Decomposition of totally ordered hoops

Sebastián Buss

March 17, 2025

Abstract

We formalize a well known result in theory of hoops: every totally ordered hoop can be written as an ordinal sum of irreducible (equivalently Wajsberg) hoops. This formalization is based on the proof for BL-chains (i.e., bounded totally ordered hoops) by Busaniche [5].

Contents

1	Son	e order tools: posets with explicit universe	4			
2	Hoops					
	2.1	Definitions	5			
	2.2	Basic properties	6			
	2.3	Multiplication monotonicity	8			
	2.4	Implication monotonicity and anti-monotonicity	9			
	2.5	(\leq^A) defines a partial order over A	9			
	2.6	Order properties	11			
	2.7	Additional multiplication properties	12			
2.8 Additional implication pro		Additional implication properties	13			
	2.9	(\wedge^A) defines a semilattice over A	14			
	2.10	Properties of (\vee^{*A})	15			
3	Ord	inal sums	16			
	3.1	Tower of hoops	17			
	3.2	Ordinal sum universe	17			
	3.3	Floor function: definition and properties	18			
	3.4	Ordinal sum multiplication and implication	19			
		3.4.1 Some multiplication properties	19			
		3.4.2 Some implication properties	21			
	3.5	The ordinal sum of a tower of hoops is a hoop	23			
		$3.5.1 S \text{ is not empty} \dots \dots \dots \dots \dots \dots \dots \dots \dots $	23			
		3.5.2 $(*^S)$ and (\rightarrow^S) are well defined	23			
		3.5.3 Neutrality of 1^S	24			
		3.5.4 Commutativity of $(*^S)$	25			
		3.5.5 Associativity of $(*^{\hat{S}})$	26			
		3.5.6 Reflexivity of (\rightarrow^S)	27			
		3.5.7 Divisibility	28			
		3.5.8 Residuation	29			
		3.5.9 Main result	31			
4	Totally ordered hoops 32					
	4.1	Definitions	32			
	4.2	Properties of F	33			
	4.3	Properties of $(\sim F)$	38			
	-	4.3.1 ($\sim F$) is an equivalence relation	38			
		4.3.2 Equivalent definition	38			
		4.3.3 Properties of equivalence classes given by $(\sim F)$	39			
	4.4	Irreducible hoops: definition and equivalences	41			
	4.5	Decomposition	51			
		4.5.1 Definition of index set I	51			

		4.5.2	Definition of total partial order over I	52		
		4.5.3	Definition of universes	56		
		4.5.4	Universes are subhoops of $A \dots \dots \dots \dots \dots$	57		
		4.5.5	Universes are irreducible hoops	59		
		4.5.6	Some useful results	60		
		4.5.7	Definition of multiplications, implications and one	62		
		4.5.8	Main result	62		
		4.5.9	Remarks on the nontrivial case	67		
		4.5.10	Converse of main result	70		
5	5 BL-chains					
	5.1	Definit	Definitions			
	5.2	First e	$irst element of I \dots $			
	5.3	Main r	Main result for BL-chains			
	5.4	Conver	rse of main result for BL-chains	74		

1 Some order tools: posets with explicit universe

theory Posets imports Main HOL-Library.LaTeXsugar

begin

locale poset-on = **fixes** P :: 'b set **fixes** P-lesseq $:: 'b \Rightarrow 'b \Rightarrow bool$ (**infix** $\langle \leq^{P} \rangle$ 60) **fixes** P-less $:: 'b \Rightarrow 'b \Rightarrow bool$ (**infix** $\langle <^{P} \rangle$ 60) **assumes** not-empty [simp]: $P \neq \emptyset$ and reflex: reflp-on P (\leq^{P}) and antisymm: antisymp-on P (\leq^{P}) and trans: transp-on P (\leq^{P}) and strict-iff-order: $x \in P \Longrightarrow y \in P \Longrightarrow x <^{P} y = (x \leq^{P} y \land x \neq y)$ **begin**

lemma strict-trans: **assumes** $a \in P$ $b \in P$ $c \in P$ $a <^P b$ $b <^P c$ **shows** $a <^P c$ **using** antisymm antisymp-onD assms trans strict-iff-order transp-onD **by** (smt (verit, ccfv-SIG))

\mathbf{end}

locale bot-poset-on = poset-on + **fixes** bot :: 'b ($\langle 0^P \rangle$) **assumes** bot-closed: $0^P \in P$ **and** bot-first: $x \in P \Longrightarrow 0^P \leq^P x$

locale top-poset-on = poset-on + fixes top :: 'b ($\langle 1^P \rangle$) assumes top-closed: $1^P \in P$ and top-last: $x \in P \implies x \leq^P 1^P$

 $locale \ bounded$ -poset-on = bot-poset-on + top-poset-on

locale total-poset-on = poset-on + assumes total: totalp-on $P(\leq^{P})$ begin

 $\begin{array}{l} \textbf{lemma trichotomy:} \\ \textbf{assumes } a \in P \ b \in P \\ \textbf{shows } (a <^P \ b \land \neg (a = b \lor b <^P a)) \lor \\ (a = b \land \neg (a <^P \ b \lor b <^P a)) \lor \\ (b <^P \ a \land \neg (a = b \lor a <^P b)) \end{array}$

using antisymm antisymp-onD assms strict-iff-order total totalp-onD by metis

```
lemma strict-order-equiv-not-converse:

assumes a \in P b \in P

shows a <^{P} b \leftrightarrow \neg(b \leq^{P} a)

using assms strict-iff-order reflex reflp-onD strict-trans trichotomy by metis
```

 \mathbf{end}

end

2 Hoops

A *hoop* is a naturally ordered *pocrim* (i.e., a partially ordered commutative residuated integral monoid). This structures have been introduced by Büchi and Owens in [4] and constitute the algebraic counterpart of fragments without negation and falsum of some nonclassical logics.

theory Hoops imports Posets begin

2.1 Definitions

locale hoop = **fixes** universe :: 'a set ($\langle A \rangle$) and multiplication :: 'a \Rightarrow 'a \Rightarrow 'a (**infix** $\langle *^A \rangle$ 60) and implication :: 'a \Rightarrow 'a \Rightarrow 'a (**infix** $\langle \to^A \rangle$ 60) and one :: 'a ($\langle 1^A \rangle$) assumes mult-closed: $x \in A \Rightarrow y \in A \Rightarrow x *^A y \in A$ and imp-closed: $x \in A \Rightarrow y \in A \Rightarrow x \to^A y \in A$ and one-closed [simp]: $1^A \in A$ and mult-comm: $x \in A \Rightarrow y \in A \Rightarrow x *^A y = y *^A x$ and mult-assoc: $x \in A \Rightarrow y \in A \Rightarrow z \in A \Rightarrow x *^A (y *^A z) = (x *^A y) *^A z$ and mult-neutr [simp]: $x \in A \Rightarrow x *^A 1^A = x$ and imp-reflex [simp]: $x \in A \Rightarrow y \in A \Rightarrow x *^A (x \to^A y) = y *^A (y \to^A x)$ and residuation: $x \in A \Rightarrow y \in A \Rightarrow z \in A \Rightarrow$ $x \to^A (y \to^A z) = (x *^A y) \to^A z$

begin

definition hoop-order :: $a \Rightarrow a \Rightarrow bool$ (infix $\langle \leq^A \rangle \ 60$) where $x \leq^A y \equiv (x \rightarrow^A y = 1^A)$

definition hoop-order-strict :: $a \Rightarrow a \Rightarrow bool$ (infix $\langle <^A \rangle$ 60) where $x <^A y \equiv (x \leq^A y \land x \neq y)$

definition hoop-inf :: 'a \Rightarrow 'a \Rightarrow 'a (infix $\langle \wedge^A \rangle$ 60) where $x \wedge^A y = x *^A (x \to^A y)$

definition hoop-pseudo-sup :: 'a \Rightarrow 'a \Rightarrow 'a (infix $\langle \lor^{*A} \rangle$ 60)

where
$$x \vee^{*A} y = ((x \to^A y) \to^A y) \wedge^A ((y \to^A x) \to^A x)$$

 \mathbf{end}

locale wajsberg-hoop = hoop + assumes $T: x \in A \Longrightarrow y \in A \Longrightarrow (x \to^A y) \to^A y = (y \to^A x) \to^A x$ begin

definition wajsberg-hoop-sup :: 'a \Rightarrow 'a \Rightarrow 'a (infix $\langle \lor^A \rangle$ 60) where $x \lor^A y = (x \Rightarrow^A y) \Rightarrow^A y$

 \mathbf{end}

2.2 Basic properties

```
context hoop
begin
lemma mult-neutr-2 [simp]:
 assumes a \in A
 shows 1^A *^A a = a
 using assms mult-comm by simp
lemma imp-one-A:
 assumes a \in A
 shows (1^A \rightarrow A^A a) \rightarrow A^A 1^A = 1^A
proof –
 have (1^A \rightarrow A^A a) \rightarrow A^A 1^A = (1^A \rightarrow A^A a) \rightarrow A^A (1^A \rightarrow A^A 1^A)
   using assms by simp
 also
 have \ldots = ((1^A \rightarrow^A a) *^A 1^A) \rightarrow^A 1^A
   using assms imp-closed residuation by simp
  also
  have \ldots = ((a \rightarrow^A 1^A) *^A a) \rightarrow^A 1^A
   using assms divisibility imp-closed mult-comm by simp
  also
 have \ldots = (a \rightarrow^A 1^A) \rightarrow^A (a \rightarrow^A 1^A)
   using assms imp-closed one-closed residuation by metis
  also
 have \ldots = 1^A
   using assms imp-closed by simp
  finally
 show ?thesis
   by auto
qed
lemma imp-one-B:
 assumes a \in A
 shows (1^A \rightarrow^A a) \rightarrow^A a = 1^A
```

```
proof –
 have (1^A \rightarrow A^A a) \rightarrow A^A a = ((1^A \rightarrow A^A a) *^A 1^A) \rightarrow A^A a
   using assms imp-closed by simp
 also
 have \ldots = (1^A \rightarrow^A a) \rightarrow^A (1^A \rightarrow^A a)
   using assms imp-closed one-closed residuation by metis
 also
 have \ldots = 1^A
   using assms imp-closed by simp
 finally
 show ?thesis
   by auto
qed
lemma imp-one-C:
 assumes a \in A
 shows 1^A \rightarrow^A a = a
proof -
 have 1^A \rightarrow^A a = (1^A \rightarrow^A a) *^A 1^A
   using assms imp-closed by simp
 also
 have \ldots = (1^A \rightarrow^A a) *^A ((1^A \rightarrow^A a) \rightarrow^A a)
   using assms imp-one-B by simp
 also
 have \ldots = a *^A (a \to^A (1^A \to^A a))
   using assms divisibility imp-closed by simp
 also
 have \ldots = a
   using assms residuation by simp
 finally
 show ?thesis
   by auto
\mathbf{qed}
lemma imp-one-top:
 assumes a \in A
 shows a \rightarrow^A 1^A = 1^A
proof –
 have a \to^A 1^A = (1^A \to^A a) \to^A 1^A
   using assms imp-one-C by auto
 also
 have \ldots = 1^A
   using assms imp-one-A by auto
 finally
 show ?thesis
   by auto
qed
```

The proofs of *imp-one-A*, *imp-one-B*, *imp-one-C* and *imp-one-top* are based

on proofs found in [3] (see Section 1: (4), (6), (7) and (12)). lemma swap: assumes $a \in A$ $b \in A$ $c \in A$ shows $a \to^A (b \to^A c) = b \to^A (a \to^A c)$ proof – have $a \to^A (b \to^A c) = (a *^A b) \to^A c$ using assms residuation by auto also have $\ldots = (b *^A a) \rightarrow^A c$ using assms mult-comm by auto also have $\ldots = b \rightarrow^A (a \rightarrow^A c)$ using assms residuation by auto finally show ?thesis by auto \mathbf{qed} lemma *imp-A*:

```
assumes a \in A b \in A

shows a \to^A (b \to^A a) = 1^A

proof –

have a \to^A (b \to^A a) = b \to^A (a \to^A a)

using assms swap by blast

then

show ?thesis

using assms imp-one-top by simp

qed
```

2.3 Multiplication monotonicity

lemma *mult-mono*: assumes $a \in A$ $b \in A$ $c \in A$ shows $(a \rightarrow^A b) \rightarrow^A ((a *^A c) \rightarrow^A (b *^A c)) = 1^A$ proof $\begin{array}{l} \mathbf{have} \ (a \rightarrow^A b) \rightarrow^A \ ((a \ast^A c) \rightarrow^A (b \ast^A c)) = \\ (a \rightarrow^A b) \rightarrow^A \ (a \rightarrow^A (c \rightarrow^A (b \ast^A c))) \end{array}$ using assms mult-closed residuation by auto also have $\ldots = ((a \rightarrow^A b) *^A a) \rightarrow^A (c \rightarrow^A (b *^A c))$ using assms imp-closed mult-closed residuation by metis also have $\ldots = ((b \rightarrow^A a) *^A b) \rightarrow^A (c \rightarrow^A (b *^A c))$ using assms divisibility imp-closed mult-comm by simp also have $\ldots = (b \rightarrow^A a) \rightarrow^A (b \rightarrow^A (c \rightarrow^A (b \ast^A c)))$ using assms imp-closed mult-closed residuation by metis also

have $\ldots = (b \rightarrow^A a) \rightarrow^A ((b \ast^A c) \rightarrow^A (b \ast^A c))$

```
using assms(2,3) mult-closed residuation by simp
also
have ... = 1<sup>A</sup>
using assms imp-closed imp-one-top mult-closed by simp
finally
show ?thesis
by auto
qed
```

2.4 Implication monotonicity and anti-monotonicity

lemma imp-mono: assumes $a \in A$ $b \in A$ $c \in A$ shows $(a \rightarrow^A b) \rightarrow^A ((c \rightarrow^A a) \rightarrow^A (c \rightarrow^A b)) = 1^A$ proof have $(a \rightarrow^A b) \rightarrow^A ((c \rightarrow^A a) \rightarrow^A (c \rightarrow^A b)) =$ $(a \rightarrow^A b) \rightarrow^A (((c \rightarrow^A a) *^A c) \rightarrow^A b)$ using assms imp-closed residuation by simp also have $\ldots = (a \rightarrow^A b) \rightarrow^A (((a \rightarrow^A c) *^A a) \rightarrow^A b)$ using assms divisibility imp-closed mult-comm by simp also have $\ldots = (a \rightarrow^A b) \rightarrow^A ((a \rightarrow^A c) \rightarrow^A (a \rightarrow^A b))$ using assms imp-closed residuation by simp also have $\ldots = 1^A$ using assms imp-A imp-closed by simp finally show ?thesis by *auto* qed

lemma imp-anti-mono:

assumes $a \in A$ $b \in A$ $c \in A$ shows $(a \rightarrow^A b) \rightarrow^A ((b \rightarrow^A c) \rightarrow^A (a \rightarrow^A c)) = 1^A$ using assms imp-closed imp-mono swap by metis

2.5 (\leq^A) defines a partial order over A

lemma ord-reflex: **assumes** $a \in A$ **shows** $a \leq^{A} a$ **using** assms hoop-order-def **by** simp **lemma** ord-trans: **assumes** $a \in A$ $b \in A$ $c \in A$ $a \leq^{A} b$ $b \leq^{A} c$ **shows** $a \leq^{A} c$ **proof have** $a \rightarrow^{A} c = 1^{A} \rightarrow^{A} (1^{A} \rightarrow^{A} (a \rightarrow^{A} c))$ **using** assms(1,3) imp-closed imp-one-C **by** simp

```
also
 have \ldots = (a \rightarrow^A b) \rightarrow^A ((b \rightarrow^A c) \rightarrow^A (a \rightarrow^A c))
   using assms(4,5) hoop-order-def by simp
 also
 have \ldots = 1^A
   using assms(1-3) imp-anti-mono by simp
 finally
 show ?thesis
   using hoop-order-def by auto
qed
lemma ord-antisymm:
 assumes a \in A b \in A a \leq^A b b \leq^A a
 shows a = b
proof -
 have a = a *^A (a \rightarrow^A b)
   using assms(1,3) hoop-order-def by simp
 also
 have \ldots = b *^A (b \rightarrow^A a)
   using assms(1,2) divisibility by simp
 also
 have \ldots = b
   using assms(2,4) hoop-order-def by simp
 finally
 show ?thesis
   by auto
qed
lemma ord-antisymm-equiv:
 assumes a \in A b \in A a \rightarrow^A b = 1^A b \rightarrow^A a = 1^A
 shows a = b
 using assms hoop-order-def ord-antisymm by auto
lemma ord-top:
 assumes a \in A
 shows a \leq^A 1^A
 using assms hoop-order-def imp-one-top by simp
sublocale top-poset-on A (\leq^A) (<^A) 1<sup>A</sup>
proof
 show A \neq \emptyset
   using one-closed by blast
\mathbf{next}
 show reflp-on A (\leq^A)
   using ord\text{-reflex reflp-onI} by blast
\mathbf{next}
 show antisympoon A (\leq^A)
   using antisymp-onI ord-antisymm by blast
\mathbf{next}
```

show transp-on $A (\leq^A)$ using ord-trans transp-on I by blast next show $x <^A y = (x \leq^A y \land x \neq y)$ if $x \in A y \in A$ for x yusing hoop-order-strict-def by blast next show $1^A \in A$ by simp next show $x \leq^A 1^A$ if $x \in A$ for xusing ord-top that by simp qed

