Multidimensional Binary Search Trees

Martin Rau

September 13, 2023

Abstract

This entry provides a formalization of multidimensional binary trees, also known as k-d trees. It includes a balanced build algorithm as well as the nearest neighbor algorithm and the range search algorithm. It is based on the papers "Multidimensional binary search trees used for associative searching" [1] and "An Algorithm for Finding Best Matches in Logarithmic Expected Time" [2].

Contents

1 Definition of the k-d Tree 2
1.1 Definition of the k-d Tree Invariant and Related Functions 2
1.2 Lemmas adapted from HOL-Library. Tree to k-d Tree 4
1.3 Lemmas adapted from HOL-Library.Tree-Real to k-d Tree 8
2 Building a balanced k-d Tree from a List of Points 10
2.1 Auxiliary Lemmas 11
2.2 Widest Spread Axis 11
2.3 Fast Axis Median 13
2.4 Building the Tree 14
2.5 Main Theorems 16
3 Range Searching 20
3.1 Rectangle Definition 20
3.2 Search Function 21
3.3 Auxiliary Lemmas 21
3.4 Main Theorem 21
4 Nearest Neighbor Search on the k-d Tree 22
4.1 Auxiliary Lemmas about sorted-wrt 22
4.2 Neighbors Sorted wrt. Distance 23
4.3 The Recursive Nearest Neighbor Algorithm 24
4.4 Auxiliary Lemmas 24
4.5 The Main Theorems 25
4.6 Nearest Neighbors Definition and Theorems 30

1 Definition of the k-d Tree

theory KD-Tree
imports
Complex-Main
HOL-Analysis.Finite-Cartesian-Product
HOL-Analysis.Topology-Euclidean-Space
begin

A k-d tree is a space-partitioning data structure for organizing points in a k-dimensional space. In principle the k-d tree is a binary tree. The leafs hold the k-dimensional points and the nodes contain left and right subtrees as well as a discriminator v at a particular axis k. Every node divides the space into two parts by splitting along a hyperplane. Consider a node n with associated discriminator v at axis k. All points in the left subtree must have a value at axis k that is less than or equal to v and all points in the right subtree must have a value at axis k that is greater than v.
Deviations from the papers:
The chosen tree representation is taken from [2] with one minor adjustment. Originally the leafs hold buckets of points of size b. This representation fixes the bucket size to $b=1$, a single point per Leaf. This is only a minor adjustment since the paper proves that $b=1$ is the optimal bucket size for minimizing the running time of the nearest neighbor algorithm [2], only simplifies building the optimized k-d trees [2] and has little influence on the search algorithm [1].
type-synonym 'k point $=($ real, ' k) vec
lemma dist-point-def:
fixes $p_{0}::\left({ }^{\prime} k::\right.$ finite $)$ point
shows dist $p_{0} p_{1}=\operatorname{sqrt}\left(\sum k \in U N I V .\left(p_{0} \$ k-p_{1} \$ k\right)^{2}\right)$
unfolding dist-vec-def L2-set-def dist-real-def by simp
datatype ${ }^{\prime} k k d t=$
Leaf 'k point
| Node 'k real 'k kdt 'k kdt

1.1 Definition of the k-d Tree Invariant and Related Functions

```
fun set-kdt :: 'k kdt => ('k point) set where
    set-kdt (Leaf p) = { p }
| set-kdt (Node - - l r) = set-kdt l U set-kdt r
```

```
definition spread \(::(\) ( \(k::\) finite \() \Rightarrow\) ' \(k\) point set \(\Rightarrow\) real where
    spread \(k P=(\) if \(P=\{ \}\) then 0 else let \(V=(\lambda p . p \$ k)\) ' \(P\) in Max \(V-\operatorname{Min} V)\)
definition widest-spread-axis :: (' \(k:: f i n i t e) ~ \Rightarrow ' k\) set \(\Rightarrow{ }^{\prime} k\) point set \(\Rightarrow\) bool where
```

```
    widest-spread-axis k K ps \longleftrightarrow (\forall\mp@subsup{k}{}{\prime}\inK. spread k' ps \leq spread k ps)
fun invar :: (' }k::finite) kdt => bool where
    invar (Leaf p) \longleftrightarrow True
| invar (Node k v lr)\longleftrightarrow }\longleftrightarrow(\forallp\in set-kdt l. p$k\leqv)^(\forallp\in set-kdt r.v<p$k
^
    widest-spread-axis k UNIV (set-kdt l \cup set-kdt r) ^invar l ^ invar r
fun size-kdt :: 'k kdt => nat where
    size-kdt (Leaf -) = 1
| size-kdt (Node--l r) = size-kdt l + size-kdt r
fun height :: 'k kdt => nat where
    height (Leaf -) = 0
| height (Node - l r) = max (height l) (height r) + 1
fun min-height :: 'k kdt => nat where
    min-height (Leaf -) = 0
|min-height (Node - - lr) = min (min-height l) (min-height r ) + 1
definition balanced :: 'k kdt => bool where
    balanced kdt \longleftrightarrow height kdt - min-height kdt \leq 1
fun complete :: 'k kdt => bool where
    complete (Leaf -) = True
| complete (Node - - l r) \longleftrightarrow complete l ^ complete r ^ height l = height r
lemma invar-l:
    invar (Node k v lr)\Longrightarrow invarl
    by simp
lemma invar-r:
    invar (Node k v l r)\Longrightarrow invar r
    by simp
lemma invar-l-le-k:
    invar (Node k v l r)\Longrightarrow }\Longrightarrowp\in\mathrm{ set-kdt l. p$k sv
    by simp
lemma invar-r-ge-k:
    invar (Node k v l r)\Longrightarrow #p\in set-kdt r.v<p$k
    by simp
lemma invar-set:
    set-kdt (Node kv lr)=set-kdt l U set-kdt r
    by simp
```


