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Abstract

We formalize a well known result in theory of hoops: every totally
ordered hoop can be written as an ordinal sum of irreducible (equiv-
alently Wajsberg) hoops. This formalization is based on the proof for
BL-chains (i.e., bounded totally ordered hoops) by Busaniche [5].
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1 Some order tools: posets with explicit universe
theory Posets
imports Main HOL−Library.LaTeXsugar

begin

locale poset-on =
fixes P :: ′b set
fixes P-lesseq :: ′b ⇒ ′b ⇒ bool (infix ≤P 60 )
fixes P-less :: ′b ⇒ ′b ⇒ bool (infix <P 60 )
assumes not-empty [simp]: P 6= ∅
and reflex: reflp-on P (≤P )
and antisymm: antisymp-on P (≤P )
and trans: transp-on P (≤P )
and strict-iff-order : x ∈ P =⇒ y ∈ P =⇒ x <P y = (x ≤P y ∧ x 6= y)

begin

lemma strict-trans:
assumes a ∈ P b ∈ P c ∈ P a <P b b <P c
shows a <P c
using antisymm antisymp-onD assms trans strict-iff-order transp-onD
by smt

end

locale bot-poset-on = poset-on +
fixes bot :: ′b (0 P )
assumes bot-closed: 0 P ∈ P
and bot-first: x ∈ P =⇒ 0 P ≤P x

locale top-poset-on = poset-on +
fixes top :: ′b (1 P )
assumes top-closed: 1 P ∈ P
and top-last: x ∈ P =⇒ x ≤P 1 P

locale bounded-poset-on = bot-poset-on + top-poset-on

locale total-poset-on = poset-on +
assumes total: totalp-on P (≤P )

begin

lemma trichotomy:
assumes a ∈ P b ∈ P
shows (a <P b ∧ ¬(a = b ∨ b <P a)) ∨

(a = b ∧ ¬(a <P b ∨ b <P a)) ∨
(b <P a ∧ ¬(a = b ∨ a <P b))

using antisymm antisymp-onD assms strict-iff-order total totalp-onD by metis
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lemma strict-order-equiv-not-converse:
assumes a ∈ P b ∈ P
shows a <P b ←→ ¬(b ≤P a)
using assms strict-iff-order reflex reflp-onD strict-trans trichotomy by metis

end

end

2 Hoops

A hoop is a naturally ordered pocrim (i.e., a partially ordered commutative
residuated integral monoid). This structures have been introduced by Büchi
and Owens in [4] and constitute the algebraic counterpart of fragments with-
out negation and falsum of some nonclassical logics.
theory Hoops

imports Posets
begin

2.1 Definitions
locale hoop =

fixes universe :: ′a set (A)
and multiplication :: ′a ⇒ ′a ⇒ ′a (infix ∗A 60 )
and implication :: ′a ⇒ ′a ⇒ ′a (infix →A 60 )
and one :: ′a (1 A)
assumes mult-closed: x ∈ A =⇒ y ∈ A =⇒ x ∗A y ∈ A
and imp-closed: x ∈ A =⇒ y ∈ A =⇒ x →A y ∈ A
and one-closed [simp]: 1 A ∈ A
and mult-comm: x ∈ A =⇒ y ∈ A =⇒ x ∗A y = y ∗A x
and mult-assoc: x ∈ A =⇒ y ∈ A =⇒ z ∈ A =⇒ x ∗A (y ∗A z) = (x ∗A y) ∗A z
and mult-neutr [simp]: x ∈ A =⇒ x ∗A 1 A = x
and imp-reflex [simp]: x ∈ A =⇒ x →A x = 1 A

and divisibility: x ∈ A =⇒ y ∈ A =⇒ x ∗A (x →A y) = y ∗A (y →A x)
and residuation: x ∈ A =⇒ y ∈ A =⇒ z ∈ A =⇒

x →A (y →A z) = (x ∗A y) →A z
begin

definition hoop-order :: ′a ⇒ ′a ⇒ bool (infix ≤A 60 )
where x ≤A y ≡ (x →A y = 1 A)

definition hoop-order-strict :: ′a ⇒ ′a ⇒ bool (infix <A 60 )
where x <A y ≡ (x ≤A y ∧ x 6= y)

definition hoop-inf :: ′a ⇒ ′a ⇒ ′a (infix ∧A 60 )
where x ∧A y = x ∗A (x →A y)

definition hoop-pseudo-sup :: ′a ⇒ ′a ⇒ ′a (infix ∨∗A 60 )
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where x ∨∗A y = ((x →A y) →A y) ∧A ((y →A x) →A x)

end

locale wajsberg-hoop = hoop +
assumes T : x ∈ A =⇒ y ∈ A =⇒ (x →A y) →A y = (y →A x) →A x

begin

definition wajsberg-hoop-sup :: ′a ⇒ ′a ⇒ ′a (infix ∨A 60 )
where x ∨A y = (x →A y) →A y

end

2.2 Basic properties
context hoop
begin

lemma mult-neutr-2 [simp]:
assumes a ∈ A
shows 1 A ∗A a = a
using assms mult-comm by simp

lemma imp-one-A:
assumes a ∈ A
shows (1 A →A a) →A 1 A = 1 A

proof −
have (1 A →A a) →A 1 A = (1 A →A a) →A (1 A →A 1 A)

using assms by simp
also
have . . . = ((1 A →A a) ∗A 1 A) →A 1 A

using assms imp-closed residuation by simp
also
have . . . = ((a →A 1 A) ∗A a) →A 1 A

using assms divisibility imp-closed mult-comm by simp
also
have . . . = (a →A 1 A) →A (a →A 1 A)

using assms imp-closed one-closed residuation by metis
also
have . . . = 1 A

using assms imp-closed by simp
finally
show ?thesis

by auto
qed

lemma imp-one-B:
assumes a ∈ A
shows (1 A →A a) →A a = 1 A

6



proof −
have (1 A →A a) →A a = ((1 A →A a) ∗A 1 A) →A a

using assms imp-closed by simp
also
have . . . = (1 A →A a) →A (1 A →A a)

using assms imp-closed one-closed residuation by metis
also
have . . . = 1 A

using assms imp-closed by simp
finally
show ?thesis

by auto
qed

lemma imp-one-C :
assumes a ∈ A
shows 1 A →A a = a

proof −
have 1 A →A a = (1 A →A a) ∗A 1 A

using assms imp-closed by simp
also
have . . . = (1 A →A a) ∗A ((1 A →A a) →A a)

using assms imp-one-B by simp
also
have . . . = a ∗A (a →A (1 A →A a))

using assms divisibility imp-closed by simp
also
have . . . = a

using assms residuation by simp
finally
show ?thesis

by auto
qed

lemma imp-one-top:
assumes a ∈ A
shows a →A 1 A = 1 A

proof −
have a →A 1 A = (1 A →A a) →A 1 A

using assms imp-one-C by auto
also
have . . . = 1 A

using assms imp-one-A by auto
finally
show ?thesis

by auto
qed

The proofs of imp-one-A, imp-one-B, imp-one-C and imp-one-top are based
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on proofs found in [3] (see Section 1: (4), (6), (7) and (12)).
lemma swap:

assumes a ∈ A b ∈ A c ∈ A
shows a →A (b →A c) = b →A (a →A c)

proof −
have a →A (b →A c) = (a ∗A b) →A c

using assms residuation by auto
also
have . . . = (b ∗A a) →A c

using assms mult-comm by auto
also
have . . . = b →A (a →A c)

using assms residuation by auto
finally
show ?thesis

by auto
qed

lemma imp-A:
assumes a ∈ A b ∈ A
shows a →A (b →A a) = 1 A

proof −
have a →A (b →A a) = b →A (a →A a)

using assms swap by blast
then
show ?thesis

using assms imp-one-top by simp
qed

2.3 Multiplication monotonicity
lemma mult-mono:

assumes a ∈ A b ∈ A c ∈ A
shows (a →A b) →A ((a ∗A c) →A (b ∗A c)) = 1 A

proof −
have (a →A b) →A ((a ∗A c) →A (b ∗A c)) =

(a →A b) →A (a →A (c →A (b ∗A c)))
using assms mult-closed residuation by auto

also
have . . . = ((a →A b) ∗A a) →A (c →A (b ∗A c))

using assms imp-closed mult-closed residuation by metis
also
have . . . = ((b →A a) ∗A b) →A (c →A (b ∗A c))

using assms divisibility imp-closed mult-comm by simp
also
have . . . = (b →A a) →A (b →A (c →A (b ∗A c)))

using assms imp-closed mult-closed residuation by metis
also
have . . . = (b →A a) →A ((b ∗A c) →A (b ∗A c))
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using assms(2 ,3 ) mult-closed residuation by simp
also
have . . . = 1 A

using assms imp-closed imp-one-top mult-closed by simp
finally
show ?thesis

by auto
qed

2.4 Implication monotonicity and anti-monotonicity
lemma imp-mono:

assumes a ∈ A b ∈ A c ∈ A
shows (a →A b) →A ((c →A a) →A (c →A b)) = 1 A

proof −
have (a →A b) →A ((c →A a) →A (c →A b)) =

(a →A b) →A (((c →A a) ∗A c) →A b)
using assms imp-closed residuation by simp

also
have . . . = (a →A b) →A (((a →A c) ∗A a) →A b)

using assms divisibility imp-closed mult-comm by simp
also
have . . . = (a →A b) →A ((a →A c) →A (a →A b))

using assms imp-closed residuation by simp
also
have . . . = 1 A

using assms imp-A imp-closed by simp
finally
show ?thesis

by auto
qed

lemma imp-anti-mono:
assumes a ∈ A b ∈ A c ∈ A
shows (a →A b) →A ((b →A c) →A (a →A c)) = 1 A

using assms imp-closed imp-mono swap by metis

2.5 (≤A) defines a partial order over A
lemma ord-reflex:

assumes a ∈ A
shows a ≤A a
using assms hoop-order-def by simp

lemma ord-trans:
assumes a ∈ A b ∈ A c ∈ A a ≤A b b ≤A c
shows a ≤A c

proof −
have a →A c = 1 A →A (1 A →A (a →A c))

using assms(1 ,3 ) imp-closed imp-one-C by simp
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also
have . . . = (a →A b) →A ((b →A c) →A (a →A c))

using assms(4 ,5 ) hoop-order-def by simp
also
have . . . = 1 A

using assms(1−3 ) imp-anti-mono by simp
finally
show ?thesis

using hoop-order-def by auto
qed

lemma ord-antisymm:
assumes a ∈ A b ∈ A a ≤A b b ≤A a
shows a = b

proof −
have a = a ∗A (a →A b)

using assms(1 ,3 ) hoop-order-def by simp
also
have . . . = b ∗A (b →A a)

using assms(1 ,2 ) divisibility by simp
also
have . . . = b

using assms(2 ,4 ) hoop-order-def by simp
finally
show ?thesis

by auto
qed

lemma ord-antisymm-equiv:
assumes a ∈ A b ∈ A a →A b = 1 A b →A a = 1 A

shows a = b
using assms hoop-order-def ord-antisymm by auto

lemma ord-top:
assumes a ∈ A
shows a ≤A 1 A

using assms hoop-order-def imp-one-top by simp

sublocale top-poset-on A (≤A) (<A) 1 A

proof
show A 6= ∅

using one-closed by blast
next

show reflp-on A (≤A)
using ord-reflex reflp-onI by blast

next
show antisymp-on A (≤A)

using antisymp-onI ord-antisymm by blast
next
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show transp-on A (≤A)
using ord-trans transp-onI by blast

next
show x <A y = (x ≤A y ∧ x 6= y) if x ∈ A y ∈ A for x y

using hoop-order-strict-def by blast
next

show 1 A ∈ A
by simp

next
show x ≤A 1 A if x ∈ A for x

using ord-top that by simp
qed

2.6 Order properties
lemma ord-mult-mono-A:

assumes a ∈ A b ∈ A c ∈ A
shows (a →A b) ≤A ((a ∗A c) →A (b ∗A c))
using assms hoop-order-def mult-mono by simp

lemma ord-mult-mono-B:
assumes a ∈ A b ∈ A c ∈ A a ≤A b
shows (a ∗A c) ≤A (b ∗A c)
using assms hoop-order-def imp-one-C swap mult-closed mult-mono top-closed
by metis

lemma ord-residuation:
assumes a ∈ A b ∈ A c ∈ A
shows (a ∗A b) ≤A c ←→ a ≤A (b →A c)
using assms hoop-order-def residuation by simp

lemma ord-imp-mono-A:
assumes a ∈ A b ∈ A c ∈ A
shows (a →A b) ≤A ((c →A a) →A (c →A b))
using assms hoop-order-def imp-mono by simp

lemma ord-imp-mono-B:
assumes a ∈ A b ∈ A c ∈ A a ≤A b
shows (c →A a) ≤A (c →A b)
using assms imp-closed ord-trans ord-reflex ord-residuation mult-closed
by metis

lemma ord-imp-anti-mono-A:
assumes a ∈ A b ∈ A c ∈ A
shows (a →A b) ≤A ((b →A c) →A (a →A c))
using assms hoop-order-def imp-anti-mono by simp

lemma ord-imp-anti-mono-B:
assumes a ∈ A b ∈ A c ∈ A a ≤A b
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shows (b →A c) ≤A (a →A c)
using assms hoop-order-def imp-one-C swap ord-imp-mono-A top-closed
by metis

lemma ord-A:
assumes a ∈ A b ∈ A
shows b ≤A (a →A b)
using assms hoop-order-def imp-A by simp

lemma ord-B:
assumes a ∈ A b ∈ A
shows b ≤A ((a →A b) →A b)
using assms imp-closed ord-A by simp

lemma ord-C :
assumes a ∈ A b ∈ A
shows a ≤A ((a →A b) →A b)
using assms imp-one-C one-closed ord-imp-anti-mono-A by metis

lemma ord-D:
assumes a ∈ A b ∈ A a <A b
shows b →A a 6= 1 A

using assms hoop-order-def hoop-order-strict-def ord-antisymm by auto

2.7 Additional multiplication properties
lemma mult-lesseq-inf :

assumes a ∈ A b ∈ A
shows (a ∗A b) ≤A (a ∧A b)

proof −
have b ≤A (a →A b)

using assms ord-A by simp
then
have (a ∗A b) ≤A (a ∗A (a →A b))

using assms imp-closed ord-mult-mono-B mult-comm by metis
then
show ?thesis

using hoop-inf-def by metis
qed

lemma mult-A:
assumes a ∈ A b ∈ A
shows (a ∗A b) ≤A a
using assms ord-A ord-residuation by simp

lemma mult-B:
assumes a ∈ A b ∈ A
shows (a ∗A b) ≤A b
using assms mult-A mult-comm by metis
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lemma mult-C :
assumes a ∈ A−{1 A} b ∈ A−{1 A}
shows a ∗A b ∈ A−{1 A}
using assms ord-antisymm ord-top mult-A mult-closed by force

