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Abstract

This work contains a formalization of some topics in knot theory.
The concepts that were formalized include definitions of tangles, links,
framed links and link/tangle equivalence. The formalization is based
on a formulation of links in terms of tangles. We further construct and
prove the invariance of the Bracket polynomial. Bracket polynomial
is an invariant of framed links closely linked to the Jones polynomial.
This is perhaps the first attempt to formalize any aspect of knot theory
in an interactive proof assistant.

For further reference, one can refer to the paper "Formalising Knot
Theory in Isabelle/HOL" in Interactive Theorem Proving, 6th Inter-
national Conference, ITP 2015, Nanjing, China, August 24-27, 2015,
Proceedings.
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1 Preliminaries: Definitions of tangles and links
theory Preliminaries
imports Main
begin

This theory contains the definition of a link. A link is defined as link dia-
grams upto equivalence moves. Link diagrams are defined in terms of the
constituent tangles

each block is a horizontal block built by putting basic link bricks next to
each other. (1) vert is the straight line (2) cup is the up facing cup (3) cap
is the bottom facing (4) over is the positive cross (5) under is the negative
cross
datatype brick = vert

|cup
|cap
|over
|under

block is obtained by putting bricks next to each other
type-synonym block = brick list

wall are link diagrams obtained by placing a horizontal blocks a top each
other
datatype wall = basic block

|prod block wall (infixr ∗ 66 )

Concatenate gives us the block obtained by putting two blocks next to each
other
primrec concatenate :: block => block => block (infixr ⊗ 65 ) where
concatenates-Nil: [] ⊗ ys = ys |
concatenates-Cons: ((x#xs)⊗ys) = x#(xs⊗ys)

lemma empty-concatenate: xs ⊗ Nil = xs
by (induction xs) (auto)
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Associativity properties of Conscatenation
lemma leftright-associativity: (x⊗y)⊗z = x⊗(y⊗z)
by (induction x) (auto)

lemma left-associativity: (x⊗y)⊗z = x⊗y⊗z
by (induction x) (auto)

lemma right-associativity: x⊗(y⊗z) =x ⊗ y ⊗z
by auto

Compose gives us the wall obtained by putting a wall above another, perhaps
in an invalid way.
primrec compose :: wall => wall => wall (infixr ◦ 66 ) where
compose-Nil: (basic x) ◦ ys = prod x ys |
compose-Cons: ((prod x xs)◦ys) = prod x (xs◦ys)

Associativity properties of composition
lemma compose-leftassociativity: (((x::wall) ◦ y) ◦ z) = (x◦y ◦z)
by (induction x) (auto)

lemma compose-rightassociativity: (x::wall) ◦ (y ◦ z) = (x◦y ◦z)
by (induction x) (auto)

block-length of a block is the number of bricks in a given block
primrec block-length::block ⇒ nat
where
block-length [] = 0 |
block-length (Cons x y) = 1 + (block-length y)

primrec domain::brick ⇒ int
where
domain vert = 1 |
domain cup = 0 |
domain cap = 2 |
domain over = 2 |
domain under = 2

lemma domain-non-negative:∀ x.(domain x) ≥ 0

proof−
have ∀ x.(x = vert)∨(x = over)∨(x=under)∨(x=cap)∨(x=cup)

by (metis brick.exhaust)
moreover have
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∀ x.(((x = vert)∨(x = over)∨(x=under)∨(x=cap)∨(x=cup)) −→ (domain x)
≥ 0 )

using domain.simps by (metis order-refl zero-le-numeral zero-le-one)
ultimately show ?thesis by auto

qed

primrec codomain::brick ⇒ int
where
codomain vert = 1 |
codomain cup = 2 |
codomain cap = 0 |
codomain over = 2 |
codomain under = 2

primrec domain-block::block ⇒ int
where
domain-block [] = 0
|domain-block (Cons x y) = (domain x + (domain-block y))

lemma domain-block-non-negative:domain-block xs ≥ 0
by (induction xs) (auto simp add:domain-non-negative)

primrec codomain-block::block ⇒ int
where
codomain-block [] = 0
|codomain-block (Cons x y) = (codomain x + (codomain-block y))

primrec domain-wall:: wall ⇒ int where
domain-wall (basic x) = domain-block x
|domain-wall (x∗ys) = domain-block x

fun codomain-wall:: wall ⇒ int where
codomain-wall (basic x) = codomain-block x
|codomain-wall (x∗ys) = codomain-wall ys

lemma domain-wall-compose: domain-wall (xs◦ys) = domain-wall xs
by (induction xs) (auto)
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lemma codomain-wall-compose: codomain-wall (xs◦ys) = codomain-wall ys
by (induction xs) (auto)

this lemma tells us the number of incoming and outgoing strands of a com-
position of two wall

absolute value
definition abs::int ⇒ int where
abs x ≡ if (x≥0 ) then x else (0−x)

theorems about abs
lemma abs-zero: assumes abs x = 0 shows x = 0
using abs-def assms eq-iff-diff-eq-0
by metis

lemma abs-zero-equality: assumes abs (x − y) = 0 shows x = y
using assms abs-zero eq-iff-diff-eq-0
by blast

lemma abs-non-negative: abs x ≥ 0
using abs-def diff-0 le-cases neg-0-le-iff-le
by auto

lemma abs-non-negative-sum: assumes abs x + abs y = 0
shows abs x= 0 and abs y = 0
using abs-def diff-0 abs-non-negative neg-0-le-iff-le
add-nonneg-eq-0-iff assms
apply (metis)
by (metis abs-non-negative add-nonneg-eq-0-iff assms)

The following lemmas tell us that the number of incoming and outgoing
strands of every brick is a non negative integer
lemma domain-nonnegative: (domain x) ≥ 0
using domain.simps brick.exhaust le-cases not-numeral-le-zero zero-le-one by
(metis)

lemma codomain-nonnegative: (codomain x) ≥ 0
by (cases x)(auto)

The following lemmas tell us that the number of incoming and outgoing
strands of every block is a non negative integer
lemma domain-block-nonnegative: domain-block x ≥ 0
by (induction x)(auto simp add: domain-nonnegative)

lemma codomain-block-nonnegative: (codomain-block x) ≥ 0
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by (induction x)(auto simp add: codomain-nonnegative)

The following lemmas tell us that if a block is appended to a block with
incoming strands, then the resultant block has incoming strands
lemma domain-positive: ((domain-block (x#Nil)) > 0 ) ∨ ((domain-block y) > 0 )

=⇒ (domain-block (x#y) > 0 )
proof−
have (domain-block (x#y)) = (domain x) + (domain-block y) by auto
also have (domain x) = (domain-block (x#Nil)) by auto
then have (domain-block (x#Nil) > 0 ) = (domain x > 0 ) by auto
then have ((domain x > 0 ) ∨ (domain-block y > 0 )) =⇒ (domain x + do-

main-block y)>0
using domain-nonnegative add-nonneg-pos add-pos-nonneg domain-block-nonnegative

by metis
from this

show ((domain-block(x#Nil)) > 0 ) ∨ ((domain-block y) > 0 )
=⇒ (domain-block (x#y) > 0 )

by auto
qed

lemma domain-additive: (domain-block (x⊗y))= (domain-block x) + (domain-block
y)

by (induction x)(auto)

lemma codomain-additive: (codomain-block (x⊗y))= (codomain-block x) + (codomain-block
y)

by (induction x)(auto)

lemma domain-zero-sum: assumes (domain-block x) + (domain-block y) = 0
shows domain-block x = 0 and domain-block y = 0
using domain-block-nonnegative add-nonneg-eq-0-iff assms
apply metis
by (metis add-nonneg-eq-0-iff assms domain-block-nonnegative)

lemma domain-block-positive: fixes or assumes domain-block y>0 or domain-block
y>0
shows (domain-block (x⊗y)) > 0
apply (simp add: domain-additive)
by (metis assms(1 ) domain-additive domain-block-nonnegative domain-zero-sum(2 )
less-le)

lemma codomain-block-positive: fixes or assumes codomain-block y>0 or codomain-block
y>0
shows (codomain-block (x⊗y)) > 0
apply (simp add: codomain-additive)
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using assms(1 ) codomain-additive codomain-block-nonnegative eq-neg-iff-add-eq-0

le-less-trans less-le neg-less-0-iff-less
by (metis)

We prove that if the first count of a block is zero, then it is composed of cups
and empty bricks. In order to do that we define the functions brick-is-cup
and is-cup which check if a given block is composed of cups or if the blocks
are composed of blocks
primrec brick-is-cup::brick ⇒ bool
where
brick-is-cup vert = False|
brick-is-cup cup = True|
brick-is-cup cap = False|
brick-is-cup over = False|
brick-is-cup under = False

primrec is-cup::block ⇒ bool
where
is-cup [] = True|
is-cup (x#y) = (if (x= cup) then (is-cup y) else False)

lemma brickcount-zero-implies-cup:(domain x= 0 ) =⇒ (x = cup)
by (cases x) (auto)

lemma brickcount-zero-implies-brick-is-cup:(domain x= 0 ) =⇒ (brick-is-cup x)
by (cases x) (auto)

lemma domain-zero-implies-is-cup:(domain-block x= 0 ) =⇒ (is-cup x)
proof(induction x)
case Nil
show ?case by auto
next

case (Cons a y)
show ?case
proof−
have step1 : domain-block (a # y) = (domain a) + (domain-block y)

by auto
with domain-zero-sum havedomain-block y = 0

by (metis (full-types) Cons.prems domain-block-nonnegative do-
main-positive leD neq-iff )

then have step2 : (is-cup y)
using Cons.IH by (auto)

with step1 and domain-zero-sum
have domain a= 0

using Cons.prems ‹domain-block y = 0 › by linarith
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then have brick-is-cup a
using brickcount-zero-implies-brick-is-cup by auto

then have a=cup
using brick-is-cup-def by (metis ‹domain a = 0 › brickcount-zero-implies-cup)

with step2 have is-cup (a#y)
using is-cup-def by auto

then show ?case by auto
qed

qed

We need a function that checks if a wall represents a knot diagram.
primrec is-tangle-diagram::wall ⇒ bool
where
is-tangle-diagram (basic x) = True
|is-tangle-diagram (x∗xs) = (if is-tangle-diagram xs

then (codomain-block x = domain-wall xs)
else False)

definition is-link-diagram::wall ⇒ bool
where
is-link-diagram x ≡ (if (is-tangle-diagram x)

then (abs (domain-wall x) + abs(codomain-wall x) = 0 )
else False)

end

2 Tangles: Definition as a type and basic functions
on tangles

theory Tangles
imports Preliminaries
begin

well-defined wall as a type called diagram. The morphisms Abs_diagram
maps a well defined wall to its diagram type and Rep_diagram maps the
diagram back to the wall
typedef Tangle-Diagram = {(x::wall). is-tangle-diagram x}
by (rule-tac x = prod (cup#[]) (basic (cap#[])) in exI ) (auto)

typedef Link-Diagram = {(x::wall). is-link-diagram x}
by (rule-tac x = prod (cup#[]) (basic (cap#[])) in exI ) (auto simp
add:is-link-diagram-def abs-def )

The next few lemmas list the properties of well defined diagrams

For a well defined diagram, the morphism Rep_diagram acts as an inverse
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of Abs_diagram the morphism which maps a well defined wall to its repre-
sentative in the type diagram
lemma Abs-Rep-well-defined:
assumes is-tangle-diagram x
shows Rep-Tangle-Diagram (Abs-Tangle-Diagram x) = x
using Rep-Tangle-Diagram Abs-Tangle-Diagram-inverse assms mem-Collect-eq by
auto

The map Abs_diagram is injective
lemma Rep-Abs-well-defined:
assumes is-tangle-diagram x

and is-tangle-diagram y
and (Abs-Tangle-Diagram x) = (Abs-Tangle-Diagram y)

shows x = y
using Rep-Tangle-Diagram Abs-Tangle-Diagram-inverse assms mem-Collect-eq
by metis

restating the property of well-defined wall in terms of diagram

In order to locally defined moves, it helps to prove that if composition of two
wall is a well defined wall then the number of outgoing strands of the wall
below are equal to the number of incoming strands of the wall above. The
following lemmas prove that for a well defined wall, t he number of incoming
and outgoing strands are zero
lemma is-tangle-left-compose:
is-tangle-diagram (x ◦ y) =⇒ is-tangle-diagram x

proof (induct x)
case (basic z)
have is-tangle-diagram (basic z) using is-tangle-diagram.simps(1 ) by auto
then show ?case using basic by auto

next
case (prod z zs)
have (z∗zs)◦y = (z∗(zs ◦ y)) by auto
then have is-tangle-diagram (z∗(zs◦y)) using prod by auto
moreover then have 1 : is-tangle-diagram zs

using is-tangle-diagram.simps(2 ) prod.hyps prod.prems by metis
ultimately have domain-wall (zs ◦ y) = codomain-block z

by (metis is-tangle-diagram.simps(2 ))
moreover have domain-wall (zs ◦ y) = domain-wall zs

using domain-wall-def domain-wall-compose by auto
ultimately have domain-wall zs = codomain-block z by auto
then have is-tangle-diagram (z∗zs)

by (metis 1 is-tangle-diagram.simps(2 ))
then show ?case by auto

qed

lemma is-tangle-right-compose:
is-tangle-diagram (x ◦ y) =⇒ is-tangle-diagram y
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proof (induct x)
case (basic z)
have (basic z) ◦ y = (z∗y) using basic by auto
then have is-tangle-diagram y

unfolding is-tangle-diagram.simps(2 ) using basic.prems by (metis is-tangle-diagram.simps(2 ))
then show ?case using basic.prems by auto

next
case (prod z zs)
have ((z∗zs) ◦ y) = (z ∗(zs ◦ y)) by auto
then have is-tangle-diagram (z∗(zs ◦ y)) using prod by auto
then have is-tangle-diagram (zs ◦ y) using is-tangle-diagram.simps(2 ) by metis
then have is-tangle-diagram y using prod.hyps by auto
then show ?case by auto

qed

lemma comp-of-tangle-dgms:
assumesis-tangle-diagram y
shows ((is-tangle-diagram x)

∧(codomain-wall x = domain-wall y))
=⇒ is-tangle-diagram (x ◦ y)

proof(induct x)
case (basic z)
have codomain-block z = codomain-wall (basic z)

using domain-wall-def by auto
moreover have (basic z)◦y= z∗y

using compose-def by auto
ultimately have codomain-block z = domain-wall y

using basic.prems by auto
moreover have is-tangle-diagram y

using assms by auto
ultimately have is-tangle-diagram (z∗y)

unfolding is-tangle-diagram-def by auto
then show ?case by auto

next
case (prod z zs)
have is-tangle-diagram (z∗zs)

using prod.prems by metis
then have codomain-block z = domain-wall zs

using is-tangle-diagram.simps(2 ) prod.prems by metis
then have codomain-block z = domain-wall (zs ◦ y)

using domain-wall.simps domain-wall-compose by auto
moreover have is-tangle-diagram (zs ◦ y)

using prod.hyps by (metis codomain-wall.simps(2 ) is-tangle-diagram.simps(2 )
prod.prems)

ultimately have is-tangle-diagram (z∗(zs ◦ y))
unfolding is-tangle-diagram-def by auto

then show ?case by auto
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qed

lemma composition-of-tangle-diagrams:
assumes is-tangle-diagram x

and is-tangle-diagram y
and (domain-wall y = codomain-wall x)

shows is-tangle-diagram (x ◦ y)
using comp-of-tangle-dgms using assms by auto

lemma converse-composition-of-tangle-diagrams:
is-tangle-diagram (x ◦ y) =⇒ (domain-wall y) = (codomain-wall x)

proof(induct x)
case (basic z)
have (basic z) ◦ y = z ∗ y

using compose-def basic by auto
then have

is-tangle-diagram ((basic z) ◦ y) =⇒
(is-tangle-diagram y)∧ (codomain-block z = domain-wall y)

using is-tangle-diagram.simps(2 ) by (metis)
then have (codomain-block z) = (domain-wall y)

using basic.prems by auto
moreover have codomain-wall (basic z) = codomain-block z

using domain-wall-compose by auto
ultimately have (codomain-wall (basic z)) = (domain-wall y)

by auto
then show ?case by simp

next
case (prod z zs)
have codomain-wall zs = domain-wall y

using prod.hyps prod.prems
by (metis compose-Nil compose-leftassociativity is-tangle-right-compose)

moreover have codomain-wall zs = codomain-wall (z∗zs)
using domain-wall-compose by auto

ultimately show ?case by metis
qed

definition compose-Tangle::Tangle-Diagram ⇒ Tangle-Diagram ⇒ Tangle-Diagram

(infixl ◦ 65 )
where

compose-Tangle x y = Abs-Tangle-Diagram
((Rep-Tangle-Diagram x) ◦ (Rep-Tangle-Diagram y))

theorem well-defined-compose:
assumes is-tangle-diagram x

and is-tangle-diagram y
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and domain-wall x = codomain-wall y
shows (Abs-Tangle-Diagram x) ◦ (Abs-Tangle-Diagram y)

= (Abs-Tangle-Diagram (x ◦ y))
using Abs-Tangle-Diagram-inverse assms(1 ) assms(2 ) compose-Tangle-def

mem-Collect-eq
by auto

definition domain-Tangle::Tangle-Diagram ⇒ int
where
domain-Tangle x = domain-wall(Rep-Tangle-Diagram x)

definition codomain-Tangle::Tangle-Diagram ⇒ int
where
codomain-Tangle x = codomain-wall(Rep-Tangle-Diagram x)

end

3 Tangle_Algebra: Tensor product of tangles and
its properties

theory Tangle-Algebra
imports Tangles
begin

4 Definition of tensor product of walls

the following definition is used to construct a block of n vert strands
primrec make-vert-block:: nat ⇒ block
where
make-vert-block 0 = []
|make-vert-block (Suc n) = vert#(make-vert-block n)

lemma domain-make-vert:domain-block (make-vert-block n) = int n
by (induction n) (auto)

lemma codomain-make-vert:codomain-block (make-vert-block n) = int n
by (induction n) (auto)

fun tensor ::wall => wall => wall (infixr ⊗ 65 )
where
1 :tensor (basic x) (basic y) = (basic (x ⊗ y))
|2 :tensor (x∗xs) (basic y) = (
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if (codomain-block y = 0 )
then (x ⊗ y)∗xs
else
(x ⊗ y)
∗(xs⊗(basic (make-vert-block (nat (codomain-block y))))))

|3 :tensor (basic x) (y∗ys) = (
if (codomain-block x = 0 )
then (x ⊗ y)∗ys
else
(x ⊗ y)
∗((basic (make-vert-block (nat (codomain-block x))))⊗ ys))

|4 :tensor (x∗xs) (y∗ys) = (x ⊗ y)∗ (xs ⊗ ys)

5 Properties of tensor product of tangles
lemma Nil-left-tensor :xs ⊗ (basic ([])) = xs
by (cases xs) (auto simp add:empty-concatenate)

lemma Nil-right-tensor :(basic ([])) ⊗ xs = xs
by (cases xs) (auto)

The definition of tensors is extended to diagrams by using the following
function
definition tensor-Tangle ::Tangle-Diagram ⇒ Tangle-Diagram ⇒ Tangle-Diagram
(infixl ⊗ 65 )
where
tensor-Tangle x y = Abs-Tangle-Diagram ((Rep-Tangle-Diagram x) ⊗ (Rep-Tangle-Diagram
y))

lemma tensor (basic [vert]) (basic ([vert])) = (basic (([vert]) ⊗ ([vert])))
by simp

domain_wall of a tensor product of two walls is the sum of the domain_wall
of each of the tensor products
lemma tensor-domain-wall-additivity:
domain-wall (xs ⊗ ys) = domain-wall xs + domain-wall ys

proof(cases xs)
fix x
assume A:xs = basic x
then have domain-wall (xs ⊗ ys) = domain-wall xs + domain-wall ys
proof(cases ys)
fix y
assume B:ys = basic y
have domain-block (x ⊗ y) = domain-block x + domain-block y

using domain-additive by auto
then have domain-wall (xs ⊗ ys) = domain-wall xs + domain-wall ys

13



using tensor .simps(1 ) A B by auto
thus ?thesis by auto

next
fix z zs
assume C :ys = (z∗zs)
have domain-wall (xs ⊗ ys) = domain-wall xs + domain-wall ys
proof(cases (codomain-block x) = 0 )

assume codomain-block x = 0
then have (xs ⊗ ys) = (x ⊗ z)∗zs

using A C tensor .simps(4 ) by auto
then have domain-wall (xs ⊗ ys) = domain-block (x ⊗ z)

by auto
moreover have domain-wall ys = domain-block z

unfolding domain-wall-def C by auto
moreover have domain-wall xs = domain-block x

unfolding domain-wall-def A by auto
moreover have domain-block (x ⊗ z) = domain-block x + domain-block z

using domain-additive by auto
ultimately show ?thesis by auto

next
assume codomain-block x 6= 0
have (xs ⊗ ys)

= (x ⊗ z)
∗((basic (make-vert-block (nat (codomain-block x))))⊗ zs)

using tensor .simps(3 ) A C ‹codomain-block x 6= 0 › by auto
then have domain-wall (xs ⊗ ys) = domain-block (x ⊗ z)

by auto
moreover have domain-wall ys = domain-block z

unfolding domain-wall-def C by auto
moreover have domain-wall xs = domain-block x

unfolding domain-wall-def A by auto
moreover have domain-block (x ⊗ z) = domain-block x + domain-block z

using domain-additive by auto
ultimately show ?thesis by auto

qed
then show ?thesis by auto

qed
then show ?thesis by auto
next
fix z zs
assume D:xs = z ∗ zs
then have domain-wall (xs ⊗ ys) = domain-wall xs + domain-wall ys
proof(cases ys)
fix y
assume E :ys = basic y
then have domain-wall (xs ⊗ ys) = domain-wall xs + domain-wall ys
proof(cases codomain-block y = 0 )

assume codomain-block y = 0
have (xs ⊗ ys) = (z ⊗ y)∗zs
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using tensor .simps(2 ) D E ‹codomain-block y = 0 › by auto
then have domain-wall (xs ⊗ ys) = domain-block (z ⊗ y)

by auto
moreover have domain-wall xs = domain-block z

unfolding domain-wall-def D by auto
moreover have domain-wall ys = domain-block y

unfolding domain-wall-def E by auto
moreover have domain-block (z ⊗ y) = domain-block z + domain-block y

using domain-additive by auto
ultimately show ?thesis by auto

next
assume codomain-block y 6= 0
have (xs ⊗ ys)

=
(z ⊗ y)
∗(zs⊗(basic (make-vert-block (nat (codomain-block y)))))

using tensor .simps(3 ) D E ‹codomain-block y 6= 0 › by auto
then have domain-wall (xs ⊗ ys) = domain-block (z ⊗ y)

by auto
moreover have domain-wall ys = domain-block y

unfolding domain-wall-def E by auto
moreover have domain-wall xs = domain-block z

unfolding domain-wall-def D by auto
moreover have domain-block (z ⊗ y) = domain-block z + domain-block y

using domain-additive by auto
ultimately show ?thesis by auto

qed
then show ?thesis by auto

next
fix w ws
assume F :ys = w∗ws
have (xs ⊗ ys) = (z ⊗ w) ∗ (zs ⊗ ws)

using D F by auto
then have domain-wall (xs ⊗ ys) = domain-block (z ⊗ w)

by auto
moreover have domain-wall ys = domain-block w

unfolding domain-wall-def F by auto
moreover have domain-wall xs = domain-block z

unfolding domain-wall-def D by auto
moreover have domain-block (z ⊗ w) = domain-block z + domain-block w

using domain-additive by auto
ultimately show ?thesis by auto

qed
then show ?thesis by auto

qed

codomain of tensor of two walls is the sum of the respective codomain’s is
shown by the following theorem
lemma tensor-codomain-wall-additivity:
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codomain-wall (xs ⊗ ys) = codomain-wall xs + codomain-wall ys
proof(induction xs ys rule:tensor .induct)
fix xs ys
let ?case = (codomain-wall ((basic xs) ⊗ (basic ys))

= (codomain-wall (basic (xs)))
+ (codomain-wall (basic ys)))

show ?case using codomain-wall.simps codomain-block.simps tensor .simps
by (metis codomain-additive)

next
fix x xs y
assume case-2 :

codomain-block y 6= 0
=⇒ codomain-wall

(xs ⊗ basic (make-vert-block (nat (codomain-block y))))
= codomain-wall xs

+ codomain-wall
(basic (make-vert-block (nat (codomain-block y))))

let ?case = codomain-wall ((x∗xs)⊗ (basic y))
= (codomain-wall (x∗xs)) + (codomain-wall (basic y))

show ?case
proof(cases (codomain-block y = 0 ))
case True
have ((x∗xs)⊗ (basic y)) = (x ⊗ y)∗xs

using Tangle-Algebra.2 True by auto
then have codomain-wall ((x∗xs)⊗ (basic y))

= codomain-wall ((x ⊗ y)∗xs)
by auto

then have ... = codomain-wall xs
using codomain-wall.simps by auto

then have ... = codomain-wall xs + codomain-wall (basic y)
using True codomain-wall.simps(1 ) by auto

then show ?thesis by auto
next
case False
have (x∗xs) ⊗ (basic y)

= (x ⊗ y)
∗(xs⊗(basic (make-vert-block (nat (codomain-block y)))))

using False by (metis Tangle-Algebra.2 )
moreover then have codomain-wall ((x∗xs) ⊗ (basic y))

= codomain-wall(...)
by auto

moreover have ...
= codomain-wall

(xs⊗(basic (make-vert-block (nat (codomain-block y)))))
using domain-wall.simps by auto

moreover have ...
= codomain-wall xs

+ codomain-wall
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(basic (make-vert-block (nat (codomain-block y))))
using case-2 False by auto

moreover have ... = codomain-wall (x∗xs)
+ codomain-block y

using codomain-wall.simps
by (metis codomain-block-nonnegative codomain-make-vert int-nat-eq)

moreover have ... = codomain-wall (x∗xs) + codomain-wall (basic y)
using codomain-wall.simps(1 ) by auto

ultimately show ?thesis by auto
qed
next
fix x y ys
assume case-3 :(codomain-block x 6= 0 =⇒

codomain-wall
(basic (make-vert-block (nat (codomain-block x))) ⊗ ys)
= codomain-wall

(basic (make-vert-block (nat (codomain-block x))))
+ codomain-wall ys)

let ?case = codomain-wall ((basic x) ⊗ (y∗ys))
= codomain-wall (basic x) + codomain-wall (y∗ys)

show ?case
proof(cases codomain-block x = 0 )
case True
have (basic x)⊗(y∗ys) = (x ⊗ y)∗ys

using True 3 by auto
then have codomain-wall (...) = codomain-wall (...)

by auto
then have ... = codomain-wall ys

by auto
then have ... = codomain-wall ys + codomain-wall (basic x)

using codomain-wall.simps(1 ) True by auto
then show ?thesis by auto

next
case False
have (basic x) ⊗ (y∗ys)

= (x ⊗ y)
∗((basic (make-vert-block (nat (codomain-block x))))⊗ ys)

using False 3 by auto
then have codomain-wall (...) = codomain-wall (...)

by auto
then have ...