2.6 Order properties

lemma ord-mult-mono-A: assumes $a \in A$ $b \in A$ $c \in A$ shows $(a \rightarrow^A b) \leq^A ((a *^A c) \rightarrow^A (b *^A c))$ using assms hoop-order-def mult-mono by simp lemma ord-mult-mono-B: assumes $a \in A$ $b \in A$ $c \in A$ $a \leq^A b$ shows $(a *^A c) \leq^A (b *^A c)$ using assms hoop-order-def imp-one-C swap mult-closed mult-mono top-closed by metis lemma ord-residuation:

assumes $a \in A$ $b \in A$ $c \in A$ shows $(a *^{A} b) \leq^{A} c \longleftrightarrow a \leq^{A} (b \rightarrow^{A} c)$ using assms hoop-order-def residuation by simp

lemma ord-imp-mono-A: **assumes** $a \in A$ $b \in A$ $c \in A$ **shows** $(a \rightarrow^A b) \leq^A ((c \rightarrow^A a) \rightarrow^A (c \rightarrow^A b))$ **using** assms hoop-order-def imp-mono **by** simp

lemma ord-imp-mono-B: **assumes** $a \in A$ $b \in A$ $c \in A$ $a \leq^{A} b$ **shows** $(c \rightarrow^{A} a) \leq^{A} (c \rightarrow^{A} b)$ **using** assms imp-closed ord-trans ord-reflex ord-residuation mult-closed **by** metis

lemma ord-imp-anti-mono-A: **assumes** $a \in A$ $b \in A$ $c \in A$ **shows** $(a \rightarrow^A b) \leq^A ((b \rightarrow^A c) \rightarrow^A (a \rightarrow^A c))$ **using** assms hoop-order-def imp-anti-mono **by** simp

lemma ord-imp-anti-mono-B: assumes $a \in A$ $b \in A$ $c \in A$ $a \leq^{A} b$ **shows** $(b \to^A c) \leq^A (a \to^A c)$ **using** assms hoop-order-def imp-one-C swap ord-imp-mono-A top-closed **by** metis

lemma ord-A: **assumes** $a \in A$ $b \in A$ **shows** $b \leq^{A} (a \rightarrow^{A} b)$ **using** assms hoop-order-def imp-A by simp

lemma ord-B: **assumes** $a \in A$ $b \in A$ **shows** $b \leq^{A} ((a \rightarrow^{A} b) \rightarrow^{A} b)$ **using** assms imp-closed ord-A by simp

lemma ord-C: **assumes** $a \in A$ $b \in A$ **shows** $a \leq^{A} ((a \rightarrow^{A} b) \rightarrow^{A} b)$ **using** assms imp-one-C one-closed ord-imp-anti-mono-A by metis

lemma ord-D: **assumes** $a \in A$ $b \in A$ $a <^{A} b$ **shows** $b \rightarrow^{A} a \neq 1^{A}$ **using** assms hoop-order-def hoop-order-strict-def ord-antisymm by auto

2.7 Additional multiplication properties

```
lemma mult-lesseq-inf:
 assumes a \in A b \in A
 shows (a *^A b) \leq^A (a \wedge^A b)
proof
 have b \leq^A (a \rightarrow^A b)
   using assms ord-A by simp
 then
 have (a *^A b) \leq^A (a *^A (a \rightarrow^A b))
   using assms imp-closed ord-mult-mono-B mult-comm by metis
 then
 show ?thesis
   using hoop-inf-def by metis
\mathbf{qed}
lemma mult-A:
 assumes a \in A b \in A
 shows (a *^A b) \leq^A a
 using assms ord-A ord-residuation by simp
lemma mult-B:
 assumes a \in A b \in A
 shows (a *^A b) \leq^A b
 using assms mult-A mult-comm by metis
```

lemma mult-C: **assumes** $a \in A - \{1^A\}$ $b \in A - \{1^A\}$ **shows** $a *^A b \in A - \{1^A\}$ **using** assms ord-antisymm ord-top mult-A mult-closed by force

2.8 Additional implication properties

lemma *imp-B*: **assumes** $a \in A$ $b \in A$ shows $a \to^A b = ((a \to^A b) \to^A b) \to^A b$ proof have $a \leq^A ((a \rightarrow^A b) \rightarrow^A b)$ using assms ord-C by simp then have $(((a \rightarrow^A b) \rightarrow^A b) \rightarrow^A b) <^A (a \rightarrow^A b)$ using assms imp-closed ord-imp-anti-mono-B by simp moreover have $(a \rightarrow^A b) \leq^A (((a \rightarrow^A b) \rightarrow^A b) \rightarrow^A b)$ using assms imp-closed ord-C by simp ultimately show ?thesis using assms imp-closed ord-antisymm by simp qed

The following two results can be found in [2] (see Proposition 1.7 and 2.2).

lemma *imp-C*: assumes $a \in A \ b \in A$ shows $(a \rightarrow^A b) \rightarrow^A (b \rightarrow^A a) = b \rightarrow^A a$ proof have $a \leq^A ((a \rightarrow^A b) \rightarrow^A a)$ using assms imp-closed ord-A by simp then have $(((a \rightarrow^A b) \rightarrow^A a) \rightarrow^A b) \leq^A (a \rightarrow^A b)$ using assms imp-closed ord-imp-anti-mono-B by simp moreover have $(a \rightarrow^A b) \leq^A (((a \rightarrow^A b) \rightarrow^A a) \rightarrow^A a)$ using assms imp-closed ord-C by simp ultimately have $(((a \rightarrow^A b) \rightarrow^A a) \rightarrow^A b) \leq^A (((a \rightarrow^A b) \rightarrow^A a) \rightarrow^A a)$ using assms imp-closed ord-trans by meson then have $((((a \rightarrow^A b) \rightarrow^A a) \rightarrow^A b) *^A ((a \rightarrow^A b) \rightarrow^A a)) \leq^A a$ using assms imp-closed ord-residuation by simp then have $((b \rightarrow^A ((a \rightarrow^A b) \rightarrow^A a)) *^A b) \leq^A a$ using assms divisibility imp-closed mult-comm by simp then have $(b \rightarrow^A ((a \rightarrow^A b) \rightarrow^A a)) \leq^A (b \rightarrow^A a)$

using assms imp-closed ord-residuation by simp then have $((a \rightarrow^A b) \rightarrow^A (b \rightarrow^A a)) \leq^A (b \rightarrow^A a)$ using assms imp-closed swap by simp moreover have $(b \rightarrow^A a) \leq^A ((a \rightarrow^A b) \rightarrow^A (b \rightarrow^A a))$ using assms imp-closed ord-A by simp ultimately show ?thesis using assms imp-closed ord-antisymm by auto qed lemma *imp-D*: **assumes** $a \in A$ $b \in A$ shows $(((b \rightarrow^A a) \rightarrow^A a) \rightarrow^A b) \rightarrow^A (b \rightarrow^A a) = b \rightarrow^A a$ proof have $(((b \rightarrow^A a) \rightarrow^A a) \rightarrow^A b) \rightarrow^A (b \rightarrow^A a) =$ $(((b \rightarrow^A a) \rightarrow^A a) \rightarrow^A b) \rightarrow^A (((b \rightarrow^A a) \rightarrow^A a) \rightarrow^A a))$ using assms imp-B by simpalso have $\ldots = ((((b \rightarrow^A a) \rightarrow^A a) \rightarrow^A b) *^A ((b \rightarrow^A a) \rightarrow^A a)) \rightarrow^A a$ using assms imp-closed residuation by simp also have $\ldots = ((b \rightarrow^A ((b \rightarrow^A a) \rightarrow^A a)) *^A b) \rightarrow^A a$ using assms divisibility imp-closed mult-comm by simp also have $\ldots = (1^A *^A b) \rightarrow^A a$ using assms hoop-order-def ord-C by simp also have $\ldots = b \rightarrow^A a$ using assms(2) mult-neutr-2 by simp finally show ?thesis by auto

\mathbf{qed}

2.9 (\wedge^A) defines a semilattice over A

lemma inf-closed: **assumes** $a \in A$ $b \in A$ **shows** $a \wedge^A b \in A$ **using** assms hoop-inf-def imp-closed mult-closed by simp

lemma inf-comm: **assumes** $a \in A$ $b \in A$ **shows** $a \wedge^A b = b \wedge^A a$ **using** assms divisibility hoop-inf-def by simp

lemma *inf-A*:

assumes $a \in A$ $b \in A$ shows $(a \wedge^A b) \leq^A a$ proof have $(a \wedge^A b) \rightarrow^A a = (a *^A (a \rightarrow^A b)) \rightarrow^A a$ using hoop-inf-def by simp also have $\ldots = (a \rightarrow^A b) \rightarrow^A (a \rightarrow^A a)$ using assms mult-comm imp-closed residuation by metis finally show ?thesis using assms hoop-order-def imp-closed imp-one-top by simp qed **lemma** *inf-B*: assumes $a \in A$ $b \in A$ shows $(a \wedge^A b) \leq^A b$ using assms inf-comm inf-A by metis **lemma** *inf-C*: assumes $a \in A$ $b \in A$ $c \in A$ $a \leq^A b$ $a \leq^A c$ shows $a \leq^A (b \wedge^A c)$ proof – have $(b \rightarrow^A a) \leq^A (b \rightarrow^A c)$ using assms(1-3,5) ord-imp-mono-B by simpthen have $(b *^A (b \rightarrow^A a)) \leq^A (b *^A (b \rightarrow^A c))$ using assms imp-closed ord-mult-mono-B mult-comm by metis moreover have $a = b *^A (b \to^A a)$ using assms(1-3,4) divisibility hoop-order-def mult-neutr by simp ultimately show ?thesis using hoop-inf-def by auto qed

lemma inf-order: **assumes** $a \in A$ $b \in A$ **shows** $a \leq^{A} b \longleftrightarrow (a \wedge^{A} b = a)$ **using** assms hoop-inf-def hoop-order-def inf-B mult-neutr by metis

2.10 Properties of (\vee^{*A})

lemma pseudo-sup-closed: **assumes** $a \in A$ $b \in A$ **shows** $a \vee^{*A} b \in A$ **using** assms hoop-pseudo-sup-def imp-closed inf-closed by simp

lemma pseudo-sup-comm: assumes $a \in A$ $b \in A$

using assms hoop-pseudo-sup-def imp-closed inf-comm by auto **lemma** *pseudo-sup-A*: **assumes** $a \in A$ $b \in A$ shows $a \leq^A (a \vee^{*A} b)$ using assms hoop-pseudo-sup-def imp-closed inf-C ord-B ord-C by simp **lemma** *pseudo-sup-B*: **assumes** $a \in A$ $b \in A$ shows $b \leq^A (a \vee^{*A} b)$ using assms pseudo-sup-A pseudo-sup-comm by metis lemma pseudo-sup-order: **assumes** $a \in A$ $b \in A$ shows $a \leq^A b \longleftrightarrow a \vee^{*A} b = b$ proof assume $a \leq^A b$ then have $a \vee^{*A} b = b \wedge^A ((b \rightarrow^A a) \rightarrow^A a)$ using assms(2) hoop-order-def hoop-pseudo-sup-def imp-one-C by simp also have $\ldots = b$ using assms imp-closed inf-order ord-C by meson finally show $a \vee^{*A} b = b$ by auto next assume $a \vee^{*A} b = b$ then show $a \leq^A b$ using assms pseudo-sup-A by metis qed end

 \mathbf{end}

3 Ordinal sums

shows $a \vee^{*A} b = b \vee^{*A} a$

We define *tower of hoops*, a family of almost disjoint hoops indexed by a total order. This is based on the definition of *bounded tower of irreducible hoops* in [5] (see paragraph after Lemma 3.3). Parting from a tower of hoops we can define a hoop known as *ordinal sum*. Ordinal sums are a fundamental tool in the study of totally ordered hoops.

```
theory Ordinal-Sums
imports Hoops
begin
```

3.1 Tower of hoops

locale tower-of-hoops = **fixes** index-set :: 'b set ($\langle I \rangle$) **fixes** index-lesseq :: 'b \Rightarrow 'b \Rightarrow bool (**infix** $\langle \leq^{I} \rangle$ 60) **fixes** index-less :: 'b \Rightarrow 'b \Rightarrow bool (**infix** $\langle <^{I} \rangle$ 60) **fixes** universes :: 'b \Rightarrow ('a set) ($\langle UNI \rangle$) **fixes** multiplications :: 'b \Rightarrow ('a \Rightarrow 'a \Rightarrow 'a) ($\langle MUL \rangle$) **fixes** implications :: 'b \Rightarrow ('a \Rightarrow 'a \Rightarrow 'a) ($\langle MUL \rangle$) **fixes** sum-one :: 'a ($\langle 1^{S} \rangle$) **assumes** index-set-total-order: total-poset-on I (\leq^{I}) (\langle^{I}) **and** almost-disjoint: i $\in I \implies j \in I \implies i \neq j \implies UNI i \cap UNI j = \{1^{S}\}$ **and** family-of-hoops: i $\in I \implies$ hoop (UNI i) (MUL i) (IMP i) 1^S **begin**

sublocale total-poset-on $I (\leq^{I}) (<^{I})$ using index-set-total-order by simp

```
abbreviation (uni-i)
uni-i :: ['b] \Rightarrow ('a \ set) (\langle (\mathbb{A}(-)) \rangle \ [61] \ 60)
where \mathbb{A}_i \equiv UNI \ i
```

```
abbreviation (mult-i)
mult-i :: ['b] \Rightarrow ('a \Rightarrow 'a \Rightarrow 'a) (\langle (*(\bar{})) \rangle [61] 60)
where *^i \equiv MUL i
```

```
abbreviation (imp-i)

imp-i :: ['b] \Rightarrow ('a \Rightarrow 'a \Rightarrow 'a) (\langle (\rightarrow(\bar{})) \rangle [61] 60)

where \rightarrow^{i} \equiv IMP i
```

abbreviation (mult-i-xy) mult-i-xy :: $['a, 'b, 'a] \Rightarrow 'a$ ($\langle ((-)/ *(\bar{}) / (-)) \rangle$ [61, 50, 61] 60) where $x *^{i} y \equiv MUL \ i x y$

abbreviation (imp-i-xy) imp-i-xy :: $['a, 'b, 'a] \Rightarrow 'a (\langle ((-)/ \rightarrow (\bar{}) / (-)) \rangle [61, 50, 61] 60)$ where $x \rightarrow^i y \equiv IMP \ i \ x \ y$

3.2 Ordinal sum universe

definition sum-univ :: 'a set $(\langle S \rangle)$ where $S = \{x. \exists i \in I. x \in \mathbb{A}_i\}$

lemma sum-one-closed [simp]: $1^S \in S$ using family-of-hoops hoop.one-closed not-empty sum-univ-def by fastforce

lemma sum-subsets: **assumes** $i \in I$ **shows** $A_i \subseteq S$ **using** sum-univ-def assms by blast

3.3 Floor function: definition and properties

lemma floor-unique: assumes $a \in S - \{1^S\}$ shows $\exists ! i. i \in I \land a \in \mathbb{A}_i$ using assms sum-univ-def almost-disjoint by blast

function floor :: $a \Rightarrow b$ where floor $x = (THE \ i. \ i \in I \land x \in \mathbb{A}_i)$ if $x \in S - \{1^S\}$ | floor x = undefined if $x = 1^S \lor x \notin S$ by auto termination by lexicographic-order

abbreviation (uni-floor) uni-floor :: $['a] \Rightarrow ('a \ set) (\langle (\mathbf{A}_{floor} \ (-)) \rangle \ [61] \ 60)$ where $\mathbf{A}_{floor} \ x \equiv UNI \ (floor \ x)$

abbreviation (mult-floor) mult-floor :: $['a] \Rightarrow ('a \Rightarrow 'a \Rightarrow 'a)$ ($\langle (*^{floor} (\bar{})) \rangle$ [61] 60) where $*^{floor a} \equiv MUL$ (floor a)

abbreviation (*imp-floor*) *imp-floor* :: $['a] \Rightarrow ('a \Rightarrow 'a \Rightarrow 'a) (\langle (\rightarrow^{floor} (\)) \rangle [61] 60)$ **where** $\rightarrow^{floor a} \equiv IMP$ (floor a)

abbreviation (mult-floor-xy) mult-floor-xy :: ['a, 'a, 'a] \Rightarrow 'a ((((-)/*^{floor} (-) / (-))) [61, 50, 61] 60) where $x *^{floor y} z \equiv MUL$ (floor y) x z

abbreviation (imp-floor-xy) imp-floor-xy :: ['a, 'a, 'a] \Rightarrow 'a ((((-)/ \rightarrow floor (-)/(-))) [61, 50, 61] 60) where $x \rightarrow$ floor y $z \equiv IMP$ (floor y) x z

 $\begin{array}{l} \textbf{lemma floor-prop:}\\ \textbf{assumes } a \in S - \{1^S\}\\ \textbf{shows floor } a \in I \land a \in \mathbb{A}_{floor \ a}\\ \textbf{proof } -\\ \textbf{have floor } a = (THE \ i. \ i \in I \land a \in \mathbb{A}_i)\\ \textbf{using } assms \ \textbf{by } auto\\ \textbf{then}\\ \textbf{show ?thesis}\\ \textbf{using } assms \ the I-unique \ floor-unique \ \textbf{by } (metis \ (mono-tags, \ lifting))\\ \textbf{qed} \end{array}$

lemma floor-one-closed: **assumes** $i \in I$ **shows** $1^S \in \mathbb{A}_i$ **using** assms floor-prop family-of-hoops hoop.one-closed by metis

lemma *floor-mult-closed*:

assumes $i \in I$ $a \in A_i$ $b \in A_i$ shows $a *^i b \in A_i$ using assms family-of-hoops hoop.mult-closed by meson

lemma floor-imp-closed: **assumes** $i \in I$ $a \in \mathbb{A}_i$ $b \in \mathbb{A}_i$ **shows** $a \to^i b \in \mathbb{A}_i$ **using** assms family-of-hoops hoop.imp-closed by meson

3.4 Ordinal sum multiplication and implication

function sum-mult :: ${}'a \Rightarrow {}'a (infix \langle *^{S} \rangle 60)$ where $x *^{S} y = x *^{floor x} y$ if $x \in S - \{1^{S}\} y \in S - \{1^{S}\}$ floor x = floor y $| x *^{S} y = x$ if $x \in S - \{1^{S}\} y \in S - \{1^{S}\}$ floor $x <^{I}$ floor y $| x *^{S} y = y$ if $x \in S - \{1^{S}\} y \in S - \{1^{S}\}$ floor $y <^{I}$ floor x $| x *^{S} y = x$ if $x \in S - \{1^{S}\} y \in S - \{1^{S}\}$ $| x *^{S} y = x$ if $x \in S - \{1^{S}\} y = 1^{S}$ $| x *^{S} y = 1^{S}$ if $x = 1^{S} y = 1^{S}$ $| x *^{S} y = undefined$ if $x \notin S \lor y \notin S$ apply auto using floor.cases floor.simps(1) floor-prop trichotomy apply (smt (verit)) using floor-prop strict-iff-order apply force using floor-prop trichotomy by auto termination by lexicographic-order

function sum-imp :: 'a \Rightarrow 'a \Rightarrow 'a (infix $\langle \rightarrow^{S} \rangle$ 60) where $x \rightarrow^{S} y = x \rightarrow^{floor x} y$ if $x \in S - \{1^{S}\} y \in S - \{1^{S}\}$ floor x = floor y $| x \rightarrow^{S} y = 1^{S}$ if $x \in S - \{1^{S}\} y \in S - \{1^{S}\}$ floor $x <^{I}$ floor x $| x \rightarrow^{S} y = y$ if $x \in S - \{1^{S}\} y \in S - \{1^{S}\}$ floor $y <^{I}$ floor x $| x \rightarrow^{S} y = y$ if $x = 1^{S} y \in S - \{1^{S}\}$ $| x \rightarrow^{S} y = 1^{S}$ if $x \in S - \{1^{S}\} y = 1^{S}$ $| x \rightarrow^{S} y = 1^{S}$ if $x = 1^{S} y = 1^{S}$ $| x \rightarrow^{S} y = undefined$ if $x \notin S \lor y \notin S$ apply auto using floor.cases floor.simps(1) floor-prop trichotomy apply (smt (verit))) using floor-prop strict-iff-order apply force using floor-prop trichotomy by auto termination by lexicographic-order