1.2 Lemmas adapted from HOL-Library.Tree to k-d Tree

```
lemma size-ge0[simp]:
    0< size-kdt kdt
    by (induction kdt) auto
lemma eq-size-1[simp]:
    size-kdt kdt =1 \longleftrightarrow(\existsp.kdt = Leaf p)
    apply (induction kdt)
    apply (auto)
    using size-ge0 nat-less-le apply blast+
    done
lemma eq-1-size[simp]:
    1 = size-kdt kdt \longleftrightarrow (\existsp.kdt = Leaf p)
    using eq-size-1 by metis
lemma neq-Leaf-iff:
    (\not\existsp.kdt = Leaf p) = (\existskvlr.kdt=Node kvlr)
    by (cases kdt) auto
lemma eq-height-0[simp]:
    height kdt = 0 \longleftrightarrow(\exists p.kdt = Leaf p)
    by (cases kdt) auto
lemma eq-0-height[simp]:
    O= height kdt \longleftrightarrow(\exists p.kdt = Leaf p)
    by (cases kdt) auto
lemma eq-min-height-0[simp]:
    min-height kdt = 0 \longleftrightarrow (\existsp.kdt = Leaf p)
    by (cases kdt) auto
lemma eq-0-min-height[simp]:
    0=min-height kdt \longleftrightarrow(\exists . kdt = Leaf p)
    by (cases kdt) auto
lemma size-height:
    size-kdt kdt \leq 2 ^ height kdt
proof(induction kdt)
    case (Node kv lr)
    show ?case
    proof (cases height l\leq height r)
    case True
    have size-kdt (Node k v l r) = size-kdt l + size-kdt r by simp
    also have ... \leq 2^ height l + 2^ height r using Node.IH by arith
    also have ... \leq 2` height r + 2^ height r using True by simp
    also have ... = 2 ^ height (Node k v l r)
        using True by (auto simp: max-def mult-2)
    finally show ?thesis .
```

```
    next
        case False
        have size-kdt (Node k v l r) = size-kdt l + size-kdt r by simp
        also have ... \leq 2^ height l + 2` height r using Node.IH by arith
        also have ... \leq2 ^ height l + 2 ^ height l using False by simp
        finally show ?thesis using False by (auto simp: max-def mult-2)
    qed
qed simp
lemma min-height-le-height:
    min-height kdt \leq height kdt
    by (induction kdt) auto
lemma min-height-size:
    2 ^ min-height kdt \leq size-kdt kdt
proof(induction kdt)
    case (Node k v l r)
    have (2::nat)^ min-height (Node kvlr)\leq2^min-height l+2^ min-height r
        by (simp add: min-def)
    also have ... s size-kdt (Node k v l r) using Node.IH by simp
    finally show ?case.
qed simp
lemma complete-iff-height:
    complete kdt \longleftrightarrow(min-height kdt = height kdt)
    apply (induction kdt)
    apply simp
    apply (simp add: min-def max-def)
    by (metis le-antisym le-trans min-height-le-height)
lemma size-if-complete:
    complete kdt \Longrightarrow size-kdt kdt = 2` height kdt
    by (induction kdt) auto
lemma complete-if-size-height:
    size-kdt kdt = 2 ^ height kdt \Longrightarrow complete kdt
proof (induction height kdt arbitrary: kdt)
    case 0 thus ?case by auto
next
    case (Suc h)
    hence }\not\existsp.kdt=Leaf 
        by auto
    then obtain kvlr where [simp]: kdt = Node k v lr
    using neq-Leaf-iff by metis
    have 1: height l\leqh and 2: height r\leqhusing Suc(2) by(auto)
    have 3: \neg height l<h
    proof
        assume 0: height l<h
        have size-kdt kdt = size-kdt l + size-kdt r by simp
```

```
    also have ... \leq2^ height l + 2 ^ height r
        using size-height[ of l] size-height[of r] by arith
    also have ...<2^`h+2 ^ height r using 0 by (simp)
    also have ... \leq 2^ h + 2 ` h using 2 by ( simp)
    also have ... = 2 ^ (Suc h) by (simp)
    also have ... = size-kdt kdt using Suc(2,3) by simp
    finally have size-kdt kdt < size-kdt kdt .
    thus False by (simp)
qed
have 4: ᄀ height r <h
proof
    assume 0: height r<h
    have size-kdt kdt = size-kdt l + size-kdt r by simp
    also have .. . \leq 2 ^ height l + 2 ^ height r
        using size-height[of l] size-height[of r] by arith
    also have ...<2` height l + 2 ^ h using 0 by (simp)
```



```
    also have ... = 2^ (Suc h) by (simp)
    also have ... = size-kdt kdt using Suc(2,3) by simp
    finally have size-kdt kdt < size-kdt kdt .
    thus False by (simp)
qed
from 12 34 have *: height l=h height r =h by linarith+
hence size-kdt l=2 ^ height l size-kdt r = 2 ^ height r
    using Suc(3) size-height[of l] size-height[of r] by (auto)
    with * Suc(1) show ?case by simp
qed
lemma complete-if-size-min-height:
    size-kdt kdt = 2 ^ min-height kdt \Longrightarrow complete kdt
proof (induct min-height kdt arbitrary: kdt)
    case 0 thus ?case by auto
next
    case (Suc h)
    hence }\not\existsp.kdt=Leaf 
        by auto
    then obtain kv lr where [simp]:kdt = Node kv lr
    using neq-Leaf-iff by metis
    have 1:h\leqmin-height l and 2: }h\leq\mathrm{ min-height r using Suc(2) by (auto)
    have 3: \negh< min-height l
    proof
    assume 0:h< min-height l
    have size-kdt kdt = size-kdt l + size-kdt r by simp
    also note min-height-size[of l]
    also(xtrans) note min-height-size[of r]
    also(xtrans) have (2::nat) ^ min-height l>2 ^h
    using 0 by (simp add: diff-less-mono)
    also(xtrans) have (2::nat) ^ min-height r \geq2 ^ h using 2 by simp
    also(xtrans) have (2::nat) ^ h+ 2^ h=2^(Suc h) by (simp)
```

```
    also have ... = size-kdt kdt using Suc(2,3) by simp
    finally show False by (simp add:diff-le-mono)
    qed
    have 4:\negh< min-height r
    proof
    assume 0:h< min-height r
    have size-kdt kdt = size-kdt l + size-kdt r by simp
    also note min-height-size[of l]
    also(xtrans) note min-height-size[of r]
    also(xtrans) have (2::nat) ^ min-height r> 2^ h
            using 0 by (simp add: diff-less-mono)
    also(xtrans) have (2::nat) ^ min-height l\geq 2 ^ h using 1 by simp
    also(xtrans) have (2::nat) ^ h+ 2 ^}h=\mp@subsup{2}{}{\wedge}^\mathrm{ (Suc h) by (simp)
    also have ... = size-kdt kdt using Suc(2,3) by simp
    finally show False by (simp add: diff-le-mono)
    qed
    from 1234 have *: min-height l=h min-height r = h by linarith+
    hence size-kdt l=2 ^ min-height l size-kdt r=2 ^ min-height r
        using Suc(3) min-height-size[of l] min-height-size[of r] by (auto)
    with * Suc(1) show ?case
    by (simp add: complete-iff-height)
qed
lemma complete-iff-size:
    complete kdt \longleftrightarrow size-kdt kdt = 2 ^ height kdt
    using complete-if-size-height size-if-complete by blast
lemma size-height-if-incomplete:
    \neg complete kdt \Longrightarrow size-kdt kdt < 2 ^ height kdt
    by (meson antisym-conv complete-iff-size not-le size-height)
lemma min-height-size-if-incomplete:
    \neg complete kdt \Longrightarrow2 ^ min-height kdt < size-kdt kdt
    by (metis complete-if-size-min-height le-less min-height-size)
lemma balanced-subtreeL:
    balanced (Node k v l r) \Longrightarrow balanced l
    by (simp add: balanced-def)
lemma balanced-subtreeR:
    balanced (Node kvlr)\Longrightarrowbalanced r
    by (simp add: balanced-def)
lemma balanced-optimal:
    assumes balanced kdt size-kdt kdt \leq size-kdt kdt'
    shows height kdt \leq height kdt'
proof (cases complete kdt)
    case True
    have (2::nat) ^ height kdt \leq 2 ^ height kdt'
```

```
    proof -
    have 2 ^ height kdt = size-kdt kdt
        using True by (simp add:complete-iff-height size-if-complete)
    also have ...\leqsize-kdt kdt' using assms(2) by simp
    also have ... \leq 2 ` height kdt' by (rule size-height)
    finally show ?thesis.
    qed
    thus ?thesis by (simp)
next
    case False
    have (2::nat) ^ min-height kdt < 2 ^ height kdt'
    proof -
        have (2::nat) ^ min-height kdt < size-kdt kdt
            by(rule min-height-size-if-incomplete[OF False])
        also have ...\leq size-kdt kdt' using assms(2) by simp
        also have ... \leq2 ^ height kdt' by(rule size-height)
        finally have (2::nat) ^ min-height kdt < (2::nat) ^ height kdt'.
        thus ?thesis .
    qed
    hence *: min-height kdt < height kdt' by simp
    have min-height kdt + 1 = height kdt
        using min-height-le-height[of kdt] assms(1) False
        by (simp add: complete-iff-height balanced-def)
    with * show ?thesis by arith
qed
```


1.3 Lemmas adapted from $H O L$-Library. Tree-Real to k-d Tree

```
lemma size-height-log:
    log 2 (size-kdt kdt) \leq height kdt
    by (simp add: log2-of-power-le size-height)
lemma min-height-size-log:
    min-height kdt \leqlog 2 (size-kdt kdt)
    by (simp add:le-log2-of-power min-height-size)
lemma size-log-if-complete:
    complete kdt \Longrightarrow height kdt = log 2 (size-kdt kdt)
    using complete-iff-size log2-of-power-eq by blast
lemma min-height-size-log-if-incomplete:
    \neg complete kdt \Longrightarrow min-height kdt < log 2 (size-kdt kdt)
    by (simp add:less-log2-of-power min-height-size-if-incomplete)
lemma min-height-balanced:
    assumes balanced kdt
    shows min-height kdt = nat(floor(log 2 (size-kdt kdt)))
proof cases
    assume *: complete kdt
```

```
    hence size-kdt kdt = 2 ` min-height kdt
    by (simp add: complete-iff-height size-if-complete)
    from log2-of-power-eq[OF this] show ?thesis by linarith
next
    assume *: ᄀ complete kdt
    hence height kdt = min-height kdt + 1
    using assms min-height-le-height[of kdt]
    by(auto simp add: balanced-def complete-iff-height)
    hence size-kdt kdt<2 ^ (min-height kdt + 1)
    by (metis * size-height-if-incomplete)
    hence log 2 (size-kdt kdt) < min-height kdt + 1
    using log2-of-power-less size-ge0 by blast
    thus ?thesis using min-height-size-log[of kdt] by linarith
qed
lemma height-balanced:
    assumes balanced kdt
    shows height kdt = nat(ceiling(log 2 (size-kdt kdt)))
proof cases
    assume *: complete kdt
    hence size-kdt kdt = 2 ^ height kdt
        by (simp add: size-if-complete)
    from log2-of-power-eq[OF this] show ?thesis
        by linarith
next
    assume *: ᄀ complete kdt
    hence **: height kdt = min-height kdt + 1
        using assms min-height-le-height[of kdt]
        by(auto simp add: balanced-def complete-iff-height)
    hence size-kdt kdt \leq 2 ^
    from log2-of-power-le[OF this size-ge0] min-height-size-log-if-incomplete[OF *]
**
    show ?thesis by linarith
qed
lemma balanced-Node-if-wbal1:
    assumes balanced l balanced r size-kdt l = size-kdt r + 1
    shows balanced (Node kv l r)
proof -
    from assms(3) have [simp]: size-kdt l=size-kdt r + 1 by simp
    have nat \lceillog 2 (1 + size-kdt r)\rceil \geq nat \lceillog 2 (size-kdt r)\rceil
    by(rule nat-mono[OF ceiling-mono]) simp
    hence 1: height(Node k v l r) = nat \lceillog 2 (1 + size-kdt r)\rceil + 1
    using height-balanced[OF assms(1)] height-balanced[OF assms(2)]
    by (simp del: nat-ceiling-le-eq add: max-def)
    have nat \lfloorlog 2 (1 + size-kdt r) \rfloor\geq nat \lfloorlog 2 (size-kdt r) \rfloor
    by(rule nat-mono[OF floor-mono]) simp
    hence 2: min-height(Node k v l r) = nat \lfloorlog 2 (size-kdt r)\rfloor+1
    using min-height-balanced[OF assms(1)] min-height-balanced[OF assms(2)]
```

```
    by (simp)
    have size-kdt r \geq1 by (simp add: Suc-leI)
    then obtain i where i: 2 ^ i\leq size-kdt r size-kdt r< 2 ^}(i+1
        using ex-power-ivl1 [of 2 size-kdt r] by auto
    hence i1: 2 ^ i< size-kdt r + 1 size-kdt r + 1 \leq 2 ^ (i+1) by auto
    from 12 floor-log-nat-eq-if[OF i] ceiling-log-nat-eq-if[OF i1]
    show ?thesis by(simp add:balanced-def)
qed
lemma balanced-sym:
    balanced (Node k v l r)\Longrightarrow balanced (Node k' v'rl)
    by (auto simp: balanced-def)
lemma balanced-Node-if-wbal2:
    assumes balanced l balanced r abs(int(size-kdt l) - int(size-kdt r))}\leq
    shows balanced (Node kv l r)
proof -
    have size-kdt l = size-kdt r \vee (size-kdt l = size-kdt r + 1 \vee size-kdt r = size-kdt
l+1) (is ?A \vee ? B)
            using assms(3) by linarith
    thus ?thesis
    proof
        assume ?A
        thus ?thesis using assms(1,2)
            apply(simp add: balanced-def min-def max-def)
            by (metis assms(1,2) balanced-optimal le-antisym le-less)
    next
        assume ?B
        thus ?thesis
        by (meson assms(1,2) balanced-sym balanced-Node-if-wbal1)
    qed
qed
end
```


