.simps(2 ) x)
moreover have (x1 ,x2 ,x3 )∈set ps ′ =⇒ ∃ ps1 . is-trail v ps1 v ′

proof −
assume (x1 ,x2 ,x3 )∈set ps ′

then obtain ps1 ps2 where ps ′=ps1@(x1 ,x2 ,x3 )#ps2 by (metis
split-list)

hence is-trail v (x#ps2 ) v ′

using ‹is-trail x3 ps ′ v ′› x
by (metis Cons.prems(2 ) is-trail.simps(2 )

is-trail-split is-path.simps(2 ))
thus ?thesis by rule

qed
moreover have (x3 ,x2 ,x1 )∈set ps ′ =⇒ ∃ ps1 . is-trail v ps1 v ′

proof −
assume (x3 ,x2 ,x1 )∈set ps ′

then obtain ps1 ps2 where ps ′=ps1@(x3 ,x2 ,x1 )#ps2 by (metis
split-list)

hence is-trail v ps2 v ′

using ‹is-trail x3 ps ′ v ′› x
by (metis Cons.prems(2 ) is-trail.simps(2 )

is-trail-split is-path.simps(2 ))
thus ?thesis by rule

qed
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ultimately show thesis using Cons by auto
qed

ultimately show ?case using Cons by auto
qed

thus ∃ ps. is-trail v ps v ′ by rule
qed

lemma (in valid-unMultigraph) no-rep-length: is-trail v ps v ′=⇒length ps=card(set
ps)

by (induct ps arbitrary:v, auto)

lemma (in valid-unMultigraph) path-in-edges:is-trail v ps v ′ =⇒ set ps ⊆ E
proof (induct ps arbitrary:v)

case Nil
show ?case by auto

next
case (Cons x xs)
obtain x1 x2 x3 where x:x=(x1 ,x2 ,x3 ) by (metis prod-cases3 )
hence is-trail x3 xs v ′ using Cons by auto
hence set xs ⊆ E using Cons by auto
moreover have x∈E using Cons by (metis is-trail-intro is-path.simps(2 ) x)
ultimately show ?case by auto

qed

lemma (in valid-unMultigraph) trail-bound:
assumes finite E is-trail v ps v ′

shows length ps ≤card E
by (metis (opaque-lifting, no-types) assms(1 ) assms(2 ) card-mono no-rep-length
path-in-edges)

definition (in valid-unMultigraph) exist-path-length:: ′v ⇒ nat ⇒bool where
exist-path-length v l≡∃ v ′ ps. is-trail v ′ ps v ∧ length ps=l

lemma (in valid-unMultigraph) longest-path:
assumes finite E n ∈ V
shows ∃ v. ∃max-path. is-trail v max-path n ∧

(∀ v ′. ∀ e∈E . ¬is-trail v ′ (e#max-path) n)
proof (rule ccontr)

assume contro:¬ (∃ v max-path. is-trail v max-path n
∧ (∀ v ′. ∀ e∈E . ¬is-trail v ′ (e#max-path) n))

hence induct:(∀ v max-path. is-trail v max-path n
−→ (∃ v ′. ∃ e∈E . is-trail v ′ (e#max-path) n)) by auto

have is-trail n [] n using ‹n ∈ V › by auto
hence exist-path-length n 0 unfolding exist-path-length-def by auto
moreover have ∀ y. exist-path-length n y −→ y ≤ card E

using trail-bound[OF ‹finite E›] unfolding exist-path-length-def
by auto

hence bound:∀ y. exist-path-length n y −→ y ≤ card E by auto
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ultimately have exist-path-length n (GREATEST x. exist-path-length n x)
using GreatestI-nat by auto

then obtain v max-path where
max-path:is-trail v max-path n length max-path=(GREATEST x. exist-path-length

n x)
by (metis exist-path-length-def )

hence ∃ v ′ e. is-trail v ′ (e#max-path) n using induct by metis
hence exist-path-length n (length max-path +1 )

by (metis One-nat-def exist-path-length-def list.size(4 ))
hence length max-path + 1 ≤ (GREATEST x. exist-path-length n x)
by (metis Greatest-le-nat bound)

hence length max-path + 1 ≤ length max-path using max-path by auto
thus False by auto

qed

lemma even-card ′:
assumes even(card A) x∈A
shows ∃ y∈A. y 6=x

proof (rule ccontr)
assume ¬ (∃ y∈A. y 6= x)
hence ∀ y∈A. y=x by auto
hence A={x} by (metis all-not-in-conv assms(2 ) insertI2 mk-disjoint-insert)
hence card(A)=1 by auto
thus False using ‹even(card A)› by auto

qed

lemma odd-card:
assumes finite A odd(card A)
shows ∃ x. x∈A

by (metis all-not-in-conv assms(2 ) card.empty even-zero)

lemma (in valid-unMultigraph) extend-distinct-path:
assumes finite E is-trail v ′ ps v
assumes parity-assms:(even (degree v ′ G)∧v ′6=v)∨(odd (degree v ′ G)∧v ′=v)
shows ∃ e v1 . is-trail v1 (e#ps) v

proof −
have (even (degree v ′ G)∧v ′6=v) =⇒ odd(degree v ′ (rem-unPath ps G))

by (metis assms(1 ) assms(2 ) rem-UnPath-parity-v)
moreover have (odd (degree v ′ G)∧v ′=v) =⇒ odd(degree v ′ (rem-unPath ps

G))
by (metis assms(1 ) assms(2 ) rem-UnPath-parity-v ′)

ultimately have odd(degree v ′ (rem-unPath ps G)) using parity-assms by auto
hence odd (card {e. fst e=v ′ ∧ e∈edges G − (set ps ∪ set (rev-path ps))})

using rem-unPath-edges unfolding degree-def
by (metis (lifting, no-types) Collect-cong)

hence {e. fst e=v ′ ∧ e∈E − (set ps ∪ set (rev-path ps))}6={}
by (metis empty-iff finite.emptyI odd-card)

then obtain v0 w where v0w: (v ′,w,v0 )∈E (v ′,w,v0 )/∈set ps ∪ set (rev-path
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ps) by auto
hence is-trail v0 ((v0 ,w,v ′)#ps) v

by (metis (opaque-lifting, mono-tags) Un-iff assms(2 ) corres in-set-rev-path
is-trail.simps(2 ))

thus ?thesis by metis
qed

replace an edge (or its reverse in a path) by another path (in an undi-
rected graph)
fun replace-by-UnPath:: ( ′v, ′w) path ⇒ ′v × ′w × ′v ⇒ ( ′v, ′w) path ⇒ ( ′v, ′w) path
where

replace-by-UnPath [] - - = [] |
replace-by-UnPath (x#xs) (v,e,v ′) ps =
(if x=(v,e,v ′) then ps@replace-by-UnPath xs (v,e,v ′) ps
else if x=(v ′,e,v) then (rev-path ps)@replace-by-UnPath xs (v,e,v ′) ps
else x#replace-by-UnPath xs (v,e,v ′) ps)

lemma (in valid-unMultigraph) del-unEdge-connectivity:
assumes connected ∃ ps. valid-graph.is-path (del-unEdge v e v ′ G) v ps v ′

shows valid-unMultigraph.connected (del-unEdge v e v ′ G)
proof −

have valid-unMulti:valid-unMultigraph (del-unEdge v e v ′ G)
using valid-unMultigraph-axioms by simp

have valid-graph: valid-graph (del-unEdge v e v ′ G)
using valid-graph-axioms del-undirected by (metis delete-edge-valid)

obtain ex-path where ex-path:valid-graph.is-path (del-unEdge v e v ′ G) v ex-path
v ′

by (metis assms(2 ))
show ?thesis unfolding valid-unMultigraph.connected-def [OF valid-unMulti]
proof (rule,rule,rule)

fix n n ′

assume n : n ∈nodes (del-unEdge v e v ′ G)
assume n ′: n ′∈nodes (del-unEdge v e v ′ G)
assume n 6=n ′

obtain ps where ps:is-path n ps n ′

by (metis ‹n 6=n ′› n n ′ ‹connected› connected-def del-UnEdge-node)
hence valid-graph.is-path (del-unEdge v e v ′ G)

n (replace-by-UnPath ps (v,e,v ′) ex-path) n ′

proof (induct ps arbitrary:n)
case Nil

thus ?case by (metis is-path.simps(1 ) n ′ replace-by-UnPath.simps(1 )
valid-graph

valid-graph.is-path-simps(1 ))
next

case (Cons x xs)
obtain x1 x2 x3 where x:x=(x1 ,x2 ,x3 ) by (metis prod-cases3 )
have x=(v,e,v ′) =⇒ ?case

proof −
assume x=(v,e,v ′)
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hence valid-graph.is-path (del-unEdge v e v ′ G)
n (replace-by-UnPath (x#xs) (v,e,v ′) ex-path) n ′

= valid-graph.is-path (del-unEdge v e v ′ G)
n (ex-path@(replace-by-UnPath xs (v,e,v ′) ex-path)) n ′

by (metis replace-by-UnPath.simps(2 ))
also have ...=True
by (metis Cons.hyps Cons.prems ‹x = (v, e, v ′)› ex-path is-path.simps(2 )

valid-graph
valid-graph.is-path-split)

finally show ?thesis by simp
qed

moreover have x=(v ′,e,v) =⇒ ?case
proof −

assume x=(v ′,e,v)
hence valid-graph.is-path (del-unEdge v e v ′ G)

n (replace-by-UnPath (x#xs) (v,e,v ′) ex-path) n ′

= valid-graph.is-path (del-unEdge v e v ′ G)
n ((rev-path ex-path)@(replace-by-UnPath xs (v,e,v ′) ex-path)) n ′

by (metis Cons.prems is-path.simps(2 ) no-id replace-by-UnPath.simps(2 ))
also have ...=True

by (metis Cons.hyps Cons.prems ‹x = (v ′, e, v)› is-path.simps(2 )
ex-path valid-graph

valid-graph.is-path-split valid-unMulti valid-unMultigraph.is-path-rev)
finally show ?thesis by simp

qed
moreover have x 6=(v,e,v ′)∧x 6=(v ′,e,v)=⇒?case

by (metis Cons.hyps Cons.prems del-UnEdge-frame is-path.simps(2 )
replace-by-UnPath.simps(2 )

valid-graph valid-graph.is-path.simps(2 ) x)
ultimately show ?case by auto

qed
thus ∃ ps. valid-graph.is-path (del-unEdge v e v ′ G) n ps n ′ by auto

qed
qed

lemma (in valid-unMultigraph) path-between-odds:
assumes odd(degree v G) odd(degree v ′ G) finite E v 6=v ′ num-of-odd-nodes G=2
shows ∃ ps. is-trail v ps v ′

proof −
have v∈V
proof (rule ccontr)

assume v /∈V
hence ∀ e ∈ E . fst e 6= v by (metis E-valid(1 ) imageI subsetD)
hence degree v G=0 unfolding degree-def using ‹finite E›

by force
thus False using ‹odd(degree v G)› by auto

qed
have v ′∈V

proof (rule ccontr)
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assume v ′/∈V
hence ∀ e ∈ E . fst e 6= v ′ by (metis E-valid(1 ) imageI subsetD)
hence degree v ′ G=0 unfolding degree-def using ‹finite E›

by force
thus False using ‹odd(degree v ′ G)› by auto

qed
then obtain max-path v0 where max-path:

is-trail v0 max-path v ′

(∀n. ∀w∈E . ¬is-trail n (w#max-path) v ′)
using longest-path[of v ′] by (metis assms(3 ))

have even(degree v0 G)=⇒v0=v ′ =⇒ v0=v
by (metis assms(2 ))

moreover have even(degree v0 G)=⇒v0 6=v ′ =⇒ v0=v
proof −

assumeeven(degree v0 G) v0 6=v ′

hence ∃w v1 . is-trail
v1 (w#max-path) v ′

by (metis assms(3 ) extend-distinct-path max-path(1 ))
thus ?thesis by (metis (full-types) is-trail.simps(2 ) max-path(2 ) prod.exhaust)
qed

moreover have odd(degree v0 G)=⇒v0=v ′=⇒v0=v
proof −

assumeodd(degree v0 G) v0=v ′

hence ∃w v1 . is-trail v1 (w#max-path) v ′

by (metis assms(3 ) extend-distinct-path max-path(1 ))
thus ?thesis by (metis (full-types) List.set-simps(2 ) insert-subset max-path(2 )

path-in-edges)
qed

moreover have odd(degree v0 G)=⇒v0 6=v ′=⇒v0=v
proof (rule ccontr)

assume v0 6= v odd(degree v0 G) v0 6=v ′

moreover have v∈odd-nodes-set G
using ‹v ∈ V › ‹ odd (degree v G)› unfolding odd-nodes-set-def
by auto

moreover have v ′∈odd-nodes-set G
using ‹v ′ ∈ V › ‹odd (degree v ′ G)›
unfolding odd-nodes-set-def
by auto

ultimately have {v,v ′,v0} ⊆ odd-nodes-set G
using is-path-memb[OF is-trail-intro[OF ‹is-trail v0 max-path v ′›]]

max-path(1 )
unfolding odd-nodes-set-def
by auto

moreover have card {v,v ′,v0}=3 using ‹v0 6=v› ‹v 6=v ′› ‹v0 6=v ′› by auto
moreover have finite (odd-nodes-set G)
using assms(5 ) card-eq-0-iff [of odd-nodes-set G] unfolding num-of-odd-nodes-def

by auto
ultimately have 3≤card(odd-nodes-set G) by (metis card-mono)
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thus False using ‹num-of-odd-nodes G=2 › unfolding num-of-odd-nodes-def
by auto

qed
ultimately have v0=v by auto
thus ?thesis by (metis max-path(1 ))

qed

lemma (in valid-unMultigraph) del-unEdge-even-connectivity:
assumes finite E finite V connected ∀n∈V . even(degree n G) (v,e,v ′)∈E
shows valid-unMultigraph.connected (del-unEdge v e v ′ G)

proof −
have valid-unMulti:valid-unMultigraph (del-unEdge v e v ′ G)

using valid-unMultigraph-axioms by simp
have valid-graph: valid-graph (del-unEdge v e v ′ G)

using valid-graph-axioms del-undirected by (metis delete-edge-valid)
have fin-E ′: finite(edges (del-unEdge v e v ′ G))

by (metis (opaque-lifting, no-types) assms(1 ) del-undirected delete-edge-def
finite-Diff select-convs(2 ))

have fin-V ′: finite(nodes (del-unEdge v e v ′ G))
by (metis (mono-tags) assms(2 ) del-undirected delete-edge-def select-convs(1 ))

have all-even: ∀n∈nodes (del-unEdge v e v ′ G). n /∈{v,v ′}
−→even(degree n (del-unEdge v e v ′ G))

by (metis (full-types) assms(1 ) assms(4 ) degree-frame del-UnEdge-node)
have even (degree v G) by (metis (full-types) E-validD(1 ) assms(4 ) assms(5 ))
moreover have even (degree v ′ G) by (metis (full-types) E-validD(2 ) assms(4 )

assms(5 ))
moreover have num-of-odd-nodes G = 0

using ‹∀n∈V . even(degree n G)› ‹finite V ›
unfolding num-of-odd-nodes-def odd-nodes-set-def by auto

ultimately have num-of-odd-nodes (del-unEdge v e v ′ G) = 2
using del-UnEdge-even-even[of G v e v ′,OF valid-unMultigraph-axioms]
by (metis assms(1 ) assms(2 ) assms(5 ) monoid-add-class.add.left-neutral)

moreover have odd (degree v (del-unEdge v e v ′ G))
using ‹even (degree v G)› del-UnEdge-even[OF ‹(v,e,v ′)∈E› ‹finite E›]
unfolding odd-nodes-set-def
by auto

moreover have odd (degree v ′ (del-unEdge v e v ′ G))
using ‹even (degree v ′ G)› del-UnEdge-even ′[OF ‹(v,e,v ′)∈E› ‹finite E›]
unfolding odd-nodes-set-def
by auto

moreover have finite (edges (del-unEdge v e v ′ G))
using ‹finite E› by auto

moreover have v 6=v ′ using no-id ‹(v,e,v ′)∈E› by auto
ultimately have ∃ ps. valid-unMultigraph.is-trail (del-unEdge v e v ′ G) v ps v ′

using valid-unMultigraph.path-between-odds[OF valid-unMulti,of v v ′]
by auto

thus ?thesis
by (metis (full-types) assms(3 ) del-unEdge-connectivity valid-unMulti

valid-unMultigraph.is-trail-intro)
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qed

lemma (in valid-graph) path-end:ps 6=[] =⇒ is-path v ps v ′ =⇒ v ′=snd (snd(last
ps))

by (induct ps arbitrary:v,auto)

lemma (in valid-unMultigraph) connectivity-split:
assumes connected ¬valid-unMultigraph.connected (del-unEdge v w v ′ G)

(v,w,v ′)∈E
obtains G1 G2 where

nodes G1={n. ∃ ps. valid-graph.is-path (del-unEdge v w v ′ G) n ps v}
and edges G1={(n,e,n ′). (n,e,n ′)∈edges (del-unEdge v w v ′ G)
∧ n∈nodes G1 ∧ n ′∈nodes G1}

and nodes G2={n. ∃ ps. valid-graph.is-path (del-unEdge v w v ′ G) n ps v ′}
and edges G2={(n,e,n ′). (n,e,n ′)∈edges (del-unEdge v w v ′ G)
∧ n∈nodes G2 ∧ n ′∈nodes G2}

and edges G1 ∪ edges G2 = edges (del-unEdge v w v ′ G)
and edges G1 ∩ edges G2={}
and nodes G1 ∪ nodes G2=nodes (del-unEdge v w v ′ G)
and nodes G1 ∩ nodes G2={}
and valid-unMultigraph G1
and valid-unMultigraph G2
and valid-unMultigraph.connected G1
and valid-unMultigraph.connected G2

proof −
have valid0 :valid-graph (del-unEdge v w v ′ G) using valid-graph-axioms

by (metis del-undirected delete-edge-valid)
have valid0 ′:valid-unMultigraph (del-unEdge v w v ′ G) using valid-unMultigraph-axioms

by (metis del-unEdge-valid)
obtain G1-nodes where G1-nodes:G1-nodes=
{n. ∃ ps. valid-graph.is-path (del-unEdge v w v ′ G) n ps v}

by metis
then obtain G1 where G1 :G1=

(|nodes=G1-nodes, edges={(n,e,n ′). (n,e,n ′)∈edges (del-unEdge v w v ′ G)
∧ n∈G1-nodes ∧ n ′∈G1-nodes}|)

by metis
obtain G2-nodes where G2-nodes:G2-nodes=
{n. ∃ ps. valid-graph.is-path (del-unEdge v w v ′ G) n ps v ′}

by metis
then obtain G2 where G2 :G2=

(|nodes=G2-nodes, edges={(n,e,n ′). (n,e,n ′)∈edges (del-unEdge v w v ′ G)
∧ n∈G2-nodes ∧ n ′∈G2-nodes}|)

by metis
have valid-G1 :valid-unMultigraph G1

using G1 valid-unMultigraph.corres[OF valid0 ′] valid-unMultigraph.no-id[OF
valid0 ′]

by (unfold-locales,auto)
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hence valid-G1 ′:valid-graph G1 using valid-unMultigraph-def by auto
have valid-G2 :valid-unMultigraph G2

using G2 valid-unMultigraph.corres[OF valid0 ′] valid-unMultigraph.no-id[OF
valid0 ′]

by (unfold-locales,auto)
hence valid-G2 ′: valid-graph G2 using valid-unMultigraph-def by auto
have nodes G1={n. ∃ ps. valid-graph.is-path (del-unEdge v w v ′ G) n ps v}

using G1-nodes G1 by auto
moreover have edges G1={(n,e,n ′). (n,e,n ′)∈edges (del-unEdge v w v ′ G)

∧ n∈nodes G1 ∧ n ′∈nodes G1}
using G1-nodes G1 by auto

moreover have nodes G2={n. ∃ ps. valid-graph.is-path (del-unEdge v w v ′ G)
n ps v ′}

using G2-nodes G2 by auto
moreover have edges G2={(n,e,n ′). (n,e,n ′)∈edges (del-unEdge v w v ′ G)

∧ n∈nodes G2 ∧ n ′∈nodes G2}
using G2-nodes G2 by auto

moreover have nodes G1 ∪ nodes G2=nodes (del-unEdge v w v ′ G)
proof (rule ccontr)

assume nodes G1 ∪ nodes G2 6= nodes (del-unEdge v w v ′ G)
moreover have nodes G1 ⊆ nodes (del-unEdge v w v ′ G)

using valid-graph.is-path-memb[OF valid0 ] G1 G1-nodes by auto
moreover have nodes G2 ⊆ nodes (del-unEdge v w v ′ G)

using valid-graph.is-path-memb[OF valid0 ] G2 G2-nodes by auto
ultimately obtain n where n:

n∈nodes (del-unEdge v w v ′ G) n /∈nodes G1 n /∈nodes G2
by auto

hence n-neg-v : ¬(∃ ps. valid-graph.is-path (del-unEdge v w v ′ G) n ps v) and
n-neg-v ′: ¬(∃ ps. valid-graph.is-path (del-unEdge v w v ′ G) n ps v ′)

using G1 G1-nodes G2 G2-nodes by auto
hence n 6=v by (metis n(1 ) valid0 valid-graph.is-path-simps(1 ))
then obtain nvs where nvs: is-path n nvs v using ‹connected›

by (metis E-validD(1 ) assms(3 ) connected-def del-UnEdge-node n(1 ))
then obtain nvs ′ where nvs ′: nvs ′=takeWhile (λx. x 6=(v,w,v ′)∧x 6=(v ′,w,v))

nvs by auto
moreover have nvs-nvs ′:nvs=nvs ′@dropWhile (λx. x 6=(v,w,v ′)∧x 6=(v ′,w,v))

nvs
using nvs ′ takeWhile-dropWhile-id by auto

ultimately obtain n ′ where is-path-nvs ′: is-path n nvs ′ n ′

and is-path n ′ (dropWhile (λx. x 6=(v,w,v ′)∧x 6=(v ′,w,v)) nvs) v
using nvs is-path-split[of n nvs ′ dropWhile (λx. x 6=(v,w,v ′)∧x 6=(v ′,w,v)) nvs]

by auto
have n ′=v ∨ n ′=v ′

proof (cases dropWhile (λx. x 6=(v,w,v ′)∧x 6=(v ′,w,v)) nvs)
case Nil
hence nvs=nvs ′ using nvs-nvs ′ by (metis append-Nil2 )

hence n ′=v using nvs is-path-nvs ′ path-end by (metis (mono-tags)
is-path.simps(1 ))

thus ?thesis by auto
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next
case (Cons x xs)
hence dropWhile (λx. x 6=(v,w,v ′)∧x 6=(v ′,w,v)) nvs 6=[] by auto
hence hd (dropWhile (λx. x 6=(v,w,v ′)∧x 6=(v ′,w,v)) nvs)=(v,w,v ′)

∨ hd (dropWhile (λx. x 6=(v,w,v ′)∧x 6=(v ′,w,v)) nvs)=(v ′,w,v)
by (metis (lifting, full-types) hd-dropWhile)

hence x=(v,w,v ′)∨x=(v ′,w,v) using Cons by auto
thus ?thesis

using ‹is-path n ′ (dropWhile (λx. x 6= (v, w, v ′) ∧ x 6= (v ′, w, v)) nvs)
v›

by (metis Cons is-path.simps(2 ))
qed

moreover have valid-graph.is-path (del-unEdge v w v ′ G) n nvs ′ n ′

using is-path-nvs ′ nvs ′

proof (induct nvs ′ arbitrary:n nvs)
case Nil

thus ?case by (metis del-UnEdge-node is-path.simps(1 ) valid0 valid-graph.is-path-simps(1 ))
next

case (Cons x xs)
obtain x1 x2 x3 where x:x=(x1 ,x2 ,x3 ) by (metis prod-cases3 )
hence is-path x3 xs n ′ using Cons by auto
moreover have xs = takeWhile (λx. x 6= (v, w, v ′) ∧ x 6= (v ′, w, v)) (tl

nvs)
using ‹x # xs = takeWhile (λx. x 6= (v, w, v ′) ∧ x 6= (v ′, w, v)) nvs›

by (metis (lifting, no-types) append-Cons list.distinct(1 ) takeWhile.simps(2 )

takeWhile-dropWhile-id list.sel(3 ))
ultimately have valid-graph.is-path (del-unEdge v w v ′ G) x3 xs n ′

using Cons by auto
moreover have x 6=(v,w,v ′) ∧ x 6=(v ′,w,v)
using Cons(3 ) set-takeWhileD[of x (λx. x 6= (v, w, v ′) ∧ x 6= (v ′, w, v))

nvs]
by (metis List.set-simps(2 ) insertI1 )

hence x∈edges (del-unEdge v w v ′ G)
by (metis Cons.prems(1 ) del-UnEdge-frame is-path.simps(2 ) x)

ultimately show ?case using x
by (metis Cons.prems(1 ) is-path.simps(2 ) valid0 valid-graph.is-path.simps(2 ))
qed

ultimately show False using n-neg-v n-neg-v ′ by auto
qed

moreover have nodes G1 ∩ nodes G2={}
proof (rule ccontr)

assume nodes G1 ∩ nodes G2 6= {}
then obtain n where n:n∈nodes G1 n∈nodes G2 by auto
then obtain nvs nv ′s where

nvs : valid-graph.is-path (del-unEdge v w v ′ G) n nvs v and
nv ′s : valid-graph.is-path (del-unEdge v w v ′ G) n nv ′s v ′

using G1 G2 G1-nodes G2-nodes by auto
hence valid-graph.is-path (del-unEdge v w v ′ G) v ((rev-path nvs)@nv ′s) v ′
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using valid-unMultigraph.is-path-rev[OF valid0 ′] valid-graph.is-path-split[OF
valid0 ]

by auto
hence valid-unMultigraph.connected (del-unEdge v w v ′ G)

by (metis assms(1 ) del-unEdge-connectivity)
thus False by (metis assms(2 ))

qed
moreover have edges G1 ∪ edges G2 = edges (del-unEdge v w v ′ G)

proof (rule ccontr)
assume edges G1 ∪ edges G2 6= edges (del-unEdge v w v ′ G)
moreover have edges G1 ⊆ edges (del-unEdge v w v ′ G) using G1 by auto
moreover have edges G2 ⊆ edges (del-unEdge v w v ′ G) using G2 by auto
ultimately obtain n e n ′ where

nen ′:
(n,e,n ′)∈edges (del-unEdge v w v ′ G)
(n,e,n ′)/∈edges G1 (n,e,n ′)/∈edges G2

by auto
moreover have n∈nodes (del-unEdge v w v ′ G)

by (metis nen ′(1 ) valid0 valid-graph.E-validD(1 ))
moreover have n ′∈nodes (del-unEdge v w v ′ G)

by (metis nen ′(1 ) valid0 valid-graph.E-validD(2 ))
ultimately have (n∈nodes G1 ∧ n ′∈nodes G2 )∨(n∈nodes G2∧n ′∈nodes

