Knight’s Tour Revisited Revisited

Lukas Koller
Department of Informatics
Technical University of Munich

March 17, 2025

Abstract

This is a formalization of the article “Knight’s Tour Revisited” by
Cull and De Curtins where they prove the existence of a Knight’s path
for arbitrary n x m-boards with min(n,m) > 5. If n - m is even, then
there exists a Knight’s circuit.

A Knight’s Path is a sequence of moves of a Knight on a chessboard
s.t. the Knight visits every square of a chessboard exactly once. Find-
ing a Knight’s path is a an instance of the Hamiltonian path problem.

During the formalization two mistakes in the original proof were
discovered. These mistakes are corrected in this formalization.

Contents
1 Introduction and Definitions

2 Executable Checker for a Knight’s Path
2.1 Implementation of an Executable Checker
2.2 Correctness Proof of the Executable Checker

3 Basic Properties of knights-path and knights-circuit

4 Transposing Paths and Boards
4.1 Implementation of Path and Board Transposition
4.2 Correctness of Path and Board Transposition

5 Mirroring Paths and Boards
5.1 Implementation of Path and Board Mirroring
5.2 Correctness of Path and Board Mirroring
5.3 Rotate Knight’s Paths

15
15
15

6 Translating Paths and Boards 26

6.1 Implementation of Path and Board Translation 26
6.2 Correctness of Path and Board Translation 26
6.3 Concatenate Knight’s Paths and Circuits 32
7 Parsing Paths 36
8 Knight’s Paths for 5 xm-Boards 37
9 Knight’s Paths and Circuits for 6 xm-Boards 45
10 Knight’s Paths and Circuits for 8§ xm-Boards 53
11 Knight’s Paths and Circuits for nxm-Boards 63

theory KnightsTour
imports Main
begin

1 Introduction and Definitions

A Knight’s path is a sequence of moves on a chessboard s.t. every step in
sequence is a valid move for a Knight and that the Knight visits every square
on the boards exactly once. A Knight is a chess figure that is only able
to move two squares vertically and one square horizontally or two squares
horizontally and one square vertically. Finding a Knight’s path is an instance
of the Hamiltonian Path Problem. A Knight’s circuit is a Knight’s path,
where additionally the Knight can move from the last square to the first
square of the path, forming a loop.

Cull and De Curtins [1] prove the existence of a Knight’s path on a nxm-
board for sufficiently large n» and m. The main idea for the proof is to
inductivly construct a Knight’s path for the nxm-board from a few pre-
computed Knight’s paths for small boards, i.e. 5x35, §x6, ..., 8x9. The
paths for small boards are transformed (i.e. transpose, mirror, translate)
and concatenated to create paths for larger boards.

While formalizing the proofs I discovered two mistakes in the original proof
in [1]: (i) the pre-computed path for the 6 x 6-board that ends in the upper-
left (in Figure 2) and (ii) the pre-computed path for the 8x8-board that
ends in the upper-left (in Figure 5) are incorrect: on the 6x6-board the
Knight cannot step from square 26 to square 27; in the 8x&8-board the
Knight cannot step from square 27 to square 28. In this formalization I
have replaced the two incorrect paths with correct paths.

A square on a board is identified by its coordinates.

type-synonym square = int X int

A board is represented as a set of squares. Note, that this allows boards to
have an arbitrary shape and do not necessarily need to be rectangular.

type-synonym board = square set

A (rectangular) (nxm)-board is the set of all squares (i,j) where 1 < i <n
and 1 < j < m. (1,1)is the lower-left corner, and (n,m) is the upper-right
corner.

definition board :: nat = nat = board where
board nm = {(i,j) |ij. 1 <iANi<intn A1 <jAj<intm}

A path is a sequence of steps on a board. A path is represented by the list of
visited squares on the board. Each square on the (nxm)-board is identified
by its coordinates (7,7).

type-synonym path = square list

A Knight can only move two squares vertically and one square horizontally
or two squares horizontally and one square vertically. Thus, a knight at
position (¢,j) can only move to (i+1,j+2) or (i+2,j+1).
definition valid-step :: square = square = bool where
valid-step s; s; = (case s; of (1,§) = s; € {(i+1,j+2),(i—1,5+2),(i+1,j—2),(i—1,j—2),
(i+2,j+1),(i—2,j+1),(i+2,j—1),(i—2,j—1)})

Now we define an inductive predicate that characterizes a Knight’s path. A
square s; can be pre-pended to a current Knight’s path s;#ps if (i) there is
a valid step from the square s; to the first square s; of the current path and
(ii) the square s; has not been visited yet.

inductive knights-path :: board = path = bool where

knights-path {s;} [s:]
| s; ¢ b = valid-step s; s; = knights-path b (s;#ps) == knights-path (b U {s;})
(s:#ts;4ps)

code-pred knights-path .

A sequence is a Knight’s circuit iff the sequence if a Knight’s path and there
is a valid step from the last square to the first square.

definition knights-circuit b ps = (knights-path b ps A wvalid-step (last ps) (hd ps))

2 Executable Checker for a Knight’s Path

This section gives the implementation and correctness-proof for an exe-
cutable checker for a knights-path w.r.t. the definition knights-path.

2.1 Implementation of an Executable Checker

fun row-exec :: nat = int set where
row-exec 0 = {}
| row-exec m = insert (int m) (row-exec (m—1))

fun board-exec-auzx :: nat = int set = board where
board-ezec-aux 0 M = {}
| board-exec-auz k M = {(int k,j) |j. j € M} U board-exec-auzx (k—1) M

Compute a board.

fun board-ezec :: nat = nat = board where
board-exec n m = board-exec-auzr n (row-exec m)

fun step-checker :: square = square = bool where
step-checker (i,j) (i',j)) =
((Z+17J+2) = (ilvjl) \ (Z_Za.7+2) = (Z/a],) \4 (Z+17.7_2) = (Z./vjl) \ (2_17.]_2)
= ("3
V (Z+2a]+1) = (ilvj/) \ (2727‘74’1) = (Z'/hj/) \% (7’+2a]71) = (ilajl) \ (2727]71)
= (i".4")

fun path-checker :: board = path = bool where
path-checker b [| = False
| path-checker b [s;] = ({s;} = b)
| path-checker b (s;#s;#ps) = (s; € b A step-checker s; s; N path-checker (b —
{si}) (s;#ps))

fun circuit-checker :: board = path = bool where
circuit-checker b ps = (path-checker b ps A step-checker (last ps) (hd ps))

2.2 Correctness Proof of the Executable Checker

lemma row-ezec-leq: j € row-ezec m +— 1 < j A j < intm
by (induction m) auto

lemma board-exec-auz-leg-mem: (i,5) € board-exec-aux k M +— 1 < i A i < int
kAjeM
by (induction k M rule: board-exec-auz.induct) auto

lemma board-exec-leq: (i,j) € board-execnm +— 1 < iANi<intnAN1<jAj
< intm
using board-ezxec-aux-leg-mem row-exec-leq by auto

lemma board-exec-correct: board n m = board-exec n m
unfolding board-def using board-exec-leq by auto

lemma step-checker-correct: step-checker s; s; <— valid-step s; s;
proof

assume step-checker s; s;

then show wvalid-step s; s;

unfolding valid-step-def
apply (cases s;)
apply (cases s;)
apply auto
done
next
assume assms: valid-step s; s;
then show step-checker s; s;
unfolding valid-step-def by auto
qed

lemma step-checker-rev: step-checker (i,5) (i',j") = step-checker (i’,j") (4,5)
apply (simp only: step-checker.simps)
by (elim disjE) auto

lemma knights-path-intro-rev:
assumes s; € b valid-step s; s; knights-path (b — {s;}) (s;#ps)
shows knights-path b (s;#s;#ps)
using assms
proof —
assume assms: s; € b valid-step s; s; knights-path (b — {s;}) (s;#ps)
then have s; ¢ (b — {s;}) b — {s;} U {si} = b
by auto
then show ?thesis
using assms knights-path.intros(2)[of s; b — {s;}] by auto
qged

Final correctness corollary for the executable checker path-checker.

lemma path-checker-correct: path-checker b ps <— knights-path b ps
proof
assume path-checker b ps
then show knights-path b ps
proof (induction rule: path-checker.induct)
case (3s; s s b)
then show ?case using step-checker-correct knights-path-intro-rev by auto
qed (auto intro: knights-path.intros)
next
assume knights-path b ps
then show path-checker b ps
using step-checker-correct
by (induction rule: knights-path.induct) (auto elim: knights-path.cases)
qed

corollary knights-path-exec-simp: knights-path (board n m) ps <— path-checker
(board-exec n m) ps
using board-exec-correct path-checker-correct[symmetric] by simp

lemma circuit-checker-correct: circuit-checker b ps <— knights-circuit b ps
unfolding knights-circuit-def using path-checker-correct step-checker-correct by

auto

corollary knights-circuit-exec-simp:
knights-circuit (board n m) ps +— circuit-checker (board-exec n m) ps
using board-exec-correct circuit-checker-correct[symmetric] by simp

3 Basic Properties of knights-path and knights-circuit

lemma board-leq-subset: n1 < ny A mp < mg = board n1 my C board no ms
unfolding board-def by auto

lemma finite-row-ezxec: finite (row-exec m)
by (induction m) auto

lemma finite-board-exec-auz: finite M = finite (board-exec-aux n M)
by (induction n) auto

lemma board-finite: finite (board n m)
using finite-board-exec-auz finite-row-exec by (simp only: board-exec-correct) auto

lemma card-row-ezec: card (row-exec m) = m
proof (induction m)
case (Suc m)
have int (Suc m) ¢ row-exec m
using row-ezrec-leq by auto
then have card (insert (int (Suc m)) (row-exec m)) = 1 + card (row-exec m)
using card-Suc-eq by (metis Suc plus-1-eq-Suc row-ezxec.simps(1))
then have card (row-exec (Suc m)) = 1 + card (row-exec m)
by auto
then show ?case using Suc.IH by auto
qed auto

lemma set-comp-ins:
{(k,4) |j. j € insert x M} = insert (k.x) {(k.j) |j. j € M} (is ?Mi = %M)
proof
show ?Mi C 2¢M
proof
fix y assume y € ?2Mi
then obtain j where [simp]: y = (k,j) and j € insert © M by blast
then have j = z V j € M by auto
then show y € %M by (elim disjE) auto
qged
next
show %M C ?M;i
proof
fix y assume y € %M
then obtain j where [simp]: y = (k,j) and j € insert M by blast
then have j = z V j € M by auto
then show y € ?Mi by (elim disjE) auto

qed
qed

lemma finite-card-set-comp: finite M = card {(k,j) |j. j € M} = card M
proof (induction M rule: finite-induct)

case (insert © M)

then show ?case using set-comp-ins[of k © M| by auto
qed auto

lemma card-board-exec-auz: finite M —> card (board-exec-auz k M) = k * card M
proof (induction k)

case (Suc k)

let ?M'={(int (Suc k),j) |j. j € M}

let ?rec-k=board-exec-auz k M

have finite: finite M’ finite ?rec-k
using Suc finite-board-exec-auzr by auto

then have card-Un-simp: card (?M' U ?%rec-k) = card ?M’ + card ?rec-k
using board-ezec-auz-leg-mem card-Un-Intlof ?M’ ?rec-k] by auto

have card-M: card ?M' = card M
using Suc finite-card-set-comp by auto

have card (board-ezec-auz (Suc k) M) = card ?M’' + card ?rec-k
using card-Un-simp by auto

also have ... = card M + k % card M
using Suc card-M by auto
also have ... = (Suc k) * card M
by auto
finally show ?Zcase .
qed auto

lemma card-board: card (board n m) = n * m
proof —
have card (board n m) = card (board-ezec-auz n (row-exec m))
using board-exec-correct by auto
also have ... = n x m
using card-row-ezec card-board-exec-auz finite-row-exec by auto
finally show ?thesis .
qed

lemma knights-path-board-non-empty: knights-path b ps = b # {}
by (induction arbitrary: ps rule: knights-path.induct) auto

lemma knights-path-board-m-n-geq-1: knights-path (board n m) ps = min n m >
1
unfolding board-def using knights-path-board-non-empty by fastforce

lemma knights-path-non-nil: knights-path b ps = ps # ||

by (induction arbitrary: b rule: knights-path.induct) auto

lemma knights-path-set-eq: knights-path b ps = set ps = b
by (induction rule: knights-path.induct) auto

lemma knights-path-subset:
knights-path by psy = knights-path by pso = set ps; C set psg <— by C by
using knights-path-set-eq by auto

lemma knights-path-board-unique: knights-path by ps = knights-path bs ps =
by = bs
using knights-path-set-eq by auto

lemma valid-step-neq: valid-step s; s; = s; # s;
unfolding valid-step-def by auto

lemma valid-step-non-transitive: valid-step s; s; == valid-step s; s, = —valid-step
Si Sk
proof —
assume assms: valid-step s; s; valid-step s; sy
obtain 4; j; i; j; ix jx where [simp]: s; = (4;,5:) s; = (45,5;) Sk = (ik,jr) by
force
then have step-checker (i;,5;) (ij,5;) step-checker (i;,5;) (1k,jk)
using assms step-checker-correct by auto
then show —walid-step s; sk
apply (simp add: step-checker-correct[symmetric])
apply (elim disjE)
apply auto
done
qed

lemma knights-path-distinct: knights-path b ps = distinct ps
proof (induction rule: knights-path.induct)
case (2 s; b s; ps)
then have s; ¢ set (s; # ps)
using knights-path-set-eq valid-step-neq by blast
then show ?case using 2 by auto
qed auto

lemma knights-path-length: knights-path b ps = length ps = card b
using knights-path-set-eq knights-path-distinct by (metis distinct-card)

lemma knights-path-take:
assumes knights-path b ps 0 < k k < length ps
shows knights-path (set (take k ps)) (take k ps)
using assms

proof (induction arbitrary: k rule: knights-path.induct)
case (2 s; b s; ps)
then have k=1 V k= 2V 2 < k by force

then show ?case
using 2
proof (elim disjE)
assume k£ = 2
then have take k (s;#s;#ps) = [si,8;] si ¢ {s;} using 2 valid-step-neq by
auto
then show ?thesis using 2 knights-path.intros by auto
next
assume 2 < k
then have k-simps: k—2 = k—1—1 0 < k—2 k—2 < length ps and
take-simpl: take k (s;#s;#ps) = si#take (k—1) (s;#ps) and
take-simp2: take k (s;#s;#ps) = si#s;#take (k—1—1) ps
using assms 2 take-Cons'[of k s; s;#ps| take-Cons'[of k—1 s; ps] by auto
then have knights-path (set (take (k—1) (s;j#ps))) (take (k—1) (s;#ps))
using 2 k-simps by auto
then have kp: knights-path (set (take (k—1) (s;#ps))) (s;#take (k—2) ps)
using take-Cons’lof k—1 s; ps] by (auto simp: k-simps elim: knights-path.cases)

have no-mem: s; ¢ set (take (k—1) (s;#ps))
using 2 set-take-subset[of k—1 s;#ps] knights-path-set-eq by blast
have knights-path (set (take (k—1) (s;#ps)) U {si}) (si#s;#take (k—2) ps)
using knights-path.intros(2)[OF no-mem <valid-step s; s;» kp] by auto
then show ?thesis using k-simps take-simp2 knights-path-set-eq by metis
qed (auto intro: knights-path.intros)
qed auto

lemma knights-path-drop:
assumes knights-path b ps 0 < k k < length ps
shows knights-path (set (drop k ps)) (drop k ps)
using assms
proof (induction arbitrary: k rule: knights-path.induct)
case (2 s; b s; ps)
then have (k=1 Aps=][))V(k=1Aps#]]) V1 <kby force
then show ?case
using 2
proof (elim disjE)
assume k = 1 A ps # []
then show ?thesis using 2 knights-path-set-eq by force
next
assume [< k
then have 0 < k—1 k—1 < length (s;#ps) drop k (s;#s;#ps) = drop (k—1)
(s,5)
using assms 2 drop-Cons'lof k s; s;j#ps] by auto
then show ?thesis
using 2 by auto
qed (auto intro: knights-path.intros)
qed auto

A Knight’s path can be split to form two new disjoint Knight’s paths.

corollary knights-path-split:
assumes knights-path b ps 0 < k k < length ps
shows
3by ba. knights-path by (take k ps) A knights-path bs (drop k ps) A by U by = b
AbyNby={}
using assms
proof —
let ?b1=set (take k ps)
let ?by=set (drop k ps)
have kp1: knights-path ?by (take k ps) and kp2: knights-path ?by (drop k ps)
using assms knights-path-take knights-path-drop by auto
have union: b1 U ?by = b
using assms knights-path-set-eq by (metis append-take-drop-id set-append)
have inter: 2by N by = {}
using assms knights-path-distinct by (metis append-take-drop-id distinct-append)
show ?thesis using kp1 kp2 union inter by auto
qed

Append two disjoint Knight’s paths.

corollary knights-path-append:

assumes knights-path by psi knights-path by pse by N ba = {} wvalid-step (last
ps1) (hd ps2)

shows knights-path (b1 U b2) (ps1 @ pss)

using assms
proof (induction arbitrary: pss by rule: knights-path.induct)

case (1 s;)

then have s; ¢ by psy # || valid-step s; (hd pse) knights-path by (hd psa#tl pss)

using knights-path-non-nil by auto
then have knights-path (by U {s;}) (s;#hd psaFttl pss)
using knights-path.intros by blast
then show ?case using «pss # [|» by auto
next
case (2 Si b1 Sj psl)
then have s; ¢ by U by valid-step s; s; knights-path (b1 U by) (s;#ps1@Qpss2) by
auto
then have knights-path (b1 U by U {s;}) (si#s;#ps1Qpss)
using knights-path.intros by auto
then show ?case by auto
qged

lemma valid-step-rev: valid-step s; s; = valid-step s; s;
using step-checker-correct step-checker-rev by (metis prod.ezhaust-sel)

Reverse a Knight’s path.

corollary knights-path-rev:
assumes knights-path b ps
shows knights-path b (rev ps)
using assms

10

proof (induction rule: knights-path.induct)
case (2 s; b s; ps)
then have knights-path {s;} [s;] b N {s;} = {} valid-step (last (rev (s; # ps)))
(hd [si])
using valid-step-rev by (auto intro: knights-path.intros)
then have knights-path (b U {s;}) ((rev (s;#ps))Q[s;])
using 2 knights-path-append by blast
then show ?case by auto
qed (auto intro: knights-path.intros)

Reverse a Knight’s circuit.

corollary knights-circuit-rev:
assumes knights-circuit b ps
shows knights-circuit b (rev ps)
using assms knights-path-rev valid-step-rev
unfolding knights-circuit-def by (auto simp: hd-rev last-rev)

lemma knights-circuit-rotatel :
assumes knights-circuit b (s;#ps)
shows knights-circuit b (psQ[s;])
proof (cases ps = [])
case True
then show ?thesis using assms by auto
next
case Fulse
have kp1: knights-path b (s;#ps) valid-step (last (s;#ps)) (hd (s;#ps))
using assms unfolding knights-circuit-def by auto
then have kp-elim: s; ¢ (b — {s;}) valid-step s; (hd ps) knights-path (b — {s;})
ps
using «ps # [> by (auto elim: knights-path.cases)
then have vs” valid-step (last (psQ[s;])) (hd (psQ[s;]))
using <ps # [valid-step-rev by auto

have kp2: knights-path {s;} [s;] (b — {s;}) N {s;} = {}
by (auto intro: knights-path.intros)

have vs: valid-step (last ps) (hd [s;])
using «ps # [<valid-step (last (s;#ps)) (hd (s;#ps))> by auto

have (b — {s;}) U {s;} = b
using kp1 kp-elim knights-path-set-eq by force
then show ?thesis
unfolding knights-circuit-def
using vs knights-path-append|OF <knights-path (b — {s;}) ps» kp2] vs’ by auto
qed

A Knight’s circuit can be rotated to start at any square on the board.

