
Multidimensional Binary Search Trees

Martin Rau

March 17, 2025

Abstract
This entry provides a formalization of multidimensional binary trees,

also known as k-d trees. It includes a balanced build algorithm as well
as the nearest neighbor algorithm and the range search algorithm. It
is based on the papers "Multidimensional binary search trees used for
associative searching" [1] and "An Algorithm for Finding Best Matches
in Logarithmic Expected Time" [2].

Contents
1 Definition of the k-d Tree 2

1.1 Definition of the k-d Tree Invariant and Related Functions . . 2
1.2 Lemmas adapted from HOL−Library.Tree to k-d Tree . . . . 4
1.3 Lemmas adapted from HOL−Library.Tree-Real to k-d Tree . 8

2 Building a balanced k-d Tree from a List of Points 10
2.1 Auxiliary Lemmas . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Widest Spread Axis . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Fast Axis Median . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 Building the Tree . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5 Main Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Range Searching 20
3.1 Rectangle Definition . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Search Function . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3 Auxiliary Lemmas . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4 Main Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4 Nearest Neighbor Search on the k-d Tree 22
4.1 Auxiliary Lemmas about sorted-wrt . . . . . . . . . . . . . . 22
4.2 Neighbors Sorted wrt. Distance . . . . . . . . . . . . . . . . . 23
4.3 The Recursive Nearest Neighbor Algorithm . . . . . . . . . . 24
4.4 Auxiliary Lemmas . . . . . . . . . . . . . . . . . . . . . . . . 24
4.5 The Main Theorems . . . . . . . . . . . . . . . . . . . . . . . 25
4.6 Nearest Neighbors Definition and Theorems . . . . . . . . . . 30

1



1 Definition of the k-d Tree
theory KD-Tree
imports

Complex-Main
HOL−Analysis.Finite-Cartesian-Product
HOL−Analysis.Topology-Euclidean-Space

begin

A k-d tree is a space-partitioning data structure for organizing points in a
k-dimensional space. In principle the k-d tree is a binary tree. The leafs
hold the k-dimensional points and the nodes contain left and right subtrees
as well as a discriminator v at a particular axis k. Every node divides the
space into two parts by splitting along a hyperplane. Consider a node n
with associated discriminator v at axis k. All points in the left subtree must
have a value at axis k that is less than or equal to v and all points in the
right subtree must have a value at axis k that is greater than v.
Deviations from the papers:
The chosen tree representation is taken from [2] with one minor adjustment.
Originally the leafs hold buckets of points of size b. This representation
fixes the bucket size to b = 1, a single point per Leaf. This is only a minor
adjustment since the paper proves that b = 1 is the optimal bucket size
for minimizing the running time of the nearest neighbor algorithm [2], only
simplifies building the optimized k-d trees [2] and has little influence on the
search algorithm [1].
type-synonym ′k point = (real, ′k) vec

lemma dist-point-def :
fixes p0 :: ( ′k::finite) point
shows dist p0 p1 = sqrt (

∑
k ∈ UNIV . (p0$k − p1$k)2)

unfolding dist-vec-def L2-set-def dist-real-def by simp

datatype ′k kdt =
Leaf ′k point
| Node ′k real ′k kdt ′k kdt

1.1 Definition of the k-d Tree Invariant and Related Func-
tions

fun set-kdt :: ′k kdt ⇒ ( ′k point) set where
set-kdt (Leaf p) = { p }
| set-kdt (Node - - l r) = set-kdt l ∪ set-kdt r

definition spread :: ( ′k::finite) ⇒ ′k point set ⇒ real where
spread k P = (if P = {} then 0 else let V = (λp. p$k) ‘ P in Max V − Min V )

definition widest-spread-axis :: ( ′k::finite) ⇒ ′k set ⇒ ′k point set ⇒ bool where
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widest-spread-axis k K ps ←→ (∀ k ′ ∈ K . spread k ′ ps ≤ spread k ps)

fun invar :: ( ′k::finite) kdt ⇒ bool where
invar (Leaf p) ←→ True
| invar (Node k v l r) ←→ (∀ p ∈ set-kdt l. p$k ≤ v) ∧ (∀ p ∈ set-kdt r . v < p$k)
∧

widest-spread-axis k UNIV (set-kdt l ∪ set-kdt r) ∧ invar l ∧ invar r

fun size-kdt :: ′k kdt ⇒ nat where
size-kdt (Leaf -) = 1
| size-kdt (Node - - l r) = size-kdt l + size-kdt r

fun height :: ′k kdt ⇒ nat where
height (Leaf -) = 0
| height (Node - - l r) = max (height l) (height r) + 1

fun min-height :: ′k kdt ⇒ nat where
min-height (Leaf -) = 0
| min-height (Node - - l r) = min (min-height l) (min-height r) + 1

definition balanced :: ′k kdt ⇒ bool where
balanced kdt ←→ height kdt − min-height kdt ≤ 1

fun complete :: ′k kdt ⇒ bool where
complete (Leaf -) = True
| complete (Node - - l r) ←→ complete l ∧ complete r ∧ height l = height r

lemma invar-l:
invar (Node k v l r) =⇒ invar l
by simp

lemma invar-r :
invar (Node k v l r) =⇒ invar r
by simp

lemma invar-l-le-k:
invar (Node k v l r) =⇒ ∀ p ∈ set-kdt l. p$k ≤ v
by simp

lemma invar-r-ge-k:
invar (Node k v l r) =⇒ ∀ p ∈ set-kdt r . v < p$k
by simp

lemma invar-set:
set-kdt (Node k v l r) = set-kdt l ∪ set-kdt r
by simp
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1.2 Lemmas adapted from HOL−Library.Tree to k-d Tree
lemma size-ge0 [simp]:

0 < size-kdt kdt
by (induction kdt) auto

lemma eq-size-1 [simp]:
size-kdt kdt = 1 ←→ (∃ p. kdt = Leaf p)
apply (induction kdt)
apply (auto)
using size-ge0 nat-less-le apply blast+
done

lemma eq-1-size[simp]:
1 = size-kdt kdt ←→ (∃ p. kdt = Leaf p)
using eq-size-1 by metis

lemma neq-Leaf-iff :
(@ p. kdt = Leaf p) = (∃ k v l r . kdt = Node k v l r)
by (cases kdt) auto

lemma eq-height-0 [simp]:
height kdt = 0 ←→ (∃ p. kdt = Leaf p)
by (cases kdt) auto

lemma eq-0-height[simp]:
0 = height kdt ←→ (∃ p. kdt = Leaf p)
by (cases kdt) auto

lemma eq-min-height-0 [simp]:
min-height kdt = 0 ←→ (∃ p. kdt = Leaf p)
by (cases kdt) auto

lemma eq-0-min-height[simp]:
0 = min-height kdt ←→ (∃ p. kdt = Leaf p)
by (cases kdt) auto

lemma size-height:
size-kdt kdt ≤ 2 ^ height kdt

proof(induction kdt)
case (Node k v l r)
show ?case
proof (cases height l ≤ height r)

case True
have size-kdt (Node k v l r) = size-kdt l + size-kdt r by simp
also have . . . ≤ 2 ^ height l + 2 ^ height r using Node.IH by arith
also have . . . ≤ 2 ^ height r + 2 ^ height r using True by simp
also have . . . = 2 ^ height (Node k v l r)

using True by (auto simp: max-def mult-2 )
finally show ?thesis .
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next
case False
have size-kdt (Node k v l r) = size-kdt l + size-kdt r by simp
also have . . . ≤ 2 ^ height l + 2 ^ height r using Node.IH by arith
also have . . . ≤ 2 ^ height l + 2 ^ height l using False by simp
finally show ?thesis using False by (auto simp: max-def mult-2 )

qed
qed simp

lemma min-height-le-height:
min-height kdt ≤ height kdt
by (induction kdt) auto

lemma min-height-size:
2 ^ min-height kdt ≤ size-kdt kdt

proof(induction kdt)
case (Node k v l r)
have (2 ::nat) ^ min-height (Node k v l r) ≤ 2 ^ min-height l + 2 ^ min-height r

by (simp add: min-def )
also have . . . ≤ size-kdt (Node k v l r) using Node.IH by simp
finally show ?case .