2 Building a balanced k-d Tree from a List of Points

theory Build
imports
KD-Tree
Median-Of-Medians-Selection.Median-Of-Medians-Selection
begin

Build a balanced k-d Tree by recursively partition the points into two lists. The partitioning criteria will be the median at a particular axis k. The left list will contain all points p with $p \$ k \leq$ median. The right list will contain all points with median at axis median $<p \$ k$. The left and right list differ in length by one or none. The axis k will the widest spread axis.

2.1 Auxiliary Lemmas

```
lemma length-filter-mset-sorted-nth:
    assumes distinct xs n< length xs sorted xs
    shows {#x\in# mset xs. x \leq xs! n#} = mset (take (n+1) xs)
    using assms
proof (induction xs arbitrary: n rule: list.induct)
    case (Cons x xs)
    thus ?case
    proof (cases n)
    case 0
    thus ?thesis
            using Cons.prems(1,3) filter-mset-is-empty-iff by fastforce
    next
    case (Suc n')
    thus ?thesis
        using Cons by simp
    qed
qed auto
lemma length-filter-sort-nth:
    assumes distinct xs n < length xs
    shows length (filter ( }\lambdax.x\leq\mathrm{ sort xs ! n) xs) = n+1
proof -
    have length (filter ( }\lambdax.x\leq\operatorname{sort xs ! n) xs) = length (filter ( }\lambdax.x\leq\mathrm{ sort xs! n)
(sort xs))
    by (simp add: filter-sort)
    also have ... = size (mset (filter ( }\lambdax.x\leq\operatorname{sort xs ! n) (sort xs)))
    using size-mset by metis
    also have ... = size ({#x\in# mset (sort xs). x \leq sort xs ! n#})
        using mset-filter by simp
    also have ... = size (mset (take (n+1) (sort xs)))
        using length-filter-mset-sorted-nth assms sorted-sort distinct-sort length-sort by
metis
    finally show ?thesis
        using assms(2) by auto
qed
```


2.2 Widest Spread Axis

definition calc-spread $::\left({ }^{\prime} k::\right.$ finite $) \Rightarrow{ }^{\prime} k$ point list \Rightarrow real where
calc-spread k ps $=($ case ps of []$\Rightarrow 0 \mid p s \Rightarrow$
let $k s=m a p(\lambda p . p \$ k)(t l p s) i n$
fold max $k s((h d p s) \$ k)$ - fold $\min k s((h d p s) \$ k)$
)
fun widest-spread $::\left({ }^{\prime} k::\right.$ finite) list $\Rightarrow{ }^{\prime} k$ point list $\Rightarrow{ }^{\prime} k \times$ real where
widest-spread [] $-=$ undefined
| widest-spread $[k]$ ps $=(k$, calc-spread $k p s)$
| widest-spread ($k \neq k s$) ps $=($

```
    let (k', s') = widest-spread ks ps in
    let s=calc-spread k ps in
    if s\leq s' then ( }\mp@subsup{k}{}{\prime},\mp@subsup{s}{}{\prime})\mathrm{ else ( }k,s
)
lemma calc-spread-spec:
    calc-spread k ps = spread k (set ps)
    using Max.set-eq-fold[of (hd ps)$k] Min.set-eq-fold[of (hd ps)$k]
    by (auto simp: Let-def spread-def calc-spread-def split: list.splits, metis set-map)
lemma widest-spread-calc-spread:
\(k s \neq[] \Longrightarrow(k, s)=\) widest-spread \(k s p s \Longrightarrow s=\) calc-spread \(k p s\)
by (induction \(k s\) ps rule: widest-spread.induct) (auto simp: Let-def split: prod.splits if-splits)
lemma widest-spread-axis-Un:
shows widest-spread-axis \(k K P \Longrightarrow\) spread \(k^{\prime} P \leq\) spread \(k P \Longrightarrow\) widest-spread-axis
\(k\left(K \cup\left\{k^{\prime}\right\}\right) P\)
and widest-spread-axis \(k K P \Longrightarrow\) spread \(k P \leq\) spread \(k^{\prime} P \Longrightarrow\) widest-spread-axis
\(k^{\prime}\left(K \cup\left\{k^{\prime}\right\}\right) P\)
unfolding widest-spread-axis-def by auto
lemma widest-spread-spec:
\((k, s)=\) widest-spread \(k s p s \Longrightarrow\) widest-spread-axis \(k\) (set ks) (set ps)
proof (induction ks ps arbitrary: \(k\) s rule: widest-spread.induct)
case ( \(3 k_{0} k_{1} k s p s\) )
obtain \(K^{\prime} S^{\prime}\) where \(K^{\prime}\)-def: \(\left(K^{\prime}, S^{\prime}\right)=\) widest-spread \(\left(k_{1} \# k s\right) p s\)
by (metis surj-pair)
hence \(I H\) : widest-spread-axis \(K^{\prime}\left(\right.\) set \(\left.\left(k_{1} \# k s\right)\right)(\) set ps)
using 3.IH by blast
hence \(0: S^{\prime}=\operatorname{spread} K^{\prime}(\) set \(p s)\)
using \(K^{\prime}\)-def widest-spread-calc-spread calc-spread-spec by blast
define \(S\) where \(S=\) calc-spread \(k_{0} p s\)
hence \(1: S=\) spread \(k_{0}(\) set ps)
using calc-spread-spec by blast
show ? case
proof (cases \(S \leq S^{\prime}\) )
case True
hence widest-spread-axis \(K^{\prime}\left(\operatorname{set}\left(k_{0} \# k_{1} \# k s\right)\right)(\) set ps)
using 01 widest-spread-axis-Un(1)[OF IH, of \(\left.k_{0}\right]\) by auto
thus ?thesis
using True \(K^{\prime}\)-def \(S\)-def 3.prems by (auto split: prod.splits)
next
case False
hence widest-spread-axis \(k_{0}\left(\right.\) set \(\left.\left(k_{0} \# k_{1} \# k s\right)\right)(\) set ps)
using 01 widest-spread-axis-Un(2)[OF IH, of \(k_{0}\) ] 3.prems(1) by auto
thus ?thesis
using False \(K^{\prime}\)-def \(S\)-def 3.prems by (auto split: prod.splits)
qed
```

qed (auto simp: widest-spread-axis-def)

