Khovanskii's Theorem

Angeliki Koutsoukou-Argyraki and Lawrence C. Paulson

March 17, 2025

Abstract

We formalise the proof of an important theorem in additive combinatorics due to Khovanskii [2, 3], attesting that the cardinality of the set of all sums of n many elements of A, where A is a finite subset of an abelian group, is a polynomial in n for all sufficiently large n. We follow a proof of the theorem due to Nathanson and Ruzsa [4, 5] as presented in the notes "Introduction to Additive Combinatorics" by Timothy Gowers [1] for the University of Cambridge.

Contents

1	Pro	duct Operator for Commutative Monoids	3
	1.1	Products over Finite Sets	3
	1.2	Results for Abelian Groups	8
2	Khovanskii's Theorem		9
	2.1	Arithmetic operations on lists, pointwise on the elements	10
	2.2	The pointwise ordering on two equal-length lists of natural	
		numbers	12
	2.3	Pointwise minimum and maximum of a set of lists	14
	2.4	A locale to fix the finite subset $A \subseteq G$	14
	2.5	Adding one to a list element	17
	2.6	The set of all r -tuples that sum to n	17
	2.7	Lemma 2.7 in Gowers's notes	21
	2.8	The set of minimal elements of a set of r -tuples is finite \ldots	23
	2.9	Towards Lemma 2.9 in Gowers's notes	25
	2.10	Towards the main theorem	30

Acknowledgements The authors were supported by the ERC Advanced Grant ALEXANDRIA (Project 742178) funded by the European Research Council.

1 Product Operator for Commutative Monoids

theory FiniteProduct imports Jacobson-Basic-Algebra.Group-Theory

begin

1.1 Products over Finite Sets

 $\mathbf{context} \ commutative{-monoid} \ \mathbf{begin}$

definition *M*-ify $x \equiv if \ x \in M$ then x else 1

definition fincomp $f A \equiv if$ finite A then Finite-Set.fold $(\lambda x \ y. \ f \ x \cdot M \text{-} ify \ y) \mathbf{1} A$ else $\mathbf{1}$

lemma fincomp-empty [simp]: fincomp $f \{\} = 1$ by (simp add: fincomp-def)

lemma fincomp-infinite[simp]: infinite $A \implies$ fincomp f A = 1by (simp add: fincomp-def)

lemma left-commute: $\llbracket a \in M; b \in M; c \in M \rrbracket \implies b \cdot (a \cdot c) = a \cdot (b \cdot c)$ using commutative by force

lemma comp-fun-commute-onI: **assumes** $f \in F \to M$ **shows** comp-fun-commute-on $F(\lambda x \ y. \ f \ x \cdot M\text{-}ify \ y)$ **using** assms **by** (auto simp add: comp-fun-commute-on-def Pi-iff M-ify-def left-commute)

 $\begin{array}{l} \textbf{lemma fincomp-closed [simp]:}\\ \textbf{assumes } f \in F \rightarrow M\\ \textbf{shows fincomp f } F \in M\\ \textbf{proof } -\\ \textbf{interpret comp-fun-commute-on } F \ \lambda x \ y. \ f \ x \cdot M \text{-} ify \ y\\ \textbf{by (simp add: assms comp-fun-commute-onI)}\\ \textbf{show ?thesis}\\ \textbf{unfolding fincomp-def}\\ \textbf{by (smt (verit, ccfv-threshold) } M \text{-} ify \text{-} def \ Pi \text{-} iff \ fold-graph-fold \ assms \ composition-closed \ equalityE \ fold-graph-closed-lemma \ unit-closed)}\\ \textbf{qed} \end{array}$

lemma fincomp-insert [simp]: **assumes** F: finite $F \ a \notin F$ and f: $f \in F \to M f \ a \in M$ **shows** fincomp f (insert $a \ F$) = $f \ a \cdot fincomp \ f \ F$ **proof** -

interpret comp-fun-commute-on insert a F $\lambda x y$. f $x \cdot M$ -ify y

by (simp add: comp-fun-commute-on I f) show ?thesis using assms fincomp-closed commutative-monoid. M-ify-def commutative-monoid-axioms **by** (*fastforce simp add: fincomp-def*) qed **lemma** fincomp-unit-eqI: $(\bigwedge x. \ x \in A \Longrightarrow f \ x = 1) \Longrightarrow$ fincomp $f \ A = 1$ **proof** (*induct A rule: infinite-finite-induct*) case empty show ?case by simp \mathbf{next} case (insert a A) have $(\lambda i. 1) \in A \to M$ by *auto* with insert show ?case by simp qed simp **lemma** fincomp-unit [simp]: fincomp (λi . 1) A = 1by (simp add: fincomp-unit-eqI) **lemma** funcset-Int-left [simp, intro]: $\llbracket f \in A \to C; f \in B \to C \rrbracket \Longrightarrow f \in A \text{ Int } B \to C$ by fast **lemma** funcset-Un-left [iff]: $(f \in A \ Un \ B \to C) = (f \in A \to C \land f \in B \to C)$ by fast **lemma** *fincomp-Un-Int*: [*finite* A; *finite* B; $g \in A \to M$; $g \in B \to M$] \Longrightarrow fincomp $g(A \cup B) \cdot fincomp g(A \cap B) =$ fincomp $g A \cdot fincomp g B$ - The reversed orientation looks more natural, but LOOPS as a simprule! **proof** (*induct set: finite*) case empty then show ?case by simp \mathbf{next} **case** (insert a A) then have $q \ a \in M \ q \in A \to M$ by blast+with insert show ?case by (simp add: Int-insert-left associative insert-absorb left-commute) qed lemma fincomp-Un-disjoint: [*finite* A; *finite* B; $A \cap B = \{\}; g \in A \to M; g \in B \to M$] \implies fincomp $q (A \cup B) =$ fincomp $q A \cdot$ fincomp q Bby (metis Pi-split-domain fincomp-Un-Int fincomp-closed fincomp-empty right-unit)

lemma fincomp-comp:

 $\llbracket f \in A \to M; g \in A \to M \rrbracket \Longrightarrow fincomp (\lambda x. f x \cdot g x) A = (fincomp f A \cdot fincomp g A)$ **proof** (induct A rule: infinite-finite-induct)

case empty show ?case by simp \mathbf{next} **case** (insert a A) then have $f a \in M g \in A \to M g a \in M f \in A \to M (\lambda x. f x \cdot g x) \in A \to M$ **bv** blast+ then show ?case **by** (simp add: insert associative left-commute) qed simp **lemma** fincomp-cong': assumes $A = B \ g \in B \to M \ \bigwedge i. \ i \in B \Longrightarrow f \ i = g \ i$ shows fincomp f A = fincomp g B**proof** (cases finite B) case True then have ?thesis using assms **proof** (*induct arbitrary*: A) case empty thus ?case by simp \mathbf{next} case (insert x B) then have fincomp f A = fincomp f (insert x B) by simp **also from** *insert* have $\dots = f x \cdot fincomp f B$ by (simp add: Pi-iff) also from insert have $\dots = g x \cdot fincomp \ g B$ by fastforce also from insert have $\dots = fincomp \ g \ (insert \ x \ B)$ **by** (*intro fincomp-insert* [*THEN sym*]) *auto* finally show ?case . ged with assms show ?thesis by simp next case False with assms show ?thesis by simp qed **lemma** *fincomp-cong*:

assumes A = B $g \in B \to M \land i. i \in B = simp => f i = g i$ shows fincomp f A = fincomp g Busing assms unfolding simp-implies-def by (blast intro: fincomp-cong')

Usually, if this rule causes a failed congruence proof error, the reason is that the premise $g \in B \to M$ cannot be shown. Adding *Pi-def* to the simpset is often useful. For this reason, *fincomp-cong* is not added to the simpset by default.

lemma fincomp-0 [simp]: $f \in \{0::nat\} \to M \Longrightarrow$ fincomp $f \{..0\} = f 0$ **by** (simp add: Pi-def)

lemma fincomp-0': $f \in \{..n\} \to M \Longrightarrow (f \ 0) \cdot fincomp \ f \ \{Suc \ 0..n\} = fincomp \ f \ \{..n\}$

 $\mathbf{by} \ (metis \ Pi-split-insert-domain \ Suc-n-not-le-n \ at Least At Most-inff \ at Least At Most-insert Loss and the set of th$

atMost-atLeast0 finite-atLeastAtMost fincomp-insert le0)

```
lemma fincomp-Suc [simp]:
 f \in \{..Suc \ n\} \to M \Longrightarrow fincomp \ f \ \{..Suc \ n\} = (f \ (Suc \ n) \cdot fincomp \ f \ \{..n\})
 by (simp add: Pi-def atMost-Suc)
lemma fincomp-Suc2:
 f \in \{..Suc \ n\} \to M \Longrightarrow fincomp \ f \ \{..Suc \ n\} = (fincomp \ (\%i. \ f \ (Suc \ i)) \ \{..n\} \ \cdot
f \theta
proof (induct n)
 case 0 thus ?case by (simp add: Pi-def)
\mathbf{next}
 case Suc thus ?case
   by (simp add: associative Pi-def)
qed
lemma fincomp-Suc3:
 assumes f \in \{..n :: nat\} \to M
 shows fincomp f \{..., n\} = (f n) \cdot fincomp f \{... < n\}
proof (cases n = 0)
 case True thus ?thesis
   using assms at Most-Suc by simp
\mathbf{next}
 case False
 then obtain k where n = Suc k
   using not0-implies-Suc by blast
 thus ?thesis
   using fincomp-Suc[of f k] assms atMost-Suc lessThan-Suc-atMost by simp
\mathbf{qed}
```

lemma fincomp-reindex: $f \in (h \land A) \rightarrow M \Longrightarrow$ inj-on $h \land A \Longrightarrow$ fincomp $f (h \land A) = fincomp (\lambda x. f (h x)) \land A$ **proof** (induct A rule: infinite-finite-induct) **case** (infinite A) **hence** \neg finite (h ` A) **using** finite-imageD **by** blast **with** (\neg finite A) **show** ?case **by** simp **qed** (auto simp add: Pi-def)

lemma fincomp-const: **assumes** a [simp]: $a \in M$ **shows** fincomp (λx . a) A = rec-nat **1** (λu . (\cdot) a) (card A) **by** (induct A rule: infinite-finite-induct) auto

