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Abstract

Variants of Dioids and Kleene algebras are formalised together with
their most important models in Isabelle/HOL. The Kleene algebras
presented include process algebras based on bisimulation equivalence
(near Kleene algebras), simulation equivalence (pre-Kleene algebras)
and language equivalence (Kleene algebras), as well as algebras with
ambiguous finite or infinite iteration (Conway algebras), possibly infi-
nite iteration (demonic refinement algebras), infinite iteration (omega
algebras) and residuated variants (action algebras). Models imple-
mented include binary relations, (regular) languages, sets of paths and
traces, power series and matrices. Finally, min-plus and max-plus alge-
bras as well as generalised Hoare logics for Kleene algebras and demonic
refinement algebras are provided for applications.
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1 Introductory Remarks

These theory files are intended as a reference formalisation of variants of
Kleene algebras and as a basis for other variants, such as Kleene algebras
with tests [2] and modal Kleene algebras [14], which are useful for program
correctness and verification. To that end we have aimed at making proof ac-
cessible to readers at textbook granularity instead of fully automating them.
In that sense, these files can be considered a machine-checked introduction
to reasoning in Kleene algebra.

Beyond that, the theories are only sparsely commented. Additional in-
formation on the hierarchy of Kleene algebras and its formalisation in Is-
abelle/HOL can be found in a tutorial paper [13] or an overview article [17].
While these papers focus on the automation of algebraic reasoning, the
present formalisation presents readable proofs whenever these are interest-
ing and instructive.

Expansions of the hierarchy to modal Kleene algebras, Kleene algebras with
tests and Hoare logics as well as infinitary and higher-order Kleene alge-



bras [16, 3], and an alternative hierarchy of regular algebras and Kleene
algebras [11]—orthogonal to the present one—have also been implemented
in the Archive of Formal Proofs [12, 14, 2, 1].

2 Signatures

theory Signatures
imports Main
begin

Default notation in Isabelle/HOL is occasionally different from established
notation in the relation/algebra community. We use the latter where possi-
ble.

notation
times (infixl <> 70)

Some classes in our algebraic hierarchy are most naturally defined as sub-
classes of two (or more) superclasses that impose different restrictions on
the same parameter(s).

Alas, in Isabelle/HOL, a class cannot have multiple superclasses that in-
dependently declare the same parameter(s). One workaround, which moti-
vated the following syntactic classes, is to shift the parameter declaration to
a common superclass.

class star-op =
fixes star :: 'a = 'a (<-*» [101] 100)

class omega-op =
fixes omega :: 'a = 'a («-*> [101] 100)

We define a type class that combines addition and the definition of order
in, e.g., semilattices. This class makes the definition of various other type
classes more slick.

class plus-ord = plus + ord +
assumes less-eq-def: t < y+—x+y=y
and less-def: z < y+—z < yANz#y

end

3 Dioids

theory Dioid
imports Signatures
begin



3.1 Join Semilattices

Join semilattices can be axiomatised order-theoretically or algebraically. A
join semilattice (or upper semilattice) is either a poset in which every pair
of elements has a join (or least upper bound), or a set endowed with an
associative, commutative, idempotent binary operation. It is well known
that the order-theoretic definition induces the algebraic one and vice versa.
We start from the algebraic axiomatisation because it is easily expandable
to dioids, using Isabelle’s type class mechanism.

In Isabelle/HOL, a type class semilattice-sup is available. Alas, we cannot
use this type class because we need the symbol + for the join operation in
the dioid expansion and subclass proofs in Isabelle/HOL require the two
type classes involved to have the same fixed signature.
Using add__assoc as a name for the first assumption in class join__semilattice
would lead to name clashes: we will later define classes that inherit from
semigroup-add, which provides its own assumption add_assoc, and prove
that these are subclasses of join__semilattice. Hence the primed name.
class join-semilattice = plus-ord +

assumes add-assoc’ [ac-simps]: (z + y) + 2z =2z + (y + 2)

and add-comm [ac-simps] : x + y =y + x

and add-idem [simp]: z + z = x
begin

lemma add-left-comm [ac-simps]: y + (z + 2) = z + (y + 2)
{proof)

lemma add-left-idem [ac-simps]: v + (x + y) =z + y
(proof )

The definition (z < y) = (z + y = y) of the order is hidden in class plus-ord.

We show some simple order-based properties of semilattices. The first one
states that every semilattice is a partial order.

subclass order

(proof)

Next we show that joins are least upper bounds.

sublocale join: semilattice-sup (+)
(proof)

Next we prove that joins are isotone (order preserving).

lemma add-iso: x <y =2+ 2< y+ 2
(proof)

The next lemma links the definition of order as (z < y) = (z + y = y) with
a perhaps more conventional one known, e.g., from arithmetics.



lemma order-prop: © < y «— (Iz. 2 + 2 = y)
(proof)

end

3.2 Join Semilattices with an Additive Unit

We now expand join semilattices by an additive unit 0. Is the least element
with respect to the order, and therefore often denoted by L. Semilattices
with a least element are often called bounded.

class join-semilattice-zero = join-semilattice + zero +
assumes add-zero-l [simp]: 0 + © =z

begin

subclass comm-monoid-add
(proof)

sublocale join: bounded-semilattice-sup-bot (+) (<) (<) 0
{proof)

lemma no-trivial-inverse: x # 0 = —(Jy. x + y = 0)
(proof )

end

3.3 Near Semirings

Near semirings (also called seminearrings) are generalisations of near rings
to the semiring case. They have been studied, for instance, in G. Pilz’s
book [25] on near rings. According to his definition, a near semiring con-
sists of an additive and a multiplicative semigroup that interact via a single
distributivity law (left or right). The additive semigroup is not required
to be commutative. The definition is influenced by partial transformation
semigroups.

We only consider near semirings in which addition is commutative, and in
which the right distributivity law holds. We call such near semirings abelian.

class ab-near-semiring = ab-semigroup-add + semigroup-mult +

assumes distrib-right’ [simp]: (z + y) - 2=z -2+ y - 2

subclass (in semiring) ab-near-semiring
{proof)

class ab-pre-semiring = ab-near-semiring +
assumes subdistl-eq: z -z + z - (z + y) =z - (x + y)



3.4 Variants of Dioids

A near dioid is an abelian near semiring in which addition is idempotent.
This generalises the notion of (additively) idempotent semirings by dropping
one distributivity law. Near dioids are a starting point for process algebras.
By modelling variants of dioids as variants of semirings in which addition
is idempotent we follow the tradition of Birkhoff [5], but deviate from the
definitions in Gondran and Minoux’s book [15].

class near-dioid = ab-near-semiring + plus-ord +
assumes add-idem’ [simp]: x + © = z

begin

Since addition is idempotent, the additive (commutative) semigroup reduct
of a near dioid is a semilattice. Near dioids are therefore ordered by the
semilattice order.

subclass join-semilattice

(proof)
It follows that multiplication is right-isotone (but not necessarily left-isotone).
lemma mult-isor: t <y =2 - 2<y -2

(proof)

lemmazr<y=—=z2-2<z-y

(proof)

The next lemma states that, in every near dioid, left isotonicity and left
subdistributivity are equivalent.

lemma mult-isol-equiv-subdistl:
Veyzao<y—z-2<z-y)+— Vzyz. z-z<z- - (z+vy))
(proof )

The following lemma is relevant to propositional Hoare logic.

lemma phl-consl: 2 <w=— w-y<y-z2=2-y<y- 2
{proof)

end

We now make multiplication in near dioids left isotone, which is equivalent
to left subdistributivity, as we have seen. The corresponding structures form
the basis of probabilistic Kleene algebras [24] and game algebras [29]. We
are not aware that these structures have a special name, so we baptise them
pre-dioids.

We do not explicitly define pre-semirings since we have no application for
them.



class pre-dioid = near-dioid +
assumes subdistl: z - ¢ < z - (z + y)

begin

Now, obviously, left isotonicity follows from left subdistributivity.

lemma subdistl-var: z -z + z-y < z-(z+ y)
(proof)

subclass ab-pre-semiring
(proof )

lemma mult-isol: t < y= 2z -z < z-y

(proof)

lemma mult-isol-var: w <z —=v<y=u-v<2x-y
(proof)

lemma mult-double-iso: x < y = w-z-2< w-y -z
(proof)

The following lemmas are relevant to propositional Hoare logic.

lemma phl-cons2: w<r =z -y<y - w=z-y<y-x
(proof)

lemma phl-seq:
assumes p - r <z - T
andr-y<y-gq
showsp-(z-y)<z-y-q
(proof )

lemma phl-cond:

assumes v - v <v-u-vandu-w<w-u-w
and Azy. v -(c+y) <u-z+u-y
andu-v-z2<z-zandu-w- -y<y-z
showsu- (v-z+w-y)<(v-z+w-y) -z

(proof)

lemma phl-exporti:
assumes z - Yy <y - T - Y
and (z-y)-z2<z-w
shows z - (y - 2) < (y-2) - w

(proof)

lemma phl-export2:
assumes 2 - w < wW- 2z - W
andz-y<vy-z

shows z - (y - w) <y-w- (2 w)
(proof)



end

By adding a full left distributivity law we obtain semirings (which are already
available in Isabelle/HOL as semiring) from near semirings, and dioids from
near dioids. Dioids are therefore idempotent semirings.

class dioid = near-dioid + semiring

subclass (in dioid) pre-dioid
{proof)

3.5 Families of Nearsemirings with a Multiplicative Unit

Multiplicative units are important, for instance, for defining an operation of
finite iteration or Kleene star on dioids. We do not introduce left and right
units separately since we have no application for this.

class ab-near-semiring-one = ab-near-semiring + one +
assumes mult-onel [simp]: 1 - x = x
and mult-oner [simp|: z - 1 = x

begin

subclass monoid-mult
(proof )

end
class ab-pre-semiring-one = ab-near-semiring-one + ab-pre-semiring
class near-dioid-one = near-dioid + ab-near-semiring-one

begin

The following lemma is relevant to propositional Hoare logic.
lemma phl-skip: x - 1 < 1 -«

(proof)

end

For near dioids with one, it would be sufficient to require 1 + 1 = 1. This
implies z + = z for arbitray z (but that would lead to annoying redun-
dant proof obligations in mutual subclasses of near-dioid-one and near-dioid
later).

class pre-dioid-one = pre-dioid + near-dioid-one
class dioid-one = dioid + near-dioid-one

subclass (in dioid-one) pre-dioid-one {proof)



3.6 Families of Nearsemirings with Additive Units

We now axiomatise an additive unit 0 for nearsemirings. The zero is usually
required to satisfy annihilation properties with respect to multiplication.
Due to applications we distinguish a zero which is only a left annihilator
from one that is also a right annihilator. More briefly, we call zero either a
left unit or a unit.

Semirings and dioids with a right zero only can be obtained from those with
a left unit by duality.

class ab-near-semiring-one-zerol = ab-near-semiring-one + zero +
assumes add-zerol [simpl: 0 + x = z
and annil [simp]: 0 - x = 0

begin

Note that we do not require 0 # 1.

lemma add-zeror [simp]: x + 0 = z
(proof)

end
class ab-pre-semiring-one-zerol = ab-near-semiring-one-zerol + ab-pre-semiring
begin

The following lemma shows that there is no point defining pre-semirings
separately from dioids.

lemma 1 + 1 = 1
(proof)

end
class near-dioid-one-zerol = near-dioid-one + ab-near-semiring-one-zerol

subclass (in near-dioid-one-zerol) join-semilattice-zero

(proof )
class pre-dioid-one-zerol = pre-dioid-one + ab-near-semiring-one-zerol
subclass (in pre-dioid-one-zerol) near-dioid-one-zerol {proof)
class semiring-one-zerol = semiring + ab-near-semiring-one-zerol
class dioid-one-zerol = dioid-one + ab-near-semiring-one-zerol

subclass (in dioid-one-zerol) pre-dioid-one-zerol {proof)

We now make zero also a right annihilator.
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class ab-near-semiring-one-zero = ab-near-semiring-one-zerol +
assumes annir [simpl: ¢ - 0 = 0

class semiring-one-zero = semiring + ab-near-semiring-one-zero

class near-dioid-one-zero = near-dioid-one-zerol 4+ ab-near-semiring-one-zero
class pre-dioid-one-zero = pre-dioid-one-zerol + ab-near-semiring-one-zero
subclass (in pre-dioid-one-zero) near-dioid-one-zero (proof)

class dioid-one-zero = dioid-one-zerol + ab-near-semiring-one-zero

subclass (in dioid-one-zero) pre-dioid-one-zero (proof)

subclass (in dioid-one-zero) semiring-one-zero {proof)

3.7 Duality by Opposition

Swapping the order of multiplication in a semiring (or dioid) gives another
semiring (or dioid), called its dual or opposite.

definition (in times) opp-mult (infixl <©» 70)

wherez O y=y -z

lemma (in semiring-1) dual-semiring-1:
class.semiring-1 1 (®) (+) 0
{proof )

lemma (in dioid-one-zero) dual-dioid-one-zero:
class.dioid-one-zero (+) (©) 1 0 (<) (<)
(proof )

3.8 Selective Near Semirings

In this section we briefly sketch a generalisation of the notion of dioid. Some
important models, e.g. max-plus and min-plus semirings, have that property.
class selective-near-semiring = ab-near-semiring + plus-ord +

assumes select: t + y=zVr+y=y

begin

lemma select-alt: © + y € {z,y}
(proof)

It follows immediately that every selective near semiring is a near dioid.

subclass near-dioid
(proof )

11



Moreover, the order in a selective near semiring is obviously linear.

subclass linorder
(proof )

end

class selective-semiring = selective-near-semiring + semiring-one-zero
begin

subclass dioid-one-zero (proof)

end

end

4 Models of Dioids

theory Dioid-Models
imports Dioid HOL. Real
begin

In this section we consider some well known models of dioids. These so far
include the powerset dioid over a monoid, languages, binary relations, sets
of traces, sets paths (in a graph), as well as the min-plus and the max-plus
semirings. Most of these models are taken from an article about Kleene
algebras with domain [9].

