
Decomposition of totally ordered hoops

Sebastián Buss

March 17, 2025

Abstract

We formalize a well known result in theory of hoops: every totally
ordered hoop can be written as an ordinal sum of irreducible (equiv-
alently Wajsberg) hoops. This formalization is based on the proof for
BL-chains (i.e., bounded totally ordered hoops) by Busaniche [5].

1

Contents
1 Some order tools: posets with explicit universe 4

2 Hoops 5
2.1 Definitions . 5
2.2 Basic properties . 6
2.3 Multiplication monotonicity 8
2.4 Implication monotonicity and anti-monotonicity 9
2.5 (≤A) defines a partial order over A 9
2.6 Order properties . 11
2.7 Additional multiplication properties 12
2.8 Additional implication properties 13
2.9 (∧A) defines a semilattice over A 14
2.10 Properties of (∨∗A) . 15

3 Ordinal sums 16
3.1 Tower of hoops . 17
3.2 Ordinal sum universe . 17
3.3 Floor function: definition and properties 18
3.4 Ordinal sum multiplication and implication 19

3.4.1 Some multiplication properties 19
3.4.2 Some implication properties 21

3.5 The ordinal sum of a tower of hoops is a hoop 23
3.5.1 S is not empty . 23
3.5.2 (∗S) and (→S) are well defined 23
3.5.3 Neutrality of 1S . 24
3.5.4 Commutativity of (∗S) 25
3.5.5 Associativity of (∗S) 26
3.5.6 Reflexivity of (→S) 27
3.5.7 Divisibility . 28
3.5.8 Residuation . 29
3.5.9 Main result . 31

4 Totally ordered hoops 32
4.1 Definitions . 32
4.2 Properties of F . 33
4.3 Properties of (∼F) . 38

4.3.1 (∼F) is an equivalence relation 38
4.3.2 Equivalent definition 38
4.3.3 Properties of equivalence classes given by (∼F) 39

4.4 Irreducible hoops: definition and equivalences 41
4.5 Decomposition . 51

4.5.1 Definition of index set I 51

2

4.5.2 Definition of total partial order over I 52
4.5.3 Definition of universes 56
4.5.4 Universes are subhoops of A 57
4.5.5 Universes are irreducible hoops 59
4.5.6 Some useful results . 60
4.5.7 Definition of multiplications, implications and one . . 62
4.5.8 Main result . 62
4.5.9 Remarks on the nontrivial case 67
4.5.10 Converse of main result 70

5 BL-chains 71
5.1 Definitions . 71
5.2 First element of I . 72
5.3 Main result for BL-chains . 73
5.4 Converse of main result for BL-chains 74

3

1 Some order tools: posets with explicit universe
theory Posets
imports Main HOL−Library.LaTeXsugar

begin

locale poset-on =
fixes P :: ′b set
fixes P-lesseq :: ′b ⇒ ′b ⇒ bool (infix ‹≤P › 60)
fixes P-less :: ′b ⇒ ′b ⇒ bool (infix ‹<P › 60)
assumes not-empty [simp]: P 6= ∅
and reflex: reflp-on P (≤P)
and antisymm: antisymp-on P (≤P)
and trans: transp-on P (≤P)
and strict-iff-order : x ∈ P =⇒ y ∈ P =⇒ x <P y = (x ≤P y ∧ x 6= y)

begin

lemma strict-trans:
assumes a ∈ P b ∈ P c ∈ P a <P b b <P c
shows a <P c
using antisymm antisymp-onD assms trans strict-iff-order transp-onD
by (smt (verit, ccfv-SIG))

end

locale bot-poset-on = poset-on +
fixes bot :: ′b (‹0P ›)
assumes bot-closed: 0P ∈ P
and bot-first: x ∈ P =⇒ 0P ≤P x

locale top-poset-on = poset-on +
fixes top :: ′b (‹1P ›)
assumes top-closed: 1P ∈ P
and top-last: x ∈ P =⇒ x ≤P 1P

locale bounded-poset-on = bot-poset-on + top-poset-on

locale total-poset-on = poset-on +
assumes total: totalp-on P (≤P)

begin

lemma trichotomy:
assumes a ∈ P b ∈ P
shows (a <P b ∧ ¬(a = b ∨ b <P a)) ∨

(a = b ∧ ¬(a <P b ∨ b <P a)) ∨
(b <P a ∧ ¬(a = b ∨ a <P b))

using antisymm antisymp-onD assms strict-iff-order total totalp-onD by metis

4

lemma strict-order-equiv-not-converse:
assumes a ∈ P b ∈ P
shows a <P b ←→ ¬(b ≤P a)
using assms strict-iff-order reflex reflp-onD strict-trans trichotomy by metis

end

end

2 Hoops

A hoop is a naturally ordered pocrim (i.e., a partially ordered commutative
residuated integral monoid). This structures have been introduced by Büchi
and Owens in [4] and constitute the algebraic counterpart of fragments with-
out negation and falsum of some nonclassical logics.
theory Hoops

imports Posets
begin

2.1 Definitions
locale hoop =

fixes universe :: ′a set (‹A›)
and multiplication :: ′a ⇒ ′a ⇒ ′a (infix ‹∗A› 60)
and implication :: ′a ⇒ ′a ⇒ ′a (infix ‹→A› 60)
and one :: ′a (‹1A›)
assumes mult-closed: x ∈ A =⇒ y ∈ A =⇒ x ∗A y ∈ A
and imp-closed: x ∈ A =⇒ y ∈ A =⇒ x →A y ∈ A
and one-closed [simp]: 1A ∈ A
and mult-comm: x ∈ A =⇒ y ∈ A =⇒ x ∗A y = y ∗A x
and mult-assoc: x ∈ A =⇒ y ∈ A =⇒ z ∈ A =⇒ x ∗A (y ∗A z) = (x ∗A y) ∗A z
and mult-neutr [simp]: x ∈ A =⇒ x ∗A 1A = x
and imp-reflex [simp]: x ∈ A =⇒ x →A x = 1A

and divisibility: x ∈ A =⇒ y ∈ A =⇒ x ∗A (x →A y) = y ∗A (y →A x)
and residuation: x ∈ A =⇒ y ∈ A =⇒ z ∈ A =⇒

x →A (y →A z) = (x ∗A y) →A z
begin

definition hoop-order :: ′a ⇒ ′a ⇒ bool (infix ‹≤A› 60)
where x ≤A y ≡ (x →A y = 1A)

definition hoop-order-strict :: ′a ⇒ ′a ⇒ bool (infix ‹<A› 60)
where x <A y ≡ (x ≤A y ∧ x 6= y)

definition hoop-inf :: ′a ⇒ ′a ⇒ ′a (infix ‹∧A› 60)
where x ∧A y = x ∗A (x →A y)

definition hoop-pseudo-sup :: ′a ⇒ ′a ⇒ ′a (infix ‹∨∗A› 60)

5

where x ∨∗A y = ((x →A y) →A y) ∧A ((y →A x) →A x)

end

locale wajsberg-hoop = hoop +
assumes T : x ∈ A =⇒ y ∈ A =⇒ (x →A y) →A y = (y →A x) →A x

begin

definition wajsberg-hoop-sup :: ′a ⇒ ′a ⇒ ′a (infix ‹∨A› 60)
where x ∨A y = (x →A y) →A y

end

2.2 Basic properties
context hoop
begin

lemma mult-neutr-2 [simp]:
assumes a ∈ A
shows 1A ∗A a = a
using assms mult-comm by simp

lemma imp-one-A:
assumes a ∈ A
shows (1A →A a) →A 1A = 1A

proof −
have (1A →A a) →A 1A = (1A →A a) →A (1A →A 1A)

using assms by simp
also
have . . . = ((1A →A a) ∗A 1A) →A 1A

using assms imp-closed residuation by simp
also
have . . . = ((a →A 1A) ∗A a) →A 1A

using assms divisibility imp-closed mult-comm by simp
also
have . . . = (a →A 1A) →A (a →A 1A)

using assms imp-closed one-closed residuation by metis
also
have . . . = 1A

using assms imp-closed by simp
finally
show ?thesis

by auto
qed

lemma imp-one-B:
assumes a ∈ A
shows (1A →A a) →A a = 1A

6

proof −
have (1A →A a) →A a = ((1A →A a) ∗A 1A) →A a

using assms imp-closed by simp
also
have . . . = (1A →A a) →A (1A →A a)

using assms imp-closed one-closed residuation by metis
also
have . . . = 1A

using assms imp-closed by simp
finally
show ?thesis

by auto
qed

lemma imp-one-C :
assumes a ∈ A
shows 1A →A a = a

proof −
have 1A →A a = (1A →A a) ∗A 1A

using assms imp-closed by simp
also
have . . . = (1A →A a) ∗A ((1A →A a) →A a)

using assms imp-one-B by simp
also
have . . . = a ∗A (a →A (1A →A a))

using assms divisibility imp-closed by simp
also
have . . . = a

using assms residuation by simp
finally
show ?thesis

by auto
qed

lemma imp-one-top:
assumes a ∈ A
shows a →A 1A = 1A

proof −
have a →A 1A = (1A →A a) →A 1A

using assms imp-one-C by auto
also
have . . . = 1A

using assms imp-one-A by auto
finally
show ?thesis

by auto
qed

The proofs of imp-one-A, imp-one-B, imp-one-C and imp-one-top are based

7

on proofs found in [3] (see Section 1: (4), (6), (7) and (12)).
lemma swap:

assumes a ∈ A b ∈ A c ∈ A
shows a →A (b →A c) = b →A (a →A c)

proof −
have a →A (b →A c) = (a ∗A b) →A c

using assms residuation by auto
also
have . . . = (b ∗A a) →A c

using assms mult-comm by auto
also
have . . . = b →A (a →A c)

using assms residuation by auto
finally
show ?thesis

by auto
qed

lemma imp-A:
assumes a ∈ A b ∈ A
shows a →A (b →A a) = 1A

proof −
have a →A (b →A a) = b →A (a →A a)

using assms swap by blast
then
show ?thesis

using assms imp-one-top by simp
qed

2.3 Multiplication monotonicity
lemma mult-mono:

assumes a ∈ A b ∈ A c ∈ A
shows (a →A b) →A ((a ∗A c) →A (b ∗A c)) = 1A

proof −
have (a →A b) →A ((a ∗A c) →A (b ∗A c)) =

(a →A b) →A (a →A (c →A (b ∗A c)))
using assms mult-closed residuation by auto

also
have . . . = ((a →A b) ∗A a) →A (c →A (b ∗A c))

using assms imp-closed mult-closed residuation by metis
also
have . . . = ((b →A a) ∗A b) →A (c →A (b ∗A c))

using assms divisibility imp-closed mult-comm by simp
also
have . . . = (b →A a) →A (b →A (c →A (b ∗A c)))

using assms imp-closed mult-closed residuation by metis
also
have . . . = (b →A a) →A ((b ∗A c) →A (b ∗A c))

8

using assms(2 ,3) mult-closed residuation by simp
also
have . . . = 1A

using assms imp-closed imp-one-top mult-closed by simp
finally
show ?thesis

by auto
qed

2.4 Implication monotonicity and anti-monotonicity
lemma imp-mono:

assumes a ∈ A b ∈ A c ∈ A
shows (a →A b) →A ((c →A a) →A (c →A b)) = 1A

proof −
have (a →A b) →A ((c →A a) →A (c →A b)) =

(a →A b) →A (((c →A a) ∗A c) →A b)
using assms imp-closed residuation by simp

also
have . . . = (a →A b) →A (((a →A c) ∗A a) →A b)

using assms divisibility imp-closed mult-comm by simp
also
have . . . = (a →A b) →A ((a →A c) →A (a →A b))

using assms imp-closed residuation by simp
also
have . . . = 1A

using assms imp-A imp-closed by simp
finally
show ?thesis

by auto
qed

lemma imp-anti-mono:
assumes a ∈ A b ∈ A c ∈ A
shows (a →A b) →A ((b →A c) →A (a →A c)) = 1A

using assms imp-closed imp-mono swap by metis

2.5 (≤A) defines a partial order over A
lemma ord-reflex:

assumes a ∈ A
shows a ≤A a
using assms hoop-order-def by simp

lemma ord-trans:
assumes a ∈ A b ∈ A c ∈ A a ≤A b b ≤A c
shows a ≤A c

proof −
have a →A c = 1A →A (1A →A (a →A c))

using assms(1 ,3) imp-closed imp-one-C by simp

9

also
have . . . = (a →A b) →A ((b →A c) →A (a →A c))

using assms(4 ,5) hoop-order-def by simp
also
have . . . = 1A

using assms(1−3) imp-anti-mono by simp
finally
show ?thesis

using hoop-order-def by auto
qed

lemma ord-antisymm:
assumes a ∈ A b ∈ A a ≤A b b ≤A a
shows a = b

proof −
have a = a ∗A (a →A b)

using assms(1 ,3) hoop-order-def by simp
also
have . . . = b ∗A (b →A a)

using assms(1 ,2) divisibility by simp
also
have . . . = b

using assms(2 ,4) hoop-order-def by simp
finally
show ?thesis

by auto
qed

lemma ord-antisymm-equiv:
assumes a ∈ A b ∈ A a →A b = 1A b →A a = 1A

shows a = b
using assms hoop-order-def ord-antisymm by auto

lemma ord-top:
assumes a ∈ A
shows a ≤A 1A

using assms hoop-order-def imp-one-top by simp

sublocale top-poset-on A (≤A) (<A) 1A

proof
show A 6= ∅

using one-closed by blast
next

show reflp-on A (≤A)
using ord-reflex reflp-onI by blast

next
show antisymp-on A (≤A)

using antisymp-onI ord-antisymm by blast
next

10

show transp-on A (≤A)
using ord-trans transp-onI by blast

next
show x <A y = (x ≤A y ∧ x 6= y) if x ∈ A y ∈ A for x y

using hoop-order-strict-def by blast
next

show 1A ∈ A
by simp

next
show x ≤A 1A if x ∈ A for x

using ord-top that by simp
qed

2.6 Order properties
lemma ord-mult-mono-A:

assumes a ∈ A b ∈ A c ∈ A
shows (a →A b) ≤A ((a ∗A c) →A (b ∗A c))
using assms hoop-order-def mult-mono by simp

lemma ord-mult-mono-B:
assumes a ∈ A b ∈ A c ∈ A a ≤A b
shows (a ∗A c) ≤A (b ∗A c)
using assms hoop-order-def imp-one-C swap mult-closed mult-mono top-closed
by metis

lemma ord-residuation:
assumes a ∈ A b ∈ A c ∈ A
shows (a ∗A b) ≤A c ←→ a ≤A (b →A c)
using assms hoop-order-def residuation by simp

lemma ord-imp-mono-A:
assumes a ∈ A b ∈ A c ∈ A
shows (a →A b) ≤A ((c →A a) →A (c →A b))
using assms hoop-order-def imp-mono by simp

lemma ord-imp-mono-B:
assumes a ∈ A b ∈ A c ∈ A a ≤A b
shows (c →A a) ≤A (c →A b)
using assms imp-closed ord-trans ord-reflex ord-residuation mult-closed
by metis

lemma ord-imp-anti-mono-A:
assumes a ∈ A b ∈ A c ∈ A
shows (a →A b) ≤A ((b →A c) →A (a →A c))
using assms hoop-order-def imp-anti-mono by simp

lemma ord-imp-anti-mono-B:
assumes a ∈ A b ∈ A c ∈ A a ≤A b

11

shows (b →A c) ≤A (a →A c)
using assms hoop-order-def imp-one-C swap ord-imp-mono-A top-closed
by metis

lemma ord-A:
assumes a ∈ A b ∈ A
shows b ≤A (a →A b)
using assms hoop-order-def imp-A by simp

lemma ord-B:
assumes a ∈ A b ∈ A
shows b ≤A ((a →A b) →A b)
using assms imp-closed ord-A by simp

lemma ord-C :
assumes a ∈ A b ∈ A
shows a ≤A ((a →A b) →A b)
using assms imp-one-C one-closed ord-imp-anti-mono-A by metis

lemma ord-D:
assumes a ∈ A b ∈ A a <A b
shows b →A a 6= 1A

using assms hoop-order-def hoop-order-strict-def ord-antisymm by auto

2.7 Additional multiplication properties
lemma mult-lesseq-inf :

assumes a ∈ A b ∈ A
shows (a ∗A b) ≤A (a ∧A b)

proof −
have b ≤A (a →A b)

using assms ord-A by simp
then
have (a ∗A b) ≤A (a ∗A (a →A b))

using assms imp-closed ord-mult-mono-B mult-comm by metis
then
show ?thesis

using hoop-inf-def by metis
qed

lemma mult-A:
assumes a ∈ A b ∈ A
shows (a ∗A b) ≤A a
using assms ord-A ord-residuation by simp

lemma mult-B:
assumes a ∈ A b ∈ A
shows (a ∗A b) ≤A b
using assms mult-A mult-comm by metis

