
Multidimensional Binary Search Trees

Martin Rau

March 17, 2025

Abstract
This entry provides a formalization of multidimensional binary trees,

also known as k-d trees. It includes a balanced build algorithm as well
as the nearest neighbor algorithm and the range search algorithm. It
is based on the papers "Multidimensional binary search trees used for
associative searching" [1] and "An Algorithm for Finding Best Matches
in Logarithmic Expected Time" [2].

Contents
1 Definition of the k-d Tree 2

1.1 Definition of the k-d Tree Invariant and Related Functions . . 2
1.2 Lemmas adapted from HOL−Library.Tree to k-d Tree 4
1.3 Lemmas adapted from HOL−Library.Tree-Real to k-d Tree . 8

2 Building a balanced k-d Tree from a List of Points 10
2.1 Auxiliary Lemmas . 11
2.2 Widest Spread Axis . 11
2.3 Fast Axis Median . 13
2.4 Building the Tree . 14
2.5 Main Theorems . 16

3 Range Searching 20
3.1 Rectangle Definition . 20
3.2 Search Function . 21
3.3 Auxiliary Lemmas . 21
3.4 Main Theorem . 21

4 Nearest Neighbor Search on the k-d Tree 22
4.1 Auxiliary Lemmas about sorted-wrt 22
4.2 Neighbors Sorted wrt. Distance 23
4.3 The Recursive Nearest Neighbor Algorithm 24
4.4 Auxiliary Lemmas . 24
4.5 The Main Theorems . 25
4.6 Nearest Neighbors Definition and Theorems 30

1

1 Definition of the k-d Tree
theory KD-Tree
imports

Complex-Main
HOL−Analysis.Finite-Cartesian-Product
HOL−Analysis.Topology-Euclidean-Space

begin

A k-d tree is a space-partitioning data structure for organizing points in a
k-dimensional space. In principle the k-d tree is a binary tree. The leafs
hold the k-dimensional points and the nodes contain left and right subtrees
as well as a discriminator v at a particular axis k. Every node divides the
space into two parts by splitting along a hyperplane. Consider a node n
with associated discriminator v at axis k. All points in the left subtree must
have a value at axis k that is less than or equal to v and all points in the
right subtree must have a value at axis k that is greater than v.
Deviations from the papers:
The chosen tree representation is taken from [2] with one minor adjustment.
Originally the leafs hold buckets of points of size b. This representation
fixes the bucket size to b = 1, a single point per Leaf. This is only a minor
adjustment since the paper proves that b = 1 is the optimal bucket size
for minimizing the running time of the nearest neighbor algorithm [2], only
simplifies building the optimized k-d trees [2] and has little influence on the
search algorithm [1].
type-synonym ′k point = (real, ′k) vec

lemma dist-point-def :
fixes p0 :: (′k::finite) point
shows dist p0 p1 = sqrt (

∑
k ∈ UNIV . (p0$k − p1$k)2)

unfolding dist-vec-def L2-set-def dist-real-def by simp

datatype ′k kdt =
Leaf ′k point
| Node ′k real ′k kdt ′k kdt

1.1 Definition of the k-d Tree Invariant and Related Func-
tions

fun set-kdt :: ′k kdt ⇒ (′k point) set where
set-kdt (Leaf p) = { p }
| set-kdt (Node - - l r) = set-kdt l ∪ set-kdt r

definition spread :: (′k::finite) ⇒ ′k point set ⇒ real where
spread k P = (if P = {} then 0 else let V = (λp. p$k) ‘ P in Max V − Min V)

definition widest-spread-axis :: (′k::finite) ⇒ ′k set ⇒ ′k point set ⇒ bool where

2

widest-spread-axis k K ps ←→ (∀ k ′ ∈ K . spread k ′ ps ≤ spread k ps)

fun invar :: (′k::finite) kdt ⇒ bool where
invar (Leaf p) ←→ True
| invar (Node k v l r) ←→ (∀ p ∈ set-kdt l. p$k ≤ v) ∧ (∀ p ∈ set-kdt r . v < p$k)
∧

widest-spread-axis k UNIV (set-kdt l ∪ set-kdt r) ∧ invar l ∧ invar r

fun size-kdt :: ′k kdt ⇒ nat where
size-kdt (Leaf -) = 1
| size-kdt (Node - - l r) = size-kdt l + size-kdt r

fun height :: ′k kdt ⇒ nat where
height (Leaf -) = 0
| height (Node - - l r) = max (height l) (height r) + 1

fun min-height :: ′k kdt ⇒ nat where
min-height (Leaf -) = 0
| min-height (Node - - l r) = min (min-height l) (min-height r) + 1

definition balanced :: ′k kdt ⇒ bool where
balanced kdt ←→ height kdt − min-height kdt ≤ 1

fun complete :: ′k kdt ⇒ bool where
complete (Leaf -) = True
| complete (Node - - l r) ←→ complete l ∧ complete r ∧ height l = height r

lemma invar-l:
invar (Node k v l r) =⇒ invar l
by simp

lemma invar-r :
invar (Node k v l r) =⇒ invar r
by simp

lemma invar-l-le-k:
invar (Node k v l r) =⇒ ∀ p ∈ set-kdt l. p$k ≤ v
by simp

lemma invar-r-ge-k:
invar (Node k v l r) =⇒ ∀ p ∈ set-kdt r . v < p$k
by simp

lemma invar-set:
set-kdt (Node k v l r) = set-kdt l ∪ set-kdt r
by simp

3

1.2 Lemmas adapted from HOL−Library.Tree to k-d Tree
lemma size-ge0 [simp]:

0 < size-kdt kdt
by (induction kdt) auto

lemma eq-size-1 [simp]:
size-kdt kdt = 1 ←→ (∃ p. kdt = Leaf p)
apply (induction kdt)
apply (auto)
using size-ge0 nat-less-le apply blast+
done

lemma eq-1-size[simp]:
1 = size-kdt kdt ←→ (∃ p. kdt = Leaf p)
using eq-size-1 by metis

lemma neq-Leaf-iff :
(@ p. kdt = Leaf p) = (∃ k v l r . kdt = Node k v l r)
by (cases kdt) auto

lemma eq-height-0 [simp]:
height kdt = 0 ←→ (∃ p. kdt = Leaf p)
by (cases kdt) auto

lemma eq-0-height[simp]:
0 = height kdt ←→ (∃ p. kdt = Leaf p)
by (cases kdt) auto

lemma eq-min-height-0 [simp]:
min-height kdt = 0 ←→ (∃ p. kdt = Leaf p)
by (cases kdt) auto

lemma eq-0-min-height[simp]:
0 = min-height kdt ←→ (∃ p. kdt = Leaf p)
by (cases kdt) auto

lemma size-height:
size-kdt kdt ≤ 2 ^ height kdt

proof(induction kdt)
case (Node k v l r)
show ?case
proof (cases height l ≤ height r)

case True
have size-kdt (Node k v l r) = size-kdt l + size-kdt r by simp
also have . . . ≤ 2 ^ height l + 2 ^ height r using Node.IH by arith
also have . . . ≤ 2 ^ height r + 2 ^ height r using True by simp
also have . . . = 2 ^ height (Node k v l r)

using True by (auto simp: max-def mult-2)
finally show ?thesis .