3.4.1 Some multiplication properties

lemma sum-mult-not-one-aux: assumes $a \in S - \{1^S\}$ $b \in \mathbb{A}_{floor a}$ shows $a *^S b \in (\mathbb{A}_{floor a}) - \{1^S\}$ proof – consider (1) $b \in S - \{1^S\}$ $\mid (2) \ b = 1^S$ using sum-subsets assms floor-prop by blast

```
then
  show ?thesis
  proof(cases)
   case 1
   then
   have same-floor: floor a = floor b
     using assms floor-prop floor-unique by metis
   moreover
   have a *^{S} b = a *^{floor a} b
     using 1 assms(1) same-floor by simp
   moreover
   have a \in (\mathbb{A}_{floor a}) - \{1^S\} \land b \in (\mathbb{A}_{floor a}) - \{1^S\}
     using 1 assms floor-prop by simp
   ultimately
   show ?thesis
     using assms(1) family-of-hoops floor-prop hoop.mult-C by metis
  next
   case 2
   then
   show ?thesis
     using assms(1) floor-prop by auto
  \mathbf{qed}
qed
corollary sum-mult-not-one:
  assumes a \in S - \{1^S\} b \in \mathbb{A}_{floor a}
  shows a *^S b \in S - \{1^S\} \land floor(a *^S b) = floor a
proof
 have a *^S b \in (\mathbb{A}_{floor a}) - \{1^S\}
   using sum-mult-not-one-aux assms by meson
  then
  have a *^{S} b \in S - \{1^{S}\} \land a *^{S} b \in \mathbb{A}_{floor a}
   using sum-subsets assms(1) floor-prop by fastforce
  then
 show ?thesis
   using assms(1) floor-prop floor-unique by metis
\mathbf{qed}
lemma sum-mult-A:
 assumes a \in S - \{1^S\} b \in \mathbb{A}_{floor a}
shows a *^S b = a *^{floor a} b \wedge b *^S a = b *^{floor a} a
proof -
  consider (1) b \in S - \{1^S\}
   |(2) b = 1^{S}
   \mathbf{using} \ sum\text{-subsets} \ assms \ floor\text{-}prop \ \mathbf{by} \ blast
  then
  show ?thesis
  proof(cases)
   case 1
```

20

```
then
have floor a = floor b
using assms floor.cases floor-prop floor-unique by metis
then
show ?thesis
using 1 assms by auto
next
case 2
then
show ?thesis
using assms(1) family-of-hoops floor-prop hoop.mult-neutr hoop.mult-neutr-2
by fastforce
qed
qed
```

3.4.2 Some implication properties

lemma sum-imp-floor: assumes $a \in S - \{1^S\}$ $b \in S - \{1^S\}$ floor $a = floor \ b \ a \to^S b \in S - \{1^S\}$ shows floor $(a \rightarrow^S b) = floor a$ proof have $a \rightarrow^{S} b \in \mathbb{A}_{floor a}$ using sum-imp.simps(1) assms(1-3) floor-imp-closed floor-prop by *metis* \mathbf{then} show ?thesis using assms(1,4) floor-prop floor-unique by blast \mathbf{qed} lemma *sum-imp-A*: assumes $a \in S - \{1^S\} b \in \mathbb{A}_{floor a}$ shows $a \to^S b = a \to^{floor a} b$ proof consider (1) $b \in S - \{1^S\}$ $|(2) b = 1^{S}$ using sum-subsets assms floor-prop by blast then show ?thesis **proof**(*cases*) case 1 then show ?thesis using sum-imp.simps(1) assms floor-prop floor-unique by metis \mathbf{next} case 2then show ?thesis using sum-imp.simps(5) assms(1) family-of-hoops floor-prop hoop.imp-one-top

```
by metis
 qed
qed
lemma sum-imp-B:
  assumes a \in S - \{1^S\} b \in \mathbb{A}_{floor a}
  shows b \to^S a = b \to^{floor a} a
proof -
 consider (1) b \in S - \{1^S\}
 \mid (2) \ b = 1^S
   \mathbf{using} \ sum\text{-subsets} \ assms \ floor\text{-}prop \ \mathbf{by} \ blast
  then
 show ?thesis
 proof(cases)
    case 1
    then
    show ?thesis
     using sum-imp.simps(1) assms floor-prop floor-unique by metis
  \mathbf{next}
    case 2
    then
    \mathbf{show}~? thesis
      using sum-imp.simps(4) assms(1) family-of-hoops floor-prop
            hoop.imp-one-C
     by metis
 qed
qed
lemma sum-imp-floor-antisymm:
 assumes a \in S - \{1^S\} b \in S - \{1^S\} floor a = floor b
a \to {}^S b = 1^S b \to {}^S a = 1^S
 shows a = b
proof –
 have a \in \mathbb{A}_{floor \ a} \land b \in \mathbb{A}_{floor \ a} \land floor \ a \in I
    using floor-prop assms by metis
 moreover
 have a \rightarrow^{S} b = a \rightarrow^{floor a} b \wedge b \rightarrow^{S} a = b \rightarrow^{floor a} a
    using assms by auto
  ultimately
 show ?thesis
    using assms(4,5) family-of-hoops hoop.ord-antisymm-equiv by metis
qed
```

corollary sum-imp-C: **assumes** $a \in S - \{1^S\}$ $b \in S - \{1^S\}$ $a \neq b$ floor a =floor $b \ a \rightarrow^S b = 1^S$ **shows** $b \rightarrow^S a \neq 1^S$ **using** sum-imp-floor-antisymm assms **by** blast

lemma *sum-imp-D*:

assumes $a \in S$ shows $1^S \rightarrow^S a = a$ using sum-imp.simps(4,6) assms by blast

lemma sum-imp-E: **assumes** $a \in S$ **shows** $a \rightarrow^{S} 1^{S} = 1^{S}$ **using** sum-imp.simps(5,6) assms by blast

3.5 The ordinal sum of a tower of hoops is a hoop

3.5.1 S is not empty

```
lemma sum-not-empty: S \neq \emptyset
using sum-one-closed by blast
```

3.5.2 $(*^S)$ and (\rightarrow^S) are well defined

```
lemma sum-mult-closed-one:
 assumes a \in S \ b \in S \ a = 1^S \lor b = 1^S
 shows a *^S b \in S
 using sum-mult.simps(4-6) assms floor.cases by metis
lemma sum-mult-closed-not-one:
 assumes a \in S - \{1^S\} b \in S - \{1^S\}
 shows a *^S b \in S - \{1^S\}
proof -
 from assms
 consider (1) floor a = floor b
   |(2) floor a <^{I} floor b \lor floor b <^{I} floor a
   using trichotomy floor-prop by blast
 then
 show ?thesis
 proof(cases)
   case 1
   then
   show ?thesis
    using sum-mult-not-one assms floor-prop by metis
 \mathbf{next}
   case 2
   then
   show ?thesis
     using assms by auto
 qed
qed
lemma sum-mult-closed:
 assumes a \in S \ b \in S
```

```
shows a *^S b \in S
```

```
using sum-mult-closed-not-one sum-mult-closed-one assms by auto
```

lemma *sum-imp-closed-one*: assumes $a \in S \ b \in S \ a = 1^S \lor b = 1^S$ shows $a \to^S b \in S$ using sum-imp.simps(4-6) assms floor.cases by metis **lemma** *sum-imp-closed-not-one*: assumes $a \in S - \{1^S\}$ $b \in S - \{1^S\}$ shows $a \to^S b \in S$ proof from assms **consider** (1) floor a = floor b $|(2) floor a <^{I} floor b \lor floor b <^{I} floor a$ using trichotomy floor-prop by blast then show $a \to^S b \in S$ **proof**(*cases*) case 1 then have $a \rightarrow^{S} b = a \rightarrow^{floor a} b$ using assms by auto moreover have $a \rightarrow^{floor a} b \in \mathbb{A}_{floor a}$ using 1 assms floor-imp-closed floor-prop by metis ultimately show ?thesis using sum-subsets assms(1) floor-prop by auto next case 2then show ?thesis using assms by auto qed \mathbf{qed}

lemma sum-imp-closed: **assumes** $a \in S \ b \in S$ **shows** $a \rightarrow^{S} b \in S$ **using** sum-imp-closed-one sum-imp-closed-not-one assess by auto

3.5.3 Neutrality of 1^S

lemma sum-mult-neutr: **assumes** $a \in S$ **shows** $a *^{S} 1^{S} = a \wedge 1^{S} *^{S} a = a$ **using** assms sum-mult.simps(4-6) **by** blast

3.5.4 Commutativity of $(*^S)$

Now we prove $x *^{S} y = y *^{S} x$ by showing that it holds when one of the variables is equal to 1^{S} . Then we consider when none of them is 1^{S} .

```
lemma sum-mult-comm-one:
 assumes a \in S b \in S a = 1^S \lor b = 1^S
 shows a *^S b = b *^S a
 using sum-mult-neutr assms by auto
lemma sum-mult-comm-not-one:
 assumes a \in S - \{1^S\} b \in S - \{1^S\}
 shows a *^S b = b *^{S} a
proof –
 from assms
 consider (1) floor a = floor b
   |(2) floor a <^{I} floor b \lor floor b <^{I} floor a
   using trichotomy floor-prop by blast
 then
 show ?thesis
 proof(cases)
   case 1
   then
   have same-floor: b \in \mathbb{A}_{floor a}
    using assms(2) floor-prop by simp
   then
   have a *^{S} b = a *^{floor a} b
    using sum-mult-A assms(1) by blast
   also
   have \ldots = b *^{floor a} a
    using assms(1) family-of-hoops floor-prop hoop.mult-comm same-floor
    by meson
   also
   have \ldots = b *^S a
     using sum-mult-A assms(1) same-floor by simp
   finally
   show ?thesis
    by auto
 \mathbf{next}
   case 2
   then
   show ?thesis
    using assms by auto
 qed
\mathbf{qed}
lemma sum-mult-comm:
 assumes a \in S \ b \in S
 shows a *^S b = b *^S a
```

using assms sum-mult-comm-one sum-mult-comm-not-one by auto

3.5.5 Associativity of $(*^S)$

lemma *sum-mult-assoc-one*:

Next we prove $x *^S (y *^S z) = (x *^S y) *^S z$.

assumes $a \in S$ $b \in S$ $c \in S$ $a = 1^S \lor b = 1^S \lor c = 1^S$ **shows** $a *^{S} (b *^{S} c) = (a *^{S} b) *^{S} c$ using sum-mult-neutr assms sum-mult-closed by metis **lemma** *sum-mult-assoc-not-one*: **assumes** $a \in S - \{1^S\}$ $b \in S - \{1^S\}$ $c \in S - \{1^S\}$ **shows** $a *^S (b *^S c) = (a *^S b) *^S c$ proof from assms **consider** (1) floor a = floor b floor b = floor c|(2) floor a = floor b floor $b <^{I} floor c$ |(3) floor a = floor b floor $c <^{I}$ floor b(3) floor a = floor b floor c < floor b(4) floor $a <^{I}$ floor b floor b = floor c(5) floor $a <^{I}$ floor b floor $b <^{I}$ floor c(6) floor $a <^{I}$ floor b floor $c <^{I}$ floor b| (7) floor $b <^{I}$ floor a floor b = floor c(8) floor $b <^{I}$ floor a floor $b <^{I}$ floor c (9) floor $b <^{I}$ floor a floor $c <^{I}$ floor b using trichotomy floor-prop by meson then show ?thesis proof(cases) case 1 then have $a *^{S} (b *^{S} c) = a *^{floor a} (b *^{floor a} c)$ using sum-mult-A assms floor-mult-closed floor-prop by metis also have $\ldots = (a *^{floor a} b) *^{floor a} c$ using 1 assms family-of-hoops floor-prop hoop.mult-assoc by metis also have $\ldots = (a *^{floor b} b) *^{floor b} c$ using 1 by simp also have $\ldots = (a *^S b) *^S c$ using 1 sum-mult-A assms floor-mult-closed floor-prop by metis finally show ?thesis by *auto* \mathbf{next} case 2then show ?thesis using sum-mult.simps(2,3) sum-mult-not-one assms floor-prop by metis \mathbf{next} case 3

then

```
show ?thesis
    using sum-mult.simps(3) sum-mult-not-one assms floor-prop by metis
 \mathbf{next}
   case 4
   then
   show ?thesis
     using sum-mult.simps(2) sum-mult-not-one assms floor-prop by metis
 next
   case 5
   then
   show ?thesis
    using sum-mult.simps(2) assms floor-prop strict-trans by metis
 \mathbf{next}
   case 6
   then
   show ?thesis
    using sum-mult.simps(2,3) assms by metis
 \mathbf{next}
   case 7
   then
   show ?thesis
     using sum-mult.simps(3) sum-mult-not-one assms floor-prop by metis
 next
   case 8
   then
   show ?thesis
    using sum-mult.simps(2,3) assms by metis
 \mathbf{next}
   case g
   then
   show ?thesis
    using sum-mult.simps(3) assms floor-prop strict-trans by metis
 \mathbf{qed}
qed
```

lemma sum-mult-assoc: **assumes** $a \in S$ $b \in S$ $c \in S$ **shows** $a *^{S} (b *^{S} c) = (a *^{S} b) *^{S} c$ **using** assms sum-mult-assoc-one sum-mult-assoc-not-one by blast

3.5.6 Reflexivity of (\rightarrow^S)

```
lemma sum-imp-reflex:

assumes a \in S

shows a \rightarrow^{S} a = 1^{S}

proof –

consider (1) a \in S - \{1^{S}\}

\mid (2) a = 1^{S}
```

```
using assms by blast
  \mathbf{then}
 show ?thesis
 proof(cases)
   case 1
   then
   have a \rightarrow^{S} a = a \rightarrow^{floor a} a
     by simp
   then
   show ?thesis
     using 1 family-of-hoops floor-prop hoop.imp-reflex by metis
 \mathbf{next}
   case 2
   then
   show ?thesis
     by simp
 qed
\mathbf{qed}
```

3.5.7 Divisibility

We prove $x *^{S} (x \to {}^{S} y) = y *^{S} (y \to {}^{S} x)$ using the same methods as before. **lemma** *sum-divisibility-one*: assumes $a \in S \ b \in S \ a = 1^S \lor b = 1^S$ shows $a *^{S} (a \rightarrow^{S} b) = b *^{S} (b \rightarrow^{S} a)$ proof – have $x \to^S y = y \land y \to^S x = 1^S$ if $x = 1^S y \in S$ for x yusing sum-imp-D sum-imp-E that by simpthen show ?thesis using assms sum-mult-neutr by metis \mathbf{qed} lemma sum-divisibility-aux: assumes $a \in S - \{1^{\check{S}}\} b \in \mathbb{A}_{floor a}$ shows $a *^{S} (a \to^{S} b) = a *^{floor a} (a \to^{floor a} b)$ using sum-imp-A sum-mult-A assms floor-imp-closed floor-prop by metis **lemma** *sum-divisibility-not-one*: assumes $a \in S - \{1^{\breve{S}}\}$ $b \in S - \{1^{\breve{S}}\}$ shows $a *^{\breve{S}} (a \to^{\breve{S}} b) = b *^{\breve{S}} (b \to^{\breve{S}} a)$ proof from assms **consider** (1) floor a = floor b|(2) floor $a <^{I}$ floor $b \lor$ floor $b <^{I}$ floor ausing trichotomy floor-prop by blast then show ?thesis **proof**(*cases*)

case 1 then have $a *^{S} (a \rightarrow^{S} b) = a *^{floor a} (a \rightarrow^{floor a} b)$ using 1 sum-divisibility-aux assms floor-prop by metis also have $\ldots = b *^{floor a} (b \rightarrow^{floor a} a)$ using 1 assms family-of-hoops floor-prop hoop.divisibility by metis also have $\ldots = b *^{floor \ b} (b \rightarrow^{floor \ b} a)$ using 1 by simp also have $\ldots = b *^S (b \rightarrow^S a)$ using 1 sum-divisibility-aux assms floor-prop by metis finally show ?thesis by *auto* \mathbf{next} case 2then show ?thesis using assms by auto \mathbf{qed} qed

lemma *sum-divisibility*: assumes $a \in S \ b \in S$ shows $a *^S (a \to^S b) = b *^S (b \to^S a)$ using assms sum-divisibility-one sum-divisibility-not-one by auto

3.5.8Residuation

Finally we prove $(x *^S y) \to^S z = x \to^S (y \to^S z)$. **lemma** *sum-residuation-one*: assumes $a \in S \ b \in S \ c \in S \ a = 1^S \lor b = 1^S \lor c = 1^S$ shows $(a *^S b) \rightarrow^S c = a \rightarrow^S (b \rightarrow^S c)$ using sum-imp-D sum-imp-E sum-imp-closed sum-mult-closed sum-mult-neutr assms by metis **lemma** *sum-residuation-not-one*: assumes $a \in S - \{1^S\}$ $b \in S - \{1^S\}$ $c \in S - \{1^S\}$ shows $(a *^S b) \to^S c = a \to^S (b \to^S c)$

proof from assms

consider (1) floor a = floor b floor b = floor c

|(2) floor a = floor b floor $b <^{I} floor c$

(3) floor $a = \text{floor } b \text{ floor } c <^{I} \text{floor } b$ (4) floor $a <^{I} \text{floor } b \text{ floor } b = \text{floor } c$

