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Abstract
This submission contains theories that lead to a formalization of the

proof of the Jordan-Hölder theorem about composition series of finite
groups. The theories formalize the notions of isomorphism classes of
groups, simple groups, normal series, composition series, maximal nor-
mal subgroups. Furthermore, they provide proofs of the second isomor-
phism theorem for groups, the characterization theorem for maximal
normal subgroups as well as many useful lemmas about normal sub-
groups and factor groups. The formalization is based on the work work
in my first AFP submission [vR14] while the proof of the Jordan-Hölder
theorem itself is inspired by course notes of Stuart Rankin [Ran05].
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theory MaximalNormalSubgroups
imports HOL−Algebra.Algebra
begin

1 Facts about maximal normal subgroups

A maximal normal subgroup of G is a normal subgroup which is not con-
tained in other any proper normal subgroup of G.
locale max-normal-subgroup = normal +
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assumes proper : H 6= carrier G
assumes max-normal:

∧
J . J C G =⇒ J 6= H =⇒ J 6= carrier G =⇒ ¬ (H ⊆

J )

Another characterization of maximal normal subgroups: The factor group is
simple.
theorem (in normal) max-normal-simple-quotient:

assumes finite: finite (carrier G)
shows max-normal-subgroup H G = simple-group (G Mod H )

〈proof 〉

end

theory CompositionSeries
imports

MaximalNormalSubgroups Secondary-Sylow.SndSylow
begin

hide-const (open) Divisibility.prime

2 Normal series and Composition series
2.1 Preliminaries

A subgroup which is unique in cardinality is normal:
lemma (in group) unique-sizes-subgrp-normal:

assumes fin: finite (carrier G)
assumes ∃ !Q. Q ∈ subgroups-of-size q
shows (THE Q. Q ∈ subgroups-of-size q) C G

〈proof 〉

A group whose order is the product of two distinct primes p and q where
p < q has a unique subgroup of size q:
lemma (in group) pq-order-unique-subgrp:

assumes finite: finite (carrier G)
assumes orderG: order G = q ∗ p
assumes primep: prime p and primeq: prime q and pq: p < q
shows ∃ !Q. Q ∈ (subgroups-of-size q)

〈proof 〉

... And this unique subgroup is normal.
corollary (in group) pq-order-subgrp-normal:

assumes finite: finite (carrier G)
assumes orderG: order G = q ∗ p
assumes primep: prime p and primeq: prime q and pq: p < q
shows (THE Q. Q ∈ subgroups-of-size q) C G
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〈proof 〉

The trivial subgroup is normal in every group.
lemma (in group) trivial-subgroup-is-normal:

shows {1} C G
〈proof 〉

2.2 Normal Series

We define a normal series as a locale which fixes one group G and a list
G of subsets of G’s carrier. This list must begin with the trivial subgroup,
end with the carrier of the group itself and each of the list items must be a
normal subgroup of its successor.
locale normal-series = group +

fixes G
assumes notempty: G 6= []
assumes hd: hd G = {1}
assumes last: last G = carrier G
assumes normal:

∧
i. i + 1 < length G =⇒ (G ! i) C G(|carrier := G ! (i +

1 )|)

lemma (in normal-series) is-normal-series: normal-series G G 〈proof 〉

For every group there is a "trivial" normal series consisting only of the group
itself and its trivial subgroup.
lemma (in group) trivial-normal-series:

shows normal-series G [{1}, carrier G]
〈proof 〉

We can also show that the normal series presented above is the only such
with a length of two:
lemma (in normal-series) length-two-unique:

assumes length G = 2
shows G = [{1}, carrier G]

〈proof 〉

We can construct new normal series by expanding existing ones: If we append
the carrier of a group G to a normal series for a normal subgroup H C G
we receive a normal series for G.
lemma (in group) normal-series-extend:

assumes normal: normal-series (G(|carrier := H |)) H
assumes HG: H C G
shows normal-series G (H @ [carrier G])

〈proof 〉

All entries of a normal series for G are subgroups of G.
lemma (in normal-series) normal-series-subgroups:
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shows i < length G =⇒ subgroup (G ! i) G
〈proof 〉

