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Abstract
Knowledge-based programs (KBPs) are a formalism for directly relat-

ing an agent’s knowledge and behaviour. Here we present a general scheme
for compiling KBPs to executable automata with a proof of correctness in
Isabelle/HOL. We develop the algorithm top-down, using Isabelle’s locale
mechanism to structure these proofs, and show that two classic examples
can be synthesised using Isabelle’s code generator.
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1 Introduction
Imagine a robot stranded at zero on a discrete number line, hoping to reach
and remain in the goal region {2, 3, 4}. The environment helpfully pushes the
robot to the right, zero or one steps per unit time, and the robot can sense the
current position with an error of plus or minus one. If the only action the robot
can take is to halt at its current position, what program should it execute?

. . .
0 1 2 3 4 5 6

goal

An intuitive way to specify the robot’s behaviour is with this knowledge-based
program (KBP), using the syntax of Dijkstra’s guarded commands:

do
[] Krobot goal → Halt
[] ¬Krobot goal → Nothing

od

Here “Krobot goal” intuitively denotes “the robot knows it is in the goal region”
(Fagin et al. 1995, Example 7.2.2). We will make this precise in §3, but for now
note that what the robot knows depends on the rest of the scenario, which in
general may involve other agents also running KBPs. In a sense a KBP is a very
literal rendition of a venerable artificial intelligence trope, that what an agent
does should depend on its knowledge, and what an agent knows depends on what
it does. It has been argued elsewhere Bickford et al. (2004); Engelhardt et al.
(2000); Fagin et al. (1995) that this is a useful level of abstraction at which
to reason about distributed systems, and some kinds of multi-agent systems
Shoham and Leyton-Brown (2008). The cost is that these specifications are not
directly executable, and it may take significant effort to find a concrete program
that has the required behaviour.
The robot does have a simple implementation however: it should halt iff the
sensor reads at least 3. That this is correct can be shown by an epistemic model
checker such as MCK Gammie and van der Meyden (2004) or pencil-and-paper
refinement Engelhardt et al. (2000). In contrast the goal of this work is to
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algorithmically discover such implementations, which is a step towards making
the work of van der Meyden van der Meyden (1996) practical.
The contributions of this work are as follows: §2 develops enough of the theory
of KBPs in Isabelle/HOL Nipkow et al. (2002) to support a formal proof of
the possibility of their implementation by finite-state automata (§6). The later
sections extend this development with a full top-down derivation of an original
algorithm that constructs these implementations (§6.9) and two instances of
it (§7.3 and §??), culminating in the mechanical synthesis of two standard
examples from the literature: the aforementioned robot (§??) and the muddy
children (§??).
We make judicious use of parametric polymorphism and Isabelle’s locale mech-
anism Ballarin (2006) to establish and instantiate this theory in a top-down
style. Isabelle’s code generator Haftmann and Nipkow (2010) allows the algo-
rithm developed here to be directly executed on the two examples, showing that
the theory is both sound and usable. The complete development, available from
the Archive of Formal Proofs Gammie (2011), includes the full formal details of
all claims made in this paper.
In the following we adopt the Isabelle convention of using an apostrophe to
prefix fixed but unknown types, such as ′a, and postfix type constructors as in
′a list. Other non-standard syntax will be explained as it arises.

2 A modal logic of knowledge
We begin with the standard syntax and semantics of the propositional logic
of knowledge based on Kripke structures. More extensive treatments can be
found in Lenzen (1978), Chellas (1980), Hintikka (1962) and Fagin et al. (1995,
Chapter 2).
The syntax includes one knowledge modality per agent, and one for common
knowledge amongst a set of agents. It is parameterised by the type ′a of agents
and ′p of propositions.
datatype ( ′a, ′p) Kform
= Kprop ′p
| Knot ( ′a, ′p) Kform
| Kand ( ′a, ′p) Kform ( ′a, ′p) Kform
| Kknows ′a ( ′a, ′p) Kform (‹K- -›)
| Kcknows ′a list ( ′a, ′p) Kform (‹C- -›)

A Kripke structure consists of a set of worlds of type ′w, one accessibility relation
between worlds for each agent and a valuation function that indicates the truth
of a proposition at a world. This is a very general story that we will quickly
specialise.
type-synonym ′w Relation = ( ′w × ′w) set

record ( ′a, ′p, ′w) KripkeStructure =
worlds :: ′w set
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relations :: ′a ⇒ ′w Relation
valuation :: ′w ⇒ ′p ⇒ bool

definition kripke :: ( ′a, ′p, ′w) KripkeStructure ⇒ bool where
kripke M ≡ ∀ a. relations M a ⊆ worlds M × worlds M

definition
mkKripke :: ′w set ⇒ ( ′a ⇒ ′w Relation) ⇒ ( ′w ⇒ ′p ⇒ bool)

⇒ ( ′a, ′p, ′w) KripkeStructure
where

mkKripke ws rels val ≡
(| worlds = ws, relations = λa. rels a ∩ ws × ws, valuation = val |)

The standard semantics for knowledge is given by taking the accessibility rela-
tions to be equivalence relations, yielding the S5n structures, so-called due to
their axiomatisation.
definition S5n :: ( ′a, ′p, ′w) KripkeStructure ⇒ bool where

S5n M ≡ ∀ a. equiv (worlds M ) (relations M a)

Intuitively an agent considers two worlds to be equivalent if it cannot distinguish
between them.

2.1 Satisfaction
A formula φ is satisfied at a world w in Kripke structure M in the following
way:
fun models :: ( ′a, ′p, ′w) KripkeStructure ⇒ ′w ⇒ ( ′a, ′p) Kform

⇒ bool (‹(-, - |= -)› [80,0,80] 80) where
M , w |= (Kprop p) = valuation M w p
| M , w |= (Knot ϕ) = (¬ M , w |= ϕ)
| M , w |= (Kand ϕ ψ) = (M , w |= ϕ ∧ M , w |= ψ)
| M , w |= (Ka ϕ) = (∀w ′ ∈ relations M a ‘‘ {w}. M , w ′ |= ϕ)
| M , w |= (Cas ϕ) = (∀w ′ ∈ (

⋃
a ∈ set as. relations M a)+ ‘‘ {w}. M , w ′ |= ϕ)

The first three clauses are standard.
The clause for Ka ϕ expresses the idea that an agent knows ϕ at world w in
structure M iff ϕ is true at all worlds it considers possible.
The clause for Cas ϕ captures what it means for the set of agents as to commonly
know ϕ; roughly, everyone knows ϕ and knows that everyone knows it, and
so forth. Note that the transitive closure and the reflexive-transitive closure
generate the same relation due to the reflexivity of the agents’ accessibility
relations; we use the former as it has a more pleasant induction principle.

The relation between knowledge and common knowledge can be understood as
follows, following Fagin et al. (1995, §2.4). Firstly, that φ is common knowledge
to a set of agents as can be seen as asserting that everyone in as knows φ and
moreover knows that it is common knowledge amongst as.
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lemma S5n-common-knowledge-fixed-point:
assumes S5n: S5n M
assumes w: w ∈ worlds M
assumes a: a ∈ set as
shows M , w |= Kcknows as ϕ
←→ M , w |= Kand (Kknows a ϕ) (Kknows a (Kcknows as ϕ))

Secondly we can provide an induction schema for the introduction of common
knowledge: from everyone in as knows that φ implies φ∧ψ, and that φ is satisfied
at world w, infer that ψ is common knowledge amongst as at w.
lemma S5n-common-knowledge-induct:

assumes S5n: S5n M
assumes w: w ∈ worlds M
assumes E : ∀ a ∈ set as. ∀w ∈ worlds M .

M , w |= ϕ −→ M , w |= Ka (Kand ϕ ψ)
assumes p: M , w |= ϕ
shows M , w |= Cas ψ

2.2 Generated models
The rest of this section introduces the technical machinery we use to relate
Kripke structures.
Intuitively the truth of a formula at a world depends only on the worlds that are
reachable from it in zero or more steps, using any of the accessibility relations
at each step. Traditionally this result is called the generated model property
(Chellas 1980, §3.4).
Given the model generated by w in M :
definition

gen-model :: ( ′a, ′p, ′w) KripkeStructure ⇒ ′w ⇒ ( ′a, ′p, ′w) KripkeStructure
where

gen-model M w ≡
let ws ′ = worlds M ∩ (

⋃
a. relations M a)∗ ‘‘ {w}

in (| worlds = ws ′,
relations = λa. relations M a ∩ (ws ′ × ws ′),
valuation = valuation M |)

where we take the image of w under the reflexive transitive closure of the agents’
relations, we can show that the satisfaction of a formula ϕ at a world w ′ is
preserved, provided w ′ is relevant to the world w that the sub-model is based
upon:
lemma gen-model-semantic-equivalence:

assumes M : kripke M
assumes w ′: w ′ ∈ worlds (gen-model M w)
shows M , w ′ |= ϕ ←→ (gen-model M w), w ′ |= ϕ

This is shown by a straightforward structural induction over the formula ϕ.

6



2.3 Simulations
A simulation, or p-morphism, is a mapping from the worlds of one Kripke struc-
ture to another that preserves the truth of all formulas at related worlds (Chellas
1980, §3.4, Ex. 3.60). Such a function f must satisfy four properties. Firstly,
the image of the set of worlds of M under f should equal the set of worlds of
M ′.
definition

sim-range :: ( ′a, ′p, ′w1) KripkeStructure
⇒ ( ′a, ′p, ′w2) KripkeStructure ⇒ ( ′w1 ⇒ ′w2) ⇒ bool

where
sim-range M M ′ f ≡ worlds M ′ = f ‘ worlds M

∧ (∀ a. relations M ′ a ⊆ worlds M ′ × worlds M ′)

The value of a proposition should be the same at corresponding worlds:
definition

sim-val :: ( ′a, ′p, ′w1) KripkeStructure
⇒ ( ′a, ′p, ′w2) KripkeStructure ⇒ ( ′w1 ⇒ ′w2) ⇒ bool

where
sim-val M M ′ f ≡ ∀ u ∈ worlds M . valuation M u = valuation M ′ (f u)

If two worlds are related in M, then the simulation maps them to related worlds
in M ′; intuitively the simulation relates enough worlds. We term this the forward
property.
definition

sim-f :: ( ′a, ′p, ′w1) KripkeStructure
⇒ ( ′a, ′p, ′w2) KripkeStructure ⇒ ( ′w1 ⇒ ′w2) ⇒ bool

where
sim-f M M ′ f ≡
∀ a u v. (u, v) ∈ relations M a −→ (f u, f v) ∈ relations M ′ a

Conversely, if two worlds f u and v ′ are related in M ′, then there is a pair of
related worlds u and v in M where f v = v ′. Intuitively the simulation makes
enough distinctions. We term this the reverse property.
definition

sim-r :: ( ′a, ′p, ′w1) KripkeStructure
⇒ ( ′a, ′p, ′w2) KripkeStructure ⇒ ( ′w1 ⇒ ′w2) ⇒ bool

where
sim-r M M ′ f ≡ ∀ a. ∀ u ∈ worlds M . ∀ v ′.

(f u, v ′) ∈ relations M ′ a
−→ (∃ v. (u, v) ∈ relations M a ∧ f v = v ′)

definition sim M M ′ f ≡ sim-range M M ′ f ∧ sim-val M M ′ f
∧ sim-f M M ′ f ∧ sim-r M M ′ f

Due to the common knowledge modality, we need to show the simulation prop-
erties lift through the transitive closure. In particular we can show that forward
simulation is preserved:
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lemma sim-f-tc:
assumes s: sim M M ′ f
assumes uv ′: (u, v) ∈ (

⋃
a∈as. relations M a)+

shows (f u, f v) ∈ (
⋃

a∈as. relations M ′ a)+

Reverse simulation also:
lemma sim-r-tc:

assumes M : kripke M
assumes s: sim M M ′ f
assumes u: u ∈ worlds M
assumes fuv ′: (f u, v ′) ∈ (

⋃
a∈as. relations M ′ a)+

obtains v where f v = v ′ and (u, v) ∈ (
⋃

a∈as. relations M a)+

Finally we establish the key property of simulations, that they preserve the
satisfaction of all formulas in the following way:
lemma sim-semantic-equivalence:

assumes M : kripke M
assumes s: sim M M ′ f
assumes u: u ∈ worlds M
shows M , u |= ϕ ←→ M ′, f u |= ϕ

The proof is by structural induction over the formula ϕ. The knowledge cases
appeal to our two simulation preservation lemmas.
Sangiorgi (2009) surveys the history of p-morphisms and the related concept of
bisimulation.
This is all we need to know about Kripke structures.

3 Knowledge-based Programs
A knowledge-based programs (KBPs) encodes the dependency of action on
knowledge by a sequence of guarded commands, and a joint knowledge-based
program (JKBP) assigns a KBP to each agent:
record ( ′a, ′p, ′aAct) GC =

guard :: ( ′a, ′p) Kform
action :: ′aAct

type-synonym ( ′a, ′p, ′aAct) KBP = ( ′a, ′p, ′aAct) GC list
type-synonym ( ′a, ′p, ′aAct) JKBP = ′a ⇒ ( ′a, ′p, ′aAct) KBP

We use a list of guarded commands just so we can reuse this definition and others
in algorithmic contexts; we would otherwise use a set as there is no problem with
infinite programs or actions, and we always ignore the sequential structure.
Intuitively a KBP for an agent cannot directly evaluate the truth of an arbitrary
formula as it may depend on propositions that the agent has no certainty about.
For example, a card-playing agent cannot determine which cards are in the
deck, despite being sure that those in her hand are not. Conversely agent a
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can evaluate formulas of the form Ka ϕ as these depend only on the worlds the
agent thinks is possible.
Thus we restrict the guards of the JKBP to be boolean combinations of subjec-
tive formulas:
fun subjective :: ′a ⇒ ( ′a, ′p) Kform ⇒ bool where

subjective a (Kprop p) = False
| subjective a (Knot f ) = subjective a f
| subjective a (Kand f g) = (subjective a f ∧ subjective a g)
| subjective a (Kknows a ′ f ) = (a = a ′)
| subjective a (Kcknows as f ) = (a ∈ set as)

All JKBPs in the following sections are assumed to be subjective.
This syntactic restriction implies the desired semantic property, that we can
evaluate a guard at an arbitrary world that is compatible with a given observa-
tion (Fagin et al. 1997, §3).
lemma S5n-subjective-eq:

assumes S5n: S5n M
assumes subj: subjective a ϕ
assumes ww ′: (w, w ′) ∈ relations M a
shows M , w |= ϕ ←→ M , w ′ |= ϕ

The proof is by induction over the formula ϕ, using the properties of S5n Kripke
structures in the knowledge cases.
We capture the fixed but arbitrary JKBP using a locale, and work in this context
for the rest of this section.
locale JKBP =

fixes jkbp :: ( ′a, ′p, ′aAct) JKBP
assumes subj: ∀ a gc. gc ∈ set (jkbp a) −→ subjective a (guard gc)

context JKBP
begin

The action of the JKBP at a world is the list of all actions that are enabled at
that world:
definition jAction :: ( ′a, ′p, ′w) KripkeStructure ⇒ ′w ⇒ ′a ⇒ ′aAct list
where jAction ≡ λM w a. [ action gc. gc ← jkbp a, M , w |= guard gc ]

All of our machinery on Kripke structures lifts from the models relation of §2
through jAction, due to the subjectivity requirement. In particular, the KBP
for agent a behaves the same at worlds that a cannot distinguish amongst:
lemma S5n-jAction-eq:

assumes S5n: S5n M
assumes ww ′: (w, w ′) ∈ relations M a
shows jAction M w a = jAction M w ′ a

Also the JKBP behaves the same on relevant generated models for all agents:
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lemma gen-model-jAction-eq:
assumes S : gen-model M w = gen-model M ′ w
assumes w ′: w ′ ∈ worlds (gen-model M ′ w)
assumes M : kripke M
assumes M ′: kripke M ′

shows jAction M w ′ = jAction M ′ w ′

Finally, jAction is invariant under simulations:
lemma simulation-jAction-eq:

assumes M : kripke M
assumes sim: sim M M ′ f
assumes w: w ∈ worlds M
shows jAction M w = jAction M ′ (f w)

end

4 Environments and Views
The previous section showed how a JKBP can be interpreted statically, with
respect to a fixed Kripke structure. As we also wish to capture how agents
interact, we adopt the interpreted systems and contexts of Fagin et al. (1995),
which we term environments following van der Meyden (1996).
A pre-environment consists of the following:

• envInit, an arbitrary set of initial states;

• The protocol of the environment envAction, which depends on the current
state;

• A transition function envTrans, which incorporates the environment’s ac-
tion and agents’ behaviour into a state change; and

• A propositional evaluation function envVal.