qed simp

lemma complete-iff-height:
complete kdt ←→ (min-height kdt = height kdt)
apply (induction kdt)
apply simp
apply (simp add: min-def max-def )
by (metis le-antisym le-trans min-height-le-height)

lemma size-if-complete:
complete kdt =⇒ size-kdt kdt = 2 ^ height kdt
by (induction kdt) auto

lemma complete-if-size-height:
size-kdt kdt = 2 ^ height kdt =⇒ complete kdt

proof (induction height kdt arbitrary: kdt)
case 0 thus ?case by auto

next
case (Suc h)
hence @ p. kdt = Leaf p

by auto
then obtain k v l r where [simp]: kdt = Node k v l r

using neq-Leaf-iff by metis
have 1 : height l ≤ h and 2 : height r ≤ h using Suc(2 ) by(auto)
have 3 : ¬ height l < h
proof

assume 0 : height l < h
have size-kdt kdt = size-kdt l + size-kdt r by simp
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also have . . . ≤ 2 ^ height l + 2 ^ height r
using size-height[of l] size-height[of r ] by arith

also have . . . < 2 ^ h + 2 ^ height r using 0 by (simp)
also have . . . ≤ 2 ^ h + 2 ^ h using 2 by (simp)
also have . . . = 2 ^ (Suc h) by (simp)
also have . . . = size-kdt kdt using Suc(2 ,3 ) by simp
finally have size-kdt kdt < size-kdt kdt .
thus False by (simp)

qed
have 4 : ¬ height r < h
proof

assume 0 : height r < h
have size-kdt kdt = size-kdt l + size-kdt r by simp
also have . . . ≤ 2 ^ height l + 2 ^ height r

using size-height[of l] size-height[of r ] by arith
also have . . . < 2 ^ height l + 2 ^ h using 0 by (simp)
also have . . . ≤ 2 ^ h + 2 ^ h using 1 by (simp)
also have . . . = 2 ^ (Suc h) by (simp)
also have . . . = size-kdt kdt using Suc(2 ,3 ) by simp
finally have size-kdt kdt < size-kdt kdt .
thus False by (simp)

qed
from 1 2 3 4 have ∗: height l = h height r = h by linarith+
hence size-kdt l = 2 ^ height l size-kdt r = 2 ^ height r

using Suc(3 ) size-height[of l] size-height[of r ] by (auto)
with ∗ Suc(1 ) show ?case by simp

qed

lemma complete-if-size-min-height:
size-kdt kdt = 2 ^ min-height kdt =⇒ complete kdt

proof (induct min-height kdt arbitrary: kdt)
case 0 thus ?case by auto

next
case (Suc h)
hence @ p. kdt = Leaf p

by auto
then obtain k v l r where [simp]: kdt = Node k v l r

using neq-Leaf-iff by metis
have 1 : h ≤ min-height l and 2 : h ≤ min-height r using Suc(2 ) by (auto)
have 3 : ¬ h < min-height l
proof

assume 0 : h < min-height l
have size-kdt kdt = size-kdt l + size-kdt r by simp
also note min-height-size[of l]
also(xtrans) note min-height-size[of r ]
also(xtrans) have (2 ::nat) ^ min-height l > 2 ^ h

using 0 by (simp add: diff-less-mono)
also(xtrans) have (2 ::nat) ^ min-height r ≥ 2 ^ h using 2 by simp
also(xtrans) have (2 ::nat) ^ h + 2 ^ h = 2 ^ (Suc h) by (simp)
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also have . . . = size-kdt kdt using Suc(2 ,3 ) by simp
finally show False by (simp add: diff-le-mono)

qed
have 4 : ¬ h < min-height r
proof

assume 0 : h < min-height r
have size-kdt kdt = size-kdt l + size-kdt r by simp
also note min-height-size[of l]
also(xtrans) note min-height-size[of r ]
also(xtrans) have (2 ::nat) ^ min-height r > 2 ^ h

using 0 by (simp add: diff-less-mono)
also(xtrans) have (2 ::nat) ^ min-height l ≥ 2 ^ h using 1 by simp
also(xtrans) have (2 ::nat) ^ h + 2 ^ h = 2 ^ (Suc h) by (simp)
also have . . . = size-kdt kdt using Suc(2 ,3 ) by simp
finally show False by (simp add: diff-le-mono)

qed
from 1 2 3 4 have ∗: min-height l = h min-height r = h by linarith+
hence size-kdt l = 2 ^ min-height l size-kdt r = 2 ^ min-height r

using Suc(3 ) min-height-size[of l] min-height-size[of r ] by (auto)
with ∗ Suc(1 ) show ?case

by (simp add: complete-iff-height)
qed

lemma complete-iff-size:
complete kdt ←→ size-kdt kdt = 2 ^ height kdt
using complete-if-size-height size-if-complete by blast

lemma size-height-if-incomplete:
¬ complete kdt =⇒ size-kdt kdt < 2 ^ height kdt
by (meson antisym-conv complete-iff-size not-le size-height)

lemma min-height-size-if-incomplete:
¬ complete kdt =⇒ 2 ^ min-height kdt < size-kdt kdt
by (metis complete-if-size-min-height le-less min-height-size)

lemma balanced-subtreeL:
balanced (Node k v l r) =⇒ balanced l
by (simp add: balanced-def )

lemma balanced-subtreeR:
balanced (Node k v l r) =⇒ balanced r
by (simp add: balanced-def )

lemma balanced-optimal:
assumes balanced kdt size-kdt kdt ≤ size-kdt kdt ′

shows height kdt ≤ height kdt ′

proof (cases complete kdt)
case True
have (2 ::nat) ^ height kdt ≤ 2 ^ height kdt ′

7



proof −
have 2 ^ height kdt = size-kdt kdt

using True by (simp add: complete-iff-height size-if-complete)
also have . . . ≤ size-kdt kdt ′ using assms(2 ) by simp
also have . . . ≤ 2 ^ height kdt ′ by (rule size-height)
finally show ?thesis .

qed
thus ?thesis by (simp)

next
case False
have (2 ::nat) ^ min-height kdt < 2 ^ height kdt ′

proof −
have (2 ::nat) ^ min-height kdt < size-kdt kdt

by(rule min-height-size-if-incomplete[OF False])
also have . . . ≤ size-kdt kdt ′ using assms(2 ) by simp
also have . . . ≤ 2 ^ height kdt ′ by(rule size-height)
finally have (2 ::nat) ^ min-height kdt < (2 ::nat) ^ height kdt ′ .
thus ?thesis .

qed
hence ∗: min-height kdt < height kdt ′ by simp
have min-height kdt + 1 = height kdt

using min-height-le-height[of kdt] assms(1 ) False
by (simp add: complete-iff-height balanced-def )

with ∗ show ?thesis by arith
qed

1.3 Lemmas adapted from HOL−Library.Tree-Real to k-d Tree
lemma size-height-log:

log 2 (size-kdt kdt) ≤ height kdt
by (simp add: log2-of-power-le size-height)

lemma min-height-size-log:
min-height kdt ≤ log 2 (size-kdt kdt)
by (simp add: le-log2-of-power min-height-size)

lemma size-log-if-complete:
complete kdt =⇒ height kdt = log 2 (size-kdt kdt)
using complete-iff-size log2-of-power-eq by blast

lemma min-height-size-log-if-incomplete:
¬ complete kdt =⇒ min-height kdt < log 2 (size-kdt kdt)
by (simp add: less-log2-of-power min-height-size-if-incomplete)

lemma min-height-balanced:
assumes balanced kdt
shows min-height kdt = nat(floor(log 2 (size-kdt kdt)))

proof cases
assume ∗: complete kdt
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hence size-kdt kdt = 2 ^ min-height kdt
by (simp add: complete-iff-height size-if-complete)

from log2-of-power-eq[OF this] show ?thesis by linarith
next

assume ∗: ¬ complete kdt
hence height kdt = min-height kdt + 1

using assms min-height-le-height[of kdt]
by(auto simp add: balanced-def complete-iff-height)

