Multidimensional Binary Search Trees

Martin Rau

March 17, 2025

Abstract
This entry provides a formalization of multidimensional binary trees,
also known as k-d trees. It includes a balanced build algorithm as well
as the nearest neighbor algorithm and the range search algorithm. It
is based on the papers "Multidimensional binary search trees used for
associative searching" [1] and "An Algorithm for Finding Best Matches
in Logarithmic Expected Time" [2].

Contents

1 Definition of the k-d Tree

1.1 Definition of the k-d Tree Invariant and Related Functions . .
1.2 Lemmas adapted from HOL— Library. Tree to k-d Tree
1.3 Lemmas adapted from HOL— Library. Tree-Real to k-d Tree

Building a balanced k-d Tree from a List of Points

2.1 Auxiliary Lemmas 0oL
2.2 Widest Spread Axis
2.3 Fast Axis Median
2.4 Building the Tree,
2.5 Main Theorems o

Range Searching

3.1 Rectangle Definition
3.2 Search Function oL
3.3 Auxiliary Lemmas oL
3.4 Main Theorem

Nearest Neighbor Search on the k-d Tree

4.1 Auxiliary Lemmas about sorted-wrt
4.2 Neighbors Sorted wrt. Distance
4.3 The Recursive Nearest Neighbor Algorithm
4.4 Auxiliary Lemmas
4.5 The Main Theorems
4.6 Nearest Neighbors Definition and Theorems

T NN

11
11
11
11
12

1 Definition of the k-d Tree

theory KD-Tree
imports
Complez-Main
HOL— Analysis. Finite-Cartesian- Product
HOL— Analysis. Topology- Euclidean-Space
begin

A k-d tree is a space-partitioning data structure for organizing points in a
k-dimensional space. In principle the k-d tree is a binary tree. The leafs
hold the k-dimensional points and the nodes contain left and right subtrees
as well as a discriminator v at a particular axis k. Every node divides the
space into two parts by splitting along a hyperplane. Consider a node n
with associated discriminator v at axis k. All points in the left subtree must
have a value at axis k that is less than or equal to v and all points in the
right subtree must have a value at axis k that is greater than v.

Deviations from the papers:

The chosen tree representation is taken from [2] with one minor adjustment.
Originally the leafs hold buckets of points of size b. This representation
fixes the bucket size to b = 1, a single point per Leaf. This is only a minor
adjustment since the paper proves that b = 1 is the optimal bucket size
for minimizing the running time of the nearest neighbor algorithm [2], only
simplifies building the optimized k-d trees [2] and has little influence on the
search algorithm [1].

type-synonym 'k point = (real, 'k) vec

lemma dist-point-def:
fixes pg :: ('k::finite) point
shows dist pg p1 = sqrt (3. k € UNIV. (po$k — p1$k)?)
(proof)

datatype 'k kdt =
Leaf 'k point
| Node 'k real 'k kdt 'k kdt

1.1 Definition of the i-d Tree Invariant and Related Func-
tions

fun set-kdt :: 'k kdt = ('k point) set where

set-kdt (Leaf p) = { p }
| set-kdt (Node - - 1 r) = set-kdt | U set-kdt r

definition spread :: ('k:finite) = 'k point set = real where
spread k P = (if P = {} then 0 else let V = (Ap. p$k) ‘ P in Maz V — Min V)

definition widest-spread-axis :: ('k::finite) = 'k set = 'k point set = bool where

widest-spread-axis k K ps +— (Vk' € K. spread k' ps < spread k ps)

fun invar = ("k:finite) kdt = bool where
invar (Leaf p) +— True
| invar (Node kv ilr) +— (Vp € set-kdt l. p$k < v) A (Vp € set-kdt r. v < p$k)
A
widest-spread-azis k UNIV (set-kdt | U set-kdt r) A invar | A invar r

fun size-kdt :: 'k kdt = nat where
size-kdt (Leaf -) = 1
| size-kdt (Node - - 1 r) = size-kdt | + size-kdt r

fun height :: 'k kdt = nat where
height (Leaf -) = 0
| height (Node - - 1 r) = max (height 1) (height r) + 1

