
A Case Study in Basic Algebra
Clemens Ballarin

Abstract
The focus of this case study is re-use in abstract algebra. It contains

locale-based formalisations of selected parts of set, group and ring theory
from Jacobson’s Basic Algebra leading to the respective fundamental ho-
momorphism theorems. The study is not intended as a library base for
abstract algebra. It rather explores an approach towards abstract algebra
in Isabelle.

hide-const map
hide-const partition

no-notation divide (infixl ‹ ′/› 70)
no-notation inverse-divide (infixl ‹ ′/› 70)

Each statement in the formal text is annotated with the location of the originat-
ing statement in Jacobson’s text [1]. Each fact that Jacobson states explicitly is
marked as theorem unless it is translated to a sublocale declaration. Literal
quotations from Jacobson’s text are reproduced in double quotes.
Auxiliary results needed for the formalisation that cannot be found in Jacobson’s
text are marked as lemma or are interpretations. Such results are annotated
with the location of a related statement. For example, the introduction rule of
a constant is annotated with the location of the definition of the corresponding
operation.

1 Concepts from Set Theory. The Integers
1.1 The Cartesian Product Set. Maps
Maps as extensional HOL functions

p 5, ll 21–25
locale map =

fixes α and S and T
assumes graph [intro, simp]: α ∈ S →E T

begin

p 5, ll 21–25

1

lemma map-closed [intro, simp]:
a ∈ S =⇒ α a ∈ T
〈proof 〉

p 5, ll 21–25
lemma map-undefined [intro]:

a /∈ S =⇒ α a = undefined
〈proof 〉

end

p 7, ll 7–8
locale surjective-map = map + assumes surjective [intro]: α ‘ S = T

p 7, ll 8–9
locale injective-map = map + assumes injective [intro, simp]: inj-on α S

Enables locale reasoning about the inverse restrict (inv-into S α) T of α.

p 7, ll 9–10
locale bijective =

fixes α and S and T
assumes bijective [intro, simp]: bij-betw α S T

Exploit existing knowledge about bij-betw rather than extending surjective-map
and injective-map.

p 7, ll 9–10
locale bijective-map = map + bijective begin

p 7, ll 9–10
sublocale surjective-map 〈proof 〉

p 7, ll 9–10
sublocale injective-map 〈proof 〉

p 9, ll 12–13
sublocale inverse: map restrict (inv-into S α) T T S
〈proof 〉

p 9, ll 12–13
sublocale inverse: bijective restrict (inv-into S α) T T S
〈proof 〉

end

p 8, ll 14–15

2

abbreviation identity S ≡ (λx ∈ S . x)

context map begin

p 8, ll 18–20; p 9, ll 1–8
theorem bij-betw-iff-has-inverse:

bij-betw α S T ←→ (∃β ∈ T →E S . compose S β α = identity S ∧ compose T α
β = identity T)

(is - ←→ (∃β ∈ T →E S . ?INV β))
〈proof 〉

end

1.2 Equivalence Relations. Factoring a Map Through an
Equivalence Relation

p 11, ll 6–11
locale equivalence =

fixes S and E
assumes closed [intro, simp]: E ⊆ S × S

and reflexive [intro, simp]: a ∈ S =⇒ (a, a) ∈ E
and symmetric [sym]: (a, b) ∈ E =⇒ (b, a) ∈ E
and transitive [trans]: [[(a, b) ∈ E ; (b, c) ∈ E]] =⇒ (a, c) ∈ E

begin

p 11, ll 6–11
lemma left-closed [intro]:
(a, b) ∈ E =⇒ a ∈ S
〈proof 〉

p 11, ll 6–11
lemma right-closed [intro]:
(a, b) ∈ E =⇒ b ∈ S
〈proof 〉

end

p 11, ll 16–20
locale partition =

fixes S and P
assumes subset: P ⊆ Pow S

and non-vacuous: {} /∈ P
and complete:

⋃
P = S

and disjoint: [[A ∈ P; B ∈ P; A 6= B]] =⇒ A ∩ B = {}

context equivalence begin

p 11, ll 24–26

3

definition Class = (λa ∈ S . {b ∈ S . (b, a) ∈ E})

p 11, ll 24–26
lemma Class-closed [dest]:
[[a ∈ Class b; b ∈ S]] =⇒ a ∈ S
〈proof 〉

p 11, ll 24–26
lemma Class-closed2 [intro, simp]:

a ∈ S =⇒ Class a ⊆ S
〈proof 〉

p 11, ll 24–26
lemma Class-undefined [intro, simp]:

a /∈ S =⇒ Class a = undefined
〈proof 〉

p 11, ll 24–26
lemma ClassI [intro, simp]:
(a, b) ∈ E =⇒ a ∈ Class b
〈proof 〉

p 11, ll 24–26
lemma Class-revI [intro, simp]:
(a, b) ∈ E =⇒ b ∈ Class a
〈proof 〉

p 11, ll 24–26
lemma ClassD [dest]:
[[b ∈ Class a; a ∈ S]] =⇒ (b, a) ∈ E
〈proof 〉

p 11, ll 30–31
theorem Class-self [intro, simp]:

a ∈ S =⇒ a ∈ Class a
〈proof 〉

p 11, l 31; p 12, l 1
theorem Class-Union [simp]:
(
⋃

a∈S . Class a) = S
〈proof 〉

p 11, ll 2–3
theorem Class-subset:
(a, b) ∈ E =⇒ Class a ⊆ Class b
〈proof 〉

4

p 11, ll 3–4
theorem Class-eq:
(a, b) ∈ E =⇒ Class a = Class b
〈proof 〉

p 12, ll 1–5
theorem Class-equivalence:
[[a ∈ S ; b ∈ S]] =⇒ Class a = Class b ←→ (a, b) ∈ E
〈proof 〉

p 12, ll 5–7
theorem not-disjoint-implies-equal:

assumes not-disjoint: Class a ∩ Class b 6= {}
assumes closed: a ∈ S b ∈ S
shows Class a = Class b
〈proof 〉

p 12, ll 7–8
definition Partition = Class ‘ S

p 12, ll 7–8
lemma Class-in-Partition [intro, simp]:

a ∈ S =⇒ Class a ∈ Partition
〈proof 〉

p 12, ll 7–8
theorem partition:

partition S Partition
〈proof 〉

end

context partition begin

p 12, ll 9–10
theorem block-exists:

a ∈ S =⇒ ∃A. a ∈ A ∧ A ∈ P
〈proof 〉

p 12, ll 9–10
theorem block-unique:
[[a ∈ A; A ∈ P; a ∈ B; B ∈ P]] =⇒ A = B
〈proof 〉

p 12, ll 9–10
lemma block-closed [intro]:
[[a ∈ A; A ∈ P]] =⇒ a ∈ S

5

〈proof 〉

p 12, ll 9–10
lemma element-exists:

A ∈ P =⇒ ∃ a ∈ S . a ∈ A
〈proof 〉

p 12, ll 9–10
definition Block = (λa ∈ S . THE A. a ∈ A ∧ A ∈ P)

p 12, ll 9–10
lemma Block-closed [intro, simp]:

assumes [intro]: a ∈ S shows Block a ∈ P
〈proof 〉

p 12, ll 9–10
lemma Block-undefined [intro, simp]:

a /∈ S =⇒ Block a = undefined
〈proof 〉

p 12, ll 9–10
lemma Block-self :
[[a ∈ A; A ∈ P]] =⇒ Block a = A
〈proof 〉

p 12, ll 10–11
definition Equivalence = {(a, b) . ∃A ∈ P. a ∈ A ∧ b ∈ A}

p 12, ll 11–12
theorem equivalence: equivalence S Equivalence
〈proof 〉

Temporarily introduce equivalence associated to partition.

p 12, ll 12–14
interpretation equivalence S Equivalence 〈proof 〉

p 12, ll 12–14
theorem Class-is-Block:

assumes a ∈ S shows Class a = Block a
〈proof 〉

p 12, l 14
lemma Class-equals-Block:

Class = Block
〈proof 〉

6

p 12, l 14
theorem partition-of-equivalence:

