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Abstract

This formalisation provides an executable version of Zimmerman’s
“Karatsuba Square Root” algorithm, which, given an integer n > 0,
computes the integer square root |y/n] and the remainder n — [/n]?.
This is the algorithm used by the GNU Multiple Precision Arithmetic
Library (GMP).

Similarly to Karatsuba multiplication, the algorithm is a divide-
and-conquer algorithm that works by repeatedly splitting the input
number n into four parts and recursively calls itself once on an input
with roughly half as many bits as n, leading to a total running time
of O(M(n)) (where M(n) is the time required to multiply two n-bit
numbers). This is significantly faster than the standard Heron method
for large numbers (i.e. more than roughly 1000 bits).

As a simple application to interval arithmetic, an executable floating-
point interval extension of the square-root operation is provided. For
high-precision computations this is considerably more efficient than the
interval extension method in the Isabelle distribution.
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0.1 Auxiliary material

theory Karatsuba_Sqrt_Library

imports
"HOL-Library.Discrete_Functions"
"HOL-Library.Log_Nat"

begin

0.2 Efficient simultaneous computation of div and mod

definition divmod_int :: "int = int = int X int" where
"divmod_int a b = (a div b, a mod b)"

lemma divmod_int_code [code]:
"divmod_int a b =
(case divmod_integer (integer_of_int a) (integer_of_int b) of
(g, r) = (int_of_integer q, int_of_integer r))"
by (simp add: divmod_int_def divmod_integer_def)

0.2.1 Missing lemmas about bitlen

lemma drop_bit_eq_O_iff_nat:
"drop_bit k (n :: nat) = 0 «— bitlen n < k"
by (auto simp: drop_bit_eq_div div_eq_O_iff less_power_nat_iff_bitlen)

lemma drop_bit_eq_O_iff_int:

assumes '"'n > 0"

shows "drop_bit k (n :: int) = 0 <— bitlen n < k"

by (metis assms drop_bit_eq_O_iff_nat drop_bit_nat_eq drop_bit_of_nat
nat_0_le nat_zero_as_int of_nat_0)

lemma drop_bit_bitlen_minus_1:
assumes "n > 0"
shows  "drop_bit (nat (bitlen n - 1)) n = 1"
proof -
define s where "s = nat (bitlen n - 1)"
have "bitlen n > 0"
using assms by (simp add: bitlen_eq_zero_iff bitlen_nonneg order_less_le)
have "drop_bit s n < drop_bit s (mask (s+1))"
unfolding drop_bit_eq_div mask_eq_exp_minus_1
using <bitlen n > 0> bitlen_bounds[of n] assms
by (intro zdiv_monol)
(auto simp: s_def nat_diff_distrib simp del: power_Suc)
also have "drop_bit s (mask (s + 1) :: int) = 1"
by (simp add: drop_bit_mask_eq)
finally have "drop_bit s n < 1" .
moreover have "drop_bit s n # 0"
using assms <bitlen n > 0>
by (subst drop_bit_eq_O_iff_int) (auto simp: s_def)
moreover have "drop_bit s n > 0"



using assms by auto
ultimately show "drop_bit s n = 1"
by linarith
qed

lemma bitlen_pos: "n > 0 = bitlen n > 0"
using bitlen_def bitlen_eq_zero_iff linorder_not_less by auto

lemma bit_bitlen_minus_1:
assumes "n > 0"
shows "bit n (nat (bitlem n - 1))"
using drop_bit_bitlen_minus_1[0F assms]
by (simp add: bit_iff_and_drop_bit_eq_1)

lemma not_bit_ge_bitlen:
assumes "int k > bitlen n" "n > 0"
shows "—bit n k"
proof
assume "bit n k"
hence "odd (n div 2 ~ k)"
by (auto simp: bit_iff_odd)
hence "n > 2 ~ k"
using assms(2) linorder_not_le by fastforce
hence "int k < bitlen n"
by (metis bitlen_le_iff_power linorder_not_less nat_int)
thus False
using assms by auto
qed

lemma bitlen_eql:
assumes "bit n (nat k - 1)" "Ai. int i > k = —bit n i" "k > 0"

I!n > OI!

shows "bitlen n = k"
proof -
from assms(1) have "n # 0"
by auto
with <n > 0> have "n > 0"
by auto

show ?thesis
proof (cases "bitlen n" k rule: linorder_cases)

assume "bitlen n > k"
hence False
using assms(2) [of "nat (bitlen n - 1)"] bit_bitlen_minus_1[of n]
<n > 0>
by (auto split: if_splits simp: bitlen_pos)
thus 7thesis ..
next
assume "bitlen n < k"

hence False



using assms(1) <k > 0> not_bit_ge_bitlen[of n "nat k - 1"] <n >
0>
by (auto simp: of_nat_diff)
thus ?thesis
ged auto
qed

lemma bitlen_drop_bit:
assumes '"'n > 0"
shows  "bitlen (drop_bit k n) = max O (bitlen n - k)"
proof (cases "bitlen n > k")
case False
hence "drop_bit k n = 0"
using assms by (subst drop_bit_eq O_iff_int) auto
thus 7thesis using False
by simp
next
case True
hence "n # 0"
by auto
with assms have "n > 0"
by auto
show ?thesis
proof (rule bitlen_eql)
show "bit (drop_bit k n) (nat (max O (bitlen n - int k)) - 1)"
using True bit_bitlen_minus_1[of n] <n > 0>
by (auto simp: bit_drop_bit_eq nat_diff_distrib)
next
fix i :: nat
assume "max O (bitlen n - int k) < int i"
hence "int (i + k) > bitlen n"
using True by simp
thus "— bit (drop_bit k n) i"
using <n > 0> by (auto simp: bit_drop_bit_eq not_bit_ge_bitlen)
qged (use True <mn > 0> in auto)
qed