12

lemma mult-C :
assumes a ∈ A−{1A} b ∈ A−{1A}
shows a ∗A b ∈ A−{1A}
using assms ord-antisymm ord-top mult-A mult-closed by force

2.8 Additional implication properties
lemma imp-B:

assumes a ∈ A b ∈ A
shows a →A b = ((a →A b) →A b) →A b

proof −
have a ≤A ((a →A b) →A b)

using assms ord-C by simp
then
have (((a →A b) →A b) →A b) ≤A (a →A b)

using assms imp-closed ord-imp-anti-mono-B by simp
moreover
have (a →A b) ≤A (((a →A b) →A b) →A b)

using assms imp-closed ord-C by simp
ultimately
show ?thesis

using assms imp-closed ord-antisymm by simp
qed

The following two results can be found in [2] (see Proposition 1.7 and 2.2).
lemma imp-C :

assumes a ∈ A b ∈ A
shows (a →A b) →A (b →A a) = b →A a

proof −
have a ≤A ((a →A b) →A a)

using assms imp-closed ord-A by simp
then
have (((a →A b) →A a) →A b) ≤A (a →A b)

using assms imp-closed ord-imp-anti-mono-B by simp
moreover
have (a →A b) ≤A (((a →A b) →A a) →A a)

using assms imp-closed ord-C by simp
ultimately
have (((a →A b) →A a) →A b) ≤A (((a →A b) →A a) →A a)

using assms imp-closed ord-trans by meson
then
have ((((a →A b) →A a) →A b) ∗A ((a →A b) →A a)) ≤A a

using assms imp-closed ord-residuation by simp
then
have ((b →A ((a →A b) →A a)) ∗A b) ≤A a

using assms divisibility imp-closed mult-comm by simp
then
have (b →A ((a →A b) →A a)) ≤A (b →A a)

13

using assms imp-closed ord-residuation by simp
then
have ((a →A b) →A (b →A a)) ≤A (b →A a)

using assms imp-closed swap by simp
moreover
have (b →A a) ≤A ((a →A b) →A (b →A a))

using assms imp-closed ord-A by simp
ultimately
show ?thesis

using assms imp-closed ord-antisymm by auto
qed

lemma imp-D:
assumes a ∈ A b ∈ A
shows (((b →A a) →A a) →A b) →A (b →A a) = b →A a

proof −
have (((b →A a) →A a) →A b) →A (b →A a) =

(((b →A a) →A a) →A b) →A (((b →A a) →A a) →A a)
using assms imp-B by simp

also
have . . . = ((((b →A a) →A a) →A b) ∗A ((b →A a) →A a)) →A a

using assms imp-closed residuation by simp
also
have . . . = ((b →A ((b →A a) →A a)) ∗A b) →A a

using assms divisibility imp-closed mult-comm by simp
also
have . . . = (1A ∗A b) →A a

using assms hoop-order-def ord-C by simp
also
have . . . = b →A a

using assms(2) mult-neutr-2 by simp
finally
show ?thesis

by auto
qed

2.9 (∧A) defines a semilattice over A
lemma inf-closed:

assumes a ∈ A b ∈ A
shows a ∧A b ∈ A
using assms hoop-inf-def imp-closed mult-closed by simp

lemma inf-comm:
assumes a ∈ A b ∈ A
shows a ∧A b = b ∧A a
using assms divisibility hoop-inf-def by simp

lemma inf-A:

14

assumes a ∈ A b ∈ A
shows (a ∧A b) ≤A a

proof −
have (a ∧A b) →A a = (a ∗A (a →A b)) →A a

using hoop-inf-def by simp
also
have . . . = (a →A b) →A (a →A a)

using assms mult-comm imp-closed residuation by metis
finally
show ?thesis

using assms hoop-order-def imp-closed imp-one-top by simp
qed

lemma inf-B:
assumes a ∈ A b ∈ A
shows (a ∧A b) ≤A b
using assms inf-comm inf-A by metis

lemma inf-C :
assumes a ∈ A b ∈ A c ∈ A a ≤A b a ≤A c
shows a ≤A (b ∧A c)

proof −
have (b →A a) ≤A (b →A c)

using assms(1−3 ,5) ord-imp-mono-B by simp
then
have (b ∗A (b →A a)) ≤A (b ∗A (b →A c))

using assms imp-closed ord-mult-mono-B mult-comm by metis
moreover
have a = b ∗A (b →A a)

using assms(1−3 ,4) divisibility hoop-order-def mult-neutr by simp
ultimately
show ?thesis

using hoop-inf-def by auto
qed

lemma inf-order :
assumes a ∈ A b ∈ A
shows a ≤A b ←→ (a ∧A b = a)
using assms hoop-inf-def hoop-order-def inf-B mult-neutr by metis

2.10 Properties of (∨∗A)
lemma pseudo-sup-closed:

assumes a ∈ A b ∈ A
shows a ∨∗A b ∈ A
using assms hoop-pseudo-sup-def imp-closed inf-closed by simp

lemma pseudo-sup-comm:
assumes a ∈ A b ∈ A

15

shows a ∨∗A b = b ∨∗A a
using assms hoop-pseudo-sup-def imp-closed inf-comm by auto

lemma pseudo-sup-A:
assumes a ∈ A b ∈ A
shows a ≤A (a ∨∗A b)
using assms hoop-pseudo-sup-def imp-closed inf-C ord-B ord-C by simp

lemma pseudo-sup-B:
assumes a ∈ A b ∈ A
shows b ≤A (a ∨∗A b)
using assms pseudo-sup-A pseudo-sup-comm by metis

lemma pseudo-sup-order :
assumes a ∈ A b ∈ A
shows a ≤A b ←→ a ∨∗A b = b

proof
assume a ≤A b
then
have a ∨∗A b = b ∧A ((b →A a) →A a)

using assms(2) hoop-order-def hoop-pseudo-sup-def imp-one-C by simp
also
have . . . = b

using assms imp-closed inf-order ord-C by meson
finally
show a ∨∗A b = b

by auto
next

assume a ∨∗A b = b
then
show a ≤A b

using assms pseudo-sup-A by metis
qed

end

end

3 Ordinal sums

We define tower of hoops, a family of almost disjoint hoops indexed by a
total order. This is based on the definition of bounded tower of irreducible
hoops in [5] (see paragraph after Lemma 3.3). Parting from a tower of hoops
we can define a hoop known as ordinal sum. Ordinal sums are a fundamental
tool in the study of totally ordered hoops.
theory Ordinal-Sums

imports Hoops
begin

16

3.1 Tower of hoops
locale tower-of-hoops =

fixes index-set :: ′b set (‹I ›)
fixes index-lesseq :: ′b ⇒ ′b ⇒ bool (infix ‹≤I› 60)
fixes index-less :: ′b ⇒ ′b ⇒ bool (infix ‹<I› 60)
fixes universes :: ′b ⇒ (′a set) (‹UNI ›)
fixes multiplications :: ′b ⇒ (′a ⇒ ′a ⇒ ′a) (‹MUL›)
fixes implications :: ′b ⇒ (′a ⇒ ′a ⇒ ′a) (‹IMP›)
fixes sum-one :: ′a (‹1S›)
assumes index-set-total-order : total-poset-on I (≤I) (<I)
and almost-disjoint: i ∈ I =⇒ j ∈ I =⇒ i 6= j =⇒ UNI i ∩ UNI j = {1S}
and family-of-hoops: i ∈ I =⇒ hoop (UNI i) (MUL i) (IMP i) 1S

begin

sublocale total-poset-on I (≤I) (<I)
using index-set-total-order by simp

abbreviation (uni-i)
uni-i :: [′b] ⇒ (′a set) (‹(�(-))› [61] 60)
where �i ≡ UNI i

abbreviation (mult-i)
mult-i :: [′b] ⇒ (′a ⇒ ′a ⇒ ′a) (‹(∗(-))› [61] 60)
where ∗i ≡ MUL i

abbreviation (imp-i)
imp-i :: [′b] ⇒ (′a ⇒ ′a ⇒ ′a) (‹(→(-))› [61] 60)
where →i ≡ IMP i

abbreviation (mult-i-xy)
mult-i-xy :: [′a, ′b, ′a] ⇒ ′a (‹((-)/ ∗(-) / (-))› [61 , 50 , 61] 60)
where x ∗i y ≡ MUL i x y

abbreviation (imp-i-xy)
imp-i-xy :: [′a, ′b, ′a] ⇒ ′a (‹((-)/ →(-) / (-))› [61 , 50 , 61] 60)
where x →i y ≡ IMP i x y

3.2 Ordinal sum universe
definition sum-univ :: ′a set (‹S›)

where S = {x. ∃ i ∈ I . x ∈ �i}

lemma sum-one-closed [simp]: 1S ∈ S
using family-of-hoops hoop.one-closed not-empty sum-univ-def by fastforce

lemma sum-subsets:
assumes i ∈ I
shows �i ⊆ S
using sum-univ-def assms by blast

17

3.3 Floor function: definition and properties
lemma floor-unique:

assumes a ∈ S−{1S}
shows ∃ ! i. i ∈ I ∧ a ∈ �i

using assms sum-univ-def almost-disjoint by blast

function floor :: ′a ⇒ ′b where
floor x = (THE i. i ∈ I ∧ x ∈ �i) if x ∈ S−{1S}
| floor x = undefined if x = 1S ∨ x /∈ S

by auto
termination by lexicographic-order

abbreviation (uni-floor)
uni-floor :: [′a] ⇒ (′a set) (‹(�f loor (-))› [61] 60)
where �f loor x ≡ UNI (floor x)

abbreviation (mult-floor)
mult-floor :: [′a] ⇒ (′a ⇒ ′a ⇒ ′a) (‹(∗f loor (-))› [61] 60)
where ∗f loor a ≡ MUL (floor a)

abbreviation (imp-floor)
imp-floor :: [′a] ⇒ (′a ⇒ ′a ⇒ ′a) (‹(→f loor (-))› [61] 60)
where →f loor a ≡ IMP (floor a)

abbreviation (mult-floor-xy)
mult-floor-xy :: [′a, ′a, ′a] ⇒ ′a (‹((-)/ ∗f loor (-) / (-))› [61 , 50 , 61] 60)
where x ∗f loor y z ≡ MUL (floor y) x z

abbreviation (imp-floor-xy)
imp-floor-xy :: [′a, ′a, ′a] ⇒ ′a (‹((-)/ →f loor (-) / (-))› [61 , 50 , 61] 60)
where x →f loor y z ≡ IMP (floor y) x z

lemma floor-prop:
assumes a ∈ S−{1S}
shows floor a ∈ I ∧ a ∈ �f loor a

proof −
have floor a = (THE i. i ∈ I ∧ a ∈ �i)

using assms by auto
then
show ?thesis

using assms theI-unique floor-unique by (metis (mono-tags, lifting))
qed

lemma floor-one-closed:
assumes i ∈ I
shows 1S ∈ �i

using assms floor-prop family-of-hoops hoop.one-closed by metis

lemma floor-mult-closed:

18

assumes i ∈ I a ∈ �i b ∈ �i

shows a ∗i b ∈ �i

using assms family-of-hoops hoop.mult-closed by meson

lemma floor-imp-closed:
assumes i ∈ I a ∈ �i b ∈ �i

shows a →i b ∈ �i

using assms family-of-hoops hoop.imp-closed by meson

3.4 Ordinal sum multiplication and implication
function sum-mult :: ′a ⇒ ′a ⇒ ′a (infix ‹∗S› 60) where

x ∗S y = x ∗f loor x y if x ∈ S−{1S} y ∈ S−{1S} floor x = floor y
| x ∗S y = x if x ∈ S−{1S} y ∈ S−{1S} floor x <I floor y
| x ∗S y = y if x ∈ S−{1S} y ∈ S−{1S} floor y <I floor x
| x ∗S y = y if x = 1S y ∈ S−{1S}
| x ∗S y = x if x ∈ S−{1S} y = 1S

| x ∗S y = 1S if x = 1S y = 1S

| x ∗S y = undefined if x /∈ S ∨ y /∈ S
apply auto
using floor .cases floor .simps(1) floor-prop trichotomy apply (smt (verit))
using floor-prop strict-iff-order apply force
using floor-prop strict-iff-order apply force
using floor-prop trichotomy by auto

termination by lexicographic-order

function sum-imp :: ′a ⇒ ′a ⇒ ′a (infix ‹→S› 60) where
x →S y = x →f loor x y if x ∈ S−{1S} y ∈ S−{1S} floor x = floor y
| x →S y = 1S if x ∈ S−{1S} y ∈ S−{1S} floor x <I floor y
| x →S y = y if x ∈ S−{1S} y ∈ S−{1S} floor y <I floor x
| x →S y = y if x = 1S y ∈ S−{1S}
| x →S y = 1S if x ∈ S−{1S} y = 1S

| x →S y = 1S if x = 1S y = 1S

| x →S y = undefined if x /∈ S ∨ y /∈ S
apply auto
using floor .cases floor .simps(1) floor-prop trichotomy apply (smt (verit))
using floor-prop strict-iff-order apply force
using floor-prop strict-iff-order apply force
using floor-prop trichotomy by auto

termination by lexicographic-order

3.4.1 Some multiplication properties
lemma sum-mult-not-one-aux:

assumes a ∈ S−{1S} b ∈ �f loor a

shows a ∗S b ∈ (�f loor a)−{1S}
proof −

consider (1) b ∈ S−{1S}
| (2) b = 1S

using sum-subsets assms floor-prop by blast

19

then
show ?thesis
proof(cases)

case 1
then
have same-floor : floor a = floor b

using assms floor-prop floor-unique by metis
moreover
have a ∗S b = a ∗f loor a b

using 1 assms(1) same-floor by simp
moreover
have a ∈ (�f loor a)−{1S} ∧ b ∈ (�f loor a)−{1S}