 ${\bf lemma}\ fin comp-singleton:$

assumes *i*-in-A: $i \in A$ and fin-A: finite A and f-Pi: $f \in A \to M$ shows fincomp (λj . if i = j then f j else **1**) A = f iusing *i*-in-A fincomp-insert [of $A - \{i\}$ i (λj . if i = j then f j else **1**)] fin-A f-Pi fincomp-unit [of $A - \{i\}$] fincomp-cong [of $A - \{i\} A - \{i\} (\lambda j. if i = j then f j else 1) (\lambda i. 1)$] **unfolding** Pi-def simp-implies-def **by** (force simp add: insert-absorb)

lemma *fincomp-singleton-swap*:

assumes *i*-in-A: $i \in A$ and fin-A: finite A and f-Pi: $f \in A \to M$ shows fincomp (λj . if j = i then f j else 1) A = f iusing fincomp-singleton [OF assms] by (simp add: eq-commute)

lemma *fincomp-mono-neutral-cong-left*: assumes finite B and $A \subseteq B$ and 1: $\bigwedge i$. $i \in B - A \Longrightarrow h \ i = 1$ and gh: $\bigwedge x. x \in A \implies g x = h x$ and $h: h \in B \to M$ **shows** fincomp q A = fincomp h Bproofhave eq: $A \cup (B - A) = B$ using $\langle A \subseteq B \rangle$ by blast have $d: A \cap (B - A) = \{\}$ using $\langle A \subseteq B \rangle$ by blast **from** (finite B) $(A \subseteq B)$ have f: finite A finite (B - A)**by** (*auto intro: finite-subset*) have $h \in A \to M$ $h \in B - A \to M$ using assms by (auto simp: image-subset-iff-funcset) **moreover have** fincomp $g A = fincomp h A \cdot fincomp h (B - A)$ proof have fincomp h(B - A) = 1using 1 fincomp-unit-eqI by blast **moreover have** fincomp q A = fincomp h Ausing $\langle h \in A \to M \rangle$ fincomp-cong' gh by blast ultimately show ?thesis by (simp add: $\langle h \in A \to M \rangle$) qed ultimately show ?thesis **by** (simp add: fincomp-Un-disjoint [OF f d, unfolded eq]) qed

lemma fincomp-mono-neutral-cong-right: **assumes** finite B and $A \subseteq B \land i. i \in B - A \Longrightarrow g \ i = 1 \land x. \ x \in A \Longrightarrow g \ x = h \ x \ g \in B \to M$ **shows** fincomp $g \ B = fincomp \ h \ A$ **using** assms **by** (auto intro!: fincomp-mono-neutral-cong-left [symmetric]) **lemma** fincomp-mono-neutral-cong: **assumes** [simp]: finite B finite A and $*: \land i. \ i \in B - A \Longrightarrow h \ i = 1 \land i. \ i \in A - B \Longrightarrow g \ i = 1$ and $gh: \land x. \ x \in A \cap B \Longrightarrow g \ x = h \ x$ and $g: \ g \in A \to M$

and $h: h \in B \to M$ shows fincomp g A = fincomp h B proof have fincomp g A = fincomp g (A \cap B)
 by (rule fincomp-mono-neutral-cong-right) (use assms in auto)
 also have ... = fincomp h (A \cap B)
 by (rule fincomp-cong) (use assms in auto)
 also have ... = fincomp h B
 by (rule fincomp-mono-neutral-cong-left) (use assms in auto)
 finally show ?thesis .
 qed

```
lemma fincomp-UN-disjoint:
  assumes
   finite I \wedge i. i \in I \implies finite (A \ i) pairwise (\lambda i \ j. disjnt (A \ i) \ (A \ j)) I
   \bigwedge i x. i \in I \Longrightarrow x \in A i \Longrightarrow g x \in M
  shows fincomp g(\bigcup (A \ I)) = fincomp \ (\lambda i. fincomp \ g \ (A \ I)) I
  using assms
proof (induction set: finite)
  case empty
  then show ?case
   by force
\mathbf{next}
  case (insert i I)
  then show ?case
   unfolding pairwise-def disjnt-def
   apply clarsimp
   apply (subst fincomp-Un-disjoint)
        apply (fastforce intro!: funcsetI fincomp-closed)+
   done
\mathbf{qed}
```

```
lemma fincomp-Union-disjoint:

[[finite C; \land A. A \in C \implies finite A \land (\forall x \in A. f x \in M); pairwise disjnt C]] \implies

fincomp f (\bigcup C) = fincomp (fincomp f) C

by (frule fincomp-UN-disjoint [of C id f]) auto
```

 \mathbf{end}

1.2 Results for Abelian Groups

context abelian-group begin

lemma fincomp-inverse: $f \in A \to G \implies fincomp (\lambda x. inverse (f x)) A = inverse (fincomp f A)$ **proof** (induct A rule: infinite-finite-induct) **case** empty **show** ?case **by** simp **next case** (insert a A) **then have** $f a \in G f \in A \to G (\lambda x. inverse (f x)) \in A \to G$ by blast+
with insert show ?case
by (simp add: commutative inverse-composition-commute)
qed simp

Jeremy Avigad. This should be generalized to arbitrary groups, not just Abelian ones, using Lagrange's theorem.

```
lemma power-order-eq-one:
 assumes fin [simp]: finite G
   and a [simp]: a \in G
  shows rec-nat 1 (\lambda u. (\cdot) a) (card G) = 1
proof -
  have rec-G: rec-nat 1 (\lambda u. (\cdot) a) (card G) \in G
   by (metis Pi-I' a fincomp-closed fincomp-const)
 have \bigwedge x. x \in G \implies x \in (\cdot) a ' G
   by (metis a composition-closed imageI invertible invertible-inverse-closed invert-
ible-right-inverse2)
  with a have (\cdot) a ' G = G by blast
  then have \mathbf{1} \cdot fincomp \ (\lambda x. \ x) \ G = fincomp \ (\lambda x. \ x) \ ((\cdot) \ a \ \cdot \ G)
   by simp
 also have \ldots = fincomp \ (\lambda x. \ a \cdot x) \ G
   using fincomp-reindex
   by (subst (2) fincomp-reindex [symmetric]) (auto simp: inj-on-def)
  also have \ldots = fincomp (\lambda x. a) G \cdot fincomp (\lambda x. x) G
   by (simp add: fincomp-comp)
 also have fincomp (\lambda x. a) G = rec-nat 1 (\lambda u. (\cdot) a) (card G)
   by (simp add: fincomp-const)
  finally show ?thesis
   by (metis commutative fincomp-closed funcset-id invertible invertible-left-cancel
rec-G unit-closed)
qed
```

end

end

2 Khovanskii's Theorem

We formalise the proof of an important theorem in additive combinatorics due to Khovanskii, attesting that the cardinality of the set of all sums of n many elements of A, where A is a finite subset of an abelian group, is a polynomial in n for all sufficiently large n. We follow a proof due to Nathanson and Ruzsa as presented in the notes "Introduction to Additive Combinatorics" by Timothy Gowers for the University of Cambridge.

```
theory Khovanskii
imports
FiniteProduct
```

 Pluennecke-Ruzsa-Inequality.Pluennecke-Ruzsa-Inequality

 Bernoulli.Bernoulli
 — sums of a fixed power are polynomials

 HOL-Analysis.Weierstrass-Theorems
 — needed for polynomial function

 HOL-Library.List-Lenlexorder
 — lexicographic ordering for the type nat

 list
 begin

The sum of the elements of a list

abbreviation $\sigma \equiv sum$ -list

Related to the nsets of Ramsey.thy, but simpler

definition finsets :: ['a set, nat] \Rightarrow 'a set set where finsets $A \ n \equiv \{N. \ N \subseteq A \land card \ N = n\}$

lemma card-finsets: finite $N \implies card$ (finsets N k) = card N choose k**by** (simp add: finsets-def n-subsets)

lemma sorted-map-plus-iff [simp]: fixes a::'a::linordered-cancel-ab-semigroup-add shows sorted (map $((+) \ a) \ xs) \leftrightarrow$ sorted xs by (induction xs) auto

lemma distinct-map-plus-iff [simp]: **fixes** a::'a::linordered-cancel-ab-semigroup-add **shows** distinct (map ((+) a) xs) \longleftrightarrow distinct xs **by** (induction xs) auto

2.1 Arithmetic operations on lists, pointwise on the elements

Weak type class properties. Cancellation is difficult to arrange because of complications when lists differ in length.

```
instantiation list :: (plus) plus
begin
definition plus-list \equiv map2 (+)
instance..
end
lemma length-plus-list [simp]:
fixes xs :: 'a::plus list
shows length (xs+ys) = min (length xs) (length ys)
by (simp add: plus-list-def)
lemma plus-Nil [simp]: [] + xs = []
by (simp add: plus-list-def)
lemma plus-Cons: (y \# ys) + (x \# xs) = (y+x) \# (ys+xs)
by (simp add: plus-list-def)
```

lemma *nth-plus-list* [*simp*]:

fixes xs :: 'a::plus list **assumes** i < length xs i < length ysshows (xs+ys)!i = xs!i + ys!iby (simp add: plus-list-def assms) instantiation *list* :: (*minus*) *minus* begin definition minus-list $\equiv map2$ (-) instance.. \mathbf{end} **lemma** *length-minus-list* [*simp*]: fixes xs :: 'a::minus list **shows** length (xs-ys) = min (length xs) (length ys) **by** (*simp add: minus-list-def*) lemma minus-Nil [simp]: [] -xs = []**by** (*simp add: minus-list-def*) lemma minus-Cons: (y # ys) - (x # xs) = (y-x) # (ys-xs)**by** (*simp add: minus-list-def*) **lemma** *nth-minus-list* [*simp*]: fixes xs :: 'a::minus list **assumes** i < length xs i < length ysshows (xs-ys)!i = xs!i - ys!iby (simp add: minus-list-def assms) **instance** *list* :: (*ab-semigroup-add*) *ab-semigroup-add* proof have map2 (+) (map2 (+) xs ys) zs = map2 (+) xs (map2 (+) ys zs) for xs yszs :: 'a list **proof** (*induction xs arbitrary: ys zs*) case (Cons x xs) show ?case **proof** (cases $ys=[] \lor zs=[])$ case False then obtain y ys' z zs' where ys = y # ys' zs = z # zs'**by** (*meson list.exhaust*) then show ?thesis **by** (*simp add: Cons add.assoc*) qed auto qed auto then show a + b + c = a + (b + c) for $a \ b \ c :: 'a \ list$ **by** (*auto simp: plus-list-def*) \mathbf{next} have map2 (+) xs ys = map2 (+) ys xs for xs ys :: 'a list**proof** (*induction xs arbitrary: ys*)

```
case (Cons x xs)
show ?case
proof (cases ys)
case (Cons y ys')
then show ?thesis
by (simp add: Cons.IH add.commute)
qed auto
qed auto
then show a + b = b + a for a b :: 'a list
by (auto simp: plus-list-def)
qed
```