0.2.2 Missing lemmas about floor_ sqrt

lemma Discrete_sqrt_lessI:
assumes "x <y = 2"
shows  "floor_sqrt x < y"
using assms le_floor_sqrt_iff linorder_not_less by blast

lemma floor_sqrt_conv_floor_of_sqrt:

"floor_sqrt n = nat (floor (sqrt n))"
proof (rule floor_sqrt_unique)

have "real (nat (floor (sqrt n)) ~ 2) = real_of_int |sqrt (real n)|
-~ 2”



by simp

also have "... < sqrt (real n) ~ 2"
by (intro power_mono) auto

also have "... = real n"
by simp

finally show "nat (floor (sqrt n)) ~ 2 < n"
by linarith
next
have "sqrt (real n) ~ 2 < (real_of_int |sqrt (real n)| + 1) ~ 2"
by (rule power_strict_mono) auto
hence "real n < (real_of_int |sqrt (real n)| + 1) ~ 2"
by simp
also have "... = real ((Suc (nat (floor (sqrt n)))) ~ 2)"
by simp
finally show "n < Suc (nat (floor (sqrt n))) ~ 2"
by linarith
qed

0.3 Miscellaneous

lemma Let_cong:
assumes "a = ¢" "Ax. x =a = bx =d x"
shows "Let a b = Let ¢ d"
unfolding Let_def using assms by simp

lemma case_prod_cong:
assumes "a = b" "Axy. a=(x, y) = fxy=gxy"

shows  "(case a of (x, y) = f x y) = (case b of (x, y) = g x y)"

using assms by (auto simp: case_prod_unfold)

end
theory Karatsuba_Sqrt
imports
Complex_Main
Karatsuba_Sqrt_Library
begin

0.4 Definition of an integer square root with remainder

definition sqrt_rem :: "nat = nat" where
"sqrt_rem n = n - floor_sqrt n ~ 2"

lemma sqrt_rem_upper_bound: "sqrt_rem n < 2 * floor_sqrt n"
proof -
define s where "s = floor_sqrt n"
have "'n < (s + 1) ~ 2"
unfolding s_def using Suc_floor_sqrt_power2_gt[of n] by auto
hence "n + 1 < (s + 1) ~ 2"
by linarith
hence "'n < s ~ 2 + 2 % g"



by (simp add: algebra_simps power2_eq_square)
thus ?thesis
unfolding s_def sqrt_rem_def by linarith

qed
lemma of_nat_sqrt_rem:

"(of_nat (sqrt_rem n) :: ’a :: ring 1) = of_nat n - of_nat (floor_sqrt
Il) ~ on

by (simp add: sqrt_rem_def)
definition sqrt_rem’ where "sqrt_rem’ n = (floor_sqrt n, sqrt_rem n)"

lemma Discrete_sqrt_code [code]: "floor_sqrt n = fst (sqrt_rem’ n)"
by (simp add: sqrt_rem’_def)

lemma sqrt_rem_code [code]: '"sqrt_rem n = snd (sqrt_rem’ n)"
by (simp add: sqrt_rem’_def)

0.5 Heron’s method

The method used here is a variant of Heron’s method, which is itself essen-
tially Newton’s method specialised to square roots. This is already in the
AFP under the name “Babylonian method”. However, that entry derives a
more general version for n-th roots and lacks some flexibility that is useful
for us here, so we instead derive a simple version for the square root directly.
We will use this version in the base case of the algorithm.

The starting value must be bigger than |[/n]|. We simply use 2l logs nl,
which is easy to compute and fairly close to \/n already so that the Newton
iterations converge very quickly.

context
fixes n :: nat
begin
function sqrt_rem_aux :: "nat = nat X nat" where

"sqrt_rem_aux x =
(if x> < n then (x, n - x?) else sqrt_rem_aux ((n div x + x) div
2))"
by auto
termination proof (relation "Wellfounded.measure id")
fix x assume x: "—(x2 < n)"
have "n div x * x < n"
by simp
also from x have "n < x * x"
by (simp add: power2_eq_square)
finally have "n div x < x"
using x by simp
hence "(n div x + x) div 2 < x"
by (subst div_less_iff less_mult) auto



thus "((n div x + x) div 2, x) € measure id"
by simp
qed auto

lemmas [simp del] = sqrt_rem_aux.simps

lemma sqrt_rem_aux_code [code]:
"sqrt_rem_aux x = (
let x2 = x*x; r = int n - int x2
in if r > O then (x, nat r) else sqrt_rem_aux (drop_bit 1 (n div
x +x)))"
by (subst sqrt_rem_aux.simps)
(auto simp: Let_def case_prod_unfold power2 eq_square nat_diff_distrib
drop_bit_eq_div
simp flip: of_nat_mult)

lemma sqrt_rem_aux_decompose: "fst (sqrt_rem_aux x) ~ 2 + snd (sqrt_rem_aux

x) = n"
by (induction x rule: sqrt_rem_aux.induct; subst (1 2) sqrt_rem_aux.simps)

auto

lemma sqrt_rem_aux_correct:
assumes "x > floor_sqrt n"
shows "fst (sqrt_rem_aux x) = floor_sqrt n"
using assms
proof (induction x rule: sqrt_rem_aux.induct)
case (1 x)
show ?case
proof (cases "x = 2 < n")
case True
from True have "floor_sqrt n > x"
by (simp add: le_floor_sqrtI)
with "1.prems" show ?thesis using True
by (subst sqrt_rem_aux.simps) auto
next
case False
hence "x > 0"
by (auto intro!: Nat.groOI)
have "0 < (x "2 -n) ~ 2/ (4 xx =~ 2)"
using <x > 0> False by (intro divide_pos_pos) auto
also have "(x "2 -n) ~ 2/ (4 *x "2 =(@/x+x)/2) ~2-