= codomain-wall
((basic (make-vert-block (nat (codomain-block x))))⊗ ys)

using codomain-wall.simps(2 ) by auto
then have ... = codomain-block x + codomain-wall ys

using codomain-wall.simps case-3 False
codomain-block-nonnegative codomain-make-vert int-nat-eq

by auto
then have ... = codomain-wall (basic x) + codomain-wall (y∗ys)
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using codomain-wall.simps by auto
then show ?thesis by (metis ‹basic x ⊗ y ∗ ys = (x ⊗ y) ∗ (basic

(make-vert-block (nat (codomain-block x))) ⊗ ys)› ‹codomain-wall ((x ⊗ y) ∗ (basic
(make-vert-block (nat (codomain-block x))) ⊗ ys)) = codomain-wall (basic (make-vert-block
(nat (codomain-block x))) ⊗ ys)› ‹codomain-wall (basic (make-vert-block (nat (codomain-block
x))) ⊗ ys) = codomain-block x + codomain-wall ys›)

qed
next
fix x xs y ys
assume case-4 :codomain-wall (xs ⊗ ys) = codomain-wall xs + codomain-wall

ys
let ?case = codomain-wall ((x∗xs) ⊗ (y∗ys))

= codomain-wall (x∗xs) + codomain-wall (y∗ys)
have ((x∗xs) ⊗ (y∗ys)) = (x ⊗ y)∗(xs ⊗ ys)

using 4 by auto
then have codomain-wall (...) = codomain-wall (...)

by auto
then have ... = codomain-wall (xs ⊗ ys)

using codomain-wall.simps(2 ) by auto
then have ... = codomain-wall xs + codomain-wall ys

using case-4 by auto
then have ... = codomain-wall (x∗xs) + (codomain-wall (y∗ys))

using codomain-wall.simps(2 ) by auto
then show ?case by (metis ‹codomain-wall ((x ⊗ y) ∗ (xs ⊗ ys)) = codomain-wall

(xs ⊗ ys)› ‹x ∗ xs ⊗ y ∗ ys = (x ⊗ y) ∗ (xs ⊗ ys)› case-4 )
qed

theorem is-tangle-make-vert-right:
(is-tangle-diagram xs)

=⇒ is-tangle-diagram (xs ⊗ (basic (make-vert-block n)))
proof(induct xs)
case (basic xs)
show ?case by auto

next
case (prod x xs)
have ?case
proof(cases n)
case 0
have

codomain-block (x ⊗ (make-vert-block 0 ))
= (codomain-block x) + codomain-block(make-vert-block 0 )

using codomain-additive by auto
moreover have codomain-block (make-vert-block 0 ) = 0

by auto
ultimately have codomain-block (x ⊗ (make-vert-block 0 )) = codomain-block

(x)
by auto
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moreover have is-tangle-diagram xs
using prod.prems by (metis is-tangle-diagram.simps(2 ))

then have is-tangle-diagram ((x ⊗ (make-vert-block 0 ))∗xs)
using is-tangle-diagram.simps(2 ) by (metis calculation prod.prems)

then have is-tangle-diagram ((x∗xs) ⊗ (basic (make-vert-block 0 )))
by auto

then show ?thesis using 0 by (metis)
next
case (Suc k)
have codomain-block (make-vert-block (k+1 )) = int (k+1 )

using codomain-make-vert by auto
then have (nat (codomain-block (make-vert-block (k+1 )))) = k+1

by auto
then have make-vert-block (nat (codomain-block (make-vert-block (k+1 ))))

= make-vert-block (k+1 )
by auto

moreover have codomain-wall (basic (make-vert-block (k+1 )))>0
using make-vert-block.simps codomain-wall.simps Suc-eq-plus1
codomain-make-vert of-nat-0-less-iff zero-less-Suc
by metis

ultimately have 1 : (x∗xs) ⊗ (basic (make-vert-block (k+1 )))
= (x⊗(make-vert-block (k+1 )))∗(xs⊗(basic (make-vert-block (k+1 ))))

using tensor .simps(2 ) by simp
have domain-wall (xs⊗(basic (make-vert-block (k+1 ))))

= domain-wall xs + domain-wall (basic (make-vert-block (k+1 )))
using tensor-domain-wall-additivity by auto

then have 2 :
domain-wall (xs⊗(basic (make-vert-block (k+1 ))))

= (domain-wall xs) + int (k+1 )
using domain-make-vert domain-wall.simps(1 ) by auto

moreover have 3 : codomain-block (x ⊗ (make-vert-block (k+1 )))
= codomain-block x + int (k+1 )

using codomain-additive codomain-make-vert by (metis)
have is-tangle-diagram (x∗xs)

using prod.prems by auto
then have 4 :codomain-block x = domain-wall xs

using is-tangle-diagram.simps(2 ) by metis
from 2 3 4 have

domain-wall (xs⊗(basic (make-vert-block (k+1 ))))
= codomain-block (x ⊗ (make-vert-block (k+1 )))

by auto
moreover have is-tangle-diagram (xs⊗(basic (make-vert-block (k+1 ))))

using prod.hyps prod.prems by (metis Suc Suc-eq-plus1 is-tangle-diagram.simps(2 ))
ultimately have is-tangle-diagram ((x∗xs) ⊗ (basic (make-vert-block (k+1 ))))

using 1 by auto
then show ?thesis using Suc Suc-eq-plus1 by metis

qed
then show ?case by auto

qed
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theorem is-tangle-make-vert-left:
(is-tangle-diagram xs) =⇒ is-tangle-diagram ((basic (make-vert-block n)) ⊗ xs)

proof(induct xs)
case (basic xs)
show ?case by auto

next
case (prod x xs)
have ?case
proof(cases n)
case 0
have

codomain-block ( (make-vert-block 0 ) ⊗ x)
= (codomain-block x) + codomain-block(make-vert-block 0 )

using codomain-additive by auto
moreover have codomain-block (make-vert-block 0 ) = 0

by auto
ultimately have codomain-block ( (make-vert-block 0 ) ⊗ x) = codomain-block

(x)
by auto

moreover have is-tangle-diagram xs
using prod.prems by (metis is-tangle-diagram.simps(2 ))

then have is-tangle-diagram (( (make-vert-block 0 ) ⊗ x)∗xs)
using is-tangle-diagram.simps(2 ) by (metis calculation prod.prems)

then have is-tangle-diagram ((basic (make-vert-block 0 )) ⊗ (x∗xs) )
by auto

then show ?thesis using 0 by (metis)
next
case (Suc k)
have codomain-block (make-vert-block (k+1 )) = int (k+1 )

using codomain-make-vert by auto
then have (nat (codomain-block (make-vert-block (k+1 )))) = k+1

by auto
then have make-vert-block (nat (codomain-block (make-vert-block (k+1 ))))

= make-vert-block (k+1 )
by auto

moreover have codomain-wall (basic (make-vert-block (k+1 )))>0
using make-vert-block.simps codomain-wall.simps Suc-eq-plus1

codomain-make-vert of-nat-0-less-iff zero-less-Suc
by metis

ultimately have 1 : (basic (make-vert-block (k+1 ))) ⊗ (x∗xs)
= ((make-vert-block (k+1 )) ⊗ x)∗((basic (make-vert-block (k+1 ))) ⊗

xs)
using tensor .simps(3 ) by simp

have domain-wall ((basic (make-vert-block (k+1 ))) ⊗ xs)
= domain-wall xs + domain-wall (basic (make-vert-block (k+1 )))

using tensor-domain-wall-additivity by auto
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then have 2 :
domain-wall ((basic (make-vert-block (k+1 ))) ⊗ xs)

= (domain-wall xs) + int (k+1 )
using domain-make-vert domain-wall.simps(1 ) by auto

moreover have 3 : codomain-block ( (make-vert-block (k+1 )) ⊗ x)
= codomain-block x + int (k+1 )

using codomain-additive codomain-make-vert
by (simp add: codomain-additive)

have is-tangle-diagram (x∗xs)
using prod.prems by auto

then have 4 :codomain-block x = domain-wall xs
using is-tangle-diagram.simps(2 ) by metis

from 2 3 4 have
domain-wall ((basic (make-vert-block (k+1 ))) ⊗ xs)

= codomain-block ((make-vert-block (k+1 )) ⊗ x)
by auto

moreover have is-tangle-diagram ((basic (make-vert-block (k+1 ))) ⊗ xs)
using prod.hyps prod.prems by (metis Suc Suc-eq-plus1 is-tangle-diagram.simps(2 ))

ultimately have is-tangle-diagram ((basic (make-vert-block (k+1 ))) ⊗ (x∗xs))
using 1 by auto

then show ?thesis using Suc Suc-eq-plus1 by metis
qed
then show ?case by auto

qed

lemma simp1 : (codomain-block y) 6= 0 =⇒
is-tangle-diagram (xs)

∧ is-tangle-diagram ((basic (make-vert-block (nat (codomain-block y))))) −→
is-tangle-diagram (xs ⊗ ((basic (make-vert-block (nat (codomain-block

y)))))) =⇒
(is-tangle-diagram (x ∗ xs) ∧ is-tangle-diagram (basic y) −→ is-tangle-diagram (x
∗ xs ⊗ basic y))

proof−
assume A: (codomain-block y) 6= 0
assume B:

is-tangle-diagram (xs)
∧ is-tangle-diagram ((basic (make-vert-block (nat (codomain-block y)))))
−→
is-tangle-diagram (xs ⊗ ((basic (make-vert-block (nat (codomain-block y))))))

have is-tangle-diagram (x ∗ xs) ∧ is-tangle-diagram (basic y) −→ is-tangle-diagram
xs

by (metis is-tangle-diagram.simps(2 ))
moreover have (is-tangle-diagram (basic (make-vert-block (nat (codomain-block

y)))))
using is-tangle-diagram.simps(1 ) by auto

ultimately have
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((is-tangle-diagram xs)
∧(is-tangle-diagram (basic (make-vert-block (nat (codomain-block y)))))
−→ is-tangle-diagram (xs ⊗ basic (make-vert-block (nat (codomain-block y)))))
=⇒
is-tangle-diagram (x ∗ xs) ∧ is-tangle-diagram (basic y) −→
is-tangle-diagram (xs ⊗ basic (make-vert-block (nat (codomain-block y))))
by metis

moreover have 1 :codomain-block y = domain-wall (basic (make-vert-block (nat
(codomain-block y))))

using codomain-block-nonnegative domain-make-vert domain-wall.simps(1 )
int-nat-eq by auto

moreover have 2 :is-tangle-diagram (x ∗ xs) ∧ is-tangle-diagram (basic y) −→
codomain-block x = domain-wall xs

using is-tangle-diagram.simps(2 ) by metis
moreover have codomain-block (x ⊗ y) = codomain-block x +codomain-block y

using codomain-additive by auto
moreover have domain-wall (xs ⊗ (basic (make-vert-block (nat (codomain-block

y)))))
= domain-wall xs + domain-wall (basic (make-vert-block (nat

(codomain-block y))))
using tensor-domain-wall-additivity by auto

moreover then have is-tangle-diagram (x ∗ xs) ∧ is-tangle-diagram (basic y)
−→

domain-wall (xs ⊗ (basic (make-vert-block (nat (codomain-block y)))))
= codomain-block (x ⊗ y)

by (metis 1 2 calculation(4 ))
ultimately have

(is-tangle-diagram xs)
∧ (is-tangle-diagram (basic (make-vert-block (nat (codomain-block y)))))
−→ is-tangle-diagram (xs ⊗ basic (make-vert-block (nat (codomain-block y))))
=⇒

is-tangle-diagram (x ∗ xs) ∧ is-tangle-diagram (basic y) −→
is-tangle-diagram ((x ⊗ y)∗ (xs ⊗ (basic (make-vert-block (nat (codomain-block

y))))))
using is-tangle-diagram.simps(2 ) by auto

then have
is-tangle-diagram (x ∗ xs) ∧ is-tangle-diagram (basic y) −→

is-tangle-diagram ((x∗xs) ⊗ (basic y))
by (metis Tangle-Algebra.2 ‹
codomain-block y 6= 0 › is-tangle-make-vert-right)

then show ?thesis by auto
qed

lemma simp2 :
(codomain-block x) 6= 0
=⇒

is-tangle-diagram (basic (make-vert-block (nat (codomain-block x))))
∧ is-tangle-diagram (ys)
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−→
is-tangle-diagram ((basic (make-vert-block (nat (codomain-block x)))) ⊗ ys)
=⇒
(is-tangle-diagram (basic x)
∧ is-tangle-diagram (y∗ys)

−→ is-tangle-diagram ((basic x) ⊗ (y∗ys)))
proof−
assume A: (codomain-block x) 6= 0
assume B: is-tangle-diagram (basic (make-vert-block (nat (codomain-block x))))

∧ is-tangle-diagram (ys) −→
is-tangle-diagram

((basic (make-vert-block (nat (codomain-block x)))) ⊗ ys)
have is-tangle-diagram (basic x) ∧ is-tangle-diagram (y∗ys)

−→ is-tangle-diagram ys
by (metis is-tangle-diagram.simps(2 ))

moreover have (is-tangle-diagram
(basic (make-vert-block (nat (codomain-block x)))))

using is-tangle-diagram.simps(1 ) by auto
ultimately have

((is-tangle-diagram ys)
∧(is-tangle-diagram (basic (make-vert-block (nat (codomain-block x)))))

−→ is-tangle-diagram ((basic (make-vert-block (nat (codomain-block x)))) ⊗
ys))

=⇒
is-tangle-diagram (basic x) ∧ is-tangle-diagram (y∗ys) −→

is-tangle-diagram
(( basic (make-vert-block (nat (codomain-block x)))) ⊗ ys)

by metis
moreover have 1 :codomain-block x

= domain-wall (basic (make-vert-block (nat (codomain-block
x))))

using codomain-block-nonnegative domain-make-vert domain-wall.simps(1 )
int-nat-eq by auto

moreover have 2 :is-tangle-diagram (basic x) ∧ is-tangle-diagram (y∗ys) −→
codomain-block y = domain-wall ys

using is-tangle-diagram.simps(2 ) by metis
moreover have codomain-block (x ⊗ y) = codomain-block x +codomain-block y

using codomain-additive by auto
moreover have domain-wall ((basic (make-vert-block (nat (codomain-block x))))
⊗ ys)

= domain-wall (basic (make-vert-block (nat (codomain-block x))))
+ domain-wall ys

using tensor-domain-wall-additivity by auto
moreover then have is-tangle-diagram (basic x) ∧ is-tangle-diagram (y∗ys) −→

domain-wall ((basic (make-vert-block (nat (codomain-block x)))) ⊗ ys)
= codomain-block (x ⊗ y)

by (metis 1 2 calculation(4 ))
ultimately have
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(is-tangle-diagram ys)
∧ (is-tangle-diagram (basic (make-vert-block (nat (codomain-block x)))))
−→ is-tangle-diagram ((basic (make-vert-block (nat (codomain-block x))))⊗

ys)
=⇒
is-tangle-diagram (basic x) ∧ is-tangle-diagram (y∗ys)
−→
is-tangle-diagram ((x ⊗ y)∗((basic (make-vert-block (nat (codomain-block

x)))) ⊗ ys))
using is-tangle-diagram.simps(2 ) by auto

then have
is-tangle-diagram (basic x) ∧ is-tangle-diagram (y∗ys) −→

is-tangle-diagram ((basic x) ⊗ (y∗ys))
by (metis Tangle-Algebra.3 A B)

then show ?thesis by auto
qed

lemma simp3 :
is-tangle-diagram xs ∧ is-tangle-diagram ys −→ is-tangle-diagram (xs ⊗ ys)
=⇒

is-tangle-diagram (x ∗ xs) ∧ is-tangle-diagram (y ∗ ys)
−→ is-tangle-diagram (x ∗ xs ⊗ y ∗ ys)

proof−
assume A: is-tangle-diagram xs ∧ is-tangle-diagram ys −→ is-tangle-diagram (xs
⊗ ys)
have is-tangle-diagram (x∗xs) −→ (codomain-block x = domain-wall xs)

using is-tangle-diagram.simps(2 ) by auto
moreover have is-tangle-diagram (y∗ys) −→ (codomain-block y = domain-wall

ys)
using is-tangle-diagram.simps(2 ) by auto

ultimately have is-tangle-diagram (x∗xs)∧ is-tangle-diagram (y∗ys)
−→ codomain-block (x ⊗ y) = domain-wall (xs ⊗ ys)

using codomain-additive tensor-domain-wall-additivity by auto
moreover have is-tangle-diagram (x∗xs)∧ is-tangle-diagram (y∗ys)

−→ is-tangle-diagram (xs ⊗ ys)
using A is-tangle-diagram.simps(2 ) by auto

moreover have (x∗xs) ⊗ (y∗ys) = (x ⊗ y)∗(xs ⊗ ys)
using tensor .simps(4 ) by auto

ultimately have is-tangle-diagram (x∗xs)∧ is-tangle-diagram (y∗ys)
−→ is-tangle-diagram ((x∗xs) ⊗ (y∗ys))

by auto
then show ?thesis by simp

qed

theorem is-tangle-diagramness:
shows(is-tangle-diagram x)∧(is-tangle-diagram y) −→is-tangle-diagram (tensor x

y)
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proof(induction x y rule:tensor .induct)
fix z w
let ?case = (is-tangle-diagram (basic z))∧(is-tangle-diagram (basic w))

−→is-tangle-diagram ((basic z) ⊗ (basic w))
show ?case by auto

next
fix x xs y
let ?case = (is-tangle-diagram (x∗xs))∧(is-tangle-diagram (basic y))

−→is-tangle-diagram ((x∗xs) ⊗ (basic y))
from simp1 show ?case

by (metis Tangle-Algebra.2 add.commute codomain-additive comm-monoid-add-class.add-0

is-tangle-diagram.simps(2 ) is-tangle-make-vert-right)
next
fix x y ys
let ?case = (is-tangle-diagram (basic x))∧(is-tangle-diagram (y∗ys))

−→is-tangle-diagram ((basic x) ⊗ (y∗ys))
from simp2 show ?case

by (metis Tangle-Algebra.3 codomain-additive comm-monoid-add-class.add-0

is-tangle-diagram.simps(2 ) is-tangle-make-vert-left)
next
fix x y xs ys
assume A: is-tangle-diagram xs ∧ is-tangle-diagram ys −→ is-tangle-diagram (xs
⊗ ys)
let ?case =

is-tangle-diagram (x ∗ xs) ∧ is-tangle-diagram (y ∗ ys) −→ is-tangle-diagram
(x ∗ xs ⊗ y ∗ ys)

from simp3 show ?case using A by auto
qed

theorem tensor-preserves-is-tangle:
assumes is-tangle-diagram x

and is-tangle-diagram y
shows is-tangle-diagram (x ⊗ y)
using assms is-tangle-diagramness by auto

definition Tensor-Tangle::Tangle-Diagram ⇒ Tangle-Diagram ⇒ Tangle-Diagram

(infixl ◦ 65 )
where

Tensor-Tangle x y =
Abs-Tangle-Diagram ((Rep-Tangle-Diagram x) ⊗ (Rep-Tangle-Diagram y))

theorem well-defined-compose:
assumes is-tangle-diagram x

and is-tangle-diagram y
shows (Abs-Tangle-Diagram x) ⊗ (Abs-Tangle-Diagram y) = (Abs-Tangle-Diagram
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(x ⊗ y))
using Abs-Tangle-Diagram-inverse assms(1 ) assms(2 )
mem-Collect-eq tensor-preserves-is-tangle

tensor-Tangle-def
by auto

end
theory Tangle-Relation
imports Main
begin

lemma symmetry1 : assumes symp R
shows ∀ x y. (x, y) ∈ {(x, y). R x y}∗ −→ (y, x) ∈ {(x, y). R x y}∗
proof−
have R x y −→ R y x by (metis assms sympD)
then have (x, y) ∈ {(x, y). R x y} −→ (y, x) ∈ {(x, y). R x y} by auto
then have 2 :∀ x y. (x, y) ∈ {(x, y). R x y} −→ (y, x) ∈ {(x, y). R x y}
by (metis (full-types) assms mem-Collect-eq split-conv sympE)

then have sym {(x, y). R x y} unfolding sym-def by auto
then have 3 : sym (rtrancl {(x, y). R x y}) using sym-rtrancl by auto
then show ?thesis by (metis symE)
qed

lemma symmetry2 : assumes ∀ x y. (x, y) ∈ {(x, y). R x y}∗ −→ (y, x) ∈ {(x,
y). R x y}∗
shows symp R^∗∗
unfolding symp-def Enum.rtranclp-rtrancl-eq assms by (metis assms)

lemma symmetry3 : assumes symp R shows symp R^∗∗ using assms symmetry1
symmetry2 by metis

lemma symm-trans: assumes symp R shows symp R^++ by (metis assms rtran-
clpD symmetry3 symp-def tranclp-into-rtranclp)

end

6 Tangle_Moves: Defining moves on tangles
theory Tangle-Moves
imports Tangles Tangle-Algebra Tangle-Relation
begin

Two Links diagrams represent the same link if and only if the diagrams can
be related by a set of moves called the reidemeister moves. For links defined
through Tangles, addition set of moves are needed to account for different
tangle representations of the same link diagram.
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We formalise these ’moves’ in terms of relations. Each move is defined as a
relation on diagrams. Two diagrams are then stated to be equivalent if the
reflexive-symmetric-transitive closure of the disjunction of above relations
holds true. A Link is defined as an element of the quotient type of diagrams
modulo equivalence relations. We formalise the definition of framed links
on similar lines.
In terms of formalising the moves, there is a trade off between choosing a
small number of moves from which all other moves can be obtained, which is
conducive to probe invariance of a function on diagrams. However, such an
approach might not be conducive to establish equivalence of two diagrams.
We opt for the former approach of minimising the number of tangle moves.
However, the moves that would be useful in practise are proved as theorems
in
type-synonym relation = wall ⇒ wall ⇒ bool

Link uncross
abbreviation right-over ::wall
where
right-over ≡ ((basic [vert,cup]) ◦ (basic [over ,vert])◦(basic [vert,cap]))

abbreviation left-over ::wall
where
left-over ≡ ((basic (cup#vert#[])) ◦ (basic (vert#over#[]))
◦ (basic (cap#vert#[])))

abbreviation right-under ::wall
where
right-under ≡ ((basic (vert#cup#[])) ◦ (basic (under#vert#[]))
◦ (basic (vert#cap#[])))

abbreviation left-under ::wall
where
left-under ≡ ((basic (cup#vert#[])) ◦ (basic (vert#under#[]))
◦ (basic (cap#vert#[])))

abbreviation straight-line::wall
where
straight-line ≡ (basic (vert#[])) ◦ (basic (vert#[])) ◦ (basic (vert#[]))

definition uncross-positive-flip::relation
where
uncross-positive-flip x y ≡ ((x = right-over)∧(y = left-over))

definition uncross-positive-straighten::relation
where
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uncross-positive-straighten x y ≡ ((x = right-over)∧(y = straight-line))

definition uncross-negative-flip::relation
where
uncross-negative-flip x y ≡ ((x = right-under)∧(y = left-under))

definition uncross-negative-straighten::relation
where
uncross-negative-straighten x y ≡ ((x = left-under)∧(y = straight-line))

definition uncross
where
uncross x y ≡ ((uncross-positive-straighten x y)∨(uncross-positive-flip x y)

∨(uncross-negative-straighten x y)∨ (uncross-negative-flip x y))

swing begins
abbreviation r-over-braid::wall
where
r-over-braid ≡ ((basic ((over#vert#[]))◦(basic ((vert#over#[])))

◦(basic (over# vert#[]))))

abbreviation l-over-braid::wall
where
l-over-braid ≡ (basic (vert#over#[]))◦(basic (over#vert#[]))

◦(basic (vert#over#[]))

abbreviation r-under-braid::wall
where
r-under-braid ≡ ((basic ((under#vert#[]))◦(basic ((vert#under#[])))

◦(basic (under# vert#[]))))

abbreviation l-under-braid::wall
where
l-under-braid ≡ (basic (vert#under#[]))◦(basic (under#vert#[]))

◦(basic (vert#under#[]))

definition swing-pos::wall ⇒ wall ⇒ bool
where
swing-pos x y ≡ (x = r-over-braid)∧(y = l-over-braid)

definition swing-neg::wall ⇒ wall ⇒ bool
where
swing-neg x y ≡(x = r-under-braid)∧(y=l-under-braid)
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definition swing::relation
where
swing x y ≡ (swing-pos x y)∨(swing-neg x y)

pull begins
definition pull-posneg::relation
where
pull-posneg x y ≡ ((x = ((basic (over#[]))◦(basic (under#[]))))

∧(y = ((basic (vert#vert#[])))
◦(basic ((vert#vert#[])))))

definition pull-negpos::relation
where
pull-negpos x y ≡ ((x = ((basic (under#[]))◦(basic (over#[]))))

∧(y = ((basic (vert#vert#[])))
◦(basic ((vert#vert#[])))))

pull definition
definition pull::relation
where
pull x y ≡ ((pull-posneg x y) ∨ (pull-negpos x y))

linkrel-pull ends

linkrel-straighten
definition straighten-topdown::relation
where
straighten-topdown x y ≡ ((x =((basic ((vert#cup#[])))

◦(basic ((cap#vert#[])))))
∧(y = ((basic (vert#[]))◦(basic (vert#[])))))

definition straighten-downtop::relation
where
straighten-downtop x y ≡ ((x =((basic ((cup# vert#[])))

◦(basic ((vert# cap#[])))))
∧(y = ((basic (vert#[]))◦(basic (vert#[])))))

definition straighten
definition straighten::relation
where
straighten x y ≡ ((straighten-topdown x y) ∨ (straighten-downtop x y))

straighten ends

rotate moves
definition rotate-toppos::relation
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where
rotate-toppos x y ≡ ((x = ((basic ((vert #over#[])))

◦(basic ((cap# vert#[])))))
∧ (y = ((basic ((under#vert#[]))

◦(basic ((vert#cap#[])))))))

definition rotate-topneg::wall ⇒ wall ⇒ bool
where
rotate-topneg x y ≡ ((x = ((basic ((vert #under#[])))

◦(basic ((cap# vert#[])))))
∧ (y = ((basic ((over#vert#[]))

◦(basic ((vert#cap#[])))))))

definition rotate-downpos::wall ⇒ wall ⇒ bool
where
rotate-downpos x y ≡ ((x = ((basic (cup#vert#[]))

◦(basic (vert#over#[]))))
∧ (y = ((basic ((vert#cup#[])))

◦(basic ((under#vert#[]))))))

definition rotate-downneg::wall ⇒ wall ⇒ bool
where
rotate-downneg x y ≡ ((x = ((basic (cup#vert#[]))

◦(basic (vert#under#[]))))
∧ (y = ((basic ((vert#cup#[])))

◦(basic ((over#vert#[]))))))

rotate definition
definition rotate::wall ⇒ wall ⇒ bool
where
rotate x y ≡ ((rotate-toppos x y) ∨ (rotate-topneg x y)
∨ (rotate-downpos x y) ∨ (rotate-downneg x y))

rotate ends

Compress - Compress has two levels of equivalences. It is a composition of
Compress-null, compbelow and compabove. compbelow and compabove are
further written as disjunction of many other relations. Compbelow refers
to when the bottom row is extended or compressed. Compabove refers to
when the row above is extended or compressed
definition compress-top1 ::wall ⇒ wall ⇒ bool
where
compress-top1 x y ≡ ∃B.((x = (basic (make-vert-block (nat (domain-wall B))))◦
B)

∧(y = B)∧(codomain-wall B 6= 0 )
∧(is-tangle-diagram B))
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definition compress-bottom1 ::wall ⇒ wall ⇒ bool
where
compress-bottom1 x y ≡ ∃B.((x = B ◦ (basic (make-vert-block (nat (codomain-wall
B)))))

∧(y = B))∧(domain-wall B 6= 0 )
∧(is-tangle-diagram B)

definition compress-bottom::wall ⇒ wall ⇒ bool
where
compress-bottom x y ≡ ∃B.((x = B ◦ (basic (make-vert-block (nat (codomain-wall
B)))))

