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Abstract

This document presents the formalization of an object-oriented data and store model in
Isabelle/HOL. This model is being used in the Java Interactive Verification Environment,
Jive.
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1 Introduction

Jive [MPH00, Jiv] is a verification system that is being developed at the University of Kai-
serslautern and at the ETH Zürich. It is an interactive special-purpose theorem prover for
the verification of object-oriented programs on the basis of a partial-correctness Hoare-style
programming logic. Jive operates on Java-KE [PHGR05], a desugared subset of sequential
Java which contains all important features of object-oriented languages (subtyping, exceptions,
static and dynamic method invocation, etc.). Jive is written in Java and currently has a size
of about 40,000 lines of code.
Jive is able to operate on completely unannotated programs, allowing the user to dynamically
add specifications. It is also possible to preliminarily annotate programs with invariants, pre-
and postconditions using the specification language JML [LBR99]. In practice, a mixture of both
techniques is employed, in which the user extends and refines the pre-annotated specifications
during the verification process. The program to be verified, together with the specifications, is
translated to Hoare sequents. Program and pre-annotated specifications are translated during
startup, while the dynamically added specifications are translated whenever they are entered
by the user. Hoare sequents have the shape A |B { P } pp { Q } and express that for all states
S that fulfill P, if the execution of the program part pp terminates, the state that is reached
when pp has been evaluated in S must fulfill Q. The so-called assumptions A are used to prove
recursive methods.
Jive’s logic contains so-called Hoare rules and axioms. The rules consist of one or more Hoare
sequents that represent the assumptions of the rule, and a Hoare sequent which is the conclusion
of the rule. Axioms consist of only one Hoare sequent; they do not have assumptions. Therefore,
axioms represent the known facts of the Hoare logic.
To prove a program specification, the user directly works on the program source code. Proofs
can be performed in backward direction and in forward direction. In backward direction, an
initial open proof goal is reduced to new, smaller open subgoals by applying a rule. This process
is repeated for the smaller subgoals until eventually each open subgoal can be closed by the
application of an axiom. If all open subgoals are proven by axioms, the initial goal is proven as
well.
In forward direction, the axioms can be used to establish known facts about the statements of
a given program. The rules are then used to produce new facts from these already known facts.
This way, facts can be constructed for parts of the program.
A large number of the rules and axioms of the Hoare logic is related to the structure of the
program part that is currently being examined. Besides these, the logic also contains rules that
manipulate the pre- or postcondition of the examined subgoal without affecting the current
program part selection. A prominent member of this kind of rules is the rule of consequence1:

PP⇒ P A |B { P } pp { Q } Q⇒ QQ
A |B { PP } pp { QQ }

It plays a special role in the Hoare logic because it additionally requires implications between
stronger and weaker conditions to be proven. If a Jive proof contains an application of the
rule of consequence, the implication is attached to the proof tree node that documents this rule
application; these attachments are called lemmas. Jive sends these lemmas to an associated

1In Jive, the rule of consequence is part of a larger rule which serves several purposes at once. Since we want
to focus on the rule of consequence, we left out the parts that are irrelevant in this context.
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general purpose theorem prover where the user is required to prove them. Currently, Jive
supports Isabelle/HOL as associated prover. It is required that all lemmas that are attached
to any node of a proof tree are proven before the initial goal of the proof tree is accepted as
being proven.
In order to prove these logical predicates, Isabelle/HOL needs a data and store model of
Java-KE. This model acts as an interface between Jive and Isabelle/HOL.
The first paper-and-pencil formalization of the data and store model was given in Arnd Poetzsch-
Heffter’s habilitation thesis [PH97, Sect. 3.1.2]. The first machine-supported formalization was
performed in PVS by Peter Müller, by translating the axioms given in [PH97] to axioms in
PVS. The formalization presented in this report extends the PVS formalization. The axioms
have been replaced by conservative extensions and proven lemmas, thus there is no longer any
possibility to accidentally introduce unsoundness.
Some changes were made to the PVS theories during the conversion. Some were caused due to
the differences in the tools Isabelle/HOL and PVS, but some are more conceptional. Here is
a list of the major changes.

• In PVS, function arguments were sometimes restricted to subtypes. In Isabelle/HOL,
unintended usage of functions is left unspecified.

• In PVS, the program-independent theories were parameterized by the datatypes that were
generated for the program to be verified. In Isabelle/HOL, we just build on the gen-
erated theories. This makes the whole setting easier. The drawback is that we have to
run the theories for each program we want to verify. But the proof scripts are designed
in a way that they will work if the basic program-dependent theories are generated in
the proper way. Since we can create an image of a proof session before starting actual
verification we do not run into time problems either.

• The subtype relation is based on the direct subtype relation between classes and interfaces.
We prove that subtyping forms a partial order. In the PVS version subtyping was expressed
by axioms that described the subtype relation for the types appearing in the Java program
to be verified.

Besides these changes we also added new concepts to the model. We can now deal with static
fields and arrays. This way, the model supports programming languages that are much richer
than Java-KE to allow for future extensions of Jive.
Please note that although the typographic conventions in Isabelle suggest that constructors start
with a capital letter while types do not, we kept the capitalization as it was before (which means
that types start with a capital letter while constructors usually do not) to keep the naming more
uniform across the various Jive-related publications.
The theories presented in this report require the use of Isabelle 2005. The proofs of lemmas
are skipped in the presentation to keep it compact. The full proofs can be found in the original
Isabelle theories.
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2 Theory Dependencies

Attributes

AttributesIndep

DirectSubtypes

JML

JavaType

Location

Store

StoreProperties

Subtype

TypeIds

UnivSpec

Value

[HOL]

[Pure]

[Tools]

The theories “TypeIds”, “DirectSubtypes”, “Attributes” and “UnivSpec” are program-dependent
and are generated by the Jive tool. The program-dependent theories presented in this report
are just examples and act as placeholders. The theories are stored in four different directories:

Isabelle:
JavaType.thy
Subtype.thy
Value.thy
JML.thy

Isabelle_Store:
AttributesIndep.thy
Location.thy
Store.thy
StoreProperties.thy

Isa_〈Prog〉:
TypeIds.thy
DirectSubtypes.thy
UnivSpec.thy

Isa_〈Prog〉_Store:
Attributes.thy
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In this naming convention, the suffix “_Store” denotes those theories that depend on the actual
realization of the Store. They have been separated in order to allow for easy exchanging of the
Store realization. The midfix “〈Prog〉” denotes the name of the program for which the program-
dependent theories have been generated. This way, different program-dependent theories can
reside side-by-side without conflicts.
These four directories have to be added to the ML path before loading UnivSpec. This can be
done in a setup theory with the following command (here applied to a program called Counter):

ML {*
add_path "<PATH_TO_THEORIES>/Isabelle";
add_path "<PATH_TO_THEORIES>/Isabelle_Store";
add_path "<PATH_TO_THEORIES>/Isa_Counter";
add_path "<PATH_TO_THEORIES>/Isa_Counter_Store";
*}

This way, one can select the program-dependent theories for the program that currently is to
be proven.

3 The Example Program

The program-dependent theories are generated for the following example program:

interface Counter {

public int incr();

public int reset();
}

class CounterImpl implements Counter {
protected int value;

public int incr()
{

int dummy;
res = this.value;
res = (int) res + 1;
this.value = res;

}

public int reset()
{

int dummy;
this.value=0;
res = (int) 0;

}
}

class UndoCounter extends CounterImpl {
private int save;
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public int incr()
{

int dummy;
res = this.value;
this.save = res;
res = res + 1;
this.value = res;

}

public int un_do()
{

int res2;
res = this.save;
res2 = this.value;
this.value = res;
this.save = res2;

}
}

4 TypeIds
theory TypeIds imports Main begin

This theory contains the program specific names of abstract and concrete classes and interfaces.
It has to be generated for each program we want to verify. The following classes are an example
taken from the program given in Sect. 3. They are complemented by the classes that are known
to exist in each Java program implicitly, namely Object, Exception, ClassCastException and
NullPointerException. The example program does not contain any abstract classes, but since
we cannot formalize datatypes without constructors, we have to insert a dummy class which we
call Dummy.
The datatype CTypeId must contain a constructor called Object because subsequent proofs in
the Subtype theory rely on it.
datatype CTypeId = CounterImpl | UndoCounter

| Object | Exception | ClassCastException | NullPointerException
— The last line contains the classes that exist in every program by default.

datatype ITypeId = Counter
datatype ATypeId = Dummy

— we cannot have an empty type.

Why do we need different datatypes for the different type identifiers? Because we want to be
able to distinguish the different identifier kinds. This has a practical reason: If we formalize
objects as "ObjectId × TypeId" and if we quantify over all objects, we get a lot of objects that
do not exist, namely all objects that bear an interface type identifier or abstract class identifier.
This is not very helpful. Therefore, we separate the three identifier kinds from each other.
end

5 Java-Type
theory JavaType imports ../Isa-Counter/TypeIds
begin
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This theory formalizes the types that appear in a Java program. Note that the types defined by
the classes and interfaces are formalized via their identifiers. This way, this theory is program-
independent.

We only want to formalize one-dimensional arrays. Therefore, we describe the types that can
be used as element types of arrays. This excludes the null type and array types themselves.
This way, we get a finite number of types in our type hierarchy, and the subtype relations can
be given explicitly (see Sec. 6). If desired, this can be extended in the future by using Javatype
as argument type of the ArrT type constructor. This will yield infinitely many types.
datatype Arraytype = BoolAT | IntgAT | ShortAT | ByteAT

| CClassAT CTypeId | AClassAT ATypeId
| InterfaceAT ITypeId

datatype Javatype = BoolT | IntgT | ShortT | ByteT | NullT | ArrT Arraytype
| CClassT CTypeId | AClassT ATypeId
| InterfaceT ITypeId

We need a function that widens Arraytype to Javatype.
definition

at2jt :: Arraytype ⇒ Javatype
where

at2jt at = (case at of
BoolAT ⇒ BoolT
| IntgAT ⇒ IntgT
| ShortAT ⇒ ShortT
| ByteAT ⇒ ByteT
| CClassAT CTypeId ⇒ CClassT CTypeId
| AClassAT ATypeId ⇒ AClassT ATypeId
| InterfaceAT ITypeId ⇒ InterfaceT ITypeId)

We define two predicates that separate the primitive types and the class types.
primrec isprimitive:: Javatype ⇒ bool
where
isprimitive BoolT = True |
isprimitive IntgT = True |
isprimitive ShortT = True |
isprimitive ByteT = True |
isprimitive NullT = False |
isprimitive (ArrT T ) = False |
isprimitive (CClassT c) = False |
isprimitive (AClassT c) = False |
isprimitive (InterfaceT i) = False

primrec isclass:: Javatype ⇒ bool
where
isclass BoolT = False |
isclass IntgT = False |
isclass ShortT = False |
isclass ByteT = False |
isclass NullT = False |
isclass (ArrT T ) = False |
isclass (CClassT c) = True |
isclass (AClassT c) = True |
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isclass (InterfaceT i) = False

end

6 The Direct Subtype Relation of Java Types
theory DirectSubtypes
imports ../Isabelle/JavaType
begin

In this theory, we formalize the direct subtype relations of the Java types (as defined in Sec.
4) that appear in the program to be verified. Thus, this theory has to be generated for each
program.

We have the following type hierarchy:

Object

Counter Exception

Undo-
Counter

NullPointer-
Exception

ClassCast-
ExceptionCounterImpl

Dummy

We need to describe all direct subtype relations of this type hierarchy. As you can see in
the picture, all unnecessary direct subtype relations can be ignored, e.g. the subclass relation
between CounterImpl and Object, because it is added transitively by the widening relation of
types (see Sec. 7.2).

We have to specify the direct subtype relation between

• each “leaf” class or interface and its subtype NullT

• each “root” class or interface and its supertype Object

• each two types that are direct subtypes as specified in the code by extends or implements

• each array type of a primitive type and its subtype NullT

• each array type of a primitive type and its supertype Object

• each array type of a “leaf” class or interface and its subtype NullT

• the array type Object[] and its supertype Object
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• two array types if their element types are in a subtype hierarchy

definition direct-subtype :: (Javatype ∗ Javatype) set where
direct-subtype =
{ (NullT , AClassT Dummy),
(NullT , CClassT UndoCounter),
(NullT , CClassT NullPointerException),
(NullT , CClassT ClassCastException),

(AClassT Dummy, CClassT Object),
(InterfaceT Counter , CClassT Object),
(CClassT Exception, CClassT Object),

(CClassT UndoCounter , CClassT CounterImpl),
(CClassT CounterImpl, InterfaceT Counter),
(CClassT NullPointerException, CClassT Exception),
(CClassT ClassCastException, CClassT Exception),

(NullT , ArrT BoolAT ),
(NullT , ArrT IntgAT ),
(NullT , ArrT ShortAT ),
(NullT , ArrT ByteAT ),
(ArrT BoolAT , CClassT Object),
(ArrT IntgAT , CClassT Object),
(ArrT ShortAT , CClassT Object),
(ArrT ByteAT , CClassT Object),

(NullT , ArrT (AClassAT Dummy)),
(NullT , ArrT (CClassAT UndoCounter)),
(NullT , ArrT (CClassAT NullPointerException)),
(NullT , ArrT (CClassAT ClassCastException)),

(ArrT (CClassAT Object), CClassT Object),

(ArrT (AClassAT Dummy), ArrT (CClassAT Object)),
(ArrT (CClassAT CounterImpl), ArrT (InterfaceAT Counter)),
(ArrT (InterfaceAT Counter), ArrT (CClassAT Object)),
(ArrT (CClassAT Exception), ArrT (CClassAT Object)),
(ArrT (CClassAT UndoCounter), ArrT (CClassAT CounterImpl)),
(ArrT (CClassAT NullPointerException), ArrT (CClassAT Exception)),
(ArrT (CClassAT ClassCastException), ArrT (CClassAT Exception))
}

This lemma is used later in the Simplifier.
lemma direct-subtype:
(NullT , AClassT Dummy) ∈ direct-subtype
(NullT , CClassT UndoCounter) ∈ direct-subtype
(NullT , CClassT NullPointerException) ∈ direct-subtype
(NullT , CClassT ClassCastException) ∈ direct-subtype

(AClassT Dummy, CClassT Object) ∈ direct-subtype
(InterfaceT Counter , CClassT Object) ∈ direct-subtype
(CClassT Exception, CClassT Object) ∈ direct-subtype
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(CClassT UndoCounter , CClassT CounterImpl) ∈ direct-subtype
(CClassT CounterImpl, InterfaceT Counter) ∈ direct-subtype
(CClassT NullPointerException, CClassT Exception) ∈ direct-subtype
(CClassT ClassCastException, CClassT Exception) ∈ direct-subtype

(NullT , ArrT BoolAT ) ∈ direct-subtype
(NullT , ArrT IntgAT ) ∈ direct-subtype
(NullT , ArrT ShortAT ) ∈ direct-subtype
(NullT , ArrT ByteAT ) ∈ direct-subtype
(ArrT BoolAT , CClassT Object) ∈ direct-subtype
(ArrT IntgAT , CClassT Object) ∈ direct-subtype
(ArrT ShortAT , CClassT Object) ∈ direct-subtype
(ArrT ByteAT , CClassT Object) ∈ direct-subtype

(NullT , ArrT (AClassAT Dummy)) ∈ direct-subtype
(NullT , ArrT (CClassAT UndoCounter)) ∈ direct-subtype
(NullT , ArrT (CClassAT NullPointerException)) ∈ direct-subtype
(NullT , ArrT (CClassAT ClassCastException)) ∈ direct-subtype

(ArrT (CClassAT Object), CClassT Object) ∈ direct-subtype

(ArrT (AClassAT Dummy), ArrT (CClassAT Object)) ∈ direct-subtype
(ArrT (CClassAT CounterImpl), ArrT (InterfaceAT Counter)) ∈ direct-subtype
(ArrT (InterfaceAT Counter), ArrT (CClassAT Object)) ∈ direct-subtype
(ArrT (CClassAT Exception), ArrT (CClassAT Object)) ∈ direct-subtype
(ArrT (CClassAT UndoCounter), ArrT (CClassAT CounterImpl)) ∈ direct-subtype
(ArrT (CClassAT NullPointerException), ArrT (CClassAT Exception)) ∈ direct-subtype
(ArrT (CClassAT ClassCastException), ArrT (CClassAT Exception)) ∈ direct-subtype
by (simp-all add: direct-subtype-def )

end

7 Widening the Direct Subtype Relation
theory Subtype
imports ../Isa-Counter/DirectSubtypes
begin

In this theory, we define the widening subtype relation of types and prove that it is a partial
order.