We extend the JKBP locale with these constants:
locale PreEnvironment = JKBP jkbp for jkbp :: ( ′a, ′p, ′aAct) JKBP
+ fixes envInit :: ′s list

and envAction :: ′s ⇒ ′eAct list
and envTrans :: ′eAct ⇒ ( ′a ⇒ ′aAct) ⇒ ′s ⇒ ′s
and envVal :: ′s ⇒ ′p ⇒ bool

We represent the possible evolutions of the system as finite sequences of states,
represented by a left-recursive type ′s Trace with constructors tInit s and t  
s, equipped with tFirst, tLast, tLength and tMap functions.
Constructing these traces requires us to determine the agents’ actions at a given
state. To do so we need to find an appropriate S5n structure for interpreting
jkbp.
Given that we want the agents to make optimal use of the information they
have access to, we allow these structures to depend on the entire history of the
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system, suitably conditioned by what the agents can observe. We capture this
notion of observation with a view (van der Meyden 1996), which is an arbitrary
function of a trace:
type-synonym ( ′s, ′tview) View = ′s Trace ⇒ ′tview
type-synonym ( ′a, ′s, ′tview) JointView = ′a ⇒ ′s Trace ⇒ ′tview

We require views to be synchronous, i.e. that agents be able to tell the time
using their view by distinguishing two traces of different lengths. As we will see
in the next section, this guarantees that the JKBP has an essentially unique
implementation.
We extend the PreEnvironment locale with a view:
locale PreEnvironmentJView =

PreEnvironment jkbp envInit envAction envTrans envVal
for jkbp :: ( ′a, ′p, ′aAct) JKBP
and envInit :: ′s list
and envAction :: ′s ⇒ ′eAct list
and envTrans :: ′eAct ⇒ ( ′a ⇒ ′aAct) ⇒ ′s ⇒ ′s
and envVal :: ′s ⇒ ′p ⇒ bool

+ fixes jview :: ( ′a, ′s, ′tview) JointView
assumes sync: ∀ a t t ′. jview a t = jview a t ′ −→ tLength t = tLength t ′

The two principle synchronous views are the clock view and the perfect-recall
view which we discuss further in §7. We will later derive an agent’s concrete
view from an instantaneous observation of the global state in §6.1.
We build a Kripke structure from a set of traces by relating traces that yield
the same view. To obtain an S5n structure we also need a way to evaluate
propositions: we apply envVal to the final state of a trace:
definition (in PreEnvironmentJView)

mkM :: ′s Trace set ⇒ ( ′a, ′p, ′s Trace) KripkeStructure
where

mkM T ≡
(| worlds = T ,

relations = λa. { (t, t ′) . {t, t ′} ⊆ T ∧ jview a t = jview a t ′ },
valuation = envVal ◦ tLast |)

This construction supplants the role of the local states of Fagin et al. (1995).
The following section shows how we can canonically interpret the JKBP with
respect to this structure.

5 Canonical Structures
Our goal in this section is to find the canonical set of traces for a given JKBP
in a particular environment. As we will see, this always exists with respect to
synchronous views.
We inductively define an interpretation of a JKBP with respect to an arbitrary
set of traces T by constructing a sequence of sets of traces of increasing length:
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fun jkbpTn :: nat ⇒ ′s Trace set ⇒ ′s Trace set where
jkbpT0 T = { tInit s |s. s ∈ set envInit }
| jkbpTSuc n T = { t  envTrans eact aact (tLast t) |t eact aact.

t ∈ jkbpTn T ∧ eact ∈ set (envAction (tLast t))
∧ (∀ a. aact a ∈ set (jAction (mkM T) t a)) }

This model reflects the failure of any agent to provide an action as failure
of the entire system. In general envTrans may incorporate a scheduler and
communication failure models.
The union of this sequence gives us a closure property:
definition jkbpT :: ′s Trace set ⇒ ′s Trace set where

jkbpT T ≡
⋃

n. jkbpTn T

We say that a set of traces T represents a JKBP if it is closed under jkbpT :
definition represents :: ′s Trace set ⇒ bool where

represents T ≡ jkbpT T = T

This is the vicious cycle that we break using our assumption that the view
is synchronous. The key property of such views is that the satisfaction of an
epistemic formula is determined by the set of traces in the model that have the
same length. Lifted to jAction, we have:
lemma sync-jview-jAction-eq:

assumes traces: { t ∈ T . tLength t = n } = { t ∈ T ′ . tLength t = n }
assumes tT : t ∈ { t ∈ T . tLength t = n }
shows jAction (mkM T) t = jAction (mkM T ′) t

This implies that for a synchronous view we can inductively define the canon-
ical traces of a JKBP. These are the traces that a JKBP generates when it is
interpreted with respect to those very same traces. We do this by constructing
the sequence jkbpCn of (canonical) temporal slices similarly to jkbpTn:
fun jkbpCn :: nat ⇒ ′s Trace set where

jkbpC0 = { tInit s |s. s ∈ set envInit }
| jkbpCSuc n = { t  envTrans eact aact (tLast t) |t eact aact.

t ∈ jkbpCn ∧ eact ∈ set (envAction (tLast t))
∧ (∀ a. aact a ∈ set (jAction (mkM jkbpCn) t a)) }

abbreviation MCn :: nat ⇒ ( ′a, ′p, ′s Trace) KripkeStructure where
MCn ≡ mkM jkbpCn

The canonical set of traces for a JKBP with respect to a joint view is the set of
canonical traces of all lengths.
definition jkbpC :: ′s Trace set where

jkbpC ≡
⋃

n. jkbpCn

abbreviation MC :: ( ′a, ′p, ′s Trace) KripkeStructure where
MC ≡ mkM jkbpC
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We can show that jkbpC represents the joint knowledge-based program jkbp
with respect to jview:
lemma jkbpC-jkbpCn-jAction-eq:

assumes tCn: t ∈ jkbpCn
shows jAction MC t = jAction MCn t

lemma jkbpTn-jkbpCn-represents: jkbpTn jkbpC = jkbpCn
by (induct n) (fastforce simp: Let-def jkbpC-jkbpCn-jAction-eq)+

theorem jkbpC-represents: represents jkbpC

We can show uniqueness too, by a similar argument:
theorem jkbpC-represents-uniquely:

assumes repT : represents T
shows T = jkbpC

end

Thus, at least with synchronous views, we are justified in talking about the
representation of a JKBP in a given environment. More generally these results
are also valid for the more general notion of provides witnesses as shown by
Fagin et al. (1995, Lemma 7.2.4) and Fagin et al. (1997): it requires only that if
a subjective knowledge formula is false on a trace then there is a trace of the same
length or less that bears witness to that effect. This is a useful generalisation
in asynchronous settings.
The next section shows how we can construct canonical representations of
JKBPs using automata.

6 Automata Synthesis
Our attention now shifts to showing how we can synthesise standard automata
that implement a JKBP under certain conditions. We proceed by defining
incremental views following van der Meyden (1996), which provide the interface
between the system and these automata. The algorithm itself is presented in
§6.9.

6.1 Incremental views
Intuitively an agent instantaneously observes the system state, and so must
maintain her view of the system incrementally: her new view must be a function
of her current view and some new observation. We allow this observation to be
an arbitrary projection envObs a of the system state for each agent a:
locale Environment =

PreEnvironment jkbp envInit envAction envTrans envVal
for jkbp :: ( ′a, ′p, ′aAct) JKBP
and envInit :: ′s list
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and envAction :: ′s ⇒ ′eAct list
and envTrans :: ′eAct ⇒ ( ′a ⇒ ′aAct) ⇒ ′s ⇒ ′s
and envVal :: ′s ⇒ ′p ⇒ bool

+ fixes envObs :: ′a ⇒ ′s ⇒ ′obs

An incremental view therefore consists of two functions with these types:
type-synonym ( ′a, ′obs, ′tv) InitialIncrJointView = ′a ⇒ ′obs ⇒ ′tv
type-synonym ( ′a, ′obs, ′tv) IncrJointView = ′a ⇒ ′obs ⇒ ′tv ⇒ ′tv

These functions are required to commute with their corresponding trace-based
joint view in the obvious way:
locale IncrEnvironment =

Environment jkbp envInit envAction envTrans envVal envObs
+ PreEnvironmentJView jkbp envInit envAction envTrans envVal jview

for jkbp :: ( ′a, ′p, ′aAct) JKBP
and envInit :: ′s list
and envAction :: ′s ⇒ ′eAct list
and envTrans :: ′eAct ⇒ ( ′a ⇒ ′aAct) ⇒ ′s ⇒ ′s
and envVal :: ′s ⇒ ′p ⇒ bool
and jview :: ( ′a, ′s, ′tv) JointView
and envObs :: ′a ⇒ ′s ⇒ ′obs

+ fixes jviewInit :: ( ′a, ′obs, ′tv) InitialIncrJointView
fixes jviewIncr :: ( ′a, ′obs, ′tv) IncrJointView
assumes jviewInit: ∀ a s. jviewInit a (envObs a s) = jview a (tInit s)
assumes jviewIncr : ∀ a t s. jview a (t  s)

= jviewIncr a (envObs a s) (jview a t)

Armed with these definitions, the following sections show that there are au-
tomata that implement a JKBP in a given environment.

6.2 Automata
Our implementations of JKBPs take the form of deterministic Moore automata,
where transitions are labelled by observation and states with the action to be
performed. We will use the term protocols interchangeably with automata,
following the KBP literature, and adopt joint protocols for the assignment of
one such to each agent:
record ( ′obs, ′aAct, ′ps) Protocol =

pInit :: ′obs ⇒ ′ps
pTrans :: ′obs ⇒ ′ps ⇒ ′ps
pAct :: ′ps ⇒ ′aAct list

type-synonym ( ′a, ′obs, ′aAct, ′ps) JointProtocol
= ′a ⇒ ( ′obs, ′aAct, ′ps) Protocol

context IncrEnvironment
begin
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To ease composition with the system we adopt the function pInit which maps
the initial observation to an initial automaton state.
van der Meyden (1996) shows that even non-deterministic JKBPs can be im-
plemented with deterministic transition functions; intuitively all relevant uncer-
tainty the agent has about the system must be encoded into each automaton
state, so there is no benefit to doing this non-deterministically. In contrast we
model the non-deterministic choice of action by making pAct a relation.
Running a protocol on a trace is entirely standard, as is running a joint protocol,
and determining their actions:
fun runJP :: ( ′a, ′obs, ′aAct, ′ps) JointProtocol

⇒ ′s Trace ⇒ ′a ⇒ ′ps
where

runJP jp (tInit s) a = pInit (jp a) (envObs a s)
| runJP jp (t  s) a = pTrans (jp a) (envObs a s) (runJP jp t a)

abbreviation actJP :: ( ′a, ′obs, ′aAct, ′ps) JointProtocol
⇒ ′s Trace ⇒ ′a ⇒ ′aAct list where

actJP jp ≡ λt a. pAct (jp a) (runJP jp t a)

Similarly to §5 we will reason about the set of traces generated by a joint
protocol in a fixed environment:
inductive-set

jpTraces :: ( ′a, ′obs, ′aAct, ′ps) JointProtocol ⇒ ′s Trace set
for jp :: ( ′a, ′obs, ′aAct, ′ps) JointProtocol

where
s ∈ set envInit =⇒ tInit s ∈ jpTraces jp
| [[ t ∈ jpTraces jp; eact ∈ set (envAction (tLast t));∧

a. aact a ∈ set (actJP jp t a); s = envTrans eact aact (tLast t) ]]
=⇒ t  s ∈ jpTraces jp

end

6.3 The Implementation Relation
With this machinery in hand, we now relate automata with JKBPs. We say
a joint protocol jp implements a JKBP when they perform the same actions
on the canonical of traces. Note that the behaviour of jp on other traces is
arbitrary.
context IncrEnvironment
begin

definition
implements :: ( ′a, ′obs, ′aAct, ′ps) JointProtocol ⇒ bool

where
implements jp ≡ (∀ t ∈ jkbpC . set ◦ actJP jp t = set ◦ jAction MC t)

Clearly there are environments where the canonical trace set jkbpC can be
generated by actions that differ from those prescribed by the JKBP. We can
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show that the implements relation is a stronger requirement than the mere
trace-inclusion required by the represents relation of §5.
lemma implements-represents:

assumes impl: implements jp
shows represents (jpTraces jp)

The proof is by a straightfoward induction over the lengths of traces generated
by the joint protocol.
Our final piece of technical machinery allows us to refine automata definitions:
we say that two joint protocols are behaviourally equivalent if the actions they
propose coincide for each canonical trace. The implementation relation is pre-
served by this relation.
definition

behaviourally-equiv :: ( ′a, ′obs, ′aAct, ′ps) JointProtocol
⇒ ( ′a, ′obs, ′aAct, ′ps ′) JointProtocol
⇒ bool

where
behaviourally-equiv jp jp ′ ≡ ∀ t ∈ jkbpC . set ◦ actJP jp t = set ◦ actJP jp ′ t

lemma behaviourally-equiv-implements:
assumes behaviourally-equiv jp jp ′

shows implements jp ←→ implements jp ′

end

6.4 Automata using Equivalence Classes
We now show that there is an implementation of every JKBP with respect to
every incremental synchronous view. Intuitively the states of the automaton for
agent a represent the equivalence classes of traces that a considers possible, and
the transitions update these sets according to her KBP.
context IncrEnvironment
begin

definition
mkAutoEC :: ( ′a, ′obs, ′aAct, ′s Trace set) JointProtocol

where
mkAutoEC ≡ λa.

(| pInit = λobs. { t ∈ jkbpC . jviewInit a obs = jview a t },
pTrans = λobs ps. { t |t t ′. t ∈ jkbpC ∧ t ′ ∈ ps

∧ jview a t = jviewIncr a obs (jview a t ′) },
pAct = λps. jAction MC (SOME t. t ∈ ps) a |)

The function SOME is Hilbert’s indefinite description operator ε, used here to
choose an arbitrary trace from the protocol state.
That this automaton maintains the correct equivalence class on a trace t follows
from an easy induction over t.
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lemma mkAutoEC-ec:
assumes t ∈ jkbpC
shows runJP mkAutoEC t a = { t ′ ∈ jkbpC . jview a t ′ = jview a t }

We can show that the construction yields an implementation by appealing to
the previous lemma and showing that the pAct functions coincide.
lemma mkAutoEC-implements: implements mkAutoEC

This definition leans on the canonical trace set jkbpC, and is indeed effective:
we can enumerate all canonical traces and are sure to find one that has the
view we expect. Then it is sufficient to consider other traces of the same length
due to synchrony. We would need to do this computation dynamically, as the
automaton will (in general) have an infinite state space.
end

6.5 Simulations
Our goal now is to reduce the space required by the automaton constructed by
mkAutoEC by simulating the equivalence classes (§2.3).
The following locale captures the framework of van der Meyden (1996):
locale SimIncrEnvironment =

IncrEnvironment jkbp envInit envAction envTrans envVal jview envObs
jviewInit jviewIncr

for jkbp :: ( ′a, ′p, ′aAct) JKBP

and envInit :: ′s list
and envAction :: ′s ⇒ ′eAct list
and envTrans :: ′eAct ⇒ ( ′a ⇒ ′aAct) ⇒ ′s ⇒ ′s
and envVal :: ′s ⇒ ′p ⇒ bool
and jview :: ( ′a, ′s, ′tv) JointView
and envObs :: ′a ⇒ ′s ⇒ ′obs
and jviewInit :: ( ′a, ′obs, ′tv) InitialIncrJointView
and jviewIncr :: ( ′a, ′obs, ′tv) IncrJointView

+ fixes simf :: ′s Trace ⇒ ′ss
fixes simRels :: ′a ⇒ ′ss Relation
fixes simVal :: ′ss ⇒ ′p ⇒ bool
assumes simf : sim MC (mkKripke (simf ‘ jkbpC ) simRels simVal) simf

context SimIncrEnvironment
begin

Note that the back tick ‘ is Isabelle/HOL’s relational image operator. In context
it says that simf must be a simulation from jkbpC to its image under simf.
Firstly we lift our familiar canonical trace sets and Kripke structures through
the simulation.
abbreviation jkbpCSn :: nat ⇒ ′ss set where

jkbpCSn ≡ simf ‘ jkbpCn
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abbreviation jkbpCS :: ′ss set where
jkbpCS ≡ simf ‘ jkbpC

abbreviation MCSn :: nat ⇒ ( ′a, ′p, ′ss) KripkeStructure where
MCSn ≡ mkKripke jkbpCSn simRels simVal

abbreviation MCS :: ( ′a, ′p, ′ss) KripkeStructure where
MCS ≡ mkKripke jkbpCS simRels simVal

We will be often be concerned with the equivalence class of traces generated by
agent a’s view:
abbreviation sim-equiv-class :: ′a ⇒ ′s Trace ⇒ ′ss set where

sim-equiv-class a t ≡ simf ‘ { t ′ ∈ jkbpC . jview a t ′ = jview a t }

abbreviation jkbpSEC :: ′ss set set where
jkbpSEC ≡

⋃
a. sim-equiv-class a ‘ jkbpC

With some effort we can show that the temporal slice of the simulated structure
is adequate for determining the actions of the JKBP. The proof is tedious and
routine, exploiting the sub-model property (§2.2).

lemma jkbpC-jkbpCSn-jAction-eq:
assumes tCn: t ∈ jkbpCn n
shows jAction MC t = jAction (MCSn n) (simf t)

end

It can be shown that a suitable simulation into a finite structure is adequate to
establish the existence of finite-state implementations (van der Meyden 1996,
Theorem 2): essentially we apply the simulation to the states of mkAutoEC.
However this result does not make it clear how the transition function can be
incrementally constructed. One approach is to maintain jkbpC while extending
the automaton, which is quite space inefficient.
Intuitively we would like to compute the possible sim-equiv-class successors of a
given sim-equiv-class without reference to jkbpC, and this should be possible as
the reachable simulated worlds must contain enough information to differentiate
themselves from every other simulated world (reachable or not) that represents
a trace that is observationally distinct to their own.
This leads us to asking for some extra functionality of our simulation, which we
do in the following section.