hence size-kdt kdt < 2 ^ (min-height kdt + 1 )
by (metis ∗ size-height-if-incomplete)

hence log 2 (size-kdt kdt) < min-height kdt + 1
using log2-of-power-less size-ge0 by blast

thus ?thesis using min-height-size-log[of kdt] by linarith
qed

lemma height-balanced:
assumes balanced kdt
shows height kdt = nat(ceiling(log 2 (size-kdt kdt)))

proof cases
assume ∗: complete kdt
hence size-kdt kdt = 2 ^ height kdt

by (simp add: size-if-complete)
from log2-of-power-eq[OF this] show ?thesis

by linarith
next

assume ∗: ¬ complete kdt
hence ∗∗: height kdt = min-height kdt + 1

using assms min-height-le-height[of kdt]
by(auto simp add: balanced-def complete-iff-height)

hence size-kdt kdt ≤ 2 ^ (min-height kdt + 1 ) by (metis size-height)
from log2-of-power-le[OF this size-ge0 ] min-height-size-log-if-incomplete[OF ∗]
∗∗

show ?thesis by linarith
qed

lemma balanced-Node-if-wbal1 :
assumes balanced l balanced r size-kdt l = size-kdt r + 1
shows balanced (Node k v l r)

proof −
from assms(3 ) have [simp]: size-kdt l = size-kdt r + 1 by simp
have nat dlog 2 (1 + size-kdt r)e ≥ nat dlog 2 (size-kdt r)e

by(rule nat-mono[OF ceiling-mono]) simp
hence 1 : height(Node k v l r) = nat dlog 2 (1 + size-kdt r)e + 1

using height-balanced[OF assms(1 )] height-balanced[OF assms(2 )]
by (simp del: nat-ceiling-le-eq add: max-def )

have nat blog 2 (1 + size-kdt r)c ≥ nat blog 2 (size-kdt r)c
by(rule nat-mono[OF floor-mono]) simp

hence 2 : min-height(Node k v l r) = nat blog 2 (size-kdt r)c + 1
using min-height-balanced[OF assms(1 )] min-height-balanced[OF assms(2 )]

9



by (simp)
have size-kdt r ≥ 1 by (simp add: Suc-leI )
then obtain i where i: 2 ^ i ≤ size-kdt r size-kdt r < 2 ^ (i + 1 )

using ex-power-ivl1 [of 2 size-kdt r ] by auto
hence i1 : 2 ^ i < size-kdt r + 1 size-kdt r + 1 ≤ 2 ^ (i + 1 ) by auto
from 1 2 floor-log-nat-eq-if [OF i] ceiling-log-nat-eq-if [OF i1 ]
show ?thesis by(simp add:balanced-def )

qed

lemma balanced-sym:
balanced (Node k v l r) =⇒ balanced (Node k ′ v ′ r l)
by (auto simp: balanced-def )

lemma balanced-Node-if-wbal2 :
assumes balanced l balanced r abs(int(size-kdt l) − int(size-kdt r)) ≤ 1
shows balanced (Node k v l r)

proof −
have size-kdt l = size-kdt r ∨ (size-kdt l = size-kdt r + 1 ∨ size-kdt r = size-kdt

l + 1 ) (is ?A ∨ ?B)
using assms(3 ) by linarith

thus ?thesis
proof

assume ?A
thus ?thesis using assms(1 ,2 )

apply(simp add: balanced-def min-def max-def )
by (metis assms(1 ,2 ) balanced-optimal le-antisym le-less)

next
assume ?B
thus ?thesis

by (meson assms(1 ,2 ) balanced-sym balanced-Node-if-wbal1 )
qed

qed

end

2 Building a balanced k-d Tree from a List of Points
theory Build
imports

KD-Tree
Median-Of-Medians-Selection.Median-Of-Medians-Selection

begin

Build a balanced k-d Tree by recursively partition the points into two lists.
The partitioning criteria will be the median at a particular axis k. The left
list will contain all points p with p $ k ≤ median. The right list will contain
all points with median at axis median < p $ k. The left and right list differ
in length by one or none. The axis k will the widest spread axis.
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2.1 Auxiliary Lemmas
lemma length-filter-mset-sorted-nth:

assumes distinct xs n < length xs sorted xs
shows {# x ∈# mset xs. x ≤ xs ! n #} = mset (take (n + 1 ) xs)
using assms

proof (induction xs arbitrary: n rule: list.induct)
case (Cons x xs)
thus ?case
proof (cases n)

case 0
thus ?thesis

using Cons.prems(1 ,3 ) filter-mset-is-empty-iff by fastforce
next

case (Suc n ′)
thus ?thesis

using Cons by simp
qed

qed auto

lemma length-filter-sort-nth:
assumes distinct xs n < length xs
shows length (filter (λx. x ≤ sort xs ! n) xs) = n + 1

proof −
have length (filter (λx. x ≤ sort xs ! n) xs) = length (filter (λx. x ≤ sort xs ! n)

(sort xs))
by (simp add: filter-sort)

also have ... = size (mset (filter (λx. x ≤ sort xs ! n) (sort xs)))
using size-mset by metis

also have ... = size ({# x ∈# mset (sort xs). x ≤ sort xs ! n #})
using mset-filter by simp

also have ... = size (mset (take (n + 1 ) (sort xs)))
using length-filter-mset-sorted-nth assms sorted-sort distinct-sort length-sort by

metis
finally show ?thesis

using assms(2 ) by auto
qed

2.2 Widest Spread Axis
definition calc-spread :: ( ′k::finite) ⇒ ′k point list ⇒ real where

calc-spread k ps = (case ps of [] ⇒ 0 | ps ⇒
let ks = map (λp. p$k) (tl ps) in
fold max ks ((hd ps)$k) − fold min ks ((hd ps)$k)

)

fun widest-spread :: ( ′k::finite) list ⇒ ′k point list ⇒ ′k × real where
widest-spread [] - = undefined
| widest-spread [k] ps = (k, calc-spread k ps)
| widest-spread (k # ks) ps = (
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let (k ′, s ′) = widest-spread ks ps in
let s = calc-spread k ps in
if s ≤ s ′ then (k ′, s ′) else (k, s)

)

lemma calc-spread-spec:
calc-spread k ps = spread k (set ps)
using Max.set-eq-fold[of (hd ps)$k] Min.set-eq-fold[of (hd ps)$k]
by (auto simp: Let-def spread-def calc-spread-def split: list.splits, metis set-map)

lemma widest-spread-calc-spread:
ks 6= [] =⇒ (k, s) = widest-spread ks ps =⇒ s = calc-spread k ps
by (induction ks ps rule: widest-spread.induct) (auto simp: Let-def split: prod.splits

if-splits)

lemma widest-spread-axis-Un:
shows widest-spread-axis k K P =⇒ spread k ′ P ≤ spread k P =⇒ widest-spread-axis

k (K ∪ { k ′ }) P
and widest-spread-axis k K P =⇒ spread k P ≤ spread k ′ P =⇒ widest-spread-axis

k ′ (K ∪ { k ′ }) P
unfolding widest-spread-axis-def by auto

lemma widest-spread-spec:
(k, s) = widest-spread ks ps =⇒ widest-spread-axis k (set ks) (set ps)

proof (induction ks ps arbitrary: k s rule: widest-spread.induct)
case (3 k0 k1 ks ps)
obtain K ′ S ′ where K ′-def : (K ′, S ′) = widest-spread (k1 # ks) ps

by (metis surj-pair)
hence IH : widest-spread-axis K ′ (set (k1 # ks)) (set ps)

using 3 .IH by blast
hence 0 : S ′ = spread K ′ (set ps)

using K ′-def widest-spread-calc-spread calc-spread-spec by blast
define S where S = calc-spread k0 ps
hence 1 : S = spread k0 (set ps)

using calc-spread-spec by blast
show ?case
proof (cases S ≤ S ′)

case True
hence widest-spread-axis K ′ (set (k0 # k1 # ks)) (set ps)

using 0 1 widest-spread-axis-Un(1 )[OF IH , of k0] by auto
thus ?thesis

using True K ′-def S-def 3 .prems by (auto split: prod.splits)
next

case False
hence widest-spread-axis k0 (set (k0 # k1 # ks)) (set ps)

using 0 1 widest-spread-axis-Un(2 )[OF IH , of k0] 3 .prems(1 ) by auto
thus ?thesis

using False K ′-def S-def 3 .prems by (auto split: prod.splits)
qed
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qed (auto simp: widest-spread-axis-def )

