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Abstract

We formalize a well known result in theory of hoops: every totally
ordered hoop can be written as an ordinal sum of irreducible (equiv-
alently Wajsberg) hoops. This formalization is based on the proof for
BL-chains (i.e., bounded totally ordered hoops) by Busaniche [5].
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1 Some order tools: posets with explicit universe

theory Posets
imports Main HOL— Library. LaTeXsugar

begin

locale poset-on =

fixes P :: b set

fixes P-lesseq :: 'b = 'b = bool (infix <) 60)

fixes P-less :: 'b = 'b = bool (infix «<¥» 60)

assumes not-empty [simp|: P # 0

and reflex: reflp-on P (<F)

and antisymm: antisymp-on P (<)

and trans: transp-on P (<F)

and strict-iff-order: 1 € P =y e P =z <l y=(z <P ynz#y)
begin

lemma strict-trans:
assumes a € Pbc Pcc€ Pa<P bb<P ¢
shows a <¥ ¢
using antisymm antisymp-onD assms trans strict-iff-order transp-onD
by (smt (verit, ccfv-SIG))

end

locale bot-poset-on = poset-on +
fixes bot 2 'b (<0F))
assumes bot-closed: 0¥ € P
and bot-first: x € P = 0F <P ¢

locale top-poset-on = poset-on +
fixes top = 'b (<1F))
assumes top-closed: 1¥ € P
and top-last: z € P = z <P 1P

locale bounded-poset-on = bot-poset-on + top-poset-on

locale total-poset-on = poset-on +
assumes total: totalp-on P (<T)
begin

lemma trichotomy:
assumes a € Pbe P
shows (a <P b A =(a=bVb<Pa))Vv
(a=bA=(a<PbVvib<ta)v
(b<P an-(a=0bVa<Pb))
using antisymm antisymp-onD assms strict-iff-order total totalp-onD by metis



lemma strict-order-equiv-not-converse:
assumes ¢ € Pbe P
shows a <P b +— (b <F a)
using assms strict-iff-order reflex reflp-onD strict-trans trichotomy by metis

end

end

2 Hoops

A hoop is a naturally ordered pocrim (i.e., a partially ordered commutative
residuated integral monoid). This structures have been introduced by Biichi
and Owens in [4] and constitute the algebraic counterpart of fragments with-
out negation and falsum of some nonclassical logics.

theory Hoops
imports Posets
begin

2.1 Definitions

locale hoop =
fixes universe :: 'a set (<A»)
and multiplication :: 'a = 'a = 'a (infix <) 60)
and implication :: 'a = 'a = 'a (infix (=) 60)
and one :: ‘a (1))
assumes mult-closed: 1 € A = y e A=z x4 yc A
and imp-closed: 1 € A =—= yc A=z >4 yc A
and one-closed [simp]: 14 € A
and mult-comm: 1€ A= yc A=z x4 y =y
and mult-assoc: 1 € A =y € A= 2€ A = z %4 (
and mult-neutr [simp]: v € A = z +4 14
and imp-reflex [simp]: x € A = z —
and divisibility: 1 € A = y € A = 1+ (z =>4 y) =y 4 (y =4 1)
and residuation: t € A —= y€ A — 2 € A —

x—)A(y—>Az):(x*Ay)—>Az

z

y A 2) = (z %
=z

AZ':.ZA

begin

definition hoop-order :: 'a = 'a = bool (infix (<4 60)
where 1 <4 y = (z =4 y = 14)

definition hoop-order-strict :: 'a = 'a = bool (infix <<%y 60)
wherex<Ayz(a:§Ay/\x7éy)

‘a = 'a = 'a (infix A4 60)

Y-ty

definition hoop-inf ::
where z A4 y = 1 %

definition hoop-pseudo-sup :: 'a = 'a = 'a (infix V*4) 60)



where z V¥4 y = ((z =4 y) =2 y) A ((y =4 2) -4 1)
end

locale wajsberg-hoop = hoop +
assumes T: 1 € A = yc A= (z =>4 y) 24 y=(y—=22) =4z
begin

definition wagjsberg-hoop-sup :: 'a = 'a = ’a (infix V4 60)
where z VA y = (z =4 y) =4 y

end

2.2 Basic properties

context hoop
begin

lemma mult-neutr-2 [simp]:
assumes a € A
shows 14 %4 ¢ = a
using assms mult-comm by simp

lemma imp-one-A:
assumes a € A
shows (14 =4 a) -4 14 = 14
proof —
have (14 =4 a) =4 14 = (14 =4 a) =4 (14 =4 14)
using assms by simp

also

have ... = ((14 =4 a) ¥4 14) =4 14
using assms imp-closed residuation by simp

also

have ... = ((a =4 14) x4 a) =4 14

using assms divisibility imp-closed mult-comm by simp
also
have ... = (a =4 14) =4 (a =4 14)

using assms imp-closed one-closed residuation by metis
also

have ... = 14
using assms imp-closed by simp
finally
show ?thesis
by auto
qed

lemma imp-one-B:
assumes a € A
shows (14 =4 q) =4 a = 14



proof —
have (14 =4 a) =4 a = ((14 =4 a) ¥* 14) =4 ¢
using assms imp-closed by simp

also
have ... = (14 =4 a) =4 (14 =4 a)
using assms imp-closed one-closed residuation by metis
also
have ... = 14
using assms imp-closed by simp
finally
show ?thesis
by auto
qed

lemma imp-one-C-
assumes a € A
shows 14 -4 4 =
proof —
have 14 —4 a = (14 =4 a) 4 14
using assms imp-closed by simp

also
have ... = (14 =4 a) ** (14 =4 a) =4 a)
using assms imp-one-B by simp
also
have ... = a % (a =4 (14 =4 a))
using assms divisibility imp-closed by simp
also
have ... = a
using assms residuation by simp
finally
show ?thesis
by auto
qed

lemma imp-one-top:
assumes a € A
shows ¢ —»4 14 = 14
proof —
have o —4 14 = (14 =4 a) =4 14
using assms imp-one-C by auto
also
have ... = 14
using assms imp-one-A by auto
finally
show ?thesis
by auto
qed

The proofs of imp-one-A, imp-one-B, imp-one-C and imp-one-top are based



on proofs found in [3] (see Section 1: (4), (6), (7) and (12)).

lemma swap:
assumes a € Abe Ace A
shows a =4 (b =4 ¢) = b =4 (a =4 ¢)
proof —
have a =4 (b =4 ¢) = (a ¥* b) =4 ¢
using assms residuation by auto

also
have ... = (b x* a) =4 ¢
using assms mult-comm by auto
also
have ... = b =4 (a =4 ¢)
using assms residuation by auto
finally
show ?thesis
by auto
qed

lemma imp-A:
assumes a € Abe A
shows a =4 (b —4 a) = 14
proof —
have a —4 (b =4 a) = b =4 (a =7 )
using assms swap by blast
then
show ?thesis
using assms imp-one-top by simp
qed

2.3 Multiplication monotonicity

lemma mult-mono:
assumes a € Abe Ace A
shows (a =4 b) =4 ((a +* ¢) =4 (b +4 ¢)) = 14
proof —
have (a =4 b) =4 ((a x* ¢) =4 (b+4 ¢)) =
(a =4 b) =4 (a =2 (c =2 (b *4 ¢)))
using assms mult-closed residuation by auto
also
have ... = ((a =4 b) *4 a) =4 (¢ =4 (b x4 ¢))
using assms imp-closed mult-closed residuation by metis
also
have ... = ((b =4 a) x4 b) =4 (¢ =4 (b4 ¢))
using assms divisibility imp-closed mult-comm by simp
also
have ... = (b =4 a) =4 (b =4 (¢ =4 (b *4 ¢)))
using assms imp-closed mult-closed residuation by metis
also
have ... = (b =4 a) =4 ((b %% ¢) =4 (b x4 ¢))



using assms(2,3) mult-closed residuation by simp
also
have ... = 14
using assms imp-closed imp-one-top mult-closed by simp
finally
show ?thesis
by auto
qed

2.4 Implication monotonicity and anti-monotonicity

lemma imp-mono:
assumes a € Abe Ace A
shows (a =4 b) =4 ((¢c =4 a) =4 (¢ =4 D)) = 14
proof —
have (a =4 b) =4 ((c =4 a) =4 (¢ =4 b)) =
(a =2 b) =4 (((c =4 a) ¥4 ¢) =4 b)
using assms imp-closed residuation by simp
also
have ... = (a =2 b) =4 (((a =4 ¢) ** a) =4 D)
using assms divisibility imp-closed mult-comm by simp
also

have ... = (a =4 b) =4 ((a =4 ¢) =4 (a =4 b))
using assms imp-closed residuation by simp

also

have ... = 14
using assms imp-A imp-closed by simp

finally

show ?thesis
by auto

qed

lemma imp-anti-mono:
assumes a € Abe Ace A
shows (a =4 b) =4 (b =4 ¢) =4 (a =4 ¢)) = 14
using assms imp-closed imp-mono swap by metis

2.5 (<?4) defines a partial order over A

lemma ord-refiex:
assumes aq € A
shows a <4 ¢«
using assms hoop-order-def by simp

lemma ord-trans:
assumes s e Abe Ace Aa<Abb<4e¢
shows a <4 ¢
proof —
have a —4 ¢ = 14 =4 (14 =4 (a =4 ¢))
using assms(1,8) imp-closed imp-one-C by simp



also

have ... = (a =2 b) =4 ((b =4 ¢) =4 (a =4 ¢))
using assms(4,5) hoop-order-def by simp

also

have ... = 14
using assms(1—3) imp-anti-mono by simp
finally

show ?thesis
using hoop-order-def by auto
qed

lemma ord-antisymm:
assumes a € Abe Aa<Abb<4aq
shows a = b
proof —
have a = a * (a =4 D)
using assms(1,3) hoop-order-def by simp
also

have ... = b % (b =7 a)
using assms(1,2) divisibility by simp
also
have ... =1
using assms(2,4) hoop-order-def by simp
finally
show ?thesis
by auto
qed

lemma ord-antisymm-equiv:
assumes a € Abc Aa—-4b=14b—4a=14
shows a = b
using assms hoop-order-def ord-antisymm by auto

lemma ord-top:
assumes a € A
shows ¢ <4 14
using assms hoop-order-def imp-one-top by simp

sublocale top-poset-on A (<4) (<4) 14
proof
show A # ()
using one-closed by blast
next
show reflp-on A (<4)
using ord-reflex reflp-onl by blast
next
show antisymp-on A (<)
using antisymp-onl ord-antisymm by blast
next
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show transp-on A (<4)
using ord-trans transp-onl by blast
next
showr <A y=(z<AyAx#y)ifrc Ayc Aforzy
using hoop-order-strict-def by blast
next
show 14 € A
by simp
next
show z <4 14 if z € A for ¢
using ord-top that by simp
qed

2.6 Order properties

lemma ord-mult-mono-A:
assumes a € Abe Ace A
shows (a =4 b) <A ((a * ¢) =4 (b4 ¢))
using assms hoop-order-def mult-mono by simp

lemma ord-mult-mono-B:
assumes a € Abce Ace Aa<4b
shows (a % ¢) <4 (b +” ¢)
using assms hoop-order-def imp-one-C swap mult-closed mult-mono top-closed
by metis

lemma ord-residuation:
assumes a € Abe Ace A
shows (a 1 b) <4 ¢ +— a <4 (b =4 ¢
using assms hoop-order-def residuation by simp

lemma ord-imp-mono-A:
assumes a € Abe Ace A
shows (a =4 b) < ((¢c =4 a) =4 (¢ =4 D))
using assms hoop-order-def imp-mono by simp

lemma ord-imp-mono-B:
assumes a € Abce Ace Aa<4b
shows (¢ —4 a) <4 (¢ =4 b)
using assms imp-closed ord-trans ord-reflex ord-residuation mult-closed
by metis

lemma ord-imp-anti-mono-A:
assumes a € Abe Ace A
shows (a =4 b) <4 (b =4 ¢) =4 (a =4 ¢))
using assms hoop-order-def imp-anti-mono by simp

lemma ord-imp-anti-mono-B:
assumes a € Abce Ace Aa<4b

11



shows (b —4 ¢) <4 (a =4 ¢)
using assms hoop-order-def imp-one-C swap ord-imp-mono-A top-closed
by metis

lemma ord-A:
assumes a € Abe A
shows b <4 (a —4 b)
using assms hoop-order-def imp-A by simp

lemma ord-B:
assumes a € Abe A
shows b <4 ((a =4 b) =4 b)
using assms imp-closed ord-A by simp

lemma ord-C"
assumes o € A be A
shows a <4 ((a =4 b) =4 b)
using assms imp-one-C one-closed ord-imp-anti-mono-A by metis

lemma ord-D:
assumes a € Abec Aa<?b
shows b =4 a # 14
using assms hoop-order-def hoop-order-strict-def ord-antisymm by auto

2.7 Additional multiplication properties

lemma mult-lesseq-inf:
assumes a € A be A
shows (a % b) <4 (a A2 b)
proof —
have b <4 (a —4 b)
using assms ord-A by simp
then
have (a % b) <4 (a ¥4 (a =2 b))
using assms imp-closed ord-mult-mono-B mult-comm by metis
then
show ?thesis
using hoop-inf-def by metis
qed

lemma mult-A:
assumes a € Abe A
shows (a +* b) <4 a
using assms ord-A ord-residuation by simp

lemma mult-B:
assumes a € Abe A
shows (a % b) <4 b
using assms mult-A mult-comm by metis