using <x > 0> False by (simp add: field_simps power2_eq_square)
finally have "n < ((n / x +x) / 2) ~ 2"

by simp
hence "sqrt n ~ 2 < ((n / x +x) / 2) ~ 2"

by simp
hence "sqrt n < (n / x + x) / 2"

by (rule power_less_imp_less_base) auto



hence "nat (floor (sqrt n)) < nat (floor ((n / x + x) / 2))"
by linarith

also have "nat (floor (sqrt n)) = floor_sqrt n"
by (simp add: floor_sqrt_conv_floor_of_sqrt)

also have "floor ((n / x + x) / 2) = (n div x + x) div 2"
using floor_divide_real_eq_div[of 2 "n / x + x"] by (simp add: floor_divide_of_nat_eq

finally have "floor_sqrt n < (n div x + x) div 2"
by simp

from "1.IH"[OF False this] show ?thesis
by (subst sqrt_rem_aux.simps) (use False in auto)

qed
qed

lemma sqrt_rem_aux_correct’:
assumes "x > floor_sqrt n"
shows "sqrt_rem_aux x = sqrt_rem’ n"
using sqrt_rem_aux_correct [0F assms] sqrt_rem_aux_decompose[of x]
by (simp add: sqrt_rem’_def prod_eq_iff sqrt_rem_def)

definition sqrt_rem’_heron :: "nat X nat" where
"sqrt_rem’_heron = sqrt_rem_aux (push_bit ((ceillog2 n + 1) div 2) 1)"

lemma sqrt_rem’_heron_correct:
"sqrt_rem’_heron = sqrt_rem’ n"
proof (cases "n = 0")
case True
show ?thesis unfolding sqrt_rem’_heron_def
by (rule sqrt_rem_aux_correct’) (auto simp: True)
next
case False
hence n: "n > 0"
by auto
show ?thesis unfolding sqrt_rem’_heron_def
proof (rule sqrt_rem_aux_correct’)
have "real (floor_sqrt n) < sqrt n"
by (simp add: floor_sqrt_conv_floor_of_sqrt)
also have "... = 2 powr log 2 (sqrt n)"
using n by simp
also have "log 2 (sqrt n) = log 2 n / 2"
using n by (simp add: log_def 1ln_sqrt)
also have "(2::real) powr ... < 2 powr ((ceillog2 n + 1) div 2)"
proof (intro powr_mono)
have "log 2 (real n) < real (ceillog2 n)"
by (simp add: ceillog2_ge_log n)
also have "... / 2 < (ceillog2 n + 1) div 2"
by linarith
finally show "log 2 n / 2 < (ceillog2 n + 1) div 2"
by - simp_all
qed auto



also have "... = real (2 ~ ((ceillog2 n + 1) div 2))"
by (subst powr_realpow) auto
also have "2 ~ ((ceillog2 n + 1) div 2) = push_bit ((ceillog2 n +
1) div 2) 1"
by (simp add: push_bit_eq_mult)
finally show "floor_sqrt n < push_bit ((ceillog2 n + 1) div 2) 1"
by linarith
qed
qed

end

lemmas [code] = sqrt_rem’_heron_correct [symmetric]

0.6 Main algorithm
0.6.1 Single step

definition splice_bit where
"splice_bit i n x = take_bit n (drop_bit i x)"

lemma of_nat_splice_bit:
"of_nat (splice_bit i n x) =
splice_bit i n (of_nat x :: ’a :: linordered_euclidean_semiring bit_operations)"
by (simp add: splice_bit_def of_nat_take_bit of_nat_drop_bit)

definition karatsuba_sqrt_step where
"karatsuba_sqrt_step a32 al a0 b =
(let (s, r) sqrt_rem’ a32;
(q, w ((r * b+ a1) div (2 * s), (r * b + al) mod (2 * s8));
s’ = int (s * b + q);
r’ = int (u * b + a0) - int (q ~ 2)
in if r’ > O then (s’, r’) else (s’ - 1, r’ + 2 *x g’ - 1))"

definition karatsuba_sqrt_step’ :: "nat = nat = int X int" where
"karatsuba_sqrt_step’ n k =
(let (s, r) = map_prod int int (sqrt_rem’ (drop_bit (2*k) n));

(g, u) = divmod_int (push_bit k r + splice_bit k k n) (push_bit
1 8);
s’ = push_bit k s + q;
r’ = push_bit k u + take_bit kn - q ~ 2
in if r’ > O then (s’, r’) else (s’ - 1, r’ + push_bit 1 s’ - 1))"

Note that unlike Zimmerman, we do not have any upper bound on a3 since
this bound turned out to be unnecessary for the correctness of the algorithm.
As long as b* is not much smaller than n, there is no efficiency problem either,
since the step will still strip away about half of the bits of n.

The advantage of this is that we do not have to do the “normalisation” done
by Zimmerman to ensure that at least one of the two most significant bits



of ag be set.

lemma karatsuba_sqrt_step_correct:
fixes a32 al a0 :: nat
assumes "al < b" "a0 < b" "4 * a32 > b ~ 2" "even b"
defines "n = a32 * b ~ 2 + al * b + a0"
shows "karatsuba_sqrt_step a32 al a0 b =
map_prod of_nat of_nat (sqrt_rem’ n)"

proof -
define s where "s = floor_sqrt a32"
define r where "r = sqrt_rem a32"
define q where "q = (r * b + al) div (2 * s)"

define u where "u = (r * b + al) mod (2 * s)"

define s’ where "s’ = int (s * b + q@)"

define r’ where "r’ = int (u * b + a0) - int (q ~ 2)"

define s’’ where "s’’ = (if r’ > 0 then s’ else s’ - 1)"

define r’’ where "r’’ = (if r’ > 0 then r’ else r’ + 2 % g’ - 1)"