2.8 Additional implication properties
lemma imp-B:

assumes a ∈ A b ∈ A
shows a →A b = ((a →A b) →A b) →A b

proof −
have a ≤A ((a →A b) →A b)

using assms ord-C by simp
then
have (((a →A b) →A b) →A b) ≤A (a →A b)

using assms imp-closed ord-imp-anti-mono-B by simp
moreover
have (a →A b) ≤A (((a →A b) →A b) →A b)

using assms imp-closed ord-C by simp
ultimately
show ?thesis

using assms imp-closed ord-antisymm by simp
qed

The following two results can be found in [2] (see Proposition 1.7 and 2.2).
lemma imp-C :

assumes a ∈ A b ∈ A
shows (a →A b) →A (b →A a) = b →A a

proof −
have a ≤A ((a →A b) →A a)

using assms imp-closed ord-A by simp
then
have (((a →A b) →A a) →A b) ≤A (a →A b)

using assms imp-closed ord-imp-anti-mono-B by simp
moreover
have (a →A b) ≤A (((a →A b) →A a) →A a)

using assms imp-closed ord-C by simp
ultimately
have (((a →A b) →A a) →A b) ≤A (((a →A b) →A a) →A a)

using assms imp-closed ord-trans by meson
then
have ((((a →A b) →A a) →A b) ∗A ((a →A b) →A a)) ≤A a

using assms imp-closed ord-residuation by simp
then
have ((b →A ((a →A b) →A a)) ∗A b) ≤A a

using assms divisibility imp-closed mult-comm by simp
then
have (b →A ((a →A b) →A a)) ≤A (b →A a)
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using assms imp-closed ord-residuation by simp
then
have ((a →A b) →A (b →A a)) ≤A (b →A a)

using assms imp-closed swap by simp
moreover
have (b →A a) ≤A ((a →A b) →A (b →A a))

using assms imp-closed ord-A by simp
ultimately
show ?thesis

using assms imp-closed ord-antisymm by auto
qed

lemma imp-D:
assumes a ∈ A b ∈ A
shows (((b →A a) →A a) →A b) →A (b →A a) = b →A a

proof −
have (((b →A a) →A a) →A b) →A (b →A a) =

(((b →A a) →A a) →A b) →A (((b →A a) →A a) →A a)
using assms imp-B by simp

also
have . . . = ((((b →A a) →A a) →A b) ∗A ((b →A a) →A a)) →A a

using assms imp-closed residuation by simp
also
have . . . = ((b →A ((b →A a) →A a)) ∗A b) →A a

using assms divisibility imp-closed mult-comm by simp
also
have . . . = (1 A ∗A b) →A a

using assms hoop-order-def ord-C by simp
also
have . . . = b →A a

using assms(2 ) mult-neutr-2 by simp
finally
show ?thesis

by auto
qed

2.9 (∧A) defines a semilattice over A
lemma inf-closed:

assumes a ∈ A b ∈ A
shows a ∧A b ∈ A
using assms hoop-inf-def imp-closed mult-closed by simp

lemma inf-comm:
assumes a ∈ A b ∈ A
shows a ∧A b = b ∧A a
using assms divisibility hoop-inf-def by simp

lemma inf-A:

14



assumes a ∈ A b ∈ A
shows (a ∧A b) ≤A a

proof −
have (a ∧A b) →A a = (a ∗A (a →A b)) →A a

using hoop-inf-def by simp
also
have . . . = (a →A b) →A (a →A a)

using assms mult-comm imp-closed residuation by metis
finally
show ?thesis

using assms hoop-order-def imp-closed imp-one-top by simp
qed

lemma inf-B:
assumes a ∈ A b ∈ A
shows (a ∧A b) ≤A b
using assms inf-comm inf-A by metis

lemma inf-C :
assumes a ∈ A b ∈ A c ∈ A a ≤A b a ≤A c
shows a ≤A (b ∧A c)

proof −
have (b →A a) ≤A (b →A c)

using assms(1−3 ,5 ) ord-imp-mono-B by simp
then
have (b ∗A (b →A a)) ≤A (b ∗A (b →A c))

using assms imp-closed ord-mult-mono-B mult-comm by metis
moreover
have a = b ∗A (b →A a)

using assms(1−3 ,4 ) divisibility hoop-order-def mult-neutr by simp
ultimately
show ?thesis

using hoop-inf-def by auto
qed

lemma inf-order :
assumes a ∈ A b ∈ A
shows a ≤A b ←→ (a ∧A b = a)
using assms hoop-inf-def hoop-order-def inf-B mult-neutr by metis

2.10 Properties of (∨∗A)

lemma pseudo-sup-closed:
assumes a ∈ A b ∈ A
shows a ∨∗A b ∈ A
using assms hoop-pseudo-sup-def imp-closed inf-closed by simp

lemma pseudo-sup-comm:
assumes a ∈ A b ∈ A
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shows a ∨∗A b = b ∨∗A a
using assms hoop-pseudo-sup-def imp-closed inf-comm by auto

lemma pseudo-sup-A:
assumes a ∈ A b ∈ A
shows a ≤A (a ∨∗A b)
using assms hoop-pseudo-sup-def imp-closed inf-C ord-B ord-C by simp

lemma pseudo-sup-B:
assumes a ∈ A b ∈ A
shows b ≤A (a ∨∗A b)
using assms pseudo-sup-A pseudo-sup-comm by metis

lemma pseudo-sup-order :
assumes a ∈ A b ∈ A
shows a ≤A b ←→ a ∨∗A b = b

proof
assume a ≤A b
then
have a ∨∗A b = b ∧A ((b →A a) →A a)

using assms(2 ) hoop-order-def hoop-pseudo-sup-def imp-one-C by simp
also
have . . . = b

using assms imp-closed inf-order ord-C by meson
finally
show a ∨∗A b = b

by auto
next

assume a ∨∗A b = b
then
show a ≤A b

using assms pseudo-sup-A by metis
qed

end

end

3 Ordinal sums

We define tower of hoops, a family of almost disjoint hoops indexed by a
total order. This is based on the definition of bounded tower of irreducible
hoops in [5] (see paragraph after Lemma 3.3). Parting from a tower of hoops
we can define a hoop known as ordinal sum. Ordinal sums are a fundamental
tool in the study of totally ordered hoops.
theory Ordinal-Sums

imports Hoops
begin
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3.1 Tower of hoops
locale tower-of-hoops =

fixes index-set :: ′b set (I )
fixes index-lesseq :: ′b ⇒ ′b ⇒ bool (infix ≤I 60 )
fixes index-less :: ′b ⇒ ′b ⇒ bool (infix <I 60 )
fixes universes :: ′b ⇒ ( ′a set) (UNI )
fixes multiplications :: ′b ⇒ ( ′a ⇒ ′a ⇒ ′a) (MUL)
fixes implications :: ′b ⇒ ( ′a ⇒ ′a ⇒ ′a) (IMP)
fixes sum-one :: ′a (1 S)
assumes index-set-total-order : total-poset-on I (≤I) (<I)
and almost-disjoint: i ∈ I =⇒ j ∈ I =⇒ i 6= j =⇒ UNI i ∩ UNI j = {1 S}
and family-of-hoops: i ∈ I =⇒ hoop (UNI i) (MUL i) (IMP i) 1 S

begin

sublocale total-poset-on I (≤I) (<I)
using index-set-total-order by simp

abbreviation (uni-i)
uni-i :: [ ′b] ⇒ ( ′a set) ((�(-)) [61 ] 60 )
where �i ≡ UNI i

abbreviation (mult-i)
mult-i :: [ ′b] ⇒ ( ′a ⇒ ′a ⇒ ′a) ((∗(-)) [61 ] 60 )
where ∗i ≡ MUL i

abbreviation (imp-i)
imp-i :: [ ′b] ⇒ ( ′a ⇒ ′a ⇒ ′a) ((→(-)) [61 ] 60 )
where →i ≡ IMP i

abbreviation (mult-i-xy)
mult-i-xy :: [ ′a, ′b, ′a] ⇒ ′a (((-)/ ∗(-) / (-)) [61 , 50 , 61 ] 60 )
where x ∗i y ≡ MUL i x y

abbreviation (imp-i-xy)
imp-i-xy :: [ ′a, ′b, ′a] ⇒ ′a (((-)/ →(-) / (-)) [61 , 50 , 61 ] 60 )
where x →i y ≡ IMP i x y

3.2 Ordinal sum universe
definition sum-univ :: ′a set (S)

where S = {x. ∃ i ∈ I . x ∈ �i}

lemma sum-one-closed [simp]: 1 S ∈ S
using family-of-hoops hoop.one-closed not-empty sum-univ-def by fastforce

lemma sum-subsets:
assumes i ∈ I
shows �i ⊆ S
using sum-univ-def assms by blast
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3.3 Floor function: definition and properties
lemma floor-unique:

assumes a ∈ S−{1 S}
shows ∃ ! i. i ∈ I ∧ a ∈ �i

using assms sum-univ-def almost-disjoint by blast

function floor :: ′a ⇒ ′b where
floor x = (THE i. i ∈ I ∧ x ∈ �i) if x ∈ S−{1 S}
| floor x = undefined if x = 1 S ∨ x /∈ S

by auto
termination by lexicographic-order

abbreviation (uni-floor)
uni-floor :: [ ′a] ⇒ ( ′a set) ((�f loor (-)) [61 ] 60 )
where �f loor x ≡ UNI (floor x)

abbreviation (mult-floor)
mult-floor :: [ ′a] ⇒ ( ′a ⇒ ′a ⇒ ′a) ((∗f loor (-)) [61 ] 60 )
where ∗f loor a ≡ MUL (floor a)

abbreviation (imp-floor)
imp-floor :: [ ′a] ⇒ ( ′a ⇒ ′a ⇒ ′a) ((→f loor (-)) [61 ] 60 )
where →f loor a ≡ IMP (floor a)

abbreviation (mult-floor-xy)
mult-floor-xy :: [ ′a, ′a, ′a] ⇒ ′a (((-)/ ∗f loor (-) / (-)) [61 , 50 , 61 ] 60 )
where x ∗f loor y z ≡ MUL (floor y) x z

abbreviation (imp-floor-xy)
imp-floor-xy :: [ ′a, ′a, ′a] ⇒ ′a (((-)/ →f loor (-) / (-)) [61 , 50 , 61 ] 60 )
where x →f loor y z ≡ IMP (floor y) x z

lemma floor-prop:
assumes a ∈ S−{1 S}
shows floor a ∈ I ∧ a ∈ �f loor a

proof −
have floor a = (THE i. i ∈ I ∧ a ∈ �i)

using assms by auto
then
show ?thesis

using assms theI-unique floor-unique by (metis (mono-tags, lifting))
qed

lemma floor-one-closed:
assumes i ∈ I
shows 1 S ∈ �i

using assms floor-prop family-of-hoops hoop.one-closed by metis

lemma floor-mult-closed:
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assumes i ∈ I a ∈ �i b ∈ �i

shows a ∗i b ∈ �i

using assms family-of-hoops hoop.mult-closed by meson

lemma floor-imp-closed:
assumes i ∈ I a ∈ �i b ∈ �i

shows a →i b ∈ �i

using assms family-of-hoops hoop.imp-closed by meson

3.4 Ordinal sum multiplication and implication
function sum-mult :: ′a ⇒ ′a ⇒ ′a (infix ∗S 60 ) where

x ∗S y = x ∗f loor x y if x ∈ S−{1 S} y ∈ S−{1 S} floor x = floor y
| x ∗S y = x if x ∈ S−{1 S} y ∈ S−{1 S} floor x <I floor y
| x ∗S y = y if x ∈ S−{1 S} y ∈ S−{1 S} floor y <I floor x
| x ∗S y = y if x = 1 S y ∈ S−{1 S}
| x ∗S y = x if x ∈ S−{1 S} y = 1 S

| x ∗S y = 1 S if x = 1 S y = 1 S

| x ∗S y = undefined if x /∈ S ∨ y /∈ S
apply auto
using floor .cases floor .simps(1 ) floor-prop trichotomy apply smt
using floor-prop strict-iff-order apply force
using floor-prop strict-iff-order apply force
using floor-prop trichotomy by auto

termination by lexicographic-order

function sum-imp :: ′a ⇒ ′a ⇒ ′a (infix →S 60 ) where
x →S y = x →f loor x y if x ∈ S−{1 S} y ∈ S−{1 S} floor x = floor y
| x →S y = 1 S if x ∈ S−{1 S} y ∈ S−{1 S} floor x <I floor y
| x →S y = y if x ∈ S−{1 S} y ∈ S−{1 S} floor y <I floor x
| x →S y = y if x = 1 S y ∈ S−{1 S}
| x →S y = 1 S if x ∈ S−{1 S} y = 1 S

| x →S y = 1 S if x = 1 S y = 1 S

| x →S y = undefined if x /∈ S ∨ y /∈ S
apply auto
using floor .cases floor .simps(1 ) floor-prop trichotomy apply smt
using floor-prop strict-iff-order apply force
using floor-prop strict-iff-order apply force
using floor-prop trichotomy by auto

termination by lexicographic-order

3.4.1 Some multiplication properties
lemma sum-mult-not-one-aux:

assumes a ∈ S−{1 S} b ∈ �f loor a

shows a ∗S b ∈ (�f loor a)−{1 S}
proof −

consider (1 ) b ∈ S−{1 S}
| (2 ) b = 1 S

using sum-subsets assms floor-prop by blast
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then
show ?thesis
proof(cases)

case 1
then
have same-floor : floor a = floor b

using assms floor-prop floor-unique by metis
moreover
have a ∗S b = a ∗f loor a b

using 1 assms(1 ) same-floor by simp
moreover
have a ∈ (�f loor a)−{1 S} ∧ b ∈ (�f loor a)−{1 S}

using 1 assms floor-prop by simp
ultimately
show ?thesis

using assms(1 ) family-of-hoops floor-prop hoop.mult-C by metis
next

case 2
then
show ?thesis

using assms(1 ) floor-prop by auto
qed

qed

corollary sum-mult-not-one:
assumes a ∈ S−{1 S} b ∈ �f loor a

shows a ∗S b ∈ S−{1 S} ∧ floor (a ∗S b) = floor a
proof −

have a ∗S b ∈ (�f loor a)−{1 S}
using sum-mult-not-one-aux assms by meson

then
have a ∗S b ∈ S−{1 S} ∧ a ∗S b ∈ �f loor a

using sum-subsets assms(1 ) floor-prop by fastforce
then
show ?thesis

using assms(1 ) floor-prop floor-unique by metis
qed

lemma sum-mult-A:
assumes a ∈ S−{1 S} b ∈ �f loor a

shows a ∗S b = a ∗f loor a b ∧ b ∗S a = b ∗f loor a a
proof −

consider (1 ) b ∈ S−{1 S}
| (2 ) b = 1 S

using sum-subsets assms floor-prop by blast
then
show ?thesis
proof(cases)

case 1
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then
have floor a = floor b

using assms floor .cases floor-prop floor-unique by metis
then
show ?thesis

using 1 assms by auto
next

case 2
then
show ?thesis

using assms(1 ) family-of-hoops floor-prop hoop.mult-neutr hoop.mult-neutr-2
by fastforce

qed
qed

3.4.2 Some implication properties
lemma sum-imp-floor :

assumes a ∈ S−{1 S} b ∈ S−{1 S} floor a = floor b a →S b ∈ S−{1 S}
shows floor (a →S b) = floor a

