Multidimensional Binary Search Trees

Martin Rau

March 17, 2025

Abstract

This entry provides a formalization of multidimensional binary trees, also known as k-d trees. It includes a balanced build algorithm as well as the nearest neighbor algorithm and the range search algorithm. It is based on the papers "Multidimensional binary search trees used for associative searching" [1] and "An Algorithm for Finding Best Matches in Logarithmic Expected Time" [2].

Contents

1	Definition of the k-d Tree		2	
	1.1	Definition of the k -d Tree Invariant and Related Functions	2	
	1.2	Lemmas adapted from $HOL-Library.Tree$ to k -d Tree	4	
	1.3	Lemmas adapted from $HOL-Library.Tree-Real$ to $k\text{-d}$ Tree .	5	
2	Building a balanced k-d Tree from a List of Points 6			
	2.1	Auxiliary Lemmas	7	
	2.2	Widest Spread Axis	7	
	2.3	Fast Axis Median	8	
	2.4	Building the Tree	9	
	2.5	-	0	
3	Rar	nge Searching 1	1	
	3.1	Rectangle Definition	1	
	3.2		1	
	3.3	Auxiliary Lemmas	1	
	3.4	Main Theorem	2	
4	Nearest Neighbor Search on the k-d Tree		2	
	4.1	Auxiliary Lemmas about sorted-wrt	2	
	4.2		3	
	4.3	-	3	
	4.4		4	
	4.5		4	
	4.6		5	

1 Definition of the k-d Tree

```
\begin{tabular}{ll} \textbf{theory} & \textit{KD-Tree} \\ \textbf{imports} \\ & \textit{Complex-Main} \\ & \textit{HOL-Analysis.Finite-Cartesian-Product} \\ & \textit{HOL-Analysis.Topology-Euclidean-Space} \\ \textbf{begin} \\ \end{tabular}
```

A k-d tree is a space-partitioning data structure for organizing points in a k-dimensional space. In principle the k-d tree is a binary tree. The leafs hold the k-dimensional points and the nodes contain left and right subtrees as well as a discriminator v at a particular axis k. Every node divides the space into two parts by splitting along a hyperplane. Consider a node n with associated discriminator v at axis k. All points in the left subtree must have a value at axis k that is less than or equal to v and all points in the right subtree must have a value at axis k that is greater than v.

Deviations from the papers:

The chosen tree representation is taken from [2] with one minor adjustment. Originally the leafs hold buckets of points of size b. This representation fixes the bucket size to b = 1, a single point per Leaf. This is only a minor adjustment since the paper proves that b = 1 is the optimal bucket size for minimizing the running time of the nearest neighbor algorithm [2], only simplifies building the optimized k-d trees [2] and has little influence on the search algorithm [1].

```
type-synonym 'k point = (real, 'k) vec

lemma dist-point-def:
fixes p_0 :: ('k::finite) point
shows dist p_0 p_1 = sqrt (\sum k \in UNIV. (p_0\$k - p_1\$k)^2)
\langle proof \rangle

datatype 'k kdt =
Leaf 'k point
| Node 'k real 'k kdt 'k kdt
```

