Khovanskii’s Theorem

Angeliki Koutsoukou-Argyraki and Lawrence C. Paulson

March 17, 2025

Abstract

We formalise the proof of an important theorem in additive combi-
natorics due to Khovanskii [2, 3], attesting that the cardinality of the
set of all sums of n many elements of A, where A is a finite subset of
an abelian group, is a polynomial in n for all sufficiently large n. We
follow a proof of the theorem due to Nathanson and Ruzsa [4, 5] as
presented in the notes “Introduction to Additive Combinatorics” by
Timothy Gowers [1] for the University of Cambridge.

Contents

1 Product Operator for Commutative Monoids 3
1.1 Products over Finite Sets 3
1.2 Results for Abelian Groups 8

2 Khovanskii’s Theorem 9
2.1 Arithmetic operations on lists, pointwise on the elements . . 10
2.2 The pointwise ordering on two equal-length lists of natural

numbers e e e 12
2.3 Pointwise minimum and maximum of a set of lists 14
2.4 A locale to fix the finite subset AC G 14
2.5 Adding one to a list element 17
2.6 The set of all ~tuples that sumton 17
2.7 Lemma 2.7 in Gowers’s notes 21
2.8 The set of minimal elements of a set of r-tuples is finite . . . 23
2.9 Towards Lemma 2.9 in Gowers’s notes 25
2.10 Towards the main theorem 30

Acknowledgements The authors were supported by the ERC Advanced
Grant ALEXANDRIA (Project 742178) funded by the European Research
Council.

1 Product Operator for Commutative Monoids

theory FiniteProduct
imports
Jacobson-Basic-Algebra. Group- Theory

begin

1.1 Products over Finite Sets

context commutative-monoid begin
definition M-ify x = if ¢ € M then x else 1

definition fincomp f A = if finite A then Finite-Set.fold (A\z y. fz - M-ify y) 1 A
else 1

lemma fincomp-empty [simp]: fincomp f {} =1
by (simp add: fincomp-def)

lemma fincomp-infinite[simp]: infinite A = fincomp f A =1
by (simp add: fincomp-def)

lemma left-commute: [a € M;be Myce M= b -(a-¢c)=a-(b- ¢
using commutative by force

lemma comp-fun-commute-onl:
assumes f € F - M
shows comp-fun-commute-on F (Az y. fz - M-ify y)
using assms
by (auto simp add: comp-fun-commute-on-def Pi-iff M-ify-def left-commute)

lemma fincomp-closed [simp]:
assumes f € F - M
shows fincomp fF € M
proof —
interpret comp-fun-commute-on F Az y. fx - M-ify y
by (simp add: assms comp-fun-commute-onl)
show ?thesis
unfolding fincomp-def
by (smt (verit, ccfv-threshold) M-ify-def Pi-iff fold-graph-fold assms composi-
tion-closed equalityE fold-graph-closed-lemma unit-closed)
qed

lemma fincomp-insert [simp):
assumes F: finite Fa ¢ Fand f: f e F > Mfae M
shows fincomp f (insert a F) = fa - fincomp f F

proof —
interpret comp-fun-commute-on insert a F Az y. fz - M-ify y

by (simp add: comp-fun-commute-onl f)
show ?thesis
using assms fincomp-closed commutative-monoid. M-ify-def commutative-monoid-azxioms
by (fastforce simp add: fincomp-def)
qed

lemma fincomp-unit-eql: (ANz. z € A = fz =1) = fincomp fA=1
proof (induct A rule: infinite-finite-induct)
case empty show ?case by simp
next
case (insert a A)
have (A\i. 1) € A - M by auto
with insert show ?case by simp
qed simp

lemma fincomp-unit [simp]: fincomp (Ai. 1) A =1
by (simp add: fincomp-unit-eql)

lemma funcset-Int-left [simp, intro]:
[feA—C;feB—-Cl=feAIntB— C
by fast

lemma funcset-Un-left [iff]:
feAUnB—-C)=(fe A= CANfeB— ()
by fast

lemma fincomp-Un-Int:
[finite A; finite B; g € A — M; g € B —» M] =
fincomp g (AU B) - fincomp g (AN B) =
fincomp g A - fincomp g B
— The reversed orientation looks more natural, but LOOPS as a simprule!
proof (induct set: finite)
case empty then show Zcase by simp
next
case (insert a A)
then have ga € M g € A — M by blast+
with insert show ?case
by (simp add: Int-insert-left associative insert-absorb left-commute)
qed

lemma fincomp-Un-disjoint:
[finite A; finite B, AN B={}; g€ A— M; g€ B— M]
= fincomp g (A U B) = fincomp g A - fincomp g B
by (metis Pi-split-domain fincomp-Un-Int fincomp-closed fincomp-empty right-unit)

lemma fincomp-comp:
[fe A= M; g€ A— M] = fincomp (Aa. fo-gz) A= (fincomp fA -

fincomp g A)
proof (induct A rule: infinite-finite-induct)

case empty show ?case by simp
next
case (insert a A)
then have fa e Mge A Mgae Mfe A—- M (Ma. fe-gax) e A—> M
by blast+
then show ?case
by (simp add: insert associative left-commute)
qed simp

lemma fincomp-cong”:
assumes A=BgeB—->MNi.i€e B= fi=gi
shows fincomp f A = fincomp g B
proof (cases finite B)
case True
then have ?thesis
using assms
proof (induct arbitrary: A)
case empty thus ?case by simp
next
case (insert © B)
then have fincomp f A = fincomp f (insert © B) by simp

also from insert have ... = fz - fincomp f B

by (simp add: Pi-iff)
also from insert have ... = g z - fincomp g B by fastforce
also from insert have ... = fincomp g (insert z B)

by (intro fincomp-insert [THEN sym]) auto
finally show Zcase .
qed
with assms show ?thesis by simp
next
case Fulse with assms show ?thesis by simp
qed

lemma fincomp-cong:
assumes A= Bge B— M \i.i € B=simp=>fi=gi
shows fincomp f A = fincomp g B
using assms unfolding simp-implies-def by (blast intro: fincomp-cong’)

Usually, if this rule causes a failed congruence proof error, the reason
is that the premise ¢ € B — M cannot be shown. Adding Pi-def to the
simpset is often useful. For this reason, fincomp-cong is not added to the
simpset by default.
lemma fincomp-0 [simp]:

f e {0:nat} - M = fincomp f {..0} = f0
by (simp add: Pi-def)

lemma fincomp-0" f € {.n} > M = (f0) - fincomp f {Suc 0..n} = fincomp f

by (metis Pi-split-insert-domain Suc-n-not-le-n atLeastAtMost-iff atLeastAtMost-insertL

atMost-atLeast0 finite-atLeastAtMost fincomp-insert leQ)

lemma fincomp-Suc [simp]:
fe{.Sucn} - M= fincomp f {..Suc n} = (f (Suc n) - fincomp f {..n})
by (simp add: Pi-def atMost-Suc)

lemma fincomp-Suc?2:

f e {.Sucn} - M = fincomp f {..Suc n} = (fincomp (%i. f (Suc)) {..n} -
f0)
proof (induct n)

case 0 thus Zcase by (simp add: Pi-def)
next

case Suc thus ?case

by (simp add: associative Pi-def)

qed

lemma fincomp-Suc3:
assumes f € {.n = nat} - M
shows fincomp f {.. n} = (fn) - fincomp f {..< n}
proof (cases n = 0)
case True thus ?thesis
using assms atMost-Suc by simp
next
case Fulse
then obtain k where n = Suc k
using not0-implies-Suc by blast
thus ?thesis
using fincomp-Suclof f k] assms atMost-Suc lessThan-Suc-atMost by simp
qed

lemma fincomp-reindez:

fekh‘A) - M=

inj-on h A = fincomp f (h * A) = fincomp (Az. f (hx)) A

proof (induct A rule: infinite-finite-induct)

case (infinite A)

hence — finite (h ‘ A)

using finite-imageD by blast

with (- finite A> show ?case by simp

qed (auto simp add: Pi-def)

lemma fincomp-const:
assumes a [simp]: a € M
shows fincomp (Az. a) A = rec-nat 1 (Au. (+) a) (card A)
by (induct A rule: infinite-finite-induct) auto

lemma fincomp-singleton:
assumes i-in-A: ¢ € A and fin-A: finite A and f-Pi: f€e A - M
shows fincomp (Aj. if i = jthen fjelse 1) A= fi
using i-in-A fincomp-insert [of A — {i} i (N\j. if i = j then fj else 1)]

fin-A f-Pi fincomp-unit [of A — {i}]
fincomp-cong [of A — {i} A — {i} (N\j. if i = j then fj else 1) (Ai. 1)]
unfolding Pi-def simp-implies-def by (force simp add: insert-absorb)

