
A Formalization of Knuth–Bendix Orders∗

Christian Sternagel and René Thiemann

March 17, 2025

Abstract

We define a generalized version of Knuth–Bendix orders, including
subterm coefficient functions. For these orders we formalize several
properties such as strong normalization, the subterm property, closure
properties under substitutions and contexts, as well as ground totality.

Contents
1 Introduction 2

2 Order Pairs 2

3 Lexicographic Extension 5

4 KBO 27
4.1 Subterm Coefficient Functions 27
4.2 Weight Functions . 29
4.3 Definition of KBO . 30
4.4 Reflexivity and Irreflexivity 34
4.5 Monotonicity (a.k.a. Closure under Contexts) 34
4.6 The Subterm Property . 36
4.7 Least Elements . 39
4.8 Stability (a.k.a. Closure under Substitutions 42
4.9 Transitivity and Compatibility 45
4.10 Strong Normalization (a.k.a. Well-Foundedness) 49
4.11 Ground Totality . 52
4.12 Summary . 53

∗Supported by FWF (Austrian Science Fund) projects P27502 and Y757.

1

1 Introduction
In their seminal paper [2], Knuth and Bendix introduced two important
concepts: a procedure that allows us to solve certain instances of the word
problem – (Knuth–Bendix) completion – as well as a specific order on terms
that is useful to orient equations in the aforementioned procedure – the
Knuth–Bendix order (or KBO, for short).

This AFP-entry is about the formalization of KBO. Note that there are
several variants of KBO [2, 1, 3, 7, 4], e.g., incorporating quasi-precedences,
infinite signatures, subterm coefficient functions, and generalized weight
functions. In fact, not for all of these variants well-foundedness has been
proven. We give the first well-foundedness proof for a variant of KBO
that combines infinite signatures, quasi-precedences, and subterm coefficient
functions. Our proof is direct, i.e., it does not depend on Kruskal’s tree the-
orem.

This formalization is used in the IsaFoR/CeTAproject [6] for certifying
untrusted termination and confluence proofs. For more details we refer to
our RTA paper [5].

2 Order Pairs
An order pair consists of two relations S and NS, where S is a strict order
and NS a compatible non-strict order, such that the combination of S and
NS always results in strict decrease.
theory Order-Pair

imports Abstract−Rewriting.Relative-Rewriting
begin

named-theorems order-simps
declare O-assoc[order-simps]

locale pre-order-pair =
fixes S :: ′a rel

and NS :: ′a rel
assumes refl-NS : refl NS

and trans-S : trans S
and trans-NS : trans NS

begin

lemma refl-NS-point: (s, s) ∈ NS using refl-NS unfolding refl-on-def by blast

lemma NS-O-NS [order-simps]: NS O NS = NS NS O NS O T = NS O T
proof −

show NS O NS = NS by(fact trans-refl-imp-O-id[OF trans-NS refl-NS])
then show NS O NS O T = NS O T by fast

qed

2

lemma trancl-NS [order-simps]: NS+ = NS using trans-NS by simp

lemma rtrancl-NS [order-simps]: NS∗ = NS
by (rule trans-refl-imp-rtrancl-id[OF trans-NS refl-NS])

lemma trancl-S [order-simps]: S+ = S using trans-S by simp

lemma S-O-S : S O S ⊆ S S O S O T ⊆ S O T
proof −

show S O S ⊆ S by (fact trans-O-subset[OF trans-S])
then show S O S O T ⊆ S O T by blast

qed

lemma trans-S-point:
∧

x y z. (x, y) ∈ S =⇒ (y, z) ∈ S =⇒ (x, z) ∈ S
using trans-S unfolding trans-def by blast

lemma trans-NS-point:
∧

x y z. (x, y) ∈ NS =⇒ (y, z) ∈ NS =⇒ (x, z) ∈ NS
using trans-NS unfolding trans-def by blast

end

locale compat-pair =
fixes S NS :: ′a rel
assumes compat-NS-S : NS O S ⊆ S

and compat-S-NS : S O NS ⊆ S
begin
lemma compat-NS-S-point:

∧
x y z. (x, y) ∈ NS =⇒ (y, z) ∈ S =⇒ (x, z) ∈ S

using compat-NS-S by blast

lemma compat-S-NS-point:
∧

x y z. (x, y) ∈ S =⇒ (y, z) ∈ NS =⇒ (x, z) ∈ S
using compat-S-NS by blast

lemma S-O-rtrancl-NS [order-simps]: S O NS∗ = S S O NS∗ O T = S O T
proof −

show S O NS∗ = S
proof(intro equalityI subrelI)

fix x y assume (x, y) ∈ S O NS∗

then obtain n where (x, y) ∈ S O NS^^n by blast
then show (x, y) ∈ S
proof(induct n arbitrary: y)

case 0 then show ?case by auto
next

case IH : (Suc n)
then obtain z where xz: (x, z) ∈ S O NS^^n and zy: (z, y) ∈ NS by auto
from IH .hyps[OF xz] zy have (x, y) ∈ S O NS by auto
with compat-S-NS show ?case by auto

qed
qed auto
then show S O NS∗ O T = S O T by auto

3

qed

lemma rtrancl-NS-O-S [order-simps]: NS∗ O S = S NS∗ O S O T = S O T
proof −

show NS∗ O S = S
proof(intro equalityI subrelI)

fix x y assume (x, y) ∈ NS∗ O S
then obtain n where (x, y) ∈ NS^^n O S by blast
then show (x, y) ∈ S
proof(induct n arbitrary: x)

case 0 then show ?case by auto
next

case IH : (Suc n)
then obtain z where xz: (x, z) ∈ NS and zy: (z, y) ∈ NS^^n O S by

(unfold relpow-Suc, auto)
from xz IH .hyps[OF zy] have (x, y) ∈ NS O S by auto
with compat-NS-S show ?case by auto

qed
qed auto
then show NS∗ O S O T = S O T by auto

qed

end

locale order-pair = pre-order-pair S NS + compat-pair S NS
for S NS :: ′a rel

begin

lemma S-O-NS [order-simps]: S O NS = S S O NS O T = S O T by (fact
S-O-rtrancl-NS [unfolded rtrancl-NS])+
lemma NS-O-S [order-simps]: NS O S = S NS O S O T = S O T by (fact
rtrancl-NS-O-S [unfolded rtrancl-NS])+

lemma compat-rtrancl:
assumes ab: (a, b) ∈ S

and bc: (b, c) ∈ (NS ∪ S)∗
shows (a, c) ∈ S
using bc

proof (induct)
case base
show ?case by (rule ab)

next
case (step c d)
from step(2−3) show ?case using compat-S-NS-point trans-S unfolding trans-def

by blast
qed

end

4

locale SN-ars =
fixes S :: ′a rel
assumes SN : SN S

locale SN-pair = compat-pair S NS + SN-ars S for S NS :: ′a rel

locale SN-order-pair = order-pair S NS + SN-ars S for S NS :: ′a rel

sublocale SN-order-pair ⊆ SN-pair ..

end

3 Lexicographic Extension
theory Lexicographic-Extension

imports
Matrix.Utility
Order-Pair

begin

In this theory we define the lexicographic extension of an order pair, so
that it generalizes the existing notion (<∗lex∗>) which is based on a single
order only.

Our main result is that this extension yields again an order pair.
fun lex-two :: ′a rel ⇒ ′a rel ⇒ ′b rel ⇒ (′a × ′b) rel

where
lex-two s ns s2 = {((a1 , b1), (a2 , b2)) . (a1 , a2) ∈ s ∨ (a1 , a2) ∈ ns ∧ (b1 ,

b2) ∈ s2}

lemma lex-two:
assumes compat: ns O s ⊆ s

and SN-s: SN s
and SN-s2 : SN s2

shows SN (lex-two s ns s2) (is SN ?r)
proof

fix f
assume ∀ i. (f i, f (Suc i)) ∈ ?r
then have steps:

∧
i. (f i, f (Suc i)) ∈ ?r ..

let ?a = λ i. fst (f i)
let ?b = λ i. snd (f i)
{

fix i
from steps[of i]
have (?a i, ?a (Suc i)) ∈ s ∨ (?a i, ?a (Suc i)) ∈ ns ∧ (?b i, ?b (Suc i)) ∈ s2

by (cases f i, cases f (Suc i), auto)
}
note steps = this
have ∃ j. ∀ i ≥ j. (?a i, ?a (Suc i)) ∈ ns − s

5

by (rule non-strict-ending[OF - compat], insert steps SN-s, unfold SN-on-def ,
auto)

with steps obtain j where steps:
∧

i. i ≥ j =⇒ (?b i, ?b (Suc i)) ∈ s2 by auto
obtain g where g: g = (λ i. ?b (j + i)) by auto
from steps have

∧
i. (g i, g (Suc i)) ∈ s2 unfolding g by auto

with SN-s2 show False unfolding SN-defs by auto
qed

lemma lex-two-compat:
assumes compat1 : ns1 O s1 ⊆ s1

and compat1 ′: s1 O ns1 ⊆ s1
and trans1 : s1 O s1 ⊆ s1
and trans1 ′: ns1 O ns1 ⊆ ns1
and compat2 : ns2 O s2 ⊆ s2
and ns: (ab1 , ab2) ∈ lex-two s1 ns1 ns2
and s: (ab2 , ab3) ∈ lex-two s1 ns1 s2

shows (ab1 , ab3) ∈ lex-two s1 ns1 s2
proof −

obtain a1 b1 where ab1 : ab1 = (a1 , b1) by force
obtain a2 b2 where ab2 : ab2 = (a2 , b2) by force
obtain a3 b3 where ab3 : ab3 = (a3 , b3) by force
note id = ab1 ab2 ab3
show ?thesis
proof (cases (a1 , a2) ∈ s1)

case s1 : True
show ?thesis
proof (cases (a2 , a3) ∈ s1)

case s2 : True
from trans1 s1 s2 show ?thesis unfolding id by auto

next
case False with s have (a2 , a3) ∈ ns1 unfolding id by simp
from compat1 ′ s1 this show ?thesis unfolding id by auto

qed
next

case False
with ns have ns: (a1 , a2) ∈ ns1 (b1 , b2) ∈ ns2 unfolding id by auto
show ?thesis
proof (cases (a2 , a3) ∈ s1)

case s2 : True
from compat1 ns(1) s2 show ?thesis unfolding id by auto

next
case False
with s have nss: (a2 , a3) ∈ ns1 (b2 , b3) ∈ s2 unfolding id by auto
from trans1 ′ ns(1) nss(1) compat2 ns(2) nss(2)
show ?thesis unfolding id by auto

qed
qed

qed

6

lemma lex-two-compat ′:
assumes compat1 : ns1 O s1 ⊆ s1

and compat1 ′: s1 O ns1 ⊆ s1
and trans1 : s1 O s1 ⊆ s1
and trans1 ′: ns1 O ns1 ⊆ ns1
and compat2 ′: s2 O ns2 ⊆ s2
and s: (ab1 , ab2) ∈ lex-two s1 ns1 s2
and ns: (ab2 , ab3) ∈ lex-two s1 ns1 ns2

shows (ab1 , ab3) ∈ lex-two s1 ns1 s2
proof −

obtain a1 b1 where ab1 : ab1 = (a1 , b1) by force
obtain a2 b2 where ab2 : ab2 = (a2 , b2) by force
obtain a3 b3 where ab3 : ab3 = (a3 , b3) by force
note id = ab1 ab2 ab3
show ?thesis
proof (cases (a1 , a2) ∈ s1)

case s1 : True
show ?thesis
proof (cases (a2 , a3) ∈ s1)

case s2 : True
from trans1 s1 s2 show ?thesis unfolding id by auto

next
case False with ns have (a2 , a3) ∈ ns1 unfolding id by simp
from compat1 ′ s1 this show ?thesis unfolding id by auto

qed
next

case False
with s have s: (a1 , a2) ∈ ns1 (b1 , b2) ∈ s2 unfolding id by auto
show ?thesis
proof (cases (a2 , a3) ∈ s1)

case s2 : True
from compat1 s(1) s2 show ?thesis unfolding id by auto

next
case False
with ns have nss: (a2 , a3) ∈ ns1 (b2 , b3) ∈ ns2 unfolding id by auto
from trans1 ′ s(1) nss(1) compat2 ′ s(2) nss(2)
show ?thesis unfolding id by auto

qed
qed

qed

lemma lex-two-compat2 :
assumes ns1 O s1 ⊆ s1 s1 O ns1 ⊆ s1 s1 O s1 ⊆ s1 ns1 O ns1 ⊆ ns1 ns2 O

s2 ⊆ s2
shows lex-two s1 ns1 ns2 O lex-two s1 ns1 s2 ⊆ lex-two s1 ns1 s2
using lex-two-compat[OF assms] by (intro subsetI , elim relcompE , fast)

lemma lex-two-compat ′2 :
assumes ns1 O s1 ⊆ s1 s1 O ns1 ⊆ s1 s1 O s1 ⊆ s1 ns1 O ns1 ⊆ ns1 s2 O ns2

7

⊆ s2
shows lex-two s1 ns1 s2 O lex-two s1 ns1 ns2 ⊆ lex-two s1 ns1 s2
using lex-two-compat ′[OF assms] by (intro subsetI , elim relcompE , fast)

lemma lex-two-refl:
assumes r1 : refl ns1 and r2 : refl ns2
shows refl (lex-two s1 ns1 ns2)
using refl-onD[OF r1] and refl-onD[OF r2] by (intro refl-onI) auto

lemma lex-two-order-pair :
assumes o1 : order-pair s1 ns1 and o2 : order-pair s2 ns2
shows order-pair (lex-two s1 ns1 s2) (lex-two s1 ns1 ns2)

proof −
interpret o1 : order-pair s1 ns1 using o1 .
interpret o2 : order-pair s2 ns2 using o2 .
note o1 .trans-S o1 .trans-NS o2 .trans-S o2 .trans-NS

o1 .compat-NS-S o2 .compat-NS-S o1 .compat-S-NS o2 .compat-S-NS
note this [unfolded trans-O-iff]
note o1 .refl-NS o2 .refl-NS
show ?thesis

by (unfold-locales, intro lex-two-refl, fact+, unfold trans-O-iff)
(rule lex-two-compat2 lex-two-compat ′2 ;fact)+

qed

lemma lex-two-SN-order-pair :
assumes o1 : SN-order-pair s1 ns1 and o2 : SN-order-pair s2 ns2
shows SN-order-pair (lex-two s1 ns1 s2) (lex-two s1 ns1 ns2)

proof −
interpret o1 : SN-order-pair s1 ns1 using o1 .
interpret o2 : SN-order-pair s2 ns2 using o2 .
note o1 .trans-S o1 .trans-NS o2 .trans-S o2 .trans-NS o1 .SN o2 .SN

o1 .compat-NS-S o2 .compat-NS-S o1 .compat-S-NS o2 .compat-S-NS
note this [unfolded trans-O-iff]
interpret order-pair (lex-two s1 ns1 s2) (lex-two s1 ns1 ns2)

by(rule lex-two-order-pair , standard)
show ?thesis by(standard, rule lex-two; fact)

qed

In the unbounded lexicographic extension, there is no restriction on the
lengths of the lists. Therefore it is possible to compare lists of different
lengths. This usually results a non-terminating relation, e.g., [1] > [0, 1] >
[0, 0, 1] > . . .