7.1 Auxiliary lemmas

These general lemmas are not especially related to Jive. They capture some useful properties of
general relations.
lemma distinct-rtrancl-into-trancl:

assumes neq-x-y: x 6=y
assumes x-y-rtrancl: (x,y) ∈ r∗

shows (x,y) ∈ r+

using x-y-rtrancl neq-x-y
proof (induct)

assume x 6=x thus (x, x) ∈ r+ by simp
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next
fix y z
assume x-y-rtrancl: (x, y) ∈ r∗

assume y-z-r : (y, z) ∈ r
assume x 6= y =⇒ (x, y) ∈ r+

assume x 6= z
from x-y-rtrancl
show (x, z) ∈ r+

proof (cases)
assume x=y
with y-z-r have (x,z) ∈ r by simp
thus (x,z) ∈ r+..

next
fix w
assume (x, w) ∈ r∗

moreover assume (w, y) ∈ r
ultimately have (x,y) ∈ r+

by (rule rtrancl-into-trancl1 )
from this y-z-r
show (x, z) ∈ r+..

qed
qed

lemma acyclic-imp-antisym-rtrancl: acyclic r =⇒ antisym (r∗)
proof (clarsimp simp only: acyclic-def antisym-def )

fix x y
assume acyclic: ∀ x. (x, x) /∈ r+

assume x-y: (x, y) ∈ r∗

assume y-x: (y, x) ∈ r∗

show x=y
proof (cases x=y)

case True thus ?thesis .
next

case False
from False x-y have (x, y) ∈ r+

by (rule distinct-rtrancl-into-trancl)
also
from False y-x have (y, x) ∈ r+

by (fastforce intro: distinct-rtrancl-into-trancl)
finally have (x,x) ∈ r+.
with acyclic show ?thesis by simp

qed
qed

lemma acyclic-trancl-rtrancl:
assumes acyclic: acyclic r
shows (x,y) ∈ r+ = ((x,y) ∈ r∗ ∧ x 6=y)

proof
assume x-y-trancl: (x,y) ∈ r+

show (x,y) ∈ r∗ ∧ x 6=y
proof

from x-y-trancl show (x,y) ∈ r∗..
next

from x-y-trancl acyclic show x 6=y by (auto simp add: acyclic-def )
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qed
next

assume (x,y) ∈ r∗ ∧ x 6=y
thus (x,y) ∈ r+

by (auto intro: distinct-rtrancl-into-trancl)
qed

7.2 The Widening (Subtype) Relation of Javatypes

In this section we widen the direct subtype relations specified in Sec. 6. It is done by a calculation
of the transitive closure of the direct subtype relation.

This is the concrete syntax that expresses the subtype relations between all types.
abbreviation

direct-subtype-syntax :: Javatype ⇒ Javatype ⇒ bool (‹- ≺1 -› [71 ,71 ] 70 )
where — direct subtype relation

A ≺1 B == (A,B) ∈ direct-subtype

abbreviation
widen-syntax :: Javatype ⇒ Javatype ⇒ bool (‹- � -› [71 ,71 ] 70 )

where — reflexive transitive closure of direct subtype relation
A � B == (A,B) ∈ direct-subtype∗

abbreviation
widen-strict-syntax :: Javatype ⇒ Javatype ⇒ bool (‹- ≺ -› [71 ,71 ] 70 )

where — transitive closure of direct subtype relation
A ≺ B == (A,B) ∈ direct-subtype+

7.3 The Subtype Relation as Partial Order

We prove the axioms required for partial orders, i.e. reflexivity, transitivity and antisymmetry,
for the widened subtype relation. The direct subtype relation has been defined in Sec. 6. The
reflexivity lemma is added to the Simplifier and to the Classical reasoner (via the attribute iff),
and the transitivity and antisymmetry lemmas are made known as transitivity rules (via the
attribute trans). This way, these lemmas will be automatically used in subsequent proofs.
lemma acyclic-direct-subtype: acyclic direct-subtype
proof (clarsimp simp add: acyclic-def )

fix x show x ≺ x =⇒ False
by (cases x) (fastforce elim: tranclE simp add: direct-subtype-def )+

qed

lemma antisym-rtrancl-direct-subtype: antisym (direct-subtype∗)
using acyclic-direct-subtype by (rule acyclic-imp-antisym-rtrancl)

lemma widen-strict-to-widen: C ≺ D = (C � D ∧ C 6=D)
using acyclic-direct-subtype by (rule acyclic-trancl-rtrancl)

The widening relation on Javatype is reflexive.
lemma widen-refl [iff ]: X � X ..

The widening relation on Javatype is transitive.
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lemma widen-trans [trans] :
assumes a-b: a � b
shows

∧
c. b � c =⇒ a � c

by (insert a-b, rule rtrancl-trans)

The widening relation on Javatype is antisymmetric.
lemma widen-antisym [trans]:

assumes a-b: a � b
assumes b-c: b � a
shows a = b
using a-b b-c antisym-rtrancl-direct-subtype
by (unfold antisym-def ) blast

7.4 Javatype Ordering Properties

The type class ord allows us to overwrite the two comparison operators < and ≤. These are the
two comparison operators on Javatype that we want to use subsequently.

We can also prove that Javatype is in the type class order. For this we have to prove reflexivity,
transitivity, antisymmetry and that < and ≤ are defined in such a way that (x < y) = (x ≤ y
∧ x 6= y) holds. This proof can easily be achieved by using the lemmas proved above and the
definition of less-Javatype-def.
instantiation Javatype:: order
begin

definition
le-Javatype-def : A ≤ B ≡ A � B

definition
less-Javatype-def : A < B ≡ A ≤ B ∧ ¬ B ≤ (A::Javatype)

instance proof
fix x y z:: Javatype
{

show x ≤ x
by (simp add: le-Javatype-def )

next
assume x ≤ y y ≤ z
then show x ≤ z

by (unfold le-Javatype-def ) (rule rtrancl-trans)
next

assume x ≤ y y ≤ x
then show x = y

apply (unfold le-Javatype-def )
apply (rule widen-antisym)
apply assumption +
done

next
show (x < y) = (x ≤ y ∧ ¬ y ≤ x)

by (simp add: less-Javatype-def )
}

qed
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end

7.5 Enhancing the Simplifier
lemmas subtype-defs = le-Javatype-def less-Javatype-def

direct-subtype-def

lemmas subtype-ok-simps = subtype-defs
lemmas subtype-wrong-elims = rtranclE

During verification we will often have to solve the goal that one type widens to the other. So
we equip the simplifier with a special solver-tactic.
lemma widen-asm: (a::Javatype) ≤ b =⇒ a ≤ b

by simp

lemmas direct-subtype-widened = direct-subtype[THEN r-into-rtrancl]

ML ‹
local val ss = simpset-of @{context} in

fun widen-tac ctxt =
resolve-tac ctxt @{thms widen-asm} THEN ′

simp-tac (put-simpset ss ctxt addsimps @{thms le-Javatype-def }) THEN ′

Method.insert-tac ctxt @{thms direct-subtype-widened} THEN ′

simp-tac (put-simpset (simpset-of @{theory-context Transitive-Closure}) ctxt)

end
›

declaration ‹fn - =>
Simplifier .map-ss (fn ss => ss addSolver (mk-solver widen widen-tac))

›

In this solver-tactic, we first try the trivial resolution with widen-asm to check if the actual
subgaol really is a request to solve a subtyping problem. If so, we unfold the comparison
operator, insert the direct subtype relations and call the simplifier.

7.6 Properties of the Subtype Relation

The class Object has to be the root of the class hierarchy, i.e. it is supertype of each concrete
class, abstract class, interface and array type. The proof scripts should run on every correctly
generated type hierarchy.
lemma Object-root: CClassT C ≤ CClassT Object

by (cases C , simp-all)

lemma Object-root-abs: AClassT C ≤ CClassT Object
by (cases C , simp-all)

lemma Object-root-int: InterfaceT C ≤ CClassT Object
by (cases C , simp-all)

lemma Object-root-array: ArrT C ≤ CClassT Object
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proof (cases C )
fix x
assume c: C = CClassAT x
show ArrT C ≤ CClassT Object

using c by (cases x, simp-all)
next

fix x
assume c: C = AClassAT x
show ArrT C ≤ CClassT Object

using c by (cases x, simp-all)
next

fix x
assume c: C = InterfaceAT x
show ArrT C ≤ CClassT Object

using c by (cases x, simp-all)
next

assume c: C = BoolAT
show ArrT C ≤ CClassT Object

using c by simp
next

assume c: C = IntgAT
show ArrT C ≤ CClassT Object

using c by simp
next

assume c: C = ShortAT
show ArrT C ≤ CClassT Object

using c by simp
next

assume c: C = ByteAT
show ArrT C ≤ CClassT Object

using c by simp
qed

If another type is (non-strict) supertype of Object, then it must be the type Object itself.
lemma Object-rootD:

assumes p: CClassT Object ≤ c
shows CClassT Object = c
using p
apply (cases c)
apply (fastforce elim: subtype-wrong-elims simp add: subtype-defs) +
— In this lemma, we only get contradictory cases except for Object itself.

done

The type NullT has to be the leaf of each branch of the class hierarchy, i.e. it is subtype of each
type.
lemma NullT-leaf [simp]: NullT ≤ CClassT C

by (cases C , simp-all)

lemma NullT-leaf-abs [simp]: NullT ≤ AClassT C
by (cases C , simp-all)

lemma NullT-leaf-int [simp]: NullT ≤ InterfaceT C
by (cases C , simp-all)
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lemma NullT-leaf-array: NullT ≤ ArrT C
proof (cases C )

fix x
assume c: C = CClassAT x
show NullT ≤ ArrT C

using c by (cases x, simp-all)
next

fix x
assume c: C = AClassAT x
show NullT ≤ ArrT C

using c by (cases x, simp-all)
next

fix x
assume c: C = InterfaceAT x
show NullT ≤ ArrT C

using c by (cases x, simp-all)
next

assume c: C = BoolAT
show NullT ≤ ArrT C

using c by simp
next

assume c: C = IntgAT
show NullT ≤ ArrT C

using c by simp
next

assume c: C = ShortAT
show NullT ≤ ArrT C

using c by simp
next

assume c: C = ByteAT
show NullT ≤ ArrT C

using c by simp
qed

end

8 Attributes
theory Attributes
imports ../Isabelle/Subtype
begin

This theory has to be generated as well for each program under verification. It defines the
attributes of the classes and various functions on them.
datatype AttId = CounterImpl ′value | UndoCounter ′save
| Dummy ′dummy | Counter ′dummy

The last two entries are only added to demonstrate what is to happen with attributes of abstract
classes and interfaces.

It would be nice if attribute names were generated in a way that keeps them short, so that the
proof state does not get unreadable because of fancy long names. The generation of attribute
names that is performed by the Jive tool should only add the definition class if necessary,



20 8 Attributes

i.e. if there would be a name clash otherwise. For the example above, the class names are not
necessary. One must be careful, though, not to generate names that might clash with names of
free variables that are used subsequently.

The domain type of an attribute is the definition class (or interface) of the attribute.
definition dtype:: AttId ⇒ Javatype where
dtype f = (case f of

CounterImpl ′value ⇒ CClassT CounterImpl
| UndoCounter ′save ⇒ CClassT UndoCounter
| Dummy ′dummy ⇒ AClassT Dummy
| Counter ′dummy ⇒ InterfaceT Counter)

lemma dtype-simps [simp]:
dtype CounterImpl ′value = CClassT CounterImpl
dtype UndoCounter ′save = CClassT UndoCounter
dtype Dummy ′dummy = AClassT Dummy
dtype Counter ′dummy = InterfaceT Counter

by (simp-all add: dtype-def dtype-def dtype-def )

For convenience, we add some functions that directly apply the selectors of the datatype Ja-
vatype.
definition cDTypeId :: AttId ⇒ CTypeId where
cDTypeId f = (case f of

CounterImpl ′value ⇒ CounterImpl
| UndoCounter ′save ⇒ UndoCounter
| Dummy ′dummy ⇒ undefined
| Counter ′dummy ⇒ undefined )

definition aDTypeId:: AttId ⇒ ATypeId where
aDTypeId f = (case f of

CounterImpl ′value ⇒ undefined
| UndoCounter ′save ⇒ undefined
| Dummy ′dummy ⇒ Dummy
| Counter ′dummy ⇒ undefined )

definition iDTypeId:: AttId ⇒ ITypeId where
iDTypeId f = (case f of

CounterImpl ′value ⇒ undefined
| UndoCounter ′save ⇒ undefined
| Dummy ′dummy ⇒ undefined
| Counter ′dummy ⇒ Counter )

lemma DTypeId-simps [simp]:
cDTypeId CounterImpl ′value = CounterImpl
cDTypeId UndoCounter ′save = UndoCounter
aDTypeId Dummy ′dummy = Dummy
iDTypeId Counter ′dummy = Counter

by (simp-all add: cDTypeId-def aDTypeId-def iDTypeId-def )

The range type of an attribute is the type of the value stored in that attribute.
definition rtype:: AttId ⇒ Javatype where
rtype f = (case f of

CounterImpl ′value ⇒ IntgT
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| UndoCounter ′save ⇒ IntgT
| Dummy ′dummy ⇒ NullT
| Counter ′dummy ⇒ NullT )

lemma rtype-simps [simp]:
rtype CounterImpl ′value = IntgT
rtype UndoCounter ′save = IntgT
rtype Dummy ′dummy = NullT
rtype Counter ′dummy = NullT

by (simp-all add: rtype-def rtype-def rtype-def )