11

lemma knights-circuit-rotate-to:
assumes knights-circuit b ps hd (drop k ps) = s; k < length ps
shows 3 ps’. knights-circuit b ps’ A hd ps’ = s;
using assms
proof (induction k arbitrary: b ps)
case (Suc k)
let ?s;=hd ps
let ?ps'=tl ps
show ?Zcase
proof (cases s; = ?s;)
case True
then show ?thesis using Suc by auto
next
case Fulse
then have ?ps’ # ||
using Suc by (metis drop-Nil drop-Suc drop-eq-Nil2 le-antisym nat-less-le)
then have knights-circuit b (?s;# ?ps’)
using Suc by (metis list.exhaust-sel tl-Nil)
then have knights-circuit b (?ps'Q[?s;]) hd (drop k (?ps'Q[%s;])) = s;
using Suc knights-circuit-rotatel by (auto simp: drop-Suc)
then show ?thesis using Suc by auto
qed
qged auto

For positive boards (1,1) can only have (2,3) and (3,2) as a neighbour.

lemma valid-step-1-1:
assumes valid-step (1,1) (i,j) i > 07> 0
shows (i,7) = (2,3) V (i,j) = (3,2)
using assms unfolding valid-step-def by auto

lemma list-len-g-1-split: length zs > 1 = Iz x93 xs'. 158 = T1H#T2H 28’
proof (induction xs)
case (Cons z zs)
then have length xs > 0 by auto
then have length zs > 1 by presburger
then have length xs = 1 V length xs > 1 by auto
then show ?case
proof (elim disjE)
assume length xs = 1
then obtain z; where [simp]: zs = [z1]
using length-Suc-conv[of s 0] by auto
then show ?thesis by auto
next
assume [< length zs
then show ?thesis using Cons by auto
qed
qed auto

lemma list-len-g-3-split: length s > 3 = J11 x3 s’ T3. 18 = Ty H T2 H#15' Q3]

12

proof (induction xs)
case (Cons z zs)
then have length xs = 3 V length s > 3 by auto
then show ?Zcase
proof (elim disjE)
assume length s = 3
then obtain z; zs; where [simp]: xs = z1#xs1 length zs1 = 2
using length-Suc-conv|of zs 2] by auto
then obtain zy xsy where [simp]: xs1 = zoFtxse length xsy = 1
using length-Suc-conv|of zs1 1] by auto
then obtain z3 where [simp]: zsy = [z3]
using length-Suc-conv[of zsy 0] by auto
then show ?thesis by auto
next
assume length xs > 3
then show ?thesis using Cons by auto
qed
qed auto

Any Knight’s circuit on a positive board can be rotated to start with (1,1)
and end with (3,2).

corollary rotate-knights-circuit:
assumes knights-circuit (board n m) ps min nm > 5
shows 3 ps. knights-circuit (board n m) ps A hd ps = (1,1) A last ps = (3,2)
using assms
proof —
let ?b=board n m
have knights-path ?b ps
using assms unfolding knights-circuit-def by auto
then have (1,1) € set ps
using assms knights-path-set-eq by (auto simp: board-def)
then obtain k£ where hd (drop k ps) = (1,1) k < length ps
by (metis hd-drop-conv-nth in-set-conv-nth)
then obtain ps, where ps,-prems: knights-circuit b ps, hd ps, = (1,1)
using assms knights-circuit-rotate-to by blast
then have kp: knights-path ?b ps, and valid-step (last ps,) (1,1)
unfolding knights-circuit-def by auto

have (1,1) € ?b (1,2) € 2b (1,3) € ?b
using assms unfolding board-def by auto

then have (1,1) € set ps, (1,2) € set ps, (1,3) € set psy
using kp knights-path-set-eq by auto

have 3 < card ?b
using assms board-leg-subset card-board[of 5 5]
card-mono| OF board-finite[of n m], of board 5 5] by auto
then have 3 < length ps,
using knights-path-length kp by auto
then obtain s; ps’ si where [simp]: ps, = (1,1)#s;#ps'Q[sy]

13

using <hd ps,. = (1,1)) list-len-g-3-split[of ps.| by auto
have s; # s
using kp knights-path-distinct by force

have vs-s: valid-step sy, (1,1)
using <valid-step (last ps,) (1,1)) by simp

have vs-s;: valid-step (1,1) s; and kp”: knights-path (7b — {(1,1)}) (s;#ps'Q[sk])
using kp by (auto elim: knights-path.cases)

have s; € set ps, s;, € set ps, by auto
then have s; € %b s, € 2b
using kp knights-path-set-eq by blast+
then have 0 < fst s; A 0 < snd s; 0 < fst s, N 0 < snd s,
unfolding board-def by auto
then have s, = (2,3) V s = (8,2) s; = (2,3) V s; = (3,2)
using vs-sj vs-s; valid-step-1-1 valid-step-rev by (metis prod.collapse)+
then have s; = (38,2) V s; = (3,2)
using (s; # sp> by auto
then show ?thesis
proof (elim disjE)
assume s, = (3,2)
then have last ps, = (3,2) by auto
then show ?thesis using ps,-prems by auto
next
assume s; = (3,2)
then have vs: wvalid-step (last ((1,1)#rev (s;#ps'Q[sg]))) (hd ((1,1)#rev
(s;#ps'Q[s])))
unfolding valid-step-def by auto

have rev-simp: rev (s;#ps'Q[sy]|) = sp#(rev ps’)Q[s;] by auto

have knights-path (2b — {(1,1)}) (rev (s;#ps'Q[sk]))
using knights-path-rev[OF kp'] by auto
then have (1,1) ¢ (%0 — {(1,1)}) valid-step (1,1) sy
knights-path (20 — {(1,1)}) (sx#(rev ps’)Q[s;])
using assms vs-sy valid-step-rev by (auto simp: rev-simp)
then have knights-path (?b — {(1, 1)} U {(1, 1)}) ((1,1)#sk#(rev ps’)Q][s;])
using knights-path.intros(2)[of (1,1) ?b — {(1,1)} sk (rev ps’)Q[s;]] by auto
then have knights-path 7b ((1,1)#rev (s;#ps'Q[sy]))
using assms by (simp add: board-def insert-absorb rev-simp)
then have knights-circuit 2b ((1,1)#rev (s;#ps'Q[sk]))
unfolding knights-circuit-def using vs by auto
then show ?thesis
using «s; = (3,2)» by auto
qed
qed

14

4 Transposing Paths and Boards

4.1 Implementation of Path and Board Transposition

definition transpose-square s; = (case s; of (i,j) = (4,7))

fun transpose :: path = path where
transpose [| = |]
| transpose (s;#ps) = (transpose-square s;)#transpose ps

definition transpose-board :: board = board where
transpose-board b = {(j4,4) |i j. (i,j) € b}

4.2 Correctness of Path and Board Transposition

lemma transpose2: transpose-square (transpose-square $;) = 8;
unfolding transpose-square-def by (auto split: prod.splits)

lemma transpose-nil: ps = [| +— transpose ps = ||
using transpose.elims by blast

lemma transpose-length: length ps = length (transpose ps)
by (induction ps) auto

lemma hd-transpose: ps #[] = hd (transpose ps) = transpose-square (hd ps)
by (induction ps) (auto simp: transpose-square-def)

lemma last-transpose: ps #[] = last (transpose ps) = transpose-square (last ps)
proof (induction ps)
case (Cons s; ps)
then show ?case
proof (cases ps = [])
case True
then show ?thesis using Cons by (auto simp: transpose-square-def)
next
case Fulse
then show %thesis using Cons transpose-nil by auto
qed
qed auto

lemma take-transpose:

shows take k (transpose ps) = transpose (take k ps)
proof (induction ps arbitrary: k)

case Nil

then show ?case by auto
next

case (Cons s; ps)

then obtain ¢ j where s; = (4,j) by force

then have k = 0 V k£ > 0 by auto

then show ?case

15

proof (elim disjE)
assume k£ > 0
then show ?2thesis using Cons.IH by (auto simp: <s; = (i,7)> take-Cons’)
qed auto
qed

lemma drop-transpose:
shows drop k (transpose ps) = transpose (drop k ps)
proof (induction ps arbitrary: k)
case Nil
then show ?Zcase by auto
next
case (Cons s; ps)
then obtain i j where s; = (i,j) by force
then have k = 0 V k£ > 0 by auto
then show ?case
proof (elim disjE)
assume k > 0
then show ?thesis using Cons.IH by (auto simp: <s; = (i,j)» drop-Cons’)
qed auto
qed

lemma transpose-board-correct: s; € b +— (transpose-square s;) € transpose-board
b
unfolding transpose-board-def transpose-square-def by (auto split: prod.splits)

lemma transpose-board: transpose-board (board n m) = board m n
unfolding board-def using transpose-board-correct by (auto simp: transpose-square-def)

lemma insert-transpose-board:
insert (transpose-square s;) (transpose-board b) = transpose-board (insert s; b)
unfolding transpose-board-def transpose-square-def by (auto split: prod.splits)

lemma transpose-board2: transpose-board (transpose-board b) = b
unfolding transpose-board-def by auto

lemma transpose-union: transpose-board (by U be) = transpose-board by U trans-
pose-board by
unfolding transpose-board-def by auto

lemma transpose-valid-step:
valid-step s; s; <— valid-step (transpose-square s;) (transpose-square s;)
unfolding valid-step-def transpose-square-def by (auto split: prod.splits)

lemma transpose-knights-path':
assumes knights-path b ps
shows knights-path (transpose-board b) (transpose ps)
using assms

proof (induction rule: knights-path.induct)

16

case (1 s;)
then have transpose-board {s;} = {transpose-square s;} transpose [s;] = [transpose-square
using transpose-board-correct by (auto simp: transpose-square-def split: prod.splits)
then show Zcase by (auto intro: knights-path.intros)
next
case (2 s; b s; ps)
then have prems: transpose-square s; ¢ transpose-board b
valid-step (transpose-square s;) (transpose-square s;)
and transpose (sj#ps) = transpose-square s;#transpose ps
using 2 transpose-board-correct transpose-valid-step by auto
then show ?case
using 2 knights-path.intros(2)[OF prems| insert-transpose-board by auto
qed

corollary transpose-knights-path:

assumes knights-path (board n m) ps

shows knights-path (board m n) (transpose ps)

using assms transpose-knights-path’[of board n m ps] by (auto simp: trans-
pose-board)

corollary transpose-knights-circuit:
assumes knights-circuit (board n m) ps
shows knights-circuit (board m n) (transpose ps)
using assms
proof —
have knights-path (board n m) ps and vs: valid-step (last ps) (hd ps)
using assms unfolding knights-circuit-def by auto
then have kp-t: knights-path (board m n) (transpose ps) and ps # ||
using transpose-knights-path knights-path-non-nil by auto
then have valid-step (last (transpose ps)) (hd (transpose ps))
using vs hd-transpose last-transpose transpose-valid-step by auto
then show %thesis using kp-t by (auto simp: knights-circuit-def)
qed

5 Mirroring Paths and Boards

5.1 Implementation of Path and Board Mirroring

abbreviation minl ps = Min ((fst) * set ps)

abbreviation maz! ps = Maz ((fst) ‘ set ps)
abbreviation min2 ps = Min ((snd) * set ps)
abbreviation maz2 ps = Maz ((snd) * set ps)

definition mirrori-square :: int = square = square where
mirrorl-square n s; = (case s; of (i,j) = (n—1i,5))

fun mirrori-auz :: int = path = path where
mirrorl-auz n [= ||

17

| mirrorl-aux n (s;#ps) = (mirrorl-square n s;)#mirrorl-aux n ps
definition mirror! ps = mirrorl-auz (mazl ps + minl ps) ps

definition mirrori-board :: int = board = board where
mirror1-board n b = {mirrorl-square n s; |s;. s; € b}

definition mirror2-square :: int = square = square where
mirror2-square m s; = (case s; of (i,j) = (i,m—j))

fun mirror2-aux :: int = path = path where
mirror2-auzx m [| = []
| mirror2-aux m (s;#ps) = (mirror2-square m s;)#Fmirror2-auz m ps

definition mirror2 ps = mirror2-aux (max2 ps + min2 ps) ps

definition mirror2-board :: int = board = board where
mirror2-board m b = {mirror2-square m s; |s;. s; € b}

5.2 Correctness of Path and Board Mirroring

lemma mirror1-board-id: mirrori-board (int n+1) (board n m) = board n m (is -
= 2b)
proof
show mirrori-board (int n+1) ?b C 2b
proof
fix s;’
assume assms: s;' € mirrorl-board (int n+1) ?b
then obtain ¢’ j' where [simp]: s;' = (i',j') by force
then have (i',j') € mirrori-board (int n+1) 2b
using assms by auto
then obtain i j where (i,j) € 2b mirrorl-square (int n+1) (i,j) = (¢',j")
unfolding mirrori-board-def by auto
then have 1 < i Ai<intn 1 <jAj<intmi'=(int n+1)—ij'=j
unfolding board-def mirrori-square-def by auto
then have 1 < i'"Ai' < intnl1 <j ANj <intm
by auto
then show s;’ € %b
unfolding board-def by auto
qged
next
show ?2b C mirrori-board (int n+1) 2b
proof
fix s;
assume assms: s; € b
then obtain ¢ j where [simp]: s; = (i,j) by force
then have (i,j) € b
using assms by auto
then have 1 <iA i< intnl <jAjF<intm

18

unfolding board-def by auto

then obtain i’ j' where i'=(int n+1)—i j'=j by auto

then have (i',j") € 2b mirrorl-square (int n+1) (i'j") = (i)
using <1 < i A i< intn <1 <jAj<intm
unfolding mirrori-square-def by (auto simp: board-def)

then show s; € mirrori-board (int n+1) 2b
unfolding mirrori-board-def by force

qed
qed

lemma mirror2-board-id: mirror2-board (int m~+1) (board n m) = board n m (is -
= ?2b)
proof
show mirror2-board (int m+1) %0 C 2b
proof
fix Si/
assume assms: s;’ € mirror2-board (int m+1) b
then obtain ¢’ j' where [simp]: s;" = (i',j') by force
then have (i',j") € mirror2-board (int m+1) b
using assms by auto
then obtain ¢ j where (i,j) € ?b mirror2-square (int m+1) (4,j) = (i',j’)
unfolding mirror2-board-def by auto
then have 1 <iAi<intn1 <jAj<intmi'=ij=(int m+1)—j
unfolding board-def mirror2-square-def by auto
then have 1 < i'"Ai' < intnl1 <j ANj <intm
by auto
then show s;’ € 7b
unfolding board-def by auto
qed
next
show ?b C mirror2-board (int m+1) 2b
proof
fix s;
assume assms: s; € b
then obtain ¢ j where [simp]: s; = (i,j) by force
then have (i,j) € b
using assms by auto
then have 1 <iANi<intnl <jAj<intm
unfolding board-def by auto
then obtain ¢’ j' where i'=i j'=(int m+1)—j by auto
then have (i',j') € ?b mirror2-square (int m+1) (i',j') = (i,j)
using <1 <t A i< intn <1 <jAj<intm
unfolding mirror2-square-def by (auto simp: board-def)
then show s; € mirror2-board (int m+1) %b
unfolding mirror2-board-def by force
qed
qed

lemma knights-path-minl: knights-path (board n m) ps = minl ps = 1

19

proof —
assume assms: knights-path (board n m) ps
then have min nm > 1
using knights-path-board-m-n-geq-1 by auto
then have (1,1) € board n m and ge-1: V (i,j) € board n m. i > 1
unfolding board-def by auto
then have finite: finite ((fst) ¢ board n m) and
non-empty: (fst) < board n m # {} and
mem-1: 1 € (fst) ‘ board n m
using board-finite by auto (metis fstl image-eql)
then have Min ((fst) ¢ board n m) = 1
using ge-1 by (auto simp: Min-eq-iff)
then show ?thesis
using assms knights-path-set-eq by auto
qed

lemma knights-path-min2: knights-path (board n m) ps = min2 ps = 1
proof —
assume assms: knights-path (board n m) ps
then have min n m > 1
using knights-path-board-m-n-geq-1 by auto
then have (1,1) € board n m and ge-1: ¥ (¢,7) € board n m. j > 1
unfolding board-def by auto
then have finite: finite ((snd) ‘ board n m) and
non-empty: (snd) ‘ board n m # {} and
mem-1: 1 € (snd) ‘ board n m
using board-finite by auto (metis sndl image-eql)
then have Min ((snd) ‘ board n m) = 1
using ge-1 by (auto simp: Min-eq-iff)
then show ?thesis
using assms knights-path-set-eq by auto
qed

lemma knights-path-maz1: knights-path (board n m) ps = mazxl ps = int n
proof —
assume assms: knights-path (board n m) ps
then have min n m > 1
using knights-path-board-m-n-geq-1 by auto
then have (int n,1) € board n m and leg-n: ¥ (i,5) € board n m. i < int n
unfolding board-def by auto
then have finite: finite ((fst) ¢ board n m) and
non-empty: (fst) ¢ board n m # {} and
mem-1: int n € (fst) ‘ board n m
using board-finite by auto (metis fstl image-eql)
then have Max ((fst) ‘ board n m) = int n
using leg-n by (auto simp: Maz-eq-iff)
then show ?thesis
using assms knights-path-set-eq by auto
qed