fun lex-ext-unbounded :: (′a ⇒ ′a ⇒ bool × bool) ⇒ ′a list ⇒ ′a list ⇒ bool × bool
where lex-ext-unbounded f [] [] = (False, True) |

lex-ext-unbounded f (- # -) [] = (True, True) |
lex-ext-unbounded f [] (- # -) = (False, False) |
lex-ext-unbounded f (a # as) (b # bs) =
(let (stri, nstri) = f a b in
if stri then (True, True)

8

else if nstri then lex-ext-unbounded f as bs
else (False, False))

lemma lex-ext-unbounded-iff : (lex-ext-unbounded f xs ys) = (
((∃ i < length xs. i < length ys ∧ (∀ j < i. snd (f (xs ! j) (ys ! j))) ∧ fst (f (xs

! i) (ys !i))) ∨
(∀ i < length ys. snd (f (xs ! i) (ys ! i))) ∧ length xs > length ys),
((∃ i < length xs. i < length ys ∧ (∀ j < i. snd (f (xs ! j) (ys ! j))) ∧ fst (f (xs

! i) (ys !i))) ∨
(∀ i < length ys. snd (f (xs ! i) (ys ! i))) ∧ length xs ≥ length ys))
(is ?lex xs ys = (?stri xs ys, ?nstri xs ys))

proof (induct xs arbitrary: ys)
case Nil then show ?case by (cases ys, auto)

next
case (Cons a as)
note oCons = this
from oCons show ?case
proof (cases ys, simp)

case (Cons b bs)
show ?thesis
proof (cases f a b)

case (Pair stri nstri)
show ?thesis
proof (cases stri)

case True
with Pair Cons show ?thesis by auto

next
case False
show ?thesis
proof (cases nstri)

case False
with ‹¬ stri› Pair Cons show ?thesis by force

next
case True
with False Pair have f : f a b = (False, True) by auto
show ?thesis by (simp add: all-Suc-conv ex-Suc-conv Cons f oCons)

qed
qed

qed
qed

qed

declare lex-ext-unbounded.simps[simp del]

The lexicographic extension of an order pair takes a natural number as
maximum bound. A decrease with lists of unequal lengths will never be
successful if the length of the second list exceeds this bound. The bound is
essential to preserve strong normalization.
definition lex-ext :: (′a ⇒ ′a ⇒ bool × bool) ⇒ nat ⇒ ′a list ⇒ ′a list ⇒ bool ×

9

bool
where

lex-ext f n ss ts =
(let lts = length ts in
if (length ss = lts ∨ lts ≤ n) then lex-ext-unbounded f ss ts
else (False, False))

lemma lex-ext-iff : (lex-ext f m xs ys) = (
(length xs = length ys ∨ length ys ≤ m) ∧ ((∃ i < length xs. i < length ys ∧ (∀

j < i. snd (f (xs ! j) (ys ! j))) ∧ fst (f (xs ! i) (ys !i))) ∨
(∀ i < length ys. snd (f (xs ! i) (ys ! i))) ∧ length xs > length ys),
(length xs = length ys ∨ length ys ≤ m) ∧
((∃ i < length xs. i < length ys ∧ (∀ j < i. snd (f (xs ! j) (ys ! j))) ∧ fst (f (xs

! i) (ys !i))) ∨
(∀ i < length ys. snd (f (xs ! i) (ys ! i))) ∧ length xs ≥ length ys))

unfolding lex-ext-def
by (simp only: lex-ext-unbounded-iff Let-def , auto)

lemma lex-ext-to-lex-ext-unbounded:
assumes length xs ≤ n and length ys ≤ n
shows lex-ext f n xs ys = lex-ext-unbounded f xs ys
using assms by (simp add: lex-ext-def)

lemma lex-ext-stri-imp-nstri:
assumes fst (lex-ext f m xs ys)
shows snd (lex-ext f m xs ys)
using assms by (auto simp: lex-ext-iff)

lemma nstri-lex-ext-map:
assumes

∧
s t. s ∈ set ss =⇒ t ∈ set ts =⇒ fst (order s t) =⇒ fst (order ′ (f s)

(f t))
and

∧
s t. s ∈ set ss =⇒ t ∈ set ts =⇒ snd (order s t) =⇒ snd (order ′ (f s) (f

t))
and snd (lex-ext order n ss ts)

shows snd (lex-ext order ′ n (map f ss) (map f ts))
using assms unfolding lex-ext-iff by auto

lemma stri-lex-ext-map:
assumes

∧
s t. s ∈ set ss =⇒ t ∈ set ts =⇒ fst (order s t) =⇒ fst (order ′ (f s)

(f t))
and

∧
s t. s ∈ set ss =⇒ t ∈ set ts =⇒ snd (order s t) =⇒ snd (order ′ (f s) (f

t))
and fst (lex-ext order n ss ts)

shows fst (lex-ext order ′ n (map f ss) (map f ts))
using assms unfolding lex-ext-iff by auto

lemma lex-ext-arg-empty: snd (lex-ext f n [] xs) =⇒ xs = []

10

unfolding lex-ext-iff by auto

lemma lex-ext-co-compat:
assumes

∧
s t. s ∈ set ss =⇒ t ∈ set ts =⇒ fst (order s t) =⇒ snd (order ′ t s)

=⇒ False
and

∧
s t. s ∈ set ss =⇒ t ∈ set ts =⇒ snd (order s t) =⇒ fst (order ′ t s)

=⇒ False
and

∧
s t. fst (order s t) =⇒ snd (order s t)

and fst (lex-ext order n ss ts)
and snd (lex-ext order ′ n ts ss)

shows False
proof −

let ?ls = length ss
let ?lt = length ts
define s where s i = fst (order (ss ! i) (ts ! i)) for i
define ns where ns i = snd (order (ss ! i) (ts ! i)) for i
define s ′ where s ′ i = fst (order ′ (ts ! i) (ss ! i)) for i
define ns ′ where ns ′ i = snd (order ′ (ts ! i) (ss ! i)) for i
have co: i < ?ls =⇒ i < ?lt =⇒ s i =⇒ ns ′ i =⇒ False for i

using assms(1) unfolding s-def ns ′-def set-conv-nth by auto
have co ′: i < ?ls =⇒ i < ?lt =⇒ s ′ i =⇒ ns i =⇒ False for i

using assms(2) unfolding s ′-def ns-def set-conv-nth by auto
from assms(4)[unfolded lex-ext-iff fst-conv, folded s-def ns-def]
have ch1 : (∃ i. i < ?ls ∧ i < ?lt ∧ (∀ j<i. ns j) ∧ s i) ∨ (∀ i<?lt. ns i) ∧ ?lt

< ?ls (is ?A ∨ ?B) by auto
from assms(5)[unfolded lex-ext-iff snd-conv, folded s ′-def ns ′-def]
have ch2 : (∃ i. i < ?ls ∧ i < ?lt ∧ (∀ j<i. ns ′ j) ∧ s ′ i) ∨ (∀ i<?ls. ns ′ i) ∧ ?ls
≤ ?lt (is ?A ′ ∨ ?B ′) by auto

from ch1 show False
proof

assume ?A
then obtain i where i: i < ?ls i < ?lt and s: s i and ns:

∧
j. j < i =⇒ ns

j by auto
note s = co[OF i s]
have ns: j < i =⇒ s ′ j =⇒ False for j

using i ns[of j] co ′[of j] by auto
from ch2 show False
proof

assume ?A ′

then obtain i ′ where i ′: i ′ < ?ls i ′ < ?lt and s ′: s ′ i ′ and ns ′:
∧

j ′. j ′ < i ′
=⇒ ns ′ j ′ by auto

from s ns ′[of i] have i ≥ i ′ by presburger
with ns[OF - s ′] have i ′: i ′ = i by presburger
from ‹s i› have ns i using assms(3) unfolding s-def ns-def by auto
from co ′[OF i s ′[unfolded i ′] this] show False .

next
assume ?B ′

with i have ns ′ i by auto
from s[OF this] show False .

11

qed
next

assume B: ?B
with ch2 have ?A ′ by auto
then obtain i where i: i < ?ls i < ?lt and s ′: s ′ i and ns ′:

∧
j. j < i =⇒

ns ′ j by auto
from co ′[OF i s ′] B i show False by auto

qed
qed

lemma lex-ext-irrefl: assumes
∧

x. x ∈ set xs =⇒ ¬ fst (rel x x)
shows ¬ fst (lex-ext rel n xs xs)

proof
assume fst (lex-ext rel n xs xs)
then obtain i where i < length xs and fst (rel (xs ! i) (xs ! i))

unfolding lex-ext-iff by auto
with assms[of xs ! i] show False by auto

qed

lemma lex-ext-unbounded-stri-imp-nstri:
assumes fst (lex-ext-unbounded f xs ys)
shows snd (lex-ext-unbounded f xs ys)
using assms by (auto simp: lex-ext-unbounded-iff)

lemma all-nstri-imp-lex-nstri: assumes ∀ i < length ys. snd (f (xs ! i) (ys ! i))
and length xs ≥ length ys and length xs = length ys ∨ length ys ≤ m

shows snd (lex-ext f m xs ys)
using assms by (auto simp: lex-ext-iff)

lemma lex-ext-cong[fundef-cong]: fixes f g m1 m2 xs1 xs2 ys1 ys2
assumes length xs1 = length ys1 and m1 = m2 and length xs2 = length ys2

and
∧

i. [[i < length ys1 ; i < length ys2]] =⇒ f (xs1 ! i) (xs2 ! i) = g (ys1 ! i)
(ys2 ! i)

shows lex-ext f m1 xs1 xs2 = lex-ext g m2 ys1 ys2
using assms by (auto simp: lex-ext-iff)

lemma lex-ext-unbounded-cong[fundef-cong]: assumes as = as ′ and bs = bs ′

and
∧

i. i < length as ′ =⇒ i < length bs ′ =⇒ f (as ′ ! i) (bs ′ ! i) = g (as ′ ! i)
(bs ′ ! i) shows lex-ext-unbounded f as bs = lex-ext-unbounded g as ′ bs ′

unfolding assms lex-ext-unbounded-iff using assms(3) by auto

Compatibility is the key property to ensure transitivity of the order.
We prove compatibility locally, i.e., it only has to hold for elements of

the argument lists. Locality is essential for being applicable in recursively
defined term orders such as KBO.
lemma lex-ext-compat:

assumes compat:
∧

s t u. [[s ∈ set ss; t ∈ set ts; u ∈ set us]] =⇒
(snd (f s t) ∧ fst (f t u) −→ fst (f s u)) ∧

12

(fst (f s t) ∧ snd (f t u) −→ fst (f s u)) ∧
(snd (f s t) ∧ snd (f t u) −→ snd (f s u)) ∧
(fst (f s t) ∧ fst (f t u) −→ fst (f s u))

shows
(snd (lex-ext f n ss ts) ∧ fst (lex-ext f n ts us) −→ fst (lex-ext f n ss us)) ∧
(fst (lex-ext f n ss ts) ∧ snd (lex-ext f n ts us) −→ fst (lex-ext f n ss us)) ∧
(snd (lex-ext f n ss ts) ∧ snd (lex-ext f n ts us) −→ snd (lex-ext f n ss us)) ∧
(fst (lex-ext f n ss ts) ∧ fst (lex-ext f n ts us) −→ fst (lex-ext f n ss us))

proof −
let ?ls = length ss
let ?lt = length ts
let ?lu = length us
let ?st = lex-ext f n ss ts
let ?tu = lex-ext f n ts us
let ?su = lex-ext f n ss us
let ?fst = λ ss ts i. fst (f (ss ! i) (ts ! i))
let ?snd = λ ss ts i. snd (f (ss ! i) (ts ! i))
let ?ex = λ ss ts. ∃ i < length ss. i < length ts ∧ (∀ j < i. ?snd ss ts j) ∧ ?fst

ss ts i
let ?all = λ ss ts. ∀ i < length ts. ?snd ss ts i
have lengths: (?ls = ?lt ∨ ?lt ≤ n) ∧ (?lt = ?lu ∨ ?lu ≤ n) −→
(?ls = ?lu ∨ ?lu ≤ n) (is ?lst ∧ ?ltu −→ ?lsu) by arith