proof −
have a →S b ∈ �f loor a

using sum-imp.simps(1 ) assms(1−3 ) floor-imp-closed floor-prop
by metis

then
show ?thesis

using assms(1 ,4 ) floor-prop floor-unique by blast
qed

lemma sum-imp-A:
assumes a ∈ S−{1 S} b ∈ �f loor a

shows a →S b = a →f loor a b
proof −

consider (1 ) b ∈ S−{1 S}
| (2 ) b = 1 S

using sum-subsets assms floor-prop by blast
then
show ?thesis
proof(cases)

case 1
then
show ?thesis

using sum-imp.simps(1 ) assms floor-prop floor-unique by metis
next

case 2
then
show ?thesis

using sum-imp.simps(5 ) assms(1 ) family-of-hoops floor-prop
hoop.imp-one-top
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by metis
qed

qed

lemma sum-imp-B:
assumes a ∈ S−{1 S} b ∈ �f loor a

shows b →S a = b →f loor a a
proof −

consider (1 ) b ∈ S−{1 S}
| (2 ) b = 1 S

using sum-subsets assms floor-prop by blast
then
show ?thesis
proof(cases)

case 1
then
show ?thesis

using sum-imp.simps(1 ) assms floor-prop floor-unique by metis
next

case 2
then
show ?thesis

using sum-imp.simps(4 ) assms(1 ) family-of-hoops floor-prop
hoop.imp-one-C

by metis
qed

qed

lemma sum-imp-floor-antisymm:
assumes a ∈ S−{1 S} b ∈ S−{1 S} floor a = floor b

a →S b = 1 S b →S a = 1 S

shows a = b
proof −

have a ∈ �f loor a ∧ b ∈ �f loor a ∧ floor a ∈ I
using floor-prop assms by metis

moreover
have a →S b = a →f loor a b ∧ b →S a = b →f loor a a

using assms by auto
ultimately
show ?thesis

using assms(4 ,5 ) family-of-hoops hoop.ord-antisymm-equiv by metis
qed

corollary sum-imp-C :
assumes a ∈ S−{1 S} b ∈ S−{1 S} a 6= b floor a = floor b a →S b = 1 S

shows b →S a 6= 1 S

using sum-imp-floor-antisymm assms by blast

lemma sum-imp-D:
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assumes a ∈ S
shows 1 S →S a = a
using sum-imp.simps(4 ,6 ) assms by blast

lemma sum-imp-E :
assumes a ∈ S
shows a →S 1 S = 1 S

using sum-imp.simps(5 ,6 ) assms by blast

3.5 The ordinal sum of a tower of hoops is a hoop
3.5.1 S is not empty
lemma sum-not-empty: S 6= ∅

using sum-one-closed by blast

3.5.2 (∗S) and (→S) are well defined
lemma sum-mult-closed-one:

assumes a ∈ S b ∈ S a = 1 S ∨ b = 1 S

shows a ∗S b ∈ S
using sum-mult.simps(4−6 ) assms floor .cases by metis

lemma sum-mult-closed-not-one:
assumes a ∈ S−{1 S} b ∈ S−{1 S}
shows a ∗S b ∈ S−{1 S}

proof −
from assms
consider (1 ) floor a = floor b
| (2 ) floor a <I floor b ∨ floor b <I floor a
using trichotomy floor-prop by blast

then
show ?thesis
proof(cases)

case 1
then
show ?thesis

using sum-mult-not-one assms floor-prop by metis
next

case 2
then
show ?thesis

using assms by auto
qed

qed

lemma sum-mult-closed:
assumes a ∈ S b ∈ S
shows a ∗S b ∈ S
using sum-mult-closed-not-one sum-mult-closed-one assms by auto
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lemma sum-imp-closed-one:
assumes a ∈ S b ∈ S a = 1 S ∨ b = 1 S

shows a →S b ∈ S
using sum-imp.simps(4−6 ) assms floor .cases by metis

lemma sum-imp-closed-not-one:
assumes a ∈ S−{1 S} b ∈ S−{1 S}
shows a →S b ∈ S

proof −
from assms
consider (1 ) floor a = floor b
| (2 ) floor a <I floor b ∨ floor b <I floor a
using trichotomy floor-prop by blast

then
show a →S b ∈ S
proof(cases)

case 1
then
have a →S b = a →f loor a b

using assms by auto
moreover
have a →f loor a b ∈ �f loor a

using 1 assms floor-imp-closed floor-prop by metis
ultimately
show ?thesis

using sum-subsets assms(1 ) floor-prop by auto
next

case 2
then
show ?thesis

using assms by auto
qed

qed

lemma sum-imp-closed:
assumes a ∈ S b ∈ S
shows a →S b ∈ S
using sum-imp-closed-one sum-imp-closed-not-one assms by auto

3.5.3 Neutrality of 1 S

lemma sum-mult-neutr :
assumes a ∈ S
shows a ∗S 1 S = a ∧ 1 S ∗S a = a
using assms sum-mult.simps(4−6 ) by blast
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3.5.4 Commutativity of (∗S)

Now we prove x ∗S y = y ∗S x by showing that it holds when one of the
variables is equal to 1 S . Then we consider when none of them is 1 S .
lemma sum-mult-comm-one:

assumes a ∈ S b ∈ S a = 1 S ∨ b = 1 S

shows a ∗S b = b ∗S a
using sum-mult-neutr assms by auto

lemma sum-mult-comm-not-one:
assumes a ∈ S−{1 S} b ∈ S−{1 S}
shows a ∗S b = b ∗S a

proof −
from assms
consider (1 ) floor a = floor b
| (2 ) floor a <I floor b ∨ floor b <I floor a
using trichotomy floor-prop by blast

then
show ?thesis
proof(cases)

case 1
then
have same-floor : b ∈ �f loor a

using assms(2 ) floor-prop by simp
then
have a ∗S b = a ∗f loor a b

using sum-mult-A assms(1 ) by blast
also
have . . . = b ∗f loor a a

using assms(1 ) family-of-hoops floor-prop hoop.mult-comm same-floor
by meson

also
have . . . = b ∗S a

using sum-mult-A assms(1 ) same-floor by simp
finally
show ?thesis

by auto
next

case 2
then
show ?thesis

using assms by auto
qed

qed

lemma sum-mult-comm:
assumes a ∈ S b ∈ S
shows a ∗S b = b ∗S a
using assms sum-mult-comm-one sum-mult-comm-not-one by auto
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3.5.5 Associativity of (∗S)

Next we prove x ∗S (y ∗S z) = (x ∗S y) ∗S z.
lemma sum-mult-assoc-one:

assumes a ∈ S b ∈ S c ∈ S a = 1 S ∨ b = 1 S ∨ c = 1 S

shows a ∗S (b ∗S c) = (a ∗S b) ∗S c
using sum-mult-neutr assms sum-mult-closed by metis

lemma sum-mult-assoc-not-one:
assumes a ∈ S−{1 S} b ∈ S−{1 S} c ∈ S−{1 S}
shows a ∗S (b ∗S c) = (a ∗S b) ∗S c

proof −
from assms
consider (1 ) floor a = floor b floor b = floor c
| (2 ) floor a = floor b floor b <I floor c
| (3 ) floor a = floor b floor c <I floor b
| (4 ) floor a <I floor b floor b = floor c
| (5 ) floor a <I floor b floor b <I floor c
| (6 ) floor a <I floor b floor c <I floor b
| (7 ) floor b <I floor a floor b = floor c
| (8 ) floor b <I floor a floor b <I floor c
| (9 ) floor b <I floor a floor c <I floor b
using trichotomy floor-prop by meson

then
show ?thesis
proof(cases)

case 1
then
have a ∗S (b ∗S c) = a ∗f loor a (b ∗f loor a c)

using sum-mult-A assms floor-mult-closed floor-prop by metis
also
have . . . = (a ∗f loor a b) ∗f loor a c

using 1 assms family-of-hoops floor-prop hoop.mult-assoc by metis
also
have . . . = (a ∗f loor b b) ∗f loor b c

using 1 by simp
also
have . . . = (a ∗S b) ∗S c

using 1 sum-mult-A assms floor-mult-closed floor-prop by metis
finally
show ?thesis

by auto
next

case 2
then
show ?thesis

using sum-mult.simps(2 ,3 ) sum-mult-not-one assms floor-prop by metis
next

case 3
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then
show ?thesis

using sum-mult.simps(3 ) sum-mult-not-one assms floor-prop by metis
next

case 4
then
show ?thesis

using sum-mult.simps(2 ) sum-mult-not-one assms floor-prop by metis
next

case 5
then
show ?thesis

using sum-mult.simps(2 ) assms floor-prop strict-trans by metis
next

case 6
then
show ?thesis

using sum-mult.simps(2 ,3 ) assms by metis
next

case 7
then
show ?thesis

using sum-mult.simps(3 ) sum-mult-not-one assms floor-prop by metis
next

case 8
then
show ?thesis

using sum-mult.simps(2 ,3 ) assms by metis
next

case 9
then
show ?thesis

using sum-mult.simps(3 ) assms floor-prop strict-trans by metis
qed

qed

lemma sum-mult-assoc:
assumes a ∈ S b ∈ S c ∈ S
shows a ∗S (b ∗S c) = (a ∗S b) ∗S c
using assms sum-mult-assoc-one sum-mult-assoc-not-one by blast

3.5.6 Reflexivity of (→S)

lemma sum-imp-reflex:
assumes a ∈ S
shows a →S a = 1 S

proof −
consider (1 ) a ∈ S−{1 S}
| (2 ) a = 1 S
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using assms by blast
then
show ?thesis
proof(cases)

case 1
then
have a →S a = a →f loor a a

by simp
then
show ?thesis

using 1 family-of-hoops floor-prop hoop.imp-reflex by metis
next

case 2
then
show ?thesis

by simp
qed

qed

3.5.7 Divisibility

We prove x ∗S (x →S y) = y ∗S (y →S x) using the same methods as before.
lemma sum-divisibility-one:

assumes a ∈ S b ∈ S a = 1 S ∨ b = 1 S

shows a ∗S (a →S b) = b ∗S (b →S a)
proof −

have x →S y = y ∧ y →S x = 1 S if x = 1 S y ∈ S for x y
using sum-imp-D sum-imp-E that by simp

then
show ?thesis

using assms sum-mult-neutr by metis
qed

lemma sum-divisibility-aux:
assumes a ∈ S−{1 S} b ∈ �f loor a

shows a ∗S (a →S b) = a ∗f loor a (a →f loor a b)
using sum-imp-A sum-mult-A assms floor-imp-closed floor-prop by metis

lemma sum-divisibility-not-one:
assumes a ∈ S−{1 S} b ∈ S−{1 S}
shows a ∗S (a →S b) = b ∗S (b →S a)

proof −
from assms
consider (1 ) floor a = floor b
| (2 ) floor a <I floor b ∨ floor b <I floor a
using trichotomy floor-prop by blast

then
show ?thesis
proof(cases)
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case 1
then
have a ∗S (a →S b) = a ∗f loor a (a →f loor a b)

using 1 sum-divisibility-aux assms floor-prop by metis
also
have . . . = b ∗f loor a (b →f loor a a)

using 1 assms family-of-hoops floor-prop hoop.divisibility by metis
also
have . . . = b ∗f loor b (b →f loor b a)

using 1 by simp
also
have . . . = b ∗S (b →S a)

using 1 sum-divisibility-aux assms floor-prop by metis
finally
show ?thesis

by auto
next

case 2
then
show ?thesis

using assms by auto
qed

qed

lemma sum-divisibility:
assumes a ∈ S b ∈ S
shows a ∗S (a →S b) = b ∗S (b →S a)
using assms sum-divisibility-one sum-divisibility-not-one by auto

3.5.8 Residuation

Finally we prove (x ∗S y) →S z = x →S (y →S z).
lemma sum-residuation-one:

assumes a ∈ S b ∈ S c ∈ S a = 1 S ∨ b = 1 S ∨ c = 1 S

shows (a ∗S b) →S c = a →S (b →S c)
using sum-imp-D sum-imp-E sum-imp-closed sum-mult-closed sum-mult-neutr

assms
by metis

lemma sum-residuation-not-one:
assumes a ∈ S−{1 S} b ∈ S−{1 S} c ∈ S−{1 S}
shows (a ∗S b) →S c = a →S (b →S c)

proof −
from assms
consider (1 ) floor a = floor b floor b = floor c
| (2 ) floor a = floor b floor b <I floor c
| (3 ) floor a = floor b floor c <I floor b
| (4 ) floor a <I floor b floor b = floor c
| (5 ) floor a <I floor b floor b <I floor c
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| (6 ) floor a <I floor b floor c <I floor b
| (7 ) floor b <I floor a floor b = floor c
| (8 ) floor b <I floor a floor b <I floor c
| (9 ) floor b <I floor a floor c <I floor b
using trichotomy floor-prop by meson

then
show ?thesis
proof(cases)

case 1
then
have (a ∗S b) →S c = (a ∗f loor a b) →f loor a c

using sum-imp-B sum-mult-A assms floor-mult-closed floor-prop by metis
also
have . . . = a →f loor a (b →f loor a c)

using 1 assms family-of-hoops floor-prop hoop.residuation by metis
also
have . . . = a →f loor b (b →f loor b c)

using 1 by simp
also
have . . . = a →S (b →S c)

using 1 sum-imp-A assms floor-imp-closed floor-prop by metis
finally
show ?thesis

by auto
next

case 2
then
show ?thesis

using sum-imp.simps(2 ,5 ) sum-mult-not-one assms floor-prop by metis
next

case 3
then
show ?thesis

using sum-imp.simps(3 ) sum-mult-not-one assms floor-prop by metis
next

case 4
then
have (a ∗S b) →S c = 1 S

using 4 sum-imp.simps(2 ) sum-mult.simps(2 ) assms by metis
moreover
have b →S c = 1 S ∨ (b →S c ∈ S−{1 S} ∧ floor (b →S c) = floor b)

using 4 (2 ) sum-imp-closed-not-one sum-imp-floor assms(2 ,3 ) by blast
ultimately
show ?thesis

using 4 (1 ) sum-imp.simps(2 ,5 ) assms(1 ) by metis
next

case 5
then
show ?thesis
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using sum-imp.simps(2 ,5 ) sum-mult.simps(2 ) assms floor-prop strict-trans
by metis

next
case 6
then
show ?thesis

using assms by auto
next

case 7
then
have (a ∗S b) →S c = (b →S c)

using assms(1 ,2 ) by auto
moreover
have b →S c = 1 S ∨ (b →S c ∈ S−{1 S} ∧ floor (b →S c) = floor b)

using 7 (2 ) sum-imp-closed-not-one sum-imp-floor assms(2 ,3 ) by blast
ultimately
show ?thesis

using 7 (1 ) sum-imp.simps(3 ,5 ) assms(1 ) by metis
next

case 8
then
show ?thesis

using assms by auto
next

case 9
then
show ?thesis

using sum-imp.simps(3 ) sum-mult.simps(3 ) assms floor-prop strict-trans
by metis

qed
qed

lemma sum-residuation:
assumes a ∈ S b ∈ S c ∈ S
shows (a ∗S b) →S c = a →S (b →S c)
using assms sum-residuation-one sum-residuation-not-one by blast