2.2 The pointwise ordering on two equal-length lists of natural numbers

Gowers uses the usual symbol (\leq) for his pointwise ordering. In our development, \leq is the lexicographic ordering and \trianglelefteq is the pointwise ordering.

definition pointwise-le :: [nat list, nat list] \Rightarrow bool (infixr $\langle \trianglelefteq \rangle$ 50) where $x \trianglelefteq y \equiv list-all 2 (\leq) x y$

- **definition** pointwise-less :: [nat list, nat list] \Rightarrow bool (infixr $\langle \triangleleft \rangle$ 50) where $x \triangleleft y \equiv x \trianglelefteq y \land x \neq y$
- **lemma** pointwise-le-iff-nth:

 $x \leq y \leftrightarrow length \ x = length \ y \land (\forall i < length \ x. \ x!i \leq y!i)$ by (simp add: list-all2-conv-all-nth pointwise-le-def)

lemma pointwise-le-iff:

 $x \leq y \longleftrightarrow$ length x = length $y \land (\forall (i,j) \in$ set $(zip \ x \ y). i \leq j)$ by $(simp \ add: \ list-all 2-iff \ pointwise-le-def)$

- **lemma** pointwise-append-le-iff [simp]: $u@x \leq u@y \leftrightarrow x \leq y$ by (auto simp: pointwise-le-iff-nth nth-append)
- **lemma** pointwise-le-refl [iff]: $x \leq x$ by (simp add: list.rel-refl pointwise-le-def)
- **lemma** pointwise-le-antisym: $[x \leq y; y \leq x] \implies x=y$ by (metis antisym list-all2-antisym pointwise-le-def)
- **lemma** pointwise-le-trans: $[x \leq y; y \leq z] \implies x \leq z$ **by** (*smt* (*verit*, *del-insts*) *le-trans list-all2-trans pointwise-le-def*)
- **lemma** pointwise-le-Nil [simp]: Nil $\leq x \leftrightarrow x = Nil$ by (simp add: pointwise-le-def)
- **lemma** pointwise-le-Nil2 [simp]: $x \leq Nil \leftrightarrow x = Nil$ **by** (simp add: pointwise-le-def)

lemma pointwise-le-iff-less-equal: $x \leq y \leftrightarrow x < y \lor x = y$ using pointwise-less-def by blast lemma pointwise-less-iff: $x \triangleleft y \longleftrightarrow x \trianglelefteq y \land (\exists (i,j) \in set (zip \ x \ y). \ i < j)$ using list-eq-iff-zip-eq pointwise-le-iff pointwise-less-def by fastforce **lemma** pointwise-less-iff2: $x \triangleleft y \leftrightarrow x \trianglelefteq y \land (\exists k < length x. x!k < y ! k)$ unfolding pointwise-less-def pointwise-le-iff-nth **by** (fastforce intro!: nth-equalityI) **lemma** pointwise-less-Nil [simp]: \neg Nil $\triangleleft x$ **by** (*simp add: pointwise-less-def*) **lemma** pointwise-less-Nil2 [simp]: $\neg x \triangleleft Nil$ **by** (*simp add: pointwise-less-def*) **lemma** zero-pointwise-le-iff [simp]: replicate $r \ 0 \leq x \leftrightarrow$ length x = r**by** (*auto simp: pointwise-le-iff-nth*) **lemma** pointwise-le-imp- σ : assumes $xs \leq ys$ shows $\sigma xs \leq \sigma ys$ using assms **proof** (*induction ys arbitrary: xs*) case Nil then show ?case by (simp add: pointwise-le-iff) next **case** (Cons y ys) then obtain x xs' where $x \le y xs = x \# xs' xs' \le ys$ **by** (*auto simp: pointwise-le-def list-all2-Cons2*) then show ?case **by** (*simp add: Cons.IH add-le-mono*) qed lemma *sum-list-plus*: fixes xs :: 'a::comm-monoid-add list assumes length $xs = length \ ys$ shows $\sigma \ (xs + ys) = \sigma \ xs + \sigma \ ys$ using assms by (simp add: plus-list-def case-prod-unfold sum-list-addf) **lemma** *sum-list-minus*: assumes $xs \leq ys$ shows $\sigma (ys - xs) = \sigma ys - \sigma xs$ using assms **proof** (*induction ys arbitrary: xs*) **case** (Cons y ys) then obtain x xs' where $x \le y xs = x \# xs' xs' \le ys$ **by** (*auto simp: pointwise-le-def list-all2-Cons2*) then show ?case using pointwise-le-imp- σ by (auto simp: Cons minus-Cons)

qed (*auto simp: in-set-conv-nth*)

2.3 Pointwise minimum and maximum of a set of lists

definition min-pointwise :: [nat, nat list set] \Rightarrow nat list where min-pointwise $\equiv \lambda r \ U$. map (λi . Min ((λu . u!i) 'U)) [0..<r]

lemma min-pointwise-le: $\llbracket u \in U$; finite $U \rrbracket \implies$ min-pointwise (length u) $U \trianglelefteq u$ by (simp add: min-pointwise-def pointwise-le-iff-nth)

lemma min-pointwise-ge-iff: **assumes** finite $U \ U \neq \{\} \ \land u. \ u \in U \implies \text{length } u = r \text{ length } x = r$ **shows** $x \leq \text{min-pointwise } r \ U \longleftrightarrow (\forall u \in U. \ x \leq u)$ **by** (auto simp: min-pointwise-def pointwise-le-iff-nth assms)

- **definition** max-pointwise :: [nat, nat list set] \Rightarrow nat list where max-pointwise $\equiv \lambda r \ U.$ map ($\lambda i.$ Max (($\lambda u. \ u!i$) 'U)) [0..<r]
- **lemma** max-pointwise-ge: $[u \in U; finite U] \implies u \trianglelefteq max-pointwise (length u) U$ by (simp add: max-pointwise-def pointwise-le-iff-nth)

lemma *max-pointwise-le-iff*:

assumes finite $U \ U \neq \{\} \land u. u \in U \Longrightarrow length \ u = r \ length \ x = r$ shows max-pointwise $r \ U \trianglelefteq x \longleftrightarrow (\forall u \in U. u \trianglelefteq x)$ by (auto simp: max-pointwise-def pointwise-le-iff-nth assms)

lemma max-pointwise-mono: **assumes** $X' \subseteq X$ finite $X X' \neq \{\}$ **shows** max-pointwise $r X' \trianglelefteq$ max-pointwise r X **using** assms **by** (simp add: max-pointwise-def pointwise-le-iff-nth Max-mono image-mono)

lemma pointwise-le-plus: $[xs \leq ys; length ys \leq length zs] \implies xs \leq ys+zs$ **proof** (induction xs arbitrary: ys zs) **case** (Cons x xs) **then obtain** y ys' z zs' **where** ys = y#ys' zs = z#zs' **unfolding** pointwise-le-iff **by** (metis Suc-le-length-iff le-refl length-Cons) **with** Cons **show** ?case **by** (auto simp: plus-list-def pointwise-le-def) **qed** (simp add: pointwise-le-iff)

lemma pairwise-minus-cancel: $[z \leq x; z \leq y; x - z = y - z] \implies x = y$ unfolding pointwise-le-iff-nth by (metis eq-diff-iff nth-equalityI nth-minus-list)

2.4 A locale to fix the finite subset $A \subseteq G$

locale Khovanskii = additive-abelian-group + fixes $A :: 'a \ set$ assumes $AsubG: A \subseteq G$ and finA: finite A

begin

finite products of a group element **definition** Gmult :: $'a \Rightarrow nat \Rightarrow 'a$ where Gmult $a \ n \equiv (((\oplus)a) \frown n) \mathbf{0}$ lemma Gmult-0 [simp]: Gmult a 0 = 0**by** (*simp add: Gmult-def*) **lemma** Gmult-1 [simp]: $a \in G \Longrightarrow$ Gmult a (Suc 0) = a**by** (*simp add: Gmult-def*) **lemma** Gmult-Suc [simp]: Gmult a (Suc n) = $a \oplus$ Gmult a n**by** (simp add: Gmult-def) **lemma** Gmult-in-G [simp,intro]: $a \in G \Longrightarrow$ Gmult $a \ n \in G$ by (induction n) auto lemma Gmult-add-add: assumes $a \in G$ **shows** Gmult $a (m+n) = Gmult \ a \ m \oplus Gmult \ a \ n$ **by** (*induction* m) (*use assms local.associative* **in** *fastforce*)+ lemma Gmult-add-diff: assumes $a \in G$ **shows** Gmult $a (n+k) \ominus$ Gmult a n = Gmult a kby (metis Gmult-add-add Gmult-in-G assms commutative inverse-closed invertible *invertible-left-inverse2*) lemma Gmult-diff: assumes $a \in G n \leq m$ shows Gmult a $m \ominus$ Gmult a n = Gmult a (m-n)**by** (*metis Gmult-add-diff assms le-add-diff-inverse*) Mapping elements of A to their numeric subscript **abbreviation** $idx \equiv to$ -nat-on A The elements of A in order definition $aA :: 'a \ list$ where $aA \equiv map$ (from-nat-into A) [0..<card A] **definition** $\alpha :: nat \ list \Rightarrow 'a$ where $\alpha \equiv \lambda x$. fincomp (λi . Gmult (aA!i) (x!i)) {..< card A} The underlying assumption is length y = length x**definition** useless:: nat list \Rightarrow bool where useless $x \equiv \exists y < x$. $\sigma y = \sigma x \land \alpha y = \alpha x \land$ length y = length x**abbreviation** useful $x \equiv \neg$ useless x 15