fun min-height :: 'k kdt = nat where
min-height (Leaf -) = 0
| min-height (Node - - |) = min (min-height) (min-height r) + 1

definition balanced :: 'k kdt = bool where
balanced kdt <— height kdt — min-height kdt < 1

fun complete :: 'k kdt = bool where
complete (Leaf -) = True
| complete (Node - - 1) «— complete I A\ complete r A height | = height r

lemma invar-I:
invar (Node k v 1 r) = invar |

(proof)

lemma invar-r:
invar (Node k vl 1) = invar r

{proof)

lemma invar-I-le-k:
invar (Node kv lr) = Vp € set-kdt l. p$k < v
(proof)

lemma invar-r-ge-k:
invar (Node kv lr) = Vp € set-kdt r. v < p$k
(proof)

lemma invar-set:
set-kdt (Node k vl r) = set-kdt | U set-kdt r

(proof)

1.2 Lemmas adapted from HOL— Library.Tree to k-d Tree
lemma size-ge0[simp):

0 < size-kdt kdt

(proof)

lemma eg-size-1[simp]:
size-kdt kdt = 1 <— (I p. kdt = Leaf p)
{proof)

lemma eg-1-size[simp):
1 = size-kdt kdt «+— (I p. kdt = Leaf p)
{proof)

lemma neg-Leaf-iff:
(Ap. kdt = Leaf p) = 3k v lr. kdt = Node kvl r)
(proof)

lemma eg-height-0[simp):
height kdt = 0 +— (3 p. kdt = Leaf p)
(proof)

lemma eq-0-height[simpl:
0 = height kdt <— (I p. kdt = Leaf p)
(proof)

lemma eg-min-height-0[simp]:
min-height kdt = 0 <+— (I p. kdt = Leaf p)
{proof)

lemma eg-0-min-height[simp]:
0 = min-height kdt <— (I p. kdt = Leaf p)
(proof)

lemma size-height:
size-kdt kdt < 2 ~ height kdt

(proof)

lemma min-height-le-height:
min-height kdt < height kdt
(proof)

lemma min-height-size:
2 7 min-height kdt < size-kdt kdt
(proof)

lemma complete-iff-height:
complete kdt «— (min-height kdt = height kdt)

{proof)

lemma size-if-complete:
complete kdt = size-kdt kdt = 2 ~ height kdt

{proof)

lemma complete-if-size-height:
size-kdt kdt = 2 ~ height kdt =—> complete kdt
(proof)

lemma complete-if-size-min-height:
size-kdt kdt = 2 ~ min-height kdt = complete kdt
(proof)

lemma complete-iff-size:
complete kdt <— size-kdt kdt = 2 ~ height kdt

(proof)

lemma size-height-if-incomplete:
= complete kdt = size-kdt kdt < 2 ~ height kdt
{proof)

lemma min-height-size-if-incomplete:
= complete kdt = 2 ~ min-height kdt < size-kdt kdt
(proof)

lemma balanced-subtreel:
balanced (Node k v 1 r) = balanced 1

{proof)

lemma balanced-subtreeR:
balanced (Node k v [r) = balanced r

(proof)

lemma balanced-optimal:
assumes balanced kdt size-kdt kdt < size-kdt kdt’
shows height kdt < height kdt’

(proof)

1.3 Lemmas adapted from HOL— Library.Tree-Real to k-d Tree
lemma size-height-log:

log 2 (size-kdt kdt) < height kdt

{proof)

lemma min-height-size-log:
min-height kdt < log 2 (size-kdt kdt)
(proof)

lemma size-log-if-complete:
complete kdt = height kdt = log 2 (size-kdt kdt)

{proof)

lemma min-height-size-log-if-incomplete:
- complete kdt = min-height kdt < log 2 (size-kdt kdt)
(proof)

lemma min-height-balanced:
assumes balanced kdt
shows min-height kdt = nat(floor(log 2 (size-kdt kdt)))

{(proof)

lemma height-balanced:
assumes balanced kdt
shows height kdt = nat(ceiling(log 2 (size-kdt kdt)))