1.1 Definition of the k-d Tree Invariant and Related Functions

```
fun set-kdt :: 'k kdt \Rightarrow ('k point) set where

set-kdt (Leaf p) = { p }

| set-kdt (Node - - l r) = set-kdt l \cup set-kdt r

definition spread :: ('k::finite) \Rightarrow 'k point set \Rightarrow real where

spread k P = (if P = {} then 0 else let V = (\lambdap. p$k) 'P in Max V - Min V)

definition widest-spread-axis :: ('k::finite) \Rightarrow 'k set \Rightarrow 'k point set \Rightarrow bool where
```

```
widest-spread-axis k \ K \ ps \longleftrightarrow (\forall k' \in K. \ spread \ k' \ ps \leq spread \ k \ ps)
\mathbf{fun}\ invar::('k::finite)\ kdt \Rightarrow bool\ \mathbf{where}
  invar\ (Leaf\ p) \longleftrightarrow True
|invar|(Node\ k\ v\ l\ r)\longleftrightarrow (\forall\ p\in set\text{-}kdt\ l.\ p\$k\leq v)\land (\forall\ p\in set\text{-}kdt\ r.\ v< p\$k)
     widest-spread-axis k UNIV (set-kdt l \cup set-kdt r) \land invar l \land invar r
fun size-kdt :: 'k \ kdt \Rightarrow nat \ \mathbf{where}
  size-kdt (Leaf -) = 1
| size-kdt (Node - - l r) = size-kdt l + size-kdt r
fun height :: 'k \ kdt \Rightarrow nat \ \mathbf{where}
  height (Leaf -) = 0
| height (Node - - l r) = max (height l) (height r) + 1
fun min-height :: 'k kdt \Rightarrow nat where
  min-height (Leaf -) = 0
| min-height (Node - - l r) = min (min-height l) (min-height r) + 1
definition balanced :: k k dt \Rightarrow bool where
  balanced\ kdt \longleftrightarrow height\ kdt - min-height\ kdt \le 1
fun complete :: 'k \ kdt \Rightarrow bool \ \mathbf{where}
  complete (Leaf -) = True
| complete (Node - - l r) \longleftrightarrow complete l \land complete r \land height l = height r
lemma invar-l:
  invar (Node \ k \ v \ l \ r) \Longrightarrow invar \ l
  \langle proof \rangle
lemma invar-r:
  invar (Node \ k \ v \ l \ r) \Longrightarrow invar \ r
  \langle proof \rangle
lemma invar-l-le-k:
  invar\ (Node\ k\ v\ l\ r) \Longrightarrow \forall\ p\in set\text{-}kdt\ l.\ p\$k \leq v
  \langle proof \rangle
lemma invar-r-ge-k:
  invar\ (Node\ k\ v\ l\ r) \Longrightarrow \forall\ p\in set\text{-}kdt\ r.\ v< p\$k
  \langle proof \rangle
\mathbf{lemma}\ invar\text{-}set:
  set-kdt \ (Node \ k \ v \ l \ r) = set-kdt \ l \cup set-kdt \ r
  \langle proof \rangle
```