lemma fincomp-singleton-swap:
assumes i-in-A: { € A and fin-A: finite A and f-Pi: fe A —> M
shows fincomp (Aj. if j = i then fjelse 1) A= fi
using fincomp-singleton [OF assms] by (simp add: eq-commute)

lemma fincomp-mono-neutral-cong-left:
assumes finite B
and A C B
and I: N\i. i€ B— A= hi=1
and gh: A\e. 1 € A= gz =hz
and h: he B—- M
shows fincomp g A = fincomp h B
proof—
have eq: AU (B — A) = B using <A C B> by blast
have d: AN (B — A) = {} using <A C B> by blast
from «<finite By <A C B» have f: finite A finite (B — A)
by (auto intro: finite-subset)
have he A > MheB—-A—> M
using assms by (auto simp: image-subset-iff-funcset)
moreover have fincomp g A = fincomp h A - fincomp h (B — A)
proof —
have fincomp h (B — A) =1
using 1 fincomp-unit-eql by blast
moreover have fincomp g A = fincomp h A
using <h € A — M> fincomp-cong’ gh by blast
ultimately show #thesis
by (simp add: <h € A — M>»)
qed
ultimately show ?thesis
by (simp add: fincomp-Un-disjoint [OF f d, unfolded eq])
qed

lemma fincomp-mono-neutral-cong-right:
assumes finite B
and ACBANi.ieB- A= gi=1Ac.2€e A— gx=haxgeB—->M
shows fincomp g B = fincomp h A
using assms by (auto introl: fincomp-mono-neutral-cong-left [symmetric))

lemma fincomp-mono-neutral-cong:
assumes [simp]: finite B finite A
and« \i. i€ B— A= hi=1\i.ic A—B=gi=1
and gh: Ae. t € ANB=gax=h=x
and ¢: g€ A > M
and h he B> M
shows fincomp g A = fincomp h B

proof—
have fincomp g A = fincomp g (A N B)
by (rule fincomp-mono-neutral-cong-right) (use assms in auto)

also have ... = fincomp h (A N B)
by (rule fincomp-cong) (use assms in auto)
also have ... = fincomp h B

by (rule fincomp-mono-neutral-cong-left) (use assms in auto)
finally show ?thesis .
qed

lemma fincomp-UN-disjoint:
assumes
finite I N\i. i € I = finite (A i) pairwise (Ai j. disjnt (A i) (A §)) I
Niz.iel=zcAi=gze M
shows fincomp g (U (A ‘1)) = fincomp (Ni. fincomp g (A 7)) I
using assms
proof (induction set: finite)
case empty
then show ?case
by force
next
case (insert i I)
then show ?case
unfolding pairwise-def disjnt-def
apply clarsimp
apply (subst fincomp-Un-disjoint)
apply (fastforce introl: funcsetl fincomp-closed)+
done
qed

lemma fincomp-Union-disjoint:
[finite C; NA. A € C = finite A N (Vz€A. fz € M); pairwise disint C] =
fincomp f (U C) = fincomp (fincomp f) C
by (frule fincomp-UN-disjoint [of C id f]) auto

end

1.2 Results for Abelian Groups

context abelian-group begin

lemma fincomp-inverse:

feA— G= fincomp (\z. inverse (f z)) A = inverse (fincomp f A)
proof (induct A rule: infinite-finite-induct)

case empty show ?Zcase by simp
next

case (insert a A)

then have fa € Gf € A — G (Az. inverse (fz)) € A - G

by blast+
with insert show ?case
by (simp add: commutative inverse-composition-commaute)
qed simp

Jeremy Avigad. This should be generalized to arbitrary groups, not just
Abelian ones, using Lagrange’s theorem.

lemma power-order-eg-one:
assumes fin [simp]: finite G
and a [simp]: a € G
shows rec-nat 1 (Auw. (+) a) (card G) = 1
proof —
have rec-G: rec-nat 1 (Au. () a) (card G) € G
by (metis Pi-I" a fincomp-closed fincomp-const)
have A\o. 2 €e G=2€()a ‘G
by (metis a composition-closed imagel invertible invertible-inverse-closed invert-
ible-right-inverse2)
with ¢ have (-) a * G = G by blast
then have 1 - fincomp (A\z. z) G = fincomp (Az. z) ((*) a * G)
by simp
also have ... = fincomp (A\z. a - z) G
using fincomp-reindex
by (subst (2) fincomp-reindex [symmetric]) (auto simp: inj-on-def)
also have ... = fincomp (Az. a) G - fincomp (A\z. z) G
by (simp add: fincomp-comp)
also have fincomp (Az. a) G = rec-nat 1 (Au. (-) a) (card G)
by (simp add: fincomp-const)
finally show ?thesis
by (metis commutative fincomp-closed funcset-id invertible invertible-left-cancel
rec-G unit-closed)
qed

end

end

2 Khovanskii’s Theorem

We formalise the proof of an important theorem in additive combinatorics
due to Khovanskii, attesting that the cardinality of the set of all sums of
n many elements of A, where A is a finite subset of an abelian group, is
a polynomial in n for all sufficiently large n. We follow a proof due to
Nathanson and Ruzsa as presented in the notes “Introduction to Additive
Combinatorics” by Timothy Gowers for the University of Cambridge.

theory Khovanskii
imports
FiniteProduct

Pluennecke- Ruzsa-Inequality. Pluennecke- Ruzsa-Inequality

Bernoulli. Bernoulli — sums of a fixed power are polynomials
HOL— Analysis. Weierstrass- Theorems — needed for polynomial function
HOL—- Library. List-Lenlexorder — lexicographic ordering for the type nat
list
begin

The sum of the elements of a list

abbreviation o = sum-list

Related to the nsets of Ramsey.thy, but simpler

definition finsets :: ['a set, nat] = 'a set set
where finsets An={N. N C A A card N = n}

lemma card-finsets: finite N => card (finsets N k) = card N choose k
by (simp add: finsets-def n-subsets)

lemma sorted-map-plus-iff [simp]:
fixes a::'a::linordered-cancel-ab-semigroup-add
shows sorted (map ((+) a) zs) «— sorted zs
by (induction xs) auto

lemma distinct-map-plus-iff [simpl:
fixes a::'a::linordered-cancel-ab-semigroup-add
shows distinct (map ((+) a) zs) <— distinct zs
by (induction xs) auto

2.1 Arithmetic operations on lists, pointwise on the elements

Weak type class properties. Cancellation is difficult to arrange because of
complications when lists differ in length.

instantiation list :: (plus) plus
begin

definition plus-list = map2 (+)
instance..

end

lemma length-plus-list [simp]:
fixes xs :: ‘a::plus list
shows length (zs+ys) = min (length xzs) (length ys)
by (simp add: plus-list-def)

lemma plus-Nil [simp]: [| + zs = []
by (simp add: plus-list-def)

lemma plus-Cons: (y # ys) + (z # zs) = (y+z) # (ys+uxs)
by (simp add: plus-list-def)

lemma nth-plus-list [simp]:

10

fixes xs :: ‘a:plus list

assumes i < length zs i < length ys
shows (zs+ys)!i = xsli + ysli

by (simp add: plus-list-def assms)

instantiation list :: (minus) minus
begin

definition minus-list = map2 (—)
instance..

end

lemma length-minus-list [simp]:
fixes s :: ‘a::minus list
shows length (zs—ys) = min (length xzs) (length ys)
by (simp add: minus-list-def)

lemma minus-Nil [simp]: [| — zs = []
by (simp add: minus-list-def)

lemma minus-Cons: (y # ys) — (¢ # zs) = (y—z) # (ys—xs)
by (simp add: minus-list-def)

lemma nth-minus-list [simp]:
fixes s :: ‘a::minus list
assumes { < length xs i < length ys
shows (zs—ys)!li = xsli — ysli
by (simp add: minus-list-def assms)

instance list :: (ab-semigroup-add) ab-semigroup-add
proof
have map2 (+) (map2 (+) zs ys) zs = map2 (+) zs (map2 (+) ys zs) for xs ys
zs :: 'a list
proof (induction xs arbitrary: ys zs)
case (Cons z zs)
show ?Zcase
proof (cases ys=[] V zs=[])
case Fulse
then obtain y ys’ z zs’ where ys = y#ys’ zs = z # 25’
by (meson list.ezhaust)
then show ?thesis
by (simp add: Cons add.assoc)
qed auto
qged auto
then show a + b+ c=a+ (b + ¢) for a b ¢ :: 'a list
by (auto simp: plus-list-def)
next
have map2 (+) zs ys = map2 (+) ys zs for zs ys :: 'a list
proof (induction zs arbitrary: ys)