(proof)

lemma balanced-Node-if-wball:
assumes balanced [balanced r size-kdt | = size-kdt r + 1
shows balanced (Node k v [l r)

(proof)

lemma balanced-sym:
balanced (Node k v 1 r) = balanced (Node k' v’ 1 1)

{proof)

lemma balanced- Node-if-wbal2:
assumes balanced | balanced r abs(int(size-kdt 1) — int(size-kdt r)) < 1
shows balanced (Node k vl r)

(proof)

end

2 Building a balanced k-d Tree from a List of Points

theory Build
imports

KD-Tree

Median-Of-Medians-Selection. Median- Of-Medians-Selection
begin

Build a balanced k-d Tree by recursively partition the points into two lists.
The partitioning criteria will be the median at a particular axis k. The left
list will contain all points p with p $ k& < median. The right list will contain
all points with median at axis median < p $ k. The left and right list differ
in length by one or none. The axis k£ will the widest spread axis.

2.1 Auxiliary Lemmas

lemma length-filter-mset-sorted-nth:
assumes distinct s n < length xs sorted xs
shows {# = €# mset xs. x < zs | n #} = mset (take (n + 1) xs)
(proof)

lemma length-filter-sort-nth:
assumes distinct s n < length xs
shows length (filter (Az. © < sort xs ! n) xs) = n + 1

(proof)

2.2 Widest Spread Axis

definition calc-spread :: ('k::finite) = 'k point list = real where
calc-spread k ps = (case ps of [| = 0| ps =
let ks = map (Ap. p$k) (¢l ps) in
fold maz ks ((hd ps)$k) — fold min ks ((hd ps)$k)
)

fun widest-spread :: ('k::finite) list = 'k point list = 'k x real where
widest-spread || - = undefined
| widest-spread [k] ps = (k, calc-spread k ps)
| widest-spread (k # ks) ps = (
let (k', s") = widest-spread ks ps in
let s = calc-spread k ps in
if s < s’ then (k', s") else (k, s)
)

lemma calc-spread-spec:
calc-spread k ps = spread k (set ps)
(proof)

lemma widest-spread-calc-spread:
ks # [| = (k, s) = widest-spread ks ps => s = calc-spread k ps

(proof)

lemma widest-spread-axis- Un:
shows widest-spread-azxis k K P = spread k' P < spread k P => widest-spread-axis
E(KU{k'})P
and widest-spread-axis k K P = spread k P < spread k' P = widest-spread-axis
E(KU{k"})P
(proof)

lemma widest-spread-spec:
(k, s) = widest-spread ks ps => widest-spread-azis k (set ks) (set ps)

(proof)

2.3 Fast Axis Median

definition azis-median :: ('k:finite) = 'k point list = real where
azis-median k ps = (let n = (length ps — 1) div 2 in fast-select n (map (Ap. p$k)

ps))

lemma length-filter-le-axis-median:

assumes 0 < length ps V k. distinct (map (Ap. p$k) ps)

shows length (filter (Ap. p$k < azis-median k ps) ps) = (length ps — 1) div 2 +
1
{proof)

definition partition-by-median :: ('k::finite) = 'k point list = 'k point list x real
x 'k point list where
partition-by-median k ps = (
let m = axis-median k ps in
let (I, r) = partition (Ap. pSk < m) ps in
(l’ m, T)
)

lemma set-partition-by-median:
(I, m, r) = partition-by-median k ps = set ps = set | U set r
(proof)

lemma filter-partition-by-median:
assumes (I, m, r) = partition-by-median k ps
shows Vp € set l. p$k < m
and Vp € set r. —=pSk < m
(proof)

lemma sum-length-partition-by-median:
assumes (I, m, r) = partition-by-median k ps
shows length ps = length | + length r
(proof)

lemma length-Il-partition-by-median:

assumes 0 < length ps Vk. distinct (map (Ap. p$k) ps) (I, m, r) = parti-
tion-by-median k ps

shows length | = (length ps — 1) div 2 + 1

(proof)

corollary lengths-partition-by-median-1:
assumes 0 < length ps Vk. distinct (map (Ap. p$k) ps) (I, m, r) = parti-
tion-by-median k ps
shows length | — length r < 1
and length r < length 1
and 0 < length 1
and length r < length ps

