
Khovanskii’s Theorem

Angeliki Koutsoukou-Argyraki and Lawrence C. Paulson

March 17, 2025

Abstract

We formalise the proof of an important theorem in additive combi-
natorics due to Khovanskii [2, 3], attesting that the cardinality of the
set of all sums of n many elements of A, where A is a finite subset of
an abelian group, is a polynomial in n for all sufficiently large n. We
follow a proof of the theorem due to Nathanson and Ruzsa [4, 5] as
presented in the notes “Introduction to Additive Combinatorics” by
Timothy Gowers [1] for the University of Cambridge.

1

Contents
1 Product Operator for Commutative Monoids 3

1.1 Products over Finite Sets . 3
1.2 Results for Abelian Groups 8

2 Khovanskii’s Theorem 9
2.1 Arithmetic operations on lists, pointwise on the elements . . 10
2.2 The pointwise ordering on two equal-length lists of natural

numbers . 12
2.3 Pointwise minimum and maximum of a set of lists 14
2.4 A locale to fix the finite subset A ⊆ G 14
2.5 Adding one to a list element 17
2.6 The set of all r-tuples that sum to n 17
2.7 Lemma 2.7 in Gowers’s notes 21
2.8 The set of minimal elements of a set of r-tuples is finite . . . 23
2.9 Towards Lemma 2.9 in Gowers’s notes 25
2.10 Towards the main theorem 30

Acknowledgements The authors were supported by the ERC Advanced
Grant ALEXANDRIA (Project 742178) funded by the European Research
Council.

2

1 Product Operator for Commutative Monoids
theory FiniteProduct

imports
Jacobson-Basic-Algebra.Group-Theory

begin

1.1 Products over Finite Sets
context commutative-monoid begin

definition M-ify x ≡ if x ∈ M then x else 1

definition fincomp f A ≡ if finite A then Finite-Set.fold (λx y. f x · M-ify y) 1 A
else 1

lemma fincomp-empty [simp]: fincomp f {} = 1
by (simp add: fincomp-def)

lemma fincomp-infinite[simp]: infinite A =⇒ fincomp f A = 1
by (simp add: fincomp-def)

lemma left-commute: [[a ∈ M ; b ∈ M ; c ∈ M]] =⇒ b · (a · c) = a · (b · c)
using commutative by force

lemma comp-fun-commute-onI :
assumes f ∈ F → M
shows comp-fun-commute-on F (λx y. f x · M-ify y)
using assms
by (auto simp add: comp-fun-commute-on-def Pi-iff M-ify-def left-commute)

lemma fincomp-closed [simp]:
assumes f ∈ F → M
shows fincomp f F ∈ M

proof −
interpret comp-fun-commute-on F λx y. f x · M-ify y

by (simp add: assms comp-fun-commute-onI)
show ?thesis

unfolding fincomp-def
by (smt (verit, ccfv-threshold) M-ify-def Pi-iff fold-graph-fold assms composi-

tion-closed equalityE fold-graph-closed-lemma unit-closed)
qed

lemma fincomp-insert [simp]:
assumes F : finite F a /∈ F and f : f ∈ F → M f a ∈ M
shows fincomp f (insert a F) = f a · fincomp f F

proof −
interpret comp-fun-commute-on insert a F λx y. f x · M-ify y

3

by (simp add: comp-fun-commute-onI f)
show ?thesis
using assms fincomp-closed commutative-monoid.M-ify-def commutative-monoid-axioms
by (fastforce simp add: fincomp-def)

qed

lemma fincomp-unit-eqI : (
∧

x. x ∈ A =⇒ f x = 1) =⇒ fincomp f A = 1
proof (induct A rule: infinite-finite-induct)

case empty show ?case by simp
next

case (insert a A)
have (λi. 1) ∈ A → M by auto
with insert show ?case by simp

qed simp

lemma fincomp-unit [simp]: fincomp (λi. 1) A = 1
by (simp add: fincomp-unit-eqI)

lemma funcset-Int-left [simp, intro]:
[[f ∈ A → C ; f ∈ B → C]] =⇒ f ∈ A Int B → C
by fast

lemma funcset-Un-left [iff]:
(f ∈ A Un B → C) = (f ∈ A → C ∧ f ∈ B → C)
by fast

lemma fincomp-Un-Int:
[[finite A; finite B; g ∈ A → M ; g ∈ B → M]] =⇒

fincomp g (A ∪ B) · fincomp g (A ∩ B) =
fincomp g A · fincomp g B

— The reversed orientation looks more natural, but LOOPS as a simprule!
proof (induct set: finite)

case empty then show ?case by simp
next

case (insert a A)
then have g a ∈ M g ∈ A → M by blast+
with insert show ?case

by (simp add: Int-insert-left associative insert-absorb left-commute)
qed

lemma fincomp-Un-disjoint:
[[finite A; finite B; A ∩ B = {}; g ∈ A → M ; g ∈ B → M]]
=⇒ fincomp g (A ∪ B) = fincomp g A · fincomp g B

by (metis Pi-split-domain fincomp-Un-Int fincomp-closed fincomp-empty right-unit)

lemma fincomp-comp:
[[f ∈ A → M ; g ∈ A → M]] =⇒ fincomp (λx. f x · g x) A = (fincomp f A ·

fincomp g A)
proof (induct A rule: infinite-finite-induct)

4

case empty show ?case by simp
next

case (insert a A)
then have f a ∈ M g ∈ A → M g a ∈ M f ∈ A → M (λx. f x · g x) ∈ A → M

by blast+
then show ?case

by (simp add: insert associative left-commute)
qed simp

lemma fincomp-cong ′:
assumes A = B g ∈ B → M

∧
i. i ∈ B =⇒ f i = g i

shows fincomp f A = fincomp g B
proof (cases finite B)

case True
then have ?thesis

using assms
proof (induct arbitrary: A)

case empty thus ?case by simp
next

case (insert x B)
then have fincomp f A = fincomp f (insert x B) by simp
also from insert have ... = f x · fincomp f B

by (simp add: Pi-iff)
also from insert have ... = g x · fincomp g B by fastforce
also from insert have ... = fincomp g (insert x B)

by (intro fincomp-insert [THEN sym]) auto
finally show ?case .

qed
with assms show ?thesis by simp

next
case False with assms show ?thesis by simp

qed

lemma fincomp-cong:
assumes A = B g ∈ B → M

∧
i. i ∈ B =simp=> f i = g i

shows fincomp f A = fincomp g B
using assms unfolding simp-implies-def by (blast intro: fincomp-cong ′)

Usually, if this rule causes a failed congruence proof error, the reason
is that the premise g ∈ B → M cannot be shown. Adding Pi-def to the
simpset is often useful. For this reason, fincomp-cong is not added to the
simpset by default.
lemma fincomp-0 [simp]:

f ∈ {0 ::nat} → M =⇒ fincomp f {..0} = f 0
by (simp add: Pi-def)

lemma fincomp-0 ′: f ∈ {..n} → M =⇒ (f 0) · fincomp f {Suc 0 ..n} = fincomp f
{..n}
by (metis Pi-split-insert-domain Suc-n-not-le-n atLeastAtMost-iff atLeastAtMost-insertL

5

atMost-atLeast0 finite-atLeastAtMost fincomp-insert le0)

lemma fincomp-Suc [simp]:
f ∈ {..Suc n} → M =⇒ fincomp f {..Suc n} = (f (Suc n) · fincomp f {..n})
by (simp add: Pi-def atMost-Suc)

lemma fincomp-Suc2 :
f ∈ {..Suc n} → M =⇒ fincomp f {..Suc n} = (fincomp (%i. f (Suc i)) {..n} ·

f 0)
proof (induct n)

case 0 thus ?case by (simp add: Pi-def)
next

case Suc thus ?case
by (simp add: associative Pi-def)

qed

lemma fincomp-Suc3 :
assumes f ∈ {..n :: nat} → M
shows fincomp f {.. n} = (f n) · fincomp f {..< n}

proof (cases n = 0)
case True thus ?thesis

using assms atMost-Suc by simp
next

case False
then obtain k where n = Suc k

using not0-implies-Suc by blast
thus ?thesis

using fincomp-Suc[of f k] assms atMost-Suc lessThan-Suc-atMost by simp
qed

lemma fincomp-reindex:
f ∈ (h ‘ A) → M =⇒

inj-on h A =⇒ fincomp f (h ‘ A) = fincomp (λx. f (h x)) A
proof (induct A rule: infinite-finite-induct)

case (infinite A)
hence ¬ finite (h ‘ A)

using finite-imageD by blast
with ‹¬ finite A› show ?case by simp

qed (auto simp add: Pi-def)

lemma fincomp-const:
assumes a [simp]: a ∈ M
shows fincomp (λx. a) A = rec-nat 1 (λu. (·) a) (card A)
by (induct A rule: infinite-finite-induct) auto

lemma fincomp-singleton:
assumes i-in-A: i ∈ A and fin-A: finite A and f-Pi: f ∈ A → M
shows fincomp (λj. if i = j then f j else 1) A = f i
using i-in-A fincomp-insert [of A − {i} i (λj. if i = j then f j else 1)]