Partition = P
〈proof 〉

end

context equivalence begin

p 12, ll 14–17
interpretation partition S Partition 〈proof 〉

p 12, ll 14–17
theorem equivalence-of-partition:

Equivalence = E
〈proof 〉

end

p 12, l 14
sublocale partition ⊆ equivalence S Equivalence

rewrites equivalence.Partition S Equivalence = P and equivalence.Class S Equiva-
lence = Block
〈proof 〉

p 12, ll 14–17
sublocale equivalence ⊆ partition S Partition

rewrites partition.Equivalence Partition = E and partition.Block S Partition =
Class
〈proof 〉

Unfortunately only effective on input

p 12, ll 18–20
notation equivalence.Partition (infixl ‹ ′/› 75)

context equivalence begin

p 12, ll 18–20
lemma representant-exists [dest]: A ∈ S / E =⇒ ∃ a∈S . a ∈ A ∧ A = Class a
〈proof 〉

p 12, ll 18–20
lemma quotient-ClassE : A ∈ S / E =⇒ (

∧
a. a ∈ S =⇒ P (Class a)) =⇒ P A

〈proof 〉

end

7

p 12, ll 21–23
sublocale equivalence ⊆ natural: surjective-map Class S S / E
〈proof 〉

Technical device to achieve Jacobson’s syntax; context where α is not a param-
eter.

p 12, ll 25–26
locale fiber-relation-notation = fixes S :: ′a set begin

p 12, ll 25–26
definition Fiber-Relation (‹E ′(- ′)›) where Fiber-Relation α = {(x, y). x ∈ S ∧ y ∈
S ∧ α x = α y}

end

Context where classes and the induced map are defined through the fiber rela-
tion. This will be the case for monoid homomorphisms but not group homo-
morphisms.

Avoids infinite interpretation chain.

p 12, ll 25–26
locale fiber-relation = map begin

Install syntax

p 12, ll 25–26
sublocale fiber-relation-notation 〈proof 〉

p 12, ll 26–27
sublocale equivalence where E = E(α)
〈proof 〉

“define ᾱ by ᾱ(ā) = α(a)”

p 13, ll 8–9
definition induced = (λA ∈ S / E(α). THE b. ∃ a ∈ A. b = α a)

p 13, l 10
theorem Fiber-equality:
[[a ∈ S ; b ∈ S]] =⇒ Class a = Class b ←→ α a = α b
〈proof 〉

p 13, ll 8–9
theorem induced-Fiber-simp [simp]:

assumes [intro, simp]: a ∈ S shows induced (Class a) = α a

8

〈proof 〉

p 13, ll 10–11
interpretation induced: map induced S / E(α) T
〈proof 〉

p 13, ll 12–13
sublocale induced: injective-map induced S / E(α) T
〈proof 〉

p 13, ll 16–19
theorem factorization-lemma:

a ∈ S =⇒ compose S induced Class a = α a
〈proof 〉

p 13, ll 16–19
theorem factorization [simp]: compose S induced Class = α
〈proof 〉

p 14, ll 2–4
theorem uniqueness:

assumes map: β ∈ S / E(α) →E T
and factorization: compose S β Class = α

shows β = induced
〈proof 〉

end

hide-const monoid
hide-const group
hide-const inverse

no-notation quotient (infixl ‹ ′/ ′/› 90)

2 Monoids and Groups
2.1 Monoids of Transformations and Abstract Monoids
Def 1.1

p 28, ll 28–30
locale monoid =

fixes M and composition (infixl ‹·› 70) and unit (‹1›)
assumes composition-closed [intro, simp]: [[a ∈ M ; b ∈ M]] =⇒ a · b ∈ M

and unit-closed [intro, simp]: 1 ∈ M
and associative [intro]: [[a ∈ M ; b ∈ M ; c ∈ M]] =⇒ (a · b) · c = a · (b · c)

9

and left-unit [intro, simp]: a ∈ M =⇒ 1 · a = a
and right-unit [intro, simp]: a ∈ M =⇒ a · 1 = a

p 29, ll 27–28
locale submonoid = monoid M (·) 1

for N and M and composition (infixl ‹·› 70) and unit (‹1›) +
assumes subset: N ⊆ M

and sub-composition-closed: [[a ∈ N ; b ∈ N]] =⇒ a · b ∈ N
and sub-unit-closed: 1 ∈ N

begin

p 29, ll 27–28
lemma sub [intro, simp]:

a ∈ N =⇒ a ∈ M
〈proof 〉

p 29, ll 32–33
sublocale sub: monoid N (·) 1
〈proof 〉

end

p 29, ll 33–34
theorem submonoid-transitive:

assumes submonoid K N composition unit
and submonoid N M composition unit

shows submonoid K M composition unit
〈proof 〉

p 28, l 23
locale transformations =

fixes S :: ′a set

Monoid of all transformations

p 28, ll 23–24
sublocale transformations ⊆ monoid S →E S compose S identity S
〈proof 〉

N is a monoid of transformations of the set S.

p 29, ll 34–36
locale transformation-monoid =

transformations S + submonoid M S →E S compose S identity S for M and S
begin

p 29, ll 34–36
lemma transformation-closed [intro, simp]:

10

[[α ∈ M ; x ∈ S]] =⇒ α x ∈ S
〈proof 〉

p 29, ll 34–36
lemma transformation-undefined [intro, simp]:
[[α ∈ M ; x /∈ S]] =⇒ α x = undefined
〈proof 〉

end

2.2 Groups of Transformations and Abstract Groups
context monoid begin

Invertible elements

p 31, ll 3–5
definition invertible where u ∈ M =⇒ invertible u ←→ (∃ v ∈ M . u · v = 1 ∧ v ·
u = 1)

p 31, ll 3–5
lemma invertibleI [intro]:
[[u · v = 1; v · u = 1; u ∈ M ; v ∈ M]] =⇒ invertible u
〈proof 〉

p 31, ll 3–5
lemma invertibleE [elim]:
[[invertible u;

∧
v. [[u · v = 1 ∧ v · u = 1; v ∈ M]] =⇒ P; u ∈ M]] =⇒ P

〈proof 〉

p 31, ll 6–7
theorem inverse-unique:
[[u · v ′ = 1; v · u = 1; u ∈ M ; v ∈ M ; v ′ ∈ M]] =⇒ v = v ′

〈proof 〉

p 31, l 7
definition inverse where inverse = (λu ∈ M . THE v. v ∈ M ∧ u · v = 1 ∧ v · u =
1)

p 31, l 7
theorem inverse-equality:
[[u · v = 1; v · u = 1; u ∈ M ; v ∈ M]] =⇒ inverse u = v
〈proof 〉

p 31, l 7
lemma invertible-inverse-closed [intro, simp]:
[[invertible u; u ∈ M]] =⇒ inverse u ∈ M

11

〈proof 〉

p 31, l 7
lemma inverse-undefined [intro, simp]:

u /∈ M =⇒ inverse u = undefined
〈proof 〉

p 31, l 7
lemma invertible-left-inverse [simp]:
[[invertible u; u ∈ M]] =⇒ inverse u · u = 1
〈proof 〉

p 31, l 7
lemma invertible-right-inverse [simp]:
[[invertible u; u ∈ M]] =⇒ u · inverse u = 1
〈proof 〉

p 31, l 7
lemma invertible-left-cancel [simp]:
[[invertible x; x ∈ M ; y ∈ M ; z ∈ M]] =⇒ x · y = x · z ←→ y = z
〈proof 〉

p 31, l 7
lemma invertible-right-cancel [simp]:
[[invertible x; x ∈ M ; y ∈ M ; z ∈ M]] =⇒ y · x = z · x ←→ y = z
〈proof 〉

p 31, l 7
lemma inverse-unit [simp]: inverse 1 = 1
〈proof 〉

p 31, ll 7–8
theorem invertible-inverse-invertible [intro, simp]:
[[invertible u; u ∈ M]] =⇒ invertible (inverse u)
〈proof 〉

p 31, l 8
theorem invertible-inverse-inverse [simp]:
[[invertible u; u ∈ M]] =⇒ inverse (inverse u) = u
〈proof 〉

end

context submonoid begin

Reasoning about invertible and inverse in submonoids.