The advantage of formally linking these models with the abstract axioma-
tisations of dioids is that all abstract theorems are automatically available
in all models. It therefore makes sense to establish models for the strongest
possible axiomatisations (whereas theorems should be proved for the weakest
ones).

4.1 The Powerset Dioid over a Monoid

We assume a multiplicative monoid and define the usual complex product
on sets of elements. We formalise the well known result that this lifting
induces a dioid.

instantiation set :: (monoid-mult) monoid-mult
begin

definition one-set-def:

1=1{1}

definition c-prod-def: — the complex product
A-B={uxv|uv.ue€e ANvE B}

12



instance
(proof )

end

instantiation set :: (monoid-mult) dioid-one-zero
begin

definition zero-set-def:

0=1{}

definition plus-set-def:
A+ B=AUB

instance
(proof )

end

4.2 Language Dioids

Language dioids arise as special cases of the monoidal lifting because sets
of words form free monoids. Moreover, monoids of words are isomorphic to
monoids of lists under append.

To show that languages form dioids it therefore suffices to show that sets of
lists closed under append and multiplication with the empty word form a
(multiplicative) monoid. Isabelle then does the rest of the work automati-
cally. Infix @ denotes word concatenation.

instantiation list :: (type) monoid-mult
begin

definition times-list-def:
xs * ys = xs Q ys

definition one-list-def:
1=

instance (proof)
end

Languages as sets of lists have already been formalised in Isabelle in various
places. We can now obtain much of their algebra for free.

type-synonym ’a lan = ’a list set

interpretation lan-dioid: dioid-one-zero (+) () 1::'a lan 0 (C) (C) {(proof)

13



4.3 Relation Dioids

We now show that binary relations under union, relational composition, the
identity relation, the empty relation and set inclusion form dioids. Due to
the well developed relation library of Isabelle this is entirely trivial.

interpretation rel-dioid: dioid-one-zero (U) (0) Id {} (C) (C)
(proof )

interpretation rel-monoid: monoid-mult Id (O) (proof)

4.4 Trace Dioids

Traces have been considered, for instance, by Kozen [22] in the context of
Kleene algebras with tests. Intuitively, a trace is an execution sequence of
a labelled transition system from some state to some other state, in which
state labels and action labels alternate, and which begin and end with a
state label.

Traces generalise words: words can be obtained from traces by forgetting
state labels. Similarly, sets of traces generalise languages.

In this section we show that sets of traces under union, an appropriately
defined notion of complex product, the set of all traces of length zero, the
empty set of traces and set inclusion form a dioid.

We first define the notion of trace and the product of traces, which has been
called fusion product by Kozen.

type-synonym ('p, 'a) trace = 'p x (‘a x 'p) list

definition first :: ('p, ‘a) trace = 'p where

first = fst

lemma first-conv [simp): first (p, xs) = p
(proof )

fun last :: ('p, 'a) trace = 'p where

last (p, 1) = p
| last (-, zs) = snd (List.last xs)

lemma last-append [simp]: last (p, zs Q ys) = last (last (p, xs), ys)
(proof)

The fusion product is a partial operation. It is undefined if the last element
of the first trace and the first element of the second trace are different.
If these elements are the same, then the fusion product removes the first
element from the second trace and appends the resulting object to the first
trace.

definition t-fusion :: ('p, 'a) trace = ('p, 'a) trace = ('p, 'a) trace where

14



t-fusion x y = if last x = first y then (fst z, snd © Q snd y) else undefined
We now show that the first element and the last element of a trace are a left
and right unit for that trace and prove some other auxiliary lemmas.
lemma t-fusion-leftneutral [simpl: t-fusion (first z, [|) © = =

(proof)

lemma fusion-rightneutral [simpl: t-fusion z (last z, []) = z
{proof)

lemma first-t-fusion [simp|: last © = first y = first (t-fusion z y) = first ©
(proof )

lemma last-t-fusion [simp]: last © = first y => last (t-fusion z y) = last y
(proof)
Next we show that fusion of traces is associative.

lemma t-fusion-assoc [simp):

[ last x = first y; last y = first z | = t-fusion © (t-fusion y z) = t-fusion (t-fusion
Ty 2

(proof)

4.5 Sets of Traces

We now lift the fusion product to a complex product on sets of traces. This
operation is total.

no-notation

times (infixl <> 70)

definition ¢-prod :: ('p, 'a) trace set = ('p, 'a) trace set = ('p, ‘a) trace set (infixl
¢y 70)
where X - YV = {t-fusionuv| uv. u € X ANve Y A last u = first v}

Next we define the empty set of traces and the set of traces of length zero
as the multiplicative unit of the trace dioid.
definition t-zero :: ('p, 'a) trace set where

t-zero = {}

definition t-one :: ('p, ‘a) trace set where

t-one = Jp. {(p, )}

We now provide elimination rules for trace products.

lemma t-prod-iff:
we XY +— Fuv. w=tfusionuvAu€XANveEY Alast u= first v)
(proof )

lemma t¢-prod-intro [simp, intro):

15



[ue X;ve Y;lastu= firstv] = t-fusionuv € XY
(proof )

lemma t-prod-elim [elim]:
we XY= Fuv.w=tfusionuvAueXAveYAlastu= firstv
(proof)

Finally we prove the interpretation statement that sets of traces under union
and the complex product based on trace fusion together with the empty set
of traces and the set of traces of length one forms a dioid.

interpretation trace-dioid: dioid-one-zero (U) t-prod t-one t-zero (C) (Q)
(proof)

no-notation
t-prod (infixl <> 70)

4.6 The Path Diod

The next model we consider are sets of paths in a graph. We consider
two variants, one that contains the empty path and one that doesn’t. The
former leads to more difficult proofs and a more involved specification of the
complex product. We start with paths that include the empty path. In this
setting, a path is a list of nodes.

4.7 Path Models with the Empty Path
type-synonym ’a path = 'a list

Path fusion is defined similarly to trace fusion. Mathematically it should be
a partial operation. The fusion of two empty paths yields the empty path;
the fusion between a non-empty path and an empty one is undefined; the
fusion of two non-empty paths appends the tail of the second path to the
first one.

We need to use a total alternative and make sure that undefined paths do
not contribute to the complex product.

fun p-fusion :: ‘a path = ’a path = ’a path where
p-fusion || - = ]

| p-fusion - [| = ||

| p-fusion ps (q # g¢s) = ps @ gs

lemma p-fusion-assoc:
p-fusion ps (p-fusion qs rs) = p-fusion (p-fusion ps qs) s

(proof)

This lemma overapproximates the real situation, but it holds in all cases
where path fusion should be defined.

16



lemma p-fusion-last:
assumes List.last ps = hd gs
and ps # ||

and gs # ]
shows List.last (p-fusion ps qs) = List.last gs

{proof)

lemma p-fusion-hd: [ps # [|; qs # [|]] = hd (p-fusion ps qs) = hd ps
(proof)

lemma nonempty-p-fusion: [ps # [|; qs # [|]] = p-fusion ps qs # |]
(proof)

We now define a condition that filters out undefined paths in the complex
product.

abbreviation p-filter :: 'a path = 'a path = bool where
p-filter ps gs = ((ps =[] A gs = []) V (ps # [| A gs # [] A (List.last ps) = hd gs))

no-notation
times (infixl <> 70)

definition p-prod :: 'a path set = 'a path set = 'a path set (infixl > 70)
where X - Y = {rs.dps € X. J¢qs € Y. rs = p-fusion ps qs N\ p-filter ps ¢s}

lemma p-prod-iff:
ps € X - Y «— (Fgsrs. ps = p-fusion gsrs A\ qs € X AN rs € Y A p-filter gs rs)
(proof)

Due to the complexity of the filter condition, proving properties of complex
products can be tedious.

lemma p-prod-assoc: (X - Y)-Z =X -(Y - 2)
(proof)

We now define the multiplicative unit of the path dioid as the set of all
paths of length one, including the empty path, and show the unit laws with
respect to the path product.

definition p-one :: ‘a path set where

p-one = {p . I¢g:'a. p = [q]} U {[]}

lemma p-prod-onel [simp]: p-one - X = X

(proof)

lemma p-prod-oner [simpl: X - p-one = X

(proof)

Next we show distributivity laws at the powerset level.

lemma p-prod-distl: X - (YU Z)=X-YUX . Z
(proof)
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lemma p-prod-distr: (X U Y) - Z=X-ZUY - -Z
(proof)

Finally we show that sets of paths under union, the complex product, the
unit set and the empty set form a dioid.

interpretation path-dioid: dioid-one-zero (U) (-) p-one {} (C) (C)
(proof )

no-notation
p-prod (infixl <> 70)

4.8 Path Models without the Empty Path

We now build a model of paths that does not include the empty path and
therefore leads to a simpler complex product.

datatype ‘a ppath = Node 'a | Cons 'a 'a ppath

primrec pp-first :: 'a ppath = 'a where
pp-first (Node ) =z
| pp-first (Cons x -) = x

primrec pp-last :: 'a ppath = 'a where
pp-last (Node ) =z
| pp-last (Cons - zs) = pp-last xs

The path fusion product (although we define it as a total funcion) should
only be applied when the last element of the first argument is equal to the
first element of the second argument.

primrec pp-fusion :: 'a ppath = 'a ppath = 'a ppath where
pp-fusion (Node z) ys = ys
| pp-fusion (Cons x xs) ys = Cons x (pp-fusion s ys)

We now go through the same steps as for traces and paths before, showing
that the first and last element of a trace a left or right unit for that trace
and that the fusion product on traces is associative.

lemma pp-fusion-leftneutral [simp]: pp-fusion (Node (pp-first z)) © = x
(proof )

lemma pp-fusion-rightneutral [simp]: pp-fusion z (Node (pp-last z)) = z
(proof )

lemma pp-first-pp-fusion [simp]:
pp-last © = pp-first y = pp-first (pp-fusion x y) = pp-first x
(proof)
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lemma pp-last-pp-fusion [simp]:
pp-last © = pp-first y = pp-last (pp-fusion = y) = pp-last y
(proof)

lemma pp-fusion-assoc [simp]:

[ pp-last © = pp-first y; pp-last y = pp-first z | = pp-fusion x (pp-fusion y z)
= pp-fusion (pp-fusion z y) z

(proof )

We now lift the path fusion product to a complex product on sets of paths.
This operation is total.

definition pp-prod :: ‘a ppath set = 'a ppath set = 'a ppath set (infixl <) 70)
where X-Y = {pp-fusion u v| uv. u € X AN v € Y A pp-last u = pp-first v}

Next we define the set of paths of length one as the multiplicative unit of
the path dioid.

definition pp-one :: 'a ppath set where
pp-one = range Node

We again provide an elimination rule.

lemma pp-prod-iff:

we XY +— (Juv. w=pp-fusionuvANueXANveY A pp-last u = pp-first
v)

(proof)

interpretation ppath-dioid: dioid-one-zero (U) () pp-one {} (C) (C)
(proof)

no-notation
pp-prod (infixl > 70)

4.9 The Distributive Lattice Dioid

A bounded distributive lattice is a distributive lattice with a least and a
greatest element. Using Isabelle’s lattice theory file we define a bounded
distributive lattice as an axiomatic type class and show, using a sublocale
statement, that every bounded distributive lattice is a dioid with one and
Zero.

class bounded-distributive-lattice = bounded-lattice + distrib-lattice

sublocale bounded-distributive-lattice C dioid-one-zero sup inf top bot less-eq

(proof)

4.10 The Boolean Dioid

In this section we show that the booleans form a dioid, because the booleans
form a bounded distributive lattice.
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instantiation bool :: bounded-distributive-lattice
begin

instance (proof)
end

interpretation boolean-dioid: dioid-one-zero sup inf True False less-eq less
(proof )

4.11 The Max-Plus Dioid

The following dioids have important applications in combinatorial optimi-
sations, control theory, algorithm design and computer networks.

A definition of reals extended with +00 and —oo may be found in HOL/Li-
brary/Extended_Real.thy. Alas, we require separate extensions with ei-
ther +o00 or —oo.