from assms have "b > 0"
by auto
have "s > 0"
using assms by (auto simp: s_def intro!: Nat.grO0I)

have "b < 2 * g"
proof -
have "4 * (b div 2 ~2=Db ~ 2"
using <even b> by (auto elim!: evenE simp: power2_eq_square)
also have "... < 4 * a32"
by fact
finally have "b div 2 < s"
unfolding s_def by (subst le_floor_sqrt_iff) auto
thus "bp < 2 % g"
using <even b> by (elim evenE) auto
qed

have s’_r’: "int n =s’ -2 + r’"
proof -
have *: "int al = int q * (2 * int s) + int u - int r * int b"
using arg_cong[OF div_mod_decomp[of "r * b + al" "2 % s"], of int,
folded q_def u_def]
unfolding of_nat_add of_nat_mult by linarith
have "int n = (int s =~ 2 + int r) * int b = 2 + int al * int b + int

aOIl
by (simp add: n_def s_def r_def of_nat_sqrt_rem algebra_simps power_numeral_reduce)
also have "... = s> =2 + "
by (simp add: power2_eq_square algebra_simps * r’_def s’_def)
finally show "int n = s’ =~ 2 + r’"
qged

hence s’’_r’’: "int n =s’’ =~ 2 + r’’"
by (simp add: s’’_def r’’_def power2 eq square algebra_simps)

10



have "int n < (s’ + 1) = 2"
proof -
define t where "t = floor_sqrt n - s * b"
have "s ~" 2 *x b =~ 2 < a32 * b ~ 2"
unfolding s_def by (intro mult_right_mono floor_sqrt_power2_le)
auto
also have "... < n"
by (simp add: n_def)
finally have "(s * b) =~ 2 < n"
by (simp add: power_mult_distrib)
hence "floor_sqrt n > s * b"
by (simp add: le_floor_sqrt_iff)
hence sqrt_n_eq: "floor_sqrt n = s * b + t"
unfolding t_def by simp

have "int (2 * s * t * b) = 2 ¥ int s * int b * int t"
by simp
also have "2 * int s * int b * int t < 2 * int s * int b * int t
+ int t = 2"
by simp
also have "... = int ((s * b + t) = 2) - (int s * int b) ~ 2"
unfolding of_nat_power of_nat_mult of_nat_add by algebra
also have "s * b + t = floor_sqrt n"
by (simp add: sqrt_n_eq)
also have "floor_sqrt n =~ 2 < n"
by simp
also have "n - (int s * int b) ~ 2 = int (al * b + a0) + (int a32
- int s ~ 2) * int b = 2"
unfolding n_def of_nat_add of_nat_mult of_nat_power by algebra
also have "int a32 - int s = 2 = int r"
unfolding r_def by (simp add: of_nat_sqrt_rem s_def)
also have "a0 < b"
by fact
also have "int (al * b + b) + int r * (int b)? = int ((al + 1 + r
* b) * b)"
by (simp add: algebra_simps power2_eq_square)
finally have "2 * s * t * b < (al + 1 + r * b) * b"
unfolding of_nat_less_iff by - simp_all
hence "2 * s * t <al + 1 + r * b"
using <b > 0> mult_less_cancel2 by blast
hence "2 * s * t < r * b + al"
by linarith
hence "t < g"
unfolding q_def using <s > 0>
by (subst less_eq div_iff_mult_less_eq) (auto simp: algebra_simps)
with sqrt_n_eq have *: "floor_sqrt n < s * b + q"
by simp

11



have "n < (floor_sqrt n + 1) ~ 2"
using Suc_floor_sqrt_power2 gt[of n] by simp
also have "... < (s * b+ q + 1) ~ 2"
by (intro power_mono add_mono *) auto
finally have "int n < int ((s * b + g + 1) ~ 2)"
by linarith
thus "int n < (s’ + 1) = 2"
by (simp add: algebra_simps s’_def)
qed

have "q < r"
proof -
have "q < (r * b + a1) div b"
unfolding q_def using <b < 2 * s> <b > 0> by (intro div_le_mono2)
also have "... = r"
using <b > 0> assms by simp
finally show "q < r" .
qed

have "int (q =~ 2) <2 *x g’"
proof (cases "q = 0")
case False
have "q ~ 2 < 2 * s x b"
unfolding power2_eq_square
proof (intro mult_mono)
show "q < 2 % g"
using <q < r> sqrt_rem_upper_bound[of a32] unfolding r_def s_def
by linarith
next
show "q < b"
proof -
have "r < 2 * g"
using <gq < r> unfolding r_def s_def using sqrt_rem_upper_bound[of
a32] by linarith
hence "q < (2 * s * b + al) div (2 * s)"
unfolding q_def by (intro div_le_mono add_mono mult_right_mono)
auto
also have "... = b + a1l div (2 * s)"
using assms <s > 0> by simp
also have "al div (2 * s) = 0"
using <b < 2 * s> <al < b> by auto
finally show "q < b" by simp
qged
qed auto
also have "2 * s * b <2 * (s * b + )"
using <q # 0> by (simp add: algebra_simps)
also have "int ... =2 * g’"
by (simp add: s’_def)
finally show ?thesis by - simp_all