p 31, l 7

12

lemma submonoid-invertible [intro, simp]:
[[sub.invertible u; u ∈ N]] =⇒ invertible u
〈proof 〉

p 31, l 7
lemma submonoid-inverse-closed [intro, simp]:
[[sub.invertible u; u ∈ N]] =⇒ inverse u ∈ N
〈proof 〉

end

Def 1.2

p 31, ll 9–10
locale group =

monoid G (·) 1 for G and composition (infixl ‹·› 70) and unit (‹1›) +
assumes invertible [simp, intro]: u ∈ G =⇒ invertible u

p 31, ll 11–12
locale subgroup = submonoid G M (·) 1 + sub: group G (·) 1

for G and M and composition (infixl ‹·› 70) and unit (‹1›)
begin

Reasoning about invertible and inverse in subgroups.

p 31, ll 11–12
lemma subgroup-inverse-equality [simp]:

u ∈ G =⇒ inverse u = sub.inverse u
〈proof 〉

p 31, ll 11–12
lemma subgroup-inverse-iff [simp]:
[[invertible x; x ∈ M]] =⇒ inverse x ∈ G ←→ x ∈ G
〈proof 〉

end

p 31, ll 11–12
lemma subgroup-transitive [trans]:

assumes subgroup K H composition unit
and subgroup H G composition unit

shows subgroup K G composition unit
〈proof 〉

context monoid begin

Jacobson states both directions, but the other one is trivial.

p 31, ll 12–15

13

theorem subgroupI :
fixes G
assumes subset [THEN subsetD, intro]: G ⊆ M

and [intro]: 1 ∈ G
and [intro]:

∧
g h. [[g ∈ G; h ∈ G]] =⇒ g · h ∈ G

and [intro]:
∧

g. g ∈ G =⇒ invertible g
and [intro]:

∧
g. g ∈ G =⇒ inverse g ∈ G

shows subgroup G M (·) 1
〈proof 〉

p 31, l 16
definition Units = {u ∈ M . invertible u}

p 31, l 16
lemma mem-UnitsI :
[[invertible u; u ∈ M]] =⇒ u ∈ Units
〈proof 〉

p 31, l 16
lemma mem-UnitsD:
[[u ∈ Units]] =⇒ invertible u ∧ u ∈ M
〈proof 〉

p 31, ll 16–21
interpretation units: subgroup Units M
〈proof 〉

p 31, ll 21–22
theorem group-of-Units [intro, simp]:

group Units (·) 1
〈proof 〉

p 31, l 19
lemma composition-invertible [simp, intro]:
[[invertible x; invertible y; x ∈ M ; y ∈ M]] =⇒ invertible (x · y)
〈proof 〉

p 31, l 20
lemma unit-invertible:

invertible 1
〈proof 〉

Useful simplification rules

p 31, l 22
lemma invertible-right-inverse2 :
[[invertible u; u ∈ M ; v ∈ M]] =⇒ u · (inverse u · v) = v

14

〈proof 〉

p 31, l 22
lemma invertible-left-inverse2 :
[[invertible u; u ∈ M ; v ∈ M]] =⇒ inverse u · (u · v) = v
〈proof 〉

p 31, l 22
lemma inverse-composition-commute:

assumes [simp]: invertible x invertible y x ∈ M y ∈ M
shows inverse (x · y) = inverse y · inverse x
〈proof 〉

end

p 31, l 24
context transformations begin

p 31, ll 25–26
theorem invertible-is-bijective:

assumes dom: α ∈ S →E S
shows invertible α ←→ bij-betw α S S
〈proof 〉

p 31, ll 26–27
theorem Units-bijective:

Units = {α ∈ S →E S . bij-betw α S S}
〈proof 〉

p 31, ll 26–27
lemma Units-bij-betwI [intro, simp]:
α ∈ Units =⇒ bij-betw α S S
〈proof 〉

p 31, ll 26–27
lemma Units-bij-betwD [dest, simp]:
[[α ∈ S →E S ; bij-betw α S S]] =⇒ α ∈ Units
〈proof 〉

p 31, ll 28–29
abbreviation Sym ≡ Units

p 31, ll 26–28
sublocale symmetric: group Sym compose S identity S
〈proof 〉

end

15

p 32, ll 18–19
locale transformation-group =

transformations S + symmetric: subgroup G Sym compose S identity S for G and
S
begin

p 32, ll 18–19
lemma transformation-group-closed [intro, simp]:
[[α ∈ G; x ∈ S]] =⇒ α x ∈ S
〈proof 〉

p 32, ll 18–19
lemma transformation-group-undefined [intro, simp]:
[[α ∈ G; x /∈ S]] =⇒ α x = undefined
〈proof 〉

end

2.3 Isomorphisms. Cayley’s Theorem
Def 1.3

p 37, ll 7–11
locale monoid-isomorphism =

bijective-map η M M ′ + source: monoid M (·) 1 + target: monoid M ′ (· ′) 1 ′

for η and M and composition (infixl ‹·› 70) and unit (‹1›)
and M ′ and composition ′ (infixl ‹· ′′› 70) and unit ′ (‹1 ′′›) +

assumes commutes-with-composition: [[x ∈ M ; y ∈ M]] =⇒ η x · ′ η y = η (x · y)
and commutes-with-unit: η 1 = 1 ′

p 37, l 10
definition isomorphic-as-monoids (infixl ‹∼=M › 50)

where M ∼=M M ′←→ (let (M , composition, unit) =M; (M ′, composition ′, unit ′)
=M ′ in
(∃ η. monoid-isomorphism η M composition unit M ′ composition ′ unit ′))

p 37, ll 11–12
locale monoid-isomorphism ′ =

bijective-map η M M ′ + source: monoid M (·) 1 + target: monoid M ′ (· ′) 1 ′

for η and M and composition (infixl ‹·› 70) and unit (‹1›)
and M ′ and composition ′ (infixl ‹· ′′› 70) and unit ′ (‹1 ′′›) +

assumes commutes-with-composition: [[x ∈ M ; y ∈ M]] =⇒ η x · ′ η y = η (x · y)

p 37, ll 11–12
sublocale monoid-isomorphism ⊆ monoid-isomorphism ′

〈proof 〉

Both definitions are equivalent.

16

p 37, ll 12–15
sublocale monoid-isomorphism ′ ⊆ monoid-isomorphism
〈proof 〉

context monoid-isomorphism begin

p 37, ll 30–33
theorem inverse-monoid-isomorphism:

monoid-isomorphism (restrict (inv-into M η) M ′) M ′ (· ′) 1 ′ M (·) 1
〈proof 〉

end

We only need that η is symmetric.

p 37, ll 28–29
theorem isomorphic-as-monoids-symmetric:
(M , composition, unit) ∼=M (M ′, composition ′, unit ′) =⇒ (M ′, composition ′, unit ′)
∼=M (M , composition, unit)
〈proof 〉

p 38, l 4
locale left-translations-of-monoid = monoid begin

p 38, ll 5–7
definition translation (‹ ′(- ′)L›) where translation = (λa ∈ M . λx ∈ M . a · x)

p 38, ll 5–7
lemma translation-map [intro, simp]:

a ∈ M =⇒ (a)L ∈ M →E M
〈proof 〉

p 38, ll 5–7
lemma Translations-maps [intro, simp]:

translation ‘ M ⊆ M →E M
〈proof 〉

p 38, ll 5–7
lemma translation-apply:
[[a ∈ M ; b ∈ M]] =⇒ (a)L b = a · b
〈proof 〉

p 38, ll 5–7
lemma translation-exist:

f ∈ translation ‘ M =⇒ ∃ a ∈ M . f = (a)L
〈proof 〉

17

p 38, ll 5–7
lemmas Translations-E [elim] = translation-exist [THEN bexE]

p 38, l 10
theorem translation-unit-eq [simp]:

identity M = (1)L
〈proof 〉

p 38, ll 10–11
theorem translation-composition-eq [simp]:

assumes [simp]: a ∈ M b ∈ M
shows compose M (a)L (b)L = (a · b)L
〈proof 〉

p 38, ll 7–9
sublocale transformation: transformations M 〈proof 〉

p 38, ll 7–9
theorem Translations-transformation-monoid:

transformation-monoid (translation ‘ M) M
〈proof 〉

p 38, ll 7–9
sublocale transformation: transformation-monoid translation ‘ M M
〈proof 〉

p 38, l 12
sublocale map translation M translation ‘ M
〈proof 〉

p 38, ll 12–16
theorem translation-isomorphism [intro]:

monoid-isomorphism translation M (·) 1 (translation ‘ M) (compose M) (identity
M)
〈proof 〉

p 38, ll 12–16
sublocale monoid-isomorphism translation M (·) 1 translation ‘ M compose M iden-
tity M 〈proof 〉

end

context monoid begin

p 38, ll 1–2
interpretation left-translations-of-monoid 〈proof 〉

18

p 38, ll 1–2
theorem cayley-monoid:
∃M ′ composition ′ unit ′. transformation-monoid M ′ M ∧ (M , (·), 1) ∼=M (M ′, com-

position ′, unit ′)
〈proof 〉

end

p 38, l 17
locale left-translations-of-group = group begin

p 38, ll 17–18
sublocale left-translations-of-monoid where M = G 〈proof 〉

p 38, ll 17–18
notation translation (‹ ′(- ′)L›)