{proof)

corollary lengths-partition-by-median-2:
assumes 1 < length ps Vk. distinct (map (Ap. p$k) ps) (I, m, r) = parti-
tion-by-median k ps
shows 0 < length r
and length | < length ps

(proof)

lemmas length-partition-by-median =
sum-length-partition-by-median length-I-partition-by-median
lengths-partition-by-median-1 lengths-partition-by-median-2

2.4 Building the Tree

function (domintros, sequential) build :: ('k::finite) list = 'k point list = 'k kdt
where
build - [| = undefined
| build - [p] = Leaf p
| build ks ps = (
let (k, -) = widest-spread ks ps in
let (I, m, r) = partition-by-median k ps in
Node k m (build ks 1) (build ks)
)
(proof)

lemma build-domintros3:

assumes (k, s) = widest-spread ks (x # y # zs) (I, m, r) = partition-by-median
k(x4 y # 25)

assumes build-dom (ks, 1) build-dom (ks, r)

shows build-dom (ks, © # y # 2s)
(proof)

lemma build-termination:
assumes V k. distinct (map (Ap. p$k) ps)
shows build-dom (ks, ps)

(proof)

lemma build-psimp-1:
ps = [p] = build k ps = Leaf p
(proof)

lemma build-psimp-2:

assumes (k, s) = widest-spread ks (x # y # zs) (I, m, r) = partition-by-median
k(x4 y # 25)

assumes build-dom (ks, 1) build-dom (ks, r)

shows build ks (z # y # 2s) = Node k m (build ks 1) (build ks r)
(proof)

lemma length-rs-gt-1:
1 < lengthzs = Jx y ys. xs = x # y # ys

{proof)

lemma build-psimp-3:

assumes 1 < length ps (k, s) = widest-spread ks ps (I, m, r) = partition-by-median
k ps

assumes build-dom (ks, 1) build-dom (ks, r)

shows build ks ps = Node k m (build ks 1) (build ks)

(proof)

lemmas build-psimps[simp] = build-psimp-1 build-psimp-3

2.5 Main Theorems

theorem set-build:

0 < length ps = VY k. distinct (map (Ap. pSk) ps) = set ps = set-kdt (build ks
ps)
(proof)

theorem invar-build:

0 < length ps = V k. distinct (map (Ap. p$k) ps) = set ks = UNIV = invar
(build ks ps)
(proof)

theorem size-build:

0 < length ps = Y k. distinct (map (Ap. p$k) ps) = size-kdt (build ks ps) =
length ps
(proof)

theorem balanced-build:
0 < length ps = Y k. distinct (map (Ap. p$k) ps) = balanced (build ks ps)

(proof)

lemma complete-if-balanced-size-2powh:
assumes balanced kdt size-kdt kdt = 2 ~ h
shows complete kdt

(proof)

theorem complete-build:
length ps = 2 ~ h = V k. distinct (map (Ap. p$k) ps) = complete (build k ps)
(proof)
corollary height-build:
assumes length ps = 2 ~ h Vk. distinct (map (Ap. pSk) ps)
shows h = height (build k ps)
(proof)

end

10

3 Range Searching

theory Range-Search
imports

KD-Tree
begin

Given two k-dimensional points pg and p; which bound the search space,
the search should return only the points which satisfy the following criteria:

For every point p in the resulting set:
For every axis k:
poSk<pSkApSk<p $k

For a 2-d tree a query corresponds to selecting all the points in the rectangle
that has pg and p; as its defining edges.