12



ged (use <s > 0> <b > 0> in <auto simp: s’_def>)

have "r’’ > o"
proof (cases "r’ > 0")
case False
have "r’> + 2 * s> > 0"
unfolding r’_def using <int (q ~ 2) < 2 * s’> by linarith
thus ?thesis
unfolding r’’_def by auto
qed (auto simp: r’’_def)

have "s’’ Z 0"
using <0 < r’’> unfolding r’’_def s’’_def s’_def by auto

have "s’’ =~ 2 < int n"
proof -
have "s’’ =~ 2 = int n - r’’"
using s’’_r’’ by simp
also have "... < int n"
using <r’’ > 0> by simp
finally show "s’’ =~ 2 < n" .
qed

have "floor_sqrt n = nat s’’"
proof (rule floor_sqrt_unique)
show "nat s’’ ~ 2 < n"
using <s’’ ~ 2 < int n>
by (metis nat_eq_iff2 of_nat_le_of_nat_power_cancel_iff zero_eq_power2
zero_le)
next
have "int n < (s’’ + 1) =~ 2"
proof (cases "r’ > 0")
case True
show ?thesis
using True <int n < (s’ + 1) ~ 2> by (simp add: s’’_def)
next
case False
have "int n < s’ = 2"
using False s’_r’ by auto
thus 7thesis using False by (simp add: s’’_def)
qed
also have "(s’’ + 1) =~ 2 = int (Suc (mat s’’) ~ 2)"
using <s’’ > 0> by simp
finally show "n < Suc (mat s’’) ~ 2"
by linarith
qed
moreover from this have "int (sqrt_rem n) = r’’"
using s’’_r’’ <s’’ > 0> unfolding of_nat_sqrt_rem by auto
hence "sqrt_rem n = nat r’’"

13



by linarith
moreover have "karatsuba_sqrt_step a32 al a0 b = (s’’, r’’)"
unfolding karatsuba_sqrt_step_def sqrt_rem’_def n_def s’’_def r’’_def
r’_def s’_def
r_def s_def u_def q_def Let_def case_prod_unfold
by (simp add: divmod_def)
ultimately show ?7thesis using <r’’ > 0> <s’’ > 0>
by (simp add: n_def sqrt_rem’_def)
qed

lemma karatsuba_sqrt_step’_correct:
fixes k n :: nat
assumes k: "k > 0" and bitlen: "int k < (bitlen n + 1) div 4"
defines "a32 = drop_bit (2*k) n"
defines "al = splice_bit k k n"
defines "a0 = take_bit k n"
shows  "karatsuba_sqrt_step’ n k = map_prod int int (sqrt_rem’ n)"
proof -
define n’ where "n’ = drop_bit (2*k) n"
have less: "a0 < 2 ~ k" "al < 2 ~ k"
by (auto simp: aO_def al_def splice_bit_def)
have mod_less: "x mod y < 2 ~ k" if "y < 2 ~ k" "y > 0" for x y :: int
proof -
have "x mod y < y"
using that by (intro pos_mod_bound) auto
also have "... < 2 ~ k"
using that by simp
finally show ?thesis .
qed

have n_eq: "n = a32 * 2 =~ (2 x k) +al * 2 ~ k + a0"
proof -
have "n = push_bit (2*k) (drop_bit (2*k) n) + take_bit (2*k) n"
by (simp add: bits_ident)
also have "take_bit (2*k) n = take_bit (2*k) (push_bit k (drop_bit
k n) + take_bit k n)"
by (simp add: bits_ident)
also have "... = push_bit k (splice_bit k k n) + take_bit k n"
by (subst bit_eq_iff)
(auto simp: bit_take_bit_iff bit_push_bit_iff bit_disjunctive_add_iff
splice_bit_def)
also have "push_bit (2 * k) (drop_bit (2 * k) n) + (push_bit k (splice_bit
k k n) + take_bit k n) =
drop_bit (2 * k) n * 2 =~ (2 * k) + splice_bit k k n *
2 ~ k + take_bit k n"
by (simp add: push_bit_eq_mult)
finally show 7thesis by (simp add: a32_def al_def a0O_def)
qed
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have "a32 > 0"
proof (rule Nat.grOI)
assume "a32 = 0"
hence "bitlen (int n) < 2 * int k"
by (simp add: a32_def drop_bit_eq_O_iff_nat)
with bitlen and <k > 0> show False
by linarith
qed

have *: "(2 “ k) - 2 < 4 * a32"
proof -
have "int ((2 ~ k) ~2) = (2 ~ (2 * k) :: int)"
by (simp add: power_mult add: mult_ac)
also have "... < int (4 * a32) +— bitlen (int a32 * 2 ~ 2) > 2 *
k + 1"
by (subst bitlen_ge_iff_power) (auto simp: nat_add_distrib nat_mult_distrib)
also have "bitlen (int a32 * 2 ~ 2) = bitlen a32 + 2"
using <a32 > 0> by (subst bitlen_pow2) auto
also have "bitlen (int n) > 2 * int k"
using assms(1,2) by linarith
hence "bitlen (int a32) = bitlen (int n) - 2 * int k"
by (simp add: a32_def of_nat_drop_bit bitlen_drop_bit)
also have "(int (2 * k + 1) < bitlen (int n) - 2 * int k + 2) <+—
True"
using assms(2) by simp
finally show 7thesis
unfolding of_nat_le_iff by simp
qed

have "'n = a32 * 2 = (2 * k) + al * 2 ~ k + a0"
by (simp add: n_eq)
also have "map_prod int int (sqrt_rem’ ...) = karatsuba_sqrt_step a32
al a0 (27k)"
by (subst karatsuba_sqrt_step_correct)
(use * less <k > 0> in <auto simp: mult_ac simp flip: power_mult>)
also have "karatsuba_sqrt_step a32 al a0 (27k) =
(let (s, r) = map_prod int int (sqrt_rem’ a32);
(q, w) ((r * 27k + al) div (2 * s), (r * 27k + al) mod