{
assume st: snd ?st and tu: fst ?tu
with lengths have lsu: ?lsu by (simp add: lex-ext-iff)
from st have st: ?ex ss ts ∨ ?all ss ts ∧ ?lt ≤ ?ls by (simp add: lex-ext-iff)
from tu have tu: ?ex ts us ∨ ?all ts us ∧ ?lu < ?lt by (simp add: lex-ext-iff)
from st have fst ?su
proof

assume st: ?ex ss ts
then obtain i1 where i1 : i1 < ?ls ∧ i1 < ?lt and fst1 : ?fst ss ts i1 and

snd1 : ∀ j < i1 . ?snd ss ts j by force
from tu show ?thesis
proof

assume tu: ?ex ts us
then obtain i2 where i2 : i2 < ?lt ∧ i2 < ?lu and fst2 : ?fst ts us i2 and

snd2 : ∀ j < i2 . ?snd ts us j by auto
let ?i = min i1 i2
from i1 i2 have i: ?i < ?ls ∧ ?i < ?lt ∧ ?i < ?lu by auto
then have ssi: ss ! ?i ∈ set ss and tsi: ts ! ?i ∈ set ts and usi: us ! ?i ∈

set us by auto
have snd: ∀ j < ?i. ?snd ss us j
proof (intro allI impI)

fix j
assume j: j < ?i
with snd1 snd2 have snd1 : ?snd ss ts j and snd2 : ?snd ts us j by auto
from j i have ssj: ss ! j ∈ set ss and tsj: ts ! j ∈ set ts and usj: us ! j ∈

set us by auto

13

from compat[OF ssj tsj usj] snd1 snd2 show ?snd ss us j by auto
qed
have fst: ?fst ss us ?i
proof (cases i1 < i2)

case True
then have ?i = i1 by simp
with True fst1 snd2 have ?fst ss ts ?i and ?snd ts us ?i by auto
with compat[OF ssi tsi usi] show ?fst ss us ?i by auto

next
case False
show ?thesis
proof (cases i2 < i1)

case True
then have ?i = i2 by simp
with True snd1 fst2 have ?snd ss ts ?i and ?fst ts us ?i by auto
with compat[OF ssi tsi usi] show ?fst ss us ?i by auto

next
case False
with ‹¬ i1 < i2 › have i1 = i2 by simp
with fst1 fst2 have ?fst ss ts ?i and ?fst ts us ?i by auto
with compat[OF ssi tsi usi] show ?fst ss us ?i by auto

qed
qed
show ?thesis by (simp add: lex-ext-iff lsu, rule disjI1 , rule exI [of - ?i], simp

add: fst snd i)
next

assume tu: ?all ts us ∧ ?lu < ?lt
show ?thesis
proof (cases i1 < ?lu)

case True
then have usi: us ! i1 ∈ set us by auto
from i1 have ssi: ss ! i1 ∈ set ss and tsi: ts ! i1 ∈ set ts by auto
from True tu have ?snd ts us i1 by auto
with fst1 compat[OF ssi tsi usi] have fst: ?fst ss us i1 by auto
have snd: ∀ j < i1 . ?snd ss us j
proof (intro allI impI)

fix j
assume j < i1
with i1 True snd1 tu have snd1 : ?snd ss ts j and snd2 : ?snd ts us j

and
ssj: ss ! j ∈ set ss and tsj: ts ! j ∈ set ts and usj: us ! j ∈ set us by

auto
from compat[OF ssj tsj usj] snd1 snd2 show ?snd ss us j by auto

qed
with fst lsu True i1 show ?thesis by (auto simp: lex-ext-iff)

next
case False
with i1 have lus: ?lu < ?ls by auto
have snd: ∀ j < ?lu. ?snd ss us j

14

proof (intro allI impI)
fix j
assume j < ?lu
with False i1 snd1 tu have snd1 : ?snd ss ts j and snd2 : ?snd ts us j

and
ssj: ss ! j ∈ set ss and tsj: ts ! j ∈ set ts and usj: us ! j ∈ set us by

auto
from compat[OF ssj tsj usj] snd1 snd2 show ?snd ss us j by auto

qed
with lus lsu show ?thesis by (auto simp: lex-ext-iff)

qed
qed

next
assume st: ?all ss ts ∧ ?lt ≤ ?ls
from tu
show ?thesis
proof

assume tu: ?ex ts us
with st obtain i2 where i2 : i2 < ?lt ∧ i2 < ?lu and fst2 : ?fst ts us i2

and snd2 : ∀ j < i2 . ?snd ts us j by auto
from st i2 have i2 : i2 < ?ls ∧ i2 < ?lt ∧ i2 < ?lu by auto
then have ssi: ss ! i2 ∈ set ss and tsi: ts ! i2 ∈ set ts and usi: us ! i2 ∈

set us by auto
from i2 st have ?snd ss ts i2 by auto
with fst2 compat[OF ssi tsi usi] have fst: ?fst ss us i2 by auto
have snd: ∀ j < i2 . ?snd ss us j
proof (intro allI impI)

fix j
assume j < i2
with i2 snd2 st have snd1 : ?snd ss ts j and snd2 : ?snd ts us j and
ssj: ss ! j ∈ set ss and tsj: ts ! j ∈ set ts and usj: us ! j ∈ set us by auto

from compat[OF ssj tsj usj] snd1 snd2 show ?snd ss us j by auto
qed
with fst lsu i2 show ?thesis by (auto simp: lex-ext-iff)

next
assume tu: ?all ts us ∧ ?lu < ?lt
with st have lus: ?lu < ?ls by auto
have snd: ∀ j < ?lu. ?snd ss us j
proof (intro allI impI)

fix j
assume j < ?lu
with st tu have snd1 : ?snd ss ts j and snd2 : ?snd ts us j and
ssj: ss ! j ∈ set ss and tsj: ts ! j ∈ set ts and usj: us ! j ∈ set us by auto

from compat[OF ssj tsj usj] snd1 snd2 show ?snd ss us j by auto
qed
with lus lsu show ?thesis by (auto simp: lex-ext-iff)

qed
qed

}

15

moreover
{

assume st: fst ?st and tu: snd ?tu
with lengths have lsu: ?lsu by (simp add: lex-ext-iff)
from st have st: ?ex ss ts ∨ ?all ss ts ∧ ?lt < ?ls by (simp add: lex-ext-iff)
from tu have tu: ?ex ts us ∨ ?all ts us ∧ ?lu ≤ ?lt by (simp add: lex-ext-iff)
from st have fst ?su
proof

assume st: ?ex ss ts
then obtain i1 where i1 : i1 < ?ls ∧ i1 < ?lt and fst1 : ?fst ss ts i1 and

snd1 : ∀ j < i1 . ?snd ss ts j by force
from tu show ?thesis
proof

assume tu: ?ex ts us
then obtain i2 where i2 : i2 < ?lt ∧ i2 < ?lu and fst2 : ?fst ts us i2 and

snd2 : ∀ j < i2 . ?snd ts us j by auto
let ?i = min i1 i2
from i1 i2 have i: ?i < ?ls ∧ ?i < ?lt ∧ ?i < ?lu by auto
then have ssi: ss ! ?i ∈ set ss and tsi: ts ! ?i ∈ set ts and usi: us ! ?i ∈

set us by auto
have snd: ∀ j < ?i. ?snd ss us j
proof (intro allI impI)

fix j
assume j: j < ?i
with snd1 snd2 have snd1 : ?snd ss ts j and snd2 : ?snd ts us j by auto
from j i have ssj: ss ! j ∈ set ss and tsj: ts ! j ∈ set ts and usj: us ! j ∈

set us by auto
from compat[OF ssj tsj usj] snd1 snd2 show ?snd ss us j by auto

qed
have fst: ?fst ss us ?i
proof (cases i1 < i2)

case True
then have ?i = i1 by simp
with True fst1 snd2 have ?fst ss ts ?i and ?snd ts us ?i by auto
with compat[OF ssi tsi usi] show ?fst ss us ?i by auto

next
case False
show ?thesis
proof (cases i2 < i1)

case True
then have ?i = i2 by simp
with True snd1 fst2 have ?snd ss ts ?i and ?fst ts us ?i by auto
with compat[OF ssi tsi usi] show ?fst ss us ?i by auto

next
case False
with ‹¬ i1 < i2 › have i1 = i2 by simp
with fst1 fst2 have ?fst ss ts ?i and ?fst ts us ?i by auto
with compat[OF ssi tsi usi] show ?fst ss us ?i by auto

qed

16

qed
show ?thesis by (simp add: lex-ext-iff lsu, rule disjI1 , rule exI [of - ?i], simp

add: fst snd i)
next

assume tu: ?all ts us ∧ ?lu ≤ ?lt
show ?thesis
proof (cases i1 < ?lu)

case True
then have usi: us ! i1 ∈ set us by auto
from i1 have ssi: ss ! i1 ∈ set ss and tsi: ts ! i1 ∈ set ts by auto
from True tu have ?snd ts us i1 by auto
with fst1 compat[OF ssi tsi usi] have fst: ?fst ss us i1 by auto
have snd: ∀ j < i1 . ?snd ss us j
proof (intro allI impI)

fix j
assume j < i1
with i1 True snd1 tu have snd1 : ?snd ss ts j and snd2 : ?snd ts us j

and
ssj: ss ! j ∈ set ss and tsj: ts ! j ∈ set ts and usj: us ! j ∈ set us by

auto
from compat[OF ssj tsj usj] snd1 snd2 show ?snd ss us j by auto

qed
with fst lsu True i1 show ?thesis by (auto simp: lex-ext-iff)

next
case False
with i1 have lus: ?lu < ?ls by auto
have snd: ∀ j < ?lu. ?snd ss us j
proof (intro allI impI)

fix j
assume j < ?lu
with False i1 snd1 tu have snd1 : ?snd ss ts j and snd2 : ?snd ts us j

and
ssj: ss ! j ∈ set ss and tsj: ts ! j ∈ set ts and usj: us ! j ∈ set us by

auto
from compat[OF ssj tsj usj] snd1 snd2 show ?snd ss us j by auto

qed
with lus lsu show ?thesis by (auto simp: lex-ext-iff)

qed
qed

next
assume st: ?all ss ts ∧ ?lt < ?ls
from tu
show ?thesis
proof

assume tu: ?ex ts us
with st obtain i2 where i2 : i2 < ?lt ∧ i2 < ?lu and fst2 : ?fst ts us i2

and snd2 : ∀ j < i2 . ?snd ts us j by auto
from st i2 have i2 : i2 < ?ls ∧ i2 < ?lt ∧ i2 < ?lu by auto
then have ssi: ss ! i2 ∈ set ss and tsi: ts ! i2 ∈ set ts and usi: us ! i2 ∈

17

set us by auto
from i2 st have ?snd ss ts i2 by auto
with fst2 compat[OF ssi tsi usi] have fst: ?fst ss us i2 by auto
have snd: ∀ j < i2 . ?snd ss us j
proof (intro allI impI)

fix j
assume j < i2
with i2 snd2 st have snd1 : ?snd ss ts j and snd2 : ?snd ts us j and
ssj: ss ! j ∈ set ss and tsj: ts ! j ∈ set ts and usj: us ! j ∈ set us by auto

from compat[OF ssj tsj usj] snd1 snd2 show ?snd ss us j by auto
qed
with fst lsu i2 show ?thesis by (auto simp: lex-ext-iff)

next
assume tu: ?all ts us ∧ ?lu ≤ ?lt
with st have lus: ?lu < ?ls by auto
have snd: ∀ j < ?lu. ?snd ss us j
proof (intro allI impI)

fix j
assume j < ?lu
with st tu have snd1 : ?snd ss ts j and snd2 : ?snd ts us j and
ssj: ss ! j ∈ set ss and tsj: ts ! j ∈ set ts and usj: us ! j ∈ set us by auto

from compat[OF ssj tsj usj] snd1 snd2 show ?snd ss us j by auto
qed
with lus lsu show ?thesis by (auto simp: lex-ext-iff)

qed
qed

}
moreover
{

assume st: snd ?st and tu: snd ?tu
with lengths have lsu: ?lsu by (simp add: lex-ext-iff)
from st have st: ?ex ss ts ∨ ?all ss ts ∧ ?lt ≤ ?ls by (simp add: lex-ext-iff)
from tu have tu: ?ex ts us ∨ ?all ts us ∧ ?lu ≤ ?lt by (simp add: lex-ext-iff)
from st have snd ?su
proof

assume st: ?ex ss ts
then obtain i1 where i1 : i1 < ?ls ∧ i1 < ?lt and fst1 : ?fst ss ts i1 and

snd1 : ∀ j < i1 . ?snd ss ts j by force
from tu show ?thesis
proof

assume tu: ?ex ts us
then obtain i2 where i2 : i2 < ?lt ∧ i2 < ?lu and fst2 : ?fst ts us i2 and

snd2 : ∀ j < i2 . ?snd ts us j by auto
let ?i = min i1 i2
from i1 i2 have i: ?i < ?ls ∧ ?i < ?lt ∧ ?i < ?lu by auto
then have ssi: ss ! ?i ∈ set ss and tsi: ts ! ?i ∈ set ts and usi: us ! ?i ∈

set us by auto
have snd: ∀ j < ?i. ?snd ss us j
proof (intro allI impI)

18

fix j
assume j: j < ?i
with snd1 snd2 have snd1 : ?snd ss ts j and snd2 : ?snd ts us j by auto
from j i have ssj: ss ! j ∈ set ss and tsj: ts ! j ∈ set ts and usj: us ! j ∈

set us by auto
from compat[OF ssj tsj usj] snd1 snd2 show ?snd ss us j by auto

qed
have fst: ?fst ss us ?i
proof (cases i1 < i2)

case True
then have ?i = i1 by simp
with True fst1 snd2 have ?fst ss ts ?i and ?snd ts us ?i by auto
with compat[OF ssi tsi usi] show ?fst ss us ?i by auto

next
case False
show ?thesis
proof (cases i2 < i1)

case True
then have ?i = i2 by simp
with True snd1 fst2 have ?snd ss ts ?i and ?fst ts us ?i by auto
with compat[OF ssi tsi usi] show ?fst ss us ?i by auto

next
case False
with ‹¬ i1 < i2 › have i1 = i2 by simp
with fst1 fst2 have ?fst ss ts ?i and ?fst ts us ?i by auto
with compat[OF ssi tsi usi] show ?fst ss us ?i by auto

qed
qed
show ?thesis by (simp add: lex-ext-iff lsu, rule disjI1 , rule exI [of - ?i], simp

add: fst snd i)
next

assume tu: ?all ts us ∧ ?lu ≤ ?lt
show ?thesis
proof (cases i1 < ?lu)

case True
then have usi: us ! i1 ∈ set us by auto
from i1 have ssi: ss ! i1 ∈ set ss and tsi: ts ! i1 ∈ set ts by auto
from True tu have ?snd ts us i1 by auto
with fst1 compat[OF ssi tsi usi] have fst: ?fst ss us i1 by auto
have snd: ∀ j < i1 . ?snd ss us j
proof (intro allI impI)

fix j
assume j < i1
with i1 True snd1 tu have snd1 : ?snd ss ts j and snd2 : ?snd ts us j

and
ssj: ss ! j ∈ set ss and tsj: ts ! j ∈ set ts and usj: us ! j ∈ set us by

auto
from compat[OF ssj tsj usj] snd1 snd2 show ?snd ss us j by auto

qed

19

with fst lsu True i1 show ?thesis by (auto simp: lex-ext-iff)
next

case False
with i1 have lus: ?lu ≤ ?ls by auto
have snd: ∀ j < ?lu. ?snd ss us j
proof (intro allI impI)

fix j
assume j < ?lu
with False i1 snd1 tu have snd1 : ?snd ss ts j and snd2 : ?snd ts us j

and
ssj: ss ! j ∈ set ss and tsj: ts ! j ∈ set ts and usj: us ! j ∈ set us by

auto
from compat[OF ssj tsj usj] snd1 snd2 show ?snd ss us j by auto

qed
with lus lsu show ?thesis by (auto simp: lex-ext-iff)

qed
qed

next
assume st: ?all ss ts ∧ ?lt ≤ ?ls
from tu
show ?thesis
proof

assume tu: ?ex ts us
with st obtain i2 where i2 : i2 < ?lt ∧ i2 < ?lu and fst2 : ?fst ts us i2

and snd2 : ∀ j < i2 . ?snd ts us j by auto
from st i2 have i2 : i2 < ?ls ∧ i2 < ?lt ∧ i2 < ?lu by auto
then have ssi: ss ! i2 ∈ set ss and tsi: ts ! i2 ∈ set ts and usi: us ! i2 ∈

set us by auto
from i2 st have ?snd ss ts i2 by auto
with fst2 compat[OF ssi tsi usi] have fst: ?fst ss us i2 by auto
have snd: ∀ j < i2 . ?snd ss us j
proof (intro allI impI)

fix j
assume j < i2
with i2 snd2 st have snd1 : ?snd ss ts j and snd2 : ?snd ts us j and
ssj: ss ! j ∈ set ss and tsj: ts ! j ∈ set ts and usj: us ! j ∈ set us by auto

from compat[OF ssj tsj usj] snd1 snd2 show ?snd ss us j by auto
qed
with fst lsu i2 show ?thesis by (auto simp: lex-ext-iff)

next
assume tu: ?all ts us ∧ ?lu ≤ ?lt
with st have lus: ?lu ≤ ?ls by auto
have snd: ∀ j < ?lu. ?snd ss us j
proof (intro allI impI)

fix j
assume j < ?lu
with st tu have snd1 : ?snd ss ts j and snd2 : ?snd ts us j and
ssj: ss ! j ∈ set ss and tsj: ts ! j ∈ set ts and usj: us ! j ∈ set us by auto

from compat[OF ssj tsj usj] snd1 snd2 show ?snd ss us j by auto

20

qed
with lus lsu show ?thesis by (auto simp: lex-ext-iff)

qed
qed

}
ultimately
show ?thesis using lex-ext-stri-imp-nstri by blast

qed

lemma lex-ext-unbounded-map:
assumes S :