20

lemma knights-path-maz2: knights-path (board n m) ps = maz2 ps = int m
proof —
assume assms: knights-path (board n m) ps
then have min n m > 1
using knights-path-board-m-n-geq-1 by auto
then have (1,int m) € board n m and leg-m: V (4,j) € board n m. j < int m
unfolding board-def by auto
then have finite: finite ((snd) board n m) and
non-empty: (snd) ‘ board n m # {} and
mem-1: int m € (snd) ¢ board n m
using board-finite by auto (metis sndl image-eql)
then have Maxz ((snd) ¢ board n m) = int m
using leg-m by (auto simp: Maz-eq-iff)
then show ?thesis
using assms knights-path-set-eq by auto
qed

lemma mirrorl-auz-nil: ps = [| «— mirrori-auz m ps = ||
using mirrorl-aux.elims by blast

lemma mirrori-nil: ps = [| «— mirrorl ps = [|
unfolding mirrori-def using mirrori-auz-nil by blast

lemma mirror2-aux-nil: ps = [| «— mirror2-auz m ps = ||
using mirror2-auz.elims by blast

lemma mirror2-nil: ps = [| <— mirror2 ps = ||
unfolding mirror2-def using mirror2-auz-nil by blast

lemma length-mirrorl-auz: length ps = length (mirrorl-auxz n ps)
by (induction ps) auto

lemma length-mirror!: length ps = length (mirrorl ps)
unfolding mirrori-def using length-mirroril-auz by auto

lemma length-mirror2-auz: length ps = length (mirror2-auxz n ps)
by (induction ps) auto

lemma length-mirror2: length ps = length (mirror2 ps)
unfolding mirror2-def using length-mirror2-auz by auto

lemma mirrori-board-iff:s; ¢ b <— mirroril-square n s; ¢ mirrori-board n b
unfolding mirrori-board-def mirrori-square-def by (auto split: prod.splits)

lemma mirror2-board-iff:s; ¢ b <— mirror2-square n s; ¢ mirror2-board n b
unfolding mirror2-board-def mirror2-square-def by (auto split: prod.splits)

lemma insert-mirrorl-board:

21

insert (mirrorl-square n s;) (mirrori-board n b) = mirrori-board n (insert s; b)
unfolding mirrori-board-def mirrori-square-def by (auto split: prod.splits)

lemma insert-mirror2-board:
insert (mirror2-square n s;) (mirror2-board n b) = mirror2-board n (insert s; b)
unfolding mirror2-board-def mirror2-square-def by (auto split: prod.splits)

lemma valid-step-mirrorl:
valid-step s; s; «— valid-step (mirrorl-square n s;) (mirrorl-square n s;)
proof
assume assms: valid-step s; s;
obtain ¢ j ¢’ j' where [simp]: s; = (4,j) s; = (i,j') by force
then have valid-step (n—1,j) (n—i’j")
using assms unfolding valid-step-def
apply simp
apply (elim disjE)
apply auto
done
then show valid-step (mirrorl-square n s;) (mirrorl-square n s;)
unfolding mirrori-square-def by auto
next
assume assms: valid-step (mirrorl-square n s;) (mirrorl-square n s;)
obtain ¢ j ¢’ j' where [simp]: s; = (4,j) s; = (i,j') by force
then have wvalid-step (i,5) (i',j')
using assms unfolding valid-step-def mirrorl-square-def
apply simp
apply (elim disjE)
apply auto
done
then show wvalid-step s; s;
unfolding mirrori-square-def by auto
qed

lemma valid-step-mirror2:
valid-step s; s; <— valid-step (mirror2-square m s;) (mirror2-square m s;)
proof
assume assms: valid-step s; s;
obtain ¢ j ¢’ j/ where [simp]: s; = (4,§) s; = (i,j') by force
then have valid-step (i,m—j) (i’,m—j’)
using assms unfolding valid-step-def
apply simp
apply (elim disjE)
apply auto
done
then show valid-step (mirror2-square m s;) (mirror2-square m s;)
unfolding mirror2-square-def by auto
next
assume assms: valid-step (mirror2-square m s;) (mirror2-square m s;)
obtain ¢ j ¢’ j' where [simp]: s; = (4,j) s; = (i,j') by force

22

then have valid-step (i,5) (i',j")
using assms unfolding valid-step-def mirror2-square-def
apply simp
apply (elim disjE)
apply auto
done

then show wvalid-step s; s;
unfolding mirrori-square-def by auto

qed

lemma hd-mirrorl:

assumes knights-path (board n m) ps hd ps = (i,j)

shows hd (mirrorl ps) = (int n+1—1,j)

using assms
proof —

have hd (mirrorl ps) = hd (mirrorl-auz (int n+1) ps)

unfolding mirrori-def using assms knights-path-minl knights-path-maxl by

auto

also have ... = hd (mirrorl-auz (int n+1) ((hd ps)#(tl ps)))
using assms knights-path-non-nil by (metis list.collapse)
also have ... = (int n+1—1j)

using assms by (auto simp: mirrorl-square-def)
finally show ?thesis .
qed

lemma last-mirror!-aux:

assumes ps # || last ps = (i,5)

shows last (mirrorl-auz n ps) = (n—1,j)

using assms
proof (induction ps)

case (Cons s; ps)

then show Zcase

using mirrorl-auz-nil Cons by (cases ps = []) (auto simp: mirrori-square-def)

qed auto

lemma last-mirrorl:
assumes knights-path (board n m) ps last ps = (i,j)
shows last (mirror! ps) = (int n+1—1,j)
unfolding mirrori-def using assms last-mirrori-aux knights-path-non-nil
by (simp add: knights-path-maz1 knights-path-minl)

lemma hd-mirror2:

assumes knights-path (board n m) ps hd ps = (i,j)

shows hd (mirror2 ps) = (i,int m—+1—j)

using assms
proof —

have hd (mirror2 ps) = hd (mirror2-auz (int m+1) ps)

unfolding mirror2-def using assms knights-path-min2 knights-path-maz2 by

auto

23

also have ... = hd (mirror2-auz (int m+1) ((hd ps)#(tl ps)))
using assms knights-path-non-nil by (metis list.collapse)
also have ... = (i,int m—+1—j)
using assms by (auto simp: mirror2-square-def)
finally show ?thesis .
qed

lemma last-mirror2-auz:

assumes ps # || last ps = (i,5)

shows last (mirror2-auz m ps) = (i,m—j)

using assms
proof (induction ps)

case (Cons s; ps)

then show ?case

using mirror2-aux-nil Cons by (cases ps = []) (auto simp: mirror2-square-def)

qed auto

lemma last-mirror2:
assumes knights-path (board n m) ps last ps = (4,j)
shows last (mirror2 ps) = (i,int m+1—j)
unfolding mirror2-def using assms last-mirror2-auz knights-path-non-nil
by (simp add: knights-path-maz2 knights-path-min2)

lemma mirrori-aux-knights-path:
assumes knights-path b ps
shows knights-path (mirrorl-board n b) (mirrorl-auz n ps)
using assms
proof (induction rule: knights-path.induct)
case (1 s;)
then have mirrori-board n {s;} = {mirrorl-square n s;}
unfolding mirrori-board-def by blast
then show Zcase by (auto intro: knights-path.intros)
next
case (2 s; b s; ps)
then have prems: mirrori-square n s; ¢ mirrori-board n b
valid-step (mirrori-square n s;) (mirrorl-square n s;)
and mirrori-auz n (s;#ps) = mirrorl-square n s;#mirrorl-auz n ps
using 2 mirrorl-board-iff valid-step-mirror! by auto
then show ?case
using 2 knights-path.intros(2)[OF prems| insert-mirror1-board by auto
qed

corollary mirrori-knights-path:
assumes knights-path (board n m) ps
shows knights-path (board n m) (mirrorl ps)
using assms
proof —
have [simp]: minl ps = 1 mazl ps = int n
using assms knights-path-minl knights-path-mazl by auto

24

then have mirrori-board (int n+1) (board n m) = (board n m)
using mirrorI-board-id by auto
then have knights-path (board n m) (mirrorl-auz (int n+1) ps)
using assms mirror!-auz-knights-path[of board n m ps int n+1] by auto
then show ?thesis unfolding mirrori-def by auto
qed

lemma mirror2-auz-knights-path:
assumes knights-path b ps
shows knights-path (mirror2-board n b) (mirror2-auz n ps)
using assms
proof (induction rule: knights-path.induct)
case (1 s;)
then have mirror2-board n {s;} = {mirror2-square n s;}
unfolding mirror2-board-def by blast
then show Zcase by (auto intro: knights-path.intros)
next
case (2 s; b s; ps)
then have prems: mirror2-square n s; ¢ mirror2-board n b
valid-step (mirror2-square n s;) (mirror2-square n s;)
and mirror2-auz n (s;#ps) = mirror2-square n s;#Fmirror2-aus n ps
using 2 mirror2-board-iff valid-step-mirror2 by auto
then show ?case
using 2 knights-path.intros(2)[OF prems| insert-mirror2-board by auto
qed

corollary mirror2-knights-path:
assumes knights-path (board n m) ps
shows knights-path (board n m) (mirror2 ps)
proof —
have [simp]: min2 ps = 1 maz2 ps = int m
using assms knights-path-min2 knights-path-maz2 by auto
then have mirror2-board (int m+1) (board n m) = (board n m)
using mirror2-board-id by auto
then have knights-path (board n m) (mirror2-aux (int m+1) ps)
using assms mirror2-auz-knights-path[of board n m ps int m+1] by auto
then show ?thesis unfolding mirror2-def by auto
qged

5.3 Rotate Knight’s Paths

Transposing (KnightsTour.transpose) and mirroring (along first axis mir-
ror1) a Knight’s path preserves the Knight’s path’s property. Tranpose+Mir-
rorl equals a 90deg-clockwise turn.
corollary rot90-knights-path:

assumes knights-path (board n m) ps

shows knights-path (board m n) (mirrorl (transpose ps))
using assms transpose-knights-path mirror1-knights-path by auto

25

lemma hd-rot90-knights-path:
assumes knights-path (board n m) ps hd ps = (4,j)
shows hd (mirrorl (transpose ps)) = (int m+1—j,i)
using assms
proof —
have hd (transpose ps) = (j,i) knights-path (board m n) (transpose ps)
using assms knights-path-non-nil hd-transpose transpose-knights-path
by (auto simp: transpose-square-def)
then show “thesis using hd-mirror! by auto
qed

lemma last-rot90-knights-path:
assumes knights-path (board n m) ps last ps = (4,j)
shows last (mirrorl (transpose ps)) = (int m+1—j,7)
using assms
proof —
have last (transpose ps) = (j,i) knights-path (board m n) (transpose ps)
using assms knights-path-non-nil last-transpose transpose-knights-path
by (auto simp: transpose-square-def)
then show “thesis using last-mirror! by auto
qed

6 Translating Paths and Boards

When constructing knight’s paths for larger boards multiple knight’s paths
for smaller boards are concatenated. To concatenate paths the the coordi-
nates in the path need to be translated. Therefore, simple auxiliary functions
are provided.

6.1 Implementation of Path and Board Translation

Translate the coordinates for a path by (k1,k2).

fun trans-path :: int x int = path = path where
trans-path (k1,ks) [| = |
| trans-path (k1,k2) ((¢,)#xs) = (i+k1,j+ko)#(trans-path (k1,k2) xs)

Translate the coordinates of a board by (k1,k2).

definition trans-board :: int x int = board = board where
trans-board t b = (case t of (k1,k2) = {(i+k1,d+keo)|i j. (i,7) € b})

6.2 Correctness of Path and Board Translation

lemma trans-path-length: length ps = length (trans-path (k1,k2) ps)
by (induction ps) auto

lemma trans-path-non-nil: ps # [| = trans-path (k1,k2) ps #]
by (induction ps) auto

26

lemma trans-path-correct: (i,5) € set ps <— (i+k1,j+k2) € set (trans-path (ki,k2)
ps)
proof (induction ps)
case (Cons s; ps)
then show ?case by (cases s;) auto
qed auto

lemma trans-path-non-nil-last:
ps # [| = last (trans-path (k1,k2) ps) = last (trans-path (ki,k2) ((4,5)#ps))
using trans-path-non-nil by (induction ps) auto

lemma hd-trans-path:
assumes ps # [| hd ps = (i,5)
shows hd (trans-path (ki1,k2) ps) = (i+k1,j+k2)
using assms by (induction ps) auto

lemma last-trans-path:
assumes ps # || last ps = (i,5)
shows last (trans-path (ki,k2) ps) = (i+k1,j+k2)
using assms
proof (induction ps)
case (Cons s; ps)
then show ?case
using trans-path-non-nil-last[symmetric)
apply (cases s;)
apply (cases ps = [])
apply auto
done
qed (auto)

lemma take-trans:
shows take k (trans-path (ki,ke) ps) = trans-path (ki,ks) (take k ps)
proof (induction ps arbitrary: k)
case Nil
then show “case by auto
next
case (Cons s; ps)
then obtain i j where s; = (i,j) by force
then have £ = 0 V k£ > 0 by auto
then show ?case
proof (elim disjE)
assume k > (
then show ?thesis using Cons.IH by (auto simp: <s; = (4,j)> take-Cons’)
qged auto
qed

lemma drop-trans:
shows drop k (trans-path (ki,k2) ps) = trans-path (k1,k2) (drop k ps)

27

proof (induction ps arbitrary: k)
case Nil
then show ?case by auto
next
case (Cons s; ps)
then obtain i j where s; = (i,j) by force
then have £ = 0 V k£ > 0 by auto
then show ?case
proof (elim disjE)
assume k£ > 0
then show ?thesis using Cons.IH by (auto simp: <s; = (4,j)> drop-Cons’)
qged auto
qed

lemma trans-board-correct: (i,j) € b «— (i+k1,j+ke) € trans-board (k1,k2) b
unfolding trans-board-def by auto

lemma board-subset: ny < ng = my < my = board n1 my; C board no mo
unfolding board-def by auto

Board concatenation

corollary board-concat:
shows board n my U trans-board (0,int my) (board n ma) = board n (m1+ms)
(is 2b1 U b2 = 2b)
proof
show ?b1 U 202 C ?b unfolding board-def trans-board-def by auto
next
show 2b C 2b1 U 2b2
proof
fix x
assume z € ?b
then obtain ¢ j where z-split: x = (i,j) 1 <iANi<intnl1 <jAj<int
(m1+ms)
unfolding board-def by auto
then have j < int my V (int my < j A j < int (mi+msz)) by auto
then show z € 901 U %02
proof
assume j < int my
then show z € 201 U 9b2 using z-split unfolding board-def by auto
next
assume asm: int my; < j A j < int (mi+mg)
then have (i,j—int my) € board n mo using z-split unfolding board-def by
auto
then show z € %01 U 702
using z-split asm trans-board-correct[of i j—int my board n ms 0 int m1] by
auto
qed
qed
qed

28

lemma transpose-trans-board:
transpose-board (trans-board (k1,k2) b) = trans-board (ka,k1) (transpose-board b)
unfolding transpose-board-def trans-board-def by blast

corollary board-concatT":

shows board ny m U trans-board (int n1,0) (board ng m) = board (ni+nsz) m (is
?b1 U 2by = ?b)
proof —

let ?by T=board m nq

let 2bs T=trans-board (0,int ny) (board m ng)

have ?by U by = transpose-board (201 T U 2boT)

using transpose-board2 transpose-union transpose-board transpose-trans-board

by auto

also have ... = transpose-board (board m (ni+ns))
using board-concat by auto
also have ... = board (n1+nz2) m

using transpose-board by auto
finally show ?thesis .
qed

lemma trans-valid-step:
valid-step (i,5) (i',j") = wvalid-step (i+k1,j+ka) (i"+k1,j+k2)
unfolding valid-step-def by auto

Translating a path and a boards preserves the validity.

lemma trans-knights-path:
assumes knights-path b ps
shows knights-path (trans-board (k1,k2) b) (trans-path (ki,k2) ps)
using assms
proof (induction rule: knights-path.induct)
case (2s; b sj xs)
then obtain i j i’ j' where split: s; = (4,j) s; = (i',j) by force
let ?Si:(i+k1,j+k2)
let ?s;=(i"+k1,j"+k2)
let Zzs=trans-path (ki,ko) xs
let ?b=trans-board (k1,k2) b
have simps: trans-path (ki,k2) (si#sj#as) = Zsi# 9s;# ?xs
?b U {?2s;} = trans-board (k1,k2) (b U {s;})
unfolding trans-board-def using split by auto
have %s; ¢ ?b valid-step ?s; ?s; knights-path 2b (?s;# ?xs)
using 2 split trans-valid-step by (auto simp: trans-board-def)
then have knights-path (70 U {%s;}) (7s:# 9s;# %xs)
using knights-path.intros by auto
then show ?case using simps by auto
qed (auto simp: trans-board-def intro: knights-path.intros)

Predicate that indicates if two squares s; and s; are adjacent in ps.