6

fin-A f-Pi fincomp-unit [of A − {i}]
fincomp-cong [of A − {i} A − {i} (λj. if i = j then f j else 1) (λi. 1)]

unfolding Pi-def simp-implies-def by (force simp add: insert-absorb)

lemma fincomp-singleton-swap:
assumes i-in-A: i ∈ A and fin-A: finite A and f-Pi: f ∈ A → M
shows fincomp (λj. if j = i then f j else 1) A = f i
using fincomp-singleton [OF assms] by (simp add: eq-commute)

lemma fincomp-mono-neutral-cong-left:
assumes finite B

and A ⊆ B
and 1 :

∧
i. i ∈ B − A =⇒ h i = 1

and gh:
∧

x. x ∈ A =⇒ g x = h x
and h: h ∈ B → M

shows fincomp g A = fincomp h B
proof−

have eq: A ∪ (B − A) = B using ‹A ⊆ B› by blast
have d: A ∩ (B − A) = {} using ‹A ⊆ B› by blast
from ‹finite B› ‹A ⊆ B› have f : finite A finite (B − A)

by (auto intro: finite-subset)
have h ∈ A → M h ∈ B − A → M

using assms by (auto simp: image-subset-iff-funcset)
moreover have fincomp g A = fincomp h A · fincomp h (B − A)
proof −

have fincomp h (B − A) = 1
using 1 fincomp-unit-eqI by blast

moreover have fincomp g A = fincomp h A
using ‹h ∈ A → M › fincomp-cong ′ gh by blast

ultimately show ?thesis
by (simp add: ‹h ∈ A → M ›)

qed
ultimately show ?thesis

by (simp add: fincomp-Un-disjoint [OF f d, unfolded eq])
qed

lemma fincomp-mono-neutral-cong-right:
assumes finite B

and A ⊆ B
∧

i. i ∈ B − A =⇒ g i = 1
∧

x. x ∈ A =⇒ g x = h x g ∈ B → M
shows fincomp g B = fincomp h A
using assms by (auto intro!: fincomp-mono-neutral-cong-left [symmetric])

lemma fincomp-mono-neutral-cong:
assumes [simp]: finite B finite A

and ∗:
∧

i. i ∈ B − A =⇒ h i = 1
∧

i. i ∈ A − B =⇒ g i = 1
and gh:

∧
x. x ∈ A ∩ B =⇒ g x = h x

and g: g ∈ A → M
and h: h ∈ B → M

shows fincomp g A = fincomp h B

7

proof−
have fincomp g A = fincomp g (A ∩ B)

by (rule fincomp-mono-neutral-cong-right) (use assms in auto)
also have . . . = fincomp h (A ∩ B)

by (rule fincomp-cong) (use assms in auto)
also have . . . = fincomp h B

by (rule fincomp-mono-neutral-cong-left) (use assms in auto)
finally show ?thesis .

qed

lemma fincomp-UN-disjoint:
assumes

finite I
∧

i. i ∈ I =⇒ finite (A i) pairwise (λi j. disjnt (A i) (A j)) I∧
i x. i ∈ I =⇒ x ∈ A i =⇒ g x ∈ M

shows fincomp g (
⋃
(A ‘ I)) = fincomp (λi. fincomp g (A i)) I

using assms
proof (induction set: finite)

case empty
then show ?case

by force
next

case (insert i I)
then show ?case

unfolding pairwise-def disjnt-def
apply clarsimp
apply (subst fincomp-Un-disjoint)

apply (fastforce intro!: funcsetI fincomp-closed)+
done

qed

lemma fincomp-Union-disjoint:
[[finite C ;

∧
A. A ∈ C =⇒ finite A ∧ (∀ x∈A. f x ∈ M); pairwise disjnt C]] =⇒

fincomp f (
⋃

C) = fincomp (fincomp f) C
by (frule fincomp-UN-disjoint [of C id f]) auto

end

1.2 Results for Abelian Groups
context abelian-group begin

lemma fincomp-inverse:
f ∈ A → G =⇒ fincomp (λx. inverse (f x)) A = inverse (fincomp f A)

proof (induct A rule: infinite-finite-induct)
case empty show ?case by simp

next
case (insert a A)
then have f a ∈ G f ∈ A → G (λx. inverse (f x)) ∈ A → G

8

by blast+
with insert show ?case

by (simp add: commutative inverse-composition-commute)
qed simp

Jeremy Avigad. This should be generalized to arbitrary groups, not just
Abelian ones, using Lagrange’s theorem.
lemma power-order-eq-one:

assumes fin [simp]: finite G
and a [simp]: a ∈ G

shows rec-nat 1 (λu. (·) a) (card G) = 1
proof −

have rec-G: rec-nat 1 (λu. (·) a) (card G) ∈ G
by (metis Pi-I ′ a fincomp-closed fincomp-const)

have
∧

x. x ∈ G =⇒ x ∈ (·) a ‘ G
by (metis a composition-closed imageI invertible invertible-inverse-closed invert-

ible-right-inverse2)
with a have (·) a ‘ G = G by blast
then have 1 · fincomp (λx. x) G = fincomp (λx. x) ((·) a ‘ G)

by simp
also have . . . = fincomp (λx. a · x) G

using fincomp-reindex
by (subst (2) fincomp-reindex [symmetric]) (auto simp: inj-on-def)

also have . . . = fincomp (λx. a) G · fincomp (λx. x) G
by (simp add: fincomp-comp)

also have fincomp (λx. a) G = rec-nat 1 (λu. (·) a) (card G)
by (simp add: fincomp-const)

finally show ?thesis
by (metis commutative fincomp-closed funcset-id invertible invertible-left-cancel

rec-G unit-closed)
qed

end

end

2 Khovanskii’s Theorem
We formalise the proof of an important theorem in additive combinatorics
due to Khovanskii, attesting that the cardinality of the set of all sums of
n many elements of A, where A is a finite subset of an abelian group, is
a polynomial in n for all sufficiently large n. We follow a proof due to
Nathanson and Ruzsa as presented in the notes “Introduction to Additive
Combinatorics” by Timothy Gowers for the University of Cambridge.
theory Khovanskii

imports
FiniteProduct

9

Pluennecke-Ruzsa-Inequality.Pluennecke-Ruzsa-Inequality
Bernoulli.Bernoulli — sums of a fixed power are polynomials
HOL−Analysis.Weierstrass-Theorems — needed for polynomial function
HOL−Library.List-Lenlexorder — lexicographic ordering for the type nat

list
begin

The sum of the elements of a list
abbreviation σ ≡ sum-list

Related to the nsets of Ramsey.thy, but simpler
definition finsets :: [′a set, nat] ⇒ ′a set set

where finsets A n ≡ {N . N ⊆ A ∧ card N = n}

lemma card-finsets: finite N =⇒ card (finsets N k) = card N choose k
by (simp add: finsets-def n-subsets)

lemma sorted-map-plus-iff [simp]:
fixes a:: ′a::linordered-cancel-ab-semigroup-add
shows sorted (map ((+) a) xs) ←→ sorted xs
by (induction xs) auto

lemma distinct-map-plus-iff [simp]:
fixes a:: ′a::linordered-cancel-ab-semigroup-add
shows distinct (map ((+) a) xs) ←→ distinct xs
by (induction xs) auto

2.1 Arithmetic operations on lists, pointwise on the elements
Weak type class properties. Cancellation is difficult to arrange because of
complications when lists differ in length.
instantiation list :: (plus) plus
begin
definition plus-list ≡ map2 (+)
instance..
end

lemma length-plus-list [simp]:
fixes xs :: ′a::plus list
shows length (xs+ys) = min (length xs) (length ys)
by (simp add: plus-list-def)

lemma plus-Nil [simp]: [] + xs = []
by (simp add: plus-list-def)

lemma plus-Cons: (y # ys) + (x # xs) = (y+x) # (ys+xs)
by (simp add: plus-list-def)

lemma nth-plus-list [simp]:

10

fixes xs :: ′a::plus list
assumes i < length xs i < length ys
shows (xs+ys)!i = xs!i + ys!i
by (simp add: plus-list-def assms)

instantiation list :: (minus) minus
begin
definition minus-list ≡ map2 (−)
instance..
end

lemma length-minus-list [simp]:
fixes xs :: ′a::minus list
shows length (xs−ys) = min (length xs) (length ys)
by (simp add: minus-list-def)

lemma minus-Nil [simp]: [] − xs = []
by (simp add: minus-list-def)

lemma minus-Cons: (y # ys) − (x # xs) = (y−x) # (ys−xs)
by (simp add: minus-list-def)

lemma nth-minus-list [simp]:
fixes xs :: ′a::minus list
assumes i < length xs i < length ys
shows (xs−ys)!i = xs!i − ys!i
by (simp add: minus-list-def assms)

instance list :: (ab-semigroup-add) ab-semigroup-add
proof

have map2 (+) (map2 (+) xs ys) zs = map2 (+) xs (map2 (+) ys zs) for xs ys
zs :: ′a list

proof (induction xs arbitrary: ys zs)
case (Cons x xs)
show ?case
proof (cases ys=[] ∨ zs=[])

case False
then obtain y ys ′ z zs ′ where ys = y#ys ′ zs = z # zs ′

by (meson list.exhaust)
then show ?thesis

by (simp add: Cons add.assoc)
qed auto

qed auto
then show a + b + c = a + (b + c) for a b c :: ′a list

by (auto simp: plus-list-def)
next

have map2 (+) xs ys = map2 (+) ys xs for xs ys :: ′a list
proof (induction xs arbitrary: ys)