The group of left translations is a subgroup of the symmetric group, hence
transformation.sub.invertible.

p 38, ll 20–22
theorem translation-invertible [intro, simp]:

assumes [simp]: a ∈ G
shows transformation.sub.invertible (a)L
〈proof 〉

p 38, ll 19–20
theorem translation-bijective [intro, simp]:

a ∈ G =⇒ bij-betw (a)L G G
〈proof 〉

p 38, ll 18–20
theorem Translations-transformation-group:

transformation-group (translation ‘ G) G
〈proof 〉

p 38, ll 18–20
sublocale transformation: transformation-group translation ‘ G G
〈proof 〉

end

context group begin

p 38, ll 2–3
interpretation left-translations-of-group 〈proof 〉

19

p 38, ll 2–3
theorem cayley-group:
∃G ′ composition ′ unit ′. transformation-group G ′ G ∧ (G, (·), 1) ∼=M (G ′, composi-

tion ′, unit ′)
〈proof 〉

end

Exercise 3

p 39, ll 9–10
locale right-translations-of-group = group begin

p 39, ll 9–10
definition translation (‹ ′(- ′)R›) where translation = (λa ∈ G. λx ∈ G. x · a)

p 39, ll 9–10
abbreviation Translations ≡ translation ‘ G

The isomorphism that will be established is a map different from translation.

p 39, ll 9–10
interpretation aux: map translation G Translations
〈proof 〉

p 39, ll 9–10
lemma translation-map [intro, simp]:

a ∈ G =⇒ (a)R ∈ G →E G
〈proof 〉

p 39, ll 9–10
lemma Translation-maps [intro, simp]:

Translations ⊆ G →E G
〈proof 〉

p 39, ll 9–10
lemma translation-apply:
[[a ∈ G; b ∈ G]] =⇒ (a)R b = b · a
〈proof 〉

p 39, ll 9–10
lemma translation-exist:

f ∈ Translations =⇒ ∃ a ∈ G. f = (a)R
〈proof 〉

p 39, ll 9–10
lemmas Translations-E [elim] = translation-exist [THEN bexE]

20

p 39, ll 9–10
lemma translation-unit-eq [simp]:

identity G = (1)R
〈proof 〉

p 39, ll 10–11
lemma translation-composition-eq [simp]:

assumes [simp]: a ∈ G b ∈ G
shows compose G (a)R (b)R = (b · a)R
〈proof 〉

p 39, ll 10–11
sublocale transformation: transformations G 〈proof 〉

p 39, ll 10–11
lemma Translations-transformation-monoid:

transformation-monoid Translations G
〈proof 〉

p 39, ll 10–11
sublocale transformation: transformation-monoid Translations G
〈proof 〉

p 39, ll 10–11
lemma translation-invertible [intro, simp]:

assumes [simp]: a ∈ G
shows transformation.sub.invertible (a)R
〈proof 〉

p 39, ll 10–11
lemma translation-bijective [intro, simp]:

a ∈ G =⇒ bij-betw (a)R G G
〈proof 〉

p 39, ll 10–11
theorem Translations-transformation-group:

transformation-group Translations G
〈proof 〉

p 39, ll 10–11
sublocale transformation: transformation-group Translations G
〈proof 〉

p 39, ll 10–11
lemma translation-inverse-eq [simp]:

assumes [simp]: a ∈ G

21

shows transformation.sub.inverse (a)R = (inverse a)R
〈proof 〉

p 39, ll 10–11
theorem translation-inverse-monoid-isomorphism [intro]:
monoid-isomorphism (λa∈G. transformation.symmetric.inverse (a)R) G (·) 1 Trans-

lations (compose G) (identity G)
(is monoid-isomorphism ?inv - - - - - -)
〈proof 〉

p 39, ll 10–11
sublocale monoid-isomorphism
λa∈G. transformation.symmetric.inverse (a)R G (·) 1 Translations compose G iden-

tity G 〈proof 〉

end

2.4 Generalized Associativity. Commutativity
p 40, l 27; p 41, ll 1–2
locale commutative-monoid = monoid +

assumes commutative: [[x ∈ M ; y ∈ M]] =⇒ x · y = y · x

p 41, l 2
locale abelian-group = group + commutative-monoid G (·) 1

2.5 Orbits. Cosets of a Subgroup
context transformation-group begin

p 51, ll 18–20
definition Orbit-Relation

where Orbit-Relation = {(x, y). x ∈ S ∧ y ∈ S ∧ (∃α ∈ G. y = α x)}

p 51, ll 18–20
lemma Orbit-Relation-memI [intro]:
[[∃α ∈ G. y = α x; x ∈ S]] =⇒ (x, y) ∈ Orbit-Relation
〈proof 〉

p 51, ll 18–20
lemma Orbit-Relation-memE [elim]:
[[(x, y) ∈ Orbit-Relation;

∧
α. [[α ∈ G; x ∈ S ; y = α x]] =⇒ Q]] =⇒ Q

〈proof 〉

p 51, ll 20–23, 26–27
sublocale orbit: equivalence S Orbit-Relation
〈proof 〉

22

p 51, ll 23–24
theorem orbit-equality:

x ∈ S =⇒ orbit.Class x = {α x | α. α ∈ G}
〈proof 〉

end

context monoid-isomorphism begin

p 52, ll 16–17
theorem image-subgroup:

assumes subgroup G M (·) 1
shows subgroup (η ‘ G) M ′ (· ′) 1 ′

〈proof 〉

end

Technical device to achieve Jacobson’s notation for Right-Coset and Left-Coset.
The definitions are pulled out of subgroup-of-group to a context where H is not
a parameter.

p 52, l 20
locale coset-notation = fixes composition (infixl ‹·› 70) begin

Equation 23

p 52, l 20
definition Right-Coset (infixl ‹|·› 70) where H |· x = {h · x | h. h ∈ H}

p 53, ll 8–9
definition Left-Coset (infixl ‹·|› 70) where x ·| H = {x · h | h. h ∈ H}

p 52, l 20
lemma Right-Coset-memI [intro]:

h ∈ H =⇒ h · x ∈ H |· x
〈proof 〉

p 52, l 20
lemma Right-Coset-memE [elim]:
[[a ∈ H |· x;

∧
h. [[h ∈ H ; a = h · x]] =⇒ P]] =⇒ P

〈proof 〉

p 53, ll 8–9
lemma Left-Coset-memI [intro]:

h ∈ H =⇒ x · h ∈ x ·| H
〈proof 〉

p 53, ll 8–9

23

lemma Left-Coset-memE [elim]:
[[a ∈ x ·| H ;

∧
h. [[h ∈ H ; a = x · h]] =⇒ P]] =⇒ P

〈proof 〉

end

p 52, l 12
locale subgroup-of-group = subgroup H G (·) 1 + coset-notation (·) + group G (·) 1

for H and G and composition (infixl ‹·› 70) and unit (‹1›)
begin

p 52, ll 12–14
interpretation left: left-translations-of-group 〈proof 〉
interpretation right: right-translations-of-group 〈proof 〉

left.translation ‘ H denotes Jacobson’s HL(G) and left.translation ‘ G denotes
Jacobson’s GL.

