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Abstract
This entry provides a formalization of multidimensional binary trees,
also known as k-d trees. It includes a balanced build algorithm as well
as the nearest neighbor algorithm and the range search algorithm. It
is based on the papers "Multidimensional binary search trees used for
associative searching" [1] and "An Algorithm for Finding Best Matches
in Logarithmic Expected Time" [2].

Contents

1 Definition of the k-d Tree

1.1 Definition of the k-d Tree Invariant and Related Functions . .
1.2 Lemmas adapted from HOL— Library. Tree to k-d Tree . . . .
1.3 Lemmas adapted from HOL— Library. Tree-Real to k-d Tree

Building a balanced k-d Tree from a List of Points

2.1 Auxiliary Lemmas . . . . ... ... 0oL
2.2 Widest Spread Axis . . . . ... ...
2.3 Fast Axis Median . . . . . . .. ... ... ... ...
2.4 Building the Tree . . . . . . . ... ... ... ... .. ...,
2.5 Main Theorems . . . . . . . . . . ... . o

Range Searching

3.1 Rectangle Definition . . . . . ... ... ... ... ... ...
3.2 Search Function . . . . . . ... ... ... oL
3.3 Auxiliary Lemmas . . . .. .. ... ... oL
3.4 Main Theorem . . . . ... ... ... .. ... . .......

Nearest Neighbor Search on the k-d Tree

4.1 Auxiliary Lemmas about sorted-wrt . . . . ... ... .. ..
4.2 Neighbors Sorted wrt. Distance . . . . . . ... .. ... ...
4.3 The Recursive Nearest Neighbor Algorithm . . . ... .. ..
4.4 Auxiliary Lemmas . . . ... ... ... .. ... ...
4.5 The Main Theorems . . . . . .. ... ... ... ... ....
4.6 Nearest Neighbors Definition and Theorems . . . . . . . . ..

T NN

11
11
11
11
12



1 Definition of the k-d Tree

theory KD-Tree
imports
Complez-Main
HOL— Analysis. Finite-Cartesian- Product
HOL— Analysis. Topology- Euclidean-Space
begin

A k-d tree is a space-partitioning data structure for organizing points in a
k-dimensional space. In principle the k-d tree is a binary tree. The leafs
hold the k-dimensional points and the nodes contain left and right subtrees
as well as a discriminator v at a particular axis k. Every node divides the
space into two parts by splitting along a hyperplane. Consider a node n
with associated discriminator v at axis k. All points in the left subtree must
have a value at axis k that is less than or equal to v and all points in the
right subtree must have a value at axis k that is greater than v.

Deviations from the papers:

The chosen tree representation is taken from [2] with one minor adjustment.
Originally the leafs hold buckets of points of size b. This representation
fixes the bucket size to b = 1, a single point per Leaf. This is only a minor
adjustment since the paper proves that b = 1 is the optimal bucket size
for minimizing the running time of the nearest neighbor algorithm [2], only
simplifies building the optimized k-d trees [2] and has little influence on the
search algorithm [1].

type-synonym 'k point = (real, 'k) vec

lemma dist-point-def:
fixes pg :: ('k::finite) point
shows dist pg p1 = sqrt (3. k € UNIV. (po$k — p1$k)?)
(proof )

datatype 'k kdt =
Leaf 'k point
| Node 'k real 'k kdt 'k kdt

1.1 Definition of the i-d Tree Invariant and Related Func-
tions

fun set-kdt :: 'k kdt = ('k point) set where

set-kdt (Leaf p) = { p }
| set-kdt (Node - - 1 r) = set-kdt | U set-kdt r

definition spread :: ('k:finite) = 'k point set = real where
spread k P = (if P = {} then 0 else let V = (Ap. p$k) ‘ P in Maz V — Min V)

definition widest-spread-axis :: ('k::finite) = 'k set = 'k point set = bool where



widest-spread-axis k K ps +— (Vk' € K. spread k' ps < spread k ps)