G1 )
using G1 G2 ‹nodes G1 ∪ nodes G2=nodes (del-unEdge v w v ′ G)› by auto

moreover have n∈nodes G1 =⇒ n ′∈nodes G2 =⇒ False
proof −

assume n∈nodes G1 n ′∈nodes G2
then obtain nvs nv ′s where

nvs : valid-graph.is-path (del-unEdge v w v ′ G) n nvs v and
nv ′s : valid-graph.is-path (del-unEdge v w v ′ G) n ′ nv ′s v ′

using G1 G2 G1-nodes G2-nodes by auto
hence valid-graph.is-path (del-unEdge v w v ′ G) v

((rev-path nvs)@(n,e,n ′)#nv ′s) v ′

using valid-unMultigraph.is-path-rev[OF valid0 ′] valid-graph.is-path-split ′[OF
valid0 ]

‹(n,e,n ′)∈edges (del-unEdge v w v ′ G)›
by auto

hence valid-unMultigraph.connected (del-unEdge v w v ′ G)
by (metis assms(1 ) del-unEdge-connectivity)

thus False by (metis assms(2 ))
qed

moreover have n∈nodes G2 =⇒ n ′∈nodes G1 =⇒ False
proof −

assume n ′∈nodes G1 n∈nodes G2
then obtain n ′vs nvs where

n ′vs : valid-graph.is-path (del-unEdge v w v ′ G) n ′ n ′vs v and
nvs : valid-graph.is-path (del-unEdge v w v ′ G) n nvs v ′

using G1 G2 G1-nodes G2-nodes by auto
moreover have (n ′,e,n)∈edges (del-unEdge v w v ′ G)
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by (metis nen ′(1 ) valid0 ′ valid-unMultigraph.corres)
ultimately have valid-graph.is-path (del-unEdge v w v ′ G) v

((rev-path n ′vs)@(n ′,e,n)#nvs) v ′

using valid-unMultigraph.is-path-rev[OF valid0 ′] valid-graph.is-path-split ′[OF
valid0 ]

by auto
hence valid-unMultigraph.connected (del-unEdge v w v ′ G)

by (metis assms(1 ) del-unEdge-connectivity)
thus False by (metis assms(2 ))

qed
ultimately show False by auto

qed
moreover have edges G1 ∩ edges G2={}

proof (rule ccontr)
assume edges G1 ∩ edges G2 6= {}
then obtain n e n ′ where (n,e,n ′)∈edges G1 (n,e,n ′)∈edges G2 by auto
hence n∈nodes G1 n∈nodes G2 using G1 G2 by auto
thus False using ‹nodes G1 ∩ nodes G2={}› by auto

qed
moreover have valid-unMultigraph.connected G1

unfolding valid-unMultigraph.connected-def [OF valid-G1 ]
proof (rule,rule,rule)

fix n n ′

assume n : n ∈nodes G1
assume n ′: n ′∈nodes G1
assume n 6=n ′

obtain ps where valid-graph.is-path (del-unEdge v w v ′ G) n ps v
using G1 G1-nodes n by auto

hence ps:valid-graph.is-path G1 n ps v
proof (induct ps arbitrary:n)

case Nil
moreover have v∈nodes G1 using G1 G1-nodes valid0

by (metis (lifting, no-types) calculation mem-Collect-eq select-convs(1 )
valid-graph.is-path.simps(1 ))

ultimately show ?case
by (metis valid0 valid-G1 valid-unMultigraph.is-trail.simps(1 )

valid-graph.is-path.simps(1 ) valid-unMultigraph.is-trail-intro)
next

case (Cons x xs)
obtain x1 x2 x3 where x:x=(x1 ,x2 ,x3 ) by (metis prod-cases3 )
have x1∈nodes G1 using G1 G1-nodes Cons.prems x

by (metis (lifting) mem-Collect-eq select-convs(1 ) valid0 valid-graph.is-path.simps(2 ))
moreover have (x1 ,x2 ,x3 )∈edges (del-unEdge v w v ′ G)

by (metis Cons.prems valid0 valid-graph.is-path.simps(2 ) x)
ultimately have (x1 ,x2 ,x3 )∈edges G1

using G1 G2 ‹nodes G1 ∩ nodes G2={}› ‹edges G1 ∪ edges G2=edges
(del-unEdge v w v ′ G)›

by (metis (full-types) IntI Un-iff bex-empty valid-G2 ′ valid-graph.E-validD(1 )
)
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moreover have valid-graph.is-path (del-unEdge v w v ′ G) x3 xs v
by (metis Cons.prems valid0 valid-graph.is-path.simps(2 ) x)

hence valid-graph.is-path G1 x3 xs v using Cons.hyps by auto
moreover have x1=n by (metis Cons.prems valid0 valid-graph.is-path.simps(2 )

x)
ultimately show ?case using x valid-G1 ′ by (metis valid-graph.is-path.simps(2 ))

qed
obtain ps ′ where valid-graph.is-path (del-unEdge v w v ′ G) n ′ ps ′ v

using G1 G1-nodes n ′ by auto
hence ps ′:valid-graph.is-path G1 n ′ ps ′ v

proof (induct ps ′ arbitrary:n ′)
case Nil
moreover have v∈nodes G1 using G1 G1-nodes valid0

by (metis (lifting, no-types) calculation mem-Collect-eq select-convs(1 )
valid-graph.is-path.simps(1 ))

ultimately show ?case
by (metis valid0 valid-G1 valid-unMultigraph.is-trail.simps(1 )

valid-graph.is-path.simps(1 ) valid-unMultigraph.is-trail-intro)
next

case (Cons x xs)
obtain x1 x2 x3 where x:x=(x1 ,x2 ,x3 ) by (metis prod-cases3 )
have x1∈nodes G1 using G1 G1-nodes Cons.prems x

by (metis (lifting) mem-Collect-eq select-convs(1 ) valid0 valid-graph.is-path.simps(2 ))
moreover have (x1 ,x2 ,x3 )∈edges (del-unEdge v w v ′ G)

by (metis Cons.prems valid0 valid-graph.is-path.simps(2 ) x)
ultimately have (x1 ,x2 ,x3 )∈edges G1

using G1 G2 ‹nodes G1 ∩ nodes G2={}›
‹edges G1 ∪ edges G2=edges (del-unEdge v w v ′ G)›

by (metis (full-types) IntI Un-iff bex-empty valid-G2 ′ valid-graph.E-validD(1 ))
moreover have valid-graph.is-path (del-unEdge v w v ′ G) x3 xs v

by (metis Cons.prems valid0 valid-graph.is-path.simps(2 ) x)
hence valid-graph.is-path G1 x3 xs v using Cons.hyps by auto

moreover have x1=n ′ by (metis Cons.prems valid0 valid-graph.is-path.simps(2 )
x)

ultimately show ?case using x valid-G1 ′ by (metis valid-graph.is-path.simps(2 ))

qed
hence valid-graph.is-path G1 v (rev-path ps ′) n ′

using valid-unMultigraph.is-path-rev[OF valid-G1 ]
by auto

hence valid-graph.is-path G1 n (ps@(rev-path ps ′)) n ′

using ps valid-graph.is-path-split[OF valid-G1 ′,of n ps rev-path ps ′ n ′]
by auto

thus ∃ ps. valid-graph.is-path G1 n ps n ′ by auto
qed

moreover have valid-unMultigraph.connected G2
unfolding valid-unMultigraph.connected-def [OF valid-G2 ]
proof (rule,rule,rule)
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fix n n ′

assume n : n ∈nodes G2
assume n ′: n ′∈nodes G2
assume n 6=n ′

obtain ps where valid-graph.is-path (del-unEdge v w v ′ G) n ps v ′

using G2 G2-nodes n by auto
hence ps:valid-graph.is-path G2 n ps v ′

proof (induct ps arbitrary:n)
case Nil
moreover have v ′∈nodes G2 using G2 G2-nodes valid0

by (metis (lifting, no-types) calculation mem-Collect-eq select-convs(1 )
valid-graph.is-path.simps(1 ))

ultimately show ?case
by (metis valid0 valid-G2 valid-unMultigraph.is-trail.simps(1 )

valid-graph.is-path.simps(1 ) valid-unMultigraph.is-trail-intro)
next

case (Cons x xs)
obtain x1 x2 x3 where x:x=(x1 ,x2 ,x3 ) by (metis prod-cases3 )
have x1∈nodes G2 using G2 G2-nodes Cons.prems x

by (metis (lifting) mem-Collect-eq select-convs(1 ) valid0 valid-graph.is-path.simps(2 ))
moreover have (x1 ,x2 ,x3 )∈edges (del-unEdge v w v ′ G)

by (metis Cons.prems valid0 valid-graph.is-path.simps(2 ) x)
ultimately have (x1 ,x2 ,x3 )∈edges G2

using ‹nodes G1 ∩ nodes G2={}› ‹edges G1 ∪ edges G2=edges
(del-unEdge v w v ′ G)›

by (metis IntI Un-iff assms(1 ) bex-empty connected-def del-UnEdge-node
valid0 valid0 ′

valid-G1 ′ valid-graph.E-validD(1 ) valid-graph.E-validD(2 ) valid-unMultigraph.no-id)
moreover have valid-graph.is-path (del-unEdge v w v ′ G) x3 xs v ′

by (metis Cons.prems valid0 valid-graph.is-path.simps(2 ) x)
hence valid-graph.is-path G2 x3 xs v ′ using Cons.hyps by auto

moreover have x1=n by (metis Cons.prems valid0 valid-graph.is-path.simps(2 )
x)

ultimately show ?case using x valid-G2 ′ by (metis valid-graph.is-path.simps(2 ))

qed
obtain ps ′ where valid-graph.is-path (del-unEdge v w v ′ G) n ′ ps ′ v ′

using G2 G2-nodes n ′ by auto
hence ps ′:valid-graph.is-path G2 n ′ ps ′ v ′

proof (induct ps ′ arbitrary:n ′)
case Nil
moreover have v ′∈nodes G2 using G2 G2-nodes valid0

by (metis (lifting, no-types) calculation mem-Collect-eq select-convs(1 )
valid-graph.is-path.simps(1 ))

ultimately show ?case
by (metis valid0 valid-G2 valid-unMultigraph.is-trail.simps(1 )

valid-graph.is-path.simps(1 ) valid-unMultigraph.is-trail-intro)
next

case (Cons x xs)
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obtain x1 x2 x3 where x:x=(x1 ,x2 ,x3 ) by (metis prod-cases3 )
have x1∈nodes G2 using G2 G2-nodes Cons.prems x

by (metis (lifting) mem-Collect-eq select-convs(1 ) valid0 valid-graph.is-path.simps(2 ))
moreover have (x1 ,x2 ,x3 )∈edges (del-unEdge v w v ′ G)

by (metis Cons.prems valid0 valid-graph.is-path.simps(2 ) x)
ultimately have (x1 ,x2 ,x3 )∈edges G2

using ‹nodes G1 ∩ nodes G2={}› ‹edges G1 ∪ edges G2=edges
(del-unEdge v w v ′ G)›

by (metis IntI Un-iff assms(1 ) bex-empty connected-def del-UnEdge-node
valid0 valid0 ′

valid-G1 ′ valid-graph.E-validD(1 ) valid-graph.E-validD(2 ) valid-unMultigraph.no-id)
moreover have valid-graph.is-path (del-unEdge v w v ′ G) x3 xs v ′

by (metis Cons.prems valid0 valid-graph.is-path.simps(2 ) x)
hence valid-graph.is-path G2 x3 xs v ′ using Cons.hyps by auto

moreover have x1=n ′ by (metis Cons.prems valid0 valid-graph.is-path.simps(2 )
x)

ultimately show ?case using x valid-G2 ′ by (metis valid-graph.is-path.simps(2 ))

qed
hence valid-graph.is-path G2 v ′ (rev-path ps ′) n ′

using valid-unMultigraph.is-path-rev[OF valid-G2 ]
by auto

hence valid-graph.is-path G2 n (ps@(rev-path ps ′)) n ′

using ps valid-graph.is-path-split[OF valid-G2 ′,of n ps rev-path ps ′ n ′]
by auto

thus ∃ ps. valid-graph.is-path G2 n ps n ′ by auto
qed

ultimately show ?thesis using valid-G1 valid-G2 that by auto
qed

lemma sub-graph-degree-frame:
assumes valid-graph G2 edges G1 ∪ edges G2 =edges G nodes G1 ∩ nodes

G2={} n∈nodes G1
shows degree n G=degree n G1

proof −
have {e ∈ edges G. fst e = n}⊆{e ∈ edges G1 . fst e = n}

proof
fix e assume e ∈ {e ∈ edges G. fst e = n}
hence e∈edges G fst e=n by auto
moreover have n /∈nodes G2

using ‹nodes G1 ∩ nodes G2={}› ‹n∈nodes G1 ›
by auto

hence e/∈edges G2 using valid-graph.E-validD[OF ‹valid-graph G2 ›] ‹fst e=n›

by (metis prod.exhaust fst-conv)
ultimately have e∈edges G1 using ‹edges G1 ∪ edges G2 =edges G› by

auto
thus e ∈ {e ∈ edges G1 . fst e = n} using ‹fst e=n› by auto
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qed
moreover have {e ∈ edges G1 . fst e = n}⊆{e ∈ edges G. fst e = n}

by (metis (lifting) Collect-mono Un-iff assms(2 ))
ultimately show ?thesis unfolding degree-def by auto

qed

lemma odd-nodes-no-edge[simp]: finite (nodes g) =⇒ num-of-odd-nodes (g (|edges:={}
|)) = 0

unfolding num-of-odd-nodes-def odd-nodes-set-def degree-def by simp

4 Adjacent nodes
definition (in valid-unMultigraph) adjacent:: ′v ⇒ ′v ⇒ bool where

adjacent v v ′ ≡ ∃w. (v,w,v ′)∈E

lemma (in valid-unMultigraph) adjacent-sym: adjacent v v ′←→ adjacent v ′ v
unfolding adjacent-def by auto

lemma (in valid-unMultigraph) adjacent-no-loop[simp]: adjacent v v ′ =⇒ v 6=v ′

unfolding adjacent-def by auto

lemma (in valid-unMultigraph) adjacent-V [simp]:
assumes adjacent v v ′

shows v∈V v ′∈V
using assms E-validD unfolding adjacent-def by auto

lemma (in valid-unMultigraph) adjacent-finite:
finite E =⇒ finite {n. adjacent v n}

proof −
assume finite E
{ fix S v

have finite S =⇒ finite {n. ∃w. (v,w,n)∈S}
proof (induct S rule: finite-induct)

case empty
thus ?case by auto

next
case (insert x F)
obtain x1 x2 x3 where x: x=(x1 ,x2 ,x3 ) by (metis prod-cases3 )
have x1=v =⇒ ?case

proof −
assume x1=v

hence {n. ∃w. (v, w, n) ∈ insert x F}=insert x3 {n. ∃w. (v, w, n) ∈ F}
using x by auto

thus ?thesis using insert by auto
qed

moreover have x1 6=v =⇒ ?case
proof −

assume x1 6=v
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hence {n. ∃w. (v, w, n) ∈ insert x F}={n. ∃w. (v, w, n) ∈ F} using
x by auto

thus ?thesis using insert by auto
qed

ultimately show ?case by auto
qed }

note aux=this
show ?thesis using aux[OF ‹finite E›, of v] unfolding adjacent-def by auto

qed

5 Undirected simple graph
locale valid-unSimpGraph=valid-unMultigraph G for G::( ′v, ′w) graph+

assumes no-multi[simp]: (v,w,u) ∈ edges G =⇒ (v,w ′,u) ∈edges G =⇒
w = w ′

lemma (in valid-unSimpGraph) finV-to-finE [simp]:
assumes finite V
shows finite E

proof (cases {(v1 ,v2 ). adjacent v1 v2}={})
case True
hence E={} unfolding adjacent-def by auto
thus finite E by auto

next
case False
have {(v1 ,v2 ). adjacent v1 v2} ⊆ V × V using adjacent-V by auto
moreover have finite (V × V ) using ‹finite V › by auto
ultimately have finite {(v1 ,v2 ). adjacent v1 v2} using finite-subset by auto
hence card {(v1 ,v2 ). adjacent v1 v2}6=0 using False card-eq-0-iff by auto
moreover have card E=card {(v1 ,v2 ). adjacent v1 v2}

proof −
have (λ(v1 ,w,v2 ). (v1 ,v2 ))‘E = {(v1 ,v2 ). adjacent v1 v2}

proof −
have

∧
x. x∈(λ(v1 ,w,v2 ). (v1 ,v2 ))‘E =⇒ x∈ {(v1 ,v2 ). adjacent v1 v2}

unfolding adjacent-def by auto
moreover have

∧
x. x∈{(v1 ,v2 ). adjacent v1 v2} =⇒ x∈(λ(v1 ,w,v2 ).

(v1 ,v2 ))‘E
unfolding adjacent-def by force

ultimately show ?thesis by force
qed
moreover have inj-on (λ(v1 ,w,v2 ). (v1 ,v2 )) E unfolding inj-on-def by

auto
ultimately show ?thesis by (metis card-image)

qed
ultimately show finite E by (metis card.infinite)

qed

lemma del-unEdge-valid ′[simp]:valid-unSimpGraph G=⇒
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valid-unSimpGraph (del-unEdge v w u G)
proof −

assume valid-unSimpGraph G
hence valid-unMultigraph (del-unEdge v w u G)

using valid-unSimpGraph-def [of G] del-unEdge-valid[of G] by auto
moreover have valid-unSimpGraph-axioms (del-unEdge v w u G)

using valid-unSimpGraph.no-multi[OF ‹valid-unSimpGraph G›]
unfolding valid-unSimpGraph-axioms-def del-unEdge-def by auto

ultimately show valid-unSimpGraph (del-unEdge v w u G) using valid-unSimpGraph-def
by auto

qed

lemma (in valid-unSimpGraph) del-UnEdge-non-adj:
(v,w,u)∈E =⇒ ¬valid-unMultigraph.adjacent (del-unEdge v w u G) v u

proof
assume (v, w, u) ∈ E

and ccontr :valid-unMultigraph.adjacent (del-unEdge v w u G) v u
have valid:valid-unMultigraph (del-unEdge v w u G)

using valid-unMultigraph-axioms by auto
then obtain w ′ where vw ′u:(v,w ′,u)∈edges (del-unEdge v w u G)

using ccontr unfolding valid-unMultigraph.adjacent-def [OF valid] by auto
hence (v,w ′,u)/∈{(v,w,u),(u,w,v)} unfolding del-unEdge-def by auto
hence w ′6=w by auto
moreover have (v,w ′,u)∈E using vw ′u unfolding del-unEdge-def by auto
ultimately show False using no-multi[of v w u w ′] ‹(v, w, u) ∈ E› by auto

qed

lemma (in valid-unSimpGraph) degree-adjacent: finite E =⇒ degree v G=card {n.
adjacent v n}

using valid-unSimpGraph-axioms
proof (induct degree v G arbitrary: G)

case 0
note valid3=‹valid-unSimpGraph G›
hence valid2 : valid-unMultigraph G using valid-unSimpGraph-def by auto
have {a. valid-unMultigraph.adjacent G v a}={}

proof (rule ccontr)
assume {a. valid-unMultigraph.adjacent G v a} 6= {}
then obtain w u where (v,w,u)∈edges G

unfolding valid-unMultigraph.adjacent-def [OF valid2 ] by auto
hence degree v G 6=0 using ‹finite (edges G)› unfolding degree-def by auto
thus False using ‹0 = degree v G› by auto

qed
thus ?case by (metis 0 .hyps card.empty)

next
case (Suc n)
hence {e ∈ edges G. fst e = v}6={} using card.empty unfolding degree-def by

force
then obtain w u where (v,w,u)∈edges G by auto
have valid:valid-unMultigraph G using ‹valid-unSimpGraph G› valid-unSimpGraph-def
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by auto
hence valid ′:valid-unMultigraph (del-unEdge v w u G) by auto
have valid-unSimpGraph (del-unEdge v w u G)

using del-unEdge-valid ′ ‹valid-unSimpGraph G› by auto
moreover have n = degree v (del-unEdge v w u G)
using ‹Suc n = degree v G›‹(v, w, u) ∈ edges G› del-edge-undirected-degree-plus[of

G v w u]
by (metis Suc.prems(1 ) Suc-eq-plus1 diff-Suc-1 valid valid-unMultigraph.corres)

moreover have finite (edges (del-unEdge v w u G))
using ‹finite (edges G)› unfolding del-unEdge-def
by auto

ultimately have degree v (del-unEdge v w u G)
= card (Collect (valid-unMultigraph.adjacent (del-unEdge v w u G) v))

using Suc.hyps by auto
moreover have Suc(card ({n. valid-unMultigraph.adjacent (del-unEdge v w u

G)
v n})) = card ({n. valid-unMultigraph.adjacent G v n})

using valid-unMultigraph.adjacent-def [OF valid ′]
proof −

have {n. valid-unMultigraph.adjacent (del-unEdge v w u G) v n} ⊆
{n. valid-unMultigraph.adjacent G v n}

using del-unEdge-def [of v w u G]
unfolding valid-unMultigraph.adjacent-def [OF valid ′]

valid-unMultigraph.adjacent-def [OF valid]
by auto

moreover have u∈{n. valid-unMultigraph.adjacent G v n}
using ‹(v,w,u)∈edges G› unfolding valid-unMultigraph.adjacent-def [OF

valid] by auto
ultimately have {n. valid-unMultigraph.adjacent (del-unEdge v w u G) v n}

∪ {u}
⊆ {n. valid-unMultigraph.adjacent G v n} by auto

moreover have {n. valid-unMultigraph.adjacent G v n} − {u}
⊆ {n. valid-unMultigraph.adjacent (del-unEdge v w u G) v n}

using del-unEdge-def [of v w u G]
unfolding valid-unMultigraph.adjacent-def [OF valid ′]

valid-unMultigraph.adjacent-def [OF valid]
by auto

ultimately have {n. valid-unMultigraph.adjacent (del-unEdge v w u G) v n}
∪ {u}

= {n. valid-unMultigraph.adjacent G v n} by auto
moreover have u /∈{n. valid-unMultigraph.adjacent (del-unEdge v w u G) v

n}
using valid-unSimpGraph.del-UnEdge-non-adj[OF ‹valid-unSimpGraph G›

‹(v,w,u)∈edges G›]
by auto

moreover have finite {n. valid-unMultigraph.adjacent G v n}
using valid-unMultigraph.adjacent-finite[OF valid ‹finite (edges G)›] by simp

ultimately show ?thesis
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by (metis Un-insert-right card-insert-disjoint finite-Un sup-bot-right)
qed

ultimately show ?case by (metis Suc.hyps(2 ) ‹n = degree v (del-unEdge v w u
G)›)
qed

end

theory KoenigsbergBridge imports MoreGraph
begin

6 Definition of Eulerian trails and circuits
definition (in valid-unMultigraph) is-Eulerian-trail:: ′v⇒( ′v, ′w) path⇒ ′v⇒ bool
where

is-Eulerian-trail v ps v ′≡ is-trail v ps v ′ ∧ edges (rem-unPath ps G) = {}

definition (in valid-unMultigraph) is-Eulerian-circuit:: ′v ⇒ ( ′v, ′w) path ⇒ ′v ⇒
bool where

is-Eulerian-circuit v ps v ′≡ (v=v ′) ∧ (is-Eulerian-trail v ps v ′)

7 Necessary conditions for Eulerian trails and cir-
cuits

lemma (in valid-unMultigraph) euclerian-rev:
is-Eulerian-trail v ′ (rev-path ps) v=is-Eulerian-trail v ps v ′

proof −
have is-trail v ′ (rev-path ps) v=is-trail v ps v ′

by (metis is-trail-rev)
moreover have edges (rem-unPath (rev-path ps) G)=edges (rem-unPath ps G)

by (metis rem-unPath-graph)
ultimately show ?thesis unfolding is-Eulerian-trail-def by auto

qed

theorem (in valid-unMultigraph) euclerian-cycle-ex:
assumes is-Eulerian-circuit v ps v ′ finite V finite E
shows ∀ v∈V . even (degree v G)

proof −
obtain v ps v ′ where cycle:is-Eulerian-circuit v ps v ′ using assms by auto
hence edges (rem-unPath ps G) = {}

unfolding is-Eulerian-circuit-def is-Eulerian-trail-def
by simp

moreover have nodes (rem-unPath ps G)=nodes G by auto
ultimately have rem-unPath ps G = G (|edges:={}|) by auto
hence num-of-odd-nodes (rem-unPath ps G) = 0 by (metis assms(2 ) odd-nodes-no-edge)
moreover have v=v ′
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by (metis ‹is-Eulerian-circuit v ps v ′› is-Eulerian-circuit-def )
hence num-of-odd-nodes (rem-unPath ps G)=num-of-odd-nodes G

by (metis assms(2 ) assms(3 ) cycle is-Eulerian-circuit-def
is-Eulerian-trail-def rem-UnPath-cycle)

ultimately have num-of-odd-nodes G=0 by auto
moreover have finite(odd-nodes-set G)

using ‹finite V › unfolding odd-nodes-set-def by auto
ultimately have odd-nodes-set G = {} unfolding num-of-odd-nodes-def by

auto
thus ?thesis unfolding odd-nodes-set-def by auto

qed

theorem (in valid-unMultigraph) euclerian-path-ex:
assumes is-Eulerian-trail v ps v ′ finite V finite E
shows (∀ v∈V . even (degree v G)) ∨ (num-of-odd-nodes G =2 )

proof −
obtain v ps v ′ where path:is-Eulerian-trail v ps v ′ using assms by auto
hence edges (rem-unPath ps G) = {}

unfolding is-Eulerian-trail-def
by simp

moreover have nodes (rem-unPath ps G)=nodes G by auto
ultimately have rem-unPath ps G = G (|edges:={}|) by auto
hence odd-nodes: num-of-odd-nodes (rem-unPath ps G) = 0

by (metis assms(2 ) odd-nodes-no-edge)
have v 6=v ′ =⇒ ?thesis

proof (cases even(degree v ′ G))
case True
assume v 6=v ′

have is-trail v ps v ′ by (metis is-Eulerian-trail-def path)
hence num-of-odd-nodes (rem-unPath ps G) = num-of-odd-nodes G