12



lemma mult-C":
assumes a € A—{14} b € A-{14}
shows a x4 b € A—{14}
using assms ord-antisymm ord-top mult-A mult-closed by force

2.8 Additional implication properties

lemma imp-B:
assumes a € Abe A
shows a =4 b= ((a =2 b) =4 b) =4 b
proof —
have a <* ((a =4 b) =4 b)
using assms ord-C' by simp
then
have (((a =4 b) =4 b) =4 b) <4 (a =4 D)
using assms imp-closed ord-imp-anti-mono-B by simp
moreover
have (a =4 b) <4 (((a =4 b) =4 b) =4 D)
using assms imp-closed ord-C by simp
ultimately
show ?thesis
using assms imp-closed ord-antisymm by simp
qed

The following two results can be found in [2] (see Proposition 1.7 and 2.2).

lemma imp-C:
assumes a € Abe A
shows (a =4 b) =4 (b =4 a)=b =" a
proof —

have a <* ((a =4 b) =4 a)
using assms imp-closed ord-A by simp

then

have (((a =4 b) =4 a) =4 b) < (a =4 b)
using assms imp-closed ord-imp-anti-mono-B by simp

moreover

have (a =4 b) <4 (((a =4 b) =4 a) =4 a)
using assms imp-closed ord-C by simp

ultimately

have (((a =4 b) =4 a) =2 b) < (((a =2 b) =4 a) =74 )
using assms imp-closed ord-trans by meson

then

have ((((a =4 b) =4 a) =4 b) +4 ((a =2 b) =4 a)) <4 a
using assms imp-closed ord-residuation by simp

then

have ((b =4 ((a =4 b) =4 a)) x* b) <4 a
using assms divisibility imp-closed mult-comm by simp

then

have (b =4 ((a =4 b) =4 a)) <4 (b =4 a)

13



using assms imp-closed ord-residuation by simp
then
have ((a =4 b) =4 (b =4 a)) <4 (b =4 a)
using assms imp-closed swap by simp
moreover
have (b =4 a) <4 ((a =4 b) =4 (b =4 a))
using assms imp-closed ord-A by simp
ultimately
show ?thesis
using assms imp-closed ord-antisymm by auto
qed

lemma imp-D:
assumes a € Abe A
shows (((b =% a) =4 a) =22 b) =24 (b—=1a)=b—-%a
proof —
have (((b =4 a) =4 a) =4 b) =4 (b =4 a) =
(b =2 a) =4 a) =4 b) =2 (b =2 a) =4 a) =4 a)
using assms imp-B by simp

also

have ... = ((((b =4 a) =4 a) =4 b) 2 (b =4 a) =2 a)) =4 a
using assms imp-closed residuation by simp

also

have ... = ((b =4 ((b =4 a) =4 a)) ¥4 b) =4 a

using assms divisibility imp-closed mult-comm by simp
also

have ... = (14 %4 b) =4 a
using assms hoop-order-def ord-C by simp
also
have ... = b =% a
using assms(2) mult-neutr-2 by simp
finally
show ?thesis
by auto
qed

2.9 (A?) defines a semilattice over A

lemma inf-closed:
assumes a € Abe A
shows a A* b€ A
using assms hoop-inf-def imp-closed mult-closed by simp

lemma inf-comm:
assumes a € Abe A
shows a A* b =0 A% a
using assms divisibility hoop-inf-def by simp

lemma inf-A:

14



assumes a € Abe A
shows (a A4 b) <4 a
proof —
have (a A b) =4 a = (a +* (a =2 b)) =4 a
using hoop-inf-def by simp

also
have ... = (a =4 b) =4 (a =4 a)

using assms mult-comm imp-closed residuation by metis
finally

show ?thesis
using assms hoop-order-def imp-closed imp-one-top by simp
qed

lemma inf-B:
assumes a € A be A
shows (a A4 b) <4 b
using assms inf-comm inf-A by metis

lemma inf-C:
assumes s e Abe Ace Aa<Aba<se
shows a <4 (b A4 ¢)
proof —
have (b —4 a) <4 (b =4 ¢)
using assms(1—3,5) ord-imp-mono-B by simp
then
have (b ** (b =4 a)) <A (b2 (b =4 ¢))
using assms imp-closed ord-mult-mono-B mult-comm by metis
moreover
have a = b x4 (b =4 a)
using assms(1—3,4) divisibility hoop-order-def mult-neutr by simp
ultimately
show ?thesis
using hoop-inf-def by auto
qed

lemma inf-order:
assumes o € A be A
shows a <4 b +— (a A* b= a)
using assms hoop-inf-def hoop-order-def inf-B mult-neutr by metis

2.10 Properties of (V*4)

lemma pseudo-sup-closed:
assumes a € A b€ A
shows a V*4 b € A
using assms hoop-pseudo-sup-def imp-closed inf-closed by simp

lemma pseudo-sup-comm:
assumes a € Abe A

15



shows a V*4 b= b v*4 ¢
using assms hoop-pseudo-sup-def imp-closed inf-comm by auto

lemma pseudo-sup-A:
assumes o € A be A
shows a <4 (a V*4 b)
using assms hoop-pseudo-sup-def imp-closed inf-C ord-B ord-C by simp

lemma pseudo-sup-B:
assumes ¢ € A be A
shows b <4 (a V*4 b)
using assms pseudo-sup-A pseudo-sup-comm by metis

lemma pseudo-sup-order:
assumes a € A b€ A
shows ¢ <A b+ a V4 b=
proof
assume a <4 b
then
have a V*4 b = b A4 ((b =4 a) =4 a)
using assms(2) hoop-order-def hoop-pseudo-sup-def imp-one-C by simp
also

have ... =1
using assms imp-closed inf-order ord-C by meson
finally
show a V*4 b = b
by auto
next
assume o V*4 b= b
then

show ¢ <4 b
using assms pseudo-sup-A by metis
qed

end

end

3 Ordinal sums

We define tower of hoops, a family of almost disjoint hoops indexed by a
total order. This is based on the definition of bounded tower of irreducible
hoops in [5] (see paragraph after Lemma 3.3). Parting from a tower of hoops
we can define a hoop known as ordinal sum. Ordinal sums are a fundamental

tool in the study of totally ordered hoops.

theory Ordinal-Sums
imports Hoops
begin
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3.1 Tower of hoops

locale tower-of-hoops =

fixes index-set :: 'b set (<I»)

fixes indez-lesseq :: 'b = 'b = bool (infix <! 60)

fixes index-less :: 'b = 'b = bool (infix «<%) 60)

fixes universes :: 'b = (‘a set) (<UNI»)

fixes multiplications :: 'b = ('a = 'a = 'a) («\MUL)

fixes implications :: 'b = ('a = 'a = 'a) (<IMP»)

fixes sum-one :: ‘a (<1°))

assumes indez-set-total-order: total-poset-on I (<!) (<T)

and almost-disjoint: i € [ = j € [ => i # j = UNIiN UNIj = {1}

and family-of-hoops: i € I = hoop (UNI i) (MUL 4) (IMP i) 1°
begin

sublocale total-poset-on I (<) (<T)
using index-set-total-order by simp

abbreviation (uni-7)
uni-i 2 ['0] = (‘a set) («(A())» [61] 60)
where A; = UNI i

abbreviation (muli-7)
mult-i :: ['b] = (Ya = 'a = 'a) («(x(7))» [61] 60)
where ' = MUL i

abbreviation (imp-7)
imp-i 2 ['b] = ('a = 'a = 'a) («(—=()) [61] 60)
where —' = IMP i

abbreviation (mult-i-zy)
mult-i-zy = ['a, 'b, 'a] = 'a («((-)/ =) / (-)) [61, 50, 61] 60)
where z *' y = MUL iz y

abbreviation (imp-i-zy)
imp-i-xy :: ['a, 'b, 'a] = 'a («((-)/ =) / () [61, 50, 61] 60)
where z = y = IMP iz y

3.2 Ordinal sum universe

definition sum-univ :: ‘a set («S))
where S ={z. 3 i€ I. z € A;}

lemma sum-one-closed [simp]: 1° € S
using family-of-hoops hoop.one-closed not-empty sum-univ-def by fastforce

lemma sum-subsets:
assumes i € [
shows A; C S
using sum-univ-def assms by blast
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3.3 Floor function: definition and properties

lemma floor-unique:
assumes a € S—{1°}
shows 3! i.i € I Na € A;
using assms sum-univ-def almost-disjoint by blast

function floor :: 'a = 'b where

floorz = (THEi.i € I ANz € A;) if z € S—{1°}
| floor z = undefined if t = 19V z ¢ S

by auto
termination by lexicographic-order

abbreviation (uni-floor)
uni-floor :: ['al = (a set) ((Afioor (-))» [61] 60)
where Afjoor » = UNI (floor x)

abbreviation (mult-floor)
mult-floor =: ['a] = ('a = 'a = 'a) («(xf1°°" () [61] 60)
where x/!°°" @ = MUL (floor a)

abbreviation (imp-floor)
imp-floor :: ['a] = ('a = 'a = 'a) («(=F'2°" (7)) [61] 60)
where —/1°°" @ = [MP (floor a)

abbreviation (mult-floor-zy)
mult-floor-zy :: ['a, 'a, 'a] = 'a («((-)/ =t°°" (7) / (-)) [61, 50, 61] 60)
where = /19" YV » = MUL (floor y) z 2

abbreviation (imp-floor-zy)
imp-floor-zy = ['a, 'a, 'a) = 'a («((-)) —=Tt°°r () / (-)) [61, 50, 61] 60)
where z —/1°°" YV » = IMP (floor y) = z

lemma floor-prop:
assumes a € S—{1°}
shows floor a € I A a € Afioor a
proof —
have floor a = (THE i.i € I AN a € A;)
using assms by auto
then
show ?thesis
using assms thel-unique floor-unique by (metis (mono-tags, lifting))
qed

lemma floor-one-closed:
assumes i € [
shows 15 € A,

using assms floor-prop family-of-hoops hoop.one-closed by metis

lemma floor-mult-closed:
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assumes i € [a € A; b e A;
shows a ' b € A;
using assms family-of-hoops hoop.mult-closed by meson

lemma floor-imp-closed:
assumes i € [a € A; b e A;
shows a =% b € A,
using assms family-of-hoops hoop.imp-closed by meson

3.4 Ordinal sum multiplication and implication

function sum-mult :: ‘a = 'a = 'a (infix %) 60) where
xSy =gfloor T yif x e §{19} y € S—{1°} floor x = floor y

|z +% y=xifz e S—{15} y € S—{1°} floor z <! floor y
|z +% y=yife e S—{1°} y € S—{1°} floor y <! floor x
|z 5 y=yifo=1%ye S—{1°}

|z +5 y=aifv e S—{1%}y=1°

|z y=1%ifz=1%y=1°

| %% y = undefined if 1 ¢ SV y ¢ S

apply auto
using floor.cases floor.simps(1) floor-prop trichotomy apply (smt (verit))
using floor-prop strict-iff-order apply force
using floor-prop strict-iff-order apply force
using floor-prop trichotomy by auto
termination by lexicographic-order

function sum-imp :: ‘a = 'a = 'a (infix <= 60) where
x5y =g =flor®yify e S—{15} y € S—{1°} floor x = floor y
|z =% y=1%ifz € S—{1°} y € S—{1°} floor z <! floor y
|z =S y=yifz e S—{1°} y € S—{1°} floor y <! floor x
|z =% y=yife=1%yec S-{1°}
|z =% y=1%ifz e S—{15} y=1°
|z =S y=1%ifz=1%y=1%
| # =5 y = undefined ifz ¢ SV y¢ S
apply auto
using floor.cases floor.simps(1) floor-prop trichotomy apply (smt (verit))
using floor-prop strict-iff-order apply force
using floor-prop strict-iff-order apply force
using floor-prop trichotomy by auto
termination by lexicographic-order

3.4.1 Some multiplication properties

lemma sum-mult-not-one-aux:
assumes a € S—{1°} b € Ajio0r a
shows a *° b € (Afioor o)—{1°}

proof —
consider (1) b € S—{1°}
| (2) b= 1%

using sum-subsets assms floor-prop by blast
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then
show ?thesis
proof (cases)
case I
then
have same-floor: floor a = floor b
using assms floor-prop floor-unique by metis
moreover
have a % b = a xfloom @ p
using 1 assms(1) same-floor by simp
moreover
have a € (Afloor a)*{ls} ANbe (Afloor a)*{fs}
using 1 assms floor-prop by simp
ultimately
show ?thesis
using assms(1) family-of-hoops floor-prop hoop.mult-C' by metis
next
case 2
then
show ?thesis
using assms(1) floor-prop by auto
qed
qed

corollary sum-mult-not-one:
assumes a € S—{1°} b € Ajip0r a
shows a *° b € S—{1°} A floor (a ¥ b) = floor a
proof —
have a #° b € (Afioor o)—{1%}
using sum-mult-not-one-auzr assms by meson
then
have a x° b € S—{1°} A a *° b € Ajioor a
using sum-subsets assms(1) floor-prop by fastforce
then
show ?thesis
using assms(1) floor-prop floor-unique by metis
qed

lemma sum-mult-A:
assumes a € S—{1°} b ¢ Afioor a
shows a % b = a *71°°" ¢ ph A b+ a = b «floor a g
proof —
consider (1) b € S—{1°}
[(2) b= 1
using sum-subsets assms floor-prop by blast
then
show ?thesis
proof(cases)
case 1
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then
have floor a = floor b
using assms floor.cases floor-prop floor-unique by metis
then
show ?thesis
using 1 assms by auto
next
case 2
then
show ?thesis
using assms(1) family-of-hoops floor-prop hoop.mult-neutr hoop.mult-neutr-2
by fastforce
qed
qed