fun invar = ("k:finite) kdt = bool where
invar (Leaf p) +— True
| invar (Node kv ilr) +— (Vp € set-kdt l. p$k < v) A (Vp € set-kdt r. v < p$k)
A
widest-spread-azis k UNIV (set-kdt | U set-kdt r) A invar | A invar r

fun size-kdt :: 'k kdt = nat where
size-kdt (Leaf -) = 1
| size-kdt (Node - - 1 r) = size-kdt | + size-kdt r

fun height :: 'k kdt = nat where
height (Leaf -) = 0
| height (Node - - 1 r) = max (height 1) (height r) + 1

fun min-height :: 'k kdt = nat where
min-height (Leaf -) = 0
| min-height (Node - - | ) = min (min-height ) (min-height r) + 1

definition balanced :: 'k kdt = bool where
balanced kdt <— height kdt — min-height kdt < 1

fun complete :: 'k kdt = bool where
complete (Leaf -) = True
| complete (Node - - 1 ) «— complete I A\ complete r A height | = height r

lemma invar-I:
invar (Node k v 1 r) = invar |

(proof)

lemma invar-r:
invar (Node k vl 1) = invar r

{proof)

lemma invar-I-le-k:
invar (Node kv lr) = Vp € set-kdt l. p$k < v
(proof)

lemma invar-r-ge-k:
invar (Node kv lr) = Vp € set-kdt r. v < p$k
(proof )

lemma invar-set:
set-kdt (Node k vl r) = set-kdt | U set-kdt r

(proof)



1.2 Lemmas adapted from HOL— Library.Tree to k-d Tree
lemma size-ge0[simp):

0 < size-kdt kdt

(proof)

lemma eg-size-1[simp]:
size-kdt kdt = 1 <— (I p. kdt = Leaf p)
{proof)

lemma eg-1-size[simp):
1 = size-kdt kdt «+— (I p. kdt = Leaf p)
{proof )

lemma neg-Leaf-iff:
(Ap. kdt = Leaf p) = 3k v lr. kdt = Node kvl r)
(proof)

lemma eg-height-0[simp):
height kdt = 0 +— (3 p. kdt = Leaf p)
(proof )

lemma eq-0-height[simpl:
0 = height kdt <— (I p. kdt = Leaf p)
(proof )

lemma eg-min-height-0[simp]:
min-height kdt = 0 <+— (I p. kdt = Leaf p)
{proof )

lemma eg-0-min-height[simp]:
0 = min-height kdt <— (I p. kdt = Leaf p)
(proof )

lemma size-height:
size-kdt kdt < 2 ~ height kdt

(proof)

lemma min-height-le-height:
min-height kdt < height kdt
(proof )

lemma min-height-size:
2 7 min-height kdt < size-kdt kdt
(proof)

lemma complete-iff-height:
complete kdt «— (min-height kdt = height kdt)

{proof)



lemma size-if-complete:
complete kdt = size-kdt kdt = 2 ~ height kdt

{proof)

lemma complete-if-size-height:
size-kdt kdt = 2 ~ height kdt =—> complete kdt
(proof)

lemma complete-if-size-min-height:
size-kdt kdt = 2 ~ min-height kdt = complete kdt
(proof)

lemma complete-iff-size:
complete kdt <— size-kdt kdt = 2 ~ height kdt

(proof)

lemma size-height-if-incomplete:
= complete kdt = size-kdt kdt < 2 ~ height kdt
{proof )

lemma min-height-size-if-incomplete:
= complete kdt = 2 ~ min-height kdt < size-kdt kdt
(proof)

lemma balanced-subtreel:
balanced (Node k v 1 r) = balanced 1

{proof)

lemma balanced-subtreeR:
balanced (Node k v [ r) = balanced r

(proof)

lemma balanced-optimal:
assumes balanced kdt size-kdt kdt < size-kdt kdt’
shows height kdt < height kdt’

(proof)