11

case (Cons x xs)
show ?case
proof (cases ys)

case (Cons y ys ′)
then show ?thesis

by (simp add: Cons.IH add.commute)
qed auto

qed auto
then show a + b = b + a for a b :: ′a list

by (auto simp: plus-list-def)
qed

2.2 The pointwise ordering on two equal-length lists of nat-
ural numbers

Gowers uses the usual symbol (≤) for his pointwise ordering. In our devel-
opment, ≤ is the lexicographic ordering and E is the pointwise ordering.
definition pointwise-le :: [nat list, nat list] ⇒ bool (infixr ‹E› 50)

where x E y ≡ list-all2 (≤) x y

definition pointwise-less :: [nat list, nat list] ⇒ bool (infixr ‹C› 50)
where x C y ≡ x E y ∧ x 6= y

lemma pointwise-le-iff-nth:
x E y ←→ length x = length y ∧ (∀ i < length x. x!i ≤ y!i)
by (simp add: list-all2-conv-all-nth pointwise-le-def)

lemma pointwise-le-iff :
x E y ←→ length x = length y ∧ (∀ (i,j) ∈ set (zip x y). i≤j)
by (simp add: list-all2-iff pointwise-le-def)

lemma pointwise-append-le-iff [simp]: u@x E u@y ←→ x E y
by (auto simp: pointwise-le-iff-nth nth-append)

lemma pointwise-le-refl [iff]: x E x
by (simp add: list.rel-refl pointwise-le-def)

lemma pointwise-le-antisym: [[x E y; y E x]] =⇒ x=y
by (metis antisym list-all2-antisym pointwise-le-def)

lemma pointwise-le-trans: [[x E y; y E z]] =⇒ x E z
by (smt (verit, del-insts) le-trans list-all2-trans pointwise-le-def)

lemma pointwise-le-Nil [simp]: Nil E x ←→ x = Nil
by (simp add: pointwise-le-def)

lemma pointwise-le-Nil2 [simp]: x E Nil ←→ x = Nil
by (simp add: pointwise-le-def)

12

lemma pointwise-le-iff-less-equal: x E y ←→ x C y ∨ x = y
using pointwise-less-def by blast

lemma pointwise-less-iff :
x C y ←→ x E y ∧ (∃ (i,j) ∈ set (zip x y). i<j)
using list-eq-iff-zip-eq pointwise-le-iff pointwise-less-def by fastforce

lemma pointwise-less-iff2 : x C y ←→ x E y ∧ (∃ k < length x. x!k <y ! k)
unfolding pointwise-less-def pointwise-le-iff-nth
by (fastforce intro!: nth-equalityI)

lemma pointwise-less-Nil [simp]: ¬ Nil C x
by (simp add: pointwise-less-def)

lemma pointwise-less-Nil2 [simp]: ¬ x C Nil
by (simp add: pointwise-less-def)

lemma zero-pointwise-le-iff [simp]: replicate r 0 E x ←→ length x = r
by (auto simp: pointwise-le-iff-nth)

lemma pointwise-le-imp-σ:
assumes xs E ys shows σ xs ≤ σ ys
using assms

proof (induction ys arbitrary: xs)
case Nil
then show ?case

by (simp add: pointwise-le-iff)
next

case (Cons y ys)
then obtain x xs ′ where x≤y xs = x#xs ′ xs ′ E ys

by (auto simp: pointwise-le-def list-all2-Cons2)
then show ?case

by (simp add: Cons.IH add-le-mono)
qed

lemma sum-list-plus:
fixes xs :: ′a::comm-monoid-add list
assumes length xs = length ys shows σ (xs + ys) = σ xs + σ ys
using assms by (simp add: plus-list-def case-prod-unfold sum-list-addf)

lemma sum-list-minus:
assumes xs E ys shows σ (ys − xs) = σ ys − σ xs
using assms

proof (induction ys arbitrary: xs)
case (Cons y ys)
then obtain x xs ′ where x≤y xs = x#xs ′ xs ′ E ys

by (auto simp: pointwise-le-def list-all2-Cons2)
then show ?case

using pointwise-le-imp-σ by (auto simp: Cons minus-Cons)

13

qed (auto simp: in-set-conv-nth)

2.3 Pointwise minimum and maximum of a set of lists
definition min-pointwise :: [nat, nat list set] ⇒ nat list

where min-pointwise ≡ λr U . map (λi. Min ((λu. u!i) ‘ U)) [0 ..<r]

lemma min-pointwise-le: [[u ∈ U ; finite U]] =⇒ min-pointwise (length u) U E u
by (simp add: min-pointwise-def pointwise-le-iff-nth)

lemma min-pointwise-ge-iff :
assumes finite U U 6= {}

∧
u. u ∈ U =⇒ length u = r length x = r

shows x E min-pointwise r U ←→ (∀ u ∈ U . x E u)
by (auto simp: min-pointwise-def pointwise-le-iff-nth assms)

definition max-pointwise :: [nat, nat list set] ⇒ nat list
where max-pointwise ≡ λr U . map (λi. Max ((λu. u!i) ‘ U)) [0 ..<r]

lemma max-pointwise-ge: [[u ∈ U ; finite U]] =⇒ u E max-pointwise (length u) U
by (simp add: max-pointwise-def pointwise-le-iff-nth)

lemma max-pointwise-le-iff :
assumes finite U U 6= {}

∧
u. u ∈ U =⇒ length u = r length x = r

shows max-pointwise r U E x ←→ (∀ u ∈ U . u E x)
by (auto simp: max-pointwise-def pointwise-le-iff-nth assms)

lemma max-pointwise-mono:
assumes X ′ ⊆ X finite X X ′ 6= {}
shows max-pointwise r X ′ E max-pointwise r X
using assms by (simp add: max-pointwise-def pointwise-le-iff-nth Max-mono im-

age-mono)

lemma pointwise-le-plus: [[xs E ys; length ys ≤ length zs]] =⇒ xs E ys+zs
proof (induction xs arbitrary: ys zs)

case (Cons x xs)
then obtain y ys ′ z zs ′ where ys = y#ys ′ zs = z#zs ′

unfolding pointwise-le-iff by (metis Suc-le-length-iff le-refl length-Cons)
with Cons show ?case

by (auto simp: plus-list-def pointwise-le-def)
qed (simp add: pointwise-le-iff)

lemma pairwise-minus-cancel: [[z E x; z E y; x − z = y − z]] =⇒ x = y
unfolding pointwise-le-iff-nth by (metis eq-diff-iff nth-equalityI nth-minus-list)

2.4 A locale to fix the finite subset A ⊆ G
locale Khovanskii = additive-abelian-group +

fixes A :: ′a set
assumes AsubG: A ⊆ G and finA: finite A

14

begin

finite products of a group element
definition Gmult :: ′a ⇒ nat ⇒ ′a

where Gmult a n ≡ (((⊕)a) ^^ n) 0

lemma Gmult-0 [simp]: Gmult a 0 = 0
by (simp add: Gmult-def)

lemma Gmult-1 [simp]: a ∈ G =⇒ Gmult a (Suc 0) = a
by (simp add: Gmult-def)

lemma Gmult-Suc [simp]: Gmult a (Suc n) = a ⊕ Gmult a n
by (simp add: Gmult-def)

lemma Gmult-in-G [simp,intro]: a ∈ G =⇒ Gmult a n ∈ G
by (induction n) auto

lemma Gmult-add-add:
assumes a ∈ G
shows Gmult a (m+n) = Gmult a m ⊕ Gmult a n
by (induction m) (use assms local.associative in fastforce)+

lemma Gmult-add-diff :
assumes a ∈ G
shows Gmult a (n+k) 	 Gmult a n = Gmult a k
by (metis Gmult-add-add Gmult-in-G assms commutative inverse-closed invertible

invertible-left-inverse2)

lemma Gmult-diff :
assumes a ∈ G n≤m
shows Gmult a m 	 Gmult a n = Gmult a (m−n)
by (metis Gmult-add-diff assms le-add-diff-inverse)

Mapping elements of A to their numeric subscript
abbreviation idx ≡ to-nat-on A

The elements of A in order
definition aA :: ′a list

where aA ≡ map (from-nat-into A) [0 ..<card A]

definition α :: nat list ⇒ ′a
where α ≡ λx. fincomp (λi. Gmult (aA!i) (x!i)) {..<card A}

The underlying assumption is length y = length x
definition useless:: nat list ⇒ bool

where useless x ≡ ∃ y < x. σ y = σ x ∧ α y = α x ∧ length y = length x

abbreviation useful x ≡ ¬ useless x

15

lemma alpha-replicate-0 [simp]: α (replicate (card A) 0) = 0
by (auto simp: α-def intro: fincomp-unit-eqI)

lemma idx-less-cardA:
assumes a ∈ A shows idx a < card A
by (metis assms bij-betw-def finA imageI lessThan-iff to-nat-on-finite)

lemma aA-idx-eq [simp]:
assumes a ∈ A shows aA ! (idx a) = a
by (simp add: aA-def assms countable-finite finA idx-less-cardA)

lemma set-aA: set aA = A
using bij-betw-from-nat-into-finite [OF finA]
by (simp add: aA-def atLeast0LessThan bij-betw-def)

lemma nth-aA-in-G [simp]: i < card A =⇒ aA!i ∈ G
using AsubG aA-def set-aA by auto

lemma alpha-in-G [iff]: α x ∈ G
using nth-aA-in-G fincomp-closed by (simp add: α-def)

lemma Gmult-in-PiG [simp]: (λi. Gmult (aA!i) (f i)) ∈ {..<card A} → G
by simp

lemma alpha-plus:
assumes length x = card A length y = card A
shows α (x + y) = α x ⊕ α y

proof −
have α (x + y) = fincomp (λi. Gmult (aA!i) (map2 (+) x y!i)) {..<card A}

by (simp add: α-def plus-list-def)
also have . . . = fincomp (λi. Gmult (aA!i) (x!i + y!i)) {..<card A}

by (intro fincomp-cong ′; simp add: assms)
also have . . . = fincomp (λi. Gmult (aA!i) (x!i) ⊕ Gmult (aA!i) (y!i)) {..<card