3.5.9 Main result
sublocale hoop S (∗S) (→S) 1 S

proof
show x ∗S y ∈ S if x ∈ S y ∈ S for x y

using that sum-mult-closed by simp
next

show x →S y ∈ S if x ∈ S y ∈ S for x y
using that sum-imp-closed by simp

next
show 1 S ∈ S

by simp
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next
show x ∗S y = y ∗S x if x ∈ S y ∈ S for x y

using that sum-mult-comm by simp
next

show x ∗S (y ∗S z) = (x ∗S y) ∗S z if x ∈ S y ∈ S z ∈ S for x y z
using that sum-mult-assoc by simp

next
show x ∗S 1 S = x if x ∈ S for x

using that sum-mult-neutr by simp
next

show x →S x = 1 S if x ∈ S for x
using that sum-imp-reflex by simp

next
show x ∗S (x →S y) = y ∗S (y →S x) if x ∈ S y ∈ S for x y

using that sum-divisibility by simp
next

show x →S (y →S z) = (x ∗S y) →S z if x ∈ S y ∈ S z ∈ S for x y z
using that sum-residuation by simp

qed

end

end

4 Totally ordered hoops
theory Totally-Ordered-Hoops

imports Ordinal-Sums
begin

4.1 Definitions
locale totally-ordered-hoop = hoop +

assumes total-order : x ∈ A =⇒ y ∈ A =⇒ x ≤A y ∨ y ≤A x
begin

function fixed-points :: ′a ⇒ ′a set (F) where
F a = {b ∈ A−{1 A}. a →A b = b} if a ∈ A−{1 A}
| F a = {1 A} if a = 1 A

| F a = undefined if a /∈ A
by auto

termination by lexicographic-order

definition rel-F :: ′a ⇒ ′a ⇒ bool (infix ∼F 60 )
where x ∼F y ≡ ∀ z ∈ A. (x →A z = z) ←→ (y →A z = z)

definition rel-F-canonical-map :: ′a ⇒ ′a set (π)
where π x = {b ∈ A. x ∼F b}
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end

4.2 Properties of F
context totally-ordered-hoop
begin

lemma F-equiv:
assumes a ∈ A−{1 A} b ∈ A
shows b ∈ F a ←→ (b ∈ A ∧ b 6= 1 A ∧ a →A b = b)
using assms by auto

lemma F-subset:
assumes a ∈ A
shows F a ⊆ A

proof −
have a = 1 A ∨ a 6= 1 A

by auto
then
show ?thesis

using assms by fastforce
qed

lemma F-of-one:
assumes a ∈ A
shows F a = {1 A} ←→ a = 1 A

using F-equiv assms fixed-points.simps(2 ) top-closed by blast

lemma F-of-mult:
assumes a ∈ A−{1 A} b ∈ A−{1 A}
shows F (a ∗A b) = {c ∈ A−{1 A}. (a ∗A b) →A c = c}
using assms mult-C by auto

lemma F-of-imp:
assumes a ∈ A b ∈ A a →A b 6= 1 A

shows F (a →A b) = {c ∈ A−{1 A}. (a →A b) →A c = c}
using assms imp-closed by auto

lemma F-bound:
assumes a ∈ A b ∈ A a ∈ F b
shows a ≤A b

proof −
consider (1 ) b 6= 1 A

| (2 ) b = 1 A

by auto
then
show ?thesis
proof(cases)

case 1
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then
have b →A a 6= 1 A

using assms(2 ,3 ) by simp
then
show ?thesis

using assms hoop-order-def total-order by auto
next

case 2
then
show ?thesis

using assms(1 ) ord-top by auto
qed

qed

The following results can be found in Lemma 3.3 in [5].
lemma LEMMA-3-3-1 :

assumes a ∈ A−{1 A} b ∈ A c ∈ A b ∈ F a c ≤A b
shows c ∈ F a

proof −
from assms
have (a →A c) ≤A (a →A b)

using DiffD1 F-equiv ord-imp-mono-B by metis
then
have (a →A c) ≤A b

using assms(1 ,4 ,5 ) by simp
then
have (a →A c) →A c = ((a →A c) ∗A ((a →A c) →A b)) →A c

using assms(1 ,3 ) hoop-order-def imp-closed by force
also
have . . . = (b ∗A (b →A (a →A c))) →A c

using assms divisibility imp-closed by simp
also
have . . . = (b →A (a →A c)) →A (b →A c)

using DiffD1 assms(1−3 ) imp-closed swap residuation by metis
also
have . . . = ((a →A b) →A (a →A c)) →A (b →A c)

using assms(1 ,4 ) by simp
also
have . . . = (((a →A b) ∗A a) →A c) →A (b →A c)

using assms(1 ,3 ,4 ) residuation by simp
also
have . . . = (((b →A a) ∗A b) →A c) →A (b →A c)

using assms(1 ,2 ) divisibility imp-closed mult-comm by simp
also
have . . . = (b →A c) →A (b →A c)

using F-bound assms(1 ,4 ) hoop-order-def by simp
also
have . . . = 1 A

using F-bound assms hoop-order-def imp-closed by simp
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finally
have (a →A c) ≤A c

using hoop-order-def by simp
moreover
have c ≤A (a →A c)

using assms(1 ,3 ) ord-A by simp
ultimately
have a →A c = c

using assms(1 ,3 ) imp-closed ord-antisymm by simp
moreover
have c ∈ A−{1 A}

using assms(1 ,3−5 ) hoop-order-def imp-one-C by auto
ultimately
show ?thesis

using F-equiv assms(1 ) by blast
qed

lemma LEMMA-3-3-2 :
assumes a ∈ A−{1 A} b ∈ A−{1 A} F a = F b
shows F a = F (a ∗A b)

proof
show F a ⊆ F (a ∗A b)
proof

fix c
assume c ∈ F a
then
have (a ∗A b) →A c = b →A (a →A c)

using DiffD1 F-subset assms(1 ,2 ) in-mono swap residuation by metis
also
have . . . = b →A c

using ‹c ∈ F a› assms(1 ) by auto
also
have . . . = c

using ‹c ∈ F a› assms(2 ,3 ) by auto
finally
show c ∈ F (a ∗A b)

using ‹c ∈ F a› assms(1 ,2 ) mult-C by auto
qed

next
show F (a ∗A b) ⊆ F a
proof

fix c
assume c ∈ F (a ∗A b)
then
have (a ∗A b) ≤A a

using assms(1 ,2 ) mult-A by auto
then
have (a →A c) ≤A ((a ∗A b) →A c)

using DiffD1 F-subset ‹c ∈ F (a ∗A b)› assms mult-closed
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ord-imp-anti-mono-B subsetD
by meson

moreover
have (a ∗A b) →A c = c

using ‹c ∈ F (a ∗A b)› assms(1 ,2 ) mult-C by auto
ultimately
have (a →A c) ≤A c

by simp
moreover
have c ≤A (a →A c)

using DiffD1 F-subset ‹c ∈ F (a ∗A b)› assms(1 ,2 ) insert-Diff
insert-subset mult-closed ord-A

by metis
ultimately
show c ∈ F a

using ‹c ∈ F (a ∗A b)› assms(1 ,2 ) imp-closed mult-C ord-antisymm by auto
qed

qed

lemma LEMMA-3-3-3 :
assumes a ∈ A−{1 A} b ∈ A−{1 A} a ≤A b
shows F a ⊆ F b

proof
fix c
assume c ∈ F a
then
have (b →A c) ≤A (a →A c)

using DiffD1 F-subset assms in-mono ord-imp-anti-mono-B by meson
moreover
have a →A c = c

using ‹c ∈ F a› assms(1 ) by auto
ultimately
have (b →A c) ≤A c

by simp
moreover
have c ≤A (b →A c)

using ‹c ∈ F a› assms(1 ,2 ) ord-A by force
ultimately
show c ∈ F b

using ‹c ∈ F a› assms(1 ,2 ) imp-closed ord-antisymm by auto
qed

lemma LEMMA-3-3-4 :
assumes a ∈ A−{1 A} b ∈ A−{1 A} a <A b F a 6= F b
shows a ∈ F b

proof −
from assms
obtain c where c ∈ F b ∧ c /∈ F a

using LEMMA-3-3-3 hoop-order-strict-def by auto
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then
have witness: c ∈ A−{1 A} ∧ b →A c = c ∧ c <A (a →A c)

using DiffD1 assms(1 ,2 ) hoop-order-strict-def ord-A by auto
then
have (a →A c) →A c ∈ F b

using DiffD1 F-equiv assms(1 ,2 ) imp-closed swap ord-D by metis
moreover
have a ≤A ((a →A c) →A c)

using assms(1 ) ord-C witness by force
ultimately
show a ∈ F b

using Diff-iff LEMMA-3-3-1 assms(1 ,2 ) imp-closed witness by metis
qed

lemma LEMMA-3-3-5 :
assumes a ∈ A−{1 A} b ∈ A−{1 A} F a 6= F b
shows a ∗A b = a ∧A b

proof −
have a <A b ∨ b <A a

using DiffD1 assms hoop-order-strict-def total-order by metis
then
have a ∈ F b ∨ b ∈ F a

using LEMMA-3-3-4 assms by metis
then
have a ∗A b = (b →A a) ∗A b ∨ a ∗A b = a ∗A (a →A b)

using assms(1 ,2 ) by force
then
show ?thesis

using assms(1 ,2 ) divisibility hoop-inf-def imp-closed mult-comm by auto
qed

lemma LEMMA-3-3-6 :
assumes a ∈ A−{1 A} b ∈ A−{1 A} a <A b F a = F b
shows F (b →A a) = F b

proof −
have a /∈ F a

using assms(1 ) DiffD1 F-equiv imp-reflex by metis
then
have a <A (b →A a)

using assms(1 ,2 ,4 ) hoop-order-strict-def ord-A by auto
moreover
have b ∗A (b →A a) = a

using assms(1−3 ) divisibility hoop-order-def hoop-order-strict-def by simp
moreover
have b ≤A (b →A a) ∨ (b →A a) ≤A b

using DiffD1 assms(1 ,2 ) imp-closed ord-reflex total-order by metis
ultimately
have b ∗A (b →A a) 6= b ∧A (b →A a)
using assms(1−3 ) hoop-order-strict-def imp-closed inf-comm inf-order by force

37



then
show F (b →A a) = F b

using LEMMA-3-3-5 assms(1−3 ) imp-closed ord-D by blast
qed

4.3 Properties of (∼F)

4.3.1 (∼F) is an equivalence relation
lemma rel-F-reflex:

assumes a ∈ A
shows a ∼F a
using rel-F-def by auto

lemma rel-F-symm:
assumes a ∈ A b ∈ A a ∼F b
shows b ∼F a
using assms rel-F-def by auto

lemma rel-F-trans:
assumes a ∈ A b ∈ A c ∈ A a ∼F b b ∼F c
shows a ∼F c
using assms rel-F-def by auto

4.3.2 Equivalent definition
lemma rel-F-equiv:

assumes a ∈ A b ∈ A
shows (a ∼F b) = (F a = F b)

proof
assume a ∼F b
then
consider (1 ) a 6= 1 A b 6= 1 A

| (2 ) a = 1 A b = 1 A

using assms imp-one-C rel-F-def by fastforce
then
show F a = F b
proof(cases)

case 1
then
show ?thesis

using ‹a ∼F b› assms rel-F-def by auto
next

case 2
then
show ?thesis

by simp
qed

next
assume F a = F b
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then
consider (1 ) a 6= 1 A b 6= 1 A

| (2 ) a = 1 A b = 1 A

using F-of-one assms by blast
then
show a ∼F b
proof(cases)

case 1
then
show ?thesis

using ‹F a = F b› assms imp-one-A imp-one-C rel-F-def by auto
next

case 2
then
show ?thesis

using rel-F-reflex by simp
qed

qed

4.3.3 Properties of equivalence classes given by (∼F)

lemma class-one: π 1 A = {1 A}
using imp-one-C rel-F-canonical-map-def rel-F-def by auto

lemma classes-subsets:
assumes a ∈ A
shows π a ⊆ A
using rel-F-canonical-map-def by simp

lemma classes-not-empty:
assumes a ∈ A
shows a ∈ π a
using assms rel-F-canonical-map-def rel-F-reflex by simp

corollary class-not-one:
assumes a ∈ A−{1 A}
shows π a 6= {1 A}
using assms classes-not-empty by blast

lemma classes-disjoint:
assumes a ∈ A b ∈ A π a ∩ π b 6= ∅
shows π a = π b
using assms rel-F-canonical-map-def rel-F-def rel-F-trans by force

lemma classes-cover : A = {x. ∃ y ∈ A. x ∈ π y}
using classes-subsets classes-not-empty by auto

lemma classes-convex:
assumes a ∈ A b ∈ A c ∈ A d ∈ A b ∈ π a c ∈ π a b ≤A d d ≤A c
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shows d ∈ π a
proof −

have eq-F : F a = F b ∧ F a = F c
using assms(1 ,5 ,6 ) rel-F-canonical-map-def rel-F-equiv by auto

from assms
consider (1 ) c = 1 A

| (2 ) c 6= 1 A

by auto
then
show ?thesis
proof(cases)

case 1
then
have b = 1 A

using F-of-one eq-F assms(2 ) by auto
then
show ?thesis

using 1 assms(2 ,4 ,5 ,7 ,8 ) ord-antisymm by blast
next

case 2
then
have b 6= 1 A ∧ c 6= 1 A ∧ d 6= 1 A

using eq-F assms(3 ,8 ) ord-antisymm ord-top by auto
then
have F b ⊆ F d ∧ F d ⊆ F c

using LEMMA-3-3-3 assms(2−4 ,7 ,8 ) by simp
then
have F a = F d

using eq-F by blast
then
have a ∼F d

using assms(1 ,4 ) rel-F-equiv by simp
then
show ?thesis

using assms(4 ) rel-F-canonical-map-def by simp
qed

qed

lemma related-iff-same-class:
assumes a ∈ A b ∈ A
shows a ∼F b ←→ π a = π b

proof
assume a ∼F b
then
have a = 1 A ←→ b = 1 A

using assms imp-one-C imp-reflex rel-F-def by metis
then
have (a = 1 A ∧ b = 1 A) ∨ (a 6= 1 A ∧ b 6= 1 A)

by auto
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then
show π a = π b

using ‹a ∼F b› assms rel-F-canonical-map-def rel-F-def rel-F-symm by force
next

show π a = π b =⇒ a ∼F b
using assms(2 ) classes-not-empty rel-F-canonical-map-def by auto

qed

corollary same-F-iff-same-class:
assumes a ∈ A b ∈ A
shows F a = F b ←→ π a = π b
using assms rel-F-equiv related-iff-same-class by auto

end

4.4 Irreducible hoops: definition and equivalences

A totally ordered hoop is irreducible if it cannot be written as the ordinal
sum of two nontrivial totally ordered hoops.
locale totally-ordered-irreducible-hoop = totally-ordered-hoop +

assumes irreducible: @ B C .
(A = B ∪ C ) ∧
({1 A} = B ∩ C ) ∧
(∃ y ∈ B. y 6= 1 A) ∧
(∃ y ∈ C . y 6= 1 A) ∧
(hoop B (∗A) (→A) 1 A) ∧
(hoop C (∗A) (→A) 1 A) ∧
(∀ x ∈ B−{1 A}. ∀ y ∈ C . x ∗A y = x) ∧
(∀ x ∈ B−{1 A}. ∀ y ∈ C . x →A y = 1 A) ∧
(∀ x ∈ C . ∀ y ∈ B. x →A y = y)

lemma irr-test:
assumes totally-ordered-hoop A PA RA a

¬totally-ordered-irreducible-hoop A PA RA a
shows ∃ B C .