4

next
case False
have size-kdt (Node k v l r) = size-kdt l + size-kdt r by simp
also have . . . ≤ 2 ^ height l + 2 ^ height r using Node.IH by arith
also have . . . ≤ 2 ^ height l + 2 ^ height l using False by simp
finally show ?thesis using False by (auto simp: max-def mult-2)

qed
qed simp

lemma min-height-le-height:
min-height kdt ≤ height kdt
by (induction kdt) auto

lemma min-height-size:
2 ^ min-height kdt ≤ size-kdt kdt

proof(induction kdt)
case (Node k v l r)
have (2 ::nat) ^ min-height (Node k v l r) ≤ 2 ^ min-height l + 2 ^ min-height r

by (simp add: min-def)
also have . . . ≤ size-kdt (Node k v l r) using Node.IH by simp
finally show ?case .

qed simp

lemma complete-iff-height:
complete kdt ←→ (min-height kdt = height kdt)
apply (induction kdt)
apply simp
apply (simp add: min-def max-def)
by (metis le-antisym le-trans min-height-le-height)

lemma size-if-complete:
complete kdt =⇒ size-kdt kdt = 2 ^ height kdt
by (induction kdt) auto

lemma complete-if-size-height:
size-kdt kdt = 2 ^ height kdt =⇒ complete kdt

proof (induction height kdt arbitrary: kdt)
case 0 thus ?case by auto

next
case (Suc h)
hence @ p. kdt = Leaf p

by auto
then obtain k v l r where [simp]: kdt = Node k v l r

using neq-Leaf-iff by metis
have 1 : height l ≤ h and 2 : height r ≤ h using Suc(2) by(auto)
have 3 : ¬ height l < h
proof

assume 0 : height l < h
have size-kdt kdt = size-kdt l + size-kdt r by simp

5

also have . . . ≤ 2 ^ height l + 2 ^ height r
using size-height[of l] size-height[of r] by arith

also have . . . < 2 ^ h + 2 ^ height r using 0 by (simp)
also have . . . ≤ 2 ^ h + 2 ^ h using 2 by (simp)
also have . . . = 2 ^ (Suc h) by (simp)
also have . . . = size-kdt kdt using Suc(2 ,3) by simp
finally have size-kdt kdt < size-kdt kdt .
thus False by (simp)

qed
have 4 : ¬ height r < h
proof

assume 0 : height r < h
have size-kdt kdt = size-kdt l + size-kdt r by simp
also have . . . ≤ 2 ^ height l + 2 ^ height r

using size-height[of l] size-height[of r] by arith
also have . . . < 2 ^ height l + 2 ^ h using 0 by (simp)
also have . . . ≤ 2 ^ h + 2 ^ h using 1 by (simp)
also have . . . = 2 ^ (Suc h) by (simp)
also have . . . = size-kdt kdt using Suc(2 ,3) by simp
finally have size-kdt kdt < size-kdt kdt .
thus False by (simp)

qed
from 1 2 3 4 have ∗: height l = h height r = h by linarith+
hence size-kdt l = 2 ^ height l size-kdt r = 2 ^ height r

using Suc(3) size-height[of l] size-height[of r] by (auto)
with ∗ Suc(1) show ?case by simp

qed

lemma complete-if-size-min-height:
size-kdt kdt = 2 ^ min-height kdt =⇒ complete kdt

proof (induct min-height kdt arbitrary: kdt)
case 0 thus ?case by auto

next
case (Suc h)
hence @ p. kdt = Leaf p

by auto
then obtain k v l r where [simp]: kdt = Node k v l r

using neq-Leaf-iff by metis
have 1 : h ≤ min-height l and 2 : h ≤ min-height r using Suc(2) by (auto)
have 3 : ¬ h < min-height l
proof

assume 0 : h < min-height l
have size-kdt kdt = size-kdt l + size-kdt r by simp
also note min-height-size[of l]
also(xtrans) note min-height-size[of r]
also(xtrans) have (2 ::nat) ^ min-height l > 2 ^ h

using 0 by (simp add: diff-less-mono)
also(xtrans) have (2 ::nat) ^ min-height r ≥ 2 ^ h using 2 by simp
also(xtrans) have (2 ::nat) ^ h + 2 ^ h = 2 ^ (Suc h) by (simp)

6

also have . . . = size-kdt kdt using Suc(2 ,3) by simp
finally show False by (simp add: diff-le-mono)

qed
have 4 : ¬ h < min-height r
proof

assume 0 : h < min-height r
have size-kdt kdt = size-kdt l + size-kdt r by simp
also note min-height-size[of l]
also(xtrans) note min-height-size[of r]
also(xtrans) have (2 ::nat) ^ min-height r > 2 ^ h

using 0 by (simp add: diff-less-mono)
also(xtrans) have (2 ::nat) ^ min-height l ≥ 2 ^ h using 1 by simp
also(xtrans) have (2 ::nat) ^ h + 2 ^ h = 2 ^ (Suc h) by (simp)
also have . . . = size-kdt kdt using Suc(2 ,3) by simp
finally show False by (simp add: diff-le-mono)

qed
from 1 2 3 4 have ∗: min-height l = h min-height r = h by linarith+
hence size-kdt l = 2 ^ min-height l size-kdt r = 2 ^ min-height r

using Suc(3) min-height-size[of l] min-height-size[of r] by (auto)
with ∗ Suc(1) show ?case

by (simp add: complete-iff-height)
qed

lemma complete-iff-size:
complete kdt ←→ size-kdt kdt = 2 ^ height kdt
using complete-if-size-height size-if-complete by blast

lemma size-height-if-incomplete:
¬ complete kdt =⇒ size-kdt kdt < 2 ^ height kdt
by (meson antisym-conv complete-iff-size not-le size-height)

lemma min-height-size-if-incomplete:
¬ complete kdt =⇒ 2 ^ min-height kdt < size-kdt kdt
by (metis complete-if-size-min-height le-less min-height-size)

lemma balanced-subtreeL:
balanced (Node k v l r) =⇒ balanced l
by (simp add: balanced-def)

lemma balanced-subtreeR:
balanced (Node k v l r) =⇒ balanced r
by (simp add: balanced-def)

lemma balanced-optimal:
assumes balanced kdt size-kdt kdt ≤ size-kdt kdt ′

shows height kdt ≤ height kdt ′

proof (cases complete kdt)
case True
have (2 ::nat) ^ height kdt ≤ 2 ^ height kdt ′

7

proof −
have 2 ^ height kdt = size-kdt kdt

using True by (simp add: complete-iff-height size-if-complete)
also have . . . ≤ size-kdt kdt ′ using assms(2) by simp
also have . . . ≤ 2 ^ height kdt ′ by (rule size-height)
finally show ?thesis .

qed
thus ?thesis by (simp)

next
case False
have (2 ::nat) ^ min-height kdt < 2 ^ height kdt ′

proof −
have (2 ::nat) ^ min-height kdt < size-kdt kdt

by(rule min-height-size-if-incomplete[OF False])
also have . . . ≤ size-kdt kdt ′ using assms(2) by simp
also have . . . ≤ 2 ^ height kdt ′ by(rule size-height)
finally have (2 ::nat) ^ min-height kdt < (2 ::nat) ^ height kdt ′ .
thus ?thesis .

qed
hence ∗: min-height kdt < height kdt ′ by simp
have min-height kdt + 1 = height kdt

using min-height-le-height[of kdt] assms(1) False
by (simp add: complete-iff-height balanced-def)

with ∗ show ?thesis by arith
qed

1.3 Lemmas adapted from HOL−Library.Tree-Real to k-d Tree
lemma size-height-log:

log 2 (size-kdt kdt) ≤ height kdt
by (simp add: log2-of-power-le size-height)

lemma min-height-size-log:
min-height kdt ≤ log 2 (size-kdt kdt)
by (simp add: le-log2-of-power min-height-size)

lemma size-log-if-complete:
complete kdt =⇒ height kdt = log 2 (size-kdt kdt)
using complete-iff-size log2-of-power-eq by blast

lemma min-height-size-log-if-incomplete:
¬ complete kdt =⇒ min-height kdt < log 2 (size-kdt kdt)
by (simp add: less-log2-of-power min-height-size-if-incomplete)

lemma min-height-balanced:
assumes balanced kdt
shows min-height kdt = nat(floor(log 2 (size-kdt kdt)))

proof cases
assume ∗: complete kdt

8

hence size-kdt kdt = 2 ^ min-height kdt
by (simp add: complete-iff-height size-if-complete)

from log2-of-power-eq[OF this] show ?thesis by linarith
next

assume ∗: ¬ complete kdt
hence height kdt = min-height kdt + 1

using assms min-height-le-height[of kdt]
by(auto simp add: balanced-def complete-iff-height)

hence size-kdt kdt < 2 ^ (min-height kdt + 1)
by (metis ∗ size-height-if-incomplete)

hence log 2 (size-kdt kdt) < min-height kdt + 1
using log2-of-power-less size-ge0 by blast

thus ?thesis using min-height-size-log[of kdt] by linarith
qed

lemma height-balanced:
assumes balanced kdt
shows height kdt = nat(ceiling(log 2 (size-kdt kdt)))