lemma alpha-replicate-0 [simp]: α (replicate (card A) θ) = 0 by (auto simp: α -def intro: fincomp-unit-eqI) **lemma** *idx-less-cardA*: assumes $a \in A$ shows $idx \ a < card \ A$ by (metis assms bij-betw-def finA imageI lessThan-iff to-nat-on-finite) **lemma** aA-idx-eq [simp]: assumes $a \in A$ shows aA ! (idx a) = aby (simp add: aA-def assms countable-finite finA idx-less-cardA) **lemma** set-aA: set aA = Ausing *bij-betw-from-nat-into-finite* [OF finA] **by** (*simp add: aA-def atLeast0LessThan bij-betw-def*) **lemma** *nth-aA-in-G* [*simp*]: $i < card A \implies aA!i \in G$ using AsubG aA-def set-aA by auto **lemma** alpha-in-G [iff]: $\alpha \ x \in G$ using *n*th-aA-in-G fincomp-closed by (simp add: α -def) **lemma** Gmult-in-PiG [simp]: $(\lambda i. Gmult (aA!i) (f i)) \in \{..< card A\} \rightarrow G$ by simp lemma alpha-plus: **assumes** length x = card A length y = card Ashows $\alpha (x + y) = \alpha x \oplus \alpha y$ proof – have α (x + y) = fincomp (λi . Gmult (aA!i) (map2 (+) x y!i)) {...< card A} by (simp add: α -def plus-list-def) also have $\ldots = fincomp \ (\lambda i. \ Gmult \ (aA!i) \ (x!i + y!i)) \ \{\ldots < card \ A\}$ **by** (*intro fincomp-cong*'; *simp add: assms*) also have ... = fincomp (λi . Gmult (aA!i) (x!i) \oplus Gmult (aA!i) (y!i)) {..< card A**by** (*intro fincomp-cong*'; *simp add: Gmult-add-add*) also have $\ldots = \alpha \ x \oplus \alpha \ y$ by (simp add: α -def fincomp-comp) finally show ?thesis . qed lemma alpha-minus: assumes $y \leq x$ length y = card Ashows $\alpha (x - y) = \alpha x \ominus \alpha y$ proof have α $(x - y) = fincomp (\lambda i. Gmult (aA!i) (map2 (-) x y!i)) {... < card A}$ by (simp add: α -def minus-list-def) also have $\ldots = fincomp \ (\lambda i. \ Gmult \ (aA!i) \ (x!i - y!i)) \ \{\ldots < card \ A\}$ using assms by (intro fincomp-cong') (auto simp: pointwise-le-iff)

also have ... = fincomp (λi . Gmult (aA!i) (x!i) \ominus Gmult (aA!i) (y!i)) {..<card A} using assms by (intro fincomp-cong') (simp add: pointwise-le-iff-nth Gmult-diff)+ also have ... = $\alpha \ x \ominus \alpha \ y$ by (simp add: α -def fincomp-comp fincomp-inverse) finally show ?thesis . ged

2.5 Adding one to a list element

definition *list-incr* :: *nat* \Rightarrow *nat list* \Rightarrow *nat list* **where** *list-incr i* $x \equiv x[i := Suc (x!i)]$

lemma *list-incr-Nil* [*simp*]: *list-incr i* [] = [] **by** (*simp* add: *list-incr-def*)

lemma *list-incr-Cons* [*simp*]: *list-incr* (*Suc i*) (k#ks) = k # list-incr *i* ks by (*simp* add: *list-incr-def*)

lemma sum-list-incr [simp]: $i < length x \implies \sigma$ (list-incr i x) = Suc (σx) by (auto simp: list-incr-def sum-list-update)

lemma length-list-incr [simp]: length (list-incr i x) = length xby (auto simp: list-incr-def)

lemma *nth-le-list-incr*: $i < card A \implies x!i \leq list-incr (idx a) x!i$ unfolding *list-incr-def*

by (*metis Suc-leD linorder-not-less list-update-beyond nth-list-update-eq nth-list-update-neq order-refl*)

lemma list-incr-nth-diff: $i < \text{length } x \implies \text{list-incr } j \ x!i - x!i = (if \ i = j \ then \ 1 \ else \ 0)$ **by** (simp add: list-incr-def)

2.6 The set of all *r*-tuples that sum to *n*

definition *length-sum-set* :: *nat* \Rightarrow *nat* \Rightarrow *nat list set* **where** *length-sum-set* r $n \equiv \{x. \ length \ x = r \land \sigma \ x = n\}$

lemma length-sum-set-Nil [simp]: length-sum-set 0 $n = (if n=0 then \{[]\} else \{\})$ by (auto simp: length-sum-set-def)

lemma length-sum-set-Suc [simp]: $k\#ks \in length$ -sum-set (Suc r) $n \leftrightarrow (\exists m. ks \in length$ -sum-set $r m \land n = m+k)$ **by** (auto simp: length-sum-set-def)

lemma length-sum-set-Suc-eqpoll: length-sum-set (Suc r) $n \approx Sigma \{...n\}$ (λi . length-sum-set r (n-i)) (is $?L \approx ?R$) unfolding eqpoll-def

```
proof
```

```
let ?f = (\lambda l. (hd l, tl l))
 show bij-betw ?f ?L ?R
 proof (intro bij-betw-imageI)
   show inj-on ?f ?L
     by (force simp: inj-on-def length-sum-set-def intro: list.expand)
   show ?f \cdot ?L = ?R
     by (force simp: length-sum-set-def length-Suc-conv)
 qed
qed
lemma finite-length-sum-set: finite (length-sum-set r n)
proof (induction r arbitrary: n)
 case \theta
 then show ?case
   by (auto simp: length-sum-set-def)
next
 case (Suc r)
 then show ?case
   using length-sum-set-Suc-eqpoll eqpoll-finite-iff by blast
qed
```

```
\begin{array}{l} \textbf{lemma } card-length-sum-set: card (length-sum-set (Suc r) n) = (\sum i \leq n. \ card (length-sum-set r (n-i))) \\ \textbf{proof } - \\ \textbf{have } card (length-sum-set (Suc r) n) = card (Sigma \{..n\} (\lambda i. \ length-sum-set r (n-i))) \\ \textbf{by } (metis \ eqpoll-finite-iff \ eqpoll-iff-card \ finite-length-sum-set \ length-sum-set-Suc-eqpoll) \\ \textbf{also have } \ldots = (\sum i \leq n. \ card \ (length-sum-set r (n-i))) \\ \textbf{by } (simp \ add: \ finite-length-sum-set) \\ \textbf{finally show } \ ?thesis \ . \\ \textbf{qed} \end{array}
```

lemma sum-up-index-split': **assumes** $N \le n$ shows $(\sum i \le n. f i) = (\sum i \le n-N. f i) + (\sum i = Suc (n-N)..n. f i)$ **by** (metis assms diff-add sum-up-index-split) **lemma** sum-invert: $N \le n \Longrightarrow (\sum i = Suc (n - N)..n. f (n - i)) = (\sum j < N. f j)$ **proof** (induction N) **case** (Suc N) **then show** ?case **apply** (auto simp: Suc-diff-Suc) **by** (metis sum.atLeast-Suc-atMost Suc-leD add.commute diff-diff-cancel diff-le-self) **qed** auto

lemma real-polynomial-function-length-sum-set: $\exists p. real-polynomial-function p \land (\forall n > 0. real (card (length-sum-set r n)) = p$ (real n)**proof** (*induction* r) case θ have $\forall n > 0$. real (card (length-sum-set 0 n)) = 0 **by** *auto* then show ?case by blast \mathbf{next} case (Suc r) then obtain p where poly: real-polynomial-function p and $p: \Lambda n. n > 0 \implies real (card (length-sum-set r n)) = p (real n)$ **by** blast then obtain a n where p-eq: $p = (\lambda x. \sum i \le n. a \ i * x \ \hat{} i)$ using real-polynomial-function-iff-sum by auto define q where $q \equiv \lambda x$. $\sum j \leq n$. a j * ((bernpoly (Suc j) (1 + x) - bernpoly)) $(Suc \ j) \ \theta$ $/(1 + real j) - 0 \hat{j})$ have rp-q: real-polynomial-function q **by** (*fastforce simp*: *bernpoly-def p-eq q-def*) have q-eq: $(\sum x \le k-1, p(k-x)) = q k$ if k > 0 for k::nat proof have $(\sum x \leq k-1, p(k-x)) = (\sum j \leq n, a j * ((\sum x \leq k, real x \hat{j}) - \theta \hat{j}))$ using that by (simp add: p-eq sum.swap flip: sum-distrib-left of-nat-diff sum-diff-split[where $f = \lambda i$. real $i \uparrow -$]) also have $\ldots = q k$ **by** (*simp add: sum-of-powers add.commute q-def*) finally show ?thesis . qed define p' where $p' \equiv \lambda x$. q x + real (card (length-sum-set r 0))have real-polynomial-function p'using rp-q by (force simp: p'-def) moreover have $(\sum x \le n - Suc \ 0. \ p \ (real \ (n - x))) +$ real (card (length-sum-set $r \ 0$)) = p' (real n) if n > 0 for nusing that q-eq by (auto simp: p'-def) ultimately show ?case unfolding card-length-sum-set by (force simp: sum-up-index-split' [of 1] p sum-invert) qed **lemma** all-zeroes-replicate: length-sum-set $r \ 0 = \{replicate \ r \ 0\}$ **by** (*auto simp: length-sum-set-def replicate-eqI*)