using 1 assms floor-prop by simp
ultimately
show ?thesis

using assms(1) family-of-hoops floor-prop hoop.mult-C by metis
next

case 2
then
show ?thesis

using assms(1) floor-prop by auto
qed

qed

corollary sum-mult-not-one:
assumes a ∈ S−{1S} b ∈ �f loor a

shows a ∗S b ∈ S−{1S} ∧ floor (a ∗S b) = floor a
proof −

have a ∗S b ∈ (�f loor a)−{1S}
using sum-mult-not-one-aux assms by meson

then
have a ∗S b ∈ S−{1S} ∧ a ∗S b ∈ �f loor a

using sum-subsets assms(1) floor-prop by fastforce
then
show ?thesis

using assms(1) floor-prop floor-unique by metis
qed

lemma sum-mult-A:
assumes a ∈ S−{1S} b ∈ �f loor a

shows a ∗S b = a ∗f loor a b ∧ b ∗S a = b ∗f loor a a
proof −

consider (1) b ∈ S−{1S}
| (2) b = 1S

using sum-subsets assms floor-prop by blast
then
show ?thesis
proof(cases)

case 1

20

then
have floor a = floor b

using assms floor .cases floor-prop floor-unique by metis
then
show ?thesis

using 1 assms by auto
next

case 2
then
show ?thesis

using assms(1) family-of-hoops floor-prop hoop.mult-neutr hoop.mult-neutr-2
by fastforce

qed
qed

3.4.2 Some implication properties
lemma sum-imp-floor :

assumes a ∈ S−{1S} b ∈ S−{1S} floor a = floor b a →S b ∈ S−{1S}
shows floor (a →S b) = floor a

proof −
have a →S b ∈ �f loor a

using sum-imp.simps(1) assms(1−3) floor-imp-closed floor-prop
by metis

then
show ?thesis

using assms(1 ,4) floor-prop floor-unique by blast
qed

lemma sum-imp-A:
assumes a ∈ S−{1S} b ∈ �f loor a

shows a →S b = a →f loor a b
proof −

consider (1) b ∈ S−{1S}
| (2) b = 1S

using sum-subsets assms floor-prop by blast
then
show ?thesis
proof(cases)

case 1
then
show ?thesis

using sum-imp.simps(1) assms floor-prop floor-unique by metis
next

case 2
then
show ?thesis

using sum-imp.simps(5) assms(1) family-of-hoops floor-prop
hoop.imp-one-top

21

by metis
qed

qed

lemma sum-imp-B:
assumes a ∈ S−{1S} b ∈ �f loor a

shows b →S a = b →f loor a a
proof −

consider (1) b ∈ S−{1S}
| (2) b = 1S

using sum-subsets assms floor-prop by blast
then
show ?thesis
proof(cases)

case 1
then
show ?thesis

using sum-imp.simps(1) assms floor-prop floor-unique by metis
next

case 2
then
show ?thesis

using sum-imp.simps(4) assms(1) family-of-hoops floor-prop
hoop.imp-one-C

by metis
qed

qed

lemma sum-imp-floor-antisymm:
assumes a ∈ S−{1S} b ∈ S−{1S} floor a = floor b

a →S b = 1S b →S a = 1S

shows a = b
proof −

have a ∈ �f loor a ∧ b ∈ �f loor a ∧ floor a ∈ I
using floor-prop assms by metis

moreover
have a →S b = a →f loor a b ∧ b →S a = b →f loor a a

using assms by auto
ultimately
show ?thesis

using assms(4 ,5) family-of-hoops hoop.ord-antisymm-equiv by metis
qed

corollary sum-imp-C :
assumes a ∈ S−{1S} b ∈ S−{1S} a 6= b floor a = floor b a →S b = 1S

shows b →S a 6= 1S

using sum-imp-floor-antisymm assms by blast

lemma sum-imp-D:

22

assumes a ∈ S
shows 1S →S a = a
using sum-imp.simps(4 ,6) assms by blast

lemma sum-imp-E :
assumes a ∈ S
shows a →S 1S = 1S

using sum-imp.simps(5 ,6) assms by blast

3.5 The ordinal sum of a tower of hoops is a hoop
3.5.1 S is not empty
lemma sum-not-empty: S 6= ∅

using sum-one-closed by blast

3.5.2 (∗S) and (→S) are well defined
lemma sum-mult-closed-one:

assumes a ∈ S b ∈ S a = 1S ∨ b = 1S

shows a ∗S b ∈ S
using sum-mult.simps(4−6) assms floor .cases by metis

lemma sum-mult-closed-not-one:
assumes a ∈ S−{1S} b ∈ S−{1S}
shows a ∗S b ∈ S−{1S}

proof −
from assms
consider (1) floor a = floor b
| (2) floor a <I floor b ∨ floor b <I floor a
using trichotomy floor-prop by blast

then
show ?thesis
proof(cases)

case 1
then
show ?thesis

using sum-mult-not-one assms floor-prop by metis
next

case 2
then
show ?thesis

using assms by auto
qed

qed

lemma sum-mult-closed:
assumes a ∈ S b ∈ S
shows a ∗S b ∈ S
using sum-mult-closed-not-one sum-mult-closed-one assms by auto

23

lemma sum-imp-closed-one:
assumes a ∈ S b ∈ S a = 1S ∨ b = 1S

shows a →S b ∈ S
using sum-imp.simps(4−6) assms floor .cases by metis

lemma sum-imp-closed-not-one:
assumes a ∈ S−{1S} b ∈ S−{1S}
shows a →S b ∈ S

proof −
from assms
consider (1) floor a = floor b
| (2) floor a <I floor b ∨ floor b <I floor a
using trichotomy floor-prop by blast

then
show a →S b ∈ S
proof(cases)

case 1
then
have a →S b = a →f loor a b

using assms by auto
moreover
have a →f loor a b ∈ �f loor a

using 1 assms floor-imp-closed floor-prop by metis
ultimately
show ?thesis

using sum-subsets assms(1) floor-prop by auto
next

case 2
then
show ?thesis

using assms by auto
qed

qed

lemma sum-imp-closed:
assumes a ∈ S b ∈ S
shows a →S b ∈ S
using sum-imp-closed-one sum-imp-closed-not-one assms by auto

3.5.3 Neutrality of 1S

lemma sum-mult-neutr :
assumes a ∈ S
shows a ∗S 1S = a ∧ 1S ∗S a = a
using assms sum-mult.simps(4−6) by blast

24

3.5.4 Commutativity of (∗S)

Now we prove x ∗S y = y ∗S x by showing that it holds when one of the
variables is equal to 1S . Then we consider when none of them is 1S .
lemma sum-mult-comm-one:

assumes a ∈ S b ∈ S a = 1S ∨ b = 1S

shows a ∗S b = b ∗S a
using sum-mult-neutr assms by auto

lemma sum-mult-comm-not-one:
assumes a ∈ S−{1S} b ∈ S−{1S}
shows a ∗S b = b ∗S a

proof −
from assms
consider (1) floor a = floor b
| (2) floor a <I floor b ∨ floor b <I floor a
using trichotomy floor-prop by blast

then
show ?thesis
proof(cases)

case 1
then
have same-floor : b ∈ �f loor a

using assms(2) floor-prop by simp
then
have a ∗S b = a ∗f loor a b

using sum-mult-A assms(1) by blast
also
have . . . = b ∗f loor a a

using assms(1) family-of-hoops floor-prop hoop.mult-comm same-floor
by meson

also
have . . . = b ∗S a

using sum-mult-A assms(1) same-floor by simp
finally
show ?thesis

by auto
next

case 2
then
show ?thesis

using assms by auto
qed

qed

lemma sum-mult-comm:
assumes a ∈ S b ∈ S
shows a ∗S b = b ∗S a
using assms sum-mult-comm-one sum-mult-comm-not-one by auto

25

3.5.5 Associativity of (∗S)

Next we prove x ∗S (y ∗S z) = (x ∗S y) ∗S z.
lemma sum-mult-assoc-one:

assumes a ∈ S b ∈ S c ∈ S a = 1S ∨ b = 1S ∨ c = 1S

shows a ∗S (b ∗S c) = (a ∗S b) ∗S c
using sum-mult-neutr assms sum-mult-closed by metis

lemma sum-mult-assoc-not-one:
assumes a ∈ S−{1S} b ∈ S−{1S} c ∈ S−{1S}
shows a ∗S (b ∗S c) = (a ∗S b) ∗S c

proof −
from assms
consider (1) floor a = floor b floor b = floor c
| (2) floor a = floor b floor b <I floor c
| (3) floor a = floor b floor c <I floor b
| (4) floor a <I floor b floor b = floor c
| (5) floor a <I floor b floor b <I floor c
| (6) floor a <I floor b floor c <I floor b
| (7) floor b <I floor a floor b = floor c
| (8) floor b <I floor a floor b <I floor c
| (9) floor b <I floor a floor c <I floor b
using trichotomy floor-prop by meson

then
show ?thesis
proof(cases)

case 1
then
have a ∗S (b ∗S c) = a ∗f loor a (b ∗f loor a c)

using sum-mult-A assms floor-mult-closed floor-prop by metis
also
have . . . = (a ∗f loor a b) ∗f loor a c

using 1 assms family-of-hoops floor-prop hoop.mult-assoc by metis
also
have . . . = (a ∗f loor b b) ∗f loor b c

using 1 by simp
also
have . . . = (a ∗S b) ∗S c

using 1 sum-mult-A assms floor-mult-closed floor-prop by metis
finally
show ?thesis

by auto
next

case 2
then
show ?thesis

using sum-mult.simps(2 ,3) sum-mult-not-one assms floor-prop by metis
next

case 3

26

then
show ?thesis

using sum-mult.simps(3) sum-mult-not-one assms floor-prop by metis
next

case 4
then
show ?thesis

using sum-mult.simps(2) sum-mult-not-one assms floor-prop by metis
next

case 5
then
show ?thesis

using sum-mult.simps(2) assms floor-prop strict-trans by metis
next

case 6
then
show ?thesis

using sum-mult.simps(2 ,3) assms by metis
next

case 7
then
show ?thesis

using sum-mult.simps(3) sum-mult-not-one assms floor-prop by metis
next

case 8
then
show ?thesis

using sum-mult.simps(2 ,3) assms by metis
next

case 9
then
show ?thesis

using sum-mult.simps(3) assms floor-prop strict-trans by metis
qed

qed

lemma sum-mult-assoc:
assumes a ∈ S b ∈ S c ∈ S
shows a ∗S (b ∗S c) = (a ∗S b) ∗S c
using assms sum-mult-assoc-one sum-mult-assoc-not-one by blast

3.5.6 Reflexivity of (→S)

lemma sum-imp-reflex:
assumes a ∈ S
shows a →S a = 1S

proof −
consider (1) a ∈ S−{1S}
| (2) a = 1S

27

using assms by blast
then
show ?thesis
proof(cases)

case 1
then
have a →S a = a →f loor a a

by simp
then
show ?thesis

using 1 family-of-hoops floor-prop hoop.imp-reflex by metis
next

case 2
then
show ?thesis

by simp
qed

qed

3.5.7 Divisibility

We prove x ∗S (x →S y) = y ∗S (y →S x) using the same methods as before.
lemma sum-divisibility-one:

assumes a ∈ S b ∈ S a = 1S ∨ b = 1S

shows a ∗S (a →S b) = b ∗S (b →S a)
proof −

have x →S y = y ∧ y →S x = 1S if x = 1S y ∈ S for x y
using sum-imp-D sum-imp-E that by simp

then
show ?thesis

using assms sum-mult-neutr by metis
qed

lemma sum-divisibility-aux:
assumes a ∈ S−{1S} b ∈ �f loor a

shows a ∗S (a →S b) = a ∗f loor a (a →f loor a b)
using sum-imp-A sum-mult-A assms floor-imp-closed floor-prop by metis

lemma sum-divisibility-not-one:
assumes a ∈ S−{1S} b ∈ S−{1S}
shows a ∗S (a →S b) = b ∗S (b →S a)

proof −
from assms
consider (1) floor a = floor b
| (2) floor a <I floor b ∨ floor b <I floor a
using trichotomy floor-prop by blast

then
show ?thesis
proof(cases)

28

case 1
then
have a ∗S (a →S b) = a ∗f loor a (a →f loor a b)

using 1 sum-divisibility-aux assms floor-prop by metis
also
have . . . = b ∗f loor a (b →f loor a a)

using 1 assms family-of-hoops floor-prop hoop.divisibility by metis
also
have . . . = b ∗f loor b (b →f loor b a)

using 1 by simp
also
have . . . = b ∗S (b →S a)

using 1 sum-divisibility-aux assms floor-prop by metis
finally
show ?thesis

by auto
next

case 2
then
show ?thesis

using assms by auto
qed

qed

lemma sum-divisibility:
assumes a ∈ S b ∈ S
shows a ∗S (a →S b) = b ∗S (b →S a)
using assms sum-divisibility-one sum-divisibility-not-one by auto

3.5.8 Residuation

Finally we prove (x ∗S y) →S z = x →S (y →S z).
lemma sum-residuation-one:

assumes a ∈ S b ∈ S c ∈ S a = 1S ∨ b = 1S ∨ c = 1S

shows (a ∗S b) →S c = a →S (b →S c)
using sum-imp-D sum-imp-E sum-imp-closed sum-mult-closed sum-mult-neutr

assms
by metis

lemma sum-residuation-not-one:
assumes a ∈ S−{1S} b ∈ S−{1S} c ∈ S−{1S}
shows (a ∗S b) →S c = a →S (b →S c)

proof −
from assms
consider (1) floor a = floor b floor b = floor c
| (2) floor a = floor b floor b <I floor c
| (3) floor a = floor b floor c <I floor b
| (4) floor a <I floor b floor b = floor c
| (5) floor a <I floor b floor b <I floor c

29

| (6) floor a <I floor b floor c <I floor b
| (7) floor b <I floor a floor b = floor c
| (8) floor b <I floor a floor b <I floor c
| (9) floor b <I floor a floor c <I floor b
using trichotomy floor-prop by meson

then
show ?thesis
proof(cases)

case 1
then
have (a ∗S b) →S c = (a ∗f loor a b) →f loor a c

using sum-imp-B sum-mult-A assms floor-mult-closed floor-prop by metis
also
have . . . = a →f loor a (b →f loor a c)

using 1 assms family-of-hoops floor-prop hoop.residuation by metis
also
have . . . = a →f loor b (b →f loor b c)

using 1 by simp
also
have . . . = a →S (b →S c)

using 1 sum-imp-A assms floor-imp-closed floor-prop by metis
finally
show ?thesis

by auto
next

case 2
then
show ?thesis

using sum-imp.simps(2 ,5) sum-mult-not-one assms floor-prop by metis
next

case 3
then
show ?thesis

using sum-imp.simps(3) sum-mult-not-one assms floor-prop by metis
next

case 4
then
have (a ∗S b) →S c = 1S

using 4 sum-imp.simps(2) sum-mult.simps(2) assms by metis
moreover
have b →S c = 1S ∨ (b →S c ∈ S−{1S} ∧ floor (b →S c) = floor b)

using 4 (2) sum-imp-closed-not-one sum-imp-floor assms(2 ,3) by blast
ultimately
show ?thesis

using 4 (1) sum-imp.simps(2 ,5) assms(1) by metis
next

case 5
then
show ?thesis

30

using sum-imp.simps(2 ,5) sum-mult.simps(2) assms floor-prop strict-trans
by metis

next
case 6
then
show ?thesis

using assms by auto
next

case 7
then
have (a ∗S b) →S c = (b →S c)

using assms(1 ,2) by auto
moreover
have b →S c = 1S ∨ (b →S c ∈ S−{1S} ∧ floor (b →S c) = floor b)

using 7 (2) sum-imp-closed-not-one sum-imp-floor assms(2 ,3) by blast
ultimately
show ?thesis

using 7 (1) sum-imp.simps(3 ,5) assms(1) by metis
next

case 8
then
show ?thesis

using assms by auto
next

case 9
then
show ?thesis

using sum-imp.simps(3) sum-mult.simps(3) assms floor-prop strict-trans
by metis

qed
qed

lemma sum-residuation:
assumes a ∈ S b ∈ S c ∈ S
shows (a ∗S b) →S c = a →S (b →S c)
using assms sum-residuation-one sum-residuation-not-one by blast