11

case (Cons z zs)
show ?case
proof (cases ys)
case (Cons y ys’)
then show ?thesis
by (simp add: Cons.IH add.commute)
qed auto
qged auto
then show a + b = b + a for a b :: 'a list
by (auto simp: plus-list-def)
qged

2.2 The pointwise ordering on two equal-length lists of nat-
ural numbers

Gowers uses the usual symbol (<) for his pointwise ordering. In our devel-
opment, < is the lexicographic ordering and < is the pointwise ordering.

definition pointwise-le :: [nat list, nat list] = bool (infixr << 50)
where z < y = list-all2 (<) z y

definition pointwise-less :: [nat list, nat list] = bool (infixr <> 50)
where z <y=zdyAz#y

lemma pointwise-le-iff-nth:
z <y +— length x = length y A (Vi < length z. z'i < yli)
by (simp add: list-all2-conv-all-nth pointwise-le-def)

lemma pointwise-le-iff:
z <y < length z = length y A (VY (i,7) € set (zip z y). i<j)
by (simp add: list-all2-iff pointwise-le-def)

lemma pointwise-append-le-iff [simp]: v@Qz < uQy +— z J y
by (auto simp: pointwise-le-iff-nth nth-append)

lemma pointwise-le-refl [iff]: x < x
by (simp add: list.rel-refl pointwise-le-def)

lemma pointwise-le-antisym: [z < y; y < 2] = z=y
by (metis antisym list-all2-antisym pointwise-le-def)

lemma pointwise-le-trans: [xr < y; y < 2] = ¢ < z
by (smt (verit, del-insts) le-trans list-all2-trans pointwise-le-def)

lemma pointwise-le-Nil [simp]: Nil < z +— x = Nil
by (simp add: pointwise-le-def)

lemma pointwise-le-Nil2 [simp]: © < Nil «— x = Nil
by (simp add: pointwise-le-def)

12

lemma pointwise-le-iff-less-equal: t Ay +— < yVar =y
using pointwise-less-def by blast

lemma pointwise-less-iff:
z<dy<+—xdyA (3G, € set (zip xy). i<j)
using list-eq-iff-zip-eq pointwise-le-iff pointwise-less-def by fastforce

lemma pointwise-less-iff2: © < y «— z y A (Fk < length z. 2k <y ! k)
unfolding pointwise-less-def pointwise-le-iff-nth
by (fastforce introl: nth-equalityl)

lemma pointwise-less-Nil [simp]: = Nil < z
by (simp add: pointwise-less-def)

lemma pointwise-less-Nil2 [simp]: = x <1 Nil
by (simp add: pointwise-less-def)

lemma zero-pointwise-le-iff [simp]: replicate r 0 < x <— length © = r
by (auto simp: pointwise-le-iff-nth)

lemma pointwise-le-imp-o-:
assumes zs < ys shows o zs < o ys
using assms
proof (induction ys arbitrary: xs)
case Nil
then show ?case
by (simp add: pointwise-le-iff)
next
case (Cons y ys)
then obtain z zs’ where 1<y zs = z#xs’ s’ < ys
by (auto simp: pointwise-le-def list-all2-Cons2)
then show ?case
by (simp add: Cons.IH add-le-mono)
qed

lemma sum-list-plus:
fixes zs :: ‘a::comm-monoid-add list
assumes length s = length ys shows o (zs + ys) = o xs + o ys
using assms by (simp add: plus-list-def case-prod-unfold sum-list-addf)

lemma sum-list-minus:
assumes xs 4 ys shows o (ys — xs) = 0 ys — o s
using assms
proof (induction ys arbitrary: s)
case (Cons y ys)
then obtain z zs’ where 1<y zs = z#uxs’ s’ < ys
by (auto simp: pointwise-le-def list-all2-Cons2)
then show ?case
using pointwise-le-imp-c by (auto simp: Cons minus-Cons)

13

qed (auto simp: in-set-conv-nth)

2.3 Pointwise minimum and maximum of a set of lists

definition min-pointwise :: [nat, nat list set] = nat list
where min-pointwise = Ar U. map (Ai. Min ((Au. uld) < U)) [0..<7]

lemma min-pointwise-le: [u € U; finite U] = min-pointwise (length u) U < u
by (simp add: min-pointwise-def pointwise-le-iff-nth)

lemma min-pointwise-ge-iff:
assumes finite U U # {} Au. v € U = length u = r length x = r
shows = < min-pointwise r U «— (Vu € U. z < u)
by (auto simp: min-pointwise-def pointwise-le-iff-nth assms)

definition maz-pointwise :: [nat, nat list set] = nat list
where maz-pointwise = Ar U. map (Mi. Maz ((Au. uld) < U)) [0..<r]

lemma maz-pointwise-ge: [u € U; finite U] = u < maz-pointwise (length u) U
by (simp add: maz-pointwise-def pointwise-le-iff-nth)

lemma maz-pointwise-le-iff:
assumes finite U U # {} Au. v € U = length u = r length x = r
shows maz-pointwise r U < x «— Vu € U. u < 1)
by (auto simp: max-pointwise-def pointwise-le-iff-nth assms)

lemma maz-pointwise-mono:

assumes X' C X finite X X' # {}

shows maz-pointwise r X' < maz-pointwise v X

using assms by (simp add: maz-pointwise-def pointwise-le-iff-nth Maz-mono im-
age-mono)

lemma pointwise-le-plus: [zs < ys; length ys < length zs] = xs < ys+zs
proof (induction xs arbitrary: ys zs)
case (Cons z zs)
then obtain y ys’ z zs’ where ys = y#ys’' zs = 2#2s’
unfolding pointwise-le-iff by (metis Suc-le-length-iff le-refl length-Cons)
with Cons show ?case
by (auto simp: plus-list-def pointwise-le-def)
qed (simp add: pointwise-le-iff)

lemma pairwise-minus-cancel: [z < z; 2 y;z —z=y—z] = 2=y
unfolding pointwise-le-iff-nth by (metis eg-diff-iff nth-equalityl nth-minus-list)

2.4 A locale to fix the finite subset A C @

locale Khovanskii = additive-abelian-group +
fixes A :: ‘a set
assumes AsubG: A C G and finA: finite A

14

begin
finite products of a group element
definition Gmult :: 'a = nat = a
where Gmult a n = ((®)a) " n) 0

lemma Gmult-0 [simp]: Gmult a 0 = 0
by (simp add: Gmult-def)

lemma Gmult-1 [simp]: a € G = Gmult a (Suc 0) = a
by (simp add: Gmult-def)

lemma Gmult-Suc [simp]: Gmult o (Suc n) = a & Gmult a n
by (simp add: Gmult-def)

lemma Gmult-in-G [simp,intro]: a € G = Gmult a n € G
by (induction n) auto

lemma Gmult-add-add:
assumes a € G
shows Gmult a (m+n) = Gmult a m & Gmult a n
by (induction m) (use assms local.associative in fastforce)+

lemma Gmult-add-diff:

assumes g € G

shows Gmult a (n+k) © Gmult a n = Gmult a k

by (metis Gmult-add-add Gmult-in-G assms commutative inverse-closed invertible
invertible-left-inverse2)

lemma Gmult-diff:
assumes a € G n<m
shows Gmult a m © Gmult a n = Gmult a (m—n)
by (metis Gmult-add-diff assms le-add-diff-inverse)

Mapping elements of A to their numeric subscript
abbreviation idr = to-nat-on A

The elements of A in order
definition aA :: 'a list

where aA = map (from-nat-into A) [0..<card A]

definition « :: nat list = 'a
where o = Az. fincomp (Ai. Gmult (aAli) (27)) {..<card A}