3.4.2 Some implication properties

lemma sum-imp-floor:
assumes a € S—{1°} b € S—{1°} floor a = floor b a —° b € S—{1°}
shows floor (a —° b) = floor a
proof —
have a =% b € Afioor o
using sum-imp.simps(1) assms(1—38) floor-imp-closed floor-prop
by metis
then
show ?thesis
using assms(1,4) floor-prop floor-unique by blast
qed

lemma sum-imp-A:
assumes a < S_{ZS} be Afloor a
shows ¢ —5 b = g —floor a'y

proof —
consider (1) b € S—{1°}
| (2) b= 1"
using sum-subsets assms floor-prop by blast
then
show ?thesis
proof (cases)
case I
then

show ?thesis
using sum-imp.simps(1) assms floor-prop floor-unique by metis
next
case 2
then
show ?thesis
using sum-imp.simps(5) assms(1) family-of-hoops floor-prop
hoop.imp-one-top
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by metis
qed
qed

lemma sum-imp-B:
assumes a € S_{IS} b€ Afioor a
shows b —5 g = b —fleor a g

proof —
consider (1) b € S—{1°}
| (2) b= 1"
using sum-subsets assms floor-prop by blast
then
show ?thesis
proof (cases)
case 1
then

show ?thesis
using sum-imp.simps(1) assms floor-prop floor-unique by metis
next
case 2
then
show ?thesis
using sum-imp.simps(4) assms(1) family-of-hoops floor-prop
hoop.imp-one-C
by metis
qged
qed

lemma sum-imp-floor-antisymm:
assumes a € S—{1°} b € S—{1°} floor a = floor b
a—=%b=1%b—-%a=1°
shows a = b
proof —
have a € Afioor o A b € Afioor o N floor a € 1
using floor-prop assms by metis
moreover
have a =% b= a —f1o°" ¢ p A b =5 g = b flooma g
using assms by auto
ultimately
show ?thesis
using assms(4,5) family-of-hoops hoop.ord-antisymm-equiv by metis
qed

corollary sum-imp-C"
assumes a € S—{1°} b € S—{1°} a # b floor a = floor b a —5 b = 1°
shows b —°% a # 1°

using sum-imp-floor-antisymm assms by blast

lemma sum-imp-D:

22



assumes a € S
shows 15 =% ¢ = q

using sum-imp.simps(4,6) assms by blast

lemma sum-imp-FE:
assumes a € S
shows a —° 15 = 1°
using sum-imp.simps(5,6) assms by blast

3.5 The ordinal sum of a tower of hoops is a hoop

3.5.1 S is not empty

lemma sum-not-empty: S #
using sum-one-closed by blast

3.5.2 (+¥°) and (—°) are well defined

lemma sum-mult-closed-one:
assumes a € Sbe Sa=15Vvb=1°
shows a x° b e §
using sum-mult.simps(4—6) assms floor.cases by metis

lemma sum-mult-closed-not-one:
assumes a € S—{1°} b€ S—{1°}
shows a *° b € S—{17}
proof —
from assms
consider (1) floor a = floor b
| (2) floor a <! floor bV floor b <! floor a
using trichotomy floor-prop by blast
then
show ?thesis
proof(cases)
case I
then
show ?thesis
using sum-mult-not-one assms floor-prop by metis
next
case 2
then
show ?thesis
using assms by auto
qed
qed

lemma sum-mult-closed:
assumes ¢ € Sbe S
shows a +% b e S
using sum-mult-closed-not-one sum-mult-closed-one assms by auto
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lemma sum-imp-closed-one:
assumes a € Sbhec Sa=1°Vvb=1°
shows a =% b e S
using sum-imp.simps(4—6) assms floor.cases by metis

lemma sum-imp-closed-not-one:
assumes a € S—{1°} b€ S—{15}
shows a =% b e S
proof —
from assms
consider (1) floor a = floor b
| (2) floor a <! floor bV floor b <! floor a
using trichotomy floor-prop by blast
then
show a =5 bc S
proof (cases)
case I
then
have a —° b = a —flo°m @ p
using assms by auto
moreover
have a —floor a p ¢ Afioor o
using 1 assms floor-imp-closed floor-prop by metis
ultimately
show ?thesis
using sum-subsets assms(1) floor-prop by auto
next
case 2
then
show ?thesis
using assms by auto
qed
qed

lemma sum-imp-closed:
assumes ¢ € Sbe §
shows a =% b€ S
using sum-imp-closed-one sum-imp-closed-not-one assms by auto

3.5.3 Neutrality of 7°

lemma sum-mult-neutr:
assumes a € S
shows a +° 15 =a A 1% a=a
using assms sum-mult.simps(4—06) by blast
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3.5.4 Commutativity of (x°)

Now we prove z *° y = y *° z by showing that it holds when one of the
variables is equal to 7°. Then we consider when none of them is 1°.

lemma sum-mult-comm-one:
assumes a € Sbe Sa=1°Vv b=1°
shows a +% b= b +° a
using sum-mult-neutr assms by auto

lemma sum-mult-comm-not-one:
assumes a € S—{1°} bc S—{1°}
shows a % b= b +° a
proof —
from assms
consider (1) floor a = floor b
| (2) floor a <! floor bV floor b <! floor a
using trichotomy floor-prop by blast
then
show ?thesis
proof (cases)
case I
then
have same-floor: b € Afioor
using assms(2) floor-prop by simp
then
have a +° b = a xfloom a p
using sum-mult-A assms(1) by blast
also
have ... = b floor a ¢
using assms(1) family-of-hoops floor-prop hoop.mult-comm same-floor
by meson
also
have ... = b %% a
using sum-mult-A assms(1) same-floor by simp
finally
show ?thesis
by auto
next
case 2
then
show ?thesis
using assms by auto
qged
qed

lemma sum-mult-comm:
assumes ¢ € Sbe S
shows a +° b= b +° a
using assms sum-mult-comm-one sum-mult-comm-not-one by auto
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3.5.5 Associativity of ()

S S

S( y) *° 2.

Next we prove z *% (y *% 2) = (z *

lemma sum-mult-assoc-one:
assumes a € She SceSa=1°Vvb=15Vc=1°
shows a *° (b +% ¢) = (a 7 b) % ¢
using sum-mult-neutr assms sum-mult-closed by metis

lemma sum-mult-assoc-not-one:
assumes a € S—{1°} b€ S—{15} c € S—{1°}
shows a *° (b +% ¢) = (a % b) % ¢
proof —
from assms
consider (1) floor a = floor b floor b = floor ¢
| (2) floor a = floor b floor b <! floor c

| (3)

| (4) floor a <! floor b floor b = floor c
| (5) floor a <! floor b floor b <! floor ¢
| (6) floor a <! floor b floor ¢ <! floor b
| (7) floor b <! floor a floor b = floor c
| (8) floor b <! floor a floor b <! floor c
| (

using trichotomy floor-prop by meson
then
show ?thesis
proof (cases)
case I
then
have a 7 (b %% ¢) = a x/loer @ (p xSloor a )
using sum-mult-A assms floor-mult-closed floor-prop by metis
also
have ... = (a *fl0o0m @ p) xfloora ¢
using 1 assms family-of-hoops floor-prop hoop.mult-assoc by metis
also

have ... = (a /107 b p) xfloor b ¢
using 1 by simp

also

have ... = (a %5 b) 5 ¢
using 1 sum-mult-A assms floor-mult-closed floor-prop by metis

finally

show ?thesis
by auto

next
case 2
then

show ?thesis
using sum-mult.simps(2,3) sum-mult-not-one assms floor-prop by metis
next
case 3
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then
show ?thesis
using sum-mult.simps(3) sum-mult-not-one assms floor-prop by metis
next
case /
then
show ?thesis
using sum-mult.simps(2) sum-mult-not-one assms floor-prop by metis
next
case $
then
show ?thesis
using sum-mult.simps(2) assms floor-prop strict-trans by metis
next
case 6
then
show ?thesis
using sum-mult.simps(2,3) assms by metis
next
case 7
then
show ?thesis
using sum-mult.simps(3) sum-mult-not-one assms floor-prop by metis
next
case 8§
then
show ?thesis
using sum-mult.simps(2,3) assms by metis
next
case 9
then
show ?thesis
using sum-mult.simps(3) assms floor-prop strict-trans by metis
qed
qed

lemma sum-mult-assoc:

assumes ¢ € Sbe Sce S

shows a *° (b % ¢) = (a % b) % ¢

using assms sum-mult-assoc-one sum-mult-assoc-not-one by blast

3.5.6 Reflexivity of (=)

lemma sum-imp-refiex:
assumes a € S
shows a —»° a = 1°

proof —
consider (1) a € S—{1°}
| (2) a=1°
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using assms by blast
then
show ?thesis
proof (cases)
case 1
then
have a —
by simp
then
show ?thesis
using 1 family-of-hoops floor-prop hoop.imp-reflex by metis
next
case 2
then
show ?thesis
by simp
qed
qed

Sa:a*)flooraa

3.5.7 Divisibility

We prove z +° (z =% y) = y *% (y —° z) using the same methods as before.

lemma sum-divisibility-one:
assumes a € Sbe Sa=1°Vvb=1°
shows a *° (a —° b) = b *° (b =% a)
proof —
have z =% y=yAy =2z =1%fz=1yec Sforzy
using sum-imp-D sum-imp-FE that by simp
then
show ?thesis
using assms sum-mult-neutr by metis
qed

lemma sum-divisibility-auz:
assumes a € S—{15} b € Afioor o
shows a *° (a =7 b) = a #fleom @ (g —Floor a p)
using sum-imp-A sum-mult-A assms floor-imp-closed floor-prop by metis

lemma sum-divisibility-not-one:
assumes a € S—{1°} b e S—{15}
shows a *° (a =7 b) = b +° (b =7 a)
proof —
from assms
consider (1) floor a = floor b
| (2) floor a <! floor b\ floor b <! floor a
using trichotomy floor-prop by blast
then
show ?thesis
proof (cases)
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case I

then

have a >|<S ((1 _>S b) = a >|<floor a (a _>floo7‘ a b)
using 1 sum-divisibility-auz assms floor-prop by metis

also
have ... = b xfloom @ (p floor a g)
using 1 assms family-of-hoops floor-prop hoop.divisibility by metis
also
have ... = b «floor b (p floor b g)
using 1 by simp
also
have ... = b *% (b =% a)
using 1 sum-divisibility-auz assms floor-prop by metis
finally
show ?thesis
by auto
next
case 2
then

show ?thesis
using assms by auto
qed
qed

lemma sum-divisibility:
assumes ¢ € Sbe S
shows a *° (a =% b) = b *° (b =7 a)
using assms sum-divisibility-one sum-divisibility-not-one by auto

3.5.8 Residuation

S

Finally we prove (z *° y) =% 2z = 2 =% (y =7 2).

lemma sum-residuation-one:
assumes a € Sbe Sce Sa=1°Vvb=1°Ve=1°
shows (a +° b) =% ¢ =a = (b =° ¢)

using sum-imp-D sum-imp-E sum-imp-closed sum-mult-closed sum-mult-neutr

assms
by metis

lemma sum-residuation-not-one:
assumes a € S—{1°} b e S—{15} c € S—{1°}
shows (a +° b) =% ¢ =a = (b =7 ¢)
proof —
from assms
consider (1) floor a = floor b floor b = floor ¢
| (2) floor a = floor b floor b <! floor c
| (3) floor a = floor b floor ¢ <! floor b
| (4) floor a < floor b floor b = floor ¢
| (5) floor a <! floor b floor b <! floor ¢
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| (6) floor a <! floor b floor ¢ <! floor b
| (7) floor b <! floor a floor b = floor c
| (8) floor b <! floor a floor b <! floor c
| (9) floor b <! floor a floor ¢ <I floor b
using trichotomy floor-prop by meson
then
show ?thesis
proof (cases)
case I
then
have (a *S b) _>S c = (CL *floor a b) _>floor a .
using sum-imp-B sum-mult-A assms floor-mult-closed floor-prop by metis
also
have ... = q —fleor a (p floora o)
using 1 assms family-of-hoops floor-prop hoop.residuation by metis
also

have ... = a —fleor b (p floor b )
using 1 by simp

also

have ... = a =% (b =% ¢)
using 1 sum-imp-A assms floor-imp-closed floor-prop by metis

finally

show ?thesis
by auto

next
case 2
then

show ?thesis
using sum-imp.simps(2,5) sum-mult-not-one assms floor-prop by metis
next
case 3
then
show ?thesis
using sum-imp.simps(8) sum-mult-not-one assms floor-prop by metis
next
case 4
then
have (a % b) =% ¢ = 19
using / sum-imp.simps(2) sum-mult.simps(2) assms by metis
moreover
have b —° ¢ = 19V (b =% ¢ € S—{1°} A floor (b =7 ¢) = floor b)
using 4(2) sum-imp-closed-not-one sum-imp-floor assms(2,3) by blast
ultimately
show ?thesis
using 4 (1) sum-imp.simps(2,5) assms(1) by metis
next
case $
then
show ?thesis
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using sum-imp.simps(2,5) sum-mult.simps(2) assms floor-prop strict-trans
by metis
next
case 6
then
show ?thesis
using assms by auto
next
case 7
then
have (a % b) = ¢ = (b =% ¢)
using assms(1,2) by auto
moreover
have b —° ¢ = 19V (b =% ¢ € S—{15} A floor (b =7 ¢) = floor b)
using 7(2) sum-imp-closed-not-one sum-imp-floor assms(2,3) by blast
ultimately
show ?thesis
using 7(1) sum-imp.simps(3,5) assms(1) by metis
next
case 8§
then
show ?thesis
using assms by auto
next
case 9
then
show ?thesis
using sum-imp.simps(8) sum-mult.simps(8) assms floor-prop strict-trans
by metis
qed
qed

lemma sum-residuation:
assumes ¢ € Sbe Sce S
shows (a +° b) =% ¢ =a = (b =7 ¢)
using assms sum-residuation-one sum-residuation-not-one by blast