(A = B ∪ C ) ∧
({a} = B ∩ C ) ∧
(∃ y ∈ B. y 6= a) ∧
(∃ y ∈ C . y 6= a) ∧
(hoop B PA RA a) ∧
(hoop C PA RA a) ∧
(∀ x ∈ B−{a}. ∀ y ∈ C . PA x y = x) ∧
(∀ x ∈ B−{a}. ∀ y ∈ C . RA x y = a) ∧
(∀ x ∈ C . ∀ y ∈ B. RA x y = y)

using assms unfolding totally-ordered-irreducible-hoop-def
totally-ordered-irreducible-hoop-axioms-def

by force

locale totally-ordered-one-fixed-hoop = totally-ordered-hoop +
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assumes one-fixed: x ∈ A =⇒ y ∈ A =⇒ y →A x = x =⇒ x = 1 A ∨ y = 1 A

locale totally-ordered-wajsberg-hoop = totally-ordered-hoop + wajsberg-hoop

context totally-ordered-hoop
begin

The following result can be found in [1] (see Lemma 3.5).
lemma not-one-fixed-implies-not-irreducible:

assumes ¬totally-ordered-one-fixed-hoop A (∗A) (→A) 1 A

shows ¬totally-ordered-irreducible-hoop A (∗A) (→A) 1 A

proof −
have ∃ x y. x ∈ A ∧ y ∈ A ∧ y →A x = x ∧ x 6= 1 A ∧ y 6= 1 A

using assms totally-ordered-hoop-axioms totally-ordered-one-fixed-hoop.intro
totally-ordered-one-fixed-hoop-axioms.intro

by meson
then
obtain b0 c0 where witnesses: b0 ∈ A−{1 A} ∧ c0 ∈ A−{1 A} ∧ b0 →A c0 = c0

by auto
define B C where B = (F b0) ∪ {1 A} and C = A−(F b0)

have B-mult-b0 : b ∗A b0 = b if b ∈ B−{1 A} for b
proof −

have upper-bound: b ≤A b0 if b ∈ B−{1 A} for b
using B-def F-bound witnesses that by force

then
have b ∗A b0 = b0 ∗A b

using B-def witnesses mult-comm that by simp
also
have . . . = b0 ∗A (b0 →A b)

using B-def witnesses that by fastforce
also
have . . . = b ∗A (b →A b0)

using B-def witnesses that divisibility by auto
also
have . . . = b

using B-def hoop-order-def that upper-bound witnesses by auto
finally
show b ∗A b0 = b

by auto
qed

have C-upper-set: a ∈ C if a ∈ A c ∈ C c ≤A a for a c
proof −

consider (1 ) a 6= 1 A

| (2 ) a = 1 A

by auto
then
show a ∈ C
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proof(cases)
case 1
then
have a /∈ C =⇒ a ∈ F b0

using C-def that(1 ) by blast
then
have a /∈ C =⇒ c ∈ F b0

using C-def DiffD1 witnesses LEMMA-3-3-1 that by metis
then
show ?thesis

using C-def that(2 ) by blast
next

case 2
then
show ?thesis

using C-def witnesses by auto
qed

qed

have B-union-C : A = B ∪ C
using B-def C-def witnesses one-closed by auto

moreover

have B-inter-C : {1 A} = B ∩ C
using B-def C-def witnesses by force

moreover

have B-not-trivial: ∃ y ∈ B. y 6= 1 A

proof −
have c0 ∈ B ∧ c0 6= 1 A

using B-def witnesses by auto
then
show ?thesis

by auto
qed

moreover

have C-not-trivial: ∃ y ∈ C . y 6= 1 A

proof −
have b0 ∈ C ∧ b0 6= 1 A

using C-def witnesses by auto
then
show ?thesis

by auto
qed
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moreover

have B-mult-closed: a ∗A b ∈ B if a ∈ B b ∈ B for a b
proof −

from that
consider (1 ) a ∈ F b0

| (2 ) a = 1 A

using B-def by blast
then
show a ∗A b ∈ B
proof(cases)

case 1
then
have a ∈ A ∧ a ∗A b ∈ A ∧ (a ∗A b) ≤A a

using B-union-C that mult-A mult-closed by blast
then
have a ∗A b ∈ F b0

using 1 witnesses LEMMA-3-3-1 by metis
then
show ?thesis

using B-def by simp
next

case 2
then
show ?thesis

using B-union-C that(2 ) by simp
qed

qed

moreover

have B-imp-closed: a →A b ∈ B if a ∈ B b ∈ B for a b
proof −

from that
consider (1 ) a = 1 A ∨ b = 1 A ∨ (a ∈ F b0 ∧ b ∈ F b0 ∧ a →A b = 1 A)
| (2 ) a ∈ F b0 b ∈ F b0 a →A b 6= 1 A

using B-def by fastforce
then
show a →A b ∈ B
proof(cases)

case 1
then
have a →A b = b ∨ a →A b = 1 A

using B-union-C that imp-one-C imp-one-top by blast
then
show ?thesis

using B-inter-C that(2 ) by fastforce
next

case 2
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then
have a ∗A b0 = a

using B-def B-mult-b0 witnesses by auto
then
have b0 →A (a →A b) = (a →A b)

using B-union-C witnesses that mult-comm residuation by simp
then
have a →A b ∈ F b0

using 2 (3 ) B-union-C F-equiv witnesses that imp-closed by auto
then
show ?thesis

using B-def by auto
qed

qed

moreover

have B-hoop: hoop B (∗A) (→A) 1 A

proof
show x ∗A y ∈ B if x ∈ B y ∈ B for x y

using B-mult-closed that by simp
next

show x →A y ∈ B if x ∈ B y ∈ B for x y
using B-imp-closed that by simp

next
show 1 A ∈ B

using B-def by simp
next

show x ∗A y = y ∗A x if x ∈ B y ∈ B for x y
using B-union-C mult-comm that by simp

next
show x ∗A (y ∗A z) = (x ∗A y) ∗A z if x ∈ B y ∈ B z ∈ B for x y z

using B-union-C mult-assoc that by simp
next

show x ∗A 1 A = x if x ∈ B for x
using B-union-C that by simp

next
show x →A x = 1 A if x ∈ B for x

using B-union-C that by simp
next

show x ∗A (x →A y) = y ∗A (y →A x) if x ∈ B y ∈ B for x y
using B-union-C divisibility that by simp

next
show x →A (y →A z) = (x ∗A y) →A z if x ∈ B y ∈ B z ∈ B for x y z

using B-union-C residuation that by simp
qed

moreover
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have C-imp-B: c →A b = b if b ∈ B c ∈ C for b c
proof −

from that
consider (1 ) b ∈ F b0 c 6= 1 A

| (2 ) b = 1 A ∨ c = 1 A

using B-def by blast
then
show c →A b = b
proof(cases)

case 1
have b0 →A ((c →A b) →A b) = (c →A b) →A (b0 →A b)

using B-union-C witnesses that imp-closed swap by simp
also
have . . . = (c →A b) →A b

using 1 (1 ) witnesses by auto
finally
have (c →A b) →A b ∈ F b0 if (c →A b) →A b 6= 1 A

using B-union-C F-equiv witnesses ‹b ∈ B› ‹c ∈ C › that imp-closed by auto
moreover
have c ≤A ((c →A b) →A b)

using B-union-C that ord-C by simp
ultimately
have (c →A b) →A b = 1 A

using B-def B-union-C C-def C-upper-set that(2 ) by blast
moreover
have b →A (c →A b) = 1 A

using B-union-C that imp-A by simp
ultimately
show ?thesis

using B-union-C that imp-closed ord-antisymm-equiv by blast
next

case 2
then
show ?thesis

using B-union-C that imp-one-C imp-one-top by auto
qed

qed

moreover

have B-imp-C : b →A c = 1 A if b ∈ B−{1 A} c ∈ C for b c
proof −

from that
have b ≤A c ∨ c ≤A b

using total-order B-union-C by blast
moreover
have c →A b = b

using C-imp-B that by simp
ultimately
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show b →A c = 1 A

using that(1 ) hoop-order-def by force
qed

moreover

have B-mult-C : b ∗A c = b if b ∈ B−{1 A} c ∈ C for b c
proof −

have b = b ∗A 1 A

using that(1 ) B-union-C by fastforce
also
have . . . = b ∗A (b →A c)

using B-imp-C that by blast
also
have . . . = c ∗A (c →A b)

using that divisibility B-union-C by simp
also
have . . . = c ∗A b

using C-imp-B that by auto
finally
show b ∗A c = b

using that mult-comm B-union-C by auto
qed

moreover

have C-mult-closed: c ∗A d ∈ C if c ∈ C d ∈ C for c d
proof −

consider (1 ) c 6= 1 A d 6= 1 A

| (2 ) c = 1 A ∨ d = 1 A

by auto
then
show c ∗A d ∈ C
proof(cases)

case 1
have c ∗A d ∈ F b0 if c ∗A d /∈ C

using C-def ‹c ∈ C › ‹d ∈ C › mult-closed that by force
then
have c →A (c ∗A d) ∈ F b0 if c ∗A d /∈ C

using B-def C-imp-B ‹c ∈ C › that by simp
moreover
have d ≤A (c →A (c ∗A d))

using C-def DiffD1 that ord-reflex ord-residuation residuation
mult-closed mult-comm

by metis
moreover
have c →A (c ∗A d) ∈ A ∧ d ∈ A

using C-def Diff-iff that imp-closed mult-closed by metis
ultimately
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have d ∈ F b0 if c ∗A d /∈ C
using witnesses LEMMA-3-3-1 that by blast

then
show ?thesis

using C-def that(2 ) by blast
next

case 2
then
show ?thesis

using B-union-C that mult-neutr mult-neutr-2 by auto
qed

qed

moreover

have C-imp-closed: c →A d ∈ C if c ∈ C d ∈ C for c d
using C-upper-set imp-closed ord-A B-union-C that by blast

moreover

have C-hoop: hoop C (∗A) (→A) 1 A

proof
show x ∗A y ∈ C if x ∈ C y ∈ C for x y

using C-mult-closed that by simp
next

show x →A y ∈ C if x ∈ C y ∈ C for x y
using C-imp-closed that by simp

next
show 1 A ∈ C

using B-inter-C by auto
next

show x ∗A y = y ∗A x if x ∈ C y ∈ C for x y
using B-union-C mult-comm that by simp

next
show x ∗A (y ∗A z) = (x ∗A y) ∗A z if x ∈ C y ∈ C z ∈ C for x y z

using B-union-C mult-assoc that by simp
next

show x ∗A 1 A = x if x ∈ C for x
using B-union-C that by simp

next
show x →A x = 1 A if x ∈ C for x

using B-union-C that by simp
next

show x ∗A (x →A y) = y ∗A (y →A x) if x ∈ C y ∈ C for x y
using B-union-C divisibility that by simp

next
show x →A (y →A z) = (x ∗A y) →A z if x ∈ C y ∈ C z ∈ C for x y z

using B-union-C residuation that by simp
qed
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ultimately

have ∃ B C .
(A = B ∪ C ) ∧
({1 A} = B ∩ C ) ∧
(∃ y ∈ B. y 6= 1 A) ∧
(∃ y ∈ C . y 6= 1 A) ∧
(hoop B (∗A) (→A) 1 A) ∧
(hoop C (∗A) (→A) 1 A) ∧
(∀ x ∈ B−{1 A}. ∀ y ∈ C . x ∗A y = x) ∧
(∀ x ∈ B−{1 A}. ∀ y ∈ C . x →A y = 1 A) ∧
(∀ x ∈ C . ∀ y ∈ B. x →A y = y)
by (smt (verit))

then
show ?thesis

using totally-ordered-irreducible-hoop.irreducible by (smt (verit))
qed

Next result can be found in [2] (see Proposition 2.2).
lemma one-fixed-implies-wajsberg:

assumes totally-ordered-one-fixed-hoop A (∗A) (→A) 1 A

shows totally-ordered-wajsberg-hoop A (∗A) (→A) 1 A

proof
have (a →A b) →A b = (b →A a) →A a if a ∈ A b ∈ A a <A b for a b
proof −

from that
have (((b →A a) →A a) →A b) →A (b →A a) = b →A a ∧ b →A a 6= 1 A

using imp-D ord-D by simp
then
have ((b →A a) →A a) →A b = 1 A

using assms that(1 ,2 ) imp-closed totally-ordered-one-fixed-hoop.one-fixed
by metis

moreover
have b →A ((b →A a) →A a) = 1 A

using hoop-order-def that(1 ,2 ) ord-C by simp
ultimately
have (b →A a) →A a = b

using imp-closed ord-antisymm-equiv hoop-axioms that(1 ,2 ) by metis
also
have . . . = (a →A b) →A b

using hoop-order-def hoop-order-strict-def that(2 ,3 ) imp-one-C by force
finally
show (a →A b) →A b = (b →A a) →A a

by auto
qed
then
show (x →A y) →A y = (y →A x) →A x if x ∈ A y ∈ A for x y

using total-order hoop-order-strict-def that by metis
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qed

The proof of the following result can be found in [1] (see Theorem 3.6).
lemma not-irreducible-implies-not-wajsberg:

assumes ¬totally-ordered-irreducible-hoop A (∗A) (→A) 1 A

shows ¬totally-ordered-wajsberg-hoop A (∗A) (→A) 1 A

proof −
have ∃ B C .