The underlying assumption is length y = length x

definition useless:: nat list = bool
where uselesst =3y <z.coy=0czx ANay=azxA length y = length z

abbreviation useful © = — useless x

15

lemma alpha-replicate-0 [simp]: o (replicate (card A) 0) = 0
by (auto simp: a-def intro: fincomp-unit-eql)

lemma idz-less-cardA:
assumes a € A shows idz a < card A
by (metis assms bij-betw-def finA imagel lessThan-iff to-nat-on-finite)

lemma aA-idz-eq [simp]:
assumes o € A shows aA ! (idx a) = a
by (simp add: aA-def assms countable-finite finA idz-less-cardA)

lemma set-aA: set aA = A
using bij-betw-from-nat-into-finite [OF finA]
by (simp add: aA-def atLeastOLess Than bij-betw-def)

lemma nth-aA-in-G [simp]: i < card A = aAli € G
using AsubG aA-def set-aA by auto

lemma alpha-in-G [iff]: « z € G
using nth-aA-in-G fincomp-closed by (simp add: a-def)

lemma Gmult-in-PiG [simp]: (Mi. Gmult (aAli) (f 7)) € {..<card A} — G
by simp

lemma alpha-plus:
assumes length x = card A length y = card A
showsa (z+y) =azPay
proof —
have a (z + y) = fincomp (Ai. Gmult (aAli) (map2 (+) z yli)) {..<card A}
by (simp add: a-def plus-list-def)
also have ... = fincomp (Mi. Gmult (aAli) (zli + yl4)) {..<card A}
by (intro fincomp-cong’; simp add: assms)
also have ... = fincomp (Ai. Gmult (aAli) (2!%) & Gmult (aAli) (y'i)) {..<card
A}
by (intro fincomp-cong’; simp add: Gmult-add-add)
alsohave ... =az® ay
by (simp add: a-def fincomp-comp)
finally show ?thesis .
qed

lemma alpha-minus:
assumes y < x length y = card A
shows a (z —y) =az S ay
proof —
have a (z — y) = fincomp (Ai. Gmult (aAli) (map2 (=) z yli)) {..<card A}
by (simp add: a-def minus-list-def)
also have ... = fincomp (Mi. Gmult (aAli) (zli — yl4)) {..<card A}
using assms by (intro fincomp-cong’) (auto simp: pointwise-le-iff)

16

also have ... = fincomp (Ai. Gmult (aAYi) (x!9) © Gmult (aAlP) (y'i)) {..<card
)
using assms
by (intro fincomp-cong’) (simp add: pointwise-le-iff-nth Gmult-diff)+
alsohave ... =az S ay
by (simp add: a-def fincomp-comp fincomp-inverse)
finally show ?thesis .
qed

2.5 Adding one to a list element

definition list-incr :: nat = nat list = nat list
where list-incr i © = z[i := Suc (2!7)]

lemma list-incr-Nil [simp)]: list-incr i [| = []
by (simp add: list-incr-def)

lemma list-incr-Cons [simp]: list-incr (Suc i) (k#ks) = k # list-incr i ks
by (simp add: list-incr-def)

lemma sum-list-incr [simp]: i < length © = o (list-incr i z) = Suc (o)
by (auto simp: list-incr-def sum-list-update)

lemma length-list-incr [simp]: length (list-incr i x) = length
by (auto simp: list-incr-def)

lemma nth-le-list-incr: i < card A = zli < list-incr (idz a) i

unfolding list-incr-def

by (metis Suc-leD linorder-not-less list-update-beyond nth-list-update-eq nth-list-update-neq
order-refl)

lemma list-incr-nth-diff: i < length x = list-incr j zli — zli = (if i = j then 1
else 0)
by (simp add: list-incr-def)

2.6 The set of all r-tuples that sum to n

definition length-sum-set :: nat = nat = nat list set
where length-sum-set r n = {z. lengtht = r A 0 © = n}

lemma length-sum-set-Nil [simp]: length-sum-set 0 n = (if n=0 then {[]} else {})
by (auto simp: length-sum-set-def)

lemma length-sum-set-Suc [simp]: k#ks € length-sum-set (Suc r) n <— (Im. ks
€ length-sum-set r m A n = m+k)
by (auto simp: length-sum-set-def)

lemma length-sum-set-Suc-eqpoll: length-sum-set (Suc) n ~ Sigma {..n} (Ai.

length-sum-set v (n—1)) (is ?L =~ ?R)
unfolding egpoll-def

17

proof
let 2f = (M. (hd I, tl 1))
show bij-betw ?f ?L ?R
proof (intro bij-betw-imagel)
show inj-on ?f 7L
by (force simp: inj-on-def length-sum-set-def intro: list.expand)
show ?f ¢ 2L = ?R
by (force simp: length-sum-set-def length-Suc-conv)
qed
qed

lemma finite-length-sum-set: finite (length-sum-set r n)
proof (induction r arbitrary: n)
case ()
then show ?case
by (auto simp: length-sum-set-def)
next
case (Suc r)
then show ?case
using length-sum-set-Suc-eqpoll eqpoll-finite-iff by blast
qed

lemma card-length-sum-set: card (length-sum-set (Suc r) n) = (3 i<n. card (length-sum-set
r (n—i)
proof —
have card (length-sum-set (Suc r) n) = card (Sigma {..n} (\i. length-sum-set r
(n—1)))
by (metis egpoll-finite-iff eqpoll-iff-card finite-length-sum-set length-sum-set-Suc-egpoll)
also have ... = (3] i<n. card (length-sum-set r (n—1)))
by (simp add: finite-length-sum-set)
finally show ?thesis .
qed

lemma sum-up-index-split”:

assumes N < n shows (> i<n. fi) = (3 i<n—N. fi) + (3 i=Suc (n—N)..n.
)

by (metis assms diff-add sum-up-index-split)

lemma sum-invert: N < n = (>_i= Suc (n — N)..n. f (n — 7)) = O_j<N.f
7)
proof (induction N)

case (Suc N)

then show ?case

apply (auto simp: Suc-diff-Suc)

by (metis sum.atLeast-Suc-atMost Suc-leD add.commaute diff-diff-cancel diff-le-self)

qed auto

lemma real-polynomial-function-length-sum-set:
dp. real-polynomial-function p N (Y n>0. real (card (length-sum-set r n)) = p

18

(real n))
proof (induction r)
case ()
have Vn>0. real (card (length-sum-set 0 n)) = 0
by auto
then show ?case
by blast
next
case (Suc r)
then obtain p where poly: real-polynomial-function p
and p: An. n>0 = real (card (length-sum-set v n)) = p (real n)
by blast
then obtain a n where p-eq: p = (Az. > i<n. a i * x " 1)
using real-polynomial-function-iff-sum by auto
define ¢ where ¢ = A\z. > j<n. a j * ((bernpoly (Suc j) (1 + z) — bernpoly
(Suc j) 0)
/ (1 + real j) — 0 " j)
have rp-q: real-polynomial-function q
by (fastforce simp: bernpoly-def p-eq g-def)
have ¢-eq: (> ax<k—1.p (k—2z)) = ¢ k if k>0 for k:nat
proof —
have (> z<k—1.p (k—2)) = O j<n. aj * (O z<k. real x ~j) — 07%))
using that
by (simp add: p-eq sum.swap
flip: sum-distrib-left of-nat-diff sum-diff-splitiwhere f=\i. real i ~ -])
also have ... = ¢ k
by (simp add: sum-of-powers add.commute g-def)
finally show ?thesis .
qed
define p’ where p’ = \z. ¢ + real (card (length-sum-set r 0))
have real-polynomial-function p’
using rp-q by (force simp: p’-def)
moreover have (> z<n — Suc 0. p (real (n — z))) +
real (card (length-sum-set v 0)) = p’ (real n) if n>0 for n
using that ¢-eq by (auto simp: p’-def)
ultimately show ?case
unfolding card-length-sum-set
by (force simp: sum-up-index-split’ [of 1] p sum-invert)
qed

lemma all-zeroes-replicate: length-sum-set r 0 = {replicate r 0}
by (auto simp: length-sum-set-def replicate-eql)

lemma length-sum-set-Suc-eq-UN: length-sum-set r (Suc n) = (Ji<r. list-incr i
‘ length-sum-set T n)
proof —
have Jdi<r. x € list-incr ¢ ‘ length-sum-set r n
if 0 x = Suc n and r = length x for z
proof —

19

have z # replicate r 0
using that by (metis sum-list-replicate Zero-not-Suc mult-zero-right)
then obtain ¢ where i: { < rali # 0
by (metis <r = length x> in-set-conv-nth replicate-eql)
with that have z[i := zli — 1] € length-sum-set r n
by (simp add: sum-list-update length-sum-set-def)
with ¢ that show ?Zthesis
unfolding list-incr-def by force
qed
then show ?thesis
by (auto simp: length-sum-set-def Bex-def)
qed

lemma alpha-list-incr:
assumes a € A z € length-sum-set (card A) n
shows « (list-incr (idz a)) = a ® a =
proof —
have lenz: length © = card A
using assms length-sum-set-def by blast
have « (list-incr (idz a)) © a = fincomp (Ai. Gmult (aAli) (list-incr (idz
a) zli) © Gmult (aAli) (z17)) {..<card A}
by (simp add: a-def fincomp-comp fincomp-inverse)

also have ... = fincomp (Ai. Gmult (aAl%) (list-incr (idx a) zli — 219)) {..<card
A}
by (intro fincomp-cong; simp add: Gmult-diff nth-le-list-incr)
also have ... = fincomp (Ai. if i = idz a then (aAl7) else 0) {..<card A}
by (intro fincomp-cong’; simp add: list-incr-nth-diff lenx)
also have ... = a

using assms by (simp add: fincomp-singleton-swap idz-less-cardA)
finally have « (list-incr (idz a)) O a z = a .
then show ?thesis
by (metis alpha-in-G associative inverse-closed invertible invertible-left-inverse
right-unit)
qed

lemma sumset-iterated-enum:
defines r = card A
shows sumset-iterated A n = « * length-sum-set T n
proof (induction n)
case ()
then show ?case
by (simp add: all-zeroes-replicate r-def)
next
case (Suc n)
have eq: {.<r} =idx ‘ A
by (metis bij-betw-def finA r-def to-nat-on-finite)
have sumset-iterated A (Suc n) = (|Ja€A. (Mi. a ® « i) ¢ length-sum-set r n)
using AsubG by (auto simp: Suc sumset)
also have ... = ({Ja€A. (Ai. a (list-incr (idx a) 7)) * length-sum-set 1 n)

