
Isabelle/DOF
User and Implementation Manual

Achim D. Brucker Nicolas Méric Burkhart Wolff

March 17, 2025

Department of Computer Science
University of Exeter
Exeter, EX4 4QF
UK

Laboratoire des Methodes Formelles (LMF)
Université Paris-Saclay

91405 Orsay Cedex
France

Copyright © 2019–2024 University of Exeter, UK
2018–2024 Université Paris-Saclay, France
2018–2019 The University of Sheffield, UK

Redistribution and use in source and binary forms, with or without modification, are permitted pro-
vided that the following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the
distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS
IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIB-
UTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUB-
STITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTER-
RUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
IN ANYWAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
OF SUCH DAMAGE.

SPDX-License-Identifier: BSD-2-Clause

This manual describes Isabelle/DOF as available in the Archive of Formal Proofs (AFP). The
latest development version as well as releases that can be installed as Isabelle component
are available at https://git.logicalhacking.com/Isabelle_DOF/Isabelle_DOF/.

Contributors. We would like to thank the following contributors to Isabelle/DOF (in al-
phabetical order): Idir Ait-Sadoune and Paolo Crisafulli.

Acknowledgments. This work has been partially supported by IRT SystemX, Paris-Saclay,
France, and therefore granted with public funds of the Program “Investissements d’Avenir.”

https://git.logicalhacking.com/Isabelle_DOF/Isabelle_DOF/

Contents

1 Introduction 7

2 Background 11
2.1 The Isabelle System Architecture . 11
2.2 The Document Model Required by DOF . 11
2.3 Implementability of the Document Model in other ITP’s 15

3 Isabelle/DOF: A Guided Tour 17
3.1 Getting Started . 17

3.1.1 Installation . 17
3.2 Writing Documents . 18

3.2.1 Document Generation . 18
3.2.2 Name-Spaces, Long- and Short-Names 19
3.2.3 Caveat: Lexical Conventions of Cartouches, Strings, Names, 20

3.3 Writing Academic Publications in scholarly_paper 20
3.3.1 Editing Major Examples . 20
3.3.2 A Bluffers Guide to the scholarly_paper Ontology 20
3.3.3 Writing Academic Publications: A Freeform Mathematics Text 22
3.3.4 More Freeform Elements, and Resulting Navigation 25
3.3.5 Using Term-Antiquotations . 26

3.4 Writing Technical Reports in technical_report 28
3.4.1 A Technical Report with Tight Checking 29

3.5 Some Recommendations: A little Style Guide 29

4 Proofs over Ontologies 33
4.1 Proving Properties over Ontologies . 33

4.1.1 Ontology-Morphisms: a Prototypical Example 33
4.1.2 Proving the Preservation of Ontological Mappings : A Document-

Ontology Morphism . 34
4.1.3 Proving the Preservation of Ontological Mappings : A Domain-

Ontology Morphism . 36
4.1.4 Proving Monitor-Refinements . 39

5 Ontologies and their Development 41
5.1 The Ontology Definition Language (ODL) 42

5.1.1 Some Isabelle/HOL Specification Constructs Revisited 43
5.1.2 Defining Document Classes . 45

3

Contents

5.2 The main Ontology-aware Document Elements 48
5.2.1 General Syntactic Elements for Document Management 49
5.2.2 Ontological Code-Contexts and their Management 50
5.2.3 Ontological Term-Contexts and their Management 51
5.2.4 Status and Query Commands . 53
5.2.5 Macros . 54

5.3 The Standard Ontology Libraries . 55
5.3.1 Common Ontology Library (COL) 55
5.3.2 The Ontology scholarly_paper . 57
5.3.3 The Ontology technical_report 61

5.4 Advanced ODL Concepts . 63
5.4.1 Example . 63
5.4.2 Meta-types as Types . 64
5.4.3 ODL Class Invariants . 65
5.4.4 ODL Low-level Class Invariants . 66
5.4.5 ODL Monitors . 67
5.4.6 Queries On Instances . 69

5.5 Technical Infrastructure . 69
5.5.1 The Previewer . 69
5.5.2 Developing Ontologies and their Representation Mappings 69
5.5.3 Document Templates . 71

5.6 Defining Document Templates . 71
5.6.1 The Core Template . 71
5.6.2 Tips, Tricks, and Known Limitations 72

6 Extending Isabelle/DOF 77
6.1 Isabelle/DOF: A User-Defined Plugin in Isabelle/Isar 77
6.2 Programming Antiquotations . 79
6.3 Implementing Second-level Type-Checking 80
6.4 Programming Class Invariants . 80
6.5 Implementing Monitors . 80
6.6 The LATEX-Core of Isabelle/DOF . 81