proof cases
assume ∗: complete kdt
hence size-kdt kdt = 2 ^ height kdt

by (simp add: size-if-complete)
from log2-of-power-eq[OF this] show ?thesis

by linarith
next

assume ∗: ¬ complete kdt
hence ∗∗: height kdt = min-height kdt + 1

using assms min-height-le-height[of kdt]
by(auto simp add: balanced-def complete-iff-height)

hence size-kdt kdt ≤ 2 ^ (min-height kdt + 1) by (metis size-height)
from log2-of-power-le[OF this size-ge0] min-height-size-log-if-incomplete[OF ∗]
∗∗

show ?thesis by linarith
qed

lemma balanced-Node-if-wbal1 :
assumes balanced l balanced r size-kdt l = size-kdt r + 1
shows balanced (Node k v l r)

proof −
from assms(3) have [simp]: size-kdt l = size-kdt r + 1 by simp
have nat dlog 2 (1 + size-kdt r)e ≥ nat dlog 2 (size-kdt r)e

by(rule nat-mono[OF ceiling-mono]) simp
hence 1 : height(Node k v l r) = nat dlog 2 (1 + size-kdt r)e + 1

using height-balanced[OF assms(1)] height-balanced[OF assms(2)]
by (simp del: nat-ceiling-le-eq add: max-def)

have nat blog 2 (1 + size-kdt r)c ≥ nat blog 2 (size-kdt r)c
by(rule nat-mono[OF floor-mono]) simp

hence 2 : min-height(Node k v l r) = nat blog 2 (size-kdt r)c + 1
using min-height-balanced[OF assms(1)] min-height-balanced[OF assms(2)]

9

by (simp)
have size-kdt r ≥ 1 by (simp add: Suc-leI)
then obtain i where i: 2 ^ i ≤ size-kdt r size-kdt r < 2 ^ (i + 1)

using ex-power-ivl1 [of 2 size-kdt r] by auto
hence i1 : 2 ^ i < size-kdt r + 1 size-kdt r + 1 ≤ 2 ^ (i + 1) by auto
from 1 2 floor-log-nat-eq-if [OF i] ceiling-log-nat-eq-if [OF i1]
show ?thesis by(simp add:balanced-def)

qed

lemma balanced-sym:
balanced (Node k v l r) =⇒ balanced (Node k ′ v ′ r l)
by (auto simp: balanced-def)

lemma balanced-Node-if-wbal2 :
assumes balanced l balanced r abs(int(size-kdt l) − int(size-kdt r)) ≤ 1
shows balanced (Node k v l r)

proof −
have size-kdt l = size-kdt r ∨ (size-kdt l = size-kdt r + 1 ∨ size-kdt r = size-kdt

l + 1) (is ?A ∨ ?B)
using assms(3) by linarith

thus ?thesis
proof

assume ?A
thus ?thesis using assms(1 ,2)

apply(simp add: balanced-def min-def max-def)
by (metis assms(1 ,2) balanced-optimal le-antisym le-less)

next
assume ?B
thus ?thesis

by (meson assms(1 ,2) balanced-sym balanced-Node-if-wbal1)
qed

qed

end

2 Building a balanced k-d Tree from a List of Points
theory Build
imports

KD-Tree
Median-Of-Medians-Selection.Median-Of-Medians-Selection

begin

Build a balanced k-d Tree by recursively partition the points into two lists.
The partitioning criteria will be the median at a particular axis k. The left
list will contain all points p with p $ k ≤ median. The right list will contain
all points with median at axis median < p $ k. The left and right list differ
in length by one or none. The axis k will the widest spread axis.

10

2.1 Auxiliary Lemmas
lemma length-filter-mset-sorted-nth:

assumes distinct xs n < length xs sorted xs
shows {# x ∈# mset xs. x ≤ xs ! n #} = mset (take (n + 1) xs)
using assms

proof (induction xs arbitrary: n rule: list.induct)
case (Cons x xs)
thus ?case
proof (cases n)

case 0
thus ?thesis

using Cons.prems(1 ,3) filter-mset-is-empty-iff by fastforce
next

case (Suc n ′)
thus ?thesis

using Cons by simp
qed

qed auto

lemma length-filter-sort-nth:
assumes distinct xs n < length xs
shows length (filter (λx. x ≤ sort xs ! n) xs) = n + 1

proof −
have length (filter (λx. x ≤ sort xs ! n) xs) = length (filter (λx. x ≤ sort xs ! n)

(sort xs))
by (simp add: filter-sort)

also have ... = size (mset (filter (λx. x ≤ sort xs ! n) (sort xs)))
using size-mset by metis

also have ... = size ({# x ∈# mset (sort xs). x ≤ sort xs ! n #})
using mset-filter by simp

also have ... = size (mset (take (n + 1) (sort xs)))
using length-filter-mset-sorted-nth assms sorted-sort distinct-sort length-sort by

metis
finally show ?thesis

using assms(2) by auto
qed

2.2 Widest Spread Axis
definition calc-spread :: (′k::finite) ⇒ ′k point list ⇒ real where

calc-spread k ps = (case ps of [] ⇒ 0 | ps ⇒
let ks = map (λp. p$k) (tl ps) in
fold max ks ((hd ps)$k) − fold min ks ((hd ps)$k)

)

fun widest-spread :: (′k::finite) list ⇒ ′k point list ⇒ ′k × real where
widest-spread [] - = undefined
| widest-spread [k] ps = (k, calc-spread k ps)
| widest-spread (k # ks) ps = (

11

let (k ′, s ′) = widest-spread ks ps in
let s = calc-spread k ps in
if s ≤ s ′ then (k ′, s ′) else (k, s)

)

lemma calc-spread-spec:
calc-spread k ps = spread k (set ps)
using Max.set-eq-fold[of (hd ps)$k] Min.set-eq-fold[of (hd ps)$k]
by (auto simp: Let-def spread-def calc-spread-def split: list.splits, metis set-map)

lemma widest-spread-calc-spread:
ks 6= [] =⇒ (k, s) = widest-spread ks ps =⇒ s = calc-spread k ps
by (induction ks ps rule: widest-spread.induct) (auto simp: Let-def split: prod.splits

if-splits)

lemma widest-spread-axis-Un:
shows widest-spread-axis k K P =⇒ spread k ′ P ≤ spread k P =⇒ widest-spread-axis

k (K ∪ { k ′ }) P
and widest-spread-axis k K P =⇒ spread k P ≤ spread k ′ P =⇒ widest-spread-axis

k ′ (K ∪ { k ′ }) P
unfolding widest-spread-axis-def by auto

lemma widest-spread-spec:
(k, s) = widest-spread ks ps =⇒ widest-spread-axis k (set ks) (set ps)

proof (induction ks ps arbitrary: k s rule: widest-spread.induct)
case (3 k0 k1 ks ps)
obtain K ′ S ′ where K ′-def : (K ′, S ′) = widest-spread (k1 # ks) ps

by (metis surj-pair)
hence IH : widest-spread-axis K ′ (set (k1 # ks)) (set ps)

using 3 .IH by blast
hence 0 : S ′ = spread K ′ (set ps)

using K ′-def widest-spread-calc-spread calc-spread-spec by blast
define S where S = calc-spread k0 ps
hence 1 : S = spread k0 (set ps)

using calc-spread-spec by blast
show ?case
proof (cases S ≤ S ′)

case True
hence widest-spread-axis K ′ (set (k0 # k1 # ks)) (set ps)

using 0 1 widest-spread-axis-Un(1)[OF IH , of k0] by auto
thus ?thesis

using True K ′-def S-def 3 .prems by (auto split: prod.splits)
next

case False
hence widest-spread-axis k0 (set (k0 # k1 # ks)) (set ps)

using 0 1 widest-spread-axis-Un(2)[OF IH , of k0] 3 .prems(1) by auto
thus ?thesis

using False K ′-def S-def 3 .prems by (auto split: prod.splits)
qed

12

qed (auto simp: widest-spread-axis-def)