6.6 Automata using simulations
The locale in Figure 1 captures our extra requirements of a simulation.
Firstly we relate the concrete representation ′rep of equivalence classes under
simulation to differ from the abstract representation ′ss set using the abstraction
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locale AlgSimIncrEnvironment =
SimIncrEnvironment jkbp envInit envAction envTrans envVal

jview envObs jviewInit jviewIncr simf simRels simVal
for jkbp :: ( ′a, ′p, ′aAct) JKBP
and envInit :: ′s list
and envAction :: ′s ⇒ ′eAct list
and envTrans :: ′eAct ⇒ ( ′a ⇒ ′aAct) ⇒ ′s ⇒ ′s
and envVal :: ′s ⇒ ′p ⇒ bool

and jview :: ( ′a, ′s, ′tv) JointView
and envObs :: ′a ⇒ ′s ⇒ ′obs
and jviewInit :: ( ′a, ′obs, ′tv) InitialIncrJointView
and jviewIncr :: ( ′a, ′obs, ′tv) IncrJointView

and simf :: ′s Trace ⇒ ′ss
and simRels :: ′a ⇒ ′ss Relation
and simVal :: ′ss ⇒ ′p ⇒ bool

+ fixes simAbs :: ′rep ⇒ ′ss set

and simObs :: ′a ⇒ ′rep ⇒ ′obs
and simInit :: ′a ⇒ ′obs ⇒ ′rep
and simTrans :: ′a ⇒ ′rep ⇒ ′rep list
and simAction :: ′a ⇒ ′rep ⇒ ′aAct list

assumes simInit:
∀ a iobs. iobs ∈ envObs a ‘ set envInit

−→ simAbs (simInit a iobs)
= simf ‘ { t ′ ∈ jkbpC . jview a t ′ = jviewInit a iobs }

and simObs:
∀ a ec t. t ∈ jkbpC ∧ simAbs ec = sim-equiv-class a t

−→ simObs a ec = envObs a (tLast t)
and simAction:

∀ a ec t. t ∈ jkbpC ∧ simAbs ec = sim-equiv-class a t
−→ set (simAction a ec) = set (jAction MC t a)

and simTrans:
∀ a ec t. t ∈ jkbpC ∧ simAbs ec = sim-equiv-class a t

−→ simAbs ‘ set (simTrans a ec)
= { sim-equiv-class a (t ′  s)
|t ′ s. t ′  s ∈ jkbpC ∧ jview a t ′ = jview a t }

Figure 1: The SimEnvironment locale extends the Environment locale with sim-
ulation and algorithmic operations. The backtick ‘ is Isabelle/HOL’s image-of-
a-set-under-a-function operator.
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function simAbs (de Roever and Engelhardt 1998); there is no one-size-fits-all
concrete representation, as we will see.
Secondly we ask for a function simInit a iobs that faithfully generates a repre-
sentation of the equivalence class of simulated initial states that are possible for
agent a given the valid initial observation iobs.
Thirdly the simObs function allows us to partition the results of simTrans ac-
cording to the recurrent observation that agent a makes of the equivalence class.
Fourthly, the function simAction computes a list of actions enabled by the JKBP
on a state that concretely represents a canonical equivalence class.
Finally we expect to compute the list of represented sim-equiv-class successors
of a given sim-equiv-class using simTrans.
Note that these definitions are stated relative to the environment and the JKBP,
allowing us to treat specialised cases such as broadcast (§7.4 and §7.5).
With these functions in hand, we can define our desired automaton:
definition (in AlgSimIncrEnvironment)

mkAutoSim :: ( ′a, ′obs, ′aAct, ′rep) JointProtocol
where

mkAutoSim ≡ λa.
(| pInit = simInit a,

pTrans = λobs ec. (SOME ec ′. ec ′ ∈ set (simTrans a ec)
∧ simObs a ec ′ = obs),

pAct = simAction a |)

The automaton faithfully constructs the simulated equivalence class of the given
trace:
lemma (in AlgSimIncrEnvironment) mkAutoSim-ec:

assumes tC : t ∈ jkbpC
shows simAbs (runJP mkAutoSim t a) = sim-equiv-class a t

This follows from a simple induction on t.
The following is a version of the Theorem 2 of van der Meyden (1996).
theorem (in AlgSimIncrEnvironment) mkAutoSim-implements:

implements mkAutoSim

The reader may care to contrast these structures with the progression structures
of van der Meyden (1997), where states contain entire Kripke structures, and
expanding the automaton is alternated with bisimulation reduction to ensure
termination when a finite-state implementation exists (see §??) We also use sim-
ulations in Appendix ?? to show the complexity of some related model checking
problems.
We now review a simple depth-first search (DFS) theory, and an abstraction of
finite maps, before presenting the algorithm for KBP synthesis.
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locale DFS =
fixes succs :: ′a ⇒ ′a list
and isNode :: ′a ⇒ bool
and invariant :: ′b ⇒ bool
and ins :: ′a ⇒ ′b ⇒ ′b
and memb :: ′a ⇒ ′b ⇒ bool
and empt :: ′b
and nodeAbs :: ′a ⇒ ′c
assumes ins-eq:

∧
x y S . [[ isNode x; isNode y; invariant S ; ¬ memb y S ]]

=⇒ memb x (ins y S)
←→ ((nodeAbs x = nodeAbs y) ∨ memb x S)

and succs:
∧

x y. [[ isNode x; isNode y; nodeAbs x = nodeAbs y ]]
=⇒ nodeAbs ‘ set (succs x) = nodeAbs ‘ set (succs y)

and empt:
∧

x. isNode x =⇒ ¬ memb x empt
and succs-isNode:

∧
x. isNode x =⇒ list-all isNode (succs x)

and empt-invariant: invariant empt
and ins-invariant:

∧
x S . [[ isNode x; invariant S ; ¬ memb x S ]]

=⇒ invariant (ins x S)
and graph-finite: finite (nodeAbs ‘ { x . isNode x})

Figure 2: The DFS locale.

6.7 Generic DFS
We use a generic DFS to construct the transitions and action function of the
implementation of the JKBP. This theory is largely due to Stefan Berghofer and
Alex Krauss (Berghofer and Reiter 2009). All proofs are elided as the fine details
of how we explore the state space are inessential to the synthesis algorithm.
The DFS itself is defined in the standard tail-recursive way:
partial-function (tailrec) gen-dfs where

gen-dfs succs ins memb S wl = (case wl of
[] ⇒ S
| (x # xs) ⇒

if memb x S then gen-dfs succs ins memb S xs
else gen-dfs succs ins memb (ins x S) (succs x @ xs))

The proofs are carried out in the locale of Figure 2, which details our require-
ments on the parameters for the DFS to behave as one would expect. Intuitively
we are traversing a graph defined by succs from some initial work list wl, con-
structing an object of type ′b as we go. The function ins integrates the current
node into this construction. The predicate isNode is invariant over the set of
states reachable from the initial work list, and is respected by empt and ins.
We can also supply an invariant for the constructed object (invariant). Inside
the locale, dfs abbreviates gen-dfs partially applied to the fixed parameters.
To support our data refinement (§6.6) we also require that the representation
of nodes be adequate via the abstraction function nodeAbs, which the transition
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relation succs and visited predicate memb must respect. To ensure termination
it must be the case that there are only a finite number of states, though there
might be an infinity of representations.
We characterise the DFS traversal using the reflexive transitive closure operator:
definition (in DFS) reachable :: ′a set ⇒ ′a set where

reachable xs ≡ {(x, y). y ∈ set (succs x)}∗ ‘‘ xs

We make use of two results about the traversal. Firstly, that some representation
of each reachable node has been incorporated into the final construction:
theorem (in DFS) reachable-imp-dfs:

assumes y: isNode y
and xs: list-all isNode xs
and m: y ∈ reachable (set xs)

shows ∃ y ′. nodeAbs y ′ = nodeAbs y ∧ memb y ′ (dfs empt xs)

Secondly, that if an invariant holds on the initial object then it holds on the
final one:
theorem (in DFS) dfs-invariant:

assumes invariant S
assumes list-all isNode xs
shows invariant (dfs S xs)

6.8 Finite map operations
The algorithm represents an automaton as a pair of maps, which we capture
abstractly with a record and a predicate:
record ( ′m, ′k, ′e) MapOps =

empty :: ′m
lookup :: ′m ⇒ ′k ⇀ ′e
update :: ′k ⇒ ′e ⇒ ′m ⇒ ′m

definition
MapOps :: ( ′k ⇒ ′kabs) ⇒ ′kabs set ⇒ ( ′m, ′k, ′e) MapOps ⇒ bool

where
MapOps α d ops ≡

(∀ k. α k ∈ d −→ lookup ops (empty ops) k = None)
∧ (∀ e k k ′ M . α k ∈ d ∧ α k ′ ∈ d
−→ lookup ops (update ops k e M ) k ′

= (if α k ′ = α k then Some e else lookup ops M k ′))

The function α abstracts concrete keys of type ′k, and the parameter d specifies
the valid abstract keys.
This approach has the advantage over a locale that we can pass records to
functions, while for a locale we would need to pass the three functions separately
(as in the DFS theory of §6.7).
We use the following function to test for membership in the domain of the map:
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definition isSome :: ′a option ⇒ bool where
isSome opt ≡ case opt of None ⇒ False | Some - ⇒ True

6.9 An algorithm for automata synthesis
We now show how to construct the automaton defined by mkAutoSim (§6.6)
using the DFS of §6.7.
From here on we assume that the environment consists of only a finite set of
states:
locale FiniteEnvironment =

Environment jkbp envInit envAction envTrans envVal envObs
for jkbp :: ( ′a, ′p, ′aAct) JKBP
and envInit :: ( ′s :: finite) list
and envAction :: ′s ⇒ ′eAct list
and envTrans :: ′eAct ⇒ ( ′a ⇒ ′aAct) ⇒ ′s ⇒ ′s
and envVal :: ′s ⇒ ′p ⇒ bool
and envObs :: ′a ⇒ ′s ⇒ ′obs

The Algorithm locale, shown in Figure 3, also extends the AlgSimIncrEnviron-
ment locale with a pair of finite map operations: aOps is used to map automata
states to lists of actions, and tOps handles simulated transitions. In both cases
the maps are only required to work on the abstract domain of simulated canon-
ical traces. Note also that the space of simulated equivalence classes of type ′ss
must be finite, but there is no restriction on the representation type ′rep.
We develop the algorithm for a single, fixed agent, which requires us to define a
new locale AlgorithmForAgent that extends Algorithm with an extra parameter
designating the agent:
locale AlgorithmForAgent =

Algorithm jkbp envInit envAction envTrans envVal jview envObs
jviewInit jviewIncr
simf simRels simVal simAbs simObs simInit simTrans simAction
aOps tOps

— ...
+ fixes a :: ′a

6.9.1 DFS operations

We represent the automaton under construction using a record:
record ( ′ma, ′mt) AlgState =

aActs :: ′ma
aTrans :: ′mt

context AlgorithmForAgent
begin

We instantiate the DFS theory with the following functions.
A node is an equivalence class of represented simulated traces.
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locale Algorithm =
FiniteEnvironment jkbp envInit envAction envTrans envVal envObs

+ AlgSimIncrEnvironment jkbp envInit envAction envTrans envVal jview envObs
jviewInit jviewIncr
simf simRels simVal simAbs simObs simInit simTrans simAction

for jkbp :: ( ′a, ′p, ′aAct) JKBP
and envInit :: ( ′s :: finite) list
and envAction :: ′s ⇒ ′eAct list
and envTrans :: ′eAct ⇒ ( ′a ⇒ ′aAct) ⇒ ′s ⇒ ′s
and envVal :: ′s ⇒ ′p ⇒ bool
and jview :: ( ′a, ′s, ′tobs) JointView

and envObs :: ′a ⇒ ′s ⇒ ′obs
and jviewInit :: ( ′a, ′obs, ′tobs) InitialIncrJointView
and jviewIncr :: ( ′a, ′obs, ′tobs) IncrJointView

and simf :: ′s Trace ⇒ ′ss :: finite
and simRels :: ′a ⇒ ′ss Relation
and simVal :: ′ss ⇒ ′p ⇒ bool

and simAbs :: ′rep ⇒ ′ss set

and simObs :: ′a ⇒ ′rep ⇒ ′obs
and simInit :: ′a ⇒ ′obs ⇒ ′rep
and simTrans :: ′a ⇒ ′rep ⇒ ′rep list
and simAction :: ′a ⇒ ′rep ⇒ ′aAct list

+ fixes aOps :: ( ′ma, ′rep, ′aAct list) MapOps
and tOps :: ( ′mt, ′rep × ′obs, ′rep) MapOps

assumes aOps: MapOps simAbs jkbpSEC aOps
and tOps: MapOps (λk. (simAbs (fst k), snd k)) (jkbpSEC × UNIV ) tOps

Figure 3: The Algorithm locale.
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definition k-isNode :: ′rep ⇒ bool where
k-isNode ec ≡ simAbs ec ∈ sim-equiv-class a ‘ jkbpC

The successors of a node are those produced by the simulated transition func-
tion.
abbreviation k-succs :: ′rep ⇒ ′rep list where

k-succs ≡ simTrans a

The initial automaton has no transitions and no actions.
definition k-empt :: ( ′ma, ′mt) AlgState where

k-empt ≡ (| aActs = empty aOps, aTrans = empty tOps |)

We use the domain of the action map to track the set of nodes the DFS has
visited.
definition k-memb :: ′rep ⇒ ( ′ma, ′mt) AlgState ⇒ bool where

k-memb s A ≡ isSome (lookup aOps (aActs A) s)

We integrate a new equivalence class into the automaton by updating the action
and transition maps:
definition actsUpdate :: ′rep ⇒ ( ′ma, ′mt) AlgState ⇒ ′ma where

actsUpdate ec A ≡ update aOps ec (simAction a ec) (aActs A)

definition transUpdate :: ′rep ⇒ ′rep ⇒ ′mt ⇒ ′mt where
transUpdate ec ec ′ at ≡ update tOps (ec, simObs a ec ′) ec ′ at

definition k-ins :: ′rep ⇒ ( ′ma, ′mt) AlgState ⇒ ( ′ma, ′mt) AlgState where
k-ins ec A ≡ (| aActs = actsUpdate ec A,

aTrans = foldr (transUpdate ec) (k-succs ec) (aTrans A) |)

The required properties are straightforward to show.