∧(y = ((basic ([]) ◦ B)))∧(domain-wall B = 0 )
∧(is-tangle-diagram B))

definition compress-top::wall ⇒ wall ⇒ bool
where
compress-top x y ≡ ∃B.((x = (basic (make-vert-block (nat (domain-wall B))))◦
B)

∧(y = (B ◦ (basic ([]))))∧(codomain-wall B = 0 )
∧(is-tangle-diagram B))

definition compress::wall ⇒ wall ⇒ bool
where
compress x y = ((compress-top x y) ∨ (compress-bottom x y))

slide relation refer to the relation where a crossing is slided over a vertical
strand
definition slide::wall ⇒ wall ⇒ bool
where
slide x y ≡ ∃B.((x = ((basic (make-vert-block (nat (domain-block B))))◦(basic
B)))

∧(y = ((basic B)◦(basic (make-vert-block (nat (codomain-block B))))))
∧ ((domain-block B) 6= 0 ))

linkrel-definition
definition linkrel::wall =>wall ⇒bool
where
linkrel x y = ((uncross x y) ∨ (pull x y) ∨ (straighten x y)
∨(swing x y)∨(rotate x y) ∨ (compress x y) ∨ (slide x y))

definition framed-uncross::wall ⇒ wall ⇒ bool
where
framed-uncross x y ≡ ((uncross-positive-flip x y)∨(uncross-negative-flip x y))

definition framed-linkrel::wall =>wall ⇒bool
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where
framed-linkrel x y = ((framed-uncross x y) ∨ (pull x y) ∨ (straighten x y)
∨(swing x y)∨(rotate x y) ∨ (compress x y) ∨ (slide x y))

lemma framed-uncross-implies-uncross: (framed-uncross x y)=⇒(uncross x y)
by (auto simp add: framed-uncross-def uncross-def )

end

7 Link_Algebra: Defining equivalence of tangles
and links

theory Link-Algebra
imports Tangles Tangle-Algebra Tangle-Moves
begin

inductive Tangle-Equivalence :: wall ⇒ wall ⇒ bool (infixl ∼ 64 )
where

refl [intro!, Pure.intro!, simp]: a ∼ a
|equality [Pure.intro]: linkrel a b =⇒ a ∼ b
|domain-compose:(domain-wall a = 0 )∧(is-tangle-diagram a) =⇒ a ∼ ((basic
[])◦a)
|codomain-compose:(codomain-wall a = 0 ) ∧ (is-tangle-diagram a) =⇒ a ∼ (a ◦
(basic []))
|compose-eq:((B::wall) ∼ D) ∧ ((A::wall) ∼ C )

∧(is-tangle-diagram A)∧(is-tangle-diagram B)
∧(is-tangle-diagram C )∧(is-tangle-diagram D)
∧(domain-wall B)= (codomain-wall A)
∧(domain-wall D)= (codomain-wall C )

=⇒((A::wall) ◦ B) ∼ (C ◦ D)
|trans: A∼B =⇒ B∼C =⇒ A ∼ C
|sym:A∼ B =⇒ B ∼A
|tensor-eq: ((B::wall) ∼ D) ∧ ((A::wall) ∼ C ) ∧(is-tangle-diagram A)∧(is-tangle-diagram
B)
∧(is-tangle-diagram C )∧(is-tangle-diagram D) =⇒((A::wall) ⊗ B) ∼ (C ⊗ D)

inductive Framed-Tangle-Equivalence :: wall ⇒ wall ⇒ bool (infixl ∼f 64 )
where

refl [intro!, Pure.intro!, simp]: a ∼f a
|equality [Pure.intro]: framed-linkrel a b =⇒ a ∼f b
|domain-compose:(domain-wall a = 0 ) ∧ (is-tangle-diagram a) =⇒ a ∼f ((basic
[])◦a)
|codomain-compose:(codomain-wall a = 0 ) ∧ (is-tangle-diagram a) =⇒ a ∼f (a ◦
(basic []))
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|compose-eq:((B::wall) ∼f D) ∧ ((A::wall) ∼f C )
∧(is-tangle-diagram A)∧(is-tangle-diagram B)
∧(is-tangle-diagram C )∧(is-tangle-diagram D)
∧(domain-wall B)= (codomain-wall A)
∧(domain-wall D)= (codomain-wall C )

=⇒((A::wall) ◦ B) ∼f (C ◦ D)
|trans: A∼fB =⇒ B∼fC =⇒ A ∼f C
|sym:A∼f B =⇒ B ∼fA
|tensor-eq: ((B::wall) ∼f D) ∧ ((A::wall) ∼f C ) ∧(is-tangle-diagram A)∧(is-tangle-diagram
B)
∧(is-tangle-diagram C )∧(is-tangle-diagram D) =⇒((A::wall) ⊗ B) ∼f (C ⊗ D)

definition Tangle-Diagram-Equivalence::Tangle-Diagram ⇒ Tangle-Diagram ⇒
bool
(infixl ∼T 64 )

where
Tangle-Diagram-Equivalence T1 T2 ≡
(Rep-Tangle-Diagram T1 ) ∼ (Rep-Tangle-Diagram T2 )

definition Link-Diagram-Equivalence::Link-Diagram ⇒ Link-Diagram ⇒ bool
(infixl ∼L 64 )

where
Link-Diagram-Equivalence T1 T2 ≡ (Rep-Link-Diagram T1 ) ∼ (Rep-Link-Diagram
T2 )

quotient-type Tangle = Tangle-Diagram/Tangle-Diagram-Equivalence
morphisms Rep-Tangles Abs-Tangles
proof (rule equivpI )
show reflp Tangle-Diagram-Equivalence

unfolding reflp-def Tangle-Diagram-Equivalence-def
Tangle-Equivalence.refl
by auto

show symp Tangle-Diagram-Equivalence
unfolding Tangle-Diagram-Equivalence-def symp-def
using Tangle-Diagram-Equivalence-def Tangle-Equivalence.sym
by auto

show transp Tangle-Diagram-Equivalence
unfolding Tangle-Diagram-Equivalence-def transp-def
using Tangle-Diagram-Equivalence-def Tangle-Equivalence.trans
by metis

qed

quotient-type Link = Link-Diagram/Link-Diagram-Equivalence
morphisms Rep-Links Abs-Links
proof (rule equivpI )
show reflp Link-Diagram-Equivalence

unfolding reflp-def Link-Diagram-Equivalence-def
Tangle-Equivalence.refl
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by auto
show symp Link-Diagram-Equivalence

unfolding Link-Diagram-Equivalence-def symp-def
using Link-Diagram-Equivalence-def Tangle-Equivalence.sym
by auto

show transp Link-Diagram-Equivalence
unfolding Link-Diagram-Equivalence-def transp-def
using Link-Diagram-Equivalence-def Tangle-Equivalence.trans
by metis

qed

definition Framed-Tangle-Diagram-Equivalence::Tangle-Diagram ⇒ Tangle-Diagram
⇒ bool
(infixl ∼T 64 )

where
Framed-Tangle-Diagram-Equivalence T1 T2

≡ (Rep-Tangle-Diagram T1 ) ∼ (Rep-Tangle-Diagram T2 )

definition Framed-Link-Diagram-Equivalence::Link-Diagram ⇒ Link-Diagram ⇒
bool
(infixl ∼L 64 )

where
Framed-Link-Diagram-Equivalence T1 T2

≡ (Rep-Link-Diagram T1 ) ∼ (Rep-Link-Diagram T2 )

quotient-type Framed-Tangle = Tangle-Diagram
/Framed-Tangle-Diagram-Equivalence

morphisms Rep-Framed-Tangles Abs-Framed-Tangles
proof (rule equivpI )
show reflp Framed-Tangle-Diagram-Equivalence

unfolding reflp-def Framed-Tangle-Diagram-Equivalence-def
Framed-Tangle-Equivalence.refl
by auto

show symp Framed-Tangle-Diagram-Equivalence
unfolding Framed-Tangle-Diagram-Equivalence-def symp-def
using Framed-Tangle-Diagram-Equivalence-def
Framed-Tangle-Equivalence.sym

by (metis Tangle-Equivalence.sym)
show transp Framed-Tangle-Diagram-Equivalence

unfolding Framed-Tangle-Diagram-Equivalence-def transp-def
using Framed-Tangle-Diagram-Equivalence-def Framed-Tangle-Equivalence.trans

by (metis Tangle-Equivalence.trans)
qed

quotient-type Framed-Link = Link-Diagram/Framed-Link-Diagram-Equivalence
morphisms Rep-Framed-Links Abs-Framed-Links
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proof (rule equivpI )
show reflp Framed-Link-Diagram-Equivalence

unfolding reflp-def Framed-Link-Diagram-Equivalence-def
Framed-Tangle-Equivalence.refl
by auto

show symp Framed-Link-Diagram-Equivalence
unfolding Framed-Link-Diagram-Equivalence-def symp-def

using Framed-Link-Diagram-Equivalence-def Framed-Tangle-Equivalence.sym

by (metis Tangle-Equivalence.sym)
show transp Framed-Link-Diagram-Equivalence

unfolding Framed-Link-Diagram-Equivalence-def transp-def
using Framed-Link-Diagram-Equivalence-def Framed-Tangle-Equivalence.trans

by (metis Tangle-Equivalence.trans)
qed

end

8 Showing equivalence of links: An example
theory Example
imports Link-Algebra
begin

We prove that a link diagram with a single crossing is equivalent to the
unknot
lemma transitive: assumes a∼b and b∼c shows a∼c

using Tangle-Equivalence.trans assms(1 ) assms(2 ) by metis

lemma prelim-cup-compress:
((basic (cup#[])) ◦ (basic (vert # vert # []))) ∼

((basic [])◦(basic (cup#[])))
proof−
have domain-wall (basic (cup # [])) = 0

by auto
moreover have codomain-wall (basic (cup # [])) = 2

by auto
moreover

have make-vert-block (nat (codomain-wall (basic (cup # []))))
= (vert # vert # [])

unfolding make-vert-block-def
by auto

moreover have is-tangle-diagram ((basic (cup#[])) ◦ (basic (vert # vert # [])))
using is-tangle-diagram.simps by auto

ultimately
have compress-bottom

((basic (cup#[])) ◦ (basic (vert # vert # [])))
((basic []) ◦(basic (cup#[])))
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using compress-bottom-def by (metis is-tangle-diagram.simps(1 ))
then have compress ((basic (cup#[])) ◦ (basic (vert # vert # [])))

((basic [])◦(basic (cup#[])))
using compress-def by auto

then have linkrel ((basic (cup#[])) ◦ (basic (vert # vert # [])))
((basic [])◦(basic (cup#[])))
unfolding linkrel-def by auto

then show ?thesis
using Tangle-Equivalence.equality compress-bottom-def

Tangle-Moves.compress-bottom-def Tangle-Moves.compress-def
Tangle-Moves.linkrel-def

by auto
qed

lemma cup-compress:
(basic (cup#[])) ◦ (basic (vert # vert # [])) ∼ (basic (cup#[]))
proof−
have ((basic (cup#[])) ◦ (basic (vert # vert # []))) ∼

((basic [])◦(basic (cup#[])))
using prelim-cup-compress by auto

moreover have ((basic [])◦(basic (cup#[]))) ∼ (basic (cup#[]))
using domain-compose refl sym Tangle-Equivalence.domain-compose
Tangle-Equivalence.sym domain.simps(2 ) domain-block.simps
domain-wall.simps(1 )
is-tangle-diagram.simps(1 ) monoid-add-class.add.right-neutral
by auto

ultimately show ?thesis using trans by (metis Example.transitive)
qed

abbreviation x::wall
where
x ≡ (basic [cup,cup])◦(basic [vert,over ,vert]) ◦ (basic [cap,cap])

abbreviation y::wall
where
y ≡ (basic [cup]) ◦ (basic [cap])

lemma uncross-straighten-left-over :left-over ∼ straight-line
proof−
have uncross right-over left-over

using uncross-positive-flip-def uncross-def by auto
then have linkrel right-over left-over

using linkrel-def by auto
then have right-over ∼ left-over

using Tangle-Equivalence.equality by auto
then have 1 :left-over ∼ right-over

using Tangle-Equivalence.sym by auto
have uncross right-over straight-line

using uncross-positive-straighten-def uncross-def by auto
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then have linkrel right-over straight-line
using linkrel-def by auto

then have 2 :right-over ∼ straight-line
using Tangle-Equivalence.equality by auto

have (left-over ∼ straight-line) ∧ (right-over ∼ straight-line)
=⇒ ?thesis

using transitive by auto
then show ?thesis using 1 2 transitive by blast
qed

theorem Example:
x ∼ y

proof−
have 1 :left-over ∼ straight-line

using Tangle-Equivalence.equality uncross-straighten-left-over by auto
moreover have 2 :straight-line ∼ straight-line

using refl by auto
have 3 :(left-over ⊗ straight-line) ∼ (straight-line ⊗ straight-line)
proof−
have is-tangle-diagram (left-over)

unfolding is-tangle-diagram-def by auto
moreover have is-tangle-diagram (straight-line)

unfolding is-tangle-diagram-def by auto
ultimately show ?thesis using 1 2 by (metis Tangle-Equivalence.tensor-eq)

qed
then have 4 :
((basic (cup#[])) ◦ (left-over ⊗ straight-line))

∼ ((basic (cup#[])) ◦ (straight-line ⊗ straight-line))
proof−
have is-tangle-diagram (left-over ⊗ straight-line)

by auto
moreover have is-tangle-diagram (straight-line ⊗ straight-line)

by auto
moreover have is-tangle-diagram (basic (cup#[]))

by auto
moreover have domain-wall (left-over ⊗ straight-line) = (codomain-wall (basic

(cup#[])))
unfolding domain-wall-def by auto

moreover have domain-wall (straight-line ⊗ straight-line) = (codomain-wall
(basic (cup#[])))

unfolding domain-wall-def by auto
moreover have (basic (cup#[])) ∼ (basic (cup#[]))

using refl by auto
ultimately show ?thesis

using compose-eq 3 by (metis Tangle-Equivalence.compose-eq)
qed
moreover have 5 : (basic [cup])◦ (straight-line ⊗ straight-line)
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∼ (basic [cup])
proof−
have 0 :
(basic ([cup])) ◦ (straight-line ⊗ straight-line) = (basic [cup]) ◦(basic [vert,vert])

◦ (basic [vert,vert])◦(basic [vert,vert])
by auto

let ?x =(basic (cup#[]))
◦(basic (vert#vert#[])) ◦ (basic (vert#vert#[]))
◦ (basic (vert#vert#[]))

let ?x1 = (basic (vert#vert#[]))◦ (basic (vert#vert#[]))
have 1 :?x ∼ ((basic (cup#[])) ◦ ?x1 )
proof−
have (basic (cup#[]))◦(basic (vert # vert # [])) ∼ (basic (cup#[]))

using cup-compress by auto
moreover have is-tangle-diagram (basic (cup#[]))

using is-tangle-diagram-def by auto
moreover have is-tangle-diagram ((basic (cup#[]))◦(basic (vert # vert # [])))

using is-tangle-diagram-def by auto
moreover have is-tangle-diagram (?x1 )

by auto
moreover have ?x1 ∼ ?x1

using refl by auto
moreover have

codomain-wall (basic (cup#[])) = domain-wall (basic (vert#vert#[]))
by auto

moreover have (basic (cup#[])) ∼ (basic (cup#[]))
using refl by auto

ultimately show ?thesis
using compose-eq codomain-wall-compose compose-leftassociativity

converse-composition-of-tangle-diagrams domain-wall-compose
by (metis Tangle-Equivalence.compose-eq is-tangle-diagram.simps(1 ))

qed
have 2 : ((basic (cup#[])) ◦ ?x1 ) ∼ (basic (cup#[]))
proof−
have
((basic (cup # []))◦(basic (vert # vert # [])))◦(basic (vert # vert # []))

∼ ((basic(cup#[]))◦(basic(vert#vert#[])))
proof−
have (basic (cup#[]))◦(basic (vert # vert # [])) ∼ (basic (cup#[]))

using cup-compress by auto
moreover have (basic(vert#vert#[])) ∼ (basic(vert#vert#[]))

using refl by auto
moreover have is-tangle-diagram (basic (cup#[]))

using is-tangle-diagram-def by auto
moreover have is-tangle-diagram ((basic (cup#[]))◦(basic (vert # vert # [])))

using is-tangle-diagram-def by auto
moreover have is-tangle-diagram ((basic(vert#vert#[])))

by auto
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moreover have
codomain-wall ((basic (cup#[]))◦ (basic(vert#vert#[])))

= domain-wall (basic(vert#vert#[]))
by auto

moreover
have codomain-wall (basic (cup#[])) = domain-wall (basic(vert#vert#[]))
by auto

ultimately show ?thesis
using compose-eq
by (metis Tangle-Equivalence.compose-eq)

qed
then have ((basic (cup#[])) ◦ ?x1 ) ∼

((basic(cup#[]))◦(basic(vert#vert#[])))
by auto

then show ?thesis using cup-compress trans
by (metis (full-types) Example.transitive)

qed
from 0 1 2 show ?thesis using trans transp-def trans compose-Nil

by (metis (opaque-lifting, no-types) Example.transitive)
qed
let ?y = ((basic ([])) ◦ (basic (cup#[])))
let ?temp = (basic (vert#over#vert#[]))◦(basic (cap#vert#vert#[]))
have 45 :(left-over ⊗ straight-line) =

((basic (cup#vert#vert#[])) ◦ ?temp)
using tensor .simps by (metis compose-Nil concatenates-Cons concate-

nates-Nil)
then have 55 :(basic (cup#[])) ◦ (left-over ⊗ straight-line)

= (basic (cup#[])) ◦ (basic (cup#vert#vert#[])) ◦ ?temp
by auto

then have
(basic (cup#[])) ◦ (basic (cup#vert#vert#[]))

= (basic (([]) ⊗(cup#[])))◦(basic ((cup#[])⊗(vert#vert#[])))
using concatenate.simps by auto

then have 6 :
(basic (cup#[])) ◦ (basic (cup#vert#vert#[]))

= ((basic ([]))◦(basic (cup#[])))
⊗((basic (cup#[])) ◦(basic (vert#vert#[])))

using tensor .simps by auto
then have ((basic (cup#[])) ◦(basic (vert#vert#[])))

∼ (basic ([]))◦(basic (cup#[]))
using prelim-cup-compress by auto

moreover have ((basic ([]))◦(basic (cup#[])))
∼ ((basic ([]))◦(basic (cup#[])))

using refl by auto
moreover have is-tangle-diagram ((basic (cup#[])) ◦(basic (vert#vert#[])))

by auto
moreover have is-tangle-diagram ((basic ([]))◦(basic (cup#[])))

by auto
ultimately have 7 :?y ⊗ ((basic (cup#[])) ◦(basic (vert#vert#[])))∼ ((?y) ⊗
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(?y))
using tensor-eq cup-compress Nil-right-tensor is-tangle-diagram.simps(1 )

refl
by (metis Tangle-Equivalence.tensor-eq)

then have ((?y) ⊗ (?y)) = (basic (([]) ⊗ ([])))
◦ ((basic (cup#[])) ⊗ (basic (cup#[])))

using tensor .simps(4 ) by (metis compose-Nil)
then have ((?y) ⊗ (?y)) = (basic ([])) ◦((basic (cup#cup#[])))

using tensor .simps(1 ) concatenate-def by auto
then have (?y) ⊗ ((basic (cup#[])) ◦(basic (vert#vert#[])))

∼ (basic ([])) ◦(basic (cup#cup#[]))
using 7 by auto

moreover have (basic ([]))◦(basic (cup#cup#[]))∼(basic (cup#cup#[]))
proof−
have domain-wall (basic (cup#cup#[])) = 0

by auto
then show ?thesis using domain-compose sym

by (metis Tangle-Equivalence.domain-compose Tangle-Equivalence.sym
is-tangle-diagram.simps(1 ))
qed
ultimately have (?y) ⊗ ((basic (cup#[])) ◦(basic (vert#vert#[])))

∼ (basic (cup#cup#[]))
using trans by (metis (full-types) Example.transitive)

then have (basic(cup#[]))◦(basic(cup#vert#vert#[]))∼(basic(cup#cup#[]))
by auto

moreover have ?temp ∼ ?temp
using refl by auto

moreover have is-tangle-diagram ((basic(cup#[]))◦(basic(cup#vert#vert#[])))
by auto

moreover have is-tangle-diagram (basic(cup#cup#[]))
by auto

moreover have is-tangle-diagram (?temp)
by auto

moreover have codomain-wall ((basic(cup#[]))◦(basic(cup#vert#vert#[])))
= domain-wall ?temp

by auto
moreover have codomain-wall (basic(cup#cup#[])) = domain-wall ?temp

by auto
ultimately have 8 : ((basic(cup#[]))◦(basic(cup#vert#vert#[]))) ◦(?temp)

∼ (basic(cup#cup#[])) ◦ (?temp)
using compose-eq by (metis Tangle-Equivalence.compose-eq)

then have ((basic [cup,cup]) ◦ (?temp))
∼ (basic [cup] ◦ (left-over ⊗ straight-line))

using 55 compose-leftassociativity sym wall.simps
by (metis Tangle-Equivalence.sym compose-Nil)

moreover have (basic [cup]) ◦ (left-over ⊗ straight-line)
∼ (basic [cup]) ◦ (straight-line ⊗ straight-line)

using 4 by auto
ultimately have ((basic [cup,cup]) ◦ (?temp))
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∼ (basic [cup]) ◦ (straight-line ⊗ straight-line)
proof−
have ((basic [cup,cup]) ◦ (?temp))

∼ (basic [cup] ◦ (left-over ⊗ straight-line))
using 8 55 compose-leftassociativity sym wall.simps Tangle-Equivalence.sym

compose-Nil
by (metis)

moreover have (basic [cup]) ◦ (left-over ⊗ straight-line)
∼ (basic [cup]) ◦ (straight-line ⊗ straight-line)

using 4 by auto
moreover have (((basic [cup,cup]) ◦ (?temp))

∼ (basic [cup] ◦ (left-over ⊗ straight-line)))
∧ ((basic [cup]) ◦ (left-over ⊗ straight-line)

∼ (basic [cup]) ◦ (straight-line ⊗ straight-line))
=⇒ ?thesis

using Example.transitive by auto
ultimately show ?thesis by auto

qed
then have (basic ([cup,cup])) ◦ (?temp) ∼ (basic (cup # []))

using trans transp-def 5 by (metis Example.transitive)
moreover have (basic (cap#[])) ∼ (basic (cap#[]))

using refl by auto
moreover have is-tangle-diagram ((basic(cup#cup#[])) ◦ (?temp))

by auto
moreover have is-tangle-diagram (basic (cup # []))

by auto
moreover have is-tangle-diagram (basic (cap # []))

by auto
moreover have codomain-wall ((basic(cup#cup#[])) ◦ (?temp))

= domain-wall (basic (cap # []))
by auto

moreover have codomain-wall (basic(cup#[])) = domain-wall (basic (cap # []))
by auto

ultimately have 9 :((basic(cup#cup#[])) ◦ (?temp)) ◦ (basic (cap#[]))
∼ (basic (cup#[])) ◦ (basic (cap#[]))

using Tangle-Equivalence.compose-eq by metis
let ?z = ((basic(cup#cup#[])) ◦ (basic(vert#over#vert#[])))
have 10 :((basic(cup#cup#[])) ◦ (?temp)) ◦ (basic (cap#[]))

= ?z ◦ ((basic(cap#vert#vert#[])) ◦ (basic (cap#[])))
by auto

then have 11 :((basic(cap#vert#vert#[])) ◦ (basic (cap#[])))
= ((basic ((cap#[])⊗(vert#vert#[])))◦(basic (([]) ⊗(cap#[]))))

unfolding concatenate-def by auto
then have 12 : ((basic(cap#vert#vert#[])) ◦ (basic (cap#[])))

= ((basic (cap#[]))◦(basic ([])))⊗((basic (vert#vert#[]))◦(basic
(cap#[])))

using tensor .simps by auto
let ?w = ((basic (cap#[]))◦(basic ([])))
have 13 :((basic (vert#vert#[]))◦(basic (cap#[]))) ∼ ?w
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proof−
have codomain-wall (basic (cap#[])) = 0

by auto
then have domain-wall (basic (cap#[])) = 2 by auto
then have (vert#vert#[])

= make-vert-block (nat (domain-wall (basic (cap#[]))))
by (simp add: make-vert-block-def )

then have compress-top ((basic (vert#vert#[]))◦(basic (cap#[]))) ?w
using compress-top-def by auto

then have compress ((basic (vert#vert#[]))◦(basic (cap#[]))) ?w
using compress-def by auto

then have linkrel ((basic (vert#vert#[]))◦(basic (cap#[]))) ?w
using linkrel-def by auto

then have ((basic (vert#vert#[]))◦(basic (cap#[]))) ∼ ?w
using Tangle-Equivalence.equality by auto

then show ?thesis by simp
qed
moreover have is-tangle-diagram ((basic (vert#vert#[]))◦(basic (cap#[])))

by auto
moreover have is-tangle-diagram ?w

by auto
moreover have ?w ∼ ?w

using refl by auto
ultimately have 14 :(?w) ⊗ ((basic (vert#vert#[]))◦(basic (cap#[]))) ∼ ((?w)⊗

(?w))
using Tangle-Equivalence.tensor-eq by metis

then have ((basic(cap#vert#vert#[])) ◦ (basic (cap#[]))) ∼ ((?w)⊗ (?w))
using 13 by auto

moreover have ((?w)⊗ (?w)) = (basic (cap#cap#[])) ◦ (basic ([]))
using tensor .simps by auto

ultimately have ((basic(cap#vert#vert#[]))◦(basic (cap#[])))∼ (basic (cap#cap#[]))◦(basic
([]))

by auto
moreover have ?z ∼ ?z

using refl by auto
moreover have domain-wall ((basic(cap#cap#[])) ◦ (basic ([])))

= codomain-wall (?z)
by auto

moreover have domain-wall (((basic(cap#vert#vert#[])) ◦ (basic (cap#[]))))
= codomain-wall (?z)

by auto
moreover have is-tangle-diagram ((basic(cap#vert#vert#[])) ◦ (basic (cap#[])))

by auto
moreover have is-tangle-diagram (?z)

by auto
moreover have is-tangle-diagram ((basic(cap#cap#[])) ◦ (basic ([])))

by auto
ultimately have 14 : (?z) ◦ ((basic(cap#vert#vert#[])) ◦ (basic (cap#[])))

∼ (?z) ◦ ((basic(cap#cap#[])) ◦ (basic ([]))) (is ?aa ∼ ?bb)
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using Tangle-Equivalence.compose-eq by metis
moreover have 15 : ((?z) ◦ ((basic(cap#cap#[]))) ◦ (basic ([])))

∼ ((?z) ◦ (basic(cap#cap#[]))) (is ?bb ∼ ?cc)
using Tangle-Equivalence.codomain-compose Tangle-Equivalence.sym

‹is-tangle-diagram (basic [cap, cap] ◦ basic [])› codomain-wall-compose
compose-leftassociativity converse-composition-of-tangle-diagrams
domain-block.simps(1 ) domain-wall.simps(1 )

by (metis (opaque-lifting, mono-tags) Tangle-Equivalence.compose-eq
Tangle-Equivalence.refl
‹codomain-wall (basic [cup, cup])