p 52, ll 16–18
theorem left-translations-of-subgroup-are-transformation-group [intro]:

transformation-group (left.translation ‘ H) G
〈proof 〉

p 52, l 18
interpretation transformation-group left.translation ‘ H G 〈proof 〉

p 52, ll 19–20
theorem Right-Coset-is-orbit:

x ∈ G =⇒ H |· x = orbit.Class x
〈proof 〉

p 52, ll 24–25
theorem Right-Coset-Union:
(
⋃

x∈G. H |· x) = G
〈proof 〉

p 52, l 26
theorem Right-Coset-bij:

assumes G [simp]: x ∈ G y ∈ G
shows bij-betw (inverse x · y)R (H |· x) (H |· y)
〈proof 〉

p 52, ll 25–26
theorem Right-Cosets-cardinality:
[[x ∈ G; y ∈ G]] =⇒ card (H |· x) = card (H |· y)
〈proof 〉

p 52, l 27

24

theorem Right-Coset-unit:
H |· 1 = H
〈proof 〉

p 52, l 27
theorem Right-Coset-cardinality:

x ∈ G =⇒ card (H |· x) = card H
〈proof 〉

p 52, ll 31–32
definition index = card orbit.Partition

Theorem 1.5

p 52, ll 33–35; p 53, ll 1–2
theorem lagrange:

finite G =⇒ card G = card H ∗ index
〈proof 〉

end

Left cosets
context subgroup begin

p 31, ll 11–12
lemma image-of-inverse [intro, simp]:

x ∈ G =⇒ x ∈ inverse ‘ G
〈proof 〉

end

context group begin

p 53, ll 6–7
lemma inverse-subgroupI :

assumes sub: subgroup H G (·) 1
shows subgroup (inverse ‘ H) G (·) 1
〈proof 〉

p 53, ll 6–7
lemma inverse-subgroupD:

assumes sub: subgroup (inverse ‘ H) G (·) 1
and inv: H ⊆ Units

shows subgroup H G (·) 1
〈proof 〉

end

25

context subgroup-of-group begin

p 53, l 6
interpretation right-translations-of-group 〈proof 〉

translation ‘ H denotes Jacobson’s HR(G) and Translations denotes Jacobson’s
GR.

p 53, ll 6–7
theorem right-translations-of-subgroup-are-transformation-group [intro]:

transformation-group (translation ‘ H) G
〈proof 〉

p 53, ll 6–7
interpretation transformation-group translation ‘ H G 〈proof 〉

Equation 23 for left cosets

p 53, ll 7–8
theorem Left-Coset-is-orbit:

x ∈ G =⇒ x ·| H = orbit.Class x
〈proof 〉

end

2.6 Congruences. Quotient Monoids and Groups
Def 1.4

p 54, ll 19–22
locale monoid-congruence = monoid + equivalence where S = M +

assumes cong: [[(a, a ′) ∈ E ; (b, b ′) ∈ E]] =⇒ (a · b, a ′ · b ′) ∈ E
begin

p 54, ll 26–28
theorem Class-cong:
[[Class a = Class a ′; Class b = Class b ′; a ∈ M ; a ′ ∈ M ; b ∈ M ; b ′ ∈ M]] =⇒

Class (a · b) = Class (a ′ · b ′)
〈proof 〉

p 54, ll 28–30
definition quotient-composition (infixl ‹[·]› 70)

where quotient-composition = (λA ∈ M / E . λB ∈ M / E . THE C . ∃ a ∈ A. ∃ b
∈ B. C = Class (a · b))

p 54, ll 28–30
theorem Class-commutes-with-composition:

26

[[a ∈ M ; b ∈ M]] =⇒ Class a [·] Class b = Class (a · b)
〈proof 〉

p 54, ll 30–31
theorem quotient-composition-closed [intro, simp]:
[[A ∈ M / E ; B ∈ M / E]] =⇒ A [·] B ∈ M / E
〈proof 〉

p 54, l 32; p 55, ll 1–3
sublocale quotient: monoid M / E ([·]) Class 1
〈proof 〉

end

p 55, ll 16–17
locale group-congruence = group + monoid-congruence where M = G begin

p 55, ll 16–17
notation quotient-composition (infixl ‹[·]› 70)

p 55, l 18
theorem Class-right-inverse:

a ∈ G =⇒ Class a [·] Class (inverse a) = Class 1
〈proof 〉

p 55, l 18
theorem Class-left-inverse:

a ∈ G =⇒ Class (inverse a) [·] Class a = Class 1
〈proof 〉

p 55, l 18
theorem Class-invertible:

a ∈ G =⇒ quotient.invertible (Class a)
〈proof 〉

p 55, l 18
theorem Class-commutes-with-inverse:

a ∈ G =⇒ quotient.inverse (Class a) = Class (inverse a)
〈proof 〉

p 55, l 17
sublocale quotient: group G / E ([·]) Class 1
〈proof 〉

end

Def 1.5

27

p 55, ll 22–25
locale normal-subgroup =

subgroup-of-group K G (·) 1 for K and G and composition (infixl ‹·› 70) and unit
(‹1›) +

assumes normal: [[g ∈ G; k ∈ K]] =⇒ inverse g · k · g ∈ K

Lemmas from the proof of Thm 1.6
context subgroup-of-group begin

We use H for K.

p 56, ll 14–16
theorem Left-equals-Right-coset-implies-normality:

assumes [simp]:
∧

g. g ∈ G =⇒ g ·| H = H |· g
shows normal-subgroup H G (·) 1
〈proof 〉

end

Thm 1.6, first part
context group-congruence begin

Jacobson’s K

p 56, l 29
definition Normal = Class 1

p 56, ll 3–6
interpretation subgroup Normal G (·) 1
〈proof 〉

Coset notation

p 56, ll 5–6
interpretation subgroup-of-group Normal G (·) 1 〈proof 〉

Equation 25 for right cosets

p 55, ll 29–30; p 56, ll 6–11
theorem Right-Coset-Class-unit:

assumes g: g ∈ G shows Normal |· g = Class g
〈proof 〉

Equation 25 for left cosets

p 55, ll 29–30; p 56, ll 6–11
theorem Left-Coset-Class-unit:

assumes g: g ∈ G shows g ·| Normal = Class g

28

〈proof 〉

Thm 1.6, statement of first part

p 55, ll 28–29; p 56, ll 12–16
theorem Class-unit-is-normal:

normal-subgroup Normal G (·) 1
〈proof 〉

sublocale normal: normal-subgroup Normal G (·) 1
〈proof 〉

end

context normal-subgroup begin

p 56, ll 16–19
theorem Left-equals-Right-coset:

g ∈ G =⇒ g ·| K = K |· g
〈proof 〉

Thm 1.6, second part

p 55, ll 31–32; p 56, ll 20–21
definition Congruence = {(a, b). a ∈ G ∧ b ∈ G ∧ inverse a · b ∈ K}

p 56, ll 21–22
interpretation right-translations-of-group 〈proof 〉

p 56, ll 21–22
interpretation transformation-group translation ‘ K G rewrites Orbit-Relation =
Congruence
〈proof 〉

p 56, ll 20–21
lemma CongruenceI : [[a = b · k; a ∈ G; b ∈ G; k ∈ K]] =⇒ (a, b) ∈ Congruence
〈proof 〉

p 56, ll 20–21
lemma CongruenceD: (a, b) ∈ Congruence =⇒ ∃ k∈K . a = b · k
〈proof 〉

“We showed in the last section that the relation we are considering is an equiv-
alence relation in G for any subgroup K of G. We now proceed to show that
normality of K ensures that [...] a ≡ b (mod K) is a congruence.”

p 55, ll 30–32; p 56, ll 1, 22–28
sublocale group-congruence where E = Congruence rewrites Normal = K

29

〈proof 〉

end

context group begin

Pulled out of normal-subgroup to achieve standard notation.