A}
by (intro fincomp-cong ′; simp add: Gmult-add-add)

also have . . . = α x ⊕ α y
by (simp add: α-def fincomp-comp)

finally show ?thesis .
qed

lemma alpha-minus:
assumes y E x length y = card A
shows α (x − y) = α x 	 α y

proof −
have α (x − y) = fincomp (λi. Gmult (aA!i) (map2 (−) x y!i)) {..<card A}

by (simp add: α-def minus-list-def)
also have . . . = fincomp (λi. Gmult (aA!i) (x!i − y!i)) {..<card A}

using assms by (intro fincomp-cong ′) (auto simp: pointwise-le-iff)

16

also have . . . = fincomp (λi. Gmult (aA!i) (x!i) 	 Gmult (aA!i) (y!i)) {..<card
A}

using assms
by (intro fincomp-cong ′) (simp add: pointwise-le-iff-nth Gmult-diff)+

also have . . . = α x 	 α y
by (simp add: α-def fincomp-comp fincomp-inverse)

finally show ?thesis .
qed

2.5 Adding one to a list element
definition list-incr :: nat ⇒ nat list ⇒ nat list

where list-incr i x ≡ x[i := Suc (x!i)]

lemma list-incr-Nil [simp]: list-incr i [] = []
by (simp add: list-incr-def)

lemma list-incr-Cons [simp]: list-incr (Suc i) (k#ks) = k # list-incr i ks
by (simp add: list-incr-def)

lemma sum-list-incr [simp]: i < length x =⇒ σ (list-incr i x) = Suc (σ x)
by (auto simp: list-incr-def sum-list-update)

lemma length-list-incr [simp]: length (list-incr i x) = length x
by (auto simp: list-incr-def)

lemma nth-le-list-incr : i < card A =⇒ x!i ≤ list-incr (idx a) x!i
unfolding list-incr-def
by (metis Suc-leD linorder-not-less list-update-beyond nth-list-update-eq nth-list-update-neq

order-refl)

lemma list-incr-nth-diff : i < length x =⇒ list-incr j x!i − x!i = (if i = j then 1
else 0)

by (simp add: list-incr-def)

2.6 The set of all r-tuples that sum to n
definition length-sum-set :: nat ⇒ nat ⇒ nat list set

where length-sum-set r n ≡ {x. length x = r ∧ σ x = n}

lemma length-sum-set-Nil [simp]: length-sum-set 0 n = (if n=0 then {[]} else {})
by (auto simp: length-sum-set-def)

lemma length-sum-set-Suc [simp]: k#ks ∈ length-sum-set (Suc r) n ←→ (∃m. ks
∈ length-sum-set r m ∧ n = m+k)

by (auto simp: length-sum-set-def)

lemma length-sum-set-Suc-eqpoll: length-sum-set (Suc r) n ≈ Sigma {..n} (λi.
length-sum-set r (n−i)) (is ?L ≈ ?R)

unfolding eqpoll-def

17

proof
let ?f = (λl. (hd l, tl l))
show bij-betw ?f ?L ?R
proof (intro bij-betw-imageI)

show inj-on ?f ?L
by (force simp: inj-on-def length-sum-set-def intro: list.expand)

show ?f ‘ ?L = ?R
by (force simp: length-sum-set-def length-Suc-conv)

qed
qed

lemma finite-length-sum-set: finite (length-sum-set r n)
proof (induction r arbitrary: n)

case 0
then show ?case

by (auto simp: length-sum-set-def)
next

case (Suc r)
then show ?case

using length-sum-set-Suc-eqpoll eqpoll-finite-iff by blast
qed

lemma card-length-sum-set: card (length-sum-set (Suc r) n) = (
∑

i≤n. card (length-sum-set
r (n−i)))
proof −

have card (length-sum-set (Suc r) n) = card (Sigma {..n} (λi. length-sum-set r
(n−i)))

by (metis eqpoll-finite-iff eqpoll-iff-card finite-length-sum-set length-sum-set-Suc-eqpoll)
also have . . . = (

∑
i≤n. card (length-sum-set r (n−i)))

by (simp add: finite-length-sum-set)
finally show ?thesis .

qed

lemma sum-up-index-split ′:
assumes N ≤ n shows (

∑
i≤n. f i) = (

∑
i≤n−N . f i) + (

∑
i=Suc (n−N)..n.

f i)
by (metis assms diff-add sum-up-index-split)

lemma sum-invert: N ≤ n =⇒ (
∑

i = Suc (n − N)..n. f (n − i)) = (
∑

j<N . f
j)
proof (induction N)

case (Suc N)
then show ?case

apply (auto simp: Suc-diff-Suc)
by (metis sum.atLeast-Suc-atMost Suc-leD add.commute diff-diff-cancel diff-le-self)

qed auto

lemma real-polynomial-function-length-sum-set:
∃ p. real-polynomial-function p ∧ (∀n>0 . real (card (length-sum-set r n)) = p

18

(real n))
proof (induction r)

case 0
have ∀n>0 . real (card (length-sum-set 0 n)) = 0

by auto
then show ?case

by blast
next

case (Suc r)
then obtain p where poly: real-polynomial-function p

and p:
∧

n. n>0 =⇒ real (card (length-sum-set r n)) = p (real n)
by blast

then obtain a n where p-eq: p = (λx.
∑

i≤n. a i ∗ x ^ i)
using real-polynomial-function-iff-sum by auto

define q where q ≡ λx.
∑

j≤n. a j ∗ ((bernpoly (Suc j) (1 + x) − bernpoly
(Suc j) 0)

/ (1 + real j) − 0 ^ j)
have rp-q: real-polynomial-function q

by (fastforce simp: bernpoly-def p-eq q-def)
have q-eq: (

∑
x≤k−1 . p (k−x)) = q k if k>0 for k::nat

proof −
have (

∑
x≤k−1 . p (k−x)) = (

∑
j≤n. a j ∗ ((

∑
x≤k. real x ^ j) − 0^j))

using that
by (simp add: p-eq sum.swap

flip: sum-distrib-left of-nat-diff sum-diff-split[where f=λi. real i ^ -])
also have . . . = q k

by (simp add: sum-of-powers add.commute q-def)
finally show ?thesis .

qed
define p ′ where p ′ ≡ λx. q x + real (card (length-sum-set r 0))
have real-polynomial-function p ′

using rp-q by (force simp: p ′-def)
moreover have (

∑
x≤n − Suc 0 . p (real (n − x))) +

real (card (length-sum-set r 0)) = p ′ (real n) if n>0 for n
using that q-eq by (auto simp: p ′-def)

ultimately show ?case
unfolding card-length-sum-set
by (force simp: sum-up-index-split ′ [of 1] p sum-invert)

qed

lemma all-zeroes-replicate: length-sum-set r 0 = {replicate r 0}
by (auto simp: length-sum-set-def replicate-eqI)

lemma length-sum-set-Suc-eq-UN : length-sum-set r (Suc n) = (
⋃

i<r . list-incr i
‘ length-sum-set r n)
proof −

have ∃ i<r . x ∈ list-incr i ‘ length-sum-set r n
if σ x = Suc n and r = length x for x

proof −

19

have x 6= replicate r 0
using that by (metis sum-list-replicate Zero-not-Suc mult-zero-right)

then obtain i where i: i < r x!i 6= 0
by (metis ‹r = length x› in-set-conv-nth replicate-eqI)

with that have x[i := x!i − 1] ∈ length-sum-set r n
by (simp add: sum-list-update length-sum-set-def)

with i that show ?thesis
unfolding list-incr-def by force

qed
then show ?thesis

by (auto simp: length-sum-set-def Bex-def)
qed

lemma alpha-list-incr :
assumes a ∈ A x ∈ length-sum-set (card A) n
shows α (list-incr (idx a) x) = a ⊕ α x

proof −
have lenx: length x = card A

using assms length-sum-set-def by blast
have α (list-incr (idx a) x) 	 α x = fincomp (λi. Gmult (aA!i) (list-incr (idx

a) x!i) 	 Gmult (aA!i) (x!i)) {..<card A}
by (simp add: α-def fincomp-comp fincomp-inverse)

also have . . . = fincomp (λi. Gmult (aA!i) (list-incr (idx a) x!i − x!i)) {..<card
A}

by (intro fincomp-cong; simp add: Gmult-diff nth-le-list-incr)
also have . . . = fincomp (λi. if i = idx a then (aA!i) else 0) {..<card A}

by (intro fincomp-cong ′; simp add: list-incr-nth-diff lenx)
also have . . . = a

using assms by (simp add: fincomp-singleton-swap idx-less-cardA)
finally have α (list-incr (idx a) x) 	 α x = a .
then show ?thesis

by (metis alpha-in-G associative inverse-closed invertible invertible-left-inverse
right-unit)
qed

lemma sumset-iterated-enum:
defines r ≡ card A
shows sumset-iterated A n = α ‘ length-sum-set r n

proof (induction n)
case 0
then show ?case

by (simp add: all-zeroes-replicate r-def)
next

case (Suc n)
have eq: {..<r} = idx ‘ A

by (metis bij-betw-def finA r-def to-nat-on-finite)
have sumset-iterated A (Suc n) = (