+ (if even (degree v G) then 2 else 0 )
using rem-UnPath-even True ‹finite V › ‹finite E› ‹v 6=v ′› by auto

hence num-of-odd-nodes G + (if even (degree v G) then 2 else 0 )=0
using odd-nodes by auto

hence num-of-odd-nodes G = 0 by auto
moreover have finite(odd-nodes-set G)

using ‹finite V › unfolding odd-nodes-set-def by auto
ultimately have odd-nodes-set G = {} unfolding num-of-odd-nodes-def by

auto
thus ?thesis unfolding odd-nodes-set-def by auto

next
case False
assume v 6=v ′

have is-trail v ps v ′ by (metis is-Eulerian-trail-def path)
hence num-of-odd-nodes (rem-unPath ps G) = num-of-odd-nodes G

+ (if odd (degree v G) then −2 else 0 )
using rem-UnPath-odd False ‹finite V › ‹finite E› ‹v 6=v ′› by auto

hence odd-nodes-if : num-of-odd-nodes G + (if odd (degree v G) then −2 else
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0 )=0
using odd-nodes by auto

have odd (degree v G) =⇒ ?thesis
proof −

assume odd (degree v G)
hence num-of-odd-nodes G = 2 using odd-nodes-if by auto
thus ?thesis by simp

qed
moreover have even(degree v G) =⇒ ?thesis

proof −
assume even (degree v G)
hence num-of-odd-nodes G = 0 using odd-nodes-if by auto
moreover have finite(odd-nodes-set G)

using ‹finite V › unfolding odd-nodes-set-def by auto
ultimately have odd-nodes-set G = {} unfolding num-of-odd-nodes-def

by auto
thus ?thesis unfolding odd-nodes-set-def by auto

qed
ultimately show ?thesis by auto

qed
moreover have v=v ′=⇒ ?thesis

by (metis assms(2 ) assms(3 ) euclerian-cycle-ex is-Eulerian-circuit-def path)
ultimately show ?thesis by auto

qed

8 Specific case of the Konigsberg Bridge Problem
datatype kon-node = a | b | c | d

datatype kon-bridge = ab1 | ab2 | ac1 | ac2 | ad1 | bd1 | cd1

definition kon-graph :: (kon-node,kon-bridge) graph where
kon-graph≡(|nodes={a,b,c,d},

edges={(a,ab1 ,b), (b,ab1 ,a),
(a,ab2 ,b), (b,ab2 ,a),
(a,ac1 ,c), (c,ac1 ,a),
(a,ac2 ,c), (c,ac2 ,a),
(a,ad1 ,d), (d,ad1 ,a),
(b,bd1 ,d), (d,bd1 ,b),
(c,cd1 ,d), (d,cd1 ,c)} |)

instantiation kon-node :: enum
begin
definition [simp]: enum-class.enum =[a,b,c,d]
definition [simp]: enum-class.enum-all P ←→ P a ∧ P b ∧ P c ∧ P d
definition [simp]:enum-class.enum-ex P ←→ P a ∨ P b ∨ P c ∨ P d
instance proof qed (auto,(case-tac x,auto)+)
end
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instantiation kon-bridge :: enum
begin
definition [simp]:enum-class.enum =[ab1 ,ab2 ,ac1 ,ac2 ,ad1 ,cd1 ,bd1 ]
definition [simp]:enum-class.enum-all P ←→ P ab1 ∧ P ab2 ∧ P ac1 ∧ P ac2
∧ P ad1 ∧ P bd1
∧ P cd1

definition [simp]:enum-class.enum-ex P ←→ P ab1 ∨ P ab2 ∨ P ac1 ∨ P ac2
∨ P ad1 ∨ P bd1
∨ P cd1

instance proof qed (auto,(case-tac x,auto)+)
end

interpretation kon-graph: valid-unMultigraph kon-graph
proof (unfold-locales)

show fst ‘ edges kon-graph ⊆ nodes kon-graph by eval
next

show snd ‘ snd ‘ edges kon-graph ⊆ nodes kon-graph by eval
next

have ∀ v w u ′. ((v, w, u ′) ∈ edges kon-graph) = ((u ′, w, v) ∈ edges kon-graph)
by eval

thus
∧

v w u ′. ((v, w, u ′) ∈ edges kon-graph) = ((u ′, w, v) ∈ edges kon-graph)
by simp
next

have ∀ v w. (v, w, v) /∈ edges kon-graph by eval
thus

∧
v w. (v, w, v) /∈ edges kon-graph by simp

qed

theorem ¬kon-graph.is-Eulerian-trail v1 p v2
proof

assume kon-graph.is-Eulerian-trail v1 p v2
moreover have finite (nodes kon-graph) by (metis finite-code)
moreover have finite (edges kon-graph) by (metis finite-code)
ultimately have contra:
(∀ v∈nodes kon-graph. even (degree v kon-graph)) ∨(num-of-odd-nodes kon-graph

=2 )
by (metis kon-graph.euclerian-path-ex)

have odd(degree a kon-graph) by eval
moreover have odd(degree b kon-graph) by eval
moreover have odd(degree c kon-graph) by eval
moreover have odd(degree d kon-graph) by eval
ultimately have ¬(num-of-odd-nodes kon-graph =2 ) by eval
moreover have ¬(∀ v∈nodes kon-graph. even (degree v kon-graph)) by eval
ultimately show False using contra by auto

qed
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9 Sufficient conditions for Eulerian trails and cir-
cuits

lemma (in valid-unMultigraph) eulerian-cons:
assumes

valid-unMultigraph.is-Eulerian-trail (del-unEdge v0 w v1 G) v1 ps v2
(v0 ,w,v1 )∈ E

shows is-Eulerian-trail v0 ((v0 ,w,v1 )#ps) v2
proof −

have valid:valid-unMultigraph (del-unEdge v0 w v1 G)
using valid-unMultigraph-axioms by auto

hence distinct:valid-unMultigraph.is-trail (del-unEdge v0 w v1 G) v1 ps v2
using assms unfolding valid-unMultigraph.is-Eulerian-trail-def [OF valid]
by auto

hence set ps ⊆ edges (del-unEdge v0 w v1 G)
using valid-unMultigraph.path-in-edges[OF valid] by auto

moreover have (v0 ,w,v1 )/∈edges (del-unEdge v0 w v1 G)
unfolding del-unEdge-def by auto

moreover have (v1 ,w,v0 )/∈edges (del-unEdge v0 w v1 G)
unfolding del-unEdge-def by auto

ultimately have (v0 ,w,v1 )/∈set ps (v1 ,w,v0 )/∈set ps by auto
moreover have is-trail v1 ps v2

using distinct-path-intro[OF distinct] .
ultimately have is-trail v0 ((v0 ,w,v1 )#ps) v2

using ‹(v0 ,w,v1 )∈ E› by auto
moreover have edges (rem-unPath ps (del-unEdge v0 w v1 G)) ={}

using assms unfolding valid-unMultigraph.is-Eulerian-trail-def [OF valid]
by auto

hence edges (rem-unPath ((v0 ,w,v1 )#ps) G)={}
by (metis rem-unPath.simps(2 ))

ultimately show ?thesis unfolding is-Eulerian-trail-def by auto
qed

lemma (in valid-unMultigraph) eulerian-cons ′:
assumes

valid-unMultigraph.is-Eulerian-trail (del-unEdge v2 w v3 G) v1 ps v2
(v2 ,w,v3 )∈ E

shows is-Eulerian-trail v1 (ps@[(v2 ,w,v3 )]) v3
proof −

have valid:valid-unMultigraph (del-unEdge v3 w v2 G)
using valid-unMultigraph-axioms del-unEdge-valid by auto

have del-unEdge v2 w v3 G=del-unEdge v3 w v2 G
by (metis delete-edge-sym)

hence valid-unMultigraph.is-Eulerian-trail (del-unEdge v3 w v2 G) v2
(rev-path ps) v1 using assms valid-unMultigraph.euclerian-rev[OF valid]

by auto
hence is-Eulerian-trail v3 ((v3 ,w,v2 )#(rev-path ps)) v1

using eulerian-cons by (metis assms(2 ) corres)
hence is-Eulerian-trail v1 (rev-path((v3 ,w,v2 )#(rev-path ps))) v3
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using euclerian-rev by auto
moreover have rev-path((v3 ,w,v2 )#(rev-path ps)) = rev-path(rev-path ps)@[(v2 ,w,v3 )]

unfolding rev-path-def by auto
hence rev-path((v3 ,w,v2 )#(rev-path ps))=ps@[(v2 ,w,v3 )] by auto
ultimately show ?thesis by auto

qed

lemma eulerian-split:
assumes nodes G1 ∩ nodes G2 = {} edges G1 ∩ edges G2={}

valid-unMultigraph G1 valid-unMultigraph G2
valid-unMultigraph.is-Eulerian-trail G1 v1 ps1 v1 ′

valid-unMultigraph.is-Eulerian-trail G2 v2 ps2 v2 ′

shows valid-unMultigraph.is-Eulerian-trail (|nodes=nodes G1 ∪ nodes G2 ,
edges=edges G1 ∪ edges G2 ∪ {(v1 ′,w,v2 ),(v2 ,w,v1 ′)}|) v1 (ps1@(v1 ′,w,v2 )#ps2 )

v2 ′

proof −
have valid-graph G1 using ‹valid-unMultigraph G1 › valid-unMultigraph-def by

auto
have valid-graph G2 using ‹valid-unMultigraph G2 › valid-unMultigraph-def by

auto
obtain G where G:G=(|nodes=nodes G1 ∪ nodes G2 , edges=edges G1 ∪ edges

G2
∪ {(v1 ′,w,v2 ),(v2 ,w,v1 ′)}|)

by metis
have v1 ′∈nodes G1
by (metis (full-types) ‹valid-graph G1 › assms(3 ) assms(5 ) valid-graph.is-path-memb

valid-unMultigraph.is-trail-intro valid-unMultigraph.is-Eulerian-trail-def )
moreover have v2∈nodes G2
by (metis (full-types) ‹valid-graph G2 › assms(4 ) assms(6 ) valid-graph.is-path-memb

valid-unMultigraph.is-trail-intro valid-unMultigraph.is-Eulerian-trail-def )
moreover have ‹ba ∈ nodes G1 › if ‹(aa, ab, ba) ∈ edges G1 ›

for aa ab ba
using that
by (meson ‹valid-graph G1 › valid-graph.E-validD(2 ))

ultimately have valid-unMultigraph (|nodes=nodes G1 ∪ nodes G2 , edges=edges
G1 ∪ edges G2 ∪

{(v1 ′,w,v2 ),(v2 ,w,v1 ′)}|)
using

valid-unMultigraph.corres[OF ‹valid-unMultigraph G1 ›]
valid-unMultigraph.no-id[OF ‹valid-unMultigraph G1 ›]
valid-unMultigraph.corres[OF ‹valid-unMultigraph G2 ›]
valid-unMultigraph.no-id[OF ‹valid-unMultigraph G2 ›]
valid-graph.E-validD[OF ‹valid-graph G1 ›]
valid-graph.E-validD[OF ‹valid-graph G2 ›]
‹nodes G1 ∩ nodes G2 = {}›

by unfold-locales auto
hence valid: valid-unMultigraph G using G by auto
hence valid ′:valid-graph G using valid-unMultigraph-def by auto
moreover have valid-unMultigraph.is-trail G v1 (ps1@((v1 ′,w,v2 )#ps2 )) v2 ′

54



proof −
have ps1-G:valid-unMultigraph.is-trail G v1 ps1 v1 ′

proof −
have valid-unMultigraph.is-trail G1 v1 ps1 v1 ′ using assms

by (metis valid-unMultigraph.is-Eulerian-trail-def )
moreover have edges G1 ⊆ edges G by (metis G UnI1 Un-assoc

select-convs(2 ) subrelI )
moreover have nodes G1 ⊆ nodes G by (metis G inf-sup-absorb le-iff-inf

select-convs(1 ))
ultimately show ?thesis

using distinct-path-subset[of G1 G,OF ‹valid-unMultigraph G1 › valid]
by auto

qed
have ps2-G:valid-unMultigraph.is-trail G v2 ps2 v2 ′

proof −
have valid-unMultigraph.is-trail G2 v2 ps2 v2 ′ using assms

by (metis valid-unMultigraph.is-Eulerian-trail-def )
moreover have edges G2 ⊆ edges G by (metis G inf-sup-ord(3 ) le-supE

select-convs(2 ))
moreover have nodes G2 ⊆ nodes G by (metis G inf-sup-ord(4 ) se-

lect-convs(1 ))
ultimately show ?thesis

using distinct-path-subset[of G2 G,OF ‹valid-unMultigraph G2 › valid]
by auto

qed
have valid-graph.is-path G v1 (ps1@((v1 ′,w,v2 )#ps2 )) v2 ′

proof −
have valid-graph.is-path G v1 ps1 v1 ′

by (metis ps1-G valid valid-unMultigraph.is-trail-intro)
moreover have valid-graph.is-path G v2 ps2 v2 ′

by (metis ps2-G valid valid-unMultigraph.is-trail-intro)
moreover have (v1 ′,w,v2 ) ∈ edges G

using G by auto
ultimately show ?thesis

using valid-graph.is-path-split ′[OF valid ′,of v1 ps1 v1 ′ w v2 ps2 v2 ′] by
auto

qed
moreover have distinct (ps1@((v1 ′,w,v2 )#ps2 ))

proof −
have distinct ps1 by (metis ps1-G valid valid-unMultigraph.is-trail-path)
moreover have distinct ps2

by (metis ps2-G valid valid-unMultigraph.is-trail-path)
moreover have set ps1 ∩ set ps2 = {}

proof −
have set ps1 ⊆edges G1
by (metis assms(3 ) assms(5 ) valid-unMultigraph.is-Eulerian-trail-def

valid-unMultigraph.path-in-edges)
moreover have set ps2 ⊆ edges G2
by (metis assms(4 ) assms(6 ) valid-unMultigraph.is-Eulerian-trail-def
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valid-unMultigraph.path-in-edges)
ultimately show ?thesis using ‹edges G1 ∩ edges G2={}› by auto

qed
moreover have (v1 ′,w,v2 )/∈edges G1

using ‹v2 ∈ nodes G2 › ‹valid-graph G1 ›
by (metis Int-iff all-not-in-conv assms(1 ) valid-graph.E-validD(2 ))

hence (v1 ′,w,v2 )/∈set ps1
by (metis (full-types) assms(3 ) assms(5 ) subsetD valid-unMultigraph.path-in-edges

valid-unMultigraph.is-Eulerian-trail-def )
moreover have (v1 ′,w,v2 )/∈edges G2

using ‹v1 ′ ∈ nodes G1 › ‹valid-graph G2 ›
by (metis assms(1 ) disjoint-iff-not-equal valid-graph.E-validD(1 ))

hence (v1 ′,w,v2 )/∈set ps2
by (metis (full-types) assms(4 ) assms(6 ) in-mono valid-unMultigraph.path-in-edges

valid-unMultigraph.is-Eulerian-trail-def )
ultimately show ?thesis using distinct-append by auto

qed
moreover have set (ps1@((v1 ′,w,v2 )#ps2 )) ∩ set (rev-path (ps1@((v1 ′,w,v2 )#ps2 )))

= {}
proof −

have set ps1 ∩ set (rev-path ps1 ) = {}
by (metis ps1-G valid valid-unMultigraph.is-trail-path)

moreover have set (rev-path ps2 ) ⊆ edges G2
by (metis assms(4 ) assms(6 ) valid-unMultigraph.is-trail-rev
valid-unMultigraph.is-Eulerian-trail-def valid-unMultigraph.path-in-edges)

hence set ps1 ∩ set (rev-path ps2 ) = {}
using assms
valid-unMultigraph.path-in-edges[OF ‹valid-unMultigraph G1 ›, of v1 ps1

v1 ′]
valid-unMultigraph.path-in-edges[OF ‹valid-unMultigraph G2 ›, of v2 ps2

v2 ′]
unfolding valid-unMultigraph.is-Eulerian-trail-def [OF ‹valid-unMultigraph

G1 ›]
valid-unMultigraph.is-Eulerian-trail-def [OF ‹valid-unMultigraph G2 ›]

by auto
moreover have set ps2 ∩ set (rev-path ps2 ) = {}

by (metis ps2-G valid valid-unMultigraph.is-trail-path)
moreover have set (rev-path ps1 ) ⊆edges G1

by (metis assms(3 ) assms(5 ) valid-unMultigraph.is-Eulerian-trail-def
valid-unMultigraph.path-in-edges valid-unMultigraph.euclerian-rev)

hence set ps2 ∩ set (rev-path ps1 ) = {}
by (metis calculation(2 ) distinct-append distinct-rev-path ps1-G ps2-G

rev-path-append
rev-path-double valid valid-unMultigraph.is-trail-path)

moreover have (v2 ,w,v1 ′)/∈set (ps1@((v1 ′,w,v2 )#ps2 ))
proof −

have (v2 ,w,v1 ′)/∈edges G1
using ‹v2 ∈ nodes G2 › ‹valid-graph G1 ›
by (metis Int-iff all-not-in-conv assms(1 ) valid-graph.E-validD(1 ))
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hence (v2 ,w,v1 ′)/∈set ps1
by (metis assms(3 ) assms(5 ) split-list valid-unMultigraph.is-trail-split ′

valid-unMultigraph.is-Eulerian-trail-def )
moreover have (v2 ,w,v1 ′)/∈edges G2

using ‹v1 ′ ∈ nodes G1 › ‹valid-graph G2 ›
by (metis IntI assms(1 ) empty-iff valid-graph.E-validD(2 ))

hence (v2 ,w,v1 ′)/∈set ps2
by (metis (full-types) assms(4 ) assms(6 ) in-mono valid-unMultigraph.path-in-edges

valid-unMultigraph.is-Eulerian-trail-def )
moreover have (v2 ,w,v1 ′) 6=(v1 ′,w,v2 )

using ‹v1 ′ ∈ nodes G1 › ‹v2 ∈ nodes G2 ›
by (metis IntI Pair-inject assms(1 ) assms(5 ) bex-empty)

ultimately show ?thesis by auto
qed

ultimately show ?thesis using rev-path-append by auto
qed

ultimately show ?thesis using valid-unMultigraph.is-trail-path[OF valid]
by auto

qed
moreover have edges (rem-unPath (ps1@((v1 ′,w,v2 )#ps2 )) G)= {}

proof −
have edges (rem-unPath (ps1@((v1 ′,w,v2 )#ps2 )) G)=edges G −

(set (ps1@((v1 ′,w,v2 )#ps2 )) ∪ set (rev-path (ps1@((v1 ′,w,v2 )#ps2 ))))
by (metis rem-unPath-edges)

also have ...=edges G − (set ps1 ∪ set ps2 ∪ set (rev-path ps1 ) ∪ set (rev-path
ps2 )

∪ {(v1 ′,w,v2 ),(v2 ,w,v1 ′)}) using rev-path-append by auto
finally have edges (rem-unPath (ps1@((v1 ′,w,v2 )#ps2 )) G) = edges G −

(set ps1 ∪
set ps2 ∪ set (rev-path ps1 ) ∪ set (rev-path ps2 ) ∪ {(v1 ′,w,v2 ),(v2 ,w,v1 ′)})

.
moreover have edges (rem-unPath ps1 G1 )={}

by (metis assms(3 ) assms(5 ) valid-unMultigraph.is-Eulerian-trail-def )
hence edges G1 − (set ps1 ∪ set (rev-path ps1 ))={}

by (metis rem-unPath-edges)
moreover have edges (rem-unPath ps2 G2 )={}

by (metis assms(4 ) assms(6 ) valid-unMultigraph.is-Eulerian-trail-def )
hence edges G2 − (set ps2 ∪ set (rev-path ps2 ))={}

by (metis rem-unPath-edges)
ultimately show ?thesis using G by auto

qed
ultimately show ?thesis by (metis G valid valid-unMultigraph.is-Eulerian-trail-def )

qed

lemma (in valid-unMultigraph) eulerian-sufficient:
assumes finite V finite E connected V 6={}
shows num-of-odd-nodes G = 2 =⇒
(∃ v∈V .∃ v ′∈V .∃ ps. odd(degree v G)∧odd(degree v ′ G)∧(v 6=v ′)∧is-Eulerian-trail

v ps v ′)
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and num-of-odd-nodes G=0 =⇒ (∀ v∈V .∃ ps. is-Eulerian-circuit v ps v)
using ‹finite E› ‹finite V › valid-unMultigraph-axioms ‹V 6={}› ‹connected›

proof (induct card E arbitrary: G rule: less-induct)
case less
assume finite (edges G) and finite (nodes G) and valid-unMultigraph G and

nodes G 6={}
and valid-unMultigraph.connected G and num-of-odd-nodes G = 2

have valid-graph G using ‹valid-unMultigraph G› valid-unMultigraph-def by
auto

obtain n1 n2 where
n1 : n1∈nodes G odd(degree n1 G)
and n2 : n2∈nodes G odd(degree n2 G)
and n1 6=n2 unfolding num-of-odd-nodes-def odd-nodes-set-def

proof −
have ∀S . card S=2 −→ (∃n1 n2 . n1∈S∧n2∈S∧n1 6=n2 )

by (metis card-eq-0-iff equals0I even-card ′ even-numeral zero-neq-numeral)
then obtain t1 t2

where t1∈{v ∈ nodes G. odd (degree v G)} t2∈{v ∈ nodes G. odd (degree
v G)} t1 6=t2

using ‹num-of-odd-nodes G = 2 › unfolding num-of-odd-nodes-def odd-nodes-set-def
by force

thus ?thesis by (metis (lifting) that mem-Collect-eq)
qed

have even-except-two:
∧

n. n∈nodes G=⇒ n 6=n1 =⇒ n 6=n2 =⇒ even(degree n
G)

proof (rule ccontr)
fix n assume n ∈ nodes G n 6= n1 n 6= n2 odd (degree n G)
have n∈ odd-nodes-set G

by (metis (mono-tags) ‹n ∈ nodes G› ‹odd (degree n G)› mem-Collect-eq
odd-nodes-set-def )

moreover have n1 ∈ odd-nodes-set G
by (metis (mono-tags) mem-Collect-eq n1 (1 ) n1 (2 ) odd-nodes-set-def )

moreover have n2 ∈ odd-nodes-set G
using n2 (1 ) n2 (2 ) unfolding odd-nodes-set-def by auto

ultimately have {n,n1 ,n2}⊆ odd-nodes-set G by auto
moreover have card{n,n1 ,n2} ≥3 using ‹n1 6=n2 › ‹n 6=n1 › ‹n 6=n2 › by auto
moreover have finite (odd-nodes-set G)

using ‹finite (nodes G)› unfolding odd-nodes-set-def by auto
ultimately have card (odd-nodes-set G) ≥ 3

using card-mono[of odd-nodes-set G {n, n1 , n2}] by auto
thus False using ‹num-of-odd-nodes G = 2 › unfolding num-of-odd-nodes-def

by auto
qed

have {e ∈ edges G. fst e = n1}6={}
using n1
by (metis (full-types) degree-def empty-iff finite.emptyI odd-card)

then obtain v ′ w where (n1 ,w,v ′)∈edges G by auto
have v ′=n2 =⇒ (∃ v∈nodes G. ∃ v ′∈nodes G.∃ ps. odd (degree v G) ∧ odd (degree

v ′ G) ∧ v 6= v ′
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∧ valid-unMultigraph.is-Eulerian-trail G v ps v ′)
proof (cases valid-unMultigraph.connected (del-unEdge n1 w n2 G))

assume v ′=n2
assume conneted ′:valid-unMultigraph.connected (del-unEdge n1 w n2 G)
moreover have num-of-odd-nodes (del-unEdge n1 w n2 G) = 0

using ‹(n1 , w, v ′) ∈ edges G› ‹finite (edges G)› ‹finite (nodes G)› ‹v ′ =
n2 ›

‹num-of-odd-nodes G = 2 › ‹valid-unMultigraph G› del-UnEdge-odd-odd
n1 (2 ) n2 (2 )

by force
moreover have finite (edges (del-unEdge n1 w n2 G))

using ‹finite (edges G)› by auto
moreover have finite (nodes (del-unEdge n1 w n2 G))

using ‹finite (nodes G)› by auto
moreover have edges G − {(n1 ,w,n2 ),(n2 ,w,n1 )} ⊂ edges G

using Diff-iff Diff-subset ‹(n1 , w, v ′) ∈ edges G› ‹v ′ = n2 ›
by fast

hence card (edges (del-unEdge n1 w n2 G)) < card (edges G)
using ‹finite (edges G)› psubset-card-mono[of edges G edges G − {(n1 ,w,n2 ),(n2 ,w,n1 )}]

unfolding del-unEdge-def by auto
moreover have valid-unMultigraph (del-unEdge n1 w n2 G)

using ‹valid-unMultigraph G› del-unEdge-valid by auto
moreover have nodes (del-unEdge n1 w n2 G) 6= {}

by (metis (full-types) del-UnEdge-node empty-iff n1 (1 ))
ultimately have ∀ v∈nodes (del-unEdge n1 w n2 G). ∃ ps. valid-unMultigraph.is-Eulerian-circuit

(del-unEdge n1 w n2 G) v ps v
using less.hyps[of del-unEdge n1 w n2 G] by auto

thus ?thesis using eulerian-cons
by (metis ‹(n1 , w, v ′) ∈ edges G› ‹n1 6= n2 › ‹v ′ = n2 › ‹valid-unMultigraph