2.3 Fast Axis Median

definition axis-median $::\left({ }^{\prime} k::\right.$ finite $) \Rightarrow$ ' k point list \Rightarrow real where axis-median k ps $=($ let $n=($ length $p s-1)$ div 2 in fast-select $n(\operatorname{map}(\lambda p . p \$ k)$ $p s)$)
lemma length-filter-le-axis-median:
assumes $0<$ length $p s \forall k$. distinct ($\operatorname{map}(\lambda p . p \$ k) p s)$
shows length $($ filter $(\lambda p . p \$ k \leq$ axis-median $k p s) p s)=($ length $p s-1)$ div $2+$ 1
proof -
let $? n=($ length $p s-1)$ div 2
let ? $p s=m a p(\lambda p . p \$ k) p s$
let $? m=$ fast-select $? n$? $p s$
have $0: ? n<$ length ?ps
using assms(1) by (auto, linarith)
have 1: distinct ?ps
using assms(2) by blast
have ? $m=$ select ? n ? ps
using fast-select-correct[OF 0] by blast
hence length (filter $(\lambda p . p \$ k \leq$ axis-median $k p s) p s)=$
length (filter ($\lambda p . p \$ k \leq$ sort ? $p s$! ? n) ps)
unfolding axis-median-def by (auto simp add: Let-def select-def simp del:
fast-select.simps)
also have $\ldots=$ length $($ filter $(\lambda v . v \leq$ sort ?ps ! ? n) ?ps $)$
by (induction ps) (auto, metis comp-apply)
also have $\ldots=? n+1$
using length-filter-sort-nth[OF 10$]$ by blast
finally show ?thesis .
qed
definition partition-by-median $::(' k::$ finite $) \Rightarrow$ ' k point list \Rightarrow ' k point list \times real \times ' k point list where
partition-by-median k ps $=($
let $m=$ axis-median k ps in
let $(l, r)=$ partition $(\lambda p . p \$ k \leq m)$ ps in
(l, m,r)
)
lemma set-partition-by-median:
$(l, m, r)=$ partition-by-median $k p s \Longrightarrow$ set $p s=$ set $l \cup$ set r
unfolding partition-by-median-def by (auto simp: Let-def)
lemma filter-partition-by-median:
assumes $(l, m, r)=$ partition-by-median $k p s$
shows $\forall p \in$ set $l . p \$ k \leq m$
and $\forall p \in$ set $r . \neg p \$ k \leq m$
using assms unfolding partition-by-median-def by (auto simp: Let-def)
lemma sum-length-partition-by-median:
assumes $(l, m, r)=$ partition-by-median $k p s$
shows length $p s=$ length $l+$ length r
using assms sum-length-filter-compl[of ($\lambda p . p \$ k \leq$ axis-median $k p s)]$
unfolding partition-by-median-def by (simp add: Let-def o-def)
lemma length-l-partition-by-median:
assumes $0<l e n g t h ~ p s \forall k$. distinct ($\operatorname{map}(\lambda p . p \$ k) p s)(l, m, r)=p a r t i-$
tion-by-median k ps
shows length $l=($ length $p s-1)$ div $2+1$
using assms unfolding partition-by-median-def by (auto simp: Let-def length-filter-le-axis-median)
corollary lengths-partition-by-median-1:
assumes $0<l e n g t h ~ p s ~ \forall k$. distinct ($\operatorname{map}(\lambda p . p \$ k) p s)(l, m, r)=p a r t i-$
tion-by-median k ps
shows length l - length $r \leq 1$
and length $r \leq$ length l
and $0<$ length l
and length $r<$ length $p s$
using length-l-partition-by-median[OF assms] sum-length-partition-by-median[OF
$\operatorname{assms}(3)]$ by auto
corollary lengths-partition-by-median-2:
assumes $1<$ length $p s \forall k$. distinct ($m a p(\lambda p . p \$ k) p s)(l, m, r)=p a r t i-$
tion-by-median k ps
shows $0<$ length r
and length $l<$ length ps
proof -
have $*: 0<$ length $p s$
using assms(1) by auto
show $0<$ length r length $l<$ length $p s$
using length-l-partition-by-median $[O F * \operatorname{assms}(2,3)]$ sum-length-partition-by-median $[O F$
$\operatorname{assms}(3)]$
using assms(1) by linarith+
qed
lemmas length-partition-by-median $=$
sum-length-partition-by-median length-l-partition-by-median
lengths-partition-by-median-1 lengths-partition-by-median-2

2.4 Building the Tree

function (domintros, sequential) build $::\left({ }^{\prime} k::\right.$ finite) list $\Rightarrow{ }^{\prime} k$ point list $\Rightarrow{ }^{\prime} k k d t$ where
build - [] = undefined
| build $-[p]=$ Leaf p
| build ks ps $=($

```
    let (k, -) = widest-spread ks ps in
    let (l,m,r) = partition-by-median k ps in
    Node km (build ks l)(build ks r)
    )
    by pat-completeness auto
lemma build-domintros3:
    assumes (k,s)= widest-spread ks (x#y#zs) (l,m,r) = partition-by-median
k(x#y#zs)
    assumes build-dom (ks,l) build-dom (ks,r)
    shows build-dom (ks, x # y # zs)
proof -
    {
        fix kslmr
        assume (k,s) = widest-spread ks (x#y#zs) (l,m,r) = partition-by-median
k(x#y#zs)
    hence build-dom (ks,l) build-dom (ks,r)
            using assms by (metis Pair-inject)+
    }
    thus ?thesis
        by (simp add: build.domintros(3))
qed
lemma build-termination:
    assumes }\forallk\mathrm{ . distinct (map ( }\lambdap.p$k)ps
    shows build-dom (ks, ps)
    using assms
proof (induction ps rule: length-induct)
    case (1 xs)
    consider (A) xs=[]|(B)\existsx.xs=[x]|(C)\existsxyzs.xs=x#y#zs
    by (induction xs rule: induct-list012) auto
    then show ?case
    proof cases
    case C
    then obtain x y zs where xyzs-def:xs=x # y # zs
        by blast
    obtain ks where ks-def: (k,s)= widest-spread ks xs
        by (metis surj-pair)
    obtain lmr where lmr-def:(l,m,r) = partition-by-median k xs
        by (metis prod-cases3)
    note defs=xyzs-def ks-def lmr-def
    have }\forallk\mathrm{ . distinct (map ( }\\mathrm{ p. p$ $) l)}\forallk.distinct (map ( \lambdap.p$k)r
        using lmr-def unfolding partition-by-median-def
        by (auto simp: Let-def 1.prems distinct-map-filter)
    moreover have length l< length xs length r < length xs
    using length-partition-by-median(8)[OF - 1.prems] length-partition-by-median(6)[OF
- 1.prems]
        using defs by auto
    ultimately have build-dom (ks,l) build-dom (ks,r)
```

using 1.IH by blast+
thus ?thesis
using build-domintros3 defs by blast
qed (auto intro: build.domintros)
qed
lemma build-psimp-1:
$p s=[p] \Longrightarrow$ build k ps $=$ Leaf p
by (simp add: build.domintros(2) build.psimps(2))
lemma build-psimp-2:
assumes $(k, s)=$ widest-spread $k s(x \# y \# z s)(l, m, r)=$ partition-by-median $k(x \# y \# z s)$ assumes build-dom ($k s, l$) build-dom ($k s, r$)
shows build ks $(x \# y \# z s)=$ Node $k m($ build ks l) (build ks r)
proof -
have 0: build-dom (ks, $x \# y \# z s$)
using assms build-domintros3 by blast
thus ?thesis
using build.psimps(3)[OF 0] assms(1,2) by (auto split: prod.splits)
qed
lemma length-xs-gt-1:
$1<$ length $x s \Longrightarrow \exists x y y s . x s=x \# y \# y s$ by (cases xs, auto simp: neq-Nil-conv)
lemma build-psimp-3:
assumes $1<$ length ps $(k, s)=$ widest-spread ks $p s(l, m, r)=$ partition-by-median $k p s$
assumes build-dom ($k s, l$) build-dom ($k s, r$)
shows build ks ps Node $k m$ (build ks l) (build ks r)
using build-psimp-2 length-xs-gt-1 assms by blast
lemmas build-psimps $[$ simp $]=$ build-psimp-1 build-psimp-3