(5) floor $a <^{I}$ floor b floor $b <^{I}$ floor c

 $\begin{array}{l} (6) \ floor \ a <^{I} \ floor \ b \ floor \ c <^{I} \ floor \ b \\ (7) \ floor \ b <^{I} \ floor \ a \ floor \ a \ floor \ c \\ \end{array}$ $| (8) floor b <^{I} floor a floor b <^{I} floor c$ (9) floor $b <^{I}$ floor a floor $c <^{I}$ floor b using trichotomy floor-prop by meson then show ?thesis **proof**(*cases*) case 1 then have $(a * {}^{S} b) \rightarrow^{S} c = (a * {}^{floor a} b) \rightarrow^{floor a} c$ using sum-imp-B sum-mult-A assms floor-mult-closed floor-prop by metis also have $\ldots = a \rightarrow^{floor a} (b \rightarrow^{floor a} c)$ using 1 assms family-of-hoops floor-prop hoop.residuation by metis also have $\ldots = a \rightarrow^{floor \ b} (b \rightarrow^{floor \ b} c)$ using 1 by simp also have $\ldots = a \rightarrow^S (b \rightarrow^S c)$ using 1 sum-imp-A assms floor-imp-closed floor-prop by metis finally show ?thesis by auto \mathbf{next} case 2then show ?thesis using sum-imp.simps(2,5) sum-mult-not-one assms floor-prop by metis \mathbf{next} case 3then show ?thesis using sum-imp.simps(3) sum-mult-not-one assms floor-prop by metis \mathbf{next} case 4then have $(a *^S b) \rightarrow^S c = 1^S$ using 4 sum-imp.simps(2) sum-mult.simps(2) assms by metis moreover have $b \to^S c = 1^S \lor (b \to^S c \in S - \{1^S\} \land floor (b \to^S c) = floor b)$ using 4(2) sum-imp-closed-not-one sum-imp-floor assms(2,3) by blast ultimately show ?thesis using 4(1) sum-imp.simps(2,5) assms(1) by metis \mathbf{next} case 5then show ?thesis

```
using sum-imp.simps(2,5) sum-mult.simps(2) assms floor-prop strict-trans
     by metis
 \mathbf{next}
   case 6
   then
   show ?thesis
     using assms by auto
  \mathbf{next}
   case 7
   then
   have (a *^S b) \rightarrow^S c = (b \rightarrow^S c)
     using assms(1,2) by auto
   moreover
   have b \to {}^{S} c = 1^{S} \lor (b \to {}^{S} c \in S - \{1^{S}\} \land floor (b \to {}^{S} c) = floor b)
     using 7(2) sum-imp-closed-not-one sum-imp-floor assms(2,3) by blast
   ultimately
   show ?thesis
     using 7(1) sum-imp.simps(3,5) assms(1) by metis
  \mathbf{next}
   case 8
   then
   show ?thesis
     using assms by auto
  \mathbf{next}
   case g
   then
   show ?thesis
     using sum-imp.simps(3) sum-mult.simps(3) assms floor-prop strict-trans
     by metis
 \mathbf{qed}
qed
```

lemma sum-residuation: **assumes** $a \in S$ $b \in S$ $c \in S$ **shows** $(a * {}^{S} b) \rightarrow {}^{S} c = a \rightarrow {}^{S} (b \rightarrow {}^{S} c)$ **using** assms sum-residuation-one sum-residuation-not-one by blast

3.5.9 Main result

sublocale hoop $S (*^S) (\rightarrow^S) 1^S$ proof show $x *^S y \in S$ if $x \in S y \in S$ for x yusing that sum-mult-closed by simp next show $x \rightarrow^S y \in S$ if $x \in S y \in S$ for x yusing that sum-imp-closed by simp next show $1^S \in S$ by simp

\mathbf{next}

show $x *^S y = y *^S x$ if $x \in S y \in S$ for x yusing that sum-mult-comm by simp \mathbf{next} show $x *^{S} (y *^{S} z) = (x *^{S} y) *^{S} z$ if $x \in S y \in S z \in S$ for x y zusing that sum-mult-assoc by simp \mathbf{next} show $x *^S 1^S = x$ if $x \in S$ for xusing that sum-mult-neutr by simp next show $x \to^S x = 1^S$ if $x \in S$ for xusing that sum-imp-reflex by simp next show $x *^{S} (x \to^{S} y) = y *^{S} (y \to^{S} x)$ if $x \in S y \in S$ for x yusing that sum-divisibility by simp next show $x \to {}^S (y \to {}^S z) = (x * {}^S y) \to {}^S z$ if $x \in S y \in S z \in S$ for x y zusing that sum-residuation by simp qed end

end

4 Totally ordered hoops

```
theory Totally-Ordered-Hoops
imports Ordinal-Sums
begin
```

4.1 Definitions

locale totally-ordered-hoop = hoop + assumes total-order: $x \in A \implies y \in A \implies x \leq^A y \lor y \leq^A x$ begin

function fixed-points :: ${}^{\prime}a \Rightarrow {}^{\prime}a \operatorname{set} (\langle F \rangle)$ where $F a = \{b \in A - \{1^A\}, a \to^A b = b\}$ if $a \in A - \{1^A\}$ $| F a = \{1^A\}$ if $a = 1^A$ | F a = undefined if $a \notin A$ by auto **termination by** lexicographic-order

definition rel-F :: 'a \Rightarrow 'a \Rightarrow bool (infix $\langle \sim F \rangle$ 60) where $x \sim F y \equiv \forall z \in A$. $(x \rightarrow^A z = z) \longleftrightarrow (y \rightarrow^A z = z)$

definition rel-F-canonical-map :: $a \Rightarrow a$ set $(\langle \pi \rangle)$ where $\pi x = \{b \in A. x \sim F b\}$

 \mathbf{end}

4.2 Properties of F

```
context totally-ordered-hoop
begin
lemma F-equiv:
 assumes a \in A - \{1^A\} \ b \in A
 shows b \in F a \longleftrightarrow (b \in A \land b \neq 1^A \land a \to^A b = b)
 using assms by auto
lemma F-subset:
 assumes a \in A
 shows F \ a \subseteq A
proof -
  have a = 1^A \lor a \neq 1^A
   by auto
  then
 show ?thesis
   using assms by fastforce
qed
lemma F-of-one:
  assumes a \in A
 shows F a = \{1^A\} \longleftrightarrow a = 1^A
 using F-equiv assms fixed-points.simps(2) top-closed by blast
lemma F-of-mult:
  assumes a \in A - \{1^A\} b \in A - \{1^A\}
 shows F(a * A b) = \{c \in A - \{I^A\}, (a * A b) \rightarrow^A c = c\}
 using assms mult-C by auto
lemma F-of-imp:
 \textbf{assumes} \ a \in A \ b \in A \ a \rightarrow^A \ b \neq 1^A
 shows F(a \rightarrow^A b) = \{c \in A - \{1^A\}, (a \rightarrow^A b) \rightarrow^A c = c\}
 using assms imp-closed by auto
lemma F-bound:
 assumes a \in A b \in A a \in F b
 shows a \leq^A b
proof -
  consider (1) b \neq 1^A
   |(2) b = 1^A
   by auto
  then
  show ?thesis
 proof(cases)
   case 1
```

```
then
   have b \rightarrow^A a \neq 1^A
     using assms(2,3) by simp
    then
    show ?thesis
     using assms hoop-order-def total-order by auto
  \mathbf{next}
    case 2
    then
    show ?thesis
      using assms(1) ord-top by auto
 qed
\mathbf{qed}
The following results can be found in Lemma 3.3 in [5].
lemma LEMMA-3-3-1:
 assumes a \in A - \{1^A\} b \in A c \in A b \in F a c \leq^A b
 shows c \in F a
proof -
  from assms
  have (a \rightarrow^A c) \leq^A (a \rightarrow^A b)
    using DiffD1 F-equiv ord-imp-mono-B by metis
  then
  have (a \rightarrow^A c) \leq^A b
   using assms(1,4,5) by simp
  then
  have (a \rightarrow^A c) \rightarrow^A c = ((a \rightarrow^A c) *^A ((a \rightarrow^A c) \rightarrow^A b)) \rightarrow^A c
   using assms(1,3) hoop-order-def imp-closed by force
  also
  have \ldots = (b *^A (b \to^A (a \to^A c))) \to^A c
    using assms divisibility imp-closed by simp
  also
  have \ldots = (b \rightarrow^A (a \rightarrow^A c)) \rightarrow^A (b \rightarrow^A c)
    using DiffD1 \ assms(1-3) \ imp-closed \ swap \ residuation \ by \ metis
  also
 have \ldots = ((a \rightarrow^A b) \rightarrow^A (a \rightarrow^A c)) \rightarrow^A (b \rightarrow^A c)
    using assms(1,4) by simp
  also
  have \ldots = (((a \rightarrow^A b) *^A a) \rightarrow^A c) \rightarrow^A (b \rightarrow^A c)
    using assms(1,3,4) residuation by simp
  also
  have \ldots = (((b \rightarrow^A a) *^A b) \rightarrow^A c) \rightarrow^A (b \rightarrow^A c)
    using assms(1,2) divisibility imp-closed mult-comm by simp
  also
 have \ldots = (b \rightarrow^A c) \rightarrow^A (b \rightarrow^A c)
    using F-bound assms(1,4) hoop-order-def by simp
  also
  have \ldots = 1^A
    using F-bound assms hoop-order-def imp-closed by simp
```

finally have $(a \rightarrow^A c) \leq^A c$ using hoop-order-def by simp moreover have $c \leq^A (a \rightarrow^A c)$ using assms(1,3) ord-A by simpultimately have $a \rightarrow^A c = c$ using assms(1,3) imp-closed ord-antisymm by simp moreover have $c \in A - \{1^A\}$ using assms(1,3-5) hoop-order-def imp-one-C by auto ultimately show ?thesis using F-equiv assms(1) by blastqed **lemma** *LEMMA-3-3-2*: assumes $a \in A - \{1^A\}$ $b \in A - \{1^A\}$ F a = F bshows $F a = F (a *^A b)$ proof show $F a \subseteq F (a *^A b)$ proof fix cassume $c \in F a$ then have $(a *^A b) \rightarrow^A c = b \rightarrow^A (a \rightarrow^A c)$ using DiffD1 F-subset assms(1,2) in-mono swap residuation by metis also have $\ldots = b \rightarrow^A c$ using $\langle c \in F \rangle a \otimes assms(1)$ by auto also have $\ldots = c$ using $\langle c \in F \rangle a \otimes assms(2,3)$ by auto finally show $c \in F (a *^A b)$ using $\langle c \in F \rangle a \otimes assms(1,2) mult-C$ by auto \mathbf{qed} \mathbf{next} show $F(a *^A b) \subseteq F a$ proof fix cassume $c \in F (a *^A b)$ then have $(a *^A b) \leq^A a$ using assms(1,2) mult-A by auto then have $(a \rightarrow^A c) \leq^A ((a *^A b) \rightarrow^A c)$ using DiffD1 F-subset $\langle c \in F (a *^A b) \rangle$ assms mult-closed

ord-imp-anti-mono-B subsetD by meson moreover have $(a *^A b) \rightarrow^A c = c$ using $\langle c \in F (a *^A b) \rangle$ assms(1,2) mult-C by auto ultimately have $(a \rightarrow^A c) \leq^A c$ by simp moreover have $c \leq^A (a \rightarrow^A c)$ using DiffD1 F-subset $\langle c \in F (a *^A b) \rangle$ assms(1,2) insert-Diff insert-subset mult-closed ord-A by *metis* ultimately show $c \in F a$ using $\langle c \in F (a *^A b) \rangle$ assms(1,2) imp-closed mult-C ord-antisymm by auto qed qed **lemma** *LEMMA-3-3-3*: assumes $a \in A - \{1^A\}$ $b \in A - \{1^A\}$ $a \leq^A b$ shows $F \ a \subseteq F \ b$ proof fix cassume $c \in F a$ then have $(b \rightarrow^A c) \leq^A (a \rightarrow^A c)$ using DiffD1 F-subset assms in-mono ord-imp-anti-mono-B by meson moreover have $a \rightarrow^A c = c$ using $\langle c \in F \rangle a \otimes assms(1)$ by auto ultimately have $(b \rightarrow^A c) \leq^A c$ by simp moreover have $c \leq^A (b \rightarrow^A c)$ using $\langle c \in F \rangle a \otimes assms(1,2)$ ord-A by force ultimately show $c \in F b$ using $\langle c \in F \rangle$ as assms(1,2) imp-closed ord-antisymm by auto \mathbf{qed} **lemma** *LEMMA-3-3-4*: assumes $a \in A - \{1^A\}$ $b \in A - \{1^A\}$ $a <^A b F a \neq F b$ shows $a \in F b$ proof from assms **obtain** c where $c \in F \ b \land c \notin F \ a$ using LEMMA-3-3-3 hoop-order-strict-def by auto
then

have witness: $c \in A - \{1^A\} \land b \to^A c = c \land c <^A (a \to^A c)$ using $DiffD1 \ assms(1,2) \ hoop-order-strict-def \ ord-A \ by \ auto$ thenhave $(a \rightarrow^A c) \rightarrow^A c \in F b$ using DiffD1 F-equiv assms(1,2) imp-closed swap ord-D by metis moreover have $a \leq^A ((a \rightarrow^A c) \rightarrow^A c)$ using assms(1) ord-C witness by force ultimately show $a \in F b$ using Diff-iff LEMMA-3-3-1 assms(1,2) imp-closed witness by metis qed lemma LEMMA-3-3-5: assumes $a \in A - \{1^A\}$ $b \in A - \{1^A\}$ $F \ a \neq F \ b$ shows $a \ast^A b = a \land^A b$ proof have $a <^A b \lor b <^A a$ using DiffD1 assms hoop-order-strict-def total-order by metis then have $a \in F \ b \lor b \in F \ a$ using LEMMA-3-3-4 assms by metis then

have $a *^{A} b = (b \rightarrow^{A} a) *^{A} b \lor a *^{A} b = a *^{A} (a \rightarrow^{A} b)$ using assms(1,2) by force then show ?thesis using assms(1,2) divisibility hoop-inf-def imp-closed mult-comm by auto

```
qed
```

lemma LEMMA-3-3-6: assumes $a \in A - \{1^A\}$ $b \in A - \{1^A\}$ $a <^A b F a = F b$ shows $F(b \rightarrow^A a) = F b$ proof have $a \notin F a$ using assms(1) DiffD1 F-equiv imp-reflex by metis then have $a <^A (b \rightarrow^A a)$ using assms(1,2,4) hoop-order-strict-def ord-A by auto moreover have $b *^A (b \rightarrow^A a) = a$ using assms(1-3) divisibility hoop-order-def hoop-order-strict-def by simp moreover have $b \leq^A (b \rightarrow^A a) \lor (b \rightarrow^A a) \leq^A b$ using $DiffD1 \ assms(1,2) \ imp-closed \ ord-reflex \ total-order \ by \ metis$ ultimately have $b *^{A} (b \to^{A} a) \neq b \wedge^{A} (b \to^{A} a)$ using assms(1-3) hoop-order-strict-def imp-closed inf-comm inf-order by force then show $F (b \rightarrow^A a) = F b$ using LEMMA-3-3-5 assms(1-3) imp-closed ord-D by blast qed

4.3 Properties of $(\sim F)$

4.3.1 $(\sim F)$ is an equivalence relation

lemma rel-F-reflex: assumes $a \in A$ shows $a \sim F a$ using rel-F-def by auto

lemma rel-F-symm: **assumes** $a \in A$ $b \in A$ $a \sim F b$ **shows** $b \sim F a$ **using** assms rel-F-def **by** auto

lemma rel-F-trans: **assumes** $a \in A$ $b \in A$ $c \in A$ $a \sim F$ b $b \sim F$ c **shows** $a \sim F$ c**using** assms rel-F-def by auto

4.3.2 Equivalent definition

```
lemma rel-F-equiv:
 assumes a \in A b \in A
 shows (a \sim F b) = (F a = F b)
proof
 assume a \sim F b
 then
 consider (1) a \neq 1^A b \neq 1^A
   |(2) a = 1^A b = 1^A
   using assms imp-one-C rel-F-def by fastforce
 then
 show F a = F b
 proof(cases)
   case 1
   then
   show ?thesis
     using \langle a \sim F b \rangle assms rel-F-def by auto
 \mathbf{next}
   case 2
   then
   show ?thesis
     by simp
 \mathbf{qed}
\mathbf{next}
 assume F a = F b
```

```
then
 consider (1) a \neq 1^A b \neq 1^A
   |(2) a = 1^A b = 1^A
   using F-of-one assms by blast
 then
 show a \sim F b
 proof(cases)
   case 1
   then
   show ?thesis
     using \langle F a = F b \rangle assms imp-one-A imp-one-C rel-F-def by auto
 \mathbf{next}
   case 2
   then
   show ?thesis
     using rel-F-reflex by simp
 qed
qed
```

4.3.3 Properties of equivalence classes given by $(\sim F)$

lemma class-one: $\pi \ 1^A = \{1^A\}$ using *imp-one-C* rel-F-canonical-map-def rel-F-def by auto

lemma classes-subsets: **assumes** $a \in A$ **shows** $\pi \ a \subseteq A$ **using** rel-F-canonical-map-def by simp

lemma classes-not-empty: **assumes** $a \in A$ **shows** $a \in \pi$ a**using** assms rel-F-canonical-map-def rel-F-reflex by simp

corollary class-not-one: **assumes** $a \in A - \{1^A\}$ **shows** $\pi \ a \neq \{1^A\}$ **using** assms classes-not-empty by blast

lemma classes-disjoint: **assumes** $a \in A$ $b \in A$ π $a \cap \pi$ $b \neq \emptyset$ **shows** π $a = \pi$ b**using** assms rel-F-canonical-map-def rel-F-def rel-F-trans by force

lemma classes-cover: $A = \{x. \exists y \in A. x \in \pi y\}$ using classes-subsets classes-not-empty by auto

lemma classes-convex: assumes $a \in A$ $b \in A$ $c \in A$ $d \in A$ $b \in \pi$ a $c \in \pi$ a $b \leq^{A} d$ $d \leq^{A} c$

```
shows d \in \pi a
proof -
 have eq-F: F a = F b \land F a = F c
   using assms(1,5,6) rel-F-canonical-map-def rel-F-equiv by auto
 from assms
 consider (1) c = 1^A
   |(2) c \neq 1^A
   by auto
 then
 show ?thesis
 proof(cases)
   case 1
   then
   have b = 1^A
     using F-of-one eq-F assms(2) by auto
   then
   show ?thesis
     using 1 assms(2,4,5,7,8) ord-antisymm by blast
 \mathbf{next}
   case 2
   then
   have b \neq 1^A \land c \neq 1^A \land d \neq 1^A
     using eq-F assms(3,8) ord-antisymm ord-top by auto
   then
   have F \ b \subseteq F \ d \land F \ d \subseteq F \ c
     using LEMMA-3-3-3 assms(2-4,7,8) by simp
   then
   have F a = F d
     using eq-F by blast
   then
   have a \sim F d
     using assms(1,4) rel-F-equiv by simp
   then
   show ?thesis
     using assms(4) rel-F-canonical-map-def by simp
 qed
qed
lemma related-iff-same-class:
 assumes a \in A b \in A
 shows a \sim F b \longleftrightarrow \pi \ a = \pi \ b
proof
 assume a \sim F b
 then
 have a = 1^A \longleftrightarrow b = 1^A
   using assms imp-one-C imp-reflex rel-F-def by metis
 then
 have (a = 1^A \land b = 1^A) \lor (a \neq 1^A \land b \neq 1^A)
   by auto
```

then show $\pi \ a = \pi \ b$ using $\langle a \sim F \ b \rangle$ assms rel-F-canonical-map-def rel-F-def rel-F-symm by force next show $\pi \ a = \pi \ b \Longrightarrow a \sim F \ b$ using assms(2) classes-not-empty rel-F-canonical-map-def by auto qed corollary same-F-iff-same-class: assumes $a \in A \ b \in A$ shows $F \ a = F \ b \longleftrightarrow \pi \ a = \pi \ b$ using assms rel-F-equiv related-iff-same-class by auto