The carrier set of the max-plus semiring is the set of real numbers extended
by minus infinity. The operation of addition is maximum, the operation
of multiplication is addition, the additive unit is minus infinity and the
multiplicative unit is zero.

datatype mreal = mreal real | MInfty — minus infinity

fun mreal-max where

mreal-maz (mreal x) (mreal y) = mreal (max  y)
| mreal-maz x MInfty = z
| mreal-max Minfty y = y

lemma mreal-maz-simp-3 [simp|: mreal-maz Minfty y = y
(proof )

fun mreal-plus where
mreal-plus (mreal ) (mreal y) = mreal (z + y)
| mreal-plus - - = MInfty

We now show that the max plus-semiring satisfies the axioms of selective
semirings, from which it follows that it satisfies the dioid axioms.
instantiation mreal :: selective-semiring

begin

definition zero-mreal-def:
0 = Minfty

definition one-mreal-def:
1 = mreal 0
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definition plus-mreal-def:
T + y = mreal-max x y

definition times-mreal-def:
x % y = mreal-plus x y

definition less-eq-mreal-def:
(zzmrea) <y=z+y=y

definition less-mreal-def:
(zzmreal) <y=z<yAz#y

instance
(proof)

end

4.12 The Min-Plus Dioid

The min-plus dioid is also known as tropical semiring. Here we need to
add a positive infinity to the real numbers. The procedere follows that of
max-plus semirings.

datatype preal = preal real | PInfty — plus infinity

fun preal-min where

preal-min (preal x) (preal y) = preal (min x y)
| preal-min x Plnfty = x
| preal-min PInfty y = y

lemma preal-min-simp-3 [simp]: preal-min Plnfty y = y
(proof)

fun preal-plus where
preal-plus (preal z) (preal y) = preal (x + y)

| preal-plus - - = Plnfty

instantiation preal :: selective-semiring
begin

definition zero-preal-def:
0 = Pinfty

definition one-preal-def:
1 = preal 0

definition plus-preal-def:
T 4+ y = preal-min z y

definition times-preal-def:

21



x x y = preal-plus z y

definition less-eq-preal-def:
(zipreal) <y=z+y=y

definition less-preal-def:
(zipreal) < y=z < yAz#y

instance
(proof)

end
Variants of min-plus and max-plus semirings can easily be obtained. Here
we formalise the min-plus semiring over the natural numbers as an example.
datatype pnat = pnat nat | PInfty — plus infinity
fun pnat-min where

pnat-min (pnat x) (pnat y) = pnat (min z y)

| pnat-min z PInfty = z
| pnat-min Plnfty © = x

lemma pnat-min-simp-3 [simp]: pnat-min Plnfty y = y
(proof)

fun pnat-plus where
pnat-plus (pnat x) (pnat y) = pnat (z + y)

| pnat-plus - - = Plnfty

instantiation pnat :: selective-semiring
begin

definition zero-pnat-def:
0 = Plnfty

definition one-pnat-def:
1 = pnat 0

definition plus-pnat-def:
T + y = pnat-min T y

definition times-pnat-def:
T % y = pnat-plus x y

definition less-eq-pnat-def:
(zupnat) <y=z+y=y

definition less-pnat-def:
(zupnat) < y=z < yAz#y
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lemma zero-pnat-top: (z::pnat) < 1
(proof )

instance
(proof )

end

end

5 Matrices

theory Matrix
imports HOL— Library. Word Dioid
begin

In this section we formalise a perhaps more natural version of matrices of
fixed dimension (m x n-matrices). It is well known that such matrices over
a Kleene algebra form a Kleene algebra [8].

5.1 Type Definition
typedef (overloaded) ‘a atMost = {..<LENGTH ('a::len)}
(proof)

declare Rep-atMost-inject [simp]

lemma UNIV-atMost:
(UNIV::'a atMost set) = Abs-atMost ‘ {..<LENGTH ('a::len)}

{proof)
lemma finite-UNIV-atMost [simp]: finite (UNIV::('a::len) atMost set)
{proof)

Our matrix type is similar to ‘a”™’n™'m from HOL/Multivariate _Analysis/Fi-
nite__Cartesian__Product.thy, but (i) we explicitly define a type constructor
for matrices and square matrices, and (ii) in the definition of operations, e.g.,
matrix multiplication, we impose weaker sort requirements on the element

type.

context notes [[typedef-overloaded)]
begin

datatype (‘a,’m,’n) matrizc = Matriz 'm atMost = 'n atMost = 'a
datatype (‘a,'m) sqmatriz = SqMatriz 'm atMost = 'm atMost = 'a

end
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fun sqgmatriz-of-matriz where
sgmatriz-of-matric (Matriz A) = SqMatriz A

fun matriz-of-sqgmatriz where
matriz-of-sqgmatriz (SqMatriz A) = Matriz A

52 0Oand 1

instantiation matriz :: (zero,type,type) zero
begin
definition zero-matriz-def: 0 = Matriz (Xi j. 0)
instance (proof)
end

instantiation sqmatriz :: (zero,type) zero

begin
definition zero-sqmatriz-def: 0 = SqMatriz (\i j. 0)
instance (proof)

end

Tricky sort issues: compare one-matriz with one-sqmatrix . ..

instantiation matriz :: ({zero,one},len,len) one
begin
definition one-matriz-def:
1 = Matriz (Xij. if Rep-atMost i = Rep-atMost j then 1 else 0)
instance (proof)
end

instantiation sgmatriz :: ({zero,one},type) one
begin
definition one-sqmatriz-def:
1 = SqMatriz (A\i j. if i = j then 1 else 0)
instance (proof)
end

5.3 DMatrix Addition

fun matriz-plus where
matriz-plus (Matriz A) (Matriz B) = Matriz (M j. Aij + Bij)

instantiation matriz :: (plus,type,type) plus

begin
definition plus-matriz-def: A + B = matriz-plus A B
instance (proof)

end

lemma plus-matriz-def’ [simp]:
Matriz A + Matriz B = Matriz (M j. A {j + Bij)
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{proof)

instantiation sgmatriz :: (plus,type) plus
begin
definition plus-sqmatriz-def:
A + B = sqmatriz-of-matriz (matriz-of-sqmatriz A + matriz-of-sgmatriz B)
instance (proof)
end

lemma plus-sqmatriz-def’ [simp):
SqMatriz A + SqMatriz B = SqMatriz (Aij. Aij + Bij)
(proof)

lemma matriz-add-0-right [simp]:
A+ 0 = (A:('a::monoid-add,'m,'n) matriz)
{proof)

lemma matriz-add-0-left [simp]:
0 + A = (A::("a:zmonoid-add,'m,'n) matriz)
{proof)

lemma matriz-add-commute [simp]:
(A::('a::ab-semigroup-add,’m,'n) matrix) + B =B + A
{proof )

lemma matriz-add-assoc:
(A::('a::semigroup-add,’m,'n) matriz) + B+ C = A+ (B + C)
(proof)

lemma matriz-add-left-commute [simp]:
(A::('a::ab-semigroup-add,'m,'n) matriz) + (B + C) = B+ (4 + C)
{proof)

lemma sqmatriz-add-0-right [simp]:
A+ 0 = (A::("azmonoid-add,'m) sqmatriz)
(proof )

lemma sqgmatriz-add-0-left [simp]:
0 + A = (A::('a:monoid-add,'m) sqmatriz)
{proof)

lemma sgmatriz-add-commaute [simp]:
(A::('a::ab-semigroup-add,’m) sqmatriz) + B = B + A
(proof )

lemma sgmatriz-add-assoc:

(A::('a::semigroup-add,'m) sqmatriz) + B+ C = A + (B + C)
{proof)
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lemma sqmatriz-add-left-commute [simp]:
(A::('a::ab-semigroup-add,'m) sqmatriz) + (B + C) = B+ (A + C)
{proof)

5.4 Order (via Addition)

instantiation matriz :: (plus,type,type) plus-ord
begin
definition less-eq-matriz-def:
(A:('a, 'b, 'c) matrit) < B=A+ B=DB
definition less-matriz-def:
(A::("a, 'b, 'c) matrir) < B=A<BANA#B

instance

(proof)
end

instantiation sqmatriz :: (plus,type) plus-ord
begin
definition less-eq-sqmatriz-def:
(A::(a, 'b) sqgmatriz) < B= A+ B=DB
definition less-sqgmatriz-def:
(A::('a, 'b) sqmatrir) < B= A< BANA#B

instance

(proof)
end

5.5 Matrix Multiplication

fun matriz-times :: ('a::{comm-monoid-add,times},'m,’k) matriz = ('a,’k,’n) ma-
trix = (‘a,’m,'n) matriz where

matriz-times (Matriz A) (Matriz B) = Matriz (A\i j. sum (M\k. A { k x B k j)
(UNIV::'k atMost set))

notation matriz-times (infixl x> 70)

instantiation sqmatriz :: ({comm-monoid-add,times},type) times
begin
definition times-sqmatriz-def:
A x B = sqmatriz-of-matriz (matriz-of-sgmatriz A *p; matriz-of-sqgmatriz B)
instance (proof)
end

lemma times-sqmatriz-def’ [simp):
SqMatriz A x SqMatriz B = SqMatriz (Ai j. sum (Ak. A ik« Bk j) (UNIV:'k

atMost set))
(proof)

lemma matriz-mult-0-right [simp):
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(A::("a::{ comm-monoid-add,mult-zero},'m,'n) matriz) xp 0 = 0
(proof )

lemma matriz-mult-0-left [simp]:
0 *pr (A:("a::{comm-monoid-add,mult-zero},'m,'n) matriz) = 0
(proof )

lemma sum-delta-r-0 [simp:

[ finite S;5¢ S| = (O_k€eS. fkx* (if k = j then 1 else (0::'b::{ semiring-0,monoid-mult})))
=0

(proof )

lemma sum-delta-r-1 [simp]:

[ finite S;5€ S| = (O_keS. fk = (if k = jthen 1 else (0::'b::{semiring-0,monoid-mult})))
=1/j

{proof)

lemma matriz-mult-1-right [simp]:
(A::(Ya::{semiring-0,monoid-mult},'m::len, n::len) matriz) «p; 1 = A
{proof)

lemma sum-delta-1-0 [simp]:

[ finite S;i ¢ S| = (O_keS. (ifi = k then 1 else (0::'b::{ semiring-0,monoid-mult}))
x fkj)=10

(proof)

lemma sum-delta-I-1 [simp]:

[ finite S;i€ S| = (O_keS. (if i = k then 1 else (0::'b::{ semiring-0,monoid-mult}))
«fkj)=1Ffij

{proof)

lemma matriz-mult-1-left [simp]:
1 #pr (Ax(a:{semiring-0,monoid-mult},'m::len,'n::len) matriz) = A
{proof)

lemma matriz-mult-assoc:
(A::('a::semiring-0,"m,'n) matriz) *p; B xpr C = A #pp (B xpr C)

{proof)

lemma matriz-mult-distrib-left:
(A::(Ya::{ comm-monoid-add,semiring},’m,'n::len) matriz) *p (B + C) = A xp
(proof )

lemma matriz-mult-distrib-right:
((A::('a::{ comm-monoid-add,semiring},’m, n::len) matriz) + B) xpy C = A
(proof )
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lemma sgmatriz-mult-0-right [simp]:
(A::('a::{ comm-monoid-add,mult-zero},'m) sqmatriz) x 0 = 0
{proof)

lemma sgmatriz-mult-0-left [simp]:
0 * (A:('a::{ comm-monoid-add,mult-zero},'m) sqmatriz) = 0
{proof )

lemma sgmatriz-mult-1-right [simp]:
(A::("a::{semiring-0,monoid-mult},'m::len) sqmatriz) * 1 = A
(proof )

lemma sqmatriz-mult-1-left [simp]:
1 x (A:('a::{semiring-0,monoid-mult},'m::len) sqmatriz) = A

(proof)

lemma sqgmatriz-mult-assoc:
(A::(Ya::{semiring-0,monoid-mult},'m) sqgmatriz) * B x C = A x (B x C)
{proof )

lemma sqgmatriz-mult-distrib-left:

(A::("a::{ comm-monoid-add,semiring},'m::len) sqmatriz) * (B + C) = A x B +
AxC

(proof)

lemma sqgmatriz-mult-distrib-right:

((A::('a::{ comm-monoid-add,semiring},'m::len) sgmatriz) + B) x C = A x C' +
BxC

(proof)

5.6 Square-Matrix Model of Dioids

The following subclass proofs are necessary to connect parts of our algebraic
hierarchy to the hierarchy found in the Isabelle/HOL library.

subclass (in ab-near-semiring-one-zerol) comm-monoid-add

(proof)

subclass (in semiring-one-zero) semiring-0
(proof)

subclass (in ab-near-semiring-one) monoid-mult (proof)

instantiation sgmatriz :: (dioid-one-zero,len) dioid-one-zero
begin
instance

(proof)
end
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5.7 Kleene Star for Matrices
We currently do not implement the Kleene star of matrices, since this is
complicated.

end

6 Conway Algebras

theory Conway
imports Dioid
begin

We define a weak regular algebra which can serve as a common basis for
Kleene algebra and demonic reginement algebra. It is closely related to an
axiomatisation given by Conway [8].