(2 * 8));
s’ =s * 27k + q;
r’ =ux*x2k+ad -q "~ 2
in if r’ > O then (s’, r’) else (s’ - 1, r’> + 2 * g’ - 1))"
unfolding karatsuba_sqrt_step_def
by (simp add: case_prod_unfold Let_def divmod_def zdiv_int zmod_int)

also have "... = karatsuba_sqrt_step’ n k"
unfolding karatsuba_sqrt_step’_def karatsuba_sqrt_step_def
by (intro Let_cong case_prod_cong arg_cong2[of _ _ _ _ "divmod"]
arg_conglof _ _ "map_prod int int"]
arg_conglof _ _ sqrt_rem’] arg conglof _ _ int]
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arg_cong2[of _ _ _ "(-) :: int = _"] refl if_cong

arg_cong2[of _ _ _ _ Pair] arg_comg2[lof _ _ _ _ "(¥)"D)
(auto simp: map_prod_def sqrt_rem’_def divmod_def a32_def al_def
a0_def of_nat_splice_bit
of_nat_drop_bit of_nat_take_bit divmod_int_def mult_ac
push_bit_eq_mult)
finally show ?thesis ..
qed

0.6.2 Full algorithm

Our algorithm is parameterised with a “limb size” and a cutoff. The cutoff
value describes the threshold for the base case, i.e. the size of inputs (in bits)
for which we fall back to Heron’s method.

The algorithm splits the input number into four parts in such a way that the
bit size of the lower three parts is a multiple of 2! (where [ is the limb size).
This may be useful to avoid unnecessary bit shifting, since one one always
splits the input number exactly at limb boundaries. However, whether this
actually helps depends on how bit shifting of arbitrary-precision integers is
actually implemented in the runtime.

There is only one rather weak condition on the limb size and cutoff. Which
values work best must be determined experimentally.

locale karatsuba_sqrt =

fixes cutoff limb_size :: nat

assumes cutoff: "2 ~ (2 + limb_size) < cutoff + 2"
begin
function karatsuba_sqrt_aux :: "nat = int X int" where

"karatsuba_sqrt_aux n = (
let sz = bitlen n
in if sz < int cutoff then
case sqrt_rem’_heron n of (s, r) = (int s, int r)
else let
k = push_bit limb_size (drop_bit (2 + limb_size) (nat (bitlen
n+ 1)));

(s, r) = karatsuba_sqrt_aux (drop_bit (2*k) n);
(g, u) = divmod_int (push_bit k r + splice_bit k k n) (push_bit
1 s8);
s’ = push_bit k s + q;
r’ = push_bit k u + take_bit kn - q ~ 2
in if r’ > O then (s’, r’) else (s’ - 1, r’ + push_bit 1 s’ - 1))"
by auto

termination proof (relation "measure id", goal_cases)
case (2 n x k)
have "2 =~ (2 + limb_size) < cutoff + 2"
using cutoff by simp
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also have "cutoff + 2 < nat (bitlen (int n) + 2)"
using 2 by simp
finally have "2 = (2 + limb_size) < nat (bitlen (int n) + 1)"
by linarith
hence "k > 0"
by (auto simp: push_bit_eq mult drop_bit_eq_div 2(3) nat_add_distrib
div_greater_zero_iff)
hence "2 =~ 0 < (2 ~ (2 * k) :: nat)"
using 2 by (intro power_strict_increasing Nat.grOI)
(auto simp: div_eq_O_iff nat_add_distrib not_le)
moreover have "n > 0"
using 2 by (auto intro!: Nat.grOI)
ultimately have "drop_bit (2 * k) n < n"
by (auto simp: drop_bit_eq_div intro!: div_less_dividend)
thus 7case
by simp
qed auto

lemmas [simp del] = karatsuba_sqrt_aux.simps

lemma karatsuba_sqrt_aux_correct: "karatsuba_sqrt_aux n = map_prod int
int (sqrt_rem’ n)"
proof (induction n rule: karatsuba_sqrt_aux.induct)
case (1 n)
define sz where "sz = bitlen n"
show 7case
proof (cases "sz < cutoff")
case True
thus ?thesis
by (subst karatsuba_sqrt_aux.simps)
(auto simp: sqrt_rem’_heron_correct sqrt_rem’_def sz_def)
next
case False
define k¥ where "k = push_bit limb_size (drop_bit (2 + limb_size)
(nat (bitlen n + 1)))"
have n_eq: "n = drop_bit (2 * k) n * (2 ~ k)? + splice_bit k k n *
2 = k + take_bit k n"
proof -
have "n = push_bit (2*k) (drop_bit (2*k) n) + take_bit (2*k) n"
by (simp add: bits_ident)
also have "take_bit (2*k) n = take_bit (2*k) (push_bit k (drop_bit
k n) + take_bit k n)"
by (simp add: bits_ident)
also have "... = push_bit k (splice_bit k k n) + take_bit k n"
by (subst bit_eq_iff)
(auto simp: bit_take_bit_iff bit_push_bit_iff bit_disjunctive_add_iff
splice_bit_def)
also have "push_bit (2 * k) (drop_bit (2 * k) n) + (push_bit k (splice_bit
k k n) + take_bit k n) =
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drop_bit (2 * k) n * (2 ~ k)? + splice_bit k k n *
2 © k + take_bit k n"
by (simp add: push_bit_eq_mult flip: power_mult)
finally show ?thesis .
qed

have "karatsuba_sqrt_aux n = karatsuba_sqrt_step’ n k"
using False "1.IH"[of sz k]
by (subst karatsuba_sqrt_aux.simps)
(simp_all add: karatsuba_sqrt_step’_def of_nat_splice_bit
of_nat_take_bit of_nat_drop_bit sz_def k_def Let_def)
also have "... = map_prod int int (sqrt_rem’ n)"
proof (subst karatsuba_sqrt_step’_correct)
have "k < nat (bitlen (int n) + 1) div 4"
by (simp add: k_def nat_add_distrib div_mult2_eq push_bit_eq_mult
drop_bit_eq_div)
moreover have "bitlen (int n) + 1 > 0"
by (auto simp: bitlen_def)
ultimately show "int k < (bitlen (int n) + 1) div 4"
by linarith
next
show "k > 0"
proof (rule Nat.grOI)
assume "k = 0"
hence "nat sz + 1 < 2 ~ nat (int limb_size + 2)"
by (auto simp: k_def div_eq_O_iff sz_def drop_bit_eq_div nat_add_distrib
bitlen_def)
hence "sz + 1 < int (2 ~ nat (int limb_size + 2))"
by linarith