G›
‹valid-unMultigraph (del-unEdge n1 w n2 G)› del-UnEdge-node n1 (1 )

n1 (2 ) n2 (1 ) n2 (2 )
valid-unMultigraph.eulerian-cons valid-unMultigraph.is-Eulerian-circuit-def )

next
assume v ′=n2
assume not-conneted:¬valid-unMultigraph.connected (del-unEdge n1 w n2 G)
have valid0 :valid-unMultigraph (del-unEdge n1 w n2 G)

using ‹valid-unMultigraph G› del-unEdge-valid by auto
hence valid0 ′:valid-graph (del-unEdge n1 w n2 G)

using valid-unMultigraph-def by auto
have all-even:∀n∈nodes (del-unEdge n1 w n2 G). even(degree n (del-unEdge

n1 w n2 G))
proof −

have even (degree n1 (del-unEdge n1 w n2 G))
using ‹(n1 , w, v ′) ∈ edges G› ‹finite (edges G)› ‹v ′= n2 › ‹valid-unMultigraph

G› n1
by (auto simp add: valid-unMultigraph.corres)

moreover have even (degree n2 (del-unEdge n1 w n2 G))
using ‹(n1 , w, v ′) ∈ edges G› ‹finite (edges G)› ‹v ′= n2 › ‹valid-unMultigraph
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G› n2
by (auto simp add: valid-unMultigraph.corres)

moreover have
∧

n. n ∈ nodes (del-unEdge n1 w n2 G) =⇒ n 6= n1 =⇒
n 6= n2 =⇒

even (degree n (del-unEdge n1 w n2 G))
using valid-unMultigraph.degree-frame[OF ‹valid-unMultigraph G›,

of - n1 n2 w] even-except-two
by (metis (no-types) ‹finite (edges G)› del-unEdge-def empty-iff insert-iff

select-convs(1 ))
ultimately show ?thesis by auto

qed
have (n1 ,w,n2 )∈edges G by (metis ‹(n1 , w, v ′) ∈ edges G› ‹v ′ = n2 ›)

hence (n2 ,w,n1 )∈edges G by (metis ‹valid-unMultigraph G› valid-unMultigraph.corres)
obtain G1 G2 where

G1-nodes: nodes G1={n. ∃ ps. valid-graph.is-path (del-unEdge n1 w n2 G)
n ps n1}

and G1-edges: edges G1={(n,e,n ′). (n,e,n ′)∈edges (del-unEdge n1 w n2
G)

∧ n∈nodes G1 ∧ n ′∈nodes G1}
and G2-nodes:nodes G2={n. ∃ ps. valid-graph.is-path (del-unEdge n1 w

n2 G) n ps n2}
and G2-edges:edges G2={(n,e,n ′). (n,e,n ′)∈edges (del-unEdge n1 w n2 G)

∧ n∈nodes G2
∧ n ′∈nodes G2}

and G1-G2-edges-union:edges G1 ∪ edges G2 = edges (del-unEdge n1 w
n2 G)

and edges G1 ∩ edges G2={}
and G1-G2-nodes-union:nodes G1 ∪ nodes G2=nodes (del-unEdge n1 w

n2 G)
and nodes G1 ∩ nodes G2={}
and valid-unMultigraph G1
and valid-unMultigraph G2
and valid-unMultigraph.connected G1
and valid-unMultigraph.connected G2

using valid-unMultigraph.connectivity-split[OF ‹valid-unMultigraph G›
‹valid-unMultigraph.connected G› ‹¬ valid-unMultigraph.connected (del-unEdge

n1 w n2 G)›
‹(n1 , w, n2 ) ∈ edges G› ] .

have edges (del-unEdge n1 w n2 G) ⊂ edges G
unfolding del-unEdge-def using ‹(n1 , w, n2 )∈edges G› ‹(n2 , w, n1 )∈edges

G› by auto
hence card (edges G1 ) < card (edges G) using G1-G2-edges-union

by (metis (full-types) ‹finite (edges G)› inf-sup-absorb less-infI2 psub-
set-card-mono)

moreover have finite (edges G1 )
using G1-G2-edges-union ‹finite (edges G)›
by (metis ‹edges (del-unEdge n1 w n2 G) ⊂ edges G› finite-Un less-imp-le

rev-finite-subset)
moreover have nodes G1 ⊆ nodes (del-unEdge n1 w n2 G)
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by (metis G1-G2-nodes-union Un-upper1 )
hence finite (nodes G1 )

using ‹finite (nodes G)› del-UnEdge-node rev-finite-subset by auto
moreover have n1 ∈ nodes G1

proof −
have n1∈nodes (del-unEdge n1 w n2 G) using ‹n1∈nodes G› by auto
hence valid-graph.is-path (del-unEdge n1 w n2 G) n1 [] n1

using valid0 ′ by (metis valid-graph.is-path-simps(1 ))
thus ?thesis using G1-nodes by auto

qed
hence nodes G1 6= {} by auto
moreover have num-of-odd-nodes G1 = 0

proof −
have valid-graph G2 using ‹valid-unMultigraph G2 › valid-unMultigraph-def

by auto
hence ∀n∈nodes G1 . degree n G1 = degree n (del-unEdge n1 w n2 G)
using sub-graph-degree-frame[of G2 G1 (del-unEdge n1 w n2 G)]

by (metis G1-G2-edges-union ‹nodes G1 ∩ nodes G2 = {}›)
hence ∀n∈nodes G1 . even(degree n G1 ) using all-even

by (metis G1-G2-nodes-union Un-iff )
thus ?thesis

unfolding num-of-odd-nodes-def odd-nodes-set-def
by (metis (lifting) Collect-empty-eq card-eq-0-iff )

qed
ultimately have ∀ v∈nodes G1 . ∃ ps. valid-unMultigraph.is-Eulerian-circuit

G1 v ps v
using less.hyps[of G1 ] ‹valid-unMultigraph G1 › ‹valid-unMultigraph.connected

G1 ›
by auto

then obtain ps1 where ps1 :valid-unMultigraph.is-Eulerian-trail G1 n1 ps1
n1

using ‹n1∈nodes G1 ›
by (metis (full-types) ‹valid-unMultigraph G1 › valid-unMultigraph.is-Eulerian-circuit-def )
have card (edges G2 ) < card (edges G)

using G1-G2-edges-union ‹edges (del-unEdge n1 w n2 G) ⊂ edges G›
by (metis (full-types) ‹finite (edges G)› inf-sup-ord(4 ) le-less-trans psub-

set-card-mono)
moreover have finite (edges G2 )

using G1-G2-edges-union ‹finite (edges G)›
by (metis ‹edges (del-unEdge n1 w n2 G) ⊂ edges G› finite-Un less-imp-le

rev-finite-subset)
moreover have nodes G2 ⊆ nodes (del-unEdge n1 w n2 G)

by (metis G1-G2-nodes-union Un-upper2 )
hence finite (nodes G2 )

using ‹finite (nodes G)› del-UnEdge-node rev-finite-subset by auto
moreover have n2 ∈ nodes G2

proof −
have n2∈nodes (del-unEdge n1 w n2 G)

using ‹n2∈nodes G› by auto
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hence valid-graph.is-path (del-unEdge n1 w n2 G) n2 [] n2
using valid0 ′ by (metis valid-graph.is-path-simps(1 ))

thus ?thesis using G2-nodes by auto
qed

hence nodes G2 6= {} by auto
moreover have num-of-odd-nodes G2 = 0

proof −
have valid-graph G1 using ‹valid-unMultigraph G1 › valid-unMultigraph-def

by auto
hence ∀n∈nodes G2 . degree n G2 = degree n (del-unEdge n1 w n2 G)

using sub-graph-degree-frame[of G1 G2 (del-unEdge n1 w n2 G)]
by (metis G1-G2-edges-union ‹nodes G1 ∩ nodes G2 = {}› inf-commute

sup-commute)
hence ∀n∈nodes G2 . even(degree n G2 ) using all-even

by (metis G1-G2-nodes-union Un-iff )
thus ?thesis

unfolding num-of-odd-nodes-def odd-nodes-set-def
by (metis (lifting) Collect-empty-eq card-eq-0-iff )

qed
ultimately have ∀ v∈nodes G2 . ∃ ps. valid-unMultigraph.is-Eulerian-circuit

G2 v ps v
using less.hyps[of G2 ] ‹valid-unMultigraph G2 › ‹valid-unMultigraph.connected

G2 ›
by auto

then obtain ps2 where ps2 :valid-unMultigraph.is-Eulerian-trail G2 n2 ps2
n2

using ‹n2∈nodes G2 ›
by (metis (full-types) ‹valid-unMultigraph G2 › valid-unMultigraph.is-Eulerian-circuit-def )
have (|nodes = nodes G1 ∪ nodes G2 , edges = edges G1 ∪ edges G2 ∪ {(n1 ,

w, n2 ),
(n2 , w, n1 )}|)=G

proof −
have edges (del-unEdge n1 w n2 G) ∪ {(n1 , w, n2 ),(n2 , w, n1 )} =edges

G
using ‹(n1 ,w,n2 )∈edges G› ‹(n2 ,w,n1 )∈edges G›
unfolding del-unEdge-def by auto

moreover have nodes (del-unEdge n1 w n2 G)=nodes G
unfolding del-unEdge-def by auto

ultimately have (|nodes = nodes (del-unEdge n1 w n2 G), edges =
edges (del-unEdge n1 w n2 G) ∪ {(n1 , w, n2 ), (n2 , w, n1 )}|)=G

by auto
moreover have (|nodes = nodes G1 ∪ nodes G2 , edges = edges G1 ∪

edges G2 ∪
{(n1 , w, n2 ),(n2 , w, n1 )}|)=(|nodes = nodes (del-unEdge n1 w n2

G),edges
= edges (del-unEdge n1 w n2 G) ∪ {(n1 , w, n2 ), (n2 , w, n1 )}|)

by (metis G1-G2-edges-union G1-G2-nodes-union)
ultimately show ?thesis by auto

qed
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moreover have valid-unMultigraph.is-Eulerian-trail (|nodes = nodes G1 ∪
nodes G2 ,

edges = edges G1 ∪ edges G2 ∪ {(n1 , w, n2 ), (n2 , w, n1 )}|) n1 (ps1 @
(n1 , w, n2 ) # ps2 ) n2

using eulerian-split[of G1 G2 n1 ps1 n1 n2 ps2 n2 w]
by (metis ‹edges G1 ∩ edges G2 = {}› ‹nodes G1 ∩ nodes G2 = {}›

‹valid-unMultigraph G1 ›
‹valid-unMultigraph G2 › ps1 ps2 )

ultimately show ?thesis by (metis ‹n1 6= n2 › n1 (1 ) n1 (2 ) n2 (1 ) n2 (2 ))
qed

moreover have v ′6=n2 =⇒ (∃ v∈nodes G. ∃ v ′∈nodes G.∃ ps. odd (degree v G)
∧ odd (degree v ′ G)

∧ v 6= v ′ ∧ valid-unMultigraph.is-Eulerian-trail G v ps v ′)
proof (cases valid-unMultigraph.connected (del-unEdge n1 w v ′ G))

case True
assume v ′ 6= n2
assume connected ′:valid-unMultigraph.connected (del-unEdge n1 w v ′ G)
have n1 ∈ nodes (del-unEdge n1 w v ′ G) by (metis del-UnEdge-node n1 (1 ))
hence even-n1 :even(degree n1 (del-unEdge n1 w v ′ G))
using valid-unMultigraph.del-UnEdge-even[OF ‹valid-unMultigraph G› ‹(n1 ,

w, v ′) ∈ edges G›
‹finite (edges G)›] ‹odd (degree n1 G)›

unfolding odd-nodes-set-def by auto
moreover have odd-n2 :odd(degree n2 (del-unEdge n1 w v ′ G))

using valid-unMultigraph.degree-frame[OF ‹valid-unMultigraph G› ‹finite
(edges G)›,

of n2 n1 v ′ w] ‹n1 6= n2 › ‹v ′ 6= n2 ›
by (metis empty-iff insert-iff n2 (2 ))

moreover have even (degree v ′ G)
using even-except-two[of v ′]
by (metis (full-types) ‹(n1 , w, v ′) ∈ edges G› ‹v ′ 6= n2 › ‹valid-graph G›

‹valid-unMultigraph G› valid-graph.E-validD(2 ) valid-unMultigraph.no-id)
hence odd-v ′:odd(degree v ′ (del-unEdge n1 w v ′ G))
using valid-unMultigraph.del-UnEdge-even ′[OF ‹valid-unMultigraph G› ‹(n1 ,

w, v ′) ∈ edges G›
‹finite (edges G)›]

unfolding odd-nodes-set-def by auto
ultimately have two-odds:num-of-odd-nodes (del-unEdge n1 w v ′ G) = 2

by (metis (lifting) ‹v ′ 6= n2 › ‹valid-graph G› ‹valid-unMultigraph G›
‹(n1 , w, v ′) ∈ edges G› ‹finite (edges G)› ‹finite (nodes G)› ‹num-of-odd-nodes

G = 2 ›
del-UnEdge-odd-even even-except-two n1 (2 ) valid-graph.E-validD(2 ))

moreover have valid0 :valid-unMultigraph (del-unEdge n1 w v ′ G)
using del-unEdge-valid ‹valid-unMultigraph G› by auto

moreover have edges G − {(n1 , w, v ′), (v ′, w, n1 )} ⊂ edges G
using ‹(n1 ,w,v ′)∈edges G› by auto

hence card (edges (del-unEdge n1 w v ′ G)) < card (edges G)
using ‹finite (edges G)› unfolding del-unEdge-def
by (metis (opaque-lifting, no-types) psubset-card-mono select-convs(2 ))
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moreover have finite (edges (del-unEdge n1 w v ′ G))
unfolding del-unEdge-def
by (metis (full-types) ‹finite (edges G)› finite-Diff select-convs(2 ))

moreover have finite (nodes (del-unEdge n1 w v ′ G))
unfolding del-unEdge-def by (metis ‹finite (nodes G)› select-convs(1 ))

moreover have nodes (del-unEdge n1 w v ′ G) 6= {}
by (metis (full-types) del-UnEdge-node empty-iff n1 (1 ))

ultimately obtain s t ps where
s: s∈nodes (del-unEdge n1 w v ′ G) odd (degree s (del-unEdge n1 w v ′ G))
and t:t∈nodes (del-unEdge n1 w v ′ G) odd (degree t (del-unEdge n1 w v ′

G))
and s 6= t
and s-ps-t: valid-unMultigraph.is-Eulerian-trail (del-unEdge n1 w v ′ G) s

ps t
using connected ′ less.hyps[of (del-unEdge n1 w v ′ G)] by auto

hence (s=n2∧t=v ′)∨(s=v ′∧t=n2 )
using odd-n2 odd-v ′ two-odds ‹finite (edges G)›‹valid-unMultigraph G›
by (metis (mono-tags) del-UnEdge-node empty-iff even-except-two even-n1

insert-iff
valid-unMultigraph.degree-frame)

moreover have s=n2=⇒t=v ′=⇒?thesis
by (metis ‹(n1 , w, v ′) ∈ edges G› ‹n1 6= n2 › ‹valid-unMultigraph G› n1 (1 )

n1 (2 ) n2 (1 ) n2 (2 )
s-ps-t valid0 valid-unMultigraph.euclerian-rev valid-unMultigraph.eulerian-cons)

moreover have s=v ′=⇒t=n2=⇒?thesis
by (metis ‹(n1 , w, v ′) ∈ edges G› ‹n1 6= n2 › ‹valid-unMultigraph G› n1 (1 )

n1 (2 ) n2 (1 ) n2 (2 )
s-ps-t valid-unMultigraph.eulerian-cons)

ultimately show ?thesis by auto
next

case False
assume v ′6=n2
assume not-conneted:¬valid-unMultigraph.connected (del-unEdge n1 w v ′ G)
have (v ′,w,n1 )∈edges G using ‹(n1 ,w,v ′)∈edges G›

by (metis ‹valid-unMultigraph G› valid-unMultigraph.corres)
have valid0 :valid-unMultigraph (del-unEdge n1 w v ′ G)

using ‹valid-unMultigraph G› del-unEdge-valid by auto
hence valid0 ′:valid-graph (del-unEdge n1 w v ′ G)

using valid-unMultigraph-def by auto
have even-n1 :even(degree n1 (del-unEdge n1 w v ′ G))

using valid-unMultigraph.del-UnEdge-even[OF ‹valid-unMultigraph G›
‹(n1 ,w,v ′)∈edges G›

‹finite (edges G)›] n1
unfolding odd-nodes-set-def by auto

moreover have odd-n2 :odd(degree n2 (del-unEdge n1 w v ′ G))
using ‹n1 6= n2 › ‹v ′ 6= n2 › n2 valid-unMultigraph.degree-frame[OF ‹valid-unMultigraph

G›
‹finite (edges G)›, of n2 n1 v ′ w]

by auto
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moreover have v ′6=n1
using valid-unMultigraph.no-id[OF ‹valid-unMultigraph G›] ‹(n1 ,w,v ′)∈edges

G› by auto
hence odd-v ′:odd(degree v ′ (del-unEdge n1 w v ′ G))

using ‹v ′ 6= n2 › even-except-two[of v ′]
valid-graph.E-validD(2 )[OF ‹valid-graph G› ‹(n1 , w, v ′) ∈ edges G›]
valid-unMultigraph.del-UnEdge-even ′[OF ‹valid-unMultigraph G› ‹(n1 , w,

v ′) ∈ edges G›
‹finite (edges G)› ]

unfolding odd-nodes-set-def by auto
ultimately have even-except-two ′:

∧
n. n∈nodes (del-unEdge n1 w v ′ G)=⇒

n 6=n2
=⇒ n 6=v ′=⇒ even(degree n (del-unEdge n1 w v ′ G))

using del-UnEdge-node[of - n1 w v ′ G] even-except-two valid-unMultigraph.degree-frame[OF
‹valid-unMultigraph G› ‹finite (edges G)›, of - n1 v ′ w]

by force
obtain G1 G2 where

G1-nodes: nodes G1={n. ∃ ps. valid-graph.is-path (del-unEdge n1 w v ′ G)
n ps n1}

and G1-edges: edges G1={(n,e,n ′). (n,e,n ′)∈edges (del-unEdge n1 w v ′ G)
∧ n∈nodes G1

∧ n ′∈nodes G1}
and G2-nodes:nodes G2={n. ∃ ps. valid-graph.is-path (del-unEdge n1 w v ′

G) n ps v ′}
and G2-edges:edges G2={(n,e,n ′). (n,e,n ′)∈edges (del-unEdge n1 w v ′ G)

∧ n∈nodes G2
∧ n ′∈nodes G2}

and G1-G2-edges-union:edges G1 ∪ edges G2 = edges (del-unEdge n1 w
v ′ G)

and edges G1 ∩ edges G2={}
and G1-G2-nodes-union:nodes G1 ∪ nodes G2=nodes (del-unEdge n1 w

v ′ G)
and nodes G1 ∩ nodes G2={}
and valid-unMultigraph G1
and valid-unMultigraph G2
and valid-unMultigraph.connected G1
and valid-unMultigraph.connected G2

using valid-unMultigraph.connectivity-split[OF ‹valid-unMultigraph G›
‹valid-unMultigraph.connected G› not-conneted ‹(n1 ,w,v ′)∈edges G›]

.
have n2∈nodes G2 using extend-distinct-path

proof −
have finite (edges (del-unEdge n1 w v ′ G))

unfolding del-unEdge-def using ‹finite (edges G)› by auto
moreover have num-of-odd-nodes (del-unEdge n1 w v ′ G) = 2

by (metis ‹(n1 , w, v ′) ∈ edges G› ‹(v ′, w, n1 ) ∈ edges G› ‹num-of-odd-nodes
G = 2 ›

‹v ′ 6= n2 › ‹valid-graph G› del-UnEdge-even-odd delete-edge-sym
even-except-two
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‹finite (edges G)› ‹finite (nodes G)› ‹valid-unMultigraph G›
n1 (2 ) valid-graph.E-validD(2 ) valid-unMultigraph.no-id)

ultimately have ∃ ps. valid-unMultigraph.is-trail (del-unEdge n1 w v ′ G)
n2 ps v ′

using valid-unMultigraph.path-between-odds[OF valid0 ,of n2 v ′,OF odd-n2
odd-v ′] ‹v ′6=n2 ›

by auto
hence ∃ ps. valid-graph.is-path (del-unEdge n1 w v ′ G) n2 ps v ′

by (metis valid0 valid-unMultigraph.is-trail-intro)
thus ?thesis using G2-nodes by auto

qed
have v ′∈nodes G2

proof −
have valid-graph.is-path (del-unEdge n1 w v ′ G) v ′ [] v ′

by (metis (full-types) ‹(n1 , w, v ′) ∈ edges G› ‹valid-graph G› del-UnEdge-node
valid0 ′ valid-graph.E-validD(2 ) valid-graph.is-path-simps(1 ))

thus ?thesis by (metis (lifting) G2-nodes mem-Collect-eq)
qed

have edges-subset:edges (del-unEdge n1 w v ′ G) ⊂ edges G
using ‹(n1 ,w,v ′)∈edges G› ‹(v ′,w,n1 )∈edges G›
unfolding del-unEdge-def by auto

hence card (edges G1 ) < card (edges G)
by (metis G1-G2-edges-union inf-sup-absorb ‹finite (edges G)› less-infI2

psubset-card-mono)
moreover have finite (edges G1 )
by (metis (full-types) G1-G2-edges-union edges-subset finite-Un finite-subset

‹finite (edges G)› less-imp-le)
moreover have finite (nodes G1 )

using G1-G2-nodes-union ‹finite (nodes G)›
unfolding del-unEdge-def
by (metis (full-types) finite-Un select-convs(1 ))

moreover have n1∈nodes G1
proof −

have valid-graph.is-path (del-unEdge n1 w v ′ G) n1 [] n1
by (metis (full-types) del-UnEdge-node n1 (1 ) valid0 ′ valid-graph.is-path-simps(1 ))
thus ?thesis by (metis (lifting) G1-nodes mem-Collect-eq)

qed
moreover hence nodes G1 6= {} by auto
moreover have num-of-odd-nodes G1 = 0

proof −
have ∀n∈nodes G1 . even(degree n (del-unEdge n1 w v ′ G))
using even-except-two ′ odd-v ′ odd-n2 ‹n2∈nodes G2 › ‹nodes G1 ∩ nodes

G2 = {}›
‹v ′∈nodes G2 ›

by (metis (full-types) G1-G2-nodes-union Un-iff disjoint-iff-not-equal)
moreover have valid-graph G2

using ‹valid-unMultigraph G2 › valid-unMultigraph-def
by auto

ultimately have ∀n∈nodes G1 . even(degree n G1 )
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using sub-graph-degree-frame[of G2 G1 del-unEdge n1 w v ′ G]
by (metis G1-G2-edges-union ‹nodes G1 ∩ nodes G2 = {}›)

thus ?thesis unfolding num-of-odd-nodes-def odd-nodes-set-def
by (metis (lifting) card-eq-0-iff empty-Collect-eq)

qed
ultimately obtain ps1 where ps1 :valid-unMultigraph.is-Eulerian-trail G1

n1 ps1 n1
using ‹valid-unMultigraph G1 › ‹valid-unMultigraph.connected G1 › less.hyps[of

G1 ]
by (metis valid-unMultigraph.is-Eulerian-circuit-def )

have card (edges G2 ) < card (edges G)
by (metis G1-G2-edges-union ‹finite (edges G)› edges-subset inf-sup-absorb

less-infI2
psubset-card-mono sup-commute)

moreover have finite (edges G2 )
by (metis (full-types) G1-G2-edges-union edges-subset finite-Un ‹finite (edges

G)› less-le
rev-finite-subset)

moreover have finite (nodes G2 )
by (metis (mono-tags) G1-G2-nodes-union del-UnEdge-node le-sup-iff ‹finite

(nodes G)›
rev-finite-subset subsetI )

moreover have nodes G2 6= {} using ‹v ′∈nodes G2 › by auto
moreover have num-of-odd-nodes G2 = 2

proof −
have ∀n∈nodes G2 . n /∈{n2 ,v ′}−→even(degree n (del-unEdge n1 w v ′ G))

using even-except-two ′

by (metis (full-types) G1-G2-nodes-union Un-iff insert-iff )
moreover have valid-graph G1

using ‹valid-unMultigraph G1 › valid-unMultigraph-def by auto
ultimately have ∀n∈nodes G2 . n /∈{n2 ,v ′}−→even(degree n G2 )

using sub-graph-degree-frame[of G1 G2 del-unEdge n1 w v ′ G]
by (metis G1-G2-edges-union Int-commute Un-commute ‹nodes G1 ∩

nodes G2 = {}›)
hence ∀n∈nodes G2 . n /∈{n2 ,v ′}−→n /∈{v ∈ nodes G2 . odd (degree v G2 )}

by (metis (lifting) mem-Collect-eq)
moreover have odd(degree n2 G2 )

using sub-graph-degree-frame[of G1 G2 del-unEdge n1 w v ′ G]
by (metis (opaque-lifting, no-types) G1-G2-edges-union ‹nodes G1 ∩

nodes G2 = {}›
‹valid-graph G1 › ‹n2 ∈ nodes G2 › inf-assoc inf-bot-right inf-sup-absorb

odd-n2 sup-bot-right sup-commute)
hence n2∈{v ∈ nodes G2 . odd (degree v G2 )}

by (metis (lifting) ‹n2 ∈ nodes G2 › mem-Collect-eq)
moreover have odd(degree v ′ G2 )

using sub-graph-degree-frame[of G1 G2 del-unEdge n1 w v ′ G]
by (metis G1-G2-edges-union Int-commute Un-commute ‹nodes G1 ∩

nodes G2 = {}›
‹v ′ ∈ nodes G2 › ‹valid-graph G1 › odd-v ′)