3.1 Rectangle Definition

lemma cboz-point-def:

fixes pg :: ('k::finite) point

shows cboz pg p1 = { p. Vk. poSk < p8k A p$k < p1$k }
(proof)

3.2 Search Function

fun search :: ('k::finite) point = 'k point = 'k kdt = 'k point set where
search po p1 (Leaf p) = (if p € cbox po p1 then { p } else {})
| search pg p1 (Node kvir) = (
if v < po$k then
search pg p1 T
else if p1$k < v then
search pg py 1
else
search pg p1 1 U search pg p1 T
)

3.3 Auxiliary Lemmas

lemma [-empty:
assumes invar (Node kv ir) v < poSk
shows set-kdt | N cbozx py p1 = {}

(proof)

lemma r-empty:
assumes invar (Node kvl r) p1$k < v
shows set-kdt r N cboz py p1 = {}

(proof)

11

3.4 Main Theorem

theorem search-cbox:
assumes invar kdt
shows search pg p1 kdt = set-kdt kdt N cbox po p1

{proof)

end

4 Nearest Neighbor Search on the k-d Tree

theory Nearest-Neighbors
imports

KD-Tree
begin

Verifying nearest neighbor search on the k-d tree. Given a k-d tree and a
point p, which might not be in the tree, find the points ps that are closest
to p using the Euclidean metric.

4.1 Auxiliary Lemmas about sorted-wrt

lemma
assumes sorted-wrt f xs
shows sorted-wrt-take: sorted-wrt f (take n xs)
and sorted-wrt-drop: sorted-wrt f (drop n xs)

{(proof)

definition sorted-wrt-dist :: ('k::finite) point = 'k point list = bool where
sorted-wrt-dist p = sorted-wrt (Apo p1. dist po p < dist p1 p)

lemma sorted-wrt-dist-insort-key:
sorted-wrt-dist p ps = sorted-wrt-dist p (insort-key (Aq. dist q p) q ps)
(proof)

lemma sorted-wrt-dist-take-drop:
assumes sorted-wrt-dist p ps
shows V pg € set (take n ps). ¥V p1 € set (drop n ps). dist pg p < dist p1 p

{proof)

lemma sorted-wrt-dist-last-take-mono:
assumes sorted-wrt-dist p ps n < length ps 0 < n
shows dist (last (take n ps)) p < dist (last ps) p
(proof)

lemma sorted-wrt-dist-last-insort-key-eq:
assumes sorted-wrt-dist p ps insort-key (Aq. dist ¢ p) q ps # ps Q [q]
shows last (insort-key (Aq. dist q p) q ps) = last ps

(proof)

12

lemma sorted-wrt-dist-last:

assumes sorted-wrt-dist p ps

shows V ¢ € set ps. dist ¢ p < dist (last ps) p
(proof)

4.2 Neighbors Sorted wrt. Distance

definition upd-nbors :: nat = ('k::finite) point = 'k point = 'k point list = 'k
point list where
upd-nbors n p q ps = take n (insort-key (\q. dist g p) ¢ ps)

lemma sorted-wrt-dist-nbors:
assumes sorted-wrt-dist p ps
shows sorted-wrt-dist p (upd-nbors n p q ps)

(proof)

lemma sorted-wrt-dist-nbors-diff:

assumes sorted-wrt-dist p ps

shows Vr € set ps U {q} — set (upd-nbors n p q ps). Vs € set (upd-nbors n p q
ps). dist s p < dist r p
(proof)

lemma sorted-wrt-dist-last-upd-nbors-mono:
assumes sorted-wrt-dist p ps n < length ps 0 < n
shows dist (last (upd-nbors n p q ps)) p < dist (last ps) p

(proof)

4.3 The Recursive Nearest Neighbor Algorithm

fun nearest-nbors :: nat = ('k::finite) point list = 'k point = 'k kdt = 'k point
list where
nearest-nbors n ps p (Leaf q) = upd-nbors n p q ps
| nearest-nbors n ps p (Node kvlr) = (
if p3k < v then
let candidates = nearest-nbors n ps p 1 in
if length candidates = n A dist p (last candidates) < dist v (p$k) then
candidates
else
nearest-nbors n candidates p r
else
let candidates = nearest-nbors n ps p r in
if length candidates = n A dist p (last candidates) < dist v (p$k) then
candidates
else
nearest-nbors n candidates p 1