⟨ML⟩

4

Abstract

Isabelle/DOF provides an implementation of DOF on top of Isabelle/HOL. DOF itself is a
novel framework for defining ontologies and enforcing them during document development
and document evolution. Isabelle/DOF targets use-cases such as mathematical texts refer-
ring to a theory development or technical reports requiring a particular structure. A major
application of DOF is the integrated development of formal certification documents (e. g.,
for Common Criteria or CENELEC 50128) that require consistency across both formal and
informal arguments.
Isabelle/DOF is integrated into Isabelle’s IDE, which allows for smooth ontology devel-

opment as well as immediate ontological feedback during the editing of a document. Its
checking facilities leverage the collaborative development of documents required to be con-
sistent with an underlying ontological structure.
In this user-manual, we give an in-depth presentation of the design concepts of DOF’s

Ontology Definition Language (ODL) and describe comprehensively its major commands.
Many examples show typical best-practice applications of the system.
It is a unique feature of Isabelle/DOF that ontologies may be used to control the link

between formal and informal content in documents inan automatic-checked way. These links
can connect both text elements and formal modeling elements such as terms, definitions,
code and logical formulas, altogether integrated into a state-of-the-art interactive theorem
prover.

Keywords: Ontology, Ontological Modeling, Document Management, Formal Document
Development, Isabelle/DOF

Contents

6

1 Introduction
The linking of the formal to the informal is perhaps the most pervasive challenge in

the digitization of knowledge and its propagation. This challenge incites numerous research
efforts summarized under the labels “semantic web,” “data mining,” or any form of advanced
“semantic” text processing. A key role in structuring this linking plays is document ontologies
(also called vocabulary in the semantic web community [20]), i. e., a machine-readable form
of the structure of documents as well as the document discourse.
Such ontologies can be used for the scientific discourse within scholarly articles, math-

ematical libraries, and in the engineering discourse of standardized software certification
documents [3, 7]. All these documents contain formal content and have to follow a given
structure. In practice, large groups of developers have to produce a substantial set of doc-
uments where consistency is notoriously difficult to maintain. In particular, certifications
are centred around the traceability of requirements throughout the entire set of documents.
While technical solutions for the traceability problem exist (most notably: DOORS [12]), they
are weak in the treatment of formal entities (such as formulas and their logical contexts).
Further applications are the domain-specific discourse in juridical texts or medical reports.

In general, an ontology is a formal explicit description of concepts in a domain of discourse
(called classes), components (called attributes) of the concept, and properties (called invari-
ants) on concepts. Logically, classes are represented by a type (the class type) and particular
terms representing instances of them. Since components are typed, it is therefore possible to
express links like m-to-n relations between classes. Another form of link between concepts
is the is-a relation declaring the instances of a subclass to be instances of the super-class.
Engineering an ontological language for documents that contain both formal and informal

elements as occurring in formal theories is a particular challenge. To address this latter, we
present the Document Ontology Framework (DOF) and an implementation of DOF called
Isabelle/DOF. DOF is designed for building scalable and user-friendly tools on top of inter-
active theorem provers. Isabelle/DOF is an instance of this novel framework, implemented
as an extension of Isabelle/HOL, to model typed ontologies and to enforce them during doc-
ument evolution. Based on Isabelle’s infrastructures, ontologies may refer to types, terms,
proven theorems, code, or established assertions. Based on a novel adaption of the Isabelle
IDE (called PIDE, [21]), a document is checked to be conform to a particular ontology—
Isabelle/DOF is designed to give fast user-feedback during the capture of content. This is
particularly valuable in the case of document evolution, where the coherence between the
formal and the informal parts of the content can be mechanically checked.
To avoid any misunderstanding: Isabelle/DOF is not a theory in HOL on ontologies and

operations to track and trace links in texts. It is an environment to write structured text which
may contain Isabelle/HOL definitions and proofs like mathematical articles, tech-reports and
scientific papers—as the present one, which is written in Isabelle/DOF itself. Isabelle/DOF

7

1 Introduction

is a plugin into the Isabelle/Isar framework in the style of [24]. However, Isabelle/DOF will
generate from ontologies a theory infrastructure consisting of types, terms, theorems and
code that allows both interactive checking and formal reasoning over meta-data related to
annotated documents.
How to Read This Manual

This manual can be read in different ways, depending on what you want to accomplish. We
see three different main user groups:

1. Isabelle/DOF users, i. e., users that just want to edit a core document, be it for a paper
or a technical report, using a given ontology. These users should focus on Chapter 3
and, depending on their knowledge of Isabelle/HOL, also on Chapter 2.

2. Ontology developers, i. e., users that want to develop new ontologies or modify existing
document ontologies. These users should, after having gained acquaintance as a user,
focus on Chapter 5.