3.5.9 Main result

sublocale hoop S (¥%) (=) 1%
proof
show z x° y € Sifz e Sye Sforzy
using that sum-mult-closed by simp
next
showz =% yc Sifz e Syc Sforzy
using that sum-imp-closed by simp
next
show 15 € §
by simp
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next
show z +% y=y«Szifz € Sy e Sforzy
using that sum-mult-comm by simp
next
show 7 % (y *% 2) = (z % y) +° zifz € Syc Sz€ Sforxyz
using that sum-mult-assoc by simp
next
show z +° 19 =z if z € S for z
using that sum-mult-neutr by simp
next
show z =% 2 = 19 ifz € S for z
using that sum-imp-reflex by simp
next
show 7 +° (z =% ¢y) =y +% (y =S 2)ifz € Syec Sforay
using that sum-divisibility by simp
next
show z =5 (y =% 2) = (2 +% y) =% zifz € Syc Sz € Sforzy 2
using that sum-residuation by simp
qed

S

S

end

end

4 Totally ordered hoops

theory Totally-Ordered-Hoops
imports Ordinal-Sums
begin

4.1 Definitions

locale totally-ordered-hoop = hoop +
assumes total-order: 1 € A = ye A=z <4 yvy<iz
begin

function fized-points :: 'a = 'a set (<F») where
Fa={be A-{14}. a -2 b=1b}ifa € A—{14}
| Fa={14}ifa= 14
| Fa = undefined if a ¢ A
by auto
termination by lexicographic-order

definition rel-F :: ‘a = 'a = bool (infix «~F) 60)
where 2 ~Fy=V 2€ A (2 =22 2=2) +— (y =4 2= 2)

definition rel-F-canonical-map :: 'a = 'a set («m»)

where 7 = {b € A. z ~F b}
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end

4.2 Properties of F

context totally-ordered-hoop
begin

lemma F-equiv:
assumes a € A—{14} bc A
shows b€ Fa+— (bec ANb# 1A Na—=2b=1D)
using assms by auto

lemma F-subset:
assumes a € A
shows FaC A
proof —
have ¢ = 14V a # 14
by auto
then
show ?thesis
using assms by fastforce
qed

lemma F-of-one:
assumes a € A
shows Fa = {14} +— a =14
using F-equiv assms fized-points.simps(2) top-closed by blast

lemma F-of-mult:
assumes a € A—{14} b € A-{14}
shows F' (a *2 b) = {c € A—{14}. (a +* b) =2 ¢ = ¢}
using assms mult-C' by auto

lemma F-of-imp:
assumes a € Abc Aa—4b# 14
shows F' (a =4 b) = {c € A—{14}. (a =4 b) =4 c = ¢}
using assms imp-closed by auto

lemma F-bound:
assumes a € Abe Aac Fb
shows a <4 b

proof —

consider (1) b # 14
| (2) b= 14
by auto

then

show ?thesis

proof (cases)
case I
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then
have b —»4 a # 14
using assms(2,3) by simp
then
show ?thesis
using assms hoop-order-def total-order by auto
next
case 2
then
show ?thesis
using assms(1) ord-top by auto
qed
qed

The following results can be found in Lemma 3.3 in [5].

lemma LEMMA-3-3-1:
assumes a € A—{14}beAcecAbe Fac<?b
shows c € F a
proof —
from assms
have (a =4 ¢) <4 (a =4 b)
using DiffD1 F-equiv ord-imp-mono-B by metis
then
have (a =4 ¢) <4 b
using assms(1,4,5) by simp
then
have (a =4 ¢) =4 ¢ = ((a =% ¢) ** ((a =4 ¢) =4 b)) =4 ¢
using assms(1,3) hoop-order-def imp-closed by force
also

have ... = (b (b =4 (a =4 ¢))) =4 ¢
using assms divisibility imp-closed by simp

also

have ... = (b =4 (a =4 ¢)) =4 (b =4 ¢)

using DiffD1 assms(1—3) imp-closed swap residuation by metis
also

have ... = ((a =4 b) =4 (a =4 ¢)) =4 (b =4 ¢)
using assms(1,4) by simp

also

have ... = (((a =2 b) ¥ a) =4 ¢) =4 (b =4 ¢)
using assms(1,3,4) residuation by simp

also

have ... = (((b =4 a) ¥4 b) =4 ¢) =4 (b =4 ¢)

using assms(1,2) divisibility imp-closed mult-comm by simp
also
have ... = (b =4 ¢) =4 (b =4 ¢)
using F-bound assms(1,4) hoop-order-def by simp
also
have ... = 14
using F-bound assms hoop-order-def imp-closed by simp
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finally
have (¢ =4 ¢) <4 ¢
using hoop-order-def by simp
moreover
have ¢ <4 (a =4 ¢)
using assms(1,3) ord-A by simp
ultimately
have a« =4 ¢ = ¢
using assms(1,3) imp-closed ord-antisymm by simp
moreover
have ¢ € A—{14}
using assms(1,3—5) hoop-order-def imp-one-C by auto
ultimately
show ?thesis
using F-equiv assms(1) by blast
qed

lemma LEMMA-3-3-2:
assumes a € A—{14} be A-{14} Fa=Fb
shows Fa = F (a** b)
proof
show Fa C F (a 2 b)
proof
fix ¢
assume c € F a
then
have (a *4 b) =4 ¢ =b =4 (a =4 ¢)
using DiffD1 F-subset assms(1,2) in-mono swap residuation by metis
also

A A

have ... = b =4 ¢

using <¢ € F a) assms(1) by auto
also
have ... = ¢

using <c € F a> assms(2,3) by auto
finally

show ¢ € F (a %4 b)
using ¢ € F a) assms(1,2) mult-C by auto
qed
next
show F (a +* b) C Fa
proof
fix ¢
assume c € F (a * D)
then
have (a ** b) <4 a
using assms(1,2) mult-A by auto
then
have (a =4 ¢) <4 ((a ¥* b) =4 ¢
using DiffD1 F-subset «c € F (a ¥ b)) assms mult-closed
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ord-imp-anti-mono-B subsetD
by meson
moreover
have (a x4 b) =4 c = ¢
using «c € F (a ** b)y assms(1,2) mult-C by auto
ultimately
have (a =4 ¢) <4 ¢
by simp
moreover
have ¢ <% (a =4 ¢)
using DiffD1 F-subset «c € F (a ¥4 b)) assms(1,2) insert-Diff
insert-subset mult-closed ord-A
by metis
ultimately
show c € Fa
using «c € F (a ** b)> assms(1,2) imp-closed mult-C ord-antisymm by auto
qed
qed

lemma LEMMA-3-3-3:
assumes a € A—{14} bc A-{14} a <" b
shows Fa C F'b
proof
fix ¢
assume c € Fa
then
have (b =4 ¢) <4 (a =4 ¢)
using DiffD1 F-subset assms in-mono ord-imp-anti-mono-B by meson
moreover
have a« =4 ¢ = ¢
using «¢ € F a) assms(1) by auto
ultimately
have (b =4 ¢) <4 ¢
by simp
moreover
have ¢ <4 (b =4 ¢)
using «¢ € F a> assms(1,2) ord-A by force
ultimately
show c € F'b
using <c € F a» assms(1,2) imp-closed ord-antisymm by auto
qed

lemma LEMMA-3-3-4:
assumes ¢ € A—{14} bec A-{1%}a<? " bFa#Fb
shows a € F'b
proof —
from assms
obtain ¢ where c€ FbAc ¢ Fa
using LEMMA-3-3-8 hoop-order-strict-def by auto
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then
have witness: ¢ € A—{14} A b =4 c=c A c<? (a =4 ¢)
using DiffD1 assms(1,2) hoop-order-strict-def ord-A by auto
then
have (a % ¢) 24 c€ Fb
using DiffD1 F-equiv assms(1,2) imp-closed swap ord-D by metis
moreover
have a <4 ((a =4 ¢) =4 ¢)
using assms(1) ord-C witness by force
ultimately
show a € F' b
using Diff-iff LEMMA-3-3-1 assms(1,2) imp-closed witness by metis
qed

lemma LEMMA-3-3-5:
assumes a € A—{14} be A-{14} Fa#Fb
shows a 2 b=a A% b
proof —
have a <A bV b <4 a
using DiffD1 assms hoop-order-strict-def total-order by metis
then
havea e FbVv be Fa
using LEMMA-3-3-4 assms by metis
then
have a A b= (b =4 a) A bV ax? b=a*4 (a =)
using assms(1,2) by force
then
show ?thesis
using assms(1,2) divisibility hoop-inf-def imp-closed mult-comm by auto
qed

lemma LEMMA-3-3-6:
assumes ¢ € A—{14} bec A-{1%}a<? " bFa=Fb
shows F (b =4 a) = F b
proof —
have a ¢ F a
using assms(1) DiffD1 F-equiv imp-reflex by metis
then
have a <* (b =% a)
using assms(1,2,4) hoop-order-strict-def ord-A by auto
moreover
have b x4 (b =4 a) = a
using assms(1—23) divisibility hoop-order-def hoop-order-strict-def by simp
moreover
have b <4 (b =4 a) v (b =% a) <A b
using DiffD1 assms(1,2) imp-closed ord-reflex total-order by metis
ultimately
have b +* (b =4 a) # b AY (b =4 a)
using assms(1—3) hoop-order-strict-def imp-closed inf-comm inf-order by force
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then
show F (b =4 a) = F b
using LEMMA-3-3-5 assms(1—3) imp-closed ord-D by blast
qed

4.3 Properties of (~F)
4.3.1 (~F) is an equivalence relation

lemma rel-F-reflex:
assumes a € A
shows a ~F a
using rel-F-def by auto

lemma rel-F-symm:
assumes a € Abe€ Aa~Fb
shows b ~F a
using assms rel-F-def by auto

lemma rel-F-trans:
assumes a € Abe AceAa~Fbb~Fc
shows a ~F ¢
using assms rel-F-def by auto

4.3.2 Equivalent definition

lemma rel-F-equiv:
assumes ¢ € Abe A
shows (a ~F b) = (Fa= Fb)
proof
assume a ~F b
then
consider (1) a # 14 b # 14
| (2)a=14b=14
using assms imp-one-C rel-F-def by fastforce
then
show Fla=Fb
proof(cases)
case 1
then
show ?thesis
using <a ~F by assms rel-F-def by auto
next
case 2
then
show ?thesis
by simp
qed
next
assume Fa=Fb
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then
consider (1) a # 14 b # 14
| (2)a=14b=14
using F-of-one assms by blast
then
show a ~F b
proof (cases)
case I
then
show ?thesis

using <F' a = F by assms imp-one-A imp-one-C rel-F-def by auto

next
case 2
then
show ?thesis
using rel-F-reflex by simp
qed
qed

4.3.3 Properties of equivalence classes given by (~F)

lemma class-one: m 14 = {14}
using imp-one-C' rel-F-canonical-map-def rel-F-def by auto

lemma classes-subsets:
assumes a € A
shows ma C A
using rel-F-canonical-map-def by simp

lemma classes-not-empty:
assumes a € A
shows a € 7 a
using assms rel-F-canonical-map-def rel-F-reflex by simp

corollary class-not-one:
assumes a € A—{14}
shows 7 a # {14}
using assms classes-not-empty by blast

lemma classes-disjoint:
assumes a € Abe Ananmb#(
shows T a=71b
using assms rel-F-canonical-map-def rel-F-def rel-F-trans by force

lemma classes-cover: A ={z.3 y€ A. z € 7 y}
using classes-subsets classes-not-empty by auto

lemma classes-conver:
assumes a c AbceAccAdeAbenacenmab<ddd<4c
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shows d € 7 a
proof —
have e¢-F: Fa=FbAN Fa=Fc
using assms(1,5,6) rel-F-canonical-map-def rel-F-equiv by auto
from assms
consider (1) ¢ = 14
[(2) ¢ # 14
by auto
then
show ?thesis
proof(cases)
case I
then
have b = 14
using F-of-one eq-F assms(2) by auto
then
show ?thesis
using [ assms(2,4,5,7,8) ord-antisymm by blast
next
case 2
then
have b # 14 A c# 14 AN d # 14
using eq-F assms(3,8) ord-antisymm ord-top by auto
then
have FObC FdANFdCFe
using LEMMA-3-3-8 assms(2—4,7,8) by simp
then
have Fa=Fd
using eq-F by blast
then
have a ~F d
using assms(1,4) rel-F-equiv by simp
then
show ?thesis
using assms(4) rel-F-canonical-map-def by simp
qed
qed

lemma related-iff-same-class:
assumes a € Abe A
shows a ~Fb¢—ma=7mb
proof
assume a ~F b
then
have ¢ = 14 +— b= 14
using assms imp-one-C imp-reflex rel-F-def by metis
then
have (a = 1A A b= 14V (a# 14 AN b# 14
by auto
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then
show ma=7b
using <a ~F by assms rel-F-canonical-map-def rel-F-def rel-F-symm by force
next
showrmra=nb= a~Fb
using assms(2) classes-not-empty rel-F-canonical-map-def by auto
qed

corollary same-F-iff-same-class:
assumes ¢ € A be A
shows Fa=Fb+—ma=7mb
using assms rel-F-equiv related-iff-same-class by auto

end

4.4 TIrreducible hoops: definition and equivalences

A totally ordered hoop is irreducible if it cannot be written as the ordinal
sum of two nontrivial totally ordered hoops.

locale totally-ordered-irreducible-hoop = totally-ordered-hoop +
assumes irreducible: # B C.