2.5 Main Theorems

theorem set-build:
$0<$ length $p s \Longrightarrow \forall k$. distinct $(\operatorname{map}(\lambda p . p \$ k) p s) \Longrightarrow$ set $p s=$ set- $k d t$ (build ks $p s)$
proof (induction ps rule: length-induct)
case (1 ps)
show ?case
proof (cases $1<$ length ps)
case True
obtain $k s$ where $k s$-def: $(k, s)=$ widest-spread ks ps by (metis surj-pair)
obtain $l m r$ where $l m r$-def: $(l, m, r)=$ partition-by-median $k p s$ by (metis prod-cases3)

```
    have D: \forallk. distinct (map ( }\lambdap.p$k)l)\forallk.distinct (map ( \lambdap.p$k)r
        using lmr-def unfolding partition-by-median-def
        by (auto simp: 1.prems(2) Let-def distinct-map-filter)
    moreover have length l < length ps 0 < length l
            length r < length ps 0 < length r
        using length-partition-by-median(8)[OF True 1.prems(2)]
        length-partition-by-median(5)[OF 1.prems(1) 1.prems(2)]
        length-partition-by-median(6)[OF 1.prems(1) 1.prems(2)]
        length-partition-by-median(7)[OF True 1.prems(2)]
        lmr-def by blast+
    ultimately have set l = set-kdt (build ks l) set r = set-kdt (build ks r)
        using 1.IH by blast+
    moreover have set ps= set l U set r
        using lmr-def unfolding partition-by-median-def by (auto simp: Let-def)
    moreover have build ks ps = Node k m (build ks l) (build ks r)
        using build-psimp-3[OF True ks-def lmr-def] build-termination D by blast
    ultimately show ?thesis
        by simp
    next
    case False
    thus ?thesis
        using 1.prems by (cases ps) auto
    qed
qed
theorem invar-build:
    0< length ps \Longrightarrow 
(build ks ps)
proof (induction ps rule: length-induct)
    case (1 ps)
    show ?case
    proof (cases 1 < length ps)
    case True
    obtain ks where ks-def: (k,s) = widest-spread ks ps
        by (metis surj-pair)
    obtain lmr where lmr-def: (l,m,r)= partition-by-median k ps
        by (metis prod-cases3)
    have D: \forallk. distinct (map ( }\lambdap.p$k)l)\forallk.distinct (map ( \lambdap.p$k)r
        using lmr-def unfolding partition-by-median-def
        by (auto simp: 1.prems(2) Let-def distinct-map-filter)
    moreover have length l< length ps 0< length l
                            length r < length ps 0 < length r
        using length-partition-by-median(8)[OF True 1.prems(2)]
            length-partition-by-median(5)[OF 1.prems(1) 1.prems(2)]
                    length-partition-by-median(6)[OF 1.prems(1) 1.prems(2)]
                    length-partition-by-median(7)[OF True 1.prems(2)]
                    lmr-def by blast+
    ultimately have invar (build ks l) invar (build ks r)
        using 1.IH 1.prems(3) by blast+
```

moreover have $\forall p \in$ set $l . p \$ k \leq m \forall p \in$ set r. $m<p \$ k$
using filter-partition-by-median(1)[OF lmr-def]
filter-partition-by-median(2)[OF lmr-def] by auto
moreover have widest-spread-axis $k U N I V($ set $l \cup$ set r)
using widest-spread-spec [OF ks-def] 1.prems(3) set-partition-by-median[OF
$l m r-d e f]$ by simp
moreover have build ks ps = Node $k m$ (build ks l) (build ks r)
using build-psimp-3[OF True ks-def lmr-def] build-termination D by blast
ultimately show ?thesis using set-build $[O F\langle 0<$ length $l\rangle D(1)]$ set-build $[O F\langle 0<$ length $r\rangle D(2)]$
by simp
next
case False
thus ?thesis
using 1.prems by (cases ps) auto
qed
qed
theorem size-build:
$0<$ length $p s \Longrightarrow \forall k$. distinct ($\operatorname{map}(\lambda p . p \$ k) p s) \Longrightarrow$ size-kdt (build ks $p s)=$ length $p s$
proof (induction ps rule: length-induct)
case (1 ps)
show ?case
proof (cases $1<$ length ps)
case True
obtain $k s$ where $k s$-def: $(k, s)=$ widest-spread $k s$ ps
by (metis surj-pair)
obtain $l m r$ where lmr-def: $(l, m, r)=$ partition-by-median k ps by (metis prod-cases3)
have $D: \forall k$. distinct (map $(\lambda p . p \$ k) l) \forall k$. distinct $(\operatorname{map}(\lambda p . p \$ k) r)$ using lmr-def unfolding partition-by-median-def by (auto simp: 1.prems(2) Let-def distinct-map-filter)
moreover have length $l<$ length ps $0<$ length l
length $r<$ length ps $0<$ length r using length-partition-by-median(8)[OF True 1.prems(2)] length-partition-by-median(5)[OF 1.prems(1) 1.prems(2)] length-partition-by-median(6)[OF 1.prems(1) 1.prems(2)] length-partition-by-median(7)[OF True 1.prems(2)] lmr-def by blast+
ultimately have size-kdt (build ks l) = length l size-kdt (build ks r) $=$ length r using 1.IH by blast+
moreover have build ks ps=Node $k m$ (build ks l) (build ks r)
using build-psimp-3[OF True ks-def lmr-def] build-termination D by blast
ultimately show ?thesis
using length-partition-by-median(1)[OF lmr-def] by simp
next
case False
thus ?thesis
using 1.prems by (cases ps) auto
qed
qed
theorem balanced-build:
$0<$ length $p s \Longrightarrow \forall k$. distinct ($\operatorname{map}(\lambda p . p \$ k) p s) \Longrightarrow$ balanced (build ks ps)
proof (induction ps rule: length-induct)
case (1 ps)
show ?case
proof (cases $1<$ length ps)
case True
obtain $k s$ where $k s$-def: $(k, s)=$ widest-spread $k s$ ps
by (metis surj-pair)
obtain $l m r$ where $l m r$-def: $(l, m, r)=$ partition-by-median k ps by (metis prod-cases3)
have $D: \forall k$. distinct ($\operatorname{map}(\lambda p . p \$ k) l) \forall k$. distinct $(\operatorname{map}(\lambda p . p \$ k) r)$
using lmr-def unfolding partition-by-median-def
by (auto simp: 1.prems(2) Let-def distinct-map-filter)
moreover have length $l<$ length ps $0<$ length l
length $r<$ length ps $0<$ length r
using length-partition-by-median(8)[OF True 1.prems(2)]
length-partition-by-median(5)[OF 1.prems(1) 1.prems(2)]
length-partition-by-median(6)[OF 1.prems(1) 1.prems(2)]
length-partition-by-median(7)[OF True 1.prems(2)]
lmr-def by blast+
ultimately have $I H$: balanced (build ks l) balanced (build ks r)
using 1.IH by blast+
have build ks ps = Node $k m$ (build ks l) (build ks r)
using build-psimp-3[OF True ks-def lmr-def] build-termination D by blast
moreover have length $r+1=$ length $l \vee$ length $r=$ length l
using length-partition-by-median(1)[OF lmr-def]
length-partition-by-median(3)[OF 1.prems(1) 1.prems(2) lmr-def] length-partition-by-median(4)[OF 1.prems(1) 1.prems(2) lmr-def]
by linarith
ultimately show ?thesis
using balanced-Node-if-wbal1[OF IH] balanced-Node-if-wbal2 [OF IH] size-build $[O F<0<$ length l〉D(1)] size-build $[O F\langle 0<$ length $r\rangle D(2)]$
by auto
next
case False
thus ?thesis
using 1.prems by (cases ps) (auto simp: balanced-def)
qed
qed
lemma complete-if-balanced-size-2powh:
assumes balanced $k d t$ size- $k d t k d t=2{ }^{\wedge} h$
shows complete $k d t$
proof (rule ccontr)

```
    assume \neg complete kdt
    hence 2 ^ (min-height kdt)< size-kdt kdt size-kdt kdt < 2 ^ height kdt
    by (simp-all add: min-height-size-if-incomplete size-height-if-incomplete)
    hence height kdt - min-height kdt > 1
    using assms(2) by simp
    hence \neg balanced kdt
    using balanced-def by force
    thus False
    using assms(1) by simp
qed
theorem complete-build:
    length ps = 2 ` h \Longrightarrow }\mp@subsup{}{}{`
    by (simp add: balanced-build complete-if-balanced-size-2powh size-build)
corollary height-build:
    assumes length ps=2 ^ h }\forallk\mathrm{ . distinct (map ( }\lambdap.p$k)ps
    shows h = height (build k ps)
    using complete-build[OF assms] size-build[OF - assms(2)] by (simp add: assms(1)
complete-iff-size)
end
```


3 Range Searching

```
theory Range-Search
imports
    KD-Tree
begin
```

Given two k-dimensional points p_{0} and p_{1} which bound the search space, the search should return only the points which satisfy the following criteria: For every point p in the resulting set:
For every axis k :
$p_{0} \$ k \leq p \$ k \wedge p \$ k \leq p_{1} \$ k$

For a 2 -d tree a query corresponds to selecting all the points in the rectangle that has p_{0} and p_{1} as its defining edges.