1.3 Lemmas adapted from HOL— Library.Tree-Real to k-d Tree
lemma size-height-log:

log 2 (size-kdt kdt) < height kdt

{proof )

lemma min-height-size-log:
min-height kdt < log 2 (size-kdt kdt)
(proof )

lemma size-log-if-complete:
complete kdt = height kdt = log 2 (size-kdt kdt)



{proof)

lemma min-height-size-log-if-incomplete:
- complete kdt = min-height kdt < log 2 (size-kdt kdt)
(proof )

lemma min-height-balanced:
assumes balanced kdt
shows min-height kdt = nat(floor(log 2 (size-kdt kdt)))

{(proof)

lemma height-balanced:
assumes balanced kdt
shows height kdt = nat(ceiling(log 2 (size-kdt kdt)))

(proof)

lemma balanced-Node-if-wball:
assumes balanced [ balanced r size-kdt | = size-kdt r + 1
shows balanced (Node k v [l r)

(proof)

lemma balanced-sym:
balanced (Node k v 1 r) = balanced (Node k' v’ 1 1)

{proof)

lemma balanced- Node-if-wbal2:
assumes balanced | balanced r abs(int(size-kdt 1) — int(size-kdt r)) < 1
shows balanced (Node k vl r)

(proof)

end

2 Building a balanced k-d Tree from a List of Points

theory Build
imports

KD-Tree

Median-Of-Medians-Selection. Median- Of-Medians-Selection
begin

Build a balanced k-d Tree by recursively partition the points into two lists.
The partitioning criteria will be the median at a particular axis k. The left
list will contain all points p with p $ k& < median. The right list will contain
all points with median at axis median < p $ k. The left and right list differ
in length by one or none. The axis k£ will the widest spread axis.



2.1 Auxiliary Lemmas

lemma length-filter-mset-sorted-nth:
assumes distinct s n < length xs sorted xs
shows {# = €# mset xs. x < zs | n #} = mset (take (n + 1) xs)
(proof)

lemma length-filter-sort-nth:
assumes distinct s n < length xs
shows length (filter (Az. © < sort xs ! n) xs) = n + 1

(proof)

2.2 Widest Spread Axis

definition calc-spread :: ('k::finite) = 'k point list = real where
calc-spread k ps = (case ps of [| = 0| ps =
let ks = map (Ap. p$k) (¢l ps) in
fold maz ks ((hd ps)$k) — fold min ks ((hd ps)$k)
)

fun widest-spread :: ('k::finite) list = 'k point list = 'k x real where
widest-spread || - = undefined
| widest-spread [k] ps = (k, calc-spread k ps)
| widest-spread (k # ks) ps = (
let (k', s") = widest-spread ks ps in
let s = calc-spread k ps in
if s < s’ then (k', s") else (k, s)
)

lemma calc-spread-spec:
calc-spread k ps = spread k (set ps)
(proof )

lemma widest-spread-calc-spread:
ks # [| = (k, s) = widest-spread ks ps => s = calc-spread k ps

(proof)

lemma widest-spread-axis- Un:
shows widest-spread-azxis k K P = spread k' P < spread k P => widest-spread-axis
E(KU{k'})P
and widest-spread-axis k K P = spread k P < spread k' P = widest-spread-axis
E(KU{k"})P
(proof)

lemma widest-spread-spec:
(k, s) = widest-spread ks ps => widest-spread-azis k (set ks) (set ps)

(proof)