= domain-wall (basic [vert, over , vert] ◦ basic [cap, vert, vert])›

‹domain-wall (basic [cap, cap] ◦ basic [])
= codomain-wall (basic [cup, cup] ◦ basic [vert, over , vert])›

comp-of-tangle-dgms domain-wall-compose is-tangle-diagram.simps(1 ))
ultimately have (?aa ∼ ?bb)∧ (?bb ∼ ?cc) =⇒?aa ∼ ?cc

using transitive by auto
then have 16 :?aa ∼ ?cc

using 14 15 by auto
then have 17 : ((basic (cup#[]))◦(basic (cap#[])))∼ ?aa

using 9 10 Tangle-Equivalence.trans Tangle-Equivalence.sym
by (metis (opaque-lifting, no-types))

have (((basic (cup#[]))◦(basic (cap#[])))∼ ?aa)∧(?aa ∼ ?cc)
=⇒ ((basic (cup#[]))◦(basic (cap#[])))∼ ?cc

using transitive by auto
then have ((basic (cup#[]))◦(basic (cap#[])))∼ ?cc

using 17 16 by auto
then show ?thesis using Tangle-Equivalence.sym by auto

qed

end

9 Kauffman Matrix and Kauffman Bracket- Defi-
nitions and Properties

theory Kauffman-Matrix
imports

Matrix-Tensor .Matrix-Tensor
Link-Algebra
HOL−Computational-Algebra.Polynomial
HOL−Computational-Algebra.Fraction-Field

begin

10 Rational Functions

intpoly is the type of integer polynomials
type-synonym intpoly = int poly
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lemma eval-pCons: poly (pCons 0 1 ) x = x
using poly-1 poly-pCons by auto

lemma pCons2 : (pCons 0 1 ) 6= (1 ::int poly)
using eval-pCons poly-1 zero-neq-one by metis

definition var-def : x = (pCons 0 1 )

lemma non-zero:x 6= 0
using var-def pCons-eq-0-iff zero-neq-one by (metis)

rat_poly is the fraction field of integer polynomials. In other words, it is
the type of rational functions
type-synonym rat-poly = intpoly fract

A is defined to be x/1, while B is defined to be 1/x
definition var-def1 :A = Fract x 1

definition var-def2 : B = Fract 1 x

lemma assumes b 6= 0 and d 6= 0
shows Fract a b = Fract c d ←→ a ∗ d = c ∗ b

using eq-fract assms by auto

lemma A-non-zero:A 6= (0 ::rat-poly)
unfolding var-def1

proof(rule ccontr)
assume 0 : ¬ (Fract x 1 6= (0 ::rat-poly))
then have Fract x 1 = (0 ::rat-poly)

by auto
moreover have (0 ::rat-poly) = Fract (0 ::intpoly) (1 ::intpoly)

by (metis Zero-fract-def )
ultimately have Fract x (1 ::intpoly) = Fract (0 ::intpoly) (1 ::intpoly)

by auto
moreover have (1 ::intpoly) 6= 0

by auto
ultimately have x∗(1 ::intpoly) = (0 ::intpoly)∗(1 ::intpoly)

using eq-fract by metis
then have x = (0 ::intpoly)

by auto
then show False using non-zero by auto

qed

lemma mult-inv-non-zero:
assumes (p::rat-poly) 6= 0

and p∗q = (1 ::rat-poly)
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shows q 6= 0
using assms by auto

abbreviation rat-poly-times::rat-poly ⇒ rat-poly ⇒ rat-poly
where
rat-poly-times p q ≡ p∗q

abbreviation rat-poly-plus::rat-poly ⇒ rat-poly ⇒ rat-poly
where
rat-poly-plus p q ≡ p+q

abbreviation rat-poly-inv::rat-poly ⇒ rat-poly
where
rat-poly-inv p ≡ (− p)

interpretation rat-poly:semiring-0 rat-poly-plus 0 rat-poly-times
by (unfold-locales)

interpretation rat-poly:semiring-1 1 rat-poly-times rat-poly-plus 0
by (unfold-locales)

lemma mat1-equiv:mat1 (1 ::nat) = [[(1 ::rat-poly)]]
by (simp add:mat1I-def vec1I-def )

rat_poly is an interpretation of the locale plus_mult
interpretation rat-poly:plus-mult 1 rat-poly-times 0 rat-poly-plus

rat-poly-inv
apply(unfold-locales)
apply(auto)
proof−
fix p q r
show rat-poly-times p (rat-poly-plus q r)

= rat-poly-plus (rat-poly-times p q) (rat-poly-times p r)
by (simp add: distrib-left)

show rat-poly-times (rat-poly-plus p q) r
= rat-poly-plus (rat-poly-times p r) (rat-poly-times q r)

by (metis comm-semiring-class.distrib)
qed

lemma rat-poly.matrix-mult [[A,1 ],[0 ,A]] [[A,0 ],[0 ,A]] = [[A∗A,A],[0 ,A∗A]]
apply(simp add:mat-multI-def )
apply(simp add:matT-vec-multI-def )
apply(auto simp add:replicate-def rat-poly.row-length-def )
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apply(auto simp add:scalar-prod)
done

abbreviation
rat-polymat-tensor ::rat-poly mat ⇒ rat-poly mat ⇒ rat-poly mat

(infixl ⊗ 65 )
where
rat-polymat-tensor p q ≡ rat-poly.Tensor p q

lemma assumes (j::nat) div a = i div a
and j mod a = i mod a

shows j = i
proof−
have a∗(j div a) + (j mod a) = j

using mult-div-mod-eq by simp
moreover have a∗(i div a) + (i mod a) = i

using mult-div-mod-eq by auto
ultimately show ?thesis using assms by metis

qed

lemma [[1 ]] ⊗ M = M
by (metis rat-poly.Tensor-left-id)

lemma M ⊗ [[1 ]] = M
by (metis rat-poly.Tensor-right-id)

11 Kauffman matrices

We assign every brick to a matrix of rational polynmials
primrec brickmat::brick ⇒ rat-poly mat
where
brickmat vert = [[1 ,0 ],[0 ,1 ]]
|brickmat cup = [[0 ],[A],[−B],[0 ]]
|brickmat cap = [[0 ,−A,B,0 ]]
|brickmat over = [[A,0 ,0 ,0 ],

[0 ,0 ,B,0 ],
[0 ,B,A−(B∗B∗B),0 ],
[0 ,0 ,0 ,A]]

|brickmat under = [[B,0 ,0 ,0 ],
[0 ,B−(A∗A∗A),A,0 ],
[0 ,A,0 ,0 ],
[0 ,0 ,0 ,B]]

lemma inverse1 :rat-poly-times A B = 1
using non-zero One-fract-def monoid-mult-class.mult.right-neutral
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mult-fract mult-fract-cancel var-def1 var-def2
by (metis (opaque-lifting, no-types))

lemma inverse2 :rat-poly-times B A = 1
using One-fract-def monoid-mult-class.mult.right-neutral mult-fract

mult-fract-cancel non-zero var-def1 var-def2
by (metis (opaque-lifting, no-types))

lemma B-non-zero:B 6= 0
using A-non-zero mult-inv-non-zero inverse1

divide-fract div-0 fract-collapse(2 )
monoid-mult-class.mult.left-neutral
mult-fract-cancel non-zero var-def2 zero-neq-one

by (metis (opaque-lifting, mono-tags))

lemma rat-poly-times p (q + r)
= (rat-poly-times p q) + (rat-poly-times p r)

by (metis rat-poly.plus-left-distributivity)

lemma minus-left-distributivity:
rat-poly-times p (q − r)

= (rat-poly-times p q) − (rat-poly-times p r)
using minus-mult-right right-diff-distrib by blast

lemma minus-right-distributivity:
rat-poly-times (p − q) r = (rat-poly-times p r) − (rat-poly-times q r)

using minus-left-distributivity rat-poly.comm by metis

lemma equation:
rat-poly-plus
(rat-poly-times B (B − rat-poly-times (rat-poly-times A A) A))
(rat-poly-times (A − rat-poly-times (rat-poly-times B B) B) A)

= 0
proof−
have rat-poly-times (rat-poly-times A A) A

= ((A∗A)∗A)
by auto

then have rat-poly-times B (B − rat-poly-times (rat-poly-times A A) A)
= B∗B − B∗((A∗A)∗A)

using minus-left-distributivity by auto
moreover have ... = B∗B − (B∗(A∗(A∗A)))

by auto
moreover have ... = B∗B − ((B∗A)∗(A∗A))

by auto
moreover have ... = B∗B − A∗A

using inverse2 by auto
ultimately have 1 :

rat-poly-times B (B − rat-poly-times (rat-poly-times A A) A)
= B∗B − A∗A
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by auto
have rat-poly-times (rat-poly-times B B) B = (B∗B)∗B

by auto
then have

(rat-poly-times (A − rat-poly-times (rat-poly-times B B) B) A)
= (A∗A) − ((B∗B)∗B)∗A

using minus-right-distributivity by auto
moreover have ... = (A∗A) − ((B∗B)∗(B∗A))

by auto
moreover have ... = (A∗A) − (B∗B)

using inverse2 by auto
ultimately have 2 :

(rat-poly-times (A − rat-poly-times (rat-poly-times B B) B) A)
= (A∗A) − (B∗B)

by auto
have B∗B − A∗A + (A∗A) − (B∗B) = 0

by auto
with 1 2 show ?thesis by auto

qed

lemma rat-poly.matrix-mult (brickmat over) (brickmat under)
= [[1 ,0 ,0 ,0 ],[0 ,1 ,0 ,0 ],[0 ,0 ,1 ,0 ],[0 ,0 ,0 ,1 ]]

apply(simp add:mat-multI-def )
apply(simp add:matT-vec-multI-def )
apply(auto simp add:replicate-def rat-poly.row-length-def )
apply(auto simp add:scalar-prod)
apply(auto simp add:inverse1 inverse2 )
apply(auto simp add:equation)
done

lemma rat-poly-inv A = −A
by auto

lemma vert-dim:rat-poly.row-length (brickmat vert) = 2 ∧length (brickmat vert)
= 2

using rat-poly.row-length-def by auto
lemma cup-dim:rat-poly.row-length (brickmat cup) = 1 and length (brickmat cup)
= 4

using rat-poly.row-length-def by auto
lemma cap-dim:rat-poly.row-length (brickmat cap) = 4 and length (brickmat cap)
= 1

using rat-poly.row-length-def by auto
lemma over-dim:rat-poly.row-length (brickmat over) = 4 and length (brickmat
over) = 4

using rat-poly.row-length-def by auto
lemma under-dim:rat-poly.row-length (brickmat under) = 4 and length (brickmat
under) = 4

using rat-poly.row-length-def by auto
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lemma mat-vert:mat 2 2 (brickmat vert)
unfolding mat-def Ball-def vec-def by auto

lemma mat-cup:mat 1 4 (brickmat cup)
unfolding mat-def Ball-def vec-def by auto

lemma mat-cap:mat 4 1 (brickmat cap)
unfolding mat-def Ball-def vec-def by auto

lemma mat-over :mat 4 4 (brickmat over)
unfolding mat-def Ball-def vec-def by auto

lemma mat-under :mat 4 4 (brickmat under)
unfolding mat-def Ball-def vec-def by auto

primrec rowlength::nat ⇒ nat
where
rowlength 0 = 1
|rowlength (Suc k) = 2∗(Suc k)

lemma (rat-poly.row-length (brickmat d)) = (2^(nat (domain d)))
using vert-dim cup-dim cap-dim over-dim under-dim domain.simps
by (cases d) (auto)

lemma rat-poly.row-length (brickmat cup) = 1
unfolding rat-poly.row-length-def by auto

lemma two:(Suc (Suc 0 )) = 2
by eval

we assign every block to a matrix of rational function as follows
primrec blockmat::block ⇒ rat-poly mat
where
blockmat [] = [[1 ]]
|blockmat (l#ls) = (brickmat l) ⊗ (blockmat ls)

lemma blockmat [a] = brickmat a
unfolding blockmat.simps rat-poly.Tensor-right-id by auto

lemma nat-sum:
assumes a ≥ 0 and b ≥ 0
shows nat (a+b) = (nat a) + (nat b)
using assms by auto

lemma rat-poly.row-length (blockmat ls) = (2^ (nat ((domain-block ls))))
proof(induct ls)
case Nil
show ?case unfolding blockmat.simps(1 ) rat-poly.row-length-def by auto

next
case (Cons l ls)
show ?case
proof(cases l)
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case vert
have rat-poly.row-length (blockmat ls) = 2 ^ nat (domain-block ls)

using Cons by auto
then have rat-poly.row-length (blockmat (l#ls))

= (rat-poly.row-length (brickmat l))
∗(rat-poly.row-length (blockmat ls))

using blockmat.simps rat-poly.row-length-mat by auto
moreover have ... = 2∗(2 ^ nat (domain-block ls))

using rat-poly.row-length-def Cons vert by auto
moreover have ... = 2^(1 + nat (domain-block ls))

using domain-block.simps by auto
moreover have ... = 2^(nat (domain l) + nat (domain-block ls))

using domain.simps vert by auto
moreover have ... = 2^(nat (domain l + domain-block ls))

using Suc-eq-plus1-left Suc-nat-eq-nat-zadd1
calculation(4 ) domain.simps(1 ) domain-block-non-negative
vert

by (metis)
moreover have ... = 2^(nat (domain-block (l#ls)))

using domain-block.simps by auto
ultimately show ?thesis by metis

next
case over
have rat-poly.row-length (blockmat ls) = 2 ^ nat (domain-block ls)

using Cons by auto
then have rat-poly.row-length (blockmat (l#ls))

= (rat-poly.row-length (brickmat l))
∗(rat-poly.row-length (blockmat ls))

using blockmat.simps rat-poly.row-length-mat by auto
also have ... = 4∗(2 ^ nat (domain-block ls))

using rat-poly.row-length-def Cons over by auto
also have ... = 2^(2 + nat (domain-block ls))

using domain-block.simps by auto
also have ... = 2^(nat (domain l) + nat (domain-block ls))

using domain.simps over by auto
also have ... = 2^(nat (domain l + domain-block ls))

by (simp add: nat-add-distrib domain-block-nonnegative over)
also have ... = 2^(nat (domain-block (l#ls)))

by simp
finally show ?thesis .

next
case under
have rat-poly.row-length (blockmat ls) = 2 ^ nat (domain-block ls)

using Cons by auto
then have rat-poly.row-length (blockmat (l#ls))

= (rat-poly.row-length (brickmat l))
∗(rat-poly.row-length (blockmat ls))

using blockmat.simps rat-poly.row-length-mat by auto
also have ... = 4∗(2 ^ nat (domain-block ls))
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using rat-poly.row-length-def Cons under by auto
also have ... = 2^(2 + nat (domain-block ls))

using domain-block.simps by auto
also have ... = 2^(nat (domain l) + nat (domain-block ls))

using domain.simps under by auto
also have ... = 2^(nat (domain l + domain-block ls))

by (simp add: nat-add-distrib domain-block-nonnegative under)
also have ... = 2^(nat (domain-block (l#ls)))

using domain-block.simps by auto
finally show ?thesis .

next
case cup
have rat-poly.row-length (blockmat ls) = 2 ^ nat (domain-block ls)

using Cons by auto
then have rat-poly.row-length (blockmat (l#ls))

= (rat-poly.row-length (brickmat l))
∗(rat-poly.row-length (blockmat ls))

using blockmat.simps rat-poly.row-length-mat by auto
moreover have ... = 1∗(2 ^ nat (domain-block ls))

using rat-poly.row-length-def Cons cup by auto
moreover have ... = 2^(0 + nat (domain-block ls))

using domain-block.simps by auto
moreover have ... = 2^(nat (domain l) + nat (domain-block ls))

using domain.simps cup by auto
moreover have ... = 2^(nat (domain l + domain-block ls))

using nat-sum cup domain.simps(2 ) nat-0 plus-int-code(2 )
plus-nat.add-0
by (metis)

moreover have ... = 2^(nat (domain-block (l#ls)))
using domain-block.simps by auto

ultimately show ?thesis by metis
next
case cap
have rat-poly.row-length (blockmat ls) = 2 ^ nat (domain-block ls)

using Cons by auto
then have rat-poly.row-length (blockmat (l#ls))

= (rat-poly.row-length (brickmat l))
∗(rat-poly.row-length (blockmat ls))

using blockmat.simps rat-poly.row-length-mat by auto
moreover have ... = 4∗(2 ^ nat (domain-block ls))

using rat-poly.row-length-def Cons cap by auto
moreover have ... = 2^(2 + nat (domain-block ls))

using domain-block.simps by auto
moreover have ... = 2^(nat (domain l) + nat (domain-block ls))

using domain.simps cap by auto
moreover have ... = 2^(nat (domain l + domain-block ls))

by (simp add: cap domain-block-nonnegative nat-add-distrib)
moreover have ... = 2^(nat (domain-block (l#ls)))

using domain-block.simps by auto
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ultimately show ?thesis by metis
qed

qed

lemma row-length-domain-block:
rat-poly.row-length (blockmat ls) = (2^ (nat ((domain-block ls))))

proof(induct ls)
case Nil
show ?case unfolding blockmat.simps(1 ) rat-poly.row-length-def by auto

next
case (Cons l ls)
show ?case
proof(cases l)
case vert
have rat-poly.row-length (blockmat ls) = 2 ^ nat (domain-block ls)

using Cons by auto
then have rat-poly.row-length (blockmat (l#ls))

= (rat-poly.row-length (brickmat l))
∗(rat-poly.row-length (blockmat ls))

using blockmat.simps rat-poly.row-length-mat by auto
moreover have ... = 2∗(2 ^ nat (domain-block ls))

using rat-poly.row-length-def Cons vert by auto
moreover have ... = 2^(1 + nat (domain-block ls))

using domain-block.simps by auto
moreover have ... = 2^(nat (domain l) + nat (domain-block ls))

using domain.simps vert by auto
moreover have ... = 2^(nat (domain l + domain-block ls))

using Suc-eq-plus1-left Suc-nat-eq-nat-zadd1 calculation(4 ) domain.simps(1 )

domain-block-non-negative vert
by metis

moreover have ... = 2^(nat (domain-block (l#ls)))
using domain-block.simps by auto

ultimately show ?thesis by metis
next
case over
have rat-poly.row-length (blockmat ls) = 2 ^ nat (domain-block ls)

using Cons by auto
then have rat-poly.row-length (blockmat (l#ls))

= (rat-poly.row-length (brickmat l))
∗(rat-poly.row-length (blockmat ls))

using blockmat.simps rat-poly.row-length-mat by auto
moreover have ... = 4∗(2 ^ nat (domain-block ls))

using rat-poly.row-length-def Cons over by auto
moreover have ... = 2^(2 + nat (domain-block ls))

using domain-block.simps by auto
moreover have ... = 2^(nat (domain l) + nat (domain-block ls))

using domain.simps over by auto
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moreover have ... = 2^(nat (domain l + domain-block ls))
by (simp add: over domain-block-nonnegative nat-add-distrib)

moreover have ... = 2^(nat (domain-block (l#ls)))
using domain-block.simps by auto

ultimately show ?thesis by metis
next
case under
have rat-poly.row-length (blockmat ls) = 2 ^ nat (domain-block ls)

using Cons by auto
then have rat-poly.row-length (blockmat (l#ls))

= (rat-poly.row-length (brickmat l))
∗(rat-poly.row-length (blockmat ls))

using blockmat.simps rat-poly.row-length-mat by auto
moreover have ... = 4∗(2 ^ nat (domain-block ls))

using rat-poly.row-length-def Cons under by auto
moreover have ... = 2^(2 + nat (domain-block ls))

using domain-block.simps by auto
moreover have ... = 2^(nat (domain l) + nat (domain-block ls))

using domain.simps under by auto
moreover have ... = 2^(nat (domain l + domain-block ls))

by (simp add: under domain-block-nonnegative nat-add-distrib)
moreover have ... = 2^(nat (domain-block (l#ls)))

using domain-block.simps by auto
ultimately show ?thesis by metis

next
case cup
have rat-poly.row-length (blockmat ls) = 2 ^ nat (domain-block ls)

using Cons by auto
then have rat-poly.row-length (blockmat (l#ls))

= (rat-poly.row-length (brickmat l))
∗(rat-poly.row-length (blockmat ls))

using blockmat.simps rat-poly.row-length-mat by auto
moreover have ... = 1∗(2 ^ nat (domain-block ls))

using rat-poly.row-length-def Cons cup by auto
moreover have ... = 2^(0 + nat (domain-block ls))

using domain-block.simps by auto
moreover have ... = 2^(nat (domain l) + nat (domain-block ls))

using domain.simps cup by auto
moreover have ... = 2^(nat (domain l + domain-block ls))

using nat-sum cup domain.simps(2 )
nat-0 plus-int-code(2 ) plus-nat.add-0 by (metis)

moreover have ... = 2^(nat (domain-block (l#ls)))
using domain-block.simps by auto

ultimately show ?thesis by metis
next
case cap
have rat-poly.row-length (blockmat ls) = 2 ^ nat (domain-block ls)

using Cons by auto
then have rat-poly.row-length (blockmat (l#ls))
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= (rat-poly.row-length (brickmat l))
∗(rat-poly.row-length (blockmat ls))

using blockmat.simps rat-poly.row-length-mat by auto
moreover have ... = 4∗(2 ^ nat (domain-block ls))

using rat-poly.row-length-def Cons cap by auto
moreover have ... = 2^(2 + nat (domain-block ls))

using domain-block.simps by auto
moreover have ... = 2^(nat (domain l) + nat (domain-block ls))

using domain.simps cap by auto
moreover have ... = 2^(nat (domain l + domain-block ls))

by (simp add: cap domain-block-nonnegative nat-add-distrib)
moreover have ... = 2^(nat (domain-block (l#ls)))

using domain-block.simps by auto
ultimately show ?thesis by metis

qed
qed

lemma length-codomain-block:length (blockmat ls)
= (2^ (nat ((codomain-block ls))))

proof(induct ls)
case Nil
show ?case unfolding blockmat.simps(1 ) rat-poly.row-length-def by auto

next
case (Cons l ls)
show ?case
proof(cases l)
case vert
have length (blockmat ls) = 2 ^ nat (codomain-block ls)

using Cons by auto
then have length (blockmat (l#ls))

= (length (brickmat l))∗(length (blockmat ls))
using blockmat.simps rat-poly.length-Tensor by auto

moreover have ... = 2∗(2 ^ nat (codomain-block ls))
using Cons vert by auto

moreover have ... = 2^(1 + nat (codomain-block ls))
by auto

moreover have ... = 2^(nat (codomain l) + nat (codomain-block ls))
using codomain.simps vert by auto

moreover have ... = 2^(nat (codomain l + codomain-block ls))
using nat-sum Suc-eq-plus1-left Suc-nat-eq-nat-zadd1

codomain.simps(1 ) codomain-block-nonnegative nat-numeral
numeral-One vert by (metis)

moreover have ... = 2^(nat (codomain-block (l#ls)))
by auto

ultimately show ?thesis by metis
next
case over
have length (blockmat ls) = 2 ^ nat (codomain-block ls)
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using Cons by auto
then have length (blockmat (l#ls))

= (length (brickmat l))∗(length (blockmat ls))
using blockmat.simps rat-poly.length-Tensor by auto

moreover have ... = 4∗(2 ^ nat (codomain-block ls))
using Cons over by auto

moreover have ... = 2^(2 + nat (codomain-block ls))
by auto

moreover have ... = 2^(nat (codomain l) + nat (codomain-block ls))
using codomain.simps over by auto

moreover have ... = 2^(nat (codomain l + codomain-block ls))
using nat-sum over codomain.simps codomain-block-nonnegative
by auto

moreover have ... = 2^(nat (codomain-block (l#ls)))
by auto

ultimately show ?thesis by metis
next
case under
have length (blockmat ls) = 2 ^ nat (codomain-block ls)

using Cons by auto
then have length (blockmat (l#ls))

= (length (brickmat l))∗(length (blockmat ls))
using blockmat.simps rat-poly.length-Tensor by auto

moreover have ... = 4∗(2 ^ nat (codomain-block ls))
using Cons under by auto

moreover have ... = 2^(2 + nat (codomain-block ls))
by auto

moreover have ... = 2^(nat (codomain l) + nat (codomain-block ls))
using codomain.simps under by auto

moreover have ... = 2^(nat (codomain l + codomain-block ls))
using nat-sum under codomain.simps codomain-block-nonnegative
by auto

moreover have ... = 2^(nat (codomain-block (l#ls)))
by auto

ultimately show ?thesis by metis
next
case cup
have length (blockmat ls) = 2 ^ nat (codomain-block ls)

using Cons by auto
then have length (blockmat (l#ls))

= (length (brickmat l))∗(length (blockmat ls))
using blockmat.simps rat-poly.length-Tensor by auto

moreover have ... = 4∗(2 ^ nat (codomain-block ls))
using Cons cup by auto

moreover have ... = 2^(2 + nat (codomain-block ls))
by auto

moreover have ... = 2^(nat (codomain l) + nat (codomain-block ls))
using codomain.simps cup by auto

moreover have ... = 2^(nat (codomain l + codomain-block ls))
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using nat-sum cup codomain.simps
codomain-block-nonnegative

by auto
moreover have ... = 2^(nat (codomain-block (l#ls)))

by auto
ultimately show ?thesis by metis

next
case cap
have length (blockmat ls) = 2 ^ nat (codomain-block ls)

using Cons by auto
then have length (blockmat (l#ls))

= (length (brickmat l))∗(length (blockmat ls))
using blockmat.simps rat-poly.length-Tensor by auto

moreover have ... = 1∗(2 ^ nat (codomain-block ls))
using Cons cap by auto

moreover have ... = 2^(0 + nat (codomain-block ls))
by auto

moreover have ... = 2^(nat (codomain l) + nat (codomain-block ls))
using codomain.simps cap by auto

moreover have ... = 2^(nat (codomain l + codomain-block ls))
using nat-sum cap codomain.simps codomain-block-nonnegative
by auto

moreover have ... = 2^(nat (codomain-block (l#ls)))
by auto

ultimately show ?thesis by metis
qed

qed

lemma matrix-blockmat:
mat

(rat-poly.row-length (blockmat ls))
(length (blockmat ls))

(blockmat ls)
proof(induct ls)
case Nil
show ?case

using Nil
unfolding blockmat.simps(1 ) rat-poly.row-length-def mat-def
vec-def Ball-def by auto

next
case (Cons a ls)
have Cons-1 :mat

(rat-poly.row-length (blockmat ls))
(length (blockmat ls))

(blockmat ls)
using Cons by auto

have Cons-2 :(blockmat (a#ls)) = (brickmat a)⊗(blockmat ls)
using blockmat.simps by auto
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moreover have rat-poly.row-length (blockmat (a#ls))
= (rat-poly.row-length (brickmat a))

∗(rat-poly.row-length (blockmat ls))
using calculation rat-poly.row-length-mat by (metis)

moreover have length (blockmat (a#ls))
= (length (brickmat a))

∗(length (blockmat ls))
using blockmat.simps(2 ) rat-poly.length-Tensor by (metis)

ultimately have Cons-3 :mat
(rat-poly.row-length (brickmat a))
(length (brickmat a))

(brickmat a)
=⇒ ?case

using rat-poly.well-defined-Tensor Cons by auto
then show ?case
proof(cases a)
case vert
have mat

(rat-poly.row-length (brickmat a))
(length (brickmat a))

(brickmat a)
using vert-dim mat-vert rat-poly.matrix-row-length vert
by metis

thus ?thesis using Cons-3 by auto
next
case over
have mat

(rat-poly.row-length (brickmat a))
(length (brickmat a))

(brickmat a)
using mat-over rat-poly.matrix-row-length over
by metis

thus ?thesis using Cons-3 by auto
next
case under
have mat

(rat-poly.row-length (brickmat a))
(length (brickmat a))

(brickmat a)
using mat-under rat-poly.matrix-row-length under by metis

thus ?thesis using Cons-3 by auto
next
case cap
have mat

(rat-poly.row-length (brickmat a))
(length (brickmat a))