⋃
a∈A. (λi. a ⊕ α i) ‘ length-sum-set r n)

using AsubG by (auto simp: Suc sumset)
also have . . . = (

⋃
a∈A. (λi. α (list-incr (idx a) i)) ‘ length-sum-set r n)

20

by (simp add: alpha-list-incr r-def)
also have . . . = α ‘ length-sum-set r (Suc n)

by (simp add: image-UN image-comp length-sum-set-Suc-eq-UN eq)
finally show ?case .

qed

2.7 Lemma 2.7 in Gowers’s notes
The following lemma corresponds to a key fact about the cardinality of the
set of all sums of n many elements of A, stated before Gowers’s Lemma 2.7.
lemma card-sumset-iterated-length-sum-set-useful:

defines r ≡ card A
shows card(sumset-iterated A n) = card (length-sum-set r n ∩ {x. useful x})
(is card ?L = card ?R)

proof −
have α x ∈ α ‘ (length-sum-set r n ∩ {x. useful x})

if x ∈ length-sum-set r n for x
proof −

define y where y ≡ LEAST y. y ∈ length-sum-set r n ∧ α y = α x
have y: y ∈ length-sum-set (card A) n ∧ α y = α x

by (metis (mono-tags, lifting) LeastI r-def y-def that)
moreover
have useful y
proof (clarsimp simp: useless-def)

show False
if σ z = σ y length z = length y and z < y α z = α y for z

using that Least-le length-sum-set-def not-less-Least r-def y y-def by fastforce
qed
ultimately show ?thesis

unfolding image-iff length-sum-set-def r-def by (smt (verit) Int-Collect)
qed
then have sumset-iterated A n = α ‘ (length-sum-set r n ∩ {x. useful x})

by (auto simp: sumset-iterated-enum length-sum-set-def r-def)
moreover have inj-on α (length-sum-set r n ∩ {x. useful x})
apply (simp add: image-iff length-sum-set-def r-def inj-on-def useless-def Ball-def)
by (metis linorder-less-linear)

ultimately show ?thesis
by (simp add: card-image length-sum-set-def)

qed

The following lemma corresponds to Lemma 2.7 in Gowers’s notes.
lemma useless-leq-useless:

defines r ≡ card A
assumes useless x and x E y and length x = r
shows useless y

proof −
have leny: length y = r

using pointwise-le-iff assms by auto

21

obtain x ′ where x ′< x and σx ′: σ x ′ = σ x and αx ′: α x ′ = α x and lenx ′:
length x ′ = length x

using assms useless-def by blast
obtain i where i < card A and xi: x ′!i < x!i and takex ′: take i x ′ = take i x
using ‹x ′<x› lenx ′ assms by (auto simp: list-less-def lenlex-def elim!: lex-take-index)

define y ′ where y ′ ≡ y+x ′−x
have leny ′: length y ′ = length y

using assms lenx ′ pointwise-le-iff by (simp add: y ′-def)
have x!i ≤ y!i

using ‹x E y› ‹i < card A› assms by (simp add: pointwise-le-iff-nth)
then have y ′!i < y!i
using ‹i < card A› assms lenx ′ xi pointwise-le-iff by (simp add: y ′-def plus-list-def

minus-list-def)
moreover have take i y ′ = take i y
proof (intro nth-equalityI)

show length (take i y ′) = length (take i y)
by (simp add: leny ′)

show
∧

k. k < length (take i y ′) =⇒ take i y ′ ! k = take i y!k
using takex ′ by (simp add: y ′-def plus-list-def minus-list-def take-map take-zip)

qed
ultimately have y ′ < y

using leny ′ ‹i < card A› assms pointwise-le-iff
by (auto simp: list-less-def lenlex-def lexord-lex lexord-take-index-conv)

moreover have σ y ′ = σ y
using assms

by (simp add: σx ′ lenx ′ leny pointwise-le-plus sum-list-minus sum-list-plus
y ′-def)

moreover have α y ′ = α y
using assms lenx ′ αx ′ leny

by (fastforce simp: y ′-def pointwise-le-plus alpha-minus alpha-plus local.associative)
ultimately show ?thesis

using leny ′ useless-def by blast
qed

inductive-set minimal-elements for U
where [[x ∈ U ;

∧
y. y ∈ U =⇒ ¬ y C x]] =⇒ x ∈ minimal-elements U

lemma pointwise-less-imp-σ:
assumes xs C ys shows σ xs < σ ys

proof −
have eq: length ys = length xs and xs E ys

using assms by (auto simp: pointwise-le-iff pointwise-less-iff)
have ∀ k<length xs. xs!k ≤ ys!k

using ‹xs E ys› list-all2-nthD pointwise-le-def by auto
moreover have ∃ k<length xs. xs!k < ys!k

using assms pointwise-less-iff2 by force
ultimately show ?thesis

22

by (force simp: eq sum-list-sum-nth intro: sum-strict-mono-ex1)
qed

lemma wf-measure-σ: wf (inv-image less-than σ)
by blast

lemma WFP: wfP (C)
by (auto simp: wfp-def pointwise-less-imp-σ intro: wf-subset [OF wf-measure-σ])

The following is a direct corollary of the above lemma, i.e. a corollary
of Lemma 2.7 in Gowers’s notes.
corollary useless-iff :

assumes length x = card A
shows useless x ←→ (∃ x ′ ∈ minimal-elements (Collect useless). x ′ E x) (is

-=?R)
proof

assume useless x
obtain z where z: useless z z E x and zmin:

∧
y. y C z =⇒ y E x =⇒ useful y

using wfE-min [to-pred, where Q = {z. useless z ∧ z E x}, OF WFP]
by (metis (no-types, lifting) ‹useless x› mem-Collect-eq pointwise-le-refl)

then show ?R
by (smt (verit) mem-Collect-eq minimal-elements.intros pointwise-le-trans point-

wise-less-def)
next

assume ?R
with useless-leq-useless minimal-elements.cases show useless x

by (metis assms mem-Collect-eq pointwise-le-iff)
qed

2.8 The set of minimal elements of a set of r-tuples is finite
The following general finiteness claim corresponds to Lemma 2.8 in Gowers’s
notes and is key to the main proof.
lemma minimal-elements-set-tuples-finite:

assumes Ur :
∧

x. x ∈ U =⇒ length x = r
shows finite (minimal-elements U)
using assms

proof (induction r arbitrary: U)
case 0
then have U ⊆ {[]}

by auto
then show ?case

by (metis finite.simps minimal-elements.cases finite-subset subset-eq)
next

case (Suc r)
show ?case
proof (cases U={})

case True
with Suc.IH show ?thesis by blast

23

next
case False
then obtain u where u: u ∈ U and zmin:

∧
y. y C u =⇒ y /∈ U

using wfE-min [to-pred, where Q = U , OF WFP] by blast
define V where V = {v ∈ U . ¬ u E v}
define VF where VF ≡ λi t. {v ∈ V . v!i = t}
have [simp]: length v = Suc r if v ∈ VF i t for v i t

using that by (simp add: Suc.prems VF-def V-def)
have ∗: ∃ i≤r . v!i < u!i if v ∈ V for v

using that u Suc.prems
by (force simp: V-def pointwise-le-iff-nth not-le less-Suc-eq-le)

with u have minimal-elements U ≤ insert u (
⋃

i≤r .
⋃

t < u!i. minimal-elements
(VF i t))

by (force simp: VF-def V-def minimal-elements.simps pointwise-less-def)
moreover
have finite (minimal-elements (VF i t)) if i≤r t < u!i for i t
proof −
define delete where delete ≡ λv::nat list. take i v @ drop (Suc i) v — deletion

of i
have len-delete[simp]: length (delete u) = r if u ∈ VF i t for u

using Suc.prems VF-def V-def ‹i ≤ r› delete-def that by auto
have nth-delete: delete u!k = (if k<i then u!k else u!Suc k) if u ∈ VF i t k<r

for u k
using that by (simp add: delete-def nth-append)

have delete-le-iff [simp]: delete u E delete v ←→ u E v if u ∈ VF i t v ∈ VF
i t for u v

proof
assume delete u E delete v
then have ∀ j. (j < i −→ u!j ≤ v!j) ∧ (j < r −→ i ≤ j −→ u!Suc j ≤

v!Suc j)
using that ‹i ≤ r›

by (force simp: pointwise-le-iff-nth nth-delete split: if-split-asm cong:
conj-cong)

then show u E v
using that ‹i ≤ r›
apply (simp add: pointwise-le-iff-nth VF-def)
by (metis eq-iff le-Suc-eq less-Suc-eq-0-disj linorder-not-less)

next
assume u E v then show delete u E delete v

using that by (simp add: pointwise-le-iff-nth nth-delete)
qed
then have delete-eq-iff : delete u = delete v ←→ u = v if u ∈ VF i t v ∈ VF

i t for u v
by (metis that pointwise-le-antisym pointwise-le-refl)