3.1 Rectangle Definition

lemma cbox-point-def:
fixes $p_{0}::$ ($k::$ finite) point
shows cbox $p_{0} p_{1}=\left\{p . \forall k . p_{0} \$ k \leq p \$ k \wedge p \$ k \leq p_{1} \$ k\right\}$
proof -
have cbox $p_{0} p_{1}=\left\{p . \forall k . p_{0} \cdot\right.$ axis $k 1 \leq p \cdot$ axis $k 1 \wedge p \cdot$ axis $k 1 \leq p_{1} \cdot$ axis $k 1$ \}
unfolding cbox-def using axis-inverse by auto
also have $\ldots=\left\{p . \forall k . p_{0} \$ k \cdot 1 \leq p \$ k \cdot 1 \wedge p \$ k \cdot 1 \leq p_{1} \$ k \cdot 1\right\}$
using inner-axis[of - - 1] by (smt Collect-cong)
also have $\ldots=\left\{p . \forall k . p_{0} \$ k \leq p \$ k \wedge p \$ k \leq p_{1} \$ k\right\}$
by simp
finally show ?thesis.
qed

3.2 Search Function

```
fun search :: ('k::finite) point }=>\mp@subsup{'}{}{\prime}k\mathrm{ point }=>\mp@subsup{'}{}{\prime}kkdt => 'k point set where
    search po pr (Leaf p)=(if p\in cbox po pr then { p} else {})
| search po p (Node k v lr) =(
    if v< po$k then
        search po p p r
    else if }\mp@subsup{p}{1}{}$k<v\mathrm{ then
        search po p pl
    else
        search po p l l search po p pr
    )
```


3.3 Auxiliary Lemmas

lemma l-empty:

assumes invar (Node kvlr) v< $p_{0} \$ k$
shows set-kdt $l \cap \operatorname{cbox} p_{0} p_{1}=\{ \}$
proof -
have $\forall p \in$ set-kdt l. $p \$ k<p_{0} \$ k$
using assms by auto
hence $\forall p \in$ set-kdt l. $p \notin \operatorname{cbox} p_{0} p_{1}$
using cbox-point-def leD by blast
thus?thesis by blast
qed
lemma r-empty:
assumes invar (Node kvlr) $p_{1} \$ k<v$
shows set-kdt $r \cap$ cbox $p_{0} p_{1}=\{ \}$
proof -
have $\forall p \in$ set-kdt r. $p_{1} \$ k<p \$ k$
using assms by auto
hence $\forall p \in$ set-kdt r. $p \notin \operatorname{cbox} p_{0} p_{1}$
using cbox-point-def leD by blast
thus?thesis by blast
qed

3.4 Main Theorem

theorem search-cbox:
assumes invar $k d t$
shows search $p_{0} p_{1} k d t=$ set-kdt $k d t \cap \operatorname{cbox} p_{0} p_{1}$

```
    using assms l-empty r-empty by (induction kdt) (auto, blast+)
```

end

4 Nearest Neighbor Search on the k-d Tree

```
theory Nearest-Neighbors
imports
    KD-Tree
begin
```

Verifying nearest neighbor search on the k-d tree. Given a k-d tree and a point p, which might not be in the tree, find the points $p s$ that are closest to p using the Euclidean metric.

4.1 Auxiliary Lemmas about sorted-wrt

lemma

assumes sorted-wrt f xs
shows sorted-wrt-take: sorted-wrt f (take n xs)
and sorted-wrt-drop: sorted-wrt f (drop n xs)
proof -
have sorted-wrt f (take nxs @ drop n xs)
using assms by simp
thus sorted-wrt f (take n xs) sorted-wrt f (drop n xs) using sorted-wrt-append by blast+
qed
definition sorted-wrt-dist :: (${ }^{\prime} k::$ finite) point $\Rightarrow{ }^{\prime} k$ point list \Rightarrow bool where sorted-wrt-dist $p \equiv$ sorted-wrt $\left(\lambda p_{0} p_{1}\right.$. dist $\left.p_{0} p \leq \operatorname{dist} p_{1} p\right)$
lemma sorted-wrt-dist-insort-key:
sorted-wrt-dist p ps \Longrightarrow sorted-wrt-dist p (insort-key (λq. dist q p) q ps)
by (induction ps) (auto simp: sorted-wrt-dist-def set-insort-key)
lemma sorted-wrt-dist-take-drop:
assumes sorted-wrt-dist p ps
shows $\forall p_{0} \in$ set (take n ps). $\forall p_{1} \in \operatorname{set}(d r o p n p s)$. dist $p_{0} p \leq \operatorname{dist} p_{1} p$
using assms sorted-wrt-append [of - take n ps drop n ps] by (simp add: sorted-wrt-dist-def)
lemma sorted-wrt-dist-last-take-mono:
assumes sorted-wrt-dist p ps $n \leq$ length ps $0<n$
shows dist (last (take n ps)) $p \leq \operatorname{dist}($ last $p s) p$
using assms unfolding sorted-wrt-dist-def by (induction ps arbitrary: n) (auto simp add: take-Cons')
lemma sorted-wrt-dist-last-insort-key-eq:
assumes sorted-wrt-dist p ps insort-key (λ. dist q p) q ps $\neq p s$ @ $[q]$

```
    shows last (insort-key ( \lambdaq. dist q p) q ps) = last ps
    using assms unfolding sorted-wrt-dist-def by (induction ps) (auto)
    lemma sorted-wrt-dist-last:
    assumes sorted-wrt-dist p ps
    shows }\forallq\in\mathrm{ set ps. dist q p { dist (last ps) p
proof (cases ps = [])
    case True
    thus ?thesis by simp
next
    case False
    then obtain ps' p' where [simp]:ps=p\mp@subsup{s}{}{\prime}@[p]
        using rev-exhaust by blast
    hence sorted-wrt-dist p(ps' @ [p ])
    using assms by blast
    thus ?thesis
        unfolding sorted-wrt-dist-def using sorted-wrt-append[of - ps' [p ']] by simp
qed
```


4.2 Neighbors Sorted wrt. Distance

definition upd-nbors :: nat \Rightarrow (' $k:$:finite) point $\Rightarrow{ }^{\prime} k$ point $\Rightarrow{ }^{\prime} k$ point list $\Rightarrow{ }^{\prime} k$ point list where upd-nbors n p q ps $=$ take $n($ insort-key $(\lambda q$. dist q p) q ps)
lemma sorted-wrt-dist-nbors:
assumes sorted-wrt-dist p ps
shows sorted-wrt-dist p (upd-nbors n p q ps)
proof -
have sorted-wrt-dist p (insort-key (λq. dist q p) q ps)
using assms sorted-wrt-dist-insort-key by blast
thus ?thesis
by (simp add: sorted-wrt-dist-def sorted-wrt-take upd-nbors-def)
qed
lemma sorted-wrt-dist-nbors-diff:
assumes sorted-wrt-dist p ps
shows $\forall r \in$ set $p s \cup\{q\}-$ set (upd-nbors n p q ps). $\forall s \in$ set (upd-nbors n p q
$p s)$. dist s $p \leq$ dist $r p$
proof -
let ?ps ${ }^{\prime}=$ insort-key $(\lambda q$. dist $q p) q p s$
have set $p s \cup\{q\}=$ set ?ps'
by (simp add: set-insort-key)
moreover have set ?ps $s^{\prime}=$ set $\left(\right.$ take n ?ps') \cup set $\left(\right.$ drop n ?ps $\left.{ }^{\prime}\right)$
using append-take-drop-id set-append by metis
ultimately have set $p s \cup\{q\}-$ set $($ take n ?ps') \subseteq set (drop n ?ps')
by blast
moreover have sorted-wrt-dist p ?ps ${ }^{\prime}$
using assms sorted-wrt-dist-insort-key by blast

```
    ultimately show ?thesis
    unfolding upd-nbors-def using sorted-wrt-dist-take-drop by blast
qed
lemma sorted-wrt-dist-last-upd-nbors-mono:
    assumes sorted-wrt-dist p ps n\leq length ps 0<n
    shows dist (last (upd-nbors n p q ps)) p\leqdist (last ps) p
proof (cases insort-key (\lambdaq. dist q p) q ps=ps@ @q])
    case True
    thus ?thesis
    unfolding upd-nbors-def using assms sorted-wrt-dist-last-take-mono by auto
next
    case False
    hence last (insort-key ( }\lambdaq\mathrm{ . dist q p) q ps) = last ps
    using sorted-wrt-dist-last-insort-key-eq assms by blast
    moreover have dist (last (upd-nbors n p q ps)) p \leq dist (last (insort-key (\lambdaq.
dist q p) q ps)) p
    unfolding upd-nbors-def using assms sorted-wrt-dist-last-take-mono[of p in-
sort-key (\lambdaq. dist q p) q ps]
    by (simp add: sorted-wrt-dist-insort-key)
    ultimately show ?thesis
        by simp
qed
```