definition step-in :: path = square = square = bool where

29

step-in ps s; s; = (k. 0 < k A k < length ps A last (take k ps) = s; A hd (drop
kps) = s;)

lemma step-in-Cons: step-in ps s; s; = step-in (Sp#ps) S; S;
proof —
assume step-in ps s; S;
then obtain k where 0 < k A k < length ps last (take k ps) = s; hd (drop k
ps) = s;
unfolding step-in-def by auto
then have 0 < k+1 A k+1 < length (sx#ps)
last (take (k+1) (sp#ps)) = si hd (drop (k+1) (sx#ps)) = s;
by auto
then show ?thesis
by (auto simp: step-in-def)
qed

lemma step-in-append: step-in ps s; s; = step-in (psQps’) s; s;
proof —
assume step-in ps s; s;
then obtain k£ where 0 < k A k < length ps last (take k ps) = s; hd (drop k
ps) = 8,
unfolding step-in-def by auto
then have 0 < k A k < length (psQps’)
last (take k (psQps’)) = s; hd (drop k (psQps’)) = s;
by auto
then show ?thesis
by (auto simp: step-in-def)
qed

lemma step-in-prepend: step-in ps s; s; = step-in (ps’Qps) s; s,
using step-in-Cons by (induction ps’ arbitrary: ps) auto

lemma step-in-valid-step: knights-path b ps = step-in ps s; s; = valid-step s;
8
proof —
assume assms: knights-path b ps step-in ps s; s;
then obtain k where k-prems: 0 < k A k < length ps last (take k ps) = s; hd
(drop k ps) = s;
unfolding step-in-def by auto
then have £ = 1 V k£ > 1 by auto
then show ?thesis
proof (elim disjE)
assume k = 1
then obtain ps’ where ps = s;#s;#ps’
using k-prems list-len-g-1-split by fastforce
then show ?thesis
using assms by (auto elim: knights-path.cases)
next
assume k > 1

30

then have 0 < k—1 A k—1 < length ps
using k-prems by auto

then obtain b where knights-path b (drop (k—1) ps)
using assms knights-path-split by blast

obtain ps’ where drop (k—1) ps = s;#s;#ps’
using k-prems <0 < k — 1 Nk — 1 < length ps»
by (metis Cons-nth-drop-Suc Suc-diff-1 hd-drop-conv-nth last-snoc take-hd-drop)
then show ?thesis
using <knights-path b (drop (k—1) ps)» by (auto elim: knights-path.cases)
qed
qed

lemma trans-step-in:
step-in ps (4,7) (i',j) = step-in (trans-path (k1,k2) ps) (i+k1,j+k2) (i'+k1,5"+k2)
proof —
let ?ps’=trans-path (k1,k2) ps
assume step-in ps (i,5) (i',j')
then obtain k£ where 0 < k A k < length ps last (take k ps) = (i,j) hd (drop k
ps) = (i'j’)
unfolding step-in-def by auto
then have take k ps # || drop k ps # [] by fastforce+
then have 0 < k A k < length ?ps’
last (take k ?ps’) = (i+ky,j+ko) hd (drop k ?ps’) = (i'+k1,j+k2)
using trans-path-length
last-trans-path[OF <take k ps # []» <last (take k ps) = (i,7)] take-trans
hd-trans-path[OF <drop k ps # [|» <hd (drop k ps) = (i',j')»] drop-trans
by auto
then show ?thesis
by (auto simp: step-in-def)
qed

lemma transpose-step-in:
step-in ps s; s; == step-in (transpose ps) (transpose-square s;) (transpose-square
5)
(is - = step-in PpsT ?s;T ?s;T)
proof —
assume step-in ps s; S;
then obtain £ where
k-prems: 0 < k k < length ps last (take k ps) = s; hd (drop k ps) = s;
unfolding step-in-def by auto
then have non-nil: take k ps # [| drop k ps # [| by fastforce+
have take k ?psT = transpose (take k ps) drop k ?psT = transpose (drop k ps)
using take-transpose drop-transpose by auto
then have last (take k ?psT) = %s;T hd (drop k ?psT) = ?s; T
using non-nil k-prems hd-transpose last-transpose by auto
then show step-in ?psT ?s;T ?s;T
unfolding step-in-def using k-prems transpose-length by auto
qed

31

lemma hd-take: 0 < k = hd xs = hd (take k xs)
by (induction zs) auto

lemma last-drop: k < length xs = last xs = last (drop k xs)
by (induction zs) auto

6.3 Concatenate Knight’s Paths and Circuits

Concatenate two knight’s path on a nxm-board along the 2nd axis if the
first path contains the step s; — s; and there are valid steps s; — hd psa’
and s; — last psp’, where psy’ is pss is translated by m. An arbitrary step
in pse is preserved.

corollary knights-path-split-concat-si-prev:
assumes knights-path (board n my) psi knights-path (board n ms) pse
step-in psy s; sj hd psy = (in,jn) last psa = (i1,51) step-in psa (4,5) (i'j")
valid-step s; (ip,int mi+jy) valid-step (i;,int mi+7;) s;
shows 3 ps. knights-path (board n (m1+ms2)) ps A hd ps = hd ps;
A last ps = last ps; A step-in ps (i,int mi+j5) (i',int mi+j5")
using assms
proof —
let 2by=board n my
let 2bo=board n mq
let ?psy’=trans-path (0,int my) psa
let ?b'=trans-board (0,int my) ?by
have kp2': knights-path ?b’ ?pss’ using assms trans-knights-path by auto
then have %psy’ # [| using knights-path-non-nil by auto

obtain k£ where k-prems:

0 < k k < length ps, last (take k ps1) = s; hd (drop k ps1) = s;

using assms unfolding step-in-def by auto
let ?ps=(take k ps1) @ ?pse’ @Q (drop k psy)
obtain b; bo where b-prems: knights-path by (take k ps1) knights-path by (drop

k ps1)
by U by = 2bg blﬁbgz{}
using assms <0 < ky <k < length ps1» knights-path-split by blast

have hd ?pss’ = (ip,int mi+jp) last Zpsy’ = (iy,int m1+j;)
using assms knights-path-non-nil hd-trans-path last-trans-path by auto
then have hd ?psy’ = (ip,int my+jp) last ((take k ps1) @ ?psy’) = (4;,int my+7j;)
using «?psy’ # [» by auto
then have vs: valid-step (last (take k ps1)) (hd ?psy”)
valid-step (last ((take k ps1) @ ?psy”)) (hd (drop k psy))
using assms k-prems by auto

have ?b; N 2’ = {} unfolding board-def trans-board-def by auto

then have by N 20" = {} A (b1 U 2b') N by = {} using b-prems by blast
then have inter-empty: by N 20" = {} (b1 U 2b') N by = {} by auto

32

have knights-path (b1 U 2b") ((take k ps1) @ Zpsa”)
using kp2' b-prems inter-empty vs knights-path-append by auto
then have knights-path (b1 U 2b" U ba) ?ps
using b-prems inter-empty vs knights-path-append[where ps;=(take k ps;) Q
?pse’] by auto
then have knights-path (?by U 2b") ?ps
using b-prems Un-commute Un-assoc by metis
then have kp: knights-path (board n (mi1+msz)) ?ps
using board-concat[of n my1 mz] by auto

have hd: hd ?ps = hd psy
using assms <0 < k> knights-path-non-nil hd-take by auto

have last: last ?ps = last ps;
using assms <k < length ps1» knights-path-non-nil last-drop by auto

have m-simps: j+int mi; = int m1+j j'+int my = int m1+j’ by auto
have si: step-in ?ps (i,int mi+j) (i’,int mi1+j5")
using assms step-in-append|OF step-in-prepend[OF trans-step-in],
of psg i j i’ j' take k psy 0 int my drop k psi]
by (auto simp: m-simps)

show ?thesis using kp hd last si by auto
qed

lemma leni-hd-last: length xs = 1 = hd zs = last zs
by (induction zs) auto

Weaker version of [knights-path (board ?n ?my) ?psi; knights-path (board n
?mg) ?pso; step-in ?psy ?s; ?sj; hd Ppsy = (i, Z4n); last Ppsy = (%iy, ?%);
step-in ?pso (%1, %j) (%i', 2j'); valid-step ?s; (%ip, int ?my + 2jp); valid-step
(%, int 2my + %) ?s;] = I ps. knights-path (board ?n (?m1 + ?ma)) ps
A hd ps = hd ?ps; A last ps = last ?ps1 A step-in ps (?i, int ?mi + %)
(%', int ?my + 2j7).

corollary knights-path-split-concat:
assumes knights-path (board n my) psi knights-path (board n ms) pse
step-in psy s; sj hd psa = (in,jn) last psa = (i1,j1)
valid-step s; (in,int mi+jy) valid-step (ip,int mi+7;) s;
shows I ps. knights-path (board n (mi+ma)) ps A hd ps = hd ps; A last ps =
last psy
proof —
have length pss = 1 V length psy > 1
using assms knights-path-non-nil by (meson length-0-conv less-one linorder-neqE-nat)
then show ?thesis
proof (elim disjE)
let ?Sk:(ih,i’nt m1+jh)
assume length psy = 1

33

then have (iy,jn) = (4,1)
using assms len1-hd-last by metis
then have valid-step s; ?s;, valid-step sy s; valid-step s; s;
using assms step-in-valid-step by auto
then show ?thesis
using valid-step-non-transitive by blast
next
assume length pso > 1
then obtain i ji i3 jo pse’ where psy = (i1,j1)#(i2,52)#psa’
using list-len-g-1-split by fastforce
then have last (take 1 psy) = (i1,51) hd (drop 1 pss) = (i2,j2) by auto
then have step-in psa (i1,j1) (i2,j2) using «length psy > 1) by (auto simp:
step-in-def)
then show ?thesis
using assms knights-path-split-concat-si-prev by blast
qged
qed

Concatenate two knight’s path on a nxm-board along the 1st axis.

corollary knights-path-split-concatT':
assumes knights-path (board ny m) psy knights-path (board na m) pss
step-in psy s; s; hd psy = (in.jn) last psy = (ir,1)
valid-step s; (int na+ip,jp) valid-step (int n1+1;,51) s;
shows T ps. knights-path (board (n1+ns2) m) ps A hd ps = hd psy A last ps =
last psy
using assms
proof —
let ?ps; T=transpose ps;
let ?pso T=transpose pss
have kps: knights-path (board m ny) ?psi; T knights-path (board m ng) Zpsy T
using assms transpose-knights-path by auto

let ?s; T=transpose-square s;

let ?s; T=transpose-square s;

have si: step-in %ps1 T 25;T ?s; T
using assms transpose-step-in by auto

have psi # [| ps2 #]
using assms knights-path-non-nil by auto

then have hd-last2: hd ?pseT = (jn,in) last ?pse T = (ji,i1)
using assms hd-transpose last-transpose by (auto simp: transpose-square-def)

have vs: valid-step ?s; T (jn,int ni+ip) valid-step (ji,int n1+1i;) s; T
using assms transpose-valid-step by (auto simp: transpose-square-def split:
prod.splits)

then obtain ps where

ps-prems: knights—path (bO(l?d m (n1+n2)) DS hd ps = hd ?pslT last ps = last
2 T
PS1

34

using knights-path-split-concat| OF kps si hd-last2 vs] by auto
then have ps # [| using knights-path-non-nil by auto
let ?psT=transpose ps
have knights-path (board (ni+ns) m) ?psT hd ?psT = hd psy last ?psT = last
ps1
using «ps; # [|» <ps # [|» ps-prems transpose-knights-path hd-transpose last-transpose

by (auto simp: transpose2)
then show “thesis by auto
qed

Concatenate two Knight’s path along the 2nd axis. There is a valid step
from the last square in the first Knight’s path ps; to the first square in the
second Knight’s path pso.

corollary knights-path-concat:
assumes knights-path (board n my) psi knights-path (board n ms) pse
hd pss = (in,jn) valid-step (last psy) (ip,int mi+jp)
shows knights-path (board n (m14+m2)) (ps1 @ (trans-path (0,int m1) psa))
proof —
let ?pso’=trans-path (0,int my) pss
let ?b=trans-board (0,int my) (board n ms)
have inter-empty: board n my N ¢b = {}
unfolding board-def trans-board-def by auto
have hd ?pss’ = (ip,int mi+jp)
using assms knights-path-non-nil hd-trans-path by auto
then have kp: knights-path (board n my) ps; knights-path ?b ?psy’ and
vs: valid-step (last psy) (hd ?ps2’)
using assms trans-knights-path by auto
then show knights-path (board n (mi+ms)) (ps1 @ ?psa’)
using knights-path-append|OF kp inter-empty vs] board-concat by auto
qed

Concatenate two Knight’s path along the 2nd axis. The first Knight’s path
end in (2,m1—1) (lower-right) and the second Knight’s paths start in (1,1)
(lower-left).

corollary knights-path-Ir-concat:
assumes knights-path (board n my) ps; knights-path (board n ms) pss
last psy = (2,int my—1) hd pse = (1,1)
shows knights-path (board n (mi1+ms)) (ps1 @ (trans-path (0,int my) ps3))
proof —
have wvalid-step (last ps1) (1,int my+1)
using assms unfolding valid-step-def by auto
then show ?thesis
using assms knights-path-concat by auto
qed

Concatenate two Knight’s circuits along the 2nd axis. In the first Knight’s
path the squares (2,m1—1) and (4,m1) are adjacent and the second Knight’s
cirucit starts in (1,1) (lower-left) and end in (3,2).

35

corollary knights-circuit-lr-concat:
assumes knights-circuit (board n my) psy knights-circuit (board n ms) pse
step-in psy (2,int my—1) (4 ,int my)
hd pss = (1,1) last psy = (3,2) step-in psa (2,int mo—1) (4 ,int m2)
shows 3 ps. knights-circuit (board n (m1+ma)) ps A step-in ps (2,int (m1+ms)—1)
(4,int (m1+m2))
proof —
have kp1: knights-path (board n m1) ps; and kp2: knights-path (board n ms) pse

and vs: valid-step (last ps1) (hd psy)
using assms unfolding knights-circuit-def by auto

have m-simps: int my + (int mo—1) = int (my+mo)—1 int my + int me = int
(m1+me) by auto

have wvalid-step (2,int mi—1) (1 ,int my+1) valid-step (3,int m1+2) (4 ,int mq)
unfolding valid-step-def by auto
then obtain ps where knights-path (board n (mi+ms2)) ps hd ps = hd ps; last
ps = last ps; and
si: step-in ps (2,int (mi+ma)—1) (4,int (m1+ma))
using assms kpl1 kp2
knights-path-split-concat-si-prev]of n m1 psy ma pse (2,int mi—1)
(4,int my) 1182 2 int ma—1 4 int ma]
by (auto simp only: m-simps)
then have knights-circuit (board n (mi+ms)) ps
using vs by (auto simp: knights-circuit-def)
then show ?thesis
using si by auto
qed

7 Parsing Paths

In this section functions are implemented to parse and construct paths. The
parser converts the matrix representation ((nat list) list) used in [1] to a path

(path).
for debugging

fun test-path :: path = bool where
test-path (s;#s;#xs) = (step-checker s; s; N test-path (s;#xs))
| test-path - = True

fun f-opt :: (‘a = 'a) = ’a option = 'a option where
f-opt - None = None
| f~opt f (Some a) = Some (f a)

fun add-opt-fst-sq :: int = square option = square option where

add-opt-fst-sq - None = None
| add-opt-fst-sq k (Some (i,7)) = Some (k+1i,j)

36

fun find-k-in-col :: nat = nat list = int option where

find-k-in-col k [] = None
| find-k-in-col k (c#tcs) = (if ¢ = k then Some 1 else f-opt ((+) 1) (find-k-in-col k
cs))

fun find-k-sqr :: nat = (nat list) list = square option where
find-k-sqr k [] = None
| find-k-sqr k (r#rs) = (case find-k-in-col k r of
None = f-opt (A\(i,). (i+1,7)) (find-k-sqr k rs)
| Some j = Some (1,5))

Auxiliary function to easily parse pre-computed boards from paper.

fun to-sqrs :: nat = (nat list) list = path option where
to-sqrs 0 rs = Some ||
| to-sqrs k rs = (case find-k-sqr k rs of
None = None
| Some s; = f-opt (Aps. psQ[s;]) (to-sqrs (k—1) rs))

fun num-elems :: (nat list) list = nat where
num-elems (r#trs) = length r = length (r#trs)

Convert a matrix (nat list list) to a path (path). With this function we
implicitly define the lower-left corner to be (1,1) and the upper-right corner
to be (n,m).

definition to-path rs = to-sqrs (num-elems rs) (rev rs)

Example

value to-path
[[3,22,13,16,5],
[12,17,4,21,14],
[23,2,15,6,9],
[18,11,8,25,20],
[1,24,19,10,7:nat]]

8 Knight’s Paths for 5xm-Boards

Given here are knight’s paths, kpszmlr and kpSrmur, for the (5xm)-board
that start in the lower-left corner for me{5,6,7,8,9}. The path kpszmlir
ends in the lower-right corner, whereas the path kpbzmur ends in the upper-
right corner. The tables show the visited squares numbered in ascending
order.

abbreviation b5x5 = board 5 5

A Knight’s path for the (5x&§)-board that starts in the lower-left and ends
in the lower-right.

37

3 22 13 16 5
12 17 4 21 14
23 2 15 6 9
18 11 8 25 20
1 24 19 10 7

abbreviation kpdz5ir = the (to-path
[[8,22,13,16,5],
[12’1734 ,21 314]3
[23,2,15,6,9),
(18,11,8,25,20],
(1,24,19,10,7]])

lemma kp-5x5-Ir: knights-path b5z5 kpSx5lr
by (simp only: knights-path-exec-simp) eval

lemma kp-5z5-lr-hd: hd kpbz5lr = (1,1) by eval
lemma kp-5x5-lr-last: last kpszdlr = (2,4) by eval

lemma kp-5z5-lr-non-nil: kpsz5lr # [] by eval

A Knight’s path for the (5x&5)-board that starts in the lower-left and ends
in the upper-right.