With the datatype CAttId we describe the possible locations in memory for instance fields. We
rule out the impossible combinations of class names and field names. For example, a CounterImpl
cannot have a save field. A store model which provides locations for all possible combinations
of the Cartesian product of class name and field name works out fine as well, because we
cannot express modification of such “wrong” locations in a Java program. So we can only prove
useful properties about reasonable combinations. The only drawback in such a model is that
we cannot prove a property like not-treach-ref-impl-not-reach in theory StoreProperties. If the
store provides locations for every combination of class name and field name, we cannot rule
out reachability of certain pointer chains that go through “wrong” locations. That is why we
decided to introduce the new type CAttId.
While AttId describes which fields are declared in which classes and interfaces, CAttId describes
which objects of which classes may contain which fields at run-time. Thus, CAttId makes the
inheritance of fields visible in the formalization.
There is only one such datatype because only objects of concrete classes can be created at
run-time, thus only instance fields of concrete classes can occupy memory.

datatype CAttId = CounterImpl ′CounterImpl ′value | UndoCounter ′CounterImpl ′value
| UndoCounter ′UndoCounter ′save
| CounterImpl ′Counter ′dummy | UndoCounter ′Counter ′dummy

Function catt builds a CAttId from a class name and a field name. In case of the illegal combi-
nations we just return undefined. We can also filter out static fields in catt.
definition catt:: CTypeId ⇒ AttId ⇒ CAttId where
catt C f =
(case C of

CounterImpl ⇒ (case f of
CounterImpl ′value ⇒ CounterImpl ′CounterImpl ′value
| UndoCounter ′save ⇒ undefined
| Dummy ′dummy ⇒ undefined
| Counter ′dummy ⇒ CounterImpl ′Counter ′dummy)

| UndoCounter ⇒ (case f of
CounterImpl ′value ⇒ UndoCounter ′CounterImpl ′value
| UndoCounter ′save ⇒ UndoCounter ′UndoCounter ′save
| Dummy ′dummy ⇒ undefined
| Counter ′dummy ⇒ UndoCounter ′Counter ′dummy)

| Object ⇒ undefined
| Exception ⇒ undefined
| ClassCastException ⇒ undefined
| NullPointerException ⇒ undefined

)
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lemma catt-simps [simp]:
catt CounterImpl CounterImpl ′value = CounterImpl ′CounterImpl ′value
catt UndoCounter CounterImpl ′value = UndoCounter ′CounterImpl ′value
catt UndoCounter UndoCounter ′save = UndoCounter ′UndoCounter ′save
catt CounterImpl Counter ′dummy = CounterImpl ′Counter ′dummy
catt UndoCounter Counter ′dummy = UndoCounter ′Counter ′dummy

by (simp-all add: catt-def )

Selection of the class name of the type of the object in which the field lives. The field can only
be located in a concrete class.
definition cls:: CAttId ⇒ CTypeId where
cls cf = (case cf of

CounterImpl ′CounterImpl ′value ⇒ CounterImpl
| UndoCounter ′CounterImpl ′value ⇒ UndoCounter
| UndoCounter ′UndoCounter ′save ⇒ UndoCounter

| CounterImpl ′Counter ′dummy ⇒ CounterImpl
| UndoCounter ′Counter ′dummy ⇒ UndoCounter

)

lemma cls-simps [simp]:
cls CounterImpl ′CounterImpl ′value = CounterImpl
cls UndoCounter ′CounterImpl ′value = UndoCounter
cls UndoCounter ′UndoCounter ′save = UndoCounter
cls CounterImpl ′Counter ′dummy = CounterImpl
cls UndoCounter ′Counter ′dummy = UndoCounter

by (simp-all add: cls-def )

Selection of the field name.
definition att:: CAttId ⇒ AttId where
att cf = (case cf of

CounterImpl ′CounterImpl ′value ⇒ CounterImpl ′value
| UndoCounter ′CounterImpl ′value ⇒ CounterImpl ′value
| UndoCounter ′UndoCounter ′save ⇒ UndoCounter ′save
| CounterImpl ′Counter ′dummy ⇒ Counter ′dummy
| UndoCounter ′Counter ′dummy ⇒ Counter ′dummy

)

lemma att-simps [simp]:
att CounterImpl ′CounterImpl ′value = CounterImpl ′value
att UndoCounter ′CounterImpl ′value = CounterImpl ′value
att UndoCounter ′UndoCounter ′save = UndoCounter ′save
att CounterImpl ′Counter ′dummy = Counter ′dummy
att UndoCounter ′Counter ′dummy = Counter ′dummy

by (simp-all add: att-def )

end

9 Program-Independent Lemmas on Attributes
theory AttributesIndep
imports ../Isa-Counter-Store/Attributes
begin
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The following lemmas validate the functions defined in the Attributes theory. They also aid in
subsequent proving tasks. Since they are program-independent, it is of no use to add them to
the generation process of Attributes.thy. Therefore, they have been extracted to this theory.
lemma cls-catt [simp]:

CClassT c ≤ dtype f =⇒ cls (catt c f ) = c
apply (case-tac c)
apply (case-tac [!] f )
apply simp-all
— solves all goals where CClassT c ≤ dtype f

apply (fastforce elim: subtype-wrong-elims simp add: subtype-defs)+
— solves all the rest where ¬ CClassT c ≤ dtype f can be derived

done

lemma att-catt [simp]:
CClassT c ≤ dtype f =⇒ att (catt c f ) = f
apply (case-tac c)
apply (case-tac [!] f )
apply simp-all
— solves all goals where CClassT c ≤ dtype f

apply (fastforce elim: subtype-wrong-elims simp add: subtype-defs)+
— solves all the rest where ¬ CClassT c ≤ dtype f can be derived

done

The following lemmas are just a demonstration of simplification.
lemma rtype-att-catt:

CClassT c ≤ dtype f =⇒ rtype (att (catt c f )) = rtype f
by simp

lemma widen-cls-dtype-att [simp,intro]:
(CClassT (cls cf ) ≤ dtype (att cf ))
by (cases cf , simp-all)

end

10 Value
theory Value imports Subtype begin

This theory contains our model of the values in the store. The store is untyped, therefore all
types that exist in Java are wrapped into one type Value.
In a first approach, the primitive Java types supported in this formalization are mapped to
similar Isabelle types. Later, we will have proper formalizations of the Java types in Isabelle,
which will then be used here.
type-synonym JavaInt = int
type-synonym JavaShort = int
type-synonym JavaByte = int
type-synonym JavaBoolean = bool

The objects of each class are identified by a unique ID. We use elements of type nat here, but
in general it is sufficient to use an infinite type with a successor function and a comparison
predicate.
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type-synonym ObjectId = nat

The definition of the datatype Value. Values can be of the Java types boolean, int, short and
byte. Additionally, they can be an object reference, an array reference or the value null.
datatype Value = boolV JavaBoolean

| intgV JavaInt
| shortV JavaShort
| byteV JavaByte
| objV CTypeId ObjectId — typed object reference
| arrV Arraytype ObjectId — typed array reference
| nullV

Arrays are modeled as references just like objects. So they can be viewed as special kinds of
objects, like in Java.

10.1 Discriminator Functions

To test values, we define the following discriminator functions.
definition isBoolV :: Value ⇒ bool where
isBoolV v = (case v of

boolV b ⇒ True
| intgV i ⇒ False
| shortV s ⇒ False
| byteV by ⇒ False
| objV C a ⇒ False
| arrV T a ⇒ False
| nullV ⇒ False)

lemma isBoolV-simps [simp]:
isBoolV (boolV b) = True
isBoolV (intgV i) = False
isBoolV (shortV s) = False
isBoolV (byteV by) = False
isBoolV (objV C a) = False
isBoolV (arrV T a) = False
isBoolV (nullV ) = False

by (simp-all add: isBoolV-def )

definition isIntgV :: Value ⇒ bool where
isIntgV v = (case v of

boolV b ⇒ False
| intgV i ⇒ True
| shortV s ⇒ False
| byteV by ⇒ False
| objV C a ⇒ False
| arrV T a ⇒ False
| nullV ⇒ False)

lemma isIntgV-simps [simp]:
isIntgV (boolV b) = False
isIntgV (intgV i) = True
isIntgV (shortV s) = False
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isIntgV (byteV by) = False
isIntgV (objV C a) = False
isIntgV (arrV T a) = False
isIntgV (nullV ) = False

by (simp-all add: isIntgV-def )

definition isShortV :: Value ⇒ bool where
isShortV v = (case v of

boolV b ⇒ False
| intgV i ⇒ False
| shortV s ⇒ True
| byteV by ⇒ False
| objV C a ⇒ False
| arrV T a ⇒ False
| nullV ⇒ False)

lemma isShortV-simps [simp]:
isShortV (boolV b) = False
isShortV (intgV i) = False
isShortV (shortV s) = True
isShortV (byteV by) = False
isShortV (objV C a) = False
isShortV (arrV T a) = False
isShortV (nullV ) = False

by (simp-all add: isShortV-def )

definition isByteV :: Value ⇒ bool where
isByteV v = (case v of

boolV b ⇒ False
| intgV i ⇒ False
| shortV s ⇒ False
| byteV by ⇒ True
| objV C a ⇒ False
| arrV T a ⇒ False
| nullV ⇒ False)

lemma isByteV-simps [simp]:
isByteV (boolV b) = False
isByteV (intgV i) = False
isByteV (shortV s) = False
isByteV (byteV by) = True
isByteV (objV C a) = False
isByteV (arrV T a) = False
isByteV (nullV ) = False

by (simp-all add: isByteV-def )

definition isRefV :: Value ⇒ bool where
isRefV v = (case v of

boolV b ⇒ False
| intgV i ⇒ False
| shortV s ⇒ False
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| byteV by ⇒ False
| objV C a ⇒ True
| arrV T a ⇒ True
| nullV ⇒ True)

lemma isRefV-simps [simp]:
isRefV (boolV b) = False
isRefV (intgV i) = False
isRefV (shortV s) = False
isRefV (byteV by) = False
isRefV (objV C a) = True
isRefV (arrV T a) = True
isRefV (nullV ) = True

by (simp-all add: isRefV-def )

definition isObjV :: Value ⇒ bool where
isObjV v = (case v of

boolV b ⇒ False
| intgV i ⇒ False
| shortV s ⇒ False
| byteV by ⇒ False
| objV C a ⇒ True
| arrV T a ⇒ False
| nullV ⇒ False)

lemma isObjV-simps [simp]:
isObjV (boolV b) = False
isObjV (intgV i) = False
isObjV (shortV s) = False
isObjV (byteV by) = False
isObjV (objV c a) = True
isObjV (arrV T a) = False
isObjV nullV = False

by (simp-all add: isObjV-def )

definition isArrV :: Value ⇒ bool where
isArrV v = (case v of

boolV b ⇒ False
| intgV i ⇒ False
| shortV s ⇒ False
| byteV by ⇒ False
| objV C a ⇒ False
| arrV T a ⇒ True
| nullV ⇒ False)

lemma isArrV-simps [simp]:
isArrV (boolV b) = False
isArrV (intgV i) = False
isArrV (shortV s) = False
isArrV (byteV by) = False
isArrV (objV c a) = False
isArrV (arrV T a) = True
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isArrV nullV = False
by (simp-all add: isArrV-def )

definition isNullV :: Value ⇒ bool where
isNullV v = (case v of

boolV b ⇒ False
| intgV i ⇒ False
| shortV s ⇒ False
| byteV by ⇒ False
| objV C a ⇒ False
| arrV T a ⇒ False
| nullV ⇒ True)

lemma isNullV-simps [simp]:
isNullV (boolV b) = False
isNullV (intgV i) = False
isNullV (shortV s) = False
isNullV (byteV by) = False
isNullV (objV c a) = False
isNullV (arrV T a) = False
isNullV nullV = True

by (simp-all add: isNullV-def )

10.2 Selector Functions
definition aI :: Value ⇒ JavaInt where
aI v = (case v of

boolV b ⇒ undefined
| intgV i ⇒ i
| shortV sh ⇒ undefined
| byteV by ⇒ undefined
| objV C a ⇒ undefined
| arrV T a ⇒ undefined
| nullV ⇒ undefined)

lemma aI-simps [simp]:
aI (intgV i) = i
by (simp add: aI-def )

definition aB :: Value ⇒ JavaBoolean where
aB v = (case v of

boolV b ⇒ b
| intgV i ⇒ undefined
| shortV sh ⇒ undefined
| byteV by ⇒ undefined
| objV C a ⇒ undefined
| arrV T a ⇒ undefined
| nullV ⇒ undefined)

lemma aB-simps [simp]:
aB (boolV b) = b
by (simp add: aB-def )
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definition aSh :: Value ⇒ JavaShort where
aSh v = (case v of

boolV b ⇒ undefined
| intgV i ⇒ undefined
| shortV sh ⇒ sh
| byteV by ⇒ undefined
| objV C a ⇒ undefined
| arrV T a ⇒ undefined
| nullV ⇒ undefined)

lemma aSh-simps [simp]:
aSh (shortV sh) = sh
by (simp add: aSh-def )

definition aBy :: Value ⇒ JavaByte where
aBy v = (case v of

boolV b ⇒ undefined
| intgV i ⇒ undefined
| shortV s ⇒ undefined
| byteV by ⇒ by
| objV C a ⇒ undefined
| arrV T a ⇒ undefined
| nullV ⇒ undefined)

lemma aBy-simps [simp]:
aBy (byteV by) = by
by (simp add: aBy-def )

definition tid :: Value ⇒ CTypeId where
tid v = (case v of

boolV b ⇒ undefined
| intgV i ⇒ undefined
| shortV s ⇒ undefined
| byteV by ⇒ undefined
| objV C a ⇒ C
| arrV T a ⇒ undefined
| nullV ⇒ undefined)

lemma tid-simps [simp]:
tid (objV C a) = C
by (simp add: tid-def )

definition oid :: Value ⇒ ObjectId where
oid v = (case v of

boolV b ⇒ undefined
| intgV i ⇒ undefined
| shortV s ⇒ undefined
| byteV by ⇒ undefined
| objV C a ⇒ a
| arrV T a ⇒ undefined
| nullV ⇒ undefined)

lemma oid-simps [simp]:
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oid (objV C a) = a
by (simp add: oid-def )

definition jt :: Value ⇒ Javatype where
jt v = (case v of

boolV b ⇒ undefined
| intgV i ⇒ undefined
| shortV s ⇒ undefined
| byteV by ⇒ undefined
| objV C a ⇒ undefined
| arrV T a ⇒ at2jt T
| nullV ⇒ undefined)

lemma jt-simps [simp]:
jt (arrV T a) = at2jt T
by (simp add: jt-def )

definition aid :: Value ⇒ ObjectId where
aid v = (case v of

boolV b ⇒ undefined
| intgV i ⇒ undefined
| shortV s ⇒ undefined
| byteV by ⇒ undefined
| objV C a ⇒ undefined
| arrV T a ⇒ a
| nullV ⇒ undefined)

lemma aid-simps [simp]:
aid (arrV T a) = a
by (simp add: aid-def )