1.2 Lemmas adapted from HOL-Library. Tree to k-d Tree

```
lemma size-ge\theta[simp]:
  0\,<\,size\text{-}kdt\,\,kdt
  \langle proof \rangle
lemma eq-size-1[simp]:
  size-kdt \ kdt = 1 \longleftrightarrow (\exists p. \ kdt = Leaf \ p)
  \langle proof \rangle
lemma eq-1-size[simp]:
  1 = size - kdt \ kdt \longleftrightarrow (\exists p. \ kdt = Leaf \ p)
  \langle proof \rangle
lemma neq-Leaf-iff:
  (\nexists p. \ kdt = Leaf \ p) = (\exists \ k \ v \ l \ r. \ kdt = Node \ k \ v \ l \ r)
  \langle proof \rangle
lemma eq-height-\theta[simp]:
  height \ kdt = 0 \longleftrightarrow (\exists \ p. \ kdt = Leaf \ p)
  \langle proof \rangle
lemma eq-\theta-height[simp]:
  0 = height \ kdt \longleftrightarrow (\exists \ p. \ kdt = Leaf \ p)
  \langle proof \rangle
lemma eq-min-height-\theta[simp]:
  min-height \ kdt = 0 \longleftrightarrow (\exists \ p. \ kdt = Leaf \ p)
  \langle proof \rangle
lemma eq-0-min-height[simp]:
  0 = min\text{-}height \ kdt \longleftrightarrow (\exists \ p. \ kdt = Leaf \ p)
  \langle proof \rangle
lemma size-height:
  size-kdt \ kdt \leq 2 \ \hat{\ } height \ kdt
\langle proof \rangle
{f lemma} min-height-le-height:
  \textit{min-height } \textit{kdt} \leq \textit{height } \textit{kdt}
  \langle proof \rangle
lemma min-height-size:
  2 \cap min-height \ kdt \leq size-kdt \ kdt
\langle proof \rangle
lemma complete-iff-height:
  complete \ kdt \longleftrightarrow (min-height \ kdt = height \ kdt)
  \langle proof \rangle
```

```
lemma size-if-complete:
  complete \ kdt \Longrightarrow size-kdt \ kdt = 2 \ \hat{\ } height \ kdt
  \langle proof \rangle
lemma complete-if-size-height:
  size-kdt \ kdt = 2 \ \hat{} \ height \ kdt \Longrightarrow complete \ kdt
\langle proof \rangle
\mathbf{lemma}\ \textit{complete-if-size-min-height}:
  size-kdt \ kdt = 2 \ \widehat{\ } min-height \ kdt \Longrightarrow complete \ kdt
\langle proof \rangle
\mathbf{lemma}\ \mathit{complete}\text{-}\mathit{iff}\text{-}\mathit{size}\text{:}
  complete \ kdt \longleftrightarrow \mathit{size-kdt} \ kdt = \textit{2} \ \widehat{\ } \mathit{height} \ kdt
  \langle proof \rangle
\mathbf{lemma}\ \mathit{size-height-if-incomplete}:
  \neg complete kdt \Longrightarrow size-kdt \ kdt < 2 \ \hat{} \ height \ kdt
  \langle proof \rangle
\mathbf{lemma}\ \mathit{min-height-size-if-incomplete}:
  \neg complete kdt \Longrightarrow 2 ^ min-height kdt < size-kdt \ kdt
  \langle proof \rangle
\mathbf{lemma}\ \mathit{balanced\text{-}subtree}L:
  balanced (Node \ k \ v \ l \ r) \Longrightarrow balanced \ l
  \langle proof \rangle
\mathbf{lemma}\ balanced\text{-}subtreeR\text{:}
  balanced (Node \ k \ v \ l \ r) \Longrightarrow balanced \ r
  \langle proof \rangle
lemma balanced-optimal:
  assumes balanced kdt size-kdt kdt \leq size-kdt kdt'
  shows height kdt \leq height kdt'
\langle proof \rangle
1.3
          Lemmas adapted from HOL-Library. Tree-Real to k-d Tree
lemma size-height-log:
  log \ 2 \ (size-kdt \ kdt) \le height \ kdt
  \langle proof \rangle
lemma min-height-size-log:
  min-height \ kdt \leq log \ 2 \ (size-kdt \ kdt)
  \langle proof \rangle
{f lemma} {\it size-log-if-complete}:
  complete \ kdt \Longrightarrow height \ kdt = log \ 2 \ (size-kdt \ kdt)
```

```
\langle proof \rangle
\mathbf{lemma}\ \mathit{min-height-size-log-if-incomplete}:
  \neg complete kdt \Longrightarrow min-height kdt < log 2 (size-kdt kdt)
  \langle proof \rangle
lemma min-height-balanced:
  assumes balanced kdt
  shows min-height kdt = nat(floor(log 2 (size-kdt kdt)))
\langle proof \rangle
lemma height-balanced:
  assumes balanced kdt
 shows height kdt = nat(ceiling(log 2 (size-kdt kdt)))
lemma balanced-Node-if-wbal1:
 assumes balanced l balanced r size-kdt l = size-kdt r + 1
 shows balanced (Node k \ v \ l \ r)
\langle proof \rangle
lemma balanced-sym:
  balanced (Node \ k \ v \ l \ r) \Longrightarrow balanced (Node \ k' \ v' \ r \ l)
  \langle proof \rangle
\mathbf{lemma}\ balanced	ext{-Node-if-wbal2}:
  assumes balanced l balanced r abs(int(size-kdt\ l) - int(size-kdt\ r)) \le 1
 shows balanced (Node k \ v \ l \ r)
\langle proof \rangle
end
```

2 Building a balanced k-d Tree from a List of Points

```
\begin{tabular}{ll} \bf theory & \it Build \\ \bf imports \\ \it KD-Tree \\ \it Median-Of-Medians-Selection. Median-Of-Medians-Selection \\ \bf begin \\ \end{tabular}
```

Build a balanced k-d Tree by recursively partition the points into two lists. The partitioning criteria will be the median at a particular axis k. The left list will contain all points p with $p \$ $k \le median$. The right list will contain all points with median at axis median <math>k. The left and right list differ in length by one or none. The axis k will the widest spread axis.