have delete-less-iff : delete u C delete v ←→ u C v if u ∈ VF i t v ∈ VF i t
for u v

by (metis delete-le-iff pointwise-le-antisym pointwise-less-def that)
have length (delete v) = r if v ∈ V for v

using id-take-nth-drop Suc.prems V-def ‹i ≤ r› delete-def that by auto

24

then have finite (minimal-elements (delete ‘ V))
by (metis (mono-tags, lifting) Suc.IH image-iff)

moreover have inj-on delete (minimal-elements (VF i t))
by (simp add: delete-eq-iff inj-on-def minimal-elements.simps)

moreover have delete ‘ (minimal-elements (VF i t)) ⊆ minimal-elements
(delete ‘ (VF i t))

by (auto simp: delete-less-iff minimal-elements.simps)
ultimately show ?thesis

by (metis (mono-tags, lifting) Suc.IH image-iff inj-on-finite len-delete)
qed
ultimately show ?thesis

by (force elim: finite-subset)
qed

qed

2.9 Towards Lemma 2.9 in Gowers’s notes
Increasing sequences
fun augmentum :: nat list ⇒ nat list

where augmentum [] = []
| augmentum (n#ns) = n # map ((+)n) (augmentum ns)

definition dementum:: nat list ⇒ nat list
where dementum xs ≡ xs − (0#xs)

lemma dementum-Nil [simp]: dementum [] = []
by (simp add: dementum-def)

lemma zero-notin-augmentum [simp]: 0 /∈ set ns =⇒ 0 /∈ set (augmentum ns)
by (induction ns) auto

lemma length-augmentum [simp]:length (augmentum xs) = length xs
by (induction xs) auto

lemma sorted-augmentum [simp]: 0 /∈ set ns =⇒ sorted (augmentum ns)
by (induction ns) auto

lemma distinct-augmentum [simp]: 0 /∈ set ns =⇒ distinct (augmentum ns)
by (induction ns) (simp-all add: image-iff)

lemma augmentum-subset-sum-list: set (augmentum ns) ⊆ {..σ ns}
by (induction ns) auto

lemma sum-list-augmentum: σ ns ∈ set (augmentum ns) ←→ length ns > 0
by (induction ns) auto

lemma length-dementum [simp]: length (dementum xs) = length xs
by (simp add: dementum-def)

25

lemma sorted-imp-pointwise:
assumes sorted (xs@[n])
shows 0 # xs E xs @ [n]
using assms
by (simp add: pointwise-le-iff-nth nth-Cons ′ nth-append sorted-append sorted-wrt-append

sorted-wrt-nth-less)

lemma sum-list-dementum:
assumes sorted (xs@[n])
shows σ (dementum (xs@[n])) = n

proof −
have dementum (xs@[n]) = (xs@[n]) − (0 # xs)

by (rule nth-equalityI ; simp add: nth-append dementum-def nth-Cons ′)
then show ?thesis

by (simp add: sum-list-minus sorted-imp-pointwise assms)
qed

lemma augmentum-cancel: map ((+)k) (augmentum ns) − (k # map ((+)k)
(augmentum ns)) = ns
proof (induction ns arbitrary: k)

case Nil
then show ?case

by simp
next

case (Cons n ns)
have (+) k ◦ (+) n = (+) (k+n) by auto
then show ?case

by (simp add: minus-Cons Cons)
qed

lemma dementum-augmentum [simp]:
assumes 0 /∈ set ns
shows (dementum ◦ sorted-list-of-set) ((set ◦ augmentum) ns) = ns (is ?L ns =

-)
using assms augmentum-cancel [of 0]
by (simp add: dementum-def map-idI sorted-list-of-set.idem-if-sorted-distinct)

lemma dementum-nonzero:
assumes ns: sorted-wrt (<) ns and 0 : 0 /∈ set ns
shows 0 /∈ set (dementum ns)
unfolding dementum-def minus-list-def
using sorted-wrt-nth-less [OF ns] 0
by (auto simp: in-set-conv-nth image-iff set-zip nth-Cons ′ dest: leD)

lemma nth-augmentum [simp]: i < length ns =⇒ augmentum ns!i = (
∑

j≤i. ns!j)
proof (induction ns arbitrary: i)

case Nil
then show ?case

by simp

26

next
case (Cons a ns)
show ?case
proof (cases i=0)

case False
then have augmentum (a # ns)!i = a + sum ((!) ns) {..i−1}

using Cons.IH Cons.prems by auto
also have . . . = a + (

∑
j∈{0<..i}. ns!(j−1))

using sum.reindex [of Suc {..i − Suc 0} λj. ns!(j−1), symmetric] False
by (simp add: image-Suc-atMost atLeastSucAtMost-greaterThanAtMost del:

sum.cl-ivl-Suc)
also have . . . = (

∑
j = 0 ..i. if j=0 then a else ns!(j−1))

by (simp add: sum.head)
also have . . . = sum ((!) (a # ns)) {..i}

by (simp add: nth-Cons ′ atMost-atLeast0)
finally show ?thesis .

qed auto
qed

lemma augmentum-dementum [simp]:
assumes 0 /∈ set ns sorted ns
shows augmentum (dementum ns) = ns

proof (rule nth-equalityI)
fix i
assume i < length (augmentum (dementum ns))
then have i: i < length ns

by simp
show augmentum (dementum ns)!i = ns!i
proof (cases i=0)

case True
then show ?thesis

using nth-augmentum dementum-def i by auto
next

case False
have ns-le:

∧
j. [[0 < j; j ≤ i]] =⇒ ns ! (j − Suc 0) ≤ ns ! j

using ‹sorted ns› i by (simp add: sorted-iff-nth-mono)
have augmentum (dementum ns)!i = (

∑
j≤i. ns!j − (if j = 0 then 0 else

ns!(j−1)))
using i by (simp add: dementum-def nth-Cons ′)

also have . . . = (
∑

j=0 ..i. if j = 0 then ns!0 else ns!j − ns!(j−1))
by (smt (verit, del-insts) diff-zero sum.cong atMost-atLeast0)

also have . . . = ns!0 + (
∑

j∈{0<..i}. ns!j − ns!(j−1))
by (simp add: sum.head)

also have . . . = ns!0 + ((
∑

j∈{0<..i}. ns!j) − (
∑

j∈{0<..i}. ns!(j−1)))
by (auto simp: ns-le intro: sum-subtractf-nat)

also have . . . = ns!0 + (
∑

j∈{0<..i}. ns!j) − (
∑

j∈{0<..i}. ns!(j−1))
proof −

have (
∑

j∈{0<..i}. ns ! (j − 1)) ≤ sum ((!) ns) {0<..i}
by (metis One-nat-def greaterThanAtMost-iff ns-le sum-mono)

27

then show ?thesis by simp
qed
also have . . . = ns!0 + (

∑
j∈{0<..i}. ns!j) − (

∑
j≤i−Suc 0 . ns!j)

using sum.reindex [of Suc {..i − Suc 0} λj. ns!(j−1), symmetric] False
by (simp add: image-Suc-atMost atLeastSucAtMost-greaterThanAtMost)

also have . . . = (
∑

j=0 ..i. ns!j) − (
∑

j≤i−Suc 0 . ns!j)
by (simp add: sum.head [of 0 i])

also have . . . = (
∑

j=0 ..i−Suc 0 . ns!j) + ns!i − (
∑

j≤i−Suc 0 . ns!j)
by (metis False Suc-pred less-Suc0 not-less-eq sum.atLeast0-atMost-Suc)

also have . . . = ns!i
by (simp add: atLeast0AtMost)

finally show augmentum (dementum ns)!i = ns!i .
qed

qed auto

The following lemma corresponds to Lemma 2.9 in Gowers’s notes. The
proof involves introducing bijective maps between r-tuples that fulfill certain
properties/r-tuples and subsets of naturals, so as to show the cardinality
claim.
lemma bound-sum-list-card:

assumes r > 0 and n: n ≥ σ x ′ and lenx ′: length x ′ = r
defines S ≡ {x. x ′ E x ∧ σ x = n}
shows card S = (n − σ x ′ + r − 1) choose (r−1)

proof−
define m where m ≡ n − σ x ′

define f where f ≡ λx::nat list. x − x ′

have f : bij-betw f S (length-sum-set r m)
proof (intro bij-betw-imageI)

show inj-on f S
using pairwise-minus-cancel by (force simp: S-def f-def inj-on-def)

have
∧

x. x ∈ S =⇒ f x ∈ length-sum-set r m
by (simp add: S-def f-def length-sum-set-def lenx ′ m-def pointwise-le-iff

sum-list-minus)
moreover have x ∈ f ‘ S if x ∈ length-sum-set r m for x
proof

have x[simp]: length x = r σ x = m
using that by (auto simp: length-sum-set-def)

have x = x ′ + x − x ′

by (rule nth-equalityI ; simp add: lenx ′)
then show x = f (x ′ + x)

unfolding f-def by fastforce
have x ′ E x ′ + x

by (simp add: lenx ′ pointwise-le-plus)
moreover have σ (x ′ + x) = n

by (simp add: lenx ′ m-def n sum-list-plus)
ultimately show x ′ + x ∈ S

using S-def by blast
qed
ultimately show f ‘ S = length-sum-set r m by auto

28

qed
define g where g ≡ λx::nat list. map Suc x
define g ′ where g ′ ≡ λx::nat list. x − replicate (length x) 1
define T where T ≡ length-sum-set r (m+r) ∩ lists(−{0})
have g: bij-betw g (length-sum-set r m) T
proof (intro bij-betw-imageI)