lemma length-sum-set-Suc-eq-UN: length-sum-set r (Suc n) = ($\bigcup i < r$. list-incr i'length-sum-set r n) **proof** – **have** $\exists i < r. \ x \in list-incr \ i$ 'length-sum-set r n **if** $\sigma \ x = Suc \ n$ **and** $r = length \ x$ **for** x**proof** –

```
have x \neq replicate r \ \theta
     using that by (metis sum-list-replicate Zero-not-Suc mult-zero-right)
   then obtain i where i: i < r x! i \neq 0
     by (metis \langle r = length x \rangle in-set-conv-nth replicate-eqI)
   with that have x[i := x!i - 1] \in length-sum-set r n
     by (simp add: sum-list-update length-sum-set-def)
   with i that show ?thesis
     unfolding list-incr-def by force
 qed
 then show ?thesis
   by (auto simp: length-sum-set-def Bex-def)
qed
lemma alpha-list-incr:
 assumes a \in A x \in length-sum-set (card A) n
 shows \alpha (list-incr (idx a) x) = a \oplus \alpha x
proof -
 have lenx: length x = card A
   using assms length-sum-set-def by blast
  have \alpha (list-incr (idx a) x) \ominus \alpha x = fincomp (\lambda i. Gmult (aA!i) (list-incr (idx
a) x!i) \ominus Gmult (aA!i) (x!i)) {..< card A}
   by (simp add: \alpha-def fincomp-comp fincomp-inverse)
 also have \ldots = fincomp \ (\lambda i. \ Gmult \ (aA!i) \ (list-incr \ (idx \ a) \ x!i - x!i)) \ \{\ldots < card
A
   by (intro fincomp-cong; simp add: Gmult-diff nth-le-list-incr)
 also have \ldots = fincomp \ (\lambda i. if \ i = idx \ a \ then \ (aA!i) \ else \ \mathbf{0}) \ \{\ldots < card \ A\}
   by (intro fincomp-cong'; simp add: list-incr-nth-diff lenx)
 also have \ldots = a
   using assms by (simp add: fincomp-singleton-swap idx-less-cardA)
 finally have \alpha (list-incr (idx a) x) \ominus \alpha x = a.
 then show ?thesis
   by (metis alpha-in-G associative inverse-closed invertible invertible-left-inverse
right-unit)
qed
lemma sumset-iterated-enum:
 defines r \equiv card A
 shows sumset-iterated A \ n = \alpha ' length-sum-set r \ n
proof (induction n)
 case \theta
  then show ?case
   by (simp add: all-zeroes-replicate r-def)
\mathbf{next}
 case (Suc n)
 have eq: \{.. < r\} = idx \, `A
   by (metis bij-betw-def finA r-def to-nat-on-finite)
 have sumset-iterated A (Suc n) = (\bigcup a \in A. (\lambda i. a \oplus \alpha i) 'length-sum-set r n)
   using AsubG by (auto simp: Suc sumset)
 also have \ldots = (\bigcup a \in A. (\lambda i. \alpha (list-incr (idx a) i))) 'length-sum-set r n)
```

```
by (simp add: alpha-list-incr r-def)
also have ... = α ' length-sum-set r (Suc n)
by (simp add: image-UN image-comp length-sum-set-Suc-eq-UN eq)
finally show ?case .
ged
```

2.7 Lemma 2.7 in Gowers's notes

The following lemma corresponds to a key fact about the cardinality of the set of all sums of n many elements of A, stated before Gowers's Lemma 2.7.

```
lemma card-sumset-iterated-length-sum-set-useful:
  defines r \equiv card A
 shows card(sumset-iterated A n) = card (length-sum-set r n \cap {x. useful x})
   (is card ?L = card ?R)
proof -
 have \alpha \ x \in \alpha '(length-sum-set r \ n \cap \{x. \ useful \ x\})
   if x \in length-sum-set r n for x
 proof –
   define y where y \equiv LEAST y. y \in length-sum-set r \ n \land \alpha \ y = \alpha \ x
   have y: y \in length-sum-set (card A) n \wedge \alpha y = \alpha x
     by (metis (mono-tags, lifting) LeastI r-def y-def that)
   moreover
   have useful y
   proof (clarsimp simp: useless-def)
     show False
       if \sigma z = \sigma y length z = length y and z < y \alpha z = \alpha y for z
     using that Least-le length-sum-set-def not-less-Least r-def y y-def by fastforce
   qed
   ultimately show ?thesis
     unfolding image-iff length-sum-set-def r-def by (smt (verit) Int-Collect)
  qed
  then have sumset-iterated A = \alpha (length-sum-set r \in \{x. useful x\})
   by (auto simp: sumset-iterated-enum length-sum-set-def r-def)
 moreover have inj-on \alpha (length-sum-set r \ n \cap \{x. useful \ x\})
  apply (simp add: image-iff length-sum-set-def r-def inj-on-def useless-def Ball-def)
   by (metis linorder-less-linear)
  ultimately show ?thesis
   by (simp add: card-image length-sum-set-def)
qed
```

The following lemma corresponds to Lemma 2.7 in Gowers's notes.

```
lemma useless-leq-useless:

defines r \equiv card A

assumes useless x and x \leq y and length x = r

shows useless y

proof -

have length y = r

using pointwise-le-iff assms by auto
```

obtain x' where x' < x and $\sigma x'$: $\sigma x' = \sigma x$ and $\alpha x'$: $\alpha x' = \alpha x$ and lenx': length x' = length xusing assms useless-def by blast obtain i where i < card A and xi: x'!i < x!i and takex': take i x' = take i xusing $\langle x' \langle x \rangle$ lenx' assme by (auto simp: list-less-def lenlex-def elim!: lex-take-index) define y' where $y' \equiv y + x' - x$ have leny': length y' = length yusing assms lenx' pointwise-le-iff by (simp add: y'-def) have $x!i \leq y!i$ **using** $\langle x \leq y \rangle \langle i < card A \rangle$ assms by (simp add: pointwise-le-iff-nth) then have y'!i < y!iusing $\langle i < card A \rangle$ assms lenx' xi pointwise-le-iff by (simp add: y'-def plus-list-def *minus-list-def*) moreover have take i y' = take i y**proof** (*intro* nth-equalityI) **show** length (take i y') = length (take i y) by (simp add: leny') **show** $\bigwedge k$. k < length (take i y') \Longrightarrow take i y' ! k = take i y!kusing takex' by (simp add: y'-def plus-list-def minus-list-def take-map take-zip) qed ultimately have y' < yusing $leny' \langle i < card A \rangle$ assms pointwise-le-iff by (auto simp: list-less-def lenlex-def lexord-lex lexord-take-index-conv) moreover have $\sigma y' = \sigma y$ using assms by (simp add: $\sigma x'$ lenx' leny pointwise-le-plus sum-list-minus sum-list-plus y'-def) moreover have $\alpha y' = \alpha y$ using assms lenx' $\alpha x'$ leny by (fastforce simp: y'-def pointwise-le-plus alpha-minus alpha-plus local.associative) ultimately show *?thesis* using leny' useless-def by blast \mathbf{qed}

inductive-set minimal-elements for U where $[x \in U; \Lambda y. y \in U \implies \neg y \triangleleft x] \implies x \in minimal-elements U$

lemma pointwise-less-imp- σ : **assumes** $xs \triangleleft ys$ **shows** $\sigma xs < \sigma ys$ **proof** – **have** eq: length ys = length xs **and** $xs \trianglelefteq ys$ **using** assms **by** (auto simp: pointwise-le-iff pointwise-less-iff) **have** $\forall k < length xs. xs!k \le ys!k$ **using** $\langle xs \trianglelefteq ys \rangle$ list-all2-nthD pointwise-le-def **by** auto **moreover have** $\exists k < length xs. xs!k < ys!k$ **using** assms pointwise-less-iff2 **by** force **ultimately show** ?thesis **by** (force simp: eq sum-list-sum-nth intro: sum-strict-mono-ex1) **qed**

lemma wf-measure- σ : wf (inv-image less-than σ) by blast

lemma WFP: wfP (\triangleleft)

by (auto simp: wfp-def pointwise-less-imp- σ intro: wf-subset [OF wf-measure- σ])

The following is a direct corollary of the above lemma, i.e. a corollary of Lemma 2.7 in Gowers's notes.

```
corollary useless-iff:
 assumes length x = card A
  shows useless x \leftrightarrow (\exists x' \in minimal elements (Collect useless), x' \leq x) (is
-=?R)
proof
 assume useless x
 obtain z where z: useless z z \leq x and zmin: \bigwedge y. y \leq z \Longrightarrow y \leq x \Longrightarrow useful y
   using wfE-min [to-pred, where Q = \{z. \text{ useless } z \land z \leq x\}, OF WFP]
   by (metis (no-types, lifting) (useless x) mem-Collect-eq pointwise-le-refl)
  then show ?R
  by (smt (verit) mem-Collect-eq minimal-elements.intros pointwise-le-trans point-
wise-less-def)
\mathbf{next}
 assume ?R
 with useless-leq-useless minimal-elements.cases show useless x
   by (metis assms mem-Collect-eq pointwise-le-iff)
qed
```

2.8 The set of minimal elements of a set of *r*-tuples is finite

The following general finiteness claim corresponds to Lemma 2.8 in Gowers's notes and is key to the main proof.

```
lemma minimal-elements-set-tuples-finite:
 assumes Ur: \bigwedge x. x \in U \implies length x = r
 shows finite (minimal-elements U)
 using assms
proof (induction r arbitrary: U)
 case \theta
 then have U \subseteq \{[]\}
   by auto
 then show ?case
   by (metis finite.simps minimal-elements.cases finite-subset subset-eq)
next
 case (Suc r)
 show ?case
 proof (cases U = \{\})
   case True
   with Suc.IH show ?thesis by blast
```