10.3 Determining the Type of a Value

To determine the type of a value, we define the function typeof. This function is often written
as τ in theoretical texts, therefore we add the appropriate syntax support.

definition typeof :: Value ⇒ Javatype where
typeof v = (case v of

boolV b ⇒ BoolT
| intgV i ⇒ IntgT
| shortV sh ⇒ ShortT
| byteV by ⇒ ByteT
| objV C a ⇒ CClassT C
| arrV T a ⇒ ArrT T
| nullV ⇒ NullT )

abbreviation tau-syntax :: Value ⇒ Javatype (‹τ -›)
where τ v == typeof v

lemma typeof-simps [simp]:
(τ (boolV b)) = BoolT
(τ (intgV i)) = IntgT
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(τ (shortV sh)) = ShortT
(τ (byteV by)) = ByteT
(τ (objV c a)) = CClassT c
(τ (arrV t a)) = ArrT t
(τ (nullV )) = NullT

by (simp-all add: typeof-def )

10.4 Default Initialization Values for Types

The function init yields the default initialization values for each type. For boolean, the default
value is False, for the integral types, it is 0, and for the reference types, it is nullV.

definition init :: Javatype ⇒ Value where
init T = (case T of

BoolT ⇒ boolV False
| IntgT ⇒ intgV 0
| ShortT ⇒ shortV 0
| ByteT ⇒ byteV 0
| NullT ⇒ nullV
| ArrT T ⇒ nullV
| CClassT C ⇒ nullV
| AClassT C ⇒ nullV
| InterfaceT I ⇒ nullV )

lemma init-simps [simp]:
init BoolT = boolV False
init IntgT = intgV 0
init ShortT = shortV 0
init ByteT = byteV 0
init NullT = nullV
init (ArrT T ) = nullV
init (CClassT c) = nullV
init (AClassT a) = nullV
init (InterfaceT i) = nullV

by (simp-all add: init-def )

lemma typeof-init-widen [simp,intro]: typeof (init T ) ≤ T
proof (cases T )

assume c: T = BoolT
show (τ (init T )) ≤ T

using c by simp
next

assume c: T = IntgT
show (τ (init T )) ≤ T

using c by simp
next

assume c: T = ShortT
show (τ (init T )) ≤ T

using c by simp
next

assume c: T = ByteT
show (τ (init T )) ≤ T

using c by simp
next
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assume c: T = NullT
show (τ (init T )) ≤ T

using c by simp
next

fix x
assume c: T = CClassT x
show (τ (init T )) ≤ T

using c by (cases x, simp-all)
next

fix x
assume c: T = AClassT x
show (τ (init T )) ≤ T

using c by (cases x, simp-all)
next

fix x
assume c: T = InterfaceT x
show (τ (init T )) ≤ T

using c by (cases x, simp-all)
next

fix x
assume c: T = ArrT x
show (τ (init T )) ≤ T

using c
proof (cases x)

fix y
assume c2 : x = CClassAT y
show (τ (init T )) ≤ T

using c c2 by (cases y, simp-all)
next

fix y
assume c2 : x = AClassAT y
show (τ (init T )) ≤ T

using c c2 by (cases y, simp-all)
next

fix y
assume c2 : x = InterfaceAT y
show (τ (init T )) ≤ T

using c c2 by (cases y, simp-all)
next

assume c2 : x = BoolAT
show (τ (init T )) ≤ T

using c c2 by simp
next

assume c2 : x = IntgAT
show (τ (init T )) ≤ T

using c c2 by simp
next

assume c2 : x = ShortAT
show (τ (init T )) ≤ T

using c c2 by simp
next

assume c2 : x = ByteAT
show (τ (init T )) ≤ T

using c c2 by simp
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qed
qed

end

11 Location
theory Location
imports AttributesIndep ../Isabelle/Value
begin

A storage location can be a field of an object, a static field, the length of an array, or the contents
of an array.
datatype Location = objLoc CAttId ObjectId — field in object

| staticLoc AttId — static field in concrete class
| arrLenLoc Arraytype ObjectId — length of an array
| arrLoc Arraytype ObjectId nat — contents of an array

We only directly support one-dimensional arrays. Multidimensional arrays can be simulated by
arrays of references to arrays.

The function ltype yields the content type of a location.
definition ltype:: Location ⇒ Javatype where
ltype l = (case l of

objLoc cf a ⇒ rtype (att cf )
| staticLoc f ⇒ rtype f
| arrLenLoc T a ⇒ IntgT
| arrLoc T a i ⇒ at2jt T )

lemma ltype-simps [simp]:
ltype (objLoc cf a) = rtype (att cf )
ltype (staticLoc f ) = rtype f
ltype (arrLenLoc T a) = IntgT
ltype (arrLoc T a i) = at2jt T

by (simp-all add: ltype-def )

Discriminator functions to test whether a location denotes an array length or whether it denotes
a static object. Currently, the discriminator functions for object and array locations are not
specified. They can be added if they are needed.
definition isArrLenLoc:: Location ⇒ bool where
isArrLenLoc l = (case l of

objLoc cf a ⇒ False
| staticLoc f ⇒ False
| arrLenLoc T a ⇒ True
| arrLoc T a i ⇒ False)

lemma isArrLenLoc-simps [simp]:
isArrLenLoc (objLoc cf a) = False
isArrLenLoc (staticLoc f ) = False
isArrLenLoc (arrLenLoc T a) = True
isArrLenLoc (arrLoc T a i) = False

by (simp-all add: isArrLenLoc-def )
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definition isStaticLoc:: Location ⇒ bool where
isStaticLoc l = (case l of

objLoc cff a ⇒ False
| staticLoc f ⇒ True
| arrLenLoc T a ⇒ False
| arrLoc T a i ⇒ False)

lemma isStaticLoc-simps [simp]:
isStaticLoc (objLoc cf a) = False
isStaticLoc (staticLoc f ) = True
isStaticLoc (arrLenLoc T a) = False
isStaticLoc (arrLoc T a i) = False

by (simp-all add: isStaticLoc-def )

The function ref yields the object or array containing the location that is passed as argument
(see the function obj in [PH97, p. 43 f.]). Note that for static locations the result is nullV since
static locations are not associated to any object.
definition ref :: Location ⇒ Value where
ref l = (case l of

objLoc cf a ⇒ objV (cls cf ) a
| staticLoc f ⇒ nullV
| arrLenLoc T a ⇒ arrV T a
| arrLoc T a i ⇒ arrV T a)

lemma ref-simps [simp]:
ref (objLoc cf a) = objV (cls cf ) a
ref (staticLoc f ) = nullV
ref (arrLenLoc T a) = arrV T a
ref (arrLoc T a i) = arrV T a

by (simp-all add: ref-def )

The function loc denotes the subscription of an object reference with an attribute.
primrec loc:: Value ⇒ AttId ⇒ Location (‹-..-› [80 ,80 ] 80 )
where loc (objV c a) f = objLoc (catt c f ) a

Note that we only define subscription properly for object references. For all other values we do
not provide any defining equation, so they will internally be mapped to arbitrary.

The length of an array can be selected with the function arr-len.
primrec arr-len:: Value ⇒ Location
where arr-len (arrV T a) = arrLenLoc T a

Arrays can be indexed by the function arr-loc.
primrec arr-loc:: Value ⇒ nat ⇒ Location (‹-.[-]› [80 ,80 ] 80 )
where arr-loc (arrV T a) i = arrLoc T a i

The functions loc, arr-len and arr-loc define the interface between the basic store model (based
on locations) and the programming language Java. Instance field access obj.x is modelled as
obj..x or loc obj x (without the syntactic sugar), array length a.length with arr-len a, array
indexing a[i] with a.[i] or arr-loc a i. The accessing of a static field C.f can be expressed by
the location itself staticLoc C ′f. Of course one can build more infrastructure to make access
to instance fields and static fields more uniform. We could for example define a function static
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which indicates whether a field is static or not and based on that create an objLoc location or
a staticLoc location. But this will only complicate the actual proofs and we can already easily
perform the distinction whether a field is static or not in the Jive-frontend and therefore keep
the verification simpler.
lemma ref-loc [simp]: [[isObjV r ; typeof r ≤ dtype f ]] =⇒ ref (r ..f ) = r

apply (case-tac r)
apply (case-tac [!] f )
apply (simp-all)
done

lemma obj-arr-loc [simp]: isArrV r =⇒ ref (r .[i]) = r
by (cases r) simp-all

lemma obj-arr-len [simp]: isArrV r =⇒ ref (arr-len r) = r
by (cases r) simp-all

end

12 Store
theory Store
imports Location
begin

12.1 New

The store provides a uniform interface to allocate new objects and new arrays. The constructors
of this datatype distinguish both cases.
datatype New = new-instance CTypeId — New object, can only be of a concrete class type

| new-array Arraytype nat — New array with given size

The discriminator isNewArr can be used to distinguish both kinds of newly created elements.
definition isNewArr :: New ⇒ bool where
isNewArr t = (case t of

new-instance C ⇒ False
| new-array T l ⇒ True)

lemma isNewArr-simps [simp]:
isNewArr (new-instance C ) = False
isNewArr (new-array T l) = True

by (simp-all add: isNewArr-def )

The function typeofNew yields the type of the newly created element.
definition typeofNew :: New ⇒ Javatype where
typeofNew n = (case n of

new-instance C ⇒ CClassT C
| new-array T l ⇒ ArrT T )

lemma typeofNew-simps:
typeofNew (new-instance C ) = CClassT C
typeofNew (new-array T l) = ArrT T

by (simp-all add: typeofNew-def )



12.2 The Definition of the Store 35

12.2 The Definition of the Store

In our store model, all objects2 of all classes exist at all times, but only those objects that have
already been allocated are alive. Objects cannot be deallocated, thus an object that once gained
the aliveness status cannot lose it later on.

To model the store, we need two functions that give us fresh object Id’s for the allocation of
new objects (function newOID) and arrays (function newAID) as well as a function that maps
locations to their contents (function vals).

record StoreImpl = newOID :: CTypeId ⇒ ObjectId
newAID :: Arraytype ⇒ ObjectId
vals :: Location ⇒ Value

The function aliveImpl determines for a given value whether it is alive in a given store.

definition aliveImpl::Value ⇒ StoreImpl ⇒ bool where
aliveImpl x s = (case x of

boolV b ⇒ True
| intgV i ⇒ True
| shortV s ⇒ True
| byteV by ⇒ True
| objV C a ⇒ (a < newOID s C )
| arrV T a ⇒ (a < newAID s T )
| nullV ⇒ True)

The store itself is defined as new type. The store ensures and maintains the following properties:
All stored values are alive; for all locations whose values are not alive, the store yields the location
type’s init value; and all stored values are of the correct type (i.e. of the type of the location
they are stored in).

definition Store = {s. (∀ l. aliveImpl (vals s l) s) ∧
(∀ l. ¬ aliveImpl (ref l) s −→ vals s l = init (ltype l)) ∧
(∀ l. typeof (vals s l) ≤ ltype l)}

typedef Store = Store
unfolding Store-def
apply (rule exI [where ?x=(| newOID = (λC . 0 ),

newAID = (λT . 0 ),
vals = (λl. init (ltype l)) |)])

apply (auto simp add: aliveImpl-def init-def NullT-leaf-array split: Javatype.splits)
done

One might also model the Store as axiomatic type class and prove that the type StoreImpl
belongs to this type class. This way, a clearer separation between the axiomatic description of
the store and its properties on the one hand and the realization that has been chosen in this
formalization on the other hand could be achieved. Additionally, it would be easier to make use
of different store implementations that might have different additional features. This separation
remains to be performed as future work.

2In the following, the term “objects” includes arrays. This keeps the explanations compact.
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12.3 The Store Interface

The Store interface consists of five functions: access to read the value that is stored at a location;
alive to test whether a value is alive in the store; alloc to allocate a new element in the store;
new to read the value of a newly allocated element; update to change the value that is stored at
a location.
consts access:: Store ⇒ Location ⇒ Value (‹-@@-› [71 ,71 ] 70 )

alive:: Value ⇒ Store ⇒ bool
alloc:: Store ⇒ New ⇒ Store
new:: Store ⇒ New ⇒ Value
update:: Store ⇒ Location ⇒ Value ⇒ Store

nonterminal smodifybinds and smodifybind
syntax

-smodifybind :: [ ′a, ′a] ⇒ smodifybind (‹(2- :=/ -)›)
:: smodifybind ⇒ smodifybinds (‹-›)
:: CTypeId ⇒ smodifybind (‹-›)

-smodifybinds:: [smodifybind, smodifybinds] => smodifybinds (‹-,/ -›)
-sModify :: [ ′a, smodifybinds] ⇒ ′a (‹-/〈(-)〉› [900 ,0 ] 900 )

translations
-sModify s (-smodifybinds b bs) == -sModify (-sModify s b) bs
s〈x:=y〉 == CONST update s x y
s〈c〉 == CONST alloc s c

With this syntactic setup we can write chains of (array) updates and allocations like in the
following term s〈new-instance Node, x := y, z := intgV 3 , new-array IntgAT 3 , a.[i] := intgV
4 , k := boolV True〉.