(A = B ∪ C ) ∧
({1 A} = B ∩ C ) ∧
(∃ y ∈ B. y 6= 1 A) ∧
(∃ y ∈ C . y 6= 1 A) ∧
(hoop B (∗A) (→A) 1 A) ∧
(hoop C (∗A) (→A) 1 A) ∧
(∀ x ∈ B−{1 A}. ∀ y ∈ C . x ∗A y = x) ∧
(∀ x ∈ B−{1 A}. ∀ y ∈ C . x →A y = 1 A) ∧
(∀ x ∈ C . ∀ y ∈ B. x →A y = y)
using irr-test[OF totally-ordered-hoop-axioms] assms by auto

then
obtain B C where H :

(A = B ∪ C ) ∧
({1 A} = B ∩ C ) ∧
(∃ y ∈ B. y 6= 1 A) ∧
(∃ y ∈ C . y 6= 1 A) ∧
(∀ x ∈ B−{1 A}. ∀ y ∈ C . x →A y = 1 A) ∧
(∀ x ∈ C . ∀ y ∈ B. x →A y = y)
by blast

then
obtain b c where assms: b ∈ B−{1 A} ∧ c ∈ C−{1 A}

by auto
then
have b →A c = 1 A

using H by simp
then
have (b →A c) →A c = c

using H assms imp-one-C by blast
moreover
have (c →A b) →A b = 1 A

using assms H by force
ultimately
have (b →A c) →A c 6= (c →A b) →A b

using assms by force
moreover
have b ∈ A ∧ c ∈ A

using assms H by blast
ultimately
show ?thesis

using totally-ordered-wajsberg-hoop.axioms(2 ) wajsberg-hoop.T by meson
qed
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Summary of all results in this subsection:
theorem one-fixed-equivalent-to-wajsberg:

shows totally-ordered-one-fixed-hoop A (∗A) (→A) 1 A ≡
totally-ordered-wajsberg-hoop A (∗A) (→A) 1 A

using not-irreducible-implies-not-wajsberg not-one-fixed-implies-not-irreducible
one-fixed-implies-wajsberg

by linarith

theorem wajsberg-equivalent-to-irreducible:
shows totally-ordered-wajsberg-hoop A (∗A) (→A) 1 A ≡

totally-ordered-irreducible-hoop A (∗A) (→A) 1 A

using not-irreducible-implies-not-wajsberg not-one-fixed-implies-not-irreducible
one-fixed-implies-wajsberg

by linarith

theorem irreducible-equivalent-to-one-fixed:
shows totally-ordered-irreducible-hoop A (∗A) (→A) 1 A ≡

totally-ordered-one-fixed-hoop A (∗A) (→A) 1 A

using one-fixed-equivalent-to-wajsberg wajsberg-equivalent-to-irreducible
by simp

end

4.5 Decomposition
locale tower-of-irr-hoops = tower-of-hoops +

assumes family-of-irr-hoops: i ∈ I =⇒
totally-ordered-irreducible-hoop (�i) (∗i) (→i) 1 S

locale tower-of-nontrivial-irr-hoops = tower-of-irr-hoops +
assumes nontrivial: i ∈ I =⇒ ∃ x ∈ �i. x 6= 1 S

context totally-ordered-hoop
begin

4.5.1 Definition of index set I
definition index-set :: ( ′a set) set (I )

where I = {y. (∃ x ∈ A. π x = y)}

lemma indexes-subsets:
assumes i ∈ I
shows i ⊆ A
using index-set-def assms rel-F-canonical-map-def by auto

lemma indexes-not-empty:
assumes i ∈ I
shows i 6= ∅
using index-set-def assms classes-not-empty by blast
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lemma indexes-disjoint:
assumes i ∈ I j ∈ I i 6= j
shows i ∩ j = ∅

proof −
obtain a b where a ∈ A ∧ b ∈ A ∧ a 6= b ∧ i = π a ∧ j = π b

using index-set-def assms by auto
then
show ?thesis

using assms(3 ) classes-disjoint by auto
qed

lemma indexes-cover : A = {x. ∃ i ∈ I . x ∈ i}
using classes-subsets classes-not-empty index-set-def by auto

lemma indexes-class-of-elements:
assumes i ∈ I a ∈ A a ∈ i
shows π a = i

proof −
obtain c where class-element: c ∈ A ∧ i = π c

using assms(1 ) index-set-def by auto
then
have a ∼F c

using assms(3 ) rel-F-canonical-map-def rel-F-symm by auto
then
show ?thesis

using assms(2 ) class-element related-iff-same-class by simp
qed

lemma indexes-convex:
assumes i ∈ I a ∈ i b ∈ i d ∈ A a ≤A d d ≤A b
shows d ∈ i

proof −
have a ∈ A ∧ b ∈ A ∧ d ∈ A ∧ i = π a

using assms(1−4 ) indexes-class-of-elements indexes-subsets by blast
then
show ?thesis

using assms(2−6 ) classes-convex by auto
qed

4.5.2 Definition of total partial order over I

Since each equivalence class is convex, (≤A) induces a total order on I.
function index-order :: ( ′a set) ⇒ ( ′a set) ⇒ bool (infix ≤I 60 ) where

x ≤I y = ((x = y) ∨ (∀ v ∈ x. ∀ w ∈ y. v ≤A w)) if x ∈ I y ∈ I
| x ≤I y = undefined if x /∈ I ∨ y /∈ I

by auto
termination by lexicographic-order
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definition index-order-strict (infix <I 60 )
where x <I y = (x ≤I y ∧ x 6= y)

lemma index-ord-reflex:
assumes i ∈ I
shows i ≤I i
using assms by simp

lemma index-ord-antisymm:
assumes i ∈ I j ∈ I i ≤I j j ≤I i
shows i = j

proof −
have i = j ∨ (∀ a ∈ i. ∀ b ∈ j. a ≤A b ∧ b ≤A a)

using assms by auto
then
have i = j ∨ (∀ a ∈ i. ∀ b ∈ j. a = b)

using assms(1 ,2 ) indexes-subsets insert-Diff insert-subset ord-antisymm
by metis

then
show ?thesis

using assms(1 ,2 ) indexes-not-empty by force
qed

lemma index-ord-trans:
assumes i ∈ I j ∈ I k ∈ I i ≤I j j ≤I k
shows i ≤I k

proof −
consider (1 ) i 6= j j 6= k
| (2 ) i = j ∨ j = k
by auto

then
show i ≤I k
proof(cases)

case 1
then
have (∀ a ∈ i. ∀ b ∈ j. a ≤A b) ∧ (∀ b ∈ j. ∀ c ∈ k. b ≤A c)

using assms by force
moreover
have j 6= ∅

using assms(2 ) indexes-not-empty by simp
ultimately
have ∀ a ∈ i. ∀ c ∈ k. ∃ b ∈ j. a ≤A b ∧ b ≤A c

using all-not-in-conv by meson
then
have ∀ a ∈ i. ∀ c ∈ k. a ≤A c

using assms indexes-subsets ord-trans subsetD by metis
then
show ?thesis

using assms(1 ,3 ) by simp
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next
case 2
then
show ?thesis

using assms(4 ,5 ) by auto
qed

qed

lemma index-order-total :
assumes i ∈ I j ∈ I ¬(j ≤I i)
shows i ≤I j

proof −
have i 6= j

using assms(1 ,3 ) by auto
then
have disjoint: i ∩ j = ∅

using assms(1 ,2 ) indexes-disjoint by simp
moreover
have ∃ x ∈ j. ∃ y ∈ i. ¬(x ≤A y)

using assms index-order .simps(1 ) by blast
moreover
have subsets: i ⊆ A ∧ j ⊆ A

using assms indexes-subsets by simp
ultimately
have ∃ x ∈ j. ∃ y ∈ i. y <A x

using total-order hoop-order-strict-def insert-absorb insert-subset by metis
then
obtain ai aj where witnesses: ai ∈ i ∧ aj ∈ j ∧ ai <A aj

using assms(1 ,2 ) total-order hoop-order-strict-def indexes-subsets by metis
then
have a ≤A b if a ∈ i b ∈ j for a b
proof

from that
consider (1 ) ai ≤A a aj ≤A b
| (2 ) a <A ai b <A aj

| (3 ) ai ≤A a b <A aj

| (4 ) a <A ai aj ≤A b
using total-order hoop-order-strict-def subset-eq subsets witnesses by metis

then
show a ≤A b
proof(cases)

case 1
then
have ai ≤A aj ∧ aj ≤A b ∧ b ≤A a if b <A a

using hoop-order-strict-def that witnesses by blast
then
have ai ≤A b ∧ b ≤A a if b <A a

using ‹b ∈ j› in-mono ord-trans subsets that witnesses by meson
then
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have b ∈ i if b <A a
using assms(1 ) ‹a ∈ i› ‹b ∈ j› indexes-convex subsets that witnesses
by blast

then
show a ≤A b

using disjoint disjoint-iff-not-equal hoop-order-strict-def subset-eq
subsets that total-order

by metis
next

case 2
then
have b ≤A a ∧ a ≤A ai ∧ ai ≤A aj if b <A a

using hoop-order-strict-def that witnesses by blast
then
have b ≤A a ∧ a ≤A aj if b <A a

using ‹a ∈ i› ord-trans subset-eq subsets that witnesses by metis
then
have a ∈ j if b <A a

using assms(2 ) ‹a ∈ i› ‹b ∈ j› indexes-convex subsets that witnesses
by blast

then
show a ≤A b

using disjoint disjoint-iff-not-equal hoop-order-strict-def subset-eq
subsets that total-order

by metis
next

case 3
have b ≤A ai ∧ ai ≤A aj if b ≤A ai

using hoop-order-strict-def that witnesses by auto
then
have ai ∈ j if b ≤A ai

using assms(2 ) ‹b ∈ j› indexes-convex subsets that witnesses by blast
moreover
have ai /∈ j

using disjoint witnesses by blast
ultimately
have ai <A b

using total-order hoop-order-strict-def ‹b ∈ j› subsets witnesses by blast
then
have ai ≤A b ∧ b ≤A a if b <A a

using hoop-order-strict-def that by auto
then
have b ∈ i if b <A a

using assms(1 ) ‹a ∈ i› ‹b ∈ j› indexes-convex subsets that witnesses
by blast

then
show a ≤A b

using disjoint disjoint-iff-not-equal hoop-order-strict-def subset-eq
subsets that total-order
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by metis
next

case 4
then
show a ≤A b

using hoop-order-strict-def in-mono ord-trans subsets that witnesses
by meson

qed
qed
then
show i ≤I j

using assms by simp
qed

sublocale total-poset-on I (≤I) (<I)
proof

show I 6= ∅
using indexes-cover by auto

next
show reflp-on I (≤I)

using index-ord-reflex reflp-onI by blast
next

show antisymp-on I (≤I)
using antisymp-on-def index-ord-antisymm by blast

next
show transp-on I (≤I)

using index-ord-trans transp-on-def by blast
next

show x <I y = (x ≤I y ∧ x 6= y) if x ∈ I y ∈ I for x y
using index-order-strict-def by auto

next
show totalp-on I (≤I)

using index-order-total totalp-onI by metis
qed

4.5.3 Definition of universes
definition universes :: ′a set ⇒ ′a set (UNI A)

where UNI A x = x ∪ {1 A}

abbreviation (uniA-i)
uniA-i :: [ ′a set] ⇒ ( ′a set) ((�(-)) [61 ] 60 )
where �i ≡ UNI A i

abbreviation (uniA-pi)
uniA-pi :: [ ′a] ⇒ ( ′a set) ((�π (-)) [61 ] 60 )
where �πx ≡ UNI A (π x)

abbreviation (uniA-pi-one)
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uniA-pi-one :: ′a set ((�π1A) 60 )
where �π1A ≡ UNI A (π 1 A)

lemma universes-subsets:
assumes i ∈ I a ∈ �i

shows a ∈ A
using assms universes-def indexes-subsets one-closed by fastforce

lemma universes-not-empty:
assumes i ∈ I
shows �i 6= ∅
using universes-def by simp

lemma universes-almost-disjoint:
assumes i ∈ I j ∈ I i 6= j
shows (�i) ∩ (�j) = {1 A}
using assms indexes-disjoint universes-def by auto

lemma universes-cover : A = {x. ∃ i ∈ I . x ∈ �i}
using one-closed indexes-cover universes-def by auto

lemma universes-aux:
assumes i ∈ I a ∈ i
shows �i = π a ∪ {1 A}
using assms universes-def universes-subsets indexes-class-of-elements by force

4.5.4 Universes are subhoops of A
lemma universes-one-closed:

assumes i ∈ I
shows 1 A ∈ �i

using universes-def by auto

lemma universes-mult-closed:
assumes i ∈ I a ∈ �i b ∈ �i

shows a ∗A b ∈ �i

proof −
consider (1 ) a 6= 1 A b 6= 1 A

| (2 ) a = 1 A ∨ b = 1 A

by auto
then
show ?thesis
proof(cases)

case 1
then
have UNI-def : �i = π a ∪ {1 A} ∧ �i = π b ∪ {1 A}

using assms universes-def universes-subsets indexes-class-of-elements
by simp

then
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have π a = π b
using 1 assms universes-def universes-subsets indexes-class-of-elements
by force

then
have F a = F b

using assms universes-subsets rel-F-equiv related-iff-same-class by meson
then
have F (a ∗A b) = F a

using 1 LEMMA-3-3-2 assms universes-subsets by blast
then
have π a = π (a ∗A b)

using assms universes-subsets mult-closed rel-F-equiv related-iff-same-class
by metis

then
show ?thesis

using UNI-def UnI1 assms classes-not-empty universes-subsets mult-closed
by metis

next
case 2
then
show ?thesis

using assms universes-subsets by auto
qed

qed

lemma universes-imp-closed:
assumes i ∈ I a ∈ �i b ∈ �i

shows a →A b ∈ �i

proof −
from assms
consider (1 ) a 6= 1 A b 6= 1 A b <A a
| (2 ) a = 1 A ∨ b = 1 A ∨ (a 6= 1 A ∧ b 6= 1 A ∧ a ≤A b)
using total-order universes-subsets hoop-order-strict-def by auto

then
show ?thesis
proof(cases)

case 1
then
have UNI-def : �i = π a ∪ {1 A} ∧ �i = π b ∪ {1 A}

using assms universes-def universes-subsets indexes-class-of-elements
by simp

then
have π a = π b

using 1 assms universes-def universes-subsets indexes-class-of-elements
by force

then
have F a = F b

using assms universes-subsets rel-F-equiv related-iff-same-class by simp
then
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have F (a →A b) = F a
using 1 LEMMA-3-3-6 assms universes-subsets by simp

then
have π a = π (a →A b)

using assms universes-subsets imp-closed same-F-iff-same-class by simp
then
show ?thesis

using UNI-def UnI1 assms classes-not-empty universes-subsets imp-closed
by metis

next
case 2
then
show ?thesis

using assms universes-subsets universes-one-closed hoop-order-def imp-one-A
imp-one-C

by auto
qed

qed

4.5.5 Universes are irreducible hoops
lemma universes-one-fixed:

assumes i ∈ I a ∈ �i b ∈ �i a →A b = b
shows a = 1 A ∨ b = 1 A

proof −
from assms
have π a = π b if a 6= 1 A b 6= 1 A

using universes-def universes-subsets indexes-class-of-elements that by force
then
have F a = F b if a 6= 1 A b 6= 1 A

using assms(1−3 ) universes-subsets same-F-iff-same-class that by blast
then
have b = 1 A if a 6= 1 A b 6= 1 A

using F-equiv assms universes-subsets fixed-points.cases imp-reflex that by metis
then
show ?thesis

by blast
qed

corollary universes-one-fixed-hoops:
assumes i ∈ I
shows totally-ordered-one-fixed-hoop (�i) (∗A) (→A) 1 A

proof
show x ∗A y ∈ �i if x ∈ �i y ∈ �i for x y

using assms universes-mult-closed that by simp
next

show x →A y ∈ �i if x ∈ �i y ∈ �i for x y
using assms universes-imp-closed that by simp

next
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show 1 A ∈ �i

using assms universes-one-closed by simp
next

show x ∗A y = y ∗A x if x ∈ �i y ∈ �i for x y
using assms universes-subsets mult-comm that by simp

next
show x ∗A (y ∗A z) = (x ∗A y) ∗A z if x ∈ �i y ∈ �i z ∈ �i for x y z

using assms universes-subsets mult-assoc that by simp
next

show x ∗A 1 A = x if x ∈ �i for x
using assms universes-subsets that by simp

next
show x →A x = 1 A if x ∈ �i for x

using assms universes-subsets that by simp
next

show x ∗A (x →A y) = y ∗A (y →A x) if x ∈ �i y ∈ �i for x y
using assms divisibility universes-subsets that by simp

next
show x →A (y →A z) = (x ∗A y) →A z if x ∈ �i y ∈ �i z ∈ �i for x y z

using assms universes-subsets residuation that by simp
next

show x ≤A y ∨ y ≤A x if x ∈ �i y ∈ �i for x y
using assms total-order universes-subsets that by simp