67



hence v ′∈{v ∈ nodes G2 . odd (degree v G2 )}
by (metis (full-types) Collect-conj-eq Collect-mem-eq Int-Collect ‹v ′ ∈

nodes G2 ›)
ultimately have {v ∈ nodes G2 . odd (degree v G2 )}={n2 ,v ′}

using ‹finite (nodes G2 )› by (induct G2 ,auto)
thus ?thesis using ‹v ′6=n2 ›

unfolding num-of-odd-nodes-def odd-nodes-set-def by auto
qed

ultimately obtain s t ps2 where
s: s∈nodes G2 odd (degree s G2 )
and t:t∈nodes G2 odd (degree t G2 )
and s 6= t
and s-ps2-t: valid-unMultigraph.is-Eulerian-trail G2 s ps2 t

using ‹valid-unMultigraph G2 › ‹valid-unMultigraph.connected G2 › less.hyps[of
G2 ]

by auto
moreover have valid-graph G1

using ‹valid-unMultigraph G1 › valid-unMultigraph-def by auto
ultimately have (s=n2∧t=v ′)∨(s=v ′∧t=n2 )

using odd-n2 odd-v ′ even-except-two ′

sub-graph-degree-frame[of G1 G2 (del-unEdge n1 w v ′ G)]
by (metis G1-G2-edges-union G1-G2-nodes-union UnI1 ‹nodes G1 ∩ nodes

G2 = {}› inf-commute
sup.commute)

moreover have merge-G1-G2 :(|nodes = nodes G1 ∪ nodes G2 , edges = edges
G1 ∪ edges G2 ∪

{(n1 , w,v ′),(v ′, w, n1 )}|)=G
proof −

have edges (del-unEdge n1 w v ′ G) ∪ {(n1 , w, v ′),(v ′, w, n1 )} =edges G
using ‹(n1 ,w,v ′)∈edges G› ‹(v ′,w,n1 )∈edges G›
unfolding del-unEdge-def by auto

moreover have nodes (del-unEdge n1 w v ′ G)=nodes G
unfolding del-unEdge-def by auto

ultimately have (|nodes = nodes (del-unEdge n1 w v ′ G), edges =
edges (del-unEdge n1 w v ′ G) ∪ {(n1 , w, v ′), (v ′, w, n1 )}|)=G

by auto
moreover have (|nodes = nodes G1 ∪ nodes G2 , edges = edges G1 ∪

edges G2 ∪
{(n1 , w, v ′),(v ′, w, n1 )}|)=(|nodes = nodes (del-unEdge n1 w v ′ G),edges
= edges (del-unEdge n1 w v ′ G) ∪ {(n1 , w, v ′), (v ′, w, n1 )}|)

by (metis G1-G2-edges-union G1-G2-nodes-union)
ultimately show ?thesis by auto

qed
moreover have s=n2=⇒t=v ′=⇒?thesis
using eulerian-split[of G1 G2 n1 ps1 n1 v ′ (rev-path ps2 ) n2 w] merge-G1-G2

by (metis ‹edges G1 ∩ edges G2 = {}› ‹n1 6= n2 › ‹nodes G1 ∩ nodes G2
= {}›

‹valid-unMultigraph G1 › ‹valid-unMultigraph G2 › n1 (1 ) n1 (2 ) n2 (1 )
n2 (2 ) ps1 s-ps2-t
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valid-unMultigraph.euclerian-rev)
moreover have s=v ′=⇒t=n2=⇒?thesis

using eulerian-split[of G1 G2 n1 ps1 n1 v ′ ps2 n2 w] merge-G1-G2
by (metis ‹edges G1 ∩ edges G2 = {}› ‹n1 6= n2 › ‹nodes G1 ∩ nodes G2

= {}›
‹valid-unMultigraph G1 › ‹valid-unMultigraph G2 › n1 (1 ) n1 (2 ) n2 (1 )

n2 (2 ) ps1 s-ps2-t)
ultimately show ?thesis by auto

qed
ultimately show ∃ v∈nodes G. ∃ v ′∈nodes G.∃ ps. odd (degree v G) ∧ odd (degree

v ′ G) ∧ v 6= v ′

∧ valid-unMultigraph.is-Eulerian-trail G v ps v ′

by auto
next

case less
assume finite (edges G) and finite (nodes G) and valid-unMultigraph G and

nodes G 6={}
and valid-unMultigraph.connected G and num-of-odd-nodes G = 0

show ∀ v∈nodes G. ∃ ps. valid-unMultigraph.is-Eulerian-circuit G v ps v
proof (rule,cases card (nodes G)=1 )

fix v assume v∈nodes G
assume card (nodes G) = 1
hence nodes G={v}

using ‹v ∈ nodes G› card-Suc-eq[of nodes G 0 ] empty-iff insert-iff [of - v]
by auto

have edges G={}
proof (rule ccontr)

assume edges G 6= {}
then obtain e1 e2 e3 where e:(e1 ,e2 ,e3 )∈edges G by (metis ex-in-conv

prod-cases3 )
hence e1=e3 using ‹nodes G={v}›

by (metis (opaque-lifting, no-types) append-Nil2 valid-unMultigraph.is-trail-rev
valid-unMultigraph.is-trail.simps(1 ) ‹valid-unMultigraph G› singletonE

valid-unMultigraph.is-trail-split valid-unMultigraph.singleton-distinct-path)
thus False by (metis e ‹valid-unMultigraph G› valid-unMultigraph.no-id)

qed
hence valid-unMultigraph.is-Eulerian-circuit G v [] v
by (metis ‹nodes G = {v}› insert-subset ‹valid-unMultigraph G› rem-unPath.simps(1 )

subsetI valid-unMultigraph.is-trail.simps(1 )
valid-unMultigraph.is-Eulerian-circuit-def
valid-unMultigraph.is-Eulerian-trail-def )

thus ∃ ps. valid-unMultigraph.is-Eulerian-circuit G v ps v by auto
next

fix v assume v∈nodes G
assume card (nodes G) 6= 1
moreover have card (nodes G) 6=0 using ‹nodes G 6={}›

by (metis card-eq-0-iff ‹finite (nodes G)›)
ultimately have card (nodes G) ≥2 by auto
then obtain n where card (nodes G) = Suc (Suc n)
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by (metis le-iff-add add-2-eq-Suc)
hence ∃n∈nodes G. n 6=v by (auto dest!: card-eq-SucD)
then obtain v ′ w where (v,w,v ′)∈edges G

proof −
assume pre:

∧
w v ′. (v, w, v ′) ∈ edges G =⇒ thesis

assume ∃n∈nodes G. n 6= v
then obtain ps where ps:∃ v ′. valid-graph.is-path G v ps v ′ ∧ ps 6=Nil

using valid-unMultigraph-def
by (metis (full-types) ‹v ∈ nodes G› ‹valid-unMultigraph G› valid-graph.is-path.simps(1 )

‹valid-unMultigraph.connected G› valid-unMultigraph.connected-def )
then obtain v0 w v ′ where ∃ ps ′. ps=Cons (v0 ,w,v ′) ps ′ by (metis

neq-Nil-conv prod-cases3 )
hence v0=v

using valid-unMultigraph-def
by (metis ‹valid-unMultigraph G› ps valid-graph.is-path.simps(2 ))

hence (v,w,v ′)∈edges G
using valid-unMultigraph-def
by (metis ‹∃ ps ′. ps = (v0 , w, v ′) # ps ′› ‹valid-unMultigraph G› ps

valid-graph.is-path.simps(2 ))
thus ?thesis by (metis pre)

qed
have all-even:∀ x∈nodes G. even(degree x G)

using ‹finite (nodes G)› ‹num-of-odd-nodes G = 0 ›
unfolding num-of-odd-nodes-def odd-nodes-set-def by auto

have odd-v: odd (degree v (del-unEdge v w v ′ G))
using ‹v ∈ nodes G› all-even valid-unMultigraph.del-UnEdge-even[OF

‹valid-unMultigraph G›
‹(v, w, v ′) ∈ edges G› ‹finite (edges G)›]

unfolding odd-nodes-set-def by auto
have odd-v ′: odd (degree v ′ (del-unEdge v w v ′ G))
using valid-unMultigraph.del-UnEdge-even ′[OF ‹valid-unMultigraph G› ‹(v,

w, v ′) ∈ edges G›
‹finite (edges G)›]

all-even valid-graph.E-validD(2 )[OF - ‹(v, w, v ′) ∈ edges G›]
‹valid-unMultigraph G›

unfolding valid-unMultigraph-def odd-nodes-set-def
by auto

have valid-unMulti:valid-unMultigraph (del-unEdge v w v ′ G)
by (metis del-unEdge-valid ‹valid-unMultigraph G›)

moreover have valid-graph: valid-graph (del-unEdge v w v ′ G)
using valid-unMultigraph-def del-undirected
by (metis ‹valid-unMultigraph G› delete-edge-valid)

moreover have fin-E ′: finite(edges (del-unEdge v w v ′ G))
using ‹finite(edges G)› unfolding del-unEdge-def by auto

moreover have fin-V ′: finite(nodes (del-unEdge v w v ′ G))
using ‹finite(nodes G)› unfolding del-unEdge-def by auto

moreover have less-card:card(edges (del-unEdge v w v ′ G))<card(edges G)
unfolding del-unEdge-def using ‹(v,w,v ′)∈edges G›
by (metis Diff-insert2 card-Diff2-less ‹finite (edges G)› ‹valid-unMultigraph
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G›
select-convs(2 ) valid-unMultigraph.corres)

moreover have num-of-odd-nodes (del-unEdge v w v ′ G) = 2
using ‹valid-unMultigraph G› ‹num-of-odd-nodes G = 0 › ‹v ∈ nodes G›

all-even
del-UnEdge-even-even[OF ‹valid-unMultigraph G› ‹finite (edges G)› ‹finite

(nodes G)›
‹(v, w, v ′) ∈ edges G›] valid-graph.E-validD(2 )[OF - ‹(v, w, v ′) ∈ edges

G›]
unfolding valid-unMultigraph-def
by auto

moreover have valid-unMultigraph.connected (del-unEdge v w v ′ G)
using ‹finite (edges G)› ‹finite (nodes G)› ‹valid-unMultigraph G›

‹valid-unMultigraph.connected G›
by (metis ‹(v, w, v ′) ∈ edges G› all-even valid-unMultigraph.del-unEdge-even-connectivity)
moreover have nodes(del-unEdge v w v ′ G) 6={}

by (metis ‹v ∈ nodes G› del-UnEdge-node emptyE)
ultimately obtain n1 n2 ps where

n1-n2 :
n1∈nodes (del-unEdge v w v ′ G)
n2∈nodes (del-unEdge v w v ′ G)
odd (degree n1 (del-unEdge v w v ′ G))
odd (degree n2 (del-unEdge v w v ′ G))
n1 6=n2
and
ps-eulerian:
valid-unMultigraph.is-Eulerian-trail (del-unEdge v w v ′ G) n1 ps n2

by (metis ‹num-of-odd-nodes (del-unEdge v w v ′ G) = 2 › less.hyps(1 ))
have n1=v=⇒n2=v ′=⇒valid-unMultigraph.is-Eulerian-circuit G v (ps@[(v ′,w,v)])

v
using ps-eulerian
by (metis ‹(v, w, v ′) ∈ edges G› delete-edge-sym ‹valid-unMultigraph G›

valid-unMultigraph.corres valid-unMultigraph.eulerian-cons ′

valid-unMultigraph.is-Eulerian-circuit-def )
moreover have n1=v ′=⇒n2=v=⇒∃ ps. valid-unMultigraph.is-Eulerian-circuit

G v ps v
by (metis ‹(v, w, v ′) ∈ edges G› ‹valid-unMultigraph G› ps-eulerian
valid-unMultigraph.eulerian-cons valid-unMultigraph.is-Eulerian-circuit-def )

moreover have (n1=v∧n2=v ′)∨(n2=v∧n1=v ′)
by (metis (mono-tags) all-even del-UnEdge-node insert-iff ‹finite (edges G)›

‹valid-unMultigraph G› n1-n2 (1 ) n1-n2 (2 ) n1-n2 (3 ) n1-n2 (4 ) n1-n2 (5 )
singletonE

valid-unMultigraph.degree-frame)
ultimately show ∃ ps. valid-unMultigraph.is-Eulerian-circuit G v ps v by

auto
qed

qed
end
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theory FriendshipTheory
imports MoreGraph HOL−Number-Theory.Number-Theory

begin

10 Common steps
definition (in valid-unSimpGraph) non-adj :: ′v ⇒ ′v ⇒ bool where

non-adj v v ′ ≡ v∈V ∧ v ′∈V ∧ v 6=v ′ ∧ ¬adjacent v v ′

lemma (in valid-unSimpGraph) no-quad:
assumes

∧
v u. v∈V =⇒ u∈V =⇒ v 6=u =⇒ ∃ ! n. adjacent v n ∧ adjacent u n

shows ¬ (∃ v1 v2 v3 v4 . v2 6=v4 ∧ v1 6=v3 ∧ adjacent v1 v2 ∧ adjacent v2 v3 ∧
adjacent v3 v4

∧ adjacent v4 v1 )
proof

assume ∃ v1 v2 v3 v4 . v2 6=v4 ∧ v1 6=v3 ∧ adjacent v1 v2 ∧ adjacent v2 v3 ∧
adjacent v3 v4 ∧ adjacent v4 v1

then obtain v1 v2 v3 v4 where
v2 6=v4 v1 6=v3 adjacent v1 v2 adjacent v2 v3 adjacent v3 v4 adjacent v4 v1
by auto

hence ∃ !n. adjacent v1 n ∧ adjacent v3 n using assms[of v1 v3 ] by auto
thus False

by (metis ‹adjacent v1 v2 › ‹adjacent v2 v3 › ‹adjacent v3 v4 › ‹adjacent v4 v1 ›
‹v2 6= v4 ›

adjacent-sym)
qed

lemma even-card-set:
assumes finite A and ∀ x∈A. f x∈A ∧ f x 6= x ∧ f (f x)=x
shows even(card A) using assms

proof (induct card A arbitrary:A rule:less-induct)
case less
have A={}=⇒?case by auto
moreover have A 6={}=⇒?case

proof −
assume A 6={}
then obtain x where x∈A by auto
hence f x∈A and f x 6=x by (metis less.prems(2 ))+
obtain B where B:B=A−{x,f x} by auto
hence finite B using ‹finite A› by auto
moreover have card B<card A using B ‹finite A›

by (metis Diff-insert ‹f x ∈ A› ‹x ∈ A› card-Diff2-less)
moreover have ∀ x∈B. f x ∈ B ∧ f x 6= x ∧ f (f x) = x

proof
fix y assume y∈B
hence y∈A using B by auto
hence f y 6=y and f (f y)=y by (metis less.prems(2 ))+
moreover have f y∈B
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proof (rule ccontr)
assume f y /∈B
have f y∈A by (metis ‹y ∈ A› less.prems(2 ))
hence f y∈{x, f x} by (metis B DiffI ‹f y /∈ B›)
moreover have f y=x =⇒ False

by (metis B Diff-iff Diff-insert2 ‹f (f y) = y› ‹y ∈ B› singleton-iff )
moreover have f y= f x=⇒ False

by (metis B Diff-iff ‹x ∈ A› ‹y ∈ B› insertCI less.prems(2 ))
ultimately show False by auto

qed
ultimately show f y ∈ B ∧ f y 6= y ∧ f (f y) = y by auto

qed
ultimately have even (card B) by (metis (full-types) less.hyps)
moreover have {x,f x}⊆A using ‹f x∈A› ‹x∈A› by auto
moreover have card {x, f x} = 2 using ‹f x 6=x› by auto
ultimately show ?case using B ‹finite A› card-mono [of A {x, f x}]

by (simp add: card-Diff-subset)
qed

ultimately show ?case by metis
qed

lemma (in valid-unSimpGraph) even-degree:
assumes friend-assm:

∧
v u. v∈V =⇒ u∈V =⇒ v 6=u =⇒ ∃ ! n. adjacent v n ∧

adjacent u n
and finite E

shows ∀ v∈V . even(degree v G)
proof

fix v assume v∈V
obtain f where f :f = (λn. (SOME v ′. n∈V −→n 6=v−→adjacent n v ′ ∧ adjacent

v v ′)) by auto
have

∧
n. n∈V −→ n 6=v −→ (∃ v ′. adjacent n v ′ ∧ adjacent v v ′)

proof (rule,rule)
fix n assume n ∈ V n 6= v
hence ∃ !v ′. adjacent n v ′ ∧ adjacent v v ′

using friend-assm[of n v] ‹v∈V › unfolding non-adj-def by auto
thus ∃ v ′. adjacent n v ′ ∧ adjacent v v ′ by auto

qed
hence f-ex:

∧
n. (∃ v ′. n∈V −→ n 6=v −→ adjacent n v ′ ∧ adjacent v v ′) by auto

have ∀ x∈{n. adjacent v n}. f x∈{n. adjacent v n} ∧ f x 6= x ∧ f (f x)=x
proof

fix x assume x ∈ {n. adjacent v n}
hence adjacent v x by auto
have f x∈{n. adjacent v n}

using someI-ex[OF f-ex,of x]
by (metis ‹adjacent v x› adjacent-V (2 ) adjacent-no-loop f mem-Collect-eq)

moreover have f x 6=x
using someI-ex[OF f-ex,of x]
by (metis ‹adjacent v x› adjacent-V (2 ) adjacent-no-loop f )

moreover have f (f x)=x
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proof (rule ccontr)
assume f (f x)6=x
have adjacent (f x) (f (f x))

using someI-ex[OF f-ex,of f x]
by (metis (full-types) adjacent-V (2 ) adjacent-no-loop calculation(1 ) f

mem-Collect-eq)
moreover have adjacent (f (f x)) v

using someI-ex[OF f-ex,of f x] by (metis adjacent-V (1 ) adjacent-sym
calculation f )

moreover have adjacent x (f x)
using someI-ex[OF f-ex ,of x] by (metis ‹adjacent v x› adjacent-V (2 )

adjacent-no-loop f )
moreover have v 6=f x

by (metis ‹f x ∈ {n. adjacent v n}› adjacent-no-loop mem-Collect-eq)
ultimately show False

using no-quad[OF friend-assm] using ‹adjacent v x› ‹f (f x) 6=x›
by metis

qed
ultimately show f x ∈ {n. adjacent v n} ∧ f x 6= x ∧ f (f x) = x by auto

qed
moreover have finite {n. adjacent v n} by (metis adjacent-finite assms(2 ))
ultimately have even (card {n. adjacent v n})

using even-card-set[of {n. adjacent v n} f ] by auto
thus even(degree v G) by (metis assms(2 ) degree-adjacent)

qed

lemma (in valid-unSimpGraph) degree-two-windmill:
assumes friend-assm:

∧
v u. v∈V =⇒ u∈V =⇒ v 6=u =⇒ ∃ ! n. adjacent v n ∧

adjacent u n
and finite E and card V≥2

shows (∃ v∈V . degree v G = 2 ) ←→(∃ v. ∀n∈V . n 6=v −→ adjacent v n)
proof

assume ∃ v∈V . degree v G = 2
then obtain v where degree v G=2 by auto
hence card {n. adjacent v n}=2 using degree-adjacent[OF ‹finite E›,of v] by

auto
then obtain v1 v2 where v1v2 :{n. adjacent v n}={v1 ,v2} and v1 6=v2

proof −
obtain v1 S where {n. adjacent v n} = insert v1 S and v1 /∈ S and card

S = 1
using ‹card {n. adjacent v n}=2 › card-Suc-eq[of {n. adjacent v n} 1 ] by

auto
then obtain v2 where S=insert v2 {}

using card-Suc-eq[of S 0 ] by auto
hence {n. adjacent v n}={v1 ,v2} and v1 6=v2

using ‹{n. adjacent v n} = insert v1 S› ‹v1 /∈ S› by auto
thus ?thesis using that[of v1 v2 ] by auto

qed
have adjacent v1 v2
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proof −
obtain n where adjacent v n adjacent v1 n using friend-assm[of v v1 ]

by (metis (full-types) adjacent-V (2 ) adjacent-sym insertI1 mem-Collect-eq
v1v2 )

hence n∈{n. adjacent v n} by auto
moreover have n 6=v1 by (metis ‹adjacent v1 n› adjacent-no-loop)
ultimately have n=v2 using v1v2 by auto
thus ?thesis by (metis ‹adjacent v1 n›)

qed
have v1v2-adj:∀ x∈V . x∈{n. adjacent v1 n} ∪ {n. adjacent v2 n}

proof
fix x assume x∈V
have x=v =⇒ x ∈ {n. adjacent v1 n} ∪ {n. adjacent v2 n}

by (metis Un-iff adjacent-sym insertI1 mem-Collect-eq v1v2 )
moreover have x 6=v =⇒ x ∈ {n. adjacent v1 n} ∪ {n. adjacent v2 n}

proof −
assume x 6=v
then obtain y where adjacent v y adjacent x y

using friend-assm[of v x]
by (metis Collect-empty-eq ‹x ∈ V › adjacent-V (1 ) all-not-in-conv insertCI

v1v2 )
hence y=v1 ∨ y=v2 using v1v2 by auto
thus x ∈ {n. adjacent v1 n} ∪ {n. adjacent v2 n} using ‹adjacent x y›

by (metis UnI1 UnI2 adjacent-sym mem-Collect-eq)
qed

ultimately show x ∈ {n. adjacent v1 n} ∪ {n. adjacent v2 n} by auto
qed

have {n. adjacent v1 n}−{v2 ,v}={} =⇒ ∃ v. ∀n∈V . n 6= v −→ adjacent v n
proof (rule exI [of - v2 ],rule,rule)

fix n assume v1-adj:{n. adjacent v1 n} − {v2 , v} = {} and n ∈ V and n
6= v2

have n∈{n. adjacent v2 n}
proof (cases n=v)

case True
show ?thesis by (metis True adjacent-sym insertI1 insert-commute

mem-Collect-eq v1v2 )
next

case False
have n /∈{n. adjacent v1 n} by (metis DiffI False ‹n 6= v2 › empty-iff

insert-iff v1-adj)
thus ?thesis by (metis Un-iff ‹n ∈ V › v1v2-adj)

qed
thus adjacent v2 n by auto

qed
moreover have {n. adjacent v2 n}−{v1 ,v}={} =⇒ ∃ v. ∀n∈V . n 6= v −→

adjacent v n
proof (rule exI [of - v1 ],rule,rule)

fix n assume v2-adj:{n. adjacent v2 n} − {v1 , v} = {} and n ∈ V and n
6= v1
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have n∈{n. adjacent v1 n}
proof (cases n=v)

case True
show ?thesis by (metis True adjacent-sym insertI1 mem-Collect-eq v1v2 )

next
case False

have n /∈{n. adjacent v2 n} by (metis DiffI False ‹n 6= v1 › empty-iff
insert-iff v2-adj)

thus ?thesis by (metis Un-iff ‹n ∈ V › v1v2-adj)
qed

thus adjacent v1 n by auto
qed

moreover have {n. adjacent v1 n}−{v2 ,v}6={} =⇒ {n. adjacent v2 n}−{v1 ,v}6={}
=⇒False

proof −
assume {n. adjacent v1 n} − {v2 , v} 6= {} {n. adjacent v2 n} − {v1 , v} 6=

{}
then obtain a b where a:a∈{n. adjacent v1 n} − {v2 , v}

and b:b∈{n. adjacent v2 n} − {v1 , v}
by auto

have a=b =⇒ False
proof −

assume a=b
have adjacent v1 a using a by auto
moreover have adjacent a v2 using b ‹a=b› adjacent-sym by auto

moreover have a 6=v by (metis DiffD2 ‹a = b› b doubleton-eq-iff insertI1 )
moreover have adjacent v2 v

by (metis (full-types) adjacent-sym inf-sup-aci(5 ) insertI1 insert-is-Un
mem-Collect-eq

v1v2 )
moreover have adjacent v v1 by (metis (full-types) insertI1 mem-Collect-eq

v1v2 )
ultimately show False using no-quad[OF friend-assm]

using ‹v1 6=v2 › by auto
qed

moreover have a 6=b=⇒False
proof −

assume a 6=b
moreover have a∈V using a by (metis DiffD1 adjacent-V (2 ) mem-Collect-eq)
moreover have b∈V using b by (metis DiffD1 adjacent-V (2 ) mem-Collect-eq)

ultimately obtain c where adjacent a c adjacent b c
using friend-assm[of a b] by auto

hence c∈{n. adjacent v1 n} ∪ {n. adjacent v2 n}
by (metis (full-types) adjacent-V (2 ) v1v2-adj)

moreover have c∈{n. adjacent v1 n} =⇒ False
proof −

assume c∈{n. adjacent v1 n}
hence adjacent v1 c by auto
moreover have adjacent c b by (metis ‹adjacent b c› adjacent-sym)
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moreover have adjacent b v2
by (metis (full-types) Diff-iff adjacent-sym b mem-Collect-eq)

moreover have adjacent v2 v1 by (metis ‹adjacent v1 v2 › adjacent-sym)
moreover have c 6=v2

proof (rule ccontr)
assume ¬ c 6= v2
hence c=v2 by auto
hence adjacent v2 a by (metis ‹adjacent a c› adjacent-sym)
moreover have adjacent v2 v

by (metis adjacent-sym insert-iff mem-Collect-eq v1v2 )
moreover have adjacent v1 v

using adjacent-sym v1v2 by auto
moreover have adjacent v1 a by (metis (full-types) Diff-iff a

mem-Collect-eq)
ultimately have a=v using friend-assm[of v1 v2 ]

by (metis ‹v1 6= v2 › adjacent-V (1 ))
thus False using a by auto

qed
moreover have b 6=v1 by (metis DiffD2 b insertI1 )
ultimately show False using no-quad[OF friend-assm] by auto

qed
moreover have c∈{n. adjacent v2 n} =⇒ False

proof −
assume c∈{n. adjacent v2 n}
hence adjacent c v2 by (metis adjacent-sym mem-Collect-eq)
moreover have adjacent a c using ‹adjacent a c› .