show inj-on g (length-sum-set r m)
by (auto simp: g-def inj-on-def)

have
∧

x. x ∈ length-sum-set r m =⇒ g x ∈ T
by (auto simp: g-def length-sum-set-def sum-list-Suc T-def)

moreover have x ∈ g ‘ length-sum-set r m if x ∈ T for x
proof

have [simp]: length x = r
using length-sum-set-def that T-def by auto

have r1-x: replicate r (Suc 0) E x
using that unfolding T-def pointwise-le-iff-nth
by (simp add: lists-def in-listsp-conv-set Suc-leI)

show x = g (g ′ x)
using that by (intro nth-equalityI) (auto simp: g-def g ′-def T-def)

show g ′ x ∈ length-sum-set r m
using that T-def by (simp add: g ′-def r1-x sum-list-minus length-sum-set-def

sum-list-replicate)
qed
ultimately show g ‘ (length-sum-set r m) = T by auto

qed
define U where U ≡ (insert (m+r)) ‘ finsets {0<..<m+r} (r−1)
have h: bij-betw (set ◦ augmentum) T U
proof (intro bij-betw-imageI)

show inj-on ((set ◦ augmentum)) T
unfolding inj-on-def T-def
by (metis ComplD IntE dementum-augmentum in-listsD insertI1)

have (set ◦ augmentum) t ∈ U if t ∈ T for t
proof −

have t: length t = r σ t = m+r 0 /∈ set t
using that by (force simp: T-def length-sum-set-def)+

then have mrt: m + r ∈ set (augmentum t)
by (metis ‹r>0 › sum-list-augmentum)

then have set (augmentum t) = insert (m + r) (set (augmentum t) − {m
+ r})

by blast
moreover have set (augmentum t) − {m + r} ∈ finsets {0<..<m + r} (r

− Suc 0)
apply (auto simp: finsets-def mrt distinct-card t)

by (metis atMost-iff augmentum-subset-sum-list le-eq-less-or-eq subsetD t(2))
ultimately show ?thesis

by (metis One-nat-def U-def comp-apply imageI)
qed
moreover have u ∈ (set ◦ augmentum) ‘ T if u ∈ U for u
proof

29

from that
obtain N where u: u = insert (m + r) N and Nsub: N ⊆ {0<..<m + r}

and [simp]: card N = r − Suc 0
by (auto simp: U-def finsets-def)

have [simp]: 0 /∈ N m+r /∈ N finite N
using finite-subset Nsub by auto

have [simp]: card u = r
using Nsub ‹r>0 › by (auto simp: u card-insert-if)

have ssN : sorted (sorted-list-of-set N @ [m + r])
using Nsub by (simp add: less-imp-le-nat sorted-wrt-append subset-eq)

have so-u-N : sorted-list-of-set u = insort (m+r) (sorted-list-of-set N)
by (simp add: u)

also have . . . = sorted-list-of-set N @ [m+r]
using Nsub by (force intro: sorted-insort-is-snoc)

finally have so-u: sorted-list-of-set u = sorted-list-of-set N @ [m+r] .
have 0 : 0 /∈ set (sorted-list-of-set u)

by (simp add: ‹r>0 › set-insort-key so-u-N)
show u = (set ◦ augmentum) ((dementum ◦ sorted-list-of-set)u)

using 0 so-u ssN u by force
have sortd-wrt-u: sorted-wrt (<) (sorted-list-of-set u)

by simp
show (dementum ◦ sorted-list-of-set) u ∈ T

apply (simp add: T-def length-sum-set-def)
using sum-list-dementum [OF ssN] sortd-wrt-u 0 by (force simp: so-u

dementum-nonzero)+
qed
ultimately show (set ◦ augmentum) ‘ T = U by auto

qed
obtain ϕ where bij-betw ϕ S U

by (meson bij-betw-trans f g h)
moreover have card U = (n − σ x ′ + r−1) choose (r−1)
proof −

have inj-on (insert (m + r)) (finsets {0<..<m + r} (r − Suc 0))
by (simp add: inj-on-def finsets-def subset-iff) (meson insert-ident order-less-le)
then have card U = card (finsets {0<..<m + r} (r − 1))

unfolding U-def by (simp add: card-image)
also have . . . = (n − σ x ′ + r−1) choose (r−1)

by (simp add: card-finsets m-def)
finally show ?thesis .

qed
ultimately show ?thesis

by (metis bij-betw-same-card)
qed

2.10 Towards the main theorem
lemma extend-tuple:

assumes σ xs ≤ n length xs 6= 0
obtains ys where σ ys = n xs E ys

30

proof −
obtain x xs ′ where xs: xs = x#xs ′

using assms list.exhaust by auto
define y where y ≡ x + n − σ xs
show thesis
proof

show σ (y#xs ′) = n
using assms xs y-def by auto

show xs E y#xs ′

using assms y-def pointwise-le-def xs by auto
qed

qed

lemma extend-preserving:
assumes σ xs ≤ n length xs > 1 i < length xs
obtains ys where σ ys = n xs E ys ys!i = xs!i

proof −
define j where j ≡ Suc i mod length xs
define xs1 where xs1 = take j xs
define xs2 where xs2 = drop (Suc j) xs
define x where x = xs!j
have xs: xs = xs1 @ [x] @ xs2

using assms
apply (simp add: Cons-nth-drop-Suc assms x-def xs1-def xs2-def j-def)
by (meson Suc-lessD id-take-nth-drop mod-less-divisor)

define y where y ≡ x + n − σ xs
define ys where ys ≡ xs1 @ [y] @ xs2
have x ≤ y

using assms y-def by linarith
show thesis
proof

show σ ys = n
using assms(1) xs y-def ys-def by auto

show xs E ys
using xs ys-def ‹x ≤ y› pointwise-append-le-iff pointwise-le-def by fastforce

have length xs1 6= i
using assms by (simp add: xs1-def j-def min-def mod-Suc)

then show ys!i = xs!i
by (auto simp: ys-def xs nth-append nth-Cons ′)

qed
qed

The proof of the main theorem will make use of the inclusion-exclusion
formula, in addition to the previously shown results.
theorem Khovanskii:

assumes card A > 1
defines f ≡ λn. card(sumset-iterated A n)
obtains N p where real-polynomial-function p

∧
n. n ≥ N =⇒ real (f n) = p

(real n)

31

proof −
define r where r ≡ card A
define C where C ≡ λn x ′. {x. x ′ E x ∧ σ x = n}
define X where X ≡ minimal-elements {x. useless x ∧ length x = r}
have r > 1 r 6= 0

using assms r-def by auto
have Csub: C n x ′ ⊆ length-sum-set (length x ′) n for n x ′

by (auto simp: C-def length-sum-set-def pointwise-le-iff)
then have finC : finite (C n x ′) for n x ′

by (meson finite-length-sum-set finite-subset)
have finite X

using minimal-elements-set-tuples-finite X-def by force
then have max-X :

∧
x ′. x ′ ∈ X =⇒ σ x ′ ≤ σ (max-pointwise r X)

using X-def max-pointwise-ge minimal-elements.simps pointwise-le-imp-σ by
force

let ?z0 = replicate r 0
have Cn0 : C n ?z0 = length-sum-set r n for n

by (auto simp: C-def length-sum-set-def)
then obtain p0 where pf-p0 : real-polynomial-function p0 and p0 :

∧
n. n>0

=⇒ p0 (real n) = real (card (C n ?z0))
by (metis real-polynomial-function-length-sum-set)

obtain q where pf-q: real-polynomial-function q and q:
∧

x. q x = x gchoose
(r−1)

using real-polynomial-function-gchoose by metis
define p where p ≡ λx::real. p0 x − (

∑
Y | Y ⊆ X ∧ Y 6= {}. (− 1) ^ (card

Y + 1) ∗ q((x − real(σ (max-pointwise r Y)) + real r − 1)))
show thesis
proof

note pf-q ′ = real-polynomial-function-compose [OF - pf-q, unfolded o-def]
note pf-intros = real-polynomial-function-sum real-polynomial-function-diff

real-polynomial-function.intros
show real-polynomial-function p

unfolding p-def using ‹finite X› by (intro pf-p0 pf-q ′ pf-intros | force)+
next

fix n
assume n ≥ max 1 (σ (max-pointwise r X))
then have nlarge: n ≥ σ (max-pointwise r X) and n > 0

by auto
define U where U ≡ λn. length-sum-set r n ∩ {x. useful x}
have 2 : (length-sum-set r n ∩ {x. useless x}) = (

⋃
x ′∈X . C n x ′)

unfolding C-def X-def length-sum-set-def r-def
using useless-leq-useless by (force simp: minimal-elements.simps pointwise-le-iff

useless-iff)
define SUM1 where SUM1 ≡

∑
I | I ⊆ C n ‘ X ∧ I 6= {}. (− 1) ^ (card I

+ 1) ∗ int (card (
⋂

I))
define SUM2 where SUM2 ≡

∑
Y | Y ⊆ X ∧ Y 6= {}. (− 1) ^ (card Y +

1) ∗ int (card (
⋂
(C n ‘ Y)))

have SUM1-card: card(length-sum-set r n ∩ {x. useless x}) = nat SUM1
unfolding SUM1-def 2 using ‹finite X› finC by (intro card-UNION ; force)