 \mathbf{end}

4.4 Irreducible hoops: definition and equivalences

A totally ordered hoop is *irreducible* if it cannot be written as the ordinal sum of two nontrivial totally ordered hoops.

locale totally-ordered-irreducible-hoop = totally-ordered-hoop + assumes irreducible: $\nexists B C$. $(A = B \cup C) \land$ $(\{1^A\} = B \cap C) \land$ $(\exists y \in B. y \neq 1^A) \land$ $(\exists y \in C. y \neq 1^A) \land$ (hoop $B(*^A) (\rightarrow^A) 1^A) \land$ (hoop C (*^A) (\rightarrow^{A}) 1^{A}) \wedge $\begin{array}{l} (\forall \ x \in B - \{1^A\}. \ \forall \ y \in C. \ x \ast^A \ y = x) \land \\ (\forall \ x \in B - \{1^A\}. \ \forall \ y \in C. \ x \rightarrow^A \ y = 1^A) \land \end{array}$ $(\forall x \in C. \forall y \in B. x \to^A y = y)$ lemma *irr-test*: assumes totally-ordered-hoop A PA RA a ¬totally-ordered-irreducible-hoop A PA RA a shows $\exists B C$. $(A = B \cup C) \land$ $(\{a\} = B \cap C) \land$ $(\exists y \in B. y \neq a) \land$

 $(\exists y \in B, y \neq a) \land$ $(\exists y \in C, y \neq a) \land$ $(hoop B PA RA a) \land$ $(hoop C PA RA a) \land$ $(\forall x \in B-\{a\}, \forall y \in C. PA x y = x) \land$ $(\forall x \in B-\{a\}, \forall y \in C. RA x y = a) \land$ $(\forall x \in C, \forall y \in B. RA x y = y)$ using assms unfolding totally-ordered-irreducible-hoop-def

 $totally {\it ordered-irreducible-hoop-axioms-def}$

 $\mathbf{by} \ \textit{force}$

 $\label{eq:locale_totally-ordered-one-fixed-hoop} = \textit{totally-ordered-hoop} + \\$

assumes one-fixed: $x \in A \implies y \in A \implies y \to^A x = x \implies x = 1^A \lor y = 1^A$

locale totally-ordered-wajsberg-hoop = totally-ordered-hoop + wajsberg-hoop

context *totally-ordered-hoop* **begin**

The following result can be found in [1] (see Lemma 3.5).

```
lemma not-one-fixed-implies-not-irreducible:
 assumes \neg totally-ordered-one-fixed-hoop A (*<sup>A</sup>) (\rightarrow^{A}) 1^{A}
 shows \neg totally-ordered-irreducible-hoop A (*<sup>A</sup>) (\rightarrow^{A}) 1^{A}
proof -
 have \exists x y. x \in A \land y \in A \land y \rightarrow^A x = x \land x \neq 1^A \land y \neq 1^A
   using assms totally-ordered-hoop-axioms totally-ordered-one-fixed-hoop.intro
         totally-ordered-one-fixed-hoop-axioms.intro
   by meson
 then
 obtain b_0 c_0 where witnesses: b_0 \in A - \{1^A\} \land c_0 \in A - \{1^A\} \land b_0 \rightarrow^A c_0 = c_0
   by auto
 define B C where B = (F b_0) \cup \{1^A\} and C = A - (F b_0)
 have B-mult-b0: b *^A b_0 = b if b \in B - \{1^A\} for b
 proof –
   have upper-bound: b \leq^A b_0 if b \in B - \{1^A\} for b
     using B-def F-bound witnesses that by force
   then
   have b *^A b_0 = b_0 *^A b
     using B-def witnesses mult-comm that by simp
   also
   have \ldots = b_0 *^A (b_0 \rightarrow^A b)
     using B-def witnesses that by fastforce
   also
   have \ldots = b *^A (b \to^A b_0)
     using B-def witnesses that divisibility by auto
   also
   have \ldots = b
     using B-def hoop-order-def that upper-bound witnesses by auto
   finally
   show b *^A b_0 = b
     by auto
  qed
 have C-upper-set: a \in C if a \in A c \in C c <^A a for a c
  proof –
   consider (1) a \neq 1^A
     |(2) a = 1^A
     by auto
   then
   show a \in C
```

```
proof(cases)
   case 1
   then
   have a \notin C \implies a \in F b_0
     using C-def that(1) by blast
   then
   have a \notin C \Longrightarrow c \in F b_0
     using C-def DiffD1 witnesses LEMMA-3-3-1 that by metis
   then
   \mathbf{show}~? thesis
     using C-def that (2) by blast
 \mathbf{next}
   case 2
   then
   show ?thesis
     using C-def witnesses by auto
 qed
\mathbf{qed}
```

have B-union-C: $A = B \cup C$ using B-def C-def witnesses one-closed by auto

moreover

have B-inter-C: $\{1^A\} = B \cap C$ using B-def C-def witnesses by force

moreover

have B-not-trivial: $\exists y \in B. y \neq 1^A$ proof – have $c_0 \in B \land c_0 \neq 1^A$ using B-def witnesses by auto then show ?thesis by auto qed

moreover

```
have C-not-trivial: \exists y \in C. y \neq 1^A

proof –

have b_0 \in C \land b_0 \neq 1^A

using C-def witnesses by auto

then

show ?thesis

by auto

qed
```

moreover

```
have B-mult-closed: a *^A b \in B if a \in B b \in B for a b
proof -
 from that
 consider (1) a \in F b_0
   |(2) a = 1^A
   using B-def by blast
 then
 show a *^A b \in B
 proof(cases)
   case 1
   then
   have a \in A \land a *^A b \in A \land (a *^A b) \leq^A a
    using B-union-C that mult-A mult-closed by blast
   then
   have a *^A b \in F b_0
    using 1 witnesses LEMMA-3-3-1 by metis
   then
   show ?thesis
    using B-def by simp
 \mathbf{next}
   case 2
   then
   \mathbf{show}~? thesis
    using B-union-C that (2) by simp
 qed
qed
```

moreover

```
have B-imp-closed: a \rightarrow^A b \in B if a \in B b \in B for a b
proof -
 from that
 consider (1) a = 1^A \lor b = 1^A \lor (a \in F b_0 \land b \in F b_0 \land a \to^A b = 1^A)
   |(2) a \in F b_0 b \in F b_0 a \to^A b \neq 1^A
   using B-def by fastforce
 then
 show a \to^A b \in B
 proof(cases)
   case 1
   then
   have a \rightarrow^A b = b \lor a \rightarrow^A b = 1^A
     using B-union-C that imp-one-C imp-one-top by blast
   then
   \mathbf{show}~? thesis
     using B-inter-C that(2) by fastforce
 \mathbf{next}
   case 2
```

then have $a *^A b_0 = a$ using B-def B-mult-b0 witnesses by auto then have $b_0 \rightarrow^A (a \rightarrow^A b) = (a \rightarrow^A b)$ using B-union-C witnesses that mult-comm residuation by simp then have $a \rightarrow^A b \in F b_0$ using 2(3) B-union-C F-equiv witnesses that imp-closed by auto then show ?thesis using *B*-def by auto qed qed moreover have B-hoop: hoop B ($*^A$) (\rightarrow^A) 1^A proof show $x *^A y \in B$ if $x \in B y \in B$ for x yusing *B*-mult-closed that by simp \mathbf{next} show $x \to^A y \in B$ if $x \in B y \in B$ for x yusing *B*-imp-closed that by simp \mathbf{next} show $1^A \in B$ using *B*-def by simp next show $x *^A y = y *^A x$ if $x \in B y \in B$ for x yusing *B*-union-*C* mult-comm that by simp \mathbf{next} show $x *^A (y *^A z) = (x *^A y) *^A z$ if $x \in B y \in B z \in B$ for x y zusing *B*-union-*C* mult-assoc that by simp \mathbf{next} show $x *^A 1^A = x$ if $x \in B$ for xusing B-union-C that by simp \mathbf{next} show $x \to^A x = 1^A$ if $x \in B$ for xusing B-union-C that by simp next show $x *^A (x \to^A y) = y *^A (y \to^A x)$ if $x \in B y \in B$ for x yusing B-union-C divisibility that by simp \mathbf{next} show $x \to^A (y \to^A z) = (x *^A y) \to^A z$ if $x \in B y \in B z \in B$ for x y zusing *B*-union-*C* residuation that by simp qed

moreover

have C-imp-B: $c \rightarrow^A b = b$ if $b \in B$ $c \in C$ for b cproof from that **consider** (1) $b \in F b_0 \ c \neq 1^A$ $|(2) b = 1^A \lor c = 1^A$ using *B*-def by blast then show $c \rightarrow^A b = b$ **proof**(*cases*) case 1have $b_0 \to^A ((c \to^A b) \to^A b) = (c \to^A b) \to^A (b_0 \to^A b)$ using B-union-C witnesses that imp-closed swap by simp also have $\ldots = (c \rightarrow^A b) \rightarrow^A b$ using 1(1) witnesses by auto finally have $(c \rightarrow^A b) \rightarrow^A b \in F b_0$ if $(c \rightarrow^A b) \rightarrow^A b \neq 1^A$ using B-union-C F-equiv witnesses $(b \in B) (c \in C)$ that imp-closed by auto moreover have $c \leq^A ((c \rightarrow^A b) \rightarrow^A b)$ using B-union-C that ord-C by simp ultimately have $(c \rightarrow^A b) \rightarrow^A b = 1^A$ using B-def B-union-C C-def C-upper-set that (2) by blast moreover have $b \to^A (c \to^A b) = 1^A$ using B-union-C that imp-A by simp ultimately show ?thesis using B-union-C that imp-closed ord-antisymm-equiv by blast \mathbf{next} case 2then show ?thesis using B-union-C that imp-one-C imp-one-top by auto qed qed

moreover

have B-imp-C: $b \to^A c = 1^A$ if $b \in B - \{1^A\} c \in C$ for b cproof – from that have $b \leq^A c \lor c \leq^A b$ using total-order B-union-C by blast moreover have $c \to^A b = b$ using C-imp-B that by simp ultimately show $b \rightarrow^A c = 1^A$ using that(1) hoop-order-def by force qed

moreover

have B-mult-C: $b *^A c = b$ if $b \in B - \{1^A\} c \in C$ for b cproof have $b = b *^A 1^A$ using that(1) B-union-C by fastforce also have $\ldots = b *^A (b \to^A c)$ using B-imp-C that by blast also have $\ldots = c *^A (c \to^A b)$ using that divisibility B-union-C by simp also have $\ldots = c *^A b$ using C-imp-B that by auto finally show $b *^A c = b$ using that mult-comm B-union-C by auto qed

moreover

have C-mult-closed: $c *^A d \in C$ if $c \in C d \in C$ for c dproof **consider** (1) $c \neq 1^A d \neq 1^A$ $|(2) c = 1^A \lor d = 1^A$ by *auto* then show $c *^A d \in C$ **proof**(*cases*) case 1have $c *^A d \in F b_0$ if $c *^A d \notin C$ using C-def $\langle c \in C \rangle \langle d \in C \rangle$ mult-closed that by force then have $c \to^A (c *^A d) \in F b_0$ if $c *^A d \notin C$ using *B*-def *C*-imp- $B \langle c \in C \rangle$ that by simp moreover have $d \leq^A (c \rightarrow^A (c *^A d))$ using C-def DiffD1 that ord-reflex ord-residuation residuation mult-closed mult-comm by *metis* moreover have $c \to^A (c *^A d) \in A \land d \in A$ using C-def Diff-iff that imp-closed mult-closed by metis ultimately

```
have d \in F b<sub>0</sub> if c *^{A} d \notin C
using witnesses LEMMA-3-3-1 that by blast
then
show ?thesis
using C-def that(2) by blast
next
case 2
then
show ?thesis
using B-union-C that mult-neutr mult-neutr-2 by auto
qed
qed
```

moreover

have C-imp-closed: $c \to^A d \in C$ if $c \in C d \in C$ for c dusing C-upper-set imp-closed ord-A B-union-C that by blast

moreover

have C-hoop: hoop C (*^A) (\rightarrow^{A}) 1^A proof show $x *^A y \in C$ if $x \in C y \in C$ for x yusing C-mult-closed that by simp \mathbf{next} show $x \to^A y \in C$ if $x \in C y \in C$ for x yusing *C*-imp-closed that by simp next show $1^A \in C$ using B-inter-C by auto next show $x *^A y = y *^A x$ if $x \in C y \in C$ for x y $\mathbf{using} \ B\text{-}union\text{-}C \ mult\text{-}comm \ that \ \mathbf{by} \ simp$ \mathbf{next} show $x *^A (y *^A z) = (x *^A y) *^A z$ if $x \in C y \in C z \in C$ for x y z**using** *B*-union-*C* mult-assoc that **by** simp next show $x *^A 1^A = x$ if $x \in C$ for xusing B-union-C that by simp next show $x \to^A x = 1^A$ if $x \in C$ for xusing B-union-C that by simp \mathbf{next} show $x *^A (x \to^A y) = y *^A (y \to^A x)$ if $x \in C y \in C$ for x yusing B-union-C divisibility that by simp \mathbf{next} show $x \to^A (y \to^A z) = (x *^A y) \to^A z$ if $x \in C y \in C z \in C$ for x y zusing *B*-union-*C* residuation that by simp qed

ultimately

have $\exists B C$. $(A = B \cup C) \land$ $(\lbrace 1^A \rbrace = B \cap C) \land$ $(\exists y \in B. y \neq 1^A) \land$ $(\exists y \in C. y \neq 1^A) \land$ $(hoop B (*^A) (\rightarrow^A) 1^A) \land$ $(hoop C (*^A) (\rightarrow^A) 1^A) \land$ $(\forall x \in B - \lbrace 1^A \rbrace. \forall y \in C. x *^A y = x) \land$ $(\forall x \in B - \lbrace 1^A \rbrace. \forall y \in C. x \rightarrow^A y = 1^A) \land$ $(\forall x \in C. \forall y \in B. x \rightarrow^A y = y)$ by (smt (verit))then show ?thesis using totally-ordered-irreducible-hoop.irreducible by (smt (verit))

```
\mathbf{qed}
```

Next result can be found in [2] (see Proposition 2.2).

```
lemma one-fixed-implies-wajsberg:
  assumes totally-ordered-one-fixed-hoop A (*<sup>A</sup>) (\rightarrow^{A}) 1<sup>A</sup>
  shows totally-ordered-wajsberg-hoop A (*^{A}) (\stackrel{\frown}{\rightarrow}^{A}) 1^{A}
proof
  have (a \rightarrow^A b) \rightarrow^A b = (b \rightarrow^A a) \rightarrow^A a if a \in A b \in A a <^A b for a b
  proof –
    from that
    \mathbf{have} \ (((b \rightarrow^A a) \rightarrow^A a) \rightarrow^A b) \rightarrow^A (b \rightarrow^A a) = b \rightarrow^A a \land b \rightarrow^A a \neq 1^A
      using imp-D ord-D by simp
    then
    have ((b \rightarrow^A a) \rightarrow^A a) \rightarrow^A b = 1^A
      using assms that (1,2) imp-closed totally-ordered-one-fixed-hoop.one-fixed
      by metis
    moreover
    have b \to^A ((b \to^A a) \to^A a) = 1^A
      using hoop-order-def that (1,2) ord-C by simp
    ultimately
    have (b \rightarrow^A a) \rightarrow^A a = b
      using imp-closed ord-antisymm-equiv hoop-axioms that (1,2) by metis
    also
    have \ldots = (a \rightarrow^A b) \rightarrow^A b
      using hoop-order-def hoop-order-strict-def that (2,3) imp-one-C by force
    finally
    show (a \rightarrow^A b) \rightarrow^A b = (b \rightarrow^A a) \rightarrow^A a
      by auto
  \mathbf{qed}
  \mathbf{then}
  show (x \to^A y) \to^A y = (y \to^A x) \to^A x if x \in A y \in A for x y
    using total-order hoop-order-strict-def that by metis
```

The proof of the following result can be found in [1] (see Theorem 3.6).

```
lemma not-irreducible-implies-not-wajsberg:
  assumes \neg totally-ordered-irreducible-hoop A (*<sup>A</sup>) (\rightarrow^{A}) 1^{A}
  shows \neg totally-ordered-wajsberg-hoop A (*<sup>A</sup>) (\rightarrow^{A}) 1^{A}
proof –
  have \exists B C.
    (A = B \cup C) \land
    (\{1^A\} = B \cap C) \land
    (\exists y \in B. y \neq 1^A) \land
     (\exists \ y \in C. \ y \neq 1^A) \land 
 (hoop B (*^A) (\rightarrow^A) 1^A) \land 
    (hoop C (*<sup>A</sup>) (\rightarrow^{A}) 1<sup>A</sup>) \wedge
     \begin{array}{l} (\forall \ x \in B - \{1^A\}, \ \forall \ y \in C. \ x \ast^A \ y = x) \land \\ (\forall \ x \in B - \{1^A\}, \ \forall \ y \in C. \ x \rightarrow^A \ y = 1^A) \land \end{array} 
    (\forall x \in C. \forall y \in B. x \to^A y = y)
    using irr-test[OF totally-ordered-hoop-axioms] assms by auto
  then
  obtain B \ C where H:
    (A = B \cup C) \land
    (\{1^A\} = B \cap C) \land
    (\exists y \in B. y \neq 1^A) \land
    (\exists y \in C. y \neq 1^A) \land
    (\forall x \in B - \{1^A\}, \forall y \in C, x \to^A y = 1^A) \land
    (\forall x \in C, \forall y \in B, x \to^A y = y)
    by blast
  \mathbf{then}
  obtain b c where assms: b \in B - \{1^A\} \land c \in C - \{1^A\}
    by auto
  then
  have b \to^A c = 1^A
    using H by simp
  then
  have (b \rightarrow^A c) \rightarrow^A c = c
    using H assms imp-one-C by blast
  moreover
  have (c \rightarrow^A b) \rightarrow^A b = 1^A
    using assms H by force
  ultimately
  have (b \rightarrow^A c) \rightarrow^A c \neq (c \rightarrow^A b) \rightarrow^A b
    using assms by force
  moreover
  have b \in A \land c \in A
    using assms H by blast
  ultimately
  show ?thesis
    using totally-ordered-wajsberg-hoop.axioms(2) wajsberg-hoop.T by meson
qed
```