3.5.9 Main result
sublocale hoop S (∗S) (→S) 1S

proof
show x ∗S y ∈ S if x ∈ S y ∈ S for x y

using that sum-mult-closed by simp
next

show x →S y ∈ S if x ∈ S y ∈ S for x y
using that sum-imp-closed by simp

next
show 1S ∈ S

by simp

31

next
show x ∗S y = y ∗S x if x ∈ S y ∈ S for x y

using that sum-mult-comm by simp
next

show x ∗S (y ∗S z) = (x ∗S y) ∗S z if x ∈ S y ∈ S z ∈ S for x y z
using that sum-mult-assoc by simp

next
show x ∗S 1S = x if x ∈ S for x

using that sum-mult-neutr by simp
next

show x →S x = 1S if x ∈ S for x
using that sum-imp-reflex by simp

next
show x ∗S (x →S y) = y ∗S (y →S x) if x ∈ S y ∈ S for x y

using that sum-divisibility by simp
next

show x →S (y →S z) = (x ∗S y) →S z if x ∈ S y ∈ S z ∈ S for x y z
using that sum-residuation by simp

qed

end

end

4 Totally ordered hoops
theory Totally-Ordered-Hoops

imports Ordinal-Sums
begin

4.1 Definitions
locale totally-ordered-hoop = hoop +

assumes total-order : x ∈ A =⇒ y ∈ A =⇒ x ≤A y ∨ y ≤A x
begin

function fixed-points :: ′a ⇒ ′a set (‹F›) where
F a = {b ∈ A−{1A}. a →A b = b} if a ∈ A−{1A}
| F a = {1A} if a = 1A

| F a = undefined if a /∈ A
by auto

termination by lexicographic-order

definition rel-F :: ′a ⇒ ′a ⇒ bool (infix ‹∼F› 60)
where x ∼F y ≡ ∀ z ∈ A. (x →A z = z) ←→ (y →A z = z)

definition rel-F-canonical-map :: ′a ⇒ ′a set (‹π›)
where π x = {b ∈ A. x ∼F b}

32

end

4.2 Properties of F
context totally-ordered-hoop
begin

lemma F-equiv:
assumes a ∈ A−{1A} b ∈ A
shows b ∈ F a ←→ (b ∈ A ∧ b 6= 1A ∧ a →A b = b)
using assms by auto

lemma F-subset:
assumes a ∈ A
shows F a ⊆ A

proof −
have a = 1A ∨ a 6= 1A

by auto
then
show ?thesis

using assms by fastforce
qed

lemma F-of-one:
assumes a ∈ A
shows F a = {1A} ←→ a = 1A

using F-equiv assms fixed-points.simps(2) top-closed by blast

lemma F-of-mult:
assumes a ∈ A−{1A} b ∈ A−{1A}
shows F (a ∗A b) = {c ∈ A−{1A}. (a ∗A b) →A c = c}
using assms mult-C by auto

lemma F-of-imp:
assumes a ∈ A b ∈ A a →A b 6= 1A

shows F (a →A b) = {c ∈ A−{1A}. (a →A b) →A c = c}
using assms imp-closed by auto

lemma F-bound:
assumes a ∈ A b ∈ A a ∈ F b
shows a ≤A b

proof −
consider (1) b 6= 1A

| (2) b = 1A

by auto
then
show ?thesis
proof(cases)

case 1

33

then
have b →A a 6= 1A

using assms(2 ,3) by simp
then
show ?thesis

using assms hoop-order-def total-order by auto
next

case 2
then
show ?thesis

using assms(1) ord-top by auto
qed

qed

The following results can be found in Lemma 3.3 in [5].
lemma LEMMA-3-3-1 :

assumes a ∈ A−{1A} b ∈ A c ∈ A b ∈ F a c ≤A b
shows c ∈ F a

proof −
from assms
have (a →A c) ≤A (a →A b)

using DiffD1 F-equiv ord-imp-mono-B by metis
then
have (a →A c) ≤A b

using assms(1 ,4 ,5) by simp
then
have (a →A c) →A c = ((a →A c) ∗A ((a →A c) →A b)) →A c

using assms(1 ,3) hoop-order-def imp-closed by force
also
have . . . = (b ∗A (b →A (a →A c))) →A c

using assms divisibility imp-closed by simp
also
have . . . = (b →A (a →A c)) →A (b →A c)

using DiffD1 assms(1−3) imp-closed swap residuation by metis
also
have . . . = ((a →A b) →A (a →A c)) →A (b →A c)

using assms(1 ,4) by simp
also
have . . . = (((a →A b) ∗A a) →A c) →A (b →A c)

using assms(1 ,3 ,4) residuation by simp
also
have . . . = (((b →A a) ∗A b) →A c) →A (b →A c)

using assms(1 ,2) divisibility imp-closed mult-comm by simp
also
have . . . = (b →A c) →A (b →A c)

using F-bound assms(1 ,4) hoop-order-def by simp
also
have . . . = 1A

using F-bound assms hoop-order-def imp-closed by simp

34

finally
have (a →A c) ≤A c

using hoop-order-def by simp
moreover
have c ≤A (a →A c)

using assms(1 ,3) ord-A by simp
ultimately
have a →A c = c

using assms(1 ,3) imp-closed ord-antisymm by simp
moreover
have c ∈ A−{1A}

using assms(1 ,3−5) hoop-order-def imp-one-C by auto
ultimately
show ?thesis

using F-equiv assms(1) by blast
qed

lemma LEMMA-3-3-2 :
assumes a ∈ A−{1A} b ∈ A−{1A} F a = F b
shows F a = F (a ∗A b)

proof
show F a ⊆ F (a ∗A b)
proof

fix c
assume c ∈ F a
then
have (a ∗A b) →A c = b →A (a →A c)

using DiffD1 F-subset assms(1 ,2) in-mono swap residuation by metis
also
have . . . = b →A c

using ‹c ∈ F a› assms(1) by auto
also
have . . . = c

using ‹c ∈ F a› assms(2 ,3) by auto
finally
show c ∈ F (a ∗A b)

using ‹c ∈ F a› assms(1 ,2) mult-C by auto
qed

next
show F (a ∗A b) ⊆ F a
proof

fix c
assume c ∈ F (a ∗A b)
then
have (a ∗A b) ≤A a

using assms(1 ,2) mult-A by auto
then
have (a →A c) ≤A ((a ∗A b) →A c)

using DiffD1 F-subset ‹c ∈ F (a ∗A b)› assms mult-closed

35

ord-imp-anti-mono-B subsetD
by meson

moreover
have (a ∗A b) →A c = c

using ‹c ∈ F (a ∗A b)› assms(1 ,2) mult-C by auto
ultimately
have (a →A c) ≤A c

by simp
moreover
have c ≤A (a →A c)

using DiffD1 F-subset ‹c ∈ F (a ∗A b)› assms(1 ,2) insert-Diff
insert-subset mult-closed ord-A

by metis
ultimately
show c ∈ F a

using ‹c ∈ F (a ∗A b)› assms(1 ,2) imp-closed mult-C ord-antisymm by auto
qed

qed

lemma LEMMA-3-3-3 :
assumes a ∈ A−{1A} b ∈ A−{1A} a ≤A b
shows F a ⊆ F b

proof
fix c
assume c ∈ F a
then
have (b →A c) ≤A (a →A c)

using DiffD1 F-subset assms in-mono ord-imp-anti-mono-B by meson
moreover
have a →A c = c

using ‹c ∈ F a› assms(1) by auto
ultimately
have (b →A c) ≤A c

by simp
moreover
have c ≤A (b →A c)

using ‹c ∈ F a› assms(1 ,2) ord-A by force
ultimately
show c ∈ F b

using ‹c ∈ F a› assms(1 ,2) imp-closed ord-antisymm by auto
qed

lemma LEMMA-3-3-4 :
assumes a ∈ A−{1A} b ∈ A−{1A} a <A b F a 6= F b
shows a ∈ F b

proof −
from assms
obtain c where c ∈ F b ∧ c /∈ F a

using LEMMA-3-3-3 hoop-order-strict-def by auto

36

then
have witness: c ∈ A−{1A} ∧ b →A c = c ∧ c <A (a →A c)

using DiffD1 assms(1 ,2) hoop-order-strict-def ord-A by auto
then
have (a →A c) →A c ∈ F b

using DiffD1 F-equiv assms(1 ,2) imp-closed swap ord-D by metis
moreover
have a ≤A ((a →A c) →A c)

using assms(1) ord-C witness by force
ultimately
show a ∈ F b

using Diff-iff LEMMA-3-3-1 assms(1 ,2) imp-closed witness by metis
qed

lemma LEMMA-3-3-5 :
assumes a ∈ A−{1A} b ∈ A−{1A} F a 6= F b
shows a ∗A b = a ∧A b

proof −
have a <A b ∨ b <A a

using DiffD1 assms hoop-order-strict-def total-order by metis
then
have a ∈ F b ∨ b ∈ F a

using LEMMA-3-3-4 assms by metis
then
have a ∗A b = (b →A a) ∗A b ∨ a ∗A b = a ∗A (a →A b)

using assms(1 ,2) by force
then
show ?thesis

using assms(1 ,2) divisibility hoop-inf-def imp-closed mult-comm by auto
qed

lemma LEMMA-3-3-6 :
assumes a ∈ A−{1A} b ∈ A−{1A} a <A b F a = F b
shows F (b →A a) = F b

proof −
have a /∈ F a

using assms(1) DiffD1 F-equiv imp-reflex by metis
then
have a <A (b →A a)

using assms(1 ,2 ,4) hoop-order-strict-def ord-A by auto
moreover
have b ∗A (b →A a) = a

using assms(1−3) divisibility hoop-order-def hoop-order-strict-def by simp
moreover
have b ≤A (b →A a) ∨ (b →A a) ≤A b

using DiffD1 assms(1 ,2) imp-closed ord-reflex total-order by metis
ultimately
have b ∗A (b →A a) 6= b ∧A (b →A a)
using assms(1−3) hoop-order-strict-def imp-closed inf-comm inf-order by force

37

then
show F (b →A a) = F b

using LEMMA-3-3-5 assms(1−3) imp-closed ord-D by blast
qed

4.3 Properties of (∼F)

4.3.1 (∼F) is an equivalence relation
lemma rel-F-reflex:

assumes a ∈ A
shows a ∼F a
using rel-F-def by auto

lemma rel-F-symm:
assumes a ∈ A b ∈ A a ∼F b
shows b ∼F a
using assms rel-F-def by auto

lemma rel-F-trans:
assumes a ∈ A b ∈ A c ∈ A a ∼F b b ∼F c
shows a ∼F c
using assms rel-F-def by auto

4.3.2 Equivalent definition
lemma rel-F-equiv:

assumes a ∈ A b ∈ A
shows (a ∼F b) = (F a = F b)

proof
assume a ∼F b
then
consider (1) a 6= 1A b 6= 1A

| (2) a = 1A b = 1A

using assms imp-one-C rel-F-def by fastforce
then
show F a = F b
proof(cases)

case 1
then
show ?thesis

using ‹a ∼F b› assms rel-F-def by auto
next

case 2
then
show ?thesis

by simp
qed

next
assume F a = F b

38

then
consider (1) a 6= 1A b 6= 1A

| (2) a = 1A b = 1A

using F-of-one assms by blast
then
show a ∼F b
proof(cases)

case 1
then
show ?thesis

using ‹F a = F b› assms imp-one-A imp-one-C rel-F-def by auto
next

case 2
then
show ?thesis

using rel-F-reflex by simp
qed

qed

4.3.3 Properties of equivalence classes given by (∼F)

lemma class-one: π 1A = {1A}
using imp-one-C rel-F-canonical-map-def rel-F-def by auto

lemma classes-subsets:
assumes a ∈ A
shows π a ⊆ A
using rel-F-canonical-map-def by simp

lemma classes-not-empty:
assumes a ∈ A
shows a ∈ π a
using assms rel-F-canonical-map-def rel-F-reflex by simp

corollary class-not-one:
assumes a ∈ A−{1A}
shows π a 6= {1A}
using assms classes-not-empty by blast

lemma classes-disjoint:
assumes a ∈ A b ∈ A π a ∩ π b 6= ∅
shows π a = π b
using assms rel-F-canonical-map-def rel-F-def rel-F-trans by force

lemma classes-cover : A = {x. ∃ y ∈ A. x ∈ π y}
using classes-subsets classes-not-empty by auto

lemma classes-convex:
assumes a ∈ A b ∈ A c ∈ A d ∈ A b ∈ π a c ∈ π a b ≤A d d ≤A c

39

shows d ∈ π a
proof −

have eq-F : F a = F b ∧ F a = F c
using assms(1 ,5 ,6) rel-F-canonical-map-def rel-F-equiv by auto

from assms
consider (1) c = 1A

| (2) c 6= 1A

by auto
then
show ?thesis
proof(cases)

case 1
then
have b = 1A

using F-of-one eq-F assms(2) by auto
then
show ?thesis

using 1 assms(2 ,4 ,5 ,7 ,8) ord-antisymm by blast
next

case 2
then
have b 6= 1A ∧ c 6= 1A ∧ d 6= 1A

using eq-F assms(3 ,8) ord-antisymm ord-top by auto
then
have F b ⊆ F d ∧ F d ⊆ F c

using LEMMA-3-3-3 assms(2−4 ,7 ,8) by simp
then
have F a = F d

using eq-F by blast
then
have a ∼F d

using assms(1 ,4) rel-F-equiv by simp
then
show ?thesis

using assms(4) rel-F-canonical-map-def by simp
qed

qed

lemma related-iff-same-class:
assumes a ∈ A b ∈ A
shows a ∼F b ←→ π a = π b

proof
assume a ∼F b
then
have a = 1A ←→ b = 1A

using assms imp-one-C imp-reflex rel-F-def by metis
then
have (a = 1A ∧ b = 1A) ∨ (a 6= 1A ∧ b 6= 1A)

by auto

40

then
show π a = π b

using ‹a ∼F b› assms rel-F-canonical-map-def rel-F-def rel-F-symm by force
next

show π a = π b =⇒ a ∼F b
using assms(2) classes-not-empty rel-F-canonical-map-def by auto

qed

corollary same-F-iff-same-class:
assumes a ∈ A b ∈ A
shows F a = F b ←→ π a = π b
using assms rel-F-equiv related-iff-same-class by auto

end

4.4 Irreducible hoops: definition and equivalences

A totally ordered hoop is irreducible if it cannot be written as the ordinal
sum of two nontrivial totally ordered hoops.
locale totally-ordered-irreducible-hoop = totally-ordered-hoop +

assumes irreducible: @ B C .
(A = B ∪ C) ∧
({1A} = B ∩ C) ∧
(∃ y ∈ B. y 6= 1A) ∧
(∃ y ∈ C . y 6= 1A) ∧
(hoop B (∗A) (→A) 1A) ∧
(hoop C (∗A) (→A) 1A) ∧
(∀ x ∈ B−{1A}. ∀ y ∈ C . x ∗A y = x) ∧
(∀ x ∈ B−{1A}. ∀ y ∈ C . x →A y = 1A) ∧
(∀ x ∈ C . ∀ y ∈ B. x →A y = y)