2.3 Fast Axis Median
definition axis-median :: ( ′k::finite) ⇒ ′k point list ⇒ real where

axis-median k ps = (let n = (length ps − 1 ) div 2 in fast-select n (map (λp. p$k)
ps))

lemma length-filter-le-axis-median:
assumes 0 < length ps ∀ k. distinct (map (λp. p$k) ps)
shows length (filter (λp. p$k ≤ axis-median k ps) ps) = (length ps − 1 ) div 2 +

1
proof −

let ?n = (length ps − 1 ) div 2
let ?ps = map (λp. p$k) ps
let ?m = fast-select ?n ?ps
have 0 : ?n < length ?ps

using assms(1 ) by (auto, linarith)
have 1 : distinct ?ps

using assms(2 ) by blast
have ?m = select ?n ?ps

using fast-select-correct[OF 0 ] by blast
hence length (filter (λp. p$k ≤ axis-median k ps) ps) =

length (filter (λp. p$k ≤ sort ?ps ! ?n) ps)
unfolding axis-median-def by (auto simp add: Let-def select-def simp del:

fast-select.simps)
also have ... = length (filter (λv. v ≤ sort ?ps ! ?n) ?ps)

by (induction ps) (auto, metis comp-apply)
also have ... = ?n + 1

using length-filter-sort-nth[OF 1 0 ] by blast
finally show ?thesis .

qed

definition partition-by-median :: ( ′k::finite) ⇒ ′k point list ⇒ ′k point list × real
× ′k point list where

partition-by-median k ps = (
let m = axis-median k ps in
let (l, r) = partition (λp. p$k ≤ m) ps in
(l, m, r)

)

lemma set-partition-by-median:
(l, m, r) = partition-by-median k ps =⇒ set ps = set l ∪ set r
unfolding partition-by-median-def by (auto simp: Let-def )

lemma filter-partition-by-median:
assumes (l, m, r) = partition-by-median k ps
shows ∀ p ∈ set l. p$k ≤ m

and ∀ p ∈ set r . ¬p$k ≤ m
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using assms unfolding partition-by-median-def by (auto simp: Let-def )

lemma sum-length-partition-by-median:
assumes (l, m, r) = partition-by-median k ps
shows length ps = length l + length r
using assms sum-length-filter-compl[of (λp. p $ k ≤ axis-median k ps)]
unfolding partition-by-median-def by (simp add: Let-def o-def )

lemma length-l-partition-by-median:
assumes 0 < length ps ∀ k. distinct (map (λp. p$k) ps) (l, m, r) = parti-

tion-by-median k ps
shows length l = (length ps − 1 ) div 2 + 1
using assms unfolding partition-by-median-def by (auto simp: Let-def length-filter-le-axis-median)

corollary lengths-partition-by-median-1 :
assumes 0 < length ps ∀ k. distinct (map (λp. p$k) ps) (l, m, r) = parti-

tion-by-median k ps
shows length l − length r ≤ 1

and length r ≤ length l
and 0 < length l
and length r < length ps

using length-l-partition-by-median[OF assms] sum-length-partition-by-median[OF
assms(3 )] by auto

corollary lengths-partition-by-median-2 :
assumes 1 < length ps ∀ k. distinct (map (λp. p$k) ps) (l, m, r) = parti-

tion-by-median k ps
shows 0 < length r

and length l < length ps
proof −

have ∗: 0 < length ps
using assms(1 ) by auto

show 0 < length r length l < length ps
using length-l-partition-by-median[OF ∗ assms(2 ,3 )] sum-length-partition-by-median[OF

assms(3 )]
using assms(1 ) by linarith+

qed

lemmas length-partition-by-median =
sum-length-partition-by-median length-l-partition-by-median
lengths-partition-by-median-1 lengths-partition-by-median-2

2.4 Building the Tree
function (domintros, sequential) build :: ( ′k::finite) list ⇒ ′k point list ⇒ ′k kdt
where

build - [] = undefined
| build - [p] = Leaf p
| build ks ps = (

14



let (k, -) = widest-spread ks ps in
let (l, m, r) = partition-by-median k ps in
Node k m (build ks l) (build ks r)

)
by pat-completeness auto

lemma build-domintros3 :
assumes (k, s) = widest-spread ks (x # y # zs) (l, m, r) = partition-by-median

k (x # y # zs)
assumes build-dom (ks, l) build-dom (ks, r)
shows build-dom (ks, x # y # zs)

proof −
{

fix k s l m r
assume (k, s) = widest-spread ks (x # y # zs) (l, m, r) = partition-by-median

k (x # y # zs)
hence build-dom (ks, l) build-dom (ks, r)

using assms by (metis Pair-inject)+
}
thus ?thesis

by (simp add: build.domintros(3 ))
qed

lemma build-termination:
assumes ∀ k. distinct (map (λp. p$k) ps)
shows build-dom (ks, ps)
using assms

proof (induction ps rule: length-induct)
case (1 xs)
consider (A) xs = [] | (B) ∃ x. xs = [x] | (C ) ∃ x y zs. xs = x # y # zs

by (induction xs rule: induct-list012 ) auto
then show ?case
proof cases

case C
then obtain x y zs where xyzs-def : xs = x # y # zs

by blast
obtain k s where ks-def : (k, s) = widest-spread ks xs

by (metis surj-pair)
obtain l m r where lmr-def : (l, m, r) = partition-by-median k xs

by (metis prod-cases3 )
note defs = xyzs-def ks-def lmr-def
have ∀ k. distinct (map (λp. p $ k) l) ∀ k. distinct (map (λp. p $ k) r)

using lmr-def unfolding partition-by-median-def
by (auto simp: Let-def 1 .prems distinct-map-filter)

moreover have length l < length xs length r < length xs
using length-partition-by-median(8 )[OF - 1 .prems] length-partition-by-median(6 )[OF

- 1 .prems]
using defs by auto

ultimately have build-dom (ks, l) build-dom (ks, r)
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using 1 .IH by blast+
thus ?thesis

using build-domintros3 defs by blast
qed (auto intro: build.domintros)

qed

lemma build-psimp-1 :
ps = [p] =⇒ build k ps = Leaf p
by (simp add: build.domintros(2 ) build.psimps(2 ))

lemma build-psimp-2 :
assumes (k, s) = widest-spread ks (x # y # zs) (l, m, r) = partition-by-median

k (x # y # zs)
assumes build-dom (ks, l) build-dom (ks, r)
shows build ks (x # y # zs) = Node k m (build ks l) (build ks r)

proof −
have 0 : build-dom (ks, x # y # zs)

using assms build-domintros3 by blast
thus ?thesis

using build.psimps(3 )[OF 0 ] assms(1 ,2 ) by (auto split: prod.splits)
qed

lemma length-xs-gt-1 :
1 < length xs =⇒ ∃ x y ys. xs = x # y # ys
by (cases xs, auto simp: neq-Nil-conv)

lemma build-psimp-3 :
assumes 1 < length ps (k, s) = widest-spread ks ps (l, m, r) = partition-by-median

k ps
assumes build-dom (ks, l) build-dom (ks, r)
shows build ks ps = Node k m (build ks l) (build ks r)
using build-psimp-2 length-xs-gt-1 assms by blast

lemmas build-psimps[simp] = build-psimp-1 build-psimp-3

2.5 Main Theorems
theorem set-build:

0 < length ps =⇒ ∀ k. distinct (map (λp. p$k) ps) =⇒ set ps = set-kdt (build ks
ps)
proof (induction ps rule: length-induct)

case (1 ps)
show ?case
proof (cases 1 < length ps)

case True
obtain k s where ks-def : (k, s) = widest-spread ks ps

by (metis surj-pair)
obtain l m r where lmr-def : (l, m, r) = partition-by-median k ps