class dagger-op =
fixes dagger :: 'a = 'a («-1) [101] 100)

6.1 Near Conway Algebras

class near-conway-base = near-dioid-one + dagger-op +
assumes dagger-denest: (z + y)t = (z - y)T - 2f
and dagger-prod-unfold [simp]: 1 + z - (y - 2)T - y = (z - y)T

begin

lemma dagger-unfoldl-eq [simp): 1 + z - o7 = zf
(proof )

lemma dagger-unfoldl: 1 + z - 2t < &t
(proof )

lemma dagger-unfoldr-eq [simp): 1 + zt -z = zf

(proof)

lemma dagger-unfoldr: 1 + zt -z < af
(proof )

lemma dagger-unfoldl-distr [simp]: y + z - z' -y =2 - y
(proof )

lemma dagger-unfoldr-distr [simp]: y + 27 -z -y =27 - y
(proof )

lemma dagger-refl: 1 < zt
{proof )

lemma dagger-plus-one [simp]: 1 + zt = zf
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{proof)

lemma star-11: z - zf < zf
(proof)

lemma star-1r: zt - z < zt
(proof )

lemma dagger-ext: v <
(proof )

lemma dagger-trans-eq [simp]: «¥ - 2t = 2f
(proof )

lemma dagger-subdist: =t < (z + y)T
(proof )

lemma dagger-subdist-var: =t + yt < (z + y)f
(proof )

lemma dagger-iso [intro]: z < y = 2t < yf
{proof)

lemma star-square: (z - z)f < ot
{proof)

lemma dagger-rtci-eq [simp]: 1 + = + zf - 2t = 2f
{proof)

Nitpick refutes the next lemmas.

lemma y +y -zt - 2=y af
{proof)

lemmay -zl =y+y-z-af
{proof )

lemma (z + y)T = zf - (y - 211
(proof )

lemma (zf)f = zf

(proof)

*

lemma (1 + z)* = z*

(proof)
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lemma z' - 2 = z - 2!

(proof )

end

6.2 Pre-Conway Algebras

class pre-conway-base = near-conway-base + pre-dioid-one
begin

lemma dagger-subdist-var-3: =t -yt < (z + y)f
(proof )

lemma dagger-subdist-var-2: z - y < (v + y)T

(proof)

lemma dagger-sum-unfold [simp]: ot + 2t -y - (z + )T = (z + »)1
{proof)

end

6.3 Conway Algebras

class conway-base = pre-conway-base + dioid-one
begin

lemma troeger: (v + )7 -z =2t - (y - (z + )T - 2 + 2)
(proof)

lemma dagger-slide-varl: =¥ -z < z -zt
{proof )

lemma dagger-slide-varl-eq: ¥ -z =z - 2f
(proof )

lemma dagger-slide-eq: (z - y)' -2 =z - (y - z)f
(proof)

end

6.4 Conway Algebras with Zero

class near-conway-base-zerol = near-conway-base + near-dioid-one-zerol

begin
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lemma dagger-annil [simp]: 1 + z - 0 = (z - 0)1
{proof)

lemma zero-dagger [simp]: 0T = 1
(proof )

end

class pre-conway-base-zerol = near-conway-base-zerol + pre-dioid
class conway-base-zerol = pre-conway-base-zerol + dioid
subclass (in pre-conway-base-zerol) pre-conway-base (proof)
subclass (in conway-base-zerol) conway-base (proof)

context conway-base-zerol
begin

lemma z-z2<y-z= 2z -2 <yl .z
(proof)
end

6.5 Conway Algebras with Simulation

class near-conway = near-conway-base +
assumes dagger-simr: z -t < y -z = 2 - zt < yT 4

begin

lemma dagger-slide-var: = - (y - o) < (z - y)T - 2

(proof )

Nitpick refutes the next lemma.

lemma dagger-slide: x - (y - 2)' = (z - )T - 2
(proof )

We say that y preserves x if x-y-x = -y and !z-y-lo =lx-y. This definition
is taken from Solin [26]. It is useful for program transformation.

lemma preservationl: z - y<z-y-z=1x-y < (z-y+2) -2

(proof)

end

class near-conway-zerol = near-conway + near-dioid-one-zerol
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class pre-conway = near-conway + pre-dioid-one
begin
subclass pre-conway-base {proof)

lemma dagger-slide: = - (y - z)' = (z - )t - 2
{proof )

lemma dagger-denest2: (z + y)T =zt - (y - 2")T
(proof )

lemma preservation2: y -z <y = (z - y)f -z <2 -yl
(proof )

lemmapreservatwnl—eq:x-ny-y-xﬁy-xSyﬂ(mﬂy)T-x:x-yT
{proof )

end

class pre-conway-zerol = near-conway-zerol + pre-dioid-one-zerol
begin

subclass pre-conway (proof)

end

class conway = pre-conway + dioid-one

class conway-zerol = pre-conway + dioid-one-zerol

begin

subclass conway-base (proof)

Nitpick refutes the next lemmas.

lemma 1 = 17

(proof)

lemma (zf)f = zf

(proof)

lemma dagger-denest-var [simp]: (z + y)T = (zf - yhT

(proof)
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lemma star2 [simp]: (1 + z)7 = af

(proof)
end

end

7 Kleene Algebras

theory Kleene-Algebra
imports Conway
begin

7.1 Left Near Kleene Algebras

Extending the hierarchy developed in Kleene-Algebra.Dioid we now add an
operation of Kleene star, finite iteration, or reflexive transitive closure to
variants of Dioids. Since a multiplicative unit is needed for defining the star
we only consider variants with 1; 0 can be added separately. We consider the
left star induction axiom and the right star induction axiom independently
since in some applications, e.g., Salomaa’s axioms, probabilistic Kleene alge-
bras, or completeness proofs with respect to the equational theoy of regular
expressions and regular languages, the right star induction axiom is not
needed or not valid.

We start with near dioids, then consider pre-dioids and finally dioids. It
turns out that many of the known laws of Kleene algebras hold already in
these more general settings. In fact, all our equational theorems have been
proved within left Kleene algebras, as expected.

Although most of the proofs in this file could be fully automated by Sledge-
hammer and Metis, we display step-wise proofs as they would appear in
a text book. First, this file may then be useful as a reference manual on
Kleene algebra. Second, it is better protected against changes in the under-
lying theories and supports easy translation of proofs into other settings.

class left-near-kleene-algebra = near-dioid-one + star-op +
assumes star-unfoldl: 1 + ¢ - x* < x*
and star-inductl: z +z - y<y=2"-2<y
begin
First we prove two immediate consequences of the unfold axiom. The first

one states that starred elements are reflexive.

lemma star-ref [simp]: 1 < z*
{proof)
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Reflexivity of starred elements implies, by definition of the order, that 1 is
an additive unit for starred elements.

lemma star-plus-one [simp]: 1 + z* = z*
(proof)

lemma star-11 [simp]: z - z* < z*

(proof)

lemma z* - ¢z < z*

{proof)

lemma z - 2* =z

(proof)

Next we show that starred elements are transitive.

lemma star-trans-eq [simp]: z* - z* = x

(proof)

*

lemma star-trans: ©* - x* < z*

{proof)

We now derive variants of the star induction axiom.

lemma star-inductl-var: x - y <y = a* -y <y
(proof)

lemma star-inductl-var-equiv [simpl: * -y < y+—z -y <y

(proof)

lemma star-inductl-var-eq: - y=y = 2" -y <y
(proof )

lemma star-inductl-var-eq2: y =z -y = y=x2* - y

(proof)

lemmay=z -y+—y=1z"-y
(proof)
lemmaz* - z2<y=z2+z-y<y

{proof)

lemma star-inductl-one: 1 + z - y<y=—= 2* <y
(proof)

lemma star-inductl-star: z - y* < y* = 2* < y*
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(proof)
lemma star-inductl-eq: z +z-y=y=—=2"-2<y
(proof )

We now prove two facts related to 1.
lemma star-subid: x < 1 — 2* = 1
(proof)

lemma star-one [simp]: 1* = 1

{proof)

We now prove a subdistributivity property for the star (which is equivalent
to isotonicity of star).

lemma star-subdist: z* < (z + y)*
(proof)

lemma star-subdist-var: z* + y* < (z + y)*
{proof)

lemma star-iso [intro]: ¢ < y = z* < y*
{proof)

We now prove some more simple properties.

lemma star-invol [simp]: (z*)* = z*

(proof)

lemma star2 [simp]: (1 + z)* = z*

(proof)

lemma 1 + z* -z < z*

(proof )

lemma z < z*
(proof)

lemma z* -z < z

{proof)

lemma 1 + z - z* = z*

(proof)

lemmaz-z2<z-y=a" - 2<z2-y*

{proof)
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The following facts express inductive conditions that are used to show that
(z + y)* is the greatest term that can be built from z and y.

lemma prod-star-closure: © < 2> —= y < 2* =z -y < 2*

(proof)

lemma star-star-closure: * < z* = (2*)* < 2*

(proof)

lemma star-closed-unfold: v* = v =z =1+ 1z -2
{proof )

lemmaz* =z <+—zx=1+4+2-x

{proof)

end

7.2 Left Pre-Kleene Algebras

class left-pre-kleene-algebra = left-near-kleene-algebra + pre-dioid-one
begin

We first prove that the star operation is extensive.

lemma star-ext [simp]: © < z*
(proof)

We now prove a right star unfold law.

lemma star-1r [simp]: ©* - © < z*
(proof)

lemma star-unfoldr: 1 + z* - z < z*

{proof)

lemma I + z* - 2 = 2*

(proof)

Next we prove a simulation law for the star. It is instrumental in proving
further properties.

lemma star-simi: z -2 <z -y= 2" - 2< 2z-y*

(proof)

The next lemma is used in omega algebras to prove, for instance, Bachmair
and Dershowitz’s separation of termination theorem [4]. The property at
the left-hand side of the equivalence is known as quasicommutation.

lemma quasicomm-var: y -z < z-(z+ y)* +—y* -z <z-(z+ y)*
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(proof)

lemma star-slidel: (z - y)* -z <z - (y - z)*
(proof)

lemma (z - y)* - z=2-(y - z)*

(proof )
lemma star-slide-varl: «* - x < x - z*
(proof )

We now show that the (left) star unfold axiom can be strengthened to an
equality.

lemma star-unfoldi-eq [simp]: 1 + x - z* = x*

(proof)

lemma 1 + 2* -z = z*

{proof)

Next we relate the star and the reflexive transitive closure operation.

*

lemma star-rtcl-eq [simpl: 1 +  + z* - 2" =z
(proof)

lemma star-ricl: 1 + z + z* - 2* < z
(proof)

lemma star-rtc2: 1 + v -z < x<+—> 2 =2

(proof)

lemma star-rtc3: 1 + -z =z <+—> =2
(proof)

lemma star-rtc-least: 1 +z+y-y<y=—=z"<y

(proof)

lemma star-rtc-least-eq: 1 + z+y-y=y =" <y
(proof )

lemma I +z+y - y<y<+— "<y

{proof)

The next lemmas are again related to closure conditions

lemma star-subdist-var-1: ¢ < (z + y)*
(proof)

lemma star-subdist-var-2: = - y < (z + y)*
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{proof)
lemma star-subdist-var-3: z* - y* < (z 4+ y)*
{proof)

We now prove variants of sum-elimination laws under a star. These are also
known a denesting laws or as sum-star laws.

lemma star-denest [simpl: (z + y)* = (z* - y*)*

(proof )

lemma star-sum-var [simpl: (z* + y*)* = (z + y)*
{proof )

lemma star-denest-var [simp: z* - (y - z*)* = (z + y)*

(proof)

lemma star-denest-var-2 [simp]: * - (y - z*)* = (¥ - y*)*
{proof )

lemma star-denest-var-8 [simp: z* - (y* - *)* = (¢ - y*)*
{proof)

lemma star-denest-var-4 [ac-simps|: (y* - z*)* = (¥ - y*)*
{proof )

lemma star-denest-var-5 [ac-simps]: o* - (y - %) = y* - (x - y*)*

(proof)

lemma z* - (y - *)* = (z* - y)

(proof )

lemma star-denest-var-6 [simpl: z* - y* - (z + y)* = (z + y)*
{proof)

lemma star-denest-var-7 [simp]: (z + y)* - * - y* = (x + y)*

(proof)

lemma star-denest-var-8 [simpl: * - y* - (¥ - y*)* = (¢* - y*)*
{proof)

lemma star-denest-var-9 [simp]: (z* - y*)* - o* - y* = (" - y*)*
(proof)

The following statements are well known from term rewriting. They are all
variants of the Church-Rosser theorem in Kleene algebra [27]. But first we
prove a law relating two confluence properties.

lemma confluence-var [iff]: y - 2* < 2* - y* +— y* - 2* < z* - y*

39



(proof)

lemma church-rosser [introl: y* -

(proof)

lemma church-rosser-var: y - o* < z* - y* = (z + y)* = z* - y*
(proof )

lemma church-rosser-to-confluence: (x + y)* < z* - y* = y* - 2* < 2% - y*
(proof )

lemma church-rosser-equiv: y* - o* < z* - y* +— (z + y)* =z - y
(proof )

lemma confluence-to-local-confluence: y* - z* < z* - y* = y -z < z* - y*
(proof )

lemmay-z<z* ¢y = y*-2* <z

(proof )
lemma y -z <z* - y* = (z+ y)* < z* - y*
(proof )

More variations could easily be proved. The last counterexample shows that
Newman’s lemma needs a wellfoundedness assumption. This is well known.