20

by (simp add: alpha-list-incr r-def)
also have ... = o ‘ length-sum-set r (Suc n)
by (simp add: image-UN image-comp length-sum-set-Suc-eq-UN eq)
finally show ?case .
qed

2.7 Lemma 2.7 in Gowers’s notes

The following lemma corresponds to a key fact about the cardinality of the
set of all sums of n many elements of A, stated before Gowers’s Lemma 2.7.

lemma card-sumset-iterated-length-sum-set-useful:
defines r = card A
shows card(sumset-iterated A n) = card (length-sum-set r n N {z. useful x})
(is card ?L = card ?R)
proof —
have o z € a ‘ (length-sum-set r n N {z. useful z})
if z € length-sum-set r n for x
proof —
define y where y = LEAST y. y € length-sum-set rn AN ay =«
have y: y € length-sum-set (card A) n Ny =« z
by (metis (mono-tags, lifting) Leastl r-def y-def that)
moreover
have useful y
proof (clarsimp simp: useless-def)
show Fulse
if 0 2z =0 ylength z = length y and z < y o z = a y for z
using that Least-le length-sum-set-def not-less-Least r-def y y-def by fastforce
qed
ultimately show #thesis
unfolding image-iff length-sum-set-def r-def by (smt (verit) Int-Collect)
qed
then have sumset-iterated A n = o * (length-sum-set r n N {z. useful z})
by (auto simp: sumset-iterated-enum length-sum-set-def r-def)
moreover have inj-on « (length-sum-set r n N {z. useful x})
apply (simp add: image-iff length-sum-set-def r-def inj-on-def useless-def Ball-def)
by (metis linorder-less-linear)
ultimately show %thesis
by (simp add: card-image length-sum-set-def)
qed

The following lemma corresponds to Lemma 2.7 in Gowers’s notes.

lemma useless-leq-useless:
defines r = card A
assumes useless r and ¢ < y and length © = r
shows useless y
proof —
have leny: length y = r
using pointwise-le-iff assms by auto

21

obtain z’ where z'< z and oz” 0 2’ = ¢ z and az” o 2’ = a z and lenz”:
length =’ = length x
using assms useless-def by blast
obtain i where i < card A and zi: x''i < z!¢ and takez”: take i ' = take i
using «z'<w) lenz’ assms by (auto simp: list-less-def lenlex-def elim!: lex-take-index)
define y’ where y' = y+z'—z
have leny’: length y' = length y
using assms lenz’ pointwise-le-iff by (simp add: y'-def)
have z!i < yli
using «x <y i < card Ay assms by (simp add: pointwise-le-iff-nth)
then have y'li < yli
using «i < card Ay assms lenx’ xi pointwise-le-iff by (simp add: y'-def plus-list-def
minus-list-def)
moreover have take i y' = take i y
proof (intro nth-equalityl)
show length (take i y') = length (take i y)
by (simp add: leny’)
show Ak. k < length (take i y') = take i y'! k = take i y'k
using takez' by (simp add: y'-def plus-list-def minus-list-def take-map take-zip)
qed
ultimately have y’ < y
using leny’ <i < card Ay assms pointwise-le-iff
by (auto simp: list-less-def lenlex-def lexord-lex lexord-take-index-conv)
moreover have o y' = o y
using assms
by (simp add: ox’ lenz’ leny pointwise-le-plus sum-list-minus sum-list-plus
y'-def)
moreover have o y' = «a y
using assms lenz’ az’ leny
by (fastforce simp: y'-def pointwise-le-plus alpha-minus alpha-plus local.associative)
ultimately show “thesis
using leny’ useless-def by blast
qed

inductive-set minimal-elements for U
where [z € U; A\y. y € U = - y < 2] = = € minimal-elements U

lemma pointwise-less-imp-o:
assumes zs < ys shows o s < o ys
proof —
have eq: length ys = length xs and zs < ys
using assms by (auto simp: pointwise-le-iff pointwise-less-iff)
have V k<length xs. zs'k < ys'k
using <xs < ysy list-all2-nthD pointwise-le-def by auto
moreover have 3 k<length xs. zslk < yslk
using assms pointwise-less-iff2 by force
ultimately show %thesis

22

by (force simp: eq sum-list-sum-nth intro: sum-strict-mono-ex1)
qed

lemma wf-measure-o: wf (inv-image less-than o)
by blast

lemma WFP: wfP (<)
by (auto simp: wfp-def pointwise-less-imp-o intro: wf-subset [OF wf-measure-o])

The following is a direct corollary of the above lemma, i.e. a corollary
of Lemma 2.7 in Gowers’s notes.

corollary useless-iff:
assumes length x = card A
shows useless © <— (Jz’ € minimal-elements (Collect useless). ' Q x) (is
-=%R)
proof
assume useless x
obtain z where 2: useless z 2 < z and zmin: \y. y < z = y J x = useful y
using wfE-min [to-pred, where @ = {z. useless z A z < z}, OF WFP)]
by (metis (no-types, lifting) <useless x> mem-Collect-eq pointwise-le-refl)
then show ?R
by (smt (verit) mem-Collect-eq minimal-elements.intros pointwise-le-trans point-
wise-less-def)
next
assume ?R
with useless-leq-useless minimal-elements.cases show useless x
by (metis assms mem-Collect-eq pointwise-le-iff)
qed

2.8 The set of minimal elements of a set of r-tuples is finite

The following general finiteness claim corresponds to Lemma 2.8 in Gowers’s
notes and is key to the main proof.

lemma minimal-elements-set-tuples-finite:
assumes Ur: A\z. z € U = lengthz = r
shows finite (minimal-elements U)
using assms
proof (induction r arbitrary: U)
case ()
then have U C {[]|}
by auto
then show ?case
by (metis finite.simps minimal-elements.cases finite-subset subset-eq)
next
case (Suc r)
show ?Zcase
proof (cases U={})
case True
with Suc.IH show ?thesis by blast

23

next
case Fulse
then obtain v where u: v € U and zmin: A\y. y < v =y ¢ U
using wfE-min [to-pred, where @ = U, OF WFP] by blast
define V where V ={ve U. - u < v}
define VF where VF = Xit. {v e V. vli =t}
have [simp]: length v = Suc r if v € VF it for v it
using that by (simp add: Suc.prems VF-def V-def)
have *: 3i<r. vli < uliif v € V for v
using that u Suc.prems
by (force simp: V-def pointwise-le-iff-nth not-le less-Suc-eq-le)
with v have minimal-elements U < insert u ({Ji<r.|Jt < uli. minimal-elements
(VF it))
by (force simp: VF-def V-def minimal-elements.simps pointwise-less-def)
moreover
have finite (minimal-elements (VF i t)) if i<r t < uli for i ¢
proof —
define delete where delete = Av::nat list. take i v @ drop (Suc i) v — deletion
of 4
have len-delete[simp]: length (delete u) = r if u € VF i t for u
using Suc.prems VF-def V-def <i < r delete-def that by auto
have nth-delete: delete uwlk = (if k<i then u!k else u!Suc k) if w € VF i t k<r
for u k
using that by (simp add: delete-def nth-append)
have delete-le-iff [simp]: delete u 4 delete v +— v < vifu e VFitv e VF
it for uw
proof
assume delete u < delete v
then have Vj. (j < i — ulj < vj) A(<r —i<j— ulSucj <
vlSuc 7)
using that i < r»
by (force simp: pointwise-le-iff-nth nth-delete split: if-split-asm cong:
conj-cong)
then show v < v
using that i < 1
apply (simp add: pointwise-le-iff-nth VF-def)
by (metis eq-iff le-Suc-eq less-Suc-eq-0-disj linorder-not-less)
next
assume u < v then show delete u < delete v
using that by (simp add: pointwise-le-iff-nth nth-delete)
qed
then have delete-eq-iff: delete u = delete v «+— u=vifue VFitve VF
it for uw
by (metis that pointwise-le-antisym pointwise-le-refl)
have delete-less-iff: delete u <1 delete v +— u < vifu € VFitve VFit
for u v
by (metis delete-le-iff pointwise-le-antisym pointwise-less-def that)
have length (delete v) = r if v € V for v
using id-take-nth-drop Suc.prems V-def <i < ry delete-def that by auto