by (metis prod-cases3 )
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have D: ∀ k. distinct (map (λp. p$k) l) ∀ k. distinct (map (λp. p$k) r)
using lmr-def unfolding partition-by-median-def
by (auto simp: 1 .prems(2 ) Let-def distinct-map-filter)

moreover have length l < length ps 0 < length l
length r < length ps 0 < length r

using length-partition-by-median(8 )[OF True 1 .prems(2 )]
length-partition-by-median(5 )[OF 1 .prems(1 ) 1 .prems(2 )]
length-partition-by-median(6 )[OF 1 .prems(1 ) 1 .prems(2 )]
length-partition-by-median(7 )[OF True 1 .prems(2 )]
lmr-def by blast+

ultimately have set l = set-kdt (build ks l) set r = set-kdt (build ks r)
using 1 .IH by blast+

moreover have set ps = set l ∪ set r
using lmr-def unfolding partition-by-median-def by (auto simp: Let-def )

moreover have build ks ps = Node k m (build ks l) (build ks r)
using build-psimp-3 [OF True ks-def lmr-def ] build-termination D by blast

ultimately show ?thesis
by simp

next
case False
thus ?thesis

using 1 .prems by (cases ps) auto
qed

qed

theorem invar-build:
0 < length ps =⇒ ∀ k. distinct (map (λp. p$k) ps) =⇒ set ks = UNIV =⇒ invar

(build ks ps)
proof (induction ps rule: length-induct)

case (1 ps)
show ?case
proof (cases 1 < length ps)

case True
obtain k s where ks-def : (k, s) = widest-spread ks ps

by (metis surj-pair)
obtain l m r where lmr-def : (l, m, r) = partition-by-median k ps

by (metis prod-cases3 )
have D: ∀ k. distinct (map (λp. p$k) l) ∀ k. distinct (map (λp. p$k) r)

using lmr-def unfolding partition-by-median-def
by (auto simp: 1 .prems(2 ) Let-def distinct-map-filter)

moreover have length l < length ps 0 < length l
length r < length ps 0 < length r

using length-partition-by-median(8 )[OF True 1 .prems(2 )]
length-partition-by-median(5 )[OF 1 .prems(1 ) 1 .prems(2 )]
length-partition-by-median(6 )[OF 1 .prems(1 ) 1 .prems(2 )]
length-partition-by-median(7 )[OF True 1 .prems(2 )]
lmr-def by blast+

ultimately have invar (build ks l) invar (build ks r)
using 1 .IH 1 .prems(3 ) by blast+
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moreover have ∀ p ∈ set l. p$k ≤ m ∀ p ∈ set r . m < p$k
using filter-partition-by-median(1 )[OF lmr-def ]

filter-partition-by-median(2 )[OF lmr-def ] by auto
moreover have widest-spread-axis k UNIV (set l ∪ set r)

using widest-spread-spec[OF ks-def ] 1 .prems(3 ) set-partition-by-median[OF
lmr-def ] by simp

moreover have build ks ps = Node k m (build ks l) (build ks r)
using build-psimp-3 [OF True ks-def lmr-def ] build-termination D by blast

ultimately show ?thesis
using set-build[OF ‹0 < length l› D(1 )] set-build[OF ‹0 < length r› D(2 )]

by simp
next

case False
thus ?thesis

using 1 .prems by (cases ps) auto
qed

qed

theorem size-build:
0 < length ps =⇒ ∀ k. distinct (map (λp. p$k) ps) =⇒ size-kdt (build ks ps) =

length ps
proof (induction ps rule: length-induct)

case (1 ps)
show ?case
proof (cases 1 < length ps)

case True
obtain k s where ks-def : (k, s) = widest-spread ks ps

by (metis surj-pair)
obtain l m r where lmr-def : (l, m, r) = partition-by-median k ps

by (metis prod-cases3 )
have D: ∀ k. distinct (map (λp. p$k) l) ∀ k. distinct (map (λp. p$k) r)

using lmr-def unfolding partition-by-median-def
by (auto simp: 1 .prems(2 ) Let-def distinct-map-filter)

moreover have length l < length ps 0 < length l
length r < length ps 0 < length r

using length-partition-by-median(8 )[OF True 1 .prems(2 )]
length-partition-by-median(5 )[OF 1 .prems(1 ) 1 .prems(2 )]
length-partition-by-median(6 )[OF 1 .prems(1 ) 1 .prems(2 )]
length-partition-by-median(7 )[OF True 1 .prems(2 )]
lmr-def by blast+

ultimately have size-kdt (build ks l) = length l size-kdt (build ks r) = length r
using 1 .IH by blast+

moreover have build ks ps = Node k m (build ks l) (build ks r)
using build-psimp-3 [OF True ks-def lmr-def ] build-termination D by blast

ultimately show ?thesis
using length-partition-by-median(1 )[OF lmr-def ] by simp

next
case False
thus ?thesis
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using 1 .prems by (cases ps) auto
qed

qed

theorem balanced-build:
0 < length ps =⇒ ∀ k. distinct (map (λp. p$k) ps) =⇒ balanced (build ks ps)

proof (induction ps rule: length-induct)
case (1 ps)
show ?case
proof (cases 1 < length ps)

case True
obtain k s where ks-def : (k, s) = widest-spread ks ps

by (metis surj-pair)
obtain l m r where lmr-def : (l, m, r) = partition-by-median k ps

by (metis prod-cases3 )
have D: ∀ k. distinct (map (λp. p$k) l) ∀ k. distinct (map (λp. p$k) r)

using lmr-def unfolding partition-by-median-def
by (auto simp: 1 .prems(2 ) Let-def distinct-map-filter)

moreover have length l < length ps 0 < length l
length r < length ps 0 < length r

using length-partition-by-median(8 )[OF True 1 .prems(2 )]
length-partition-by-median(5 )[OF 1 .prems(1 ) 1 .prems(2 )]
length-partition-by-median(6 )[OF 1 .prems(1 ) 1 .prems(2 )]
length-partition-by-median(7 )[OF True 1 .prems(2 )]
lmr-def by blast+

ultimately have IH : balanced (build ks l) balanced (build ks r)
using 1 .IH by blast+

have build ks ps = Node k m (build ks l) (build ks r)
using build-psimp-3 [OF True ks-def lmr-def ] build-termination D by blast

moreover have length r + 1 = length l ∨ length r = length l
using length-partition-by-median(1 )[OF lmr-def ]

length-partition-by-median(3 )[OF 1 .prems(1 ) 1 .prems(2 ) lmr-def ]
length-partition-by-median(4 )[OF 1 .prems(1 ) 1 .prems(2 ) lmr-def ]

by linarith
ultimately show ?thesis

using balanced-Node-if-wbal1 [OF IH ] balanced-Node-if-wbal2 [OF IH ]
size-build[OF ‹0 < length l› D(1 )] size-build[OF ‹0 < length r› D(2 )]

by auto
next

case False
thus ?thesis

using 1 .prems by (cases ps) (auto simp: balanced-def )
qed

qed

lemma complete-if-balanced-size-2powh:
assumes balanced kdt size-kdt kdt = 2 ^ h
shows complete kdt

proof (rule ccontr)
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assume ¬ complete kdt
hence 2 ^ (min-height kdt) < size-kdt kdt size-kdt kdt < 2 ^ height kdt

by (simp-all add: min-height-size-if-incomplete size-height-if-incomplete)
hence height kdt − min-height kdt > 1

using assms(2 ) by simp
hence ¬ balanced kdt

using balanced-def by force
thus False

using assms(1 ) by simp
qed

theorem complete-build:
length ps = 2 ^ h =⇒ ∀ k. distinct (map (λp. p$k) ps) =⇒ complete (build k ps)
by (simp add: balanced-build complete-if-balanced-size-2powh size-build)

corollary height-build:
assumes length ps = 2 ^ h ∀ k. distinct (map (λp. p$k) ps)
shows h = height (build k ps)
using complete-build[OF assms] size-build[OF - assms(2 )] by (simp add: assms(1 )

complete-iff-size)

end

3 Range Searching
theory Range-Search
imports

KD-Tree
begin

Given two k-dimensional points p0 and p1 which bound the search space,
the search should return only the points which satisfy the following criteria:
For every point p in the resulting set:
For every axis k:
p0 $ k ≤ p $ k ∧ p $ k ≤ p1 $ k

For a 2 -d tree a query corresponds to selecting all the points in the rectangle
that has p0 and p1 as its defining edges.