The next lemmas relate the reflexive transitive closure and the transitive
closure.

lemma sup-id-starl: 1 < z = z - z* = z*

(proof)

IN

lemma sup-id-star2: 1 < ¢z = z* -z = z*

{proof)

lemma I + 2* - 7 = z*
{proof)

lemma (z - y)* -z =1 - (y - 2)*
(proof )

lemmaz - -z2=z=—2*=1+1z

{proof)

end
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7.3 Left Kleene Algebras

class left-kleene-algebra = left-pre-kleene-algebra + dioid-one
begin

In left Kleene algebras the non-fact z + y - 2 <y = 2z - 2 < y is a
good challenge for counterexample generators. A model of left Kleene alge-
bras in which the right star induction law does not hold has been given by
Kozen [20].

We now show that the right unfold law becomes an equality.

lemma star-unfoldr-eq [simpl: 1 + a* - x = z*

(proof )

The following more complex unfold law has been used as an axiom, called
prodstar, by Conway [8].

lemma star-prod-unfold [simp]: 1 + z - (y - )* -y = (z - y)*

(proof)

The slide laws, which have previously been inequalities, now become equa-
tions.

lemma star-slide [ac-simps]: (z - y)* -z =2z - (y - z)*

(proof)

lemma star-slide-var [ac-simps]: o* - x = z - z*

(proof )
lemma star-sum-unfold-var [simp|: 1 + z* - (z + y)* - y* = (z + y)*
{proof)
The following law shows how starred sums can be unfolded.
lemma star-sum-unfold [simp]: z* + z* - y - (z + y)* = (z + y)*
(proof)
The following property appears in process algebra.

lemma troeger: (z + y)* - z=a" - (y - (. + y)* - z + 2)

(proof)

The following properties are related to a property from propositional dy-
namic logic which has been attributed to Albert Meyer [18]. Here we prove
it as a theorem of Kleene algebra.

lemma star-square: (z - z)* < z*

(proof )

lemma meyer-1 [simp]: (1 + z) - (z - )* = z*

(proof)
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The following lemma says that transitive elements are equal to their transi-
tive closure.

lemma tc:z -2 <z=—= 2" -2z =1

(proof)

lemma tc-eq: z - =2 = 2* -z =2

(proof)

The next fact has been used by Boffa [6] to axiomatise the equational theory
of regular expressions.

lemma boffa-var: xz -z <z = z*=1+=z

(proof)

lemma boffa: v - v =2 = 2"=1+=z
(proof )

end

7.4 Left Kleene Algebras with Zero

There are applications where only a left zero is assumed, for instance in the
context of total correctness and for demonic refinement algebras [31].

class left-kleene-algebra-zerol = left-kleene-algebra + dioid-one-zerol

begin

sublocale conway: near-conway-base-zerol star
(proof)

lemma star-zero [simpl: 0* = 1
{proof)

In principle, 1 could therefore be defined from 0 in this setting.

end

class left-kleene-algebra-zero = left-kleene-algebra-zerol + dioid-one-zero

7.5 Pre-Kleene Algebras

Pre-Kleene algebras are essentially probabilistic Kleene algebras [24]. They
have a weaker right star unfold axiom. We are still looking for theorems
that could be proved in this setting.

class pre-kleene-algebra = left-pre-kleene-algebra +
assumes weak-star-unfoldr: z + y - (¢t + 1) <y= z-2* <y
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7.6 Kleene Algebras

class kleene-algebra-zerol = left-kleene-algebra-zerol +
assumes star-inductr: z +y -z < y= z-2* <y

begin

lemma star-sim2: z - x < y-z= z-2* < y* -z

(proof)

sublocale conway: pre-conway star
(proof)

lemma star-inductr-var: y -z < y=—y - -a* <y
(proof )

lemma star-inductr-var-equiv: y - ¢ < y <— y - z* < y
(proof)

lemma star-sim3: z -z =y - 2= z-x* =y* - 2
(proof )

lemma star-sim4: z -y < y-z= 2 - y* <y
{proof)

lemma star-inductr-eq: z +y -z =y = z -2 <y
(proof)

lemma star-inductr-var-eq: y -z =y =y -2 < y
(proof )

lemma star-inductr-var-eq2: y -z =y =y - " =y

{proof)

*

lemma bubble-sort: y -z <z-y= (z+y)* =z -y
(proof )

lemma independencel: z -y =0 = z* - y=y
(proof)

lemma independence2: z -y =0 =z -y* ==z
(proof )

lemma lazycomm-var: y -z <z -(z+y)  +y+—y - <z -(z+y)*+y
(proof)

lemma arden-var: Vyv.y<z-y+v—y<z* v)=z=z -2+ w=— 2

=z* - w

{proof)
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lemma Vzy. y<z-y—y=0)—y<z-y+z=y<z* 2z
{proof )

end

Finally, here come the Kleene algebras a la Kozen [21]. We only prove
quasi-identities in this section. Since left Kleene algebras are complete with
respect to the equational theory of regular expressions and regular languages,
all identities hold already without the right star induction axiom.

class kleene-algebra = left-kleene-algebra-zero +
assumes star-inductr’: z +y -z < y=—= z-2* < y
begin

subclass kleene-algebra-zerol
(proof)

sublocale conway-zerol: conway star (proof)

The next lemma shows that opposites of Kleene algebras (i.e., Kleene alge-
bras with the order of multiplication swapped) are again Kleene algebras.

lemma dual-kleene-algebra:
class.kleene-algebra (+) (®) 1 0 (<) (<) star

(proof)

end

We finish with some properties on (multiplicatively) commutative Kleene
algebras. A chapter in Conway’s book [8] is devoted to this topic.

class commutative-kleene-algebra = kleene-algebra +
assumes mult-comm [ac-simps]: ¢ -y =y - x

begin

* *

lemma conway-c8 [simp]: (z + y)* = z* - y

(proof)

lemma conway-c4: (z* - y)* =1 + a* - y*

{proof)

"y
lemma cka-1: (z - y)* < z* - y*
(proof)

lemma cka-2 [simp]: z* - (z* - y)* =z
{proof)

lemma conway-c4-var [simp]: (z* - y*)* =z* - y
(proof)
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lemma conway-c2-var: (x - y)* -z -y - y* < (z-y)* - y*

{proof)

lemma conway-c2 [simp: (z - y)* - (¢* + y*) = 2~ - y*

(proof)

end

end

8 Models of Kleene Algebras

theory Kleene-Algebra-Models
imports Kleene-Algebra Dioid-Models
begin

We now show that most of the models considered for dioids are also Kleene
algebras. Some of the dioid models cannot be expanded, for instance max-
plus and min-plus semirings, but we do not formalise this fact. We also
currently do not show that formal powerseries and matrices form Kleene
algebras.

The interpretation proofs for some of the following models are quite similar.
One could, perhaps, abstract out common reasoning in the future.

8.1 Preliminary Lemmas

We first prove two induction-style statements for dioids that are useful for
establishing the full induction laws. In the future these will live in a theory
file on finite sums for Kleene algebras.

context dioid-one-zero
begin

lemma power-inductl: z + z-y<y= (z "n)-2<y

(proof)

lemma power-inductr: z + y -z <y=—= 2z (z " n) <y
(proof)

end

8.2 The Powerset Kleene Algebra over a Monoid

We now show that the powerset dioid forms a Kleene algebra. The Kleene
star is defined as in language theory.

lemma Un-0-Suc: (Jn. fn) =f0U (Un. f (Suc n))
(proof)
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instantiation set :: (monoid-mult) kleene-algebra
begin

definition star-def: X* = (Jn. X " n)

lemma star-elim: x € X* «— k. z € X " k)
{proof)

lemma star-contl: X - Y* = (Jn. X - Y "n)
(proof)

lemma star-contr: X* - Y = (Jn. X "n-Y)
{proof)

instance
(proof )

end

8.3 Language Kleene Algebras

We now specialise this fact to languages.

interpretation lan-kleene-algebra: kleene-algebra (+) () 1::'a lan 0 (C) (C) star

(proof)

8.4 Regular Languages

. and further to regular languages. For the sake of simplicity we just copy
in the axiomatisation of regular expressions by Krauss and Nipkow [23].

datatype ‘a rexp =
Zero

| One

| Atom 'a

| Plus 'a rexp 'a rexp

| Times 'a rexp 'a rexp

| Star 'a rexp

The interpretation map that induces regular languages as the images of
regular expressions in the set of languages has also been adapted from there.

fun lang :: 'a rexp = ’a lan where
lang Zero = 0 —

| lang One = 1 — ]

| lang (Atom a) = {[a]}

| lang (Plus z y) = lang = + lang y

| lang (Times z y) = lang x - lang y

| lang (Star z) = (lang z)*
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typedef ‘a reg-lan = range lang :: 'a lan set
{proof )

setup-lifting type-definition-reg-lan

instantiation reg-lan :: (type) kleene-algebra
begin

lift-definition star-reg-lan :: 'a reg-lan = 'a reg-lan
is star

(proof)

lift-definition zero-reg-lan :: 'a reg-lan
is 0

(proof)

lift-definition one-reg-lan :: 'a reg-lan
is 1

(proof)

lift-definition less-eg-reg-lan :: 'a reg-lan = 'a reg-lan = bool
is less-eq (proof)

lift-definition less-reg-lan :: 'a reg-lan = 'a reg-lan = bool
is less (proof)

lift-definition plus-reg-lan :: 'a reg-lan = 'a reg-lan = 'a reg-lan
is plus

(proof)

lift-definition times-reg-lan :: ’'a reg-lan = 'a reg-lan = 'a reg-lan
is times

(proof)

instance
(proof)

end

interpretation reg-lan-kleene-algebra: kleene-algebra (+) (-) 1:'a reg-lan 0 (<)
(<) star {proof)

8.5 Relation Kleene Algebras

We now show that binary relations form Kleene algebras. While we could
have used the reflexive transitive closure operation as the Kleene star, we
prefer the equivalent definition of the star as the sum of powers. This es-
sentially allows us to copy previous proofs.
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lemma power-is-relpow: rel-dioid.power X n = X n
(proof)

lemma rel-star-def: X % = (|Jn. rel-dioid.power X n)
(proof)

lemma rel-star-contl: X O Y% = (Un. X O rel-dioid.power Y n)
(proof)

lemma rel-star-contr: X O Y = (Jn. (rel-dioid.power X n) O Y)
(proof)

interpretation rel-kleene-algebra: kleene-algebra (U) (O) Id {} (C) (C) rtrancl
(proof)

8.6 Trace Kleene Algebras

Again, the proof that sets of traces form Kleene algebras follows the same
schema.

definition t-star :: ('p, 'a) trace set = ('p, 'a) trace set where

t-star X = U n. trace-dioid.power X n

lemma t-star-elim: x € t-star X «— (In. z € trace-dioid.power X n)
(proof)

lemma t-star-contl: t-prod X (t-star V) = (U n. t-prod X (trace-dioid.power Y n))
{proof)

lemma t-star-contr: t-prod (t-star X) Y = (Un. t-prod (trace-dioid.power X n)
Y)
{proof)

interpretation trace-kleene-algebra: kleene-algebra (U) t-prod t-one t-zero (C) (C)
t-star

(proof)

8.7 Path Kleene Algebras

We start with paths that include the empty path.
definition p-star :: ‘a path set = 'a path set where
p-star X = |Jn. path-dioid.power X n

lemma p-star-elim: z € p-star X «— (In. z € path-dioid.power X n)

(proof)

lemma p-star-contl: p-prod X (p-star Y) = (Un. p-prod X (path-dioid.power Y

n))
(proof)
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lemma p-star-contr: p-prod (p-star X) Y = (Un. p-prod (path-dioid.power X n)
Y)
(proof )

interpretation path-kleene-algebra: kleene-algebra (U) p-prod p-one {} (C) (C)
p-star

(proof)
We now consider a notion of paths that does not include the empty path.

definition pp-star :: ‘a ppath set = 'a ppath set where
pp-star X = |Jn. ppath-dioid.power X n

lemma pp-star-elim: © € pp-star X <— (In. z € ppath-dioid.power X n)
(proof)

lemma pp-star-contl: pp-prod X (pp-star V) = (| n. pp-prod X (ppath-dioid.power
Y n))

(proof)

lemma pp-star-contr: pp-prod (pp-star X) Y = (Un. pp-prod (ppath-dioid.power
Xn)Y)
(proof)

interpretation ppath-kleene-algebra: kleene-algebra (U) pp-prod pp-one {} (C) (Q)
pp-star

(proof)

8.8 The Distributive Lattice Kleene Algebra

In the case of bounded distributive lattices, the star maps all elements to to
the maximal element.

definition (in bounded-distributive-lattice) bdl-star :: 'a = 'a where
bdl-star x = top

sublocale bounded-distributive-lattice C kleene-algebra sup inf top bot less-eq less
bdl-star

(proof)

8.9 The Min-Plus Kleene Algebra

One cannot define a Kleene star for max-plus and min-plus algebras that
range over the real numbers. Here we define the star for a min-plus algebra
restricted to natural numbers and 4o0. The resulting Kleene algebra is
commutative. Similar variants can be obtained for max-plus algebras and
other algebras ranging over the positive or negative integers.

instantiation pnat :: commutative-kleene-algebra

49



begin

definition star-pnat where
* = (1::pnat)

instance
(proof )

end

end

9 Omega Algebras

theory Omega-Algebra
imports Kleene-Algebra
begin

Omega algebras [7] extend Kleene algebras by an w-operation that axioma-
tizes infinite iteration (just like the Kleene star axiomatizes finite iteration).