moreover have adjacent v1 a by (metis (full-types) Diff-iff a
mem-Collect-eq)

moreover have adjacent v2 v1 by (metis ‹adjacent v1 v2 › adjacent-sym)
moreover have c 6=v1

proof (rule ccontr)
assume ¬ c 6= v1
hence c=v1 by auto
hence adjacent v1 b by (metis ‹adjacent b c› adjacent-sym)
moreover have adjacent v2 v

by (metis adjacent-sym insert-iff mem-Collect-eq v1v2 )
moreover have adjacent v1 v

using adjacent-sym v1v2 by auto
moreover have adjacent v2 b by (metis Diff-iff b mem-Collect-eq)
ultimately have b=v using friend-assm[of v1 v2 ]

by (metis ‹v1 6= v2 › adjacent-V (1 ))
thus False using b by auto

qed
moreover have a 6=v2 by (metis DiffD2 a insertI1 )
ultimately show False using no-quad[OF friend-assm] by auto

qed
ultimately show False by auto

qed
ultimately show False by auto
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qed
ultimately show ∃ v. ∀n∈V . n 6= v −→ adjacent v n by auto

next
assume ∃ v. ∀n∈V . n 6= v −→ adjacent v n
then obtain v where v:∀n∈V . n 6= v −→ adjacent v n by auto
obtain v1 where v1∈V v1 6=v

proof (cases v∈V )
case False
have V 6={} using ‹2≤card V › by auto
then obtain v1 where v1∈V by auto
thus ?thesis using False that[of v1 ] by auto

next
case True
then obtain S where V = insert v S v /∈ S

using mk-disjoint-insert[OF True] by auto
moreover have finite V using ‹2≤card V ›

by (metis add-leE card.infinite not-one-le-zero numeral-Bit0 numeral-One)
ultimately have 1≤card S

using ‹2≤card V › card.insert[of S v] finite-insert[of v S ] by auto
hence S 6={} by auto
then obtain v1 where v1∈S by auto
hence v1 6=v using ‹v /∈S› by auto
thus thesis using that[of v1 ] ‹v1∈S› ‹V=insert v S› by auto

qed
hence v∈V using v by (metis adjacent-V (1 ))
then obtain v2 where adjacent v1 v2 adjacent v v2 using friend-assm[of v v1 ]

by (metis ‹v1 ∈ V › ‹v1 6= v›)
have degree v1 G 6=2 =⇒ False

proof −
assume degree v1 G 6=2
hence card {n. adjacent v1 n}6=2 by (metis assms(2 ) degree-adjacent)
have {v,v2} ⊆ {n. adjacent v1 n}

by (metis ‹ adjacent v1 v2 › ‹ v1 ∈ V › ‹ v1 6= v › adjacent-sym bot-least
insert-subset

mem-Collect-eq v)
moreover have v 6=v2 using ‹adjacent v v2 › adjacent-no-loop by auto
hence card {v,v2} = 2 by auto
ultimately have card {n. adjacent v1 n} ≥2

using adjacent-finite[OF ‹finite E›, of v1 ] by (metis card-mono)
hence card {n. adjacent v1 n} ≥3 using ‹card {n. adjacent v1 n}6=2 › by

auto
then obtain v3 where v3∈{n. adjacent v1 n} and v3 /∈{v,v2}

using ‹{v,v2} ⊆ {n. adjacent v1 n}› ‹card {v, v2} = 2 ›
by (metis ‹card {n. adjacent v1 n} 6= 2 › subsetI subset-antisym)

hence adjacent v1 v3 by auto
moreover have adjacent v3 v using v

by (metis ‹v3 /∈ {v, v2}› adjacent-V (2 ) adjacent-sym calculation insertCI )
moreover have adjacent v v2 using ‹adjacent v v2 › .
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moreover have adjacent v2 v1 using ‹adjacent v1 v2 › adjacent-sym by auto
moreover have v1 6=v using ‹v1 6= v› .

moreover have v3 6=v2 by (metis ‹v3 /∈ {v, v2}› insert-subset subset-insertI )
ultimately show False using no-quad[OF friend-assm] by auto

qed
thus ∃ v∈V . degree v G = 2 using ‹v1∈V › by auto

qed

lemma (in valid-unSimpGraph) regular :
assumes friend-assm:

∧
v u. v∈V =⇒ u∈V =⇒ v 6=u =⇒ ∃ ! n. adjacent v n ∧

adjacent u n
and finite E and finite V and ¬(∃ v∈V . degree v G = 2 )

shows ∃ k. ∀ v∈V . degree v G = k
proof −

{ fix v u assume non-adj v u
obtain v-adj where v-adj:v-adj={n. adjacent v n} by auto
obtain u-adj where u-adj:u-adj={n. adjacent u n} by auto

obtain f where f :f = (λn. (SOME v ′. n∈V −→n 6=u−→adjacent n v ′ ∧ adjacent
u v ′)) by auto

have
∧

n. n∈V −→ n 6=u −→ (∃ v ′. adjacent n v ′ ∧ adjacent u v ′)
proof (rule,rule)

fix n assume n ∈ V n 6= u
hence ∃ !v ′. adjacent n v ′ ∧ adjacent u v ′

using friend-assm[of n u] ‹non-adj v u› unfolding non-adj-def by auto
thus ∃ v ′. adjacent n v ′ ∧ adjacent u v ′ by auto

qed
hence f-ex:

∧
n. (∃ v ′. n∈V −→ n 6=u −→ adjacent n v ′ ∧ adjacent u v ′) by

auto
obtain v-adj-u where v-adj-u:v-adj-u= f ‘ v-adj by auto
have finite u-adj using u-adj adjacent-finite[OF ‹finite E›] by auto
have finite v-adj using v-adj adjacent-finite[OF ‹finite E›] by auto
hence finite v-adj-u using v-adj-u adjacent-finite[OF ‹finite E›] by auto
have inj-on f v-adj unfolding inj-on-def

proof (rule ccontr)
assume ¬ (∀ x∈v-adj. ∀ y∈v-adj. f x = f y −→ x = y)
then obtain x y where x∈v-adj y∈v-adj f x=f y x 6=y by auto
have x∈V by (metis ‹x ∈ v-adj› adjacent-V (2 ) mem-Collect-eq v-adj)
moreover have x 6=u by (metis ‹non-adj v u› ‹x ∈ v-adj› mem-Collect-eq

non-adj-def v-adj)
ultimately have adjacent (f x) u and adjacent x (f x)

using someI-ex[OF f-ex[of x]] adjacent-sym by (metis f )+
hence f x 6= v by (metis ‹non-adj v u› non-adj-def )
have y∈V by (metis ‹y ∈ v-adj› adjacent-V (2 ) mem-Collect-eq v-adj)
moreover have y 6=u by (metis ‹non-adj v u› ‹y ∈ v-adj› mem-Collect-eq

non-adj-def v-adj)
ultimately have adjacent y (f y) using someI-ex[OF f-ex[of y]] by (metis

f )
hence x 6= y ∧ v 6= f x ∧ adjacent v x ∧ adjacent x (f x) ∧ adjacent (f x) y
∧ adjacent y v
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using ‹x∈v-adj› ‹y∈v-adj› ‹f x=f y› ‹x 6=y› ‹adjacent x (f x)› v-adj
adjacent-sym ‹f x 6= v›

by auto
thus False using no-quad[OF friend-assm] by auto

qed
then have card v-adj =card v-adj-u by (metis card-image v-adj-u)
moreover have v-adj-u ⊆ u-adj

proof
fix x assume x∈v-adj-u
then obtain y where y∈v-adj

and x = (SOME v ′. y ∈ V −→ y 6= u −→ adjacent y v ′ ∧ adjacent u v ′)
using f image-def v-adj-u by auto

hence y ∈ V −→ y 6= u −→ adjacent y x ∧ adjacent u x using someI-ex[OF
f-ex[of y]]

by auto
moreover have y∈V by (metis ‹y ∈ v-adj› adjacent-V (2 ) mem-Collect-eq

v-adj)
moreover have y 6=u by (metis ‹non-adj v u› ‹y ∈ v-adj› mem-Collect-eq

non-adj-def v-adj)
ultimately have adjacent u x by auto
thus x∈u-adj unfolding u-adj by auto

qed
moreover have card v-adj=degree v G using degree-adjacent[OF ‹finite E›,

of v] v-adj by auto
moreover have card u-adj=degree u G using degree-adjacent[OF ‹finite E›,

of u] u-adj by auto
ultimately have degree v G ≤ degree u G using ‹finite u-adj›

by (metis ‹inj-on f v-adj› card-inj-on-le v-adj-u) }
hence non-adj-degree:

∧
v u. non-adj v u =⇒ degree v G = degree u G

by (metis adjacent-sym antisym non-adj-def )
have card V=3 =⇒ ?thesis

proof
assume card V=3
then obtain v1 v2 v3 where V={v1 ,v2 ,v3} v1 6=v2 v2 6=v3 v1 6=v3

proof −
obtain v1 S1 where VS1 :V = insert v1 S1 and v1 /∈ S1 and card S1

= 2
using card-Suc-eq[of V 2 ] ‹card V=3 › by auto

then obtain v2 S2 where S1S2 :S1 = insert v2 S2 and v2 /∈ S2 and
card S2 = 1

using card-Suc-eq[of S1 1 ] by auto
then obtain v3 where S2={v3}

using card-Suc-eq[of S2 0 ] by auto
hence V={v1 ,v2 ,v3} using VS1 S1S2 by auto
moreover have v1 6=v2 v2 6=v3 v1 6=v3using VS1 S1S2 ‹v1 /∈S1 › ‹v2 /∈S2 ›

‹S2={v3}› by auto
ultimately show ?thesis using that by auto

qed
obtain n where adjacent v1 n adjacent v2 n
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using friend-assm[of v1 v2 ] by (metis ‹V = {v1 , v2 , v3}› ‹v1 6= v2 › insertI1
insertI2 )

moreover hence n=v3
using ‹V = {v1 , v2 , v3}› adjacent-V (2 ) adjacent-no-loop
by (metis (mono-tags) empty-iff insertE)

moreover obtain n ′ where adjacent v2 n ′ adjacent v3 n ′

using friend-assm[of v2 v3 ] by (metis ‹V = {v1 , v2 , v3}› ‹v2 6= v3 › insertI1
insertI2 )

moreover hence n ′=v1
using ‹V = {v1 , v2 , v3}› adjacent-V (2 ) adjacent-no-loop
by (metis (mono-tags) empty-iff insertE)

ultimately have adjacent v1 v2 and adjacent v2 v3 and adjacent v3 v1
using adjacent-sym by auto

have degree v1 G=2
proof −

have v2∈{n. adjacent v1 n} and v3∈{n. adjacent v1 n} and v1 /∈{n.
adjacent v1 n}

using ‹adjacent v1 v2 › ‹adjacent v3 v1 › adjacent-sym
by (auto,metis adjacent-no-loop)

hence {n. adjacent v1 n}={v2 ,v3} using ‹V={v1 ,v2 ,v3}› by auto
thus ?thesis using degree-adjacent[OF ‹finite E›,of v1 ] ‹v2 6=v3 › by auto

qed
moreover have degree v2 G=2

proof −
have v1∈{n. adjacent v2 n} and v3∈{n. adjacent v2 n} and v2 /∈{n.

adjacent v2 n}
using ‹adjacent v1 v2 › ‹adjacent v2 v3 › adjacent-sym
by (auto,metis adjacent-no-loop)

hence {n. adjacent v2 n}={v1 ,v3} using ‹V={v1 ,v2 ,v3}› by force
thus ?thesis using degree-adjacent[OF ‹finite E›,of v2 ] ‹v1 6=v3 › by auto

qed
moreover have degree v3 G=2

proof −
have v1∈{n. adjacent v3 n} and v2∈{n. adjacent v3 n} and v3 /∈{n.

adjacent v3 n}
using ‹adjacent v3 v1 › ‹adjacent v2 v3 › adjacent-sym
by (auto,metis adjacent-no-loop)

hence {n. adjacent v3 n}={v1 ,v2} using ‹V={v1 ,v2 ,v3}› by force
thus ?thesis using degree-adjacent[OF ‹finite E›,of v3 ] ‹v1 6=v2 › by auto

qed
ultimately show ∀ v∈V . degree v G = 2 using ‹V={v1 ,v2 ,v3}› by auto

qed
moreover have card V=2 =⇒ False

proof −
assume card V=2
obtain v1 v2 where V={v1 ,v2} v1 6=v2

proof −
obtain v1 S1 where VS1 :V = insert v1 S1 and v1 /∈ S1 and card S1
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= 1
using card-Suc-eq[of V 1 ] ‹card V=2 › by auto

then obtain v2 where S1={v2}
using card-Suc-eq[of S1 0 ] by auto

hence V={v1 ,v2} using VS1 by auto
moreover have v1 6=v2 using ‹v1 /∈S1 › ‹S1={v2}› by auto
ultimately show ?thesis using that by auto

qed
then obtain v3 where adjacent v1 v3 adjacent v2 v3

using friend-assm[of v1 v2 ] by auto
hence v3 6=v2 and v3 6=v1 by (metis adjacent-no-loop)+
hence v3 /∈V using ‹V={v1 ,v2}› by auto
thus False using ‹adjacent v1 v3 › by (metis (full-types) adjacent-V (2 ))

qed
moreover have card V=1 =⇒ ?thesis

proof
assume card V=1
then obtain v1 where V={v1} using card-eq-SucD[of V 0 ] by auto
have E={}

proof (rule ccontr)
assume E 6={}
then obtain x1 x2 x3 where x:(x1 ,x2 ,x3 )∈E by auto
hence x1=v1 and x3=v1 using ‹V={v1}› E-validD by auto
thus False using no-id x by auto

qed
hence degree v1 G=0 unfolding degree-def by auto
thus ∀ v∈V . degree v G =0 using ‹V={v1}›by auto

qed
moreover have card V=0 =⇒ ?thesis

proof −
assume card V=0
hence V={} using ‹finite V › by auto
thus ?thesis by auto

qed
moreover have card V ≥4 =⇒ ¬(∃ v u. non-adj v u) =⇒ False

proof −
assume ¬(∃ v u. non-adj v u) card V≥4
hence non-non-adj:

∧
v u. v /∈V ∨ u /∈V ∨ v=u ∨ adjacent v u unfolding

non-adj-def by auto
obtain v1 v2 v3 v4 where v1∈V v2∈V v3∈V v4∈V v1 6=v2 v1 6=v3 v1 6=v4

v2 6=v3 v2 6=v4 v3 6=v4
proof −

obtain v1 B1 where V = insert v1 B1 v1 /∈ B1 card B1 ≥3
using ‹card V≥4 › card-le-Suc-iff [of 3 V ] by auto

then obtain v2 B2 where B1 = insert v2 B2 v2 /∈ B2 card B2 ≥2
using card-le-Suc-iff [of 2 B1 ] by auto

then obtain v3 B3 where B2= insert v3 B3 v3 /∈B3 card B3≥1
using card-le-Suc-iff [of 1 B2 ] by auto

then obtain v4 B4 where B3=insert v4 B4 v4 /∈B4
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using card-le-Suc-iff [of 0 B3 ] by auto
have v1∈V by (metis ‹V = insert v1 B1 › insert-subset order-refl)
moreover have v2∈V

by (metis ‹B1 = insert v2 B2 › ‹V = insert v1 B1 › insert-subset
subset-insertI )

moreover have v3∈V
by (metis ‹B1 = insert v2 B2 › ‹B2 = insert v3 B3 › ‹V = insert v1 B1 ›

insert-iff )
moreover have v4∈V

by (metis ‹B1 = insert v2 B2 › ‹B2 = insert v3 B3 › ‹B3 = insert v4
B4 ›

‹V = insert v1 B1 › insert-iff )
moreover have v1 6=v2

by (metis (full-types) ‹B1 = insert v2 B2 › ‹v1 /∈ B1 › insertI1 )
moreover have v1 6=v3
by (metis ‹B1 = insert v2 B2 › ‹B2 = insert v3 B3 › ‹v1 /∈ B1 › insert-iff )
moreover have v1 6=v4

by (metis ‹B1 = insert v2 B2 › ‹B2 = insert v3 B3 › ‹B3 = insert v4
B4 › ‹v1 /∈ B1 ›

insert-iff )
moreover have v2 6=v3

by (metis (full-types) ‹B2 = insert v3 B3 › ‹v2 /∈ B2 › insertI1 )
moreover have v2 6=v4
by (metis ‹B2 = insert v3 B3 › ‹B3 = insert v4 B4 › ‹v2 /∈ B2 › insert-iff )
moreover have v3 6=v4

by (metis (full-types) ‹B3 = insert v4 B4 › ‹v3 /∈ B3 › insertI1 )
ultimately show ?thesis using that by auto

qed
hence adjacent v1 v2 using non-non-adj by auto
moreover have adjacent v2 v3 using non-non-adj by (metis ‹v2 ∈ V › ‹v2

6= v3 › ‹v3 ∈ V ›)
moreover have adjacent v3 v4 using non-non-adj by (metis ‹v3 ∈ V › ‹v3

6= v4 › ‹v4 ∈ V ›)
moreover have adjacent v4 v1 using non-non-adj by (metis ‹v1 ∈ V › ‹v1

6= v4 › ‹v4 ∈ V ›)
ultimately show False using no-quad[OF friend-assm]

by (metis ‹v1 6= v3 › ‹v2 6= v4 ›)
qed

moreover have card V≥4 =⇒ (∃ v u. non-adj v u) =⇒ ?thesis
proof −

assume (∃ v u. non-adj v u) card V≥4
then obtain v u where non-adj v u by auto
then obtain w where adjacent v w and adjacent u w

and unique:∀n. adjacent v n ∧ adjacent u n −→ n=w
using friend-assm[of v u] unfolding non-adj-def by auto

have ∀n∈V . degree n G = degree v G
proof

fix n assume n∈V
moreover have n=v =⇒ degree n G = degree v G by auto
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moreover have n=u =⇒ degree n G = degree v G
using non-adj-degree ‹non-adj v u› by auto

moreover have n 6=v =⇒ n 6=u =⇒ n 6=w =⇒ degree n G = degree v G
proof −

assume n 6=v n 6=u n 6=w
have non-adj v n =⇒ degree n G = degree v G by (metis non-adj-degree)

moreover have non-adj u n =⇒ degree n G = degree v G
by (metis ‹non-adj v u› non-adj-degree)
moreover have ¬non-adj u n =⇒ ¬non-adj v n =⇒ degree n G =

degree v G
by (metis ‹n ∈ V › ‹n 6= w› ‹non-adj v u› non-adj-def unique)

ultimately show degree n G = degree v G by auto
qed

moreover have n=w =⇒ degree n G = degree v G
proof −

assume n=w
moreover have ¬(∃ v. ∀n∈V . n 6=v −→ adjacent v n)
using ‹card V≥4 › degree-two-windmill assms(2 ) assms(4 ) friend-assm

by auto
ultimately obtain w1 where w1∈V w1 6=w non-adj w w1

by (metis ‹n∈V › non-adj-def )
have w1=v =⇒ degree n G = degree v G

by (metis ‹n = w› ‹non-adj w w1 › non-adj-degree)
moreover have w1=u =⇒ degree n G = degree v G

by (metis ‹adjacent u w› ‹non-adj w w1 › adjacent-sym non-adj-def )
moreover have w1 6=u =⇒ w1 6=v =⇒ degree n G = degree v G

by (metis ‹n = w› ‹non-adj v u› ‹non-adj w w1 › non-adj-def
non-adj-degree unique)

ultimately show degree n G = degree v G by auto
qed

ultimately show degree n G = degree v G by auto
qed

thus ?thesis by auto
qed

ultimately show ?thesis by force
qed

11 Exclusive steps for combinatorial proofs
fun (in valid-unSimpGraph) adj-path:: ′v ⇒ ′v list ⇒bool where

adj-path v [] = (v∈V )
| adj-path v (u#us)= (adjacent v u ∧ adj-path u us)

lemma (in valid-unSimpGraph) adj-path-butlast:
adj-path v ps =⇒ adj-path v (butlast ps)

by (induct ps arbitrary:v,auto)

lemma (in valid-unSimpGraph) adj-path-V :
adj-path v ps =⇒ set ps ⊆ V
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by (induct ps arbitrary:v, auto)

lemma (in valid-unSimpGraph) adj-path-V ′:
adj-path v ps =⇒ v∈ V

by (induct ps arbitrary:v, auto)

lemma (in valid-unSimpGraph) adj-path-app:
adj-path v ps =⇒ ps 6=[] =⇒ adjacent (last ps) u =⇒ adj-path v (ps@[u])

proof (induct ps arbitrary:v)
case Nil
thus ?case by auto

next
case (Cons x xs)
thus ?case by (cases xs,auto)

qed

lemma (in valid-unSimpGraph) adj-path-app ′:
adj-path v (ps @ [q] ) =⇒ ps 6= [] =⇒ adjacent (last ps) q

proof (induct ps arbitrary:v)
case Nil
thus ?case by auto

next
case (Cons x xs)
thus ?case by (cases xs,auto)

qed

lemma card-partition ′:
assumes ∀ v∈A. card {n. R v n} = k k>0 finite A
∀ v1 v2 . v1 6=v2 −→ {n. R v1 n} ∩ {n. R v2 n}={}

shows card (
⋃

v∈A. {n. R v n}) = k ∗ card A
proof −

have
∧

C . C ∈ (λx. {n. R x n}) ‘ A =⇒ card C = k
proof −

fix C assume C ∈ (λx. {n. R x n}) ‘ A
show card C=k by (metis (mono-tags) ‹C ∈ (λx. {n. R x n}) ‘ A› assms(1 )

imageE)
qed

moreover have
∧

C1 C2 . C1 ∈(λx. {n. R x n}) ‘ A =⇒ C2 ∈ (λx. {n. R x
n}) ‘ A =⇒ C1 6= C2

=⇒ C1 ∩ C2 = {}
proof −

fix C1 C2 assume C1 ∈ (λx. {n. R x n}) ‘ A C2 ∈ (λx. {n. R x n}) ‘ A
C1 6= C2

obtain v1 where v1∈A C1={n. R v1 n} by (metis ‹C1 ∈ (λx. {n. R x n})
‘ A› imageE)

obtain v2 where v2∈A C2={n. R v2 n} by (metis ‹C2 ∈ (λx. {n. R x n})
‘ A› imageE)

have v1 6=v2 by (metis ‹C1 = {n. R v1 n}› ‹C1 6= C2 › ‹C2 = {n. R v2 n}›)
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thus C1 ∩ C2 ={} by (metis ‹C1 = {n. R v1 n}› ‹C2 = {n. R v2 n}›
assms(4 ))

qed
moreover have

⋃
((λx. {n. R x n}) ‘ A) = (

⋃
x∈A. {n. R x n}) by auto

moreover have finite ((λx. {n. R x n}) ‘ A ) by (metis assms(3 ) finite-imageI )
moreover have finite (

⋃
((λx. {n. R x n}) ‘ A)) by (metis (full-types) assms(1 )

assms(2 ) assms(3 ) card-eq-0-iff finite-UN-I less-nat-zero-code)
moreover have card A = card ((λx. {n. R x n}) ‘ A)

proof −
have inj-on (λx. {n. R x n}) A unfolding inj-on-def

using ‹∀ v1 v2 . v1 6=v2 −→ {n. R v1 n} ∩ {n. R v2 n}={}›
by (metis assms(1 ) assms(2 ) card.empty inf .idem less-le)

thus ?thesis by (metis card-image)
qed

ultimately show ?thesis using card-partition[of (λx. {n. R x n}) ‘ A] by auto
qed

lemma (in valid-unSimpGraph) path-count:
assumes k-adj:

∧
v. v∈V =⇒ card {n. adjacent v n} = k and v∈V and finite

V and k>0
shows card {ps. length ps=l ∧ adj-path v ps}=k^l

proof (induct l rule:nat.induct)
case zero
have {ps. length ps=0 ∧ adj-path v ps}={[]} using ‹v∈V › by auto
thus ?case by auto

next
case (Suc n)
obtain ext where ext: ext=(λps ps ′. ps ′6=[] ∧ (butlast ps ′=ps) ∧ adj-path v ps ′)

by auto
have ∀ ps∈{ps. length ps = n ∧ adj-path v ps}. card {ps ′. ext ps ps ′} = k

proof
fix ps assume ps∈{ps. length ps = n ∧ adj-path v ps}
hence adj-path v ps and length ps = n by auto
obtain qs where qs:qs = {n. if ps=[] then adjacent v n else adjacent (last

ps) n} by auto
hence card qs = k

proof (cases ps=[])
case True
thus ?thesis using qs k-adj[OF ‹v∈V ›] by auto

next
case False

have last ps ∈ V using adj-path-V by (metis False ‹adj-path v ps›
last-in-set subsetD)

thus ?thesis using k-adj[of last ps] False qs by auto
qed

obtain app where app:app=(λq. ps@[q]) by auto
have app ‘ qs = {ps ′. ext ps ps ′}

proof −
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have
∧

xs. xs∈ app ‘ qs =⇒ xs ∈ {ps ′. ext ps ps ′}
proof (rule,cases ps=[])

case True
fix xs assume xs∈ app ‘ qs
then obtain q where q∈ qs app q=xs by (metis imageE)
hence adjacent v q and xs=ps@[q] using qs app True by auto
hence adj-path v xs

by (metis True adj-path.simps(1 ) adj-path.simps(2 ) adjacent-V (2 )
append-Nil)

moreover have butlast xs = ps using ‹xs=ps@[q]› by auto
ultimately show ext ps xs using ext ‹xs=ps@[q]› by auto

next
case False
fix xs assume xs∈ app ‘ qs
then obtain q where q∈ qs app q=xs by (metis imageE)
hence adjacent (last ps) q using qs app False by auto

hence adj-path v (ps@[q]) using ‹adj-path v ps› False adj-path-app by
auto

hence adj-path v xs by (metis ‹app q = xs› app)
moreover have butlast xs=ps by (metis ‹app q = xs› app butlast-snoc)
ultimately show ext ps xs by (metis False butlast.simps(1 ) ext)

qed
moreover have

∧
xs. xs∈{ps ′. ext ps ps ′} =⇒ xs∈ app ‘ qs

proof (cases ps=[])
case True
hence qs = {n. adjacent v n } using qs by auto
fix xs assume xs ∈ {ps ′. ext ps ps ′}
hence xs 6=[] and (butlast xs=ps) and adj-path v xs using ext by auto
thus xs ∈ app ‘ qs

using True app ‹qs = {n. adjacent v n}›
by (metis adj-path.simps(2 ) append-butlast-last-id append-self-conv2

image-iff
mem-Collect-eq)

next
case False
fix xs assume xs ∈ {ps ′. ext ps ps ′}
hence xs 6=[] and (butlast xs=ps) and adj-path v xs using ext by auto
then obtain q where xs=ps@[q] by (metis append-butlast-last-id)

hence adjacent (last ps) q using ‹adj-path v xs› False adj-path-app ′ by
auto

thus xs ∈ app ‘ qs using qs
by (metis (lifting, full-types) False ‹xs = ps @ [q]› app imageI

mem-Collect-eq)
qed

ultimately show ?thesis by auto
qed

moreover have inj-on app qs using app unfolding inj-on-def by auto
ultimately show card {ps ′. ext ps ps ′}=k by (metis ‹card qs = k› card-image)
qed
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moreover have ∀ ps1 ps2 . ps1 6=ps2 −→ {n. ext ps1 n} ∩ {n. ext ps2 n}={}
using ext by auto

moreover have finite {ps. length ps = n ∧ adj-path v ps}
using Suc.hyps assms by (auto intro: card-ge-0-finite)

ultimately have card (
⋃

v∈{ps. length ps = n ∧ adj-path v ps}. {n. ext v n})
= k ∗ card {ps. length ps = n ∧ adj-path v ps}

using card-partition ′[of {ps. length ps = n ∧ adj-path v ps} ext k] ‹k>0 › by
auto

moreover have {ps. length ps = n+1 ∧ adj-path v ps}
=(

⋃
ps∈{ps. length ps = n ∧ adj-path v ps}. {ps ′. ext ps ps ′})

proof −
have

∧
xs. xs ∈ {ps. length ps = n + 1 ∧ adj-path v ps} =⇒

xs ∈ (
⋃

ps∈{ps. length ps = n ∧ adj-path v ps}. {ps ′. ext ps ps ′})
proof −

fix xs assume xs ∈ {ps. length ps = n + 1 ∧ adj-path v ps}
hence length xs = n +1 and adj-path v xs by auto
hence butlast xs ∈{ps. length ps = n ∧ adj-path v ps}

using adj-path-butlast length-butlast mem-Collect-eq by auto
thus xs ∈ (

⋃
ps∈{ps. length ps = n ∧ adj-path v ps}. {ps ′. ext ps ps ′})

using ‹adj-path v xs› ‹length xs = n + 1 › UN-iff ext length-greater-0-conv

mem-Collect-eq
by auto

qed
moreover have

∧
xs . xs∈(

⋃
ps∈{ps. length ps = n ∧ adj-path v ps}. {ps ′.