∧
i. i < length ss =⇒ i < length ts =⇒ fst (r (ss ! i) (ts ! i)) =⇒

fst (r (map f ss ! i) (map f ts ! i))
and NS :

∧
i. i < length ss =⇒ i < length ts =⇒ snd (r (ss ! i) (ts ! i)) =⇒

snd (r (map f ss ! i) (map f ts ! i))
shows (fst (lex-ext-unbounded r ss ts) −→ fst (lex-ext-unbounded r (map f ss)

(map f ts))) ∧
(snd (lex-ext-unbounded r ss ts) −→ snd (lex-ext-unbounded r (map f ss) (map

f ts)))
using S NS unfolding lex-ext-unbounded-iff by auto

lemma lex-ext-unbounded-map-S :
assumes S :

∧
i. i < length ss =⇒ i < length ts =⇒ fst (r (ss ! i) (ts ! i)) =⇒

fst (r (map f ss ! i) (map f ts ! i))
and NS :

∧
i. i < length ss =⇒ i < length ts =⇒ snd (r (ss ! i) (ts ! i)) =⇒

snd (r (map f ss ! i) (map f ts ! i))
and stri: fst (lex-ext-unbounded r ss ts)

shows fst (lex-ext-unbounded r (map f ss) (map f ts))
using lex-ext-unbounded-map[of ss ts r f , OF S NS] stri by blast

lemma lex-ext-unbounded-map-NS :
assumes S :

∧
i. i < length ss =⇒ i < length ts =⇒ fst (r (ss ! i) (ts ! i)) =⇒

fst (r (map f ss ! i) (map f ts ! i))
and NS :

∧
i. i < length ss =⇒ i < length ts =⇒ snd (r (ss ! i) (ts ! i)) =⇒

snd (r (map f ss ! i) (map f ts ! i))
and nstri: snd (lex-ext-unbounded r ss ts)

shows snd (lex-ext-unbounded r (map f ss) (map f ts))
using lex-ext-unbounded-map[of ss ts r f , OF S NS] nstri by blast

Strong normalization with local SN assumption
lemma lex-ext-SN :

assumes compat:
∧

x y z. [[snd (g x y); fst (g y z)]] =⇒ fst (g x z)
shows SN { (ys, xs). (∀ y ∈ set ys. SN-on { (s, t). fst (g s t) } {y}) ∧ fst (lex-ext

g m ys xs) }
(is SN { (ys, xs). ?cond ys xs })

proof (rule ccontr)
assume ¬ ?thesis
from this obtain f where f :

∧
n :: nat. ?cond (f n) (f (Suc n)) unfolding

SN-defs by auto
have m-imp-m:

∧
n. length (f n) ≤ m =⇒ length (f (Suc n)) ≤ m

21

proof −
fix n
assume length (f n) ≤ m
then show length (f (Suc n)) ≤ m

using f [of n] by (auto simp: lex-ext-iff)
qed
have lm-imp-m-or-eq:

∧
n. length (f n) > m =⇒ length (f (Suc n)) ≤ m ∨

length (f n) = length (f (Suc n))
proof −

fix n
assume length (f n) > m
then have ¬ length (f n) ≤ m by auto
then show length (f (Suc n)) ≤ m ∨ length (f n) = length (f (Suc n))

using f [of n] by (simp add: lex-ext-iff , blast)
qed
let ?l0 = max (length (f 0)) m
have

∧
n. length (f n) ≤ ?l0

proof −
fix n
show length (f n) ≤ ?l0
proof (induct n, simp)

case (Suc n)
show ?case
proof (cases length (f n) ≤ m)

case True
with m-imp-m[of n] show ?thesis by auto

next
case False
then have length (f n) > m by auto
with lm-imp-m-or-eq[of n]
have length (f n) = length (f (Suc n)) ∨ length (f (Suc n)) ≤ m by auto
with Suc show ?thesis by auto

qed
qed

qed
from this obtain m ′ where len:

∧
n. length (f n) ≤ m ′ by auto

let ?lexgr = λ ys xs. fst (lex-ext g m ys xs)
let ?lexge = λ ys xs. snd (lex-ext g m ys xs)
let ?gr = λ t s. fst (g t s)
let ?ge = λ t s. snd (g t s)
let ?S = { (y, x). fst (g y x) }
let ?NS = { (y, x). snd (g y x) }
let ?baseSN = λ ys. ∀ y ∈ set ys. SN-on ?S {y}
let ?con = λ ys xs m ′. ?baseSN ys ∧ length ys ≤ m ′ ∧ ?lexgr ys xs
let ?confn = λ m ′ f n . ?con (f n) (f (Suc n)) m ′

from compat have compat2 : ?NS O ?S ⊆ ?S by auto
from f len have ∃ f . ∀ n. ?confn m ′ f n by auto
then show False
proof (induct m ′)

22

case 0
from this obtain f where ?confn 0 f 0 by auto
then have ?lexgr [] (f (Suc 0)) by force
then show False by (simp add: lex-ext-iff)

next
case (Suc m ′)
from this obtain f where confn:

∧
n. ?confn (Suc m ′) f n by auto

have ne:
∧

n. f n 6= []
proof −

fix n
show f n 6= []
proof (cases f n)

case (Cons a b) then show ?thesis by auto
next

case Nil
with confn[of n] show ?thesis by (simp add: lex-ext-iff)

qed
qed
let ?hf = λ n. hd (f n)
have ge:

∧
n. ?ge (?hf n) (?hf (Suc n)) ∨ ?gr (?hf n) (?hf (Suc n))

proof −
fix n
from ne[of n] obtain a as where n: f n = a # as by (cases f n, auto)
from ne[of Suc n] obtain b bs where sn: f (Suc n) = b # bs by (cases f

(Suc n), auto)
from n sn have ?ge a b ∨ ?gr a b
proof (cases ?gr a b, simp, cases ?ge a b, simp)

assume ¬ ?gr a b and ¬ ?ge a b
then have g: g a b = (False, False) by (cases g a b, auto)
from confn[of n] have fst (lex-ext g m (f n) (f (Suc n))) (is ?fst) by simp
have ?fst = False by (simp add: n sn lex-ext-def g lex-ext-unbounded.simps)
with ‹?fst› show ?ge a b ∨ ?gr a b by simp

qed
with n sn show ?ge (?hf n) (?hf (Suc n)) ∨ ?gr (?hf n) (?hf (Suc n)) by

simp
qed
from ge have GE : ∀ n. (?hf n, ?hf (Suc n)) ∈ ?NS ∪ ?S by auto
from confn[of 0] ne[of 0] have SN-0 : SN-on ?S {?hf 0} by (cases f 0 , auto)
from non-strict-ending[of ?hf , OF GE compat2 SN-0]
obtain j where j: ∀ i ≥ j. (?hf i, ?hf (Suc i)) ∈ ?NS − ?S by auto
let ?h = λ n. tl (f (j + n))
obtain h where h: h = ?h by auto
have

∧
n. ?confn m ′ h n

proof −
fix n
let ?nj = j + n
from spec[OF j, of ?nj]
have ge-not-gr : (?hf ?nj, ?hf (Suc ?nj)) ∈ ?NS − ?S by simp
from confn[of ?nj] have old: ?confn (Suc m ′) f ?nj by simp

23

from ne[of ?nj] obtain a as where n: f ?nj = a # as by (cases f ?nj, auto)
from ne[of Suc ?nj] obtain b bs where sn: f (Suc ?nj) = b # bs by (cases

f (Suc ?nj), auto)
from old have one: ∀ y ∈ set (h n). SN-on ?S {y}

by (simp add: h n)
from old have two: length (h n) ≤ m ′ by (simp add: j n h)
from ge-not-gr have ge-not-gr2 : g a b = (False, True) by (simp add: n sn,

cases g a b, auto)
from old have fst (lex-ext g m (f (j+ n)) (f (Suc (j+n)))) (is ?fst) by simp
then have length as = length bs ∨ length bs ≤ m (is ?len)

by (simp add: lex-ext-def n sn, cases ?len, auto)
from ‹?fst›[simplified n sn] have fst (lex-ext-unbounded g as bs) (is ?fst)

by (simp add: lex-ext-def , cases length as = length bs ∨ Suc (length bs) ≤
m, simp-all add: ge-not-gr2 lex-ext-unbounded.simps)

then have fst (lex-ext-unbounded g as bs) (is ?fst)
by (simp add: lex-ext-unbounded-iff)

have three: ?lexgr (h n) (h (Suc n))
by (simp add: lex-ext-def h n sn ge-not-gr2 lex-ext-unbounded.simps, simp

only: Let-def , simp add: ‹?len› ‹?fst›)
from one two three show ?confn m ′ h n by blast

qed
with Suc show ?thesis by blast

qed
qed

Strong normalization with global SN assumption is immediate conse-
quence.
lemma lex-ext-SN-2 :

assumes compat:
∧

x y z. [[snd (g x y); fst (g y z)]] =⇒ fst (g x z)
and SN : SN {(s, t). fst (g s t)}

shows SN { (ys, xs). fst (lex-ext g m ys xs) }
proof −

from lex-ext-SN [OF compat]
have SN { (ys, xs). (∀ y ∈ set ys. SN-on { (s, t). fst (g s t) } {y}) ∧ fst (lex-ext

g m ys xs) } .
then show ?thesis using SN unfolding SN-on-def by fastforce

qed

The empty list is the least element in the lexicographic extension.
lemma lex-ext-least-1 : snd (lex-ext f m xs [])

by (simp add: lex-ext-iff)

lemma lex-ext-least-2 : ¬ fst (lex-ext f m [] ys)
by (simp add: lex-ext-iff)

Preservation of totality on lists of same length.
lemma lex-ext-unbounded-total:

assumes ∀ (s, t)∈set (zip ss ts). s = t ∨ fst (f s t) ∨ fst (f t s)
and refl:

∧
t. snd (f t t)

24

and length ss = length ts
shows ss = ts ∨ fst (lex-ext-unbounded f ss ts) ∨ fst (lex-ext-unbounded f ts ss)
using assms(3 , 1)

proof (induct ss ts rule: list-induct2)
case (Cons s ss t ts)
from Cons(3) have s = t ∨ (fst (f s t) ∨ fst (f t s)) by auto
then show ?case
proof

assume st: s = t
then show ?thesis using Cons(2−3) refl[of t] by (cases f t t, auto simp:

lex-ext-unbounded.simps)
qed (auto simp: lex-ext-unbounded.simps split: prod.splits)

qed simp

lemma lex-ext-total:
assumes ∀ (s, t)∈set (zip ss ts). s = t ∨ fst (f s t) ∨ fst (f t s)

and
∧

t. snd (f t t)
and len: length ss = length ts

shows ss = ts ∨ fst (lex-ext f n ss ts) ∨ fst (lex-ext f n ts ss)
using lex-ext-unbounded-total[OF assms] unfolding lex-ext-def Let-def len by

auto

Monotonicity of the lexicographic extension.
lemma lex-ext-unbounded-mono:

assumes
∧

i. [[i < length xs; i < length ys; fst (P (xs ! i) (ys ! i))]] =⇒ fst (P ′

(xs ! i) (ys ! i))
and

∧
i. [[i < length xs; i < length ys; snd (P (xs ! i) (ys ! i))]] =⇒ snd (P ′

(xs ! i) (ys ! i))
shows
(fst (lex-ext-unbounded P xs ys) −→ fst (lex-ext-unbounded P ′ xs ys)) ∧
(snd (lex-ext-unbounded P xs ys) −→ snd (lex-ext-unbounded P ′ xs ys))
(is (?l1 xs ys −→ ?r1 xs ys) ∧ (?l2 xs ys −→ ?r2 xs ys))

using assms
proof (induct x≡P xs ys rule: lex-ext-unbounded.induct)

note [simp] = lex-ext-unbounded.simps
case (4 x xs y ys)
consider (TT) P x y = (True, True)
| (TF) P x y = (True, False)
| (FT) P x y = (False, True)
| (FF) P x y = (False, False) by (cases P x y, auto)

thus ?case
proof cases

case TT
moreover
with 4 (2) [of 0] and 4 (3) [of 0]
have P ′ x y = (True, True)

by (auto) (metis (full-types) prod.collapse)
ultimately
show ?thesis by simp

25

next
case TF
show ?thesis
proof (cases snd (P ′ x y))

case False
moreover
with 4 (2) [of 0] and TF
have P ′ x y = (True, False)

by (cases P ′ x y, auto)
ultimately
show ?thesis by simp

next
case True
with 4 (2) [of 0] and TF
have P ′ x y = (True, True)

by (auto)(metis (full-types) fst-conv snd-conv surj-pair)
then show ?thesis by simp

qed
next

case FF then show ?thesis by simp
next

case FT
show ?thesis
proof (cases fst (P ′ x y))

case True
with 4 (3) [of 0] and FT
have ∗: P ′ x y = (True, True)

by (auto) (metis (full-types) prod.collapse)
have ?l1 (x#xs) (y#ys) −→ ?r1 (x#xs) (y#ys)

by (simp add: FT ∗)
moreover
have ?l2 (x#xs) (y#ys) −→ ?r2 (x#xs) (y#ys)

by (simp add: ∗)
ultimately show ?thesis by blast

next
case False
with 4 (3) [of 0] and FT
have ∗: P ′ x y = (False, True)

by (cases P ′ x y, auto)
show ?thesis

using 4 (1) [OF refl FT [symmetric]] and 4 (2) and 4 (3)
using FT ∗
by (auto) (metis Suc-less-eq nth-Cons-Suc)+

qed
qed

qed (simp add: lex-ext-unbounded.simps)+

lemma lex-ext-local-mono [mono]:
assumes

∧
s t. s ∈ set ts =⇒ t ∈ set ss =⇒ ord s t =⇒ ord ′ s t

26

shows fst (lex-ext (λ x y. (ord x y, (x, y) ∈ ns-rel)) (length ts) ts ss) −→
fst (lex-ext (λ x y. (ord ′ x y, (x, y) ∈ ns-rel)) (length ts) ts ss)

proof
assume ass: fst (lex-ext (λx y. (ord x y, (x, y) ∈ ns-rel)) (length ts) ts ss)
from assms have mono: (