9.1 Left Omega Algebras

In this section we consider left omega algebras, i.e., omega algebras based
on left Kleene algebras. Surprisingly, we are still looking for statements
mentioning w that are true in omega algebras, but do not already hold in
left omega algebras.
class left-omega-algebra = left-kleene-algebra-zero + omega-op +

assumes omega-unfold: z¥ < z - z¥

and omega-coinduct: y < z+ xz -y =y < z¥ + x* - 2
begin

First we prove some variants of the coinduction axiom.

lemma omega-coinduct-varl: y < 1 +z -y =y < a* + z*
(proof)

lemma omega-coinduct-var2: y < z -y = y < 2
{proof)

lemma omega-coinduct-eq: y = z + -y = y < z¥ + ¥ - 2
(proof)

lemma omega-coinduct-eq-varl: y =1+ z -y = y < z“ + z*
(proof )

lemma omega-coinduct-eq-var2: y =z -y = y < zv
{proof)
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lemmay=2z-y+z=y=2": 2+ zv

(proof)

lemmay=1+z -y—=— y=2¥+ z*

(proof)

lemma y=z-y=— y =2

(proof)

Next we strengthen the unfold law to an equation.
lemma omega-unfold-eq [simpl: z - ¥ = a2

(proof)

lemma omega-unfold-var: z + z - z¥ < 2% + x* - 2
(proof)

lemma z +z - 2% = 2% + z* - 2

(proof)

We now prove subdistributivity and isotonicity of omega.

lemma omega-subdist: ¥ < (z + y)*

(proof)

lemma omega-iso: z < y —= 2% < y¥
{proof)

lemma omega-subdist-var: z¥ + y* < (z + y)¥
(proof)

lemma zero-omega [simp]: 0% = 0
{proof)

The next lemma is another variant of omega unfold

w w

lemma star-omega-1 [simp]: z* - «

(proof)

The next lemma says that 1“ is the maximal element of omega algebra. We
therefore baptise it T.

=T

lemma mazx-element: x < 1%
(proof)

definition top (xT»)
where T = 1%
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lemma star-omega-3 [simp]: (z*)* =T
(proof)

The following lemma is strange since it is counterintuitive that one should
be able to append something after an infinite iteration.

lemma omega-1: 2% - y < a¥
(proof)

lemma 2% - y = 2%

(proof)

lemma omega-sup-id: 1 <y = 2 - y = 2%

{proof)

lemma omega-top [simp]: z¥ - T = 2%

{proof)

lemma supid-omega: 1 < v = 2% =T
(proof )

(proof)

Next we prove a simulation law for the omega operation

lemma omega-simulation: z - x <y -z = z - ¥ < y*
(proof )

lemmaz - z2<y - z2= 2z -2 < y“ -z
(proof)

lemmay- -2z <z -z= ¢y <z a¥
(proof)

lemmay: -z <z-z=—= 3“2z ¥

(proof)

Next we prove transitivity of omega elements.

lemma omega-omega: (z¥)¥ < z¥
{proof)

The next lemmas are axioms of Wagner’s complete axiomatisation for omega-
regular languages [32], but in a slightly different setting.
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lemma wagner-1 [simp|: (z - z*)¥ = a¥

(proof)

lemma wagner-2-var: = - (y - ) < (x - y)*

(proof)

lemma wagner-2 [simp]: z - (y - z)¥ = (z - y)¥
(proof)

This identity is called (A8) in Wagner’s paper.

lemma wagner-3:

assumes z - (z + y)¥ + z = (x + y)¥

shows (z + y)¥ = a¥ + 2% - 2

(proof )

This identity is called (R4) in Wagner’s paper.
lemma wagner-1-var [simp]: (z* - z)¥ = 2
{proof )

lemma star-omega-4 [simpl: (z¥)* = 1 + z¥

(proof)

lemma star-omega-5 [simp]: 2 - (z¥)* = 2

(proof)

The next law shows how omegas below a sum can be unfolded.
lemma omega-sum-unfold: % + z* - y - (z + y)* = (z + y)*

(proof)

The next two lemmas apply induction and coinduction to this law.

lemma omega-sum-unfold-coind: (z + y)¥ < (z* - y)* + (z* - y)* - a¥

{proof)

lemma omega-sum-unfold-ind: (z* - y)* - z¥ < (z + y)¥
{proof)

lemma wagner-1-gen: (z - y*)¥ < (z 4+ y)¥
(proof)

lemma wagner-1-var-gen: (z* - y)* < (z + y)*

(proof)

The next lemma is a variant of the denest law for the star at the level of
omega.

lemma omega-denest [simp]: (x + y)* = (z* - y)¥ + (z* - y)* - z¥

{(proof)

The next lemma yields a separation theorem for infinite iteration in the
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presence of a quasicommutation property. A nondeterministic loop over x
and y can be refined into separate infinite loops over z and y.

lemma omega-sum-refine:
assumes y - ¢ < z - (7 + y)*
shows (z + y)* = 2¥ + 2* - y
(proof )

w

The following theorem by Bachmair and Dershowitz [4] is a corollary.

lemma bachmair-dershowitz:
assumes y - z < z - (z + y)*
shows (z + )Y =0 +— z¥ + y¥ =0
(proof)

The next lemmas consider an abstract variant of the empty word property
from language theory and match it with the absence of infinite iteration [28].
definition (in dioid-one-zero) ewp

where ewp zr = -(Vy. y <z -y — y=0)

lemma ewp-super-idl: 0 # 1 = 1 <z = ewp x
(proof )

lemma 0 # 1 —= 1 <z+4+— ewp=x

(proof)

The next facts relate the absence of the empty word property with the
absence of infinite iteration.

lemma ewp-neg-and-omega: — ewp T — ¥ = 0

(proof)

lemma ewp-alt]: Vz. 2 < a* - 2) +— Vyz. y<z-y+2z— y<z*-2)
(proof )

lemma ewp-alt: 2 = 0 +— Vyz. y<z-y+2z—y<z*-2)

(proof)
So we have obtained a condition for Arden’s lemma in omega algebra.
lemma omega-super-idl: 0 # 1 — 1 <z = 2¥ # 0

(proof )

lemma omega-super-id2: 0 # 1 = 2% = 0 = —(1 < 1)
{proof)

The next lemmas are abstract versions of Arden’s lemma from language
theory.

lemma ardens-lemma-var:
assumes z* = (
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andz+z-y=y
shows z* - z = y
(proof)

lemma ardens-lemma: —ewpr = 2z +x-y=y=— 2" 2=y
(proof)

lemma ardens-lemma-equiv:
assumes - ewp
shows z +z - y=y+— - 2=y
(proof)

lemma ardens-lemma-var-equiv: ¥ = 0 = (z + ¢ -y =y +— ¥ - z = y)
(proof )

lemma arden-convl: Vyz.z4+z-y=y —2*-2=y) = - ewp
(proof)

lemma arden-conv2: Vyz. z4+z-y=y —a* - 2=y) = a¥ =10
(proof )

lemma arden-vary: Vyz. z+z-y=y —a*-z2=9y) +— ¥ =0
(proof )

end

9.2 Omega Algebras

class omega-algebra = kleene-algebra + left-omega-algebra

end

10 Models of Omega Algebras

theory Omega-Algebra-Models
imports Omega-Algebra Kleene-Algebra-Models
begin

The trace, path and language model are not really interesting in this setting.

10.1 Relation Omega Algebras

In the relational model, the omega of a relation relates all those elements
in the domain of the relation, from which an infinite chain starts, with all
other elements; all other elements are not related to anything [19]. Thus,
the omega of a relation is most naturally defined coinductively.

coinductive-set omega :: (‘a X ’a) set = (‘a x ’'a) set for R where
[ (z,y) € R; (y, z) € omega R ]| = (z, 2) € omega R
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Isabelle automatically derives a case rule and a coinduction theorem for
Omega-Algebra-Models.omega. We prove slightly more elegant variants.

lemma omega-cases: (r, z) € omega R =
(Ay. (z,y) € R= (y, 2) € omega R =— P) =— P
(proof)

lemma omega-coinduct: X x 2z —
(Nt z. Xzz= Jy. (z,y) € RAN(XyzV (y, z) € omega R)) =
(z, 2) € omega R

(proof)

lemma omega-weak-coinduct: X © z =
Ntz Xzz= Fy. (2, y) E RANXyz) =
(z, 2) € omega R

(proof)

interpretation rel-omega-algebra: omega-algebra (U) (O) Id {} (C) (C) rtrancl
omega

(proof)

end

11 Demonic Refinement Algebras

theory DRA
imports Kleene-Algebra
begin

A demonic refinement algebra *DRA) [31] is a Kleene algebra without right
annihilation plus an operation for possibly infinite iteration.

class dra = kleene-algebra-zerol +
fixes strong-iteration :: 'a = 'a (¢-°°» [101] 100)
assumes iteration-unfoldl [simp] : 1 + z - 2> = x>
and coinduction: y < z+z -y — y < x*° -z
and isolation [simp]: ©* + z°° - 0 = £

begin

T is an abort statement, defined as an infinite skip. It is the maximal
element of any DRA.

abbreviation top-elem :: 'a (xT>) where T = 1

Simple/basic lemmas about the iteration operator

lemma iteration-refi: 1 < z°°

{proof)

lemma iteration-11: x - x>° < z°
(proof)
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lemma top-ref: z < T

(proof)

lemma it-ext: © < z°°

(proof)

lemma it-idem [simp]: () = x>

{(proof)

lemma top-mult-annil [simp]: T -z =T
{proof)

lemma top-add-annil [simp]: T + x =T
{proof)

lemma top-elim: x - y <z - T
(proof)

lemma iteration-unfoldl-distl [simp]: y+y -z -2 =y - z™
(proof )

lemma iteration-unfoldl-distr [simp]: y + z - 2° -y =2 -y
(proof)

lemma iteration-unfoldl’ [simp]: z - y + z - ¢ - 2> -y =z - ™

{proof)

Y

o0 o0

lemma iteration-idem [simp]: z°° - z

{(proof)

=2

lemma iteration-induct: © - z>° < z°° -
(proof)

lemma iteration-ref-star: z* < z*°
(proof )

lemma iteration-subdist: *° < (z + y)™
{proof)

lemma iteration-iso: z < y = z>° < y*°
{proof)

lemma iteration-unfoldr [simpl: 1 + z*° - x = z*

{proof)

lemma iteration-unfoldr-distl [simp]: y + y - z™ -z =1y - 2>

{proof)
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lemma iteration-unfoldr-distr [simp]: y + x> -z -y = 2™

{proof)

"y

lemma iteration-unfold-eq: z*° - z = x - ™
(proof )

lemma iteration-unfoldr’ [simpl: z -y + 2z - 2™ -z -y=z2-x
(proof)

lemma iteration-double [simp]: (z*°)>®° = T
{proof )

lemma star-iteration [simp]: (%) =T
{proof)

lemma iteration-star [simp]: (z*°)* = x>
{proof )

lemma iteration-star2 [simp]: z* - > = >

(proof)

lemma iteration-zero [simp]: 0° = 1
{proof)

lemma iteration-anndl [simpl: (z - 0)° =1+ =z -0
{proof)

lemma iteration-subdenest: ™ - y*> < (z + y)™
{proof)

lemma sup-id-top: 1 < y=—y-T =T

{proof)

lemma iteration-top [simpl: z>° - T =T
{proof)

Next, we prove some simulation laws for data refinement.

lemma iteration-sim: z - y < x -z = 2z - y>*° < z*° . 2
(proof)

Nitpick gives a counterexample to the dual simulation law.
lemmay - 2<z-z=—=y* - -2<z 2%
(proof)

Next, we prove some sliding laws.

lemma iteration-slide-var: z - (y - ) < (z - y)>® - x
{proof)
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lemma iteration-prod-unfold [simpl: 1 + y - (z - y)>® -z = (y - )™

(proof)

lemma iteration-slide: © - (y - ) = (z - y)* - x
(proof)

lemma star-iteration-slide [simpl: y* - (z* - y)>®° = (z* - y)™
(proof)

The following laws are called denesting laws.

lemma iteration-sub-denest: (z + y)>° < z°° - (y - )

(proof)

lemma iteration-denest: (z + y)*° = 2™ - (y - ™)
(proof)

lemma iteration-denest? [simpl: v* - z - (z + y)™® + y>* = (z + y)™
(proof)

lemma iteration-denest3: (y* - ) - y>*° = (x + y)*>

(proof)

Now we prove separation laws for reasoning about distributed systems in
the context of action systems.

lemma iteration-sep: y -z < z -y = (¢ + y)™® = 2> - y*>

{(proof)

lemma iteration-sim2: y -z < x -y = y> - 2 < > . y>®

{proof)

lemma iteration-sep2: y -z < x - y* = (z + y)>® =2 - y

(proof)

o0

lemma iteration-sep3: y -z <z - (z+y) = (c+ y)* =2* -y
(proof)

lemma iteration-sep4: y - 0 =0 = z-2=0=y -z < (z+ 2) -y = (2
+y+2)® =z (y+ 2)>
(proof)

Finally, we prove some blocking laws.