 \mathbf{qed}

Summary of all results in this subsection:

```
theorem one-fixed-equivalent-to-wajsberg:

shows totally-ordered-one-fixed-hoop A (*^A) (\rightarrow^A) 1^A \equiv

totally-ordered-wajsberg-hoop A (*^A) (\rightarrow^A) 1^A

using not-irreducible-implies-not-wajsberg not-one-fixed-implies-not-irreducible

one-fixed-implies-wajsberg

by linarith

theorem wajsberg-equivalent-to-irreducible:
```

```
shows totally-ordered-wajsberg-hoop A (*^A) (\rightarrow^A) 1^A \equiv
totally-ordered-irreducible-hoop A (*^A) (\rightarrow^A) 1^A
using not-irreducible-implies-not-wajsberg not-one-fixed-implies-not-irreducible
one-fixed-implies-wajsberg
by linarith
```

theorem irreducible-equivalent-to-one-fixed: **shows** totally-ordered-irreducible-hoop $A(*^A)(\rightarrow^A) 1^A \equiv$ totally-ordered-one-fixed-hoop $A(*^A)(\rightarrow^A) 1^A$ **using** one-fixed-equivalent-to-wajsberg wajsberg-equivalent-to-irreducible **by** simp

 \mathbf{end}

4.5 Decomposition

locale tower-of-irr-hoops = tower-of-hoops + **assumes** family-of-irr-hoops: $i \in I \implies$ totally-ordered-irreducible-hoop (\mathbf{A}_i) (*ⁱ) (\rightarrow^i) 1^S

locale tower-of-nontrivial-irr-hoops = tower-of-irr-hoops + assumes nontrivial: $i \in I \implies \exists x \in \mathbb{A}_i. x \neq 1^S$

context totally-ordered-hoop begin

4.5.1 Definition of index set *I*

definition index-set :: ('a set) set ($\langle I \rangle$) where $I = \{y. (\exists x \in A. \pi x = y)\}$

```
lemma indexes-subsets:

assumes i \in I

shows i \subseteq A

using index-set-def assms rel-F-canonical-map-def by auto
```

```
lemma indexes-not-empty:

assumes i \in I

shows i \neq \emptyset

using index-set-def assms classes-not-empty by blast
```

```
lemma indexes-disjoint:
 assumes i \in I \ j \in I \ i \neq j
 shows i \cap j = \emptyset
proof –
 obtain a \ b where a \in A \land b \in A \land a \neq b \land i = \pi \ a \land j = \pi \ b
   using index-set-def assms by auto
 then
 show ?thesis
   using assms(3) classes-disjoint by auto
qed
lemma indexes-cover: A = \{x. \exists i \in I. x \in i\}
 using classes-subsets classes-not-empty index-set-def by auto
lemma indexes-class-of-elements:
 assumes i \in I \ a \in A \ a \in i
 shows \pi a = i
proof -
 obtain c where class-element: c \in A \land i = \pi c
   using assms(1) index-set-def by auto
 then
 have a \sim F c
   using assms(3) rel-F-canonical-map-def rel-F-symm by auto
 then
 show ?thesis
   using assms(2) class-element related-iff-same-class by simp
ged
lemma indexes-convex:
 assumes i \in I \ a \in i \ b \in i \ d \in A \ a \leq^A d \ d \leq^A b
 shows d \in i
proof -
 have a \in A \land b \in A \land d \in A \land i = \pi a
   using assms(1-4) indexes-class-of-elements indexes-subsets by blast
 then
 show ?thesis
   using assms(2-6) classes-convex by auto
```

qed

Definition of total partial order over I4.5.2

Since each equivalence class is convex, (\leq^A) induces a total order on I. function index-order :: ('a set) \Rightarrow ('a set) \Rightarrow bool (infix $\langle \leq^{I} \rangle$ 60) where $\begin{array}{l} x \leq^{I} y = ((x = y) \lor (\forall \ v \in x. \ \forall \ w \in y. \ v \leq^{A} \ w)) \text{ if } x \in I \ y \in I \\ | \ x \leq^{I} y = undefined \text{ if } x \notin I \lor y \notin I \end{array}$ by *auto*

termination by lexicographic-order

```
definition index-order-strict (infix \langle \langle I \rangle | 60 \rangle)
 where x <^{I} y = (x \leq^{I} y \land x \neq y)
lemma index-ord-reflex:
 assumes i \in I
 shows i \leq^{I} i
 using assms by simp
lemma index-ord-antisymm:
  assumes i \in I j \in I i \leq^{I} j j \leq^{I} i
 shows i = j
proof -
  have i = j \lor (\forall a \in i, \forall b \in j, a \leq^A b \land b \leq^A a)
   using assms by auto
  then
 have i = j \lor (\forall a \in i, \forall b \in j, a = b)
   using assms(1,2) indexes-subsets insert-Diff insert-subset ord-antisymm
   by metis
  then
 show ?thesis
   using assms(1,2) indexes-not-empty by force
qed
lemma index-ord-trans:
  assumes i \in I j \in I k \in I i \leq^{I} j j \leq^{I} k
 shows i \leq^{I} k
proof -
  consider (1) i \neq j j \neq k
   |(2) i = j \lor j = k
   by auto
  then
  show i \leq^{I} k
  proof(cases)
   case 1
   then
   have (\forall a \in i, \forall b \in j, a \leq^A b) \land (\forall b \in j, \forall c \in k, b \leq^A c)
     using assms by force
   moreover
   have j \neq \emptyset
     using assms(2) indexes-not-empty by simp
   ultimately
   have \forall a \in i. \forall c \in k. \exists b \in j. a \leq^A b \land b \leq^A c
     using all-not-in-conv by meson
   then
   have \forall a \in i. \forall c \in k. a \leq^A c
     using assms indexes-subsets ord-trans subsetD by metis
   then
   show ?thesis
     using assms(1,3) by simp
```

```
\mathbf{next}
   case 2
   then
   show ?thesis
     using assms(4,5) by auto
  qed
qed
lemma index-order-total :
  assumes i \in I \ j \in I \ \neg(j \leq^I i)
 shows i \leq^{I} j
proof -
  have i \neq j
   using assms(1,3) by auto
  then
  have disjoint: i \cap j = \emptyset
   using assms(1,2) indexes-disjoint by simp
  moreover
  have \exists x \in j. \exists y \in i. \neg(x \leq^A y)
   using assms index-order.simps(1) by blast
  moreover
  have subsets: i \subseteq A \land j \subseteq A
   using assms indexes-subsets by simp
  ultimately
  have \exists x \in j. \exists y \in i. y <^A x
   using total-order hoop-order-strict-def insert-absorb insert-subset by metis
  then
  obtain a_i a_j where witnesses: a_i \in i \land a_j \in j \land a_i <^A a_j
   using assms(1,2) total-order hoop-order-strict-def indexes-subsets by metis
  then
  have a \leq^A b if a \in i \ b \in j for a \ b
  proof
   from that
   consider (1) a_i \leq^A a a_j \leq^A b
      | (2) a <^{A} a_{i} b <^{A} a_{j} 
 | (3) a_{i} \leq^{A} a b <^{A} a_{j} 
     |(4) a <^{A} a_{i} a_{j} \leq^{A} b
     using total-order hoop-order-strict-def subset-eq subsets witnesses by metis
   then
   show a \leq^A b
   proof(cases)
     case 1
     then
     have a_i \leq^A a_j \wedge a_j \leq^A b \wedge b \leq^A a if b <^A a
       using hoop-order-strict-def that witnesses by blast
     then
     have a_i \leq^A b \wedge b \leq^A a if b <^A a
       using \langle b \in j \rangle in-mono ord-trans subsets that witnesses by meson
     then
```

have $b \in i$ if $b <^A a$ using $assms(1) \langle a \in i \rangle \langle b \in j \rangle$ indexes-convex subsets that witnesses by blast then show $a \leq^A b$ using disjoint disjoint-iff-not-equal hoop-order-strict-def subset-eq subsets that total-order by *metis* \mathbf{next} case 2then have $b \leq^A a \wedge a \leq^A a_i \wedge a_i \leq^A a_j$ if $b <^A a$ using hoop-order-strict-def that witnesses by blast then have $b \leq^A a \wedge a \leq^A a_i$ if $b <^A a$ using $\langle a \in i \rangle$ ord-trans subset-eq subsets that witnesses by metis then have $a \in j$ if $b <^A a$ using $assms(2) \langle a \in i \rangle \langle b \in j \rangle$ indexes-convex subsets that witnesses by blast then show $a \leq^A b$ using disjoint disjoint-iff-not-equal hoop-order-strict-def subset-eq subsets that total-order by *metis* \mathbf{next} case 3have $b \leq^A a_i \wedge a_i \leq^A a_i$ if $b \leq^A a_i$ using hoop-order-strict-def that witnesses by auto then have $a_i \in j$ if $b \leq^A a_i$ using $assms(2) \langle b \in j \rangle$ indexes-convex subsets that witnesses by blast moreover have $a_i \notin j$ using disjoint witnesses by blast ultimately have $a_i <^A b$ using total-order hoop-order-strict-def $\langle b \in j \rangle$ subsets witnesses by blast then have $a_i \leq^A b \wedge b \leq^A a$ if $b <^A a$ using hoop-order-strict-def that by auto then have $b \in i$ if $b <^A a$ using $assms(1) \langle a \in i \rangle \langle b \in j \rangle$ indexes-convex subsets that witnesses by blast then show $a \leq^A b$ using disjoint disjoint-iff-not-equal hoop-order-strict-def subset-eq subsets that total-order

```
by metis
   \mathbf{next}
     case 4
     then
     show a \leq^A b
       using hoop-order-strict-def in-mono ord-trans subsets that witnesses
       by meson
   qed
 qed
 then
 show i \leq^{I} j
   using assms by simp
\mathbf{qed}
sublocale total-poset-on I (\leq^{I}) (<^{I})
proof
 show I \neq \emptyset
   using indexes-cover by auto
\mathbf{next}
 show reflp-on I (\leq^{I})
   using index-ord-reflex reflp-onI by blast
\mathbf{next}
 show antisympoon I (\leq^{I})
   using antisymp-on-def index-ord-antisymm by blast
\mathbf{next}
 show transp-on I (\leq^{I})
   using index-ord-trans transp-on-def by blast
next
 show x <^{I} y = (x \leq^{I} y \land x \neq y) if x \in I y \in I for x y
   using index-order-strict-def by auto
\mathbf{next}
 show totalp-on I (\leq^{I})
   using index-order-total totalp-onI by metis
qed
```

4.5.3 Definition of universes

definition universes :: 'a set \Rightarrow 'a set $(\langle UNI_A \rangle)$ where $UNI_A \ x = x \cup \{1^A\}$

abbreviation (uniA-i) uniA-i :: ['a set] \Rightarrow ('a set) (((A(_))) [61] 60) where $A_i \equiv UNI_A i$

```
abbreviation (uniA-pi)
uniA-pi :: ['a] \Rightarrow ('a set) (\langle (\mathbb{A}_{\pi} (-)) \rangle [61] 60)
where \mathbb{A}_{\pi x} \equiv UNI_A (\pi x)
```

abbreviation (uniA-pi-one)

uniA-pi-one :: 'a set ($\langle (\mathbb{A}_{\pi 1A}) \rangle$ 60) where $\mathbb{A}_{\pi 1A} \equiv UNI_A (\pi 1^A)$

lemma universes-subsets: **assumes** $i \in I$ $a \in \mathbb{A}_i$ **shows** $a \in A$ **using** assms universes-def indexes-subsets one-closed by fastforce

lemma universes-not-empty: assumes $i \in I$ shows $A_i \neq \emptyset$ using universes-def by simp

lemma universes-almost-disjoint: **assumes** $i \in I \ j \in I \ i \neq j$ **shows** $(\mathbb{A}_i) \cap (\mathbb{A}_j) = \{1^A\}$ **using** assms indexes-disjoint universes-def by auto

lemma universes-cover: $A = \{x. \exists i \in I. x \in \mathbb{A}_i\}$ using one-closed indexes-cover universes-def by auto

lemma universes-aux: **assumes** $i \in I$ $a \in i$ **shows** $\mathbb{A}_i = \pi \ a \cup \{1^A\}$ **using** assms universes-def universes-subsets indexes-class-of-elements by force

4.5.4 Universes are subhoops of A

lemma universes-one-closed: assumes $i \in I$ shows $1^A \in \mathbb{A}_i$ using universes-def by auto

```
lemma universes-mult-closed:
  assumes i \in I \ a \in \mathbb{A}_i b \in \mathbb{A}_i
  shows a *^A b \in \mathbb{A}_i
proof -
  consider (1) a \neq 1^A b \neq 1^A
    |(2) a = 1^A \lor b = 1^A
    by auto
  then
  show ?thesis
  proof(cases)
    \mathbf{case}\ 1
    then
    have UNI-def: \mathbb{A}_i = \pi \ a \cup \{1^A\} \land \mathbb{A}_i = \pi \ b \cup \{1^A\}
      {\bf using} \ assms \ universes {-} def \ universes {-} subsets \ indexes {-} class {-} of {-} elements
      by simp
    then
```

have $\pi a = \pi b$ using 1 assms universes-def universes-subsets indexes-class-of-elements by force then have F a = F busing assms universes-subsets rel-F-equiv related-iff-same-class by meson then have $F(a *^A b) = F a$ using 1 LEMMA-3-3-2 assms universes-subsets by blast then have $\pi a = \pi (a *^A b)$ using assms universes-subsets mult-closed rel-F-equiv related-iff-same-class by *metis* then show ?thesis using UNI-def UnI1 assms classes-not-empty universes-subsets mult-closed by *metis* \mathbf{next} case 2then show ?thesis using assms universes-subsets by auto qed qed **lemma** *universes-imp-closed*: assumes $i \in I \ a \in \mathbb{A}_i$ $b \in \mathbb{A}_i$ shows $a \to^A b \in \mathbb{A}_i$ proof from assms consider (1) $a \neq 1^A b \neq 1^A b <^A a$ $|(2) a = 1^A \lor b = 1^A \lor (a \neq 1^A \land b \neq 1^A \land a \leq^A b)$ ${\bf using} \ total \text{-} order \ universes \text{-} subsets \ hoop\text{-} order \text{-} strict\text{-} def \ {\bf by} \ auto$ then show ?thesis **proof**(*cases*) case 1 then have UNI-def: $\mathbb{A}_i = \pi \ a \cup \{1^A\} \land \mathbb{A}_i = \pi \ b \cup \{1^A\}$ using assms universes-def universes-subsets indexes-class-of-elements by simp then have $\pi a = \pi b$ using 1 assms universes-def universes-subsets indexes-class-of-elements by *force* then have F a = F busing assms universes-subsets rel-F-equiv related-iff-same-class by simp then

have $F(a \rightarrow^A b) = F a$ using 1 LEMMA-3-3-6 assms universes-subsets by simp then have $\pi \ a = \pi \ (a \rightarrow^A b)$ using assms universes-subsets imp-closed same-F-iff-same-class by simp then show ?thesis using UNI-def UnI1 assms classes-not-empty universes-subsets imp-closed by *metis* \mathbf{next} case 2then show ?thesis using assms universes-subsets universes-one-closed hoop-order-def imp-one-A imp-one-Cby *auto* qed qed

4.5.5 Universes are irreducible hoops

lemma *universes-one-fixed*: assumes $i \in I \ a \in \mathbb{A}_i \ b \in \mathbb{A}_i \ a \to^A b = b$ shows $a = 1^A \lor b = 1^A$ proof from assms have $\pi a = \pi b$ if $a \neq 1^A b \neq 1^A$ using universes-def universes-subsets indexes-class-of-elements that by force then have F a = F b if $a \neq 1^A b \neq 1^A$ using assms(1-3) universes-subsets same-F-iff-same-class that by blast then have $b = 1^A$ if $a \neq 1^A$ $b \neq 1^A$ $\mathbf{using}\ F$ -equiv assms universes-subsets fixed-points.cases imp-reflex that $\mathbf{by}\ metis$ then show ?thesis by blast qed **corollary** *universes-one-fixed-hoops*: assumes $i \in I$ shows totally-ordered-one-fixed-hoop (\mathbb{A}_i) (*^A) (\rightarrow^A) 1^A proof show $x *^A y \in \mathbb{A}_i$ if $x \in \mathbb{A}_i y \in \mathbb{A}_i$ for x yusing assms universes-mult-closed that by simp \mathbf{next} show $x \to^A y \in \mathbb{A}_i$ if $x \in \mathbb{A}_i$ $y \in \mathbb{A}_i$ for x yusing assms universes-imp-closed that by simp

 \mathbf{next}

show $1^A \in \mathbb{A}_i$ using assms universes-one-closed by simp \mathbf{next} show $x *^{A} y = y *^{A} x$ if $x \in \mathbb{A}_{i} y \in \mathbb{A}_{i}$ for x yusing assms universes-subsets mult-comm that by simp \mathbf{next} show $x *^{A} (y *^{A} z) = (x *^{A} y) *^{A} z$ if $x \in \mathbb{A}_{i} y \in \mathbb{A}_{i} z \in \mathbb{A}_{i}$ for x y zusing assms universes-subsets mult-assoc that by simp next show $x *^A 1^A = x$ if $x \in \mathbb{A}_i$ for xusing assms universes-subsets that by simp \mathbf{next} show $x \to^A x = 1^A$ if $x \in \mathbb{A}_i$ for xusing assms universes-subsets that by simp next show $x *^{A} (x \to^{A} y) = y *^{A} (y \to^{A} x)$ if $x \in \mathbb{A}_{i} y \in \mathbb{A}_{i}$ for x yusing assms divisibility universes-subsets that by simp next show $x \to^A (y \to^A z) = (x *^A y) \to^A z$ if $x \in \mathbb{A}_i$ $y \in \mathbb{A}_i$ for x y zusing assms universes-subsets residuation that by simp next show $x \leq^A y \lor y \leq^A x$ if $x \in \mathbb{A}_i y \in \mathbb{A}_i$ for x yusing assms total-order universes-subsets that by simp \mathbf{next} show $x = 1^A \lor y = 1^A$ if $x \in \mathbb{A}_i$ $y \in \mathbb{A}_i$ $y \to^A x = x$ for x yusing assms universes-one-fixed that by blast qed **corollary** *universes-irreducible-hoops*: assumes $i \in I$

shows totally-ordered-irreducible-hoop (\mathbb{A}_i) (*^A) (\rightarrow^A) 1^A using assms universes-one-fixed-hoops totally-ordered-hoop.irreducible-equivalent-to-one-fixed totally-ordered-one-fixed-hoop.axioms(1) by metis