32

have SUM1 ≥ 0
unfolding SUM1-def using card-UNION-nonneg finC ‹finite X› by auto

have C-empty-iff : C n x ′ = {} ←→ σ x ′ > n if length x ′ 6= 0 for x ′

by (simp add: set-eq-iff C-def) (meson extend-tuple linorder-not-le point-
wise-le-imp-σ that)

have C-eq-1 : C n x ′ = {[n]} if σ x ′ ≤ n length x ′ = 1 for x ′

using that by (auto simp: C-def length-Suc-conv pointwise-le-def elim!:
list.rel-cases)

have n-ge-X : σ x ≤ n if x ∈ X for x
by (meson le-trans max-X nlarge that)

have len-X-r : x ∈ X =⇒ length x = r for x
by (auto simp: X-def minimal-elements.simps)

have min-pointwise r (C n x ′) = x ′ if r > 1 x ′ ∈ X for x ′

proof (rule pointwise-le-antisym)
have [simp]: length x ′ = r σ x ′ ≤ n

using X-def minimal-elements.cases that(2) n-ge-X by auto
have [simp]: length (min-pointwise r (C n x ′)) = r

by (simp add: min-pointwise-def)
show min-pointwise r (C n x ′) E x ′

proof (clarsimp simp add: pointwise-le-iff-nth)
fix i
assume i < r
then obtain y where σ y = n ∧ x ′ E y ∧ y!i ≤ x ′!i

by (metis extend-preserving ‹1 < r› ‹length x ′ = r› ‹x ′ ∈ X› order .refl
n-ge-X)

then have ∃ y∈C n x ′. y!i ≤ x ′!i
using C-def by blast

with ‹i < r› show min-pointwise r (C n x ′)!i ≤ x ′!i
by (simp add: min-pointwise-def Min-le-iff finC C-empty-iff leD)

qed
have x ′ E min-pointwise r (C n x ′) if σ x ′ ≤ n length x ′ = r for x ′

by (smt (verit, del-insts) C-def C-empty-iff ‹r 6= 0 › finC leD mem-Collect-eq
min-pointwise-ge-iff pointwise-le-iff that)

then show x ′ E min-pointwise r (C n x ′)
using X-def minimal-elements.cases that by force

qed
then have inj-C : inj-on (C n) X

by (smt (verit, best) inj-onI mem-Collect-eq ‹r>1 ›)
have inj-on-imageC : inj-on (image (C n)) (Pow X − {{}})

by (simp add: inj-C inj-on-diff inj-on-image-Pow)

have Pow (C n ‘ X) − {{}} ⊆ (image (C n)) ‘ (Pow X − {{}})
by (metis Pow-empty image-Pow-surj image-diff-subset image-empty)

then have (image (C n)) ‘ (Pow X − {{}}) = Pow (C n ‘ X) − {{}}
by blast

then have SUM1 = sum (λI . (− 1) ^ (card I + 1) ∗ int (card (
⋂

I))) ((image
(C n)) ‘ (Pow X − {{}}))

unfolding SUM1-def by (auto intro: sum.cong)

33

also have . . . = sum ((λI . (− 1) ^ (card I + 1) ∗ int (card (
⋂

I))) ◦ (image
(C n))) (Pow X − {{}})

by (simp add: sum.reindex inj-on-imageC)
also have . . . = SUM2
unfolding SUM2-def using subset-inj-on [OF inj-C] by (force simp: card-image

intro: sum.cong)
finally have SUM1 = SUM2 .

have length-sum-set r n = (length-sum-set r n ∩ {x. useful x}) ∪ (length-sum-set
r n ∩ {x. useless x})

by auto
then have card (length-sum-set r n) =

card (length-sum-set r n ∩ {x. useful x}) +
card (length-sum-set r n ∩ Collect useless)

by (simp add: finite-length-sum-set disjnt-iff flip: card-Un-disjnt)
moreover have C n ?z0 = length-sum-set r n

by (auto simp: C-def length-sum-set-def)
ultimately have card (C n ?z0) = card (U n) + nat SUM2

by (simp add: U-def flip: ‹SUM1 = SUM2 › SUM1-card)
then have SUM2-le: nat SUM2 ≤ card (C n ?z0)

by arith
have σ-max-pointwise-le:

∧
Y . [[Y ⊆ X ; Y 6= {}]] =⇒ σ (max-pointwise r Y)

≤ n
by (meson ‹finite X› le-trans max-pointwise-mono nlarge pointwise-le-imp-σ)

have card-C-max: card (C n (max-pointwise r Y)) =
(n − σ (max-pointwise r Y) + r − Suc 0 choose (r − Suc 0))

if Y ⊆ X Y 6= {} for Y
proof −

have [simp]: length (max-pointwise r Y) = r
by (simp add: max-pointwise-def)

then show ?thesis
using ‹r 6= 0 › that C-def by (simp add: bound-sum-list-card [of r]

σ-max-pointwise-le)
qed

define SUM3 where SUM3 ≡ (
∑

Y | Y ⊆ X ∧ Y 6= {}.
− ((− 1) ^ (card Y) ∗ ((n − σ (max-pointwise r Y) + r − 1 choose (r −

1)))))
have

⋂
(C n ‘ Y) = C n (max-pointwise r Y) if Y ⊆ X Y 6= {} for Y

proof
show

⋂
(C n ‘ Y) ⊆ C n (max-pointwise r Y)

unfolding C-def
proof clarsimp

fix x
assume ∀ y∈Y . y E x ∧ σ x = n
moreover have finite Y

using ‹finite X› infinite-super that by blast
moreover have

∧
u. u ∈ Y =⇒ length u = r

34

using len-X-r that by blast
ultimately show max-pointwise r Y E x ∧ σ x = n

by (smt (verit, del-insts) all-not-in-conv max-pointwise-le-iff point-
wise-le-iff-nth that(2))

qed
next

show C n (max-pointwise r Y) ⊆
⋂

(C n ‘ Y)
apply (clarsimp simp: C-def)

by (metis ‹finite X› finite-subset len-X-r max-pointwise-ge pointwise-le-trans
subsetD that(1))

qed
then have SUM2 = SUM3

by (simp add: SUM2-def SUM3-def card-C-max)
have U n = C n ?z0 − (length-sum-set r n ∩ {x. useless x})

by (auto simp: U-def C-def length-sum-set-def)
then have card (U n) = card (C n ?z0) − card(length-sum-set r n ∩ {x. useless

x})
using finite-length-sum-set
by (simp add: C-def Collect-mono-iff inf .coboundedI1 length-sum-set-def flip:

card-Diff-subset)
then have card-U-eq-diff : card (U n) = card (C n ?z0) − nat SUM1

using SUM1-card by presburger
have SUM3 ≥ 0

using ‹0 ≤ SUM1 › ‹SUM1 = SUM2 › ‹SUM2 = SUM3 › by blast
have ∗∗:

∧
Y . [[Y ⊆ X ; Y 6= {}]] =⇒ Suc (σ (max-pointwise r Y)) ≤ n + r

by (metis ‹1 < r› σ-max-pointwise-le add.commute add-le-mono less-or-eq-imp-le
plus-1-eq-Suc)

have real (f n) = card (U n)
unfolding f-def r-def U-def length-sum-set-def
using card-sumset-iterated-length-sum-set-useful length-sum-set-def by pres-

burger
also have . . . = card (C n ?z0) − nat SUM3

using card-U-eq-diff ‹SUM1 = SUM2 › ‹SUM2 = SUM3 › by presburger
also have . . . = real (card (C n (replicate r 0))) − real (nat SUM3)

using SUM2-le ‹SUM2 = SUM3 › of-nat-diff by blast
also have . . . = p (real n)

using ‹1 < r› ‹n>0 ›
apply (simp add: p-def p0 q ‹SUM3 ≥ 0 ›)

apply (simp add: SUM3-def binomial-gbinomial of-nat-diff σ-max-pointwise-le
algebra-simps ∗∗)

done
finally show real (f n) = p (real n) .

qed
qed

end

end

35

References
[1] W. T. Gowers. Introduction to additive combinatorics. Lecture notes,

University of Cambridge, 2022.

[2] A. G. Khovanskii. Newton polyhedron, Hilbert polynomial, and sums
of finite sets. Functional Analysis and Its Applications, 26(4):276–281,
1992.

[3] A. G. Khovanskii. Sums of finite sets, orbits of commutative semi-
groups, and Hilbert functions. Functional Analysis and Its Applications,
29(2):102–112, 1995.

[4] M. B. Nathanson and I. Z. Ruzsa. Polynomial growth of sumsets in
abelian semigroups. Journal de Théorie des Nombres de Bordeaux,
14(2):553–560, 2002.

[5] I. Z. Ruzsa. Sumsets and structure. Lecture notes, Institute of Mathe-
matics, Budapest.

36

	Product Operator for Commutative Monoids
	Products over Finite Sets
	Results for Abelian Groups

	Khovanskii's Theorem
	Arithmetic operations on lists, pointwise on the elements
	The pointwise ordering on two equal-length lists of natural numbers
	Pointwise minimum and maximum of a set of lists
	A locale to fix the finite subset 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 A G
	Adding one to a list element
	The set of all 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 r-tuples that sum to 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 n
	Lemma 2.7 in Gowers's notes
	The set of minimal elements of a set of r-tuples is finite
	Towards Lemma 2.9 in Gowers's notes
	Towards the main theorem