3.1 Rectangle Definition
lemma cbox-point-def :

fixes p0 :: ( ′k::finite) point
shows cbox p0 p1 = { p. ∀ k. p0$k ≤ p$k ∧ p$k ≤ p1$k }

proof −
have cbox p0 p1 = { p. ∀ k. p0 · axis k 1 ≤ p · axis k 1 ∧ p · axis k 1 ≤ p1 ·

axis k 1 }
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unfolding cbox-def using axis-inverse by auto
also have ... = { p. ∀ k. p0$k · 1 ≤ p$k · 1 ∧ p$k · 1 ≤ p1$k · 1 }

using inner-axis[of - - 1 ]
by (metis (mono-tags, opaque-lifting))

also have ... = { p. ∀ k. p0$k ≤ p$k ∧ p$k ≤ p1$k }
by simp

finally show ?thesis .
qed

3.2 Search Function
fun search :: ( ′k::finite) point ⇒ ′k point ⇒ ′k kdt ⇒ ′k point set where

search p0 p1 (Leaf p) = (if p ∈ cbox p0 p1 then { p } else {})
| search p0 p1 (Node k v l r) = (

if v < p0$k then
search p0 p1 r

else if p1$k < v then
search p0 p1 l

else
search p0 p1 l ∪ search p0 p1 r

)

3.3 Auxiliary Lemmas
lemma l-empty:

assumes invar (Node k v l r) v < p0$k
shows set-kdt l ∩ cbox p0 p1 = {}

proof −
have ∀ p ∈ set-kdt l. p$k < p0$k

using assms by auto
hence ∀ p ∈ set-kdt l. p /∈ cbox p0 p1

using cbox-point-def leD by blast
thus ?thesis by blast

qed

lemma r-empty:
assumes invar (Node k v l r) p1$k < v
shows set-kdt r ∩ cbox p0 p1 = {}

proof −
have ∀ p ∈ set-kdt r . p1$k < p$k

using assms by auto
hence ∀ p ∈ set-kdt r . p /∈ cbox p0 p1

using cbox-point-def leD by blast
thus ?thesis by blast

qed

3.4 Main Theorem
theorem search-cbox:

assumes invar kdt
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shows search p0 p1 kdt = set-kdt kdt ∩ cbox p0 p1

using assms l-empty r-empty by (induction kdt) (auto, blast+)

end

4 Nearest Neighbor Search on the k-d Tree
theory Nearest-Neighbors
imports

KD-Tree
begin

Verifying nearest neighbor search on the k-d tree. Given a k-d tree and a
point p, which might not be in the tree, find the points ps that are closest
to p using the Euclidean metric.

4.1 Auxiliary Lemmas about sorted-wrt
lemma

assumes sorted-wrt f xs
shows sorted-wrt-take: sorted-wrt f (take n xs)
and sorted-wrt-drop: sorted-wrt f (drop n xs)

proof −
have sorted-wrt f (take n xs @ drop n xs)

using assms by simp
thus sorted-wrt f (take n xs) sorted-wrt f (drop n xs)

using sorted-wrt-append by blast+
qed

definition sorted-wrt-dist :: ( ′k::finite) point ⇒ ′k point list ⇒ bool where
sorted-wrt-dist p ≡ sorted-wrt (λp0 p1. dist p0 p ≤ dist p1 p)

lemma sorted-wrt-dist-insort-key:
sorted-wrt-dist p ps =⇒ sorted-wrt-dist p (insort-key (λq. dist q p) q ps)
by (induction ps) (auto simp: sorted-wrt-dist-def set-insort-key)

lemma sorted-wrt-dist-take-drop:
assumes sorted-wrt-dist p ps
shows ∀ p0 ∈ set (take n ps). ∀ p1 ∈ set (drop n ps). dist p0 p ≤ dist p1 p
using assms sorted-wrt-append[of - take n ps drop n ps] by (simp add: sorted-wrt-dist-def )

lemma sorted-wrt-dist-last-take-mono:
assumes sorted-wrt-dist p ps n ≤ length ps 0 < n
shows dist (last (take n ps)) p ≤ dist (last ps) p
using assms unfolding sorted-wrt-dist-def by (induction ps arbitrary: n) (auto

simp add: take-Cons ′)

lemma sorted-wrt-dist-last-insort-key-eq:
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assumes sorted-wrt-dist p ps insort-key (λq. dist q p) q ps 6= ps @ [q]
shows last (insort-key (λq. dist q p) q ps) = last ps
using assms unfolding sorted-wrt-dist-def by (induction ps) (auto)

lemma sorted-wrt-dist-last:
assumes sorted-wrt-dist p ps
shows ∀ q ∈ set ps. dist q p ≤ dist (last ps) p

proof (cases ps = [])
case True
thus ?thesis by simp

next
case False
then obtain ps ′ p ′ where [simp]:ps = ps ′ @ [p ′]

using rev-exhaust by blast
hence sorted-wrt-dist p (ps ′ @ [p ′])

using assms by blast
thus ?thesis

unfolding sorted-wrt-dist-def using sorted-wrt-append[of - ps ′ [p ′]] by simp
qed

4.2 Neighbors Sorted wrt. Distance
definition upd-nbors :: nat ⇒ ( ′k::finite) point ⇒ ′k point ⇒ ′k point list ⇒ ′k
point list where

upd-nbors n p q ps = take n (insort-key (λq. dist q p) q ps)

lemma sorted-wrt-dist-nbors:
assumes sorted-wrt-dist p ps
shows sorted-wrt-dist p (upd-nbors n p q ps)

proof −
have sorted-wrt-dist p (insort-key (λq. dist q p) q ps)

using assms sorted-wrt-dist-insort-key by blast
thus ?thesis

by (simp add: sorted-wrt-dist-def sorted-wrt-take upd-nbors-def )
qed

lemma sorted-wrt-dist-nbors-diff :
assumes sorted-wrt-dist p ps
shows ∀ r ∈ set ps ∪ {q} − set (upd-nbors n p q ps). ∀ s ∈ set (upd-nbors n p q

ps). dist s p ≤ dist r p
proof −

let ?ps ′ = insort-key (λq. dist q p) q ps
have set ps ∪ { q } = set ?ps ′

by (simp add: set-insort-key)
moreover have set ?ps ′ = set (take n ?ps ′) ∪ set (drop n ?ps ′)

using append-take-drop-id set-append by metis
ultimately have set ps ∪ { q } − set (take n ?ps ′) ⊆ set (drop n ?ps ′)

by blast
moreover have sorted-wrt-dist p ?ps ′
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using assms sorted-wrt-dist-insort-key by blast
ultimately show ?thesis

unfolding upd-nbors-def using sorted-wrt-dist-take-drop by blast
qed

lemma sorted-wrt-dist-last-upd-nbors-mono:
assumes sorted-wrt-dist p ps n ≤ length ps 0 < n
shows dist (last (upd-nbors n p q ps)) p ≤ dist (last ps) p

proof (cases insort-key (λq. dist q p) q ps = ps @ [q])
case True
thus ?thesis

unfolding upd-nbors-def using assms sorted-wrt-dist-last-take-mono by auto
next

case False
hence last (insort-key (λq. dist q p) q ps) = last ps

using sorted-wrt-dist-last-insort-key-eq assms by blast
moreover have dist (last (upd-nbors n p q ps)) p ≤ dist (last (insort-key (λq.

dist q p) q ps)) p
unfolding upd-nbors-def using assms sorted-wrt-dist-last-take-mono[of p in-

sort-key (λq. dist q p) q ps]
by (simp add: sorted-wrt-dist-insort-key)

ultimately show ?thesis
by simp

qed

4.3 The Recursive Nearest Neighbor Algorithm
fun nearest-nbors :: nat ⇒ ( ′k::finite) point list ⇒ ′k point ⇒ ′k kdt ⇒ ′k point
list where

nearest-nbors n ps p (Leaf q) = upd-nbors n p q ps
| nearest-nbors n ps p (Node k v l r) = (

if p$k ≤ v then
let candidates = nearest-nbors n ps p l in
if length candidates = n ∧ dist p (last candidates) ≤ dist v (p$k) then

candidates
else

nearest-nbors n candidates p r
else

let candidates = nearest-nbors n ps p r in
if length candidates = n ∧ dist p (last candidates) ≤ dist v (p$k) then

candidates
else

nearest-nbors n candidates p l
)