)
hoop B (x4) (—4)
)

N

A
C.zxdy=2z)A
C.z—=4y=14A
y:

lemma irr-test:
assumes totally-ordered-hoop A PA RA a
—totally-ordered-irreducible-hoop A PA RA a
shows 34 B C.
(A=BUC)A
({a} =Bn C) A
FyeB y#aA
FyelC y#a)A
(hoop B PA RA a) A
(hoop C' PA RA a) A
(VezeB-{a}.Vye C.PAzy=1x)A
(VzeB-{a}.Vye C.RAzy=a)A
(VzeC.VyeB RAzy=y)
using assms unfolding totally-ordered-irreducible-hoop-def
totally-ordered-irreducible-hoop-axioms-def
by force

locale totally-ordered-one-fixed-hoop = totally-ordered-hoop +
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assumes one-fizted: t € A= yc A=y z=0=—0a=14vy=14
locale totally-ordered-wajsberg-hoop = totally-ordered-hoop + wajsberg-hoop

context totally-ordered-hoop
begin

The following result can be found in [1] (see Lemma 3.5).

lemma not-one-fized-implies-not-irreducible:
assumes —totally-ordered-one-fized-hoop A (¥4) (—4)
shows —totally-ordered-irreducible-hoop A (x4) (—4) 14
proof —
have 3 zy. s €c ANyc ANy st z=anz# 14Ny # 14
using assms totally-ordered-hoop-axioms totally-ordered-one-fixed-hoop.intro
totally-ordered-one-fixed-hoop-axioms.intro
by meson
then
obtain by ¢y where witnesses: by € A—{14} A cg € A—{14} A by =4 ¢y = co
by auto
define B C where B = (F by) U {14} and C = A—(F b)

_ZA

have B-mult-b0: b x* by = b if b € B—{14} for b
proof —
have upper-bound: b <* by if b € B—{14} for b
using B-def F-bound witnesses that by force
then
have b x? by = by *
using B-def witnesses mult-comm that by simp

Ap

also
have ... = by *4 (bg =4 b)
using B-def witnesses that by fastforce
also
have ... = b % (b =4 by)
using B-def witnesses that divisibility by auto
also
have ... =10
using B-def hoop-order-def that upper-bound witnesses by auto
finally
show b %4 by = b
by auto
qed
have C-upper-set: a € Cifac Ace Cc<*aforac
proof —
consider (1) a # 14
[(2) a= 14
by auto
then
show a € C
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proof (cases)
case I
then
have a ¢ C = a € F by
using C-def that(1) by blast
then
have a ¢ C = c € F b
using C-def DiffD1 witnesses LEMMA-3-3-1 that by metis
then
show ?thesis
using C-def that(2) by blast
next
case 2
then
show ?thesis
using C-def witnesses by auto
qed
qed

have B-union-C: A= B U C
using B-def C-def witnesses one-closed by auto

moreover

have B-inter-C: {14} = Bn C
using B-def C-def witnesses by force

moreover

have B-not-trivial: 3 y € B. y # 14
proof —
have ¢y € B A ¢g # 14
using B-def witnesses by auto
then
show ?thesis
by auto
qged

moreover

have C-not-trivial: 3 y € C. y # 14
proof —
have by € O/\bo;éIA
using C-def witnesses by auto
then
show ?thesis
by auto
qged
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moreover

have B-mult-closed: a +* b€ Bifae Bbe Bfor a b

proof —
from that
consider (1) a € F b
[(2) a = 14
using B-def by blast
then
show a +4 b € B
proof (cases)
case I
then

have a € ANax* be AN (ax?b) < a
using B-union-C that mult-A mult-closed by blast
then
have a x4 b € F by
using 1 witnesses LEMMA-3-3-1 by metis
then
show ?thesis
using B-def by simp
next
case 2
then
show ?thesis
using B-union-C' that(2) by simp
qed
qed

moreover

have B-imp-closed: a - b€ Bifa € Bbec Bforab
proof —
from that
consider (1) a=14Vb=14V (a€ FbgANbE FbyAa—"b=14)
| (2)a€ Fbgbe Fbya—2b#14
using B-def by fastforce
then
show a -4 b€ B
proof (cases)
case I
then
have a =4 b=0bVa—=4b=14
using B-union-C that imp-one-C imp-one-top by blast
then
show ?thesis
using B-inter-C' that(2) by fastforce
next
case 2
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then
have a % by = a
using B-def B-mult-b0 witnesses by auto
then
have by =4 (a =4 b) = (a =4 b)
using B-union-C witnesses that mult-comm residuation by simp
then
have ¢ =4 b € F b
using 2(8) B-union-C F-equiv witnesses that imp-closed by auto
then
show ?thesis
using B-def by auto
qed
qed

moreover

have B-hoop: hoop B (x%) (—4) 14
proof
show z 4 yc Bifv € Bye Bforzy
using B-mult-closed that by simp
next
show z -4 ye Bifr € Bye Bforzy
using B-imp-closed that by simp
next
show 14 ¢ B
using B-def by simp
next
show z x4 y =y« zifz € Bye Bforzy
using B-union-C mult-comm that by simp
next
show z *4 (y x4 2) = (z +4 y) s 2zifr € Byc Bz € Bforzy 2
using B-union-C mult-assoc that by simp
next
show z x4 14 =z ifz € B for z
using B-union-C that by simp
next
show z -4 ¢ = 14 ifz € B for z
using B-union-C that by simp
next
show 7 4 (z =4 y) =y +2 (y 24 2)ifr € Byc Bforzy
using B-union-C' divisibility that by simp
next
show z =4 (y =24 2)=(z 2 y) 22 zifr € Byc Bzc Bforzyz
using B-union-C residuation that by simp
qed

A

A

A

moreover
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have C-imp-B: ¢ -2 b=bifbe Bce C for b ¢
proof —
from that
consider (1) b€ Fby c # 14
| (2)b=14V =14
using B-def by blast
then
show ¢ -4 b=
proof (cases)
case I
have by =4 ((c =4 b) =4 b) = (¢ =4 b) =4 (b =4 D)
using B-union-C witnesses that imp-closed swap by simp
also
have ... = (¢ =4 b) =4 b
using 1(1) witnesses by auto
finally
have (¢ =4 b) =4 b€ Fbyif (c 54 b) =4 b# 14
using B-union-C F-equiv witnesses <b € By <c € C» that imp-closed by auto
moreover
have ¢ <? ((c =4 b) =4 b)
using B-union-C that ord-C by simp
ultimately
have (¢ =4 b) =4 b= 14
using B-def B-union-C C-def C-upper-set that(2) by blast
moreover
have b =4 (¢ =4 b) = 14
using B-union-C that imp-A by simp
ultimately
show ?thesis
using B-union-C' that imp-closed ord-antisymm-equiv by blast
next
case 2
then
show ?thesis
using B-union-C' that imp-one-C imp-one-top by auto
qed
qged

moreover

have B-imp-C: b =4 ¢ = 14 if b€ B—{14} c€ Cfor b c
proof —
from that
have b <A ¢V e <4 b
using total-order B-union-C by blast
moreover
have ¢ -4 b =10
using C-imp-B that by simp
ultimately
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show b —»4 ¢ = 14
using that(1) hoop-order-def by force
qed

moreover

have B-mult-C: b ** ¢ = bif b € B—{14} c € C for b ¢

proof —
have b = b x4 14
using that(1) B-union-C by fastforce
also
have ... = b 4 (b =4 ¢)
using B-imp-C that by blast
also
have ... = c *” (¢ =4 b)
using that divisibility B-union-C' by simp
also
have ... = ¢ *4 b
using C-imp-B that by auto
finally

show b x4 ¢ = b
using that mult-comm B-union-C by auto
qed

moreover

have C-mult-closed: ¢ ¥4 d € Cif c € Cd € C for ¢ d
proof —
consider (1) ¢ # 14 d # 14
| (2) e=14Vvd=14
by auto
then
show ¢ x4 d € C
proof (cases)
case I
have c ¥ d € Fbyif cx* d ¢ C
using C-def «c € C» «d € C) mult-closed that by force
then
have ¢ =4 (c x4 d) € Fbyifc+* d ¢ C
using B-def C-imp-B <c € C» that by simp
moreover
have d <% (¢ -4 (¢ " d))
using C-def DiffD1 that ord-reflex ord-residuation residuation
mult-closed mult-comm
by metis
moreover
have ¢ =4 (cx* d)c Andec A
using C-def Diff-iff that imp-closed mult-closed by metis
ultimately
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have d € F by if c +* d ¢ C
using witnesses LEMMA-3-3-1 that by blast
then
show ?thesis
using C-def that(2) by blast
next
case 2
then
show ?thesis
using B-union-C that mult-neutr mult-neutr-2 by auto
qed
qed

moreover

have C-imp-closed: ¢ = d € Cifce Cde C for cd
using C-upper-set imp-closed ord-A B-union-C that by blast

moreover

have C-hoop: hoop C (x*) (—=4) 14
proof
show z x4 yec Cifz € Cyec Cforzy
using C-mult-closed that by simp
next
show z -4 ye Cifze Cye Cforuay
using C-imp-closed that by simp
next
show 14 € C
using B-inter-C by auto
next
show z x4 y =y x4 zifz € Cye Cfor zy
using B-union-C mult-comm that by simp
next
show 7+ (y 4 2) = (e x4 y)+* zifr e Cyc Cze Cforzyz
using B-union-C mult-assoc that by simp
next
show z =z ifz e Cfor 2z
using B-union-C that by simp
next
show z =4 ¢ = 14 ifz € C for
using B-union-C that by simp
next
show z x4 (z =4 y) =y+d (y 24 2)ifz e Cyc Clorzy
using B-union-C' divisibility that by simp
next
show 1 =4 (y =4 2) = (z+x? y) =22 zifz e Cye Cze Cforzyz
using B-union-C residuation that by simp
qed

A]A

A

A
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ultimately

have 3 B C.
(
(
(
(hoop B (*
(
(
(

by (smt (verit))
then
show ?thesis
using totally-ordered-irreducible-hoop.irreducible by (smt (verit))
qed

Next result can be found in [2] (see Proposition 2.2).

lemma one-fized-implies-wajsberg:

assumes totally-ordered-one-fized-hoop A (¥4) (—4) 14
shows totally-ordered-wajsberg-hoop A (x*) (—4) 14
proof
have (¢ =4 b) 24 b=(b—=44a) 22 aifac Abc Aa<?bforab
proof —
from that

have (((b =% a) =% a) =24 b) 22 (b—=2a)=b—=2anb—a# 14
using imp-D ord-D by simp
then
have ((b =4 a) =4 a) =4 b= 14
using assms that(1,2) imp-closed totally-ordered-one-fized-hoop.one-fized
by metis
moreover
have b =4 ((b =4 a) =4 a) = 14
using hoop-order-def that(1,2) ord-C by simp
ultimately
have (b =4 a) =4 a=b
using imp-closed ord-antisymm-equiv hoop-axioms that(1,2) by metis
also
have ... = (a =4 b) —
using hoop-order-def hoop-order-strict-def that(2,3) imp-one-C by force
finally
show (a =2 b) =24 b= (b—=>"0a) 2" a
by auto
qed
then
show (z =4 y) =24 y=(y 24 2) 24 zifzc Ayc Aforzy
using total-order hoop-order-strict-def that by metis

Ap
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qed

The proof of the following result can be found in [1] (see Theorem 3.6).

lemma not-irreducible-implies-not-wajsberg:
assumes —totally-ordered-irreducible-hoop A (x*) (—4) 1
shows —totally-ordered-wajsberg-hoop A (x4) (—4) 14

A

proof —
have 3 B C.
(A=BUC)A
{14y =BnC) A
FyeB y#14A
FyeC y#14 A
(hoop B (x4) (=4) 14) A
(hoop C (x4) (—4) 14) A
(VzeB-{14}.VyeCaxty=2a)A
(VzeB-{14}.VyeCao—-4y=14A