4.3 The Recursive Nearest Neighbor Algorithm

```
fun nearest-nbors :: nat }=>\mathrm{ (' }k::finite) point list = ' k point => ' k kdt => 'k point
list where
    nearest-nbors n ps p (Leaf q) = upd-nbors n p q ps
| nearest-nbors n ps p (Node k v l r) =(
    if p$k\leqv then
        let candidates = nearest-nbors n ps pl in
        if length candidates = n ^ dist p (last candidates)\leqdist v(p$k) then
                candidates
            else
                nearest-nbors n candidates p r
    else
            let candidates = nearest-nbors n ps p r in
            if length candidates }=n\wedge\mathrm{ dist p (last candidates)}\leq\mathrm{ dist v(p$k) then
                candidates
            else
                nearest-nbors n candidates pl
)
```


4.4 Auxiliary Lemmas

```
lemma cutoff-r:
```

 assumes invar (Node kv lr)
 assumes \(p \$ k \leq v\) dist \(p c \leq \operatorname{dist}(p \$ k) v\)
 shows \(\forall q \in\) set-kdt \(r\). dist \(p c \leq \operatorname{dist} p q\)
    ```
proof standard
    fix q
    assume *: q \in set-kdt r
    have dist p c < dist (p$k)v
        using assms(3) by blast
    also have ... \leq dist (p$k)v+ dist v(q$k)
        by simp
    also have ... = dist ( }p$k)(q$k
        using * assms(1,2) dist-real-def by auto
    also have ... \leq dist p q
        using dist-vec-nth-le by blast
    finally show dist p c\leq dist p q.
qed
lemma cutoff-l:
    assumes invar (Node kv l r)
    assumes v\leqp$k dist pc\leqdist v (p$k)
    shows }\forallq\in\mathrm{ set-kdt l. dist p c < dist p q
proof standard
    fix q
    assume *: q \in set-kdt l
    have dist p c s dist v (p$k)
        using assms(3) by blast
    also have .. \leq dist v (p$k)+\operatorname{dist}(q$k)v
        by simp
    also have ... = dist ( }p$k)(q$k
        using * assms(1,2) dist-real-def by auto
    also have ... \leq dist p q
        using dist-vec-nth-le by blast
    finally show dist p c\leq dist p q.
qed
```


4.5 The Main Theorems

lemma set-nns:
set (nearest-nbors n ps p kdt) \subseteq set-kdt $k d t \cup$ set $p s$
apply (induction kdt arbitrary: ps)
apply (auto simp: Let-def upd-nbors-def set-insort-key)
using in-set-takeD set-insort-key by fastforce
lemma length-nns:
length (nearest-nbors n ps $p k d t)=\min n(s i z e-k d t k d t+l e n g t h ~ p s)$
by (induction kdt arbitrary: ps) (auto simp: Let-def upd-nbors-def)
lemma length-nns-gt-0:
$0<n \Longrightarrow 0<$ length (nearest-nbors n ps $p k d t$)
by (induction kdt arbitrary: ps) (auto simp: Let-def upd-nbors-def)
lemma length-nns-n:

```
    assumes (set-kdt kdt \cup set ps) - set (nearest-nbors n ps p kdt)}\not={
    shows length (nearest-nbors n ps p kdt) = n
    using assms
proof (induction kdt arbitrary: ps)
    case (Node k v l r)
    let ?nnsl = nearest-nbors n ps p l
    let ?nnsr = nearest-nbors n ps pr
    consider (A) p$k\leqv^ length ?nnsl = n ^ dist p (last ?nnsl) \leqdist v (p$k)
        | (B) p$k\leqv ^ ᄀ(length ?nnsl = n ^ dist p (last ?nnsl) \leq dist v (p$k))
        (C) v<p$k^ length ?nnsr = n ^ dist p (last ?nnsr) \leq dist v (p$k)
        | (D) v<p$k^\neg(length ?nnsr = n ^ dist p (last ?nnsr ) { dist v (p$k))
    by argo
    thus ?case
    proof cases
    case B
    let ?nns = nearest-nbors n ?nnsl p r
    have length ?nnsl }\not=n\longrightarrow(\mathrm{ set-kdt l U set ps - set (nearest-nbors n ps p l)}
{})
        using Node.IH(1) by blast
    hence length ?nnsl }\not=n\longrightarrow(\mathrm{ set-kdt r }\cup\mathrm{ set ?nnsl - set ?nns }\not={}
        using B Node.prems by auto
    moreover have length ?nnsl =n \longrightarrow ?thesis
        using B by (auto simp: length-nns)
    ultimately show ?thesis
        using B Node.IH(2) by force
    next
    case D
    let ?nns=nearest-nbors n ?nnsr pl
    have length ?nnsr }=n\longrightarrow(\mathrm{ set-kdt r U set ps - set (nearest-nbors n ps p r)
= {})
            using Node.IH(2) by blast
    hence length ?nnsr }\not=n\longrightarrow(\mathrm{ set-kdt l }\cup\mathrm{ set ?nnsr - set ?nns }\not={}
            using D Node.prems by auto
    moreover have length ?nnsr =n \longrightarrow ?thesis
        using D by (auto simp: length-nns)
    ultimately show ?thesis
        using D Node.IH(1) by force
    qed auto
qed (auto simp: upd-nbors-def min-def set-insort-key)
lemma sorted-nns:
    sorted-wrt-dist p ps \Longrightarrow sorted-wrt-dist p (nearest-nbors n ps p kdt)
    using sorted-wrt-dist-nbors by (induction kdt arbitrary: ps) (auto simp: Let-def)
lemma distinct-nns:
    assumes invar kdt distinct ps set ps \cap set-kdt kdt ={}
    shows distinct (nearest-nbors n ps p kdt)
    using assms
proof (induction kdt arbitrary: ps)
```