In the following, the definitions of the five store interface functions and some lemmas about
them are given.
overloading alive ≡ alive
begin

definition alive where alive x s ≡ aliveImpl x (Rep-Store s)
end

lemma alive-trivial-simps [simp,intro]:
alive (boolV b) s
alive (intgV i) s
alive (shortV sh) s
alive (byteV by) s
alive nullV s

by (simp-all add: alive-def aliveImpl-def )

overloading
access ≡ access
update ≡ update
alloc ≡ alloc
new ≡ new

begin

definition access
where access s l ≡ vals (Rep-Store s) l
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definition update
where update s l v ≡

if alive (ref l) s ∧ alive v s ∧ typeof v ≤ ltype l
then Abs-Store ((Rep-Store s)(|vals:=(vals (Rep-Store s))(l:=v)|))
else s

definition alloc
where alloc s t ≡
(case t of

new-instance C
⇒ Abs-Store

((Rep-Store s)(|newOID := λ D. if C=D
then Suc (newOID (Rep-Store s) C )
else newOID (Rep-Store s) D|))

| new-array T l
⇒ Abs-Store

((Rep-Store s)(|newAID := λ S . if T=S
then Suc (newAID (Rep-Store s) T )
else newAID (Rep-Store s) S ,

vals := (vals (Rep-Store s))
(arrLenLoc T (newAID (Rep-Store s) T )
:= intgV (int l))|)))

definition new
where new s t ≡
(case t of

new-instance C ⇒ objV C (newOID (Rep-Store s) C )
| new-array T l ⇒ arrV T (newAID (Rep-Store s) T ))

end

The predicate wts tests whether the store is well-typed.
definition
wts :: Store ⇒ bool where
wts OS = (∀ (l::Location) . (typeof (OS@@l)) ≤ (ltype l))

12.4 Derived Properties of the Store

In this subsection, a number of lemmas formalize various properties of the Store. Especially the
13 axioms are proven that must hold for a modelling of a Store (see [PH97, p. 45]). They are
labeled with Store1 to Store13.
lemma alive-init [simp,intro]: alive (init T ) s

by (cases T ) (simp-all add: alive-def aliveImpl-def )

lemma alive-loc [simp]:
[[isObjV x; typeof x ≤ dtype f ]] =⇒ alive (ref (x..f )) s = alive x s
by (cases x) (simp-all)

lemma alive-arr-loc [simp]:
isArrV x =⇒ alive (ref (x.[i])) s = alive x s
by (cases x) (simp-all)

lemma alive-arr-len [simp]:
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isArrV x =⇒ alive (ref (arr-len x)) s = alive x s
by (cases x) (simp-all)

lemma ref-arr-len-new [simp]:
ref (arr-len (new s (new-array T n))) = new s (new-array T n)
by (simp add: new-def )

lemma ref-arr-loc-new [simp]:
ref ((new s (new-array T n)).[i]) = new s (new-array T n)
by (simp add: new-def )

lemma ref-loc-new [simp]: CClassT C ≤ dtype f
=⇒ ref ((new s (new-instance C ))..f ) = new s (new-instance C )
by (simp add: new-def )

lemma access-type-safe [simp,intro]: typeof (s@@l) ≤ ltype l
proof −

have Rep-Store s ∈ Store
by (rule Rep-Store)

thus ?thesis
by (auto simp add: access-def Store-def )

qed

The store is well-typed by construction.
lemma always-welltyped-store: wts OS

by (simp add: wts-def access-type-safe)

Store8
lemma alive-access [simp,intro]: alive (s@@l) s
proof −

have Rep-Store s ∈ Store
by (rule Rep-Store)

thus ?thesis
by (auto simp add: access-def Store-def alive-def aliveImpl-def )

qed

Store3
lemma access-unalive [simp]:

assumes unalive: ¬ alive (ref l) s
shows s@@l = init (ltype l)

proof −
have Rep-Store s ∈ Store

by (rule Rep-Store)
with unalive show ?thesis

by (simp add: access-def Store-def alive-def aliveImpl-def )
qed

lemma update-induct:
assumes skip: P s
assumes update: [[alive (ref l) s; alive v s; typeof v ≤ ltype l]] =⇒

P (Abs-Store ((Rep-Store s)(|vals:=(vals (Rep-Store s))(l:=v)|)))
shows P (s〈l:=v〉)
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using update skip
by (simp add: update-def )

lemma vals-update-in-Store:
assumes alive-l: alive (ref l) s
assumes alive-y: alive y s
assumes type-conform: typeof y ≤ ltype l
shows (Rep-Store s(|vals := (vals (Rep-Store s))(l := y)|)) ∈ Store
(is ?s-upd ∈ Store)

proof −
have s: Rep-Store s ∈ Store

by (rule Rep-Store)
have alloc-eq: newOID ?s-upd = newOID (Rep-Store s)

by simp
have ∀ l. aliveImpl (vals ?s-upd l) ?s-upd
proof

fix k
show aliveImpl (vals ?s-upd k) ?s-upd
proof (cases k=l)

case True
with alive-y show ?thesis

by (simp add: alloc-eq alive-def aliveImpl-def split: Value.splits)
next

case False
from s have ∀ l. aliveImpl (vals (Rep-Store s) l) (Rep-Store s)

by (simp add: Store-def )
with False show ?thesis

by (simp add: aliveImpl-def split: Value.splits)
qed

qed
moreover
have ∀ l. ¬ aliveImpl (ref l) ?s-upd −→ vals ?s-upd l = init (ltype l)
proof (intro allI impI )

fix k
assume unalive: ¬ aliveImpl (ref k) ?s-upd
show vals ?s-upd k = init (ltype k)
proof −

from unalive alive-l
have k 6=l

by (auto simp add: alive-def aliveImpl-def split: Value.splits)
hence vals ?s-upd k = vals (Rep-Store s) k

by simp
moreover from unalive
have ¬ aliveImpl (ref k) (Rep-Store s)

by (simp add: aliveImpl-def split: Value.splits)
ultimately show ?thesis

using s by (simp add: Store-def )
qed

qed
moreover
have ∀ l. typeof (vals ?s-upd l) ≤ ltype l
proof

fix k show typeof (vals ?s-upd k) ≤ ltype k
proof (cases k=l)
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case True
with type-conform show ?thesis

by simp
next

case False
hence vals ?s-upd k = vals (Rep-Store s) k

by simp
with s show ?thesis

by (simp add: Store-def )
qed

qed
ultimately show ?thesis

by (simp add: Store-def )
qed

Store6
lemma alive-update-invariant [simp]: alive x (s〈l:=y〉) = alive x s
proof (rule update-induct)

show alive x s = alive x s..
next

assume alive (ref l) s alive y s typeof y ≤ ltype l
hence Rep-Store

(Abs-Store (Rep-Store s(|vals := (vals (Rep-Store s))(l := y)|)))
= Rep-Store s(|vals := (vals (Rep-Store s))(l := y)|)

by (rule vals-update-in-Store [THEN Abs-Store-inverse])
thus alive x

(Abs-Store (Rep-Store s(|vals := (vals (Rep-Store s))(l := y)|))) =
alive x s

by (simp add: alive-def aliveImpl-def split: Value.split)
qed

Store1
lemma access-update-other [simp]:

assumes neq-l-m: l 6= m
shows s〈l:=x〉@@m = s@@m

proof (rule update-induct)
show s@@m = s@@m ..

next
assume alive (ref l) s alive x s typeof x ≤ ltype l
hence Rep-Store

(Abs-Store (Rep-Store s(|vals := (vals (Rep-Store s))(l := x)|)))
= Rep-Store s(|vals := (vals (Rep-Store s))(l := x)|)

by (rule vals-update-in-Store [THEN Abs-Store-inverse])
with neq-l-m
show Abs-Store (Rep-Store s(|vals := (vals (Rep-Store s))(l := x)|))@@m = s@@m

by (auto simp add: access-def )
qed

Store2
lemma update-access-same [simp]:

assumes alive-l: alive (ref l) s
assumes alive-x: alive x s
assumes widen-x-l: typeof x ≤ ltype l
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shows s〈l:=x〉@@l = x
proof −

from alive-l alive-x widen-x-l
have Rep-Store

(Abs-Store (Rep-Store s(|vals := (vals (Rep-Store s))(l := x)|)))
= Rep-Store s(|vals := (vals (Rep-Store s))(l := x)|)

by (rule vals-update-in-Store [THEN Abs-Store-inverse])
hence Abs-Store (Rep-Store s(|vals := (vals (Rep-Store s))(l := x)|))@@l = x

by (simp add: access-def )
with alive-l alive-x widen-x-l
show ?thesis

by (simp add: update-def )
qed

Store4
lemma update-unalive-val [simp,intro]: ¬ alive x s =⇒ s〈l:=x〉 = s

by (simp add: update-def )

lemma update-unalive-loc [simp,intro]: ¬ alive (ref l) s =⇒ s〈l:=x〉 = s
by (simp add: update-def )

lemma update-type-mismatch [simp,intro]: ¬ typeof x ≤ ltype l =⇒ s〈l:=x〉 = s
by (simp add: update-def )

Store9
lemma alive-primitive [simp,intro]: isprimitive (typeof x) =⇒ alive x s

by (cases x) (simp-all)

Store10
lemma new-unalive-old-Store [simp]: ¬ alive (new s t) s

by (cases t) (simp-all add: alive-def aliveImpl-def new-def )

lemma alloc-new-instance-in-Store:
(Rep-Store s(|newOID := λD. if C = D

then Suc (newOID (Rep-Store s) C )
else newOID (Rep-Store s) D|)) ∈ Store

(is ?s-alloc ∈ Store)
proof −

have s: Rep-Store s ∈ Store
by (rule Rep-Store)

hence ∀ l. aliveImpl (vals (Rep-Store s) l) (Rep-Store s)
by (simp add: Store-def )

then
have ∀ l. aliveImpl (vals ?s-alloc l) ?s-alloc

by (auto intro: less-SucI simp add: aliveImpl-def split: Value.splits)
moreover
have ∀ l. ¬ aliveImpl (ref l) ?s-alloc −→ vals ?s-alloc l = init (ltype l)
proof (intro allI impI )

fix l
assume ¬ aliveImpl (ref l) ?s-alloc
hence ¬ aliveImpl (ref l) (Rep-Store s)

by (simp add: aliveImpl-def split: Value.splits if-split-asm)
with s have vals (Rep-Store s) l = init (ltype l)
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by (simp add: Store-def )
thus vals ?s-alloc l = init (ltype l)

by simp
qed
moreover
from s have ∀ l. typeof (vals ?s-alloc l) ≤ ltype l

by (simp add: Store-def )
ultimately
show ?thesis

by (simp add: Store-def )
qed

lemma alloc-new-array-in-Store:
(Rep-Store s (|newAID :=

λS . if T = S
then Suc (newAID (Rep-Store s) T )
else newAID (Rep-Store s) S ,

vals := (vals (Rep-Store s))
(arrLenLoc T
(newAID (Rep-Store s) T ) :=
intgV (int n))|)) ∈ Store

(is ?s-alloc ∈ Store)
proof −

have s: Rep-Store s ∈ Store
by (rule Rep-Store)

have ∀ l. aliveImpl (vals ?s-alloc l) ?s-alloc
proof

fix l show aliveImpl (vals ?s-alloc l) ?s-alloc
proof (cases l = arrLenLoc T (newAID (Rep-Store s) T ))

case True
thus ?thesis

by (simp add: aliveImpl-def split: Value.splits)
next

case False
from s have ∀ l. aliveImpl (vals (Rep-Store s) l) (Rep-Store s)

by (simp add: Store-def )
with False show ?thesis

by (auto intro: less-SucI simp add: aliveImpl-def split: Value.splits)
qed

qed
moreover
have ∀ l. ¬ aliveImpl (ref l) ?s-alloc −→ vals ?s-alloc l = init (ltype l)
proof (intro allI impI )

fix l
assume unalive: ¬ aliveImpl (ref l) ?s-alloc
show vals ?s-alloc l = init (ltype l)
proof (cases l = arrLenLoc T (newAID (Rep-Store s) T ))

case True
with unalive show ?thesis by (simp add: aliveImpl-def )

next
case False
from unalive
have ¬ aliveImpl (ref l) (Rep-Store s)

by (simp add: aliveImpl-def split: Value.splits if-split-asm)
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with s have vals (Rep-Store s) l = init (ltype l)
by (simp add: Store-def )

with False show ?thesis
by simp

qed
qed
moreover
from s have ∀ l. typeof (vals ?s-alloc l) ≤ ltype l

by (simp add: Store-def )
ultimately
show ?thesis

by (simp add: Store-def )
qed

lemma new-alive-alloc [simp,intro]: alive (new s t) (s〈t〉)
proof (cases t)

case new-instance thus ?thesis
by (simp add: alive-def aliveImpl-def new-def alloc-def

alloc-new-instance-in-Store [THEN Abs-Store-inverse])
next

case new-array thus ?thesis
by (simp add: alive-def aliveImpl-def new-def alloc-def

alloc-new-array-in-Store [THEN Abs-Store-inverse])
qed

lemma value-class-inhabitants:
(∀ x. typeof x = CClassT typeId −→ P x) = (∀ a. P (objV typeId a))
(is (∀ x. ?A x) = ?B)

proof
assume ∀ x. ?A x thus ?B

by simp
next

assume B: ?B show ∀ x. ?A x
proof

fix x from B show ?A x
by (cases x) auto

qed
qed

lemma value-array-inhabitants:
(∀ x. typeof x = ArrT typeId −→ P x) = (∀ a. P (arrV typeId a))
(is (∀ x. ?A x) = ?B)

proof
assume ∀ x. ?A x thus ?B

by simp
next

assume B: ?B show ∀ x. ?A x
proof

fix x from B show ?A x
by (cases x) auto

qed
qed
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The following three lemmas are helper lemmas that are not related to the store theory. They
might as well be stored in a separate helper theory.
lemma le-Suc-eq: (∀ a. (a < Suc n) = (a < Suc m)) = (∀ a. (a < n) = (a < m))
(is (∀ a. ?A a) = (∀ a. ?B a))

proof
assume ∀ a. ?A a thus ∀ a. ?B a

by fastforce
next

assume B: ∀ a. ?B a
show ∀ a. ?A a
proof

fix a
from B show ?A a

by (cases a) simp-all
qed

qed

lemma all-le-eq-imp-eq:
∧

c::nat. (∀ a. (a < d) = (a < c)) −→ (d = c)
proof (induct d)

case 0 thus ?case by fastforce
next

case (Suc n c)
thus ?case

by (cases c) (auto simp add: le-Suc-eq)
qed

lemma all-le-eq: (∀ a::nat. (a < d) = (a < c)) = (d = c)
using all-le-eq-imp-eq by auto

Store11
lemma typeof-new: typeof (new s t) = typeofNew t

by (cases t) (simp-all add: new-def typeofNew-def )

Store12
lemma new-eq: (new s1 t = new s2 t) =

(∀ x. typeof x = typeofNew t −→ alive x s1 = alive x s2 )
by (cases t)

(auto simp add: new-def typeofNew-def alive-def aliveImpl-def
value-class-inhabitants value-array-inhabitants all-le-eq)

lemma new-update [simp]: new (s〈l:=x〉) t = new s t
by (simp add: new-eq)

lemma alive-alloc-propagation:
assumes alive-s: alive x s shows alive x (s〈t〉)

proof (cases t)
case new-instance with alive-s show ?thesis

by (cases x)
(simp-all add: alive-def aliveImpl-def alloc-def

alloc-new-instance-in-Store [THEN Abs-Store-inverse])
next

case new-array with alive-s show ?thesis
by (cases x)
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(simp-all add: alive-def aliveImpl-def alloc-def
alloc-new-array-in-Store [THEN Abs-Store-inverse])

qed

Store7
lemma alive-alloc-exhaust: alive x (s〈t〉) = (alive x s ∨ (x = new s t))
proof

assume alive-alloc: alive x (s〈t〉)
show alive x s ∨ x = new s t
proof (cases t)

case (new-instance C )
with alive-alloc show ?thesis

by (cases x) (auto split: if-split-asm
simp add: alive-def new-def alloc-def aliveImpl-def

alloc-new-instance-in-Store [THEN Abs-Store-inverse])
next

case (new-array T l)
with alive-alloc show ?thesis

by (cases x) (auto split: if-split-asm
simp add: alive-def new-def alloc-def aliveImpl-def
alloc-new-array-in-Store [THEN Abs-Store-inverse])

qed
next

assume alive x s ∨ x = new s t
then show alive x (s〈t〉)
proof

assume alive x s thus ?thesis by (rule alive-alloc-propagation)
next

assume new: x=new s t show ?thesis
proof (cases t)

case new-instance with new show ?thesis
by (simp add: alive-def aliveImpl-def new-def alloc-def

alloc-new-instance-in-Store [THEN Abs-Store-inverse])
next

case new-array with new show ?thesis
by (simp add: alive-def aliveImpl-def new-def alloc-def

alloc-new-array-in-Store [THEN Abs-Store-inverse])
qed

qed
qed

lemma alive-alloc-cases [consumes 1 ]:
[[alive x (s〈t〉); alive x s =⇒ P; x=new s t =⇒ P]]
=⇒ P

by (auto simp add: alive-alloc-exhaust)

lemma aliveImpl-vals-independent: aliveImpl x (s(|vals := z|)) = aliveImpl x s
by (cases x) (simp-all add: aliveImpl-def )

lemma access-arr-len-new-alloc [simp]:
s〈new-array T l〉@@arr-len (new s (new-array T l)) = intgV (int l)
by (subst access-def )