lemma irr-test:
assumes totally-ordered-hoop A PA RA a

¬totally-ordered-irreducible-hoop A PA RA a
shows ∃ B C .
(A = B ∪ C) ∧
({a} = B ∩ C) ∧
(∃ y ∈ B. y 6= a) ∧
(∃ y ∈ C . y 6= a) ∧
(hoop B PA RA a) ∧
(hoop C PA RA a) ∧
(∀ x ∈ B−{a}. ∀ y ∈ C . PA x y = x) ∧
(∀ x ∈ B−{a}. ∀ y ∈ C . RA x y = a) ∧
(∀ x ∈ C . ∀ y ∈ B. RA x y = y)

using assms unfolding totally-ordered-irreducible-hoop-def
totally-ordered-irreducible-hoop-axioms-def

by force

locale totally-ordered-one-fixed-hoop = totally-ordered-hoop +

41

assumes one-fixed: x ∈ A =⇒ y ∈ A =⇒ y →A x = x =⇒ x = 1A ∨ y = 1A

locale totally-ordered-wajsberg-hoop = totally-ordered-hoop + wajsberg-hoop

context totally-ordered-hoop
begin

The following result can be found in [1] (see Lemma 3.5).
lemma not-one-fixed-implies-not-irreducible:

assumes ¬totally-ordered-one-fixed-hoop A (∗A) (→A) 1A

shows ¬totally-ordered-irreducible-hoop A (∗A) (→A) 1A

proof −
have ∃ x y. x ∈ A ∧ y ∈ A ∧ y →A x = x ∧ x 6= 1A ∧ y 6= 1A

using assms totally-ordered-hoop-axioms totally-ordered-one-fixed-hoop.intro
totally-ordered-one-fixed-hoop-axioms.intro

by meson
then
obtain b0 c0 where witnesses: b0 ∈ A−{1A} ∧ c0 ∈ A−{1A} ∧ b0 →A c0 = c0

by auto
define B C where B = (F b0) ∪ {1A} and C = A−(F b0)

have B-mult-b0 : b ∗A b0 = b if b ∈ B−{1A} for b
proof −

have upper-bound: b ≤A b0 if b ∈ B−{1A} for b
using B-def F-bound witnesses that by force

then
have b ∗A b0 = b0 ∗A b

using B-def witnesses mult-comm that by simp
also
have . . . = b0 ∗A (b0 →A b)

using B-def witnesses that by fastforce
also
have . . . = b ∗A (b →A b0)

using B-def witnesses that divisibility by auto
also
have . . . = b

using B-def hoop-order-def that upper-bound witnesses by auto
finally
show b ∗A b0 = b

by auto
qed

have C-upper-set: a ∈ C if a ∈ A c ∈ C c ≤A a for a c
proof −

consider (1) a 6= 1A

| (2) a = 1A

by auto
then
show a ∈ C

42

proof(cases)
case 1
then
have a /∈ C =⇒ a ∈ F b0

using C-def that(1) by blast
then
have a /∈ C =⇒ c ∈ F b0

using C-def DiffD1 witnesses LEMMA-3-3-1 that by metis
then
show ?thesis

using C-def that(2) by blast
next

case 2
then
show ?thesis

using C-def witnesses by auto
qed

qed

have B-union-C : A = B ∪ C
using B-def C-def witnesses one-closed by auto

moreover

have B-inter-C : {1A} = B ∩ C
using B-def C-def witnesses by force

moreover

have B-not-trivial: ∃ y ∈ B. y 6= 1A

proof −
have c0 ∈ B ∧ c0 6= 1A

using B-def witnesses by auto
then
show ?thesis

by auto
qed

moreover

have C-not-trivial: ∃ y ∈ C . y 6= 1A

proof −
have b0 ∈ C ∧ b0 6= 1A

using C-def witnesses by auto
then
show ?thesis

by auto
qed

43

moreover

have B-mult-closed: a ∗A b ∈ B if a ∈ B b ∈ B for a b
proof −

from that
consider (1) a ∈ F b0
| (2) a = 1A

using B-def by blast
then
show a ∗A b ∈ B
proof(cases)

case 1
then
have a ∈ A ∧ a ∗A b ∈ A ∧ (a ∗A b) ≤A a

using B-union-C that mult-A mult-closed by blast
then
have a ∗A b ∈ F b0

using 1 witnesses LEMMA-3-3-1 by metis
then
show ?thesis

using B-def by simp
next

case 2
then
show ?thesis

using B-union-C that(2) by simp
qed

qed

moreover

have B-imp-closed: a →A b ∈ B if a ∈ B b ∈ B for a b
proof −

from that
consider (1) a = 1A ∨ b = 1A ∨ (a ∈ F b0 ∧ b ∈ F b0 ∧ a →A b = 1A)
| (2) a ∈ F b0 b ∈ F b0 a →A b 6= 1A

using B-def by fastforce
then
show a →A b ∈ B
proof(cases)

case 1
then
have a →A b = b ∨ a →A b = 1A

using B-union-C that imp-one-C imp-one-top by blast
then
show ?thesis

using B-inter-C that(2) by fastforce
next

case 2

44

then
have a ∗A b0 = a

using B-def B-mult-b0 witnesses by auto
then
have b0 →A (a →A b) = (a →A b)

using B-union-C witnesses that mult-comm residuation by simp
then
have a →A b ∈ F b0

using 2 (3) B-union-C F-equiv witnesses that imp-closed by auto
then
show ?thesis

using B-def by auto
qed

qed

moreover

have B-hoop: hoop B (∗A) (→A) 1A

proof
show x ∗A y ∈ B if x ∈ B y ∈ B for x y

using B-mult-closed that by simp
next

show x →A y ∈ B if x ∈ B y ∈ B for x y
using B-imp-closed that by simp

next
show 1A ∈ B

using B-def by simp
next

show x ∗A y = y ∗A x if x ∈ B y ∈ B for x y
using B-union-C mult-comm that by simp

next
show x ∗A (y ∗A z) = (x ∗A y) ∗A z if x ∈ B y ∈ B z ∈ B for x y z

using B-union-C mult-assoc that by simp
next

show x ∗A 1A = x if x ∈ B for x
using B-union-C that by simp

next
show x →A x = 1A if x ∈ B for x

using B-union-C that by simp
next

show x ∗A (x →A y) = y ∗A (y →A x) if x ∈ B y ∈ B for x y
using B-union-C divisibility that by simp

next
show x →A (y →A z) = (x ∗A y) →A z if x ∈ B y ∈ B z ∈ B for x y z

using B-union-C residuation that by simp
qed

moreover

45

have C-imp-B: c →A b = b if b ∈ B c ∈ C for b c
proof −

from that
consider (1) b ∈ F b0 c 6= 1A

| (2) b = 1A ∨ c = 1A

using B-def by blast
then
show c →A b = b
proof(cases)

case 1
have b0 →A ((c →A b) →A b) = (c →A b) →A (b0 →A b)

using B-union-C witnesses that imp-closed swap by simp
also
have . . . = (c →A b) →A b

using 1 (1) witnesses by auto
finally
have (c →A b) →A b ∈ F b0 if (c →A b) →A b 6= 1A

using B-union-C F-equiv witnesses ‹b ∈ B› ‹c ∈ C › that imp-closed by auto
moreover
have c ≤A ((c →A b) →A b)

using B-union-C that ord-C by simp
ultimately
have (c →A b) →A b = 1A

using B-def B-union-C C-def C-upper-set that(2) by blast
moreover
have b →A (c →A b) = 1A

using B-union-C that imp-A by simp
ultimately
show ?thesis

using B-union-C that imp-closed ord-antisymm-equiv by blast
next

case 2
then
show ?thesis

using B-union-C that imp-one-C imp-one-top by auto
qed

qed

moreover

have B-imp-C : b →A c = 1A if b ∈ B−{1A} c ∈ C for b c
proof −

from that
have b ≤A c ∨ c ≤A b

using total-order B-union-C by blast
moreover
have c →A b = b

using C-imp-B that by simp
ultimately

46

show b →A c = 1A

using that(1) hoop-order-def by force
qed

moreover

have B-mult-C : b ∗A c = b if b ∈ B−{1A} c ∈ C for b c
proof −

have b = b ∗A 1A

using that(1) B-union-C by fastforce
also
have . . . = b ∗A (b →A c)

using B-imp-C that by blast
also
have . . . = c ∗A (c →A b)

using that divisibility B-union-C by simp
also
have . . . = c ∗A b

using C-imp-B that by auto
finally
show b ∗A c = b

using that mult-comm B-union-C by auto
qed

moreover

have C-mult-closed: c ∗A d ∈ C if c ∈ C d ∈ C for c d
proof −

consider (1) c 6= 1A d 6= 1A

| (2) c = 1A ∨ d = 1A

by auto
then
show c ∗A d ∈ C
proof(cases)

case 1
have c ∗A d ∈ F b0 if c ∗A d /∈ C

using C-def ‹c ∈ C › ‹d ∈ C › mult-closed that by force
then
have c →A (c ∗A d) ∈ F b0 if c ∗A d /∈ C

using B-def C-imp-B ‹c ∈ C › that by simp
moreover
have d ≤A (c →A (c ∗A d))

using C-def DiffD1 that ord-reflex ord-residuation residuation
mult-closed mult-comm

by metis
moreover
have c →A (c ∗A d) ∈ A ∧ d ∈ A

using C-def Diff-iff that imp-closed mult-closed by metis
ultimately

47

have d ∈ F b0 if c ∗A d /∈ C
using witnesses LEMMA-3-3-1 that by blast

then
show ?thesis

using C-def that(2) by blast
next

case 2
then
show ?thesis

using B-union-C that mult-neutr mult-neutr-2 by auto
qed

qed

moreover

have C-imp-closed: c →A d ∈ C if c ∈ C d ∈ C for c d
using C-upper-set imp-closed ord-A B-union-C that by blast

moreover

have C-hoop: hoop C (∗A) (→A) 1A

proof
show x ∗A y ∈ C if x ∈ C y ∈ C for x y

using C-mult-closed that by simp
next

show x →A y ∈ C if x ∈ C y ∈ C for x y
using C-imp-closed that by simp

next
show 1A ∈ C

using B-inter-C by auto
next

show x ∗A y = y ∗A x if x ∈ C y ∈ C for x y
using B-union-C mult-comm that by simp

next
show x ∗A (y ∗A z) = (x ∗A y) ∗A z if x ∈ C y ∈ C z ∈ C for x y z

using B-union-C mult-assoc that by simp
next

show x ∗A 1A = x if x ∈ C for x
using B-union-C that by simp

next
show x →A x = 1A if x ∈ C for x

using B-union-C that by simp
next

show x ∗A (x →A y) = y ∗A (y →A x) if x ∈ C y ∈ C for x y
using B-union-C divisibility that by simp

next
show x →A (y →A z) = (x ∗A y) →A z if x ∈ C y ∈ C z ∈ C for x y z

using B-union-C residuation that by simp
qed

48

ultimately

have ∃ B C .
(A = B ∪ C) ∧
({1A} = B ∩ C) ∧
(∃ y ∈ B. y 6= 1A) ∧
(∃ y ∈ C . y 6= 1A) ∧
(hoop B (∗A) (→A) 1A) ∧
(hoop C (∗A) (→A) 1A) ∧
(∀ x ∈ B−{1A}. ∀ y ∈ C . x ∗A y = x) ∧
(∀ x ∈ B−{1A}. ∀ y ∈ C . x →A y = 1A) ∧
(∀ x ∈ C . ∀ y ∈ B. x →A y = y)
by (smt (verit))

then
show ?thesis

using totally-ordered-irreducible-hoop.irreducible by (smt (verit))
qed

Next result can be found in [2] (see Proposition 2.2).
lemma one-fixed-implies-wajsberg:

assumes totally-ordered-one-fixed-hoop A (∗A) (→A) 1A

shows totally-ordered-wajsberg-hoop A (∗A) (→A) 1A

proof
have (a →A b) →A b = (b →A a) →A a if a ∈ A b ∈ A a <A b for a b
proof −

from that
have (((b →A a) →A a) →A b) →A (b →A a) = b →A a ∧ b →A a 6= 1A

using imp-D ord-D by simp
then
have ((b →A a) →A a) →A b = 1A

using assms that(1 ,2) imp-closed totally-ordered-one-fixed-hoop.one-fixed
by metis

moreover
have b →A ((b →A a) →A a) = 1A

using hoop-order-def that(1 ,2) ord-C by simp
ultimately
have (b →A a) →A a = b

using imp-closed ord-antisymm-equiv hoop-axioms that(1 ,2) by metis
also
have . . . = (a →A b) →A b

using hoop-order-def hoop-order-strict-def that(2 ,3) imp-one-C by force
finally
show (a →A b) →A b = (b →A a) →A a

by auto
qed
then
show (x →A y) →A y = (y →A x) →A x if x ∈ A y ∈ A for x y

using total-order hoop-order-strict-def that by metis

49

qed

The proof of the following result can be found in [1] (see Theorem 3.6).
lemma not-irreducible-implies-not-wajsberg:

assumes ¬totally-ordered-irreducible-hoop A (∗A) (→A) 1A

shows ¬totally-ordered-wajsberg-hoop A (∗A) (→A) 1A

proof −
have ∃ B C .
(A = B ∪ C) ∧
({1A} = B ∩ C) ∧
(∃ y ∈ B. y 6= 1A) ∧
(∃ y ∈ C . y 6= 1A) ∧
(hoop B (∗A) (→A) 1A) ∧
(hoop C (∗A) (→A) 1A) ∧
(∀ x ∈ B−{1A}. ∀ y ∈ C . x ∗A y = x) ∧
(∀ x ∈ B−{1A}. ∀ y ∈ C . x →A y = 1A) ∧
(∀ x ∈ C . ∀ y ∈ B. x →A y = y)
using irr-test[OF totally-ordered-hoop-axioms] assms by auto

then
obtain B C where H :
(A = B ∪ C) ∧
({1A} = B ∩ C) ∧
(∃ y ∈ B. y 6= 1A) ∧
(∃ y ∈ C . y 6= 1A) ∧
(∀ x ∈ B−{1A}. ∀ y ∈ C . x →A y = 1A) ∧
(∀ x ∈ C . ∀ y ∈ B. x →A y = y)
by blast

then
obtain b c where assms: b ∈ B−{1A} ∧ c ∈ C−{1A}

by auto
then
have b →A c = 1A

using H by simp
then
have (b →A c) →A c = c

using H assms imp-one-C by blast
moreover
have (c →A b) →A b = 1A

using assms H by force
ultimately
have (b →A c) →A c 6= (c →A b) →A b

using assms by force
moreover
have b ∈ A ∧ c ∈ A

using assms H by blast
ultimately
show ?thesis

using totally-ordered-wajsberg-hoop.axioms(2) wajsberg-hoop.T by meson
qed

50

Summary of all results in this subsection:
theorem one-fixed-equivalent-to-wajsberg:

shows totally-ordered-one-fixed-hoop A (∗A) (→A) 1A ≡
totally-ordered-wajsberg-hoop A (∗A) (→A) 1A

using not-irreducible-implies-not-wajsberg not-one-fixed-implies-not-irreducible
one-fixed-implies-wajsberg

by linarith

theorem wajsberg-equivalent-to-irreducible:
shows totally-ordered-wajsberg-hoop A (∗A) (→A) 1A ≡

totally-ordered-irreducible-hoop A (∗A) (→A) 1A

using not-irreducible-implies-not-wajsberg not-one-fixed-implies-not-irreducible
one-fixed-implies-wajsberg

by linarith

theorem irreducible-equivalent-to-one-fixed:
shows totally-ordered-irreducible-hoop A (∗A) (→A) 1A ≡

totally-ordered-one-fixed-hoop A (∗A) (→A) 1A

using one-fixed-equivalent-to-wajsberg wajsberg-equivalent-to-irreducible
by simp

end

4.5 Decomposition
locale tower-of-irr-hoops = tower-of-hoops +

assumes family-of-irr-hoops: i ∈ I =⇒
totally-ordered-irreducible-hoop (�i) (∗i) (→i) 1S

locale tower-of-nontrivial-irr-hoops = tower-of-irr-hoops +
assumes nontrivial: i ∈ I =⇒ ∃ x ∈ �i. x 6= 1S

context totally-ordered-hoop
begin

4.5.1 Definition of index set I
definition index-set :: (′a set) set (‹I ›)

where I = {y. (∃ x ∈ A. π x = y)}

lemma indexes-subsets:
assumes i ∈ I
shows i ⊆ A
using index-set-def assms rel-F-canonical-map-def by auto

lemma indexes-not-empty:
assumes i ∈ I
shows i 6= ∅
using index-set-def assms classes-not-empty by blast