2.3 Fast Axis Median
definition axis-median :: (′k::finite) ⇒ ′k point list ⇒ real where

axis-median k ps = (let n = (length ps − 1) div 2 in fast-select n (map (λp. p$k)
ps))

lemma length-filter-le-axis-median:
assumes 0 < length ps ∀ k. distinct (map (λp. p$k) ps)
shows length (filter (λp. p$k ≤ axis-median k ps) ps) = (length ps − 1) div 2 +

1
proof −

let ?n = (length ps − 1) div 2
let ?ps = map (λp. p$k) ps
let ?m = fast-select ?n ?ps
have 0 : ?n < length ?ps

using assms(1) by (auto, linarith)
have 1 : distinct ?ps

using assms(2) by blast
have ?m = select ?n ?ps

using fast-select-correct[OF 0] by blast
hence length (filter (λp. p$k ≤ axis-median k ps) ps) =

length (filter (λp. p$k ≤ sort ?ps ! ?n) ps)
unfolding axis-median-def by (auto simp add: Let-def select-def simp del:

fast-select.simps)
also have ... = length (filter (λv. v ≤ sort ?ps ! ?n) ?ps)

by (induction ps) (auto, metis comp-apply)
also have ... = ?n + 1

using length-filter-sort-nth[OF 1 0] by blast
finally show ?thesis .

qed

definition partition-by-median :: (′k::finite) ⇒ ′k point list ⇒ ′k point list × real
× ′k point list where

partition-by-median k ps = (
let m = axis-median k ps in
let (l, r) = partition (λp. p$k ≤ m) ps in
(l, m, r)

)

lemma set-partition-by-median:
(l, m, r) = partition-by-median k ps =⇒ set ps = set l ∪ set r
unfolding partition-by-median-def by (auto simp: Let-def)

lemma filter-partition-by-median:
assumes (l, m, r) = partition-by-median k ps
shows ∀ p ∈ set l. p$k ≤ m

and ∀ p ∈ set r . ¬p$k ≤ m

13

using assms unfolding partition-by-median-def by (auto simp: Let-def)

lemma sum-length-partition-by-median:
assumes (l, m, r) = partition-by-median k ps
shows length ps = length l + length r
using assms sum-length-filter-compl[of (λp. p $ k ≤ axis-median k ps)]
unfolding partition-by-median-def by (simp add: Let-def o-def)

lemma length-l-partition-by-median:
assumes 0 < length ps ∀ k. distinct (map (λp. p$k) ps) (l, m, r) = parti-

tion-by-median k ps
shows length l = (length ps − 1) div 2 + 1
using assms unfolding partition-by-median-def by (auto simp: Let-def length-filter-le-axis-median)

corollary lengths-partition-by-median-1 :
assumes 0 < length ps ∀ k. distinct (map (λp. p$k) ps) (l, m, r) = parti-

tion-by-median k ps
shows length l − length r ≤ 1

and length r ≤ length l
and 0 < length l
and length r < length ps

using length-l-partition-by-median[OF assms] sum-length-partition-by-median[OF
assms(3)] by auto

corollary lengths-partition-by-median-2 :
assumes 1 < length ps ∀ k. distinct (map (λp. p$k) ps) (l, m, r) = parti-

tion-by-median k ps
shows 0 < length r

and length l < length ps
proof −

have ∗: 0 < length ps
using assms(1) by auto

show 0 < length r length l < length ps
using length-l-partition-by-median[OF ∗ assms(2 ,3)] sum-length-partition-by-median[OF

assms(3)]
using assms(1) by linarith+

qed

lemmas length-partition-by-median =
sum-length-partition-by-median length-l-partition-by-median
lengths-partition-by-median-1 lengths-partition-by-median-2

2.4 Building the Tree
function (domintros, sequential) build :: (′k::finite) list ⇒ ′k point list ⇒ ′k kdt
where

build - [] = undefined
| build - [p] = Leaf p
| build ks ps = (

14

let (k, -) = widest-spread ks ps in
let (l, m, r) = partition-by-median k ps in
Node k m (build ks l) (build ks r)

)
by pat-completeness auto

lemma build-domintros3 :
assumes (k, s) = widest-spread ks (x # y # zs) (l, m, r) = partition-by-median

k (x # y # zs)
assumes build-dom (ks, l) build-dom (ks, r)
shows build-dom (ks, x # y # zs)

proof −
{

fix k s l m r
assume (k, s) = widest-spread ks (x # y # zs) (l, m, r) = partition-by-median

k (x # y # zs)
hence build-dom (ks, l) build-dom (ks, r)

using assms by (metis Pair-inject)+
}
thus ?thesis

by (simp add: build.domintros(3))
qed

lemma build-termination:
assumes ∀ k. distinct (map (λp. p$k) ps)
shows build-dom (ks, ps)
using assms

proof (induction ps rule: length-induct)
case (1 xs)
consider (A) xs = [] | (B) ∃ x. xs = [x] | (C) ∃ x y zs. xs = x # y # zs

by (induction xs rule: induct-list012) auto
then show ?case
proof cases

case C
then obtain x y zs where xyzs-def : xs = x # y # zs

by blast
obtain k s where ks-def : (k, s) = widest-spread ks xs

by (metis surj-pair)
obtain l m r where lmr-def : (l, m, r) = partition-by-median k xs

by (metis prod-cases3)
note defs = xyzs-def ks-def lmr-def
have ∀ k. distinct (map (λp. p $ k) l) ∀ k. distinct (map (λp. p $ k) r)

using lmr-def unfolding partition-by-median-def
by (auto simp: Let-def 1 .prems distinct-map-filter)

moreover have length l < length xs length r < length xs
using length-partition-by-median(8)[OF - 1 .prems] length-partition-by-median(6)[OF

- 1 .prems]
using defs by auto

ultimately have build-dom (ks, l) build-dom (ks, r)

15

using 1 .IH by blast+
thus ?thesis

using build-domintros3 defs by blast
qed (auto intro: build.domintros)

qed

lemma build-psimp-1 :
ps = [p] =⇒ build k ps = Leaf p
by (simp add: build.domintros(2) build.psimps(2))

lemma build-psimp-2 :
assumes (k, s) = widest-spread ks (x # y # zs) (l, m, r) = partition-by-median

k (x # y # zs)
assumes build-dom (ks, l) build-dom (ks, r)
shows build ks (x # y # zs) = Node k m (build ks l) (build ks r)

proof −
have 0 : build-dom (ks, x # y # zs)

using assms build-domintros3 by blast
thus ?thesis

using build.psimps(3)[OF 0] assms(1 ,2) by (auto split: prod.splits)
qed

lemma length-xs-gt-1 :
1 < length xs =⇒ ∃ x y ys. xs = x # y # ys
by (cases xs, auto simp: neq-Nil-conv)

lemma build-psimp-3 :
assumes 1 < length ps (k, s) = widest-spread ks ps (l, m, r) = partition-by-median

k ps
assumes build-dom (ks, l) build-dom (ks, r)
shows build ks ps = Node k m (build ks l) (build ks r)
using build-psimp-2 length-xs-gt-1 assms by blast

lemmas build-psimps[simp] = build-psimp-1 build-psimp-3

2.5 Main Theorems
theorem set-build:

0 < length ps =⇒ ∀ k. distinct (map (λp. p$k) ps) =⇒ set ps = set-kdt (build ks
ps)
proof (induction ps rule: length-induct)

case (1 ps)
show ?case
proof (cases 1 < length ps)

case True
obtain k s where ks-def : (k, s) = widest-spread ks ps

by (metis surj-pair)
obtain l m r where lmr-def : (l, m, r) = partition-by-median k ps

by (metis prod-cases3)

16

have D: ∀ k. distinct (map (λp. p$k) l) ∀ k. distinct (map (λp. p$k) r)
using lmr-def unfolding partition-by-median-def
by (auto simp: 1 .prems(2) Let-def distinct-map-filter)

moreover have length l < length ps 0 < length l
length r < length ps 0 < length r

using length-partition-by-median(8)[OF True 1 .prems(2)]
length-partition-by-median(5)[OF 1 .prems(1) 1 .prems(2)]
length-partition-by-median(6)[OF 1 .prems(1) 1 .prems(2)]
length-partition-by-median(7)[OF True 1 .prems(2)]
lmr-def by blast+

ultimately have set l = set-kdt (build ks l) set r = set-kdt (build ks r)
using 1 .IH by blast+

moreover have set ps = set l ∪ set r
using lmr-def unfolding partition-by-median-def by (auto simp: Let-def)

moreover have build ks ps = Node k m (build ks l) (build ks r)
using build-psimp-3 [OF True ks-def lmr-def] build-termination D by blast

ultimately show ?thesis
by simp

next
case False
thus ?thesis

using 1 .prems by (cases ps) auto
qed

qed

theorem invar-build:
0 < length ps =⇒ ∀ k. distinct (map (λp. p$k) ps) =⇒ set ks = UNIV =⇒ invar