(brickmat a)
using mat-cap rat-poly.matrix-row-length cap by metis

thus ?thesis using Cons-3 by auto

57



next
case cup
have mat

(rat-poly.row-length (brickmat a))
(length (brickmat a))

(brickmat a)
using mat-cup rat-poly.matrix-row-length cup by metis

thus ?thesis using Cons-3 by auto
qed

qed

The function kauff_mat below associates every wall to a matrix. We call
this the kauffman matrix. When the wall represents a well defined tangle
diagram, the Kauffman matrix is a 1 × 1 matrix whose entry is the Kauffman
bracket.
primrec kauff-mat::wall ⇒ rat-poly mat
where
kauff-mat (basic w) = (blockmat w)
|kauff-mat (w∗ws) = rat-poly.matrix-mult (blockmat w) (kauff-mat ws)

The following theorem tells us that if a wall represents a tangle diagram,
then its Kauffman matrix is a ‘valid’ matrix.
theorem matrix-kauff-mat:
((is-tangle-diagram ws)
=⇒ (rat-poly.row-length (kauff-mat ws)) = 2^(nat (domain-wall ws))
∧ (length (kauff-mat ws)) = 2^(nat (codomain-wall ws))
∧ (mat

(rat-poly.row-length (kauff-mat ws))
(length (kauff-mat ws))

(kauff-mat ws)))
proof(induct ws)
case (basic w)
show ?case

using kauff-mat.simps(1 ) domain-wall.simps(1 )
row-length-domain-block matrix-blockmat
length-codomain-block basic by auto

next
case (prod w ws)
have is-tangle-diagram (w∗ws)

using prod by auto
moreover have prod-1 :is-tangle-diagram ws

using is-tangle-diagram.simps prod.prems by metis
ultimately have prod-2 :(codomain-block w) = domain-wall ws

using is-tangle-diagram.simps by auto
from prod-1 have prod-3 :

mat
(rat-poly.row-length (kauff-mat ws))
(length (kauff-mat ws))

(kauff-mat ws)
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using prod.hyps by auto
moreover have (rat-poly.row-length (kauff-mat ws))

= 2^(nat (domain-wall ws))
using prod.hyps prod-1 by auto

moreover have prod-4 :length (kauff-mat ws)
= 2^(nat (codomain-wall ws))

using prod.hyps prod-1 by auto
moreover have prod-5 :

mat
(rat-poly.row-length (blockmat w))
(length (blockmat w))

(blockmat w)
using matrix-blockmat by auto

moreover have prod-6 :
rat-poly.row-length (blockmat w)

= 2^(nat (domain-block w))
and length (blockmat w) = 2^(nat (codomain-block w))

using row-length-domain-block length-codomain-block
by auto

ultimately have ad1 :length (blockmat w)
= rat-poly.row-length (kauff-mat ws)

using prod-2 by auto
then have mat

(rat-poly.row-length (blockmat w))
(length (kauff-mat ws))

(rat-poly.matrix-mult (blockmat w) (kauff-mat ws))
using prod-3 prod-5 mat-mult by auto

then have res1 :mat
(rat-poly.row-length (blockmat w))
(length (kauff-mat ws))

(kauff-mat (w∗ws))
using kauff-mat.simps(2 ) by auto

then have rat-poly.row-length (kauff-mat (w∗ws))
= (rat-poly.row-length (blockmat w))

using ad1 length-0-conv rat-poly.mat-empty-column-length
rat-poly.matrix-row-length rat-poly.row-length-def
rat-poly.unique-row-col(1 ) by (metis)

moreover have ... = 2^(nat (domain-wall (w∗ws)))
using prod-6 domain-wall.simps by auto

ultimately have res2 :
rat-poly.row-length (kauff-mat (w∗ws))

= 2^(nat (domain-wall (w∗ws)))
by auto

have length (kauff-mat (w∗ws)) = length (kauff-mat ws)
using res1 rat-poly.mat-empty-column-length

rat-poly.matrix-row-length rat-poly.unique-row-col(2 )
by metis

moreover have ... = 2^(nat (codomain-wall (w∗ws)))
using prod-4 codomain-wall.simps(2 ) by auto
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ultimately have res3 :length (kauff-mat (w∗ws))
= 2^(nat (codomain-wall (w∗ws)))

by auto
with res1 res2 show ?case

using ‹length (kauff-mat ws) = 2 ^ nat (codomain-wall (w ∗ ws))›
‹rat-poly.row-length (blockmat w) = 2 ^ nat (domain-wall (w ∗ ws))›

by (metis)
qed

theorem effective-matrix-kauff-mat:
assumes is-tangle-diagram ws
shows (rat-poly.row-length (kauff-mat ws)) = 2^(nat (domain-wall ws))
and length (kauff-mat ws) = 2^(nat (codomain-wall ws))
and mat (rat-poly.row-length (kauff-mat ws)) (length (kauff-mat ws))

(kauff-mat ws)
apply (auto simp add:matrix-kauff-mat assms )
using assms matrix-kauff-mat by metis

lemma mat-mult-equiv:
rat-poly.matrix-mult m1 m2 = mat-mult (rat-poly.row-length m1 ) m1 m2
by auto

theorem associative-rat-poly-mat:
assumes mat (rat-poly.row-length m1 ) (rat-poly.row-length m2 ) m1

and mat (rat-poly.row-length m2 ) (rat-poly.row-length m3 ) m2
and mat (rat-poly.row-length m3 ) nc m3

shows rat-poly.matrix-mult m1 (rat-poly.matrix-mult m2 m3 )
= rat-poly.matrix-mult (rat-poly.matrix-mult m1 m2 ) m3

proof−
have (rat-poly.matrix-mult m2 m3 )

= mat-mult (rat-poly.row-length m2 ) m2 m3
using mat-mult-equiv by auto

then have rat-poly.matrix-mult m1 (rat-poly.matrix-mult m2 m3 )
= mat-mult (rat-poly.row-length m1 ) m1

(mat-mult (rat-poly.row-length m2 ) m2 m3 )
using mat-mult-equiv by auto

moreover have ... = mat-mult (rat-poly.row-length m1 )
(mat-mult (rat-poly.row-length m1 ) m1 m2 ) m3

using assms mat-mult-assoc by metis
moreover have ... = rat-poly.matrix-mult (rat-poly.matrix-mult m1 m2 ) m3
proof−
have mat

(rat-poly.row-length m1 )
(rat-poly.row-length m3 )

(rat-poly.matrix-mult m1 m2 )
using assms(1 ) assms(2 ) mat-mult by (metis)

then have rat-poly.row-length (rat-poly.matrix-mult m1 m2 ) =
(rat-poly.row-length m1 )
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using assms(1 ) assms(2 ) length-0-conv rat-poly.mat-empty-column-length
rat-poly.matrix-row-length rat-poly.row-length-Nil
rat-poly.unique-row-col(1 ) rat-poly.unique-row-col(2 )

by (metis)
moreover have rat-poly.matrix-mult (rat-poly.matrix-mult m1 m2 ) m3

= mat-mult (rat-poly.row-length
(rat-poly.matrix-mult m1 m2 ))

(rat-poly.matrix-mult m1 m2 ) m3
using mat-mult-equiv by auto

then show ?thesis using mat-mult-equiv by (metis calculation)
qed
ultimately show ?thesis by auto

qed

It follows from this result that the Kauffman Matrix of a wall representing
a link diagram, is a 1 × 1 matrix. Thus it establishes a correspondence
between links and rational functions.
theorem link-diagram-matrix:
assumes is-link-diagram ws
shows mat 1 1 (kauff-mat ws)
using assms effective-matrix-kauff-mat unfolding is-link-diagram-def
by (metis Preliminaries.abs-zero abs-non-negative-sum(1 ) comm-monoid-add-class.add-0
nat-0 power-0 )

theorem tangle-compose-matrix:
((is-tangle-diagram ws1 ) ∧ (is-tangle-diagram ws2 )
∧(domain-wall ws2 = codomain-wall ws1 )) =⇒
kauff-mat (ws1 ◦ ws2 ) = rat-poly.matrix-mult (kauff-mat ws1 ) (kauff-mat ws2 )
proof(induct ws1 )
case (basic w1 )
have (basic w1 ) ◦ (ws2 ) = (w1 )∗(ws2 )

using compose.simps by auto
moreover have kauff-mat ((basic w1 ) ◦ ws2 ) =rat-poly.matrix-mult (blockmat

w1 ) (kauff-mat ws2 )
using kauff-mat.simps(2 ) by auto

then show ?case using kauff-mat.simps(1 ) by auto
next
case (prod w1 ws1 )
have 1 :is-tangle-diagram (w1∗ws1 )

using prod.prems by (rule conjE)
then have 2 :(is-tangle-diagram ws1 )

∧ (codomain-block w1 = domain-wall ws1 )
using is-tangle-diagram.simps(2 ) by metis

then have
mat (2^(nat (domain-wall ws1 ))) (2^(nat (codomain-wall ws1 ))) (kauff-mat

ws1 )
and mat (2^(nat (domain-block w1 ))) (2^(nat (codomain-block w1 )))

(blockmat w1 )
using effective-matrix-kauff-mat matrix-blockmat length-codomain-block
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row-length-domain-block
by (auto) (metis)

with 2 have 3 :mat
(rat-poly.row-length (blockmat w1 ))
(2^(nat (domain-wall ws1 )))

(blockmat w1 )
and mat

(2^(nat (domain-wall ws1 )))
(2^(nat (domain-wall ws2 )))

(kauff-mat ws1 )
and (2^(nat (domain-wall ws1 )))

= (rat-poly.row-length (kauff-mat ws1 ))
using effective-matrix-kauff-mat prod.prems matrix-blockmat

row-length-domain-block by auto
then have mat

(rat-poly.row-length (blockmat w1 ))
(rat-poly.row-length (kauff-mat ws1 ))

(blockmat w1 )
and mat

(rat-poly.row-length (kauff-mat ws1 ))
(2^(nat (domain-wall ws2 )))

(kauff-mat ws1 )
by auto

moreover have mat
(2^(nat (domain-wall ws2 )))
(2^(nat (codomain-wall ws2 )))

(kauff-mat ws2 )
and (2^(nat (domain-wall ws2 )))

= rat-poly.row-length (kauff-mat ws2 )
using prod.prems effective-matrix-kauff-mat

effective-matrix-kauff-mat
by (auto) (metis prod.prems)

ultimately have mat
(rat-poly.row-length (blockmat w1 ))
(rat-poly.row-length (kauff-mat ws1 ))

(blockmat w1 )
and mat

(rat-poly.row-length (kauff-mat ws1 ))
(rat-poly.row-length (kauff-mat ws2 ))

(kauff-mat ws1 )
and mat

(rat-poly.row-length (kauff-mat ws2 ))
(2^(nat (codomain-wall ws2 )))

(kauff-mat ws2 )
by auto

with 3 have rat-poly.matrix-mult
(blockmat w1 )
(rat-poly.matrix-mult (kauff-mat ws1 )

(kauff-mat ws2 ))
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= rat-poly.matrix-mult
(rat-poly.matrix-mult

(blockmat w1 )
(kauff-mat ws1 ))

(kauff-mat ws2 )
using associative-rat-poly-mat by auto

then show ?case
using 2 codomain-wall.simps(2 ) compose-Cons
prod.hyps prod.prems kauff-mat.simps(2 ) by (metis)

qed

theorem left-mat-compose:
assumes is-tangle-diagram ws

and codomain-wall ws = 0
shows kauff-mat ws = (kauff-mat (ws ◦ (basic [])))

proof−
have mat (rat-poly.row-length (kauff-mat ws)) 1 (kauff-mat ws)

using effective-matrix-kauff-mat assms nat-0 power-0 by metis
moreover have (kauff-mat (basic [])) = mat1 1

using kauff-mat.simps(1 ) blockmat.simps(1 ) mat1-equiv by auto
moreover then have 1 :(kauff-mat (ws ◦ (basic [])))

= rat-poly.matrix-mult
(kauff-mat ws)
(kauff-mat (basic []))

using tangle-compose-matrix assms is-tangle-diagram.simps by auto
ultimately have rat-poly.matrix-mult (kauff-mat ws) (kauff-mat (basic []))

= (kauff-mat ws)
using mat-mult-equiv mat1-mult-right by auto

then show ?thesis using 1 by auto
qed

theorem right-mat-compose:
assumes is-tangle-diagram ws and domain-wall ws = 0

shows kauff-mat ws = (kauff-mat ((basic []) ◦ws))
proof−
have mat 1 (length (kauff-mat ws)) (kauff-mat ws)

using effective-matrix-kauff-mat assms nat-0 power-0 by metis
moreover have (kauff-mat (basic [])) = mat1 1

using kauff-mat.simps(1 ) blockmat.simps(1 ) mat1-equiv by auto
moreover then have 1 :(kauff-mat ((basic []) ◦ws))

= rat-poly.matrix-mult
(kauff-mat (basic []))
(kauff-mat ws)

using tangle-compose-matrix assms is-tangle-diagram.simps by auto
ultimately have rat-poly.matrix-mult (kauff-mat (basic [])) (kauff-mat ws)

= (kauff-mat ws)
using effective-matrix-kauff-mat(3 ) is-tangle-diagram.simps(1 )

mat1 mat1-mult-left one-neq-zero rat-poly.mat-empty-column-length
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rat-poly.unique-row-col(1 )
by metis

then show ?thesis using 1 by auto
qed

lemma left-id-blockmat:blockmat [] ⊗ blockmat b = blockmat b
unfolding blockmat.simps(1 ) rat-poly.Tensor-left-id by auto

lemma tens-assoc:
∀ a xs ys.(brickmat a ⊗ (blockmat xs ⊗ blockmat ys)

= (brickmat a ⊗ blockmat xs) ⊗ blockmat ys)
proof−
have ∀ a.(mat

(rat-poly.row-length (brickmat a))
(length (brickmat a))

(brickmat a))
using brickmat.simps
unfolding mat-def rat-poly.row-length-def Ball-def vec-def
apply(auto)
by (case-tac a) (auto)

moreover have ∀ xs. (mat
(rat-poly.row-length (blockmat xs))
(length (blockmat xs))

(blockmat xs))
using matrix-blockmat by auto

moreover have ∀ ys. mat
(rat-poly.row-length (blockmat ys))
(length (blockmat ys))

(blockmat ys)
using matrix-blockmat by auto

ultimately show ?thesis using rat-poly.associativity by auto
qed

lemma kauff-mat-tensor-distrib:
∀ xs.∀ ys.(kauff-mat (basic xs ⊗ basic ys)
= kauff-mat (basic xs) ⊗ kauff-mat (basic ys))
apply(rule allI )
apply (rule allI )
apply (induct-tac xs)
apply(auto)
apply (metis rat-poly.vec-mat-Tensor-vector-id)
apply (simp add:tens-assoc)
done

lemma blockmat-tensor-distrib:
(blockmat (a ⊗ b)) = (blockmat a) ⊗ (blockmat b)

proof−
have blockmat (a ⊗ b) = kauff-mat (basic (a ⊗ b))
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using kauff-mat.simps(1 ) by auto
moreover have ... = kauff-mat (basic a) ⊗ kauff-mat (basic b)

using kauff-mat-tensor-distrib by auto
moreover have ... = (blockmat a) ⊗ (blockmat b)

using kauff-mat.simps(1 ) by auto
ultimately show ?thesis by auto

qed

lemma blockmat-non-empty:∀ bs.(blockmat bs 6= [])
apply(rule allI )
apply(induct-tac bs)
apply(auto)
apply(case-tac a)
apply(auto)
apply (metis length-0-conv rat-poly.vec-mat-Tensor-length)
apply (metis length-0-conv rat-poly.vec-mat-Tensor-length)
apply (metis length-0-conv rat-poly.vec-mat-Tensor-length)
apply (metis length-0-conv rat-poly.vec-mat-Tensor-length)
apply (metis length-0-conv rat-poly.vec-mat-Tensor-length)
done

The kauffman matrix of a wall representing a tangle diagram is non empty
lemma kauff-mat-non-empty:
fixes ws
assumes is-tangle-diagram ws
shows kauff-mat ws 6= []

proof−
have (length (kauff-mat ws) = 2^(nat (codomain-wall ws)))

using effective-matrix-kauff-mat assms by auto
then have (length (kauff-mat ws)) ≥ 1

by auto
then show ?thesis by auto

qed

lemma is-tangle-diagram-length-rowlength:
assumes is-tangle-diagram (w∗ws)
shows length (blockmat w) = rat-poly.row-length (kauff-mat ws)

proof−
have (codomain-block w = domain-wall ws)

using assms is-tangle-diagram.simps by metis
moreover have rat-poly.row-length (kauff-mat ws)

= 2^(nat (domain-wall ws))
using effective-matrix-kauff-mat by (metis assms is-tangle-diagram.simps(2 ))

moreover have length (blockmat w)
= 2^(nat (codomain-block w))

using matrix-blockmat length-codomain-block by auto
ultimately show ?thesis by auto

qed
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lemma is-tangle-diagram-matrix-match:
assumes is-tangle-diagram (w1∗ws1 )

and is-tangle-diagram (w2∗ws2 )
shows rat-poly.matrix-match (blockmat w1 )

(kauff-mat ws1 ) (blockmat w2 ) (kauff-mat ws2 )
unfolding rat-poly.matrix-match-def
apply(auto)
proof−

show mat (rat-poly.row-length (blockmat w1 )) (length (blockmat w1 )) (blockmat
w1 )

using matrix-blockmat by auto
next
have is-tangle-diagram ws1

using assms(1 ) is-tangle-diagram.simps(2 ) by metis
then show mat (rat-poly.row-length (kauff-mat ws1 )) (length (kauff-mat ws1 ))

(kauff-mat ws1 )
using matrix-kauff-mat by metis

next
show mat (rat-poly.row-length (blockmat w2 )) (length (blockmat w2 )) (blockmat

w2 )
using matrix-blockmat by auto

next
have is-tangle-diagram ws2

using assms(2 ) is-tangle-diagram.simps(2 ) by metis
then show mat (rat-poly.row-length (kauff-mat ws2 )) (length (kauff-mat ws2 ))

(kauff-mat ws2 )
using matrix-kauff-mat by metis

next
show length (blockmat w1 ) = rat-poly.row-length (kauff-mat ws1 )

using is-tangle-diagram-length-rowlength assms(1 ) by auto
next
show length (blockmat w2 ) = rat-poly.row-length (kauff-mat ws2 )

using is-tangle-diagram-length-rowlength assms(2 ) by auto
next

assume 0 :blockmat w1 = []
show False using 0

by (metis blockmat-non-empty)
next

assume 1 :kauff-mat ws1 = []
have is-tangle-diagram ws1

using assms(1 ) is-tangle-diagram.simps(2 ) by metis
then show False using 1 kauff-mat-non-empty by auto

next
assume 0 :blockmat w2 = []
show False using 0

by (metis blockmat-non-empty)
next

assume 1 :kauff-mat ws2 = []
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have is-tangle-diagram ws2
using assms(2 ) is-tangle-diagram.simps(2 ) by metis

then show False using 1 kauff-mat-non-empty by auto
qed

The following function constructs a 2n × 2n identity matrix for a given n

primrec make-vert-equiv::nat ⇒ rat-poly mat
where
make-vert-equiv 0 = [[1 ]]
|make-vert-equiv (Suc k) = ((mat1 2 )⊗(make-vert-equiv k))

lemma mve1 :make-vert-equiv 1 = (mat1 2 )
using make-vert-equiv.simps brickmat.simps(1 )

One-nat-def rat-poly.Tensor-right-id
by (metis)

lemma
assumes i<2 and j<2
shows (make-vert-equiv 1 )!i!j = (if i = j then 1 else 0 )
apply(simp add:mve1 )
apply(simp add:rat-poly.Tensor-right-id)
using make-vert-equiv.simps mat1-index assms by (metis)

lemma mat1-vert-equiv:(mat1 2 ) = (brickmat vert) (is ?l = ?r)
proof−
have ?r = [[1 ,0 ],[0 ,1 ]]

using brickmat.simps by auto
then have rat-poly.row-length ?r = 2 and length ?r = 2

using rat-poly.row-length-def by auto
moreover then have 1 :mat 2 2 ?r

using mat-vert by metis
ultimately have 2 :(∀ i < 2 . ∀ j < 2 .

((?r) ! i ! j = (if i = j then 1 else 0 )))
proof−
have 1 :(?r ! 0 ! 0 ) = 1

by auto
moreover have 2 :(?r ! 0 ! 1 ) = 0

by auto
moreover have 3 :(?r ! 1 ! 0 ) = 0

by auto
moreover have 5 :(?r ! 1 ! 1 ) = 1

by auto
ultimately show ?thesis

by (auto dest!: less-2-cases)
qed
have 3 :mat 2 2 (mat1 2 )

by (metis mat1 )
have 4 :(∀ i < 2 . ∀ j < 2 . ((?l) ! i ! j = (if i = j then 1 else 0 )))

by (metis mat1-index)
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then have (∀ i < 2 . ∀ j < 2 . ((?l) ! i ! j = (?r !i !j)))
using 2 by auto

with 1 3 have ?l = ?r
by (metis mat-eqI )

then show ?thesis by auto
qed

lemma blockmat-make-vert:
blockmat (make-vert-block n) = (make-vert-equiv n)
apply(induction n)
apply(simp)
unfolding make-vert-block.simps blockmat.simps make-vert-equiv.simps
using mat1-vert-equiv by auto

lemma prop-make-vert-equiv:
shows rat-poly.row-length (make-vert-equiv n) = 2^n

and length (make-vert-equiv n) = 2^n
and mat

(rat-poly.row-length (make-vert-equiv n))
(length (make-vert-equiv n))

(make-vert-equiv n)
proof−
have 1 :make-vert-equiv n = (blockmat (make-vert-block n))

using blockmat-make-vert by auto
moreover have 2 :domain-block (make-vert-block n) = int n

using domain-make-vert by auto
moreover have 3 :codomain-block (make-vert-block n) = int n

using codomain-make-vert by auto
ultimately show rat-poly.row-length (make-vert-equiv n) = 2^n

and length (make-vert-equiv n) = 2^n
and mat

(rat-poly.row-length (make-vert-equiv n))
(length (make-vert-equiv n))

(make-vert-equiv n)
apply (metis nat-int row-length-domain-block)
using 1 2 3 apply (metis length-codomain-block nat-int)
using 1 2 3 by (metis matrix-blockmat)

qed

abbreviation nat-mult::nat ⇒ nat ⇒ nat (infixl ∗n 65 )
where
nat-mult a b ≡ ((a::nat)∗b)

lemma equal-div-mod:assumes ((j::nat) div a) = (i div a)
and (j mod a) = (i mod a)

shows j = i
proof−
have j = a∗(j div a) + (j mod a)

by auto
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then have j = a∗(i div a) + (i mod a)
using assms by auto

then show ?thesis by auto
qed

lemma equal-div-mod2 :(((j::nat) div a) = (i div a)
∧ ((j mod a) = (i mod a))) = (j = i)

using equal-div-mod by metis

lemma impl-rule:
assumes (∀ i < m.∀ j < n. (P i) ∧ (Q j))

and ∀ i j.(P i) ∧ (Q j) −→ R i j
shows (∀ i < m.∀ j < n. R i j)
using assms by metis

lemma implic:
assumes ∀ i j.((P i j) −→ (Q i j))

and ∀ i j.((Q i j) −→ (R i j))
shows ∀ i j.((P i j) −→ (R i j))
using assms by auto

lemma assumes a < (b∗c)
shows ((a::nat) div b) < c

using assms by (metis rat-poly.div-right-ineq)

lemma mult-if-then:((v = (if P then 1 else 0 ))
∧ (w = (if Q then 1 else 0 )))

=⇒ (rat-poly-times v w = (if (P∧Q) then 1 else 0 ))
by auto

lemma rat-poly-unity:rat-poly-times 1 1 = 1
by auto

lemma ((P ∧ Q) −→ R) =⇒ (P −→ Q −→ R)
by auto

lemma length (mat1 2 ) = 2
apply(simp add:mat1I-def )
done

theorem make-vert-equiv-mat:
make-vert-equiv n = (mat1 (2^n))
proof(induction n)
case 0
show ?case using 0 mat1-equiv by auto

next
case (Suc k)
have 1 :make-vert-equiv k = mat1 (2 ^ k)

using Suc by auto
moreover then have make-vert-equiv (k+1 ) = (mat1 2 )⊗(mat1 (2^k))
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using make-vert-equiv.simps(2 ) by auto
then have (mat1 2 ) ⊗ (mat1 (2^k)) = mat1 (2^(k+1 ))
proof−
have 1 :mat (2^(k+1 )) (2^(k+1 )) (mat1 (2^(k+1 )))

using mat1 by auto
have 2 :(∀ i < 2^(k+1 ). ∀ j <2^(k+1 ).

(mat1 (2^(k+1 )) ! i ! j = (if i = j then 1 else 0 )))
by (metis mat1-index)

have 3 :rat-poly.row-length (mat1 2 ) = 2
by (metis mat1-vert-equiv vert-dim)

have 4 :length (mat1 2 ) = 2
by (simp add:mat1I-def )

then have 5 :mat
(rat-poly.row-length (mat1 2 ))
(length (mat1 2 ))

(mat1 2 )
by (metis 4 mat1 mat1-vert-equiv vert-dim)

moreover have 6 :rat-poly.row-length (mat1 (2^k)) = 2^k
and 7 :length ((mat1 (2^k))) = 2^k

using Suc
by (metis prop-make-vert-equiv(1 )) (simp add:mat1I-def )

then have 8 :mat
(rat-poly.row-length (mat1 (2^k)))
(length (mat1 (2^k)))

(mat1 (2^k))
using Suc mat1 by (metis)

then have 9 :
(∀ i <(2^(k+1 )). ∀ j < (2^(k+1 )).