∧
i. i < length ts =⇒ i < length ss =⇒ ord (ts ! i) (ss

! i) =⇒ ord ′ (ts ! i) (ss ! i))
using nth-mem by blast

let ?P = (λ x y. (ord x y, (x, y) ∈ ns-rel))
let ?P ′ = (λ x y. (ord ′ x y, (x, y) ∈ ns-rel))
from ass have lex: fst (lex-ext-unbounded ?P ts ss) unfolding lex-ext-def Let-def

if-distrib
by (auto split: if-splits)

have fst (lex-ext-unbounded ?P ′ ts ss)
by (rule lex-ext-unbounded-mono[THEN conjunct1 , rule-format, OF - - lex],

insert mono, auto)
thus fst (lex-ext (λx y. (ord ′ x y, (x, y) ∈ ns-rel)) (length ts) ts ss)

using ass unfolding lex-ext-def by (auto simp: Let-def)
qed

lemma lex-ext-mono [mono]:
assumes

∧
s t. ord s t −→ ord ′ s t

shows fst (lex-ext (λ x y. (ord x y, (x, y) ∈ ns)) (length ts) ts ss) −→
fst (lex-ext (λ x y. (ord ′ x y, (x, y) ∈ ns)) (length ts) ts ss)

using assms lex-ext-local-mono[of ts ss ord ord ′ ns] by blast

end

4 KBO
Below, we formalize a variant of KBO that includes subterm coefficient
functions.

A more standard definition is obtained by setting all subterm coefficients
to 1. For this special case it would be possible to define more efficient code-
equations that do not have to evaluate subterm coefficients at all.
theory KBO

imports
Lexicographic-Extension
First-Order-Terms.Subterm-and-Context
Polynomial-Factorization.Missing-List

begin

4.1 Subterm Coefficient Functions
Given a function scf, associating positions with subterm coefficients, and a
list xs, the function scf-list yields an expanded list where each element of xs
is replicated a number of times according to its subterm coefficient.
definition scf-list :: (nat ⇒ nat) ⇒ ′a list ⇒ ′a list

27

where
scf-list scf xs = concat (map (λ(x, i). replicate (scf i) x) (zip xs [0 ..< length

xs]))

lemma set-scf-list [simp]:
assumes ∀ i < length xs. scf i > 0
shows set (scf-list scf xs) = set xs
using assms by (auto simp: scf-list-def set-zip set-conv-nth[of xs])

lemma scf-list-subset: set (scf-list scf xs) ⊆ set xs
by (auto simp: scf-list-def set-zip)

lemma scf-list-empty [simp]:
scf-list scf [] = [] by (auto simp: scf-list-def)

lemma scf-list-bef-i-aft [simp]:
scf-list scf (bef @ i # aft) =

scf-list scf bef @ replicate (scf (length bef)) i @
scf-list (λ i. scf (Suc (length bef + i))) aft

unfolding scf-list-def
proof (induct aft rule: List.rev-induct)

case (snoc a aft)
define bia where bia = bef @ i # aft
have bia: bef @ i # aft @ [a] = bia @ [a] by (simp add: bia-def)
have zip: zip (bia @ [a]) [0 ..<length (bia @ [a])]
= zip bia [0 ..<length bia] @ [(a, length bia)] by simp

have concat:
concat (map (λ(x, i). replicate (scf i) x) (zip bia [0 ..<length bia] @ [(a, length

bia)])) =
concat (map (λ(x, i). replicate (scf i) x) (zip bia [0 ..<length bia])) @
replicate (scf (length bia)) a by simp

show ?case
unfolding bia zip concat
unfolding bia-def snoc
by simp

qed simp

lemma scf-list-map [simp]:
scf-list scf (map f xs) = map f (scf-list scf xs)
by (induct xs rule: List.rev-induct) (auto simp: scf-list-def)

The function scf-term replicates each argument a number of times ac-
cording to its subterm coefficient function.
fun scf-term :: (′f × nat ⇒ nat ⇒ nat) ⇒ (′f , ′v) term ⇒ (′f , ′v) term

where
scf-term scf (Var x) = (Var x) |
scf-term scf (Fun f ts) = Fun f (scf-list (scf (f , length ts)) (map (scf-term scf)

ts))

28

lemma vars-term-scf-subset:
vars-term (scf-term scf s) ⊆ vars-term s

proof (induct s)
case (Fun f ss)
have vars-term (scf-term scf (Fun f ss)) =
(
⋃

x∈set (scf-list (scf (f , length ss)) ss). vars-term (scf-term scf x)) by auto
also have . . . ⊆ (

⋃
x∈set ss. vars-term (scf-term scf x))

using scf-list-subset [of - ss] by blast
also have . . . ⊆ (

⋃
x∈set ss. vars-term x) using Fun by auto

finally show ?case by auto
qed auto

lemma scf-term-subst:
scf-term scf (t · σ) = scf-term scf t · (λ x. scf-term scf (σ x))

proof (induct t)
case (Fun f ts)
{ fix t

assume t ∈ set (scf-list (scf (f , length ts)) ts)
with scf-list-subset [of - ts] have t ∈ set ts by auto
then have scf-term scf (t · σ) = scf-term scf t · (λx. scf-term scf (σ x)) by

(rule Fun) }
then show ?case by auto

qed auto

4.2 Weight Functions
locale weight-fun =

fixes w :: ′f × nat ⇒ nat
and w0 :: nat
and scf :: ′f × nat ⇒ nat ⇒ nat

begin

The weight of a term is computed recursively, where variables have weight
w0 and the weight of a compound term is computed by adding the weight
of its root symbol w (f , n) to the weighted sum where weights of arguments
are multiplied according to their subterm coefficients.
fun weight :: (′f , ′v) term ⇒ nat

where
weight (Var x) = w0 |
weight (Fun f ts) =
(let n = length ts; scff = scf (f , n) in
w (f , n) + sum-list (map (λ (ti, i). weight ti ∗ scff i) (zip ts [0 ..< n])))

Alternatively, we can replicate arguments via scf-list. The advantage is
that then both weight and scf-term are defined via scf-list.
lemma weight-simp [simp]:

weight (Fun f ts) = w (f , length ts) + sum-list (map weight (scf-list (scf (f ,
length ts)) ts))
proof −

29

define scff where scff = (scf (f , length ts) :: nat ⇒ nat)
have (

∑
(ti, i) ← zip ts [0 ..<length ts]. weight ti ∗ scff i) =

sum-list (map weight (scf-list scff ts))
proof (induct ts rule: List.rev-induct)

case (snoc t ts)
moreover
{ fix n

have sum-list (replicate n (weight t)) = n ∗ weight t by (induct n) auto }
ultimately show ?case by (simp add: scf-list-def)

qed simp
then show ?thesis by (simp add: Let-def scff-def)

qed

declare weight.simps(2)[simp del]

abbreviation SCF ≡ scf-term scf

lemma sum-list-scf-list:
assumes

∧
i. i < length ts =⇒ f i > 0

shows sum-list (map weight ts) ≤ sum-list (map weight (scf-list f ts))
using assms unfolding scf-list-def

proof (induct ts rule: List.rev-induct)
case (snoc t ts)
have sum-list (map weight ts) ≤

sum-list (map weight (concat (map (λ(x, i). replicate (f i) x) (zip ts [0 ..<length
ts]))))

by (auto intro!: snoc)
moreover
from snoc(2) [of length ts] obtain n where f (length ts) = Suc n by (auto elim:

lessE)
ultimately show ?case by simp

qed simp

end

4.3 Definition of KBO
The precedence is given by three parameters:

• a predicate pr-strict for strict decrease between two function symbols,

• a predicate pr-weak for weak decrease between two function symbols,
and

• a function indicating whether a symbol is least in the precedence.

locale kbo = weight-fun w w0 scf
for w w0 and scf :: ′f × nat ⇒ nat ⇒ nat +
fixes least :: ′f ⇒ bool

30

and pr-strict :: ′f × nat ⇒ ′f × nat ⇒ bool
and pr-weak :: ′f × nat ⇒ ′f × nat ⇒ bool

begin

The result of kbo is a pair of Booleans encoding strict/weak decrease.
Interestingly, the bound on the lengths of the lists in the lexicographic

extension is not required for KBO.
fun kbo :: (′f , ′v) term ⇒ (′f , ′v) term ⇒ bool × bool

where
kbo s t = (if (vars-term-ms (SCF t) ⊆# vars-term-ms (SCF s) ∧ weight t ≤

weight s)
then if (weight t < weight s)

then (True, True)
else (case s of

Var y ⇒ (False, (case t of Var x ⇒ x = y | Fun g ts ⇒ ts = [] ∧ least g))
| Fun f ss ⇒ (case t of

Var x ⇒ (True, True)
| Fun g ts ⇒ if pr-strict (f , length ss) (g, length ts)

then (True, True)
else if pr-weak (f , length ss) (g, length ts)
then lex-ext-unbounded kbo ss ts
else (False, False)))

else (False, False))

Abbreviations for strict (S) and nonstrict (NS) KBO.
abbreviation S ≡ λ s t. fst (kbo s t)
abbreviation NS ≡ λ s t. snd (kbo s t)

For code-generation we do not compute the weights of s and t repeatedly.
lemma kbo-code: kbo s t = (let wt = weight t; ws = weight s in

if (vars-term-ms (SCF t) ⊆# vars-term-ms (SCF s) ∧ wt ≤ ws)
then if wt < ws

then (True, True)
else (case s of

Var y ⇒ (False, (case t of Var x ⇒ True | Fun g ts ⇒ ts = [] ∧ least g))
| Fun f ss ⇒ (case t of

Var x ⇒ (True, True)
| Fun g ts ⇒ let ff = (f , length ss); gg = (g, length ts) in

if pr-strict ff gg
then (True, True)
else if pr-weak ff gg

then lex-ext-unbounded kbo ss ts
else (False, False)))

else (False, False))
unfolding kbo.simps[of s t] Let-def
by (auto simp del: kbo.simps split: term.splits)

end

31

declare kbo.kbo-code[code]
declare weight-fun.weight.simps[code]

lemma mset-replicate-mono:
assumes m1 ⊆# m2
shows

∑
(mset (replicate n m1)) ⊆#

∑
(mset (replicate n m2))

proof (induct n)
case (Suc n)
have

∑
(mset (replicate (Suc n) m1)) =∑

(mset (replicate n m1)) + m1 by simp
also have . . . ⊆#

∑
(mset (replicate n m1)) + m2 using ‹m1 ⊆# m2 › by

auto
also have . . . ⊆#

∑
(mset (replicate n m2)) + m2 using Suc by auto

finally show ?case by (simp add: union-commute)
qed simp

While the locale kbo only fixes its parameters, we now demand that these
parameters are sensible, e.g., encoding a well-founded precedence, etc.
locale admissible-kbo =

kbo w w0 scf least pr-strict pr-weak
for w w0 pr-strict pr-weak and least :: ′f ⇒ bool and scf +
assumes w0 : w (f , 0) ≥ w0 w0 > 0

and adm: w (f , 1) = 0 =⇒ pr-weak (f , 1) (g, n)
and least: least f = (w (f , 0) = w0 ∧ (∀ g. w (g, 0) = w0 −→ pr-weak (g, 0)

(f , 0)))
and scf : i < n =⇒ scf (f , n) i > 0
and pr-weak-refl [simp]: pr-weak fn fn
and pr-weak-trans: pr-weak fn gm =⇒ pr-weak gm hk =⇒ pr-weak fn hk
and pr-strict: pr-strict fn gm ←→ pr-weak fn gm ∧ ¬ pr-weak gm fn
and pr-SN : SN {(fn, gm). pr-strict fn gm}

begin

lemma weight-w0 : weight t ≥ w0
proof (induct t)

case (Fun f ts)
show ?case
proof (cases ts)

case Nil
with w0 (1) have w0 ≤ w (f , length ts) by auto
then show ?thesis by auto

next
case (Cons s ss)
then obtain i where i: i < length ts by auto
from scf [OF this] have scf : 0 < scf (f , length ts) i by auto
then obtain n where scf : scf (f , length ts) i = Suc n by (auto elim: lessE)
from id-take-nth-drop[OF i] i obtain bef aft where ts: ts = bef @ ts ! i # aft

and ii: length bef = i by auto
define tsi where tsi = ts ! i
note ts = ts[folded tsi-def]

32

from i have tsi: tsi ∈ set ts unfolding tsi-def by auto
from Fun[OF this] have w0 : w0 ≤ weight tsi .
show ?thesis using scf ii w0 unfolding ts

by simp
qed

qed simp

lemma weight-gt-0 : weight t > 0
using weight-w0 [of t] and w0 by arith

lemma weight-0 [iff]: weight t = 0 ←→ False
using weight-gt-0 [of t] by auto

lemma not-S-Var : ¬ S (Var x) t
using weight-w0 [of t] by (cases t, auto)

lemma S-imp-NS : S s t =⇒ NS s t
proof (induct s t rule: kbo.induct)

case (1 s t)
from 1 (2) have S : S s t .
from S have w: vars-term-ms (SCF t) ⊆# vars-term-ms (SCF s) ∧ weight t ≤

weight s
by (auto split: if-splits)

note S = S w
note IH = 1 (1)[OF w]
show ?case
proof (cases weight t < weight s)

case True
with S show ?thesis by simp

next
case False
note IH = IH [OF False]
note S = S False
from not-S-Var [of - t] S
obtain f ss where s: s = Fun f ss by (cases s, auto)
note IH = IH [OF s]
show ?thesis
proof (cases t)

case (Var x)
from S show ?thesis by (auto, insert Var s, auto)

next
case (Fun g ts)
note IH = IH [OF Fun]
let ?f = (f , length ss)
let ?g = (g, length ts)
let ?lex = lex-ext-unbounded kbo ss ts
from S [simplified, unfolded s Fun] have disj: pr-strict ?f ?g ∨ pr-weak ?f ?g