24

then have finite (minimal-elements (delete * V'))
by (metis (mono-tags, lifting) Suc.IH image-iff)
moreover have inj-on delete (minimal-elements (VF i t))
by (simp add: delete-eq-iff inj-on-def minimal-elements.simps)
moreover have delete ¢ (minimal-elements (VF i t)) C minimal-elements
(delete < (VF i t))
by (auto simp: delete-less-iff minimal-elements.simps)
ultimately show ?Zthesis
by (metis (mono-tags, lifting) Suc.IH image-iff inj-on-finite len-delete)
qed
ultimately show #thesis
by (force elim: finite-subset)
qed
qed

2.9 Towards Lemma 2.9 in Gowers’s notes

Increasing sequences

fun augmentum :: nat list = nat list
where augmentum [| = []
| augmentum (n#ns) = n # map ((+)n) (augmentum ns)

definition dementum:: nat list = nat list
where dementum zs = xs — (0#xs)

lemma dementum-Nil [simp]: dementum [| = []
by (simp add: dementum-def)

lemma zero-notin-augmentum [simp): 0 ¢ set ns = 0 ¢ set (augmentum ns)
by (induction ns) auto

lemma length-augmentum [simpl:length (augmentum xzs) = length s
by (induction xs) auto

lemma sorted-augmentum [simp]: 0 ¢ set ns = sorted (augmentum ns)
by (induction ns) auto

lemma distinct-augmentum [simp]: 0 ¢ set ns = distinct (augmentum ns)
by (induction ns) (simp-all add: image-iff)

lemma augmentum-subset-sum-list: set (augmentum ns) C {..c ns}
by (induction ns) auto

lemma sum-list-augmentum: o ns € set (augmentum ns) <— length ns > 0
by (induction ns) auto

lemma length-dementum [simp]: length (dementum zs) = length xs
by (simp add: dementum-def)

25

lemma sorted-imp-pointwise:

assumes sorted (zsQ[n])

shows 0 # zs < xs Q [n]

using assms

by (simp add: pointwise-le-iff-nth nth-Cons’ nth-append sorted-append sorted-wrt-append
sorted-wrt-nth-less)

lemma sum-list-dementum:
assumes sorted (xsQ[n])
shows o (dementum (xsQ[n])) = n
proof —
have dementum (zsQ[n]) = (xsQ[n]) — (0 # wxs)
by (rule nth-equalityl; simp add: nth-append dementum-def nth-Cons’)
then show ?thesis
by (simp add: sum-list-minus sorted-imp-pointwise assms)
qed

lemma augmentum-cancel: map ((+)k) (augmentum ns) — (k # map ((+)k)
(augmentum ns)) = ns
proof (induction ns arbitrary: k)
case Nil
then show “case
by simp
next
case (Cons n ns)
have (+) ko (+) n = (+) (k+n) by auto
then show Zcase
by (simp add: minus-Cons Cons)
qed

lemma dementum-augmentum [simp:

assumes 0 ¢ set ns

shows (dementum o sorted-list-of-set) ((set o augmentum) ns) = ns (is 2L ns =
)

using assms augmentum-cancel [of 0]

by (simp add: dementum-def map-idl sorted-list-of-set.idem-if-sorted-distinct)

lemma dementum-nonzero:
assumes ns: sorted-wrt (<) ns and 0: 0 ¢ set ns
shows 0 ¢ set (dementum ns)
unfolding dementum-def minus-list-def
using sorted-wrt-nth-less [OF ns] 0
by (auto simp: in-set-conv-nth image-iff set-zip nth-Cons’ dest: leD)

lemma nth-augmentum [simp]: i < length ns = augmentum nsli = (> j<i. nslj)
proof (induction ns arbitrary: i)
case Nil
then show ?case
by simp

26

next
case (Cons a ns)
show Zcase
proof (cases i=0)
case False
then have augmentum (a # ns)li = a + sum ((!) ns) {..i—1}
using Cons.IH Cons.prems by auto
also have ... = a + (> je{0<..i}. ns!(j—1))
using sum.reindex [of Suc {..i — Suc 0} Nj. nsl(j—1), symmetric] False
by (simp add: image-Suc-atMost atLeastSucAtMost-greater ThanAtMost del:
sum. cl-ivl-Suc)

also have ... = (3 j = 0..i. if j=0 then a else nsl(j—1))
by (simp add: sum.head)
also have ... = sum ((!) (a # ns)) {..i}

by (simp add: nth-Cons’ atMost-atLeast0)
finally show ?thesis .
qged auto
qed

lemma augmentum-dementum [simp:
assumes 0 ¢ set ns sorted ns
shows augmentum (dementum ns) = ns
proof (rule nth-equalityl)
fix ¢
assume i < length (augmentum (dementum ns))
then have i: i < length ns
by simp
show augmentum (dementum ns)li = nsli
proof (cases i=0)
case True
then show ?thesis
using nth-augmentum dementum-def i by auto
next
case Fulse
have ns-le: N\j. [0 < j;j<i] = ns! (j — Suc 0) <ns!j
using <sorted ns) i by (simp add: sorted-iff-nth-mono)
have augmentum (dementum ns)li = (3 j<i. nslj — (if j = 0 then 0 else
nst(j—1)))
using i by (simp add: dementum-def nth-Cons’)

also have ... = (3. j=0..i. if j = 0 then nsl0 else nslj — ns!(j—1))
by (smt (verit, del-insts) diff-zero sum.cong atMost-atLeast0)
also have ... = nsl0 + (> je{0<..i}. nslj — nsl(j—1))
by (simp add: sum.head)
also have ... = ns!l0 + (3] je{0<..i}. nslj) — (O je{0<..i}. nsl(j—1)))
by (auto simp: ns-le intro: sum-subtractf-nat)
also have ... = nsl0 + (3 je{0<..i}. nslf) — (O] je{0<..i}. nsl(j—1))
proof —

have (> je{0<..i}. ns! (j — 1)) < sum ((!) ns) {0<..i}
by (metis One-nat-def greater ThanAtMost-iff ns-le sum-mono)

27

then show ?thesis by simp

qed

also have ... = nsl0 + (3 je{0<..i}. nslj) — (> j<i—Suc 0. nslj)
using sum.reindex [of Suc {..i — Suc 0} Nj. nsl(j—1), symmetric] False
by (simp add: image-Suc-atMost atLeastSucAtMost-greater ThanAtMost)

also have ... = (> j=0..i. nslj) — O j<i—Suc 0. ns!j)
by (simp add: sum.head [of 0 i])
also have ... = (3 j=0..i—Suc 0. nslj) + nsli — (3 j<i—Suc 0. nslj)

by (metis False Suc-pred less-SucO not-less-eq sum.atLeast0-atMost-Suc)
also have ... = nsli
by (simp add: atLeast0AtMost)
finally show augmentum (dementum ns)li = nsli .
qed
qed auto

The following lemma corresponds to Lemma 2.9 in Gowers’s notes. The
proof involves introducing bijective maps between r-tuples that fulfill certain
properties/r-tuples and subsets of naturals, so as to show the cardinality
claim.

lemma bound-sum-list-card:
assumes r > 0 and n: n > o z’ and lenz”: length ' = r
defines S = {z. 2’ 2 Aoz =n}
shows card S = (n — o '+ r — 1) choose (r—1)
proof—
define m where m =n — o z’
define f where f = A\z::nat list. © — '
have f: bij-betw f S (length-sum-set r m)
proof (intro bij-betw-imagel)
show inj-on f S
using pairwise-minus-cancel by (force simp: S-def f-def inj-on-def)
have A\z. z € S = fx € length-sum-set r m
by (simp add: S-def f-def length-sum-set-def lenz’ m-def pointwise-le-iff
sum-list-minus)
moreover have z € f S if © € length-sum-set r m for x
proof
have z[simp]: lengthz = r o x = m
using that by (auto simp: length-sum-set-def)
have r = 2/ + 2 — z’
by (rule nth-equalityl; simp add: lenx’)
then show z = f (z’ + 1)
unfolding f-def by fastforce
have 2/ < 2z’ + z
by (simp add: lenz' pointwise-le-plus)
moreover have ¢ (z' + 1) = n
by (simp add: lenz’ m-def n sum-list-plus)
ultimately show z’/ +z € S
using S-def by blast
qed
ultimately show f S = length-sum-set r m by auto