p 56, ll 31–32
abbreviation Factor-Group (infixl ‹ ′/ ′/› 75)

where S // K ≡ S / (normal-subgroup.Congruence K G (·) 1)

end

context normal-subgroup begin

p 56, ll 28–29
theorem Class-unit-normal-subgroup: Class 1 = K
〈proof 〉

p 56, ll 1–2; p 56, l 29
theorem Class-is-Left-Coset:

g ∈ G =⇒ Class g = g ·| K
〈proof 〉

p 56, l 29
lemma Left-CosetE : [[A ∈ G // K ;

∧
a. a ∈ G =⇒ P (a ·| K)]] =⇒ P A

〈proof 〉

Equation 26

p 56, ll 32–34
theorem factor-composition [simp]:
[[g ∈ G; h ∈ G]] =⇒ (g ·| K) [·] (h ·| K) = g · h ·| K
〈proof 〉

p 56, l 35
theorem factor-unit:

K = 1 ·| K
〈proof 〉

p 56, l 35
theorem factor-inverse [simp]:

g ∈ G =⇒ quotient.inverse (g ·| K) = (inverse g ·| K)
〈proof 〉

end

30

p 57, ll 4–5
locale subgroup-of-abelian-group = subgroup-of-group H G (·) 1 + abelian-group G (·)
1

for H and G and composition (infixl ‹·› 70) and unit (‹1›)

p 57, ll 4–5
sublocale subgroup-of-abelian-group ⊆ normal-subgroup H G (·) 1
〈proof 〉

2.7 Homomorphims
Def 1.6

p 58, l 33; p 59, ll 1–2
locale monoid-homomorphism =

map η M M ′+ source: monoid M (·) 1 + target: monoid M ′ (· ′) 1 ′

for η and M and composition (infixl ‹·› 70) and unit (‹1›)
and M ′ and composition ′ (infixl ‹· ′′› 70) and unit ′ (‹1 ′′›) +

assumes commutes-with-composition: [[x ∈ M ; y ∈ M]] =⇒ η (x · y) = η x · ′ η y
and commutes-with-unit: η 1 = 1 ′

begin

Jacobson notes that commutes-with-unit is not necessary for groups, but doesn’t
make use of that later.

p 58, l 33; p 59, ll 1–2
notation source.invertible (‹invertible -› [100] 100)
notation source.inverse (‹inverse -› [100] 100)
notation target.invertible (‹invertible ′′ -› [100] 100)
notation target.inverse (‹inverse ′′ -› [100] 100)

end

p 59, ll 29–30
locale monoid-epimorphism = monoid-homomorphism + surjective-map η M M ′

p 59, l 30
locale monoid-monomorphism = monoid-homomorphism + injective-map η M M ′

p 59, ll 30–31
sublocale monoid-isomorphism ⊆ monoid-epimorphism
〈proof 〉

p 59, ll 30–31
sublocale monoid-isomorphism ⊆ monoid-monomorphism
〈proof 〉

31

context monoid-homomorphism begin

p 59, ll 33–34
theorem invertible-image-lemma:

assumes invertible a a ∈ M
shows η a · ′ η (inverse a) = 1 ′ and η (inverse a) · ′ η a = 1 ′

〈proof 〉

p 59, l 34; p 60, l 1
theorem invertible-target-invertible [intro, simp]:
[[invertible a; a ∈ M]] =⇒ invertible ′ (η a)
〈proof 〉

p 60, l 1
theorem invertible-commutes-with-inverse:
[[invertible a; a ∈ M]] =⇒ η (inverse a) = inverse ′ (η a)
〈proof 〉

end

p 60, ll 32–34; p 61, l 1
sublocale monoid-congruence ⊆ natural: monoid-homomorphism Class M (·) 1 M /
E ([·]) Class 1
〈proof 〉

Fundamental Theorem of Homomorphisms of Monoids

p 61, ll 5, 14–16
sublocale monoid-homomorphism ⊆ image: submonoid η ‘ M M ′ (· ′) 1 ′

〈proof 〉

p 61, l 4
locale monoid-homomorphism-fundamental = monoid-homomorphism begin

p 61, ll 17–18
sublocale fiber-relation η M M ′ 〈proof 〉
notation Fiber-Relation (‹E ′(- ′)›)

p 61, ll 6–7, 18–20
sublocale monoid-congruence where E = E(η)
〈proof 〉

p 61, ll 7–9

induced denotes Jacobson’s η̄. We have the commutativity of the diagram,
where induced is unique:

compose M induced Class = η

32

[[?β ∈ Partition →E M ′; compose M ?β Class = η]] =⇒ ?β = induced

.

p 61, l 20
notation quotient-composition (infixl ‹[·]› 70)

p 61, ll 7–8, 22–25
sublocale induced: monoid-homomorphism induced M / E(η) ([·]) Class 1 M ′ (· ′) 1 ′

〈proof 〉

p 61, ll 9, 26
sublocale natural: monoid-epimorphism Class M (·) 1 M / E(η) ([·]) Class 1 〈proof 〉

p 61, ll 9, 26–27
sublocale induced: monoid-monomorphism induced M / E(η) ([·]) Class 1 M ′ (· ′) 1 ′

〈proof 〉

end

p 62, ll 12–13
locale group-homomorphism =

monoid-homomorphism η G (·) 1 G ′ (· ′) 1 ′ +
source: group G (·) 1 + target: group G ′ (· ′) 1 ′

for η and G and composition (infixl ‹·› 70) and unit (‹1›)
and G ′ and composition ′ (infixl ‹· ′′› 70) and unit ′ (‹1 ′′›)

begin

p 62, l 13
sublocale image: subgroup η ‘ G G ′ (· ′) 1 ′

〈proof 〉

p 62, ll 13–14
definition Ker = η −‘ {1 ′} ∩ G

p 62, ll 13–14
lemma Ker-equality:

Ker = {a | a. a ∈ G ∧ η a = 1 ′}
〈proof 〉

p 62, ll 13–14
lemma Ker-closed [intro, simp]:

a ∈ Ker =⇒ a ∈ G
〈proof 〉

p 62, ll 13–14
lemma Ker-image [intro]:

33

a ∈ Ker =⇒ η a = 1 ′

〈proof 〉

p 62, ll 13–14
lemma Ker-memI [intro]:
[[η a = 1 ′; a ∈ G]] =⇒ a ∈ Ker
〈proof 〉

p 62, ll 15–16
sublocale kernel: normal-subgroup Ker G
〈proof 〉

p 62, ll 17–20
theorem injective-iff-kernel-unit:

inj-on η G ←→ Ker = {1}
〈proof 〉

end

p 62, l 24
locale group-epimorphism = group-homomorphism + monoid-epimorphism η G (·) 1
G ′ (· ′) 1 ′

p 62, l 21
locale normal-subgroup-in-kernel =

group-homomorphism + contained: normal-subgroup L G (·) 1 for L +
assumes subset: L ⊆ Ker

begin

p 62, l 21
notation contained.quotient-composition (infixl ‹[·]› 70)

"homomorphism onto contained.Partition"

p 62, ll 23–24
sublocale natural: group-epimorphism contained.Class G (·) 1 G // L ([·]) con-
tained.Class 1 〈proof 〉

p 62, ll 25–26
theorem left-coset-equality:

assumes eq: a ·| L = b ·| L and [simp]: a ∈ G and b: b ∈ G
shows η a = η b
〈proof 〉

η̄

p 62, ll 26–27

34

definition induced = (λA ∈ G // L. THE b. ∃ a ∈ G. a ·| L = A ∧ b = η a)

p 62, ll 26–27
lemma induced-closed [intro, simp]:

assumes [simp]: A ∈ G // L shows induced A ∈ G ′

〈proof 〉

p 62, ll 26–27
lemma induced-undefined [intro, simp]:

A /∈ G // L =⇒ induced A = undefined
〈proof 〉

p 62, ll 26–27
theorem induced-left-coset-closed [intro, simp]:

a ∈ G =⇒ induced (a ·| L) ∈ G ′

〈proof 〉

p 62, ll 26–27
theorem induced-left-coset-equality [simp]:

assumes [simp]: a ∈ G shows induced (a ·| L) = η a
〈proof 〉

p 62, l 27
theorem induced-Left-Coset-commutes-with-composition [simp]:
[[a ∈ G; b ∈ G]] =⇒ induced ((a ·| L) [·] (b ·| L)) = induced (a ·| L) · ′ induced (b
·| L)
〈proof 〉

p 62, ll 27–28
theorem induced-group-homomorphism:

group-homomorphism induced (G // L) ([·]) (contained.Class 1) G ′ (· ′) 1 ′

〈proof 〉

p 62, l 28
sublocale induced: group-homomorphism induced G // L ([·]) contained.Class 1 G ′

(· ′) 1 ′

〈proof 〉

p 62, ll 28–29
theorem factorization-lemma: a ∈ G =⇒ compose G induced contained.Class a = η
a
〈proof 〉

p 62, ll 29–30
theorem factorization [simp]: compose G induced contained.Class = η
〈proof 〉

35

Jacobson does not state the uniqueness of induced explicitly but he uses it later,
for rings, on p 107.

p 62, l 30
theorem uniqueness:

assumes map: β ∈ G // L →E G ′

and factorization: compose G β contained.Class = η
shows β = induced
〈proof 〉

p 62, l 31
theorem induced-image:

induced ‘ (G // L) = η ‘ G
〈proof 〉

p 62, l 33
interpretation L: normal-subgroup L Ker
〈proof 〉

p 62, ll 31–33
theorem induced-kernel:

induced.Ker = Ker / L.Congruence
〈proof 〉

p 62, ll 34–35
theorem induced-inj-on:

inj-on induced (G // L) ←→ L = Ker
〈proof 〉

end

Fundamental Theorem of Homomorphisms of Groups

p 63, l 1
locale group-homomorphism-fundamental = group-homomorphism begin

p 63, l 1
notation kernel.quotient-composition (infixl ‹[·]› 70)

p 63, l 1
sublocale normal-subgroup-in-kernel where L = Ker 〈proof 〉

p 62, ll 36–37; p 63, l 1

induced denotes Jacobson’s η̄. We have the commutativity of the diagram,
where induced is unique:

compose G induced kernel.Class = η

36

[[?β ∈ kernel.Partition →E G ′; compose G ?β kernel.Class = η]] =⇒ ?β = induced

end

p 63, l 5
locale group-isomorphism = group-homomorphism + bijective-map η G G ′ begin

p 63, l 5
sublocale monoid-isomorphism η G (·) 1 G ′ (· ′) 1 ′

〈proof 〉

p 63, l 6
lemma inverse-group-isomorphism:

group-isomorphism (restrict (inv-into G η) G ′) G ′ (· ′) 1 ′ G (·) 1
〈proof 〉

end

p 63, l 6
definition isomorphic-as-groups (infixl ‹∼=G› 50)

where G ∼=G G ′ ←→ (let (G, composition, unit) = G; (G ′, composition ′, unit ′) =
G ′ in
(∃ η. group-isomorphism η G composition unit G ′ composition ′ unit ′))

p 63, l 6
lemma isomorphic-as-groups-symmetric:
(G, composition, unit) ∼=G (G ′, composition ′, unit ′) =⇒ (G ′, composition ′, unit ′)
∼=G (G, composition, unit)
〈proof 〉

p 63, l 1
sublocale group-isomorphism ⊆ group-epimorphism 〈proof 〉

p 63, l 1
locale group-epimorphism-fundamental = group-homomorphism-fundamental + group-epimorphism
begin

p 63, ll 1–2
interpretation image: group-homomorphism induced G // Ker ([·]) kernel.Class 1
(η ‘ G) (· ′) 1 ′

〈proof 〉

p 63, ll 1–2
sublocale image: group-isomorphism induced G // Ker ([·]) kernel.Class 1 (η ‘ G)
(· ′) 1 ′

〈proof 〉

37

end

context group-homomorphism begin

p 63, ll 5–7
theorem image-isomorphic-to-factor-group:
∃K composition unit. normal-subgroup K G (·) 1 ∧ (η ‘ G, (· ′), 1 ′) ∼=G (G // K ,

composition, unit)
〈proof 〉

end

no-notation plus (infixl ‹+› 65)
no-notation minus (infixl ‹−› 65)
unbundle no uminus-syntax
no-notation quotient (infixl ‹ ′/ ′/› 90)

3 Rings
3.1 Definition and Elementary Properties
Def 2.1

p 86, ll 20–28
locale ring = additive: abelian-group R (+) 0 + multiplicative: monoid R (·) 1

for R and addition (infixl ‹+› 65) and multiplication (infixl ‹·› 70) and zero
(‹0›) and unit (‹1›) +

assumes distributive: [[a ∈ R; b ∈ R; c ∈ R]] =⇒ a · (b + c) = a · b + a · c
[[a ∈ R; b ∈ R; c ∈ R]] =⇒ (b + c) · a = b · a + c · a

begin

p 86, ll 20–28
notation additive.inverse (‹− -› [66] 65)
abbreviation subtraction (infixl ‹−› 65) where a − b ≡ a + (− b)

end

p 87, ll 10–12
locale subring =

additive: subgroup S R (+) 0 + multiplicative: submonoid S R (·) 1
for S and R and addition (infixl ‹+› 65) and multiplication (infixl ‹·› 70) and

zero (‹0›) and unit (‹1›)

context ring begin

p 88, ll 26–28

38

lemma right-zero [simp]:
assumes [simp]: a ∈ R shows a · 0 = 0
〈proof 〉

p 88, l 29
lemma left-zero [simp]:

assumes [simp]: a ∈ R shows 0 · a = 0
〈proof 〉

p 88, ll 29–30; p 89, ll 1–2
lemma left-minus:

assumes [simp]: a ∈ R b ∈ R shows (− a) · b = − a · b
〈proof 〉

p 89, l 3
lemma right-minus:

assumes [simp]: a ∈ R b ∈ R shows a · (− b) = − a · b
〈proof 〉

end

3.2 Ideals, Quotient Rings
p 101, ll 2–5
locale ring-congruence = ring +

additive: group-congruence R (+) 0 E +
multiplicative: monoid-congruence R (·) 1 E
for E

begin

p 101, ll 2–5
notation additive.quotient-composition (infixl ‹[+]› 65)
notation additive.quotient.inverse (‹[−] -› [66] 65)
notation multiplicative.quotient-composition (infixl ‹[·]› 70)

p 101, ll 5–11
sublocale quotient: ring R / E ([+]) ([·]) additive.Class 0 additive.Class 1
〈proof 〉

end

p 101, ll 12–13
locale subgroup-of-additive-group-of-ring =

additive: subgroup I R (+) 0 + ring R (+) (·) 0 1
for I and R and addition (infixl ‹+› 65) and multiplication (infixl ‹·› 70) and

zero (‹0›) and unit (‹1›)
begin

39

p 101, ll 13–14
definition Ring-Congruence = {(a, b). a ∈ R ∧ b ∈ R ∧ a − b ∈ I}

p 101, ll 13–14
lemma Ring-CongruenceI : [[a − b ∈ I ; a ∈ R; b ∈ R]] =⇒ (a, b) ∈ Ring-Congruence
〈proof 〉

p 101, ll 13–14
lemma Ring-CongruenceD: (a, b) ∈ Ring-Congruence =⇒ a − b ∈ I
〈proof 〉

Jacobson’s definition of ring congruence deviates from that of group congruence;
this complicates the proof.

p 101, ll 12–14
sublocale additive: subgroup-of-abelian-group I R (+) 0

rewrites additive-congruence: additive.Congruence = Ring-Congruence
〈proof 〉

p 101, l 14
notation additive.Left-Coset (infixl ‹+|› 65)

end

Def 2.2

p 101, ll 21–22
locale ideal = subgroup-of-additive-group-of-ring +

assumes ideal: [[a ∈ R; b ∈ I]] =⇒ a · b ∈ I [[a ∈ R; b ∈ I]] =⇒ b · a ∈ I

context subgroup-of-additive-group-of-ring begin

p 101, ll 14–17
theorem multiplicative-congruence-implies-ideal:

assumes monoid-congruence R (·) 1 Ring-Congruence
shows ideal I R (+) (·) 0 1
〈proof 〉

end

context ideal begin

p 101, ll 17–20
theorem multiplicative-congruence [intro]:

assumes a: (a, a ′) ∈ Ring-Congruence and b: (b, b ′) ∈ Ring-Congruence
shows (a · b, a ′ · b ′) ∈ Ring-Congruence
〈proof 〉