Nitpick refutes the next lemma.

lemmaz-y=0= 2 -y=y

(proof)

lemma iteration-idep: x - y=0 —= ¢ - y* ==z
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{proof)

Nitpick refutes the next lemma.

lemmay - w<z - y+2z2=y- - w° <z* .-z

(proof)

At the end of this file, we consider a data refinement example from von
Wright [30].

lemma data-refinement:

assumes s'< s-zand z-e'<eand 2z -a'<a-zand 2z b < zand b>® =
b*

shows s"- (¢’ + b)® - e/ <s-a>®-¢

(proof)

end

end

12 Propositional Hoare Logic for Conway and Kleene
Algebra

theory PHL-KA
imports Kleene-Algebra

begin

This is a minimalist Hoare logic developed in the context of pre-dioids.
In near-dioids, the sequencing rule would not be derivable. Iteration is
modelled by a function that needs to satisfy a simulation law.

The main assumtions on pre-dioid elements needed to derive the Hoare rules
are preservation properties; an additional distributivity propery is needed
for the conditional rule.

This Hoare logic can be instantated in various ways. It covers notions of fi-
nite and possibly infinite iteration. In this theory, it it specialised to Conway
and Kleene algebras.

class it-pre-dioid = pre-dioid-one +
fixes it :: 'a = a
assumes it-simr: y - r < zr-y=—=y-itrx ity

begin

lemma phl-while:

assumes p - s<s-p-sandp-w<w-p-w
and (p-s)-z<z-p
shows p- (it (s-z) - w) <idt(s-z) - w-(p-w)

~—
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(proof)

end

Next we define a Hoare triple to make the format of the rules more explicit.

context pre-dioid-one
begin

abbreviation (in near-dioid) ht :: 'a = 'a = 'a = bool (<{-}-{-}}>) where
{ob y {eb =2y <y -2

lemma ht-phl-skip: {z} 1 {z}
{proof)

lemma ht-phl-cons!: ¢ < w = {w} y {z} = {z} v {=}
{proof)

lemma ht-phl-cons2: w < z = {z} y {w} = {z} v {=z}
(proof)

lemma ht-phl-seq: {p} =z {r} = {r} v {q} = {p} z - y {4}
(proof)

lemma ht-phl-cond:
assumes v - v < v-u-vandu-w<w-u-w
and Azy. v -(z+y) <u-z+u-y
and {u - o} z {z} and {u - w} y {z}
shows {ul} (v-z + w-y) {z}
(proof )

lemma ht-phl-exportl:

assumes z - Yy <y - T - Y

and {z - y} 2z Juw}

shows {zf} y - z {w]}
(proof)

lemma ht-phl-export2:
assumes 2z - w < wW-2z-Ww

and {z} y {[}

shows {z} v - w {7z - w|
(proof )

end

context it-pre-dioid begin

lemma ht-phl-while:

assumes p - s < s-p-sandp-w<w-p-w
and {p - s} = {p}
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shows {p} it (s - z) - w {p - w}
{proof)

end

sublocale pre-conway < phl: it-pre-dioid where it = dagger
(proof)

sublocale kleene-algebra < phl: it-pre-dioid where it = star (proof)

end

13 Propositional Hoare Logic for Demonic Refine-
ment Algebra

In this section the generic iteration operator is instantiated to the strong it-
eration operator of demonic refinement algebra that models possibly infinite
iteration.

theory PHL-DRA
imports DRA PHL-KA
begin

sublocale dra < total-phl: it-pre-dioid where it = strong-iteration
(proof)

end

14 Finite Suprema

theory Finite-Suprema
imports Dioid
begin

This file contains an adaptation of Isabelle’s library for finite sums to the
case of (join) semilattices and dioids. In this setting, addition is idempotent;
finite sums are finite suprema.

We add some basic properties of finite suprema for (join) semilattices and
dioids.

14.1 Auxiliary Lemmas

lemma fun-im: {fa|a. a € A} ={b. be f A}
{proof)

lemma fset-to-im: {fz |z. 2 € X} =f‘X
{proof)
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lemma cart-flip-auz: {f (snd p) (fst p) |p. p € (B x A)} = {f (fst p) (snd p) |p.
p € (A x B)}

{proof)

lerr];r)na cart-flip: (Ap. f (snd p) (fst p)) (B x A) = (Ap. [ (fst p) (snd p)) * (4

{proof)

lemma fprod-aux: {z - y|lzy. z€ (f*A) ANye(g‘B)}={fz-gylry. z€ A
Ay € B}
(proof )

14.2 Finite Suprema in Semilattices

The first lemma shows that, in the context of semilattices, finite sums satisfy
the defining property of finite suprema.
lemma sum-sup:
assumes finite (A :: 'a::join-semilattice-zero set)
shows YA < z+— (Va€ A a < 2)
(proof)

This immediately implies some variants.

lemma sum-less-eql:
Ne. z€ A= fz <y) = sum fA < (y:'a:join-semilattice-zero)

(proof )

lemma sum-less-eqFE:
[ sum fA < y; z € A; finite A] = [z < (y::'a::join-semilattice-zero)

{proof)

lemma sum-fun-image-sup:
fixes f :: 'a = 'b::join-semilattice-zero
assumes finite (A :: 'a set)
shows > (f“A) < z+— Vaec A fa<2)
(proof )

lemma sum-fun-sup:
fixes f :: 'a = 'b::join-semilattice-zero
assumes finite (A ::'a set)
shows Y {fa]a a€ A} <z+— (Va€ A. fa<2)

(proof)

lemma sum-intro:
assumes finite (A :: 'a::join-semilattice-zero set) and finite B
shows (Va € A.3be B.a<b) — (DA <> B)
(proof )

Next we prove an additivity property for suprema.
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lemma sum-union:
assumes finite (A :: 'a::join-semilattice-zero set)
and finite (B :: 'a::join-semilattice-zero set)
shows > (AUB)=> A+ > B

(proof)

It follows that the sum (supremum) of a two-element set is the join of its
elements.

lemma sum-bin[simp]: >_{(z :: 'a::join-semilattice-zero),y} = = + y

(proof)

Next we show that finite suprema are order preserving.

lemma sum-iso:
assumes finite (B :: 'a::join-semilattice-zero set)
shows ACB— > A<> B
(proof)

The following lemmas state unfold properties for suprema and finite sets.
They are subtly different from the non-idempotent case, where additional
side conditions are required.

lemma sum-insert [simp]:
assumes finite (A :: 'a::join-semilattice-zero set)
shows > (insert z A) =z + > A

(proof)

lemma sum-fun-insert:
fixes [ :: 'a = 'b::join-semilattice-zero
assumes finite (A :: ‘a set)
shows > (f “ (insert x A)) = fz + > (f < A)
(proof)

Now we show that set comprehensions with nested suprema can be flattened.

lemma flattenl-im:

fixes f :: 'a = 'a = 'b::join-semilattice-zero

assumes finite (A :: ‘a set)

and finite (B :: 'a set)
Zhows (0 £ B) *4) = 20 S () (nd ) (4 x )
proo

lemma flatten2-im:

fixes f :: 'a = 'a = 'b::join-semilattice-zero

assumes finite (A ::'a set)

and finite (B ::'a set)

)S)hOWS 2 (g 22 ((Az. fay) “A)) “B) =2 ((Ap. f (fst p) (snd p)) * (A x
B

(proof)

lemma sum-flatteni:
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fixes f :: 'a = 'a = 'b::join-semilattice-zero

assumes finite (A :: 'a set)

and finite (B :: 'a set)

shows > D {fzyly.ye€ B} |lz. 2 € A} => {fzylzy. 2 € ANy€E B}
(proof )

lemma sum-flatten?2:

fixes [ :: 'a = 'a = 'b::join-semilattice-zero

assumes finite A

and finite B

shows > {3 {fzylz.z € A} ly.ye B} => {fzyl|lzy.z € AN yec B}
(proof )

Next we show another additivity property for suprema.

lemma sum-fun-sum:

fixes f g :: 'a = 'b::join-semilattice-zero

assumes finite (A :: 'a set)

shows Y (A\z. fz+gz) “A) =>(fA) + > (g9 ‘A
(proof)

The last lemma of this section prepares the distributivity laws that hold
for dioids. It states that a strict additive function distributes over finite
suprema, which is a continuity property in the finite.

lemma sum-fun-add:
fixes [ :: 'a::join-semilattice-zero = 'b::join-semilattice-zero
assumes finite (X :: ‘a set)
and fstrict: f0 = 0
and fadd: Nz y. f (z+y)=fz+ fy
shows f (30 X) = > (f * X)
(proof)

14.3 Finite Suprema in Dioids

In this section we mainly prove variants of distributivity laws.

lemma sum-distl:
assumes finite Y
shows (z :: ‘a::dioid-one-zero) - (DY) =>{z - yly. y € Y}
(proof )

lemma sum-distr:

assumes finite X

shows (3 X) - (y = ‘a::dioid-one-zero) = > {z - y|lz. z € X}
(proof)

lemma sum-fun-distl:
fixes f :: 'a = 'b:dioid-one-zero
assumes finite (Y :: 'a set)

showsz - > (f'Y)=>{z-fyly.ye Y}
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{proof)

lemma sum-fun-distr:
fixes [ :: 'a = 'b:dioid-one-zero
assumes finite (X :: ‘a set)
shows > (f“X) -y =>{fz-yl|z. z € X}
(proof)

lemma sum-distl-flat:
assumes finite (X ::'a::dioid-one-zero set)
and finite Y
shows Y {z- Y Y|e.ze X} =>{z -ylzryze€ X ANyecY}
(proof)

lemma sum-distr-flat:
assumes finite X
and finite (Y :: 'a::dioid-one-zero set)
shows > {>-X) - yly.yeY}=>{z ylryze X Nyec Y}
(proof)

lemma sum-sum-distl:

assumes finite (X :: ‘a::dioid-one-zero set)

and finite Y

shows > (Az.z- O Y)) “X)=>{z-ylzyz€e X ANyeY}
(proof)

lemma sum-sum-distr:

assumes finite X

and finite Y

shows > (A\y. O_X) - (y =2 'az:dioid-one-zero)) ‘YY) => {z - ylzy.z € X A
y€ Y}
(proof )

lemma sum-sum-distl-fun:

fixes f g :: 'a = 'b::dioid-one-zero

fixes h :: ‘a = 'a set

assumes Az. finite (h x)

and finite X

shows S0 12 £ 1) %) = Z(Z (fa-9vly e hobloa e
X

(proof )

lemma sum-sum-distr-fun:

fixes f g :: 'a = 'bi:dioid-one-zero

fixes h :: 'a = 'a set

assumes finite Y

and Ay. finite (h y)

S}hOWS Ay X hy) gy )= {>{fr-gylz.ze(hy}lyye
Y

66



{proof)

lemma sum-dist:

assumes finite (A :: 'a::dioid-one-zero set)

and finite B

shows 3" A) - O.B)=>{z-ylry. z€ ANyc B}
(proof)

lemma dioid-sum-prod-var:
fixes f g :: 'a = 'b::dioid-one-zero
assumes finite (A ::'a set)
shows (3_(f“4)) - (X2 (9 "A) =2Afz-gylzy v e ANye A}
(proof)

lemma dioid-sum-prod:

fixes f g :: 'a = 'b::dioid-one-zero

assumes finite (A :: ‘a set)

shows O {fzlz. 2 € A}) - O {gz|z.z € A}) => {fz-gylzy. € AN
y € A}

(proof)

lemma sum-image:
fixes f :: 'a = 'b::join-semilattice-zero
assumes finite X
shows sum f X = > (f * X)

{proof )

lemma sum-interval-cong:

INi.[m<ii<n]= PGl =Q>W]= O i=m.n. P>)) = (> i=m.n.
Q(i))

(proof)

lemma sum-interval-distl:

fixes [ :: nat = 'a::dioid-one-zero

assumes m < n

shows z - (> i=m..n. f(i)) = 3 i=m..n. (z - f(1)))
(proof)

lemma sum-interval-distr:
fixes [ :: nat = 'a::dioid-one-zero
assumes m < n
shows (> i=m..n. (7)) - y = O i=m..n. (f(3) - y))
(proof)