2.3 Fast Axis Median

definition azis-median :: ('k:finite) = 'k point list = real where
azis-median k ps = (let n = (length ps — 1) div 2 in fast-select n (map (Ap. p$k)

ps))

lemma length-filter-le-axis-median:

assumes 0 < length ps V k. distinct (map (Ap. p$k) ps)

shows length (filter (Ap. p$k < azis-median k ps) ps) = (length ps — 1) div 2 +
1
{proof)

definition partition-by-median :: ('k::finite) = 'k point list = 'k point list x real
x 'k point list where
partition-by-median k ps = (
let m = axis-median k ps in
let (I, r) = partition (Ap. pSk < m) ps in
(l’ m, T)
)

lemma set-partition-by-median:
(I, m, r) = partition-by-median k ps = set ps = set | U set r
(proof)

lemma filter-partition-by-median:
assumes (I, m, r) = partition-by-median k ps
shows Vp € set l. p$k < m
and Vp € set r. —=pSk < m
(proof)

lemma sum-length-partition-by-median:
assumes (I, m, r) = partition-by-median k ps
shows length ps = length | + length r
(proof)

lemma length-Il-partition-by-median:

assumes 0 < length ps Vk. distinct (map (Ap. p$k) ps) (I, m, r) = parti-
tion-by-median k ps

shows length | = (length ps — 1) div 2 + 1

(proof)

corollary lengths-partition-by-median-1:
assumes 0 < length ps Vk. distinct (map (Ap. p$k) ps) (I, m, r) = parti-
tion-by-median k ps
shows length | — length r < 1
and length r < length 1
and 0 < length 1
and length r < length ps

{proof)



corollary lengths-partition-by-median-2:
assumes 1 < length ps Vk. distinct (map (Ap. p$k) ps) (I, m, r) = parti-
tion-by-median k ps
shows 0 < length r
and length | < length ps

(proof)

lemmas length-partition-by-median =
sum-length-partition-by-median length-I-partition-by-median
lengths-partition-by-median-1 lengths-partition-by-median-2

2.4 Building the Tree

function (domintros, sequential) build :: ('k::finite) list = 'k point list = 'k kdt
where
build - [| = undefined
| build - [p] = Leaf p
| build ks ps = (
let (k, -) = widest-spread ks ps in
let (I, m, r) = partition-by-median k ps in
Node k m (build ks 1) (build ks )
)
(proof )

lemma build-domintros3:

assumes (k, s) = widest-spread ks (x # y # zs) (I, m, r) = partition-by-median
k(x4 y # 25)

assumes build-dom (ks, 1) build-dom (ks, r)

shows build-dom (ks, © # y # 2s)
(proof)

lemma build-termination:
assumes V k. distinct (map (Ap. p$k) ps)
shows build-dom (ks, ps)

(proof)

lemma build-psimp-1:
ps = [p] = build k ps = Leaf p
(proof )

lemma build-psimp-2:

assumes (k, s) = widest-spread ks (x # y # zs) (I, m, r) = partition-by-median
k(x4 y # 25)

assumes build-dom (ks, 1) build-dom (ks, r)

shows build ks (z # y # 2s) = Node k m (build ks 1) (build ks r)
(proof)

lemma length-rs-gt-1:
1 < lengthzs = Jx y ys. xs = x # y # ys



{proof)

lemma build-psimp-3:

assumes 1 < length ps (k, s) = widest-spread ks ps (I, m, r) = partition-by-median
k ps

assumes build-dom (ks, 1) build-dom (ks, r)

shows build ks ps = Node k m (build ks 1) (build ks )

(proof)

lemmas build-psimps[simp] = build-psimp-1 build-psimp-3

2.5 Main Theorems

theorem set-build:

0 < length ps = VY k. distinct (map (Ap. pSk) ps) = set ps = set-kdt (build ks
ps)
(proof)

theorem invar-build:

0 < length ps = V k. distinct (map (Ap. p$k) ps) = set ks = UNIV = invar
(build ks ps)
(proof)

theorem size-build:

0 < length ps = Y k. distinct (map (Ap. p$k) ps) = size-kdt (build ks ps) =
length ps
(proof)

theorem balanced-build:
0 < length ps = Y k. distinct (map (Ap. p$k) ps) = balanced (build ks ps)

(proof)

lemma complete-if-balanced-size-2powh:
assumes balanced kdt size-kdt kdt = 2 ~ h
shows complete kdt