40

p 101, ll 23–24
sublocale ring-congruence where E = Ring-Congruence 〈proof 〉

end

context ring begin

Pulled out of ideal to achieve standard notation.

p 101, ll 24–26
abbreviation Quotient-Ring (infixl ‹ ′/ ′/› 75)

where S // I ≡ S / (subgroup-of-additive-group-of-ring.Ring-Congruence I R (+)
0)

end

p 101, ll 24–26
locale quotient-ring = ideal begin

p 101, ll 24–26
sublocale quotient: ring R // I ([+]) ([·]) additive.Class 0 additive.Class 1 〈proof 〉

p 101, l 26
lemmas Left-Coset = additive.Left-CosetE

Equation 17 (1)

p 101, l 28
lemmas quotient-addition = additive.factor-composition

Equation 17 (2)

p 101, l 29
theorem quotient-multiplication [simp]:
[[a ∈ R; b ∈ R]] =⇒ (a +| I) [·] (b +| I) = a · b +| I
〈proof 〉

p 101, l 30
lemmas quotient-zero = additive.factor-unit
lemmas quotient-negative = additive.factor-inverse

end

3.3 Homomorphisms of Rings. Basic Theorems
Def 2.3

p 106, ll 7–9

41

locale ring-homomorphism =
map η R R ′ + source: ring R (+) (·) 0 1 + target: ring R ′ (+ ′) (· ′) 0 ′ 1 ′ +
additive: group-homomorphism η R (+) 0 R ′ (+ ′) 0 ′ +
multiplicative: monoid-homomorphism η R (·) 1 R ′ (· ′) 1 ′

for η
and R and addition (infixl ‹+› 65) and multiplication (infixl ‹·› 70) and zero

(‹0›) and unit (‹1›)
and R ′ and addition ′ (infixl ‹+ ′′› 65) and multiplication ′ (infixl ‹· ′′› 70) and

zero ′ (‹0 ′′›) and unit ′ (‹1 ′′›)

p 106, l 17
locale ring-epimorphism = ring-homomorphism + surjective-map η R R ′

p 106, ll 14–18
sublocale quotient-ring ⊆ natural: ring-epimorphism

where η = additive.Class and R ′ = R // I and addition ′ = ([+]) and multiplica-
tion ′ = ([·])

and zero ′ = additive.Class 0 and unit ′ = additive.Class 1
〈proof 〉

context ring-homomorphism begin

Jacobson reasons via a − b ∈ additive.Ker being a congruence; we prefer the
direct proof, since it is very simple.

p 106, ll 19–21
sublocale kernel: ideal where I = additive.Ker
〈proof 〉

end

p 106, l 22
locale ring-monomorphism = ring-homomorphism + injective-map η R R ′

context ring-homomorphism begin

p 106, ll 21–23
theorem ring-monomorphism-iff-kernel-unit:

ring-monomorphism η R (+) (·) 0 1 R ′ (+ ′) (· ′) 0 ′ 1 ′ ←→ additive.Ker = {0} (is
?monom ←→ ?ker)
〈proof 〉

end

p 106, ll 23–25
sublocale ring-homomorphism ⊆ image: subring η ‘ R R ′ (+ ′) (· ′) 0 ′ 1 ′ 〈proof 〉

p 106, ll 26–27

42

locale ideal-in-kernel =
ring-homomorphism + contained: ideal I R (+) (·) 0 1 for I +
assumes subset: I ⊆ additive.Ker

begin

p 106, ll 26–27
notation contained.additive.quotient-composition (infixl ‹[+]› 65)
notation contained.multiplicative.quotient-composition (infixl ‹[·]› 70)

Provides additive.induced, which Jacobson calls η̄.

p 106, l 30
sublocale additive: normal-subgroup-in-kernel η R (+) 0 R ′ (+ ′) 0 ′ I
rewrites normal-subgroup.Congruence I R addition zero = contained.Ring-Congruence
〈proof 〉

Only the multiplicative part needs some work.

p 106, ll 27–30
sublocale induced: ring-homomorphism additive.induced R // I ([+]) ([·]) contained.additive.Class
0 contained.additive.Class 1
〈proof 〉

p 106, l 30; p 107, ll 1–3

additive.induced denotes Jacobson’s η̄. We have the commutativity of the dia-
gram, where additive.induced is unique:

compose R additive.induced contained.additive.Class = η

[[?β ∈ contained.additive.Partition →E R ′;
compose R ?β contained.additive.Class = η]]
=⇒ ?β = additive.induced

end

Fundamental Theorem of Homomorphisms of Rings

p 107, l 6
locale ring-homomorphism-fundamental = ring-homomorphism begin

p 107, l 6
notation kernel.additive.quotient-composition (infixl ‹[+]› 65)
notation kernel.multiplicative.quotient-composition (infixl ‹[·]› 70)

p 107, l 6
sublocale ideal-in-kernel where I = additive.Ker 〈proof 〉

p 107, ll 8–9

43

sublocale natural: ring-epimorphism
where η = kernel.additive.Class and R ′ = R // additive.Ker

and addition ′ = kernel.additive.quotient-composition
and multiplication ′ = kernel.multiplicative.quotient-composition
and zero ′ = kernel.additive.Class 0 and unit ′ = kernel.additive.Class 1
〈proof 〉

p 107, l 9
sublocale induced: ring-monomorphism

where η = additive.induced and R = R // additive.Ker
and addition = kernel.additive.quotient-composition
and multiplication = kernel.multiplicative.quotient-composition
and zero = kernel.additive.Class 0 and unit = kernel.additive.Class 1
〈proof 〉

end

p 107, l 11
locale ring-isomorphism = ring-homomorphism + bijective-map η R R ′ begin

p 107, l 11
sublocale ring-monomorphism 〈proof 〉
sublocale ring-epimorphism 〈proof 〉

p 107, l 11
lemma inverse-ring-isomorphism:

ring-isomorphism (restrict (inv-into R η) R ′) R ′ (+ ′) (· ′) 0 ′ 1 ′ R (+) (·) 0 1
〈proof 〉

end

p 107, l 11
definition isomorphic-as-rings (infixl ‹∼=R› 50)

where R ∼=R R ′ ←→ (let (R, addition, multiplication, zero, unit) = R; (R ′, addi-
tion ′, multiplication ′, zero ′, unit ′) = R ′ in
(∃ η. ring-isomorphism η R addition multiplication zero unit R ′ addition ′ multiplica-

tion ′ zero ′ unit ′))

p 107, l 11
lemma isomorphic-as-rings-symmetric:
(R, addition, multiplication, zero, unit) ∼=R (R ′, addition ′, multiplication ′, zero ′,

unit ′) =⇒
(R ′, addition ′, multiplication ′, zero ′, unit ′) ∼=R (R, addition, multiplication, zero,

unit)
〈proof 〉

context ring-homomorphism begin

44

Corollary

p 107, ll 11–12
theorem image-is-isomorphic-to-quotient-ring:
∃K add mult zero one. ideal K R (+) (·) 0 1 ∧ (η ‘ R, (+ ′), (· ′), 0 ′, 1 ′) ∼=R (R //

K , add, mult, zero, one)
〈proof 〉

end

References
[1] N. Jacobson. Basic Algebra, volume I. Freeman, 2nd edition, 1985.

45

	Concepts from Set Theory. The Integers
	The Cartesian Product Set. Maps
	Equivalence Relations. Factoring a Map Through an Equivalence Relation

	Monoids and Groups
	Monoids of Transformations and Abstract Monoids
	Groups of Transformations and Abstract Groups
	Isomorphisms. Cayley's Theorem
	Generalized Associativity. Commutativity
	Orbits. Cosets of a Subgroup
	Congruences. Quotient Monoids and Groups
	Homomorphims

	Rings
	Definition and Elementary Properties
	Ideals, Quotient Rings
	Homomorphisms of Rings. Basic Theorems