next
show x = 1 A ∨ y = 1 A if x ∈ �i y ∈ �i y →A x = x for x y

using assms universes-one-fixed that by blast
qed

corollary universes-irreducible-hoops:
assumes i ∈ I
shows totally-ordered-irreducible-hoop (�i) (∗A) (→A) 1 A

using assms universes-one-fixed-hoops totally-ordered-hoop.irreducible-equivalent-to-one-fixed
totally-ordered-one-fixed-hoop.axioms(1 )

by metis

4.5.6 Some useful results
lemma index-aux:

assumes i ∈ I j ∈ I i <I j a ∈ (�i)−{1 A} b ∈ (�j)−{1 A}
shows a <A b ∧ ¬(a ∼F b)

proof −
have noteq: i 6= j ∧ x ≤A y if x ∈ i y ∈ j for x y

using assms that index-order-strict-def by fastforce
moreover
have ij-def : i = π a ∧ j = π b

using UnE assms universes-def universes-subsets indexes-class-of-elements
by auto

ultimately
have a <A b
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using assms(1 ,2 ,4 ,5 ) classes-not-empty universes-subsets hoop-order-strict-def
by blast

moreover
have i = j if a ∼F b
using assms(1 ,2 ,4 ,5 ) that universes-subsets ij-def related-iff-same-class by auto

ultimately
show ?thesis

using assms(2 ,3 ) trichotomy by blast
qed

lemma different-indexes-mult:
assumes i ∈ I j ∈ I i <I j a ∈ (�i)−{1 A} b ∈ (�j)−{1 A}
shows a ∗A b = a

proof −
have a <A b ∧ ¬(a ∼F b)

using assms index-aux by blast
then
have a <A b ∧ F a 6= F b

using DiffD1 assms(1 ,2 ,4 ,5 ) universes-subsets rel-F-equiv by meson
then
have a <A b ∧ a ∗A b = a ∧A b

using DiffD1 LEMMA-3-3-5 assms(1 ,2 ,4 ,5 ) universes-subsets by auto
then
show ?thesis

using assms(1 ,2 ,4 ,5 ) universes-subsets hoop-order-strict-def inf-order by auto
qed

lemma different-indexes-imp-1 :
assumes i ∈ I j ∈ I i <I j a ∈ (�i)−{1 A} b ∈ (�j)−{1 A}
shows a →A b = 1 A

proof −
have x ≤A y if x ∈ i y ∈ j for x y

using assms(1−3 ) index-order-strict-def that by fastforce
moreover
have a ∈ i ∧ b ∈ j

using assms(4 ,5 ) assms(5 ) universes-def by auto
ultimately
show ?thesis

using hoop-order-def by auto
qed

lemma different-indexes-imp-2 :
assumes i ∈ I j ∈ I i <I j a ∈ (�j)−{1 A} b ∈ (�i)−{1 A}
shows a →A b = b

proof −
have b <A a ∧ ¬(b ∼F a)

using assms index-aux by blast
then
have b <A a ∧ F b 6= F a
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using DiffD1 assms(1 ,2 ,4 ,5 ) universes-subsets rel-F-equiv by metis
then
have b ∈ F a

using LEMMA-3-3-4 assms(1 ,2 ,4 ,5 ) universes-subsets by simp
then
show ?thesis

using assms(2 ,4 ,5 ) universes-subsets by fastforce
qed

4.5.7 Definition of multiplications, implications and one
definition mult-map :: ′a set ⇒ ( ′a ⇒ ′a ⇒ ′a) (MULA)

where MULA x = (∗A)

definition imp-map :: ′a set ⇒ ( ′a ⇒ ′a ⇒ ′a) (IMPA)
where IMPA x = (→A)

definition sum-one :: ′a (1 S)
where 1 S = 1 A

abbreviation (multA-i)
multA-i :: [ ′a set] ⇒ ( ′a ⇒ ′a ⇒ ′a) ((∗(-)) [50 ] 60 )
where ∗i ≡ MULA i

abbreviation (impA-i)
impA-i:: [ ′a set] ⇒ ( ′a ⇒ ′a ⇒ ′a) ((→(-)) [50 ] 60 )
where →i ≡ IMPA i

abbreviation (multA-i-xy)
multA-i-xy :: [ ′a, ′a set, ′a] ⇒ ′a (((-)/ ∗(-) / (-)) [61 , 50 , 61 ] 60 )
where x ∗i y ≡ MULA i x y

abbreviation (impA-i-xy)
impA-i-xy :: [ ′a, ′a set, ′a] ⇒ ′a (((-)/ →(-) / (-)) [61 , 50 , 61 ] 60 )
where x →i y ≡ IMPA i x y

abbreviation (ord-i-xy)
ord-i-xy :: [ ′a, ′a set, ′a] ⇒ bool (((-)/ ≤(-) / (-)) [61 , 50 , 61 ] 60 )
where x ≤i y ≡ hoop.hoop-order (IMPA i) 1 S x y

4.5.8 Main result

We prove the main result: a totally ordered hoop is equal to an ordinal sum
of a tower of irreducible hoops.
sublocale A-SUM : tower-of-irr-hoops I (≤I) (<I) UNI A MULA IMPA 1 S

proof
show (�i) ∩ (�j) = {1 S} if i ∈ I j ∈ I i 6= j for i j

using universes-almost-disjoint sum-one-def that by simp
next
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show x ∗i y ∈ �i if i ∈ I x ∈ �i y ∈ �i for i x y
using universes-mult-closed mult-map-def that by simp

next
show x →i y ∈ �i if i ∈ I x ∈ �i y ∈ �i for i x y

using universes-imp-closed imp-map-def that by simp
next

show 1 S ∈ �i if i ∈ I for i
using universes-one-closed sum-one-def that by simp

next
show x ∗i y = y ∗i x if i ∈ I x ∈ �i y ∈ �i for i x y

using universes-subsets mult-comm mult-map-def that by simp
next

show x ∗i (y ∗i z) = (x ∗i y) ∗i z
if i ∈ I x ∈ �i y ∈ �i z ∈ �i for i x y z
using universes-subsets mult-assoc mult-map-def that by simp

next
show x ∗i 1 S = x if i ∈ I x ∈ �i for i x

using universes-subsets sum-one-def mult-map-def that by simp
next

show x →i x = 1 S if i ∈ I x ∈ �i for i x
using universes-subsets imp-map-def sum-one-def that by simp

next
show x ∗i (x →i y) = y ∗i (y →i x)

if i ∈ I x ∈ �i y ∈ �i z ∈ �i for i x y z
using divisibility universes-subsets imp-map-def mult-map-def that by simp

next
show x →i (y →i z) = (x ∗i y) →i z

if i ∈ I x ∈ �i y ∈ �i z ∈ �i for i x y z
using universes-subsets imp-map-def mult-map-def residuation that by simp

next
show x ≤i y ∨ y ≤i x if i ∈ I x ∈ �i y ∈ �i for i x y

using total-order universes-subsets imp-map-def sum-one-def that by simp
next

show @ B C .
(�i = B ∪ C ) ∧
({1 S} = B ∩ C ) ∧
(∃ y ∈ B. y 6= 1 S) ∧
(∃ y ∈ C . y 6= 1 S) ∧
(hoop B (∗i) (→i) 1 S) ∧
(hoop C (∗i) (→i) 1 S) ∧
(∀ x ∈ B−{1 S}. ∀ y ∈ C . x ∗i y = x) ∧
(∀ x ∈ B−{1 S}. ∀ y ∈ C . x →i y = 1 S) ∧
(∀ x ∈ C . ∀ y ∈ B. x →i y = y)

if i ∈ I for i
using that Un-iff universes-one-fixed-hoops imp-map-def sum-one-def

totally-ordered-one-fixed-hoop.one-fixed
by metis

qed
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lemma same-uni [simp]: A-SUM .sum-univ = A
using A-SUM .sum-univ-def universes-cover by auto

lemma floor-is-class:
assumes a ∈ A−{1 A}
shows A-SUM .floor a = π a

proof −
have a ∈ π a ∧ π a ∈ I

using index-set-def assms classes-not-empty by fastforce
then
show ?thesis
using same-uni A-SUM .floor-prop A-SUM .floor-unique UnCI assms universes-aux

sum-one-def
by metis

qed

lemma same-mult:
assumes a ∈ A b ∈ A
shows a ∗A b = A-SUM .sum-mult a b

proof −
from assms
consider (1 ) a ∈ A−{1 A} b ∈ A−{1 A} A-SUM .floor a = A-SUM .floor b
| (2 ) a ∈ A−{1 A} b ∈ A−{1 A} A-SUM .floor a <I A-SUM .floor b
| (3 ) a ∈ A−{1 A} b ∈ A−{1 A} A-SUM .floor b <I A-SUM .floor a
| (4 ) a = 1 A ∨ b = 1 A

using same-uni A-SUM .floor-prop fixed-points.cases sum-one-def trichotomy
by metis

then
show ?thesis
proof(cases)

case 1
then
show ?thesis

using A-SUM .sum-mult.simps(1 ) sum-one-def mult-map-def by auto
next

case 2
define i j where i = A-SUM .floor a and j = A-SUM .floor b
then
have i ∈ I ∧ j ∈ I ∧ a ∈ (�i)−{1 A} ∧ b ∈ (�j)−{1 A}

using 2 (1 ,2 ) A-SUM .floor-prop sum-one-def by auto
then
have a ∗A b = a

using 2 (3 ) different-indexes-mult i-def j-def by blast
moreover
have A-SUM .sum-mult a b = a

using 2 A-SUM .sum-mult.simps(2 ) sum-one-def by simp
ultimately
show ?thesis

by simp
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next
case 3
define i j where i = A-SUM .floor a and j = A-SUM .floor b
then
have i ∈ I ∧ j ∈ I ∧ a ∈ (�i)−{1 A} ∧ b ∈ (�j)−{1 A}

using 3 (1 ,2 ) A-SUM .floor-prop sum-one-def by auto
then
have a ∗A b = b

using 3 (3 ) assms different-indexes-mult i-def j-def mult-comm by metis
moreover
have A-SUM .sum-mult a b = b

using 3 A-SUM .sum-mult.simps(3 ) sum-one-def by simp
ultimately
show ?thesis

by simp
next

case 4
then
show ?thesis

using A-SUM .mult-neutr A-SUM .mult-neutr-2 assms sum-one-def by force
qed

qed

lemma same-imp:
assumes a ∈ A b ∈ A
shows a →A b = A-SUM .sum-imp a b

proof −
from assms
consider (1 ) a ∈ A−{1 A} b ∈ A−{1 A} A-SUM .floor a = A-SUM .floor b
| (2 ) a ∈ A−{1 A} b ∈ A−{1 A} A-SUM .floor a <I A-SUM .floor b
| (3 ) a ∈ A−{1 A} b ∈ A−{1 A} A-SUM .floor b <I A-SUM .floor a
| (4 ) a = 1 A ∨ b = 1 A

using same-uni A-SUM .floor-prop fixed-points.cases sum-one-def trichotomy
by metis

then
show ?thesis
proof(cases)

case 1
then
show ?thesis

using A-SUM .sum-imp.simps(1 ) imp-map-def sum-one-def by auto
next

case 2
define i j where i = A-SUM .floor a and j = A-SUM .floor b
then
have i ∈ I ∧ j ∈ I ∧ a ∈ (�i)−{1 A} ∧ b ∈ (�j)−{1 A}

using 2 (1 ,2 ) A-SUM .floor-prop sum-one-def by simp
then
have a →A b = 1 A
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using 2 (3 ) different-indexes-imp-1 i-def j-def by blast
moreover
have A-SUM .sum-imp a b = 1 A

using 2 A-SUM .sum-imp.simps(2 ) sum-one-def by simp
ultimately
show ?thesis

by simp
next

case 3
define i j where i = A-SUM .floor a and j = A-SUM .floor b
then
have i ∈ I ∧ j ∈ I ∧ a ∈ (�i)−{1 A} ∧ b ∈ (�j)−{1 A}

using 3 (1 ,2 ) A-SUM .floor-prop sum-one-def by simp
then
have a →A b = b

using 3 (3 ) different-indexes-imp-2 i-def j-def by blast
moreover
have A-SUM .sum-imp a b = b

using 3 A-SUM .sum-imp.simps(3 ) sum-one-def by auto
ultimately
show ?thesis

by simp
next

case 4
then
show ?thesis

using A-SUM .imp-one-C A-SUM .imp-one-top assms imp-one-C
imp-one-top sum-one-def

by force
qed

qed

lemma ordinal-sum-is-totally-ordered-hoop:
totally-ordered-hoop A-SUM .sum-univ A-SUM .sum-mult A-SUM .sum-imp 1 S

proof
show A-SUM .hoop-order x y ∨ A-SUM .hoop-order y x

if x ∈ A-SUM .sum-univ y ∈ A-SUM .sum-univ for x y
using that A-SUM .hoop-order-def total-order hoop-order-def

sum-one-def same-imp
by auto

qed

theorem totally-ordered-hoop-is-equal-to-ordinal-sum-of-tower-of-irr-hoops:
shows eq-universe: A = A-SUM .sum-univ
and eq-mult: x ∈ A =⇒ y ∈ A =⇒ x ∗A y = A-SUM .sum-mult x y
and eq-imp: x ∈ A =⇒ y ∈ A =⇒ x →A y = A-SUM .sum-imp x y
and eq-one: 1 A = 1 S

proof
show A ⊆ A-SUM .sum-univ
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by simp
next

show A-SUM .sum-univ ⊆ A
by simp

next
show x ∗A y = A-SUM .sum-mult x y if x ∈ A y ∈ A for x y

using same-mult that by blast
next

show x →A y = A-SUM .sum-imp x y if x ∈ A y ∈ A for x y
using same-imp that by blast

next
show 1 A = 1 S

using sum-one-def by simp
qed

4.5.9 Remarks on the nontrivial case

In the nontrivial case we have that every totally ordered hoop can be written
as the ordinal sum of a tower of nontrivial irreducible hoops. The proof of
this fact is almost immediate. By definition, �π1A = {1 A} is the only trivial
hoop in our tower. Moreover, �πa is non-trivial for every a ∈ A−{1 A}.
Given that 1 A ∈ �i for every i ∈ I we can simply remove π 1 A from I and
obtain the desired result.
lemma nontrivial-tower :

assumes ∃ x ∈ A. x 6= 1 A

shows
tower-of-nontrivial-irr-hoops (I−{π 1 A}) (≤I) (<I) UNI A MULA IMPA 1 S

proof
show I−{π 1 A} 6= ∅
proof −

obtain a where a ∈ A−{1 A}
using assms by blast

then
have π a ∈ I−{π 1 A}
using A-SUM .floor-prop class-not-one class-one floor-is-class sum-one-def by

auto
then
show ?thesis

by auto
qed

next
show reflp-on (I−{π 1 A}) (≤I)

using Diff-subset reflex reflp-on-subset by meson
next

show antisymp-on (I−{π 1 A}) (≤I)
using Diff-subset antisymm antisymp-on-subset by meson

next
show transp-on (I−{π 1 A}) (≤I)
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using Diff-subset trans transp-on-subset by meson
next

show i <I j = (i ≤I j ∧ i 6= j) if i ∈ I−{π 1 A} j ∈ I−{π 1 A} for i j
using index-order-strict-def by simp

next
show totalp-on (I−{π 1 A}) (≤I)