((rat-poly.Tensor (mat1 2 ) (mat1 (2^k))!j!i)
= rat-poly-times

((mat1 2 )!(j div (length (mat1 (2^k))))
!(i div (rat-poly.row-length (mat1 (2^k)))))

((mat1 (2^k))!(j mod length (mat1 (2^k)))
!(i mod (rat-poly.row-length (mat1 (2^k)))))))

proof−
have (∀ i <((rat-poly.row-length (mat1 2 ))

∗n (rat-poly.row-length (mat1 (2^k)))).
∀ j < ((length (mat1 2 ))

∗n (length (mat1 (2^k)))).
((rat-poly.Tensor (mat1 2 ) (mat1 (2^k))!j!i)

= rat-poly-times
((mat1 2 )!(j div (length (mat1 (2^k))))

!(i div (rat-poly.row-length (mat1 (2^k)))))
((mat1 (2^k))!(j mod length (mat1 (2^k)))

!(i mod (rat-poly.row-length (mat1 (2^k)))))))
using 5 8 rat-poly.effective-matrix-Tensor-elements2
by (metis 3 4 6 7 rat-poly.comm)

moreover have (rat-poly.row-length (mat1 2 ))
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∗n(rat-poly.row-length (mat1 (2^k)))
= 2^(k+1 )

using 3 6 by auto
moreover have (length (mat1 2 ))

∗n(length (mat1 (2^k)))
= 2^(k+1 )

using 4 7 by (metis 3 6 calculation(2 ))
ultimately show ?thesis by metis

qed
have 10 :∀ i j.((i div (rat-poly.row-length (mat1 (2^k))) < 2 )

∧(j div length (mat1 (2^k)) < 2 )
−→ (((mat1 2 )!(j div (length (mat1 (2^k))))

!(i div (rat-poly.row-length (mat1 (2^k)))))
= (if

((j div (length (mat1 (2^k))))
= (i div (rat-poly.row-length (mat1 (2^k)))))

then 1
else 0 )))

using mat1-index by (metis 6 7 )
have 11 :∀ j.(j < (2^(k+1 )) −→ j div (length (mat1 (2^k))) < 2 )
proof−
have 2^(k+1 ) = (2 ∗n (2^k))

by auto
then show ?thesis

using 7 allI Suc.IH prop-make-vert-equiv(1 )
rat-poly.div-left-ineq by (metis)

qed
moreover have 12 :

∀ i.(i < (2^(k+1 ))
−→ (i div (rat-poly.row-length (mat1 (2^k)))) < 2 )

proof−
have 2^(k+1 ) = (2 ∗n (2^k))

by auto
then show ?thesis using 7 allI by (metis Suc.IH prop-make-vert-equiv(1 )

rat-poly.div-left-ineq)
qed

ultimately have 13 :
∀ i j.((i < (2^(k+1 )))∧ j < (2^(k+1 )) −→

((i div (rat-poly.row-length (mat1 (2^k)))) < 2 )
∧((j div (length (mat1 (2^k)))) < 2 ))

by auto
have 14 :∀ i j.(i < (2^(k+1 )))∧ (j < (2^(k+1 ))) −→

(((mat1 2 )
!(j div (length (mat1 (2^k))))
!(i div (rat-poly.row-length (mat1 (2^k)))))
= (if

((j div (length (mat1 (2^k))))
= (i div (rat-poly.row-length (mat1 (2^k)))))

then 1
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else 0 ))
apply(rule allI )
apply(rule allI )
proof
fix i j
assume 0 :(i::nat) < 2 ^ (k + 1 ) ∧ (j::nat) < 2 ^ (k + 1 )
have ((i div (rat-poly.row-length (mat1 (2^k)))) < 2 )

∧((j div (length (mat1 (2^k)))) < 2 )
using 0 13 by auto

then show (((mat1 2 )
!(j div (length (mat1 (2^k))))
!(i div (rat-poly.row-length (mat1 (2^k)))))

= (if
((j div (length (mat1 (2^k))))

= (i div (rat-poly.row-length (mat1 (2^k)))))
then 1
else 0 ))

using 10 by (metis 6 )
qed

have 15 :∀ i j.((i mod (rat-poly.row-length (mat1 (2^k))) < 2^k)
∧ (j mod length (mat1 (2^k)) < 2^k)

−→ (((mat1 (2^k))
!(j mod (length (mat1 (2^k))))
!(i mod (rat-poly.row-length (mat1 (2^k)))))

= (if
((j mod (length (mat1 (2^k))))

= (i mod (rat-poly.row-length (mat1 (2^k)))))
then 1
else 0 )))

using mat1-index by (metis 6 7 )
have 16 :∀ j.(j < (2^(k+1 )) −→ j mod (length (mat1 (2^k))) < 2^k)
proof−
have 2^(k+1 ) = (2 ∗n (2^k))

by auto
then show ?thesis

using 7 allI mod-less-divisor
nat-zero-less-power-iff zero-less-numeral by (metis)

qed
moreover have 17 :∀ i.(i < (2^(k+1 ))

−→ (i mod (rat-poly.row-length (mat1 (2^k)))) < 2^k)
proof−
have 2^(k+1 ) = (2 ∗n (2^k))

by auto
then show ?thesis using 7 allI by (metis 6 calculation)

qed
ultimately have 18 :

∀ i j.((i < (2^(k+1 )))∧ j < (2^(k+1 )) −→
((i mod (rat-poly.row-length (mat1 (2^k)))) < 2^k)
∧((j mod (length (mat1 (2^k)))) < 2^k))
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by (metis 7 )
have 19 :∀ i j.(i < (2^(k+1 )))∧ (j < (2^(k+1 ))) −→

(((mat1 (2^k))
!(j mod (length (mat1 (2^k))))
!(i mod (rat-poly.row-length (mat1 (2^k)))))
= (if

((j mod (length (mat1 (2^k))))
= (i mod (rat-poly.row-length (mat1 (2^k)))))

then 1
else 0 ))

apply(rule allI )
apply(rule allI )
proof
fix i j
assume 0 :(i::nat) < 2 ^ (k + 1 ) ∧ (j::nat) < 2 ^ (k + 1 )
have ((i mod (rat-poly.row-length (mat1 (2^k)))) < 2^k)

∧((j mod (length (mat1 (2^k)))) < 2^k)
using 0 18 by auto

then show (((mat1 (2^k))
!(j mod (length (mat1 (2^k))))
!(i mod(rat-poly.row-length (mat1 (2^k)))))

= (if
((j mod (length (mat1 (2^k))))

= (i mod (rat-poly.row-length (mat1 (2^k)))))
then 1
else 0 ))
using 15 by (metis 6 )

qed
have (∀ i. ∀ j.

(i <(2^(k+1 ))) ∧ (j < (2^(k+1 )))
−→ rat-poly-times

((mat1 2 )
!(j div (length (mat1 (2^k))))
!(i div (rat-poly.row-length (mat1 (2^k)))))

((mat1 (2^k))
!(j mod length (mat1 (2^k)))
!(i mod (rat-poly.row-length (mat1 (2^k)))))

=
(if

(((j div (length (mat1 (2^k))))
= (i div (rat-poly.row-length (mat1 (2^k)))))

∧((j mod (length (mat1 (2^k))))
= (i mod (rat-poly.row-length (mat1 (2^k))))))
then 1
else 0 ))

apply(rule allI )
apply(rule allI )
proof
fix i j
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assume 0 : ((i::nat) <(2^(k+1 ))) ∧ ((j::nat) < (2^(k+1 )))
have s1 : ((mat1 2 )

!(j div (length (mat1 (2^k))))
!(i div (rat-poly.row-length (mat1 (2^k)))))
= (if

((j div (length (mat1 (2^k))))
= (i div (rat-poly.row-length (mat1 (2^k)))))

then 1
else 0 )

using 0 14 by metis
moreover have s2 :((mat1 (2^k))

!(j mod (length (mat1 (2^k))))
!(i mod (rat-poly.row-length (mat1 (2^k)))))

= (if
((j mod (length (mat1 (2^k))))

= (i mod (rat-poly.row-length (mat1 (2^k)))))
then 1
else 0 )

using 0 19 by metis
show rat-poly-times

((mat1 2 )
!(j div (length (mat1 (2^k))))
!(i div (rat-poly.row-length (mat1 (2^k)))))
((mat1 (2^k))

!(j mod length (mat1 (2^k)))
!(i mod (rat-poly.row-length (mat1 (2^k)))))

=
(if
(((j div (length (mat1 (2^k))))

= (i div (rat-poly.row-length (mat1 (2^k)))))
∧((j mod (length (mat1 (2^k))))

= (i mod (rat-poly.row-length (mat1 (2^k))))))
then 1
else 0 )

apply(simp)
apply(rule conjI )
proof−
show j div length (mat1 (2 ^ k)) = i div rat-poly.row-length (mat1 (2 ^ k))

∧ (j mod length (mat1 (2 ^ k)) = i mod rat-poly.row-length (mat1 (2 ^
k)))

−→ rat-poly-times
(mat1 2

!(j div length (mat1 (2 ^ k)))
!(i div rat-poly.row-length (mat1 (2 ^ k))))

(mat1 (2 ^ k)
!(j mod length (mat1 (2 ^ k)))
!(i mod rat-poly.row-length (mat1 (2 ^ k))))

= 1
proof−
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have
j div length (mat1 (2 ^ k))

= i div rat-poly.row-length (mat1 (2 ^ k))
∧ j mod length (mat1 (2 ^ k)) = i mod rat-poly.row-length (mat1 (2 ^ k))

=⇒ rat-poly-times
(mat1 2 ! (j div length (mat1 (2 ^ k))) ! (i div rat-poly.row-length (mat1

(2 ^ k))))
(mat1 (2 ^ k) ! (j mod length (mat1 (2 ^ k)))

! (i mod rat-poly.row-length (mat1 (2 ^ k)))) = 1
proof−
assume local-assms:

j div length (mat1 (2 ^ k)) = i div rat-poly.row-length (mat1 (2 ^ k))
∧ j mod length (mat1 (2 ^ k)) = i mod rat-poly.row-length (mat1 (2 ^ k))

have (mat1 2 ! (j div length (mat1 (2 ^ k))) ! (i div rat-poly.row-length
(mat1 (2 ^ k))))

= 1
using s1 local-assms by metis

moreover have (mat1 (2 ^ k)
! (j mod length (mat1 (2 ^ k))) ! (i mod rat-poly.row-length (mat1 (2

^ k)))) = 1
using s2 local-assms by metis

ultimately show ?thesis
by (metis 3 6 7 Suc.IH local-assms mve1 prop-make-vert-equiv(1 )

prop-make-vert-equiv(2 ) rat-poly.right-id)
qed
then show ?thesis by auto

qed
show
(j div length (mat1 (2 ^ k)) = i div rat-poly.row-length (mat1 (2 ^ k)) −→

j mod length (mat1 (2 ^ k)) 6= i mod rat-poly.row-length (mat1 (2 ^
k))) −→

mat1 2 ! (j div length (mat1 (2 ^ k))) ! (i div rat-poly.row-length (mat1 (2
^ k))) = 0 ∨

mat1 (2 ^ k) ! (j mod length (mat1 (2 ^ k))) ! (i mod rat-poly.row-length
(mat1 (2 ^ k))) = 0

proof−
have (j div length (mat1 (2 ^ k)) = i div rat-poly.row-length (mat1 (2 ^ k))
∧ j mod length (mat1 (2 ^ k)) 6= i mod rat-poly.row-length (mat1 (2 ^

k))) =⇒
mat1 2 ! (j div length (mat1 (2 ^ k))) ! (i div rat-poly.row-length (mat1

(2 ^ k))) = 0
∨ mat1 (2 ^ k) ! (j mod length (mat1 (2 ^ k))) ! (i mod rat-poly.row-length

(mat1 (2 ^ k))) = 0
proof−
assume local-assms:

(j div length (mat1 (2 ^ k)) = i div rat-poly.row-length (mat1 (2 ^ k))
∧ j mod length (mat1 (2 ^ k)) 6= i mod rat-poly.row-length (mat1 (2
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^ k)))
have mat1 (2 ^ k) ! (j mod length (mat1 (2 ^ k))) ! (i mod rat-poly.row-length

(mat1 (2 ^ k))) = 0
using s2 local-assms by metis

then show ?thesis by auto
qed
then have l:

(j div length (mat1 (2 ^ k)) = i div rat-poly.row-length (mat1 (2 ^ k))
∧ j mod length (mat1 (2 ^ k)) 6= i mod rat-poly.row-length (mat1 (2 ^ k)))

−→
mat1 2 ! (j div length (mat1 (2 ^ k))) ! (i div rat-poly.row-length (mat1 (2

^ k))) = 0
∨mat1 (2 ^ k) ! (j mod length (mat1 (2 ^ k))) ! (i mod rat-poly.row-length

(mat1 (2 ^ k))) = 0
by auto

show (j div length (mat1 (2 ^ k)) = i div rat-poly.row-length (mat1 (2 ^ k))
−→

j mod length (mat1 (2 ^ k)) 6= i mod rat-poly.row-length (mat1 (2 ^ k))) −→
mat1 2 ! (j div length (mat1 (2 ^ k))) ! (i div rat-poly.row-length (mat1 (2 ^

k))) = 0 ∨
mat1 (2 ^ k) ! (j mod length (mat1 (2 ^ k))) ! (i mod rat-poly.row-length (mat1

(2 ^ k))) = 0
proof−
have
(j div length (mat1 (2 ^ k)) = i div rat-poly.row-length (mat1 (2 ^ k)) −→

j mod length (mat1 (2 ^ k)) 6= i mod rat-poly.row-length (mat1 (2 ^ k)))
=⇒

mat1 2 ! (j div length (mat1 (2 ^ k))) ! (i div rat-poly.row-length (mat1 (2 ^
k))) = 0 ∨

mat1 (2 ^ k) ! (j mod length (mat1 (2 ^ k))) ! (i mod rat-poly.row-length
(mat1 (2 ^ k))) = 0

proof−
assume local-assm1 :
(j div length (mat1 (2 ^ k)) = i div rat-poly.row-length (mat1 (2 ^ k)) −→

j mod length (mat1 (2 ^ k)) 6= i mod rat-poly.row-length (mat1 (2
^ k)))

have (j div length (mat1 (2 ^ k)) = i div rat-poly.row-length (mat1 (2 ^
k)))

=⇒
mat1 (2 ^ k) ! (j mod length (mat1 (2 ^ k)))

! (i mod rat-poly.row-length (mat1 (2 ^ k)))
= 0

using s2 local-assm1 by (metis 7 )
then have l1 : (j div length (mat1 (2 ^ k)) = i div rat-poly.row-length (mat1

(2 ^ k)))
=⇒ ?thesis

by auto
moreover have ¬(j div length (mat1 (2 ^ k)) = i div rat-poly.row-length

(mat1 (2 ^ k)))
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=⇒ mat1 2 ! (j div length (mat1 (2^k)))
! (i div rat-poly.row-length (mat1 (2^k)))

= 0
using s1 by metis

then have ¬(j div length (mat1 (2 ^ k)) = i div rat-poly.row-length (mat1
(2 ^ k)))

=⇒ ?thesis
by auto

then show ?thesis using l1 by auto
qed
then show ?thesis by auto

qed
qed

qed
qed
then have (∀ i. ∀ j. (i <(2^(k+1 ))) ∧ (j < (2^(k+1 ))) −→

((rat-poly.Tensor (mat1 2 ) (mat1 (2^k))!j!i) = (if
(((j div (length (mat1 (2^k)))) = (i div (rat-poly.row-length (mat1

(2^k)))))
∧((j mod (length (mat1 (2^k)))) = (i mod (rat-poly.row-length

(mat1 (2^k))))))
then 1
else 0 )))

using 9 by metis
then have (∀ i. ∀ j. (i <(2^(k+1 ))) ∧ (j < (2^(k+1 ))) −→

((rat-poly.Tensor (mat1 2 ) (mat1 (2^k))!j!i) = (if
(((j div (2^k))) = (i div (2^k))
∧((j mod (2^k)) = (i mod (2^k))))
then 1
else 0 )))

by (metis (opaque-lifting, no-types) 6 7 )
then have 20 :(∀ i. ∀ j. (i <(2^(k+1 ))) ∧ (j < (2^(k+1 ))) −→

((rat-poly.Tensor (mat1 2 ) (mat1 (2^k))!j!i) = (if (j = i)
then 1
else 0 )))

using equal-div-mod2 by auto
with 2 have (∀ i. ∀ j. (i <(2^(k+1 ))) ∧ (j < (2^(k+1 ))) −→

((rat-poly.Tensor (mat1 2 ) (mat1 (2^k))!j!i) = (mat1
(2^(k+1 )))!j!i))

by metis
then have (∀ i <(2^(k+1 )).∀ j < (2^(k+1 )).

((rat-poly.Tensor (mat1 2 ) (mat1 (2^k))!j!i) = (mat1 (2^(k+1 )))!j!i))
by auto

moreover have mat (2^(k+1 )) (2^(k+1 )) (rat-poly.Tensor (mat1 2 ) (mat1
(2^k)))

using ‹make-vert-equiv (k + 1 ) = mat1 2 ⊗ mat1 (2 ^ k)›
by (metis prop-make-vert-equiv(1 ) prop-make-vert-equiv(2 )

prop-make-vert-equiv(3 ))
ultimately have (rat-poly.Tensor (mat1 2 ) (mat1 (2^k))) = (mat1 (2^(k+1 )))
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using 1 mat-eqI by metis
then show ?thesis by auto

qed
then show ?case using make-vert-equiv.simps
using ‹make-vert-equiv (k + 1 ) = mat1 2 ⊗ mat1 (2 ^ k)›
by (metis Suc-eq-plus1 )

qed

theorem make-vert-block-map-blockmat:
blockmat (make-vert-block n) = (mat1 (2^n))

by (metis blockmat-make-vert make-vert-equiv-mat)

lemma mat1-rt-mult:assumes mat nr nc m1
shows rat-poly.matrix-mult m1 (mat1 (nc)) = m1
using assms mat1-mult-right rat-poly.mat-empty-row-length
rat-poly.matrix-row-length
rat-poly.row-length-def rat-poly.unique-row-col(1 ) by (metis)

lemma mat1-vert-block:
rat-poly.matrix-mult

(blockmat b)
(blockmat (make-vert-block (nat (codomain-block b))))

= (blockmat b)
proof−
have mat

(rat-poly.row-length (blockmat b))
(2^(nat (codomain-block b)))

(blockmat b)
using length-codomain-block matrix-blockmat
by auto

moreover have (blockmat (make-vert-block (nat (codomain-block b))))
= mat1 (2^(nat (codomain-block b)))

using make-vert-block-map-blockmat by auto
ultimately show ?thesis using mat1-rt-mult by auto

qed

The following list of theorems deal with distributivity properties of tensor
product of matrices (with entries as rational functions) and composition
definition weak-matrix-match::

rat-poly mat ⇒ rat-poly mat ⇒ rat-poly mat ⇒ bool
where
weak-matrix-match A1 A2 B1 ≡ (mat (rat-poly.row-length A1 ) (length A1 ) A1 )
∧(mat (rat-poly.row-length A2 ) (length A2 ) A2 )
∧(mat (rat-poly.row-length B1 ) 1 B1 )

∧(A1 6= [])∧(A2 6= [])∧(B1 6= [])
∧ (length A1 = rat-poly.row-length A2 )
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theorem weak-distributivity1 :
weak-matrix-match A1 A2 B1
=⇒ ((rat-poly.matrix-mult A1 A2 )⊗ B1 )

= (rat-poly.matrix-mult (A1 ⊗ B1 ) (A2 ))
proof−
assume assms:weak-matrix-match A1 A2 B1
have 1 :length B1 = 1

using assms weak-matrix-match-def
by (metis rat-poly.matrix-row-length rat-poly.unique-row-col(2 ))

have [[1 ]] 6= []
by auto

moreover have mat 1 1 [[1 ]]
unfolding mat-def Ball-def vec-def by auto

moreover have rat-poly.row-length [[1 ]] = length B1
unfolding rat-poly.row-length-def 1 by auto

ultimately have rat-poly.matrix-match A1 A2 B1 [[1 ]]
unfolding rat-poly.matrix-match-def
using assms weak-matrix-match-def 1 blockmat.simps(1 )

matrix-blockmat by (metis (opaque-lifting, no-types))
then have ((rat-poly.matrix-mult A1 A2 )⊗(rat-poly.matrix-mult B1 [[1 ]]))

= (rat-poly.matrix-mult (A1 ⊗ B1 ) (A2 ⊗ [[1 ]]))
using rat-poly.distributivity by auto

moreover have (rat-poly.matrix-mult B1 [[1 ]]) = B1
using weak-matrix-match-def assms mat1-equiv mat1-mult-right
by (metis)

moreover have (A2 ⊗ [[1 ]]) = A2
using rat-poly.Tensor-right-id by (metis)

ultimately show ?thesis by auto
qed

definition weak-matrix-match2 ::
rat-poly mat ⇒ rat-poly mat ⇒ rat-poly mat ⇒ bool

where
weak-matrix-match2 A1 B1 B2 ≡ (mat (rat-poly.row-length A1 ) 1 A1 )
∧(mat (rat-poly.row-length B1 ) (length B1 ) B1 )
∧(mat (rat-poly.row-length B2 ) (length B2 ) B2 )

∧(A1 6= [])∧(B1 6= [])∧(B2 6= [])
∧ (length B1 = rat-poly.row-length B2 )

theorem weak-distributivity2 :
weak-matrix-match2 A1 B1 B2

=⇒ (A1⊗ (rat-poly.matrix-mult B1 B2 ))
= (rat-poly.matrix-mult (A1 ⊗ B1 ) (B2 ))

proof−
assume assms:weak-matrix-match2 A1 B1 B2
have 1 :length A1 = 1

using assms weak-matrix-match2-def
by (metis rat-poly.matrix-row-length rat-poly.unique-row-col(2 ))

have [[1 ]] 6= []
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by auto
moreover have mat 1 1 [[1 ]]

unfolding mat-def Ball-def vec-def by auto
moreover have rat-poly.row-length [[1 ]] = length A1

unfolding rat-poly.row-length-def 1 by auto
ultimately have rat-poly.matrix-match A1 [[1 ]] B1 B2

unfolding rat-poly.matrix-match-def
using assms weak-matrix-match2-def

1 blockmat.simps(1 ) matrix-blockmat
by (metis (opaque-lifting, no-types))

then have ((rat-poly.matrix-mult A1 [[1 ]])⊗(rat-poly.matrix-mult B1 B2 ))
= (rat-poly.matrix-mult (A1 ⊗ B1 ) ([[1 ]] ⊗ B2 ))

using rat-poly.distributivity by auto
moreover have (rat-poly.matrix-mult A1 [[1 ]]) = A1

using weak-matrix-match2-def
assms mat1-equiv mat1-mult-right

by (metis)
moreover have ([[1 ]] ⊗ B2 ) = B2

by (metis rat-poly.Tensor-left-id)
ultimately show ?thesis by auto

qed

lemma is-tangle-diagram-weak-matrix-match:
assumes is-tangle-diagram (w1∗ws1 )

and codomain-block w2 = 0
shows weak-matrix-match (blockmat w1 ) (kauff-mat ws1 ) (blockmat w2 )
unfolding weak-matrix-match-def
apply(auto)
proof−

show mat
(rat-poly.row-length (blockmat w1 ))
(length (blockmat w1 ))

(blockmat w1 )
using matrix-blockmat by auto

next
have is-tangle-diagram ws1

using assms(1 ) is-tangle-diagram.simps(2 ) by metis
then show mat

(rat-poly.row-length (kauff-mat ws1 ))
(length (kauff-mat ws1 ))

(kauff-mat ws1 )
using matrix-kauff-mat by metis

next
have mat

(rat-poly.row-length (blockmat w2 ))
(length (blockmat w2 ))

(blockmat w2 )
using matrix-blockmat by auto
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then have mat
(rat-poly.row-length (blockmat w2 )) 1 (blockmat w2 )

using assms(2 ) length-codomain-block by auto
then show mat (rat-poly.row-length (blockmat w2 )) (Suc 0 ) (blockmat w2 )

by auto
next
show length (blockmat w1 ) = rat-poly.row-length (kauff-mat ws1 )

using is-tangle-diagram-length-rowlength assms(1 ) by auto
next
assume 0 :blockmat w1 = []
show False using 0

by (metis blockmat-non-empty)
next
assume 1 :kauff-mat ws1 = []
have is-tangle-diagram ws1

using assms(1 ) is-tangle-diagram.simps(2 ) by metis
then show False using 1 kauff-mat-non-empty by auto

next
assume 0 :blockmat w2 = []
show False using 0

by (metis blockmat-non-empty)
qed

lemma is-tangle-diagram-weak-matrix-match2 :
assumes is-tangle-diagram (w2∗ws2 )

and codomain-block w1 = 0
shows weak-matrix-match2 (blockmat w1 ) (blockmat w2 ) (kauff-mat ws2 )
unfolding weak-matrix-match2-def
apply(auto)
proof−

have mat
(rat-poly.row-length (blockmat w1 ))
(length (blockmat w1 ))

(blockmat w1 )
using matrix-blockmat by auto

then have mat
(rat-poly.row-length (blockmat w1 )) 1 (blockmat w1 )

using assms(2 ) length-codomain-block by auto
then show mat (rat-poly.row-length (blockmat w1 )) (Suc 0 ) (blockmat w1 )

by auto
next
have is-tangle-diagram ws2

using assms(1 ) is-tangle-diagram.simps(2 ) by metis
then show mat

(rat-poly.row-length (kauff-mat ws2 ))
(length (kauff-mat ws2 ))

(kauff-mat ws2 )
using matrix-kauff-mat by metis
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next
show mat

(rat-poly.row-length (blockmat w2 ))
(length (blockmat w2 ))

(blockmat w2 )
by (metis matrix-blockmat)

next
show length (blockmat w2 ) = rat-poly.row-length (kauff-mat ws2 )

using is-tangle-diagram-length-rowlength assms(1 ) by auto
next
assume 0 :blockmat w1 = []
show False using 0

by (metis blockmat-non-empty)
next
assume 1 :kauff-mat ws2 = []
have is-tangle-diagram ws2

using assms(1 ) is-tangle-diagram.simps(2 ) by metis
then show False using 1 kauff-mat-non-empty by auto
next
assume 0 :blockmat w2 = []
show False using 0

by (metis blockmat-non-empty)
qed

lemma is-tangle-diagram-vert-block:
is-tangle-diagram (b∗(basic (make-vert-block (nat (codomain-block b)))))

proof−
have domain-wall (basic (make-vert-block (nat (codomain-block b))))

= (codomain-block b)
using domain-wall.simps make-vert-block.simps
by (metis codomain-block-nonnegative domain-make-vert int-nat-eq)

then show ?thesis using is-tangle-diagram.simps by auto
qed

The following theorem tells us that the the map kauff_mat when restricted
to walls representing tangles preserves the tensor product
theorem Tensor-Invariance:
(is-tangle-diagram ws1 ) ∧ (is-tangle-diagram ws2 )
=⇒ (kauff-mat (ws1 ⊗ ws2 ) = (kauff-mat ws1 ) ⊗ (kauff-mat ws2 ))

proof(induction rule:tensor .induct)
case 1
show ?case using kauff-mat-tensor-distrib by auto

next
fix a b as bs
assume hyps: is-tangle-diagram as ∧ is-tangle-diagram bs

=⇒ (kauff-mat (as ⊗ bs) = kauff-mat as ⊗ kauff-mat bs)
assume prems: is-tangle-diagram (a∗as) ∧ is-tangle-diagram (b∗bs)
let ?case = kauff-mat (a ∗ as ⊗ b ∗ bs)
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= kauff-mat (a ∗ as) ⊗ kauff-mat (b ∗ bs)
have 0 :rat-poly.matrix-match

(blockmat a)
(kauff-mat as)
(blockmat b)
(kauff-mat bs)

using prems is-tangle-diagram-matrix-match by auto
have 1 :is-tangle-diagram as ∧ is-tangle-diagram bs

using prems is-tangle-diagram.simps by metis
have kauff-mat ((a ∗ as) ⊗ (b ∗ bs))

= kauff-mat ((a ⊗ b) ∗ (as ⊗ bs))
using tensor .simps by auto

moreover have ... = rat-poly.matrix-mult
(blockmat (a ⊗ b))
(kauff-mat (as ⊗ bs))

using kauff-mat.simps(2 ) by auto
moreover have ... = rat-poly.matrix-mult

((blockmat a) ⊗ (blockmat b))
((kauff-mat as) ⊗ (kauff-mat bs))

using hyps 1 kauff-mat-tensor-distrib by auto
moreover have ... =(rat-poly.matrix-mult (blockmat a) (kauff-mat as))

⊗ (rat-poly.matrix-mult (blockmat b) (kauff-mat bs))
using 0 rat-poly.distributivity by auto

moreover have ... = kauff-mat (a∗as) ⊗ kauff-mat (b∗bs)
by auto

ultimately show ?case by metis
next
fix a b as bs
assume hyps:codomain-block b 6= 0

=⇒ is-tangle-diagram as
∧ is-tangle-diagram

(basic (make-vert-block (nat (codomain-block b))))
=⇒ kauff-mat

(as ⊗ basic (make-vert-block (nat (codomain-block b))))
= kauff-mat as
⊗ kauff-mat

(basic (make-vert-block (nat (codomain-block b))))

assume prems:is-tangle-diagram (a ∗ as) ∧ is-tangle-diagram (basic b)

let ?case = kauff-mat (a ∗ as ⊗ basic b)
= kauff-mat (a ∗ as) ⊗ kauff-mat (basic b)

show ?case
proof(cases codomain-block b = 0 )
case True
have ((a ∗ as) ⊗ (basic b)) = ((a ⊗b) ∗ as)

using tensor .simps True by auto
then have kauff-mat ((a ∗ as) ⊗ (basic b))

= kauff-mat ((a ⊗b) ∗ as)
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by auto
moreover have ... =

rat-poly.matrix-mult
(blockmat (a ⊗ b))
(kauff-mat as)

by auto
moreover have ... =

rat-poly.matrix-mult
((blockmat a) ⊗ (blockmat b))
(kauff-mat as)

using blockmat-tensor-distrib by (metis)
ultimately have T1 :

kauff-mat ((a ∗ as) ⊗ (basic b))
= rat-poly.matrix-mult

((blockmat a) ⊗ (blockmat b))
(kauff-mat as)

by auto
then have weak-matrix-match

(blockmat a)
(kauff-mat as)
(blockmat b)

using is-tangle-diagram-weak-matrix-match True prems by auto
then have rat-poly.matrix-mult

((blockmat a) ⊗ (blockmat b))
(kauff-mat as)

= ((rat-poly.matrix-mult
(blockmat a)
(kauff-mat as))

⊗ (blockmat b))
using weak-distributivity1 by auto

moreover have ... = (kauff-mat (a∗as)) ⊗ (kauff-mat (basic b))
by auto

ultimately show ?thesis using T1 by metis
next
case False
let ?bs = (basic (make-vert-block (nat (codomain-block b))))
have F0 :rat-poly.matrix-match

(blockmat a)
(kauff-mat as)
(blockmat b)
(kauff-mat ?bs)

using prems is-tangle-diagram-vert-block
is-tangle-diagram-matrix-match by metis

have F1 :codomain-block b 6= 0
using False by auto

have F2 : is-tangle-diagram as
∧ is-tangle-diagram ?bs

using is-tangle-diagram.simps prems by metis
then have F3 :kauff-mat
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(as⊗basic (make-vert-block (nat (codomain-block b)))) =
kauff-mat as ⊗ kauff-mat ?bs

using F1 hyps by auto
moreover have ((a∗as) ⊗ (basic b)) = (a ⊗ b) ∗ (as ⊗ ?bs)

using False tensor .simps by auto
moreover then have kauff-mat ((a∗as) ⊗ (basic b))

= kauff-mat((a ⊗ b) ∗ (as ⊗ ?bs))
by auto

moreover then have ... = rat-poly.matrix-mult
(blockmat (a ⊗ b))
(kauff-mat (as ⊗ ?bs))

using kauff-mat.simps by auto
moreover then have ... = rat-poly.matrix-mult

((blockmat a)⊗(blockmat b))
((kauff-mat as)⊗(kauff-mat ?bs))

using F3 blockmat-tensor-distrib by (metis)
moreover then have

...
= (rat-poly.matrix-mult (blockmat a) (kauff-mat as))
⊗ (rat-poly.matrix-mult (blockmat b) (kauff-mat ?bs))

using rat-poly.distributivity F0 by auto
moreover then have ...