28

qed
define ¢ where g = Az::nat list. map Suc x
define ¢’ where g’ = Az::nat list. © — replicate (length x) 1
define T where T = length-sum-set r (m~+r) N lists(—{0})
have g¢: bij-betw g (length-sum-set r m) T
proof (intro bij-betw-imagel)
show inj-on g (length-sum-set r m)
by (auto simp: g-def inj-on-def)
have Az. z € length-sum-set rm = gz € T
by (auto simp: g-def length-sum-set-def sum-list-Suc T-def)
moreover have z € g ‘ length-sum-set r m if z € T for z
proof
have [simp]: length © = r
using length-sum-set-def that T-def by auto
have ri-z: replicate r (Suc 0) < z
using that unfolding T-def pointwise-le-iff-nth
by (simp add: lists-def in-listsp-conv-set Suc-lel)
show z = g (¢’ z)
using that by (intro nth-equalityl) (auto simp: g-def g’-def T-def)
show ¢’ z € length-sum-set r m
using that T-def by (simp add: g'-def r1-x sum-list-minus length-sum-set-def
sum-list-replicate)
qed
ultimately show g ¢ (length-sum-set r m) = T by auto
qed
define U where U = (insert (m+r)) ¢ finsets {0<..<m+r} (r—1)
have h: bij-betw (set o augmentum) T U
proof (intro bij-betw-imagel)
show inj-on ((set o augmentum)) T
unfolding inj-on-def T-def
by (metis ComplD IntE dementum-augmentum in-listsD insertlI1)
have (set o augmentum) t € U if t € T for ¢
proof —
have t: lengtht =r ot = m+r 0 ¢ sett
using that by (force simp: T-def length-sum-set-def)+
then have mrt: m 4+ r € set (augmentum t)
by (metis <r>0> sum-list-augmentum)
then have set (augmentum t) = insert (m + r) (set (augmentum t) — {m
)
by blast
moreover have set (augmentum t) — {m + r} € finsets {0<..<m + r} (r
— Suc 0)
apply (auto simp: finsets-def mrt distinct-card t)
by (metis atMost-iff augmentum-subset-sum-list le-eq-less-or-eq subsetD t(2))
ultimately show ?thesis
by (metis One-nat-def U-def comp-apply imagel)
qed
moreover have u € (set o augmentum) ‘ T if u € U for u
proof

29

from that
obtain N where u: v = insert (m + r) N and Nsub: N C {0<..<m + r}
and [simp]: card N = r — Suc 0
by (auto simp: U-def finsets-def)
have [simp]: 0 ¢ N m+r ¢ N finite N
using finite-subset Nsub by auto
have [simp]: card u = r
using Nsub «r>0) by (auto simp: u card-insert-if)
have ssN: sorted (sorted-list-of-set N @Q [m + r])
using Nsub by (simp add: less-imp-le-nat sorted-wrt-append subset-eq)
have so-u-N: sorted-list-of-set u = insort (m-+r) (sorted-list-of-set N)
by (simp add: u)
also have ... = sorted-list-of-set N @Q [m+r]
using Nsub by (force intro: sorted-insort-is-snoc)
finally have so-u: sorted-list-of-set u = sorted-list-of-set N @ [m+r] .
have 0: 0 ¢ set (sorted-list-of-set u)
by (simp add: «r>0> set-insort-key so-u-N)
show u = (set o augmentum) ((dementum o sorted-list-of-set)u)
using 0 so-u ssN u by force
have sortd-wrt-u: sorted-wrt (<) (sorted-list-of-set u)
by simp
show (dementum o sorted-list-of-set) u € T
apply (simp add: T-def length-sum-set-def)
using sum-list-dementum [OF ssN| sortd-wrt-u 0 by (force simp: so-u
dementum-nonzero)+
qged
ultimately show (set o augmentum) ‘ T = U by auto
qed
obtain ¢ where bij-betw ¢ S U
by (meson bij-betw-trans f g h)
moreover have card U = (n — o &' + r—1) choose (r—1)
proof —
have inj-on (insert (m + r)) (finsets {0<..<m + r} (r — Suc 0))
by (simp add: inj-on-def finsets-def subset-iff) (meson insert-ident order-less-le)
then have card U = card (finsets {0<..<m + r} (r — 1))
unfolding U-def by (simp add: card-image)
also have ... = (n — o &’ + r—1) choose (r—1)
by (simp add: card-finsets m-def)
finally show ?thesis .
qed
ultimately show ?thesis
by (metis bij-betw-same-card)
qed

2.10 Towards the main theorem

lemma extend-tuple:
assumes o xs < n length xs # 0
obtains ys where o ys = n s < ys

30

proof —
obtain z zs’ where zs: s = z#xs’
using assms list.exhaust by auto
define y where y =z + n — o zs
show thesis
proof
show o (y#zs’) = n
using assms xs y-def by auto
show zs < y#xs’
using assms y-def pointwise-le-def s by auto
qed
qed

lemma extend-preserving:
assumes o xs < n length xs > 1 ¢ < length xs
obtains ys where o ys = n zs < ys ysli = zsli
proof —
define j where j = Suc i mod length xs
define zs! where xs! = take j xs
define zs2 where zs2 = drop (Suc j) zs
define z where =z = zs!j
have zs: zs = xsl Q [z] @ xs2
using assms
apply (simp add: Cons-nth-drop-Suc assms z-def zs1-def xs2-def j-def)
by (meson Suc-lessD id-take-nth-drop mod-less-divisor)
define y where y =z + n — o zs
define ys where ys = zs1 Q [y] Q zs2
have z < y
using assms y-def by linarith
show thesis
proof
show o ys = n
using assms(1) xs y-def ys-def by auto
show zs < ys
using zs ys-def «x < > pointwise-append-le-iff pointwise-le-def by fastforce
have length zs1 # i
using assms by (simp add: xsi-def j-def min-def mod-Suc)
then show ys!i = zsli
by (auto simp: ys-def xs nth-append nth-Cons’)
qed
qed

The proof of the main theorem will make use of the inclusion-exclusion
formula, in addition to the previously shown results.

theorem Khovanskii:

assumes card A > 1

defines f = An. card(sumset-iterated A n)

obtains N p where real-polynomial-function p An. n > N = real (f n) = p
(real n)

31

proof —
define r where r = card A
define C where C = Anz'. {z. 2’ Qz Aoz =n}
define X where X = minimal-elements {x. useless x A length x = r}
haver > 1r# 0
using assms r-def by auto
have Csub: C n z’ C length-sum-set (length z') n for n z’
by (auto simp: C-def length-sum-set-def pointwise-le-iff)
then have finC: finite (C' n z’) for n z’
by (meson finite-length-sum-set finite-subset)
have finite X
using minimal-elements-set-tuples-finite X-def by force
then have maz-X: Az’. 2’ € X = o z' < o (maz-pointwise r X)
using X-def max-pointwise-ge minimal-elements.simps pointwise-le-imp-o by
force
let 220 = replicate r 0
have Cn0: C'n 220 = length-sum-set r n for n
by (auto simp: C-def length-sum-set-def)
then obtain p0 where pf-p0: real-polynomial-function p0 and p0: An. n>0
= p0 (real n) = real (card (C n 220))
by (metis real-polynomial-function-length-sum-set)
obtain ¢ where pf-q: real-polynomial-function q and ¢: Az. ¢ * = x gchoose
(r—1)
using real-polynomial-function-gchoose by metis
define p where p = Azireal. pO0x — Y | YC XA Y £ {}. (— 1) " (card
Y + 1) % q((z — real(c (maz-pointwise r Y)) + real r — 1)))
show thesis

proof
note pf-q’ = real-polynomial-function-compose [OF - pf-q, unfolded o-def)
note pf-intros = real-polynomial-function-sum real-polynomial-function-diff

real-polynomial-function.intros
show real-polynomial-function p
unfolding p-def using «finite X» by (intro pf-p0 pf-q’ pf-intros | force)+
next
fix n
assume n > maz 1 (o (maz-pointwise r X))
then have nlarge: n > o (max-pointwise r X) and n > 0
by auto
define U where U = An. length-sum-set v n N {z. useful =}
have 2: (length-sum-set r n N {z. useless z}) = (Jz'€eX. Cn ')
unfolding C-def X-def length-sum-set-def r-def
using useless-leg-useless by (force simp: minimal-elements.simps pointwise-le-iff
useless-iff)
define SUM! where SUMI =Y I |IC Cn ‘XANIT#{}.(—1) (card I
+ 1) % int (card (N 1))
define SUM2 where SUM2 =Y | YC XA Y #{} (= 1) (card Y 4+
1) % int (card (N(C'n “Y)))
have SUM1-card: card(length-sum-set v n N {x. useless x}) = nat SUM1
unfolding SUM1-def 2 using «finite X> finC by (intro card-UNION; force)