2.1 Auxiliary Lemmas

```
lemma length-filter-mset-sorted-nth:
  assumes distinct xs n < length xs sorted xs
  shows \{\# x \in \# mset \ xs. \ x \leq xs! \ n \ \#\} = mset \ (take \ (n+1) \ xs)
  \langle proof \rangle
lemma length-filter-sort-nth:
  assumes distinct xs n < length xs
  shows length (filter (\lambda x. \ x \leq sort \ xs! \ n) xs) = n + 1
\langle proof \rangle
2.2
         Widest Spread Axis
definition calc-spread :: ('k::finite) \Rightarrow 'k point list \Rightarrow real where
  calc-spread k ps = (case ps of [] \Rightarrow 0 | ps \Rightarrow
    let ks = map (\lambda p. p\$k) (tl ps) in
    fold\ max\ ks\ ((hd\ ps)\$k) - fold\ min\ ks\ ((hd\ ps)\$k)
fun widest-spread :: ('k::finite) list \Rightarrow 'k point list \Rightarrow 'k \times real where
  widest-spread [] - = undefined
 widest-spread [k] ps = (k, calc\text{-spread } k ps)
| widest-spread (k \# ks) ps = (
    let (k', s') = widest-spread ks ps in
    let s = calc-spread k ps in
    if s \leq s' then (k', s') else (k, s)
lemma calc-spread-spec:
  calc-spread k ps = spread k (set ps)
  \langle proof \rangle
lemma widest-spread-calc-spread:
  ks \neq [] \Longrightarrow (k, s) = widest\text{-spread } ks \ ps \Longrightarrow s = calc\text{-spread } k \ ps
  \langle proof \rangle
\mathbf{lemma}\ widest	ext{-}spread	ext{-}axis	ext{-}Un:
 shows widest-spread-axis k \ K \ P \Longrightarrow spread \ k' \ P \le spread \ k \ P \Longrightarrow widest-spread-axis
k (K \cup \{k'\}) P
  and widest-spread-axis k \ K \ P \Longrightarrow spread \ k \ P \le spread \ k' \ P \Longrightarrow widest-spread-axis
k'(K \cup \{k'\}) P
  \langle proof \rangle
lemma widest-spread-spec:
  (k, s) = widest\text{-spread } ks \ ps \Longrightarrow widest\text{-spread-axis } k \ (set \ ks) \ (set \ ps)
\langle proof \rangle
```