∧ fst ?lex by (auto split: if-splits)
show ?thesis

33

proof (cases pr-strict ?f ?g)
case True
then show ?thesis using S s Fun by auto

next
case False
with disj have fg: pr-weak ?f ?g and lex: fst ?lex by auto
note IH = IH [OF False fg]
from lex have fst (lex-ext kbo (length ss + length ts) ss ts)

unfolding lex-ext-def Let-def by auto
from lex-ext-stri-imp-nstri[OF this] have lex: snd ?lex

unfolding lex-ext-def Let-def by auto
with False fg S s Fun show ?thesis by auto

qed
qed

qed
qed

4.4 Reflexivity and Irreflexivity
lemma NS-refl: NS s s
proof (induct s)

case (Fun f ss)
have snd (lex-ext kbo (length ss) ss ss)

by (rule all-nstri-imp-lex-nstri, insert Fun[unfolded set-conv-nth], auto)
then have snd (lex-ext-unbounded kbo ss ss) unfolding lex-ext-def Let-def by

simp
then show ?case by auto

qed simp

lemma pr-strict-irrefl: ¬ pr-strict fn fn
unfolding pr-strict by auto

lemma S-irrefl: ¬ S t t
proof (induct t)

case (Var x) then show ?case by (rule not-S-Var)
next

case (Fun f ts)
from pr-strict-irrefl have ¬ pr-strict (f , length ts) (f , length ts) .
moreover
{ assume fst (lex-ext-unbounded kbo ts ts)

then obtain i where i < length ts and S (ts ! i) (ts ! i)
unfolding lex-ext-unbounded-iff by auto

with Fun have False by auto }
ultimately show ?case by auto

qed

4.5 Monotonicity (a.k.a. Closure under Contexts)
lemma S-mono-one:

assumes S : S s t

34

shows S (Fun f (ss1 @ s # ss2)) (Fun f (ss1 @ t # ss2))
proof −

let ?ss = ss1 @ s # ss2
let ?ts = ss1 @ t # ss2
let ?s = Fun f ?ss
let ?t = Fun f ?ts
from S have w: weight t ≤ weight s and v: vars-term-ms (SCF t) ⊆# vars-term-ms

(SCF s)
by (auto split: if-splits)

have v ′: vars-term-ms (SCF ?t) ⊆# vars-term-ms (SCF ?s) using mset-replicate-mono[OF
v] by simp

have w ′: weight ?t ≤ weight ?s using sum-list-replicate-mono[OF w] by simp
have lex: fst (lex-ext-unbounded kbo ?ss ?ts)

unfolding lex-ext-unbounded-iff fst-conv
by (rule disjI1 , rule exI [of - length ss1], insert S NS-refl, auto simp del:

kbo.simps simp: nth-append)
show ?thesis using v ′ w ′ lex by simp

qed

lemma S-ctxt: S s t =⇒ S (C 〈s〉) (C 〈t〉)
by (induct C , auto simp del: kbo.simps intro: S-mono-one)

lemma NS-mono-one:
assumes NS : NS s t shows NS (Fun f (ss1 @ s # ss2)) (Fun f (ss1 @ t #

ss2))
proof −

let ?ss = ss1 @ s # ss2
let ?ts = ss1 @ t # ss2
let ?s = Fun f ?ss
let ?t = Fun f ?ts
from NS have w: weight t ≤ weight s and v: vars-term-ms (SCF t) ⊆#

vars-term-ms (SCF s)
by (auto split: if-splits)

have v ′: vars-term-ms (SCF ?t) ⊆# vars-term-ms (SCF ?s) using mset-replicate-mono[OF
v] by simp

have w ′: weight ?t ≤ weight ?s using sum-list-replicate-mono[OF w] by simp
have lex: snd (lex-ext-unbounded kbo ?ss ?ts)

unfolding lex-ext-unbounded-iff snd-conv
proof (intro disjI2 conjI allI impI)

fix i
assume i < length (ss1 @ t # ss2)
then show NS (?ss ! i) (?ts ! i) using NS NS-refl

by (cases i = length ss1 , auto simp del: kbo.simps simp: nth-append)
qed simp
show ?thesis using v ′ w ′ lex by simp

qed

lemma NS-ctxt: NS s t =⇒ NS (C 〈s〉) (C 〈t〉)
by (induct C , auto simp del: kbo.simps intro: NS-mono-one)

35

4.6 The Subterm Property
lemma NS-Var-imp-eq-least: NS (Var x) t =⇒ t = Var x ∨ (∃ f . t = Fun f [] ∧
least f)

by (cases t, insert weight-w0 [of t], auto split: if-splits)

lemma kbo-supt-one: NS s (t :: (′f , ′v) term) =⇒ S (Fun f (bef @ s # aft)) t
proof (induct t arbitrary: f s bef aft)

case (Var x)
note NS = this
let ?ss = bef @ s # aft
let ?t = Var x
have length bef < length ?ss by auto
from scf [OF this, of f] obtain n where scf :scf (f , length ?ss) (length bef) =

Suc n by (auto elim: lessE)
obtain X where vars-term-ms (SCF (Fun f ?ss)) = vars-term-ms (SCF s) + X

by (simp add: o-def scf [simplified])
then have vs: vars-term-ms (SCF s) ⊆# vars-term-ms (SCF (Fun f ?ss)) by

simp
from NS have vt: vars-term-ms (SCF ?t) ⊆# vars-term-ms (SCF s) by (auto

split: if-splits)
from vt vs have v: vars-term-ms (SCF ?t) ⊆# vars-term-ms (SCF (Fun f ?ss))

by (rule subset-mset.order-trans)
from weight-w0 [of Fun f ?ss] v show ?case by simp

next
case (Fun g ts f s bef aft)
let ?t = Fun g ts
let ?ss = bef @ s # aft
note NS = Fun(2)
note IH = Fun(1)
have length bef < length ?ss by auto
from scf [OF this, of f] obtain n where scff :scf (f , length ?ss) (length bef) =

Suc n by (auto elim: lessE)
note scff = scff [simplified]
obtain X where vars-term-ms (SCF (Fun f ?ss)) = vars-term-ms (SCF s) + X

by (simp add: o-def scff)
then have vs: vars-term-ms (SCF s) ⊆# vars-term-ms (SCF (Fun f ?ss)) by

simp
have ws: weight s ≤ sum-list (map weight (scf-list (scf (f , length ?ss)) ?ss))

by (simp add: scff)
from NS have wt: weight ?t ≤ weight s and

vt: vars-term-ms (SCF ?t) ⊆# vars-term-ms (SCF s) by (auto split: if-splits)
from ws wt have w: weight ?t ≤ sum-list (map weight (scf-list (scf (f , length

?ss)) ?ss)) by simp
from vt vs have v: vars-term-ms (SCF ?t) ⊆# vars-term-ms (SCF (Fun f ?ss))

by auto
then have v ′: (vars-term-ms (SCF ?t) ⊆# vars-term-ms (SCF (Fun f ?ss))) =

True by simp
show ?case
proof (cases weight ?t = weight (Fun f ?ss))

36

case False
with w v show ?thesis by auto

next
case True
from wt[unfolded True] weight-gt-0 [of s]
have wf : w (f , length ?ss) = 0

and lsum: sum-list (map weight (scf-list (scf (f , length ?ss)) bef)) = 0
sum-list (map weight (scf-list (λ i. (scf (f , length ?ss) (Suc (length bef) +

i))) aft)) = 0
and n: n = 0
by (auto simp: scff)

have sum-list (map weight bef) ≤ sum-list (map weight (scf-list (scf (f , length
?ss)) bef))

by (rule sum-list-scf-list, rule scf , auto)
with lsum(1) have sum-list (map weight bef) = 0 by arith
then have bef : bef = [] using weight-gt-0 [of hd bef] by (cases bef , auto)
have sum-list (map weight aft) ≤ sum-list (map weight (scf-list (λ i. (scf (f ,

length ?ss) (Suc (length bef) + i))) aft))
by (rule sum-list-scf-list, rule scf , auto)

with lsum(2) have sum-list (map weight aft) = 0 by arith
then have aft: aft = [] using weight-gt-0 [of hd aft] by (cases aft, auto)
note scff = scff [unfolded bef aft n, simplified]
from bef aft
have ba: bef @ s # aft = [s] by simp
with wf have wf : w (f , 1) = 0 by auto
from wf have wst: weight s = weight ?t using scff unfolding True[unfolded

ba]
by (simp add: scf-list-def)

let ?g = (g, length ts)
let ?f = (f , 1)
show ?thesis
proof (cases pr-strict ?f ?g)

case True
with w v show ?thesis unfolding ba by simp

next
case False
note admf = adm[OF wf]
from admf have pg: pr-weak ?f ?g .
from pg False[unfolded pr-strict] have pr-weak ?g ?f by auto
from pr-weak-trans[OF this admf] have g:

∧
h k. pr-weak ?g (h, k) .

show ?thesis
proof (cases ts)

case Nil
have fst (lex-ext-unbounded kbo [s] ts)

unfolding Nil lex-ext-unbounded-iff by auto
with pg w v show ?thesis unfolding ba by simp

next
case (Cons t tts)
{

37

fix x
assume s: s = Var x
from NS-Var-imp-eq-least[OF NS [unfolded s Cons]] have False by auto

}
then obtain h ss where s: s = Fun h ss by (cases s, auto)
from NS wst g[of h length ss] pr-strict[of (h, length ss) (g, length ts)] have

lex: snd (lex-ext-unbounded kbo ss ts)
unfolding s by (auto split: if-splits)

from lex obtain s0 sss where ss: ss = s0 # sss unfolding Cons
lex-ext-unbounded-iff snd-conv by (cases ss, auto)

from lex[unfolded ss Cons] have S s0 t ∨ NS s0 t
by (cases kbo s0 t, simp add: lex-ext-unbounded.simps del: kbo.simps split:

if-splits)
with S-imp-NS [of s0 t] have NS s0 t by blast

from IH [OF - this, of h Nil sss] have S : S s t unfolding Cons s ss by simp
have fst (lex-ext-unbounded kbo [s] ts) unfolding Cons

unfolding lex-ext-unbounded-iff fst-conv
by (rule disjI1 [OF exI [of - 0]], insert S , auto simp del: kbo.simps)

then have lex: fst (lex-ext-unbounded kbo [s] ts) = True by simp
note all = lex wst[symmetric] S pg scff v ′

note all = all[unfolded ba, unfolded s ss Cons]
have w: weight (Fun f [t]) = weight (t :: (′f , ′v) term) for t

using wf scff by (simp add: scf-list-def)
show ?thesis unfolding ba unfolding s ss Cons

unfolding kbo.simps[of Fun f [Fun h (s0 # sss)]]
unfolding all w using all by simp

qed
qed

qed
qed

lemma S-supt:
assumes supt: s B t
shows S s t

proof −
from supt obtain C where s: s = C 〈t〉 and C : C 6= � by auto
show ?thesis unfolding s using C
proof (induct C arbitrary: t)

case (More f bef C aft t)
show ?case
proof (cases C = �)

case True
from kbo-supt-one[OF NS-refl, of f bef t aft] show ?thesis unfolding True

by simp
next

case False
from kbo-supt-one[OF S-imp-NS [OF More(1)[OF False]], of f bef t aft]
show ?thesis by simp

qed

38

qed simp
qed

lemma NS-supteq:
assumes s D t
shows NS s t
using S-imp-NS [OF S-supt[of s t]] NS-refl[of s] using assms[unfolded subterm.le-less]
by blast

4.7 Least Elements
lemma NS-all-least:

assumes l: least f
shows NS t (Fun f [])

proof (induct t)
case (Var x)
show ?case using l[unfolded least] l

by auto
next

case (Fun g ts)
show ?case
proof (cases ts)

case (Cons s ss)
with Fun[of s] have NS s (Fun f []) by auto
from S-imp-NS [OF kbo-supt-one[OF this, of g Nil ss]] show ?thesis unfolding

Cons by simp
next

case Nil
from weight-w0 [of Fun g []] have w: weight (Fun g []) ≥ weight (Fun f [])

using l[unfolded least] by auto
from lex-ext-least-1
have snd (lex-ext kbo 0 [] []) .
then have lex: snd (lex-ext-unbounded kbo [] []) unfolding lex-ext-def Let-def

by simp
then show ?thesis using w l[unfolded least] unfolding Fun Nil by (auto simp:

empty-le)
qed

qed

lemma not-S-least:
assumes l: least f
shows ¬ S (Fun f []) t

proof (cases t)
case (Fun g ts)
show ?thesis unfolding Fun
proof

assume S : S (Fun f []) (Fun g ts)
from S [unfolded Fun, simplified]
have w: w (g, length ts) + sum-list (map weight (scf-list (scf (g, length ts))

39

ts)) ≤ weight (Fun f [])
by (auto split: if-splits)

show False
proof (cases ts)

case Nil
with w have w (g, 0) ≤ weight (Fun f []) by simp
also have weight (Fun f []) ≤ w0 using l[unfolded least] by simp
finally have g: w (g, 0) = w0 using w0 (1)[of g] by auto
with w Nil l[unfolded least] have gf : w (g, 0) = w (f , 0) by simp
with S have p: pr-weak (f , 0) (g, 0) unfolding Nil

by (simp split: if-splits add: pr-strict)
with l[unfolded least, THEN conjunct2 , rule-format, OF g] have p2 : pr-weak

(g, 0) (f , 0) by auto
from p p2 gf S have fst (lex-ext-unbounded kbo [] ts) unfolding Nil

by (auto simp: pr-strict)
then show False unfolding lex-ext-unbounded-iff by auto

next
case (Cons s ss)
then have ts: ts = [] @ s # ss by auto
from scf [of 0 length ts g] obtain n where scff : scf (g, length ts) 0 = Suc n

unfolding Cons by (auto elim: lessE)
let ?e = sum-list (map weight (

scf-list (λi. scf (g, Suc (length ss)) (Suc i)) ss
))

have w0 + sum-list (map weight (replicate n s)) ≤ weight s + sum-list (map
weight (replicate n s))

using weight-w0 [of s] by auto
also have . . . = sum-list (map weight (replicate (scf (g, length ts) 0) s))

unfolding scff by simp
also have w (g, length ts) + . . . + ?e ≤ w0 using w l[unfolded least] unfolding

ts scf-list-bef-i-aft by auto
finally have w0 + sum-list (map weight (replicate n s)) + w (g, length ts) +