4.5.6 Some useful results

lemma index-aux: **assumes** $i \in I \ j \in I \ i <^{I} \ j \ a \in (\mathbb{A}_{i}) - \{1^{A}\} \ b \in (\mathbb{A}_{j}) - \{1^{A}\}$ **shows** $a <^{A} \ b \land \neg(a \sim F \ b)$ **proof** – **have** noteq: $i \neq j \land x \leq^{A} y$ **if** $x \in i \ y \in j$ **for** $x \ y$ **using** assms that index-order-strict-def **by** fastforce **moreover have** ij-def: $i = \pi \ a \land j = \pi \ b$ **using** UnE assms universes-def universes-subsets indexes-class-of-elements **by** auto **ultimately have** $a <^{A} b$

using assms(1,2,4,5) classes-not-empty universes-subsets hoop-order-strict-def by blast moreover have i = j if $a \sim F b$ using assms(1,2,4,5) that universes-subsets ij-def related-iff-same-class by auto ultimately show ?thesis using assms(2,3) trichotomy by blast qed **lemma** different-indexes-mult: assumes $i \in I \ j \in I \ i <^{I} \ j \ a \in (\mathbb{A}_{i}) - \{1^{A}\} \ b \in (\mathbb{A}_{i}) - \{1^{A}\}$ shows $a *^A b = a$ proof have $a <^A b \land \neg (a \sim F b)$ using assms index-aux by blast then have $a <^A b \land F a \neq F b$ using $DiffD1 \ assms(1,2,4,5)$ universes-subsets rel-F-equiv by meson then have $a <^A b \land a *^A b = a \land^A b$ using DiffD1 LEMMA-3-3-5 assms(1,2,4,5) universes-subsets by auto then show ?thesis using assms(1,2,4,5) universes-subsets hoop-order-strict-def inf-order by auto qed

lemma different-indexes-imp-1: assumes $i \in I j \in I i <^{I} j a \in (\mathbb{A}_{i}) - \{1^{A}\} b \in (\mathbb{A}_{j}) - \{1^{A}\}$ shows $a \rightarrow^A b = 1^A$ proof have $x \leq^A y$ if $x \in i \ y \in j$ for $x \ y$ using assms(1-3) index-order-strict-def that by fastforce moreover have $a \in i \land b \in j$ using assms(4,5) assms(5) universes-def by auto ultimately show ?thesis using hoop-order-def by auto qed **lemma** different-indexes-imp-2 : assumes $i \in I \ j \in I \ i <^{I} \ j \ a \in (\mathbb{A}_{i}) - \{1^{A}\} \ b \in (\mathbb{A}_{i}) - \{1^{A}\}$ shows $a \to^A b = b$ proof – have $b <^A a \land \neg (b \sim F a)$ using assms index-aux by blast then

have $b <^A a \land F b \neq F a$

using $DiffD1 \ assms(1,2,4,5)$ universes-subsets rel-F-equiv by metis then have $b \in F a$ using LEMMA-3-3-4 assms(1,2,4,5) universes-subsets by simp then show ?thesis using assms(2,4,5) universes-subsets by fastforce ged

4.5.7 Definition of multiplications, implications and one

definition mult-map :: 'a set \Rightarrow ('a \Rightarrow 'a \Rightarrow 'a) ($\langle MUL_A \rangle$) where $MUL_A x = (*^A)$

definition *imp-map* ::: 'a set \Rightarrow ('a \Rightarrow 'a \Rightarrow 'a) ($\langle IMP_A \rangle$) where $IMP_A \ x = (\rightarrow^A)$

definition sum-one :: 'a $(\langle 1^S \rangle)$ where $1^S = 1^A$

abbreviation (multA-i) multA-i :: ['a set] \Rightarrow ('a \Rightarrow 'a \Rightarrow 'a) (((*(⁻))) [50] 60) where $*^{i} \equiv MUL_{A} i$

abbreviation (impA-i) $impA-i:: ['a \ set] \Rightarrow ('a \Rightarrow 'a \Rightarrow 'a) (\langle (\rightarrow(\bar{})) \rangle [50] \ 60)$ where $\rightarrow^{i} \equiv IMP_{A} \ i$

abbreviation (multA-i-xy) multA-i-xy :: ['a, 'a set, 'a] \Rightarrow 'a ($\langle ((-)/ *(\bar{}) / (-)) \rangle$ [61, 50, 61] 60) where $x *^{i} y \equiv MUL_{A} i x y$

abbreviation (impA-i-xy) $impA-i-xy :: ['a, 'a \ set, 'a] \Rightarrow 'a (\langle ((-)/ \to (\bar{}) / (-)) \rangle [61, 50, 61] 60)$ where $x \to^i y \equiv IMP_A \ i \ x \ y$

abbreviation (ord-i-xy) ord-i-xy :: $['a, 'a \ set, 'a] \Rightarrow bool (\langle ((-)/\leq (-)/(-)) \rangle [61, 50, 61] 60)$ where $x \leq^i y \equiv hoop.hoop-order (IMP_A i) 1^S x y$

4.5.8 Main result

We prove the main result: a totally ordered hoop is equal to an ordinal sum of a tower of irreducible hoops.

sublocale A-SUM: tower-of-irr-hoops $I (\leq^{I}) (<^{I}) UNI_A MUL_A IMP_A 1^S$ proof show $(\mathbb{A}_i) \cap (\mathbb{A}_j) = \{1^S\}$ if $i \in I j \in I i \neq j$ for i j

using universes-almost-disjoint sum-one-def that by simp

 \mathbf{next}

show $x *^i y \in \mathbb{A}_i$ if $i \in I x \in \mathbb{A}_i y \in \mathbb{A}_i$ for i x y

using universes-mult-closed mult-map-def that by simp \mathbf{next}

show $x \to^i y \in \mathbb{A}_i$ if $i \in I x \in \mathbb{A}_i y \in \mathbb{A}_i$ for i x y

using universes-imp-closed imp-map-def that by simp \mathbf{next}

show $1^{S} \in \mathbb{A}_{i}$ if $i \in I$ for i

using universes-one-closed sum-one-def that by simp next

show $x *^{i} y = y *^{i} x$ if $i \in I x \in A_{i} y \in A_{i}$ for i x y

using universes-subsets mult-comm mult-map-def that by simp \mathbf{next}

show $x *^{i} (y *^{i} z) = (x *^{i} y) *^{i} z$

if $i \in I x \in \mathbb{A}_i y \in \mathbb{A}_i z \in \mathbb{A}_i$ for i x y z

using universes-subsets mult-assoc mult-map-def that by simp next

show $x *^i 1^S = x$ if $i \in I x \in \mathbb{A}_i$ for i x

using universes-subsets sum-one-def mult-map-def that by simp next

show $x \to^i x = 1^S$ if $i \in I x \in \mathbb{A}_i$ for i x

using universes-subsets imp-map-def sum-one-def that by simp \mathbf{next}

show $x *^i (x \to^i y) = y *^i (y \to^i x)$

if $i \in I \ x \in \mathbb{A}_i \ y \in \mathbb{A}_i \ z \in \mathbb{A}_i$ for $i \ x \ y \ z$

using divisibility universes-subsets imp-map-def mult-map-def that by simp next

show $x \to^i (y \to^i z) = (x *^i y) \to^i z$

if $i \in I x \in \mathbb{A}_i y \in \mathbb{A}_i z \in \mathbb{A}_i$ for i x y z

using universes-subsets imp-map-def mult-map-def residuation that by simp next

show $x \leq^{i} y \lor y \leq^{i} x$ if $i \in I x \in \mathbb{A}_{i} y \in \mathbb{A}_{i}$ for i x y

using total-order universes-subsets imp-map-def sum-one-def that by simp \mathbf{next}

show $\nexists B C$.

 $(\mathbb{A}_i = B \cup C) \land$ $(\{1^S\} = B \cap C) \land$ $(\exists y \in B. y \neq 1^S) \land$ $\begin{array}{l} (\exists \ y \in C, \ y \neq 1^S) \land \\ (hoop \ B \ (*^i) \ (\rightarrow^i) \ 1^S) \land \end{array}$ $(hoop \ C \ (\ast^i) \ (\rightarrow^i) \ 1^S) \ \land$ $(\forall x \in B - \{1^S\}, \forall y \in C, x *^i y = x) \land$ $(\forall x \in B - \{1^S\}, \forall y \in C, x \to^i y = 1^S) \land$ $(\forall x \in C. \forall y \in B. x \to^i y = y)$ if $i \in I$ for iusing that Un-iff universes-one-fixed-hoops imp-map-def sum-one-def totally-ordered-one-fixed-hoop.one-fixed by metis

qed

```
lemma same-uni [simp]: A-SUM.sum-univ = A
 using A-SUM.sum-univ-def universes-cover by auto
lemma floor-is-class:
 assumes a \in A - \{1^A\}
 shows A-SUM.floor a = \pi a
proof -
 have a \in \pi \ a \land \pi \ a \in I
   using index-set-def assms classes-not-empty by fastforce
 then
 show ?thesis
  using same-uni A-SUM.floor-prop A-SUM.floor-unique UnCI assms universes-aux
         sum-one-def
   by metis
qed
lemma same-mult:
 assumes a \in A b \in A
 shows a *^A b = A-SUM.sum-mult a b
proof -
 from assms
 consider (1) a \in A - \{1^A\} b \in A - \{1^A\} A-SUM.floor a = A-SUM.floor b
    \begin{array}{c} (2) \ a \in A - \{1^A\} \ b \in A - \{1^A\} \ A - SUM. floor \ a <^I \ A - SUM. floor \ b \\ (3) \ a \in A - \{1^A\} \ b \in A - \{1^A\} \ A - SUM. floor \ b <^I \ A - SUM. floor \ a \end{array} 
   |(4) a = 1^A \lor b = 1^A
   using same-uni A-SUM.floor-prop fixed-points.cases sum-one-def trichotomy
   by metis
 then
 show ?thesis
 proof(cases)
   case 1
   then
   show ?thesis
     using A-SUM.sum-mult.simps(1) sum-one-def mult-map-def by auto
  \mathbf{next}
   case 2
   define i j where i = A-SUM.floor a and j = A-SUM.floor b
   then
   have i \in I \land j \in I \land a \in (\mathbb{A}_i) - \{1^A\} \land b \in (\mathbb{A}_i) - \{1^A\}
     using 2(1,2) A-SUM.floor-prop sum-one-def by auto
   then
   have a *^A b = a
     using 2(3) different-indexes-mult i-def j-def by blast
   moreover
   have A-SUM.sum-mult a \ b = a
     using 2 A-SUM.sum-mult.simps(2) sum-one-def by simp
   ultimately
   show ?thesis
     by simp
```

```
\mathbf{next}
```

```
case 3
   define i j where i = A-SUM.floor a and j = A-SUM.floor b
   then
   have i \in I \land j \in I \land a \in (\mathbb{A}_i) - \{1^A\} \land b \in (\mathbb{A}_i) - \{1^A\}
     using 3(1,2) A-SUM.floor-prop sum-one-def by auto
   then
   have a *^A b = b
     using 3(3) assms different-indexes-mult i-def j-def mult-comm by metis
   moreover
   have A-SUM.sum-mult a b = b
     using 3 A-SUM.sum-mult.simps(3) sum-one-def by simp
   ultimately
   show ?thesis
    by simp
 \mathbf{next}
   case 4
   then
   show ?thesis
     using A-SUM.mult-neutr A-SUM.mult-neutr-2 assms sum-one-def by force
 qed
qed
lemma same-imp:
 assumes a \in A b \in A
 shows a \rightarrow^A b = A-SUM.sum-imp a b
proof -
 from assms
 consider (1) a \in A - \{1^A\} b \in A - \{1^A\} A-SUM.floor a = A-SUM.floor b
    (2) a \in A - \{1^A\} b \in A - \{1^A\} A-SUM floor a <^I A-SUM floor b
   (3) a \in A - \{1^A\} b \in A - \{1^A\} A-SUM floor b <^I A-SUM floor a
   (4) a = 1^A \lor b = 1^A
   using same-uni A-SUM.floor-prop fixed-points.cases sum-one-def trichotomy
   by metis
 then
 show ?thesis
 proof(cases)
   case 1
   then
   show ?thesis
     using A-SUM.sum-imp.simps(1) imp-map-def sum-one-def by auto
 \mathbf{next}
   case 2
   define i j where i = A-SUM.floor a and j = A-SUM.floor b
   then
   have i \in I \land j \in I \land a \in (\mathbb{A}_i) - \{1^A\} \land b \in (\mathbb{A}_j) - \{1^A\}
    using 2(1,2) A-SUM.floor-prop sum-one-def by simp
   then
   have a \rightarrow^A b = 1^A
```

```
using 2(3) different-indexes-imp-1 i-def j-def by blast
   moreover
   have A-SUM.sum-imp a b = 1^A
    using 2 A-SUM.sum-imp.simps(2) sum-one-def by simp
   ultimately
   show ?thesis
    by simp
 \mathbf{next}
   case 3
   define i j where i = A-SUM.floor a and j = A-SUM.floor b
   then
   have i \in I \land j \in I \land a \in (\mathbb{A}_i) - \{1^A\} \land b \in (\mathbb{A}_i) - \{1^A\}
    using 3(1,2) A-SUM.floor-prop sum-one-def by simp
   then
   have a \rightarrow^A b = b
    using 3(3) different-indexes-imp-2 i-def j-def by blast
   moreover
   have A-SUM.sum-imp a b = b
    using 3 A-SUM.sum-imp.simps(3) sum-one-def by auto
   ultimately
   show ?thesis
    by simp
 \mathbf{next}
   case 4
   then
   show ?thesis
    using A-SUM.imp-one-C A-SUM.imp-one-top assms imp-one-C
         imp-one-top sum-one-def
    by force
 qed
qed
lemma ordinal-sum-is-totally-ordered-hoop:
 totally-ordered-hoop A-SUM.sum-univ A-SUM.sum-mult A-SUM.sum-imp 1<sup>S</sup>
proof
 show A-SUM.hoop-order x \ y \lor A-SUM.hoop-order y \ x
   if x \in A-SUM.sum-univ y \in A-SUM.sum-univ for x y
   using that A-SUM.hoop-order-def total-order hoop-order-def
        sum-one-def same-imp
   by auto
qed
theorem totally-ordered-hoop-is-equal-to-ordinal-sum-of-tower-of-irr-hoops:
 shows eq-universe: A = A-SUM.sum-univ
 and eq-mult: x \in A \implies y \in A \implies x *^A y = A-SUM.sum-mult x y
```

and eq-mat: $x \in A \implies y \in A \implies x^* \quad y = A$ -SUM.sum-mat: $x \in y$ and eq-imp: $x \in A \implies y \in A \implies x \rightarrow^A y = A$ -SUM.sum-imp x yand eq-one: $1^A = 1^S$

proof

show $A \subseteq A$ -SUM.sum-univ

```
by simp

next

show A-SUM.sum-univ \subseteq A

by simp

next

show x *^A y = A-SUM.sum-mult x y if x \in A y \in A for x y

using same-mult that by blast

next

show x \rightarrow^A y = A-SUM.sum-imp x y if x \in A y \in A for x y

using same-imp that by blast

next

show 1^A = 1^S

using sum-one-def by simp

qed
```

4.5.9 Remarks on the nontrivial case

In the nontrivial case we have that every totally ordered hoop can be written as the ordinal sum of a tower of nontrivial irreducible hoops. The proof of this fact is almost immediate. By definition, $\mathbb{A}_{\pi 1A} = \{1^A\}$ is the only trivial hoop in our tower. Moreover, $\mathbb{A}_{\pi a}$ is non-trivial for every $a \in A - \{1^A\}$. Given that $1^A \in \mathbb{A}_i$ for every $i \in I$ we can simply remove $\pi \ 1^A$ from I and obtain the desired result.

```
lemma nontrivial-tower:
 assumes \exists x \in A. x \neq 1^A
 shows
   tower-of-nontrivial-irr-hoops (I - \{\pi \ 1^A\}) (\leq^I) (<^I) UNI_A MUL_A IMP_A 1^S
proof
 show I - \{\pi \ 1^A\} \neq \emptyset
 proof -
   obtain a where a \in A - \{1^A\}
     using assms by blast
   then
   have \pi \ a \in I - \{\pi \ 1^A\}
    using A-SUM.floor-prop class-not-one class-one floor-is-class sum-one-def by
auto
   then
   show ?thesis
     by auto
 qed
next
 show reflp-on (I - \{\pi \ 1^A\}) (\leq^I)
   using Diff-subset reflex reflp-on-subset by meson
next
  show antisympoon (I - \{\pi \ 1^A\}) (\leq^I)
   using Diff-subset antisymm antisymp-on-subset by meson
\mathbf{next}
 show transp-on (I - \{\pi \ 1^A\}) (\leq^I)
```

using Diff-subset trans transp-on-subset by meson \mathbf{next} show $i <^{I} j = (i \leq^{I} j \land i \neq j)$ if $i \in I - \{\pi \ 1^{A}\} j \in I - \{\pi \ 1^{A}\}$ for i jusing *index-order-strict-def* by *simp* next show totalp-on $(I - \{\pi \ 1^A\}) (\leq^I)$ using Diff-subset total totalp-on-subset by meson next show $(\mathbb{A}_i) \cap (\mathbb{A}_j) = \{1^S\}$ if $i \in I - \{\pi \ 1^A\} \ j \in I - \{\pi \ 1^A\} \ i \neq j$ for i jusing A-SUM.almost-disjoint that by blast next show $x *^i y \in \mathbb{A}_i$ if $i \in I - \{\pi \ 1^A\}$ $x \in \mathbb{A}_i y \in \mathbb{A}_i$ for i x yusing A-SUM.floor-mult-closed that by blast \mathbf{next} show $x \to^i y \in \mathbb{A}_i$ if $i \in I - \{\pi \ 1^A\} \ x \in \mathbb{A}_i \ y \in \mathbb{A}_i$ for $i \ x \ y$ using A-SUM.floor-imp-closed that by blast next show $1^{S} \in \mathbb{A}_{i}$ if $i \in I - \{\pi \ 1^{A}\}$ for iusing universes-one-closed sum-one-def that by simp next show $x *^i y = y *^i x$ if $i \in I - \{\pi \ 1^A\} x \in \mathbb{A}_i y \in \mathbb{A}_i$ for i x yusing universes-subsets mult-comm mult-map-def that by force \mathbf{next} show $x *^{i} (y *^{i} z) = (x *^{i} y) *^{i} z$ if $i \in I - \{\pi \ 1^A\}$ $x \in \mathbb{A}_i \ y \in \mathbb{A}_i \ z \in \mathbb{A}_i$ for $i \ x \ y \ z$ using universes-subsets mult-assoc mult-map-def that by force next show $x *^i 1^S = x$ if $i \in I - \{\pi 1^A\} x \in \mathbb{A}_i$ for i xusing universes-subsets sum-one-def mult-map-def that by force \mathbf{next} show $x \to^i x = 1^S$ if $i \in I - \{\pi \ 1^A\} \ x \in \mathbb{A}_i$ for i xusing universes-subsets imp-map-def sum-one-def that by force next show $x *^i (x \to^i y) = y *^i (y \to^i x)$ if $i \in I - \{\pi \ 1^A\}$ $x \in \mathbb{A}_i \ y \in \mathbb{A}_i \ z \in \mathbb{A}_i$ for $i \ x \ y \ z$ using divisibility universes-subsets imp-map-def mult-map-def that by auto next show $x \to^i (y \to^i z) = (x *^i y) \to^i z$ if $i \in I - \{\pi \ 1^A\}$ $x \in \mathbb{A}_i$ $y \in \mathbb{A}_i$ $z \in \mathbb{A}_i$ for i x y zusing universes-subsets imp-map-def mult-map-def residuation that by force \mathbf{next} show $x \leq^{i} y \vee y \leq^{i} x$ if $i \in I - \{\pi \ 1^{A}\}\ x \in \mathbb{A}_{i}\ y \in \mathbb{A}_{i}$ for i x yusing DiffE total-order universes-subsets imp-map-def sum-one-def that by metis \mathbf{next} **show** $\nexists B C$. $(\mathbb{A}_i = B \cup C) \land$ $(\{1^S\} = B \cap C) \land$