2.3 Fast Axis Median

```
definition axis-median :: ('k::finite) \Rightarrow 'k \ point \ list \Rightarrow real \ where
 axis-median k ps = (let n = (length ps - 1) div 2 in fast-select <math>n (map (\lambda p. p\$k)
ps))
lemma length-filter-le-axis-median:
 assumes 0 < length ps \ \forall k. \ distinct \ (map \ (\lambda p. \ p\$k) \ ps)
 shows length (filter (\lambda p. p\$k \le axis\text{-median } k ps) ps) = (length ps - 1) div 2 +
\langle proof \rangle
definition partition-by-median :: ('k::finite) \Rightarrow 'k point list \Rightarrow 'k point list \times real
\times 'k point list where
  partition-by-median k ps = (
     let m = axis-median k ps in
     let (l, r) = partition (\lambda p. p\$k \le m) ps in
     (l, m, r)
lemma set-partition-by-median:
  (l, m, r) = partition-by-median \ k \ ps \Longrightarrow set \ ps = set \ l \cup set \ r
  \langle proof \rangle
lemma filter-partition-by-median:
 assumes (l, m, r) = partition-by-median k ps
 shows \forall p \in set \ l. \ p\$k \leq m
    and \forall p \in set \ r. \ \neg p\$k \leq m
  \langle proof \rangle
lemma sum-length-partition-by-median:
  assumes (l, m, r) = partition-by-median k ps
  shows length ps = length l + length r
  \langle proof \rangle
lemma length-l-partition-by-median:
  assumes 0 < length ps \ \forall k. \ distinct \ (map \ (\lambda p. \ p\$k) \ ps) \ (l, \ m, \ r) = parti-
tion-by-median \ k \ ps
 shows length l = (length ps - 1) div 2 + 1
  \langle proof \rangle
corollary lengths-partition-by-median-1:
  assumes \theta < length ps \ \forall k. \ distinct (map (\lambda p. p\$k) ps) (l, m, r) = parti-
tion-by-median k ps
  shows length l - length r \le 1
    and length r \leq length l
    and \theta < length l
    and length \ r < length \ ps
  \langle proof \rangle
```

```
corollary lengths-partition-by-median-2:
  assumes 1 < length ps \ \forall k. \ distinct \ (map \ (\lambda p. \ p\$k) \ ps) \ (l, \ m, \ r) = parti-
tion-by-median k ps
 shows \theta < length r
   and length l < length ps
\langle proof \rangle
lemmas length-partition-by-median =
  sum-length-partition-by-median length-l-partition-by-median
  lengths\mbox{-}partition\mbox{-}by\mbox{-}median\mbox{-}1\ lengths\mbox{-}partition\mbox{-}by\mbox{-}median\mbox{-}2
2.4
        Building the Tree
function (domintros, sequential) build :: ('k::finite) list \Rightarrow 'k point list \Rightarrow 'k kdt
where
  build - [] = undefined
 build - [p] = Leaf p
 build ks ps = 0
   let (k, -) = widest-spread ks ps in
   let (l, m, r) = partition-by-median k ps in
   Node k m (build ks l) (build ks r)
  \langle proof \rangle
lemma build-domintros3:
 assumes (k, s) = widest-spread ks (x \# y \# zs) (l, m, r) = partition-by-median
k (x \# y \# zs)
  assumes build-dom(ks, l) build-dom(ks, r)
  shows build-dom (ks, x \# y \# zs)
\langle proof \rangle
lemma build-termination:
 assumes \forall k. distinct (map \ (\lambda p. \ p\$k) \ ps)
 shows build-dom (ks, ps)
  \langle proof \rangle
lemma build-psimp-1:
  ps = [p] \Longrightarrow build \ k \ ps = Leaf \ p
  \langle proof \rangle
lemma build-psimp-2:
 assumes (k, s) = widest-spread ks (x \# y \# zs) (l, m, r) = partition-by-median
k (x \# y \# zs)
 assumes build-dom\ (ks,\ l)\ build-dom\ (ks,\ r)
  shows build ks (x \# y \# zs) = Node \ k \ m \ (build \ ks \ l) \ (build \ ks \ r)
\langle proof \rangle
lemma length-xs-gt-1:
  1 < length \ xs \Longrightarrow \exists x \ y \ ys. \ xs = x \# y \# ys
```

```
\langle proof \rangle
lemma build-psimp-3:
 assumes 1 < length \ ps \ (k, s) = widest-spread \ ks \ ps \ (l, m, r) = partition-by-median
  assumes build-dom\ (ks,\ l)\ build-dom\ (ks,\ r)
  shows build ks ps = Node k m (build ks l) (build ks r)
  \langle proof \rangle
lemmas \ build-psimps[simp] = build-psimp-1 \ build-psimp-3
2.5
         Main Theorems
theorem set-build:
  0 < length \ ps \Longrightarrow \forall k. \ distinct \ (map \ (\lambda p. \ p\$k) \ ps) \Longrightarrow set \ ps = set-kdt \ (build \ ks)
ps)
\langle proof \rangle
theorem invar-build:
  0 < length \ ps \Longrightarrow \forall \ k. \ distinct \ (map \ (\lambda p. \ p\$k) \ ps) \Longrightarrow set \ ks = UNIV \Longrightarrow invar
(build ks ps)
\langle proof \rangle
theorem size-build:
  0 < length \ ps \Longrightarrow \forall k. \ distinct \ (map \ (\lambda p. \ p\$k) \ ps) \Longrightarrow size\text{-}kdt \ (build \ ks \ ps) =
length ps
\langle proof \rangle
theorem balanced-build:
  0 < length \ ps \Longrightarrow \forall \ k. \ distinct \ (map \ (\lambda p. \ p\$k) \ ps) \Longrightarrow balanced \ (build \ ks \ ps)
\langle proof \rangle
lemma complete-if-balanced-size-2powh:
  assumes balanced kdt size-kdt kdt = 2 \hat{h}
  shows complete kdt
\langle proof \rangle
theorem complete-build:
  length ps = 2 \ \hat{} \ h \Longrightarrow \forall k. distinct (map \ (\lambda p. \ p\$k) \ ps) \Longrightarrow complete \ (build \ k \ ps)
  \langle proof \rangle
corollary height-build:
  assumes length ps = 2 \hat{h} \forall k. distinct (map (<math>\lambda p. p\$k) ps)
  shows h = height (build k ps)
  \langle proof \rangle
```