(proof)

theorem complete-build:
length ps = 2 ~ h = V k. distinct (map (Ap. p$k) ps) = complete (build k ps)
(proof )
corollary height-build:
assumes length ps = 2 ~ h Vk. distinct (map (Ap. pSk) ps)
shows h = height (build k ps)
(proof )

end
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3 Range Searching

theory Range-Search
imports

KD-Tree
begin

Given two k-dimensional points pg and p; which bound the search space,
the search should return only the points which satisfy the following criteria:

For every point p in the resulting set:
For every axis k:
poSk<pSkApSk<p $k

For a 2-d tree a query corresponds to selecting all the points in the rectangle
that has pg and p; as its defining edges.

3.1 Rectangle Definition

lemma cboz-point-def:

fixes pg :: ('k::finite) point

shows cboz pg p1 = { p. Vk. poSk < p8k A p$k < p1$k }
(proof)

3.2 Search Function

fun search :: ('k::finite) point = 'k point = 'k kdt = 'k point set where
search po p1 (Leaf p) = (if p € cbox po p1 then { p } else {})
| search pg p1 (Node kvir) = (
if v < po$k then
search pg p1 T
else if p1$k < v then
search pg py 1
else
search pg p1 1 U search pg p1 T
)

3.3 Auxiliary Lemmas

lemma [-empty:
assumes invar (Node kv ir) v < poSk
shows set-kdt | N cbozx py p1 = {}

(proof)

lemma r-empty:
assumes invar (Node kvl r) p1$k < v
shows set-kdt r N cboz py p1 = {}

(proof )
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3.4 Main Theorem

theorem search-cbox:
assumes invar kdt
shows search pg p1 kdt = set-kdt kdt N cbox po p1

{proof)

end

4 Nearest Neighbor Search on the k-d Tree

theory Nearest-Neighbors
imports

KD-Tree
begin

Verifying nearest neighbor search on the k-d tree. Given a k-d tree and a
point p, which might not be in the tree, find the points ps that are closest
to p using the Euclidean metric.

4.1 Auxiliary Lemmas about sorted-wrt

lemma
assumes sorted-wrt f xs
shows sorted-wrt-take: sorted-wrt f (take n xs)
and sorted-wrt-drop: sorted-wrt f (drop n xs)

{(proof)

definition sorted-wrt-dist :: ('k::finite) point = 'k point list = bool where
sorted-wrt-dist p = sorted-wrt (Apo p1. dist po p < dist p1 p)

lemma sorted-wrt-dist-insort-key:
sorted-wrt-dist p ps = sorted-wrt-dist p (insort-key (Aq. dist q p) q ps)
(proof )

lemma sorted-wrt-dist-take-drop:
assumes sorted-wrt-dist p ps
shows V pg € set (take n ps). ¥V p1 € set (drop n ps). dist pg p < dist p1 p

{proof)

lemma sorted-wrt-dist-last-take-mono:
assumes sorted-wrt-dist p ps n < length ps 0 < n
shows dist (last (take n ps)) p < dist (last ps) p
(proof)

lemma sorted-wrt-dist-last-insort-key-eq:
assumes sorted-wrt-dist p ps insort-key (Aq. dist ¢ p) q ps # ps Q [q]
shows last (insort-key (Aq. dist q p) q ps) = last ps

(proof)
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lemma sorted-wrt-dist-last:

assumes sorted-wrt-dist p ps

shows V ¢ € set ps. dist ¢ p < dist (last ps) p
(proof )

4.2 Neighbors Sorted wrt. Distance

definition upd-nbors :: nat = ('k::finite) point = 'k point = 'k point list = 'k
point list where
upd-nbors n p q ps = take n (insort-key (\q. dist g p) ¢ ps)

lemma sorted-wrt-dist-nbors:
assumes sorted-wrt-dist p ps
shows sorted-wrt-dist p (upd-nbors n p q ps)