\mathbf{next}

case False then obtain u where $u: u \in U$ and $zmin: \bigwedge y. y \triangleleft u \Longrightarrow y \notin U$ using wfE-min [to-pred, where Q = U, OF WFP] by blast define V where $V = \{v \in U. \neg u \leq v\}$ define *VF* where $VF \equiv \lambda i t$. { $v \in V$. v!i = t} have [simp]: length $v = Suc \ r \ if \ v \in VF \ i \ t \ for \ v \ i \ t$ using that by (simp add: Suc.prems VF-def V-def) have $*: \exists i \leq r. v! i < u! i$ if $v \in V$ for vusing that u Suc.prems by (force simp: V-def pointwise-le-iff-nth not-le less-Suc-eq-le) with u have minimal-elements $U \leq insert u$ () $i \leq r$. t < u!i. minimal-elements $(VF \ i \ t))$ by (force simp: VF-def V-def minimal-elements.simps pointwise-less-def) moreover have finite (minimal-elements (VF i t)) if $i \le r t \le u!i$ for i t proof **define** delete where $delete \equiv \lambda v:: nat list. take i v @ drop (Suc i) v - deletion$ of ihave len-delete[simp]: length (delete u) = r if $u \in VF$ i t for uusing Suc.prems VF-def V-def $(i \leq r)$ delete-def that by auto have nth-delete: delete $u!k = (if \ k < i \ then \ u!k \ else \ u!Suc \ k)$ if $u \in VF \ i \ t \ k < r$ for u kusing that by (simp add: delete-def nth-append) have delete-le-iff [simp]: delete $u \leq delete \ v \longleftrightarrow u \leq v$ if $u \in VF$ it $v \in VF$ i t for u vproof assume delete $u \trianglelefteq delete v$ then have $\forall j. (j < i \longrightarrow u! j \leq v! j) \land (j < r \longrightarrow i \leq j \longrightarrow u! Suc j \leq v! j)$ v!Suc j) using that $\langle i < r \rangle$ by (force simp: pointwise-le-iff-nth nth-delete split: if-split-asm cong: conj-cong) then show $u \leq v$ using that $\langle i \leq r \rangle$ **apply** (simp add: pointwise-le-iff-nth VF-def) by (metis eq-iff le-Suc-eq less-Suc-eq-0-disj linorder-not-less) \mathbf{next} assume $u \leq v$ then show delete $u \leq delete v$ using that by (simp add: pointwise-le-iff-nth nth-delete) ged **then have** delete-eq-iff: delete $u = delete \ v \longleftrightarrow u = v$ if $u \in VF$ i $t \ v \in VF$ i t for u vby (metis that pointwise-le-antisym pointwise-le-refl) have delete-less-iff: delete $u \triangleleft delete \ v \longleftrightarrow u \triangleleft v$ if $u \in VF$ i $t \ v \in VF$ i t for u vby (metis delete-le-iff pointwise-le-antisym pointwise-less-def that) have length (delete v) = r if $v \in V$ for vusing *id-take-nth-drop Suc.prems V-def* $(i \leq r)$ delete-def that by auto

```
then have finite (minimal-elements (delete 'V))

by (metis (mono-tags, lifting) Suc.IH image-iff)

moreover have inj-on delete (minimal-elements (VF i t))

by (simp add: delete-eq-iff inj-on-def minimal-elements.simps)

moreover have delete '(minimal-elements (VF i t)) \subseteq minimal-elements

(delete '(VF i t))

by (auto simp: delete-less-iff minimal-elements.simps)

ultimately show ?thesis

by (metis (mono-tags, lifting) Suc.IH image-iff inj-on-finite len-delete)

qed

ultimately show ?thesis

by (force elim: finite-subset)

qed

qed
```

2.9 Towards Lemma 2.9 in Gowers's notes

```
Increasing sequences
```

fun augmentum :: nat list \Rightarrow nat list **where** augmentum [] = [] | augmentum (n#ns) = n # map ((+)n) (augmentum ns)

- **definition** dementum:: nat list \Rightarrow nat list where dementum $xs \equiv xs - (0 \# xs)$
- **lemma** dementum-Nil [simp]: dementum [] = [] **by** (simp add: dementum-def)
- **lemma** zero-notin-augmentum [simp]: $0 \notin set \ ns \implies 0 \notin set$ (augmentum ns) by (induction ns) auto
- **lemma** length-augmentum [simp]:length (augmentum xs) = length xsby (induction xs) auto
- **lemma** sorted-augmentum [simp]: $0 \notin$ set $ns \implies$ sorted (augmentum ns) by (induction ns) auto
- **lemma** distinct-augmentum [simp]: $0 \notin$ set $ns \implies$ distinct (augmentum ns) by (induction ns) (simp-all add: image-iff)
- **lemma** augmentum-subset-sum-list: set (augmentum ns) \subseteq {.. σ ns} by (induction ns) auto
- **lemma** sum-list-augmentum: σ ns \in set (augmentum ns) \leftrightarrow length ns > 0 by (induction ns) auto
- **lemma** length-dementum [simp]: length (dementum xs) = length xsby (simp add: dementum-def)

```
lemma sorted-imp-pointwise:

assumes sorted (xs@[n])

shows 0 \ \# xs \le xs @ [n]

using assms

by (simp add: pointwise-le-iff-nth nth-Cons' nth-append sorted-append sorted-wrt-append

sorted-wrt-nth-less)
```

```
lemma sum-list-dementum:
 assumes sorted (xs@[n])
 shows \sigma (dementum (xs@[n])) = n
proof -
 have dementum (xs@[n]) = (xs@[n]) - (0 \# xs)
   by (rule nth-equalityI; simp add: nth-append dementum-def nth-Cons')
 then show ?thesis
   by (simp add: sum-list-minus sorted-imp-pointwise assms)
qed
lemma augmentum-cancel: map ((+)k) (augmentum ns) - (k \# map ((+)k))
(augmentum \ ns)) = ns
proof (induction ns arbitrary: k)
 case Nil
 then show ?case
   by simp
\mathbf{next}
 case (Cons n ns)
 have (+) k \circ (+) n = (+) (k+n) by auto
 then show ?case
   by (simp add: minus-Cons Cons)
\mathbf{qed}
lemma dementum-augmentum [simp]:
 assumes 0 \notin set ns
 shows (dementum \circ sorted-list-of-set) ((set \circ augmentum) ns) = ns (is ?L ns =
-)
 using assms augmentum-cancel [of 0]
 by (simp add: dementum-def map-idI sorted-list-of-set.idem-if-sorted-distinct)
lemma dementum-nonzero:
 assumes ns: sorted-wrt (<) ns and \theta: \theta \notin set ns
 shows 0 \notin set (dementum ns)
 unfolding dementum-def minus-list-def
 using sorted-wrt-nth-less [OF ns] 0
 by (auto simp: in-set-conv-nth image-iff set-zip nth-Cons' dest: leD)
lemma nth-augmentum [simp]: i < length ns \implies augmentum ns! i = (\sum j \le i. ns! j)
proof (induction ns arbitrary: i)
```

```
case Nil
then show ?case
```

by simp

 \mathbf{next} case (Cons a ns) show ?case **proof** (cases i=0) case False then have augmentum $(a \# ns)!i = a + sum ((!) ns) \{..i-1\}$ using Cons.IH Cons.prems by auto **also have** ... = $a + (\sum j \in \{0 < ... i\}$. ns!(j-1))using sum.reindex [of Suc {..i - Suc 0} λj . ns!(j-1), symmetric] False by (simp add: image-Suc-atMost atLeastSucAtMost-greaterThanAtMost del: b) (simp add: image-Suc-atMost atLeastSuc-AtMost-greaterThanAtMost del: b) (simp add: image-Suc-atMost atLeastSuc-AtMost-greaterThanAtMost atLeastSuc-AtMost-greaterThanAtMost atLeastSuc-AtMost-greaterThanAtMost atLeastSuc-AtMost-greaterThanAtMost atLeastSuc-AtMost-greaterThanAtMost-greaterThanAtMost-greaterThanAtMost-greaterThanAtMost-greaterThanAtMost-greaterThanAtMost-greaterThanAtMost-greaterThanAtMost-greaterThanAtMost-greaterThanAtMost-greaterThanAtMost-greaterThanAtMost-gsum.cl-ivl-Suc) also have $\ldots = (\sum j = 0 \dots i \text{ if } j = 0 \text{ then } a \text{ else } ns!(j-1))$ **by** (*simp add: sum.head*) **also have** ... = sum ((!) (a # ns)) {...i} **by** (*simp add: nth-Cons' atMost-atLeast0*) finally show ?thesis . qed auto qed **lemma** augmentum-dementum [simp]: **assumes** $0 \notin set ns sorted ns$ **shows** augmentum (dementum ns) = ns**proof** (rule nth-equalityI) fix *i* assume i < length (augmentum (dementum ns)) then have i: i < length nsby simp **show** augmentum (dementum ns)!i = ns!i**proof** (cases i=0) case True then show ?thesis using nth-augmentum dementum-def i by auto next case False have ns-le: $\bigwedge j$. $[0 < j; j \le i] \implies ns ! (j - Suc \ 0) \le ns ! j$ using *(sorted ns)* i by (simp add: sorted-iff-nth-mono) have augmentum (dementum ns)! $i = (\sum j \le i. ns!j - (if j = 0 then 0 else$ ns!(j-1))using i by (simp add: dementum-def nth-Cons') also have $\ldots = (\sum j = 0 \dots i \text{ if } j = 0 \text{ then } ns! 0 \text{ else } ns! j - ns! (j-1))$ by (smt (verit, del-insts) diff-zero sum.cong atMost-atLeast0) also have $\ldots = ns!\theta + (\sum j \in \{\theta < \ldots i\}, ns!j - ns!(j-1))$ **by** (*simp add: sum.head*) also have ... = $ns!\theta$ + $((\sum j \in \{\theta < ...i\}, ns!j) - (\sum j \in \{\theta < ...i\}, ns!(j-1)))$ **by** (*auto simp: ns-le intro: sum-subtractf-nat*) also have ... = $ns!\theta + (\sum j \in \{0 < ...i\}, ns!j) - (\sum j \in \{0 < ...i\}, ns!(j-1))$ proof have $(\sum j \in \{0 < ...i\}$. ns ! $(j - 1)) \leq sum ((!) ns) \{0 < ...i\}$ by (metis One-nat-def greaterThanAtMost-iff ns-le sum-mono)

then show ?thesis by simp qed also have $\dots = ns!0 + (\sum j \in \{0 < \dots i\}, ns!j) - (\sum j \leq i - Suc \ 0, ns!j)$ using sum.reindex [of Suc { $\dots i - Suc \ 0$ } λj . ns!(j-1), symmetric] False by (simp add: image-Suc-atMost atLeastSucAtMost-greaterThanAtMost) also have $\dots = (\sum j=0..i. ns!j) - (\sum j \leq i - Suc \ 0, ns!j)$ by (simp add: sum.head [of 0 i]) also have $\dots = (\sum j=0..i - Suc \ 0, ns!j) + ns!i - (\sum j \leq i - Suc \ 0, ns!j)$ by (metis False Suc-pred less-Suc0 not-less-eq sum.atLeast0-atMost-Suc) also have $\dots = ns!i$ by (simp add: atLeast0AtMost) finally show augmentum (dementum ns)!i = ns!i. qed qed auto