(build ks ps)
proof (induction ps rule: length-induct)

case (1 ps)
show ?case
proof (cases 1 < length ps)

case True
obtain k s where ks-def : (k, s) = widest-spread ks ps

by (metis surj-pair)
obtain l m r where lmr-def : (l, m, r) = partition-by-median k ps

by (metis prod-cases3)
have D: ∀ k. distinct (map (λp. p$k) l) ∀ k. distinct (map (λp. p$k) r)

using lmr-def unfolding partition-by-median-def
by (auto simp: 1 .prems(2) Let-def distinct-map-filter)

moreover have length l < length ps 0 < length l
length r < length ps 0 < length r

using length-partition-by-median(8)[OF True 1 .prems(2)]
length-partition-by-median(5)[OF 1 .prems(1) 1 .prems(2)]
length-partition-by-median(6)[OF 1 .prems(1) 1 .prems(2)]
length-partition-by-median(7)[OF True 1 .prems(2)]
lmr-def by blast+

ultimately have invar (build ks l) invar (build ks r)
using 1 .IH 1 .prems(3) by blast+

17

moreover have ∀ p ∈ set l. p$k ≤ m ∀ p ∈ set r . m < p$k
using filter-partition-by-median(1)[OF lmr-def]

filter-partition-by-median(2)[OF lmr-def] by auto
moreover have widest-spread-axis k UNIV (set l ∪ set r)

using widest-spread-spec[OF ks-def] 1 .prems(3) set-partition-by-median[OF
lmr-def] by simp

moreover have build ks ps = Node k m (build ks l) (build ks r)
using build-psimp-3 [OF True ks-def lmr-def] build-termination D by blast

ultimately show ?thesis
using set-build[OF ‹0 < length l› D(1)] set-build[OF ‹0 < length r› D(2)]

by simp
next

case False
thus ?thesis

using 1 .prems by (cases ps) auto
qed

qed

theorem size-build:
0 < length ps =⇒ ∀ k. distinct (map (λp. p$k) ps) =⇒ size-kdt (build ks ps) =

length ps
proof (induction ps rule: length-induct)

case (1 ps)
show ?case
proof (cases 1 < length ps)

case True
obtain k s where ks-def : (k, s) = widest-spread ks ps

by (metis surj-pair)
obtain l m r where lmr-def : (l, m, r) = partition-by-median k ps

by (metis prod-cases3)
have D: ∀ k. distinct (map (λp. p$k) l) ∀ k. distinct (map (λp. p$k) r)

using lmr-def unfolding partition-by-median-def
by (auto simp: 1 .prems(2) Let-def distinct-map-filter)

moreover have length l < length ps 0 < length l
length r < length ps 0 < length r

using length-partition-by-median(8)[OF True 1 .prems(2)]
length-partition-by-median(5)[OF 1 .prems(1) 1 .prems(2)]
length-partition-by-median(6)[OF 1 .prems(1) 1 .prems(2)]
length-partition-by-median(7)[OF True 1 .prems(2)]
lmr-def by blast+

ultimately have size-kdt (build ks l) = length l size-kdt (build ks r) = length r
using 1 .IH by blast+

moreover have build ks ps = Node k m (build ks l) (build ks r)
using build-psimp-3 [OF True ks-def lmr-def] build-termination D by blast

ultimately show ?thesis
using length-partition-by-median(1)[OF lmr-def] by simp

next
case False
thus ?thesis

18

using 1 .prems by (cases ps) auto
qed

qed

theorem balanced-build:
0 < length ps =⇒ ∀ k. distinct (map (λp. p$k) ps) =⇒ balanced (build ks ps)

proof (induction ps rule: length-induct)
case (1 ps)
show ?case
proof (cases 1 < length ps)

case True
obtain k s where ks-def : (k, s) = widest-spread ks ps

by (metis surj-pair)
obtain l m r where lmr-def : (l, m, r) = partition-by-median k ps

by (metis prod-cases3)
have D: ∀ k. distinct (map (λp. p$k) l) ∀ k. distinct (map (λp. p$k) r)

using lmr-def unfolding partition-by-median-def
by (auto simp: 1 .prems(2) Let-def distinct-map-filter)

moreover have length l < length ps 0 < length l
length r < length ps 0 < length r

using length-partition-by-median(8)[OF True 1 .prems(2)]
length-partition-by-median(5)[OF 1 .prems(1) 1 .prems(2)]
length-partition-by-median(6)[OF 1 .prems(1) 1 .prems(2)]
length-partition-by-median(7)[OF True 1 .prems(2)]
lmr-def by blast+

ultimately have IH : balanced (build ks l) balanced (build ks r)
using 1 .IH by blast+

have build ks ps = Node k m (build ks l) (build ks r)
using build-psimp-3 [OF True ks-def lmr-def] build-termination D by blast

moreover have length r + 1 = length l ∨ length r = length l
using length-partition-by-median(1)[OF lmr-def]

length-partition-by-median(3)[OF 1 .prems(1) 1 .prems(2) lmr-def]
length-partition-by-median(4)[OF 1 .prems(1) 1 .prems(2) lmr-def]

by linarith
ultimately show ?thesis

using balanced-Node-if-wbal1 [OF IH] balanced-Node-if-wbal2 [OF IH]
size-build[OF ‹0 < length l› D(1)] size-build[OF ‹0 < length r› D(2)]

by auto
next

case False
thus ?thesis

using 1 .prems by (cases ps) (auto simp: balanced-def)
qed

qed

lemma complete-if-balanced-size-2powh:
assumes balanced kdt size-kdt kdt = 2 ^ h
shows complete kdt

proof (rule ccontr)

19

assume ¬ complete kdt
hence 2 ^ (min-height kdt) < size-kdt kdt size-kdt kdt < 2 ^ height kdt

by (simp-all add: min-height-size-if-incomplete size-height-if-incomplete)
hence height kdt − min-height kdt > 1

using assms(2) by simp
hence ¬ balanced kdt

using balanced-def by force
thus False

using assms(1) by simp
qed

theorem complete-build:
length ps = 2 ^ h =⇒ ∀ k. distinct (map (λp. p$k) ps) =⇒ complete (build k ps)
by (simp add: balanced-build complete-if-balanced-size-2powh size-build)

corollary height-build:
assumes length ps = 2 ^ h ∀ k. distinct (map (λp. p$k) ps)
shows h = height (build k ps)
using complete-build[OF assms] size-build[OF - assms(2)] by (simp add: assms(1)

complete-iff-size)

end

3 Range Searching
theory Range-Search
imports

KD-Tree
begin

Given two k-dimensional points p0 and p1 which bound the search space,
the search should return only the points which satisfy the following criteria:
For every point p in the resulting set:
For every axis k:
p0 $ k ≤ p $ k ∧ p $ k ≤ p1 $ k

For a 2 -d tree a query corresponds to selecting all the points in the rectangle
that has p0 and p1 as its defining edges.