ext ps ps ′}) =⇒
xs ∈ {ps. length ps = n + 1 ∧ adj-path v ps}

proof −
fix xs assume xs∈(

⋃
ps∈{ps. length ps = n ∧ adj-path v ps}. {ps ′. ext ps

ps ′})
then obtain ys where length ys=n adj-path v ys ext ys xs by auto
hence length xs=n+1 using ext by auto
thus xs∈{ps. length ps = n + 1 ∧ adj-path v ps}

by (metis (lifting, full-types) ‹ext ys xs› ext mem-Collect-eq)
qed

ultimately show ?thesis by fast
qed

ultimately show card {ps. length ps = (Suc n) ∧ adj-path v ps} = k ^ (Suc n)
using Suc.hyps by auto

qed

lemma (in valid-unSimpGraph) total-v-num:
assumes friend-assm:

∧
v u. v∈V =⇒ u∈V =⇒ v 6=u =⇒ ∃ ! n. adjacent v n ∧

adjacent u n
and finite E and finite V and V 6={} and ∀ v∈V . degree v G = k and k>0

shows card V= k∗k − k +1
proof −

have k-adj:
∧

v. v∈V=⇒card ({n. adjacent v n})=k by (metis assms(2 ) assms(5 )
degree-adjacent)
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obtain v where v∈V using ‹V 6={}› by auto
obtain l2-eq-v where l2-eq-v: l2-eq-v={ps. length ps=2 ∧ adj-path v ps ∧ last

ps=v} by auto
have card l2-eq-v=k

proof −
obtain hds where hds:hds= hd‘ l2-eq-v by auto
moreover have hds={n. adjacent v n}

proof −
have

∧
x. x∈hds =⇒ x∈ {n. adjacent v n}

proof
fix x assume x∈hds
then obtain ps where hd ps=x length ps=2 adj-path v ps last ps=v

using hds l2-eq-v by auto
thus adjacent v x

by (metis (full-types) adj-path.simps(2 ) list.sel(1 ) length-0-conv
neq-Nil-conv

zero-neq-numeral)
qed

moreover have
∧

x. x∈{n. adjacent v n} =⇒ x∈hds
proof −

fix x assume x∈{n. adjacent v n}
obtain ps where ps=[x,v] by auto
hence hd ps=x and length ps=2 and adj-path v ps and last ps=v

using ‹x∈{n. adjacent v n}› adjacent-sym by auto
thus x∈hds by (metis (lifting, mono-tags) hds image-eqI l2-eq-v

mem-Collect-eq)
qed

ultimately show hds={n. adjacent v n} by auto
qed

moreover have inj-on hd l2-eq-v unfolding inj-on-def
proof (rule+)

fix x y assume x ∈ l2-eq-v y ∈ l2-eq-v hd x = hd y
hence length x=2 and last x=last y and length y=2

using l2-eq-v by auto
hence x!1=y!1

using last-conv-nth[of x] last-conv-nth[of y] by force
moreover have x!0=y!0

using ‹hd x=hd y› ‹length x=2 › ‹length y=2 ›
by(metis hd-conv-nth length-greater-0-conv)

ultimately show x=y using ‹length x=2 › ‹length y=2 ›
using nth-equalityI [of x y]
by (metis One-nat-def less-2-cases)

qed
ultimately show card l2-eq-v=k using k-adj[OF ‹v∈V ›] by (metis card-image)
qed

obtain l2-neq-v where l2-neq-v:l2-neq-v={ps. length ps=2 ∧ adj-path v ps ∧ last
ps 6=v} by auto

have card l2-neq-v = k∗k−k
proof −
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obtain l2-v where l2-v:l2-v={ps. length ps=2∧ adj-path v ps} by auto
hence card l2-v=k∗k using path-count[OF k-adj,of v 2 ] ‹0<k› ‹finite V ›

‹v∈V ›
by (simp add: power2-eq-square)

hence finite l2-v using ‹k>0 › by (metis card.infinite mult-is-0 neq0-conv)
moreover have l2-v=l2-neq-v ∪ l2-eq-v using l2-v l2-neq-v l2-eq-v by auto
moreover have l2-neq-v ∩ l2-eq-v ={} using l2-neq-v l2-eq-v by auto
ultimately have card l2-neq-v = card l2-v − card l2-eq-v

by (metis Int-commute Nat.add-0-right Un-commute card-Diff-subset-Int
card-Un-Int

card-gt-0-iff diff-add-inverse finite-Diff finite-Un inf-sup-absorb
less-nat-zero-code)

thus card l2-neq-v = k∗k−k using ‹card l2-eq-v=k› using ‹card l2-v=k∗k›
by auto

qed
moreover have bij-betw last l2-neq-v {n. n∈V ∧ n 6=v}

proof −
have last ‘ l2-neq-v = {n. n∈V ∧ n 6=v}

proof −
have

∧
x. x∈ last‘ l2-neq-v =⇒ x∈{n. n∈V ∧ n 6=v}

proof
fix x assume x∈last‘ l2-neq-v

then obtain ps where length ps = 2 adj-path v ps last ps=x last ps 6=v
using l2-neq-v by auto

hence (last ps)∈V
by (metis (full-types) adj-path-V last-in-set length-0-conv rev-subsetD

zero-neq-numeral)
thus x ∈ V ∧ x 6= v using ‹last ps=x› ‹last ps 6=v› by auto

qed
moreover have

∧
x. x∈{n. n∈V ∧ n 6=v} =⇒ x∈ last‘ l2-neq-v

proof −
fix x assume x:x ∈ {n ∈ V . n 6= v}
then obtain y where adjacent v y adjacent x y

using friend-assm[of v x] ‹v∈V › by auto
hence adj-path v [y,x] using adjacent-sym[of x y]by auto
hence [y,x]∈l2-neq-v using l2-neq-v x by auto
thus x∈ last‘ l2-neq-v by (metis imageI last.simps not-Cons-self2 )

qed
ultimately show ?thesis by fast

qed
moreover have inj-on last l2-neq-v unfolding inj-on-def

proof (rule,rule,rule)
fix x y assume x ∈ l2-neq-v y ∈ l2-neq-v last x = last y
hence length x=2 and adj-path v x and last x 6=v and length y=2 and

adj-path v y
and last y 6=v

using l2-neq-v by auto
obtain x1 x2 y1 y2 where x:x=[x1 ,x2 ] and y:y=[y1 ,y2 ]

proof −
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{ fix l assume length l=2
obtain h1 t where l=h1#t and length t=1

using ‹length l=2 › Suc-length-conv[of 1 l] by auto
then obtain h2 where t=[h2 ]

using Suc-length-conv[of 0 t] by auto
have ∃ h1 h2 . l=[h1 ,h2 ] using ‹l=h1#t› ‹t=[h2 ]› by auto }

thus ?thesis using that ‹length x=2 › ‹length y=2 › by metis
qed

hence x2 6=v and y2 6=v using ‹last x 6=v› ‹last y 6=v› by auto
moreover have adjacent v x1 and adjacent x2 x1 and x2∈V

using ‹adj-path v x› x adjacent-sym by auto
moreover have adjacent v y1 and adjacent y2 y1 and y2∈V

using ‹adj-path v y› y adjacent-sym by auto
ultimately have x1=y1 using friend-assm ‹v∈V ›

by (metis ‹last x = last y› last-ConsL last-ConsR not-Cons-self2 x y)
thus x=y using x y ‹last x = last y› by auto

qed
ultimately show ?thesis unfolding bij-betw-def by auto

qed
hence card l2-neq-v = card {n. n∈V ∧ n 6=v} by (metis bij-betw-same-card)
ultimately have card {n. n∈V ∧ n 6=v}=k∗k−k by auto
moreover have card V = card {n. n∈V∧n 6=v} + card {v}

proof −
have V={n. n∈V ∧ n 6=v} ∪ {v} using ‹v∈V › by auto
moreover have {n. n∈V ∧ n 6=v} ∩ {v}={} by auto
ultimately show ?thesis

using ‹finite V › card-Un-disjoint[of {n ∈ V . n 6= v} {v}] finite-Un
by auto

qed
ultimately show card V = k∗k−k+1 by auto

qed

lemma rotate-eq:rotate1 xs=rotate1 ys =⇒ xs=ys
proof (induct xs arbitrary:ys)

case Nil
thus ?case by (metis rotate1-is-Nil-conv)

next
case (Cons n ns)
hence ys 6=[] by (metis list.distinct(1 ) rotate1-is-Nil-conv)
thus ?case using Cons by (metis butlast-snoc last-snoc list.exhaust rotate1 .simps(2 ))

qed

lemma rotate-diff :rotate m xs=rotate n xs =⇒rotate (m−n) xs = xs
proof (induct m arbitrary:n)

case 0
thus ?case by auto

next
case (Suc m ′)
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hence n=0 =⇒ ?case by auto
moreover have n 6=0 =⇒?case

proof −
assume n 6=0
then obtain n ′ where n ′: n = Suc n ′ by (metis nat.exhaust)
hence rotate m ′ xs = rotate n ′ xs

using ‹rotate (Suc m ′) xs = rotate n xs› rotate-eq rotate-Suc
by auto

hence rotate (m ′ − n ′) xs = xs by (metis Suc.hyps)
moreover have Suc m ′ − n = m ′−n ′

by (metis n ′ diff-Suc-Suc)
ultimately show ?case by auto

qed
ultimately show ?case by fast

qed

lemma (in valid-unSimpGraph) exist-degree-two:
assumes friend-assm:

∧
v u. v∈V =⇒ u∈V =⇒ v 6=u =⇒ ∃ ! n. adjacent v n ∧

adjacent u n
and finite E and finite V and card V≥2

shows ∃ v∈V . degree v G = 2
proof (rule ccontr)

assume ¬ (∃ v∈V . degree v G = 2 )
hence

∧
v. v∈V =⇒ degree v G 6=2 by auto

obtain k where k-adj:
∧

v. v∈V=⇒ card {n. adjacent v n}=k using regular [OF
friend-assm]

by (metis ‹¬ (∃ v∈V . degree v G = 2 )› assms(2 ) assms(3 ) degree-adjacent)
have k≥4

proof −
obtain v1 v2 where v1∈V v2∈V v1 6=v2

using ‹card V≥2 › by (metis ‹¬(∃ v∈V . degree v G = 2 )› assms(2 ) de-
gree-two-windmill)

have k 6=0
proof

assume k=0
obtain v3 where adjacent v1 v3 using friend-assm[OF ‹v1∈V › ‹v2∈V ›

‹v1 6=v2 ›] by auto
hence card {n. adjacent v1 n} 6= 0 using adjacent-finite[OF ‹finite E›]

by auto
moreover have card {n. adjacent v1 n} = 0 using k-adj[OF ‹v1∈V ›]

by (metis ‹k = 0 ›)
ultimately show False by simp

qed
moreover have even k using even-degree[OF friend-assm]

by (metis ‹v1 ∈ V › assms(2 ) degree-adjacent k-adj)
hence k 6=1 and k 6=3 by auto
moreover have k 6=2 using ‹

∧
v. v∈V =⇒ degree v G 6=2 › degree-adjacent

k-adj
by (metis ‹v1 ∈ V › assms(2 ))
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ultimately show ?thesis by auto
qed

obtain T where T :T=(λl::nat. {ps. length ps = l+1 ∧ adj-path (hd ps) (tl ps)})
by auto

have T-count:
∧

l::nat. card (T l) = (k∗k−k+1 )∗k^l using card-partition ′

proof −
fix l::nat

obtain ext where ext:ext=(λv ps. adj-path v (tl ps) ∧ hd ps=v ∧ length
ps=l+1 ) by auto

have ∀ v∈V . card {ps. ext v ps} = k^l
proof

fix v assume v ∈ V
have

∧
ps. ps∈tl ‘ {ps. ext v ps} =⇒ ps∈{ps. length ps=l ∧ adj-path v ps}

proof −
fix ps assume ps ∈ tl ‘ {ps. ext v ps}

then obtain ps ′ where adj-path v (tl ps ′) hd ps ′=v length ps ′=l+1
ps=tl ps ′

using ext by auto
hence adj-path v ps and length ps=l by auto
thus ps∈{ps. length ps=l ∧ adj-path v ps} by auto

qed
moreover have

∧
ps. ps∈{ps. length ps=l ∧ adj-path v ps} =⇒ ps∈ tl ‘

{ps. ext v ps}
proof −

fix ps assume ps ∈ {ps. length ps = l ∧ adj-path v ps}
hence length ps=l and adj-path v ps by auto
moreover obtain ps ′ where ps ′=v#ps by auto
ultimately have adj-path v (tl ps ′) and hd ps ′=v and length ps ′=l+1

by auto
thus ps ∈ tl ‘ {ps. ext v ps}

by (metis ‹ps ′ = v # ps› ext imageI mem-Collect-eq list.sel(3 ))
qed

ultimately have tl ‘ {ps. ext v ps} = {ps. length ps=l ∧ adj-path v ps}
by fast

moreover have inj-on tl {ps. ext v ps} unfolding inj-on-def
proof (rule,rule,rule)

fix x y assume x ∈ Collect (ext v) y ∈ Collect (ext v) tl x = tl y
hence hd x=hd y and x 6=[] and y 6=[]using ext by auto
thus x=y using ‹tl x= tl y› by (metis list.sel(1 ,3 ) list.exhaust)

qed
moreover have card {ps. length ps=l ∧ adj-path v ps} = k^l

using path-count[OF k-adj,of v l] ‹4 ≤ k› ‹v ∈ V › assms(3 )
by auto

ultimately show card {ps. ext v ps} = k ^ l by (metis card-image)
qed

moreover have ∀ v1 v2 . v1 6= v2 −→ {n. ext v1 n} ∩ {n. ext v2 n} = {}
using ext by auto

moreover have (
⋃

v∈V . {n. ext v n})=T l
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proof −
have

∧
ps. ps∈(

⋃
v∈V . {n. ext v n}) =⇒ ps∈T l using T

proof −
fix ps assume ps∈(

⋃
v∈V . {n. ext v n})

then obtain v where v∈V adj-path v (tl ps) hd ps = v length ps = l
+ 1

using ext by auto
hence length ps = l + 1 and adj-path (hd ps) (tl ps) by auto
thus ps∈T l using T by auto

qed
moreover have

∧
ps. ps∈T l =⇒ ps∈(

⋃
v∈V . {n. ext v n})

proof −
fix ps assume ps∈T l

hence length ps = l + 1 and adj-path (hd ps) (tl ps) using T by auto
moreover then obtain v where v=hd ps v∈V

by (metis adj-path.simps(1 ) adj-path.simps(2 ) adjacent-V (1 )
list.exhaust)

ultimately show ps∈(
⋃

v∈V . {n. ext v n}) using ext by auto
qed

ultimately show ?thesis by auto
qed

ultimately have card (T l) = card V ∗ k^l
using card-partition ′[of V ext k^l] ‹ 4 ≤ k › assms(3 ) mult.commute

nat-one-le-power
by auto

moreover have card V=(k ∗ k − k + 1 )
using total-v-num[OF friend-assm,of k] k-adj degree-adjacent ‹finite E›

‹finite V ›
‹card V≥2 › ‹4 ≤ k› card-gt-0-iff

by force
ultimately show card (T l) = (k ∗ k − k + 1 ) ∗ k ^ l by auto

qed
obtain C where C :C=(λl::nat. {ps. length ps = l+1 ∧ adj-path (hd ps) (tl ps)
∧ adjacent (last ps) (hd ps)}) by auto

obtain C-star where C-star :C-star=(λl::nat. {ps. length ps = l+1 ∧ adj-path
(hd ps) (tl ps)

∧ (last ps) = (hd ps)}) by auto
have

∧
l::nat. card (C (l+1 )) = k∗ card (C-star l) + card (T l − C-star l)

proof −
fix l::nat
have C (l+1 ) = {ps. length ps = l+2 ∧ adj-path (hd ps) (tl ps) ∧ adjacent

(last ps) (hd ps)
∧ last (butlast ps)=hd ps} ∪ {ps. length ps = l+2 ∧ adj-path (hd ps) (tl

ps) ∧
adjacent (last ps) (hd ps) ∧ last (butlast ps) 6=hd ps} using C by auto

moreover have {ps. length ps = l+2 ∧ adj-path (hd ps) (tl ps) ∧ adjacent
(last ps) (hd ps)

∧ last (butlast ps)=hd ps} ∩ {ps. length ps = l+2 ∧ adj-path (hd ps) (tl
ps) ∧
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adjacent (last ps) (hd ps) ∧ last (butlast ps) 6=hd ps} ={} by auto
moreover have finite (C (l+1 ))

proof −
have C (l+1 ) ⊆ T (l+1 ) using C T by auto
moreover have (k ∗ k − k + 1 ) ∗ k ^ (l + 1 ) 6=0 using ‹k≥4 › by auto
hence finite (T (l+1 )) using T-count[of l+1 ] by (metis card.infinite)
ultimately show ?thesis by (metis finite-subset)

qed
ultimately have card (C (l+1 )) = card {ps. length ps = l+2 ∧ adj-path (hd

ps) (tl ps)
∧ adjacent (last ps) (hd ps) ∧ last (butlast ps)=hd ps} + card {ps. length

ps = l+2 ∧
adj-path (hd ps) (tl ps) ∧ adjacent (last ps) (hd ps) ∧ last (butlast ps) 6=hd

ps}
using card-Un-disjoint[of {ps. length ps = l + 2 ∧ adj-path (hd ps) (tl ps)

∧ adjacent
(last ps) (hd ps) ∧ last (butlast ps) = hd ps} {ps. length ps = l + 2 ∧

adj-path (hd ps)
(tl ps) ∧ adjacent (last ps) (hd ps) ∧ last (butlast ps) 6= hd ps}] finite-Un

by auto
moreover have card {ps. length ps = l+2 ∧ adj-path (hd ps) (tl ps)
∧ adjacent (last ps) (hd ps) ∧ last (butlast ps)=hd ps}=k ∗ card (C-star l)

proof −
obtain ext where ext: ext=(λps ps ′. ps ′6=[] ∧ (butlast ps ′=ps)
∧ adj-path (hd ps ′) (tl ps ′)) by auto

have ∀ ps∈(C-star l). card {ps ′. ext ps ps ′} = k
proof

fix ps assume ps∈C-star l
hence length ps = l + 1 and adj-path (hd ps) (tl ps) and last ps = hd

ps
using C-star by auto

obtain qs where qs:qs={v. adjacent (last ps) v} by auto
obtain app where app:app=(λv. ps@[v]) by auto
have app ‘ qs = {ps ′. ext ps ps ′}

proof −
have

∧
x. x∈app‘qs =⇒ x∈{ps ′. ext ps ps ′}

proof
fix x assume x ∈ app ‘ qs
then obtain y where adjacent (last ps) y x=ps@[y] using qs

app by auto
moreover hence adj-path (hd x) (tl x)
by (cases tl ps = [], metis adj-path.simps(1 ) adj-path.simps(2 )

adjacent-V (2 ) append-Nil list.sel(1 ,3 ) hd-append snoc-eq-iff-butlast

tl-append2 , metis ‹adj-path (hd ps) (tl ps)› adj-path-app
hd-append

last-tl list.sel(2 ) tl-append2 )
ultimately show ext ps x using ext by (metis snoc-eq-iff-butlast)
qed
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moreover have
∧

x. x∈{ps ′. ext ps ps ′}=⇒ x∈ app‘qs
proof −

fix x assume x ∈ {ps ′. ext ps ps ′}
hence x 6=[] and butlast x=ps and adj-path (hd x) (tl x)

using ext by auto
have adjacent (last ps) (last x)

proof (cases length ps=1 )
case True
hence length x=2 using ‹butlast x=ps› by auto
then obtain x1 t1 where x=x1#t1 and length t1=1

using Suc-length-conv[of 1 x] by auto
then obtain x2 where t1=[x2 ]

using Suc-length-conv[of 0 t1 ] by auto
have x=[x1 ,x2 ] using ‹x=x1#t1 › ‹t1=[x2 ]› by auto
thus adjacent (last ps) (last x)

using ‹adj-path (hd x) (tl x)› ‹butlast x=ps› by auto
next

case False
hence tl ps 6=[]
by (metis ‹length ps = l + 1 › add-0-iff add-diff-cancel-left ′

length-0-conv length-tl add.commute)
moreover have adj-path (hd x) (tl ps @ [last x])

using ‹adj-path (hd x) (tl x)› ‹butlast x=ps› ‹x 6= []›
by (metis append-butlast-last-id calculation list.sel(2 )

tl-append2 )
ultimately have adjacent (last (tl ps)) (last x)

using adj-path-app ′[of hd x tl ps last x]
by auto

thus adjacent (last ps) (last x) by (metis ‹tl ps 6= []› last-tl)
qed

thus x ∈ app ‘ qs using app qs
by (metis ‹butlast x = ps› ‹x 6= []› append-butlast-last-id

mem-Collect-eq
rev-image-eqI )

qed
ultimately show ?thesis by auto

qed
moreover have inj-on app qs using app unfolding inj-on-def by

auto
moreover have last ps∈V

using ‹length ps = l + 1 › ‹adj-path (hd ps) (tl ps)› adj-path-V
by (metis ‹last ps = hd ps› adj-path.simps(1 ) last-in-set last-tl

subset-code(1 ))
hence card qs=k using qs k-adj by auto
ultimately show card {ps ′. ext ps ps ′} = k by (metis card-image)

qed
moreover have finite (C-star l)

proof −
have C-star l ⊆ T l using C-star T by auto
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moreover have (k ∗ k − k + 1 ) ∗ k ^ l 6=0 using ‹k≥4 › by auto
hence finite (T l) using T-count[of l] by (metis card.infinite)
ultimately show ?thesis by (metis finite-subset)

qed
moreover have ∀ ps1 ps2 . ps1 6= ps2 −→ {ps ′. ext ps1 ps ′} ∩ {ps ′. ext

ps2 ps ′} = {}
using ext by auto

moreover have (
⋃

ps∈(C-star l). {ps ′. ext ps ps ′}) = {ps. length ps =
l+2

∧ adj-path (hd ps) (tl ps) ∧ adjacent (last ps) (hd ps) ∧ last (butlast
ps)=hd ps}

proof −
have

∧
x. x∈(

⋃
ps∈(C-star l). {ps ′. ext ps ps ′}) =⇒ x∈{ps. length ps

= l+2
∧ adj-path (hd ps) (tl ps) ∧ adjacent (last ps) (hd ps) ∧ last (butlast

ps)=hd ps}
proof

fix x assume x ∈ (
⋃

ps∈C-star l. {ps ′. ext ps ps ′})
then obtain ps where ps∈C-star l ext ps x by auto
hence length ps = l + 1 and adj-path (hd ps) (tl ps) and last ps

= hd ps
and x 6= [] and butlast x = ps adj-path (hd x) (tl x)

using C-star ext by auto
have length x = l + 2

using ‹ butlast x = ps › ‹ length ps = l + 1 › length-butlast by
auto

moreover have adj-path (hd x) (tl x) by (metis ‹adj-path (hd x)
(tl x)›)

moreover have adjacent (last x) (hd x)
proof −

have length x≥2 using ‹length x=l+2 › by auto
hence adjacent (last (butlast x)) (last x) using ‹adj-path (hd x)

(tl x)›
by (induct x,auto, metis adj-path.simps(2 ) append-butlast-last-id

append-eq-Cons-conv, metis adj-path-app ′ append-butlast-last-id)
hence adjacent (last ps) (last x) using ‹butlast x=ps› by auto
hence adjacent (hd ps) (last x) using ‹last ps=hd ps› by auto
hence adjacent (hd x) (last x)

using ‹butlast x=ps› ‹length ps=l+1 ›
by (cases x) auto

thus ?thesis using adjacent-sym by auto
qed

moreover have last (butlast x) = hd x
by (metis ‹butlast x = ps› ‹last ps = hd ps› ‹x 6= []› adjacent-no-loop

butlast.simps(2 ) calculation(3 ) list.sel(1 ) last-ConsL neq-Nil-conv)
ultimately show length x = l + 2 ∧ adj-path (hd x) (tl x)
∧ adjacent (last x) (hd x) ∧ last (butlast x) = hd x
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by auto
qed

moreover have
∧

x. x∈{ps. length ps = l+2 ∧ adj-path (hd ps) (tl ps)
∧ adjacent (last ps) (hd ps) ∧ last (butlast ps)=hd ps} =⇒
x∈(