3. Isabelle/DOF developers, i. e., users that want to extend or modify Isabelle/DOF, e. g.,
by adding new text-elements. These users should read Chapter 6.

Typographical Conventions

We acknowledge that understanding Isabelle/DOF and its implementation in all details re-
quires separating multiple technological layers or languages. To help the reader with this, we
will type-set the different languages in different styles. In particular, we will use

• a light-blue background for input written in Isabelle’s Isar language, e. g.:

Isarlemma refl ∶ x = x
by simp

• a green background for examples of generated document fragments (i. e., PDF output):

Document
The axiom refl

• a red background for SML-code:

SML
fun id x = x

• a yellow background for LATEX-code:

LATEX
\newcommand{\refl}{$x = x$}

8

• a grey background for shell scripts and interactive shell sessions:

Bash
achim@logicalhacking:~$ ls
CHANGELOG.md CITATION examples install LICENSE README.md ROOTS src

How to Cite Isabelle/DOF

If you use or extend Isabelle/DOF in your publications, please use

• for the Isabelle/DOF system [5]:
A. D. Brucker, I. Ait-Sadoune, N. Méric, and B. Wolff. Using Deep Ontologies
in Formal Software Engineering. In International Conference on Rigorous State-
Based Methods (ABZ 2023), To appear in Lecture Notes in Computer Science.
Springer-Verlag, Heidelberg, 2023. 10.1007/978-3-031-33163-3_2.

A BibTEX-entry is available at: https://www.lri.fr/~wolff/bibtex/wolff.html.

• an older description of the system [5]:
A. D. Brucker, I. Ait-Sadoune, P. Crisafulli, and B. Wolff. Using the Isabelle ontol-
ogy framework: Linking the formal with the informal. In Conference on Intelligent
Computer Mathematics (CICM), number 11006 in Lecture Notes in Computer Sci-
ence. Springer-Verlag, Heidelberg, 2018. 10.1007/978-3-319-96812-4_3.

A BibTEX-entry is available at: https://www.brucker.ch/bibliography/
abstract/brucker.ea-isabelle-ontologies-2018.

• for the implementation of Isabelle/DOF [4]:
A. D. Brucker and B. Wolff. Isabelle/DOF: Design and implementation. In
P.C. Ölveczky and G. Salaün, editors, Software Engineering and Formal Methods
(SEFM), number 11724 in Lecture Notes in Computer Science. Springer-Verlag,
Heidelberg, 2019. 10.1007/978-3-030-30446-1_15.

A BibTEX-entry is available at: https://www.brucker.ch/bibliography/
abstract/brucker.ea-isabelledof-2019.

• for an application of Isabelle/DOF in the context of certifications:
A. D. Brucker and B. Wolff. Using Ontologies in Formal Developments Targeting
Certification. In W. Ahrendt and S. Tarifa, editors. Integrated Formal Methods
(IFM), number 11918. Lecture Notes in Computer Science. Springer-Verlag, Hei-
delberg, 2019. https://doi.org/10.1007/978-3-030-34968-4_4.

9

https://www.lri.fr/~wolff/bibtex/wolff.html
https://doi.org/10.1007/978-3-319-96812-4_3
https://www.brucker.ch/bibliography/abstract/brucker.ea-isabelle-ontologies-2018
https://www.brucker.ch/bibliography/abstract/brucker.ea-isabelle-ontologies-2018
https://doi.org/10.1007/978-3-030-30446-1_15
https://www.brucker.ch/bibliography/abstract/brucker.ea-isabelledof-2019
https://www.brucker.ch/bibliography/abstract/brucker.ea-isabelledof-2019
https://doi.org/10.1007/978-3-030-34968-4_4

2 Background

2.1 The Isabelle System Architecture
While Isabelle is widely perceived as an interactive theorem prover for HOL (Higher-order

Logic) [18], we would like to emphasize the view that Isabelle is far more than that: it
is the Eclipse of Formal Methods Tools. This refers to the “generic system framework of
Isabelle/Isar underlying recent versions of Isabelle. Among other things, Isabelle provides
an infrastructure for Isabelle plug-ins, comprising extensible state components and extensi-
ble syntax that can be bound to SML programs. Thus, the Isabelle architecture may be
understood as an extension and refinement of the traditional ‘LCF approach’, with explicit
infrastructure for building derivative systems.” [24]
The current system framework offers moreover the following features:
• a build management grouping components into to pre-compiled sessions,

• a prover IDE (PIDE) framework [21] with various front-ends,

• documentation-generation,

• code generators for various target languages,

• an extensible front-end language Isabelle/Isar, and,

• last but not least, an LCF style, generic theorem prover kernel as the most prominent
and deeply integrated system component.