7 12 15 20 5
16 21 6 25 14
1 8 13 4 19
22 17 2 9 24
1 10 23 18 3

abbreviation kpSz5ur = the (to-path
17,12,15,20,5],
[16,21,6,25,1/],
[11,8,13.4,19],
[22,17,2,9,24],
[1,10,23,18,3]])

lemma kp-5z5-ur: knights-path b5zd kpdxbsur
by (simp only: knights-path-exec-simp) eval

lemma kp-5z5-ur-hd: hd kpbzbur = (1,1) by eval
lemma kp-5z5-ur-last: last kpbzsur = (4,4) by eval
lemma kp-5z5-ur-non-nil: kpsz5ur # || by eval

abbreviation b526 = board 5 6

38

A Knight’s path for the (5x6)-board that starts in the lower-left and ends
in the lower-right.

7 14 21 28 5 12
22 271 6 13 20 29
15 8 17 24 11 4

26 23 2 9 30 19
1 16 25 18 3 10

abbreviation kp5z6lr = the (to-path
17,14,21,28,5,12],
[22,27,6,158,20,29],
[15,8,17,24,11,4],
[26,23,2,9,30,19],
[1,16,25,18,5,10]))

lemma kp-5x6-Ir: knights-path b5z6 kpSx6lr
by (simp only: knights-path-exec-simp) eval

lemma kp-5x6-lr-hd: hd kp5z6lr = (1,1) by eval
lemma kp-5x6-lr-last: last kpdz6lr = (2,5) by eval

lemma kp-5z6-lr-non-nil: kp5xz6lr # [| by eval

A Knight’s path for the (5x6)-board that starts in the lower-left and ends
in the upper-right.

3 10 29 20 5 12
28 19 4 11 30 21
9 2 17 24 13 6

18 27 8 15 22 25
1 16 23 26 7 14

abbreviation kpbz6ur = the (to-path
[[8,10,29,20,5,12],
[28,19,4,11,30,21],
(9,2,17,24,13,6),
(18,27,8,15,22,25),
[1,16,23,26,7,14]])

lemma kp-5x6-ur: knights-path b5z6 kpSx6ur
by (simp only: knights-path-exec-simp) eval

lemma kp-5z6-ur-hd: hd kp5x6ur = (1,1) by eval
lemma kp-5x6-ur-last: last kpbz6ur = (4,5) by eval

lemma kp-5z6-ur-non-nil: kpsz6ur # || by eval

39

abbreviation b5x7 = board 5 7

A Knight’s path for the (5x 7)-board that starts in the lower-left and ends
in the lower-right.

3 12 21 30 5 14 23
20 29 4 13 22 31 6
11 2 19 32 7 24 15
28 33 10 17 26 35 8
1 18 27 34 9 16 25

abbreviation kp5z7lr = the (to-path
([8,12,21,30,5,1/,23],
[20,29,4,15,22,31,6],
[11,2,19,52,7,24,15],
(28,33,10,17,26,35,8],
[1,18,27,34,9,16,25]])

lemma kp-5x7-Ir: knights-path b5z7 kp5x7lr
by (simp only: knights-path-exec-simp) eval

lemma kp-5x7-lr-hd: hd kpbz7lr = (1,1) by eval
lemma kp-527-lr-last: last kp5z7lr = (2,6) by eval

lemma kp-5z7-lr-non-nil: kpsz7lr # [| by eval

A Knight’s path for the (5x 7)-board that starts in the lower-left and ends
in the upper-right.

3 32 11 34 5 26 13
10 19 4 25 12 35 6

31 2 33 20 23 14 27
18 9 24 29 16 7 22
130 17 8 21 28 15

abbreviation kpSz7ur = the (to-path
15,52,11,34,5,26,13],
[10,19,4,25,12,585,6],
[31,2,33,20,23,14,27],
[18,9,24,29,16,7,22],
[1,30,17,8,21,28,15]])

lemma kp-5x7-ur: knights-path b5z7 kpdxTur
by (simp only: knights-path-exec-simp) eval

lemma kp-5x7-ur-hd: hd kpbzTur = (1,1) by eval

40

lemma kp-5x7-ur-last: last kpbz7ur = (4,6) by eval
lemma kp-5z7-ur-non-nil: kpsz7ur # || by eval

abbreviation b528 = board 5 8

A Knight’s path for the (5x8)-board that starts in the lower-left and ends
in the lower-right.

3 12 37 26 5 14 17 28
34 23 4 13 36 27 6 15
11 2 35 38 25 16 29 18
22 33 24 9 20 31 40 7
110 21 32 39 8 19 30

abbreviation kp5z8ir = the (to-path
([3,12,37,26,5,14,17,28],
[34,28,4,18,36,27,6,15],
[11,2,35,58,25,16,29,18],
(22,93.24.9,20,31,40,7),
(1,10,21,52,39,8,19,50]])

lemma kp-528-Ir: knights-path b5z8 kp5x8ir
by (simp only: knights-path-exec-simp) eval

lemma kp-528-lr-hd: hd kp5z8ir = (1,1) by eval
lemma kp-528-lr-last: last kpsz8lr = (2,7) by eval

lemma kp-528-lr-non-nil: kp5xz8lr # [] by eval

A Knight’s path for the (5x8)-board that starts in the lower-left and ends
in the upper-right.

33 8 17 38 35 6 16 24
18 37 34 7 16 25 40 5

9 32 29 36 39 14 23 26
30 19 2 11 28 21 4 13
1 10 31 20 3 12 27 22

abbreviation kpbz8ur = the (to-path
([85,8,17,38,35,6,15,24],
[18,37,34,7,16,25,40,5],
[9,32,29,56,39,14,23,26],
[50,19,2,11,28,21,4,13],
[1,10,31,20,3,12,27,22]])

lemma kp-528-ur: knights-path b5z8 kpdxSur
by (simp only: knights-path-exec-simp) eval

41

lemma kp-528-ur-hd: hd kpbz8ur = (1,1) by eval
lemma kp-5z8-ur-last: last kpb5z8ur = (4,7) by eval
lemma kp-528-ur-non-nil: kpsx8ur # [| by eval

abbreviation 0529 = board 5 9

A Knight’s path for the (5x9)-board that starts in the lower-left and ends
in the lower-right.

9 4 11 16 23 42 33 36 25
12 17 8 3 32 37 24 41 34
5 10 15 20 43 22 35 26 29
18 13 2 7 38 31 28 45 40
1 6 19 14 21 44 39 30 27

abbreviation kp5z9ir = the (to-path
(19,4,11,16,25,42,33,56,25],
[12,17,8,53,32,37,24 ,41,34],
[5,10,15,20,43,22,535,26,29)],
[18,13,2,7,38,531,28,45,40],
1,6,19,14,21,44.39,30,27)))

lemma kp-529-Ir: knights-path b5x9 kp5x9lr
by (simp only: knights-path-exec-simp) eval

lemma kp-529-lr-hd: hd kpbz9ir = (1,1) by eval
lemma kp-529-lr-last: last kp5z9lr = (2,8) by eval

lemma kp-5z9-lr-non-nil: kp5z9lr # [] by eval

A Knight’s path for the (5x9)-board that starts in the lower-left and ends
in the upper-right.

9 4 11 16 27 32 35 40 25
12 17 8 3 36 41 26 45 34
5 10 15 20 31 28 33 24 39
18 13 2 v 42 37 22 29 44
1 6 19 14 21 30 43 38 23

abbreviation kpbx9ur = the (to-path
19,4,11.16,27,32,85.,40.,25),
[12,17,8,53,36,41,26,45,34],
(5,10,15,20,31,28,33,24,39],
[18,13,2,7,42,37,22,29,44],

42

[1,6,19,14,21,50,43,8,23]))
lemma kp-529-ur: knights-path b5x9 kpdx9ur
by (simp only: knights-path-exec-simp) eval

lemma kp-529-ur-hd: hd kpbz9ur = (1,1) by eval
lemma kp-529-ur-last: last kpbz9ur = (4,8) by eval
lemma kp-529-ur-non-nil: kp5z9ur # || by eval

lemmas kp-5zm-Ir =
kp-5x5-lr kp-5x5-lr-hd kp-5x5-lr-last kp-5z5-lr-non-nil
kp-5x6-lr kp-526-lr-hd kp-5x6-lr-last kp-5x6-lr-non-nil
kp-5x7-lr kp-5x7-lr-hd kp-5x7-Ir-last kp-5x7-lr-non-nil
kp-5x8-lr kp-5x8-lr-hd kp-5x8-lr-last kp-5z8-lr-non-nil
kp-529-lr kp-5x9-lr-hd kp-5x9-Ir-last kp-5x9-lr-non-nil

lemmas kp-Szm-ur =
kp-5x5-ur kp-5x5-ur-hd kp-5x5-ur-last kp-5x5-ur-non-nil
kp-526-ur kp-5x6-ur-hd kp-5x6-ur-last kp-5x6-ur-non-nil
kp-5x7-ur kp-5x7-ur-hd kp-5x7-ur-last kp-5x7-ur-non-nil
kp-5x8-ur kp-5x8-ur-hd kp-5x8-ur-last kp-5x8-ur-non-nil
kp-5x9-ur kp-5x9-ur-hd kp-5x9-ur-last kp-5x9-ur-non-nil

For every 5 xm-board with m > 5 there exists a knight’s path that starts
n (1,1) (bottom-left) and ends in (2,m—1) (bottom-right).

lemma knights-path-5xm-lr-exists:
assumes m > 5
shows 3 ps. knights-path (board 5 m) ps A hd ps = (1,1) A last ps = (2,int m—1)
using assms
proof (induction m rule: less-induct)
case (less m)
then have m € {5,6,7,8,9} V 5§ < m—& by auto
then show ?case
proof (elim disjE)
assume m € {5,6,7,8,9}
then show %thesis using kp-5zm-lr by fastforce
next
assume m-ge: 5 < m—9
then obtain ps; where ps;-IH: knights-path (board 5 (m—25)) psy hd ps; =
(1,1)
last psy = (2,int (m—5)—1) ps; # ||
using less.IH[of m—5] knights-path-non-nil by auto

let ?pso=kpdxdlr

let ?psy’=ps; Q trans-path (0,int (m—25)) ?psq

have knights-path b5x5 ?psy hd ?pse = (1, 1) ?psy # || last ?psa = (2,4)
using kp-5zm-lr by auto

then have 1: knights-path (board 5 m) ?pss’

43

using m-ge psi-IH knights-path-lr-concat[of 5 m—5 ps1 & ?psa] by auto
have 2: hd ?psy’ = (1,1) using ps;-IH by auto

have last (trans-path (0,int (m—235)) %pss) = (2,int m—1)
using m-ge last-trans-path[OF «?psy # [<last ?pss = (2,4))] by auto
then have 3: last ?psy’ = (2,int m—1)
using last-appendR[OF trans-path-non-nil|OF «?psy # [],symmetric] by
metis

show ?thesis using 1 2 3 by auto
qed
qed

For every 5 xm-board with m > § there exists a knight’s path that starts
in (1,1) (bottom-left) and ends in (4,m—1) (top-right).

lemma knights-path-5xm-ur-exists:
assumes m > 5
shows 3 ps. knights-path (board 5 m) ps A hd ps = (1,1) A last ps = (4 int m—1)
using assms
proof —
have m € {5,6,7,8,9} V 5§ < m—5 using assms by auto
then show ?thesis
proof (elim disjE)
assume m € {5,6,7,8,9}
then show %thesis using kp-5zm-ur by fastforce
next
assume m-ge: 5 < m—5
then obtain ps; where ps-prems: knights-path (board 5 (m—¥5)) psy hd ps; =
(1,1)
last psy = (2,int (m—5)—1) ps; # ||
using knights-path-5xm-lr-ezists[of (m—35)] knights-path-non-nil by auto
let ?pso=kpdxsur
let ?ps’=ps1 Q trans-path (0,int (m—5)) ?psa
have knights-path b5z5 ?psy hd ?pss = (1, 1) ?psy # |]
last #psy = (4,4)
using kp-5zm-ur by auto
then have 1: knights-path (board 5 m) ?ps’
using m-ge ps-prems knights-path-lr-concat[of 5 m—5 ps1 5 ?psa] by auto

have 2: hd ?ps’ = (1,1) using ps-prems by auto
have last (trans-path (0,int (m—235)) %pse) = (4 ,int m—1)
using m-ge last-trans-path[OF «?psy # [y <last ?pss = (4,4)>] by auto
then have 3: last ?ps’ = (4,int m—1)
using last-appendR[OF trans-path-non-nil|OF «?psy # [],symmetric] by

metis

show ?thesis using 1 2 3 by auto

44

qed
qed

5 < ?m = I ps. knights-path (board 5 ?m) ps A hd ps = (1, 1) A last ps
=(2,int m — 1) and 5 < ?m = I ps. knights-path (board 5 ?m) ps A
hd ps = (1, 1) A last ps = (2, int ?m — 1) formalize Lemma 1 from [1].

lemmas knights-path-5zm-exists = knights-path-5zm-lr-ezists knights-path-5zm-ur-exists

9 Khnight’s Paths and Circuits for 6 xm-Boards
abbreviation b6x5 = board 6 5

A Knight’s path for the (6 x5)-board that starts in the lower-left and ends
in the upper-left.

10 19 4 29 12
3 30 11 20 5
18 9 24 13 28
252 17 6 21
16 23 8 27 14
1 26 15 22 7

abbreviation kp6z5ul = the (to-path
[[10,19,4,29,12],
[3,30,11,20,5],
[18,9,24,13,28],
[25,2,17,6,21],
[16,23,8,27,14],
[1,26,15,22,7]))
lemma kp-6x5-ul: knights-path b6z5 kpbxdul
by (simp only: knights-path-exec-simp) eval

lemma kp-6z5-ul-hd: hd kp6zdul = (1,1) by eval
lemma kp-6x5-ul-last: last kp6zdul = (5,2) by eval

lemma kp-6x5-ul-non-nil: kp6xsul # || by eval
A Knight’s circuit for the (6 x5)-board.

6 9 6 27 18
7T 26 17 14 5
10 15 8 19 28
25 30 23 4 13
22 11 2 29 20
1 24 21 12 3

45

abbreviation kc6z5 = the (to-path
[[16,9,6,27,18],
[7,26,17,14,5],
(10,15,8,19,28],
(25,50,23,4,15],
[22,11,2,29,20],
[1,24,21,12,3]))
lemma kc-6z5: knights-circuit b6zd kc6zd
by (simp only: knights-circuit-exec-simp) eval

lemma kc-6z5-hd: hd ke6z5 = (1,1) by eval
lemma kc-6z5-non-nil: kc6x5 # [| by eval

abbreviation b6x6 = board 6 6

The path given for the 6 x 6-board that ends in the upper-left is wrong. The
Knight cannot move from square 26 to square 27.

14 23 6 28 12 21
7T 36 13 22 5 27
24 15 29 35 20 11
30 8 17 26 34 4
16 25 2 32 10 19
1 31 9 18 3 33

abbreviation kp6z6ul-false = the (to-path
([14,23,6,28,12,21],
[7,86,158,22,5,27],
(24,15,29,35,20,11],
(90,8,17,26,34 4],
[16,25,2,52,10,19],
[1,51,9,18,3,33]))

lemma —knights-path b6x6 kpbz6ul-false
by (simp only: knights-path-exec-simp) eval

I have computed a correct Knight’s path for the 6 x 6-board that ends in the
upper-left. A Knight’s path for the (6 x 6)-board that starts in the lower-left
and ends in the upper-left.

8§ 25 10 21 6 23
11 36 7 24 33 20
26 9 34 3 22 5

35 12 15 30 19 32
14 27 2 17 4 29
1 16 13 28 31 18

46

abbreviation kp6xz6ul = the (to-path
[[8,25,10,21,6,23],
[11,36,7,24,33,20],
[26,9,34,5,22,5],
[85,12,15,50,19,32],
[14,27,2,17,4,29],
[1,16,13,28,31,18]])
lemma kp-6x6-ul: knights-path b6z6 kpbxr6ul
by (simp only: knights-path-exec-simp) eval

lemma kp-6x6-ul-hd: hd kp6z6ul = (1,1) by eval
lemma kp-6x6-ul-last: last kp6z6ul = (5,2) by eval

lemma kp-6x6-ul-non-nil: kp6z6ul # || by eval
A Knight’s circuit for the (6 x 6)-board.

4 25 34 16 18 7

35 14 5 8 33 16
24 3 26 17 6 19
13 36 23 30 9 32
22 27 2 11 20 29
1 12 21 28 31 10

abbreviation kc6z6 = the (to-path
[14,25,34,15,18,7),
[85,14,5,8,33,16],
(24,3,26,17,6,19),
(13,36,23,30,9,32),
[22,27,2,11,20,29],
[1,12,21,28,31,10]])
lemma kc-6z6: knights-circuit b6z6 kc6z6
by (simp only: knights-circuit-exec-simp) eval

lemma kc-626-hd: hd ke6x6 = (1,1) by eval
lemma kc-6z6-non-nil: kc6x6 # [] by eval

abbreviation b6x7 = board 6 7

A Knight’s path for the (6 x 7)-board that starts in the lower-left and ends
in the upper-left.

47

18 23 8 39 16 25 6
9 42 17 24 7 40 15
22 19 32 41 38 5 26
33 10 21 28 31 14 37
20 29 2 35 12 27 4
1 34 11 30 3 36 13

abbreviation kp6x7ul = the (to-path
[[18,23,8,39,16,25,6],
[9,42,17,24,7,40,15],
(22,19,32,41,38,5,26),
(33,10,21,28,31,14,37),
[20,29,2,35,12,27 4],
[1,34,11,50,3,536,13]])

lemma kp-6x7-ul: knights-path b6z7 kpbxTul
by (simp only: knights-path-exec-simp) eval

lemma kp-6x7-ul-hd: hd kp6x7ul = (1,1) by eval
lemma kp-6x7-ul-last: last kp6zTul = (5,2) by eval

lemma kp-6x7-ul-non-nil: kp6z7ul # || by eval
A Knight’s circuit for the (6 x 7)-board.

26 37 8 17 28 31 6
9 18 27 36 7 16 29
38 25 10 19 30 5 32
11 42 23 40 35 20 15
24 39 2 13 22 33 4
1 12 41 34 3 14 21

abbreviation kc6z7 = the (to-path
[[26,37,8,17,28,31,6],
[9,18,27,56,7,16,29],
[88,25,10,19,30,5,52],
(11,42,23,40,35,20,15],
(24,59,2,13,22,33 4],
[1,12,41,34,3,14,21]])

lemma kc-6z7: knights-circuit b6z7 ke6z7
by (simp only: knights-circuit-exec-simp) eval

lemma kc-627-hd: hd ke6z7 = (1,1) by eval
lemma kc-6z7-non-nil: ke6x7 # [] by eval

abbreviation b6x8 = board 6 8

48

A Knight’s path for the (6 x8)-board that starts in the lower-left and ends
in the upper-left.