There are interesting theorems for finite sums in Kleene algebras; we leave
them for future consideration.

end
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15 Formal Power Series

theory Formal-Power-Series
imports Finite-Suprema Kleene-Algebra
begin

15.1 The Type of Formal Power Series

Formal powerseries are functions from a free monoid into a dioid. They have
applications in formal language theory, e.g., weighted automata. As usual,
we represent elements of a free monoid by lists.
This theory generalises Amine Chaieb’s development of formal power se-
ries as functions from natural numbers, which may be found in HOL/Li-
brary/Formal _Power _Series.thy.
typedef (‘a, 'b) fps = {f::'a list = 'b. True}

morphisms fps-nth Abs-fps

(proof)

It is often convenient to reason about functions, and transfer results to
formal power series.

setup-lifting type-definition-fps
declare fps-nth-inverse [simp)
notation fps-nth (infixl <$» 75)

lemma expand-fps-eq: p = ¢ +— (Vn.p$Sn=q8%$n)
(proof)

lemma fps-ext: (An.p$n=q¢8%$n) = p=gq
(proof)

lemma fps-nth-Abs-fps [simp]: Abs-fps f $ n=fn
(proof)

15.2 Definition of the Basic Elements 0 and 1 and the Basic
Operations of Addition and Multiplication

The zero formal power series maps all elements of the monoid (all lists) to
Zero.

instantiation fps :: (type,zero) zero
begin
definition zero-fps where
0 = Abs-fps (An. 0)
instance (proof)
end
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lemma fps-zero-nth [simp]: 0 $ n = 0
(proof)

The unit formal power series maps the monoidal unit (the empty list) to one
and all other elements to zero.

instantiation fps :: (type,{one,zero}) one
begin
definition one-fps where
1 = Abs-fps (An. if n =[] then I else 0)
instance (proof)
end

lemma fps-one-nth-Nil [simp]: 1 $ || = 1
(proof)

lemma fps-one-nth-Cons [simp]: 1 $ (z # zs) = 0
(proof)

Addition of formal power series is the usual pointwise addition of functions.
instantiation fps :: (type,plus) plus
begin
definition plus-fps where
[+ g= Abs-fps An. f$n+g$n)
instance (proof)
end

lemma fps-add-nth [simp]: (f + ) $n=f%n+g8%n
(proof)

This directly shows that formal power series form a semilattice with zero.

lemma fps-add-assoc: ((f::('a,’b::semigroup-add) fps) + g) + h=f + (g + h)
(proof)

/

lemma fps-add-comm [simp]: (f::('a,’b::ab-semigroup-add) fps) + g =g + f

(proof)

lemma fps-add-idem [simp]: (f::(‘a,’b::join-semilattice) fps) + f = f
(proof)

lemma fps-zerol [simp]: (f::(‘a,’b::monoid-add) fps) + 0 = f
(proof)

lemma fps-zeror [simp]: 0 + (f::("a,’b::monoid-add) fps) = f
(proof)

The product of formal power series is convolution. The product of two
formal powerseries at a list is obtained by splitting the list into all possible
prefix/suffix pairs, taking the product of the first series applied to the first
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coordinate and the second series applied to the second coordinate of each
pair, and then adding the results.
instantiation fps :: (type,{ comm-monoid-add,times}) times
begin
definition times-fps where

fxg=Absfps (M. > {fSyxgSz|lyz.n=yQz}
instance (proof)
end

We call the set of all prefix/suffix splittings of a list xs the splitset of xs.

definition splitset where
splitset zs = {(p, q). zs = p Q ¢}

Altenatively, splitsets can be defined recursively, which yields convenient
simplification rules in Isabelle.

fun splitset-fun where

splitset-fun || ={(, D}
| splitset-fun (z # xs) = insert ([], x # xs) (apfst (Cons x) * splitset-fun s)

lemma splitset-consl:
splitset (z # xzs) = insert ([], z # xs) (apfst (Cons x) * splitset xs)
(proof)

lemma splitset-eq-splitset-fun: splitset xs = splitset-fun xs
(proof)
The definition of multiplication is now more precise.

lemma fps-mult-var:
(fxg9)$Sn=>{f$(fstp) xg$ (sndp)| p. p e splitset n}
{proof )

lemma fps-mult-image:
(fxg)$n=>((Ap.- f$ (fstp)*g$ (sndp)) *splitset n)
(proof)

Next we show that splitsets are finite and non-empty.

lemma splitset-fun-finite [simp]: finite (splitset-fun xs)

(proof)

lemma splitset-finite [simp]: finite (splitset xs)
(proof)

lemma split-append-finite [simp]: finite {(p, q). zs = p Q ¢}
(proof )

lemma splitset-fun-nonempty [simp]: splitset-fun zs # {}
(proof )

70



lemma splitset-nonempty [simp): splitset zs # {}
{proof)

We now proceed with proving algebraic properties of formal power series.
lemma fps-annil [simp):

0 * (f::('a::type,’b::{ comm-monoid-add, mult-zero}) fps) = 0
(proof)

lemma fps-annir [simp]:
(f::("a::type,'b::{ comm-monoid-add,mult-zero}) fps) * 0 = 0
(proof)

lemma fps-distl:

(f::("a::type,'b::{ join-semilattice-zero,semiring}) fps) * (¢ + h) = (f * g) + (f *
h)
(proof)

lemma fps-distr:

((f::('a::type,'b::{join-semilattice-zero,semiring}) fps) + g) x h = (f * h) + (g =
h)
(proof)

The multiplicative unit laws are surprisingly tedious. For the proof of the
left unit law we use the recursive definition, which we could as well have
based on splitlists instead of splitsets.

However, a right unit law cannot simply be obtained along the lines of this
proofs. The reason is that an alternative recursive definition that produces a
unit with coordinates flipped would be needed. But this is difficult to obtain
without snoc lists. We therefore prove the right unit law more directly by
using properties of suprema.
lemma fps-onel [simp]:

1 % (f::(Yas:type,'b::{join-semilattice-zero,monoid-mult, mult-zero}) fps) = f

(proof)

lemma fps-oner [simp]:
(f::("a::type, b::{ join-semilattice-zero,monoid-mult, mult-zero}) fps) x 1 = f

{(proof)

Finally we prove associativity of convolution. This requires splitting lists
into three parts and rearranging these parts in two different ways into split-
sets. This rearrangement is captured by the following technical lemma.

lemma splitset-rearrange:
fixes F :: 'a list = 'a list = 'a list = 'b::join-semilattice-zero
shows > {> " {F (fst p) (fst q) (snd q) | q. q € splitset (snd p)} | p. p € splitset

z} =
SOCA{F (fst q) (snd q) (snd p) | q. q € splitset (fst p)} | p. p € splitset z}
(is ?lhs = %rhs)

71



(proof)

lemma fps-mult-assoc: (f::('a::type,’b::dioid-one-zero) fps) * (g * h) = (f % g) * h
(proof )

15.3 The Dioid Model of Formal Power Series

We can now show that formal power series with suitably defined operations
form a dioid. Many of the underlying properties already hold in weaker
settings, where the target algebra is a semilattice or semiring. We currently
ignore this fact.

subclass (in dioid-one-zero) mult-zero
(proof)

instantiation fps :: (type,dioid-one-zero) dioid-one-zero
begin

definition less-eq-fps where
(f('a,) fps) S g«—f+g=yg

definition less-fps where
(f:('a,b) fps) < g«— f<gNn[#yg

instance
(proof)

end

lemma expand-fps-less-eq: (f::('a,’b::dioid-one-zero) fps) < g +— (Vn. f$n <y
$n)
(proof)

15.4 The Kleene Algebra Model of Formal Power Series

There are two approaches to define the Kleene star. The first one defines
the star for a certain kind of (so-called proper) formal power series into a
semiring or dioid. The second one, which is more interesting in the context of
our algebraic hierarchy, shows that formal power series into a Kleene algebra
form a Kleene algebra. We have only formalised the latter approach.

lemma Sum-splitlist-nonempty:

S {f ys zs |ys zs. zs = ys Q zs} = ((f [] =s)::"a::join-semilattice-zero) + > {f ys
28 |ys zs. xs = ys @ zs A ys # [|}
(proof)

lemma (in left-kleene-algebra) add-star-eq:

x+yy*x:y*x
(proof)
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declare rev-conj-cong[fundef-cong]
— required for the function package to prove termination of star-fps-rep

fun star-fps-rep where

star-fps-rep-Nil: star-fps-rep [ [ = (f [)*
| star-fps-rep-Cons: star-fps-rep fn = (f [|)* - Y. {fy - star-fps-rep fz |y z. n =y
Q@zAy#[}

instantiation fps :: (type,kleene-algebra) kleene-algebra
begin

We first define the star on functions, where we can use Isabelle’s package for
recursive functions, before lifting the definition to the type of formal power
series.
This definition of the star is from an unpublished manuscript by Esik and
Kuich.

lift-definition star-fps :: ('a, 'b) fps = (‘a, 'b) fps is star-fps-rep (proof)

lemma star-fps-Nil [simp]: f*$ [ = (f $ [|)*
(proof)

lemma star-fps-Cons [simp]: f* $ (x # zs) = (f S [)* - D {f Sy -f*$z2|y=
r#rs=yQzAy#[}
{proof)

instance
(proof )

end

end

16 Infinite Matrices

theory Inf-Matrix
imports Finite-Suprema
begin

Matrices are functions from two index sets into some suitable algebra. We
consider arbitrary index sets, not necessarily the positive natural numbers
up to some bounds; our coefficient algebra is a dioid. Our only restriction
is that summation in the product of matrices is over a finite index set. This
follows essentially Droste and Kuich’s introductory article in the Handbook
of Weighted Automata [10].

Under these assumptions we show that dioids are closed under matrix for-
mation. Our proofs are similar to those for formal power series, but simpler.
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type-synonym (‘a, ‘b, 'c) matriz = 'a = 'b = 'c

definition mat-one :: ('a, 'a, 'c::dioid-one-zero) matriz (<e») where
eij= (if (i =7j) then I else 0)

definition mat-zero :: (‘a, 'b, 'c::dioid-one-zero) matriz (¢5>) where
d=MXji. 0

definition mat-add :: (‘a, 'b, 'c::dioid-one-zero) matriz = (‘a, 'b, '¢) matriz =
("a, 'b, 'c) matriz (infixl <@> 70) where
(feg) =xij (fij)+(gi))

lemma mat-add-assoc: (f & g) @ h= f& (g b h)
(proof )

lemma mat-add-comm: f ® g = g © f
(proof )

lemma mat-add-idem[simp): f © f = f
(proof)

lemma mat-zerol[simp|: f & § = f
(proof)

lemma mat-zeror[simpl: § & f = f
(proof )

definition mat-mult :: ('a, 'k::finite, 'c::dioid-one-zero) matriz = ('k, 'b, 'c) matriz
= ('a, 'b, 'c) matriz (infixl «<®) 60) where
(feg) ij =3 {(fik) - (gkj) |k ke UNIV}

lemma mat-annil[simp]: § @ f =0

{proof)

lemma mat-annir[simpl: f ® 6 = ¢
{proof)

lemma mat-distl: f @ (g D h) = (f ® g9) ® (f @ h)
(proof)

lemma mat-distr: (f ® g) @ h=(f ® h) ® (g ® h)
(proof)

lemma logic-auzl: (3k. (i=k —z=fij)AN(G@#k—z=0)) «— (Tk. i
=kANz=fij)v(E@ki#kAnz=0)
{proof)

lemma logic-auz2: k. (k=j—z=fi)N(k#£]—2=0)) +— (Fk. k
=jANz=fif)VE@k k#jAnz=0)
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{proof)

lemma mat-onel[simpl: ¢ @ f = f

(proof)

lemma mat-oner[simp]: f ® € = f
(proof)

lemma mat-rearrange:

fixes F :: 'a = 'kl = 'k2 = 'b = 'c::dioid-one-zero

assumes fUNkI: finite (UNIV::'k1 set)

assumes fUNk2: finite (UNIV::'k2 set)

shows Y {> {Fikik2j|k2. k2 € (UNIV::'k2 set)} |k1. k1 € (UNIV::'k1 set)}
= S {S{Fiki k2j|ki. ki € UNIV} |k2. k2 € UNIV}

(proof)

lemma mat-mult-assoc: f @ (g @ h) = (f ® 9) ® h
(proof)

definition mat-less-eq :: (‘a, 'b, 'c::dioid-one-zero) matriz = (‘a, 'b, '¢) matriz =
bool where
mat-less-eq fg = (f© g =g)

definition mat-less :: ('a, 'b, 'c::dioid-one-zero) matriz = ('a, 'b, '¢) matriz =
bool where
mat-less f g = (mat-less-eq fg N f # g)

interpretation matriz-dioid: dioid-one-zero mat-add mat-mult mat-one mat-zero
mat-less-eq mat-less

{proof)

As in the case of formal power series we currently do not implement the
Kleene star of matrices, since this is complicated.

end
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