3.1 Rectangle Definition
lemma cbox-point-def :

fixes p0 :: (′k::finite) point
shows cbox p0 p1 = { p. ∀ k. p0$k ≤ p$k ∧ p$k ≤ p1$k }

proof −
have cbox p0 p1 = { p. ∀ k. p0 · axis k 1 ≤ p · axis k 1 ∧ p · axis k 1 ≤ p1 ·

axis k 1 }

20

unfolding cbox-def using axis-inverse by auto
also have ... = { p. ∀ k. p0$k · 1 ≤ p$k · 1 ∧ p$k · 1 ≤ p1$k · 1 }

using inner-axis[of - - 1]
by (metis (mono-tags, opaque-lifting))

also have ... = { p. ∀ k. p0$k ≤ p$k ∧ p$k ≤ p1$k }
by simp

finally show ?thesis .
qed

3.2 Search Function
fun search :: (′k::finite) point ⇒ ′k point ⇒ ′k kdt ⇒ ′k point set where

search p0 p1 (Leaf p) = (if p ∈ cbox p0 p1 then { p } else {})
| search p0 p1 (Node k v l r) = (

if v < p0$k then
search p0 p1 r

else if p1$k < v then
search p0 p1 l

else
search p0 p1 l ∪ search p0 p1 r

)

3.3 Auxiliary Lemmas
lemma l-empty:

assumes invar (Node k v l r) v < p0$k
shows set-kdt l ∩ cbox p0 p1 = {}

proof −
have ∀ p ∈ set-kdt l. p$k < p0$k

using assms by auto
hence ∀ p ∈ set-kdt l. p /∈ cbox p0 p1

using cbox-point-def leD by blast
thus ?thesis by blast

qed

lemma r-empty:
assumes invar (Node k v l r) p1$k < v
shows set-kdt r ∩ cbox p0 p1 = {}

proof −
have ∀ p ∈ set-kdt r . p1$k < p$k

using assms by auto
hence ∀ p ∈ set-kdt r . p /∈ cbox p0 p1

using cbox-point-def leD by blast
thus ?thesis by blast

qed

3.4 Main Theorem
theorem search-cbox:

assumes invar kdt

21

shows search p0 p1 kdt = set-kdt kdt ∩ cbox p0 p1

using assms l-empty r-empty by (induction kdt) (auto, blast+)

end

4 Nearest Neighbor Search on the k-d Tree
theory Nearest-Neighbors
imports

KD-Tree
begin

Verifying nearest neighbor search on the k-d tree. Given a k-d tree and a
point p, which might not be in the tree, find the points ps that are closest
to p using the Euclidean metric.

4.1 Auxiliary Lemmas about sorted-wrt
lemma

assumes sorted-wrt f xs
shows sorted-wrt-take: sorted-wrt f (take n xs)
and sorted-wrt-drop: sorted-wrt f (drop n xs)

proof −
have sorted-wrt f (take n xs @ drop n xs)

using assms by simp
thus sorted-wrt f (take n xs) sorted-wrt f (drop n xs)

using sorted-wrt-append by blast+
qed

definition sorted-wrt-dist :: (′k::finite) point ⇒ ′k point list ⇒ bool where
sorted-wrt-dist p ≡ sorted-wrt (λp0 p1. dist p0 p ≤ dist p1 p)

lemma sorted-wrt-dist-insort-key:
sorted-wrt-dist p ps =⇒ sorted-wrt-dist p (insort-key (λq. dist q p) q ps)
by (induction ps) (auto simp: sorted-wrt-dist-def set-insort-key)

lemma sorted-wrt-dist-take-drop:
assumes sorted-wrt-dist p ps
shows ∀ p0 ∈ set (take n ps). ∀ p1 ∈ set (drop n ps). dist p0 p ≤ dist p1 p
using assms sorted-wrt-append[of - take n ps drop n ps] by (simp add: sorted-wrt-dist-def)

lemma sorted-wrt-dist-last-take-mono:
assumes sorted-wrt-dist p ps n ≤ length ps 0 < n
shows dist (last (take n ps)) p ≤ dist (last ps) p
using assms unfolding sorted-wrt-dist-def by (induction ps arbitrary: n) (auto

simp add: take-Cons ′)

lemma sorted-wrt-dist-last-insort-key-eq:

22

assumes sorted-wrt-dist p ps insort-key (λq. dist q p) q ps 6= ps @ [q]
shows last (insort-key (λq. dist q p) q ps) = last ps
using assms unfolding sorted-wrt-dist-def by (induction ps) (auto)

lemma sorted-wrt-dist-last:
assumes sorted-wrt-dist p ps
shows ∀ q ∈ set ps. dist q p ≤ dist (last ps) p

proof (cases ps = [])
case True
thus ?thesis by simp

next
case False
then obtain ps ′ p ′ where [simp]:ps = ps ′ @ [p ′]

using rev-exhaust by blast
hence sorted-wrt-dist p (ps ′ @ [p ′])

using assms by blast
thus ?thesis

unfolding sorted-wrt-dist-def using sorted-wrt-append[of - ps ′ [p ′]] by simp
qed

4.2 Neighbors Sorted wrt. Distance
definition upd-nbors :: nat ⇒ (′k::finite) point ⇒ ′k point ⇒ ′k point list ⇒ ′k
point list where

upd-nbors n p q ps = take n (insort-key (λq. dist q p) q ps)

lemma sorted-wrt-dist-nbors:
assumes sorted-wrt-dist p ps
shows sorted-wrt-dist p (upd-nbors n p q ps)

proof −
have sorted-wrt-dist p (insort-key (λq. dist q p) q ps)

using assms sorted-wrt-dist-insort-key by blast
thus ?thesis

by (simp add: sorted-wrt-dist-def sorted-wrt-take upd-nbors-def)
qed

lemma sorted-wrt-dist-nbors-diff :
assumes sorted-wrt-dist p ps
shows ∀ r ∈ set ps ∪ {q} − set (upd-nbors n p q ps). ∀ s ∈ set (upd-nbors n p q

ps). dist s p ≤ dist r p
proof −

let ?ps ′ = insort-key (λq. dist q p) q ps
have set ps ∪ { q } = set ?ps ′

by (simp add: set-insort-key)
moreover have set ?ps ′ = set (take n ?ps ′) ∪ set (drop n ?ps ′)

using append-take-drop-id set-append by metis
ultimately have set ps ∪ { q } − set (take n ?ps ′) ⊆ set (drop n ?ps ′)

by blast
moreover have sorted-wrt-dist p ?ps ′

23

using assms sorted-wrt-dist-insort-key by blast
ultimately show ?thesis

unfolding upd-nbors-def using sorted-wrt-dist-take-drop by blast
qed

lemma sorted-wrt-dist-last-upd-nbors-mono:
assumes sorted-wrt-dist p ps n ≤ length ps 0 < n
shows dist (last (upd-nbors n p q ps)) p ≤ dist (last ps) p

proof (cases insort-key (λq. dist q p) q ps = ps @ [q])
case True
thus ?thesis

unfolding upd-nbors-def using assms sorted-wrt-dist-last-take-mono by auto
next

case False
hence last (insort-key (λq. dist q p) q ps) = last ps

using sorted-wrt-dist-last-insort-key-eq assms by blast
moreover have dist (last (upd-nbors n p q ps)) p ≤ dist (last (insort-key (λq.

dist q p) q ps)) p
unfolding upd-nbors-def using assms sorted-wrt-dist-last-take-mono[of p in-

sort-key (λq. dist q p) q ps]
by (simp add: sorted-wrt-dist-insort-key)

ultimately show ?thesis
by simp

qed

4.3 The Recursive Nearest Neighbor Algorithm
fun nearest-nbors :: nat ⇒ (′k::finite) point list ⇒ ′k point ⇒ ′k kdt ⇒ ′k point
list where

nearest-nbors n ps p (Leaf q) = upd-nbors n p q ps
| nearest-nbors n ps p (Node k v l r) = (

if p$k ≤ v then
let candidates = nearest-nbors n ps p l in
if length candidates = n ∧ dist p (last candidates) ≤ dist v (p$k) then

candidates
else

nearest-nbors n candidates p r
else

let candidates = nearest-nbors n ps p r in
if length candidates = n ∧ dist p (last candidates) ≤ dist v (p$k) then

candidates
else

nearest-nbors n candidates p l
)

4.4 Auxiliary Lemmas
lemma cutoff-r :

assumes invar (Node k v l r)
assumes p$k ≤ v dist p c ≤ dist (p$k) v

24

shows ∀ q ∈ set-kdt r . dist p c ≤ dist p q
proof standard

fix q
assume ∗: q ∈ set-kdt r
have dist p c ≤ dist (p$k) v

using assms(3) by blast
also have ... ≤ dist (p$k) v + dist v (q$k)

by simp
also have ... = dist (p$k) (q$k)

using ∗ assms(1 ,2) dist-real-def by auto
also have ... ≤ dist p q

using dist-vec-nth-le by blast
finally show dist p c ≤ dist p q .