= (rat-poly.matrix-mult
(blockmat a)
(kauff-mat as))

⊗ (blockmat b)
using mat1-vert-block by auto

moreover then have ... = (kauff-mat (a∗as))
⊗ (kauff-mat (basic b))

using kauff-mat.simps by auto
ultimately show ?thesis by metis

qed
next
fix a b as bs
assume hyps:

codomain-block b 6= 0
=⇒ is-tangle-diagram

(basic (make-vert-block (nat (codomain-block b))))
∧(is-tangle-diagram as)

=⇒ kauff-mat (basic (make-vert-block (nat (codomain-block b)))⊗ as)
= kauff-mat (basic (make-vert-block (nat (codomain-block b))))

⊗ kauff-mat as
assume prems:is-tangle-diagram (basic b) ∧ is-tangle-diagram (a ∗ as)
let ?case = kauff-mat ( (basic b) ⊗ (a ∗ as))

= kauff-mat (basic b) ⊗ kauff-mat (a ∗ as)
show ?case
proof(cases codomain-block b = 0 )
case True
have ((basic b) ⊗ (a ∗ as)) = ((b ⊗ a) ∗ as)

85



using tensor .simps True by auto
then have kauff-mat ((basic b) ⊗ (a ∗ as))

= kauff-mat ((b ⊗a ) ∗ as)
by auto

moreover have ... = rat-poly.matrix-mult
(blockmat (b ⊗ a))
(kauff-mat as)

by auto
moreover have ... = rat-poly.matrix-mult

((blockmat b) ⊗ (blockmat a))
(kauff-mat as)

using blockmat-tensor-distrib by (metis)
ultimately have T1 :kauff-mat ((basic b) ⊗ (a∗as))

= rat-poly.matrix-mult
((blockmat b) ⊗ (blockmat a))
(kauff-mat as)

by auto
then have weak-matrix-match2

(blockmat b)
(blockmat a)
(kauff-mat as)

using is-tangle-diagram-weak-matrix-match2
True prems by auto

then have rat-poly.matrix-mult
((blockmat b) ⊗ (blockmat a))
(kauff-mat as)

= (blockmat b)
⊗ (rat-poly.matrix-mult (blockmat a)(kauff-mat as))

using weak-distributivity2 by auto
moreover have ... = (kauff-mat (basic b)) ⊗ (kauff-mat (a∗as))

by auto
ultimately show ?thesis using T1 by metis

next
case False
let ?bs = (basic (make-vert-block (nat (codomain-block b))))
have F0 :rat-poly.matrix-match

(blockmat b)
(kauff-mat ?bs)
(blockmat a)
(kauff-mat as)

using prems is-tangle-diagram-vert-block
is-tangle-diagram-matrix-match by metis

have F1 :codomain-block b 6= 0
using False by auto

have F2 : is-tangle-diagram as
∧ is-tangle-diagram ?bs

using is-tangle-diagram.simps prems by metis
then have F3 :kauff-mat (?bs ⊗ as) = kauff-mat ?bs ⊗ kauff-mat as

using F1 hyps by auto
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moreover have ((basic b) ⊗ (a∗as)) = (b ⊗ a) ∗ (?bs ⊗ as)
using False tensor .simps by auto

moreover then have
kauff-mat ((basic b) ⊗ (a∗as))

= kauff-mat((b ⊗ a) ∗ (?bs ⊗ as))
by auto

moreover then have ...
= rat-poly.matrix-mult

(blockmat (b ⊗ a))
(kauff-mat (?bs ⊗ as))

using kauff-mat.simps by auto
moreover then have ...

= rat-poly.matrix-mult
((blockmat b)⊗(blockmat a))
((kauff-mat ?bs)⊗(kauff-mat as))

using F3 by (metis blockmat-tensor-distrib)
moreover then have ...

= (rat-poly.matrix-mult
(blockmat b)
(kauff-mat ?bs))

⊗ (rat-poly.matrix-mult
(blockmat a)
(kauff-mat as))

using rat-poly.distributivity F0 by auto
moreover then have ... = (blockmat b)

⊗ (rat-poly.matrix-mult
(blockmat a)
(kauff-mat as))

using mat1-vert-block by auto
moreover then have ... = (kauff-mat (basic b))

⊗ (kauff-mat (a∗as))
using kauff-mat.simps by auto

ultimately show ?thesis by metis
qed

qed

end

12 Computations: This section can be skipped
theory Computations
imports Kauffman-Matrix
begin

lemma unlink-computation:
rat-poly-plus (rat-poly-times (rat-poly-times A A) (rat-poly-times A A))
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(rat-poly-plus
(rat-poly-times 2 (rat-poly-times A (rat-poly-times A (rat-poly-times B B))))
(rat-poly-times (rat-poly-times B B) (rat-poly-times B B))) =

((A^4 )+(B^4 )+2 )
proof−
have (rat-poly-times (rat-poly-times A A) (rat-poly-times A A)) = A^4

by (simp add: numeral-Bit0 )
moreover have (rat-poly-times (rat-poly-times B B) (rat-poly-times B B))

= B^4
by (simp add: numeral-Bit0 )

moreover have (rat-poly-times 2 (rat-poly-times A (rat-poly-times A (rat-poly-times
B B))))

= 2
using inverse1 by (metis mult-2-right one-add-one rat-poly.assoc rat-poly.comm)

ultimately show ?thesis by auto
qed

lemma computation-swingpos:
rat-poly-plus (rat-poly-times B (rat-poly-times (A − rat-poly-times (rat-poly-times

B B) B) B))
(rat-poly-times (A − rat-poly-times (rat-poly-times B B) B)
(rat-poly-times A (A − rat-poly-times (rat-poly-times B B) B))) =

rat-poly-times A (rat-poly-times (A − rat-poly-times (rat-poly-times B B) B) A)
(is ?l = ?r)

proof−
have 1 :(A − rat-poly-times (rat-poly-times B B) B)

= A − (B^3 )
by (metis power3-eq-cube)

then have 2 :(rat-poly-times (A − rat-poly-times (rat-poly-times B B) B) B)
= A∗B − (B^3 )∗B

by (metis minus-right-distributivity)
then have ... = 1 − (B^4 )

by (simp add: inverse1 numeral-Bit0 power3-eq-cube)
then have (rat-poly-times B (rat-poly-times (A − rat-poly-times (rat-poly-times

B B) B) B))
= B − (B^4 )∗B

using 2
by (metis minus-right-distributivity mult.commute mult.right-neutral)

then have 3 :(rat-poly-times B (rat-poly-times (A − rat-poly-times (rat-poly-times
B B) B) B))

= B − (B^5 )
by (metis (no-types, lifting) inverse1 minus-right-distributivity

mult.left-commute mult.right-neutral power2-eq-square power-numeral-odd)
have (rat-poly-times (A − rat-poly-times (rat-poly-times B B) B)

(rat-poly-times A (A − rat-poly-times (rat-poly-times B B) B)))
= (A − (B^3 ))∗(A∗( A − (B^3 )))

using 1 by auto
moreover then have ... = (A − (B^3 ))∗(A∗A − (A∗(B^3 )))

by (metis minus-left-distributivity)
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moreover then have ... = (A − (B^3 ))∗(A∗A − (B^2 ))
using inverse1
by (simp add: power2-eq-square power3-eq-cube)

moreover then have ... = A∗(A∗A − (B^2 )) − (B^3 )∗(A∗A − (B^2 ))
by (metis minus-right-distributivity)

moreover then have ... = ((A^3 ) − B) − B + (B^5 )
proof−
have A∗(A∗A − (B^2 )) = (A∗A∗A − A∗(B^2 ))

by (simp add: right-diff-distrib)
moreover have ... = (A∗A∗A − A∗(B∗B))

by (metis power2-eq-square)
moreover have ... = ((A^3 ) − ((A::rat-poly)∗B)∗B)

by (simp add: power3-eq-cube)
moreover have ... = ((A^3 ) − ((1 ::rat-poly)∗B))

by (metis inverse1 )
moreover have ... = (A^3 ) − B

by auto
ultimately have s1 :(A::rat-poly)∗(A∗A − (B^2 )) = (A^3 ) − (B::rat-poly)

by metis
have s2 :((B::rat-poly)^3 )∗(A∗A − (B^2 )) = (B^3 )∗(A∗A) − (B^(3 ::nat))∗(B^2 )

by (metis minus-left-distributivity power3-eq-cube)
moreover then have ... = (((B::rat-poly)^3 )∗(A∗A) − (B^5 ))

using power-add
proof−
have (B^(3 ::nat))∗(B^2 ) = (B^5 )

by (metis One-nat-def Suc-1 numeral-3-eq-3 power-Suc
power-numeral-odd)

then show ?thesis using s2 by auto
qed

moreover then have ... = ((((B::rat-poly)∗B∗B)∗(A∗A)) − (B^5 ))
by (metis power3-eq-cube)

moreover then have ... = ((((B::rat-poly)∗(B∗(B∗A)∗A))) − (B^5 ))
by auto

moreover then have ... = ((((B::rat-poly)∗(B∗(1 )∗A))) − (B^5 ))
using inverse2 by auto

moreover then have ... = ((((B::rat-poly)∗(B∗A))) − (B^5 ))
by auto

moreover then have ... = ((((B::rat-poly))) − (B^5 ))
using inverse2
by simp

ultimately have ((B::rat-poly)^3 )∗(A∗A − (B^2 )) = ((B::rat-poly) − (B^5 ))

by auto
then have A∗(A∗A − (B^2 )) − (B^3 )∗(A∗A − (B^2 ))

= (A^3 ) − (B::rat-poly) − ((B::rat-poly) − (B^5 ))
using s1 by auto

then show ?thesis by auto
qed
ultimately have (rat-poly-times (A − rat-poly-times (rat-poly-times B B) B)
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(rat-poly-times A (A − rat-poly-times (rat-poly-times B B) B)))
= ((A^3 ) − B) − B + (B^5 )

by auto
then have ?l = B − (B^5 ) + ((A^3 ) − B) − B + (B^5 )

using 3 by auto
then have 4 :?l = (A^3 ) − B

by auto
have ?r = A∗((A − rat-poly-times (rat-poly-times B B) B)∗A)

by auto
moreover then have ... = A∗(A − (B^3 ))∗A

using 1 by auto
moreover have ... = A∗(A∗A − (B^3 )∗A)

by (simp add: minus-left-distributivity mult.commute)
moreover have ... = A∗(A∗A − (B∗B∗B)∗A)

by (metis power3-eq-cube)
moreover have ... = A∗(A∗A − (B∗B∗(B∗A)))

by auto
moreover have ... = A∗(A∗A − B∗B)

using inverse2 minus-left-distributivity by auto
moreover have ... = A∗A∗A − A∗(B∗B)

by (metis minus-left-distributivity rat-poly.comm)
moreover have ... = A^3 − (A∗B)∗B

by (metis ab-semigroup-mult-class.mult-ac(1 ) power3-eq-cube)
moreover have ... = A^3 − B

using inverse1 by (metis monoid-mult-class.mult.left-neutral)
ultimately have ?r = A^3 − B

by auto
then show ?thesis using 4 by auto

qed

lemma computation2 :
rat-poly-plus (rat-poly-times A (rat-poly-times (B − rat-poly-times (rat-poly-times

A A) A) A))
(rat-poly-times (B − rat-poly-times (rat-poly-times A A) A)
(rat-poly-times B (B − rat-poly-times (rat-poly-times A A) A))) =

rat-poly-times B (rat-poly-times (B − rat-poly-times (rat-poly-times A A) A) B)
(is ?l = ?r)
proof−
have 1 :(B − rat-poly-times (rat-poly-times A A) A)

= B − (A^3 )
by (metis power3-eq-cube)

then have 2 :(rat-poly-times (B − rat-poly-times (rat-poly-times A A) A) A)
= B∗A − (A^3 )∗A

by (metis minus-right-distributivity)
then have ... = 1 − (A^4 )

using inverse2
by (metis mult.commute one-plus-numeral power-add power-one-right

semiring-norm(2 )
semiring-norm(4 ))
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then have (rat-poly-times A (rat-poly-times (B − rat-poly-times (rat-poly-times
A A) A) A))

= A − (A^4 )∗A
using 2
by (simp add: minus-left-distributivity)

then have 3 :(rat-poly-times A (rat-poly-times (B − rat-poly-times (rat-poly-times
A A) A) A))

= A − (A^5 )
by (simp add: numeral-Bit0 numeral-Bit1 )

have (rat-poly-times (B − rat-poly-times (rat-poly-times A A) A)
(rat-poly-times B (B − rat-poly-times (rat-poly-times A A) A)))

= (B − (A^3 ))∗(B∗( B − (A^3 )))
using 1 by auto

moreover then have ... = (B − (A^3 ))∗(B∗B − (B∗(A^3 )))
by (metis minus-left-distributivity)

moreover then have ... = (B − (A^3 ))∗(B∗B − (A^2 ))
using inverse2
by (simp add: power2-eq-square power3-eq-cube)

moreover then have ... = B∗(B∗B − (A^2 )) − (A^3 )∗(B∗B − (A^2 ))
by (metis minus-right-distributivity)

moreover then have ... = ((B^3 ) − A) − A + (A^5 )
proof−
have B∗(B∗B − (A^2 )) = (B∗B∗B − B∗(A^2 ))

by (simp add: right-diff-distrib)
moreover have ... = (B∗B∗B − B∗(A∗A))

by (metis power2-eq-square)
moreover have ... = ((B^3 ) − ((B::rat-poly)∗A)∗A)

by (simp add: power3-eq-cube)
moreover have ... = ((B^3 ) − ((1 ::rat-poly)∗A))

by (metis inverse2 )
moreover have ... = (B^3 ) − A

by auto
ultimately have s1 :(B::rat-poly)∗(B∗B − (A^2 )) = (B^3 ) − (A::rat-poly)

by metis
have s2 :((A::rat-poly)^3 )∗(B∗B − (A^2 )) = (A^3 )∗(B∗B) − (A^(3 ::nat))∗(A^2 )

by (metis minus-left-distributivity power3-eq-cube)
moreover then have ... = (((A::rat-poly)^3 )∗(B∗B) − (A^5 ))

using power-add
proof−
have (A^(3 ::nat))∗(A^2 ) = A^5

by (metis One-nat-def Suc-1 numeral-3-eq-3 power-Suc
power-numeral-odd)

then show ?thesis using s2 by auto
qed

moreover then have ... = ((((A::rat-poly)∗A∗A)∗(B∗B)) − (A^5 ))
by (metis power3-eq-cube)

moreover then have ... = ((((A::rat-poly)∗(A∗(A∗B)∗B))) − (A^5 ))
by auto

moreover then have ... = ((((A::rat-poly)∗(A∗(1 )∗B))) − (A^5 ))
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using inverse1 by auto
moreover then have ... = ((((A::rat-poly)∗(A∗B))) − (A^5 ))

by auto
moreover then have ... = ((((A::rat-poly))) − (A^5 ))

using inverse1 by auto
ultimately have ((A::rat-poly)^3 )∗(B∗B − (A^2 )) = ((A::rat-poly) − (A^5 ))

by auto
then have B∗(B∗B − (A^2 )) − (A^3 )∗(B∗B − (A^2 ))

= (B^3 ) − (A::rat-poly) − ((A::rat-poly) − (A^5 ))
using s1 by auto

then show ?thesis by auto
qed
ultimately have (rat-poly-times (B − rat-poly-times (rat-poly-times A A) A)

(rat-poly-times B (B − rat-poly-times (rat-poly-times A A) A)))
= ((B^3 ) − A) − A + (A^5 )

by auto
then have ?l = A − (A^5 ) + ((B^3 ) − A) − A + (A^5 )

using 3 by auto
then have 4 :?l = (B^3 ) − A

by auto
have ?r = B∗((B − rat-poly-times (rat-poly-times A A) A)∗B)

by auto
moreover then have ... = B∗(B − (A^3 ))∗B

using 1 by auto
moreover have ... = B∗(B∗B − (A^3 )∗B)

using minus-left-distributivity by (simp add: minus-left-distributivity
mult.commute)
moreover have ... = B∗(B∗B − (A∗A∗A)∗B)

by (metis power3-eq-cube)
moreover have ... = B∗(B∗B − (A∗A∗(A∗B)))

by auto
moreover have ... = B∗(B∗B − A∗A)

using inverse1 by auto
moreover have ... = B∗B∗B − B∗(A∗A)

by (metis minus-left-distributivity rat-poly.comm)
moreover have ... = B^3 − (B∗A)∗A

by (metis ab-semigroup-mult-class.mult-ac(1 ) power3-eq-cube)
moreover have ... = B^3 − A

using inverse2 by (metis monoid-mult-class.mult.left-neutral)
ultimately have ?r = B^3 − A

by auto
then show ?thesis using 4 by auto

qed

lemma computation-swingneg:rat-poly-times B (rat-poly-times (B − rat-poly-times
(rat-poly-times A A) A) B) =

rat-poly-plus
(rat-poly-times (B − rat-poly-times (rat-poly-times A A) A)
(rat-poly-times B (B − rat-poly-times (rat-poly-times A A) A)))

92



(rat-poly-times A (rat-poly-times (B − rat-poly-times (rat-poly-times A A) A)
A))
using computation2 by auto

lemma computation-toppos:rat-poly-inv (rat-poly-times (A − rat-poly-times (rat-poly-times
B B) B) A) =

rat-poly-times (B − rat-poly-times (rat-poly-times A A) A) B(is ?l = ?r)
proof−
have (rat-poly-times (A − rat-poly-times (rat-poly-times B B) B) A)

= ((A − ((B∗B)∗B))∗A)
by auto

moreover then have ... = (A∗A) − ((B∗B)∗B)∗A
by (metis minus-left-distributivity rat-poly.comm)

moreover then have ... = (A∗A) − (B∗B)∗(B∗A)
by auto

moreover then have ... = (A∗A) − (B∗B)
using inverse2 by auto

ultimately have ?l = rat-poly-inv ((A∗A) − (B∗B))
by auto

then have 1 :?l = (B∗B) − (A∗A)
by auto

have ?r =(B − ((A∗A) ∗A))∗B
by auto

moreover have ... = B∗B − ((A∗A)∗A)∗B
by (metis minus-left-distributivity rat-poly.comm)

moreover have ... = (B∗B) − ((A∗A)∗(A∗B))
by auto

moreover have ... = ((B::rat-poly)∗B) − (A∗A)
using inverse1 by auto

ultimately have ?r = (B∗B) − (A∗A)
by auto

then show ?thesis using 1 by auto
qed

lemma computation-downpos-prelim:
rat-poly-inv (rat-poly-times (B − rat-poly-times (rat-poly-times A A) A) B) =

rat-poly-times (A − rat-poly-times (rat-poly-times B B) B) A(is ?l = ?r)
proof−
have (rat-poly-times (B − rat-poly-times (rat-poly-times A A) A) B)

= ((B − ((A∗A)∗A))∗B)
by auto

moreover then have ... = (B∗B) − ((A∗A)∗A)∗B
by (metis minus-left-distributivity rat-poly.comm)

moreover then have ... = (B∗B) − (A∗A)∗(A∗B)
by auto

moreover then have ... = (B∗B) − (A∗A)
using inverse1 by auto

93



ultimately have ?l = rat-poly-inv ((B∗B) − (A∗A))
by auto

then have 1 :?l = (A∗A) − (B∗B)
by auto

have ?r =(A − ((B∗B) ∗B))∗A
by auto

moreover have ... = A∗A − ((B∗B)∗B)∗A
by (metis minus-left-distributivity rat-poly.comm)

moreover have ... = (A∗A) − ((B∗B)∗(B∗A))
by auto

moreover have ... = ((A::rat-poly)∗A) − (B∗B)
using inverse2 by auto

ultimately have ?r = (A∗A) − (B∗B)
by auto

then show ?thesis using 1 by auto
qed

lemma computation-downpos:rat-poly-times A (A − rat-poly-times (rat-poly-times
B B) B) =

rat-poly-inv (rat-poly-times B (B − rat-poly-times (rat-poly-times A A) A))
using computation-downpos-prelim by (metis rat-poly.comm)

lemma computatition-positive-flip:rat-poly-plus
(rat-poly-inv (rat-poly-times A (rat-poly-times (A − rat-poly-times (rat-poly-times

B B) B) A)))
(rat-poly-inv (rat-poly-times B (rat-poly-times A B))) =

rat-poly-inv (rat-poly-times A (rat-poly-times A A)) (is ?l = ?r)
proof−
have (rat-poly-inv (rat-poly-times B (rat-poly-times A B)))

= (rat-poly-inv (rat-poly-times B 1 ))
using inverse1 by auto

moreover have ... = − B
by auto

ultimately have 1 :(rat-poly-inv (rat-poly-times B (rat-poly-times A B))) = − B
by auto

have (rat-poly-times A (rat-poly-times (A − rat-poly-times (rat-poly-times B B)
B) A))

= A∗((A − ((B∗B)∗B))∗A)
by auto

moreover then have ... = A∗((A∗A) − ((B∗B)∗B∗A))
by (metis minus-left-distributivity rat-poly.comm)

moreover then have ... = A∗((A∗A) − ((B∗B)∗1 ))
using inverse2 by auto

moreover then have ... = A∗((A∗A) − (B∗B))
by auto

moreover then have ... = A∗(A∗A) − (A∗(B∗B))
by (metis minus-left-distributivity)

moreover then have ... = (A∗(A∗A)) − (1∗B)
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using inverse1 by auto
moreover then have ... = (A∗(A∗A)) − B

by auto
ultimately have (rat-poly-times A (rat-poly-times (A − rat-poly-times (rat-poly-times
B B) B) A))

= (A∗(A∗A)) − B
by auto

then have rat-poly-inv (rat-poly-times A (rat-poly-times (A − rat-poly-times (rat-poly-times
B B) B) A))

= B − (A∗A∗A)
by auto

then have 3 :?l = − (A∗A∗A)
using 1 by auto

moreover have ?r = − (A∗A∗A)
by auto

ultimately show ?thesis by auto
qed

lemma computation-negative-flip:rat-poly-plus
(rat-poly-inv (rat-poly-times B (rat-poly-times (B − rat-poly-times (rat-poly-times

A A) A) B)))
(rat-poly-inv (rat-poly-times A (rat-poly-times B A))) =

rat-poly-inv (rat-poly-times B (rat-poly-times B B)) (is ?l = ?r)
proof−
have (rat-poly-inv (rat-poly-times A (rat-poly-times B A)))

= (rat-poly-inv (rat-poly-times A 1 ))
using inverse2 by auto

moreover have ... = − A
by auto

ultimately have 1 :(rat-poly-inv (rat-poly-times A (rat-poly-times B A))) = − A
by auto

have (rat-poly-times B (rat-poly-times (B − rat-poly-times (rat-poly-times A A)
A) B))

= B∗((B − ((A∗A)∗A))∗B)
by auto

moreover then have ... = B∗((B∗B) − ((A∗A)∗A∗B))
by (metis minus-left-distributivity rat-poly.comm)

moreover then have ... = B∗((B∗B) − ((A∗A)∗1 ))
using inverse1 by auto

moreover then have ... = B∗((B∗B) − (A∗A))
by auto

moreover then have ... = B∗(B∗B) − (B∗(A∗A))
by (metis minus-left-distributivity)

moreover then have ... = (B∗(B∗B)) − (1∗A)
using inverse2 by auto

moreover then have ... = (B∗(B∗B)) − A
by auto

ultimately have (rat-poly-times B (rat-poly-times (B − rat-poly-times (rat-poly-times
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A A) A) B))
= (B∗(B∗B)) − A

by auto
then have rat-poly-inv (rat-poly-times B (rat-poly-times (B − rat-poly-times (rat-poly-times
A A) A) B))

= A − (B∗B∗B)
by auto

then have 3 :?l = − (B∗B∗B)
using 1 by auto

moreover have ?r = − (B∗B∗B)
by auto

ultimately show ?thesis by auto
qed

lemma computation-pull-pos-neg:
rat-poly-plus (rat-poly-times B (B − rat-poly-times (rat-poly-times A A) A))

(rat-poly-times (A − rat-poly-times (rat-poly-times B B) B) A) = 0
proof−
have rat-poly-times (rat-poly-times A A) A

= ((A∗A)∗A)
by auto

then have rat-poly-times B (B − rat-poly-times (rat-poly-times A A) A)
= B∗B − B∗((A∗A)∗A)

using minus-left-distributivity by auto
moreover have ... = B∗B − (B∗(A∗(A∗A)))

by auto
moreover have ... = B∗B − ((B∗A)∗(A∗A))

by auto
moreover have ... = B∗B − A∗A

using inverse2 by auto
ultimately have 1 :rat-poly-times B (B − rat-poly-times (rat-poly-times A A)