 $(\exists y \in B. y \neq 1^S) \land$

 $\begin{array}{l} (\exists \ y \in C. \ y \neq 1^S) \land \\ (hoop \ B \ (*^i) \ (\rightarrow^i) \ 1^S) \land \\ (hoop \ C \ (*^i) \ (\overrightarrow{\rightarrow^i}) \ 1^S) \land \end{array}$ $(\forall x \in B - \{1^S\}, \forall y \in C, x *^i y = x) \land$ $(\forall x \in B - \{1^S\}, \forall y \in C, x \to^i y = 1^S) \land$ $(\forall x \in C. \forall y \in B. x \to^i y = y)$ if $i \in I - \{\pi \ 1^A\}$ for iusing that Diff-iff Un-iff universes-one-fixed imp-map-def sum-one-def by metis \mathbf{next} show $\exists x \in \mathbb{A}_i$. $x \neq 1^S$ if $i \in I - \{\pi \ 1^A\}$ for iusing universes-def indexes-class-of-elements indexes-not-empty that by *fastforce* qed **lemma** ordinal-sum-of-nontrivial: assumes $\exists x \in A. x \neq 1^A$ shows A-SUM.sum-univ = {x. $\exists i \in I - \{\pi \ 1^A\}$. $x \in \mathbb{A}_i$ } proof show A-SUM.sum-univ $\subseteq \{x, \exists i \in I - \{\pi 1^A\}, x \in \mathbb{A}_i\}$ proof fix aassume $a \in A$ -SUM.sum-univ then consider (1) $a \in A - \{1^A\}$ $|(2) a = 1^A$ by auto then show $a \in \{x. \exists i \in I - \{\pi 1^A\}. x \in \mathbb{A}_i\}$ **proof**(*cases*) case 1 then obtain *i* where $i = \pi a$ by simp \mathbf{then} have $a \in \mathbb{A}_i \land i \in I - \{\pi \ 1^A\}$ using 1 A-SUM.floor-prop class-not-one class-one floor-is-class sum-one-def by *auto* then show ?thesis by blast \mathbf{next} case 2obtain c where $c \in A - \{1^A\}$ using assms by blast then obtain *i* where $i = \pi c$ **by** simp then have $a \in \mathbb{A}_i \land i \in I - \{\pi \ 1^A\}$

```
using 2 A-SUM.floor-prop \langle c \in A - \{1^A\} \rangle class-not-one class-one
universes-one-closed floor-is-class sum-one-def
by auto
then
show ?thesis
by auto
qed
qed
next
show \{x. \exists i \in I - \{\pi \ 1^A\}. x \in A_i\} \subseteq A-SUM.sum-univ
using universes-subsets by force
qed
```

 \mathbf{end}

4.5.10 Converse of main result

We show that the converse of the main result also holds, that is, the ordinal sum of a tower of irreducible hoops is a totally ordered hoop.

context tower-of-irr-hoops **begin**

proposition ordinal-sum-of-tower-of-irr-hoops-is-totally-ordered-hoop: shows totally-ordered-hoop $S(*^S) (\rightarrow^S) 1^S$

```
proof
  show hoop-order a \ b \lor hoop-order b \ a \ if \ a \in S \ b \in S \ for \ a \ b
  proof -
   from that
   consider (1) a \in S - \{1^S\} b \in S - \{1^S\} floor a = floor b
     |(2) a \in S - \{1^S\} b \in S - \{1^S\} floor a <^I floor b \lor floor b <^I floor a
     (3) a = 1^S \lor b = 1^S
     using floor.cases floor-prop trichotomy by metis
   then
   show hoop-order a \ b \lor hoop-order b \ a
   proof(cases)
     case 1
     then
     have a \in \mathbb{A}_{floor a} \land b \in \mathbb{A}_{floor a}
       using 1 floor-prop by metis
     moreover
     have totally-ordered-hoop (\mathbb{A}_{floor\ a}) (*^{floor\ a}) (\rightarrow^{floor\ a}) 1^S
       using 1(1) family-of-irr-hoops totally-ordered-irreducible-hoop.axioms(1)
             floor-prop
       by meson
     ultimately
     have a \rightarrow^{floor a} b = 1^S \lor b \rightarrow^{floor a} a = 1^S
       using hoop.hoop-order-def totally-ordered-hoop.total-order
             totally-ordered-hoop-def
       by meson
```

```
moreover
     have a \rightarrow^S b = a \rightarrow^{floor a} b \land b \rightarrow^S a = b \rightarrow^{floor a} a
       using 1 by auto
     ultimately
     show ?thesis
       using hoop-order-def by force
   \mathbf{next}
     case 2
     then
     show ?thesis
       using sum-imp.simps(2) hoop-order-def by blast
   \mathbf{next}
     case 3
     then
     show ?thesis
       using that ord-top by auto
   qed
  \mathbf{qed}
qed
end
end
```

5 BL-chains

BL-chains generate the variety of BL-algebras, the algebraic counterpart of the Basic Fuzzy Logic (see [6]). As mentioned in the abstract, this formalization is based on the proof for BL-chains found in [5]. We define BL-chain and bounded tower of irreducible hoops and formalize the main result on that paper (Theorem 3.4).

theory *BL-Chains* imports *Totally-Ordered-Hoops*

begin

5.1 Definitions

```
locale bl-chain = totally-ordered-hoop +

fixes zeroA :: 'a (\langle 0^A \rangle)

assumes zero-closed: 0^A \in A

assumes zero-first: x \in A \implies 0^A \leq^A x
```

```
locale bounded-tower-of-irr-hoops = tower-of-irr-hoops +
fixes zeroI (\langle 0^I \rangle)
fixes zeroS (\langle 0^S \rangle)
assumes I-zero-closed : 0^I \in I
and zero-first: i \in I \implies 0^I \leq^I i
```

and first-zero-closed: $0^S \in UNI \ 0^I$ and first-bounded: $x \in UNI \ 0^I \implies IMP \ 0^I \ 0^S \ x = 1^S$ begin

abbreviation (uni-zero) uni-zero :: 'b set $(\langle \mathbb{A}_{0I} \rangle)$ where $\mathbb{A}_{0I} \equiv UNI \ 0^{I}$

```
abbreviation (imp-zero)

imp-zero :: ['b, 'b] \Rightarrow 'b (\langle ((-)/ \rightarrow^{0I} / (-)) \rangle [61,61] 60)

where x \rightarrow^{0I} y \equiv IMP \ 0^{I} x y
```

 \mathbf{end}

context bl-chain begin

5.2 First element of I

definition zeroI :: 'a set $(\langle 0^I \rangle)$ where $0^I = \pi \ 0^A$

lemma *I-zero-closed*: $0^I \in I$ using index-set-def zeroI-def zero-closed by auto

lemma *I-has-first-element*: assumes $i \in I$ $i \neq 0^I$ shows $\theta^I <^I i$ proof – have $x \leq^A y$ if $i \leq^I \theta^I x \in i y \in \theta^I$ for x yusing I-zero-closed assms(1) index-order-strict-def that by fastforce then have $x \leq^A \theta^A$ if $i \leq^I \theta^I x \in i$ for xusing classes-not-empty zeroI-def zero-closed that by simp moreover have $0^A \leq^A x$ if $x \in i$ for xusing assms(1) that in-mono indexes-subsets zero-first by meson ultimately have $x = \theta^A$ if $i < I^I \theta^I x \in i$ for xusing assms(1) indexes-subsets ord-antisymm zero-closed that by blast moreover have $\theta^A \in \theta^I$ using classes-not-empty zeroI-def zero-closed by simp ultimately have $i \cap \theta^I \neq \emptyset$ if $i <^I \theta^I$ using assms(1) indexes-not-empty that by force moreover have $i <^I \theta^I \lor \theta^I <^I i$ using *I-zero-closed* assms trichotomy by auto
```
ultimately
show ?thesis
using I-zero-closed assms(1) indexes-disjoint by auto
ged
```

5.3 Main result for BL-chains

```
definition zeroS :: 'a (\langle 0^S \rangle)
  where \theta^S = \theta^A
abbreviation (uniA-zero)
  uniA-zero :: 'a set (((\mathbb{A}_{0I})))
 where \mathbb{A}_{0I} \equiv UNI_A \ \theta^I
abbreviation (impA-zero-xy)
  impA-zero-xy :: [a, a] \Rightarrow a (\langle ((-)/ \rightarrow^{0I} / (-)) \rangle [61, 61] 60)
 where x \rightarrow {}^{0I} y \equiv IMP_A 0^I x y
lemma tower-is-bounded:
 shows bounded-tower-of-irr-hoops I (\leq^{I}) (<^{I}) UNI_{A} MUL_{A} IMP_{A} 1^{S} 0^{I} 0^{S}
proof
 show \theta^I \in I
   using I-zero-closed by simp
\mathbf{next}
 show 0^I \leq^I i if i \in I for i
   using I-has-first-element index-ord-reflex index-order-strict-def that by blast
\mathbf{next}
 show \theta^S \in \mathbb{A}_{0I}
   using classes-not-empty universes-def zeroI-def zeroS-def zero-closed by simp
next
 show \theta^S \to^{0I} x = 1^S if x \in \mathbb{A}_{0I} for x
   using I-zero-closed universes-subsets hoop-order-def imp-map-def sum-one-def
         zeroS-def zero-first that
   by simp
\mathbf{qed}
lemma ordinal-sum-is-bl-totally-ordered:
 shows bl-chain A-SUM.sum-univ A-SUM.sum-mult A-SUM.sum-imp 1^S 0^S
proof
  show A-SUM.hoop-order x \ y \lor A-SUM.hoop-order y \ x
   if x \in A-SUM.sum-univ y \in A-SUM.sum-univ for x y
   using ordinal-sum-is-totally-ordered-hoop totally-ordered-hoop.total-order that
   by meson
\mathbf{next}
 show 0^S \in A-SUM.sum-univ
   using zeroS-def zero-closed by simp
\mathbf{next}
 show A-SUM.hoop-order 0^S x if x \in A-SUM.sum-univ for x
  using A-SUM.hoop-order-def eq-imp hoop-order-def sum-one-def zeroS-def zero-closed
```

```
zero-first that
   by simp
qed
{\bf theorem} \ bl-chain-is-equal-to-ordinal-sum-of-bounded-tower-of-irr-hoops:
 shows eq-universe: A = A-SUM.sum-univ
 and eq-mult: x \in A \Longrightarrow y \in A \Longrightarrow x *^{A} y = A-SUM.sum-mult x y
 and eq-imp: x \in A \implies y \in A \implies x \rightarrow^A y = A-SUM.sum-imp x y
 and eq-zero: \theta^A = \theta^S
 and eq-one: 1^A = 1^S
proof
 show A \subseteq A-SUM.sum-univ
   by auto
\mathbf{next}
 show A-SUM.sum-univ \subseteq A
   by auto
next
 show x *^A y = A-SUM.sum-mult x y if x \in A y \in A for x y
   using eq-mult that by blast
\mathbf{next}
 show x \to^A y = A-SUM.sum-imp x y if x \in A y \in A for x y
   using eq-imp that by blast
\mathbf{next}
 show \theta^A = \theta^S
   using zeroS-def by simp
next
 show 1^{A} = 1^{S}
   using sum-one-def by simp
\mathbf{qed}
```

end

5.4 Converse of main result for BL-chains

context bounded-tower-of-irr-hoops
begin

We show that the converse of the main result holds if $\theta^S \neq 1^S$. If $\theta^S = 1^S$ then the converse may not be true. For example, take a trivial hoop A and an arbitrary not bounded Wajsberg hoop B such that $A \cap B = \{1\}$. The ordinal sum of both hoops is equal to B and therefore not bounded.

proposition ordinal-sum-of-bounded-tower-of-irr-hoops-is-bl-chain: **assumes** $0^S \neq 1^S$ **shows** bl-chain $S (*^S) (\rightarrow^S) 1^S 0^S$ **proof show** hoop-order $a \ b \lor$ hoop-order $b \ a$ **if** $a \in S \ b \in S$ **for** $a \ b$ **proof from** that **consider** (1) $a \in S - \{1^S\}$ $b \in S - \{1^S\}$ floor a =floor b

| (2) $a \in S - \{1^S\}$ $b \in S - \{1^S\}$ floor $a <^I$ floor $b \lor$ floor $b <^I$ floor $a = |(3) a = 1^S \lor b = 1^S$ using floor.cases floor-prop trichotomy by metis then show ?thesis **proof**(*cases*) case 1then have $a \in \mathbb{A}_{floor \ a} \land b \in \mathbb{A}_{floor \ a}$ using 1 floor-prop by metis moreover have totally-ordered-hoop $(\mathbb{A}_{floor\ a})$ $(*^{floor\ a})$ $(\rightarrow^{floor\ a})$ 1^S using 1(1) family-of-irr-hoops totally-ordered-irreducible-hoop.axioms(1) floor-prop by meson ultimately have $a \rightarrow floor a b = 1^S \lor b \rightarrow floor a a = 1^S$ using hoop.hoop-order-def totally-ordered-hoop.total-order totally-ordered-hoop-def by meson moreover have $a \to^S b = a \to^{floor a} b \land b \to^S a = b \to^{floor a} a$ using 1 by auto ultimately show ?thesis using hoop-order-def by force \mathbf{next} case 2then show ?thesis using sum-imp.simps(2) hoop-order-def by blast \mathbf{next} case 3 then show ?thesis using that ord-top by auto qed qed \mathbf{next} show $\theta^S \in S$ using first-zero-closed I-zero-closed sum-subsets by auto \mathbf{next} show hoop-order 0^S a if $a \in S$ for a proof – have zero-dom: $\theta^{S} \in \mathbb{A}_{0I} \land \theta^{S} \in S - \{1^{S}\}$ using I-zero-closed sum-subsets assms first-zero-closed by blast moreover have floor $0^S \leq^I$ floor x if $0^S \in S - \{1^S\}$ $x \in S - \{1^S\}$ for x using I-zero-closed floor-prop floor-unique that (2) zero-dom zero-first

```
by metis
    ultimately
    have floor 0^S \leq^I floor x if x \in S - \{1^S\} for x
      using that by blast
    then
    consider (1) 0^S \in S - \{1^S\} a \in S - \{1^S\} floor 0^S = floor a \mid (2) \ 0^S \in S - \{1^S\} a \in S - \{1^S\} floor 0^S <^I floor a
      (3) a = 1^{S}
      using \langle a \in S \rangle floor.cases floor-prop strict-order-equiv-not-converse
            trichotomy zero-dom
      by metis
    then
    show hoop-order 0^S a
    proof(cases)
      case 1
      then
      have \theta^{S} \in \mathbb{A}_{0I} \land a \in \mathbb{A}_{0I}
        using I-zero-closed first-zero-closed floor-prop floor-unique by metis
      then
      have \theta^S \to^S a = \theta^S \to^{0I} a \land \theta^S \to^{0I} a = 1^S
       using 1 I-zero-closed sum-imp.simps(1) first-bounded floor-prop floor-unique
       by metis
      then
      show ?thesis
        using hoop-order-def by blast
    \mathbf{next}
      \mathbf{case}\ \mathcal{2}
      then
      show ?thesis
        using sum-imp.simps(2,5) hoop-order-def by meson
    \mathbf{next}
      case 3
      then
      \mathbf{show}~? thesis
        using ord-top zero-dom by auto
    qed
  qed
qed
end
end
```

References

- P. Agliano and F. Montagna. Varieties of BL-algebras I: general properties. Journal of Pure and Applied Algebra, 181(2):105–129, 2003.
- [2] W. J. Blok and M. A. Ferreirim. On the structure of hoops. Algebra Universalis, 43(2):233-257, 2000.
- [3] B. Bosbach. Komplementäre Halbgruppen. Axiomatik und Arithmetik. Fundamenta Mathematicae, 64:257–287, 1969.
- [4] J. R. Büchi and T. M. Owens. Complemented monoids and hoops. unpublished manuscript, 1975.
- [5] M. Busaniche. Decomposition of BL-chains. Algebra Universalis, 52(4):519–525, 2005.
- [6] P. Hájek. Metamathematics of Fuzzy Logic. Kluwer Academic Publishers, Dordrecht, Boston and London, 1998.