18 31 8 35 16 33 6 45
9 48 1v 32 7 46 15 26
30 19 36 47 34 27 44 5

37 10 21 28 43 40 25 14
20 29 2 39 12 23 4 41
1 38 11 22 3 42 13 24

abbreviation kp6z8ul = the (to-path
([18,31,8,35,16,33,6,45],
[9,48,17,82,7,46,15,26],
(80,19,536,47,34,27,44,5],
[87,10,21,28,43,40,25,14],
[20,29,2,39,12,23 .4 ,41],
[1,38,11,22,3,42,13,24]])

lemma kp-628-ul: knights-path b6z8 kpbxSul
by (simp only: knights-path-exec-simp) eval

lemma kp-628-ul-hd: hd kp6z8ul = (1,1) by eval
lemma kp-628-ul-last: last kp6z8ul = (5,2) by eval

lemma kp-6x8-ul-non-nil: kp6z8ul # || by eval
A Knight’s circuit for the (6 x8)-board.

30 35 8 15 28 39 6 13
9 16 29 36 7 14 27 38
34 31 10 23 40 37 12 5
17 48 33 46 11 22 41 26
32 45 2 19 24 43 4 21
1 18 47 44 3 20 25 42

abbreviation kc6z8 = the (to-path
[[50,35,8,15,28,39,6,13],
[9,16,29,56,7,14,27,38],
[84,81,10,23,40,37,12,5],
[17,48,33,46,11,22,41,26],
[32,45,2,19,24 45,4 ,21],
[1,18,47,44,3,20,25,42]))

lemma kc-6z8: knights-circuit b6z8 kc6x8
by (simp only: knights-circuit-exec-simp) eval

lemma kc-628-hd: hd kc6z8 = (1,1) by eval

49

lemma kc-6x8-non-nil: kc6x8 # [| by eval

abbreviation b6x9 = board 6 9

A Knight’s path for the (6 x 9)-board that starts in the lower-left and ends
in the upper-left.

22 45 10 53 20 47 8 35 18
11 54 21 46 9 36 19 48 7
44 23 42 37 52 49 32 17 34
41 12 25 50 27 38 29 6 31
24 43 2 39 14 51 4 33 16
1 40 13 26 3 28 15 30 5

abbreviation kp6z9ul = the (to-path
[[22,45,10,55,20,47,8,35,18],
[11,54,21,46,9,36,19,48,7],
[44,28,42,87,52,49,32,17,534],
[41,12,25,50,27,38,29,6,31],
[24,43,2,89,14,51,4,33,16],
[1,40,13,26,3,28,15,50,5]])

lemma kp-6x9-ul: knights-path b6z9 kpbx9ul
by (simp only: knights-path-exec-simp) eval

lemma kp-629-ul-hd: hd kp6x9ul = (1,1) by eval
lemma kp-6z9-ul-last: last kp6x9ul = (5,2) by eval

lemma kp-6x9-ul-non-nil: kp6x9ul # [| by eval
A Knight’s circuit for the (6 x9)-board.

14 49 4 51 24 39 6 29 22
3 952 13 40 5 32 23 42 7
48 15 50 25 38 41 28 21 30
53 2 37 12 33 26 31 8 43
16 47 54 35 18 45 10 27 20
1 3 17 46 11 34 19 44 9

abbreviation kc6z9 = the (to-path
(114,49.4,51,24,59,6,29,22),
[8,62,13,40,5,32,25,42,7],
[48,15,50,25,38,41,28,21,30],
[63,2,37,12,33,26,31,8,43],
[16,47,54,85,18,45,10,27,20],
[1,36,17,46,11,34.,19.44,9]))

lemma kc-629: knights-circuit b6x9 kc6x9

50

by (simp only: knights-circuit-exec-simp) eval
lemma kc-629-hd: hd kc6z9 = (1,1) by eval
lemma kc-6x9-non-nil: kc6x9 # [] by eval

lemmas kp-6zm-ul =
kp-6zx5-ul kp-6z5-ul-hd kp-6x5-ul-last kp-6x5-ul-non-nil
kp-626-ul kp-6x6-ul-hd kp-6x6-ul-last kp-6x6-ul-non-nil
kp-6x7-ul kp-6x7-ul-hd kp-6x7-ul-last kp-6x7-ul-non-nil
kp-6x8-ul kp-6x8-ul-hd kp-6x8-ul-last kp-6x8-ul-non-nil
kp-6x9-ul kp-6x9-ul-hd kp-6x9-ul-last kp-6x9-ul-non-nil

lemmas kc-6xm =
kc-6x5 kc-6x5-hd ke-6x5-non-nil
kc-6x6 kc-6x6-hd kc-6x6-non-nil
ke-6x7 ke-6x7-hd ke-6x7-non-nil
kc-6x8 kc-6x8-hd ke-6x8-non-nil
kc-6x9 kc-629-hd kc-6x9-non-nil

For every 6 xm-board with m > § there exists a knight’s path that starts
n (1,1) (bottom-left) and ends in (5,2) (top-left).

lemma knights-path-6xm-ul-exists:
assumes m > 5
shows 3 ps. knights-path (board 6 m) ps A hd ps = (1,1) A last ps = (5,2)
using assms
proof (induction m rule: less-induct)
case (less m)
then have m € {5,6,7,8,9} V 5§ < m—& by auto
then show ?case
proof (elim disjE)
assume m € {5,6,7,8,9}
then show ?thesis using kp-6zm-ul by fastforce
next
let ?psy=kpb6xdul
let 2by=board 6 5
have ps;-prems: knights-path ?by ?ps; hd ?psy = (1,1) last ?ps; = (5,2)
using kp-6xm-ul by auto
assume m-ge: 5 < m—9
then obtain psy; where pso-IH: knights-path (board 6 (m—25)) pse hd psy =
(1,1)
last psa = (5,2)
using less.IH[of m—5] knights-path-non-nil by auto

have 27 < length ?psi last (take 27 ?ps1) = (2,4) hd (drop 27 ?ps1) = (4,5)
by eval+
then have step-in ?ps; (2,4) (4,5)
unfolding step-in-def using zero-less-numeral by blast
then have step-in ?ps1 (2,4) (4,5)

o1

valid-step (2,4) (1,int 5+1)
valid-step (5,int 5+2) (4,5)
unfolding valid-step-def by auto
then show ?thesis
using <5 < m—¥5» psi-prems psa-IH knights-path-split-concat[of 6 5 ?psy m—5
psa] by auto
qed
qed

For every 6 xm-board with m > 5 there exists a knight’s circuit.

lemma knights-circuit-6xm-exists:
assumes m > 5
shows J ps. knights-circuit (board 6 m) ps
using assms
proof —
have m € {5,6,7,8,9} V § < m—5 using assms by auto
then show ?thesis
proof (elim disjE)
assume m € {5,6,7,8,9}
then show ?thesis using kc-6xm by fastforce
next
let ?psi=rev kcbzd
have knights-circuit b6x5 ?ps; last ?psy = (1,1)
using kc-6zm knights-circuit-rev by (auto simp: last-rev)
then have ps;-prems: knights-path b6x5 ?psy valid-step (last ?ps1) (hd ?psy)
unfolding knights-circuit-def using valid-step-rev by auto
assume m-ge: 5 < m—9
then obtain ps; where ps2-prems: knights-path (board 6 (m—25)) psa hd psa
= (1,1)
last psa = (5,2)
using knights-path-6xm-ul-exists[of (m—2¥5)] knights-path-non-nil by auto

have 2 < length ?psy last (take 2 ?ps1) = (2,4) hd (drop 2 ?ps;) = (4,5) by
eval+
then have step-in ?ps1 (2,4) (4,5)
unfolding step-in-def using zero-less-numeral by blast
then have step-in ?ps; (2,4) (4,5)
valid-step (2,4) (1,int 5+1)
valid-step (5,int 5+2) (4,5)
unfolding valid-step-def by auto
then have 3 ps. knights-path (board 6 m) ps A hd ps = hd ?ps; A last ps = last
?psy
using m-ge psi-prems ps2-prems knights-path-split-concat[of 6 5 ?psy m—5
psa] by auto
then show %thesis using psi-prems by (auto simp: knights-circuit-def)
qed
qed

5 < ?m = I ps. knights-path (board 6 ?m) ps A hd ps = (1, 1) A last ps

52

= (5, 2) and 5 < ?m = I ps. knights-circuit (board 6 ?m) ps formalize
Lemma 2 from [1].

lemmas knights-path-6zm-ezists = knights-path-6xm-ul-ezists knights-circuit-6xm-exists

10 Knight’s Paths and Circuits for § xm-Boards
abbreviation b8z5 = board 8 5

A Knight’s path for the (8x5)-board that starts in the lower-left and ends
in the upper-left.

28 7 22 39 26
23 40 2v 6 21
8§ 29 38 25 14
37 24 15 20 5
16 9 30 13 34
31 36 33 4 19
10 17 2 35 12
1 32 11 18 3

abbreviation kp8z5ul = the (to-path
[128,7,22,39,26],
(29,40,27,6,21],
8,29,38,25,14),
(37,24,15,20.5],
[16,9,90,13,34],
(91,36,33.,4,19),
[10,17,2,35,12],
[1,32,11,18,3]))
lemma kp-8z5-ul: knights-path b8z5 kpSzdul
by (simp only: knights-path-exec-simp) eval

lemma kp-8z5-ul-hd: hd kp8zbul = (1,1) by eval
lemma kp-8z5-ul-last: last kp8xbul = (7,2) by eval

lemma kp-8x5-ul-non-nil: kp8x5ul # [| by eval

A Knight's circuit for the (8x5)-board.

93

26 7 28 15 24
31 16 25 6 29
8 27 30 23 14
17 32 39 34 5
38 9 18 13 22
19 40 33 4 35
10 37 2 21 12
1 20 11 36 3

abbreviation kc8z5 = the (to-path
[[26,7,28,15,24],
[81,16,25,6,29],
[8,27,30,23,14],
[17,52,39,34,5],
[88,9,18,15,22],
[19,40,33,4,35],
[10,37,2,21,12],
[1,20,11,56,3]])
lemma kc-8z5: knights-circuit b8z5 ke8td
by (simp only: knights-circuit-exec-simp) eval

lemma kc-8z5-hd: hd ke8x5 = (1,1) by eval
lemma kc-8z5-last: last ke8z5 = (3,2) by eval
lemma kc-8z5-non-nil: ke8x5 # [| by eval

lemma kc-8z5-si: step-in ke8z5 (2,4) (4,5) (is step-in ?ps - -)
proof —
have 0 < (21::nat) 21 < length ?ps last (take 21 ?ps) = (2,4) hd (drop 21 ?ps)
by eval+
then show ?thesis unfolding step-in-def by blast
qed

abbreviation b8z6 = board 8 6

A Knight’s path for the (8x6)-board that starts in the lower-left and ends
in the upper-left.

54

42
25
44
47
40
23
18

abbreviation kpSz6ul = the (to-path
([42,11,26,9,34,13],
25,48,43,12,27,8],

11
48
41
24
19
46
39
22

26
43
10
45
32
21
2

17

9
12
33
20
3
6
31
38

34
27
14
7

36
29
16
5

44,41,10,53,14,35],

[
[
[47,24,45,20,7,28],
[40,19,532,5,36,15],
[23,46,21,6,29,4],
[18,39,2,531,16,37],
[1,22,17,538,5,530]])
lemma kp-8z6-ul: knights-path b8x6 kpSz6ul
by (simp only: knights-path-exec-simp) eval

lemma kp-8x6-ul-hd: hd kp8x6ul = (1,1) by eval
lemma kp-8x6-ul-last: last kp8z6ul = (7,2) by eval

lemma kp-8z6-ul-non-nil: kp8z6ul # || by eval

A Knight’s circuit for the (8x6)-board. I have reversed circuit s.t. the
circuit steps from (2,5) to (4,6) and not the other way around. This makes

the proofs easier.

8
25
30
47
6
3
32
1

abbreviation kc8z6 = the (to-path
([8,29,24,45,12,57],
25,46,9,38,23,44],
30,7,28,13,36,11],

29
46
7

26
31
48
)

18

24
9
28
39
4
17
2
33

45
38
13
10
27
40
19
16

12
23
36
43
14
21
34
41

[
[
[47,26,39,10,43,22],
[

6,51,4,27,14,35],

13
8

35
28
15
4

37
30

37
44
11
22
35
42
15
20

95

19,48,17,40,21,42],
(92,5,2,19,34,15),
[1,18,93,16,41,20]))
lemma kc-8z6: knights-circuit b8x6 kc8x6
by (simp only: knights-circuit-exec-simp) eval

lemma kc-8z6-hd: hd ke8z6 = (1,1) by eval
lemma kc-8z6-non-nil: ke8x6 # || by eval

lemma kc-8z6-si: step-in ke8z6 (2,5) (4,6) (is step-in ?ps - -)
proof —
have 0 < (34::nat) 34 < length ?ps
last (take 34 ?ps) = (2,5) hd (drop 34 ?ps) = (4,6) by eval+
then show ?thesis unfolding step-in-def by blast
qed

abbreviation b8z7 = board 8 7

A Knight’s path for the (8x 7)-board that starts in the lower-left and ends
in the upper-left.

38 19 6 55 46 21 8
5 56 39 20 7 54 45
18 37 4 47 34 9 22
3 48 35 40 53 44 33
36 17 52 49 32 23 10
51 2 29 14 41 26 43
16 13 50 31 28 11 24
1 30 15 12 25 42 27

abbreviation kp8z7ul = the (to-path
([58,19,6,55,46,21,8],
[5,56,39,20,7,54,45],
[18,537,4,47,34,9,22],
[3,48,35,40,53,44,33),
[86,17,52,49,32,23,10],
[61,2,29,14,41,26,435],
[16,13,50,31,28,11,24],
[1,30,15,12,25,42,27]])

lemma kp-8x7-ul: knights-path b8x7 kpSxzTul
by (simp only: knights-path-exec-simp) eval

lemma kp-8z7-ul-hd: hd kp8z7ul = (1,1) by eval
lemma kp-8x7-ul-last: last kp8zTul = (7,2) by eval

lemma kp-8x7-ul-non-nil: kp8z7ul # || by eval

o6

A Knight’s circuit for the (8x7)-board. I have reversed circuit s.t. the
circuit steps from (2,6) to (4,7) and not the other way around. This makes
the proofs easier.

36 31 18 53 20 29 44
17 54 35 30 45 52 21
32 37 46 19 8 43 28
95 16 7 34 27 22 51
38 33 26 47 6 9 42
3 56 15 12 25 50 23
14 39 2 5 48 41 10
1 4 13 40 11 24 49

abbreviation kc8z7 = the (to-path
([56,31,18,55,20,29,44],
(17,54,85,30,45,52,21),
(92,97.46,19,8,43,28),
[65,16,7,34,27,22,51],
[38,538,26,47,6,9,42],
[3,56,15,12,25,50,23],
[14,39.2,5.48,41,10),
[1,4,13,40,11,24,49]])

lemma kc-8z7: knights-circuit b8z7 ke8x7
by (simp only: knights-circuit-exec-simp) eval

lemma kc-8x7-hd: hd ke8z7 = (1,1) by eval
lemma kc-8z7-non-nil: ke8x7 # [] by eval

lemma kc-8x7-si: step-in ke8x7 (2,6) (4,7) (is step-in ?ps - -)
proof —
have 0 < ({1::nat) 41 < length ?ps
last (take 41 ?ps) = (2,6) hd (drop 41 ?ps) = (4,7) by eval+
then show ?thesis unfolding step-in-def by blast
qed

abbreviation 0828 = board 8 8

The path given for the 8 x §-board that ends in the upper-left is wrong. The
Knight cannot move from square 27 to square 28.

o7

24 11 3vr 9 26 21 39 7
36 64 24 22 38 8 27 20
12 23 10 53 58 49 6 28
63 35 61 50 55 52 19 40
46 13 54 57 48 59 29 5
34 62 47 60 51 56 41 18
14 45 2 32 16 43 4 30
1 33 16 44 3 31 17 42

abbreviation kp8z8ul-false = the (to-path
([24,11,37,9,26,21,39,7],
[36,64,25,22,38,8,27,20],
[12,253,10,53,58,49,6,28],
[63,35,61,50,55,52,19,40],
[46,13,54,57,48,59,29,5],
[84,62,47,60,51,56,41,18],
[14,45,2,32,16,43,4,30],
[1,35,15,44,3,31,17,42]])

lemma —knights-path b8xz8 kpS8z8ul-false
by (simp only: knights-path-exec-simp) eval

I have computed a correct Knight’s path for the 8x8-board that ends in
the upper-left.

38 41 36 27 32 43 20 25
35 64 39 42 21 26 29 44
40 37 6 33 28 31 24 19
5 34 63 14 7 22 45 30
62 13 4 9 58 49 18 23
3 10 61 52 15 8 57 46
12 33 2 59 48 55 50 17
1 60 11 54 51 16 47 56

abbreviation kp8z8ul = the (to-path
[[88,41,36,27,32,43,20,25],
[85,64,539,42,21,26,29,/4],
[40,87,6,33,28,31,24,19),
(5,84,69,14,7,22.,45,30],
(62,13,4,9,58,49,18,23],
[3,10,61,52,15,8,57,46],
[12,58,2,59,48,55,50,17],
[1,60,11,54,51,16,47,56]])

lemma kp-8z8-ul: knights-path b8z8 kpS8xzSul
by (simp only: knights-path-exec-simp) eval

o8

lemma kp-8xz8-ul-hd: hd kp8x8ul = (1,1) by eval
lemma kp-8z8-ul-last: last kp8x8ul = (7,2) by eval

lemma kp-8x8-ul-non-nil: kp8x8ul # [| by eval

A Knight’s circuit for the (8x8)-board.