10

 $\quad \mathbf{end} \quad$

3 Range Searching

```
theory Range-Search
imports
KD-Tree
begin
```

Given two k-dimensional points p_0 and p_1 which bound the search space, the search should return only the points which satisfy the following criteria:

For every point p in the resulting set:

```
For every axis k:

p_0 \ \$ \ k \le p \ \$ \ k \land p \ \$ \ k \le p_1 \ \$ \ k
```

For a 2-d tree a query corresponds to selecting all the points in the rectangle that has p_0 and p_1 as its defining edges.

3.1 Rectangle Definition

```
lemma cbox-point-def:

fixes p_0 :: ('k::finite) point

shows cbox p_0 p_1 = { p. \forall k. p_0$k \leq p$k \land p$k \leq p_1$k }

\langle proof \rangle
```

3.2 Search Function

```
fun search :: ('k::finite) point \Rightarrow 'k point \Rightarrow 'k kdt \Rightarrow 'k point set where search p_0 p_1 (Leaf p) = (if p \in cbox p_0 p_1 then \{p\} else \{\}\}) | search p_0 p_1 (Node k v l r) = ( if v < p_0 \$ k then search p_0 p_1 r else if p_1 \$ k < v then search p_0 p_1 l else search p_0 p_1 l l search p_0 p_1 l
```

3.3 Auxiliary Lemmas

```
lemma l-empty: assumes invar\ (Node\ k\ v\ l\ r)\ v < p_0\$k shows set-kdt\ l\ \cap\ cbox\ p_0\ p_1 = \{\} \langle proof \rangle lemma r-empty: assumes invar\ (Node\ k\ v\ l\ r)\ p_1\$k < v shows set-kdt\ r\ \cap\ cbox\ p_0\ p_1 = \{\} \langle proof \rangle
```

3.4 Main Theorem

```
theorem search-cbox: assumes invar kdt shows search p_0 p_1 kdt = set\text{-}kdt kdt \cap cbox p_0 p_1 \langle proof \rangle
```

end

4 Nearest Neighbor Search on the k-d Tree

```
theory Nearest-Neighbors
imports
KD-Tree
begin
```

Verifying nearest neighbor search on the k-d tree. Given a k-d tree and a point p, which might not be in the tree, find the points ps that are closest to p using the Euclidean metric.