?e ≤ w0 by arith
then have wg: w (g, length ts) = 0 and null: ?e = 0 sum-list (map weight

(replicate n s)) = 0 by auto
from null(2) weight-gt-0 [of s] have n: n = 0 by (cases n, auto)
have sum-list (map weight ss) ≤ ?e

by (rule sum-list-scf-list, rule scf , auto)
from this[unfolded null] weight-gt-0 [of hd ss] have ss: ss = [] by (cases ss,

auto)
with Cons have ts: ts = [s] by simp
note scff = scff [unfolded ts n, simplified]
from wg ts have wg: w (g, 1) = 0 by auto
from adm[OF wg, rule-format, of f] have pr-weak (g, 1) (f , 0) by auto
with S [unfolded Fun ts] l[unfolded least] weight-w0 [of s] scff
have fst (lex-ext-unbounded kbo [] [s])

by (auto split: if-splits simp: scf-list-def pr-strict)
then show ?thesis unfolding lex-ext-unbounded-iff by auto

qed

40

qed
qed simp

lemma NS-least-least:
assumes l: least f

and NS : NS (Fun f []) t
shows ∃ g. t = Fun g [] ∧ least g

proof (cases t)
case (Var x)
show ?thesis using NS unfolding Var by simp

next
case (Fun g ts)
from NS [unfolded Fun, simplified]
have w: w (g, length ts) + sum-list (map weight (scf-list (scf (g, length ts)) ts))
≤ weight (Fun f [])

by (auto split: if-splits)
show ?thesis
proof (cases ts)

case Nil
with w have w (g, 0) ≤ weight (Fun f []) by simp
also have weight (Fun f []) ≤ w0 using l[unfolded least] by simp
finally have g: w (g, 0) = w0 using w0 (1)[of g] by auto
with w Nil l[unfolded least] have gf : w (g, 0) = w (f , 0) by simp
with NS [unfolded Fun] have p: pr-weak (f , 0) (g, 0) unfolding Nil

by (simp split: if-splits add: pr-strict)
have least: least g unfolding least
proof (rule conjI [OF g], intro allI)

fix h
from l[unfolded least] have w (h, 0) = w0 −→ pr-weak (h, 0) (f , 0) by blast
with pr-weak-trans p show w (h, 0) = w0 −→ pr-weak (h, 0) (g, 0) by blast

qed
show ?thesis

by (rule exI [of - g], unfold Fun Nil, insert least, auto)
next

case (Cons s ss)
then have ts: ts = [] @ s # ss by auto
from scf [of 0 length ts g] obtain n where scff : scf (g, length ts) 0 = Suc n

unfolding Cons by (auto elim: lessE)
let ?e = sum-list (map weight (

scf-list (λi. scf (g, Suc (length ss)) (Suc i)) ss
))

have w0 + sum-list (map weight (replicate n s)) ≤ weight s + sum-list (map
weight (replicate n s))

using weight-w0 [of s] by auto
also have . . . = sum-list (map weight (replicate (scf (g, length ts) 0) s))

unfolding scff by simp
also have w (g, length ts) + . . . + ?e ≤ w0 using w l[unfolded least] unfolding

ts scf-list-bef-i-aft by auto
finally have w0 + sum-list (map weight (replicate n s)) + w (g, length ts) +

41

?e ≤ w0 by arith
then have wg: w (g, length ts) = 0 and null: ?e = 0 sum-list (map weight

(replicate n s)) = 0 by auto
from null(2) weight-gt-0 [of s] have n: n = 0 by (cases n, auto)
have sum-list (map weight ss) ≤ ?e

by (rule sum-list-scf-list, rule scf , auto)
from this[unfolded null] weight-gt-0 [of hd ss] have ss: ss = [] by (cases ss,

auto)
with Cons have ts: ts = [s] by simp
note scff = scff [unfolded ts n, simplified]
from wg ts have wg: w (g, 1) = 0 by auto
from adm[OF wg, rule-format, of f] have pr-weak (g, 1) (f , 0) by auto
with NS [unfolded Fun ts] l[unfolded least] weight-w0 [of s] scff
have snd (lex-ext-unbounded kbo [] [s])

by (auto split: if-splits simp: scf-list-def pr-strict)
then show ?thesis unfolding lex-ext-unbounded-iff snd-conv by auto

qed
qed

4.8 Stability (a.k.a. Closure under Substitutions
lemma weight-subst: weight (t · σ) =

weight t + sum-mset (image-mset (λ x. weight (σ x) − w0) (vars-term-ms (SCF
t)))
proof (induct t)

case (Var x)
show ?case using weight-w0 [of σ x] by auto

next
case (Fun f ts)
let ?ts = scf-list (scf (f , length ts)) ts
define sts where sts = ?ts
have id: map (λ t. weight (t · σ)) ?ts = map (λ t. weight t + sum-mset

(image-mset (λ x. weight (σ x) − w0) (vars-term-ms (scf-term scf t)))) ?ts
by (rule map-cong[OF refl Fun], insert scf-list-subset[of - ts], auto)

show ?case
by (simp add: o-def id, unfold sts-def [symmetric], induct sts, auto)

qed

lemma weight-stable-le:
assumes ws: weight s ≤ weight t

and vs: vars-term-ms (SCF s) ⊆# vars-term-ms (SCF t)
shows weight (s · σ) ≤ weight (t · σ)

proof −
from vs[unfolded mset-subset-eq-exists-conv] obtain u where vt: vars-term-ms

(SCF t) = vars-term-ms (SCF s) + u ..
show ?thesis unfolding weight-subst vt using ws by auto

qed

lemma weight-stable-lt:

42

assumes ws: weight s < weight t
and vs: vars-term-ms (SCF s) ⊆# vars-term-ms (SCF t)

shows weight (s · σ) < weight (t · σ)
proof −

from vs[unfolded mset-subset-eq-exists-conv] obtain u where vt: vars-term-ms
(SCF t) = vars-term-ms (SCF s) + u ..

show ?thesis unfolding weight-subst vt using ws by auto
qed

KBO is stable, i.e., closed under substitutions.
lemma kbo-stable:

fixes σ :: (′f , ′v) subst
assumes NS s t
shows (S s t −→ S (s · σ) (t · σ)) ∧ NS (s · σ) (t · σ) (is ?P s t)
using assms

proof (induct s arbitrary: t)
case (Var y t)
then have not: ¬ S (Var y) t using not-S-Var [of y t] by auto
from NS-Var-imp-eq-least[OF Var]
have t = Var y ∨ (∃ f . t = Fun f [] ∧ least f) by simp
then obtain f where t = Var y ∨ t = Fun f [] ∧ least f by auto
then have NS (Var y · σ) (t · σ)
proof

assume t = Var y
then show ?thesis using NS-refl[of t · σ] by auto

next
assume t = Fun f [] ∧ least f
with NS-all-least[of f Var y · σ] show ?thesis by auto

qed
with not show ?case by blast

next
case (Fun f ss t)
note NS = Fun(2)
note IH = Fun(1)
let ?s = Fun f ss
define s where s = ?s
let ?ss = map (λ s. s · σ) ss
from NS have v: vars-term-ms (SCF t) ⊆# vars-term-ms (SCF ?s) and w:

weight t ≤ weight ?s
by (auto split: if-splits)

from weight-stable-le[OF w v] have wσ: weight (t · σ) ≤ weight (?s · σ) by auto
from vars-term-ms-subst-mono[OF v, of λ x. SCF (σ x)] have vσ: vars-term-ms

(SCF (t · σ)) ⊆# vars-term-ms (SCF (?s · σ))
unfolding scf-term-subst .

show ?case
proof (cases weight (t · σ) < weight (?s · σ))

case True
with vσ show ?thesis by auto

next

43

case False
with weight-stable-lt[OF - v, of σ] w have w: weight t = weight ?s by arith
show ?thesis
proof (cases t)

case (Var y)
from set-mset-mono[OF v, folded s-def]
have y ∈ vars-term (SCF s) unfolding Var by (auto simp: o-def)
also have . . . ⊆ vars-term s by (rule vars-term-scf-subset)
finally have y ∈ vars-term s by auto
from supteq-Var [OF this] have ?s B Var y unfolding s-def Fun by auto
from S-supt[OF supt-subst[OF this]] have S : S (?s · σ) (t · σ) unfolding

Var .
from S-imp-NS [OF S] S show ?thesis by auto

next
case (Fun g ts) note t = this
let ?f = (f , length ss)
let ?g = (g, length ts)
let ?ts = map (λ s. s · σ) ts
show ?thesis
proof (cases pr-strict ?f ?g)

case True
then have S : S (?s · σ) (t · σ) using wσ vσ unfolding t by simp
from S S-imp-NS [OF S] show ?thesis by simp

next
case False note prec = this
show ?thesis
proof (cases pr-weak ?f ?g)

case False
with v w prec have ¬ NS ?s t unfolding t by (auto simp del:

vars-term-ms.simps)
with NS show ?thesis by blast

next
case True

from v w have vars-term-ms (SCF t) ⊆# vars-term-ms (SCF ?s) ∧ weight
t ≤ weight ?s ¬ weight t < weight ?s by auto

{
fix i
assume i: i < length ss i < length ts

and S : S (ss ! i) (ts ! i)
have S (map (λs. s · σ) ss ! i) (map (λs. s · σ) ts ! i)
using IH [OF - S-imp-NS [OF S]] S i unfolding set-conv-nth by (force

simp del: kbo.simps)
} note IH-S = this
{

fix i
assume i: i < length ss i < length ts

and NS : NS (ss ! i) (ts ! i)
have NS (map (λs. s · σ) ss ! i) (map (λs. s · σ) ts ! i)

using IH [OF - NS] i unfolding set-conv-nth by (force simp del:

44

kbo.simps)
} note IH-NS = this
{

assume S ?s t
with prec v w True have lex: fst (lex-ext-unbounded kbo ss ts)

unfolding s-def t by simp
have fst (lex-ext-unbounded kbo ?ss ?ts)

by (rule lex-ext-unbounded-map-S [OF - - lex], insert IH-NS IH-S ,
blast+)

with vσ wσ prec True have S (?s · σ) (t · σ)
unfolding t by auto

}
moreover
{

from NS prec v w True have lex: snd (lex-ext-unbounded kbo ss ts)
unfolding t by simp

have snd (lex-ext-unbounded kbo ?ss ?ts)
by (rule lex-ext-unbounded-map-NS [OF - - lex], insert IH-S IH-NS ,

blast)
with vσ wσ prec True have NS (?s · σ) (t · σ)

unfolding t by auto
}
ultimately show ?thesis by auto

qed
qed

qed
qed

qed

lemma S-subst:
S s t =⇒ S (s · (σ :: (′f , ′v) subst)) (t · σ)
using kbo-stable[OF S-imp-NS , of s t σ] by auto

lemma NS-subst: NS s t =⇒ NS (s · (σ :: (′f , ′v) subst)) (t · σ) using kbo-stable[of
s t σ] by auto

4.9 Transitivity and Compatibility
lemma kbo-trans: (S s t −→ NS t u −→ S s u) ∧
(NS s t −→ S t u −→ S s u) ∧
(NS s t −→ NS t u −→ NS s u)
(is ?P s t u)

proof (induct s arbitrary: t u)
case (Var x t u)
from not-S-Var [of x t] have nS : ¬ S (Var x) t .
show ?case
proof (cases NS (Var x) t)

case False
with nS show ?thesis by blast

45

next
case True
from NS-Var-imp-eq-least[OF this] obtain f where

t = Var x ∨ t = Fun f [] ∧ least f by blast
then show ?thesis
proof

assume t = Var x
then show ?thesis using nS by blast

next
assume t = Fun f [] ∧ least f
then have t: t = Fun f [] and least: least f by auto
from not-S-least[OF least] have nS ′: ¬ S t u unfolding t .
show ?thesis
proof (cases NS t u)

case True
with NS-least-least[OF least, of u] t obtain h where

u: u = Fun h [] and least: least h by auto
from NS-all-least[OF least] have NS : NS (Var x) u unfolding u .
with nS nS ′ show ?thesis by blast

next
case False
with S-imp-NS [of t u] show ?thesis by blast

qed
qed

qed
next

case (Fun f ss t u) note IH = this
let ?s = Fun f ss
show ?case
proof (cases NS ?s t)

case False
with S-imp-NS [of ?s t] show ?thesis by blast

next
case True note st = this
then have vst: vars-term-ms (SCF t) ⊆# vars-term-ms (SCF ?s) and wst:

weight t ≤ weight ?s
by (auto split: if-splits)

show ?thesis
proof (cases NS t u)

case False
with S-imp-NS [of t u] show ?thesis by blast

next
case True note tu = this
then have vtu: vars-term-ms (SCF u) ⊆# vars-term-ms (SCF t) and wtu:

weight u ≤ weight t
by (auto split: if-splits)

from vst vtu have v: vars-term-ms (SCF u) ⊆# vars-term-ms (SCF ?s) by
simp

from wst wtu have w: weight u ≤ weight ?s by simp

46

show ?thesis
proof (cases weight u < weight ?s)

case True
with v show ?thesis by auto

next
case False
with wst wtu have wst: weight t = weight ?s and wtu: weight u = weight t

and w: weight u = weight ?s by arith+
show ?thesis
proof (cases u)

case (Var z)
with v w show ?thesis by auto

next
case (Fun h us) note u = this
show ?thesis
proof (cases t)

case (Fun g ts) note t = this
let ?f = (f , length ss)
let ?g = (g, length ts)
let ?h = (h, length us)

from st t wst have fg: pr-weak ?f ?g by (simp split: if-splits add: pr-strict)
from tu t u wtu have gh: pr-weak ?g ?h by (simp split: if-splits add:

pr-strict)
from pr-weak-trans[OF fg gh] have fh: pr-weak ?f ?h .
show ?thesis
proof (cases pr-strict ?f ?h)

case True
with w v u show ?thesis by auto

next
case False
let ?lex = lex-ext-unbounded kbo
from False fh have hf : pr-weak ?h ?f unfolding pr-strict by auto
from pr-weak-trans[OF hf fg] have hg: pr-weak ?h ?g .
from hg have gh2 : ¬ pr-strict ?g ?h unfolding pr-strict by auto
from pr-weak-trans[OF gh hf] have gf : pr-weak ?g ?f .
from gf have fg2 : ¬ pr-strict ?f ?g unfolding pr-strict by auto
from st t wst fg2 have st: snd (?lex ss ts)

by (auto split: if-splits)
from tu t u wtu gh2 have tu: snd (?lex ts us)

by (auto split: if-splits)
{

fix s t u
assume s ∈ set ss
from IH [OF this, of t u]
have (NS s t ∧ S t u −→ S s u) ∧
(S s t ∧ NS t u −→ S s u) ∧
(NS s t ∧ NS t u −→ NS s u) ∧
(S s t ∧ S t u −→ S s u)
using S-imp-NS [of s t] by blast