48 13 30 9 56 45 28 7
31 10 47 50 29 8 57 44
14 49 12 55 46 59 6 27
11 32 37 60 51 54 43 58
36 15 52 63 38 61 26 5
33 64 35 18 53 40 23 42
16 19 2 39 62 21 4 25
1 34 17 20 3 24 41 22

abbreviation kc8z8 = the (to-path
(148,13,0,9,56,45,28,7),
(31,10,47,50,29,8.,57.44],
[14,49,12,55,46,59,6,27],
[11,52,37,60,51,54,43,58],
[36,15,52,63,38,61,26,5],
(88,64,85,18,58,40,23,42],
(16,19,2,39,62,21 4.,25),
(1,84,17,20,3,24 ,41,22]])

lemma kc-828: knights-circuit b8x8 kc8z8
by (simp only: knights-circuit-exec-simp) eval

lemma kc-818-hd: hd ke8z8 = (1,1) by eval
lemma kc-8z8-non-nil: kc8x8 # [| by eval

lemma kc-818-si: step-in ke8xz8 (2,7) (4,8) (is step-in ?ps - -)
proof —
have 0 < (4:nat) 4 < length ?ps
last (take 4 ?ps) = (2,7) hd (drop 4 ?ps) = (4,8) by eval+
then show ?thesis unfolding step-in-def by blast
qed

abbreviation 0829 = board 8 9

A Knight’s path for the (8x9)-board that starts in the lower-left and ends
in the upper-left.

99

32 47 6 71 30 45 8 43 26
5 72 31 46 7 70 27 22 9
48 33 4 29 64 23 44 25 42
3 60 35 62 69 28 41 10 21
34 49 68 65 36 63 24 55 40
59 2 61 16 67 56 37 20 11
50 15 66 57 52 13 18 39 54
1 58 51 14 17 38 53 12 19

abbreviation kp8z9ul = the (to-path
([52,47,6,71,30,45,8,43,26],
[5,72,31,46,7,70,27,22,9],
[48,38,4,29,64,23,44,25,42],
[3,60,35,62,69,28,41,10,21],
[84,49,68,65,36,63,24,55,40],
[569,2,61,16,67,56,57,20,11],
[560,15,66,57,52,13,18,39,54],
[1,58,51,14,17,38,53,12,19]])

lemma kp-8z9-ul: knights-path b8x9 kp8xz9ul
by (simp only: knights-path-exec-simp) eval

lemma kp-8x9-ul-hd: hd kp8x9ul = (1,1) by eval
lemma kp-8x9-ul-last: last kp8z9ul = (7,2) by eval

lemma kp-8z9-ul-non-nil: kp8z9ul # || by eval
A Knight’s circuit for the (8x9)-board.

42 19 38 5 36 21 34 7 60
39 4 41 20 63 6 59 22 33
18 43 70 37 58 35 68 61 8
3 40 49 64 69 62 57 32 23
50 17 44 71 48 67 54 9 56
45 2 65 14 27 12 29 24 31
16 51 72 47 66 53 26 55 10
1 46 15 52 13 28 11 30 25

abbreviation kc8z9 = the (to-path

([42,19,38,5,36,21,34,7,60],

[39,4,41,20,63,6,59,22,33],

(18,45,70,87,58,85,68,61,8],
[8,40,49,64,69,62,57,32,23],
[60,17,44,71,48,67,54,9,56],
[45,2,65,14,27,12,29,24,31],
[16,51,72,47,66,53,26,55,10],

60

[1,46,15,52,13,28,11,30,25]])
lemma kc-829: knights-circuit b8z9 kc8z9
by (simp only: knights-circuit-exec-simp) eval

lemma kc-829-hd: hd ke8z9 = (1,1) by eval
lemma kc-8z9-non-nil: ke8x9 # [| by eval

lemma kc-819-si: step-in ke8x9 (2,8) (4,9) (is step-in ?ps - -)
proof —
have 0 < (55::nat) 55 < length ?ps
last (take 55 ?ps) = (2,8) hd (drop 55 ?ps) = (4,9) by eval+
then show ?thesis unfolding step-in-def by blast
qed

lemmas kp-8xtm-ul =
kp-8x5-ul kp-8z5-ul-hd kp-8r5-ul-last kp-8r5-ul-non-nil
kp-8x6-ul kp-8z6-ul-hd kp-8x6-ul-last kp-8r6-ul-non-nil
kp-8x7-ul kp-8z7-ul-hd kp-8x7-ul-last kp-8x7-ul-non-nil
kp-8x8-ul kp-8x8-ul-hd kp-8x§-ul-last kp-8x8-ul-non-nil
kp-829-ul kp-8x9-ul-hd kp-8x9-ul-last kp-8x9-ul-non-nil

lemmas kc-8tm =
ke-8x5 ke-8zh-hd ke-8zh-last ke-8x5-non-nil kc-8x5-si
ke-826 kc-8x6-hd kc-8x6-non-nil ke-8x6-si
ke-8x7 ke-8x7-hd ke-8x7-non-nil ke-8x7-si
kc-8x8 kc-8x8-hd kc-8x8-non-nil ke-8x8-si
kc-829 ke-819-hd ke-8x9-non-nil ke-8x9-si

For every 8 xm-board with m > 5 there exists a knight’s circuit.

lemma knights-circuit-8xm-exists:
assumes m > 5
shows 3 ps. knights-circuit (board 8 m) ps A step-in ps (2,int m—1) (4 ,int m)
using assms
proof (induction m rule: less-induct)
case (less m)
then have m € {5,6,7,8,9} V 5§ < m—¥5 by auto
then show ?case
proof (elim disjE)
assume m € {5,6,7,8,9}
then show ?thesis using kc-8xm by fastforce
next
let ?pso=kc8z5
let 2by=board 8 5
have pss-prems: knights-circuit 2by 2psy hd ?pss = (1,1) last ?pse = (3,2)
using kc-8zm by auto
have 21 < length ?psy last (take 21 ?pse) = (2,int 5—1) hd (drop 21 ?psy) =
(4,int 5)
by eval+

61

then have si: step-in ?pse (2,int 5—1) (4,int 5)
unfolding step-in-def using zero-less-numeral by blast
assume m-ge: 5 < m—95
then obtain ps; where ps;-IH: knights-circuit (board 8 (m—>5)) psy
step-in psy (2,int (m—5)—1) (4,int (m—15))
using less. IH[of m—5] knights-path-non-nil by auto
then show ?thesis
using m-ge psy-prems si knights-circuit-lr-concat[of 8 m—5 psy 5 ?pss] by
auto
qged
qged

For every 8§ xm-board with m > 5 there exists a knight’s path that starts
n (1,1) (bottom-left) and ends in (7,2) (top-left).

lemma knights-path-8rm-ul-exists:
assumes m > 5
shows 3 ps. knights-path (board 8 m) ps A hd ps = (1,1) A last ps = (7,2)
using assms
proof —
have m € {5,6,7,8,9} V 5§ < m—5 using assms by auto
then show ?thesis
proof (elim disjE)
assume m € {5,6,7,8,9}
then show ?thesis using kp-8zm-ul by fastforce
next
let ?psi=kp8zsul
have ps;-prems: knights-path b8xz5 ?psy hd ?ps; = (1,1) last ?ps; = (7,2)
using kp-8zm-ul by auto
assume m-ge: 5 < m—H
then have b-prems: 5 < min 8 (m—9)
unfolding board-def by auto

obtain pss where knights-circuit (board 8 (m—¥5)) psa
using m-ge knights-circuit-8xm-ezists[of (m—25)] knights-path-non-nil by auto
then obtain psy’ where psy’-prems’: knights-circuit (board 8 (m—¥5)) psa’
hd pss’ = (1,1) last psy’ = (8,2)
using b-prems <5 < min 8 (m—>5)» rotate-knights-circuit by blast
then have psy’-path: knights-path (board 8 (m—25)) (rev psy”)
valid-step (last psy’) (hd ps2’) hd (rev psy’) = (3,2) last (rev psy’) = (1,1)
unfolding knights-circuit-def using knights-path-rev by (auto simp: hd-rev
last-Tev)

have 3/ < length ?psi last (take 34 ?ps1) = (4,5) hd (drop 34 %ps1) = (2,4)
by eval+
then have step-in ?ps1 (4,5) (2,4)
unfolding step-in-def using zero-less-numeral by blast
then have step-in ?ps; (4,5) (2,4)
valid-step (4,5) (8,int 5+2)
valid-step (1,int 5+1) (2,4)

62

unfolding valid-step-def by auto
then have 3 ps. knights-path (board 8 m) ps A hd ps = hd ?ps; A last ps = last
?psy
using m-ge psy-prems psy’-prems’ psq’-path
knights-path-split-concat[of 8 5 ?ps1 m—5 rev psy’] by auto
then show ?thesis using psi-prems by auto
qed
qed

5 < ?m = I ps. knights-circuit (board 8 ?m) ps A step-in ps (2, int ?m
— 1) (4, int m) and 5 < ?m = I ps. knights-path (board 8 ?m) ps A hd
ps = (1, 1) A last ps = (7, 2) formalize Lemma 3 from [1].

lemmas knights-path-8xm-exists = knights-circuit-8xm-exists knights-path-8xm-ul-exists

11 Knight’s Paths and Circuits for nxm-Boards

In this section the desired theorems are proved. The proof uses the previous
lemmas to construct paths and circuits for arbitrary nxm-boards.

A Knight’s path for the (5x&§)-board that starts in the lower-left and ends
in the upper-left.

7 20 9 14 5
10 25 6 21 16
19 8 15 4 13
24 11 2 17 22
1 18 23 12 3

abbreviation kpbzbul = the (to-path
[[7,20,9,14,5],
[10,25,6,21,16],
[19,8,15,4,13],
[24,11,2,17,22],
[1,18,23,12,3]])

lemma kp-5z5-ul: knights-path b5z5 kpdzdul
by (simp only: knights-path-exec-simp) eval

A Knight’s path for the (5x 7)-board that starts in the lower-left and ends
in the upper-left.

17 14 25 6 19 8 29
26 35 18 15 28 &5 20
13 16 27 24 7 30 9
34 23 2 11 32 21 4
1 12 33 22 3 10 31

63

abbreviation kpbz7ul = the (to-path
[[17,14,25,6,19,8,29],
[26,35,18,15,28,5,20],
(13,16,27,24,7,30,9),
(34,29,2,11,52,21 4],
[1,12,33,22,3,10,31]])

lemma kp-5x7-ul: knights-path b5x7 kpsxzTul
by (simp only: knights-path-exec-simp) eval

A Knight’s path for the (5x9)-board that starts in the lower-left and ends
in the upper-left.

7 12 37 42 5 18 23 32 27
38 45 6 11 36 31 26 19 24
13 8 43 4 41 22 17 28 33
44 39 2 15 10 35 30 25 20
1 14 9 40 3 16 21 34 29

abbreviation kp5z9ul = the (to-path
[17,12,87,42,5,18,23,32,27],
[88,45,6,11,36,31,26,19,24],
(13,8,43,4.,41,22,17,28,33),
(44,39,2,15,10,35,30,25 ,20),
[1,14,9,40,3,16,21,34,29]])

lemma kp-529-ul: knights-path b5x9 kp5xz9ul
by (simp only: knights-path-exec-simp) eval

abbreviation b7x7 = board 7 7

A Knight’s path for the (7x 7)-board that starts in the lower-left and ends
in the upper-left.

9 30 19 42 7 32 17
20 49 8 31 18 43 6

29 10 41 36 39 16 33
48 21 38 27 34 5 44
11 28 35 40 37 26 15
22 47 2 13 24 45 4

1 12 23 46 3 14 25

abbreviation kp7z7ul = the (to-path
[19,30,19,42,7,32,17],
[20,49,8,31,18,43,6],
[29,10,41,56,39,16,33],
[48,21,38,27,34,5,44],
[11,28,35,40,37,26,15],
[22,47,2,13,24,45,4],

64

[1,12,23,46,53,14,25]])
lemma kp-7x7-ul: knights-path b7x7 kp7Tx7ul
by (simp only: knights-path-exec-simp) eval

abbreviation b729 = board 7 9

A Knight’s path for the (7x9)-board that starts in the lower-left and ends
in the upper-left.

59 4 17 50 37 6 19 30 39
16 63 58 5 18 51 38 7 20
3 60 49 36 57 42 29 40 31
48 15 62 43 52 35 56 21 8
61 2 13 26 45 28 41 32 55
14 47 44 11 24 53 34 9 22
1 12 25 46 27 10 23 54 33

abbreviation kp7z9ul = the (to-path
[159,4,17,50,37,6,19,30,39],
[16,63,58,5,18,51,38,7,20],
[3,60,49,56,57,42,29,40,51],
[48,15,62,43,52,35,56,21,8],
[61,2,13,26,45,28,41,32,55],
[14,47,44,11,24,53,34,9,22],
[1,12,25,46,27,10,23,54,33]])

lemma kp-7x9-ul: knights-path b7x9 kp7x9ul
by (simp only: knights-path-exec-simp) eval

abbreviation b9x27 = board 9 7

A Knight’s path for the (9x 7)-board that starts in the lower-left and ends
in the upper-left.

5 20 53 48 7 22 31
92 63 6 21 32 55 8

19 4 49 54 47 30 23
62 51 46 33 56 9 58
3 18 61 50 59 24 29
14 43 34 45 28 57 10
17 2 15 60 35 38 25
42 13 44 27 40 11 36
1 16 41 12 37 26 39

abbreviation kp9x7ul = the (to-path
(5,20,53,48,7,22,31),
(52,63,6,21,92,55,8),

65

[19,4.,49,54,47,30,23),
[62,51,46,33,56,9,58],
[8,18,61,50,59,24,29),
[14.,43,34.45,28,57,10],
[17,2,15,60,35,38,25],
[42,13,44,27,40,11,36),
[1,16,41,12,37,26,39)))

lemma kp-9x7-ul: knights-path b9z7 kp9xTul
by (simp only: knights-path-exec-simp) eval

abbreviation 0929 = board 9 9

A Knight’s path for the (9x9)-board that starts in the lower-left and ends

in the upper-left.

13 26 39 52 11
40 81 12 25 38
27 14 53 58 63
80 41 64 67 72
15 28 59 54 65
42 79 66 T1 76
29 16 77 60 55
78 43 2 31 18
1 30 17 44 3

abbreviation kp9z9ul = the (to-path
([153,26,39,52,11,24,37,50,9],
[40,81,12,25,38,51,10,23,36],
(27,14,58,58,68,68,75,8,49],
[80,41,64,67,72,57,62,35,22],
[15,28,59,54,65,74,69,48,7],
[42,79,66,71,76,61,56,21,34],
[29,16,77,60,55,70,75,6 ,.47],

[

24
o1
68
57
74
61
70
45
32

78.,43,2,31,18,45 .4.,33,20],
(1,80,17,44.3,32,19.,46,5]])
lemma kp-9x9-ul: knights-path b9z9 kp9x9ul
by (simp only: knights-path-exec-simp) eval

The following lemma is a sub-proof used in Lemma 4 in [1].

37
10
73
62
69
o6
75
4

19

50
23
8

35
48
21
6

33
46

sub-proof out to a separate lemma.

lemma knights-circuit-exists-even-n-grio:
assumes ecven nn > 10m > 5
I ps. knights-path (board (n—5) m) ps A hd ps = (int (n—5),1)

A last ps = (int (n—5)—1,int m—1)

36
49
22

34
47
20

shows 3 ps. knights-circuit (board m n) ps

using assms
proof —

66

I moved the

let ?by=board (n—5) m
assume n > 10
then obtain pss where psy-prems: knights-path ?by pse hd pse = (int (n—5),1)

last psy = (int (n—5)—1,int m—1)
using assms by auto
let ?psy-m2=mirror2 pss
have psy-m2-prems: knights-path ?bs ?pse-m2 hd ?pse-m2 = (int (n—5),int m)
last ?psa-m2 = (int (n—5)—1,2)
using pss-prems mirror2-knights-path hd-mirror2 last-mirror2 by auto

obtain ps; where psi-prems: knights-path (board 5 m) ps; hd ps; = (1,1)last

ps1 = (2,int m—1)
using assms knights-path-5xm-exists by auto

let ?psi’=trans-path (int (n—5),0) ps

let 2by'=trans-board (int (n—5),0) (board 5 m)

have ps,’-prems: knights-path ?b1’ ?ps1’ hd ?ps;’ = (int (n—5)+1,1)

last ?ps;’ = (int (n—5)+2,int m—1)

using psi-prems trans-knights-path knights-path-non-nil hd-trans-path last-trans-path

by auto

let ?ps=2ps,'Q ?psy-m2
let ?psT=transpose ?ps

have n—5 > 5 using «(n > 10» by auto
have inter: 2b1' N 2by = {}

unfolding trans-board-def board-def using <n—5 > 5» by auto
have union: by’ U ?by = board n m

using «<n—5 > &) board-concatT]of n—5 m 5] by auto

have vs: valid-step (last ?ps1’) (hd ?pso-m2) and wvalid-step (last ?psa-m2) (hd
2, A
?psi’)
unfolding valid-step-def using psi’-prems pso-m2-prems by auto
then have vs-c: valid-step (last ?ps) (hd ?ps)
using ps; ’-prems psa-m2-prems knights-path-non-nil by auto

have knights-path (board n m) ?ps
using ps1-prems psa-m2-prems inter vs union knights-path-append|of ?b1’ ?ps1’
?bg ?psz—mQ]
by auto
then have knights-circuit (board n m) ?ps
unfolding knights-circuit-def using vs-c by auto
then show ?thesis using transpose-knights-circuit by auto
qed

For every nxm-board with min n m > 5 and odd n there exists a Knight’s
path that starts in (n,1) (top-left) and ends in (n—1,m—1) (top-right).