51

lemma indexes-disjoint:
assumes i ∈ I j ∈ I i 6= j
shows i ∩ j = ∅

proof −
obtain a b where a ∈ A ∧ b ∈ A ∧ a 6= b ∧ i = π a ∧ j = π b

using index-set-def assms by auto
then
show ?thesis

using assms(3) classes-disjoint by auto
qed

lemma indexes-cover : A = {x. ∃ i ∈ I . x ∈ i}
using classes-subsets classes-not-empty index-set-def by auto

lemma indexes-class-of-elements:
assumes i ∈ I a ∈ A a ∈ i
shows π a = i

proof −
obtain c where class-element: c ∈ A ∧ i = π c

using assms(1) index-set-def by auto
then
have a ∼F c

using assms(3) rel-F-canonical-map-def rel-F-symm by auto
then
show ?thesis

using assms(2) class-element related-iff-same-class by simp
qed

lemma indexes-convex:
assumes i ∈ I a ∈ i b ∈ i d ∈ A a ≤A d d ≤A b
shows d ∈ i

proof −
have a ∈ A ∧ b ∈ A ∧ d ∈ A ∧ i = π a

using assms(1−4) indexes-class-of-elements indexes-subsets by blast
then
show ?thesis

using assms(2−6) classes-convex by auto
qed

4.5.2 Definition of total partial order over I

Since each equivalence class is convex, (≤A) induces a total order on I.
function index-order :: (′a set) ⇒ (′a set) ⇒ bool (infix ‹≤I› 60) where

x ≤I y = ((x = y) ∨ (∀ v ∈ x. ∀ w ∈ y. v ≤A w)) if x ∈ I y ∈ I
| x ≤I y = undefined if x /∈ I ∨ y /∈ I

by auto
termination by lexicographic-order

52

definition index-order-strict (infix ‹<I› 60)
where x <I y = (x ≤I y ∧ x 6= y)

lemma index-ord-reflex:
assumes i ∈ I
shows i ≤I i
using assms by simp

lemma index-ord-antisymm:
assumes i ∈ I j ∈ I i ≤I j j ≤I i
shows i = j

proof −
have i = j ∨ (∀ a ∈ i. ∀ b ∈ j. a ≤A b ∧ b ≤A a)

using assms by auto
then
have i = j ∨ (∀ a ∈ i. ∀ b ∈ j. a = b)

using assms(1 ,2) indexes-subsets insert-Diff insert-subset ord-antisymm
by metis

then
show ?thesis

using assms(1 ,2) indexes-not-empty by force
qed

lemma index-ord-trans:
assumes i ∈ I j ∈ I k ∈ I i ≤I j j ≤I k
shows i ≤I k

proof −
consider (1) i 6= j j 6= k
| (2) i = j ∨ j = k
by auto

then
show i ≤I k
proof(cases)

case 1
then
have (∀ a ∈ i. ∀ b ∈ j. a ≤A b) ∧ (∀ b ∈ j. ∀ c ∈ k. b ≤A c)

using assms by force
moreover
have j 6= ∅

using assms(2) indexes-not-empty by simp
ultimately
have ∀ a ∈ i. ∀ c ∈ k. ∃ b ∈ j. a ≤A b ∧ b ≤A c

using all-not-in-conv by meson
then
have ∀ a ∈ i. ∀ c ∈ k. a ≤A c

using assms indexes-subsets ord-trans subsetD by metis
then
show ?thesis

using assms(1 ,3) by simp

53

next
case 2
then
show ?thesis

using assms(4 ,5) by auto
qed

qed

lemma index-order-total :
assumes i ∈ I j ∈ I ¬(j ≤I i)
shows i ≤I j

proof −
have i 6= j

using assms(1 ,3) by auto
then
have disjoint: i ∩ j = ∅

using assms(1 ,2) indexes-disjoint by simp
moreover
have ∃ x ∈ j. ∃ y ∈ i. ¬(x ≤A y)

using assms index-order .simps(1) by blast
moreover
have subsets: i ⊆ A ∧ j ⊆ A

using assms indexes-subsets by simp
ultimately
have ∃ x ∈ j. ∃ y ∈ i. y <A x

using total-order hoop-order-strict-def insert-absorb insert-subset by metis
then
obtain ai aj where witnesses: ai ∈ i ∧ aj ∈ j ∧ ai <

A aj

using assms(1 ,2) total-order hoop-order-strict-def indexes-subsets by metis
then
have a ≤A b if a ∈ i b ∈ j for a b
proof

from that
consider (1) ai ≤A a aj ≤A b
| (2) a <A ai b <A aj

| (3) ai ≤A a b <A aj

| (4) a <A ai aj ≤A b
using total-order hoop-order-strict-def subset-eq subsets witnesses by metis

then
show a ≤A b
proof(cases)

case 1
then
have ai ≤A aj ∧ aj ≤A b ∧ b ≤A a if b <A a

using hoop-order-strict-def that witnesses by blast
then
have ai ≤A b ∧ b ≤A a if b <A a

using ‹b ∈ j› in-mono ord-trans subsets that witnesses by meson
then

54

have b ∈ i if b <A a
using assms(1) ‹a ∈ i› ‹b ∈ j› indexes-convex subsets that witnesses
by blast

then
show a ≤A b

using disjoint disjoint-iff-not-equal hoop-order-strict-def subset-eq
subsets that total-order

by metis
next

case 2
then
have b ≤A a ∧ a ≤A ai ∧ ai ≤A aj if b <A a

using hoop-order-strict-def that witnesses by blast
then
have b ≤A a ∧ a ≤A aj if b <A a

using ‹a ∈ i› ord-trans subset-eq subsets that witnesses by metis
then
have a ∈ j if b <A a

using assms(2) ‹a ∈ i› ‹b ∈ j› indexes-convex subsets that witnesses
by blast

then
show a ≤A b

using disjoint disjoint-iff-not-equal hoop-order-strict-def subset-eq
subsets that total-order

by metis
next

case 3
have b ≤A ai ∧ ai ≤A aj if b ≤A ai

using hoop-order-strict-def that witnesses by auto
then
have ai ∈ j if b ≤A ai

using assms(2) ‹b ∈ j› indexes-convex subsets that witnesses by blast
moreover
have ai /∈ j

using disjoint witnesses by blast
ultimately
have ai <

A b
using total-order hoop-order-strict-def ‹b ∈ j› subsets witnesses by blast

then
have ai ≤A b ∧ b ≤A a if b <A a

using hoop-order-strict-def that by auto
then
have b ∈ i if b <A a

using assms(1) ‹a ∈ i› ‹b ∈ j› indexes-convex subsets that witnesses
by blast

then
show a ≤A b

using disjoint disjoint-iff-not-equal hoop-order-strict-def subset-eq
subsets that total-order

55

by metis
next

case 4
then
show a ≤A b

using hoop-order-strict-def in-mono ord-trans subsets that witnesses
by meson

qed
qed
then
show i ≤I j

using assms by simp
qed

sublocale total-poset-on I (≤I) (<I)
proof

show I 6= ∅
using indexes-cover by auto

next
show reflp-on I (≤I)

using index-ord-reflex reflp-onI by blast
next

show antisymp-on I (≤I)
using antisymp-on-def index-ord-antisymm by blast

next
show transp-on I (≤I)

using index-ord-trans transp-on-def by blast
next

show x <I y = (x ≤I y ∧ x 6= y) if x ∈ I y ∈ I for x y
using index-order-strict-def by auto

next
show totalp-on I (≤I)

using index-order-total totalp-onI by metis
qed

4.5.3 Definition of universes
definition universes :: ′a set ⇒ ′a set (‹UNIA›)

where UNIA x = x ∪ {1A}

abbreviation (uniA-i)
uniA-i :: [′a set] ⇒ (′a set) (‹(�(-))› [61] 60)
where �i ≡ UNIA i

abbreviation (uniA-pi)
uniA-pi :: [′a] ⇒ (′a set) (‹(�π (-))› [61] 60)
where �πx ≡ UNIA (π x)

abbreviation (uniA-pi-one)

56

uniA-pi-one :: ′a set (‹(�π1A)› 60)
where �π1A ≡ UNIA (π 1A)

lemma universes-subsets:
assumes i ∈ I a ∈ �i

shows a ∈ A
using assms universes-def indexes-subsets one-closed by fastforce

lemma universes-not-empty:
assumes i ∈ I
shows �i 6= ∅
using universes-def by simp

lemma universes-almost-disjoint:
assumes i ∈ I j ∈ I i 6= j
shows (�i) ∩ (�j) = {1A}
using assms indexes-disjoint universes-def by auto

lemma universes-cover : A = {x. ∃ i ∈ I . x ∈ �i}
using one-closed indexes-cover universes-def by auto

lemma universes-aux:
assumes i ∈ I a ∈ i
shows �i = π a ∪ {1A}
using assms universes-def universes-subsets indexes-class-of-elements by force

4.5.4 Universes are subhoops of A
lemma universes-one-closed:

assumes i ∈ I
shows 1A ∈ �i

using universes-def by auto

lemma universes-mult-closed:
assumes i ∈ I a ∈ �i b ∈ �i

shows a ∗A b ∈ �i

proof −
consider (1) a 6= 1A b 6= 1A

| (2) a = 1A ∨ b = 1A

by auto
then
show ?thesis
proof(cases)

case 1
then
have UNI-def : �i = π a ∪ {1A} ∧ �i = π b ∪ {1A}

using assms universes-def universes-subsets indexes-class-of-elements
by simp

then

57

have π a = π b
using 1 assms universes-def universes-subsets indexes-class-of-elements
by force

then
have F a = F b

using assms universes-subsets rel-F-equiv related-iff-same-class by meson
then
have F (a ∗A b) = F a

using 1 LEMMA-3-3-2 assms universes-subsets by blast
then
have π a = π (a ∗A b)

using assms universes-subsets mult-closed rel-F-equiv related-iff-same-class
by metis

then
show ?thesis

using UNI-def UnI1 assms classes-not-empty universes-subsets mult-closed
by metis

next
case 2
then
show ?thesis

using assms universes-subsets by auto
qed

qed

lemma universes-imp-closed:
assumes i ∈ I a ∈ �i b ∈ �i

shows a →A b ∈ �i

proof −
from assms
consider (1) a 6= 1A b 6= 1A b <A a
| (2) a = 1A ∨ b = 1A ∨ (a 6= 1A ∧ b 6= 1A ∧ a ≤A b)
using total-order universes-subsets hoop-order-strict-def by auto

then
show ?thesis
proof(cases)

case 1
then
have UNI-def : �i = π a ∪ {1A} ∧ �i = π b ∪ {1A}

using assms universes-def universes-subsets indexes-class-of-elements
by simp

then
have π a = π b

using 1 assms universes-def universes-subsets indexes-class-of-elements
by force

then
have F a = F b

using assms universes-subsets rel-F-equiv related-iff-same-class by simp
then

58

have F (a →A b) = F a
using 1 LEMMA-3-3-6 assms universes-subsets by simp

then
have π a = π (a →A b)

using assms universes-subsets imp-closed same-F-iff-same-class by simp
then
show ?thesis

using UNI-def UnI1 assms classes-not-empty universes-subsets imp-closed
by metis

next
case 2
then
show ?thesis

using assms universes-subsets universes-one-closed hoop-order-def imp-one-A
imp-one-C

by auto
qed

qed

4.5.5 Universes are irreducible hoops
lemma universes-one-fixed:

assumes i ∈ I a ∈ �i b ∈ �i a →A b = b
shows a = 1A ∨ b = 1A

proof −
from assms
have π a = π b if a 6= 1A b 6= 1A

using universes-def universes-subsets indexes-class-of-elements that by force
then
have F a = F b if a 6= 1A b 6= 1A

using assms(1−3) universes-subsets same-F-iff-same-class that by blast
then
have b = 1A if a 6= 1A b 6= 1A

using F-equiv assms universes-subsets fixed-points.cases imp-reflex that by metis
then
show ?thesis

by blast
qed

corollary universes-one-fixed-hoops:
assumes i ∈ I
shows totally-ordered-one-fixed-hoop (�i) (∗A) (→A) 1A

proof
show x ∗A y ∈ �i if x ∈ �i y ∈ �i for x y

using assms universes-mult-closed that by simp
next

show x →A y ∈ �i if x ∈ �i y ∈ �i for x y
using assms universes-imp-closed that by simp

next

59

show 1A ∈ �i

using assms universes-one-closed by simp
next

show x ∗A y = y ∗A x if x ∈ �i y ∈ �i for x y
using assms universes-subsets mult-comm that by simp

next
show x ∗A (y ∗A z) = (x ∗A y) ∗A z if x ∈ �i y ∈ �i z ∈ �i for x y z

using assms universes-subsets mult-assoc that by simp
next

show x ∗A 1A = x if x ∈ �i for x
using assms universes-subsets that by simp

next
show x →A x = 1A if x ∈ �i for x

using assms universes-subsets that by simp
next

show x ∗A (x →A y) = y ∗A (y →A x) if x ∈ �i y ∈ �i for x y
using assms divisibility universes-subsets that by simp

next
show x →A (y →A z) = (x ∗A y) →A z if x ∈ �i y ∈ �i z ∈ �i for x y z

using assms universes-subsets residuation that by simp
next

show x ≤A y ∨ y ≤A x if x ∈ �i y ∈ �i for x y
using assms total-order universes-subsets that by simp

next
show x = 1A ∨ y = 1A if x ∈ �i y ∈ �i y →A x = x for x y

using assms universes-one-fixed that by blast
qed

corollary universes-irreducible-hoops:
assumes i ∈ I
shows totally-ordered-irreducible-hoop (�i) (∗A) (→A) 1A

using assms universes-one-fixed-hoops totally-ordered-hoop.irreducible-equivalent-to-one-fixed
totally-ordered-one-fixed-hoop.axioms(1)

by metis

4.5.6 Some useful results
lemma index-aux:

assumes i ∈ I j ∈ I i <I j a ∈ (�i)−{1A} b ∈ (�j)−{1A}
shows a <A b ∧ ¬(a ∼F b)

proof −
have noteq: i 6= j ∧ x ≤A y if x ∈ i y ∈ j for x y

using assms that index-order-strict-def by fastforce
moreover
have ij-def : i = π a ∧ j = π b

using UnE assms universes-def universes-subsets indexes-class-of-elements
by auto

ultimately
have a <A b

60

using assms(1 ,2 ,4 ,5) classes-not-empty universes-subsets hoop-order-strict-def
by blast