The second to last entry of a normal series is a normal subgroup of G.
lemma (in normal-series) normal-series-snd-to-last:

shows G ! (length G − 2 ) C G
〈proof 〉

Just like the expansion of normal series, every prefix of a normal series is
again a normal series.
lemma (in normal-series) normal-series-prefix-closed:

assumes i ≤ length G and 0 < i
shows normal-series (G(|carrier := G ! (i − 1 )|)) (take i G)

〈proof 〉

If a group’s order is the product of two distinct primes p and q, where p <
q, we can construct a normal series using the only subgroup of size q.
lemma (in group) pq-order-normal-series:

assumes finite: finite (carrier G)
assumes orderG: order G = q ∗ p
assumes primep: prime p and primeq: prime q and pq: p < q
shows normal-series G [{1}, (THE H . H ∈ subgroups-of-size q), carrier G]

〈proof 〉

The following defines the list of all quotient groups of the normal series:
definition (in normal-series) quotients

where quotients = map (λi. G(|carrier := G ! (i + 1 )|) Mod G ! i) [0 ..<((length
G) − 1 )]

The list of quotient groups has one less entry than the series itself:
lemma (in normal-series) quotients-length:

shows length quotients + 1 = length G
〈proof 〉

lemma (in normal-series) last-quotient:
assumes length G > 1
shows last quotients = G Mod G ! (length G − 1 − 1 )

〈proof 〉

The next lemma transports the constituting properties of a normal series
along an isomorphism of groups.
lemma (in normal-series) normal-series-iso:

assumes H : group H
assumes iso: Ψ ∈ iso G H
shows normal-series H (map (image Ψ) G)

〈proof 〉
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2.3 Composition Series

A composition series is a normal series where all consecutive factor groups
are simple:
locale composition-series = normal-series +

assumes simplefact:
∧

i. i + 1 < length G =⇒ simple-group (G(|carrier := G
! (i + 1 )|) Mod G ! i)

lemma (in composition-series) is-composition-series:
shows composition-series G G

〈proof 〉

A composition series for a group G has length one if and only if G is the
trivial group.
lemma (in composition-series) composition-series-length-one:

shows (length G = 1 ) = (G = [{1}])
〈proof 〉

lemma (in composition-series) composition-series-triv-group:
shows (carrier G = {1}) = (G = [{1}])

〈proof 〉

The inner elements of a composition series may not consist of the trivial
subgroup or the group itself.
lemma (in composition-series) inner-elements-not-triv:

assumes i + 1 < length G
assumes i > 0
shows G ! i 6= {1}

〈proof 〉

A composition series of a simple group always is its trivial one.
lemma (in composition-series) composition-series-simple-group:

shows (simple-group G) = (G = [{1}, carrier G])
〈proof 〉

Two consecutive elements in a composition series are distinct.
lemma (in composition-series) entries-distinct:

assumes finite: finite (carrier G)
assumes i: i + 1 < length G
shows G ! i 6= G ! (i + 1 )

〈proof 〉

The normal series for groups of order p ∗ q is even a composition series:
lemma (in group) pq-order-composition-series:

assumes finite: finite (carrier G)
assumes orderG: order G = q ∗ p
assumes primep: prime p and primeq: prime q and pq: p < q
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shows composition-series G [{1}, (THE H . H ∈ subgroups-of-size q), carrier G]
〈proof 〉

Prefixes of composition series are also composition series.
lemma (in composition-series) composition-series-prefix-closed:

assumes i ≤ length G and 0 < i
shows composition-series (G(|carrier := G ! (i − 1 )|)) (take i G)

〈proof 〉

The second element in a composition series is simple group.
lemma (in composition-series) composition-series-snd-simple:

assumes 2 ≤ length G
shows simple-group (G(|carrier := G ! 1 |))

〈proof 〉

As a stronger way to state the previous lemma: An entry of a composition
series is simple if and only if it is the second one.
lemma (in composition-series) composition-snd-simple-iff :

assumes i < length G
shows (simple-group (G(|carrier := G ! i|))) = (i = 1 )