(simp add: new-def alloc-def alive-def
alloc-new-array-in-Store [THEN Abs-Store-inverse] access-def )
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lemma access-new [simp]:
assumes ref-new: ref l = new s t
assumes no-arr-len: isNewArr t −→ l 6= arr-len (new s t)
shows s〈t〉@@l = init (ltype l)

proof −
from ref-new
have ¬ alive (ref l) s

by simp
hence s@@l = init (ltype l)

by simp
moreover
from ref-new
have alive (ref l) (s〈t〉)

by simp
moreover
from no-arr-len
have vals (Rep-Store (s〈t〉)) l = s@@l

by (cases t)
(simp-all add: alloc-def new-def access-def

alloc-new-instance-in-Store [THEN Abs-Store-inverse]
alloc-new-array-in-Store [THEN Abs-Store-inverse] )

ultimately show s〈t〉@@l = init (ltype l)
by (subst access-def ) (simp)

qed

Store5. We have to take into account that the length of an array is changed during allocation.
lemma access-alloc [simp]:

assumes no-arr-len-new: isNewArr t −→ l 6= arr-len (new s t)
shows s〈t〉@@l = s@@l

proof −
show ?thesis
proof (cases alive (ref l) (s〈t〉))

case True
then
have access-alloc-vals: s〈t〉@@l = vals (Rep-Store (s〈t〉)) l

by (simp add: access-def alloc-def )
from True show ?thesis
proof (cases rule: alive-alloc-cases)

assume alive-l-s: alive (ref l) s
with new-unalive-old-Store
have l-not-new: ref l 6= new s t

by fastforce
hence vals (Rep-Store (s〈t〉)) l = s@@l

by (cases t)
(auto simp add: alloc-def new-def access-def

alloc-new-instance-in-Store [THEN Abs-Store-inverse]
alloc-new-array-in-Store [THEN Abs-Store-inverse])

with access-alloc-vals
show ?thesis

by simp
next

assume ref-new: ref l = new s t
with no-arr-len-new
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have s〈t〉@@l = init (ltype l)
by (simp add: access-new)

moreover
from ref-new have s@@l = init (ltype l)

by simp
ultimately
show ?thesis by simp

qed
next

case False
hence s〈t〉@@l = init (ltype l)

by (simp)
moreover
from False have ¬ alive (ref l) s

by (auto simp add: alive-alloc-propagation)
hence s@@l = init (ltype l)

by simp
ultimately show ?thesis by simp

qed
qed

Store13
lemma Store-eqI :

assumes eq-alive: ∀ x. alive x s1 = alive x s2
assumes eq-access: ∀ l. s1@@l = s2@@l
shows s1=s2

proof (cases s1=s2 )
case True thus ?thesis .

next
case False note neq-s1-s2 = this
show ?thesis
proof (cases newOID (Rep-Store s1 ) = newOID (Rep-Store s2 ))

case False
have ∃ C . newOID (Rep-Store s1 ) C 6= newOID (Rep-Store s2 ) C
proof (rule ccontr)

assume ¬ (∃C . newOID (Rep-Store s1 ) C 6= newOID (Rep-Store s2 ) C )
then have newOID (Rep-Store s1 ) = newOID (Rep-Store s2 )

by (blast intro: ext)
with False show False ..

qed
with eq-alive obtain C

where newOID (Rep-Store s1 ) C 6= newOID (Rep-Store s2 ) C
∀ a. alive (objV C a) s1 = alive (objV C a) s2 by auto

then show ?thesis
by (simp add: all-le-eq alive-def aliveImpl-def )

next
case True note eq-newOID = this
show ?thesis
proof (cases newAID (Rep-Store s1 ) = newAID (Rep-Store s2 ))

case False
have ∃ T . newAID (Rep-Store s1 ) T 6= newAID (Rep-Store s2 ) T
proof (rule ccontr)

assume ¬ (∃T . newAID (Rep-Store s1 ) T 6= newAID (Rep-Store s2 ) T )
then have newAID (Rep-Store s1 ) = newAID (Rep-Store s2 )
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by (blast intro: ext)
with False show False ..

qed
with eq-alive obtain T

where newAID (Rep-Store s1 ) T 6= newAID (Rep-Store s2 ) T
∀ a. alive (arrV T a) s1 = alive (arrV T a) s2 by auto

then show ?thesis
by (simp add: all-le-eq alive-def aliveImpl-def )

next
case True note eq-newAID = this
show ?thesis
proof (cases vals (Rep-Store s1 ) = vals (Rep-Store s2 ))

case True
with eq-newOID eq-newAID
have (Rep-Store s1 ) = (Rep-Store s2 )

by (cases Rep-Store s1 ,cases Rep-Store s2 ) simp
hence s1=s2

by (simp add: Rep-Store-inject)
with neq-s1-s2 show ?thesis

by simp
next

case False
have ∃ l. vals (Rep-Store s1 ) l 6= vals (Rep-Store s2 ) l
proof (rule ccontr)

assume ¬ (∃ l. vals (Rep-Store s1 ) l 6= vals (Rep-Store s2 ) l)
hence vals (Rep-Store s1 ) = vals (Rep-Store s2 )

by (blast intro: ext)
with False show False ..

qed
then obtain l

where vals (Rep-Store s1 ) l 6= vals (Rep-Store s2 ) l
by auto

with eq-access have False
by (simp add: access-def )

thus ?thesis ..
qed

qed
qed

qed

Lemma 3.1 in [Poetzsch-Heffter97]. The proof of this lemma is quite an impressive demostration
of readable Isar proofs since it closely follows the textual proof.
lemma comm:

assumes neq-l-new: ref l 6= new s t
assumes neq-x-new: x 6= new s t
shows s〈t〉〈l:=x〉 = s〈l:=x〉〈t〉

proof (rule Store-eqI [rule-format])
fix y
show alive y (s〈t〉〈l:=x〉) = alive y (s〈l:=x〉〈t〉)
proof −

have alive y (s〈t〉〈l:=x〉) = alive y (s〈t〉)
by (rule alive-update-invariant)

also have . . . = (alive y s ∨ (y = new s t))
by (rule alive-alloc-exhaust)
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also have . . . = (alive y (s〈l:=x〉) ∨ y = new s t)
by (simp only: alive-update-invariant)

also have . . . = (alive y (s〈l:=x〉) ∨ y = new (s〈l:=x〉) t)
proof −

have new s t = new (s〈l:=x〉) t
by simp

thus ?thesis by simp
qed
also have . . . = alive y (s〈l:=x〉〈t〉)

by (simp add: alive-alloc-exhaust)
finally show ?thesis .

qed
next

fix k
show s〈t〉〈l := x〉@@k = s〈l := x〉〈t〉@@k
proof (cases l=k)

case False note neq-l-k = this
show ?thesis
proof (cases isNewArr t −→ k 6= arr-len (new s t))

case True
from neq-l-k
have s〈t〉〈l := x〉@@k = s〈t〉@@k by simp
also from True
have . . . = s@@k by simp
also from neq-l-k
have . . . = s〈l:=x〉@@k by simp
also from True
have . . . = s〈l := x〉〈t〉@@k by simp
finally show ?thesis .

next
case False
then obtain T n where

t: t=new-array T n and k: k=arr-len (new s (new-array T n))
by (cases t) auto

from k have k ′: k=arr-len (new (s〈l := x〉) (new-array T n))
by simp

from neq-l-k
have s〈t〉〈l := x〉@@k = s〈t〉@@k by simp
also from t k
have . . . = intgV (int n)

by simp
also from t k ′

have . . . = s〈l := x〉〈t〉@@k
by (simp del: new-update)

finally show ?thesis .
qed

next
case True note eq-l-k = this
have lemma-3-1 :

ref l 6= new s t =⇒ alive (ref l) (s〈t〉) = alive (ref l) s
by (simp add: alive-alloc-exhaust)

have lemma-3-2 :
x 6= new s t =⇒ alive x (s〈t〉) = alive x s
by (simp add: alive-alloc-exhaust)
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have lemma-3-3 : s〈l:=x,t〉@@l = s〈l:=x〉@@l
proof −

from neq-l-new have ref l 6= new (s〈l:=x〉) t
by simp

hence isNewArr t −→ l 6= arr-len (new (s〈l:=x〉) t)
by (cases t) auto

thus ?thesis
by (simp)

qed
show ?thesis
proof (cases alive x s)

case True note alive-x = this
show ?thesis
proof (cases alive (ref l) s)

case True note alive-l = this
show ?thesis
proof (cases typeof x ≤ ltype l)

case True
with alive-l alive-x
have s〈l:=x〉@@l = x

by (rule update-access-same)
moreover
have s〈t〉〈l:=x〉@@l = x
proof −

from alive-l neq-l-new have alive (ref l) (s〈t〉)
by (simp add: lemma-3-1 )

moreover
from alive-x neq-x-new have alive x (s〈t〉)

by (simp add: lemma-3-2 )
ultimately
show s〈t〉〈l:=x〉@@l = x

using True by (rule update-access-same)
qed
ultimately show ?thesis

using eq-l-k lemma-3-3 by simp
next

case False
thus ?thesis by simp

qed
next

case False note not-alive-l = this
from not-alive-l neq-l-new have ¬ alive (ref l) (s〈t〉)

by (simp add: lemma-3-1 )
then have s〈t〉〈l:=x〉@@l = init (ltype l)

by simp
also from not-alive-l have . . . = s〈l:=x〉@@l

by simp
also have . . . = s〈l:=x〉〈t〉@@l

by (simp add: lemma-3-3 )
finally show ?thesis by (simp add: eq-l-k)

qed
next

case False note not-alive-x = this
from not-alive-x neq-x-new have ¬ alive x (s〈t〉)
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by (simp add: lemma-3-2 )
then have s〈t〉〈l:=x〉@@l = s〈t〉@@l

by (simp)
also have . . . = s@@l
proof −

from neq-l-new
have isNewArr t −→ l 6= arr-len (new s t)

by (cases t) auto
thus ?thesis

by (simp)
qed
also from not-alive-x have . . . = s〈l:=x〉@@l

by (simp)
also have . . . = s〈l:=x〉〈t〉@@l

by (simp add: lemma-3-3 )
finally show ?thesis by (simp add: eq-l-k)

qed
qed

qed

end

13 Store Properties
theory StoreProperties
imports Store
begin

This theory formalizes advanced concepts and properties of stores.

13.1 Reachability of a Location from a Reference

For a given store, the function reachS yields the set of all pairs (l, v) where l is a location that is
reachable from the value v (which must be a reference) in the given store. The predicate reach
decides whether a location is reachable from a value in a store.
inductive

reach :: Store ⇒ Location ⇒ Value ⇒ bool
(‹-` - reachable ′-from -› [91 ,91 ,91 ]90 )

for s :: Store
where

Immediate: ref l 6= nullV =⇒ s` l reachable-from (ref l)
| Indirect: [[s` l reachable-from (s@@k); ref k 6= nullV ]]

=⇒ s` l reachable-from (ref k)

Note that we explicitly exclude nullV as legal reference for reachability. Keep in mind that static
fields are not associated to any object, therefore ref yields nullV if invoked on static fields (see
the definition of the function ref, Sect. 11). Reachability only describes the locations directly
reachable from the object or array by following the pointers and should not include the static
fields if we encounter a nullV reference in the pointer chain.

We formalize some properties of reachability. Especially, Lemma 3.2 as given in [PH97, p. 53]
is proven.
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lemma unreachable-Null:
assumes reach: s` l reachable-from x shows x 6=nullV
using reach by (induct) auto

corollary unreachable-Null-simp [simp]:
¬ s` l reachable-from nullV
by (iprover dest: unreachable-Null)

corollary unreachable-NullE [elim]:
s` l reachable-from nullV =⇒ P
by (simp)

lemma reachObjLoc [simp,intro]:
C=cls cf =⇒ s` objLoc cf a reachable-from objV C a
by (iprover intro: reach.Immediate [of objLoc cf a,simplified])

lemma reachArrLoc [simp,intro]: s` arrLoc T a i reachable-from arrV T a
by (rule reach.Immediate [of arrLoc T a i,simplified])

lemma reachArrLen [simp,intro]: s` arrLenLoc T a reachable-from arrV T a
by (rule reach.Immediate [of arrLenLoc T a,simplified])

lemma unreachStatic [simp]: ¬ s` staticLoc f reachable-from x
proof −

{
fix y assume s` y reachable-from x y=staticLoc f
then have False

by induct auto
}
thus ?thesis

by auto
qed

lemma unreachStaticE [elim]: s` staticLoc f reachable-from x =⇒ P
by (simp add: unreachStatic)

lemma reachable-from-ArrLoc-impl-Arr [simp,intro]:
assumes reach-loc: s` l reachable-from (s@@arrLoc T a i)
shows s` l reachable-from (arrV T a)
using reach.Indirect [OF reach-loc]
by simp

lemma reachable-from-ObjLoc-impl-Obj [simp,intro]:
assumes reach-loc: s` l reachable-from (s@@objLoc cf a)
assumes C : C=cls cf
shows s` l reachable-from (objV C a)
using C reach.Indirect [OF reach-loc]
by simp

Lemma 3.2 (i)
lemma reach-update [simp]:

assumes unreachable-l-x: ¬ s` l reachable-from x
shows s〈l:=y〉` k reachable-from x = s` k reachable-from x

proof
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assume s` k reachable-from x
from this unreachable-l-x
show s〈l := y〉` k reachable-from x
proof (induct)

case (Immediate k)
have ref k 6= nullV by fact
then show s〈l := y〉` k reachable-from (ref k)

by (rule reach.Immediate)
next

case (Indirect k m)
have hyp: ¬ s` l reachable-from (s@@m)

=⇒ s〈l:=y〉 ` k reachable-from (s@@m) by fact
have ref m 6= nullV and ¬ s` l reachable-from (ref m) by fact+
hence l 6=m ¬ s` l reachable-from (s@@m)

by (auto intro: reach.intros)
with hyp have s〈l := y〉 ` k reachable-from (s〈l := y〉@@m)

by simp
then show s〈l := y〉` k reachable-from (ref m)

by (rule reach.Indirect) (rule Indirect.hyps)
qed

next
assume s〈l := y〉` k reachable-from x
from this unreachable-l-x
show s` k reachable-from x
proof (induct)

case (Immediate k)
have ref k 6= nullV by fact
then show s ` k reachable-from (ref k)

by (rule reach.Immediate)
next

case (Indirect k m)
with Indirect.hyps
have hyp: ¬ s` l reachable-from (s〈l := y〉@@m)