moreover
have i = j if a ∼F b
using assms(1 ,2 ,4 ,5) that universes-subsets ij-def related-iff-same-class by auto

ultimately
show ?thesis

using assms(2 ,3) trichotomy by blast
qed

lemma different-indexes-mult:
assumes i ∈ I j ∈ I i <I j a ∈ (�i)−{1A} b ∈ (�j)−{1A}
shows a ∗A b = a

proof −
have a <A b ∧ ¬(a ∼F b)

using assms index-aux by blast
then
have a <A b ∧ F a 6= F b

using DiffD1 assms(1 ,2 ,4 ,5) universes-subsets rel-F-equiv by meson
then
have a <A b ∧ a ∗A b = a ∧A b

using DiffD1 LEMMA-3-3-5 assms(1 ,2 ,4 ,5) universes-subsets by auto
then
show ?thesis

using assms(1 ,2 ,4 ,5) universes-subsets hoop-order-strict-def inf-order by auto
qed

lemma different-indexes-imp-1 :
assumes i ∈ I j ∈ I i <I j a ∈ (�i)−{1A} b ∈ (�j)−{1A}
shows a →A b = 1A

proof −
have x ≤A y if x ∈ i y ∈ j for x y

using assms(1−3) index-order-strict-def that by fastforce
moreover
have a ∈ i ∧ b ∈ j

using assms(4 ,5) assms(5) universes-def by auto
ultimately
show ?thesis

using hoop-order-def by auto
qed

lemma different-indexes-imp-2 :
assumes i ∈ I j ∈ I i <I j a ∈ (�j)−{1A} b ∈ (�i)−{1A}
shows a →A b = b

proof −
have b <A a ∧ ¬(b ∼F a)

using assms index-aux by blast
then
have b <A a ∧ F b 6= F a

61

using DiffD1 assms(1 ,2 ,4 ,5) universes-subsets rel-F-equiv by metis
then
have b ∈ F a

using LEMMA-3-3-4 assms(1 ,2 ,4 ,5) universes-subsets by simp
then
show ?thesis

using assms(2 ,4 ,5) universes-subsets by fastforce
qed

4.5.7 Definition of multiplications, implications and one
definition mult-map :: ′a set ⇒ (′a ⇒ ′a ⇒ ′a) (‹MULA›)

where MULA x = (∗A)

definition imp-map :: ′a set ⇒ (′a ⇒ ′a ⇒ ′a) (‹IMPA›)
where IMPA x = (→A)

definition sum-one :: ′a (‹1S›)
where 1S = 1A

abbreviation (multA-i)
multA-i :: [′a set] ⇒ (′a ⇒ ′a ⇒ ′a) (‹(∗(-))› [50] 60)
where ∗i ≡ MULA i

abbreviation (impA-i)
impA-i:: [′a set] ⇒ (′a ⇒ ′a ⇒ ′a) (‹(→(-))› [50] 60)
where →i ≡ IMPA i

abbreviation (multA-i-xy)
multA-i-xy :: [′a, ′a set, ′a] ⇒ ′a (‹((-)/ ∗(-) / (-))› [61 , 50 , 61] 60)
where x ∗i y ≡ MULA i x y

abbreviation (impA-i-xy)
impA-i-xy :: [′a, ′a set, ′a] ⇒ ′a (‹((-)/ →(-) / (-))› [61 , 50 , 61] 60)
where x →i y ≡ IMPA i x y

abbreviation (ord-i-xy)
ord-i-xy :: [′a, ′a set, ′a] ⇒ bool (‹((-)/ ≤(-) / (-))› [61 , 50 , 61] 60)
where x ≤i y ≡ hoop.hoop-order (IMPA i) 1S x y

4.5.8 Main result

We prove the main result: a totally ordered hoop is equal to an ordinal sum
of a tower of irreducible hoops.
sublocale A-SUM : tower-of-irr-hoops I (≤I) (<I) UNIA MULA IMPA 1S

proof
show (�i) ∩ (�j) = {1S} if i ∈ I j ∈ I i 6= j for i j

using universes-almost-disjoint sum-one-def that by simp
next

62

show x ∗i y ∈ �i if i ∈ I x ∈ �i y ∈ �i for i x y
using universes-mult-closed mult-map-def that by simp

next
show x →i y ∈ �i if i ∈ I x ∈ �i y ∈ �i for i x y

using universes-imp-closed imp-map-def that by simp
next

show 1S ∈ �i if i ∈ I for i
using universes-one-closed sum-one-def that by simp

next
show x ∗i y = y ∗i x if i ∈ I x ∈ �i y ∈ �i for i x y

using universes-subsets mult-comm mult-map-def that by simp
next

show x ∗i (y ∗i z) = (x ∗i y) ∗i z
if i ∈ I x ∈ �i y ∈ �i z ∈ �i for i x y z
using universes-subsets mult-assoc mult-map-def that by simp

next
show x ∗i 1S = x if i ∈ I x ∈ �i for i x

using universes-subsets sum-one-def mult-map-def that by simp
next

show x →i x = 1S if i ∈ I x ∈ �i for i x
using universes-subsets imp-map-def sum-one-def that by simp

next
show x ∗i (x →i y) = y ∗i (y →i x)

if i ∈ I x ∈ �i y ∈ �i z ∈ �i for i x y z
using divisibility universes-subsets imp-map-def mult-map-def that by simp

next
show x →i (y →i z) = (x ∗i y) →i z

if i ∈ I x ∈ �i y ∈ �i z ∈ �i for i x y z
using universes-subsets imp-map-def mult-map-def residuation that by simp

next
show x ≤i y ∨ y ≤i x if i ∈ I x ∈ �i y ∈ �i for i x y

using total-order universes-subsets imp-map-def sum-one-def that by simp
next

show @ B C .
(�i = B ∪ C) ∧
({1S} = B ∩ C) ∧
(∃ y ∈ B. y 6= 1S) ∧
(∃ y ∈ C . y 6= 1S) ∧
(hoop B (∗i) (→i) 1S) ∧
(hoop C (∗i) (→i) 1S) ∧
(∀ x ∈ B−{1S}. ∀ y ∈ C . x ∗i y = x) ∧
(∀ x ∈ B−{1S}. ∀ y ∈ C . x →i y = 1S) ∧
(∀ x ∈ C . ∀ y ∈ B. x →i y = y)

if i ∈ I for i
using that Un-iff universes-one-fixed-hoops imp-map-def sum-one-def

totally-ordered-one-fixed-hoop.one-fixed
by metis

qed

63

lemma same-uni [simp]: A-SUM .sum-univ = A
using A-SUM .sum-univ-def universes-cover by auto

lemma floor-is-class:
assumes a ∈ A−{1A}
shows A-SUM .floor a = π a

proof −
have a ∈ π a ∧ π a ∈ I

using index-set-def assms classes-not-empty by fastforce
then
show ?thesis
using same-uni A-SUM .floor-prop A-SUM .floor-unique UnCI assms universes-aux

sum-one-def
by metis

qed

lemma same-mult:
assumes a ∈ A b ∈ A
shows a ∗A b = A-SUM .sum-mult a b

proof −
from assms
consider (1) a ∈ A−{1A} b ∈ A−{1A} A-SUM .floor a = A-SUM .floor b
| (2) a ∈ A−{1A} b ∈ A−{1A} A-SUM .floor a <I A-SUM .floor b
| (3) a ∈ A−{1A} b ∈ A−{1A} A-SUM .floor b <I A-SUM .floor a
| (4) a = 1A ∨ b = 1A

using same-uni A-SUM .floor-prop fixed-points.cases sum-one-def trichotomy
by metis

then
show ?thesis
proof(cases)

case 1
then
show ?thesis

using A-SUM .sum-mult.simps(1) sum-one-def mult-map-def by auto
next

case 2
define i j where i = A-SUM .floor a and j = A-SUM .floor b
then
have i ∈ I ∧ j ∈ I ∧ a ∈ (�i)−{1A} ∧ b ∈ (�j)−{1A}

using 2 (1 ,2) A-SUM .floor-prop sum-one-def by auto
then
have a ∗A b = a

using 2 (3) different-indexes-mult i-def j-def by blast
moreover
have A-SUM .sum-mult a b = a

using 2 A-SUM .sum-mult.simps(2) sum-one-def by simp
ultimately
show ?thesis

by simp

64

next
case 3
define i j where i = A-SUM .floor a and j = A-SUM .floor b
then
have i ∈ I ∧ j ∈ I ∧ a ∈ (�i)−{1A} ∧ b ∈ (�j)−{1A}

using 3 (1 ,2) A-SUM .floor-prop sum-one-def by auto
then
have a ∗A b = b

using 3 (3) assms different-indexes-mult i-def j-def mult-comm by metis
moreover
have A-SUM .sum-mult a b = b

using 3 A-SUM .sum-mult.simps(3) sum-one-def by simp
ultimately
show ?thesis

by simp
next

case 4
then
show ?thesis

using A-SUM .mult-neutr A-SUM .mult-neutr-2 assms sum-one-def by force
qed

qed

lemma same-imp:
assumes a ∈ A b ∈ A
shows a →A b = A-SUM .sum-imp a b

proof −
from assms
consider (1) a ∈ A−{1A} b ∈ A−{1A} A-SUM .floor a = A-SUM .floor b
| (2) a ∈ A−{1A} b ∈ A−{1A} A-SUM .floor a <I A-SUM .floor b
| (3) a ∈ A−{1A} b ∈ A−{1A} A-SUM .floor b <I A-SUM .floor a
| (4) a = 1A ∨ b = 1A

using same-uni A-SUM .floor-prop fixed-points.cases sum-one-def trichotomy
by metis

then
show ?thesis
proof(cases)

case 1
then
show ?thesis

using A-SUM .sum-imp.simps(1) imp-map-def sum-one-def by auto
next

case 2
define i j where i = A-SUM .floor a and j = A-SUM .floor b
then
have i ∈ I ∧ j ∈ I ∧ a ∈ (�i)−{1A} ∧ b ∈ (�j)−{1A}

using 2 (1 ,2) A-SUM .floor-prop sum-one-def by simp
then
have a →A b = 1A

65

using 2 (3) different-indexes-imp-1 i-def j-def by blast
moreover
have A-SUM .sum-imp a b = 1A

using 2 A-SUM .sum-imp.simps(2) sum-one-def by simp
ultimately
show ?thesis

by simp
next

case 3
define i j where i = A-SUM .floor a and j = A-SUM .floor b
then
have i ∈ I ∧ j ∈ I ∧ a ∈ (�i)−{1A} ∧ b ∈ (�j)−{1A}

using 3 (1 ,2) A-SUM .floor-prop sum-one-def by simp
then
have a →A b = b

using 3 (3) different-indexes-imp-2 i-def j-def by blast
moreover
have A-SUM .sum-imp a b = b

using 3 A-SUM .sum-imp.simps(3) sum-one-def by auto
ultimately
show ?thesis

by simp
next

case 4
then
show ?thesis

using A-SUM .imp-one-C A-SUM .imp-one-top assms imp-one-C
imp-one-top sum-one-def

by force
qed

qed

lemma ordinal-sum-is-totally-ordered-hoop:
totally-ordered-hoop A-SUM .sum-univ A-SUM .sum-mult A-SUM .sum-imp 1S

proof
show A-SUM .hoop-order x y ∨ A-SUM .hoop-order y x

if x ∈ A-SUM .sum-univ y ∈ A-SUM .sum-univ for x y
using that A-SUM .hoop-order-def total-order hoop-order-def

sum-one-def same-imp
by auto

qed

theorem totally-ordered-hoop-is-equal-to-ordinal-sum-of-tower-of-irr-hoops:
shows eq-universe: A = A-SUM .sum-univ
and eq-mult: x ∈ A =⇒ y ∈ A =⇒ x ∗A y = A-SUM .sum-mult x y
and eq-imp: x ∈ A =⇒ y ∈ A =⇒ x →A y = A-SUM .sum-imp x y
and eq-one: 1A = 1S

proof
show A ⊆ A-SUM .sum-univ

66

by simp
next

show A-SUM .sum-univ ⊆ A
by simp

next
show x ∗A y = A-SUM .sum-mult x y if x ∈ A y ∈ A for x y

using same-mult that by blast
next

show x →A y = A-SUM .sum-imp x y if x ∈ A y ∈ A for x y
using same-imp that by blast

next
show 1A = 1S

using sum-one-def by simp
qed

4.5.9 Remarks on the nontrivial case

In the nontrivial case we have that every totally ordered hoop can be written
as the ordinal sum of a tower of nontrivial irreducible hoops. The proof of
this fact is almost immediate. By definition, �π1A = {1A} is the only trivial
hoop in our tower. Moreover, �πa is non-trivial for every a ∈ A−{1A}.
Given that 1A ∈ �i for every i ∈ I we can simply remove π 1A from I and
obtain the desired result.
lemma nontrivial-tower :

assumes ∃ x ∈ A. x 6= 1A

shows
tower-of-nontrivial-irr-hoops (I−{π 1A}) (≤I) (<I) UNIA MULA IMPA 1S

proof
show I−{π 1A} 6= ∅
proof −

obtain a where a ∈ A−{1A}
using assms by blast

then
have π a ∈ I−{π 1A}
using A-SUM .floor-prop class-not-one class-one floor-is-class sum-one-def by

auto
then
show ?thesis

by auto
qed

next
show reflp-on (I−{π 1A}) (≤I)

using Diff-subset reflex reflp-on-subset by meson
next

show antisymp-on (I−{π 1A}) (≤I)
using Diff-subset antisymm antisymp-on-subset by meson

next
show transp-on (I−{π 1A}) (≤I)