A)
= B∗B − A∗A

by auto
have rat-poly-times (rat-poly-times B B) B = (B∗B)∗B

by auto
then have (rat-poly-times (A − rat-poly-times (rat-poly-times B B) B) A)

= (A∗A) − ((B∗B)∗B)∗A
using minus-right-distributivity by auto

moreover have ... = (A∗A) − ((B∗B)∗(B∗A))
by auto

moreover have ... = (A∗A) − (B∗B)
using inverse2 by auto

ultimately have 2 :(rat-poly-times (A − rat-poly-times (rat-poly-times B B) B)
A)

= (A∗A) − (B∗B)
by auto

have B∗B − A∗A + (A∗A) − (B∗B) = 0
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by auto
with 1 2 show ?thesis by auto

qed

lemma aux1 :(A − rat-poly-times (rat-poly-times B B) B)
= A − (B^3 )

using power3-eq-cube by (metis)

lemma square-subtract:(((p::rat-poly) − (q::rat-poly))^2 )
= (p^2 ) − (2∗p∗q) + (q^2 )

proof−
have 1 :(((p::rat-poly) − (q::rat-poly))^2 )

= (p− q)∗(p − q)
by (metis power2-eq-square)

then have (p − q)∗(p − q) = (p − q)∗p − (p − q)∗q
by (metis minus-right-distributivity rat-poly.comm)

moreover have (p − q)∗p = p∗p − q∗p
by (metis minus-left-distributivity rat-poly.comm)

moreover have (p − q)∗q = p∗q − q∗q
by (metis minus-left-distributivity rat-poly.comm)

ultimately have (p − q)∗(p − q) = p∗p − q∗p − (p∗q − q∗q)
by auto

moreover have ... = (p∗p) − q∗p − p∗q + q∗q
by auto

moreover have ... = (p^2 ) −p∗q − p∗q + (q^2 )
using power2-eq-square by (simp add: power2-eq-square)

ultimately show ?thesis using 1 by auto
qed

lemma cube-minus:∀ p q.((((p::rat-poly) − (q::rat-poly))^3 )
= (p^3 ) − 3∗(p^2 )∗(q) + 3∗(p)∗(q^2 ) − (q^3 ))

apply(rule allI )
apply(rule allI )
proof−
fix p q
have 1 :(((p::rat-poly) − (q::rat-poly))^3 ) = (p − q)∗(p−q)^2

by (metis One-nat-def Suc-1 numeral-3-eq-3 power-Suc)
then have (p−q)^2 = (p^2 ) − (2∗p∗q) + (q^2 )

using square-subtract by auto
then have 2 :(p − q)∗(p−q)^2 = (p − q)∗((p^2 ) − (2∗p∗q) + (q^2 ))

by auto
moreover have 3 :(p − q)∗((p^2 ) − (2∗p∗q) + (q^2 ))

= p∗((p^2 ) − (2∗p∗q) + (q^2 ))
− (q∗((p^2 ) − (2∗p∗q) + (q^2 )))

by (metis minus-right-distributivity)
moreover have p∗((p^2 ) − (2∗p∗q) + (q^2 ))

= p∗(p^2 ) − p∗(2∗p∗q) + (p∗(q^2 ))
using minus-left-distributivity by (simp add: distrib-left)
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moreover have p∗(p^2 ) = p^3
by (metis One-nat-def Suc-1 numeral-3-eq-3 power-Suc)

moreover have p∗(2∗p∗q) = 2∗(p^2 )∗q
by (metis (no-types, lifting) distrib-left mult-2 power2-eq-square

semigroup-mult-class.mult.assoc)
ultimately have 4 :p∗((p^2 ) − (2∗p∗q) + (q^2 ))

= (p^3 ) − (2∗(p^2 )∗q) + (p∗(q^2 ))
by auto

have q∗((p^2 ) − (2∗p∗q) + (q^2 ))
= q∗(p^2 ) − q∗(2∗p∗q) + (q∗(q^2 ))

by (simp add: distrib-left minus-left-distributivity)
moreover have q∗(p^2 ) = (p^2 )∗q

by simp
moreover have q∗(2∗p∗q) = 2∗p∗(q^2 )

by (simp add: power2-eq-square)
ultimately have 5 :q∗((p^2 ) − (2∗p∗q) + (q^2 ))

= (p^2 )∗q − 2∗p∗(q^2 ) + (q^3 )
by (metis One-nat-def Suc-1 numeral-3-eq-3 power-Suc)

with 1 2 3 4 have (p − q)^3
= (p^3 ) − (2∗(p^2 )∗q) + (p∗(q^2 ))
− ((p^2 )∗q − 2∗p∗(q^2 ) + (q^3 ))

by auto
moreover have ... = (p^3 ) − (2∗(p^2 )∗q) + (p∗(q^2 ))

− (p^2 )∗q + 2∗p∗(q^2 ) − (q^3 )
by auto

moreover have ... = (p^3 ) − 3∗(p^2 )∗(q) + 3∗(p)∗(q^2 ) − (q^3 )
by auto

ultimately show
(p − q) ^ 3

= rat-poly-plus (p ^ 3 −
rat-poly-times

(rat-poly-times 3 (p2)) q)
(rat-poly-times (rat-poly-times 3 p) (q2))

− q ^ 3
by auto

qed

lemma power-mult: ((p::rat-poly)^m)^n= (p)^(m∗(n::nat))
by (metis power-mult)

lemma cube-minus2 :
fixes p q
shows (((p::rat-poly) − (q::rat-poly))^3 )

= (p^3 ) − 3∗(p^2 )∗(q) + 3∗(p)∗(q^2 ) − (q^3 )
using cube-minus by auto

lemma subst-poly:assumes a = b shows (p::rat-poly)∗a = p∗b
using assms by auto
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lemma sub1 :
assumes p∗q = 1
shows r∗(p∗q) = r∗1
using assms by metis

lemma n-distrib:(A^(n::nat))∗(B^n) = (A∗B)^n
by (induct n)(auto)

lemma rat-poly-id-pow:(1 ::rat-poly)^n = 1
by (induct n)(auto)

lemma power-prod:(A^(n::nat))∗(B^n) = (1 ::rat-poly)
apply(simp add:n-distrib)
apply(simp add:inverse1 )
done

lemma (pCons 0 1 ) 6= 0
by (metis non-zero var-def )

end

13 Tangle moves and Kauffman bracket
theory Linkrel-Kauffman
imports Computations
begin

lemma mat1-vert-wall-left:
assumes is-tangle-diagram b
shows
rat-poly.matrix-mult (blockmat (make-vert-block (nat (domain-wall b)))) (kauff-mat
b)

= (kauff-mat b)
proof−
have mat (2^(nat (domain-wall b))) (length (kauff-mat b)) (kauff-mat b)

by (metis assms matrix-kauff-mat)
moreover have (blockmat (make-vert-block (nat (domain-wall b))))

= mat1 (2^(nat (domain-wall b)))
using make-vert-block-map-blockmat by auto

ultimately show ?thesis by (metis blockmat-make-vert mat1-mult-left prop-make-vert-equiv(1 ))
qed

lemma mat1-vert-wall-right:
assumes is-tangle-diagram b
shows
rat-poly.matrix-mult (kauff-mat b) (blockmat (make-vert-block (nat (codomain-wall
b))))
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= (kauff-mat b)
proof−
have mat (rat-poly.row-length (kauff-mat b)) (2^(nat (codomain-wall b))) (kauff-mat
b)

by (metis assms matrix-kauff-mat)
moreover have (blockmat (make-vert-block (nat (codomain-wall b))))

= mat1 (2^(nat (codomain-wall b)))
using make-vert-block-map-blockmat by auto

ultimately show ?thesis by (metis mat1-rt-mult)
qed

lemma compress-top-inv:(compress-top w1 w2 ) =⇒ kauff-mat w1 = kauff-mat w2
proof−
assume assm:compress-top w1 w2
have ∃B.((w1 = (basic (make-vert-block (nat (domain-wall B))))◦ B)

∧(w2 = (B ◦ (basic ([]))))∧(codomain-wall B = 0 )
∧(is-tangle-diagram B))

using compress-top-def assm by auto
then obtain B where (w1 = (basic (make-vert-block (nat (domain-wall B))))◦

B)
∧(w2 = (B ◦ (basic ([]))))∧(codomain-wall B =

0 )∧(is-tangle-diagram B)
by auto

then have 1 :(w1 = (basic (make-vert-block (nat (domain-wall B))))◦ B)
∧(w2 = (B ◦ (basic ([]))))∧(codomain-wall B =

0 )∧(is-tangle-diagram B)
by auto

then have kauff-mat(w1 ) = (kauff-mat ((basic (make-vert-block (nat (domain-wall
B))))◦ B))

by auto
moreover then have ... = kauff-mat ((make-vert-block (nat (domain-wall B)))∗B)

by auto
moreover then have ... = rat-poly.matrix-mult (blockmat (make-vert-block (nat
(domain-wall B))))

(kauff-mat B)
by auto

moreover then have ... = (kauff-mat B)
using 1 mat1-vert-wall-left by (metis)

ultimately have kauff-mat(w1 ) = kauff-mat B
by auto

moreover have kauff-mat w2 = kauff-mat B
using 1 by (metis left-mat-compose)

ultimately show ?thesis by auto
qed

lemma domain-make-vert-int:(n ≥ 0 ) =⇒ (domain-block (make-vert-block (nat
n)))

= n
using domain-make-vert by auto
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lemma compress-bottom-inv:(compress-bottom w1 w2 ) =⇒ kauff-mat w1 = kauff-mat
w2
proof−
assume assm:compress-bottom w1 w2
have ∃B.((w1 = B ◦ (basic (make-vert-block (nat (codomain-wall B)))))

∧(w2 = ((basic ([]) ◦ B)))∧(domain-wall B = 0 )
∧(is-tangle-diagram B))

using compress-bottom-def assm by auto
then obtain B where ((w1 = B ◦ (basic (make-vert-block (nat (codomain-wall

B)))))
∧(w2 = ((basic ([]) ◦ B)))∧(domain-wall B = 0 )
∧(is-tangle-diagram B))

by auto
then have 1 :((w1 = B ◦ (basic (make-vert-block (nat (codomain-wall B)))))

∧(w2 = ((basic ([]) ◦ B)))∧(domain-wall B = 0 )
∧(is-tangle-diagram B))

by auto
then have kauff-mat(w1 ) = (kauff-mat ( B ◦ (basic (make-vert-block (nat (codomain-wall
B))))))

by auto
moreover then have ... = rat-poly.matrix-mult (kauff-mat B)

(kauff-mat (basic (make-vert-block (nat (codomain-wall
B)))))

proof−
have is-tangle-diagram B

using 1 by auto
moreover have is-tangle-diagram (basic (make-vert-block (nat (codomain-wall

B))))
using is-tangle-diagram.simps by auto

moreover have codomain-wall B = domain-wall (basic (make-vert-block (nat
(codomain-wall B))))

proof−
have codomain-wall B ≥ 0
apply (induct B)
by (auto) (metis codomain-block-nonnegative)

then have domain-block (make-vert-block (nat (codomain-wall B)))
= codomain-wall B

using domain-make-vert-int by auto
then show ?thesis unfolding domain-wall.simps(1 ) by auto

qed
ultimately show ?thesis using tangle-compose-matrix by auto

qed
moreover then have ... = rat-poly.matrix-mult (kauff-mat B)

(blockmat (make-vert-block (nat (codomain-wall B))))
using kauff-mat.simps(1 ) tangle-compose-matrix by auto

moreover then have ... = (kauff-mat B)
using 1 mat1-vert-wall-right by auto

ultimately have kauff-mat(w1 ) = kauff-mat B
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by auto
moreover have kauff-mat w2 = kauff-mat B

using 1 by (metis right-mat-compose)
ultimately show ?thesis by auto

qed

theorem compress-inv:compress w1 w2 =⇒ (kauff-mat w1 = kauff-mat w2 )
unfolding compress-def using compress-bottom-inv compress-top-inv
by auto

lemma striaghten-topdown-computation:kauff-mat ((basic ([vert,cup]))◦(basic ([cap,vert])))
= kauff-mat ((basic ([vert]))◦(basic ([vert])))

apply(simp add:kauff-mat-def )
apply(simp add:mat-multI-def )
apply(simp add:matT-vec-multI-def )
apply(auto simp add:replicate-def rat-poly.row-length-def )
apply(auto simp add:scalar-prod)
apply (auto simp add:inverse1 inverse2 )
done

theorem straighten-topdown-inv:straighten-topdown w1 w2 =⇒ (kauff-mat w1 ) =
(kauff-mat w2 )
unfolding straighten-topdown-def using striaghten-topdown-computation by auto

lemma striaghten-downtop-computation:kauff-mat ((basic ([cup,vert]))◦(basic ([vert,cap])))
= kauff-mat ((basic ([vert]))◦(basic ([vert])))

apply(simp add:kauff-mat-def )
apply(simp add:mat-multI-def )
apply(simp add:matT-vec-multI-def )
apply(auto simp add:replicate-def rat-poly.row-length-def )
apply(auto simp add:scalar-prod)
apply (auto simp add:inverse1 inverse2 )
done

theorem straighten-downtop-inv:straighten-downtop w1 w2 =⇒ (kauff-mat w1 ) =
(kauff-mat w2 )
unfolding straighten-downtop-def using striaghten-downtop-computation by auto

theorem straighten-inv:straighten w1 w2 =⇒ (kauff-mat w1 ) = (kauff-mat w2 )
unfolding straighten-def using straighten-topdown-inv straighten-downtop-inv by
auto

lemma kauff-mat-swingpos:
kauff-mat (r-over-braid) = kauff-mat (l-over-braid)
apply (simp)
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apply(simp add:mat-multI-def )
apply(simp add:matT-vec-multI-def )
apply(auto simp add:replicate-def rat-poly.row-length-def )
apply(auto simp add:scalar-prod)
apply(auto simp add:computation-swingpos)
done

lemma swing-pos-inv:swing-pos w1 w2 =⇒ (kauff-mat w1 ) = (kauff-mat w2 )
unfolding swing-pos-def using kauff-mat-swingpos by auto

lemma kauff-mat-swingneg:
kauff-mat (r-under-braid) = kauff-mat (l-under-braid)
apply (simp)
apply(simp add:mat-multI-def )
apply(simp add:matT-vec-multI-def )
apply(auto simp add:replicate-def rat-poly.row-length-def )
apply(auto simp add:scalar-prod)
apply(auto simp add:computation-swingneg)
done

lemma swing-neg-inv:swing-neg w1 w2 =⇒ (kauff-mat w1 ) = (kauff-mat w2 )
unfolding swing-neg-def using kauff-mat-swingneg by auto

theorem swing-inv:
swing w1 w2 =⇒ (kauff-mat w1 ) = (kauff-mat w2 )
unfolding swing-def using swing-pos-inv swing-neg-inv by auto

lemma rotate-toppos-kauff-mat:kauff-mat ((basic [vert,over ])◦(basic [cap, vert]))
= kauff-mat ((basic [under ,vert])◦(basic [vert,cap]))

apply (simp)
apply(simp add:mat-multI-def )
apply(simp add:matT-vec-multI-def )
apply(auto simp add:replicate-def rat-poly.row-length-def )
apply(auto simp add:scalar-prod)
apply(simp add:computation-toppos)
done

lemma rotate-toppos-inv:rotate-toppos w1 w2 =⇒ (kauff-mat w1 ) = (kauff-mat
w2 )
unfolding rotate-toppos-def using rotate-toppos-kauff-mat by auto

lemma rotate-topneg-kauff-mat:kauff-mat ((basic [vert,under ])◦(basic [cap, vert]))

= kauff-mat ((basic [over ,vert])◦(basic [vert,cap]))
apply(simp add:mat-multI-def )
apply(simp add:matT-vec-multI-def )
apply(auto simp add:replicate-def rat-poly.row-length-def )
apply(auto simp add:scalar-prod)
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apply(simp add:computation-toppos)
done

lemma rotate-topneg-inv:rotate-topneg w1 w2 =⇒ (kauff-mat w1 ) = (kauff-mat
w2 )
unfolding rotate-topneg-def using rotate-topneg-kauff-mat by auto

lemma rotate-downpos-kauff-mat:
kauff-mat ((basic [cup,vert])◦(basic [vert,over ]))= kauff-mat ((basic [vert,cup])◦(basic
[under ,vert]))
apply(simp add:mat-multI-def )
apply(simp add:matT-vec-multI-def )
apply(auto simp add:replicate-def rat-poly.row-length-def )
apply(auto simp add:scalar-prod)
apply(simp add:computation-downpos)
done

lemma rotate-downpos-inv:rotate-downpos w1 w2 =⇒ (kauff-mat w1 ) = (kauff-mat
w2 )
unfolding rotate-downpos-def using rotate-downpos-kauff-mat by auto

lemma rotate-downneg-kauff-mat:
kauff-mat ((basic [cup,vert])◦(basic [vert,under ]))= kauff-mat ((basic [vert,cup])◦(basic
[over ,vert]))
apply(simp add:mat-multI-def )
apply(simp add:matT-vec-multI-def )
apply(auto simp add:replicate-def rat-poly.row-length-def )
apply(auto simp add:scalar-prod)
apply(simp add:computation-downpos)
done

lemma rotate-downneg-inv:rotate-downneg w1 w2 =⇒ (kauff-mat w1 ) = (kauff-mat
w2 )
unfolding rotate-downneg-def using rotate-downneg-kauff-mat by auto

theorem rotate-inv:rotate w1 w2 =⇒ (kauff-mat w1 ) = (kauff-mat w2 )
unfolding rotate-def using rotate-downneg-inv rotate-downpos-inv rotate-topneg-inv

rotate-toppos-inv by auto

lemma positive-flip-kauff-mat:
kauff-mat (left-over) = kauff-mat (right-over)

104



apply(simp add:mat-multI-def )
apply(simp add:matT-vec-multI-def )
apply(auto simp add:replicate-def rat-poly.row-length-def )
apply(auto simp add:scalar-prod)
using computatition-positive-flip apply auto[1 ]
using computatition-positive-flip by auto

lemma uncross-positive-flip-inv: uncross-positive-flip w1 w2 =⇒ (kauff-mat w1 )
= (kauff-mat w2 )
unfolding uncross-positive-flip-def using positive-flip-kauff-mat by auto

lemma negative-flip-kauff-mat: kauff-mat (left-under) = kauff-mat (right-under)
apply(simp add:mat-multI-def )
apply(simp add:matT-vec-multI-def )
apply(auto simp add:replicate-def rat-poly.row-length-def )
apply(auto simp add:scalar-prod)
using computation-negative-flip apply auto
done

lemma uncross-negative-flip-inv: uncross-negative-flip w1 w2 =⇒ (kauff-mat w1 )
= (kauff-mat w2 )
unfolding uncross-negative-flip-def using negative-flip-kauff-mat by auto

theorem framed-uncross-inv:(framed-uncross w1 w2 ) =⇒ (kauff-mat w1 ) = (kauff-mat
w2 )
unfolding framed-uncross-def using uncross-negative-flip-inv uncross-positive-flip-inv
by auto

lemma pos-neg-kauff-mat:
kauff-mat ((basic [over ]) ◦ (basic [under ]))

= kauff-mat ((basic [vert,vert]) ◦ (basic [vert,vert]))
apply(simp add:mat-multI-def )
apply(simp add:matT-vec-multI-def )
apply(auto simp add:replicate-def rat-poly.row-length-def )
apply(auto simp add:scalar-prod)
apply(auto simp add:inverse1 inverse2 )
apply(auto simp add:computation-pull-pos-neg)
done

lemma pull-posneg-inv: pull-posneg w1 w2 =⇒ (kauff-mat w1 ) = (kauff-mat w2 )
unfolding pull-posneg-def using pos-neg-kauff-mat by auto

lemma neg-pos-kauff-mat:kauff-mat ((basic [under ]) ◦ (basic [over ]))
= kauff-mat ((basic [vert,vert]) ◦ (basic [vert,vert]))

apply(simp add:mat-multI-def )
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apply(simp add:matT-vec-multI-def )
apply(auto simp add:replicate-def rat-poly.row-length-def )
apply(auto simp add:scalar-prod)
apply(auto simp add:inverse1 inverse2 )
using computation-pull-pos-neg by (simp add: computation-downpos)

lemma pull-negpos-inv:pull-negpos w1 w2 =⇒ (kauff-mat w1 ) = (kauff-mat w2 )
unfolding pull-negpos-def using neg-pos-kauff-mat by auto

theorem pull-inv:pull w1 w2 =⇒ (kauff-mat w1 ) = (kauff-mat w2 )
unfolding pull-def using pull-posneg-inv pull-negpos-inv by auto

theorem slide-inv:slide w1 w2 =⇒ (kauff-mat w1 = kauff-mat w2 )
proof−
assume assm:slide w1 w2
have ∃B.((w1 = ((basic (make-vert-block (nat (domain-block B))))◦(basic B)))

∧(w2 = ((basic B)◦(basic (make-vert-block (nat (codomain-block B))))))
∧ ((domain-block B) 6= 0 ))

using slide-def assm by auto
then obtain B where ((w1 = ((basic (make-vert-block (nat (domain-block

B))))◦(basic B)))
∧(w2 = ((basic B)◦(basic (make-vert-block (nat (codomain-block B))))))
∧ ((domain-block B) 6= 0 )) by auto

then have 1 :((w1 = ((basic (make-vert-block (nat (domain-block B))))◦(basic
B)))

∧(w2 = ((basic B)◦(basic (make-vert-block (nat (codomain-block B))))))
∧ ((domain-block B) 6= 0 ))

by auto
have kauff-mat w1 = kauff-mat (basic B)
proof−
have s1 :mat (2^(nat (domain-block B))) (length (blockmat B)) (blockmat B)

by (metis matrix-blockmat row-length-domain-block)
have w1 = ((basic (make-vert-block (nat (domain-wall (basic B))))◦(basic B)))

using 1 domain-wall.simps by auto
then have kauff-mat w1 = rat-poly.matrix-mult

(kauff-mat (basic (make-vert-block (nat (domain-wall
(basic B))))))

(kauff-mat (basic B))
using tangle-compose-matrix is-tangle-diagram.simps
by (metis compose-Nil kauff-mat.simps(1 ) kauff-mat.simps(2 ))

moreover then have ... = rat-poly.matrix-mult (mat1 (2^(nat (domain-block
B)))) (blockmat B)

using kauff-mat.simps(1 ) domain-wall.simps(1 ) by (metis make-vert-block-map-blockmat)
moreover have ... = (blockmat B)

using s1 mat1-mult-left by (metis make-vert-equiv-mat prop-make-vert-equiv(1 ))
ultimately show ?thesis by auto

qed
moreover have kauff-mat w2 = kauff-mat (basic B)
proof−
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have s1 :mat (2^(nat (domain-block B))) (2^(nat (codomain-block B))) (blockmat
B)

by (metis length-codomain-block matrix-blockmat row-length-domain-block)
have w2 = ((basic B) ◦(basic (make-vert-block (nat (codomain-wall (basic

B))))))
using 1 domain-wall.simps by auto

then have kauff-mat w2 =
rat-poly.matrix-mult

(kauff-mat (basic B))
(kauff-mat (basic (make-vert-block (nat (codomain-wall (basic

B))))))
using tangle-compose-matrix is-tangle-diagram.simps
by (metis compose-Nil kauff-mat.simps(1 ) kauff-mat.simps(2 ))

moreover then have ... = rat-poly.matrix-mult (blockmat B) (mat1 (2^(nat
(codomain-block B))))

using kauff-mat.simps(1 ) domain-wall.simps(1 )
by (metis blockmat-make-vert codomain-wall.simps(1 ) make-vert-equiv-mat)

moreover have ... = (blockmat B)
using s1 by (metis mat1-rt-mult)

ultimately show ?thesis by auto
qed
ultimately show ?thesis by auto

qed

theorem framed-linkrel-inv:framed-linkrel w1 w2 =⇒ (kauff-mat w1 )= (kauff-mat
w2 )
unfolding framed-linkrel-def
apply(auto)
using framed-uncross-inv pull-inv straighten-inv swing-inv rotate-inv compress-inv
slide-inv
by auto

end

14 Kauffman_Invariance: Proving the invariance
of Kauffman Bracket

theory Kauffman-Invariance
imports Link-Algebra Linkrel-Kauffman
begin

In the following theorem, we prove that the kauffman matrix is invariant of
framed link invariance
theorem kauffman-invariance:(w1 ::wall) ∼f w2 =⇒ kauff-mat w1 = kauff-mat w2
proof(induction rule:Framed-Tangle-Equivalence.induct)
case refl
show ?case using refl by auto
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next
case sym
show ?case using sym by auto

next
case trans
show ?case using trans by auto

next
case compose-eq
show ?case using compose-eq tangle-compose-matrix by auto

next
case codomain-compose
show ?case using codomain-compose left-mat-compose by auto

next
case domain-compose
show ?case using domain-compose right-mat-compose by auto

next
case tensor-eq
show ?case using tensor-eq.IH Tensor-Invariance by (metis)

next
case equality
show ?case using framed-linkrel-inv equality by auto

qed

lemma rat-poly-times A B = 1
using inverse1 by (metis )

we calculate kauffman bracket of a few links

kauffman bracket of an unknot with zero crossings
lemma kauff-mat ([cup]∗(basic [cap])) = [[−(A^2 ) − (B^2 )]]
apply(simp add:mat-multI-def )
apply(simp add:matT-vec-multI-def )
apply(auto simp add:replicate-def rat-poly.row-length-def )
apply(auto simp add:scalar-prod)
by (simp add: power2-eq-square)

kauffman bracket of an a two component unlinked unknot with zero crossings
lemma kauff-mat ([cup,cup]∗(basic [cap,cap]))= [[((A^4 )+(B^4 )) + 2 ]]
apply(simp add:mat-multI-def )
apply(simp add:matT-vec-multI-def )
apply(auto simp add:replicate-def rat-poly.row-length-def )
apply(auto simp add:scalar-prod)
apply(auto simp add:unlink-computation)
done

definition trefoil-polynomial::rat-poly
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where
trefoil-polynomial ≡
rat-poly-plus

(rat-poly-times (rat-poly-times A A)
(rat-poly-plus
(rat-poly-times B
(rat-poly-times B
(rat-poly-times (A − rat-poly-times (rat-poly-times B B) B)
(rat-poly-times A A))))

(rat-poly-times (A − rat-poly-times (rat-poly-times B B) B)
(rat-poly-plus (rat-poly-times B (rat-poly-times B (rat-poly-times A A)))
(rat-poly-times (A − rat-poly-times (rat-poly-times B B) B)
(rat-poly-times (A − rat-poly-times (rat-poly-times B B) B)
(rat-poly-times A A)))))))

(rat-poly-plus
(rat-poly-times 2
(rat-poly-times A
(rat-poly-times A
(rat-poly-times A
(rat-poly-times A (rat-poly-times A (rat-poly-times B B)))))))

(rat-poly-times (rat-poly-times B B)
(rat-poly-times B
(rat-poly-times (A − rat-poly-times (rat-poly-times B B) B)
(rat-poly-times B (rat-poly-times B B))))))

kauffman bracket of trefoil
lemma trefoil:
kauff-mat ([cup,cup]∗[vert,over ,vert]∗[vert,over ,vert]∗[vert,over ,vert]

∗(basic [cap,cap]))
= [[trefoil-polynomial]]

by(simp add: mat-multI-def matT-vec-multI-def rat-poly.row-length-def
scalar-prod trefoil-polynomial-def )

end
theory Knot-Theory
imports Kauffman-Invariance Example
begin

end
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