also have "... = int (2 = (2 + limb_size))"
by (simp add: nat_add_distrib)
also have "... < int (cutoff + 2)"

using cutoff by linarith
finally show False
using False by simp
qed
qed (use n_eq in auto)
finally show ?thesis .
qed
qed

definition karatsuba_sqrt where
"karatsuba_sqrt n = (case karatsuba_sqrt_aux n of (s, r) = (mat s,

nat r))"

theorem karatsuba_sqrt_correct: "karatsuba_sqrt n = sqrt_rem’ n"
by (simp add: karatsuba_sqrt_def karatsuba_sqrt_aux_correct case_prod_unfold)

end
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0.6.3 Concrete instantiation

We pick a cutoff of 1024 and a limb size of 64 as reasonable default values.

definition karatsuba_sqrt_default where
"karatsuba_sqrt_default = karatsuba_sqrt.karatsuba_sqrt 1024 6"

definition karatsuba_sqrt_default_aux where
"karatsuba_sqrt_default_aux = karatsuba_sqrt.karatsuba_sqrt_aux 1024
6"

interpretation karatsuba_sqrt_default:
karatsuba_sqrt 1024 6
rewrites "karatsuba_sqrt.karatsuba_sqrt 1024 6 = karatsuba_sqrt_default"
and "karatsuba_sqrt.karatsuba_sqrt_aux 1024 6 = karatsuba_sqrt_default_aux"
by unfold_locales (auto simp: nat_add_distrib karatsuba_sqrt_default_aux_def
karatsuba_sqrt_default_def)

lemmas [code] =
karatsuba_sqrt_default.karatsuba_sqrt_aux.simps[unfolded power2_eq_square]
karatsuba_sqrt_default.karatsuba_sqrt_def
karatsuba_sqrt_default.karatsuba_sqrt_correct [symmetric]

0.7 Using sqrt_rem to compute floors and ceilings of sqrt

definition sqrt_nat_ceiling :: "nat = nat" where
"sqrt_nat_ceiling n = nat (ceiling (sqrt (real n)))"

definition sqrt_int_floor :: "int = int" where
"sqrt_int_floor n = floor (sqrt (real_of_int n))"

definition sqrt_int_ceiling :: "int = int" where
"sqrt_int_ceiling n = ceiling (sqrt (real_of_int n))"

lemma sqrt_nat_ceiling code [code]:
"sqrt_nat_ceiling n = (case sqrt_rem’ n of (s, r) = if r = O then s
else s + 1)"
proof -
have n: "(floor_sqrt n)? + sqrt_rem n = n
by (auto simp: sqrt_rem_def)
have "sqrt n = sqrt (floor_sqrt n ~ 2 + sqrt_rem n)"
by (simp add: sqrt_rem_def)
also have "ceiling ... = floor_sqrt n + (if sqrt_rem n = O then 0 else
D"
proof (cases "sqrt_rem n = 0")
case False
have "n < (floor_sqrt n + 1)2"
using Suc_floor_sqrt_power2_gt le_eq_less_or_eq by auto
hence "real n < real ((floor_sqrt n + 1)?)"
by linarith

n
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hence "sqrt (floor_sqrt n =~ 2 + sqrt_rem n) < floor_sqrt n + 1"
by (subst n) (auto intro!: real_le_lsqrt simp flip: of_nat_add)
moreover have "floor_sqrt n < sqrt (floor_sqrt n ~ 2 + sqrt_rem n)"
by (rule real_less_rsqrt) (use False in auto)
ultimately have "ceiling (sqrt (floor_sqrt n ~ 2 + sqrt_rem n)) =
floor_sqrt n + 1"
by linarith
thus 7thesis
using False by simp
ged auto
finally show ?thesis
by (simp add: sqrt_nat_ceiling def sqrt_rem’_def nat_add_distrib)
qed

lemma sqrt_int_floor_code [code]:
"sqrt_int_floor n =
(if n > 0 then int (floor_sqrt (nat n)) else -int (sqrt_nat_ceiling
(nat (-n))))"
by (auto simp: sqrt_int_floor_def sqrt_nat_ceiling_def floor_sqrt_conv_floor_of_sqrt
real_sqrt_minus ceiling_minus)

lemma sqrt_int_ceiling_code [code]:
"sqrt_int_ceiling n =
(if n > O then int (sqrt_nat_ceiling (nat n)) else -int (floor_sqrt
(nat (-n))))"
using sqrt_int_floor_code[of "-n"]
by (cases n "0 :: int" rule: linorder_cases)
(auto simp: sqrt_int_ceiling def sqrt_int_floor_def sqrt_nat_ceiling_ def [of

0]
real_sqrt_minus floor_minus)
end
theory Karatsuba_Sqrt_Float
imports

Karatsuba_Sqrt
"HOL-Library.Interval_Float"
begin

0.8 Floating-point approximation of sqrt

definition shift_int :: "int = int = int"
where "shift_int k n = (if k > 0 then n * 2 ~ nat k else n div 2 ~
(nat (-k)))"

lemma shift_int_code [code]:

"shift_int k n = (if k > O then push_bit (nat k) n else drop_bit (nat
(-k)) n)"

by (simp add: shift_int_def push_bit_eq mult drop_bit_eq_div)
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definition 1b_sqrt :: "nat = float = float" where
"lb_sqrt prec x = (let n = mantissa x; e = exponent x; k = nat (2 *
int prec - bitlen n);
k’ = (if even k = even e then k else k + 1) in
normfloat (Float (sqrt_int_floor (shift_int k’ n)) (shift_int (-1)
(e = k’))))"

definition ub_sqrt :: "nat = float = float" where
"ub_sqrt prec x = (let n = mantissa x; e = exponent x; k = nat (2 *
prec - bitlen n);
k’ = (if even k = even e then k else k + 1) in
normfloat (Float (sqrt_int_ceiling (shift_int k’ n)) (shift_int (-1)
(e = k’))))"

lemma 1b_sqrt: "lb_sqrt prec x < sqrt x"
proof -
define n where "n = mantissa x"
define e where "e = exponent x"
define k where "k = nat (2 * int prec - bitlen n)"
define k’ where "k’ = (if even k = even e then k else k + 1)"
have "even (e - k’)"
by (auto simp: k’_def)
define e’’ where "e’’ = (e - k’) div 2"
have e’’: "k’ = e - 2 *x e’°"
using <even (e - k’)> by (auto simp: e’’_def)
have "real_of_float (1b_sqrt prec x) = of_int |sqrt (n * 2 powi int
k’)] * 2 powi ((e - k’) div 2)"
by (simp add: 1b_sqrt_def n_def e_def k_def k’_def
Let_def powr_real_of_int’ shift_int_def add_ac nat_add_distrib
sqrt_int_floor_def sqrt_int_ceiling def)

also have "... < sqrt (n * 2 powi int k’) * 2 powi ((e - k’) div 2)"
by (intro mult_right_mono) auto
also have "... = sqrt (of_int n * 2 powi e) * (2 powi e’’ / sqrt (2

powi (2 * e’?)))"
unfolding e’’ by (simp add: power_int_diff real_sqrt_divide)
also have "2 powi (2 * e’’) = (2 powi e’’ :: real) ~ 2"
by (simp add: mult.commute power_int_mult)
also have "sqrt ... = 2 powi e’’"
by simp
also have "real_of_int n * 2 powi e = real_of_float (Float n e)"
by (simp add: powr_real_of_int’)
also have "Float n e = x"
by (simp add: n_def e_def Float_mantissa_exponent)
finally show ?thesis
by simp
qed

lemma ub_sqrt: "ub_sqrt prec x > sqrt x"
proof -
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define n where "n = mantissa x"
define e where "e = exponent x"
define k¥ where "k = nat (2 * int prec - bitlen n)"
define k’ where "k’ = (if even k = even e then k else k + 1)"
have "even (e - k’)"
by (auto simp: k’_def)
define e’’ where "e’’ = (e - k’) div 2"
have e’’: "k’ = e - 2 *x "
using <even (e - k’)> by (auto simp: e’’_def)
have '"sqrt x = sqrt (Float n e)"
by (simp add: n_def e_def Float_mantissa_exponent)
also have "... = sqrt (of_int n * 2 powi e) * (2 powi e’’ / sqrt (2
powi (2 * e’?)))"
by (simp add: mult.commute power_int_mult powr_real_of_int’)

also have "... = sqrt (of_int n * 2 powi (e - 2 * e’’)) * 2 powi e’’"
by (simp add: real_sqrt_divide power_int_diff)
also have "... = sqrt (of_int n * 2 powi int k’) * 2 powi ((e - k’)
div 2)"
unfolding e’’ by simp
also have "... < [sqrt (of_int n * 2 powi int k’)] * 2 powi ((e - k’)
div 2)"
by (intro mult_right_mono) auto
also have "... = real_of_float (ub_sqrt prec x)"

by (simp add: ub_sqrt_def n_def e_def k_def k’_def
Let_def powr_real_of_int’ shift_int_def add_ac nat_add_distrib
sqrt_int_floor_def sqrt_int_ceiling def)
finally show ?thesis .
qed

context
includes interval.lifting
begin

lift_ definition sqrt_float_interval :: "nat = float interval =- float
interval" is
"Aprec (1, u). (1b_sqrt prec 1, ub_sqrt prec u)"
proof goal_cases
case (1 prec lu)
obtain 1 u where [simp]: "lu = (1, w)"
by (cases 1lu)
have "real_of_float (1b_sqrt prec 1) < sqrt 1"
by (rule 1b_sqrt)

also have "... < sgrt u"
using 1 by auto
also have "... < real_of_float (ub_sqrt prec u)"

by (rule ub_sqrt)
finally show 7case
by simp
qed
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lemma sqrt_float_intervall:

fixes x :: real and X :: "float interval"
assumes "x € set_of (real_interval X)"
shows "sqrt x € set_of (real_interval (sqrt_float_interval prec X))"

using assms
proof (transfer, goal_cases)
case (1 x lu prec)
obtain 1 u where [simp]: "lu = (1, w)"
by (cases lu)
from 1 have x: "real_ of_float 1 < x" "x < real_of_float u"
by simp_all
have "real_of_float (1b_sqrt prec 1) < sqrt x"
using 1b_sqrt[of prec 1] x(1) by (meson dual_order.trans real_sqrt_le_iff)
moreover have "real_of_float (ub_sqrt prec u) > sqrt x"
using ub_sqrt[of u prec] x(2) by (meson dual_order.trans real_sqrt_le_iff)
ultimately show 7case
by simp
qed

lemma sqrt_float_interval:

"sqrt ¢ set_of (real_interval X) C set_of (real_interval (sqrt_float_interval
prec X))"

using sqrt_float_intervalI[of _ X] by blast

end

end

0.9 Tests

theory Karatsuba_Sqrt_Test
imports
Karatsuba_Sqrt_Float
"HOL-Library.Code_Target_Numeral"
begin

value "sqrt_rem’ 123456"

value "sqrt_rem 123456"

value "floor_sqrt 123456"

value "sqrt_int_floor 123456"

value "sqrt_nat_ceiling 123456"

value "sqrt_int_ceiling 123456"

value "sqrt_float_interval 64 (Ivl 123456 123456)"

end
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