47

} note IH = this
let ?b = length ss + length ts + length us
note lex = lex-ext-compat[of ss ts us kbo ?b, OF IH]
let ?lexb = lex-ext kbo ?b
note conv = lex-ext-def Let-def
from st have st: snd (?lexb ss ts) unfolding conv by simp
from tu have tu: snd (?lexb ts us) unfolding conv by simp
from lex st tu have su: snd (?lexb ss us) by blast
then have su: snd (?lex ss us) unfolding conv by simp
from w v u su fh have NS : NS ?s u by simp
{

assume st: S ?s t
with t wst fg fg2 have st: fst (?lex ss ts)

by (auto split: if-splits)
then have st: fst (?lexb ss ts) unfolding conv by simp
from lex st tu have su: fst (?lexb ss us) by blast
then have su: fst (?lex ss us) unfolding conv by simp
from w v u su fh have S : S ?s u by simp

} note S-left = this
{

assume tu: S t u
with t u wtu gh2 have tu: fst (?lex ts us)

by (auto split: if-splits)
then have tu: fst (?lexb ts us) unfolding conv by simp
from lex st tu have su: fst (?lexb ss us) by blast
then have su: fst (?lex ss us) unfolding conv by simp
from w v u su fh have S : S ?s u by simp

} note S-right = this
from NS S-left S-right show ?thesis by blast

qed
next

case (Var x) note t = this
from tu weight-w0 [of u] have least: least h and u: u = Fun h [] unfolding

t u
by (auto split: if-splits)

from NS-all-least[OF least] have NS : NS ?s u unfolding u .
from not-S-Var have nS ′: ¬ S t u unfolding t .
show ?thesis
proof (cases S ?s t)

case False
with nS ′ NS show ?thesis by blast

next
case True
then have vars-term-ms (SCF t) ⊆# vars-term-ms (SCF ?s)

by (auto split: if-splits)
from set-mset-mono[OF this, unfolded set-mset-vars-term-ms t]
have x ∈ vars-term (SCF ?s) by simp
also have . . . ⊆ vars-term ?s by (rule vars-term-scf-subset)
finally obtain s sss where ss: ss = s # sss by (cases ss, auto)

48

from kbo-supt-one[OF NS-all-least[OF least, of s], of f Nil sss]
have S ?s u unfolding ss u by simp
with NS show ?thesis by blast

qed
qed

qed
qed

qed
qed

qed

lemma S-trans: S s t =⇒ S t u =⇒ S s u using S-imp-NS [of s t] kbo-trans[of s t
u] by blast
lemma NS-trans: NS s t =⇒ NS t u =⇒ NS s u using kbo-trans[of s t u] by blast
lemma NS-S-compat: NS s t =⇒ S t u =⇒ S s u using kbo-trans[of s t u] by blast
lemma S-NS-compat: S s t =⇒ NS t u =⇒ S s u using kbo-trans[of s t u] by blast

4.10 Strong Normalization (a.k.a. Well-Foundedness)
lemma kbo-strongly-normalizing:

fixes s :: (′f , ′v) term
shows SN-on {(s, t). S s t} {s}

proof −
let ?SN = λ t :: (′f , ′v) term. SN-on {(s, t). S s t} {t}
let ?m1 = λ (f , ss). weight (Fun f ss)
let ?m2 = λ (f , ss). (f , length ss)
let ?rel ′ = lex-two {(fss, gts). ?m1 fss > ?m1 gts} {(fss, gts). ?m1 fss ≥ ?m1

gts} {(fss, gts). pr-strict (?m2 fss) (?m2 gts)}
let ?rel = inv-image ?rel ′ (λ x. (x, x))
have SN-rel: SN ?rel

by (rule SN-inv-image, rule lex-two, insert SN-inv-image[OF pr-SN , of ?m2]
SN-inv-image[OF SN-nat-gt, of ?m1],

auto simp: inv-image-def)
note conv = SN-on-all-reducts-SN-on-conv
show ?SN s
proof (induct s)

case (Var x)
show ?case unfolding conv[of - Var x] using not-S-Var [of x] by auto

next
case (Fun f ss)
then have subset: set ss ⊆ {s. ?SN s} by blast
let ?P = λ (f , ss). set ss ⊆ {s. ?SN s} −→ ?SN (Fun f ss)
{

fix fss
have ?P fss
proof (induct fss rule: SN-induct[OF SN-rel])

case (1 fss)
obtain f ss where fss: fss = (f , ss) by force
{

49

fix g ts
assume ?m1 (f , ss) > ?m1 (g, ts) ∨ ?m1 (f , ss) ≥ ?m1 (g, ts) ∧ pr-strict

(?m2 (f , ss)) (?m2 (g, ts))
and set ts ⊆ {s. ?SN s}

then have ?SN (Fun g ts)
using 1 [rule-format, of (g, ts), unfolded fss split] by auto

} note IH = this[unfolded split]
show ?case unfolding fss split
proof

assume SN-s: set ss ⊆ {s. ?SN s}
let ?f = (f , length ss)
let ?s = Fun f ss
let ?SNt = λ g ts. ?SN (Fun g ts)
let ?sym = λ g ts. (g, length ts)
let ?lex = lex-ext kbo (weight ?s)
let ?lexu = lex-ext-unbounded kbo
let ?lex-SN = {(ys, xs). (∀ y ∈ set ys. ?SN y) ∧ fst (?lex ys xs)}
from lex-ext-SN [of kbo weight ?s, OF NS-S-compat]
have SN : SN ?lex-SN .
{

fix g and ts :: (′f , ′v) term list
assume pr-weak ?f (?sym g ts) ∧ weight (Fun g ts) ≤ weight ?s ∧ set ts

⊆ {s. ?SN s}
then have ?SNt g ts
proof (induct ts arbitrary: g rule: SN-induct[OF SN])

case (1 ts g)
note inner-IH = 1 (1)
let ?g = (g, length ts)
let ?t = Fun g ts
from 1 (2) have fg: pr-weak ?f ?g and w: weight ?t ≤ weight ?s and

SN : set ts ⊆ {s. ?SN s} by auto
show ?SNt g ts unfolding conv[of - ?t]
proof (intro allI impI)

fix u
assume (?t, u) ∈ {(s, t). S s t}
then have tu: S ?t u by auto
then show ?SN u
proof (induct u)

case (Var x)
then show ?case using not-S-Var [of x] unfolding conv[of - Var

x] by auto
next

case (Fun h us)
let ?h = (h, length us)
let ?u = Fun h us
note tu = Fun(2)
{

fix u
assume u: u ∈ set us

50

then have ?u B u by auto
from S-trans[OF tu S-supt[OF this]] have S ?t u by auto
from Fun(1)[OF u this] have ?SN u .

} then have SNu: set us ⊆ {s . ?SN s} by blast
note IH = IH [OF - this]
from tu have wut: weight ?u ≤ weight ?t by (simp split: if-splits)
show ?case
proof (cases ?m1 (f , ss) > ?m1 (h, us) ∨ ?m1 (f , ss) ≥ ?m1 (h,

us) ∧ pr-strict (?m2 (f , ss)) (?m2 (h, us)))
case True
from IH [OF True[unfolded split]] show ?thesis by simp

next
case False
with wut w have wut: weight ?t = weight ?u weight ?s = weight

?u by auto
note False = False[unfolded split wut]

note tu = tu[unfolded kbo.simps[of ?t] wut, unfolded Fun term.simps,
simplified]

from tu have gh: pr-weak ?g ?h unfolding pr-strict by (auto
split: if-splits)

from pr-weak-trans[OF fg gh] have fh: pr-weak ?f ?h .
from False wut fh have ¬ pr-strict ?f ?h unfolding pr-strict by

auto
with fh have hf : pr-weak ?h ?f unfolding pr-strict by auto
from pr-weak-trans[OF hf fg] have hg: pr-weak ?h ?g .
from hg have gh2 : ¬ pr-strict ?g ?h unfolding pr-strict by auto
from tu gh2 have lex: fst (?lexu ts us) by (auto split: if-splits)
from fh wut SNu have pr-weak ?f ?h ∧ weight ?u ≤ weight ?s ∧

set us ⊆ {s. ?SN s}
by auto

note inner-IH = inner-IH [OF - this]
show ?thesis
proof (rule inner-IH , rule, unfold split, intro conjI ballI)

have fst (?lexu ts us) by (rule lex)
moreover have length us ≤ weight ?s
proof −

have length us ≤ sum-list (map weight us)
proof (induct us)

case (Cons u us)
from Cons have length (u # us) ≤ Suc (sum-list (map weight

us)) by auto
also have ... ≤ sum-list (map weight (u # us)) using

weight-gt-0 [of u]
by auto

finally show ?case .
qed simp
also have . . . ≤ sum-list (map weight (scf-list (scf (h, length

us)) us))
by (rule sum-list-scf-list[OF scf])

51

also have ... ≤ weight ?s using wut by simp
finally show ?thesis .

qed
ultimately show fst (?lex ts us) unfolding lex-ext-def Let-def

by auto
qed (insert SN , blast)

qed
qed

qed
qed

}
from this[of f ss] SN-s show ?SN ?s by auto

qed
qed

}
from this[of (f , ss), unfolded split]
show ?case using Fun by blast

qed
qed

lemma S-SN : SN {(x, y). S x y}
using kbo-strongly-normalizing unfolding SN-defs by blast

4.11 Ground Totality
lemma ground-SCF [simp]:

ground (SCF t) = ground t
proof −

have ∗: ∀ i<length xs. scf (f , length xs) i > 0
for f :: ′f and xs :: (′f , ′v) term list using scf by simp

show ?thesis by (induct t) (auto simp: set-scf-list [OF ∗])
qed

declare kbo.simps[simp del]

lemma ground-vars-term-ms: ground t =⇒ vars-term-ms t = {#}
by (induct t) auto

context
fixes F :: (′f × nat) set
assumes pr-weak: pr-weak = pr-strict==

and pr-gtotal:
∧

f g. f ∈ F =⇒ g ∈ F =⇒ f = g ∨ pr-strict f g ∨ pr-strict g f
begin

lemma S-ground-total:
assumes funas-term s ⊆ F and ground s and funas-term t ⊆ F and ground t
shows s = t ∨ S s t ∨ S t s
using assms

proof (induct s arbitrary: t)

52

case IH : (Fun f ss)
note [simp] = ground-vars-term-ms
let ?s = Fun f ss
have ∗: (vars-term-ms (SCF t) ⊆# vars-term-ms (SCF ?s)) = True
(vars-term-ms (SCF ?s) ⊆# vars-term-ms (SCF t)) = True
using ‹ground ?s› and ‹ground t› by (auto simp: scf)

from IH (5) obtain g ts where t[simp]: t = Fun g ts by (cases t, auto)
let ?t = Fun g ts
let ?f = (f , length ss)
let ?g = (g, length ts)
from IH have f : ?f ∈ F and g: ?g ∈ F by auto
{

assume ¬ ?case
note contra = this[unfolded kbo.simps[of ?s] kbo.simps[of t] ∗, unfolded t

term.simps]
from pr-gtotal[OF f g] contra have fg: ?f = ?g by (auto split: if-splits)
have IH : ∀ (s, t)∈set (zip ss ts). s = t ∨ S s t ∨ S t s

using IH by (auto elim!: in-set-zipE) blast
from fg have len: length ss = length ts by auto
from lex-ext-unbounded-total[OF IH NS-refl len] contra fg
have False by (auto split: if-splits)

}
then show ?case by blast

qed auto
end

4.12 Summary
At this point we have shown well-foundedness S-SN, transitivity and com-
patibility S-trans NS-trans NS-S-compat S-NS-compat, closure under substi-
tutions S-subst NS-subst, closure under contexts S-ctxt NS-ctxt, the subterm
property S-supt NS-supteq, reflexivity of the weak NS-refl and irreflexivity
of the strict part S-irrefl, and ground-totality S-ground-total.

In particular, this allows us to show that KBO is an instance of strongly
normalizing order pairs (SN-order-pair).
sublocale SN-order-pair {(x, y). S x y} {(x, y). NS x y}
by (unfold-locales, insert NS-refl NS-trans S-trans S-SN NS-S-compat S-NS-compat)
(auto simp: refl-on-def trans-def , blast+)

end

end

References
[1] J. Dick, J. Kalmus, and U. Martin. Automating the Knuth-Bendix or-

dering. Acta Informatica, 28(2):95–119, 1990.

53

[2] D. E. Knuth and P. Bendix. Simple word problems in universal algebras.
In Computational Problems in Abstract Algebra, pages 263–297. 1970.

[3] M. Ludwig and U. Waldmann. An extension of the Knuth–Bendix order-
ing with LPO-like properties. In Logic for Programming, Artificial Intel-
ligence, and Reasoning, LPAR’07, volume 4790 of LNCS, pages 348–362,
2007.

[4] J. Steinbach. Extensions and comparison of simplification orders. In
Rewriting Techniques and Applications, RTA’89, volume 355 of LNCS,
pages 434–448, 1989.

[5] C. Sternagel and R. Thiemann. Formalizing Knuth–Bendix orders and
Knuth–Bendix completion. In Rewriting Techniques and Applications,
RTA’13, volume 2 of Leibniz International Proceedings in Informatics,
pages 287–302, 2013.

[6] R. Thiemann and C. Sternagel. Certification of termination proofs using
CeTA. In Theorem Proving in Higher Order Logics, TPHOLs’09, volume
5674 of LNCS, pages 452–468, 2009.

[7] H. Zankl, N. Hirokawa, and A. Middeldorp. KBO orientability. Journal
of Automated Reasoning, 43(2):173–201, 2009.

54

	Introduction
	Order Pairs
	Lexicographic Extension
	KBO
	Subterm Coefficient Functions
	Weight Functions
	Definition of KBO
	Reflexivity and Irreflexivity
	Monotonicity (a.k.a. Closure under Contexts)
	The Subterm Property
	Least Elements
	Stability (a.k.a. Closure under Substitutions
	Transitivity and Compatibility
	Strong Normalization (a.k.a. Well-Foundedness)
	Ground Totality
	Summary