VrzeC.VyeBr—=4y=y)

using irr-test[OF totally-ordered-hoop-azioms| assms by auto
then
obtain B C' where H:

(A=BUC)A

obtain b ¢ where assms: b € B—{14} A c € C—{14}
by auto
then
have b —4 ¢ = 14
using H by simp
then
have (b =4 ¢) =4 c= ¢
using H assms imp-one-C by blast
moreover
have (¢ =4 b) =4 b= 14
using assms H by force
ultimately
have (b =4 ¢) =4 ¢ # (¢ —
using assms by force
moreover
have be ANce A
using assms H by blast
ultimately
show ?thesis
using totally-ordered-wajsberg-hoop.azioms(2) wajsberg-hoop. T by meson
qed

Ab) =4
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Summary of all results in this subsection:

theorem one-fized-equivalent-to-wajsbery:
shows totally-ordered-one-fived-hoop A (x7) (—4) 14 =
totally-ordered-wagjsberg-hoop A (x*) (—4) 14
using not-irreducible-implies-not-wajsberg not-one-fixed-implies-not-irreducible
one-fixed-implies-wajsberg
by linarith

theorem wajsberg-equivalent-to-irreducible:
shows totally-ordered-wajsberg-hoop A (x*) (—4) 14 =
totally-ordered-irreducible-hoop A (x4) (—4) 14
using not-irreducible-implies-not-wajsberg not-one-fired-implies-not-irreducible
one-fixed-implies-wajsberg
by linarith

theorem irreducible-equivalent-to-one-fized:
shows totally-ordered-irreducible-hoop A (x4) (—4) 14 =
totally-ordered-one-fized-hoop A (x4) (—4) 14
using one-fized-equivalent-to-wajsberg wajsberg-equivalent-to-irreducible
by simp

end

4.5 Decomposition

locale tower-of-irr-hoops = tower-of-hoops +
assumes family-of-irr-hoops: i € I —
totally-ordered-irreducible-hoop (A;) (x') (=) 1°

locale tower-of-nontrivial-irr-hoops = tower-of-irr-hoops +
assumes nontrivial: i € [ = 3 z € A;. © # 1°

context totally-ordered-hoop
begin

4.5.1 Definition of index set |

definition index-set :: (‘a set) set (<I»)
where I = {y. 3z € A. 7z =y)}

lemma indezes-subsets:
assumes i € [
shows i C A
using indez-set-def assms rel-F-canonical-map-def by auto

lemma indezxes-not-empty:
assumes i € [
shows i # ()
using indez-set-def assms classes-not-empty by blast
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lemma indezes-disjoint:
assumes i € [j€ [i#j
shows i N j =10
proof —
obtain a b wherea e ANbDEANa#bANi=TaANj=T70b
using index-set-def assms by auto
then
show ?thesis
using assms(3) classes-disjoint by auto
qed

lemma indexes-cover: A = {z. 3 i€ l. z € i}
using classes-subsets classes-not-empty index-set-def by auto

lemma indexes-class-of-elements:
assumes { € [a € Aa € i
shows m a = 1
proof —
obtain ¢ where class-element: ¢ € ANi=7c
using assms(1) index-set-def by auto
then
have a ~F ¢
using assms(3) rel-F-canonical-map-def rel-F-symm by auto
then
show ?thesis
using assms(2) class-element related-iff-same-class by simp
qed

lemma indexes-convex:
assumes i € Jacibeide Aa<Add<4b
shows d € i
proof —
haveac ANbEANdEANI=Ta
using assms(1—4) indexes-class-of-elements indexes-subsets by blast
then
show ?thesis
using assms(2—6) classes-convex by auto
qed

4.5.2 Definition of total partial order over I

Since each equivalence class is convex, (<4) induces a total order on I.

function index-order :: (‘a set) = ('a set) = bool (infix «<!) 60) where
r<ly=((r=y)vVverVuwecyv<tuw)ifzelyecl

| z <! y = undefined ifz ¢ IV y ¢ I
by auto

termination by lexicographic-order
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definition indez-order-strict (infix «<%» 60)
where z <! y=(z <! y Az # y)

lemma index-ord-reflex:
assumes i € |
shows i <! §
using assms by simp

lemma index-ord-antisymm:
assumes i € [jc i<l jj<li
shows i = j
proof —
have i =jV (V a €i. V bej.aSAb/\bgAa)
using assms by auto
then
havei=jVv (VY a€i.Vbeja=0h)
using assms(1,2) indexes-subsets insert-Diff insert-subset ord-antisymm
by metis
then
show ?thesis
using assms(1,2) indexes-not-empty by force
qed

lemma index-ord-trans:
assumes i € [jelkeli<ljj<lk
shows i <! k
proof —
consider (1) i #jj#k
[(2)i=jVi=k
by auto
then
show i <! k
proof(cases)
case I
then
have (V a €.V be€ja< b ANbESY c€k b<4o)
using assms by force
moreover
have j #
using assms(2) indezes-not-empty by simp
ultimately
haveV a € i.V ¢ce€ k. 4 bej.agAb/\bSAc
using all-not-in-conv by meson
then
haveV a €.V c€ k. a <A ¢
using assms indexes-subsets ord-trans subsetD by metis
then
show ?thesis
using assms(1,3) by simp
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next
case 2
then
show ?thesis
using assms(4,5) by auto
qed
qed

lemma index-order-total :
assumes i € [j € I —(j <! 9)
shows i <! j
proof —
have i # j
using assms(1,3) by auto
then
have disjoint: i N j =10
using assms(1,2) indexes-disjoint by simp
moreover
have 3 z € j. 3 y € i. =(z < 9)
using assms indezx-order.simps(1) by blast
moreover
have subsets: i C ANjC A
using assms indexes-subsets by simp
ultimately
haved rcjIyciy<iz
using total-order hoop-order-strict-def insert-absorb insert-subset by metis
then
obtain a; a; where witnesses: a; € i A\ a; € j N a; <A a;
using assms(1,2) total-order hoop-order-strict-def indexes-subsets by metis
then
haveaSAbifaeibEjforab
proof
from that
consider (1) a; <4 a a; <Ay
|(2)a<Aaib<AaJ—
| (8) ai <A ab <t a
| (4) a <? a;a; <A b
using total-order hoop-order-strict-def subset-eq subsets witnesses by metis
then
show a <4 b
proof (cases)
case I
then
have a; <4 a; A a; <ApAb<Aqifb<ta
using hoop-order-strict-def that witnesses by blast
then
have a; <A bAb<A qifb<? a
using <b € j» in-mono ord-trans subsets that witnesses by meson
then
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have b € i if b < a
using assms(1) <a € 9> <b € §» inderes-conver subsets that witnesses
by blast
then
show a <4 b
using disjoint disjoint-iff-not-equal hoop-order-strict-def subset-eq
subsets that total-order
by metis
next
case 2
then
havebSAa/\agAai/\aigAajifb<Aa
using hoop-order-strict-def that witnesses by blast
then
have b <4 ¢ A a <4 ajifb<Aa
using <a € ) ord-trans subset-eq subsets that witnesses by metis
then
have a € jif b <* a
using assms(2) <a € i» <b € j indexes-convexr subsets that witnesses
by blast
then
show a <4 b
using disjoint disjoint-iff-not-equal hoop-order-strict-def subset-eq
subsets that total-order
by metis
next
case 3
have b SA a; N\ a; SA a; if b SA a;
using hoop-order-strict-def that witnesses by auto
then
have a; € jif b <4 a;
using assms(2) <b € j» indexes-conver subsets that witnesses by blast
moreover
have a; ¢ j
using disjoint witnesses by blast
ultimately
have a; <4 b
using total-order hoop-order-strict-def <b € j» subsets witnesses by blast
then
have a; <A bAb<Aqifb<?a
using hoop-order-strict-def that by auto
then
have b € i if b </ a
using assms(1) <a € 9> <b € j» indexes-conver subsets that witnesses
by blast
then
show a <4 b
using disjoint disjoint-iff-not-equal hoop-order-strict-def subset-eq
subsets that total-order
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by metis
next
case 4
then
show a <4 b
using hoop-order-strict-def in-mono ord-trans subsets that witnesses
by meson
qed
qed
then
show i <! j
using assms by simp
qed

sublocale total-poset-on I (<!) (<T)
proof
show I # ()
using indexes-cover by auto
next
show refip-on I (<)
using indez-ord-reflex reflp-onl by blast
next
show antisymp-on I (<7)
using antisymp-on-def indez-ord-antisymm by blast
next
show transp-on I (<)
using indez-ord-trans transp-on-def by blast
next
showz <! y=(@x <l yna £y ifzeclyclforazy
using indez-order-strict-def by auto
next
show totalp-on I (<T)
using index-order-total totalp-onl by metis
qed

4.5.3 Definition of universes
definition universes :: 'a set = 'a set (<UNI 4»)
where UNI4 = 2 U {14}

abbreviation (uniA-i)
uniA-i :: ['a set] = (‘a set) (<(A(-))» [61] 60)
where A; = UNI4 i

abbreviation (uniA-pi)
uniA-pi :: ['al = (a set) («(Ar () [61] 60)
where A, = UNI4 (7 x)

abbreviation (uniA-pi-one)
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uniA-pi-one :: 'a set (<(Ar14)> 60)
where A 14 = UNI4 (7 14)

lemma universes-subsets:
assumes i € [ a € A;
shows a € A
using assms universes-def indexes-subsets one-closed by fastforce

lemma universes-not-empty:
assumes 7 € [
shows A; # ()

using universes-def by simp

lemma universes-almost-disjoint:
assumes i € [je€ [i#j
shows (A;) N (A;) = {14}

using assms indexes-disjoint universes-def by auto

lemma universes-cover: A ={x.3 i € I. z € A;}
using one-closed indexes-cover universes-def by auto

lemma universes-auz:
assumes i € [a € i
shows A; = 7 a U {14}
using assms universes-def universes-subsets indexes-class-of-elements by force

4.5.4 Universes are subhoops of A

lemma universes-one-closed:
assumes i € [
shows 14 € A,
using universes-def by auto

lemma universes-mult-closed:
assumes i € [a € A; b e A;
shows a x4 b € A;
proof —
consider (1) a # 14 b # 14
| (2)a=14Vvb=14
by auto
then
show ?thesis
proof(cases)
case I
then
have UNI-def: A; = m a U {14} A A; =7 b U {14}
using assms universes-def universes-subsets indexes-class-of-elements
by simp
then
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have mr a =7 b
using 1 assms universes-def universes-subsets indexes-class-of-elements
by force

then

have Fa=F b
using assms universes-subsets rel-F-equiv related-iff-same-class by meson

then

have F (a +* b) = F a
using 1 LEMMA-3-3-2 assms universes-subsets by blast

then

have 7 a = 7 (a ** b)
using assms universes-subsets mult-closed rel-F-equiv related-iff-same-class
by metis

then

show ?thesis
using UNI-def Unll assms classes-not-empty universes-subsets mult-closed
by metis

next

case 2

then

show ?thesis
using assms universes-subsets by auto

qed
qed

lemma universes-imp-closed:
assumes i € [a € A; b e A;
shows a >4 b € A,
proof —
from assms
consider (1) a # 14 b# 14 b <t a
| (2)a=12Vvb=12V(a#12ANb# 14 Na <))
using total-order universes-subsets hoop-order-strict-def by auto
then
show ?thesis
proof (cases)
case I
then
have UNI-def: A; =7 a U {14} AN A; = m bU {14}
using assms universes-def universes-subsets indexes-class-of-elements
by simp
then
have mr a =7 b
using 1 assms universes-def universes-subsets indexes-class-of-elements
by force
then
have Fa=Fb
using assms universes-subsets rel-F-equiv related-iff-same-class by simp
then
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have F (a =4 b) = Fa
using I LEMMA-3-3-6 assms universes-subsets by simp
then
have 7 a = 7 (a =4 b)
using assms universes-subsets imp-closed same-F-iff-same-class by simp
then
show ?thesis
using UNI-def Unll assms classes-not-empty universes-subsets imp-closed
by metis
next
case 2
then
show ?thesis
using assms universes-subsets universes-one-closed hoop-order-def imp-one-A
imp-one-C
by auto
qed
qed

4.5.5 Universes are irreducible hoops

lemma universes-one-fized:
assumes i € Ja € A; beEA; a2 b=1b
shows a = 14 v b = 14
proof —
from assms
have m a =7 bifa # 14 b # 14
using universes-def universes-subsets indexes-class-of-elements that by force
then
have Fa= Fbifa# 14 b+# 14
using assms(1—3) universes-subsets same-F-iff-same-class that by blast
then
have b = 14 ifa # 14 b # 14
using F-equiv assms universes-subsets fized-points.cases imp-reflex that by metis
then
show ?thesis
by blast
qed

corollary universes-one-fixed-hoops:
assumes i € |
shows totally-ordered-one-fized-hoop (A;) (x2) (—4) 14
proof
show z +* y € A;ifz € A, y € A; for z y
using assms universes-mult-closed that by simp
next
show z =4 yc A;ifz € A; y € A, for =y
using assms universes-imp-closed that by simp
next
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show 14 € A;
using assms universes-one-closed by simp
next
show z x4 y =y« zifz € A; y € A; for z y
using assms universes-subsets mult-comm that by simp
next
show z 4 (y x4 2) = (e x4 y) +A zifr e Ay y € A; 2 € A for zy 2
using assms universes-subsets mult-assoc that by simp
next
show z * =z ifz € A; for z
using assms universes-subsets that by simp
next
show z 4 ¢z = 14 if x € A, for z
using assms universes-subsets that by simp
next
show z 4 (z =4 y) =y 2 (y =42 2)ifz € A; y € A, for z y
using assms divisibility universes-subsets that by simp
next
show 7 =4 (y =2 2) = (zxt y) 24 zifr e Ay yc A, z€ A; for zy 2
using assms universes-subsets residuation that by simp
next
show z <A yvy<tzifzec A ycA, forzy
using assms total-order universes-subsets that by simp
next
showz =14 Vvy=14ifzc A;yc Ajy -4 z2=aforzy
using assms universes-one-fived that by blast
qged