The following lemma corresponds to Lemma 2.9 in Gowers's notes. The proof involves introducing bijective maps between r-tuples that fulfill certain properties/r-tuples and subsets of naturals, so as to show the cardinality claim.

```
lemma bound-sum-list-card:
 assumes r > 0 and n: n \ge \sigma x' and lenx': length x' = r
 defines S \equiv \{x. x' \leq x \land \sigma x = n\}
 shows card S = (n - \sigma x' + r - 1) choose (r-1)
proof-
 define m where m \equiv n - \sigma x'
 define f where f \equiv \lambda x::nat list. x - x'
 have f: bij-betw f S (length-sum-set r m)
 proof (intro bij-betw-imageI)
   show inj-on f S
     using pairwise-minus-cancel by (force simp: S-def f-def inj-on-def)
   have \Lambda x. x \in S \implies f x \in length-sum-set r m
       by (simp add: S-def f-def length-sum-set-def lenx' m-def pointwise-le-iff
sum-list-minus)
   moreover have x \in f ' S if x \in length-sum-set r m for x
   proof
     have x[simp]: length x = r \sigma x = m
      using that by (auto simp: length-sum-set-def)
     have x = x' + x - x'
      by (rule nth-equalityI; simp add: lenx')
     then show x = f(x' + x)
      unfolding f-def by fastforce
     have x' \triangleleft x' + x
      by (simp add: lenx' pointwise-le-plus)
     moreover have \sigma(x' + x) = n
      by (simp add: lenx' m-def n sum-list-plus)
     ultimately show x' + x \in S
      using S-def by blast
   qed
   ultimately show f \, S = length-sum-set r m by auto
```

qed

define g where $g \equiv \lambda x$::nat list. map Suc xdefine g' where $g' \equiv \lambda x$::nat list. x - replicate (length x) 1 define T where $T \equiv length$ -sum-set $r(m+r) \cap lists(-\{0\})$ have q: bij-betw q (length-sum-set r m) T **proof** (*intro bij-betw-imageI*) **show** inj-on g (length-sum-set r m) by (auto simp: g-def inj-on-def) have $\bigwedge x. \ x \in length$ -sum-set $r \ m \Longrightarrow g \ x \in T$ by (auto simp: g-def length-sum-set-def sum-list-Suc T-def) **moreover have** $x \in g$ 'length-sum-set r m if $x \in T$ for xproof have [simp]: length x = rusing length-sum-set-def that T-def by auto have r1-x: replicate r (Suc θ) $\triangleleft x$ using that unfolding T-def pointwise-le-iff-nth **by** (simp add: lists-def in-listsp-conv-set Suc-leI) show x = g(g' x)using that by (intro nth-equalityI) (auto simp: g-def g'-def T-def) show $q' x \in length$ -sum-set r musing that T-def by (simp add: g'-def r1-x sum-list-minus length-sum-set-def *sum-list-replicate*) qed ultimately show q ' (length-sum-set r m) = T by auto qed define U where $U \equiv (insert (m+r))$ 'finsets $\{0 < ... < m+r\}$ (r-1)have h: bij-betw (set \circ augmentum) T U **proof** (*intro bij-betw-imageI*) **show** inj-on ((set \circ augmentum)) T unfolding *inj-on-def* T-def by (metis ComplD IntE dementum-augmentum in-listsD insertI1) have $(set \circ augmentum)$ $t \in U$ if $t \in T$ for tproof have t: length $t = r \sigma t = m + r \theta \notin set t$ using that by (force simp: T-def length-sum-set-def)+ then have mrt: $m + r \in set$ (augmentum t) **by** (metis $\langle r > 0 \rangle$ sum-list-augmentum) then have set (augmentum t) = insert (m + r) (set (augmentum t) - $\{m\}$ + r}) **by** blast **moreover have** set (augmentum t) $- \{m + r\} \in finsets \{0 < ... < m + r\}$ (r -Suc 0**apply** (*auto simp*: *finsets-def mrt distinct-card t*) by (metis at Most-iff augmentum-subset-sum-list le-eq-less-or-eq subset D(2)) ultimately show ?thesis **by** (*metis One-nat-def U-def comp-apply imageI*) ged moreover have $u \in (set \circ augmentum)$ ' T if $u \in U$ for u proof

from that obtain N where u: u = insert (m + r) N and Nsub: $N \subseteq \{0 < ... < m + r\}$ and [simp]: card $N = r - Suc \ 0$ by (auto simp: U-def finsets-def) have $[simp]: 0 \notin N m + r \notin N$ finite N using finite-subset Nsub by auto have [simp]: card u = rusing Nsub $\langle r > 0 \rangle$ by (auto simp: u card-insert-if) have ssN: sorted (sorted-list-of-set N @ [m + r]) using Nsub by (simp add: less-imp-le-nat sorted-wrt-append subset-eq) have so-u-N: sorted-list-of-set u = insort (m+r) (sorted-list-of-set N) by $(simp \ add: u)$ also have $\ldots = sorted-list-of-set \ N @ [m+r]$ using Nsub by (force intro: sorted-insort-is-snoc) finally have so-u: sorted-list-of-set u = sorted-list-of-set N @ [m+r]. have $0: 0 \notin set (sorted-list-of-set u)$ by (simp add: $\langle r > 0 \rangle$ set-insort-key so-u-N) **show** $u = (set \circ augmentum) ((dementum \circ sorted-list-of-set)u)$ using 0 so-u ssN u by force have sortd-wrt-u: sorted-wrt (<) (sorted-list-of-set u) by simp **show** (dementum \circ sorted-list-of-set) $u \in T$ **apply** (simp add: T-def length-sum-set-def) using sum-list-dementum $[OF \ ssN]$ sortd-wrt-u 0 by (force simp: so-u dementum-nonzero)+qed ultimately show (set \circ augmentum) ' T = U by auto ged **obtain** φ where *bij-betw* φ *S U* by (meson bij-betw-trans f g h) **moreover have** card $U = (n - \sigma x' + r - 1)$ choose (r - 1)proof have inj-on (insert (m + r)) (finsets $\{0 < .. < m + r\}$ $(r - Suc \ 0)$) by (simp add: inj-on-def finsets-def subset-iff) (meson insert-ident order-less-le) then have card U = card (finsets $\{0 < ... < m + r\}$ (r - 1)) **unfolding** *U*-def **by** (simp add: card-image) also have $\ldots = (n - \sigma x' + r - 1)$ choose (r - 1)**by** (simp add: card-finsets m-def) finally show ?thesis . qed ultimately show ?thesis by (metis bij-betw-same-card) qed

2.10 Towards the main theorem

lemma extend-tuple: **assumes** $\sigma xs \leq n$ length $xs \neq 0$ **obtains** ys where $\sigma ys = n xs \leq ys$

```
proof -
 obtain x xs' where xs: xs = x \# xs'
   using assms list.exhaust by auto
 define y where y \equiv x + n - \sigma xs
 show thesis
 proof
   show \sigma (y \# xs') = n
     using assms xs y-def by auto
   show xs \leq y \# xs'
     using assms y-def pointwise-le-def xs by auto
 qed
qed
lemma extend-preserving:
 assumes \sigma xs \leq n \text{ length } xs > 1 \text{ } i < \text{length } xs
 obtains ys where \sigma ys = n xs \triangleleft ys ys!i = xs!i
proof –
 define j where j \equiv Suc \ i \ mod \ length \ xs
 define xs1 where xs1 = take j xs
 define xs2 where xs2 = drop (Suc j) xs
 define x where x = xs!j
 have xs: xs = xs1 @ [x] @ xs2
   using assms
   apply (simp add: Cons-nth-drop-Suc assms x-def xs1-def xs2-def j-def)
   by (meson Suc-lessD id-take-nth-drop mod-less-divisor)
  define y where y \equiv x + n - \sigma xs
 define ys where ys \equiv xs1 @ [y] @ xs2
 have x \leq y
   using assms y-def by linarith
 show thesis
 proof
   show \sigma ys = n
     using assms(1) xs y-def ys-def by auto
   show xs \leq ys
     using xs ys-def \langle x \leq y \rangle pointwise-append-le-iff pointwise-le-def by fastforce
   have length xs1 \neq i
     using assms by (simp add: xs1-def j-def min-def mod-Suc)
   then show ys!i = xs!i
     by (auto simp: ys-def xs nth-append nth-Cons')
 \mathbf{qed}
qed
```

The proof of the main theorem will make use of the inclusion-exclusion formula, in addition to the previously shown results.

```
theorem Khovanskii:

assumes card A > 1

defines f \equiv \lambda n. card(sumset-iterated A n)

obtains N p where real-polynomial-function p \wedge n. n \geq N \implies real (f n) = p

(real n)
```

proof – define r where $r \equiv card A$ define C where $C \equiv \lambda n x'$. $\{x. x' \leq x \land \sigma x = n\}$ **define** X where $X \equiv minimal$ -elements $\{x. useless \ x \land length \ x = r\}$ have r > 1 $r \neq 0$ using assms r-def by auto have Csub: C n $x' \subseteq$ length-sum-set (length x') n for n x' **by** (*auto simp: C-def length-sum-set-def pointwise-le-iff*) then have finC: finite $(C \ n \ x')$ for $n \ x'$ **by** (meson finite-length-sum-set finite-subset) have finite X using minimal-elements-set-tuples-finite X-def by force then have max-X: $\bigwedge x'$. $x' \in X \implies \sigma x' \leq \sigma$ (max-pointwise r X) using X-def max-pointwise-ge minimal-elements simps pointwise-le-imp- σ by force let 20 = replicate r 0 have $Cn\theta$: $C n ?z\theta = length-sum-set r n$ for n **by** (*auto simp*: *C-def length-sum-set-def*) then obtain p0 where pf-p0: real-polynomial-function p0 and p0: Λn . n>0 $\implies p\theta \ (real \ n) = real \ (card \ (C \ n \ ?z\theta))$ **by** (*metis real-polynomial-function-length-sum-set*) obtain q where pf-q: real-polynomial-function q and q: Λx . q x = x gchoose (r-1)using real-polynomial-function-gchoose by metis define p where $p \equiv \lambda x$::real. $p0 \ x - (\sum Y \mid Y \subseteq X \land Y \neq \{\}, (-1) \land (card$ Y + 1 * $q((x - real(\sigma (max-pointwise r Y)) + real r - 1)))$ show thesis proof **note** pf-q' = real-polynomial-function-compose [OF - <math>pf-q, unfolded o-def] **note** pf-intros = real-polynomial-function-sum real-polynomial-function-diff real-polynomial-function.intros **show** real-polynomial-function p **unfolding** p-def using $\langle finite X \rangle$ by (intro pf-p0 pf-q' pf-intros | force)+ next fix nassume n > max 1 (σ (max-pointwise r X)) then have *nlarge*: $n \ge \sigma$ (max-pointwise r X) and $n > \theta$ by *auto* define U where $U \equiv \lambda n$. length-sum-set $r \ n \cap \{x. useful \ x\}$ have 2: $(length-sum-set \ r \ n \cap \{x. \ useless \ x\}) = (\bigcup x' \in X. \ C \ n \ x')$ unfolding C-def X-def length-sum-set-def r-def using useless-leq-useless by (force simp: minimal-elements.simps pointwise-le-iff useless-iff) define SUM1 where SUM1 $\equiv \sum I \mid I \subseteq C n$ ' $X \land I \neq \{\}$. (-1) ^(card I $(+ 1) * int (card (\cap I))$ define SUM2 where $SUM2 \equiv \sum Y \mid Y \subseteq X \land Y \neq \{\}$. $(-1) \land (card Y +$ 1) * int (card ($\bigcap (Cn'Y)$)) have SUM1-card: card(length-sum-set $r \ n \cap \{x. \ useless \ x\}) = nat \ SUM1$ **unfolding** SUM1-def 2 using $\langle finite X \rangle$ finC by (intro card-UNION; force)