```
    case (Node k v l r)
    let ?nnsl = nearest-nbors n ps pl
    let ?nnsr = nearest-nbors n ps p r
    have set ps\cap set-kdt l={} set ps \cap set-kdt r = {}
    using Node.prems(3) by auto
    hence DCLR: distinct ?nnsl distinct ?nnsr
    using Node invar-l invar-r by blast+
    have set ?nnsl \cap set-kdt r={} set ?nnsr \cap set-kdt l={}
    using Node.prems(1,3) set-nns by fastforce+
    hence distinct (nearest-nbors n ?nnsl p r) distinct (nearest-nbors n ?nnsr p l)
    using Node.IH(1,2) Node.prems(1,2) DCLR invar-l invar-r by blast+
    thus ?case
    using DCLR by (auto simp add: Let-def)
qed (auto simp: upd-nbors-def distinct-insort)
lemma last-nns-mono:
    assumes invar kdt sorted-wrt-dist p ps n\leqlength ps 0<n
    shows dist (last (nearest-nbors n ps p kdt)) p\leqdist (last ps) p
    using assms
proof (induction kdt arbitrary: ps)
    case (Node k v l r)
    let ?nnsl = nearest-nbors n ps pl
    let ?nnsr = nearest-nbors n ps p r
    have n\leqlength ?nnsl n < length ?nnsr
    using Node.prems(3) by (simp-all add: length-nns)
    hence dist (last (nearest-nbors n ?nnsl p r)) p\leqdist (last ?nnsl) p
                dist (last (nearest-nbors n ?nnsr p l)) p \leq dist (last ?nnsr) p
    using sorted-nns Node invar-l invar-r by blast+
    hence dist (last (nearest-nbors n ?nnsl p r)) p\leqdist (last ps) p
                dist (last (nearest-nbors n ?nnsr p l)) p \leq dist (last ps) p
    using Node.IH(1)[of ps] Node.IH(2)[of ps] Node.prems invar-l length-nns-gt-0
by auto
    thus ?case
        using Node by (auto simp add: Let-def)
qed (auto simp: sorted-wrt-dist-last-upd-nbors-mono)
theorem dist-nns:
    assumes invar kdt sorted-wrt-dist p ps set ps \cap set-kdt kdt ={} distinct ps 0<
n
    shows }\forallq\in\mathrm{ set-kdt kdt U set ps - set (nearest-nbors n ps p kdt). dist (last
(nearest-nbors n ps p kdt)) p\leqdist q p
    using assms
proof (induction kdt arbitrary: ps)
    case (Node k v l r)
    let ?nnsl = nearest-nbors n ps pl
    let ?nnsr = nearest-nbors n ps pr
    have IHL: }\forallq\in\mathrm{ set-kdt l U set ps - set ?nnsl. dist (last ?nnsl) p < dist q p
```

using Node.IH(1) Node.prems invar-l invar-set by auto
have IHR: $\forall q \in$ set-kdt $r \cup$ set $p s-$ set ?nnsr. dist (last ?nnsr) $p \leq \operatorname{dist} q p$ using Node.IH(2) Node.prems invar-r invar-set by auto
have SORTED-L: sorted-wrt-dist p ?nnsl
using sorted-nns Node.prems(2) by blast
have SORTED-R: sorted-wrt-dist p ? nnsr
using sorted-nns Node.prems(2) by blast
have DISTINCT-L: distinct ?nnsl
using Node.prems distinct-nns invar-set invar-l by fastforce
have DISTINCT-R: distinct?nnsr
using Node.prems distinct-nns invar-set invar-r
by (metis inf-bot-right inf-sup-absorb inf-sup-aci(3) sup.commute)
consider $(A) p \$ k \leq v \wedge$ length ?nnsl $=n \wedge$ dist p (last ?nnsl) $\leq \operatorname{dist} v(p \$ k)$ | $(B) p \$ k \leq v \wedge \neg($ length ? $n n s l=n \wedge$ dist p (last ?nnsl $) \leq \operatorname{dist} v(p \$ k))$
(C) $v<p \$ k \wedge$ length ?nnsr $=n \wedge$ dist p (last ?nnsr) $\leq \operatorname{dist} v(p \$ k)$
$\mid(D) v<p \$ k \wedge \neg($ length ? nnsr $=n \wedge$ dist $p($ last ?nnsr $) \leq \operatorname{dist} v(p \$ k))$
by argo
thus? case
proof cases
case A
hence $\forall q \in$ set-kdt r. dist (last ?nnsl) $p \leq \operatorname{dist} q p$
using Node.prems $(1,2)$ cutoff-r by (metis dist-commute)
thus ?thesis
using IHL A by auto
next
case B
let ?nns $=$ nearest-nbors n ?nnsl $p r$
have set ? $n n s l \subseteq$ set-kdt $l \cup$ set ps set $p s \cap$ set-kdt $r=\{ \}$
using set-nns \bar{N} ode.prems $(1,3)$ by (simp add: set-nns disjoint-iff-not-equal)+
hence set ?nnsl \cap set-kdt $r=\{ \}$
using Node.prems(1) by fastforce
hence IHLR: $\forall q \in$ set-kdt $r \cup$ set ?nnsl - set ?nns. dist (last ?nns) $p \leq$ dist $q p$
using Node.IH(2)[OF - SORTED-L - DISTINCT-L Node.prems(5)] Node.prems(1) invar-r by blast
have $\forall q \in$ set $p s-$ set ?nnsl. dist (last ?nns) $p \leq$ dist $q p$
proof standard
fix q
assume $*: q \in$ set $p s-$ set ?nnsl
hence length ?nnsl $=n$
using length-nns-n by blast
hence LAST: dist (last ?nns) $p \leq \operatorname{dist}$ (last ?nnsl) p
using last-nns-mono SORTED-L invar-r Node.prems(1,2,5) by (metis order-refl)
have dist (last ?nnsl) $p \leq$ dist $q p$ using $I H L *$ by blast
thus dist (last ?nns) $p \leq \operatorname{dist} q p$
using $L A S T$ by argo
qed
hence $R: \forall q \in$ set-kdt $r \cup$ set $p s-$ set ?nns. dist (last ?nns) $p \leq \operatorname{dist} q p$ using $I H L R$ by auto
have $\forall q \in$ set-kdt $l-$ set ?nnsl. dist (last ?nns) $p \leq$ dist $q p$
proof standard
fix q
assume $*: q \in$ set-kdt $l-$ set ?nnsl
hence length ?nnsl $=n$
using length-nns-n by blast
hence LAST: dist (last ?nns) $p \leq \operatorname{dist}$ (last ?nnsl) p using last-nns-mono SORTED-L invar-r Node.prems $(1,2,5)$ by (metis order-refl)
have dist (last ?nnsl) $p \leq \operatorname{dist} q p$
using $I H L *$ by blast
thus dist (last ?nns) $p \leq \operatorname{dist} q p$
using $L A S T$ by argo
qed
hence $L: \forall q \in$ set-kdt $l-$ set ?nns. dist (last ?nns) $p \leq \operatorname{dist} q p$ using $I H L R$ by blast
show ?thesis
using $B R L$ by auto
next
case C
hence $\forall q \in$ set-kdt l. dist (last ?nnsr) $p \leq \operatorname{dist} q p$
using Node.prems $(1,2)$ cutoff-l by (metis dist-commute less-imp-le)
thus ?thesis
using $I H R C$ by auto
next
case D
let ?nns $=$ nearest-nbors n ? nnsr $p l$
have set ? $n n s r \subseteq$ set-kdt $r \cup$ set ps set $p s \cap$ set-kdt $l=\{ \}$
using set-nns Node.prems $(1,3)$ by (simp add: set-nns disjoint-iff-not-equal) +
hence set ?nnsr \cap set-kdt $l=\{ \}$
using Node.prems(1) by fastforce
hence IHRL: $\forall q \in$ set-kdt $l \cup$ set ?nnsr - set ?nns. dist (last ?nns) $p \leq$ dist $q p$
using Node.IH(1)[OF - SORTED-R - DISTINCT-R Node.prems(5)] Node.prems(1) invar-l by blast

```
    have }\forallq\in\mathrm{ set ps - set ?nnsr. dist (last ?nns) p}\leq\mathrm{ dist q p
    proof standard
    fix q
    assume *: q\in set ps - set ?nnsr
    hence length ?nnsr = n
            using length-nns-n by blast
    hence LAST: dist (last ?nns) p\leqdist (last ?nnsr) p
        using last-nns-mono SORTED-R invar-l Node.prems(1,2,5) by (metis
order-refl)
    have dist (last ?nnsr) p\leq dist q p
        using IHR * by blast
    thus dist (last ?nns) p\leqdist q p
        using LAST by argo
    qed
    hence R:\forallq\in set-kdt l\cup set ps - set ?nns. dist (last ?nns) p\leqdist q p
        using IHRL by auto
    have }\forallq\in\mathrm{ set-kdt r - set ?nnsr. dist (last ?nns) p}\leq\mathrm{ dist q p
    proof standard
        fix q
        assume *: q \in set-kdt r - set ?nnsr
        hence length ?nnsr = n
            using length-nns-n by blast
        hence LAST: dist (last ?nns) p \leq dist (last ?nnsr) p
            using last-nns-mono SORTED-R invar-l Node.prems(1,2,5) by (metis
order-refl)
            have dist (last ?nnsr) p\leqdist q p
                using IHR * by blast
            thus dist (last ?nns) p\leqdist q p
                using LAST by argo
    qed
    hence L: }\forallq\in\mathrm{ set-kdt r - set ?nns. dist (last ?nns) p}\leq\mathrm{ dist q p
        using IHRL by blast
    show ?thesis
        using D R L by auto
    qed
qed (auto simp: sorted-wrt-dist-nbors-diff upd-nbors-def)
```


4.6 Nearest Neighbors Definition and Theorems

definition nearest-neighbors :: nat \Rightarrow (' $k::$ finite) point $\Rightarrow{ }^{\prime} k k d t \Rightarrow$ ' k point list where
nearest-neighbors n $p k d t=$ nearest-nbors $n[] p k d t$
theorem length-nearest-neighbors:

```
    length (nearest-neighbors n p kdt) = min n (size-kdt kdt)
    by (simp add: length-nns nearest-neighbors-def)
theorem sorted-wrt-dist-nearest-neighbors:
    sorted-wrt-dist p (nearest-neighbors n p kdt)
    using sorted-nns unfolding nearest-neighbors-def sorted-wrt-dist-def by force
theorem set-nearest-neighbors:
    set (nearest-neighbors n p kdt)\subseteq set-kdt kdt
    unfolding nearest-neighbors-def using set-nns by force
theorem distinct-nearest-neighbors:
    assumes invar kdt
    shows distinct (nearest-neighbors n p kdt)
    using assms by (simp add: distinct-nns nearest-neighbors-def)
theorem dist-nearest-neighbors:
    assumes invar kdt nns = nearest-neighbors n p kdt
    shows }\forallq\in(\mathrm{ set-kdt kdt - set nns).}\forallr\in set nns. dist r p\leqdist q p
proof (cases 0<n)
    case True
    have }\forallq\in set-kdt kdt - set nns. dist (last nns) p \leq dist q p
        using nearest-neighbors-def dist-nns[OF assms(1), of p [],OF - - True]
assms(2)
    by (simp add: nearest-neighbors-def sorted-wrt-dist-def)
    hence }\forallq\in\mathrm{ set-kdt kdt - set nns. }\foralln\in\mathrm{ set nns. dist n p s dist q p
    using assms(2) sorted-wrt-dist-nearest-neighbors[of p n kdt] sorted-wrt-dist-last[of
p nns] by force
    thus ?thesis
        using nearest-neighbors-def by blast
next
    case False
    hence length nns = 0
        using assms(2) unfolding nearest-neighbors-def by (auto simp: length-nns)
    thus ?thesis
        by simp
qed
end
```


References

[1] J. L. Bentley. Multidimensional binary search trees used for associative searching. Commun. ACM, 18(9):509-517, 1975.
[2] J. H. Friedman, J. L. Bentley, and R. A. Finkel. An algorithm for finding best matches in logarithmic expected time. ACM Trans. Math. Softw., $3(3): 209-226,1977$.