67

using Diff-subset trans transp-on-subset by meson
next

show i <I j = (i ≤I j ∧ i 6= j) if i ∈ I−{π 1A} j ∈ I−{π 1A} for i j
using index-order-strict-def by simp

next
show totalp-on (I−{π 1A}) (≤I)

using Diff-subset total totalp-on-subset by meson
next

show (�i) ∩ (�j) = {1S} if i ∈ I−{π 1A} j ∈ I−{π 1A} i 6= j for i j
using A-SUM .almost-disjoint that by blast

next
show x ∗i y ∈ �i if i ∈ I−{π 1A} x ∈ �i y ∈ �i for i x y

using A-SUM .floor-mult-closed that by blast
next

show x →i y ∈ �i if i ∈ I−{π 1A} x ∈ �i y ∈ �i for i x y
using A-SUM .floor-imp-closed that by blast

next
show 1S ∈ �i if i ∈ I−{π 1A} for i

using universes-one-closed sum-one-def that by simp
next

show x ∗i y = y ∗i x if i ∈ I−{π 1A} x ∈ �i y ∈ �i for i x y
using universes-subsets mult-comm mult-map-def that by force

next
show x ∗i (y ∗i z) = (x ∗i y) ∗i z

if i ∈ I−{π 1A} x ∈ �i y ∈ �i z ∈ �i for i x y z
using universes-subsets mult-assoc mult-map-def that by force

next
show x ∗i 1S = x if i ∈ I−{π 1A} x ∈ �i for i x

using universes-subsets sum-one-def mult-map-def that by force
next

show x →i x = 1S if i ∈ I−{π 1A} x ∈ �i for i x
using universes-subsets imp-map-def sum-one-def that by force

next
show x ∗i (x →i y) = y ∗i (y →i x)

if i ∈ I−{π 1A} x ∈ �i y ∈ �i z ∈ �i for i x y z
using divisibility universes-subsets imp-map-def mult-map-def that by auto

next
show x →i (y →i z) = (x ∗i y) →i z

if i ∈ I−{π 1A} x ∈ �i y ∈ �i z ∈ �i for i x y z
using universes-subsets imp-map-def mult-map-def residuation that by force

next
show x ≤i y ∨ y ≤i x if i ∈ I−{π 1A} x ∈ �i y ∈ �i for i x y

using DiffE total-order universes-subsets imp-map-def sum-one-def that by
metis
next

show @ B C .
(�i = B ∪ C) ∧
({1S} = B ∩ C) ∧
(∃ y ∈ B. y 6= 1S) ∧

68

(∃ y ∈ C . y 6= 1S) ∧
(hoop B (∗i) (→i) 1S) ∧
(hoop C (∗i) (→i) 1S) ∧
(∀ x ∈ B−{1S}. ∀ y ∈ C . x ∗i y = x) ∧
(∀ x ∈ B−{1S}. ∀ y ∈ C . x →i y = 1S) ∧
(∀ x ∈ C . ∀ y ∈ B. x →i y = y)

if i ∈ I−{π 1A} for i
using that Diff-iff Un-iff universes-one-fixed imp-map-def sum-one-def by metis

next
show ∃ x ∈ �i. x 6= 1S if i ∈ I−{π 1A} for i

using universes-def indexes-class-of-elements indexes-not-empty that
by fastforce

qed

lemma ordinal-sum-of-nontrivial:
assumes ∃ x ∈ A. x 6= 1A

shows A-SUM .sum-univ = {x. ∃ i ∈ I−{π 1A}. x ∈ �i}
proof

show A-SUM .sum-univ ⊆ {x. ∃ i ∈ I−{π 1A}. x ∈ �i}
proof

fix a
assume a ∈ A-SUM .sum-univ
then
consider (1) a ∈ A−{1A}
| (2) a = 1A

by auto
then
show a ∈ {x. ∃ i ∈ I−{π 1A}. x ∈ �i}
proof(cases)

case 1
then
obtain i where i = π a

by simp
then
have a ∈ �i ∧ i ∈ I−{π 1A}
using 1 A-SUM .floor-prop class-not-one class-one floor-is-class sum-one-def
by auto

then
show ?thesis

by blast
next

case 2
obtain c where c ∈ A−{1A}

using assms by blast
then
obtain i where i = π c

by simp
then
have a ∈ �i ∧ i ∈ I−{π 1A}

69

using 2 A-SUM .floor-prop ‹c ∈ A−{1A}› class-not-one class-one
universes-one-closed floor-is-class sum-one-def

by auto
then
show ?thesis

by auto
qed

qed
next

show {x. ∃ i ∈ I−{π 1A}. x ∈ �i} ⊆ A-SUM .sum-univ
using universes-subsets by force

qed

end

4.5.10 Converse of main result

We show that the converse of the main result also holds, that is, the ordinal
sum of a tower of irreducible hoops is a totally ordered hoop.
context tower-of-irr-hoops
begin

proposition ordinal-sum-of-tower-of-irr-hoops-is-totally-ordered-hoop:
shows totally-ordered-hoop S (∗S) (→S) 1S

proof
show hoop-order a b ∨ hoop-order b a if a ∈ S b ∈ S for a b
proof −

from that
consider (1) a ∈ S−{1S} b ∈ S−{1S} floor a = floor b
| (2) a ∈ S−{1S} b ∈ S−{1S} floor a <I floor b ∨ floor b <I floor a
| (3) a = 1S ∨ b = 1S

using floor .cases floor-prop trichotomy by metis
then
show hoop-order a b ∨ hoop-order b a
proof(cases)

case 1
then
have a ∈ �f loor a ∧ b ∈ �f loor a

using 1 floor-prop by metis
moreover
have totally-ordered-hoop (�f loor a) (∗f loor a) (→f loor a) 1S

using 1 (1) family-of-irr-hoops totally-ordered-irreducible-hoop.axioms(1)
floor-prop

by meson
ultimately
have a →f loor a b = 1S ∨ b →f loor a a = 1S

using hoop.hoop-order-def totally-ordered-hoop.total-order
totally-ordered-hoop-def

by meson

70

moreover
have a →S b = a →f loor a b ∧ b →S a = b →f loor a a

using 1 by auto
ultimately
show ?thesis

using hoop-order-def by force
next

case 2
then
show ?thesis

using sum-imp.simps(2) hoop-order-def by blast
next

case 3
then
show ?thesis

using that ord-top by auto
qed

qed
qed

end

end

5 BL-chains

BL-chains generate the variety of BL-algebras, the algebraic counterpart of
the Basic Fuzzy Logic (see [6]). As mentioned in the abstract, this formal-
ization is based on the proof for BL-chains found in [5]. We define BL−chain
and bounded tower of irreducible hoops and formalize the main result on that
paper (Theorem 3.4).
theory BL-Chains

imports Totally-Ordered-Hoops

begin

5.1 Definitions
locale bl-chain = totally-ordered-hoop +

fixes zeroA :: ′a (‹0A›)
assumes zero-closed: 0A ∈ A
assumes zero-first: x ∈ A =⇒ 0A ≤A x

locale bounded-tower-of-irr-hoops = tower-of-irr-hoops +
fixes zeroI (‹0 I›)
fixes zeroS (‹0S›)
assumes I-zero-closed : 0 I ∈ I
and zero-first: i ∈ I =⇒ 0 I ≤I i

71

and first-zero-closed: 0S ∈ UNI 0 I

and first-bounded: x ∈ UNI 0 I =⇒ IMP 0 I 0S x = 1S

begin

abbreviation (uni-zero)
uni-zero :: ′b set (‹�0I›)
where �0I ≡ UNI 0 I

abbreviation (imp-zero)
imp-zero :: [′b, ′b] ⇒ ′b (‹((-)/ →0I / (-))› [61 ,61] 60)
where x →0I y ≡ IMP 0 I x y

end

context bl-chain
begin

5.2 First element of I
definition zeroI :: ′a set (‹0 I›)

where 0 I = π 0A

lemma I-zero-closed: 0 I ∈ I
using index-set-def zeroI-def zero-closed by auto

lemma I-has-first-element:
assumes i ∈ I i 6= 0 I

shows 0 I <I i
proof −

have x ≤A y if i <I 0 I x ∈ i y ∈ 0 I for x y
using I-zero-closed assms(1) index-order-strict-def that by fastforce

then
have x ≤A 0A if i <I 0 I x ∈ i for x

using classes-not-empty zeroI-def zero-closed that by simp
moreover
have 0A ≤A x if x ∈ i for x

using assms(1) that in-mono indexes-subsets zero-first by meson
ultimately
have x = 0A if i <I 0 I x ∈ i for x

using assms(1) indexes-subsets ord-antisymm zero-closed that by blast
moreover
have 0A ∈ 0 I

using classes-not-empty zeroI-def zero-closed by simp
ultimately
have i ∩ 0 I 6= ∅ if i <I 0 I

using assms(1) indexes-not-empty that by force
moreover
have i <I 0 I ∨ 0 I <I i

using I-zero-closed assms trichotomy by auto

72

ultimately
show ?thesis

using I-zero-closed assms(1) indexes-disjoint by auto
qed

5.3 Main result for BL-chains
definition zeroS :: ′a (‹0S›)

where 0S = 0A

abbreviation (uniA-zero)
uniA-zero :: ′a set (‹(�0I)›)
where �0I ≡ UNIA 0 I

abbreviation (impA-zero-xy)
impA-zero-xy :: [′a, ′a] ⇒ ′a (‹((-)/ →0I / (-))› [61 , 61] 60)
where x →0I y ≡ IMPA 0 I x y

lemma tower-is-bounded:
shows bounded-tower-of-irr-hoops I (≤I) (<I) UNIA MULA IMPA 1S 0 I 0S

proof
show 0 I ∈ I

using I-zero-closed by simp
next

show 0 I ≤I i if i ∈ I for i
using I-has-first-element index-ord-reflex index-order-strict-def that by blast

next
show 0S ∈ �0I

using classes-not-empty universes-def zeroI-def zeroS-def zero-closed by simp
next

show 0S →0I x = 1S if x ∈ �0I for x
using I-zero-closed universes-subsets hoop-order-def imp-map-def sum-one-def

zeroS-def zero-first that
by simp

qed

lemma ordinal-sum-is-bl-totally-ordered:
shows bl-chain A-SUM .sum-univ A-SUM .sum-mult A-SUM .sum-imp 1S 0S

proof
show A-SUM .hoop-order x y ∨ A-SUM .hoop-order y x

if x ∈ A-SUM .sum-univ y ∈ A-SUM .sum-univ for x y
using ordinal-sum-is-totally-ordered-hoop totally-ordered-hoop.total-order that
by meson

next
show 0S ∈ A-SUM .sum-univ

using zeroS-def zero-closed by simp
next

show A-SUM .hoop-order 0S x if x ∈ A-SUM .sum-univ for x
using A-SUM .hoop-order-def eq-imp hoop-order-def sum-one-def zeroS-def zero-closed

73

zero-first that
by simp

qed

theorem bl-chain-is-equal-to-ordinal-sum-of-bounded-tower-of-irr-hoops:
shows eq-universe: A = A-SUM .sum-univ
and eq-mult: x ∈ A =⇒ y ∈ A =⇒ x ∗A y = A-SUM .sum-mult x y
and eq-imp: x ∈ A =⇒ y ∈ A =⇒ x →A y = A-SUM .sum-imp x y
and eq-zero: 0A = 0S

and eq-one: 1A = 1S

proof
show A ⊆ A-SUM .sum-univ

by auto
next

show A-SUM .sum-univ ⊆ A
by auto

next
show x ∗A y = A-SUM .sum-mult x y if x ∈ A y ∈ A for x y

using eq-mult that by blast
next

show x →A y = A-SUM .sum-imp x y if x ∈ A y ∈ A for x y
using eq-imp that by blast

next
show 0A = 0S

using zeroS-def by simp
next

show 1A = 1S

using sum-one-def by simp
qed

end

5.4 Converse of main result for BL-chains
context bounded-tower-of-irr-hoops
begin

We show that the converse of the main result holds if 0S 6= 1S . If 0S = 1S

then the converse may not be true. For example, take a trivial hoop A and
an arbitrary not bounded Wajsberg hoop B such that A ∩ B = {1}. The
ordinal sum of both hoops is equal to B and therefore not bounded.
proposition ordinal-sum-of-bounded-tower-of-irr-hoops-is-bl-chain:

assumes 0S 6= 1S

shows bl-chain S (∗S) (→S) 1S 0S

proof
show hoop-order a b ∨ hoop-order b a if a ∈ S b ∈ S for a b
proof −

from that
consider (1) a ∈ S−{1S} b ∈ S−{1S} floor a = floor b

74

| (2) a ∈ S−{1S} b ∈ S−{1S} floor a <I floor b ∨ floor b <I floor a
| (3) a = 1S ∨ b = 1S

using floor .cases floor-prop trichotomy by metis
then
show ?thesis
proof(cases)

case 1
then
have a ∈ �f loor a ∧ b ∈ �f loor a

using 1 floor-prop by metis
moreover
have totally-ordered-hoop (�f loor a) (∗f loor a) (→f loor a) 1S

using 1 (1) family-of-irr-hoops totally-ordered-irreducible-hoop.axioms(1)
floor-prop

by meson
ultimately
have a →f loor a b = 1S ∨ b →f loor a a = 1S

using hoop.hoop-order-def totally-ordered-hoop.total-order
totally-ordered-hoop-def

by meson
moreover
have a →S b = a →f loor a b ∧ b →S a = b →f loor a a

using 1 by auto
ultimately
show ?thesis

using hoop-order-def by force
next

case 2
then
show ?thesis

using sum-imp.simps(2) hoop-order-def by blast
next

case 3
then
show ?thesis

using that ord-top by auto
qed

qed
next

show 0S ∈ S
using first-zero-closed I-zero-closed sum-subsets by auto

next
show hoop-order 0S a if a ∈ S for a
proof −

have zero-dom: 0S ∈ �0I ∧ 0S ∈ S−{1S}
using I-zero-closed sum-subsets assms first-zero-closed by blast

moreover
have floor 0S ≤I floor x if 0S ∈ S−{1S} x ∈ S−{1S} for x

using I-zero-closed floor-prop floor-unique that(2) zero-dom zero-first

75

by metis
ultimately
have floor 0S ≤I floor x if x ∈ S−{1S} for x

using that by blast
then
consider (1) 0S ∈ S−{1S} a ∈ S−{1S} floor 0S = floor a
| (2) 0S ∈ S−{1S} a ∈ S−{1S} floor 0S <I floor a
| (3) a = 1S

using ‹a ∈ S› floor .cases floor-prop strict-order-equiv-not-converse
trichotomy zero-dom

by metis
then
show hoop-order 0S a
proof(cases)

case 1
then
have 0S ∈ �0I ∧ a ∈ �0I

using I-zero-closed first-zero-closed floor-prop floor-unique by metis
then
have 0S →S a = 0S →0I a ∧ 0S →0I a = 1S

using 1 I-zero-closed sum-imp.simps(1) first-bounded floor-prop floor-unique
by metis

then
show ?thesis

using hoop-order-def by blast
next

case 2
then
show ?thesis

using sum-imp.simps(2 ,5) hoop-order-def by meson
next

case 3
then
show ?thesis

using ord-top zero-dom by auto
qed

qed
qed

end

end

76

References

[1] P. Agliano and F. Montagna. Varieties of BL-algebras I: general proper-
ties. Journal of Pure and Applied Algebra, 181(2):105–129, 2003.

[2] W. J. Blok and M. A. Ferreirim. On the structure of hoops. Algebra
Universalis, 43(2):233–257, 2000.

[3] B. Bosbach. Komplementäre Halbgruppen. Axiomatik und Arithmetik.
Fundamenta Mathematicae, 64:257–287, 1969.

[4] J. R. Büchi and T. M. Owens. Complemented monoids and hoops. un-
published manuscript, 1975.

[5] M. Busaniche. Decomposition of BL-chains. Algebra Universalis,
52(4):519–525, 2005.

[6] P. Hájek. Metamathematics of Fuzzy Logic. Kluwer Academic Publishers,
Dordrecht, Boston and London, 1998.

77

	Some order tools: posets with explicit universe
	Hoops
	Definitions
	Basic properties
	Multiplication monotonicity
	Implication monotonicity and anti-monotonicity
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 (A) defines a partial order over 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 A
	Order properties
	Additional multiplication properties
	Additional implication properties
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 (A) defines a semilattice over 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 A
	Properties of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 (*A)

	Ordinal sums
	Tower of hoops
	Ordinal sum universe
	Floor function: definition and properties
	Ordinal sum multiplication and implication
	Some multiplication properties
	Some implication properties

	The ordinal sum of a tower of hoops is a hoop
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 S is not empty
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 (*S) and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 (S) are well defined
	Neutrality of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 1S
	Commutativity of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 (*S)
	Associativity of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 (*S)
	Reflexivity of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 (S)
	Divisibility
	Residuation
	Main result

	Totally ordered hoops
	Definitions
	Properties of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 F
	Properties of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 (F)
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 (F) is an equivalence relation
	Equivalent definition
	Properties of equivalence classes given by 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 (F)

	Irreducible hoops: definition and equivalences
	Decomposition
	Definition of index set 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 I
	Definition of total partial order over 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 I
	Definition of universes
	Universes are subhoops of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 A
	Universes are irreducible hoops
	Some useful results
	Definition of multiplications, implications and one
	Main result
	Remarks on the nontrivial case
	Converse of main result

	BL-chains
	Definitions
	First element of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 I
	Main result for BL-chains
	Converse of main result for BL-chains