have SUM1 > 0unfolding SUM1-def using card-UNION-nonneg finC \langle finite X \rangle by auto have C-empty-iff: $C \ n \ x' = \{\} \longleftrightarrow \sigma \ x' > n \text{ if } length \ x' \neq 0 \text{ for } x'$ by (simp add: set-eq-iff C-def) (meson extend-tuple linorder-not-le pointwise-le-imp- σ that) have C-eq-1: C n $x' = \{[n]\}$ if $\sigma x' \leq n$ length x' = 1 for x'using that by (auto simp: C-def length-Suc-conv pointwise-le-def elim!: *list.rel-cases*) have *n*-ge-X: $\sigma x \leq n$ if $x \in X$ for x **by** (meson le-trans max-X nlarge that) have len-X-r: $x \in X \implies$ length x = r for x **by** (*auto simp*: X-def minimal-elements.simps) have min-pointwise r(C n x') = x' if $r > 1 x' \in X$ for x'**proof** (*rule pointwise-le-antisym*) have [simp]: length $x' = r \sigma x' < n$ using X-def minimal-elements.cases that (2) n-ge-X by auto have [simp]: length (min-pointwise r (C n x')) = r**by** (*simp add: min-pointwise-def*) show min-pointwise $r(C n x') \leq x'$ **proof** (*clarsimp simp add: pointwise-le-iff-nth*) fix iassume i < rthen obtain y where $\sigma y = n \wedge x' \leq y \wedge y! i \leq x'! i$ by (metis extend-preserving $\langle 1 < r \rangle$ (length $x' = r \rangle \langle x' \in X \rangle$ order.refl n-ge-X) then have $\exists y \in C \ n \ x'. \ y! i \leq x'! i$ using C-def by blast with $\langle i < r \rangle$ show min-pointwise r $(C n x')! i \leq x'! i$ by (simp add: min-pointwise-def Min-le-iff finC C-empty-iff leD) qed have $x' \leq min-pointwise \ r \ (C \ n \ x')$ if $\sigma \ x' \leq n \ length \ x' = r \ for \ x'$ by (smt (verit, del-insts) C-def C-empty-iff $\langle r \neq 0 \rangle$ finC leD mem-Collect-eq *min-pointwise-ge-iff pointwise-le-iff that*) then show $x' \leq min-pointwise \ r \ (C \ n \ x')$ using X-def minimal-elements.cases that by force qed then have inj-C: inj-on (C n) Xby (smt (verit, best) inj-onI mem-Collect-eq $\langle r > 1 \rangle$) have inj-on-imageC: inj-on (image (C n)) (Pow $X - \{\{\}\}$) **by** (*simp add: inj-C inj-on-diff inj-on-image-Pow*) have $Pow (C n ' X) - \{ \{ \} \} \subseteq (image (C n)) ' (Pow X - \{ \{ \} \})$ by (metis Pow-empty image-Pow-surj image-diff-subset image-empty) then have (image (C n)) ' $(Pow X - \{\{\}\}) = Pow (C n ' X) - \{\{\}\}$ by blast then have $SUM1 = sum (\lambda I. (-1) \cap (card I + 1) * int (card (\cap I))) ((image$ (C n)) ' $(Pow X - \{\{\}\}))$ unfolding SUM1-def by (auto intro: sum.cong)

also have $\ldots = sum ((\lambda I. (-1) \land (card I + 1) * int (card (\cap I))) \circ (image$ $(C n))) (Pow X - \{\{\}\})$ **by** (*simp add: sum.reindex inj-on-imageC*) also have $\ldots = SUM2$ unfolding SUM2-def using subset-inj-on [OF inj-C] by (force simp: card-image *intro: sum.conq*) finally have SUM1 = SUM2. have length-sum-set $r n = (length-sum-set r n \cap \{x. useful x\}) \cup (length-sum-set$ $r n \cap \{x. \ useless \ x\})$ by *auto* then have card (length-sum-set r n) = card (length-sum-set $r \ n \cap \{x. \ useful \ x\}\} +$ card (length-sum-set $r n \cap Collect \ useless$) by (simp add: finite-length-sum-set disjnt-iff flip: card-Un-disjnt) **moreover have** C n ?z0 = length-sum-set r n**by** (*auto simp*: C-def length-sum-set-def) ultimately have card (C n ?z0) = card (U n) + nat SUM2by (simp add: U-def flip: $\langle SUM1 = SUM2 \rangle SUM1$ -card) then have SUM2-le: nat SUM2 \leq card (C n ?z0) by arith have σ -max-pointwise-le: $\bigwedge Y$. $\llbracket Y \subseteq X; Y \neq \{\} \rrbracket \Longrightarrow \sigma$ (max-pointwise r Y) $\leq n$ by (meson (finite X) le-trans max-pointwise-mono nlarge pointwise-le-imp- σ) have card-C-max: card (C n (max-pointwise r Y)) = $(n - \sigma (max-pointwise \ r \ Y) + r - Suc \ \theta \ choose \ (r - Suc \ \theta))$ if $Y \subseteq X \ Y \neq \{\}$ for Y proof have [simp]: length (max-pointwise r Y) = rby (simp add: max-pointwise-def) then show ?thesis using $\langle r \neq 0 \rangle$ that C-def by (simp add: bound-sum-list-card [of r] σ -max-pointwise-le) qed define SUM3 where SUM3 $\equiv (\sum Y \mid Y \subseteq X \land Y \neq \{\}.$ $-((-1) \cap (card Y) * ((n - \sigma (max-pointwise r Y) + r - 1 choose (r - r)))$ 1))))) have $\bigcap (C n ' Y) = C n (max-pointwise r Y)$ if $Y \subseteq X Y \neq \{\}$ for Y proof **show** \cap (C n ' Y) \subseteq C n (max-pointwise r Y) unfolding C-def **proof** clarsimp fix xassume $\forall y \in Y$. $y \leq x \land \sigma x = n$ moreover have finite Yusing $\langle finite X \rangle$ infinite-super that by blast moreover have $\bigwedge u$. $u \in Y \Longrightarrow length \ u = r$

```
using len-X-r that by blast
       ultimately show max-pointwise r Y \leq x \land \sigma x = n
             by (smt (verit, del-insts) all-not-in-conv max-pointwise-le-iff point-
wise-le-iff-nth that (2))
     ged
   \mathbf{next}
     show C \ n \ (max-pointwise \ r \ Y) \subseteq \bigcap \ (C \ n \ ' \ Y)
       apply (clarsimp simp: C-def)
      by (metis (finite X) finite-subset len-X-r max-pointwise-ge pointwise-le-trans
subsetD that(1))
   qed
   then have SUM2 = SUM3
     by (simp add: SUM2-def SUM3-def card-C-max)
   have U n = C n ?z0 - (length-sum-set r n \cap \{x. useless x\})
     by (auto simp: U-def C-def length-sum-set-def)
   then have card (Un) = card (Cn ?z0) - card(length-sum-set r n \cap \{x. useless
x\})
     using finite-length-sum-set
     by (simp add: C-def Collect-mono-iff inf.coboundedI1 length-sum-set-def flip:
card-Diff-subset)
   then have card-U-eq-diff: card (U n) = card (C n ?z0) - nat SUM1
     using SUM1-card by presburger
   have SUM3 \ge 0
     using \langle 0 \leq SUM1 \rangle \langle SUM1 = SUM2 \rangle \langle SUM2 = SUM3 \rangle by blast
   have **: \bigwedge Y. \llbracket Y \subseteq X; Y \neq \{\} \rrbracket \Longrightarrow Suc (\sigma (max-pointwise r Y)) \leq n + r
   by (metis \langle 1 < r \rangle \sigma-max-pointwise-le add.commute add-le-mono less-or-eq-imp-le
plus-1-eq-Suc)
   have real (f n) = card (U n)
     unfolding f-def r-def U-def length-sum-set-def
     using card-sumset-iterated-length-sum-set-useful length-sum-set-def by pres-
burger
   also have \ldots = card (C n ?z0) - nat SUM3
     using card-U-eq-diff \langle SUM1 = SUM2 \rangle \langle SUM2 = SUM3 \rangle by presburger
   also have \ldots = real (card (C n (replicate r 0))) - real (nat SUM3)
     using SUM2-le \langle SUM2 = SUM3 \rangle of-nat-diff by blast
   also have \ldots = p \pmod{n}
     using \langle 1 < r \rangle \langle n > 0 \rangle
     apply (simp add: p-def p0 q \langle SUM3 \geq 0 \rangle)
    apply (simp add: SUM3-def binomial-gbinomial of-nat-diff \sigma-max-pointwise-le
algebra-simps **)
     done
   finally show real (f n) = p (real n).
 qed
qed
end
end
```

References

- [1] W. T. Gowers. Introduction to additive combinatorics. Lecture notes, University of Cambridge, 2022.
- [2] A. G. Khovanskii. Newton polyhedron, Hilbert polynomial, and sums of finite sets. *Functional Analysis and Its Applications*, 26(4):276–281, 1992.
- [3] A. G. Khovanskii. Sums of finite sets, orbits of commutative semigroups, and Hilbert functions. *Functional Analysis and Its Applications*, 29(2):102–112, 1995.
- [4] M. B. Nathanson and I. Z. Ruzsa. Polynomial growth of sumsets in abelian semigroups. *Journal de Théorie des Nombres de Bordeaux*, 14(2):553–560, 2002.
- [5] I. Z. Ruzsa. Sumsets and structure. Lecture notes, Institute of Mathematics, Budapest.