using Diff-subset total totalp-on-subset by meson
next

show (�i) ∩ (�j) = {1 S} if i ∈ I−{π 1 A} j ∈ I−{π 1 A} i 6= j for i j
using A-SUM .almost-disjoint that by blast

next
show x ∗i y ∈ �i if i ∈ I−{π 1 A} x ∈ �i y ∈ �i for i x y

using A-SUM .floor-mult-closed that by blast
next

show x →i y ∈ �i if i ∈ I−{π 1 A} x ∈ �i y ∈ �i for i x y
using A-SUM .floor-imp-closed that by blast

next
show 1 S ∈ �i if i ∈ I−{π 1 A} for i

using universes-one-closed sum-one-def that by simp
next

show x ∗i y = y ∗i x if i ∈ I−{π 1 A} x ∈ �i y ∈ �i for i x y
using universes-subsets mult-comm mult-map-def that by force

next
show x ∗i (y ∗i z) = (x ∗i y) ∗i z

if i ∈ I−{π 1 A} x ∈ �i y ∈ �i z ∈ �i for i x y z
using universes-subsets mult-assoc mult-map-def that by force

next
show x ∗i 1 S = x if i ∈ I−{π 1 A} x ∈ �i for i x

using universes-subsets sum-one-def mult-map-def that by force
next

show x →i x = 1 S if i ∈ I−{π 1 A} x ∈ �i for i x
using universes-subsets imp-map-def sum-one-def that by force

next
show x ∗i (x →i y) = y ∗i (y →i x)

if i ∈ I−{π 1 A} x ∈ �i y ∈ �i z ∈ �i for i x y z
using divisibility universes-subsets imp-map-def mult-map-def that by auto

next
show x →i (y →i z) = (x ∗i y) →i z

if i ∈ I−{π 1 A} x ∈ �i y ∈ �i z ∈ �i for i x y z
using universes-subsets imp-map-def mult-map-def residuation that by force

next
show x ≤i y ∨ y ≤i x if i ∈ I−{π 1 A} x ∈ �i y ∈ �i for i x y

using DiffE total-order universes-subsets imp-map-def sum-one-def that by
metis
next

show @ B C .
(�i = B ∪ C ) ∧
({1 S} = B ∩ C ) ∧
(∃ y ∈ B. y 6= 1 S) ∧
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(∃ y ∈ C . y 6= 1 S) ∧
(hoop B (∗i) (→i) 1 S) ∧
(hoop C (∗i) (→i) 1 S) ∧
(∀ x ∈ B−{1 S}. ∀ y ∈ C . x ∗i y = x) ∧
(∀ x ∈ B−{1 S}. ∀ y ∈ C . x →i y = 1 S) ∧
(∀ x ∈ C . ∀ y ∈ B. x →i y = y)

if i ∈ I−{π 1 A} for i
using that Diff-iff Un-iff universes-one-fixed imp-map-def sum-one-def by metis

next
show ∃ x ∈ �i. x 6= 1 S if i ∈ I−{π 1 A} for i

using universes-def indexes-class-of-elements indexes-not-empty that
by fastforce

qed

lemma ordinal-sum-of-nontrivial:
assumes ∃ x ∈ A. x 6= 1 A

shows A-SUM .sum-univ = {x. ∃ i ∈ I−{π 1 A}. x ∈ �i}
proof

show A-SUM .sum-univ ⊆ {x. ∃ i ∈ I−{π 1 A}. x ∈ �i}
proof

fix a
assume a ∈ A-SUM .sum-univ
then
consider (1 ) a ∈ A−{1 A}
| (2 ) a = 1 A

by auto
then
show a ∈ {x. ∃ i ∈ I−{π 1 A}. x ∈ �i}
proof(cases)

case 1
then
obtain i where i = π a

by simp
then
have a ∈ �i ∧ i ∈ I−{π 1 A}
using 1 A-SUM .floor-prop class-not-one class-one floor-is-class sum-one-def
by auto

then
show ?thesis

by blast
next

case 2
obtain c where c ∈ A−{1 A}

using assms by blast
then
obtain i where i = π c

by simp
then
have a ∈ �i ∧ i ∈ I−{π 1 A}

69



using 2 A-SUM .floor-prop ‹c ∈ A−{1 A}› class-not-one class-one
universes-one-closed floor-is-class sum-one-def

by auto
then
show ?thesis

by auto
qed

qed
next

show {x. ∃ i ∈ I−{π 1 A}. x ∈ �i} ⊆ A-SUM .sum-univ
using universes-subsets by force

qed

end

4.5.10 Converse of main result

We show that the converse of the main result also holds, that is, the ordinal
sum of a tower of irreducible hoops is a totally ordered hoop.
context tower-of-irr-hoops
begin

proposition ordinal-sum-of-tower-of-irr-hoops-is-totally-ordered-hoop:
shows totally-ordered-hoop S (∗S) (→S) 1 S

proof
show hoop-order a b ∨ hoop-order b a if a ∈ S b ∈ S for a b
proof −

from that
consider (1 ) a ∈ S−{1 S} b ∈ S−{1 S} floor a = floor b
| (2 ) a ∈ S−{1 S} b ∈ S−{1 S} floor a <I floor b ∨ floor b <I floor a
| (3 ) a = 1 S ∨ b = 1 S

using floor .cases floor-prop trichotomy by metis
then
show hoop-order a b ∨ hoop-order b a
proof(cases)

case 1
then
have a ∈ �f loor a ∧ b ∈ �f loor a

using 1 floor-prop by metis
moreover
have totally-ordered-hoop (�f loor a) (∗f loor a) (→f loor a) 1 S

using 1 (1 ) family-of-irr-hoops totally-ordered-irreducible-hoop.axioms(1 )
floor-prop

by meson
ultimately
have a →f loor a b = 1 S ∨ b →f loor a a = 1 S

using hoop.hoop-order-def totally-ordered-hoop.total-order
totally-ordered-hoop-def

by meson
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moreover
have a →S b = a →f loor a b ∧ b →S a = b →f loor a a

using 1 by auto
ultimately
show ?thesis

using hoop-order-def by force
next

case 2
then
show ?thesis

using sum-imp.simps(2 ) hoop-order-def by blast
next

case 3
then
show ?thesis

using that ord-top by auto
qed

qed
qed

end

end

5 BL-chains

BL-chains generate the variety of BL-algebras, the algebraic counterpart of
the Basic Fuzzy Logic (see [6]). As mentioned in the abstract, this formal-
ization is based on the proof for BL-chains found in [5]. We define BL−chain
and bounded tower of irreducible hoops and formalize the main result on that
paper (Theorem 3.4).
theory BL-Chains

imports Totally-Ordered-Hoops

begin

5.1 Definitions
locale bl-chain = totally-ordered-hoop +

fixes zeroA :: ′a (0 A)
assumes zero-closed: 0 A ∈ A
assumes zero-first: x ∈ A =⇒ 0 A ≤A x

locale bounded-tower-of-irr-hoops = tower-of-irr-hoops +
fixes zeroI (0 I)
fixes zeroS (0 S)
assumes I-zero-closed : 0 I ∈ I
and zero-first: i ∈ I =⇒ 0 I ≤I i
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and first-zero-closed: 0 S ∈ UNI 0 I

and first-bounded: x ∈ UNI 0 I =⇒ IMP 0 I 0 S x = 1 S

begin

abbreviation (uni-zero)
uni-zero :: ′b set (�0I)
where �0I ≡ UNI 0 I

abbreviation (imp-zero)
imp-zero :: [ ′b, ′b] ⇒ ′b (((-)/ →0I / (-)) [61 ,61 ] 60 )
where x →0I y ≡ IMP 0 I x y

end

context bl-chain
begin

5.2 First element of I
definition zeroI :: ′a set (0 I)

where 0 I = π 0 A

lemma I-zero-closed: 0 I ∈ I
using index-set-def zeroI-def zero-closed by auto

lemma I-has-first-element:
assumes i ∈ I i 6= 0 I

shows 0 I <I i
proof −

have x ≤A y if i <I 0 I x ∈ i y ∈ 0 I for x y
using I-zero-closed assms(1 ) index-order-strict-def that by fastforce

then
have x ≤A 0 A if i <I 0 I x ∈ i for x

using classes-not-empty zeroI-def zero-closed that by simp
moreover
have 0 A ≤A x if x ∈ i for x

using assms(1 ) that in-mono indexes-subsets zero-first by meson
ultimately
have x = 0 A if i <I 0 I x ∈ i for x

using assms(1 ) indexes-subsets ord-antisymm zero-closed that by blast
moreover
have 0 A ∈ 0 I

using classes-not-empty zeroI-def zero-closed by simp
ultimately
have i ∩ 0 I 6= ∅ if i <I 0 I

using assms(1 ) indexes-not-empty that by force
moreover
have i <I 0 I ∨ 0 I <I i

using I-zero-closed assms trichotomy by auto
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ultimately
show ?thesis

using I-zero-closed assms(1 ) indexes-disjoint by auto
qed

5.3 Main result for BL-chains
definition zeroS :: ′a (0 S)

where 0 S = 0 A

abbreviation (uniA-zero)
uniA-zero :: ′a set ((�0I))
where �0I ≡ UNI A 0 I

abbreviation (impA-zero-xy)
impA-zero-xy :: [ ′a, ′a] ⇒ ′a (((-)/ →0I / (-)) [61 , 61 ] 60 )
where x →0I y ≡ IMPA 0 I x y

lemma tower-is-bounded:
shows bounded-tower-of-irr-hoops I (≤I) (<I) UNI A MULA IMPA 1 S 0 I 0 S

proof
show 0 I ∈ I

using I-zero-closed by simp
next

show 0 I ≤I i if i ∈ I for i
using I-has-first-element index-ord-reflex index-order-strict-def that by blast

next
show 0 S ∈ �0I

using classes-not-empty universes-def zeroI-def zeroS-def zero-closed by simp
next

show 0 S →0I x = 1 S if x ∈ �0I for x
using I-zero-closed universes-subsets hoop-order-def imp-map-def sum-one-def

zeroS-def zero-first that
by simp

qed

lemma ordinal-sum-is-bl-totally-ordered:
shows bl-chain A-SUM .sum-univ A-SUM .sum-mult A-SUM .sum-imp 1 S 0 S

proof
show A-SUM .hoop-order x y ∨ A-SUM .hoop-order y x

if x ∈ A-SUM .sum-univ y ∈ A-SUM .sum-univ for x y
using ordinal-sum-is-totally-ordered-hoop totally-ordered-hoop.total-order that
by meson

next
show 0 S ∈ A-SUM .sum-univ

using zeroS-def zero-closed by simp
next

show A-SUM .hoop-order 0 S x if x ∈ A-SUM .sum-univ for x
using A-SUM .hoop-order-def eq-imp hoop-order-def sum-one-def zeroS-def zero-closed
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zero-first that
by simp

qed

theorem bl-chain-is-equal-to-ordinal-sum-of-bounded-tower-of-irr-hoops:
shows eq-universe: A = A-SUM .sum-univ
and eq-mult: x ∈ A =⇒ y ∈ A =⇒ x ∗A y = A-SUM .sum-mult x y
and eq-imp: x ∈ A =⇒ y ∈ A =⇒ x →A y = A-SUM .sum-imp x y
and eq-zero: 0 A = 0 S

and eq-one: 1 A = 1 S

proof
show A ⊆ A-SUM .sum-univ

by auto
next

show A-SUM .sum-univ ⊆ A
by auto

next
show x ∗A y = A-SUM .sum-mult x y if x ∈ A y ∈ A for x y

using eq-mult that by blast
next

show x →A y = A-SUM .sum-imp x y if x ∈ A y ∈ A for x y
using eq-imp that by blast

next
show 0 A = 0 S

using zeroS-def by simp
next

show 1 A = 1 S

using sum-one-def by simp
qed

end

5.4 Converse of main result for BL-chains
context bounded-tower-of-irr-hoops
begin

We show that the converse of the main result holds if 0 S 6= 1 S . If 0 S = 1 S

then the converse may not be true. For example, take a trivial hoop A and
an arbitrary not bounded Wajsberg hoop B such that A ∩ B = {1}. The
ordinal sum of both hoops is equal to B and therefore not bounded.
proposition ordinal-sum-of-bounded-tower-of-irr-hoops-is-bl-chain:

assumes 0 S 6= 1 S

shows bl-chain S (∗S) (→S) 1 S 0 S

proof
show hoop-order a b ∨ hoop-order b a if a ∈ S b ∈ S for a b
proof −

from that
consider (1 ) a ∈ S−{1 S} b ∈ S−{1 S} floor a = floor b
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| (2 ) a ∈ S−{1 S} b ∈ S−{1 S} floor a <I floor b ∨ floor b <I floor a
| (3 ) a = 1 S ∨ b = 1 S

using floor .cases floor-prop trichotomy by metis
then
show ?thesis
proof(cases)

case 1
then
have a ∈ �f loor a ∧ b ∈ �f loor a

using 1 floor-prop by metis
moreover
have totally-ordered-hoop (�f loor a) (∗f loor a) (→f loor a) 1 S

using 1 (1 ) family-of-irr-hoops totally-ordered-irreducible-hoop.axioms(1 )
floor-prop

by meson
ultimately
have a →f loor a b = 1 S ∨ b →f loor a a = 1 S

using hoop.hoop-order-def totally-ordered-hoop.total-order
totally-ordered-hoop-def

by meson
moreover
have a →S b = a →f loor a b ∧ b →S a = b →f loor a a

using 1 by auto
ultimately
show ?thesis

using hoop-order-def by force
next

case 2
then
show ?thesis

using sum-imp.simps(2 ) hoop-order-def by blast
next

case 3
then
show ?thesis

using that ord-top by auto
qed

qed
next

show 0 S ∈ S
using first-zero-closed I-zero-closed sum-subsets by auto

next
show hoop-order 0 S a if a ∈ S for a
proof −

have zero-dom: 0 S ∈ �0I ∧ 0 S ∈ S−{1 S}
using I-zero-closed sum-subsets assms first-zero-closed by blast

moreover
have floor 0 S ≤I floor x if 0 S ∈ S−{1 S} x ∈ S−{1 S} for x

using I-zero-closed floor-prop floor-unique that(2 ) zero-dom zero-first
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by metis
ultimately
have floor 0 S ≤I floor x if x ∈ S−{1 S} for x

using that by blast
then
consider (1 ) 0 S ∈ S−{1 S} a ∈ S−{1 S} floor 0 S = floor a
| (2 ) 0 S ∈ S−{1 S} a ∈ S−{1 S} floor 0 S <I floor a
| (3 ) a = 1 S

using ‹a ∈ S› floor .cases floor-prop strict-order-equiv-not-converse
trichotomy zero-dom

by metis
then
show hoop-order 0 S a
proof(cases)

case 1
then
have 0 S ∈ �0I ∧ a ∈ �0I

using I-zero-closed first-zero-closed floor-prop floor-unique by metis
then
have 0 S →S a = 0 S →0I a ∧ 0 S →0I a = 1 S

using 1 I-zero-closed sum-imp.simps(1 ) first-bounded floor-prop floor-unique
by metis

then
show ?thesis

using hoop-order-def by blast
next

case 2
then
show ?thesis

using sum-imp.simps(2 ,5 ) hoop-order-def by meson
next

case 3
then
show ?thesis

using ord-top zero-dom by auto
qed

qed
qed

end

end
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