⋃
ps∈(C-star l). {ps ′. ext ps ps ′})

proof −
fix x assume x∈{ps. length ps = l+2 ∧ adj-path (hd ps) (tl ps)
∧ adjacent (last ps) (hd ps) ∧ last (butlast ps)=hd ps}

hence length x=l+2 and adj-path (hd x) (tl x) and adjacent (last
x) (hd x)

and last (butlast x)=hd x by auto
obtain ps where ps:ps=butlast x by auto
have ps∈C-star l

proof −
have length ps = l + 1 using ps ‹length x=l+2 › by auto
moreover have hd ps=hd x

using ps ‹length x=l+2 ›
by (metis (full-types) ‹ adjacent (last x) (hd x) › adjacent-no-loop

append-Nil append-butlast-last-id butlast.simps(1 ) list.sel(1 )
hd-append2 )

hence adj-path (hd ps) (tl ps) using adj-path-butlast
by (metis ‹adj-path (hd x) (tl x)› butlast-tl ps)

moreover have last ps = hd ps
by (metis ‹hd ps = hd x› ‹last (butlast x) = hd x› ps)

ultimately show ?thesis using C-star by auto
qed

moreover have ext ps x using ext
by (metis ‹adj-path (hd x) (tl x)› ‹adjacent (last x) (hd x)›

‹last (butlast x) = hd x› adjacent-no-loop butlast.simps(1 ) ps)
ultimately show x∈(

⋃
ps∈(C-star l). {ps ′. ext ps ps ′}) by auto

qed
ultimately show ?thesis by fast

qed
ultimately show ?thesis using card-partition ′[of C-star l ext k] ‹k≥4 ›

by auto
qed

moreover have card {ps. length ps = l+2 ∧ adj-path (hd ps) (tl ps) ∧
adjacent (last ps) (hd ps) ∧ last (butlast ps) 6=hd ps}=card (T l − C-star

l)
proof −

obtain app where app:app=(λps. ps@[SOME n. adjacent (last ps) n ∧
adjacent (hd ps) n])

by auto
have

∧
x. x∈app‘(T l − C-star l) =⇒ x∈{ps. length ps = l+2 ∧ adj-path

(hd ps) (tl ps) ∧
adjacent (last ps) (hd ps) ∧ last (butlast ps)6=hd ps}

proof
fix x assume x ∈ app ‘ (T l − C-star l)
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then obtain ps where length ps = l + 1 adj-path (hd ps) (tl ps) last
ps 6= hd ps

x=app ps
using T C-star by auto

hence last ps∈V
using adj-path-V [OF ‹adj-path (hd ps) (tl ps)›]
by (cases ps) auto

hence ∃n. adjacent (last ps) n ∧ adjacent (hd ps) n
using adj-path-V ′[OF ‹adj-path (hd ps) (tl ps)›] ‹last ps 6=hd ps›

friend-assm[of last ps hd ps]
by auto

moreover have last x=(SOME n. adjacent (last ps) n ∧ adjacent (hd
ps) n)

using app ‹x=app ps› by auto
ultimately have adjacent (last ps) (last x) and adjacent (hd ps) (last

x)
using someI-ex by (metis (lifting))+

have hd x=hd ps using ‹x=app ps› ‹length ps=l+1 › app
by (cases ps) auto

have length x = l + 2 using ‹x=app ps› ‹length ps=l+1 › app by auto
moreover have adj-path (hd x) (tl x)

proof −
have last (tl ps)=last ps using ‹length ps=l+1 ›

by (metis ‹last ps 6= hd ps› list.sel(1 ,3 ) last-ConsL last-tl
neq-Nil-conv)

moreover have length ps 6=1 using ‹last ps 6= hd ps›
by (metis Suc-eq-plus1-left gen-length-code(1 ) gen-length-def

list.sel(1 )
last-ConsL length-Suc-conv neq-Nil-conv)

hence tl ps 6=[] using ‹length ps=l+1 ›
by(auto simp: length-Suc-conv)

ultimately have adj-path (hd ps) (tl ps @ [last x])
using adj-path-app[OF ‹adj-path (hd ps) (tl ps)›,of last x]

‹adjacent (last ps) (last x)›
by auto

moreover have tl ps @ [last x]=tl x
using ‹x=app ps› app

by (metis ‹ last x = (SOME n. adjacent (last ps) n ∧ adjacent (hd
ps) n) ›

‹ tl ps 6= [] › list.sel(2 ) tl-append2 )
ultimately show ?thesis using ‹hd x=hd ps› by auto

qed
moreover have adjacent (last x) (hd x)
using ‹hd x=hd ps› ‹adjacent (hd ps) (last x)› adjacent-sym by auto

moreover have last (butlast x) 6= hd x
using ‹last ps 6= hd ps› ‹hd x=hd ps›
by (metis ‹x = app ps› app butlast-snoc)

ultimately show length x = l + 2 ∧ adj-path (hd x) (tl x) ∧ adjacent
(last x) (hd x)

99



∧ last (butlast x) 6= hd x
by auto

qed
moreover have

∧
x. x∈{ps. length ps = l+2 ∧ adj-path (hd ps) (tl ps) ∧

adjacent (last ps) (hd ps) ∧ last (butlast ps)6=hd ps}=⇒ x∈app‘(T l −
C-star l)

proof −
fix x assume x∈{ps. length ps = l+2 ∧ adj-path (hd ps) (tl ps) ∧

adjacent (last ps) (hd ps) ∧ last (butlast ps)6=hd ps}
hence length x=l+2 and adj-path (hd x) (tl x) and adjacent (last x)

(hd x)
and last (butlast x)6=hd x

by auto
hence butlast x∈T l − C-star l

proof −
have length (butlast x) = l + 1

using ‹length x = l + 2 › length-butlast by auto
moreover have hd (butlast x)=hd x

using ‹length x=l+2 ›
by (metis append-butlast-last-id butlast.simps(1 ) calculation

diff-add-inverse
diff-cancel2 hd-append length-butlast add.commute num.distinct(1 )

one-eq-numeral-iff )
hence adj-path (hd (butlast x)) (tl (butlast x))
using ‹adj-path (hd x) (tl x)› by (metis adj-path-butlast butlast-tl)

moreover have last (butlast x) 6= hd (butlast x)
using ‹last (butlast x) 6=hd x› ‹hd (butlast x)=hd x› by auto

ultimately show ?thesis using T C-star by auto
qed

moreover have app (butlast x)=x using app
proof −

have last (butlast x)∈V
proof (cases length x≥3 )

case True
hence last (butlast x)∈set (tl x)

proof (induct x)
case Nil
thus ?case by auto

next
case (Cons x1 t1 )
have length t1<3 =⇒?case

proof −
assume length t1<3

hence length t1=2 using ‹3 ≤ length (x1 # t1 )› by auto
then obtain x2 t2 where t1=x2#t2 length t2=1

using Suc-length-conv[of 1 t1 ] by auto
then obtain x3 where t2=[x3 ]

using Suc-length-conv[of 0 t2 ] by auto
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have t1=[x2 ,x3 ] using ‹t1=x2#t2 › ‹t2=[x3 ]› by auto
thus ?case by auto

qed
moreover have length t1≥3=⇒?case

proof −
assume length t1≥3
hence last (butlast t1 ) ∈ set (tl t1 )

using Cons.hyps by auto
thus ?case

by (metis butlast.simps(2 ) in-set-butlastD last.simps
last-in-set

length-butlast length-greater-0-conv length-pos-if-in-set
length-tl list.sel(3 ))

qed
ultimately show ?case by force

qed
thus ?thesis using adj-path-V [OF ‹adj-path (hd x) (tl x)›] by

auto
next

case False
hence length x=2 using ‹length x=l+2 › by auto
then obtain x1 x2 where x=[x1 ,x2 ]

proof −
obtain x1 t1 where x=x1#t1 length t1=1

using Suc-length-conv[of 1 x] ‹length x=2 › by auto
then obtain x2 where t1=[x2 ]

using Suc-length-conv[of 0 t1 ] by auto
have x=[x1 ,x2 ] using ‹x=x1#t1 › ‹t1=[x2 ]› by auto
thus ?thesis using that by auto

qed
hence last (butlast x)=hd x by auto
thus ?thesis using adj-path-V ′[OF ‹adj-path (hd x) (tl x)›] by

auto
qed

moreover have hd (butlast x)=hd x using ‹length x=l+2 ›
by (metis ‹adjacent (last x) (hd x)› adjacent-no-loop ap-

pend-butlast-last-id
butlast.simps(1 ) list.sel(1 ) hd-append)

hence hd (butlast x)∈V using adj-path-V ′[OF ‹adj-path (hd x) (tl
x)›] by auto

moreover have last (butlast x)6=hd (butlast x)
using ‹last (butlast x) 6=hd x› ‹hd (butlast x)=hd x› by auto

ultimately have ∃ ! n. adjacent (last (butlast x)) n ∧ adjacent (hd
(butlast x)) n

using friend-assm by auto
moreover have length x≥2 using ‹length x=l+2 › by auto
hence adjacent (last (butlast x)) (last x)

using ‹adj-path (hd x) (tl x)›
by (induct x,auto, metis (full-types) adj-path.simps(2 ) append-Nil
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append-butlast-last-id, metis adj-path-app ′ append-butlast-last-id)
moreover have adjacent (hd (butlast x)) (last x)
using ‹adjacent (last x) (hd x)› ‹hd (butlast x)=hd x› adjacent-sym

by auto
ultimately have (SOME n. adjacent (last (butlast x)) n
∧ adjacent (hd (butlast x)) n) = last x

using some1-equality by fast
moreover have x=(butlast x)@[last x]

by (metis ‹adjacent (last (butlast x)) (last x)› adjacent-no-loop
append-butlast-last-id butlast.simps(1 ))

ultimately show ?thesis using app by auto
qed

ultimately show x∈app‘(T l − C-star l) by (metis image-iff )
qed

ultimately have app‘(T l − C-star l)={ps. length ps = l+2 ∧ adj-path
(hd ps) (tl ps) ∧

adjacent (last ps) (hd ps) ∧ last (butlast ps)6=hd ps} by fast
moreover have inj-on app (T l − C-star l) using app unfolding inj-on-def

by auto
ultimately show ?thesis by (metis card-image)

qed
ultimately show card (C (l + 1 )) = k ∗ card (C-star l) + card (T l −

C-star l) by auto
qed

hence
∧

l::nat. card (C (l+1 )) mod (k−(1 ::nat))=1
proof −

fix l::nat
have C-star l ⊆ T l using C-star T by auto
moreover have card (T l) 6=0 using T-count ‹k≥4 › by auto
hence finite (T l) using ‹k≥4 › by (metis card.infinite)
ultimately have card (T l − C-star l)=card(T l) − card(C-star l)

by (metis card-Diff-subset rev-finite-subset)
hence card (C (l + 1 ))=k∗card (C-star l) + (card (T l) − card (C-star l))

using ‹
∧

l::nat. card (C (l+1 )) = k∗ card (C-star l) + card (T l − C-star
l)›

by auto
also have ...=k∗card (C-star l) + card (T l) − card (C-star l)

proof −
have card (T l) ≥ card (C-star l)

using ‹C-star l ⊆ T l› ‹finite (T l)› by (metis card-mono)
thus ?thesis by auto

qed
also have ...=k∗card (C-star l) − card (C-star l) + card (T l)

proof −
have card (T l) ≥ card (C-star l)

using ‹C-star l ⊆ T l› ‹finite (T l)› by (metis card-mono)
moreover have k∗card (C-star l) ≥ card (C-star l) using ‹k≥4 › by auto
ultimately show ?thesis by auto

qed
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also have ...=(k−(1 ::nat))∗card(C-star l)+card(T l) using ‹k≥4 ›
by (metis monoid-mult-class.mult.left-neutral diff-mult-distrib)

finally have card (C (l + 1 ))=(k−(1 ::nat))∗card(C-star l)+card(T l) .
hence card (C (l+1 )) mod (k−(1 ::nat)) = card(T l) mod (k−(1 ::nat)) using

‹k>=4 ›
by (metis mod-mult-self3 mult.commute)

also have ...=((k∗k−k+1 )∗k^l) mod (k−(1 ::nat)) using T-count by auto
also have ...=((k−(1 ::nat))∗k+1 )∗k^l mod (k−(1 ::nat))

proof −
have k∗k−k+1=(k−(1 ::nat))∗k+1 using ‹k≥4 › by (metis diff-mult-distrib

nat-mult-1 )
thus ?thesis by auto

qed
also have ...=1∗k^l mod (k−(1 ::nat))

by (metis mod-mult-right-eq mod-mult-self1 add.commute mult.commute)
also have ...=k^l mod (k−(1 ::nat)) by auto
also have ...=(k−(1 ::nat)+1 )^l mod (k−(1 ::nat)) using ‹k≥4 › by auto
also have ...=1^l mod (k−(1 ::nat)) by (metis mod-add-self2 add.commute

power-mod)
also have ...=1 mod (k−(1 ::nat)) by auto
also have ...=1 using ‹k≥4 › by auto
finally show card (C (l+1 )) mod (k−(1 ::nat)) =1 .

qed
obtain p::nat where prime p p dvd (k−(1 ::nat)) using ‹k≥4 ›

by (metis Suc-eq-plus1 Suc-numeral add-One-commute eq-iff le-diff-conv nu-
meral-le-iff

one-le-numeral one-plus-BitM prime-factor-nat semiring-norm(69 ) semir-
ing-norm(71 ))

hence p-minus-1 :p−(1 ::nat)+1=p
by (metis add-diff-inverse add.commute not-less-iff-gr-or-eq prime-nat-iff )

hence ∗:
∧

l::nat. card (C (l+1 )) mod p=1
using ‹

∧
l::nat. card (C (l+1 )) mod (k−(1 ::nat))=1 › mod-mod-cancel[OF ‹p

dvd (k−(1 ::nat))›]
‹prime p›

by (metis mod-if prime-gt-1-nat)
have card (C (p − 1 )) mod p = 1
proof (cases 2 ≤ p)

case True with ∗ [of p − 2 ] show ?thesis
by (metis Nat.add-diff-assoc2 add-le-cancel-right diff-diff-left one-add-one

p-minus-1 )
next

case False with ∗ [of p − 2 ] ‹prime p› prime-ge-2-nat show ?thesis
by blast

qed
moreover have card (C (p−(1 ::nat))) mod p=0 using C

proof −
have closure1 :

∧
x. x∈C (p−(1 ::nat))=⇒ rotate1 x ∈C (p−(1 ::nat))

proof −
fix x assume x∈C (p−(1 ::nat))
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hence length x = p and adj-path (hd x) (tl x) and adjacent (last x) (hd
x)

using C p-minus-1 by auto
have adjacent (last (rotate1 x)) (hd (rotate1 x))

proof −
have x 6=[] using ‹length x=p› ‹prime p› by auto
hence adjacent (last (rotate1 x)) (hd (rotate1 x))=adjacent (hd x) (hd

(tl x))
by (metis ‹ adjacent (last x) (hd x) › adjacent-no-loop append-Nil

list.sel(1 ,3 )
hd-append2 last-snoc list.exhaust rotate1-hd-tl)

also have ...=True using ‹adj-path (hd x) (tl x)›
using ‹adjacent (last x) (hd x)› ‹x 6= []›

by (metis adj-path.simps(2 ) adjacent-no-loop append1-eq-conv
append-Nil

append-butlast-last-id list.sel(1 ,3 ) list.exhaust)
finally show ?thesis by auto

qed
moreover have adj-path (hd (rotate1 x)) (tl (rotate1 x))

proof −
have x 6=[] using ‹length x=p› ‹prime p› by auto
then obtain y ys where y=hd x ys=tl x by auto
hence adj-path y ys and adjacent (last ys) y and ys 6=[]

by (metis ‹adj-path (hd x) (tl x)›, metis ‹adjacent (last x) (hd x)› ‹y
= hd x›

‹ys = tl x› adjacent-no-loop list.sel(1 ,3 ) last.simps last-tl list.exhaust
, metis ‹adjacent (last x) (hd x)› ‹x 6= []› ‹ys = tl x› adjacent-no-loop

list.sel(1 ,3 )
last-ConsL neq-Nil-conv)

hence adj-path (hd (rotate1 x)) (tl (rotate1 x))
=adj-path (hd (ys@[y])) (tl (ys@[y]))

using ‹x 6=[]› ‹y=hd x› ‹ys=tl x› by (metis rotate1-hd-tl)
also have ...=adj-path (hd ys) ((tl ys)@[y])

by (metis ‹ys 6= []› hd-append tl-append2 )
also have ...=True

using adj-path-app[OF ‹adj-path y ys› ‹ys 6=[]› ‹adjacent (last ys) y›]
‹ys 6=[]›

by (metis adj-path.simps(2 ) append-Cons list.sel(1 ,3 ) list.exhaust)
finally show ?thesis by auto

qed
moreover have length (rotate1 x) = p using ‹length x=p› by auto

ultimately show rotate1 x ∈ C (p−(1 ::nat)) using C p-minus-1 by auto
qed

have closure:
∧

n x. x∈C (p−(1 ::nat))=⇒ rotate n x ∈C (p−(1 ::nat))
proof −

fix n x assume x∈C (p−(1 ::nat))
thus rotate n x ∈C (p−(1 ::nat))

by (induct n,auto,metis One-nat-def closure1 )
qed
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obtain r where r :r={(x,y). x∈C (p−(1 ::nat)) ∧ (∃n<p. rotate n x=y)} by
auto

have
∧

x. x∈C (p−(1 ::nat)) =⇒ p dvd card {y.(∃n<p. rotate n x=y)}
proof −

fix x assume x ∈ C (p−(1 ::nat))
hence length x=p using C p-minus-1 by auto
have {y. (∃n<p. rotate n x=y)}= (λn. rotate n x)‘ {0 ..<p} by auto
moreover have

∧
n1 n2 . n1∈{0 ..<p} =⇒ n2∈{0 ..<p} =⇒ n1 6=n2 =⇒

rotate n1 x 6=rotate n2 x
proof

fix n1 n2 assume n1 ∈ {0 ..<p} n2 ∈ {0 ..<p} n1 6= n2 rotate n1 x
= rotate n2 x

{ fix n1 n2
assume n1 ∈ {0 ..<p} n2 ∈ {0 ..<p} rotate n1 x = rotate n2 x n1>n2

obtain s::nat where s∗(n1−n2 ) mod p=1 s>0
proof −

have n1−n2>0 and n1−n2<p
using ‹n1 ∈ {0 ..<p}› ‹n2 ∈ {0 ..<p}› ‹n1>n2 › by auto

with ‹prime p› have coprime (n1 − n2 ) p
by (simp add: prime-nat-iff ′′ coprime-commute [of p])

then have ∃ x. [(n1 − n2 ) ∗ x = 1 ] (mod p)
by (simp add: cong-solve-coprime-nat)

then obtain s where s ∗ (n1 − n2 ) mod p = 1
using ‹prime p› prime-gt-1-nat [of p]
by (auto simp add: cong-def ac-simps)

moreover hence s>0 by (metis mod-0 mult-0 neq0-conv
zero-neq-one)

ultimately show ?thesis using that by auto
qed

have rotate (s∗n1 ) x=rotate (s∗n2 ) x
using ‹rotate n1 x=rotate n2 x›
apply (induct s)
apply (auto simp add: algebra-simps)
by (metis add.commute rotate-rotate)

hence rotate (s∗n1 − s∗n2 ) x= x
using rotate-diff by auto

hence rotate (s∗(n1−n2 )) x=x by (metis diff-mult-distrib mult.commute)
hence rotate 1 x = x using ‹s∗(n1−n2 ) mod p=1 › ‹length x=p›

by (metis rotate-conv-mod)
hence rotate1 x=x by auto
have hd x=hd (tl x) using ‹prime p› ‹length x=p›

proof −
have length x≥2 using ‹prime p› ‹length x=p› using prime-ge-2-nat

by blast
hence length (tl x)≥1 by force
hence x 6=[] and tl x 6=[] by auto+
hence x=(hd x)#(hd (tl x))#(tl (tl x)) using hd-Cons-tl by auto
hence (hd (tl x))#(tl (tl x))@[hd x]=(hd x)#(hd (tl x))#(tl (tl x))
using ‹rotate1 x = x› by (metis Cons-eq-appendI rotate1 .simps(2 ))
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thus ?thesis by auto
qed

moreover have hd x 6=hd (tl x)
proof −
have adj-path (hd x) (tl x) using ‹x ∈ C (p−(1 ::nat))› C by auto
moreover have length x≥2 using ‹prime p› ‹length x=p› using

prime-ge-2-nat by blast
hence length (tl x)≥1 by force
hence tl x 6=[] by force
ultimately have adjacent (hd x) (hd (tl x))

by (metis adj-path.simps(2 ) list.sel(1 ) list.exhaust)
thus ?thesis by (metis adjacent-no-loop)

qed
ultimately have False by auto }

thus False
by (metis ‹n1 ∈ {0 ..<p}› ‹n1 6= n2 › ‹n2 ∈ {0 ..<p}› ‹rotate n1 x =

rotate n2 x›
less-linear)

qed
hence inj-on (λn. rotate n x) {0 ..<p} unfolding inj-on-def by fast

ultimately have card {y. (∃n<p. rotate n x=y)}=card {0 ..<p} by (metis
card-image)

hence card {y. (∃n<p. rotate n x=y)}=p by auto
thus p dvd card {y. (∃n<p. rotate n x=y)} by auto

qed
hence ∀X∈C (p−(1 ::nat)) // r . p dvd card X unfolding quotient-def Im-

age-def r by auto
moreover have refl-on (C (p − 1 )) r

proof −
have r ⊆ C (p − 1 ) × C (p − 1 )

proof
fix x assume x∈r
hence fst x∈C (p − 1 ) and ∃n. snd x=rotate n (fst x) using r by

auto
moreover then obtain n where snd x=rotate n (fst x) by auto
ultimately have snd x∈C (p − 1 ) using closure by auto
moreover have x=(fst x,snd x) using ‹x∈r› r by auto
ultimately show x ∈ C (p − 1 ) × C (p − 1 ) using ‹fst x∈ C (p −

1 )›
by (metis SigmaI )

qed
moreover have ∀ x∈C (p − 1 ). (x, x) ∈ r

proof
fix x assume x ∈ C (p − 1 )
hence rotate 0 x ∈ C (p − 1 ) using closure by auto
moreover have 0<p using ‹prime p› by (auto intro: prime-gt-0-nat)
ultimately have (x,rotate 0 x)∈ r using ‹x∈C (p − 1 )› r by auto
moreover have rotate 0 x=x by auto
ultimately show (x,x)∈r by auto
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qed
ultimately show ?thesis using refl-on-def by auto

qed
moreover have sym r unfolding sym-def

proof (rule,rule,rule)
fix x y assume (x, y) ∈ r
hence x∈C (p − 1 ) using r by auto
hence length x=p using C p-minus-1 by auto
obtain n where n<p rotate n x = y using ‹(x,y)∈r› r by auto
hence y∈ C (p − 1 ) using closure[OF ‹x∈ C (p − 1 )›] by auto
have n=0=⇒(y, x) ∈ r

proof −
assume n=0
hence x=y using ‹rotate n x=y› by auto

thus (y,x)∈r using ‹refl-on (C (p − 1 )) r› ‹y ∈ C (p − 1 )› refl-on-def
by fast

qed
moreover have n 6=0 =⇒ (y,x)∈r

proof −
assume n 6=0
have rotate (p−n) y = x

proof −
have rotate (p−n) y = rotate (p−n) (rotate n x)

using ‹rotate n x=y› by auto
also have rotate (p−n) (rotate n x)=rotate (p−n+n) x

using rotate-rotate by auto
also have ...=rotate p x using ‹n<p› by auto
also have ...=rotate 0 x using ‹length x=p› by auto
also have ...=x by auto
finally show ?thesis .

qed
moreover have p−n<p using ‹n<p› ‹n 6=0 › by auto
ultimately show (y,x)∈r using r ‹y∈ C (p − 1 )› by auto

qed
ultimately show (y,x)∈r by auto

qed
moreover have trans r unfolding trans-def

proof (rule,rule,rule,rule,rule)
fix x y z assume (x, y) ∈ r (y, z) ∈ r
hence x∈C (p − 1 ) using r by auto
hence length x=p using C p-minus-1 by auto
obtain n1 n2 where n1<p n2<p y=rotate n1 x z=rotate n2 y

using r ‹(x,y)∈r› ‹(y,z)∈r› by auto
hence z=rotate (n2+n1 ) x by (metis rotate-rotate)

hence z=rotate ((n2+n1 ) mod p) x using ‹length x=p› by (metis
rotate-conv-mod)

moreover have (n2+n1 ) mod p < p by (metis ‹prime p› mod-less-divisor
prime-gt-0-nat)

ultimately show (x,z)∈r using ‹x∈ C (p − 1 )› r by auto
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qed
moreover have finite (C (p − 1 ))

by (metis ‹card (C (p − 1 )) mod p = 1 › card-eq-0-iff mod-0 zero-neq-one)
ultimately have p dvd card (C (p−(1 ::nat))) using equiv-imp-dvd-card

equiv-def by fast
thus card (C (p−(1 ::nat))) mod p=0 by (metis dvd-eq-mod-eq-0 )

qed
ultimately show False by auto

qed

theorem (in valid-unSimpGraph) friendship-thm:
assumes friend-assm:

∧
v u. v∈V =⇒ u∈V =⇒ v 6=u =⇒ ∃ ! n. adjacent v n ∧

adjacent u n
and finite V

shows ∃ v. ∀n∈V . n 6=v −→ adjacent v n
proof −

have card V=0 =⇒ ?thesis
using ‹finite V ›
by (metis all-not-in-conv card-seteq empty-subsetI le0 )

moreover have card V=1 =⇒ ?thesis
proof −

assume card V=1
then obtain v where V={v}

using card-eq-SucD[of V 0 ] by auto
hence ∀n∈V . n=v by auto
thus ∃ v. ∀n∈V . n 6= v −→ adjacent v n by auto

qed
moreover have card V≥2 =⇒ ?thesis

proof −
assume card V≥2
hence ∃ v∈V . degree v G = 2

using exist-degree-two[OF friend-assm] ‹finite V › by auto
thus ?thesis

using degree-two-windmill[OF friend-assm] ‹card V≥2 › ‹finite V › by auto
qed

ultimately show ?thesis by force
qed

end
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