6.9.2 Algorithm invariant

The invariant for the automata construction is straightforward, viz that at each
step of the process the state represents an automaton that concords with mkAu-
toSim on the visited equivalence classes. We also need to know that the state
has preserved the MapOps invariants.
definition k-invariant :: ( ′ma, ′mt) AlgState ⇒ bool where

k-invariant A ≡
(∀ ec ec ′. k-isNode ec ∧ k-isNode ec ′ ∧ simAbs ec ′ = simAbs ec
−→ lookup aOps (aActs A) ec = lookup aOps (aActs A) ec ′)

∧ (∀ ec ec ′ obs. k-isNode ec ∧ k-isNode ec ′ ∧ simAbs ec ′ = simAbs ec
−→ lookup tOps (aTrans A) (ec, obs) = lookup tOps (aTrans A) (ec ′, obs))

∧ (∀ ec. k-isNode ec ∧ k-memb ec A
−→ (∃ acts. lookup aOps (aActs A) ec = Some acts

∧ set acts = set (simAction a ec)))
∧ (∀ ec obs. k-isNode ec ∧ k-memb ec A
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∧ obs ∈ simObs a ‘ set (simTrans a ec)
−→ (∃ ec ′. lookup tOps (aTrans A) (ec, obs) = Some ec ′

∧ simAbs ec ′ ∈ simAbs ‘ set (simTrans a ec)
∧ simObs a ec ′ = obs))

Showing that the invariant holds of k-empt and is respected by k-ins is routine.
The initial frontier is the partition of the set of initial states under the initial
observation function.
definition (in Algorithm) k-frontier :: ′a ⇒ ′rep list where

k-frontier a ≡ map (simInit a ◦ envObs a) envInit
end

We now instantiate the DFS locale with respect to the AlgorithmForAgent lo-
cale. The instantiated lemmas are given the mandatory prefix KBPAlg in the
AlgorithmForAgent locale.
sublocale AlgorithmForAgent

< KBPAlg: DFS k-succs k-isNode k-invariant k-ins k-memb k-empt simAbs
context AlgorithmForAgent

begin

The final algorithm, with the constants inlined, is shown in Figure 4. The rest
of this section shows its correctness.
Firstly it follows immediately from dfs-invariant that the invariant holds of the
result of the DFS:
lemma k-dfs-invariant: k-invariant k-dfs

Secondly we can see that the set of reachable equivalence classes coincides with
the partition of jkbpC under the simulation and representation functions:
lemma k-reachable:

simAbs ‘ KBPAlg.reachable (set (k-frontier a)) = sim-equiv-class a ‘ jkbpC

Left to right follows from an induction on the reflexive, transitive closure, and
right to left by induction over canonical traces.
This result immediately yields the same result at the level of representations:
lemma k-memb-rep:

assumes N : k-isNode rec
shows k-memb rec k-dfs

end

This concludes our agent-specific reasoning; we now show that the algorithm
works for all agents. The following command generalises all our lemmas in the
AlgorithmForAgent to the Algorithm locale, giving them the mandatory prefix
KBP:
sublocale Algorithm

< KBP: AlgorithmForAgent
jkbp envInit envAction envTrans envVal jview envObs
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definition
alg-dfs :: ( ′ma, ′rep, ′aAct list) MapOps

⇒ ( ′mt, ′rep × ′obs, ′rep) MapOps
⇒ ( ′rep ⇒ ′obs)
⇒ ( ′rep ⇒ ′rep list)
⇒ ( ′rep ⇒ ′aAct list)
⇒ ′rep list
⇒ ( ′ma, ′mt) AlgState

where
alg-dfs aOps tOps simObs simTrans simAction ≡

let k-empt = (| aActs = empty aOps, aTrans = empty tOps |);
k-memb = (λs A. isSome (lookup aOps (aActs A) s));
k-succs = simTrans;
actsUpdate = λec A. update aOps ec (simAction ec) (aActs A);
transUpdate = λec ec ′ at. update tOps (ec, simObs ec ′) ec ′ at;
k-ins = λec A. (| aActs = actsUpdate ec A,

aTrans = foldr (transUpdate ec) (k-succs ec) (aTrans A) |)
in gen-dfs k-succs k-ins k-memb k-empt

definition
mkAlgAuto :: ( ′ma, ′rep, ′aAct list) MapOps

⇒ ( ′mt, ′rep × ′obs, ′rep) MapOps
⇒ ( ′a ⇒ ′rep ⇒ ′obs)
⇒ ( ′a ⇒ ′obs ⇒ ′rep)
⇒ ( ′a ⇒ ′rep ⇒ ′rep list)
⇒ ( ′a ⇒ ′rep ⇒ ′aAct list)
⇒ ( ′a ⇒ ′rep list)
⇒ ( ′a, ′obs, ′aAct, ′rep) JointProtocol

where
mkAlgAuto aOps tOps simObs simInit simTrans simAction frontier ≡ λa.

let auto = alg-dfs aOps tOps (simObs a) (simTrans a) (simAction a)
(frontier a)

in (| pInit = simInit a,
pTrans = λobs ec. the (lookup tOps (aTrans auto) (ec, obs)),
pAct = λec. the (lookup aOps (aActs auto) ec) |)

Figure 4: The algorithm. The function the projects a value from the ′a option
type, diverging on None.
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jviewInit jviewIncr simf simRels simVal simAbs simObs
simInit simTrans simAction aOps tOps a for a

context Algorithm
begin

abbreviation
k-mkAlgAuto ≡

mkAlgAuto aOps tOps simObs simInit simTrans simAction k-frontier

Running the automata produced by the DFS on a canonical trace t yields some
representation of the expected equivalence class:
lemma k-mkAlgAuto-ec:

assumes tC : t ∈ jkbpC
shows simAbs (runJP k-mkAlgAuto t a) = sim-equiv-class a t

This involves an induction over the canonical trace t.
That the DFS and mkAutoSim yield the same actions on canonical traces follows
immediately from this result and the invariant:
lemma k-mkAlgAuto-mkAutoSim-act-eq:

assumes tC : t ∈ jkbpC
shows set ◦ actJP k-mkAlgAuto t = set ◦ actJP mkAutoSim t

Therefore these two constructions are behaviourally equivalent, and so the DFS
generates an implementation of jkbp in the given environment:
theorem k-mkAlgAuto-implements: implements k-mkAlgAuto
end

Clearly the automata generated by this algorithm are large. We discuss this
issue in §??.

7 Concrete views
Following van der Meyden (1996), we provide two concrete synchronous views
that illustrate how the theory works. For each view we give a simulation and a
representation that satisfy the requirements of the Algorithm locale in Figure 3.

7.1 The Clock View
The clock view records the current time and the observation for the most recent
state:
definition (in Environment)

clock-jview :: ( ′a, ′s, nat × ′obs) JointView
where

clock-jview ≡ λa t. (tLength t, envObs a (tLast t))
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This is the least-information synchronous view, given the requirements of §4. We
show that finite-state implementations exist for all environments with respect
to this view as per van der Meyden (1996).
The corresponding incremental view simply increments the counter records the
new observation.
definition (in Environment)

clock-jviewInit :: ′a ⇒ ′obs ⇒ nat × ′obs
where

clock-jviewInit ≡ λa obs. (0, obs)

definition (in Environment)
clock-jviewIncr :: ′a ⇒ ′obs ⇒ nat × ′obs ⇒ nat × ′obs

where
clock-jviewIncr ≡ λa obs ′ (l, obs). (l + 1, obs ′)

It is straightforward to demonstrate the assumptions of the incremental envi-
ronment locale (§6.1) with respect to an arbitrary environment.
sublocale Environment

< Clock: IncrEnvironment jkbp envInit envAction envTrans envVal
clock-jview envObs clock-jviewInit clock-jviewIncr

As we later show, satisfaction of a formula at a trace t ∈ Clock.jkbpCn is deter-
mined by the set of final states of traces in Clock.jkbpCn:
context Environment
begin

abbreviation clock-commonAbs :: ′s Trace ⇒ ′s set where
clock-commonAbs t ≡ tLast ‘ Clock.jkbpCn (tLength t)

Intuitively this set contains the states that the agents commonly consider pos-
sible at time n, which is sufficient for determining knowledge as the clock view
ignores paths. Therefore we can simulate trace t by pairing this abstraction of
t with its final state:
type-synonym (in −) ′s clock-simWorlds = ′s set × ′s

definition clock-sim :: ′s Trace ⇒ ′s clock-simWorlds where
clock-sim ≡ λt. (clock-commonAbs t, tLast t)

In the Kripke structure for our simulation, we relate worlds for a if the sets
of commonly-held states coincide, and the observation of the final states of the
traces is the same. Propositions are evaluated at the final state.
definition clock-simRels :: ′a ⇒ ′s clock-simWorlds Relation where

clock-simRels ≡ λa. { ((X , s), (X ′, s ′)) |X X ′ s s ′.
X = X ′ ∧ {s, s ′} ⊆ X ∧ envObs a s = envObs a s ′ }

definition clock-simVal :: ′s clock-simWorlds ⇒ ′p ⇒ bool where
clock-simVal ≡ envVal ◦ snd
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abbreviation clock-simMC :: ( ′a, ′p, ′s clock-simWorlds) KripkeStructure where
clock-simMC ≡ mkKripke (clock-sim ‘ Clock.jkbpC ) clock-simRels clock-simVal

That this is in fact a simulation (§2.3) is entirely straightforward.
lemma clock-sim:

sim Clock.MC clock-simMC clock-sim
end

The SimIncrEnvironment of §6.5 only requires that we provide it an Environ-
ment and a simulation.
sublocale Environment

< Clock: SimIncrEnvironment jkbp envInit envAction envTrans envVal
clock-jview envObs clock-jviewInit clock-jviewIncr
clock-sim clock-simRels clock-simVal

We next consider algorithmic issues.

7.1.1 Representations

We now turn to the issue of how to represent equivalence classes of states. As
these are used as map keys, it is easiest to represent them canonically. A simple
approach is to use ordered distinct lists of type ′a odlist for the sets and tries
for the maps. Therefore we ask that environment states ′s belong to the class
linorder of linearly-ordered types, and moreover that the set agents be effectively
presented. We introduce a new locale capturing these requirements:
locale FiniteLinorderEnvironment =

Environment jkbp envInit envAction envTrans envVal envObs
for jkbp :: ( ′a::{finite, linorder}, ′p, ′aAct) JKBP
and envInit :: ( ′s::{finite, linorder}) list
and envAction :: ′s ⇒ ′eAct list
and envTrans :: ′eAct ⇒ ( ′a ⇒ ′aAct) ⇒ ′s ⇒ ′s
and envVal :: ′s ⇒ ′p ⇒ bool
and envObs :: ′a ⇒ ′s ⇒ ′obs

+ fixes agents :: ′a odlist
assumes agents: ODList.toSet agents = UNIV

context FiniteLinorderEnvironment
begin

For a fixed agent a, we can reduce the number of worlds in clock-simMC by
taking its quotient with respect to the equivalence relation for a. In other
words, we represent a simulated equivalence class by a pair of the set of all
states reachable at a particular time, and the subset of these that a considers
possible. The worlds in our representational Kripke structure are therefore a
pair of ordered, distinct lists:
type-synonym (in −) ′s clock-simWorldsRep = ′s odlist × ′s odlist
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We can readily abstract a representation to a set of simulated equivalence classes:
definition (in −)

clock-simAbs :: ′s::linorder clock-simWorldsRep ⇒ ′s clock-simWorlds set
where

clock-simAbs X ≡ { (ODList.toSet (fst X), s) |s. s ∈ ODList.toSet (snd X) }

Assuming X represents a simulated equivalence class for t ∈ jkbpC, clock-simAbs
X decomposes into these two functions:
definition

agent-abs :: ′a ⇒ ′s Trace ⇒ ′s set
where

agent-abs a t ≡
{ tLast t ′ |t ′. t ′ ∈ Clock.jkbpC ∧ clock-jview a t ′ = clock-jview a t}

definition
common-abs :: ′s Trace ⇒ ′s set

where
common-abs t ≡ tLast ‘ Clock.jkbpCn (tLength t)

This representation is canonical on the domain of interest (though not in gen-
eral):
lemma clock-simAbs-inj-on:

inj-on clock-simAbs { x . clock-simAbs x ∈ Clock.jkbpSEC }

We could further compress this representation by labelling each element of the
set of states reachable at time n with a bit to indicate whether the agent con-
siders that state possible. Note, however, that the representation would be
non-canonical: if (s, True) is in the representation, indicating that the agent
considers s possible, then (s, False) may or may not be. The associated ab-
straction function is not injective and hence would obfuscate the following. Re-
pairing this would entail introducing a new type, which would again complicate
this development.
The following lemmas make use of this Kripke structure, constructed from the
set of final states of a temporal slice X :
definition

clock-repRels :: ′a ⇒ ( ′s × ′s) set
where

clock-repRels ≡ λa. { (s, s ′). envObs a s = envObs a s ′ }

abbreviation
clock-repMC :: ′s set ⇒ ( ′a, ′p, ′s) KripkeStructure

where
clock-repMC ≡ λX . mkKripke X clock-repRels envVal

We can show that this Kripke structure retains sufficient information from
clock-simMC by showing simulation. This is eased by introducing an inter-
mediary structure that focusses on a particular trace:
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abbreviation
clock-jkbpCSt :: ′b Trace ⇒ ′s clock-simWorlds set

where
clock-jkbpCSt t ≡ clock-sim ‘ Clock.jkbpCn (tLength t)

abbreviation
clock-simMCt :: ′b Trace ⇒ ( ′a, ′p, ′s clock-simWorlds) KripkeStructure

where
clock-simMCt t ≡ mkKripke (clock-jkbpCSt t) clock-simRels clock-simVal

definition clock-repSim :: ′s clock-simWorlds ⇒ ′s where
clock-repSim ≡ snd

lemma clock-repSim:
assumes tC : t ∈ Clock.jkbpC
shows sim (clock-simMCt t)

((clock-repMC ◦ fst) (clock-sim t))
clock-repSim

The following sections show how we satisfy the remaining requirements of the
Algorithm locale of Figure 3. Where the proof is routine, we simply present the
lemma without proof or comment.
Due to a limitation in the code generator in the present version of Isabelle
(2011), we need to define the equations we wish to execute outside of a locale;
the syntax (in −) achieves this by making definitons at the theory top-level. We
then define (but elide) locale-local abbreviations that supply the locale-bound
variables to these definitions.

7.1.2 Initial states

The initial states of the automaton for an agent is simply envInit paired with
the partition of envInit under the agent’s observation.
definition (in −)

clock-simInit :: ( ′s::linorder) list ⇒ ( ′a ⇒ ′s ⇒ ′obs)
⇒ ′a ⇒ ′obs ⇒ ′s clock-simWorldsRep

where
clock-simInit envInit envObs ≡ λa iobs.

let cec = ODList.fromList envInit
in (cec, ODList.filter (λs. envObs a s = iobs) cec)

lemma clock-simInit:
assumes iobs ∈ envObs a ‘ set envInit
shows clock-simAbs (clock-simInit a iobs)

= clock-sim ‘ { t ′ ∈ Clock.jkbpC .
clock-jview a t ′ = clock-jviewInit a iobs }
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7.1.3 Simulated observations

Agent a will make the same observation at any of the worlds that it considers
possible, so we choose the first one in the list:
definition (in −)

clock-simObs :: ( ′a ⇒ ( ′s :: linorder) ⇒ ′obs)
⇒ ′a ⇒ ′s clock-simWorldsRep ⇒ ′obs

where
clock-simObs envObs ≡ λa. envObs a ◦ ODList.hd ◦ snd

lemma clock-simObs:
assumes tC : t ∈ Clock.jkbpC

and ec: clock-simAbs ec = Clock.sim-equiv-class a t
shows clock-simObs a ec = envObs a (tLast t)

7.1.4 Evaluation

We define our eval function in terms of evalS, which implements boolean logic
over ′s odlist in the usual way – see §7.3.4 for the relevant clauses. It requires
three functions specific to the representation: one each for propositions, knowl-
edge and common knowledge.
Propositions define subsets of the worlds considered possible:
abbreviation (in −)

clock-evalProp :: (( ′s::linorder) ⇒ ′p ⇒ bool)
⇒ ′s odlist ⇒ ′p ⇒ ′s odlist

where
clock-evalProp envVal ≡ λX p. ODList.filter (λs. envVal s p) X

The knowledge relation computes the subset of the commonly-held-possible
worlds cec that agent a considers possible at world s:
definition (in −)

clock-knowledge :: ( ′a ⇒ ( ′s :: linorder) ⇒ ′obs) ⇒ ′s odlist
⇒ ′a ⇒ ′s ⇒ ′s odlist

where
clock-knowledge envObs cec ≡ λa s.

ODList.filter (λs ′. envObs a s = envObs a s ′) cec

Similarly the common knowledge operation computes the transitive closure of
the union of the knowledge relations for the agents as:
definition (in −)

clock-commonKnowledge :: ( ′a ⇒ ( ′s :: linorder) ⇒ ′obs) ⇒ ′s odlist
⇒ ′a list ⇒ ′s ⇒ ′s odlist

where
clock-commonKnowledge envObs cec ≡ λas s.

let r = λa. ODList.fromList [ (s ′, s ′′) . s ′ ← toList cec, s ′′ ← toList cec,
envObs a s ′ = envObs a s ′′ ];

R = toList (ODList.big-union r as)
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in ODList.fromList (memo-list-trancl R s)

The function memo-list-trancl comes from the executable transitive closure the-
ory of (Sternagel and Thiemann 2011).
The evaluation function evaluates a subjective knowledge formula on the repre-
sentation of an equivalence class:
definition (in −)

eval :: (( ′s :: linorder) ⇒ ′p ⇒ bool)
⇒ ( ′a ⇒ ′s ⇒ ′obs)
⇒ ′s clock-simWorldsRep ⇒ ( ′a, ′p) Kform ⇒ bool

where
eval envVal envObs ≡ λ(cec, aec). evalS (clock-evalProp envVal)

(clock-knowledge envObs cec)
(clock-commonKnowledge envObs cec)
aec

This function corresponds with the standard semantics:
lemma eval-models:

assumes tC : t ∈ Clock.jkbpC
and aec: ODList.toSet aec = agent-abs a t
and cec: ODList.toSet cec = common-abs t
and subj-phi: subjective a ϕ
and s: s ∈ ODList.toSet aec

shows eval envVal envObs (cec, aec) ϕ
←→ clock-repMC (ODList.toSet cec), s |= ϕ

7.1.5 Simulated actions

From a common equivalence class and a subjective equivalence class for agent
a, we can compute the actions enabled for a:
definition (in −)

clock-simAction :: ( ′a, ′p, ′aAct) JKBP ⇒ (( ′s :: linorder) ⇒ ′p ⇒ bool)
⇒ ( ′a ⇒ ′s ⇒ ′obs)
⇒ ′a ⇒ ′s clock-simWorldsRep ⇒ ′aAct list

where
clock-simAction jkbp envVal envObs ≡ λa (Y , X).