4.4 Auxiliary Lemmas
lemma cutoff-r :

assumes invar (Node k v l r)
assumes p$k ≤ v dist p c ≤ dist (p$k) v
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shows ∀ q ∈ set-kdt r . dist p c ≤ dist p q
proof standard

fix q
assume ∗: q ∈ set-kdt r
have dist p c ≤ dist (p$k) v

using assms(3 ) by blast
also have ... ≤ dist (p$k) v + dist v (q$k)

by simp
also have ... = dist (p$k) (q$k)

using ∗ assms(1 ,2 ) dist-real-def by auto
also have ... ≤ dist p q

using dist-vec-nth-le by blast
finally show dist p c ≤ dist p q .

qed

lemma cutoff-l:
assumes invar (Node k v l r)
assumes v ≤ p$k dist p c ≤ dist v (p$k)
shows ∀ q ∈ set-kdt l. dist p c ≤ dist p q

proof standard
fix q
assume ∗: q ∈ set-kdt l
have dist p c ≤ dist v (p$k)

using assms(3 ) by blast
also have ... ≤ dist v (p$k) + dist (q$k) v

by simp
also have ... = dist (p$k) (q$k)

using ∗ assms(1 ,2 ) dist-real-def by auto
also have ... ≤ dist p q

using dist-vec-nth-le by blast
finally show dist p c ≤ dist p q .

qed

4.5 The Main Theorems
lemma set-nns:

set (nearest-nbors n ps p kdt) ⊆ set-kdt kdt ∪ set ps
apply (induction kdt arbitrary: ps)
apply (auto simp: Let-def upd-nbors-def set-insort-key)
using in-set-takeD set-insort-key by fastforce

lemma length-nns:
length (nearest-nbors n ps p kdt) = min n (size-kdt kdt + length ps)
by (induction kdt arbitrary: ps) (auto simp: Let-def upd-nbors-def )

lemma length-nns-gt-0 :
0 < n =⇒ 0 < length (nearest-nbors n ps p kdt)
by (induction kdt arbitrary: ps) (auto simp: Let-def upd-nbors-def )
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lemma length-nns-n:
assumes (set-kdt kdt ∪ set ps) − set (nearest-nbors n ps p kdt) 6= {}
shows length (nearest-nbors n ps p kdt) = n
using assms

proof (induction kdt arbitrary: ps)
case (Node k v l r)
let ?nnsl = nearest-nbors n ps p l
let ?nnsr = nearest-nbors n ps p r
consider (A) p$k ≤ v ∧ length ?nnsl = n ∧ dist p (last ?nnsl) ≤ dist v (p$k)

| (B) p$k ≤ v ∧ ¬(length ?nnsl = n ∧ dist p (last ?nnsl) ≤ dist v (p$k))
| (C ) v < p$k ∧ length ?nnsr = n ∧ dist p (last ?nnsr) ≤ dist v (p$k)
| (D) v < p$k ∧ ¬(length ?nnsr = n ∧ dist p (last ?nnsr) ≤ dist v (p$k))

by argo
thus ?case
proof cases

case B
let ?nns = nearest-nbors n ?nnsl p r
have length ?nnsl 6= n −→ (set-kdt l ∪ set ps − set (nearest-nbors n ps p l) =

{})
using Node.IH (1 ) by blast

hence length ?nnsl 6= n −→ (set-kdt r ∪ set ?nnsl − set ?nns 6= {})
using B Node.prems by auto

moreover have length ?nnsl = n −→ ?thesis
using B by (auto simp: length-nns)

ultimately show ?thesis
using B Node.IH (2 ) by force

next
case D
let ?nns = nearest-nbors n ?nnsr p l
have length ?nnsr 6= n −→ (set-kdt r ∪ set ps − set (nearest-nbors n ps p r)

= {})
using Node.IH (2 ) by blast

hence length ?nnsr 6= n −→ (set-kdt l ∪ set ?nnsr − set ?nns 6= {})
using D Node.prems by auto

moreover have length ?nnsr = n −→ ?thesis
using D by (auto simp: length-nns)

ultimately show ?thesis
using D Node.IH (1 ) by force

qed auto
qed (auto simp: upd-nbors-def min-def set-insort-key)

lemma sorted-nns:
sorted-wrt-dist p ps =⇒ sorted-wrt-dist p (nearest-nbors n ps p kdt)
using sorted-wrt-dist-nbors by (induction kdt arbitrary: ps) (auto simp: Let-def )

lemma distinct-nns:
assumes invar kdt distinct ps set ps ∩ set-kdt kdt = {}
shows distinct (nearest-nbors n ps p kdt)
using assms
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proof (induction kdt arbitrary: ps)
case (Node k v l r)
let ?nnsl = nearest-nbors n ps p l
let ?nnsr = nearest-nbors n ps p r
have set ps ∩ set-kdt l = {} set ps ∩ set-kdt r = {}

using Node.prems(3 ) by auto
hence DCLR: distinct ?nnsl distinct ?nnsr

using Node invar-l invar-r by blast+
have set ?nnsl ∩ set-kdt r = {} set ?nnsr ∩ set-kdt l = {}

using Node.prems(1 ,3 ) set-nns by fastforce+
hence distinct (nearest-nbors n ?nnsl p r) distinct (nearest-nbors n ?nnsr p l)

using Node.IH (1 ,2 ) Node.prems(1 ,2 ) DCLR invar-l invar-r by blast+
thus ?case

using DCLR by (auto simp add: Let-def )
qed (auto simp: upd-nbors-def distinct-insort)

lemma last-nns-mono:
assumes invar kdt sorted-wrt-dist p ps n ≤ length ps 0 < n
shows dist (last (nearest-nbors n ps p kdt)) p ≤ dist (last ps) p
using assms

proof (induction kdt arbitrary: ps)
case (Node k v l r)
let ?nnsl = nearest-nbors n ps p l
let ?nnsr = nearest-nbors n ps p r
have n ≤ length ?nnsl n ≤ length ?nnsr

using Node.prems(3 ) by (simp-all add: length-nns)
hence dist (last (nearest-nbors n ?nnsl p r)) p ≤ dist (last ?nnsl) p

dist (last (nearest-nbors n ?nnsr p l)) p ≤ dist (last ?nnsr) p
using sorted-nns Node invar-l invar-r by blast+

hence dist (last (nearest-nbors n ?nnsl p r)) p ≤ dist (last ps) p
dist (last (nearest-nbors n ?nnsr p l)) p ≤ dist (last ps) p

using Node.IH (1 )[of ps] Node.IH (2 )[of ps] Node.prems invar-l length-nns-gt-0
by auto

thus ?case
using Node by (auto simp add: Let-def )

qed (auto simp: sorted-wrt-dist-last-upd-nbors-mono)

theorem dist-nns:
assumes invar kdt sorted-wrt-dist p ps set ps ∩ set-kdt kdt = {} distinct ps 0 <

n
shows ∀ q ∈ set-kdt kdt ∪ set ps − set (nearest-nbors n ps p kdt). dist (last

(nearest-nbors n ps p kdt)) p ≤ dist q p
using assms

proof (induction kdt arbitrary: ps)
case (Node k v l r)

let ?nnsl = nearest-nbors n ps p l
let ?nnsr = nearest-nbors n ps p r
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have IHL: ∀ q ∈ set-kdt l ∪ set ps − set ?nnsl. dist (last ?nnsl) p ≤ dist q p
using Node.IH (1 ) Node.prems invar-l invar-set by auto

have IHR: ∀ q ∈ set-kdt r ∪ set ps − set ?nnsr . dist (last ?nnsr) p ≤ dist q p
using Node.IH (2 ) Node.prems invar-r invar-set by auto