=⇒ s` k reachable-from (s〈l := y〉@@m) by simp
have ref m 6= nullV and ¬ s` l reachable-from (ref m) by fact+
hence l 6=m ¬ s ` l reachable-from (s@@m)

by (auto intro: reach.intros)
with hyp have s ` k reachable-from (s@@m)

by simp
thus s` k reachable-from (ref m)

by (rule reach.Indirect) (rule Indirect.hyps)
qed

qed

Lemma 3.2 (ii)
lemma reach2 :
¬ s` l reachable-from x =⇒ ¬ s〈l:=y〉` l reachable-from x
by (simp)

Lemma 3.2 (iv)
lemma reach4 : ¬ s ` l reachable-from (ref k) =⇒ k 6= l ∨ (ref k) = nullV

by (auto intro: reach.intros)

lemma reachable-isRef :
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assumes reach: s`l reachable-from x
shows isRefV x
using reach

proof (induct)
case (Immediate l)
show isRefV (ref l)

by (cases l) simp-all
next

case (Indirect l k)
show isRefV (ref k)

by (cases k) simp-all
qed

lemma val-ArrLen-IntgT : isArrLenLoc l =⇒ typeof (s@@l) = IntgT
proof −

assume isArrLen: isArrLenLoc l
have T : typeof (s@@l) ≤ ltype l

by (simp)
also from isArrLen have I : ltype l = IntgT

by (cases l) simp-all
finally show ?thesis

by (auto elim: rtranclE simp add: le-Javatype-def subtype-defs)
qed

lemma access-alloc ′ [simp]:
assumes no-arr-len: ¬ isArrLenLoc l
shows s〈t〉@@l = s@@l

proof −
from no-arr-len
have isNewArr t −→ l 6= arr-len (new s t)

by (cases t) (auto simp add: new-def isArrLenLoc-def split: Location.splits)
thus ?thesis

by (rule access-alloc)
qed

Lemma 3.2 (v)
lemma reach-alloc [simp]: s〈t〉` l reachable-from x = s` l reachable-from x
proof

assume s〈t〉` l reachable-from x
thus s` l reachable-from x
proof (induct)

case (Immediate l)
thus s` l reachable-from ref l

by (rule reach.intros)
next

case (Indirect l k)
have reach-k: s` l reachable-from (s〈t〉@@k) by fact
moreover
have s〈t〉@@k = s@@k
proof −

from reach-k have isRef : isRefV (s〈t〉@@k)
by (rule reachable-isRef )

have ¬ isArrLenLoc k
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proof (rule ccontr ,simp)
assume isArrLenLoc k
then have typeof (s〈t〉@@k) = IntgT

by (rule val-ArrLen-IntgT )
with isRef
show False

by (cases (s〈t〉@@k)) simp-all
qed
thus ?thesis

by (rule access-alloc ′)
qed
ultimately have s` l reachable-from (s@@k)

by simp
thus s` l reachable-from ref k

by (rule reach.intros) (rule Indirect.hyps)
qed

next
assume s` l reachable-from x
thus s〈t〉` l reachable-from x
proof (induct)

case (Immediate l)
thus s〈t〉` l reachable-from ref l

by (rule reach.intros)
next

case (Indirect l k)
have reach-k: s〈t〉` l reachable-from (s@@k) by fact
moreover
have s〈t〉@@k = s@@k
proof −

from reach-k have isRef : isRefV (s@@k)
by (rule reachable-isRef )

have ¬ isArrLenLoc k
proof (rule ccontr ,simp)

assume isArrLenLoc k
then have typeof (s@@k) = IntgT

by (rule val-ArrLen-IntgT )
with isRef
show False

by (cases (s@@k)) simp-all
qed
thus ?thesis

by (rule access-alloc ′)
qed
ultimately have s〈t〉` l reachable-from (s〈t〉@@k)

by simp
thus s〈t〉` l reachable-from ref k

by (rule reach.intros) (rule Indirect.hyps)
qed

qed

Lemma 3.2 (vi)
lemma reach6 : isprimitive(typeof x) =⇒ ¬ s ` l reachable-from x
proof

assume prim: isprimitive(typeof x)
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assume s ` l reachable-from x
hence isRefV x

by (rule reachable-isRef )
with prim show False

by (cases x) simp-all
qed

Lemma 3.2 (iii)
lemma reach3 :

assumes k-y: ¬ s` k reachable-from y
assumes k-x: ¬ s` k reachable-from x
shows ¬ s〈l:=y〉` k reachable-from x

proof
assume s〈l:=y〉` k reachable-from x
from this k-y k-x
show False
proof (induct)

case (Immediate l)
have ¬ s` l reachable-from ref l and ref l 6= nullV by fact+
thus False

by (iprover intro: reach.intros)
next

case (Indirect m k)
have k-not-Null: ref k 6= nullV by fact
have not-m-y: ¬ s` m reachable-from y by fact
have not-m-k: ¬ s` m reachable-from ref k by fact
have hyp: [[¬ s` m reachable-from y; ¬ s` m reachable-from (s〈l := y〉@@k)]]

=⇒ False by fact
have m-upd-k: s〈l := y〉` m reachable-from (s〈l := y〉@@k) by fact
show False
proof (cases l=k)

case False
then have s〈l := y〉@@k = s@@k by simp
moreover
from not-m-k k-not-Null have ¬ s` m reachable-from (s@@k)

by (iprover intro: reach.intros)
ultimately show False

using not-m-y hyp by simp
next

case True note eq-l-k = this
show ?thesis
proof (cases alive (ref l) s ∧ alive y s ∧ typeof y ≤ ltype l)

case True
with eq-l-k have s〈l := y〉@@k = y

by simp
with not-m-y hyp show False by simp

next
case False
hence s〈l := y〉 = s

by auto
moreover
from not-m-k k-not-Null have ¬ s` m reachable-from (s@@k)

by (iprover intro: reach.intros)
ultimately show False
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using not-m-y hyp by simp
qed

qed
qed

qed

Lemma 3.2 (vii).
lemma unreachable-from-init [simp,intro]: ¬ s` l reachable-from (init T )

using reach6 by (cases T ) simp-all

lemma ref-reach-unalive:
assumes unalive-x:¬ alive x s
assumes l-x: s` l reachable-from x
shows x = ref l

using l-x unalive-x
proof induct

case (Immediate l)
show ref l = ref l

by simp
next

case (Indirect l k)
have ref k 6= nullV by fact
have ¬ alive (ref k) s by fact
hence s@@k = init (ltype k) by simp
moreover have s` l reachable-from (s@@k) by fact
ultimately have False by simp
thus ?case ..

qed

lemma loc-new-reach:
assumes l: ref l = new s t
assumes l-x: s` l reachable-from x
shows x = new s t

using l-x l
proof induct

case (Immediate l)
show ref l = new s t by fact

next
case (Indirect l k)
hence s@@k = new s t by iprover
moreover
have ¬ alive (new s t) s

by simp
moreover
have alive (s@@k) s

by simp
ultimately have False by simp
thus ?case ..

qed

Lemma 3.2 (viii)
lemma alive-reach-alive:

assumes alive-x: alive x s
assumes reach-l: s ` l reachable-from x
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shows alive (ref l) s
using reach-l alive-x
proof (induct)

case (Immediate l)
show ?case by fact

next
case (Indirect l k)
have hyp: alive (s@@k) s =⇒ alive (ref l) s by fact
moreover have alive (s@@k) s by simp
ultimately
show alive (ref l) s

by iprover
qed

Lemma 3.2 (ix)
lemma reach9 :

assumes reach-impl-access-eq: ∀ l. s1`l reachable-from x −→ (s1@@l = s2@@l)
shows s1` l reachable-from x = s2` l reachable-from x

proof
assume s1` l reachable-from x
from this reach-impl-access-eq
show s2` l reachable-from x
proof (induct)

case (Immediate l)
show s2` l reachable-from ref l

by (rule reach.intros) (rule Immediate.hyps)
next

case (Indirect l k)
have hyp: ∀ l. s1` l reachable-from (s1@@k) −→ s1@@l = s2@@l

=⇒ s2` l reachable-from (s1@@k) by fact
have k-not-Null: ref k 6= nullV by fact
have reach-impl-access-eq:
∀ l. s1` l reachable-from ref k −→ s1@@l = s2@@l by fact

have s1` l reachable-from (s1@@k) by fact
with k-not-Null
have s1@@k = s2@@k

by (iprover intro: reach-impl-access-eq [rule-format] reach.intros)
moreover from reach-impl-access-eq k-not-Null
have ∀ l. s1` l reachable-from (s1@@k) −→ s1@@l = s2@@l

by (iprover intro: reach.intros)
then have s2` l reachable-from (s1@@k)

by (rule hyp)
ultimately have s2` l reachable-from (s2@@k)

by simp
thus s2` l reachable-from ref k

by (rule reach.intros) (rule Indirect.hyps)
qed

next
assume s2` l reachable-from x
from this reach-impl-access-eq
show s1` l reachable-from x
proof (induct)

case (Immediate l)
show s1` l reachable-from ref l



13.2 Reachability of a Reference from a Reference 59

by (rule reach.intros) (rule Immediate.hyps)
next

case (Indirect l k)
have hyp: ∀ l. s1` l reachable-from (s2@@k) −→ s1@@l = s2@@l

=⇒ s1` l reachable-from (s2@@k) by fact
have k-not-Null: ref k 6= nullV by fact
have reach-impl-access-eq:
∀ l. s1` l reachable-from ref k −→ s1@@l = s2@@l by fact

have s1` k reachable-from ref k
by (rule reach.intros) (rule Indirect.hyps)

with reach-impl-access-eq
have eq-k: s1@@k = s2@@k

by simp
from reach-impl-access-eq k-not-Null
have ∀ l. s1` l reachable-from (s1@@k) −→ s1@@l = s2@@l

by (iprover intro: reach.intros)
then
have ∀ l. s1` l reachable-from (s2@@k) −→ s1@@l = s2@@l

by (simp add: eq-k)
with eq-k hyp have s1` l reachable-from (s1@@k)

by simp
thus s1` l reachable-from ref k

by (rule reach.intros) (rule Indirect.hyps)
qed

qed

13.2 Reachability of a Reference from a Reference

The predicate rreach tests whether a value is reachable from another value. This is an extension
of the predicate oreach as described in [PH97, p. 54] because now arrays are handled as well.
definition rreach:: Store ⇒ Value ⇒ Value ⇒ bool
(‹-`Ref - reachable ′-from -› [91 ,91 ,91 ]90 ) where

s`Ref y reachable-from x = (∃ l. s` l reachable-from x ∧ y = ref l)

13.3 Disjointness of Reachable Locations

The predicate disj tests whether two values are disjoint in a given store. Its properties as given
in [PH97, Lemma 3.3, p. 54] are then proven.
definition disj:: Value ⇒ Value ⇒ Store ⇒ bool where
disj x y s = (∀ l. ¬ s` l reachable-from x ∨ ¬ s` l reachable-from y)

lemma disjI1 : [[
∧

l. s` l reachable-from x =⇒ ¬ s` l reachable-from y]]
=⇒ disj x y s
by (simp add: disj-def )

lemma disjI2 : [[
∧

l. s` l reachable-from y =⇒ ¬ s` l reachable-from x]]
=⇒ disj x y s
by (auto simp add: disj-def )

lemma disj-cases [consumes 1 ]:
assumes disj x y s
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assumes
∧

l. ¬ s` l reachable-from x =⇒ P
assumes

∧
l. ¬ s` l reachable-from y =⇒ P

shows P
using assms by (auto simp add: disj-def )

Lemma 3.3 (i) in [PH97]
lemma disj1 : [[disj x y s; ¬ s` l reachable-from x; ¬ s` l reachable-from y]]

=⇒ disj x y (s〈l:=z〉)
by (auto simp add: disj-def )

Lemma 3.3 (ii)
lemma disj2 :

assumes disj-x-y: disj x y s
assumes disj-x-z: disj x z s
assumes unreach-l-x: ¬ s` l reachable-from x
shows disj x y (s〈l:=z〉)

proof (rule disjI1 )
fix k
assume reach-k-x: s〈l := z〉` k reachable-from x
show ¬ s〈l := z〉` k reachable-from y
proof −

from unreach-l-x reach-k-x
have reach-s-k-x: s` k reachable-from x

by simp
with disj-x-z
have ¬ s` k reachable-from z

by (simp add: disj-def )
moreover from reach-s-k-x disj-x-y
have ¬ s` k reachable-from y

by (simp add: disj-def )
ultimately show ?thesis

by (rule reach3 )
qed

qed

Lemma 3.3 (iii)
lemma disj3 : assumes alive-x-s: alive x s

shows disj x (new s t) (s〈t〉)
proof (rule disjI1 ,simp only: reach-alloc)

fix l
assume reach-l-x: s` l reachable-from x
show ¬ s` l reachable-from new s t
proof

assume reach-l-new: s` l reachable-from new s t
have unalive-new: ¬ alive (new s t) s by simp
from this reach-l-new
have new s t = ref l

by (rule ref-reach-unalive)
moreover from alive-x-s reach-l-x
have alive (ref l) s

by (rule alive-reach-alive)
ultimately show False

using unalive-new
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by simp
qed

qed

Lemma 3.3 (iv)
lemma disj4 : [[disj (objV C a) y s; CClassT C ≤ dtype f ]]

=⇒ disj (s@@(objV C a)..f ) y s
by (auto simp add: disj-def )

lemma disj4 ′: [[disj (arrV T a) y s ]]
=⇒ disj (s@@(arrV T a).[i]) y s

by (auto simp add: disj-def )

13.4 X-Equivalence

We call two stores s1 and s2 equivalent wrt. a given value X (which is called X-equivalence) iff
X and all values reachable from X in s1 or s2 have the same state [PH97, p. 55]. This is tested
by the predicate xeq. Lemma 3.4 of [PH97] is then proven for xeq.
definition xeq:: Value ⇒ Store ⇒ Store ⇒ bool where
xeq x s t = (alive x s = alive x t ∧

(∀ l. s` l reachable-from x −→ s@@l = t@@l))

abbreviation xeq-syntax :: Store ⇒ Value ⇒ Store ⇒ bool
(‹-/ (≡[-])/ -› [900 ,0 ,900 ] 900 )

where s ≡[x] t == xeq x s t

lemma xeqI : [[alive x s = alive x t;∧
l. s` l reachable-from x =⇒ s@@l = t@@l

]] =⇒ s ≡[x] t
by (auto simp add: xeq-def )

Lemma 3.4 (i) in [PH97].
lemma xeq1-refl: s ≡[x] s

by (simp add: xeq-def )