[ action gc. gc ← jkbp a, eval envVal envObs (Y , X) (guard gc) ]

Using the above result about evaluation, we can relate clock-simAction to jAc-
tion. Firstly, clock-simAction behaves the same as jAction using the clock-repMC
structure:
lemma clock-simAction-jAction:

assumes tC : t ∈ Clock.jkbpC
and aec: ODList.toSet aec = agent-abs a t
and cec: ODList.toSet cec = common-abs t

shows set (clock-simAction a (cec, aec))
= set (jAction (clock-repMC (ODList.toSet cec)) (tLast t) a)
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We can connect the agent’s choice of actions on the clock-repMC structure to
those on the Clock.MC structure using our earlier results about actions being
preserved by generated models and simulations.
lemma clock-simAction ′:

assumes tC : t ∈ Clock.jkbpC
assumes aec: ODList.toSet aec = agent-abs a t
assumes cec: ODList.toSet cec = common-abs t
shows set (clock-simAction a (cec, aec)) = set (jAction Clock.MC t a)

The Algorithm locale requires a specialisation of this lemma:
lemma clock-simAction:

assumes tC : t ∈ Clock.jkbpC
assumes ec: clock-simAbs ec = Clock.sim-equiv-class a t
shows set (clock-simAction a ec) = set (jAction Clock.MC t a)

7.1.6 Simulated transitions

We need to determine the image of the set of commonly-held-possible states
under the transition function, and also for the agent’s subjective equivalence
class. We do this with the clock-trans function:
definition (in −)

clock-trans :: ( ′a :: linorder) odlist ⇒ ( ′a, ′p, ′aAct) JKBP
⇒ (( ′s :: linorder) ⇒ ′eAct list)
⇒ ( ′eAct ⇒ ( ′a ⇒ ′aAct) ⇒ ′s ⇒ ′s)
⇒ ( ′s ⇒ ′p ⇒ bool) ⇒ ( ′a ⇒ ′s ⇒ ′obs)
⇒ ′s odlist ⇒ ′s odlist ⇒ ′s odlist

where
clock-trans agents jkbp envAction envTrans envVal envObs ≡ λcec X .

ODList.fromList (concat
[ [ envTrans eact aact s .

eact ← envAction s,
aact ← listToFuns (λa. clock-simAction jkbp envVal envObs a

(cec, clock-knowledge envObs cec a s))
(toList agents) ] .

s ← toList X ])

The function listToFuns exhibits the isomorphism between ( ′a × ′b list) list and
( ′a ⇒ ′b) list for finite types ′a.
We can show that the transition function works for both the commonly-held set
of states and the agent subjective one. The proofs are straightforward.
lemma clock-trans-common:

assumes tC : t ∈ Clock.jkbpC
assumes ec: clock-simAbs ec = Clock.sim-equiv-class a t
shows ODList.toSet (clock-trans (fst ec) (fst ec))

= { s |t ′ s. t ′  s ∈ Clock.jkbpC ∧ tLength t ′ = tLength t }

lemma clock-trans-agent:
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assumes tC : t ∈ Clock.jkbpC
assumes ec: clock-simAbs ec = Clock.sim-equiv-class a t
shows ODList.toSet (clock-trans (fst ec) (snd ec))

= { s |t ′ s. t ′  s ∈ Clock.jkbpC ∧ clock-jview a t ′ = clock-jview a t }

Note that the clock semantics disregards paths, so we simply compute the suc-
cessors of the temporal slice and partition that. Similarly the successors of the
agent’s subjective equivalence class tell us what the set of possible observations
are:
definition (in −)

clock-mkSuccs :: ( ′s :: linorder ⇒ ′obs) ⇒ ′obs ⇒ ′s odlist
⇒ ′s clock-simWorldsRep

where
clock-mkSuccs envObs obs Y ′ ≡ (Y ′, ODList.filter (λs. envObs s = obs) Y ′)

Finally we can define our transition function on simulated states:
definition (in −)

clock-simTrans :: ( ′a :: linorder) odlist ⇒ ( ′a, ′p, ′aAct) JKBP
⇒ (( ′s :: linorder) ⇒ ′eAct list)
⇒ ( ′eAct ⇒ ( ′a ⇒ ′aAct) ⇒ ′s ⇒ ′s)
⇒ ( ′s ⇒ ′p ⇒ bool) ⇒ ( ′a ⇒ ′s ⇒ ′obs)
⇒ ′a ⇒ ′s clock-simWorldsRep ⇒ ′s clock-simWorldsRep list

where
clock-simTrans agents jkbp envAction envTrans envVal envObs ≡ λa (Y , X).

let X ′ = clock-trans agents jkbp envAction envTrans envVal envObs Y X ;
Y ′ = clock-trans agents jkbp envAction envTrans envVal envObs Y Y

in [ clock-mkSuccs (envObs a) obs Y ′ .
obs ← map (envObs a) (toList X ′) ]

Showing that this respects the property asked of it by the Algorithm locale is
straightforward:
lemma clock-simTrans:

assumes tC : t ∈ Clock.jkbpC
and ec: clock-simAbs ec = Clock.sim-equiv-class a t

shows clock-simAbs ‘ set (clock-simTrans a ec)
= { Clock.sim-equiv-class a (t ′  s)
|t ′ s. t ′  s ∈ Clock.jkbpC ∧ clock-jview a t ′ = clock-jview a t }

end

7.1.7 Maps

As mentioned above, the canonicity of our ordered, distinct list representation
of automaton states allows us to use them as keys in a digital trie; a value of
type ( ′key, ′val) trie maps keys of type ′key list to values of type ′val.
In this specific case we track automaton transitions using a two-level structure
mapping sets of states to an association list mapping observations to sets of
states, and for actions automaton states map directly to agent actions.
type-synonym ( ′s, ′obs) clock-trans-trie
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= ( ′s, ( ′s, ( ′obs, ′s clock-simWorldsRep) mapping) trie) trie
type-synonym ( ′s, ′aAct) clock-acts-trie = ( ′s, ( ′s, ′aAct) trie) trie

We define two records acts-MapOps and trans-MapOps satisfying the MapOps
predicate (§6.8). Discharging the obligations in the Algorithm locale is routine,
leaning on the work of Lammich and Lochbihler (2010).

7.1.8 Locale instantiation

Finally we assemble the algorithm and discharge the proof obligations.
sublocale FiniteLinorderEnvironment

< Clock: Algorithm
jkbp envInit envAction envTrans envVal
clock-jview envObs clock-jviewInit clock-jviewIncr
clock-sim clock-simRels clock-simVal
clock-simAbs clock-simObs clock-simInit clock-simTrans clock-simAction
acts-MapOps trans-MapOps

Explicitly, the algorithm for this case is:
definition

mkClockAuto ≡ λagents jkbp envInit envAction envTrans envVal envObs.
mkAlgAuto acts-MapOps

trans-MapOps
(clock-simObs envObs)
(clock-simInit envInit envObs)
(clock-simTrans agents jkbp envAction envTrans envVal envObs)
(clock-simAction jkbp envVal envObs)
(λa. map (clock-simInit envInit envObs a ◦ envObs a) envInit)

lemma (in FiniteLinorderEnvironment) mkClockAuto-implements:
Clock.implements
(mkClockAuto agents jkbp envInit envAction envTrans envVal envObs)

We discuss the clock semantics further in §??.

7.2 The Synchronous Perfect-Recall View
The synchronous perfect-recall (SPR) view records all observations the agent
has made on a given trace. This is the canonical full-information synchronous
view; all others are functions of this one.
Intuitively it maintains a list of all observations made on the trace, with the
length of the list recording the time:
definition (in Environment) spr-jview :: ( ′a, ′s, ′obs Trace) JointView where

spr-jview a = tMap (envObs a)

The corresponding incremental view appends a new observation to the existing
ones:
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definition (in Environment) spr-jviewInit :: ′a ⇒ ′obs ⇒ ′obs Trace where
spr-jviewInit ≡ λa obs. tInit obs

definition (in Environment)
spr-jviewIncr :: ′a ⇒ ′obs ⇒ ′obs Trace ⇒ ′obs Trace

where
spr-jviewIncr ≡ λa obs ′ tobs. tobs  obs ′

sublocale Environment
< SPR: IncrEnvironment jkbp envInit envAction envTrans envVal

spr-jview envObs spr-jviewInit spr-jviewIncr

van der Meyden (1996, Theorem 5) showed that it is not the case that finite-
state implementations always exist with respect to the SPR view, and so we
consider three special cases:

§7.3 where there is a single agent;

§7.4 when the protocols of the agents are deterministic and communication is
by broadcast; and

§7.5 when the agents use non-deterministic protocols and again use broadcast
to communicate.

Note that these cases do overlap but none is wholly contained in another.

7.3 Perfect Recall for a Single Agent
We capture our expectations of a single-agent scenario in the following locale:
locale FiniteSingleAgentEnvironment =

FiniteEnvironment jkbp envInit envAction envTrans envVal envObs
for jkbp :: ( ′a, ′p, ′aAct) JKBP
and envInit :: ( ′s :: {finite, linorder}) list
and envAction :: ′s ⇒ ′eAct list
and envTrans :: ′eAct ⇒ ( ′a ⇒ ′aAct) ⇒ ′s ⇒ ′s
and envVal :: ′s ⇒ ′p ⇒ bool
and envObs :: ′a ⇒ ′s ⇒ ′obs

+ fixes agent :: ′a
assumes envSingleAgent: a = agent

As per the clock semantics of §7.1, we assume that the set of states is finite and
linearly ordered. We give the sole agent the name agent.
Our simulation is quite similar to the one for the clock semantics of §7.1: it
records the set of worlds that the agent considers possible relative to a trace
and the SPR view. The key difference is that it is path-sensitive:
context FiniteSingleAgentEnvironment
begin
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definition spr-abs :: ′s Trace ⇒ ′s set where
spr-abs t ≡

tLast ‘ { t ′ ∈ SPR.jkbpC . spr-jview agent t ′ = spr-jview agent t }

type-synonym (in −) ′s spr-simWorlds = ′s set × ′s

definition spr-sim :: ′s Trace ⇒ ′s spr-simWorlds where
spr-sim ≡ λt. (spr-abs t, tLast t)

The Kripke structure for this simulation relates worlds for agent if the sets of
states it considers possible coincide, and the observation of the final states of
the trace is the same. Propositions are evaluated at the final state.
definition spr-simRels :: ′a ⇒ ′s spr-simWorlds Relation where

spr-simRels ≡ λa. { ((U , u), (V , v)) |U u V v.
U = V ∧ {u, v} ⊆ U ∧ envObs a u = envObs a v }

definition spr-simVal :: ′s spr-simWorlds ⇒ ′p ⇒ bool where
spr-simVal ≡ envVal ◦ snd

abbreviation spr-simMC :: ( ′a, ′p, ′s spr-simWorlds) KripkeStructure where
spr-simMC ≡ mkKripke (spr-sim ‘ SPR.jkbpC ) spr-simRels spr-simVal

Demonstrating that this is a simulation (§2.3) is straightforward.
lemma spr-sim: sim SPR.MC spr-simMC spr-sim

end

sublocale FiniteSingleAgentEnvironment
< SPRsingle: SimIncrEnvironment jkbp envInit envAction envTrans envVal

spr-jview envObs spr-jviewInit spr-jviewIncr
spr-sim spr-simRels spr-simVal

7.3.1 Representations

As in §7.1.1, we quotient ′s spr-simWorlds by spr-simRels. Because there is only
a single agent, an element of this quotient corresponding to a cononical trace t
is isomorphic to the set of states that are possible given the sequence of obser-
vations made by agent on t. Therefore we have a very simple representation:
context FiniteSingleAgentEnvironment
begin

type-synonym (in −) ′s spr-simWorldsRep = ′s odlist

It is very easy to map these representations back to simulated equivalence
classes:
definition

spr-simAbs :: ′s spr-simWorldsRep ⇒ ′s spr-simWorlds set
where
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spr-simAbs ≡ λss. { (toSet ss, s) |s. s ∈ toSet ss }

This time our representation is unconditionally canonical:
lemma spr-simAbs-inj: inj spr-simAbs

We again make use of the following Kripke structure, where the worlds are the
final states of the subset of the temporal slice that agent believes possible:
definition spr-repRels :: ′a ⇒ ( ′s × ′s) set where

spr-repRels ≡ λa. { (s, s ′). envObs a s ′ = envObs a s }

abbreviation spr-repMC :: ′s set ⇒ ( ′a, ′p, ′s) KripkeStructure where
spr-repMC ≡ λX . mkKripke X spr-repRels envVal

Similarly we show that this Kripke structure is adequate by introducing an
intermediate structure and connecting them all with a tower of simulations:
abbreviation spr-jkbpCSt :: ′s Trace ⇒ ′s spr-simWorlds set where

spr-jkbpCSt t ≡ SPRsingle.sim-equiv-class agent t

abbreviation
spr-simMCt :: ′s Trace ⇒ ( ′a, ′p, ′s spr-simWorlds) KripkeStructure

where
spr-simMCt t ≡ mkKripke (spr-jkbpCSt t) spr-simRels spr-simVal

definition spr-repSim :: ′s spr-simWorlds ⇒ ′s where
spr-repSim ≡ snd

lemma spr-repSim:
assumes tC : t ∈ SPR.jkbpC
shows sim (spr-simMCt t)

((spr-repMC ◦ fst) (spr-sim t))
spr-repSim

As before, the following sections discharge the requirements of the Algorithm
locale of Figure 3.

7.3.2 Initial states

The initial states of the automaton for agent is simply the partition of envInit
under agent’s observation.
definition (in −)

spr-simInit :: ( ′s :: linorder) list ⇒ ( ′a ⇒ ′s ⇒ ′obs)
⇒ ′a ⇒ ′obs ⇒ ′s spr-simWorldsRep

where
spr-simInit envInit envObs ≡ λa iobs.