13

4.4 Auxiliary Lemmas

lemma cutoff-r:
assumes invar (Node kv [1)
assumes p$k < v dist p ¢ < dist (pSk) v
shows V q € set-kdt r. dist p ¢ < dist p q
(proof)

lemma cutoff-I:
assumes invar (Node kv [l 1)
assumes v < p$k dist p ¢ < dist v (p$k)
shows V q € set-kdt l. dist p ¢ < dist p q
(proof)

4.5 The Main Theorems

lemma set-nns:
set (nearest-nbors n ps p kdt) C set-kdt kdt U set ps
(proof)

lemma length-nns:
length (nearest-nbors n ps p kdt) = min n (size-kdt kdt + length ps)
(proof)

lemma length-nns-gt-0:
0 < n = 0 < length (nearest-nbors n ps p kdt)
(proof)

lemma length-nns-n:
assumes (set-kdt kdt U set ps) — set (nearest-nbors n ps p kdt) # {}
shows length (nearest-nbors n ps p kdt) = n

{proof)

lemma sorted-nns:
sorted-wrt-dist p ps = sorted-wrt-dist p (nearest-nbors n ps p kdt)

(proof)

lemma distinct-nns:
assumes invar kdt distinct ps set ps N set-kdt kdt = {}
shows distinct (nearest-nbors n ps p kdt)

{proof)

lemma last-nns-mono:
assumes invar kdt sorted-wrt-dist p ps n < length ps 0 < n
shows dist (last (nearest-nbors n ps p kdt)) p < dist (last ps) p
(proof)

theorem dist-nns:

assumes invar kdt sorted-wrt-dist p ps set ps N set-kdt kdt = {} distinct ps 0 <
n

14

shows V¢ € set-kdt kdt U set ps — set (nearest-nbors n ps p kdt). dist (last
(nearest-nbors n ps p kdt)) p < dist ¢ p

{proof)

4.6 Nearest Neighbors Definition and Theorems

definition nearest-neighbors :: nat = ('k:finite) point = 'k kdt = 'k point list
where
nearest-neighbors n p kdt = nearest-nbors n [| p kdt

theorem length-nearest-neighbors:
length (nearest-neighbors n p kdt) = min n (size-kdt kdt)

(proof)

theorem sorted-wrt-dist-nearest-neighbors:
sorted-wrt-dist p (nearest-neighbors n p kdt)

{proof)

theorem set-nearest-neighbors:
set (nearest-neighbors n p kdt) C set-kdt kdt

{proof)

theorem distinct-nearest-neighbors:
assumes nvar kdt
shows distinct (nearest-neighbors n p kdt)
(proof)

theorem dist-nearest-neighbors:

assumes invar kdt nns = nearest-neighbors n p kdt

shows V ¢ € (set-kdt kdt — set nns). Vr € set nns. dist r p < dist q p
(proof)

end

References

[1] J. L. Bentley. Multidimensional binary search trees used for associative
searching. Commun. ACM, 18(9):509-517, 1975.

[2] J. H. Friedman, J. L. Bentley, and R. A. Finkel. An algorithm for finding
best matches in logarithmic expected time. ACM Trans. Math. Softw.,
3(3):209-226, 1977.

15

	Definition of the 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 k-d Tree
	Definition of the 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 k-d Tree Invariant and Related Functions
	Lemmas adapted from 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 HOL-Library.Tree to 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 k-d Tree
	Lemmas adapted from 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 HOL-Library.Tree-Real to 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 k-d Tree

	Building a balanced 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 k-d Tree from a List of Points
	Auxiliary Lemmas
	Widest Spread Axis
	Fast Axis Median
	Building the Tree
	Main Theorems

	Range Searching
	Rectangle Definition
	Search Function
	Auxiliary Lemmas
	Main Theorem

	Nearest Neighbor Search on the 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 k-d Tree
	Auxiliary Lemmas about 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 sorted-wrt
	Neighbors Sorted wrt. Distance
	The Recursive Nearest Neighbor Algorithm
	Auxiliary Lemmas
	The Main Theorems
	Nearest Neighbors Definition and Theorems