qed

lemma cutoff-l:
assumes invar (Node k v l r)
assumes v ≤ p$k dist p c ≤ dist v (p$k)
shows ∀ q ∈ set-kdt l. dist p c ≤ dist p q

proof standard
fix q
assume ∗: q ∈ set-kdt l
have dist p c ≤ dist v (p$k)

using assms(3) by blast
also have ... ≤ dist v (p$k) + dist (q$k) v

by simp
also have ... = dist (p$k) (q$k)

using ∗ assms(1 ,2) dist-real-def by auto
also have ... ≤ dist p q

using dist-vec-nth-le by blast
finally show dist p c ≤ dist p q .

qed

4.5 The Main Theorems
lemma set-nns:

set (nearest-nbors n ps p kdt) ⊆ set-kdt kdt ∪ set ps
apply (induction kdt arbitrary: ps)
apply (auto simp: Let-def upd-nbors-def set-insort-key)
using in-set-takeD set-insort-key by fastforce

lemma length-nns:
length (nearest-nbors n ps p kdt) = min n (size-kdt kdt + length ps)
by (induction kdt arbitrary: ps) (auto simp: Let-def upd-nbors-def)

lemma length-nns-gt-0 :
0 < n =⇒ 0 < length (nearest-nbors n ps p kdt)
by (induction kdt arbitrary: ps) (auto simp: Let-def upd-nbors-def)

25

lemma length-nns-n:
assumes (set-kdt kdt ∪ set ps) − set (nearest-nbors n ps p kdt) 6= {}
shows length (nearest-nbors n ps p kdt) = n
using assms

proof (induction kdt arbitrary: ps)
case (Node k v l r)
let ?nnsl = nearest-nbors n ps p l
let ?nnsr = nearest-nbors n ps p r
consider (A) p$k ≤ v ∧ length ?nnsl = n ∧ dist p (last ?nnsl) ≤ dist v (p$k)

| (B) p$k ≤ v ∧ ¬(length ?nnsl = n ∧ dist p (last ?nnsl) ≤ dist v (p$k))
| (C) v < p$k ∧ length ?nnsr = n ∧ dist p (last ?nnsr) ≤ dist v (p$k)
| (D) v < p$k ∧ ¬(length ?nnsr = n ∧ dist p (last ?nnsr) ≤ dist v (p$k))

by argo
thus ?case
proof cases

case B
let ?nns = nearest-nbors n ?nnsl p r
have length ?nnsl 6= n −→ (set-kdt l ∪ set ps − set (nearest-nbors n ps p l) =

{})
using Node.IH (1) by blast

hence length ?nnsl 6= n −→ (set-kdt r ∪ set ?nnsl − set ?nns 6= {})
using B Node.prems by auto

moreover have length ?nnsl = n −→ ?thesis
using B by (auto simp: length-nns)

ultimately show ?thesis
using B Node.IH (2) by force

next
case D
let ?nns = nearest-nbors n ?nnsr p l
have length ?nnsr 6= n −→ (set-kdt r ∪ set ps − set (nearest-nbors n ps p r)

= {})
using Node.IH (2) by blast

hence length ?nnsr 6= n −→ (set-kdt l ∪ set ?nnsr − set ?nns 6= {})
using D Node.prems by auto

moreover have length ?nnsr = n −→ ?thesis
using D by (auto simp: length-nns)

ultimately show ?thesis
using D Node.IH (1) by force

qed auto
qed (auto simp: upd-nbors-def min-def set-insort-key)

lemma sorted-nns:
sorted-wrt-dist p ps =⇒ sorted-wrt-dist p (nearest-nbors n ps p kdt)
using sorted-wrt-dist-nbors by (induction kdt arbitrary: ps) (auto simp: Let-def)

lemma distinct-nns:
assumes invar kdt distinct ps set ps ∩ set-kdt kdt = {}
shows distinct (nearest-nbors n ps p kdt)
using assms

26

proof (induction kdt arbitrary: ps)
case (Node k v l r)
let ?nnsl = nearest-nbors n ps p l
let ?nnsr = nearest-nbors n ps p r
have set ps ∩ set-kdt l = {} set ps ∩ set-kdt r = {}

using Node.prems(3) by auto
hence DCLR: distinct ?nnsl distinct ?nnsr

using Node invar-l invar-r by blast+
have set ?nnsl ∩ set-kdt r = {} set ?nnsr ∩ set-kdt l = {}

using Node.prems(1 ,3) set-nns by fastforce+
hence distinct (nearest-nbors n ?nnsl p r) distinct (nearest-nbors n ?nnsr p l)

using Node.IH (1 ,2) Node.prems(1 ,2) DCLR invar-l invar-r by blast+
thus ?case

using DCLR by (auto simp add: Let-def)
qed (auto simp: upd-nbors-def distinct-insort)

lemma last-nns-mono:
assumes invar kdt sorted-wrt-dist p ps n ≤ length ps 0 < n
shows dist (last (nearest-nbors n ps p kdt)) p ≤ dist (last ps) p
using assms

proof (induction kdt arbitrary: ps)
case (Node k v l r)
let ?nnsl = nearest-nbors n ps p l
let ?nnsr = nearest-nbors n ps p r
have n ≤ length ?nnsl n ≤ length ?nnsr

using Node.prems(3) by (simp-all add: length-nns)
hence dist (last (nearest-nbors n ?nnsl p r)) p ≤ dist (last ?nnsl) p

dist (last (nearest-nbors n ?nnsr p l)) p ≤ dist (last ?nnsr) p
using sorted-nns Node invar-l invar-r by blast+

hence dist (last (nearest-nbors n ?nnsl p r)) p ≤ dist (last ps) p
dist (last (nearest-nbors n ?nnsr p l)) p ≤ dist (last ps) p

using Node.IH (1)[of ps] Node.IH (2)[of ps] Node.prems invar-l length-nns-gt-0
by auto

thus ?case
using Node by (auto simp add: Let-def)

qed (auto simp: sorted-wrt-dist-last-upd-nbors-mono)

theorem dist-nns:
assumes invar kdt sorted-wrt-dist p ps set ps ∩ set-kdt kdt = {} distinct ps 0 <

n
shows ∀ q ∈ set-kdt kdt ∪ set ps − set (nearest-nbors n ps p kdt). dist (last

(nearest-nbors n ps p kdt)) p ≤ dist q p
using assms

proof (induction kdt arbitrary: ps)
case (Node k v l r)

let ?nnsl = nearest-nbors n ps p l
let ?nnsr = nearest-nbors n ps p r

27

have IHL: ∀ q ∈ set-kdt l ∪ set ps − set ?nnsl. dist (last ?nnsl) p ≤ dist q p
using Node.IH (1) Node.prems invar-l invar-set by auto

have IHR: ∀ q ∈ set-kdt r ∪ set ps − set ?nnsr . dist (last ?nnsr) p ≤ dist q p
using Node.IH (2) Node.prems invar-r invar-set by auto

have SORTED-L: sorted-wrt-dist p ?nnsl
using sorted-nns Node.prems(2) by blast

have SORTED-R: sorted-wrt-dist p ?nnsr
using sorted-nns Node.prems(2) by blast

have DISTINCT-L: distinct ?nnsl
using Node.prems distinct-nns invar-set invar-l by fastforce

have DISTINCT-R: distinct ?nnsr
using Node.prems distinct-nns invar-set invar-r
by (metis inf-bot-right inf-sup-absorb inf-sup-aci(3) sup.commute)

consider (A) p$k ≤ v ∧ length ?nnsl = n ∧ dist p (last ?nnsl) ≤ dist v (p$k)
| (B) p$k ≤ v ∧ ¬(length ?nnsl = n ∧ dist p (last ?nnsl) ≤ dist v (p$k))
| (C) v < p$k ∧ length ?nnsr = n ∧ dist p (last ?nnsr) ≤ dist v (p$k)
| (D) v < p$k ∧ ¬(length ?nnsr = n ∧ dist p (last ?nnsr) ≤ dist v (p$k))