ODList.fromList [ s. s ← envInit, envObs a s = iobs ]

lemma spr-simInit:
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assumes iobs ∈ envObs a ‘ set envInit
shows spr-simAbs (spr-simInit a iobs)

= spr-sim ‘ { t ′ ∈ SPR.jkbpC . spr-jview a t ′ = spr-jviewInit a iobs }

7.3.3 Simulated observations

As the agent makes the same observation on the entire equivalence class, we
arbitrarily choose the first element of the representation:
definition (in −)

spr-simObs :: ( ′a ⇒ ′s ⇒ ′obs)
⇒ ′a ⇒ ( ′s :: linorder) spr-simWorldsRep ⇒ ′obs

where
spr-simObs envObs ≡ λa. envObs a ◦ ODList.hd

lemma spr-simObs:
assumes tC : t ∈ SPR.jkbpC
assumes ec: spr-simAbs ec = SPRsingle.sim-equiv-class a t
shows spr-simObs a ec = envObs a (tLast t)

7.3.4 Evaluation

As the single-agent case is much simpler than the multi-agent ones, we define
an evaluation function specialised to its representation.
Intuitively eval yields the subset of X where the formula holds, where X is taken
to be a representation of a canonical equivalence class for agent.
fun (in −)

eval :: (( ′s :: linorder) ⇒ ′p ⇒ bool)
⇒ ′s odlist ⇒ ( ′a, ′p) Kform ⇒ ′s odlist

where
eval val X (Kprop p) = ODList.filter (λs. val s p) X
| eval val X (Knot ϕ) = ODList.difference X (eval val X ϕ)
| eval val X (Kand ϕ ψ) = ODList.intersect (eval val X ϕ) (eval val X ψ)
| eval val X (Kknows a ϕ) = (if eval val X ϕ = X then X else ODList.empty)
| eval val X (Kcknows as ϕ) =

(if as = [] ∨ eval val X ϕ = X then X else ODList.empty)

In general this is less efficient than the tableau approach of Fagin et al. (1995,
Proposition 3.2.1), which labels all states with all formulas. However it is often
the case that the set of relevant worlds is much smaller than the set of all system
states.
Showing that this corresponds with the standard models relation is routine.

lemma eval-models:
assumes ec: spr-simAbs ec = SPRsingle.sim-equiv-class agent t
assumes subj: subjective agent ϕ
assumes s: s ∈ toSet ec
shows toSet (eval envVal ec ϕ) 6= {} ←→ spr-repMC (toSet ec), s |= ϕ
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7.3.5 Simulated actions

The actions enabled on a canonical equivalence class are those for which eval
yields a non-empty set of states:
definition (in −)

spr-simAction :: ( ′a, ′p, ′aAct) KBP ⇒ (( ′s :: linorder) ⇒ ′p ⇒ bool)
⇒ ′a ⇒ ′s spr-simWorldsRep ⇒ ′aAct list

where
spr-simAction kbp envVal ≡ λa X .
[ action gc. gc ← kbp, eval envVal X (guard gc) 6= ODList.empty ]

The key lemma relates the agent’s behaviour on an equivalence class to that on
its representation:
lemma spr-simAction-jAction:

assumes tC : t ∈ SPR.jkbpC
assumes ec: spr-simAbs ec = SPRsingle.sim-equiv-class agent t
shows set (spr-simAction agent ec)

= set (jAction (spr-repMC (toSet ec)) (tLast t) agent)

The Algorithm locale requires the following lemma, which is a straightforward
chaining of the above simulations.
lemma spr-simAction:

assumes tC : t ∈ SPR.jkbpC
and ec: spr-simAbs ec = SPRsingle.sim-equiv-class a t

shows set (spr-simAction a ec) = set (jAction SPR.MC t a)

7.3.6 Simulated transitions

It is straightforward to determine the possible successor states of a given canon-
ical equivalence class X :
definition (in −)

spr-trans :: ( ′a, ′p, ′aAct) KBP
⇒ ( ′s ⇒ ′eAct list)
⇒ ( ′eAct ⇒ ( ′a ⇒ ′aAct) ⇒ ′s ⇒ ′s)
⇒ ( ′s ⇒ ′p ⇒ bool)
⇒ ′a ⇒ ( ′s :: linorder) spr-simWorldsRep ⇒ ′s list

where
spr-trans kbp envAction envTrans val ≡ λa X .
[ envTrans eact (λa ′. aact) s .

s ← toList X , eact ← envAction s, aact ← spr-simAction kbp val a X ]

Using this function we can determine the set of possible successor equivalence
classes from X :
abbreviation (in −) envObs-rel :: ( ′s ⇒ ′obs) ⇒ ′s × ′s ⇒ bool where

envObs-rel envObs ≡ λ(s, s ′). envObs s ′ = envObs s

definition (in −)
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spr-simTrans :: ( ′a, ′p, ′aAct) KBP
⇒ (( ′s::linorder) ⇒ ′eAct list)
⇒ ( ′eAct ⇒ ( ′a ⇒ ′aAct) ⇒ ′s ⇒ ′s)
⇒ ( ′s ⇒ ′p ⇒ bool)
⇒ ( ′a ⇒ ′s ⇒ ′obs)
⇒ ′a ⇒ ′s spr-simWorldsRep ⇒ ′s spr-simWorldsRep list

where
spr-simTrans kbp envAction envTrans val envObs ≡ λa X .

map ODList.fromList (partition (envObs-rel (envObs a))
(spr-trans kbp envAction envTrans val a X))

The partition function splits a list into equivalence classes under the given equiv-
alence relation.
The property asked for by the Algorithm locale follows from the properties of
partition and spr-trans:
lemma spr-simTrans:

assumes tC : t ∈ SPR.jkbpC
assumes ec: spr-simAbs ec = SPRsingle.sim-equiv-class a t
shows spr-simAbs ‘ set (spr-simTrans a ec)

= { SPRsingle.sim-equiv-class a (t ′  s)
|t ′ s. t ′  s ∈ SPR.jkbpC ∧ spr-jview a t ′ = spr-jview a t}

end

7.3.7 Maps

As in §7.1.7, we use a pair of tries and an association list to handle the automata
representation. Recall that the keys of these tries are lists of system states.
type-synonym ( ′s, ′obs) spr-trans-trie = ( ′s, ( ′obs, ′s odlist) mapping) trie
type-synonym ( ′s, ′aAct) spr-acts-trie = ( ′s, ( ′s, ′aAct) trie) trie

7.3.8 Locale instantiation

The above is sufficient to instantiate the Algorithm locale.
sublocale FiniteSingleAgentEnvironment

< SPRsingle: Algorithm
jkbp envInit envAction envTrans envVal
spr-jview envObs spr-jviewInit spr-jviewIncr
spr-sim spr-simRels spr-simVal
spr-simAbs spr-simObs spr-simInit spr-simTrans spr-simAction
trie-odlist-MapOps trans-MapOps

We use this theory to synthesise a solution to the robot of §1 in §8.1.
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record (overloaded) ( ′a, ′es, ′ps) BEState =
es :: ′es
ps :: ( ′a × ′ps) odlist

locale FiniteDetBroadcastEnvironment =
Environment jkbp envInit envAction envTrans envVal envObs

for jkbp :: ′a ⇒ ( ′a :: {finite,linorder}, ′p, ′aAct) KBP
and envInit

:: ( ′a, ′es :: {finite,linorder}, ′as :: {finite,linorder}) BEState list
and envAction :: ( ′a, ′es, ′as) BEState ⇒ ′eAct list
and envTrans :: ′eAct ⇒ ( ′a ⇒ ′aAct)

⇒ ( ′a, ′es, ′as) BEState ⇒ ( ′a, ′es, ′as) BEState
and envVal :: ( ′a, ′es, ′as) BEState ⇒ ′p ⇒ bool
and envObs :: ′a ⇒ ( ′a, ′es, ′as) BEState ⇒ ( ′cobs × ′as option)

+ fixes agents :: ′a odlist
fixes envObsC :: ′es ⇒ ′cobs
defines envObs a s ≡ (envObsC (es s), ODList.lookup (ps s) a)
assumes agents: ODList.toSet agents = UNIV
assumes envTrans: ∀ s s ′ a eact eact ′ aact aact ′.

ODList.lookup (ps s) a = ODList.lookup (ps s ′) a ∧ aact a = aact ′ a
−→ ODList.lookup (ps (envTrans eact aact s)) a
= ODList.lookup (ps (envTrans eact ′ aact ′ s ′)) a

assumes jkbpDet: ∀ a. ∀ t ∈ SPR.jkbpC . length (jAction SPR.MC t a) ≤ 1

Figure 5: Finite broadcast environments with a deterministic JKBP.

7.4 Perfect Recall in Deterministic Broadcast Environ-
ments

It is well known that simultaneous broadcast has the effect of making informa-
tion common knowledge; roughly put, the agents all learn the same things at
the same time as the system evolves, so the relation amongst the agents’ states
of knowledge never becomes more complex than it is in the initial state (Fa-
gin et al. 1995, Chapter 6). For this reason we might hope to find finite-state
implementations of JKBPs in broadcast environments.
The broadcast assumption by itself is insufficient in general, however (van der
Meyden 1996, §7), and so we need to further constrain the scenario. Here we
require that for each canonical trace the JKBP prescribes at most one action.
In practice this constraint is easier to verify than the circularity would suggest;
we return to this point at the end of this section.

We encode our expectations of the scenario in the FiniteBroadcastEnvironment
locale of Figure 5. The broadcast is modelled by having all agents make the
same common observation of the shared state of type ′es. We also allow each
agent to maintain a private state of type ′ps; that other agents cannot influence
it or directly observe it is enforced by the constraint envTrans and the definition
of envObs.
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We do however allow the environment’s protocol to be non-deterministic and a
function of the entire system state, including private states.
context FiniteDetBroadcastEnvironment
begin

We seek a suitable simulation space by considering what determines an agent’s
knowledge. Intuitively any set of traces that is relevant to the agents’ states
of knowledge with respect to t ∈ jkbpC need include only those with the same
common observation as t:
definition tObsC :: ( ′a, ′es, ′as) BEState Trace ⇒ ′cobs Trace where

tObsC ≡ tMap (envObsC ◦ es)

Clearly this is an abstraction of the SPR jview of the given trace.
lemma spr-jview-tObsC :

assumes spr-jview a t = spr-jview a t ′

shows tObsC t = tObsC t ′

Unlike the single-agent case of §7.3, it is not sufficient for a simulation to record
only the final states; we need to relate the initial private states of the agents
with the final states they consider possible, as the initial states may contain
information that is not common knowledge. This motivates the following ab-
straction:
definition

tObsC-abs :: ( ′a, ′es, ′as) BEState Trace ⇒ ( ′a, ′es, ′as) BEState Relation
where

tObsC-abs t ≡ { (tFirst t ′, tLast t ′)
|t ′. t ′ ∈ SPR.jkbpC ∧ tObsC t ′ = tObsC t}

end

We use the following record to represent the worlds of the simulated Kripke
structure:
record (overloaded) ( ′a, ′es, ′as) spr-simWorld =

sprFst :: ( ′a, ′es, ′as) BEState
sprLst :: ( ′a, ′es, ′as) BEState
sprCRel :: ( ′a, ′es, ′as) BEState Relation

context FiniteDetBroadcastEnvironment
begin

The simulation of a trace t ∈ jkbpC records its initial and final states, and the
relation between initial and final states of all commonly-plausible traces:
definition

spr-sim :: ( ′a, ′es, ′as) BEState Trace ⇒ ( ′a, ′es, ′as) spr-simWorld
where

spr-sim ≡ λt. (| sprFst = tFirst t, sprLst = tLast t, sprCRel = tObsC-abs t |)
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The associated Kripke structure relates two worlds for an agent if the agent’s
observation on the the first and last states corresponds, and the worlds have the
same common observation relation. As always, we evaluate propositions on the
final state of the trace.
definition

spr-simRels :: ′a ⇒ ( ′a, ′es, ′as) spr-simWorld Relation
where

spr-simRels ≡ λa. { (s, s ′) |s s ′.
envObs a (sprFst s) = envObs a (sprFst s ′)
∧ envObs a (sprLst s) = envObs a (sprLst s ′)
∧ sprCRel s = sprCRel s ′ }

definition spr-simVal :: ( ′a, ′es, ′as) spr-simWorld ⇒ ′p ⇒ bool where
spr-simVal ≡ envVal ◦ sprLst

abbreviation
spr-simMC ≡ mkKripke (spr-sim ‘ SPR.jkbpC ) spr-simRels spr-simVal

All the properties of a simulation are easy to show for spr-sim except for reverse
simulation.
The critical lemma states that if we have two traces that yield the same common
observations, and an agent makes the same observation on their initial states,
then that agent’s private states at each point on the two traces are identical.
lemma spr-jview-det-ps:

assumes tt ′C : {t, t ′} ⊆ SPR.jkbpC
assumes obsCtt ′: tObsC t = tObsC t ′

assumes first: envObs a (tFirst t) = envObs a (tFirst t ′)
shows tMap (λs. ODList.lookup (ps s) a) t

= tMap (λs. ODList.lookup (ps s) a) t ′

The proof proceeds by lock-step induction over t and t ′, appealing to the jkbpDet
assumption, the definition of envObs and the constraint envTrans.
It is then a short step to showing reverse simulation, and hence simulation:
lemma spr-sim: sim SPR.MC spr-simMC spr-sim
end

sublocale FiniteDetBroadcastEnvironment
< SPRdet: SimIncrEnvironment jkbp envInit envAction envTrans envVal

spr-jview envObs spr-jviewInit spr-jviewIncr
spr-sim spr-simRels spr-simVal

7.4.1 Representations

As before we canonically represent the quotient of the simulated worlds ( ′a, ′es,
′as) spr-simWorld under spr-simRels using ordered, distinct lists. In particu-
lar, we use the type ( ′a × ′a) odlist (abbreviated ′a odrelation) to canonically
represent relations.
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context FiniteDetBroadcastEnvironment
begin

type-synonym (in −) ( ′a, ′es, ′as) spr-simWorldsECRep
= ( ′a, ′es, ′as) BEState odrelation

type-synonym (in −) ( ′a, ′es, ′as) spr-simWorldsRep
= ( ′a, ′es, ′as) spr-simWorldsECRep × ( ′a, ′es, ′as) spr-simWorldsECRep

We can abstract such a representation into a set of simulated equivalence classes:
definition

spr-simAbs :: ( ′a, ′es, ′as) spr-simWorldsRep
⇒ ( ′a, ′es, ′as) spr-simWorld set

where
spr-simAbs ≡ λ(cec, aec). { (| sprFst = s, sprLst = s ′, sprCRel = toSet cec |)

|s s ′. (s, s ′) ∈ toSet aec }

Assuming X represents a simulated equivalence class for t ∈ jkbpC, we can
decompose spr-simAbs X in terms of tObsC-abs t and agent-abs t:
definition

agent-abs :: ′a ⇒ ( ′a, ′es, ′as) BEState Trace
⇒ ( ′a, ′es, ′as) BEState Relation

where
agent-abs a t ≡ { (tFirst t ′, tLast t ′)

|t ′. t ′ ∈ SPR.jkbpC ∧ spr-jview a t ′ = spr-jview a t }

This representation is canonical on the domain of interest (though not in gen-
eral):
lemma spr-simAbs-inj-on:

inj-on spr-simAbs { x . spr-simAbs x ∈ SPRdet.jkbpSEC }

The following sections make use of a Kripke structure constructed over tO-
bsC-abs t for some canonical trace t. Note that we use the relation in the
generated code.
type-synonym (in −) ( ′a, ′es, ′as) spr-simWorlds
= ( ′a, ′es, ′as) BEState × ( ′a, ′es, ′as) BEState

definition (in −)
spr-repRels :: ( ′a ⇒ ( ′a, ′es, ′as) BEState ⇒ ′cobs × ′as option)

⇒ ′a ⇒ ( ′a, ′es, ′as) spr-simWorlds Relation
where

spr-repRels envObs ≡ λa. { ((u, v), (u ′, v ′)).
envObs a u = envObs a u ′ ∧ envObs a v = envObs a v ′ }

definition
spr-repVal :: ( ′a, ′es, ′as) spr-simWorlds ⇒ ′p ⇒ bool

where
spr-repVal ≡ envVal ◦ snd
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abbreviation
spr-repMC :: ( ′a, ′es, ′as) BEState Relation

⇒ ( ′a, ′p, ( ′a, ′es, ′as) spr-simWorlds) KripkeStructure
where

spr-repMC ≡ λtcobsR. mkKripke tcobsR (spr-repRels envObs) spr-repVal

As before we can show that this Kripke structure is adequate for a particular
canonical trace t by showing that it simulates spr-repMC We introduce an
intermediate structure:
abbreviation

spr-jkbpCSt :: ( ′a, ′es, ′as) BEState Trace ⇒ ( ′a, ′es, ′as) spr-simWorld set
where

spr-jkbpCSt t ≡ spr-sim ‘ { t ′ . t ′ ∈ SPR.jkbpC ∧ tObsC t = tObsC t ′ }

abbreviation
spr-simMCt :: ( ′a, ′es, ′as) BEState Trace

⇒ ( ′a, ′p, ( ′a, ′es, ′as) spr-simWorld) KripkeStructure
where

spr-simMCt t ≡ mkKripke (spr-jkbpCSt t) spr-simRels spr-simVal

definition
spr-repSim :: ( ′a, ′es, ′as) spr-simWorld ⇒ ( ′a, ′es, ′as) spr-simWorlds

where
spr-repSim ≡ λs. (sprFst s, sprLst s)

lemma spr-repSim:
assumes tC : t ∈ SPR.jkbpC
shows sim (spr-simMCt t)

((spr-repMC ◦ sprCRel) (spr-sim t))
spr-repSim

As before we define a set of constants that satisfy the Algorithm locale given
the assumptions of the FiniteDetBroadcastEnvironment locale.