4.1 Auxiliary Lemmas about sorted-wrt

```
lemma
 assumes sorted-wrt f xs
 shows sorted-wrt-take: sorted-wrt f (take n xs)
  and sorted-wrt-drop: sorted-wrt f (drop n xs)
\langle proof \rangle
definition sorted-wrt-dist :: ('k::finite) point \Rightarrow 'k point list \Rightarrow bool where
  sorted\text{-}wrt\text{-}dist\ p \equiv sorted\text{-}wrt\ (\lambda p_0\ p_1.\ dist\ p_0\ p \leq dist\ p_1\ p)
lemma sorted-wrt-dist-insort-key:
  sorted-wrt-dist p ps \Longrightarrow sorted-wrt-dist p (insort-key (\lambda q. dist q p) q ps)
  \langle proof \rangle
lemma sorted-wrt-dist-take-drop:
  assumes sorted-wrt-dist p ps
  shows \forall p_0 \in set \ (take \ n \ ps). \ \forall p_1 \in set \ (drop \ n \ ps). \ dist \ p_0 \ p \leq dist \ p_1 \ p
  \langle proof \rangle
lemma sorted-wrt-dist-last-take-mono:
  assumes sorted-wrt-dist p ps n < length ps 0 < n
  shows dist (last (take n ps)) p \le dist (last ps) p
  \langle proof \rangle
lemma sorted-wrt-dist-last-insort-key-eq:
  assumes sorted-wrt-dist p ps insort-key (\lambda q. dist q p) q ps \neq ps @ [q]
  shows last (insort-key (\lambda q. dist q p) q ps) = last ps
  \langle proof \rangle
```

```
lemma sorted-wrt-dist-last:

assumes sorted-wrt-dist p ps

shows \forall q \in set \ ps. \ dist \ q \ p \leq \ dist \ (last \ ps) \ p

\langle proof \rangle
```

4.2 Neighbors Sorted wrt. Distance

```
definition upd-nbors :: nat \Rightarrow ('k::finite) point \Rightarrow 'k point \Rightarrow 'k point list <math>\Rightarrow 'k
point list where
  upd-nbors n p q ps = take n (insort-key (<math>\lambda q. dist q p) q ps)
lemma sorted-wrt-dist-nbors:
  assumes sorted-wrt-dist p ps
 shows sorted-wrt-dist p (upd-nbors n p q ps)
\langle proof \rangle
lemma sorted-wrt-dist-nbors-diff:
 assumes sorted-wrt-dist p ps
 shows \forall r \in set \ ps \cup \{q\} - set \ (upd\text{-}nbors \ n \ p \ q \ ps). \ \forall \ s \in set \ (upd\text{-}nbors \ n \ p \ q
ps). dist s p \leq dist r p
\langle proof \rangle
lemma sorted-wrt-dist-last-upd-nbors-mono:
  assumes sorted-wrt-dist p ps n \leq length ps 0 < n
  shows dist (last (upd-nbors n p q ps)) p \leq dist (last ps) p
\langle proof \rangle
```

4.3 The Recursive Nearest Neighbor Algorithm

```
fun nearest-nbors :: nat \Rightarrow ('k::finite) point list \Rightarrow 'k point \Rightarrow 'k kdt \Rightarrow 'k point
list where
  nearest-nbors \ n \ ps \ p \ (Leaf \ q) = upd-nbors \ n \ p \ q \ ps
\mid nearest-nbors \ n \ ps \ p \ (Node \ k \ v \ l \ r) = (
    if p\$k \le v then
      let\ candidates = nearest-nbors\ n\ ps\ p\ l\ in
      if length candidates = n \wedge dist \ p \ (last \ candidates) \leq dist \ v \ (p\$k) \ then
        candidates\\
      else
        nearest-nbors n candidates p r
    else
      let\ candidates = nearest-nbors\ n\ ps\ p\ r\ in
      if length candidates = n \land dist\ p\ (last\ candidates) \le dist\ v\ (p\$k)\ then
        candidates
      else
        nearest-nbors n candidates p l
```