by argo
thus ?case
proof cases

case A
hence ∀ q ∈ set-kdt r . dist (last ?nnsl) p ≤ dist q p

using Node.prems(1 ,2) cutoff-r by (metis dist-commute)
thus ?thesis

using IHL A by auto
next

case B

let ?nns = nearest-nbors n ?nnsl p r

have set ?nnsl ⊆ set-kdt l ∪ set ps set ps ∩ set-kdt r = {}
using set-nns Node.prems(1 ,3) by (simp add: set-nns disjoint-iff-not-equal)+

hence set ?nnsl ∩ set-kdt r = {}
using Node.prems(1) by fastforce

hence IHLR: ∀ q ∈ set-kdt r ∪ set ?nnsl − set ?nns. dist (last ?nns) p ≤ dist
q p

using Node.IH (2)[OF - SORTED-L - DISTINCT-L Node.prems(5)] Node.prems(1)
invar-r by blast

have ∀ q ∈ set ps − set ?nnsl. dist (last ?nns) p ≤ dist q p
proof standard

fix q
assume ∗: q ∈ set ps − set ?nnsl

hence length ?nnsl = n
using length-nns-n by blast

28

hence LAST : dist (last ?nns) p ≤ dist (last ?nnsl) p
using last-nns-mono SORTED-L invar-r Node.prems(1 ,2 ,5) by (metis

order-refl)
have dist (last ?nnsl) p ≤ dist q p

using IHL ∗ by blast
thus dist (last ?nns) p ≤ dist q p

using LAST by argo
qed
hence R: ∀ q ∈ set-kdt r ∪ set ps − set ?nns. dist (last ?nns) p ≤ dist q p

using IHLR by auto

have ∀ q ∈ set-kdt l − set ?nnsl. dist (last ?nns) p ≤ dist q p
proof standard

fix q
assume ∗: q ∈ set-kdt l − set ?nnsl

hence length ?nnsl = n
using length-nns-n by blast

hence LAST : dist (last ?nns) p ≤ dist (last ?nnsl) p
using last-nns-mono SORTED-L invar-r Node.prems(1 ,2 ,5) by (metis

order-refl)
have dist (last ?nnsl) p ≤ dist q p

using IHL ∗ by blast
thus dist (last ?nns) p ≤ dist q p

using LAST by argo
qed
hence L: ∀ q ∈ set-kdt l − set ?nns. dist (last ?nns) p ≤ dist q p

using IHLR by blast

show ?thesis
using B R L by auto

next
case C
hence ∀ q ∈ set-kdt l. dist (last ?nnsr) p ≤ dist q p

using Node.prems(1 ,2) cutoff-l by (metis dist-commute less-imp-le)
thus ?thesis

using IHR C by auto
next

case D

let ?nns = nearest-nbors n ?nnsr p l

have set ?nnsr ⊆ set-kdt r ∪ set ps set ps ∩ set-kdt l = {}
using set-nns Node.prems(1 ,3) by (simp add: set-nns disjoint-iff-not-equal)+

hence set ?nnsr ∩ set-kdt l = {}
using Node.prems(1) by fastforce

hence IHRL: ∀ q ∈ set-kdt l ∪ set ?nnsr − set ?nns. dist (last ?nns) p ≤ dist
q p

using Node.IH (1)[OF - SORTED-R - DISTINCT-R Node.prems(5)] Node.prems(1)

29

invar-l by blast

have ∀ q ∈ set ps − set ?nnsr . dist (last ?nns) p ≤ dist q p
proof standard

fix q
assume ∗: q ∈ set ps − set ?nnsr

hence length ?nnsr = n
using length-nns-n by blast

hence LAST : dist (last ?nns) p ≤ dist (last ?nnsr) p
using last-nns-mono SORTED-R invar-l Node.prems(1 ,2 ,5) by (metis

order-refl)
have dist (last ?nnsr) p ≤ dist q p

using IHR ∗ by blast
thus dist (last ?nns) p ≤ dist q p

using LAST by argo
qed
hence R: ∀ q ∈ set-kdt l ∪ set ps − set ?nns. dist (last ?nns) p ≤ dist q p

using IHRL by auto

have ∀ q ∈ set-kdt r − set ?nnsr . dist (last ?nns) p ≤ dist q p
proof standard

fix q
assume ∗: q ∈ set-kdt r − set ?nnsr

hence length ?nnsr = n
using length-nns-n by blast

hence LAST : dist (last ?nns) p ≤ dist (last ?nnsr) p
using last-nns-mono SORTED-R invar-l Node.prems(1 ,2 ,5) by (metis

order-refl)
have dist (last ?nnsr) p ≤ dist q p

using IHR ∗ by blast
thus dist (last ?nns) p ≤ dist q p

using LAST by argo
qed
hence L: ∀ q ∈ set-kdt r − set ?nns. dist (last ?nns) p ≤ dist q p

using IHRL by blast

show ?thesis
using D R L by auto

qed
qed (auto simp: sorted-wrt-dist-nbors-diff upd-nbors-def)

4.6 Nearest Neighbors Definition and Theorems
definition nearest-neighbors :: nat ⇒ (′k::finite) point ⇒ ′k kdt ⇒ ′k point list
where

nearest-neighbors n p kdt = nearest-nbors n [] p kdt

30

theorem length-nearest-neighbors:
length (nearest-neighbors n p kdt) = min n (size-kdt kdt)
by (simp add: length-nns nearest-neighbors-def)

theorem sorted-wrt-dist-nearest-neighbors:
sorted-wrt-dist p (nearest-neighbors n p kdt)
using sorted-nns unfolding nearest-neighbors-def sorted-wrt-dist-def by force

theorem set-nearest-neighbors:
set (nearest-neighbors n p kdt) ⊆ set-kdt kdt
unfolding nearest-neighbors-def using set-nns by force

theorem distinct-nearest-neighbors:
assumes invar kdt
shows distinct (nearest-neighbors n p kdt)
using assms by (simp add: distinct-nns nearest-neighbors-def)

theorem dist-nearest-neighbors:
assumes invar kdt nns = nearest-neighbors n p kdt
shows ∀ q ∈ (set-kdt kdt − set nns). ∀ r ∈ set nns. dist r p ≤ dist q p

proof (cases 0 < n)
case True
have ∀ q ∈ set-kdt kdt − set nns. dist (last nns) p ≤ dist q p

using nearest-neighbors-def dist-nns[OF assms(1), of p [], OF - - - True]
assms(2)

by (simp add: nearest-neighbors-def sorted-wrt-dist-def)
hence ∀ q ∈ set-kdt kdt − set nns. ∀n ∈ set nns. dist n p ≤ dist q p
using assms(2) sorted-wrt-dist-nearest-neighbors[of p n kdt] sorted-wrt-dist-last[of

p nns] by force
thus ?thesis

using nearest-neighbors-def by blast
next

case False
hence length nns = 0

using assms(2) unfolding nearest-neighbors-def by (auto simp: length-nns)
thus ?thesis

by simp
qed

end

References

[1] J. L. Bentley. Multidimensional binary search trees used for associative
searching. Commun. ACM, 18(9):509–517, 1975.

[2] J. H. Friedman, J. L. Bentley, and R. A. Finkel. An algorithm for finding
best matches in logarithmic expected time. ACM Trans. Math. Softw.,

31

3(3):209–226, 1977.

32

	Definition of the 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 k-d Tree
	Definition of the 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 k-d Tree Invariant and Related Functions
	Lemmas adapted from 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 HOL-Library.Tree to 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 k-d Tree
	Lemmas adapted from 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 HOL-Library.Tree-Real to 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 k-d Tree

	Building a balanced 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 k-d Tree from a List of Points
	Auxiliary Lemmas
	Widest Spread Axis
	Fast Axis Median
	Building the Tree
	Main Theorems

	Range Searching
	Rectangle Definition
	Search Function
	Auxiliary Lemmas
	Main Theorem

	Nearest Neighbor Search on the 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 k-d Tree
	Auxiliary Lemmas about 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 sorted-wrt
	Neighbors Sorted wrt. Distance
	The Recursive Nearest Neighbor Algorithm
	Auxiliary Lemmas
	The Main Theorems
	Nearest Neighbors Definition and Theorems