7.4.2 Initial states

The initial states for agent a given an initial observation iobs consist of the set
of states that yield a common observation consonant with iobs paired with the
set of states where a observes iobs:
definition (in −)

spr-simInit ::
( ′a, ′es, ′as) BEState list ⇒ ( ′es ⇒ ′cobs)
⇒ ( ′a ⇒ ( ′a, ′es, ′as) BEState ⇒ ′cobs × ′obs)
⇒ ′a ⇒ ( ′cobs × ′obs)
⇒ ( ′a :: linorder , ′es :: linorder , ′as :: linorder) spr-simWorldsRep

where
spr-simInit envInit envObsC envObs ≡ λa iobs.
(ODList.fromList [ (s, s). s ← envInit, envObsC (es s) = fst iobs ],
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ODList.fromList [ (s, s). s ← envInit, envObs a s = iobs ])

lemma spr-simInit:
assumes iobs ∈ envObs a ‘ set envInit
shows spr-simAbs (spr-simInit a iobs)

= spr-sim ‘ { t ′ ∈ SPR.jkbpC . spr-jview a t ′ = spr-jviewInit a iobs }

7.4.3 Simulated observations

An observation can be made at any element of the representation of a simulated
equivalence class of a canonical trace:
definition (in −)

spr-simObs ::
( ′es ⇒ ′cobs)
⇒ ′a ⇒ ( ′a :: linorder , ′es :: linorder , ′as :: linorder) spr-simWorldsRep
⇒ ′cobs × ′as option

where
spr-simObs envObsC ≡ λa. (λs. (envObsC (es s), ODList.lookup (ps s) a))

◦ snd ◦ ODList.hd ◦ snd

lemma spr-simObs:
assumes tC : t ∈ SPR.jkbpC
assumes ec: spr-simAbs ec = SPRdet.sim-equiv-class a t
shows spr-simObs a ec = envObs a (tLast t)

7.4.4 Evaluation

As for the clock semantics (§7.1.4), we use the general evalation function evalS.
Once again we propositions are used to filter the set of possible worlds X :
abbreviation (in −)

spr-evalProp ::
(( ′a::linorder , ′es::linorder , ′as::linorder) BEState ⇒ ′p ⇒ bool)
⇒ ( ′a, ′es, ′as) BEState odrelation
⇒ ′p ⇒ ( ′a, ′es, ′as) BEState odrelation

where
spr-evalProp envVal ≡ λX p. ODList.filter (λs. envVal (snd s) p) X

The knowledge operation computes the subset of possible worlds cec that yield
the same observation as s for agent a:
definition (in −)

spr-knowledge ::
( ′a ⇒ ( ′a::linorder , ′es::linorder , ′as::linorder) BEState
⇒ ′cobs × ′as option)

⇒ ( ′a, ′es, ′as) BEState odrelation
⇒ ′a ⇒ ( ′a, ′es, ′as) spr-simWorlds
⇒ ( ′a, ′es, ′as) spr-simWorldsECRep

where
spr-knowledge envObs cec ≡ λa s.
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ODList.fromList [ s ′ . s ′ ← toList cec, (s, s ′) ∈ spr-repRels envObs a ]

Similarly the common knowledge operation computes the transitive closure
(Sternagel and Thiemann 2011) of the union of the knowledge relations for
the agents as:
definition (in −)

spr-commonKnowledge ::
( ′a ⇒ ( ′a::linorder , ′es::linorder , ′as::linorder) BEState
⇒ ′cobs × ′as option)
⇒ ( ′a, ′es, ′as) BEState odrelation
⇒ ′a list
⇒ ( ′a, ′es, ′as) spr-simWorlds
⇒ ( ′a, ′es, ′as) spr-simWorldsECRep

where
spr-commonKnowledge envObs cec ≡ λas s.

let r = λa. ODList.fromList
[ (s ′, s ′′) . s ′ ← toList cec, s ′′ ← toList cec,

(s ′, s ′′) ∈ spr-repRels envObs a ];
R = toList (ODList.big-union r as)

in ODList.fromList (memo-list-trancl R s)

The evaluation function evaluates a subjective knowledge formula on the repre-
sentation of an equivalence class:
definition (in −)

eval envVal envObs ≡ λ(cec, X).
evalS (spr-evalProp envVal)

(spr-knowledge envObs cec)
(spr-commonKnowledge envObs cec)
X

This function corresponds with the standard semantics:
lemma eval-models:

assumes tC : t ∈ SPR.jkbpC
assumes ec: spr-simAbs ec = SPRdet.sim-equiv-class a t
assumes subj-phi: subjective a ϕ
assumes s: s ∈ toSet (snd ec)
shows eval envVal envObs ec ϕ ←→ spr-repMC (toSet (fst ec)), s |= ϕ

7.4.5 Simulated actions

From a common equivalence class and a subjective equivalence class for agent
a, we can compute the actions enabled for a:
definition (in −)

spr-simAction ::
( ′a, ′p, ′aAct) JKBP ⇒ (( ′a, ′es, ′as) BEState ⇒ ′p ⇒ bool)
⇒ ( ′a ⇒ ( ′a, ′es, ′as) BEState ⇒ ′cobs × ′as option)
⇒ ′a
⇒ ( ′a::linorder , ′es::linorder , ′as::linorder) spr-simWorldsRep
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⇒ ′aAct list
where

spr-simAction jkbp envVal envObs ≡ λa ec.
[ action gc. gc ← jkbp a, eval envVal envObs ec (guard gc) ]

Using the above result about evaluation, we can relate spr-simAction to jAc-
tion. Firstly, spr-simAction behaves the same as jAction using the spr-repMC
structure:
lemma spr-action-jaction:

assumes tC : t ∈ SPR.jkbpC
assumes ec: spr-simAbs ec = SPRdet.sim-equiv-class a t
shows set (spr-simAction a ec)

= set (jAction (spr-repMC (toSet (fst ec))) (tFirst t, tLast t) a)

We can connect the agent’s choice of actions on the spr-repMC structure to
those on the SPR.MC structure using our earlier results about actions being
preserved by generated models and simulations.
lemma spr-simAction:

assumes tC : t ∈ SPR.jkbpC
assumes ec: spr-simAbs ec = SPRdet.sim-equiv-class a t
shows set (spr-simAction a ec) = set (jAction SPR.MC t a)

7.4.6 Simulated transitions

The story of simulated transitions takes some doing. We begin by computing
the successor relation of a given equivalence class X with respect to the common
equivalence class cec:
abbreviation (in −)

spr-jAction jkbp envVal envObs cec s ≡ λa.
spr-simAction jkbp envVal envObs a (cec, spr-knowledge envObs cec a s)

definition (in −)
spr-trans :: ′a odlist

⇒ ( ′a, ′p, ′aAct) JKBP
⇒ (( ′a::linorder , ′es::linorder , ′as::linorder) BEState ⇒ ′eAct list)
⇒ ( ′eAct ⇒ ( ′a ⇒ ′aAct)
⇒ ( ′a, ′es, ′as) BEState ⇒ ( ′a, ′es, ′as) BEState)

⇒ (( ′a, ′es, ′as) BEState ⇒ ′p ⇒ bool)
⇒ ( ′a ⇒ ( ′a, ′es, ′as) BEState ⇒ ′cobs × ′as option)
⇒ ( ′a, ′es, ′as) spr-simWorldsECRep
⇒ ( ′a, ′es, ′as) spr-simWorldsECRep
⇒ (( ′a, ′es, ′as) BEState × ( ′a, ′es, ′as) BEState) list

where
spr-trans agents jkbp envAction envTrans envVal envObs ≡ λcec X .
[ (initialS , succS) .

(initialS , finalS) ← toList X ,
eact ← envAction finalS ,
succS ← [ envTrans eact aact finalS .
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aact ← listToFuns (spr-jAction jkbp envVal envObs cec
(initialS , finalS))

(toList agents) ] ]

We will split the result of this function according to the common observation
and also agent a’s observation, where a is the agent we are constructing the
automaton for.
definition (in −)

spr-simObsC :: ( ′es ⇒ ′cobs)
⇒ (( ′a::linorder , ′es::linorder , ′as::linorder) BEState
× ( ′a, ′es, ′as) BEState) odlist
⇒ ′cobs

where
spr-simObsC envObsC ≡ envObsC ◦ es ◦ snd ◦ ODList.hd

abbreviation (in −)
envObs-rel :: (( ′a, ′es, ′as) BEState ⇒ ′cobs × ′as option)

⇒ ( ′a, ′es, ′as) spr-simWorlds × ( ′a, ′es, ′as) spr-simWorlds ⇒ bool
where

envObs-rel envObs ≡ λ(s, s ′). envObs (snd s ′) = envObs (snd s)

The above combine to yield the successor equivalence classes like so:
definition (in −)

spr-simTrans :: ′a odlist
⇒ ( ′a, ′p, ′aAct) JKBP
⇒ (( ′a::linorder , ′es::linorder , ′as::linorder) BEState ⇒ ′eAct list)
⇒ ( ′eAct ⇒ ( ′a ⇒ ′aAct)
⇒ ( ′a, ′es, ′as) BEState ⇒ ( ′a, ′es, ′as) BEState)

⇒ (( ′a, ′es, ′as) BEState ⇒ ′p ⇒ bool)
⇒ ( ′es ⇒ ′cobs)
⇒ ( ′a ⇒ ( ′a, ′es, ′as) BEState ⇒ ′cobs × ′as option)
⇒ ′a
⇒ ( ′a, ′es, ′as) spr-simWorldsRep
⇒ ( ′a, ′es, ′as) spr-simWorldsRep list

where
spr-simTrans agents jkbp envAction envTrans envVal envObsC envObs ≡ λa ec.

let aSuccs = spr-trans agents jkbp envAction envTrans envVal envObs
(fst ec) (snd ec);

cec ′ = ODList.fromList
(spr-trans agents jkbp envAction envTrans envVal envObs

(fst ec) (fst ec))
in [ (ODList.filter (λs. envObsC (es (snd s)) = spr-simObsC envObsC aec ′) cec ′,

aec ′) .
aec ′ ← map ODList.fromList (partition (envObs-rel (envObs a)) aSuccs) ]

Showing that spr-simTrans works requires a series of auxiliary lemmas that
show we do in fact compute the correct successor equivalence classes. We elide
the unedifying details, skipping straight to the lemma that the Algorithm locale
expects:
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lemma spr-simTrans:
assumes tC : t ∈ SPR.jkbpC
assumes ec: spr-simAbs ec = SPRdet.sim-equiv-class a t
shows spr-simAbs ‘ set (spr-simTrans a ec)

= { SPRdet.sim-equiv-class a (t ′  s)
|t ′ s. t ′  s ∈ SPR.jkbpC ∧ spr-jview a t ′ = spr-jview a t}

The explicit-state approach sketched above is quite inefficient, and also some
distance from the symbolic techniques we use in §??. However it does suffice to
demonstrate the theory on the muddy children example in §8.2.
end

7.4.7 Maps

As always we use a pair of tries. The domain of these maps is the pair of
relations.
type-synonym ( ′a, ′es, ′obs, ′as) trans-trie

= (( ′a, ′es, ′as) BEState,
(( ′a, ′es, ′as) BEState,
(( ′a, ′es, ′as) BEState,
(( ′a, ′es, ′as) BEState,
( ′obs, ( ′a, ′es, ′as) spr-simWorldsRep) mapping) trie) trie) trie) trie

type-synonym
( ′a, ′es, ′aAct, ′as) acts-trie
= (( ′a, ′es, ′as) BEState,

(( ′a, ′es, ′as) BEState,
(( ′a, ′es, ′as) BEState,
(( ′a, ′es, ′as) BEState, ′aAct) trie) trie) trie) trie

This suffices to placate the Algorithm locale.
sublocale FiniteDetBroadcastEnvironment

< SPRdet: Algorithm
jkbp envInit envAction envTrans envVal
spr-jview envObs spr-jviewInit spr-jviewIncr
spr-sim spr-simRels spr-simVal
spr-simAbs spr-simObs spr-simInit spr-simTrans spr-simAction
acts-MapOps trans-MapOps

As we remarked earlier in this section, in general it may be difficult to establish
the determinacy of a KBP as it is a function of the environment. However in
many cases determinism is syntactically manifest as the guards are logically
disjoint, independently of the knowledge subformulas. The following lemma
generates the required proof obligations for this case:
lemma (in PreEnvironmentJView) jkbpDetI :

assumes tC : t ∈ jkbpC
assumes jkbpSynDet: ∀ a. distinct (map guard (jkbp a))
assumes jkbpSemDet: ∀ a gc gc ′.

53



gc ∈ set (jkbp a) ∧ gc ′ ∈ set (jkbp a) ∧ t ∈ jkbpC
−→ guard gc = guard gc ′ ∨ ¬(MC , t |= guard gc ∧ MC , t |= guard gc ′)

shows length (jAction MC t a) ≤ 1

The scenario presented here is a variant of the broadcast environments treated
by van der Meyden (1996), which we cover in the next section.

7.5 Perfect Recall in Non-deterministic Broadcast Envi-
ronments

record ( ′a, ′ePubAct, ′es, ′pPubAct, ′ps) BEState =
es :: ′es
ps :: ′a ⇒ ′ps
pubActs :: ′ePubAct × ( ′a ⇒ ′pPubAct)

locale FiniteBroadcastEnvironment =
Environment jkbp envInit envAction envTrans envVal envObs

for jkbp :: ( ′a :: finite, ′p, ( ′pPubAct :: finite × ′ps :: finite)) JKBP
and envInit

:: ( ′a, ′ePubAct :: finite, ′es :: finite, ′pPubAct, ′ps) BEState list
and envAction :: ( ′a, ′ePubAct, ′es, ′pPubAct, ′ps) BEState

⇒ ( ′ePubAct × ′ePrivAct) list
and envTrans :: ( ′ePubAct × ′ePrivAct)

⇒ ( ′a ⇒ ( ′pPubAct × ′ps))
⇒ ( ′a, ′ePubAct, ′es, ′pPubAct, ′ps) BEState
⇒ ( ′a, ′ePubAct, ′es, ′pPubAct, ′ps) BEState

and envVal :: ( ′a, ′ePubAct, ′es, ′pPubAct, ′ps) BEState ⇒ ′p ⇒ bool
and envObs :: ′a ⇒ ( ′a, ′ePubAct, ′es, ′pPubAct, ′ps) BEState

⇒ ( ′cobs × ′ps × ( ′ePubAct × ( ′a ⇒ ′pPubAct)))

+ fixes envObsC :: ′es ⇒ ′cobs
and envActionES :: ′es ⇒ ( ′ePubAct × ( ′a ⇒ ′pPubAct))

⇒ ( ′ePubAct × ′ePrivAct) list
and envTransES :: ( ′ePubAct × ′ePrivAct) ⇒ ( ′a ⇒ ′pPubAct)

⇒ ′es ⇒ ′es
defines envObs-def : envObs a ≡ (λs. (envObsC (es s), ps s a, pubActs s))

and envAction-def : envAction s ≡ envActionES (es s) (pubActs s)
and envTrans-def :

envTrans eact aact s ≡ (| es = envTransES eact (fst ◦ aact) (es s)
, ps = snd ◦ aact
, pubActs = (fst eact, fst ◦ aact) |)

Figure 6: Finite broadcast environments with non-deterministic KBPs.