32

have SUM1 > 0
unfolding SUM1-def using card-UNION-nonneqg finC' «finite X» by auto
have C-empty-iff: Cnz' = {} +— o 2’ > n if length =’ # 0 for z’
by (simp add: set-eq-iff C-def) (meson extend-tuple linorder-not-le point-
wise-le-imp-o that)
have C-eg-1: Cnz’ = {[n]} if 0 2/ < n length 2’ = 1 for =’
using that by (auto simp: C-def length-Suc-conv pointwise-le-def elim!:
list.rel-cases)
have n-ge-X: 0 x < nif x € X for z
by (meson le-trans maz-X nlarge that)
have len-X-r: x € X = length x = r for z
by (auto simp: X-def minimal-elements.simps)

have min-pointwise r (Cnz') = z"if r > 1 2’ € X for z’
proof (rule pointwise-le-antisym)
have [simp]: length ' =r oz’ < n
using X-def minimal-elements.cases that(2) n-ge-X by auto
have [simp]: length (min-pointwise r (C'n z')) = r
by (simp add: min-pointwise-def)
show min-pointwise r (C n z’) < z'
proof (clarsimp simp add: pointwise-le-iff-nth)
fix ¢
assume i < 7
then obtain y where o y = n Az’ Qy A yli < z'li
by (metis extend-preserving <1 < r» <length ' = r «x’ € X» order.refl
n-ge-X)
then have JyeCn 2’ yli < z'li
using C-def by blast
with i < r show min-pointwise r (C' n z")li < z'li
by (simp add: min-pointwise-def Min-le-iff finC C-empty-iff leD)
qed
have =’ < min-pointwise r (C'n z') if o ' < n length ' = r for z’
by (smt (verit, del-insts) C-def C-empty-iff <r # 0> finC leD mem-Collect-eq
min-pointwise-ge-iff pointwise-le-iff that)
then show z’ < min-pointwise r (C n z’)
using X-def minimal-elements.cases that by force
qged
then have inj-C: inj-on (C'n) X
by (smt (verit, best) inj-onl mem-Collect-eq <r>1»)
have inj-on-imageC: inj-on (image (C n)) (Pow X — {{}})
by (simp add: inj-C inj-on-diff inj-on-image-Pow)

have Pow (Cn ‘ X) — {{}} C (image (C n)) ‘ (Pow X — {{}})
by (metis Pow-empty image-Pow-surj image-diff-subset image-empty)
then have (image (C n)) ‘ (Pow X — {{}}) = Pow (Cn ‘X)) — {{}}
by blast
then have SUM1 = sum (AI. (— 1) ~(card I + 1) x int (card ((I))) ((image
(Cn)) * (Pow X — {{}}))

unfolding SUMI-def by (auto intro: sum.cong)

33

also have ... = sum (M. (— 1) " (card I + 1) * int (card ([I))) o (image
(Cn))) (Pow X — {{}})
by (simp add: sum.reindez inj-on-imageC')
also have ... = SUM2
unfolding SUM2-def using subset-inj-on [OF inj-C| by (force simp: card-image
intro: sum.cong)
finally have SUMI1 = SUM2 .

have length-sum-set r n = (length-sum-set r n N {x. useful £}) U (length-sum-set
rn N {x. useless z})
by auto
then have card (length-sum-set r n) =
card (length-sum-set 7 n N {z. useful z}) +
card (length-sum-set r n N Collect useless)
by (simp add: finite-length-sum-set disjnt-iff flip: card-Un-disjnt)
moreover have C n 220 = length-sum-set r n
by (auto simp: C-def length-sum-set-def)
ultimately have card (C n 220) = card (U n) + nat SUM2
by (simp add: U-def flip: <SUM1 = SUM2) SUM1I-card)
then have SUM2-le: nat SUM2 < card (C n 220)
by arith
have o-maz-pointwise-le: ANY. [Y C X; Y # {}] = o (maz-pointwise r Y')
<n
by (meson «<finite X» le-trans maz-pointwise-mono nlarge pointwise-le-imp-o)

have card-C-maz: card (C' n (max-pointwise r Y)) =
(n — o (maz-pointwise r Y) + r — Suc 0 choose (r — Suc 0))
HfYCXY #{}for Y
proof —
have [simp]: length (maz-pointwise r V) = r
by (simp add: maz-pointwise-def)
then show ?thesis
using «r # 0> that C-def by (simp add: bound-sum-list-card [of 7]
o-maz-pointwise-le)
qed

define SUM8 where SUMS = ()Y | Y C X A Y # {}.
—((=1) " (card Y) * ((n — o (maz-pointwise v Y) + r — 1 choose (r —
1)))))

have N (Cn ‘ Y) = Cn (maz-pointwise r V) if Y C X Y # {} for YV
proof
show (] (Cn Y) C Cn (maz-pointwise r Y')
unfolding C-def
proof clarsimp
fix z
assume VycY. yJdz Ao x=n
moreover have finite Y
using <finite X» infinite-super that by blast
moreover have Au. v € Y = length v = r

34

using len-X-r that by blast
ultimately show maz-pointwise r Y <x Aoz =n
by (smt (verit, del-insts) all-not-in-conv maz-pointwise-le-iff point-
wise-le-iff-nth that(2))
qed
next
show C n (maz-pointwise v Y) C () (Cn YY)
apply (clarsimp simp: C-def)
by (metis <finite X» finite-subset len-X-r maz-pointwise-ge pointwise-le-trans
subsetD that(1))
qed
then have SUM2 = SUMS3
by (simp add: SUM2-def SUM3-def card-C-mazx)
have Un = Cn 220 — (length-sum-set r n N {z. useless z})
by (auto simp: U-def C-def length-sum-set-def)
then have card (U n) = card (C'n 220) — card(length-sum-set r n N {z. useless
7))
using finite-length-sum-set
by (simp add: C-def Collect-mono-iff inf.coboundedl1 length-sum-set-def flip:
card-Diff-subset)
then have card-U-eq-diff: card (U n) = card (C n 220) — nat SUM1
using SUM1-card by presburger
have SUM3 > 0
using 0 < SUM1) «SUM1 = SUM2> «SUM2 = SUMS3> by blast
have xx: AY. [V C X; Y # {}] = Suc (¢ (maz-pointwise r Y)) < n + r
by (metis <1 < ry o-maz-pointwise-le add.commute add-le-mono less-or-eq-imp-le
plus-1-eq-Suc)
have real (f n) = card (U n)
unfolding f-def r-def U-def length-sum-set-def
using card-sumset-iterated-length-sum-set-useful length-sum-set-def by pres-
burger

also have ... = card (C' n 220) — nat SUMS3
using card-U-eq-diff «<SUM1 = SUM2) <SUM2 = SUM3> by presburger
also have ... = real (card (C n (replicate r 0))) — real (nat SUM3)
using SUMZ2-le «<SUM2 = SUMS3> of-nat-diff by blast
also have ... = p (real n)

using I < 7 «n>0»
apply (simp add: p-def p0 q <SUMS8 > 0»)
apply (simp add: SUMS3-def binomial-gbinomial of-nat-diff o-max-pointwise-le
algebra-simps *x)
done
finally show real (f n) = p (real n) .
qed
qed

end

end

35

References

1]

2]

W. T. Gowers. Introduction to additive combinatorics. Lecture notes,
University of Cambridge, 2022.

A. G. Khovanskii. Newton polyhedron, Hilbert polynomial, and sums
of finite sets. Functional Analysis and Its Applications, 26(4):276-281,
1992.

A. G. Khovanskii. Sums of finite sets, orbits of commutative semi-
groups, and Hilbert functions. Functional Analysis and Its Applications,
29(2):102-112, 1995.

M. B. Nathanson and I. Z. Ruzsa. Polynomial growth of sumsets in
abelian semigroups. Journal de Théorie des Nombres de Bordeaur,
14(2):553-560, 2002.

I. Z. Ruzsa. Sumsets and structure. Lecture notes, Institute of Mathe-
matics, Budapest.

36

	Product Operator for Commutative Monoids
	Products over Finite Sets
	Results for Abelian Groups

	Khovanskii's Theorem
	Arithmetic operations on lists, pointwise on the elements
	The pointwise ordering on two equal-length lists of natural numbers
	Pointwise minimum and maximum of a set of lists
	A locale to fix the finite subset 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 A G
	Adding one to a list element
	The set of all 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 r-tuples that sum to 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 n
	Lemma 2.7 in Gowers's notes
	The set of minimal elements of a set of r-tuples is finite
	Towards Lemma 2.9 in Gowers's notes
	Towards the main theorem