A1A

A

corollary universes-irreducible-hoops:
assumes { € [
shows totally-ordered-irreducible-hoop (A;) (x4) (—=4) 14
using assms universes-one-fixed-hoops totally-ordered-hoop.irreducible-equivalent-to-one-fized
totally-ordered-one-fized-hoop.azioms(1)
by metis

4.5.6 Some useful results

lemma index-aux:
assumes i € [j € [i <! jae (A)-{1} be (A)-{14}
shows a <? b A =(a ~F b)
proof —
have noteq: i #j ANz <A yifzciycjforay
using assms that index-order-strict-def by fastforce
moreover
have ij-def: i =maNj=7b
using UnFE assms universes-def universes-subsets indexes-class-of-elements
by auto
ultimately
have a <4 b
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using assms(1,2,4,5) classes-not-empty universes-subsets hoop-order-strict-def
by blast

moreover

have i = jif a ~F b

using assms(1,2,4,5) that universes-subsets ij-def related-iff-same-class by auto

ultimately

show ?thesis
using assms(2,8) trichotomy by blast

qed

lemma different-indexes-mult:
assumes i € [j € [i <! jae (A)-{1} be (A)-{14}
shows a +* b= a
proof —
have a <4 b A —(a ~F b)
using assms index-auz by blast
then
have a <A b A Fa# Fb
using DiffD1 assms(1,2,4,5) universes-subsets rel-F-equiv by meson
then
have a <A bAax? b=a A b
using DiffD1 LEMMA-3-3-5 assms(1,2,4,5) universes-subsets by auto
then
show ?thesis
using assms(1,2,4,5) universes-subsets hoop-order-strict-def inf-order by auto
qged

lemma different-indexes-imp-1:
assumes i € [j € [i <! jae (A)-{1} be (A)-{14}
shows o —4 b = 14
proof —
have z <4 yifr ciy c jforzy
using assms(1—23) index-order-strict-def that by fastforce
moreover
have a € i Ab € j
using assms(4,5) assms(5) universes-def by auto
ultimately
show ?thesis
using hoop-order-def by auto
qed

lemma different-indexes-imp-2 :
assumes i € [j € i<l jae (A;)—{11} be (A;)—{14}
shows a -4 b =1b
proof —
have b <4 a A =(b ~F a)
using assms index-aux by blast
then
have b <A a A Fb# Fa
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using DiffD1 assms(1,2,4,5) universes-subsets rel-F-equiv by metis
then
have b € F a
using LEMMA-3-3-4 assms(1,2,4,5) universes-subsets by simp
then
show ?thesis
using assms(2,4,5) universes-subsets by fastforce
qed

4.5.7 Definition of multiplications, implications and one

definition mult-map :: 'a set = ('a = 'a = 'a) («MULA>)
where MUL4 = = (%)

definition imp-map :: ‘a set = (‘a = 'a = 'a) ((IMPy>»)
where IMP4 = (—4)

definition sum-one :: ‘a (<1°))
where 19 = 14

abbreviation (multA-i)
multA-i 2 ['a set] = (a = 'a = 'a) («(x(7))» [50] 60)
where ' = MUL4 i

abbreviation (impA-i)
impA-i:: ['a set] = ('a = 'a = 'a) («(—=())» [50] 60)
where —' = IMP 4 i

abbreviation (multA-i-zy)
multA-i-zy 5 ['a, 'a set, 'a) = 'a («(-)/ +() / () [61, 50, 61] 60)
where z ' y = MUL4 iz y

abbreviation (impA-i-zy)
impA-i-zy = ['a, ‘a set, 'al = 'a («((-)/ =) / () [61, 50, 61] 60)
where z =! y = IMP4 iz y

abbreviation (ord-i-zy)
ord-i-zy :: ['a, 'a set, 'a] = bool (<((-)/ <) / () [61, 50, 61] 60)
where © <' y = hoop.hoop-order (IMP 4 i) 1° z y

4.5.8 Main result

We prove the main result: a totally ordered hoop is equal to an ordinal sum
of a tower of irreducible hoops.
sublocale A-SUM: tower-of-irr-hoops I (<) (<f) UNI4, MULa IMP4 1°
proof
show (A;) N (A;) = {1°}ifieljeli+#jforij
using universes-almost-disjoint sum-one-def that by simp
next
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show 2+ y e A;ific Iz € A ye A; forixy
using universes-mult-closed mult-map-def that by simp
next
showz ="' yc A;ific Iz c A, ye A;forixzy
using universes-imp-closed imp-map-def that by simp
next
show 1° € A, if i € I for i
using universes-one-closed sum-one-def that by simp
next
showz ' y=y+izificlr e A;yc A;forizy
using universes-subsets mult-comm mult-map-def that by simp
next
show z +' (y ** 2) = (z %' y) «* 2
ifieleeA;ye A; z€ A; for iz yz
using universes-subsets mult-assoc mult-map-def that by simp
next
show z «* 15 =z ific Iz e A, for iz
using universes-subsets sum-one-def mult-map-def that by simp
next
show z =tz = 15 ifie Iz € A, for iz
using universes-subsets imp-map-def sum-one-def that by simp
next
show z *' (z =% y) =y« (y = 2)
ificleeA;,ye A; z€ A;forixyz
using divisibility universes-subsets imp-map-def mult-map-def that by simp
next
show z =% (y =% 2) = (z «' y) =" 2
ifieloeA;,ye A; z€ A;forixzyz
using universes-subsets imp-map-def mult-map-def residuation that by simp
next
show z <! yvy<igzgificlzcA;yc A;forizy
using total-order universes-subsets imp-map-def sum-one-def that by simp
next

show 7 B C.

(

(

( .
(hoop B (")
( )
(

(

VzeCVyeBxz=iy=y)
ifi € I for i
using that Un-iff universes-one-fixed-hoops imp-map-def sum-one-def
totally-ordered-one-fixed-hoop.one-fized
by metis
qed

63



lemma same-uni [simp]: A-SUM .sum-univ = A
using A-SUM .sum-univ-def universes-cover by auto

lemma floor-is-class:
assumes a € A—{14}
shows A-SUM .floor a = 7 a
proof —
haveaemaAmacel
using indez-set-def assms classes-not-empty by fastforce
then
show ?thesis
using same-uni A-SUM .floor-prop A-SUM .floor-unique UnCI assms universes-auz
sum-one-def
by metis
qed

lemma same-mult:
assumes a € Abe A
shows a *4 b = A-SUM.sum-mult a b
proof —
from assms
consider (1) a € A—{14} b € A—{14} A-SUM.floor a = A-SUM floor b
| (2) a € A—{14} b€ A—{14} A-SUM floor a <! A-SUM .floor b
| (8) a € A—{14} b€ A—{14} A-SUM floor b < A-SUM floor a
| ({)a=14Vvb=14
using same-uni A-SUM .floor-prop fized-points.cases sum-one-def trichotomy
by metis
then
show ?thesis
proof (cases)
case 1
then
show ?thesis
using A-SUM .sum-mult.simps(1) sum-one-def mult-map-def by auto
next
case 2
define 7 j where | = A-SUM .floor a and j = A-SUM .floor b
then
have i € IAjE T Aac€ (A)-{12} Abe (A)—{14}
using 2(1,2) A-SUM.floor-prop sum-one-def by auto
then
have a x4 b= a
using 2(3) different-indexes-mult i-def j-def by blast
moreover
have A-SUM.sum-mult a b = a
using 2 A-SUM .sum-mult.simps(2) sum-one-def by simp
ultimately
show ?thesis
by simp
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next
case 3
define i j where i = A-SUM.floor a and j = A-SUM .floor b
then
have i € IAjE T Aac (A)—{12} Abe (A)-{14}
using 3(1,2) A-SUM.floor-prop sum-one-def by auto
then
have ¢ x4 b= b
using 3(8) assms different-indexzes-mult i-def j-def mult-comm by metis
moreover
have A-SUM.sum-mult a b = b
using 3 A-SUM .sum-mult.simps(3) sum-one-def by simp
ultimately
show ?thesis
by simp
next
case 4
then
show ?thesis
using A-SUM .mult-neutr A-SUM .mult-neutr-2 assms sum-one-def by force
qged
qged

lemma same-imp:
assumes a € Abe A
shows a =4 b = A-SUM .sum-imp a b
proof —
from assms
consider (1) a € A—{14} b€ A—{14} A-SUM.floor a = A-SUM floor b
| (2) a € A—{14} b € A—{14} A-SUM floor a <! A-SUM .fioor b
| (3) a € A—{12} b€ A—{14} A-SUM floor b <! A-SUM floor a
| ({)a=14Vvb=14
using same-uni A-SUM.floor-prop fixed-points.cases sum-one-def trichotomy
by metis
then
show ?thesis
proof (cases)
case I
then
show ?thesis
using A-SUM .sum-imp.simps(1) imp-map-def sum-one-def by auto
next
case 2
define i j where i = A-SUM .floor a and j = A-SUM .floor b
then
have i e T N j
using 2(1,2)
then
have o —4 b = 1

€INac (A)—{1} Nbe (A)—{14}
A-SUM .floor-prop sum-one-def by simp

A
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using 2(8) different-indexes-imp-1 i-def j-def by blast
moreover
have A-SUM.sum-imp a b = 14
using 2 A-SUM.sum-imp.simps(2) sum-one-def by simp
ultimately
show ?thesis
by simp
next
case 3
define 7 j where | = A-SUM .floor a and j = A-SUM .floor b
then
have i € I AjE T Aac€ (A)—{12} Abe (A)—{14}
using 3(1,2) A-SUM .floor-prop sum-one-def by simp
then
have a =4 b =1b
using 3(38) different-indexes-imp-2 i-def j-def by blast
moreover
have A-SUM.sum-imp a b = b
using 3 A-SUM .sum-imp.simps(3) sum-one-def by auto
ultimately
show ?thesis
by simp
next
case 4
then
show ?thesis
using A-SUM .imp-one-C A-SUM .imp-one-top assms imp-one-C
imp-one-top sum-one-def
by force
qed
qed

lemma ordinal-sum-is-totally-ordered-hoop:
totally-ordered-hoop A-SUM .sum-univ A-SUM .sum-mult A-SUM .sum-imp 1°
proof
show A-SUM .hoop-order x y vV A-SUM .hoop-order y x
if x € A-SUM .sum-univ y € A-SUM .sum-univ for x y
using that A-SUM .hoop-order-def total-order hoop-order-def
sum-one-def same-imp
by auto
qed

theorem totally-ordered-hoop-is-equal-to-ordinal-sum-of-tower-of-irr-hoops:
shows eq-universe: A = A-SUM .sum-univ
and eq-mult: 1 € A = y € A = z x4 y = A-SUM .sum-mult z y
and eg-imp: 1 € A = y € A = z =4 y = A-SUM.sum-imp = y
and eg-one: 14 = 1°
proof
show A C A-SUM .sum-univ
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by simp
next
show A-SUM .sum-univ C A
by simp
next
show z x4 y = A-SUM.sum-mult z yif s € Ay € Afor zy
using same-mult that by blast
next
show z =4 y = A-SUM.sum-imp vy ift € Ay € Afor zy
using same-imp that by blast
next
show 14 = 1°
using sum-one-def by simp
qed

4.5.9 Remarks on the nontrivial case

In the nontrivial case we have that every totally ordered hoop can be written
as the ordinal sum of a tower of nontrivial irreducible hoops. The proof of
this fact is almost immediate. By definition, A4 = {14} is the only trivial
hoop in our tower. Moreover, A, is non-trivial for every a € A—{14}.
Given that 14 € A, for every i € I we can simply remove 7 14 from I and
obtain the desired result.