〈proof 〉

The second to last entry of a normal series is not only a normal subgroup
but actually even a maximal normal subgroup.
lemma (in composition-series) snd-to-last-max-normal:

assumes finite: finite (carrier G)
assumes length: length G > 1
shows max-normal-subgroup (G ! (length G − 2 )) G

〈proof 〉

For the next lemma we need a few facts about removing adjacent duplicates.
lemma remdups-adj-obtain-adjacency:

assumes i + 1 < length (remdups-adj xs) length xs > 0
obtains j where j + 1 < length xs
(remdups-adj xs) ! i = xs ! j (remdups-adj xs) ! (i + 1 ) = xs ! (j + 1 )

〈proof 〉

lemma hd-remdups-adj[simp]: hd (remdups-adj xs) = hd xs
〈proof 〉

lemma remdups-adj-adjacent:
Suc i < length (remdups-adj xs) =⇒ remdups-adj xs ! i 6= remdups-adj xs ! Suc i

〈proof 〉

Intersecting each entry of a composition series with a normal subgroup of G
and removing all adjacent duplicates yields another composition series.
lemma (in composition-series) intersect-normal:
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assumes finite: finite (carrier G)
assumes KG: K C G
shows composition-series (G(|carrier := K |)) (remdups-adj (map (λH . K ∩ H )

G))
〈proof 〉

lemma (in group) composition-series-extend:
assumes composition-series (G(|carrier := H |)) H
assumes simple-group (G Mod H ) H C G
shows composition-series G (H @ [carrier G])

〈proof 〉

lemma (in composition-series) entries-mono:
assumes i ≤ j j < length G
shows G ! i ⊆ G ! j

〈proof 〉

end

theory GroupIsoClasses
imports

HOL−Algebra.Coset
begin

3 Isomorphism Classes of Groups

We construct a quotient type for isomorphism classes of groups.
typedef ′a group = {G :: ′a monoid. group G}
〈proof 〉

definition group-iso-rel :: ′a group ⇒ ′a group ⇒ bool
where group-iso-rel G H = (∃ϕ. ϕ ∈ iso (Rep-group G) (Rep-group H ))

quotient-type ′a group-iso-class = ′a group / group-iso-rel
morphisms Rep-group-iso Abs-group-iso

〈proof 〉

This assigns to a given group the group isomorphism class
definition (in group) iso-class :: ′a group-iso-class

where iso-class = Abs-group-iso (Abs-group (monoid.truncate G))

Two isomorphic groups do indeed have the same isomorphism class:
lemma iso-classes-iff :

assumes group G
assumes group H
shows (∃ϕ. ϕ ∈ iso G H ) = (group.iso-class G = group.iso-class H )

〈proof 〉
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end

theory JordanHolder
imports

CompositionSeries
MaximalNormalSubgroups
HOL−Library.Multiset
GroupIsoClasses

begin

4 The Jordan-Hölder Theorem
locale jordan-hoelder = group
+ compH?: composition-series G H
+ compG?: composition-series G G for H and G
+ assumes finite: finite (carrier G)

Before we finally start the actual proof of the theorem, one last lemma:
Cancelling the last entry of a normal series results in a normal series with
quotients being all but the last of the original ones.
lemma (in normal-series) quotients-butlast:

assumes length G > 1
shows butlast quotients = normal-series.quotients (G(|carrier := G ! (length G

− 1 − 1 )|)) (take (length G − 1 ) G)
〈proof 〉

The main part of the Jordan Hölder theorem is its statement about the
uniqueness of a composition series. Here, uniqueness up to reordering and
isomorphism is modelled by stating that the multisets of isomorphism classes
of all quotients are equal.
theorem jordan-hoelder-multisets:

assumes group G
assumes finite (carrier G)
assumes composition-series G G
assumes composition-series G H
shows mset (map group.iso-class (normal-series.quotients G G))
= mset (map group.iso-class (normal-series.quotients G H))

〈proof 〉

As a corollary, we see that the composition series of a fixed group all have
the same length.
corollary (in jordan-hoelder) jordan-hoelder-size:

shows length G = length H
〈proof 〉

end
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