This lemma formalizes Lemma 4 from [1]. Formalizing the proof of this
lemma was quite challenging as a lot of details on how to exactly combine

67

the boards are left out in the original proof in [1].

lemma knights-path-odd-n-exists:
assumes odd n minnm > 5
shows Jps. knights-path (board n m) ps A hd ps = (int n,1) A last ps = (int
n—1,int m—1)
using assms
proof —
obtain z where z = n + m by auto
then show ?thesis
using assms
proof (induction x arbitrary: n m rule: less-induct)
case (less z)
then have m =5V m=6Vm=7Vm=8V m=9Vm2> 10 by auto
then show ?case
proof (elim disjE)
assume [simp]: m = §
have odd n n > 5 using less by auto
then have n =5V n=7Vn=9Vn-52>5 by presburger
then show ?thesis
proof (elim disjE)
assume [simpl: n = 5
let ?ps=mirrorl (transpose kpsz5ul)
have kp: knights-path (board n m) ?ps
using kp-5z5-ul rot90-knights-path by auto
have hd ?ps = (int n,1) last ?ps = (int n—1,int m—1)
by (simp only: «<m = 5> <n = &) | eval)+
then show ?thesis using kp by auto
next
assume [simpl: n = 7
let ?ps=mirror! (transpose kpsxz7ul)
have kp: knights-path (board n m) ?ps
using kp-5z7-ul rot90-knights-path by auto
have hd %ps = (int n,1) last ?ps = (int n—1,int m—1)
by (simp only: <m = 5> «<n = 7> | eval)+
then show ?thesis using kp by auto
next
assume [simpl: n = 9
let ?ps=mirrorl (transpose kpsx9ul)
have kp: knights-path (board n m) ?ps
using kp-5z9-ul rot90-knights-path by auto
have hd ?ps = (int n,1) last ?ps = (int n—1,int m—1)
by (simp only: «<m = 5> <n = 9 | eval)+
then show ?thesis using kp by auto
next
let ?by=board m (n—¥5)
assume n—95 > 5
then have dps. knights-circuit ?bs ps
proof —
have n—5 =6 Vv n-5 =8V n-5 > 10

68

using <n—5 > 5 less by presburger
then show ?thesis
proof (elim disjE)
assume n—95 = 0
then obtain ps where knights-circuit (board (n—5) m) ps
using knights-path-6xm-ezists[of m] by auto
then show ?thesis
using transpose-knights-circuit by auto
next
assume n—95 = 8§
then obtain ps where knights-circuit (board (n—5) m) ps
using knights-path-8xm-ezists[of m] by auto
then show ?thesis
using transpose-knights-circuit by auto
next
assume n—35 > 10
then show ?thesis
using less less.IH[of n—10+m n—10 m]
knights-circuit-ezists-even-n-gri10[of n—5 m| by auto
qed
qged
then obtain pse where knights-circuit ?by psy hd pse = (1,1) last psy =
(5.2)
using «n—5 > 5 rotate-knights-circuit[of m n—5] by auto
then have rev-psq-prems: knights-path ?bs (rev pss) valid-step (last pse) (hd
ps2)
hd (rev psa) = (3,2) last (rev psy) = (1,1)
unfolding knights-circuit-def using knights-path-rev by (auto simp: hd-rev
last-Tev)

let ?psi=kpdrsul
have ps;-prems: knights-path (board 5 5) ?psy hd ?psy = (1,1) last ?psy =
(4,2)
using kp-5z5-ul by simp eval+

have 16 < length ?psy last (take 16 ?psy) = (4,5) hd (drop 16 ?ps;) =
(2,4) by eval+
then have si: step-in %ps1 (4,5) (2,4)
unfolding step-in-def using zero-less-numeral by blast

have vs: valid-step (4,5) (8,int 54+2) valid-step (1,int 5+1) (2,4)
unfolding valid-step-def by auto

obtain ps where knights-path (board m n) ps hd ps = (1,1) last ps = (4,2)
using <n—5 > 5)» psi-prems rev-psg-prems st vs
knights-path-split-concat[of 5 5 ?ps; n—>5 rev psa (4,5) (2,4)] by auto
then show ?thesis
using rot90-knights-path hd-rot90-knights-path last-rot90-knights-path by
fastforce

69

qed
next
assume [simpl: m = 6
then obtain ps where
ps-prems: knights-path (board m n) ps hd ps = (1,1) last ps = (int m—1,2)
using less knights-path-6xm-ezists|of n] by auto
let ?ps’=mirrorl (transpose ps)
have knights-path (board n m) ?ps’ hd ?ps’ = (int n,1) last ?ps’ = (int n—1 int
m—1)
using ps-prems rot90-knights-path hd-rot90-knights-path last-rot90-knights-path
by auto
then show ?thesis by auto
next
assume [simp]: m = 7
have odd n n > 5 using less by auto
then have n =5V n=7Vn=9Vn-52>5 by presburger
then show ?thesis
proof (elim disjE)
assume [simpl: n = 5
let ?ps=mirror! kpszTir
have kp: knights-path (board n m) ?ps
using kp-5z7-lr mirrori-knights-path by auto
have hd %ps = (int n,1) last ?ps = (int n—1,int m—1)
by (simp only: <m = 7> «<n = 5> | eval)+
then show ?thesis using kp by auto
next
assume [simp]: n = 7
let ?ps=mirrorl (transpose kp7x7ul)
have kp: knights-path (board n m) ?ps
using kp-7z7-ul rot90-knights-path by auto
have hd ?ps = (int n,1) last ?ps = (int n—1,int m—1)
by (simp only: «<m = 7> <n = 7> | eval)+
then show ?thesis using kp by auto
next
assume [simpl: n = 9
let ?ps=mirror!l (transpose kp7z9ul)
have kp: knights-path (board n m) ?ps
using kp-7z9-ul rot90-knights-path by auto
have hd %ps = (int n,1) last ?ps = (int n—1,int m—1)
by (simp only: <m = 7> «<n = 9> | eval)+
then show ?thesis using kp by auto
next
let ?bo=board m (n—¥5)
let by T=board (n—5) m
assume n—5 > 5
then have dps. knights-circuit ?bs ps
proof —
have n—-5 =6V n—-5 =8V n-5> 10
using <n—5 > 5 less by presburger

70

then show ?thesis
proof (elim disjE)
assume n—95 = 6
then obtain ps where knights-circuit (board (n—5) m) ps
using knights-path-6xm-exists|of m] by auto
then show ?thesis
using transpose-knights-circuit by auto
next
assume n—95 = 8§
then obtain ps where knights-circuit (board (n—5) m) ps
using knights-path-8xm-exists|of m] by auto
then show ?thesis
using transpose-knights-circuit by auto
next
assume n—35 > 10
then show ?thesis
using less less.IH[of n—10+m n—10 m]
knights-circuit-exists-even-n-gri0[of n—5 m] by auto
qed
qed
then obtain pss where psq-prems: knights-circuit ?ba psy hd psy = (1,1)
last psy = (8,2)
using <n—5 > &) rotate-knights-circuit[of m n—5] by auto
let ?pso T=transpose psa
have psy T-prems: knights-path ?baT ?psoT hd ?pso T = (1,1) last ?pseT =
(2.3)
using psq-prems transpose-knights-path knights-path-non-nil hd-transpose
last-transpose
unfolding knights-circuit-def transpose-square-def by auto

let ?ps1=kpbz7ir
have ps;-prems: knights-path b5x7 ?psy hd ?psy = (1,1) last ?ps; = (2,6)
using kp-5z7-Ir by simp eval+

have 29 < length ?psi last (take 29 ?ps1) = (4,2) hd (drop 29 ?ps;) =
(5,4) by eval+
then have si: step-in ?ps1 (4,2) (5,4)
unfolding step-in-def using zero-less-numeral by blast

have vs: valid-step (4,2) (int 5+1,1) valid-step (int 5+2,3) (5,4)
unfolding valid-step-def by auto

obtain ps where knights-path (board n m) ps hd ps = (1,1) last ps = (2,6)
using <n—5 >) psi-prems pse T-prems si vs
knights-path-split-concatT[of 5 m %psy n—35 ?psaT (4,2) (5,4)] by auto
then show ?thesis
using mirrori-knights-path hd-mirror! last-mirrorl by fastforce
qed
next

71

assume [simp]: m = 8
then obtain ps where ps-prems: knights-path (board m n) ps hd ps = (1,1)
last ps = (int m—1,2)
using less knights-path-8xm-exists[of n] by auto
let ?ps’=mirrorl (transpose ps)
have knights-path (board n m) ?ps’ hd ?ps’ = (int n,1) last ?ps’ = (int n—1,int
m—1)
using ps-prems rot90-knights-path hd-rot90-knights-path last-rot90-knights-path
by auto
then show ?thesis by auto
next
assume [simp]: m = 9
have odd n n > 5 using less by auto
then have n =5V n=7Vn=9Vn-52>25 by presburger
then show ?thesis
proof (elim disjE)
assume [simp]: n = 5
let ?ps=mirrorl kp5z9lr
have kp: knights-path (board n m) ?ps
using kp-529-lr mirror1-knights-path by auto
have hd ?ps = (int n,1) last ?ps = (int n—1,int m—1)
by (simp only: <m = 9> <n = 5 | eval)+
then show ?thesis using kp by auto
next
assume [simp]: n = 7
let ?ps=mirrorl (transpose kp9xz7ul)
have kp: knights-path (board n m) ?ps
using kp-9z7-ul rot90-knights-path by auto
have hd %ps = (int n,1) last ?ps = (int n—1,int m—1)
by (simp only: «<m = 9> <n = 7 | eval)+
then show ?thesis using kp by auto
next
assume [simp]: n = 9
let ?ps=mirrorl (transpose kp9x9ul)
have kp: knights-path (board n m) ?ps
using kp-9x9-ul rot90-knights-path by auto
have hd ?ps = (int n,1) last ?ps = (int n—1,int m—1)
by (simp only: «<m = 9> <n = 9» | eval)+
then show ?thesis using kp by auto
next
let ?by=board m (n—¥5)
let by T=board (n—5) m
assume n—35 > 5
then have I ps. knights-circuit ?by ps
proof —
have n—5 =6 V n—5 =8 Vn-5 > 10
using <n—35 > 5) less by presburger
then show ?thesis
proof (elim disjE)

72

assume n—95 = 6
then obtain ps where knights-circuit (board (n—5) m) ps
using knights-path-6zm-exists[of m] by auto
then show ?thesis
using transpose-knights-circuit by auto
next
assume n—95 = 8§
then obtain ps where knights-circuit (board (n—5) m) ps
using knights-path-8xm-exists[of m] by auto
then show Zthesis
using transpose-knights-circuit by auto
next
assume n—5 > 10
then show ?thesis
using less less.IH[of n—10+m n—10 m)
knights-circuit-exists-even-n-gr10[of n—5 m] by auto
qed
qed
then obtain psy; where psy-prems: knights-circuit ?be pse hd pss = (1,1)
last psa = (3,2)
using «n—5 > 5 rotate-knights-circuit[of m n—5] by auto
let ?pso T=transpose (rev pss)
have psy T-prems: knights-path ?boT ?psoT hd 2pso T = (2,3) last ?psoT =
(1,1)
using pss-prems knights-path-rev transpose-knights-path knights-path-non-nil

hd-transpose last-transpose
unfolding knights-circuit-def transpose-square-def by (auto simp: hd-rev
last-Tev)

let ?ps1=kpbz9ir
have ps;-prems: knights-path b5x9 ?psy hd ?psy = (1,1) last ?ps; = (2,8)
using kp-5z9-lr by simp eval+

have 16 < length ?psi last (take 16 ?ps1) = (5,4) hd (drop 16 ?psy) =
(4,2) by eval+
then have si: step-in ?ps1 (5,4) (4,2)
unfolding step-in-def using zero-less-numeral by blast

have vs: valid-step (5,4) (int 5+2,3) valid-step (int 5+1,1) (4,2)
unfolding valid-step-def by auto

obtain ps where knights-path (board n m) ps hd ps = (1,1) last ps = (2,8)
using <n—5 >) psi-prems pse T-prems si vs
knights-path-split-concatT[of 5 m %psy n—35 ?psaT (5,4) (4,2)] by auto
then show ?thesis
using mirrori-knights-path hd-mirror! last-mirrorl by fastforce
qed
next

73

let ?bi=board n 5
let ?by=board n (m—25)
assume m > 10
then have n+5 < z5 < minn 5 n+(m—5) <z 5 < minn (m—95)
using less by auto
then obtain ps; pso where kp-prems:
knights-path by ps1 hd psy = (int n,1) last ps; = (int n—1,4)
knights-path (board n (m—25)) psa hd psy = (int n,1) last pse = (int n—1,int
(m—5)—1)
using less.prems less.IH[of n+5 n 5] less.IH[of n+(m—5) n m—5] by auto
let ?ps=ps)Qtrans-path (0,int 5) psy
have wvalid-step (last ps1) (int n,int 5+1)
unfolding valid-step-def using kp-prems by auto
then have knights-path (board n m) ?ps hd ?ps = (int n,1) last ?ps = (int
n—1,int m—1)
using <m > 10> kp-prems knights-path-concat[of n 5 ps; m—25 psa]
knights-path-non-nil trans-path-non-nil last-trans-path by auto
then show ?thesis by auto
qed
qed
qed

Auxiliary lemma that constructs a Knight’s circuit if m > 5 and n > 10 A
even n.

lemma knights-circuit-exists-n-even-gr-10:
assumes n > 10 N evennm > 5
shows 3 ps. knights-circuit (board n m) ps
using assms
proof —
obtain ps; where psi-prems: knights-path (board 5 m) ps; hd ps; = (1,1)
last psy = (2,int m—1)
using assms knights-path-5xm-exists by auto
let ?psi'=trans-path (int (n—5),0) psy
let ?b5xm'=trans-board (int (n—5),0) (board 5 m)
have ps;-prems: knights-path ?b5zm’ ?psi’ hd ?ps;’ = (int (n—5)+1,1)
last ?psy’ = (int (n—5)+2,int m—1)
using psi-prems trans-knights-path knights-path-non-nil hd-trans-path last-trans-path
by auto

assume n > 10 A even n
then have odd (n—5) min (n—5) m > 5 using assms by auto
then obtain psy where psa-prems: knights-path (board (n—=5) m) psy hd pss =
(int (n—5),1)
last pso = (int (n—5)—1,int m—1)
using knights-path-odd-n-exists|of n—5 m| by auto
let ?pso'=mirror2 pso
have pso’-prems: knights-path (board (n—5) m) ?pss’ hd ?psy’ = (int (n—5),int
m)
last ?psy’ = (int (n—5)—1,2)

74

using pss-prems mirror2-knights-path hd-mirror2 last-mirror2 by auto

have inter: 2b5zm’ N board (n—5) m = {}
unfolding trans-board-def board-def by auto

have union: board n m = ?b5xm’ U board (n—5) m
using <n > 10 A even ny board-concatT[of n—5 m 5] by auto

have vs: valid-step (last ?ps1’) (hd ?pse’) valid-step (last ?psy’) (hd ?psy”)
using psi’-prems pss’-prems unfolding valid-step-def by auto

let ?ps=2ps;’ Q ?psy’
have last ?ps = last ?psy’ hd ?ps = hd ?ps,’

using psi’-prems psy’-prems knights-path-non-nil by auto
then have vs-c: valid-step (last ?ps) (hd ?ps)

using vs by auto

have knights-path (board n m) ?ps
using psi’-prems psy’-prems inter union vs knights-path-append by auto
then show ?thesis
using vs-c unfolding knights-circuit-def by blast
qged

Final Theorem 1: For every nxm-board with min n m > 5 and nxm even
there exists a Knight’s circuit.

theorem knights-circuit-exists:
assumes min n.m > 5 even (nxm)
shows 3 ps. knights-circuit (board n m) ps
using assms
proof —
haven=6Vm=6Vn=8Vvm=8V (n>10 A evenn)V (m> 10 A
even m)
using assms by auto
then show ?thesis
proof (elim disjE)
assume n = 6
then show “thesis
using assms knights-path-6xm-exists by auto
next
assume m = 6
then obtain ps where knights-circuit (board m n) ps
using assms knights-path-6xm-exists by auto
then show ?thesis
using transpose-knights-circuit by auto
next
assume n = §
then show ?thesis
using assms knights-path-S8xm-exists by auto
next

75

assume m = §
then obtain ps where knights-circuit (board m n) ps
using assms knights-path-8xm-exists by auto
then show ?thesis
using transpose-knights-circuit by auto
next
assume n > 10 N even n
then show ?thesis
using assms knights-circuit-exists-n-even-gr-10 by auto
next
assume m > 10 N even m
then obtain ps where knights-circuit (board m n) ps
using assms knights-circuit-exists-n-even-gr-10 by auto
then show ?thesis
using transpose-knights-circuit by auto
qged
qed

Final Theorem 2: for every nxm-board with min n m > 5 there exists a
Knight’s path.

theorem knights-path-ezists:
assumes min n m > 5
shows 3 ps. knights-path (board n m) ps
using assms
proof —
have odd n V odd m V even (nxm) by simp
then show ?thesis
proof (elim disjE)
assume odd n
then show ?thesis
using assms knights-path-odd-n-exists by auto
next
assume odd m
then obtain ps where knights-path (board m n) ps
using assms knights-path-odd-n-exists by auto
then show ?thesis
using transpose-knights-path by auto
next
assume even (n*m)
then show ?thesis
using assms knights-circuit-exists by (auto simp: knights-circuit-def)
qed
qed

THE END

end

76

References

[1] P. Cull and J. De Curtins. Knight’s tour revisited. Fibonacci Quarterly,
16:276-285, 1978.

77

	Introduction and Definitions
	Executable Checker for a Knight's Path
	Implementation of an Executable Checker
	Correctness Proof of the Executable Checker

	Basic Properties of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 knights-path and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 knights-circuit
	Transposing Paths and Boards
	Implementation of Path and Board Transposition
	Correctness of Path and Board Transposition

	Mirroring Paths and Boards
	Implementation of Path and Board Mirroring
	Correctness of Path and Board Mirroring
	Rotate Knight's Paths

	Translating Paths and Boards
	Implementation of Path and Board Translation
	Correctness of Path and Board Translation
	Concatenate Knight's Paths and Circuits

	Parsing Paths
	Knight's Paths for 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 5m-Boards
	Knight's Paths and Circuits for 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 6m-Boards
	Knight's Paths and Circuits for 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 8m-Boards
	Knight's Paths and Circuits for 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 nm-Boards