lemma nontrivial-tower:
assumes 3 z € A. z # 14
shows
tower-of-nontrivial-irr-hoops (I—{m 14}) (<f) (<) UNIA» MULs IMP 4 1°
proof
show I—{m 14} # 0
proof —
obtain a where a € A—{14}
using assms by blast
then
have 7 a € I—{m 14}
using A-SUM.floor-prop class-not-one class-one floor-is-class sum-one-def by
auto
then
show ?thesis
by auto
qed
next
show reflp-on (I—{n 14}) (<)
using Diff-subset reflex refip-on-subset by meson
next
show antisymp-on (I-{m 14}) (<1)
using Diff-subset antisymm antisymp-on-subset by meson
next
show transp-on (I—{rx 14}) (1)
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using Diff-subset trans transp-on-subset by meson
next
show i <! j= (i<l jAni#j)ifiecl-{r 14} jeI-{n 14} forij
using indez-order-strict-def by simp
next
show totalp-on (I—{r 14}) (<)
using Diff-subset total totalp-on-subset by meson
next
show (A;) N (A;) = {15} ifie I-{r 14} je I-{m 14} i # jfor i}
using A-SUM .almost-disjoint that by blast
next
show z +* yc A;ific I-{r 14}z c Ajyc A;forizy
using A-SUM.floor-mult-closed that by blast
next
showr ' yec A ific I-{n 1} r €A, yc A;forizy
using A-SUM .floor-imp-closed that by blast
next
show 1° € A; if i € [-{r 14} for i
using universes-one-closed sum-one-def that by simp
next
showr ' y=y«' gific I-{n 1} s € A;yc A, forizy
using universes-subsets mult-comm mult-map-def that by force
next
show z +* (y ** 2) = (z %' y) ** 2
ificl-{r1%}reA yc A z€ A forizyz
using universes-subsets mult-assoc mult-map-def that by force
next
show z ' 1° =z ific [-{n 14} 2 € A, for iz
using universes-subsets sum-one-def mult-map-def that by force
next
show z -z =15 ific I-{r 1%}z € A; for iz
using universes-subsets imp-map-def sum-one-def that by force
next
show z +' (v =% y) = y *' (y = 1)
ificl-{r14}recA yc A z€ A forizyz
using divisibility universes-subsets imp-map-def mult-map-def that by auto
next
show z =% (y =% 2) = (z %' y) = 2
ificl-{ri14}recAyc A z€ A forizyz
using universes-subsets imp-map-def mult-map-def residuation that by force
next
showr <! yvy<zgificl-{ri1%}zec A ycA forizy
using DiffE total-order universes-subsets imp-map-def sum-one-def that by
metis
next
show # B C.
(A;=BUC)A
{15y =Bn C) A
FyeB y#15A

68



FyeC y#15A

(hoop B (%) (—*) 19) A

(hoop C (x%) (—%) 15) A .
VzeB-{1°}.VyeC o+ y=uzm)A
(V z € B— {JS}VyEC:c—> y=1% A

VzeC.VyeB z=>ty=y)
ific I-{r 14} for i
using that Diff-iff Un-iff universes-one-fixed imp-map-def sum-one-def by metis
next
show 3 z € A;. z # 1° ifi € I-{r 14} for i
using universes-def indezxes-class-of-elements indexes-not-empty that
by fastforce
qed

lemma ordinal-sum-of-nontrivial:
assumes 3 z € A. z # 14
shows A-SUM.sum-univ = {z. 3 i € I-{n 14}. 2 € A;}
proof
show A-SUM.sum-univ C {z. 3 i € I-{r 14}. z € A;}
proof
fix a
assume a € A-SUM.sum-univ
then
consider (1) a € A—{14}
| (2) a=14
by auto
then
show a € {z. 3 i € I-{r 11}. z € A;}
proof (cases)
case I
then
obtain  where i = 7 a
by simp
then
have a € A; A i € I-{r 14}
using 1 A-SUM.floor-prop class-not-one class-one floor-is-class sum-one-def
by auto
then
show ?thesis
by blast
next
case 2
obtain ¢ where ¢ € A—{14}
using assms by blast
then
obtain { where i = 7 ¢
by simp
then
have a € A; A i € I-{r 14}
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using 2 A-SUM .floor-prop «c € A—{14}) class-not-one class-one
universes-one-closed floor-is-class sum-one-def
by auto
then
show ?thesis
by auto
qed
qed
next
show {z. 3 i € I-{r 14}. z € A;} C A-SUM.sum-univ
using universes-subsets by force
qed

end

4.5.10 Converse of main result

We show that the converse of the main result also holds, that is, the ordinal
sum of a tower of irreducible hoops is a totally ordered hoop.

context tower-of-irr-hoops
begin

proposition ordinal-sum-of-tower-of-irr-hoops-is-totally-ordered-hoop:
shows totally-ordered-hoop S (x°) (—%) 1
proof
show hoop-order a b V hoop-order b a if a € S b€ S for a b
proof —
from that
consider (1) a € S—{1°} b € S—{1°} floor a = floor b
| (2) a € S—{1°} b€ S—{1°} floor a <! floor b v floor b <! floor a
| (8)a=1°Vb=1%
using floor.cases floor-prop trichotomy by metis
then
show hoop-order a b V hoop-order b a
proof (cases)
case I
then
have ¢ € Afioor o« N b € Afioor a
using 1 floor-prop by metis
moreover
have totally-ordered-hoop (Afioor o) (%7100 @) (Fleor a) 19
using (1) family-of-irr-hoops totally-ordered-irreducible-hoop.azioms(1)
floor-prop
by meson
ultimately
have a —/loom @ p = 15 v p fleora g — 15
using hoop.hoop-order-def totally-ordered-hoop.total-order
totally-ordered-hoop-def
by meson
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moreover
have ¢ =% b= a —floor a p A h 5 g = p —Floora g
using 1 by auto
ultimately
show ?thesis
using hoop-order-def by force
next
case 2
then
show ?thesis
using sum-imp.simps(2) hoop-order-def by blast
next
case 3
then
show ?thesis
using that ord-top by auto
qed
qed
qed

end

end

5 BL-chains

BL-chains generate the variety of BL-algebras, the algebraic counterpart of
the Basic Fuzzy Logic (see [6]). As mentioned in the abstract, this formal-
ization is based on the proof for BL-chains found in [5]. We define BL— chain
and bounded tower of irreducible hoops and formalize the main result on that
paper (Theorem 3.4).

theory BL-Chains
imports Totally-Ordered-Hoops

begin

5.1 Definitions

locale bi-chain = totally-ordered-hoop +
fixes zeroA :: 'a («0™))
assumes zero-closed: 04 € A
assumes zero-first: 1 € A = 04 <4 z

locale bounded-tower-of-irr-hoops = tower-of-irr-hoops +
fixes zerol (<01))
fixes zeroS (¢0°))
assumes I-zero-closed : 01 € T
and zero-first: i € I = 01 <! §
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and first-zero-closed: 0° € UNI 01
and first-bounded: x € UNI 01 = IMP 0' 0% z = 1°
begin

abbreviation (uni-zero)
uni-zero :: 'b set (<Agr>)
where Ay; = UNI 0!

abbreviation (imp-zero)
imp-zero = ['b, 'b] = b («((-)/ =°T / (-))» [61,61] 60)
where z =% y = IMP 0! z y

end

context bl-chain
begin

5.2 First element of /

definition zerol :: 'a set («01))
where 0/ = 7 04

lemma I-zero-closed: 01 € I
using indez-set-def zerol-def zero-closed by auto

lemma [I-has-first-element:
assumes i € [ i # 0f
shows 07 <! i
proof —
have z <A yifi<! 0l z €ciyec 0l forzy
using [-zero-closed assms(1) index-order-strict-def that by fastforce
then
have z <4 04 if i <! 0! z € { for z
using classes-not-empty zerol-def zero-closed that by simp
moreover
have 04 <A z if z € i for =
using assms(1) that in-mono indexes-subsets zero-first by meson
ultimately
have z = 04 if i <! 0! z € i for z

using assms(1) indexes-subsets ord-antisymm zero-closed that by blast

moreover
have 04 € 0/

using classes-not-empty zerol-def zero-closed by simp
ultimately
have i N 0F # 0 if i <! 0f

using assms(1) indexes-not-empty that by force
moreover
have i <! 07 v 07 <! §

using [-zero-closed assms trichotomy by auto
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ultimately
show ?thesis
using I-zero-closed assms(1) indexes-disjoint by auto
qed

5.3 Main result for BL-chains

definition zeroS :: ‘a (<0°))
where 0% = 04

abbreviation (uniA-zero)
unid-zero :: 'a set (<(Aor)?)
where Ag; = UNI4 07

abbreviation (impA-zero-zy)
impA-zero-zy :: ['a, 'a] = 'a («((-)/ =%/ (-)) [61, 61] 60)
where z =% y=IMP4 0 z y

lemma tower-is-bounded:
shows bounded-tower-of-irr-hoops I (<') (<) UNI4 MULa IMP4 1° 07 0°
proof
show 01 € I
using [-zero-closed by simp
next
show 07 <! jif i € I for i
using I-has-first-element index-ord-refiex index-order-strict-def that by blast
next
show 0° € Ay
using classes-not-empty universes-def zerol-def zeroS-def zero-closed by simp
next
show 0° =% ;= 15 if z € Ay for =
using I-zero-closed universes-subsets hoop-order-def imp-map-def sum-one-def
zeroS-def zero-first that
by simp
qed

lemma ordinal-sum-is-bl-totally-ordered:
shows bi-chain A-SUM .sum-univ A-SUM .sum-mult A-SUM .sum-imp 1° 0°
proof
show A-SUM .hoop-order x y vV A-SUM .hoop-order y x
if x € A-SUM .sum-univ y € A-SUM.sum-univ for x y
using ordinal-sum-is-totally-ordered-hoop totally-ordered-hoop.total-order that
by meson
next
show 0° € A-SUM .sum-univ
using zeroS-def zero-closed by simp
next
show A-SUM .hoop-order 0° z if x € A-SUM.sum-univ for z
using A-SUM .hoop-order-def eq-imp hoop-order-def sum-one-def zeroS-def zero-closed
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zero-first that
by simp
qed

theorem bi-chain-is-equal-to-ordinal-sum-of-bounded-tower-of-irr-hoops:
shows eq-universe: A = A-SUM .sum-univ
and eq-mult: 1 € A = y € A = z s y = A-SUM .sum-mult z y
and eg-imp: 1 € A = y € A = z =4 y = A-SUM.sum-imp = y
and eg-zero: 04 = 0°
and eg-one: 14 = 15
proof
show A C A-SUM .sum-univ
by auto
next
show A-SUM .sum-univ C A
by auto
next
show z 4 y = A-SUM.sum-mult z yifz € Ay € Afor zy
using eq-mult that by blast
next
show z =4 y = A-SUM.sum-imp zyifz € Ay e Aforzy
using eq-imp that by blast
next
show 04 = 0°
using zeroS-def by simp
next
show 14 = 1°
using sum-one-def by simp
qed

end

5.4 Converse of main result for BL-chains

context bounded-tower-of-irr-hoops
begin

We show that the converse of the main result holds if 0° # 15. If 0% = 1°
then the converse may not be true. For example, take a trivial hoop A and
an arbitrary not bounded Wajsberg hoop B such that A N B = {1}. The
ordinal sum of both hoops is equal to B and therefore not bounded.

proposition ordinal-sum-of-bounded-tower-of-irr-hoops-is-bl-chain:
assumes 0° # 19
shows bl-chain S (¥%) (=) 15 0°
proof
show hoop-order a b V hoop-order b a if a € S b € S for a b
proof —
from that
consider (1) a € S—{1°} b € S—{1°} floor a = floor b
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| (2) a € S—{1%} b e S—{15} floor a <! floor b v floor b <! floor a
| (8)a=1%Vvb=1°
using floor.cases floor-prop trichotomy by metis
then
show ?thesis
proof(cases)
case I
then
have a € Afioor o« N b € Afioor a
using 1 floor-prop by metis
moreover
have totally-ordered-hoop (Afioor o) (%7100 @) (mFleor a) 19
using (1) family-of-irr-hoops totally-ordered-irreducible-hoop.azioms(1)
floor-prop
by meson
ultimately
have a —/loor @ p = 15 v p fleora g — 1S
using hoop.hoop-order-def totally-ordered-hoop.total-order
totally-ordered-hoop-def
by meson
moreover
have a =% b =a =197 e p A b =5 g = b =Tlooma g
using 1 by auto
ultimately
show ?thesis
using hoop-order-def by force
next
case 2
then
show ?thesis
using sum-imp.simps(2) hoop-order-def by blast
next
case 3
then
show ?thesis
using that ord-top by auto
qged
qed
next
show 0° € S
using first-zero-closed I-zero-closed sum-subsets by auto
next
show hoop-order 0° a if a € S for a
proof —
have zero-dom: 0° € Agr A 0° € S—{1°}
using I-zero-closed sum-subsets assms first-zero-closed by blast
moreover
have floor 05 <! floor z if 0° € S—{1°} z € S—{1°} for
using I-zero-closed floor-prop floor-unique that(2) zero-dom zero-first
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by metis
ultimately
have floor 0° <! floor z if z € S—{1°} for
using that by blast
then
consider (1) 0° € S—{1°} a € S—{1°} floor 0° = floor a
| (2) 0° € §—{1°} a € S—{1°} floor 0° <! floor a
[ (3) a=15
using <a € Sy floor.cases floor-prop strict-order-equiv-not-converse
trichotomy zero-dom
by metis
then
show hoop-order 0° a
proof (cases)
case [
then
have 0% € Ag; A a € Ag;
using I-zero-closed first-zero-closed floor-prop floor-unique by metis
then
have 0° —° a = 09 =% g A 0% =01 ¢ = 15
using 1 I-zero-closed sum-imp.simps(1) first-bounded floor-prop floor-unique
by metis
then
show ?thesis
using hoop-order-def by blast
next
case 2
then
show ?thesis
using sum-imp.simps(2,5) hoop-order-def by meson
next
case 3
then
show ?thesis
using ord-top zero-dom by auto
qed
qged
qed

end

end
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