Lemma 3.4 (i)
lemma xeq1-sym ′:

assumes s-t: s ≡[x] t
shows t ≡[x] s

proof −
from s-t have alive x s = alive x t by (simp add: xeq-def )
moreover
from s-t have ∀ l. s` l reachable-from x −→ s@@l = t@@l

by (simp add: xeq-def )
with reach9 [OF this]
have ∀ l. t` l reachable-from x −→ t@@l = s@@l

by simp
ultimately show ?thesis

by (simp add: xeq-def )
qed
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lemma xeq1-sym: s ≡[x] t = t ≡[x] s
by (auto intro: xeq1-sym ′)

Lemma 3.4 (i)
lemma xeq1-trans [trans]:

assumes s-t: s ≡[x] t
assumes t-r : t ≡[x] r
shows s ≡[x] r

proof −
from s-t t-r
have alive x s = alive x r

by (simp add: xeq-def )
moreover
have ∀ l. s` l reachable-from x −→ s@@l = r@@l
proof (intro allI impI )

fix l
assume reach-l: s` l reachable-from x
show s@@l = r@@l
proof −

from reach-l s-t have s@@l=t@@l
by (simp add: xeq-def )

also have t@@l = r@@l
proof −

from s-t have ∀ l. s` l reachable-from x −→ s@@l = t@@l
by (simp add: xeq-def )

from reach9 [OF this] reach-l have t` l reachable-from x
by simp

with t-r show ?thesis
by (simp add: xeq-def )

qed
finally show ?thesis .

qed
qed
ultimately show ?thesis

by (simp add: xeq-def )
qed

Lemma 3.4 (ii)
lemma xeq2 :

assumes xeq: ∀ x. s ≡[x] t
assumes static-eq: ∀ f . s@@(staticLoc f ) = t@@(staticLoc f )
shows s = t

proof (rule Store-eqI )
from xeq
show ∀ x. alive x s = alive x t

by (simp add: xeq-def )
next

show ∀ l. s@@l = t@@l
proof

fix l
show s@@l = t@@l
proof (cases l)

case (objLoc cf a)
have l = objLoc cf a by fact
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hence s` l reachable-from (objV (cls cf ) a)
by simp

with xeq show ?thesis
by (simp add: xeq-def )

next
case (staticLoc f )
have l = staticLoc f by fact
with static-eq show ?thesis

by (simp add: xeq-def )
next

case (arrLenLoc T a)
have l = arrLenLoc T a by fact
hence s` l reachable-from (arrV T a)

by simp
with xeq show ?thesis

by (simp add: xeq-def )
next

case (arrLoc T a i)
have l = arrLoc T a i by fact
hence s` l reachable-from (arrV T a)

by simp
with xeq show ?thesis

by (simp add: xeq-def )
qed

qed
qed

Lemma 3.4 (iii)
lemma xeq3 :

assumes unreach-l: ¬ s` l reachable-from x
shows s ≡[x] s〈l:=y〉

proof (rule xeqI )
show alive x s = alive x (s〈l := y〉)

by simp
next

fix k
assume reach-k: s` k reachable-from x
with unreach-l have l 6=k by auto
then show s@@k = s〈l := y〉@@k

by simp
qed

Lemma 3.4 (iv)
lemma xeq4 : assumes not-new: x 6= new s t

shows s ≡[x] s〈t〉
proof (rule xeqI )

from not-new
show alive x s = alive x (s〈t〉)

by (simp add: alive-alloc-exhaust)
next

fix l
assume reach-l: s` l reachable-from x
show s@@l = s〈t〉@@l
proof (cases isNewArr t −→ l 6= arr-len (new s t))
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case True
with reach-l show ?thesis

by simp
next

case False
then obtain T n where t: t = new-array T n and

l: l = arr-len (new s t)
by (cases t) auto

hence ref l = new s t
by simp

from this reach-l
have x = new s t

by (rule loc-new-reach)
with not-new show ?thesis ..

qed
qed

Lemma 3.4 (v)
lemma xeq5 : s ≡[x] t =⇒ s` l reachable-from x = t` l reachable-from x

by (rule reach9 ) (simp add: xeq-def )

13.5 T-Equivalence

T-equivalence is the extension of X-equivalence from values to types. Two stores are T-equivalent
iff they are X-equivalent for all values of type T. This is formalized by the predicate teq [PH97,
p. 55].
definition teq:: Javatype ⇒ Store ⇒ Store ⇒ bool where
teq t s1 s2 = (∀ x. typeof x ≤ t −→ s1 ≡[x] s2 )

13.6 Less Alive

To specify that methods have no side-effects, the following binary relation on stores plays a
prominent role. It expresses that the two stores differ only in values that are alive in the store
passed as first argument. This is formalized by the predicate lessalive [PH97, p. 55]. The stores
have to be X-equivalent for the references of the first store that are alive, and the values of the
static fields have to be the same in both stores.
definition lessalive:: Store ⇒ Store ⇒ bool (‹-/ � -› [70 ,71 ] 70 )

where lessalive s t = ((∀ x. alive x s −→ s ≡[x] t) ∧ (∀ f . s@@staticLoc f = t@@staticLoc f ))

We define an introduction rule for the new operator.
lemma lessaliveI :
[[
∧

x. alive x s =⇒ s ≡[x] t;
∧

f . s@@staticLoc f = t@@staticLoc f ]]
=⇒ s � t

by (simp add: lessalive-def )

It can be shown that lessalive is reflexive, transitive and antisymmetric.
lemma lessalive-refl: s � s

by (simp add: lessalive-def xeq1-refl)

lemma lessalive-trans [trans]:
assumes s-t: s � t
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assumes t-w: t � w
shows s � w

proof (rule lessaliveI )
fix x
assume alive-x-s: alive x s
with s-t have s ≡[x] t

by (simp add: lessalive-def )
also
have t ≡[x] w
proof −

from alive-x-s s-t have alive x t by (simp add: lessalive-def xeq-def )
with t-w show ?thesis

by (simp add: lessalive-def )
qed
finally show s ≡[x] w.

next
fix f
from s-t t-w show s@@staticLoc f = w@@staticLoc f

by (simp add: lessalive-def )
qed

lemma lessalive-antisym:
assumes s-t: s � t
assumes t-s: t � s
shows s = t

proof (rule xeq2 )
show ∀ x. s ≡[x] t
proof

fix x show s ≡[x] t
proof (cases alive x s)

case True
with s-t show ?thesis by (simp add: lessalive-def )

next
case False note unalive-x-s = this
show ?thesis
proof (cases alive x t)

case True
with t-s show ?thesis

by (subst xeq1-sym) (simp add: lessalive-def )
next

case False
show ?thesis
proof (rule xeqI )

from False unalive-x-s show alive x s = alive x t by simp
next

fix l assume reach-s-x: s` l reachable-from x
with unalive-x-s have x: x = ref l

by (rule ref-reach-unalive)
with unalive-x-s have s@@l = init (ltype l)

by simp
also from reach-s-x x have t` l reachable-from x

by (auto intro: reach.Immediate unreachable-Null)
with False x have t@@l = init (ltype l)

by simp
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finally show s@@l = t@@l
by simp

qed
qed

qed
qed

next
from s-t show ∀ f . s@@staticLoc f = t@@staticLoc f

by (simp add: lessalive-def )
qed

This gives us a partial ordering on the store. Thus, the type Store can be added to the appropri-
ate type class ord which lets us define the < and ≤ symbols, and to the type class order which
axiomatizes partial orderings.
instantiation Store :: order
begin

definition
le-Store-def : s ≤ t ←→ s � t

definition
less-Store-def : (s::Store) < t ←→ s ≤ t ∧ ¬ t ≤ s

We prove Lemma 3.5 of [PH97, p. 56] for this relation.

Lemma 3.5 (i)
instance proof

fix s t w:: Store
{

show s ≤ s
by (simp add: le-Store-def lessalive-refl)

next
assume s ≤ t t ≤ w
then show s ≤ w

by (unfold le-Store-def ) (rule lessalive-trans)
next

assume s ≤ t t ≤ s
then show s = t

by (unfold le-Store-def ) (rule lessalive-antisym)
next

show (s < t) = (s ≤ t ∧ ¬ t ≤ s)
by (simp add: less-Store-def )

}
qed

end

Lemma 3.5 (ii)
lemma lessalive2 : [[s � t; alive x s]] =⇒ alive x t

by (simp add: lessalive-def xeq-def )

Lemma 3.5 (iii)
lemma lessalive3 :
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assumes s-t: s � t
assumes alive: alive x s ∨ ¬ alive x t
shows s ≡[x] t

proof (cases alive x s)
case True
with s-t show ?thesis

by (simp add: lessalive-def )
next

case False
note unalive-x-s = this
with alive have unalive-x-t: ¬ alive x t

by simp
show ?thesis
proof (rule xeqI )

from False alive show alive x s = alive x t
by simp

next
fix l assume reach-s-x: s` l reachable-from x
with unalive-x-s have x: x = ref l

by (rule ref-reach-unalive)
with unalive-x-s have s@@l = init (ltype l)

by simp
also from reach-s-x x have t` l reachable-from x

by (auto intro: reach.Immediate unreachable-Null)
with unalive-x-t x have t@@l = init (ltype l)

by simp
finally show s@@l = t@@l

by simp
qed

qed

Lemma 3.5 (iv)
lemma lessalive-update [simp,intro]:

assumes s-t: s � t
assumes unalive-l: ¬ alive (ref l) t
shows s � t〈l:=x〉

proof −
from unalive-l have t〈l:=x〉 = t

by simp
with s-t show ?thesis by simp

qed

lemma Xequ4 ′:
assumes alive: alive x s
shows s ≡[x] s〈t〉

proof −
from alive have x 6= new s t

by auto
thus ?thesis

by (rule xeq4 )
qed

Lemma 3.5 (v)
lemma lessalive-alloc [simp,intro]: s � s〈t〉
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by (simp add: lessalive-def Xequ4 ′)

13.7 Reachability of Types from Types

The predicate treach denotes the fact that the first type reaches the second type by stepping
finitely many times from a type to the range type of one of its fields. This formalization diverges
from [PH97, p. 106] in that it does not include the number of steps that are allowed to reach
the second type. Reachability of types is a static approximation of reachability in the store. If
I cannot reach the type of a location from the type of a reference, I cannot reach the location
from the reference. See lemma not-treach-ref-impl-not-reach below.
inductive

treach :: Javatype ⇒ Javatype ⇒ bool
where

Subtype: U ≤ T =⇒ treach T U
| Attribute: [[treach T S ; S ≤ dtype f ; U ≤ rtype f ]] =⇒ treach T U
| ArrLength: treach (ArrT AT ) IntgT
| ArrElem: treach (ArrT AT ) (at2jt AT )
| Trans [trans]: [[treach T U ; treach U V ]] =⇒ treach T V

lemma treach-ref-l [simp,intro]:
assumes not-Null: ref l 6= nullV
shows treach (typeof (ref l)) (ltype l)

proof (cases l)
case (objLoc cf a)
have l=objLoc cf a by fact
moreover
have treach (CClassT (cls cf )) (rtype (att cf ))

by (rule treach.Attribute [where ?f=att cf and ?S=CClassT (cls cf )])
(auto intro: treach.Subtype)

ultimately show ?thesis
by simp

next
case (staticLoc f )
have l=staticLoc f by fact
hence ref l = nullV by simp
with not-Null show ?thesis

by simp
next

case (arrLenLoc T a)
have l=arrLenLoc T a by fact
then show ?thesis

by (auto intro: treach.ArrLength)
next

case (arrLoc T a i)
have l=arrLoc T a i by fact
then show ?thesis

by (auto intro: treach.ArrElem)
qed

lemma treach-ref-l ′ [simp,intro]:
assumes not-Null: ref l 6= nullV
shows treach (typeof (ref l)) (typeof (s@@l))
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proof −
from not-Null have treach (typeof (ref l)) (ltype l) by (rule treach-ref-l)
also have typeof (s@@l) ≤ ltype l

by simp
hence treach (ltype l) (typeof (s@@l))

by (rule treach.intros)
finally show ?thesis .

qed

lemma reach-impl-treach:
assumes reach-l: s ` l reachable-from x
shows treach (typeof x) (ltype l)

using reach-l
proof (induct)

case (Immediate l)
have ref l 6= nullV by fact
then show treach (typeof (ref l)) (ltype l)

by (rule treach-ref-l)
next

case (Indirect l k)
have treach (typeof (s@@k)) (ltype l) by fact
moreover
have ref k 6= nullV by fact
hence treach (typeof (ref k)) (typeof (s@@k))

by simp
ultimately show treach (typeof (ref k)) (ltype l)

by (iprover intro: treach.Trans)
qed

lemma not-treach-ref-impl-not-reach:
assumes not-treach: ¬ treach (typeof x) (typeof (ref l))
shows ¬ s ` l reachable-from x

proof
assume reach-l: s` l reachable-from x
from this not-treach
show False
proof (induct)

case (Immediate l)
have ¬ treach (typeof (ref l)) (typeof (ref l)) by fact
thus False by (iprover intro: treach.intros order-refl)

next
case (Indirect l k)
have hyp: ¬ treach (typeof (s@@k)) (typeof (ref l)) =⇒ False by fact
have not-Null: ref k 6= nullV by fact
have not-k-l:¬ treach (typeof (ref k)) (typeof (ref l)) by fact
show False
proof (cases treach (typeof (s@@k)) (typeof (ref l)))

case False thus False by (rule hyp)
next

case True
from not-Null have treach (typeof (ref k)) (typeof (s@@k))

by (rule treach-ref-l ′)
also note True
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finally have treach (typeof (ref k)) (typeof (ref l)) .
with not-k-l show False ..

qed
qed

qed

Lemma 4.6 in [PH97, p. 107].
lemma treach1 :

assumes x-t: typeof x ≤ T
assumes not-treach: ¬ treach T (typeof (ref l))
shows ¬ s ` l reachable-from x

proof −
have ¬ treach (typeof x) (typeof (ref l))
proof

from x-t have treach T (typeof x) by (rule treach.intros)
also assume treach (typeof x) (typeof (ref l))
finally have treach T (typeof (ref l)) .
with not-treach show False ..

qed
thus ?thesis

by (rule not-treach-ref-impl-not-reach)
qed

end

14 The Formalization of JML Operators
theory JML imports ../Isabelle-Store/StoreProperties begin

JML operators that are to be used in Hoare formulae can be formalized here.
definition

instanceof :: Value ⇒ Javatype ⇒ bool (‹- @instanceof -›)
where

instanceof v t = (typeof v ≤ t)

end

15 The Universal Specification
theory UnivSpec imports ../Isabelle/JML begin

This theory contains the Isabelle formalization of the program-dependent specification. This
theory has to be provided by the user. In later versions of Jive, one may be able to generate it
from JML model classes.
definition
aCounter :: Value ⇒ Store ⇒ JavaInt where
aCounter x s =
(if x ∼= nullV & (alive x s) & typeof x = CClassT CounterImpl then

aI ( s@@(x..CounterImpl ′value) )
else undefined)

end
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