For completeness we reproduce the results of van der Meyden (1996) regarding
non-deterministic KBPs in broadcast environments.
The determinism requirement is replaced by the constraint that actions be split
into public and private components, where the private part influences the agents’
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private states, and the public part is broadcast and recorded in the system state.
Moreover the protocol of the environment is only a function of the environment
state, and not the agents’ private states. Once again an agent’s view consists of
the common observation and their private state. The situation is described by
the locale in Figure 6. Note that as we do not intend to generate code for this
case, we adopt more transparent but less effective representations.
Our goal in the following is to instantiate the SimIncrEnvironment locale with
respect to the assumptions made in the FiniteBroadcastEnvironment locale. We
begin by defining similar simulation machinery to the previous section.
context FiniteBroadcastEnvironment
begin

As for the deterministic variant, we abstract traces using the common observa-
tion. Note that this now includes the public part of the agents’ actions.
definition

tObsC :: ( ′a, ′ePubAct, ′es, ′pPubAct, ′ps) BEState Trace
⇒ ( ′cobs × ′ePubAct × ( ′a ⇒ ′pPubAct)) Trace

where
tObsC ≡ tMap (λs. (envObsC (es s), pubActs s))

Similarly we introduce common and agent-specific abstraction functions:
definition

tObsC-abs :: ( ′a, ′ePubAct, ′es, ′pPubAct, ′ps) BEState Trace
⇒ ( ′a, ′ePubAct, ′es, ′pPubAct, ′ps) BEState Relation

where
tObsC-abs t ≡ { (tFirst t ′, tLast t ′)

|t ′. t ′ ∈ SPR.jkbpC ∧ tObsC t ′ = tObsC t }

definition
agent-abs :: ′a ⇒ ( ′a, ′ePubAct, ′es, ′pPubAct, ′ps) BEState Trace

⇒ ( ′a, ′ePubAct, ′es, ′pPubAct, ′ps) BEState Relation
where

agent-abs a t ≡ { (tFirst t ′, tLast t ′)
|t ′. t ′ ∈ SPR.jkbpC ∧ spr-jview a t ′ = spr-jview a t }

end

The simulation is identical to that in the previous section:
record ( ′a, ′ePubAct, ′es, ′pPubAct, ′ps) SPRstate =

sprFst :: ( ′a, ′ePubAct, ′es, ′pPubAct, ′ps) BEState
sprLst :: ( ′a, ′ePubAct, ′es, ′pPubAct, ′ps) BEState
sprCRel :: ( ′a, ′ePubAct, ′es, ′pPubAct, ′ps) BEState Relation

context FiniteBroadcastEnvironment
begin

definition
spr-sim :: ( ′a, ′ePubAct, ′es, ′pPubAct, ′ps) BEState Trace
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⇒ ( ′a, ′ePubAct, ′es, ′pPubAct, ′ps) SPRstate
where

spr-sim ≡ λt. (| sprFst = tFirst t, sprLst = tLast t, sprCRel = tObsC-abs t |)

The Kripke structure over simulated traces is also the same:
definition

spr-simRels :: ′a ⇒ ( ′a, ′ePubAct, ′es, ′pPubAct, ′ps) SPRstate Relation
where

spr-simRels ≡ λa. { (s, s ′) |s s ′.
envObs a (sprFst s) = envObs a (sprFst s ′)
∧ envObs a (sprLst s) = envObs a (sprLst s ′)
∧ sprCRel s = sprCRel s ′ }

definition
spr-simVal :: ( ′a, ′ePubAct, ′es, ′pPubAct, ′ps) SPRstate ⇒ ′p ⇒ bool

where
spr-simVal ≡ envVal ◦ sprLst

abbreviation
spr-simMC ≡ mkKripke (spr-sim ‘ SPR.jkbpC ) spr-simRels spr-simVal

As usual, showing that spr-sim is in fact a simulation is routine for all properties
except for reverse simulation. For that we use proof techniques similar to those
of Lomuscio et al. (2000): the goal is to show that, given t ∈ jkbpC, we can
construct a trace t ′ ∈ jkbpC indistinguishable from t by agent a, based on the
public actions, the common observation and a’s private and initial states.
To do this we define a splicing operation:
definition

sSplice :: ′a
⇒ ( ′a, ′ePubAct, ′es, ′pPubAct, ′ps) BEState
⇒ ( ′a, ′ePubAct, ′es, ′pPubAct, ′ps) BEState
⇒ ( ′a, ′ePubAct, ′es, ′pPubAct, ′ps) BEState

where
sSplice a s s ′ ≡ s(| ps := (ps s)(a := ps s ′ a) |)

The effect of sSplice a s s ′ is to update s with a’s private state in s ′. The key
properties are that provided the common observation on s and s ′ are the same,
then agent a’s observation on sSplice a s s ′ is the same as at s ′, while everyone
else’s is the same as at s.
We hoist this operation pointwise to traces:
abbreviation

tSplice :: ( ′a, ′ePubAct, ′es, ′pPubAct, ′ps) BEState Trace
⇒ ′a
⇒ ( ′a, ′ePubAct, ′es, ′pPubAct, ′ps) BEState Trace
⇒ ( ′a, ′ePubAct, ′es, ′pPubAct, ′ps) BEState Trace

(‹- ./- -› [55, 1000, 56] 55)
where

t ./a t ′ ≡ tZip (sSplice a) t t ′
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The key properties are that after splicing, if t and t ′ have the same common
observation, then so does t ./a t ′, and for all agents a ′ 6= a, the view a ′ has of
t ./a t ′ is the same as it has of t, while for a it is the same as t ′.
We can conclude that provided the two traces are initially indistinguishable to
a, and not commonly distinguishable, then t ./a t ′ is a canonical trace:
lemma tSplice-jkbpC :

assumes tt ′: {t, t ′} ⊆ SPR.jkbpC
assumes init: envObs a (tFirst t) = envObs a (tFirst t ′)
assumes tObsC : tObsC t = tObsC t ′

shows t ./a t ′ ∈ SPR.jkbpC

The proof is by induction over t and t ′, and depends crucially on the public
actions being recorded in the state and commonly observed. Showing the reverse
simulation property is then straightforward.
lemma spr-sim: sim SPR.MC spr-simMC spr-simend

sublocale FiniteBroadcastEnvironment
< SPR: SimIncrEnvironment jkbp envInit envAction envTrans envVal

spr-jview envObs spr-jviewInit spr-jviewIncr
spr-sim spr-simRels spr-simVal

The algorithmic representations and machinery of the deterministic JKBP case
suffice for this one too, and so we omit the details.

7.5.1 Perfect Recall in Independently-Initialised Non-deterministic
Broadcast Environments

If the private and environment parts of the initial states are independent we can
simplify the construction of the previous section and consider only sets of states
rather than relations. This greatly reduces the state space that the algorithm
traverses.
We capture this independence by adding some assumptions to the FiniteBroad-
castEnvironment locale of Figure 6; the result is the FiniteBroadcastEnviron-
mentIndependentInit locale shown in Figure 7. We ask that the initial states
be the Cartesian product of possible private and environment states; in other
words there is nothing for the agents to learn about correlations amongst the
initial states. As there are initially no public actions from the previous round,
we use the default class to indicate that there is a fixed but arbitrary choice to
be made here.
Again we introduce common and agent-specific abstraction functions:
context FiniteBroadcastEnvironmentIndependentInit
begin

definition
tObsC-ii-abs :: ( ′a, ′ePubAct, ′es, ′pPubAct, ′ps) BEState Trace

⇒ ( ′a, ′ePubAct, ′es, ′pPubAct, ′ps) BEState set
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locale FiniteBroadcastEnvironmentIndependentInit =
FiniteBroadcastEnvironment jkbp envInit envAction envTrans envVal envObs

envObsC envActionES envTransES
for jkbp :: ( ′a::finite, ′p, ( ′pPubAct::{default,finite} × ′ps::finite)) JKBP
and envInit :: ( ′a, ′ePubAct :: {default, finite}, ′es :: finite,

′pPubAct, ′ps) BEState list
and envAction :: ( ′a, ′ePubAct, ′es, ′pPubAct, ′ps) BEState

⇒ ( ′ePubAct × ′ePrivAct) list
and envTrans :: ( ′ePubAct × ′ePrivAct)

⇒ ( ′a ⇒ ( ′pPubAct × ′ps))
⇒ ( ′a, ′ePubAct, ′es, ′pPubAct, ′ps) BEState
⇒ ( ′a, ′ePubAct, ′es, ′pPubAct, ′ps) BEState

and envVal :: ( ′a, ′ePubAct, ′es, ′pPubAct, ′ps) BEState ⇒ ′p ⇒ bool
and envObs :: ′a ⇒ ( ′a, ′ePubAct, ′es, ′pPubAct, ′ps) BEState

⇒ ( ′cobs × ′ps × ( ′ePubAct × ( ′a ⇒ ′pPubAct)))
and envObsC :: ′es ⇒ ′cobs
and envActionES :: ′es ⇒ ( ′ePubAct × ( ′a ⇒ ′pPubAct))

⇒ ( ′ePubAct × ′ePrivAct) list
and envTransES :: ( ′ePubAct × ′ePrivAct) ⇒ ( ′a ⇒ ′pPubAct)

⇒ ′es ⇒ ′es

+ fixes agents :: ′a list
fixes envInitBits :: ′es list × ( ′a ⇒ ′ps list)
defines envInit-def :

envInit ≡ [ (| es = esf , ps = psf , pubActs = (default, λ-. default) |)
. psf ← listToFuns (snd envInitBits) agents
, esf ← fst envInitBits ]

assumes agents: set agents = UNIV distinct agents

Figure 7: Finite broadcast environments with non-deterministic KBPs, where
the initial private and environment states are independent.

where tObsC-ii-abs t ≡
{ tLast t ′ |t ′. t ′ ∈ SPR.jkbpC ∧ tObsC t ′ = tObsC t }

definition
agent-ii-abs :: ′a ⇒ ( ′a, ′ePubAct, ′es, ′pPubAct, ′ps) BEState Trace

⇒ ( ′a, ′ePubAct, ′es, ′pPubAct, ′ps) BEState set
where agent-ii-abs a t ≡
{ tLast t ′ |t ′. t ′ ∈ SPR.jkbpC ∧ spr-jview a t ′ = spr-jview a t }

The simulation is similar to the single-agent case (§7.3); for a given canonical
trace t it pairs the set of worlds that any agent considers possible with the final
state of t:
type-synonym (in −) ( ′a, ′ePubAct, ′es, ′pPubAct, ′ps) SPRstate =
( ′a, ′ePubAct, ′es, ′pPubAct, ′ps) BEState set
× ( ′a, ′ePubAct, ′es, ′pPubAct, ′ps) BEState

definition
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spr-ii-sim :: ( ′a, ′ePubAct, ′es, ′pPubAct, ′ps) BEState Trace
⇒ ( ′a, ′ePubAct, ′es, ′pPubAct, ′ps) SPRstate

where spr-ii-sim ≡ λt. (tObsC-ii-abs t, tLast t)

The Kripke structure over simulated traces is also quite similar:
definition

spr-ii-simRels :: ′a ⇒ ( ′a, ′ePubAct, ′es, ′pPubAct, ′ps) SPRstate Relation
where spr-ii-simRels ≡ λa.
{ (s, s ′) |s s ′. envObs a (snd s) = envObs a (snd s ′) ∧ fst s = fst s ′ }

definition
spr-ii-simVal :: ( ′a, ′ePubAct, ′es, ′pPubAct, ′ps) SPRstate ⇒ ′p ⇒ bool

where spr-ii-simVal ≡ envVal ◦ snd

abbreviation
spr-ii-simMC ≡ mkKripke (spr-ii-sim ‘ SPR.jkbpC ) spr-ii-simRels spr-ii-simVal

The proofs that this simulation is adequate are similar to those in the previous
section. We elide the details.
lemma spr-ii-sim: sim SPR.MC spr-ii-simMC spr-ii-sim
end

sublocale FiniteBroadcastEnvironmentIndependentInit
< SPRii: SimIncrEnvironment jkbp envInit envAction envTrans envVal

spr-jview envObs spr-jviewInit spr-jviewIncr
spr-ii-sim spr-ii-simRels spr-ii-simVal

8 Examples
We demonstrate the theory by using Isabelle’s code generator to run it on two
standard examples: the Robot from §1, and the classic muddy children puzzle.

8.1 The Robot
Recall the autonomous robot of §1: we are looking for an implementation of the
KBP:

do
[] Krobot goal → Halt
[] ¬Krobot goal → Nothing

od

in an environment where positions are identified with the natural numbers, the
robot’s sensor is within one of the position, and the proposition goal is true
when the position is in {2, 3, 4}. The robot is initially at position zero, and
the effect of its Halt action is to cause the robot to instantaneously stop at its
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Figure 8: The implementation of the robot using the clock semantics.

current position. A later Nothing action may allow the environment to move
the robot further to the right.
To obtain a finite environment, we truncate the number line at 5, which is in-
tuitively sound for determinining the robot’s behaviour due to the synchronous
view, and the fact that if it reaches this rightmost position then it can never
satisfy its objective. Running the Haskell code generated by Isabelle yields the
automata shown in Figure 8 and Figure 9 for the clock and synchronous per-
fect recall semantics respectively. These have been minimised using Hopcroft’s
algorithm (Gries 1973).
The (inessential) labels on the states are an upper bound on the set of posi-
tions that the robot considers possible when it is in that state. Transitions are
annotated with the observations yielded by the sensor. Double-circled states
are those in which the robot performs the Halt action, the others Nothing. We
observe that the synchronous perfect-recall view yields a “ratchet” protocol, i.e.
if the robot learns that it is in the goal region then it halts for all time, and that
it never overshoots the goal region. Conversely the clock semantics allows the
robot to infinitely alternate its actions depending on the sensor reading. This is
effectively the behaviour of the intuitive implementation that halts iff the sensor
reads three or more.
We can also see that minimisation does not yield the smallest automata we could
hope for; in particular there are a lot of redundant states where the prescribed
behaviour is the same but the robot’s state of knowledge different. This is be-
cause our implementations do not specify what happens on invalid observations,
which we have modelled as errors instead of don’t-cares, and these extraneous
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Figure 9: The implementation of the robot using the SPR semantics.

distinctions are preserved by bisimulation reduction. We discuss this further in
§??.

8.2 The Muddy Children
Our first example of a multi-agent broadcast scenario is the classic muddy chil-
dren puzzle, one of a class of such puzzles that exemplify non-obvious reasoning
about mutual states of knowledge. It goes as follows (Fagin et al. 1995, §1.1,
Example 7.2.5):

N children are playing together, k of whom get mud on their
foreheads. Each can see the mud on the others’ foreheads but not
their own.

A parental figure appears and says “At least one of you has mud
on your forehead.”, expressing something already known to each of
them if k > 1.

The parental figure then asks “Does any of you know whether
you have mud on your own forehead?” over and over.

Assuming the children are perceptive, intelligent, truthful and
they answer simultaneously, what will happen?

This puzzle relies essentially on synchronous public broadcasts making particular
facts common knowledge, and that agents are capable of the requisite logical
inference.
As the mother has complete knowledge of the situation, we integrate her be-
haviour into the environment. Each agent childi reasons with the following
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KBP:

do

[] K̂childi
muddyi → Say “I know if my forehead is muddy”

[] ¬K̂childi
muddyi → Say nothing

od

where K̂aϕ abbreviates Kaϕ ∨ Ka¬ϕ.
As this protocol is deterministic, we use the SPR algorithm of §7.4.

CC

KKK

CC
KNN

CM
NNK

NNN

MC

NKN

NNN

MM NNN

KNK

KKN

NNN

NKK

Figure 10: The protocol of child0.

The model records a child’s initial ob-
servation of the mother’s pronounce-
ment and the muddiness of the other
children in her initial private state,
and these states are not changed by
envTrans. The recurring common ob-
servation is all of the children’s public
responses to the mother’s questions.
Being able to distinguish these ob-
servations is crucial to making this a
broadcast scenario.
Running the algorithm for three chil-
dren and minimising using Hopcroft’s
algorithm yields the automaton in
Figure 10 for child0. The initial tran-
sitions are labelled with the initial ob-
servation, i.e., the cleanliness “C” or
muddiness “M” of the other two children. The dashed initial transition covers
the case where everyone is clean; in the others the mother has announced that
someone is dirty. Later transitions simply record the actions performed by each
of the agents, where “K” is the first action in the above KBP, and “N” the
second. Double-circled states are those in which child0 knows whether she is
muddy, and single-circled where she does not.
In essence the child counts the number of muddy foreheads she sees and waits
that many rounds before announcing that she knows.
Note that a solution to this puzzle is beyond the reach of the clock semantics
as it requires (in general) remembering the sequence of previous broadcasts of
length proportional to the number of children. We discuss this further in §??.

9 Perspective and related work
The most challenging and time-consuming aspect of mechanising this theory
was making definitions suitable for the code generator. For example, we could
have used a locale to model the interface to the maps in §6.9, but as as the code
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generator presently does not cope with functions arising from locale interpreta-
tion, we are forced to say things at least twice if we try to use both features, as
we implicitly did in §6.9. Whether it is more convenient or even necessary to
use a record and predicate or a locale presently requires experimentation and
guidance from experienced users.
As reflected by the traffic on the Isabelle mailing list, a common stumbling
block when using the code generator is the treatment of sets. The existing
libraries are insufficiently general: Florian Haftmann’s Cset theory1 does not
readily support a choice operator, such as the one we used in §??. Even the
heroics of the Isabelle Collections Framework Lammich and Lochbihler (2010)
are insufficient as there equality on keys is structural (i.e., HOL equality), forcing
us to either use a canonical representation (such as ordered distinct lists) or redo
the relevant proofs with reified operations (equality, orderings, etc.). Neither of
these is satisfying from the perspective of reuse.
Working with suitably general theories, e.g., using data refinement, is difficult as
the simplifier is significantly less helpful for reasoning under abstract quotients,
such as those in §6.9; what could typically be shown by equational rewriting now
involves reasoning about existentials. For this reason we have only allowed some
types to be refined; the representations of observations and system states are
constant throughout our development, which may preclude some optimisations.
The recent work of Kaliszyk and Urban Kaliszyk and Urban (2011) addresses
these issues for concrete quotients, but not for the abstract ones that arise in
this kind of top-down development.
As for the use of knowledge in formally reasoning about systems, this and sim-
ilar semantics are under increasing scrutiny due to their relation to security
properties. Despite the explosion in number of epistemic model checkers van
Eijck and Orzan (2005); Gammie and van der Meyden (2004); Kacprzak et al.
(2008); Lomuscio et al. (2009), finding implementations of knowledge-based pro-
grams remains a substantially manual affair Al-Bataineh and van der Meyden
(2010). A refinement framework has also been developed Bickford et al. (2004);
Engelhardt et al. (2000).
The theory presented here supports a more efficient implementation using sym-
bolic techniques, ala MCK; recasting the operations of the SimEnvironment lo-
cale into boolean decision diagrams is straightforward. It is readily generalised
to other synchronous views, as alluded to in §7.3, and adding a common knowl-
edge modality, useful for talking about consensus (Fagin et al. 1995, Chapter 6),
is routine. We hope that such an implementation will lead to more exploration
of the KBP formalism.
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