have SORTED-L: sorted-wrt-dist p ?nnsl
using sorted-nns Node.prems(2 ) by blast

have SORTED-R: sorted-wrt-dist p ?nnsr
using sorted-nns Node.prems(2 ) by blast

have DISTINCT-L: distinct ?nnsl
using Node.prems distinct-nns invar-set invar-l by fastforce

have DISTINCT-R: distinct ?nnsr
using Node.prems distinct-nns invar-set invar-r
by (metis inf-bot-right inf-sup-absorb inf-sup-aci(3 ) sup.commute)

consider (A) p$k ≤ v ∧ length ?nnsl = n ∧ dist p (last ?nnsl) ≤ dist v (p$k)
| (B) p$k ≤ v ∧ ¬(length ?nnsl = n ∧ dist p (last ?nnsl) ≤ dist v (p$k))
| (C ) v < p$k ∧ length ?nnsr = n ∧ dist p (last ?nnsr) ≤ dist v (p$k)
| (D) v < p$k ∧ ¬(length ?nnsr = n ∧ dist p (last ?nnsr) ≤ dist v (p$k))

by argo
thus ?case
proof cases

case A
hence ∀ q ∈ set-kdt r . dist (last ?nnsl) p ≤ dist q p

using Node.prems(1 ,2 ) cutoff-r by (metis dist-commute)
thus ?thesis

using IHL A by auto
next

case B

let ?nns = nearest-nbors n ?nnsl p r

have set ?nnsl ⊆ set-kdt l ∪ set ps set ps ∩ set-kdt r = {}
using set-nns Node.prems(1 ,3 ) by (simp add: set-nns disjoint-iff-not-equal)+

hence set ?nnsl ∩ set-kdt r = {}
using Node.prems(1 ) by fastforce

hence IHLR: ∀ q ∈ set-kdt r ∪ set ?nnsl − set ?nns. dist (last ?nns) p ≤ dist
q p

using Node.IH (2 )[OF - SORTED-L - DISTINCT-L Node.prems(5 )] Node.prems(1 )
invar-r by blast

have ∀ q ∈ set ps − set ?nnsl. dist (last ?nns) p ≤ dist q p
proof standard

fix q
assume ∗: q ∈ set ps − set ?nnsl

hence length ?nnsl = n
using length-nns-n by blast

28



hence LAST : dist (last ?nns) p ≤ dist (last ?nnsl) p
using last-nns-mono SORTED-L invar-r Node.prems(1 ,2 ,5 ) by (metis

order-refl)
have dist (last ?nnsl) p ≤ dist q p

using IHL ∗ by blast
thus dist (last ?nns) p ≤ dist q p

using LAST by argo
qed
hence R: ∀ q ∈ set-kdt r ∪ set ps − set ?nns. dist (last ?nns) p ≤ dist q p

using IHLR by auto

have ∀ q ∈ set-kdt l − set ?nnsl. dist (last ?nns) p ≤ dist q p
proof standard

fix q
assume ∗: q ∈ set-kdt l − set ?nnsl

hence length ?nnsl = n
using length-nns-n by blast

hence LAST : dist (last ?nns) p ≤ dist (last ?nnsl) p
using last-nns-mono SORTED-L invar-r Node.prems(1 ,2 ,5 ) by (metis

order-refl)
have dist (last ?nnsl) p ≤ dist q p

using IHL ∗ by blast
thus dist (last ?nns) p ≤ dist q p

using LAST by argo
qed
hence L: ∀ q ∈ set-kdt l − set ?nns. dist (last ?nns) p ≤ dist q p

using IHLR by blast

show ?thesis
using B R L by auto

next
case C
hence ∀ q ∈ set-kdt l. dist (last ?nnsr) p ≤ dist q p

using Node.prems(1 ,2 ) cutoff-l by (metis dist-commute less-imp-le)
thus ?thesis

using IHR C by auto
next

case D

let ?nns = nearest-nbors n ?nnsr p l

have set ?nnsr ⊆ set-kdt r ∪ set ps set ps ∩ set-kdt l = {}
using set-nns Node.prems(1 ,3 ) by (simp add: set-nns disjoint-iff-not-equal)+

hence set ?nnsr ∩ set-kdt l = {}
using Node.prems(1 ) by fastforce

hence IHRL: ∀ q ∈ set-kdt l ∪ set ?nnsr − set ?nns. dist (last ?nns) p ≤ dist
q p

using Node.IH (1 )[OF - SORTED-R - DISTINCT-R Node.prems(5 )] Node.prems(1 )
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invar-l by blast

have ∀ q ∈ set ps − set ?nnsr . dist (last ?nns) p ≤ dist q p
proof standard

fix q
assume ∗: q ∈ set ps − set ?nnsr

hence length ?nnsr = n
using length-nns-n by blast

hence LAST : dist (last ?nns) p ≤ dist (last ?nnsr) p
using last-nns-mono SORTED-R invar-l Node.prems(1 ,2 ,5 ) by (metis

order-refl)
have dist (last ?nnsr) p ≤ dist q p

using IHR ∗ by blast
thus dist (last ?nns) p ≤ dist q p

using LAST by argo
qed
hence R: ∀ q ∈ set-kdt l ∪ set ps − set ?nns. dist (last ?nns) p ≤ dist q p

using IHRL by auto

have ∀ q ∈ set-kdt r − set ?nnsr . dist (last ?nns) p ≤ dist q p
proof standard

fix q
assume ∗: q ∈ set-kdt r − set ?nnsr

hence length ?nnsr = n
using length-nns-n by blast

hence LAST : dist (last ?nns) p ≤ dist (last ?nnsr) p
using last-nns-mono SORTED-R invar-l Node.prems(1 ,2 ,5 ) by (metis

order-refl)
have dist (last ?nnsr) p ≤ dist q p

using IHR ∗ by blast
thus dist (last ?nns) p ≤ dist q p

using LAST by argo
qed
hence L: ∀ q ∈ set-kdt r − set ?nns. dist (last ?nns) p ≤ dist q p

using IHRL by blast

show ?thesis
using D R L by auto

qed
qed (auto simp: sorted-wrt-dist-nbors-diff upd-nbors-def )

4.6 Nearest Neighbors Definition and Theorems
definition nearest-neighbors :: nat ⇒ ( ′k::finite) point ⇒ ′k kdt ⇒ ′k point list
where

nearest-neighbors n p kdt = nearest-nbors n [] p kdt
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theorem length-nearest-neighbors:
length (nearest-neighbors n p kdt) = min n (size-kdt kdt)
by (simp add: length-nns nearest-neighbors-def )

theorem sorted-wrt-dist-nearest-neighbors:
sorted-wrt-dist p (nearest-neighbors n p kdt)
using sorted-nns unfolding nearest-neighbors-def sorted-wrt-dist-def by force

theorem set-nearest-neighbors:
set (nearest-neighbors n p kdt) ⊆ set-kdt kdt
unfolding nearest-neighbors-def using set-nns by force

theorem distinct-nearest-neighbors:
assumes invar kdt
shows distinct (nearest-neighbors n p kdt)
using assms by (simp add: distinct-nns nearest-neighbors-def )

theorem dist-nearest-neighbors:
assumes invar kdt nns = nearest-neighbors n p kdt
shows ∀ q ∈ (set-kdt kdt − set nns). ∀ r ∈ set nns. dist r p ≤ dist q p

proof (cases 0 < n)
case True
have ∀ q ∈ set-kdt kdt − set nns. dist (last nns) p ≤ dist q p

using nearest-neighbors-def dist-nns[OF assms(1 ), of p [], OF - - - True]
assms(2 )

by (simp add: nearest-neighbors-def sorted-wrt-dist-def )
hence ∀ q ∈ set-kdt kdt − set nns. ∀n ∈ set nns. dist n p ≤ dist q p
using assms(2 ) sorted-wrt-dist-nearest-neighbors[of p n kdt] sorted-wrt-dist-last[of

p nns] by force
thus ?thesis

using nearest-neighbors-def by blast
next

case False
hence length nns = 0

using assms(2 ) unfolding nearest-neighbors-def by (auto simp: length-nns)
thus ?thesis

by simp
qed

end
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