4.4 Auxiliary Lemmas

```
lemma cutoff-r:
 assumes invar (Node k \ v \ l \ r)
 assumes p\$k \le v \ dist \ p \ c \le dist \ (p\$k) \ v
 shows \forall q \in set\text{-}kdt \ r. \ dist \ p \ c \leq dist \ p \ q
\langle proof \rangle
lemma cutoff-l:
 assumes invar (Node k \ v \ l \ r)
 assumes v \le p\$k \ dist \ p \ c \le dist \ v \ (p\$k)
 shows \forall q \in set\text{-}kdt \ l. \ dist \ p \ c \leq dist \ p \ q
\langle proof \rangle
4.5
        The Main Theorems
lemma set-nns:
  set\ (nearest-nbors\ n\ ps\ p\ kdt)\subseteq set-kdt\ kdt\cup set\ ps
  \langle proof \rangle
lemma length-nns:
  length (nearest-nbors \ n \ ps \ p \ kdt) = min \ n \ (size-kdt \ kdt + length \ ps)
  \langle proof \rangle
lemma length-nns-gt-0:
  0 < n \Longrightarrow 0 < length (nearest-nbors n ps p kdt)
  \langle proof \rangle
lemma length-nns-n:
  assumes (set\text{-}kdt \ kdt \cup set \ ps) - set \ (nearest\text{-}nbors \ n \ ps \ p \ kdt) \neq \{\}
 shows length (nearest-nbors n ps p kdt) = n
  \langle proof \rangle
lemma sorted-nns:
  sorted-wrt-dist p ps \Longrightarrow sorted-wrt-dist p (nearest-nbors n ps p kdt)
  \langle proof \rangle
lemma distinct-nns:
  assumes invar kdt distinct ps set ps \cap set-kdt kdt = {}
 shows distinct (nearest-nbors n ps p kdt)
  \langle proof \rangle
lemma last-nns-mono:
  assumes invar kdt sorted-wrt-dist p ps n \le length ps 0 < n
 shows dist (last (nearest-nbors n ps p kdt)) p \leq dist (last ps) p
  \langle proof \rangle
theorem dist-nns:
 assumes invar kdt sorted-wrt-dist p ps set ps \cap set-kdt kdt = {} distinct ps \theta <
n
```

```
shows \forall q \in set\text{-}kdt \ kdt \cup set \ ps - set \ (nearest\text{-}nbors \ n \ ps \ p \ kdt). \ dist \ (last \ (nearest\text{-}nbors \ n \ ps \ p \ kdt)) \ p \leq dist \ q \ p \ \langle proof \rangle
```

4.6 Nearest Neighbors Definition and Theorems

```
definition nearest-neighbors :: nat \Rightarrow ('k::finite) point \Rightarrow 'k kdt \Rightarrow 'k point list
where
  nearest-neighbors n p kdt = nearest-nbors n [] p kdt
{\bf theorem}\ \mathit{length-nearest-neighbors}:
  length (nearest-neighbors \ n \ p \ kdt) = min \ n \ (size-kdt \ kdt)
  \langle proof \rangle
{\bf theorem}\ sorted\hbox{-}wrt\hbox{-}dist\hbox{-}nearest\hbox{-}neighbors:
  sorted-wrt-dist p (nearest-neighbors n p kdt)
  \langle proof \rangle
theorem set-nearest-neighbors:
  set (nearest-neighbors \ n \ p \ kdt) \subseteq set-kdt \ kdt
  \langle proof \rangle
{\bf theorem}\ \textit{distinct-nearest-neighbors}:
  assumes invar kdt
  shows distinct (nearest-neighbors n p kdt)
  \langle proof \rangle
theorem dist-nearest-neighbors:
  assumes invar\ kdt\ nns = nearest-neighbors\ n\ p\ kdt
  shows \forall q \in (set\text{-}kdt \ kdt - set \ nns). \ \forall r \in set \ nns. \ dist \ r \ p \leq dist \ q \ p
\langle proof \rangle
```

References

end

- [1] J. L. Bentley. Multidimensional binary search trees used for associative searching. *Commun. ACM*, 18(9):509–517, 1975.
- [2] J. H. Friedman, J. L. Bentley, and R. A. Finkel. An algorithm for finding best matches in logarithmic expected time. *ACM Trans. Math. Softw.*, 3(3):209–226, 1977.