(proof)

lemma sorted-wrt-dist-nbors-diff:

assumes sorted-wrt-dist p ps

shows Vr € set ps U {q} — set (upd-nbors n p q ps). Vs € set (upd-nbors n p q
ps). dist s p < dist r p
(proof)

lemma sorted-wrt-dist-last-upd-nbors-mono:
assumes sorted-wrt-dist p ps n < length ps 0 < n
shows dist (last (upd-nbors n p q ps)) p < dist (last ps) p

(proof)

4.3 The Recursive Nearest Neighbor Algorithm

fun nearest-nbors :: nat = ('k::finite) point list = 'k point = 'k kdt = 'k point
list where
nearest-nbors n ps p (Leaf q) = upd-nbors n p q ps
| nearest-nbors n ps p (Node kvlr) = (
if p3k < v then
let candidates = nearest-nbors n ps p 1 in
if length candidates = n A dist p (last candidates) < dist v (p$k) then
candidates
else
nearest-nbors n candidates p r
else
let candidates = nearest-nbors n ps p r in
if length candidates = n A dist p (last candidates) < dist v (p$k) then
candidates
else
nearest-nbors n candidates p 1
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4.4 Auxiliary Lemmas

lemma cutoff-r:
assumes invar (Node kv [ 1)
assumes p$k < v dist p ¢ < dist (pSk) v
shows V q € set-kdt r. dist p ¢ < dist p q
(proof)

lemma cutoff-I:
assumes invar (Node kv [l 1)
assumes v < p$k dist p ¢ < dist v (p$k)
shows V q € set-kdt l. dist p ¢ < dist p q
(proof)

4.5 The Main Theorems

lemma set-nns:
set (nearest-nbors n ps p kdt) C set-kdt kdt U set ps
(proof )

lemma length-nns:
length (nearest-nbors n ps p kdt) = min n (size-kdt kdt + length ps)
(proof )

lemma length-nns-gt-0:
0 < n = 0 < length (nearest-nbors n ps p kdt)
(proof )

lemma length-nns-n:
assumes (set-kdt kdt U set ps) — set (nearest-nbors n ps p kdt) # {}
shows length (nearest-nbors n ps p kdt) = n

{proof)

lemma sorted-nns:
sorted-wrt-dist p ps = sorted-wrt-dist p (nearest-nbors n ps p kdt)

(proof)

lemma distinct-nns:
assumes invar kdt distinct ps set ps N set-kdt kdt = {}
shows distinct (nearest-nbors n ps p kdt)

{proof)

lemma last-nns-mono:
assumes invar kdt sorted-wrt-dist p ps n < length ps 0 < n
shows dist (last (nearest-nbors n ps p kdt)) p < dist (last ps) p
(proof)

theorem dist-nns:

assumes invar kdt sorted-wrt-dist p ps set ps N set-kdt kdt = {} distinct ps 0 <
n

14



shows V¢ € set-kdt kdt U set ps — set (nearest-nbors n ps p kdt). dist (last
(nearest-nbors n ps p kdt)) p < dist ¢ p

{proof)

4.6 Nearest Neighbors Definition and Theorems

definition nearest-neighbors :: nat = ('k:finite) point = 'k kdt = 'k point list
where
nearest-neighbors n p kdt = nearest-nbors n [| p kdt

theorem length-nearest-neighbors:
length (nearest-neighbors n p kdt) = min n (size-kdt kdt)

(proof)

theorem sorted-wrt-dist-nearest-neighbors:
sorted-wrt-dist p (nearest-neighbors n p kdt)

{proof)

theorem set-nearest-neighbors:
set (nearest-neighbors n p kdt) C set-kdt kdt

{proof)

theorem distinct-nearest-neighbors:
assumes nvar kdt
shows distinct (nearest-neighbors n p kdt)
(proof)

theorem dist-nearest-neighbors:

assumes invar kdt nns = nearest-neighbors n p kdt

shows V ¢ € (set-kdt kdt — set nns). Vr € set nns. dist r p < dist q p
(proof)

end
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