The Isabelle system architecture shown in Figure 2.1 comes with many layers, with Stan-
dard ML (SML) at the bottom layer as implementation language. The architecture actually
foresees a Nano-Kernel (our terminology) which resides in the SML structure Context. This
structure provides a kind of container called context providing an identity, an ancestor-list
as well as typed, user-defined state for plugins such as Isabelle/DOF. On top of the latter,
the LCF-Kernel, tactics, automated proof procedures as well as specific support for higher
specification constructs were built.1

2.2 The Document Model Required by DOF
In this section, we explain the assumed document model underlying our Document On-

tology Framework (DOF) in general. In particular we discuss the concepts integrated docu-
1We use the term plugin for a collection of HOL-definitions, SML and Scala code in order to distinguish it

from the official Isabelle term component which implies a particular format and support by the Isabelle
build system.

11

2 Background

PIDE SCALA

PIDE SML

Editor Front-End

Isabelle
evaluation

approx. display

edits markup

Editor Front-End

Isabelle

(e.g., JEdit, VSCode, Eclipse)

PIDE

SML Environment

Integrators
(e.g., sledgehammer)

Project &
Dependency
Management

Code
Generator

Document
Generator

Components
(e.g., datatype, record)

Tactic Procedures
(e.g., simp, fast, metis)

Kernel
(e.g., typ, term, thm,thy)

Nano-Kernel
(e.g., context)

Z3
. . .
CVC4

PDF/LaTeX
. . .
HTML

Haskell
. . .
Scala

Figure 2.1: The system architecture of Isabelle (left-hand side) and the asynchronous com-
munication between the Isabelle system and the IDE (right-hand side).

ment, sub-document, document-element, and semantic macros occurring inside document-
elements. This type of document structure is quite common for scripts interactively evaluated
in an incremental fashion. Furthermore, we assume a bracketing mechanism that unambigu-
ously allows to separate different syntactic fragments and that can be nested. In the case
of Isabelle, these are the guillemot symbols ‹...›, which represent the begin and end of a
cartouche.

The Isabelle Framework is based on a document-centric view of a document, treating the
input in its integrality as set of (user-programmable) document element that may mutually
depend on and link to each other; A document in our sense is what is configured in a set of
ROOT- and ROOTS-files.

Isabelle assumes a hierarchical document model, i. e., an integrated document consist of
a hierarchy of sub-documents (files); dependencies are restricted to be acyclic at this level
(c.f. Figure 2.2). Document parts can have different document types in order to capture
documentations consisting of documentation, models, proofs, code of various forms and other
technical artifacts. We call the main sub-document type, for historical reasons, theory-files.
A theory file consists of a header , a context definition, and a body consisting of a sequence
of document elements called commands (see Figure 2.2 (left-hand side)). Even the header
consists of a sequence of commands used for introductory text elements not depending on
any context. The context-definition contains an import and a keyword section, for example:

Isar
theory Example — Name of the ’theory’
imports — Declaration of ’theory’ dependencies
Main — Imports a library called ’Main’

keywords — Registration of keywords defined locally
requirement — A command for describing requirements

where Example is the abstract name of the text-file, Main refers to an imported theory (re-
call that the import relation must be acyclic) and keywords are used to separate commands

12

2.2 The Document Model Required by DOF

command

A header

context
definition

command

command

command

B
header

context
definition

command

command

command

C
header

context
definition

command

command

command

command
D header

context
definition

command

command

A Generic 
Document

Model

(a) Schematic Representation.

The Isabelle/
Isar 

Document
Model

A header

context
definition

text‹ … ›

 definition‹ … ›

value‹ … ›

lemma …

B
header

context
definition

ML‹ … ›

record . . .

C
header

context
definition

term‹ … ›

typ ‹ … ›

declare
D header

context
definition

text‹ … ›

 definition‹ … ›

value‹ … ›

lemma …

 theorem‹ … ›

datatype …

(b) The Isar Instance.

Figure 2.2: A Representation of a Document Model.

from each other.

The body of a theory file consists of a sequence of commands that must be introduced
by a command keyword such as requirement above. Command keywords may mark the the
begin of a text that is parsed by a command-specific parser; the end of the command-span
is defined by the next keyword. Commands were used to define definitions, lemmas, code
and text-elements (see Figure 2.2 (right-hand side)).

A simple text-element may look like this:
Isar

text‹ This is a simple text.›

…so it is a command text followed by an argument (here in ‹ ... › parenthesis) which
contains characters. While text-elements play a major role in this manual—document gen-
eration is the main use-case of DOF in its current stage—it is important to note that there
are actually three families of “ontology aware” document elements with analogous syntax to
standard ones. The difference is a bracket with meta-data of the form:

text∗[label ∶∶classid , attr1=E1, ... attr𝑛=E𝑛]‹ some semi−formal text ›
ML∗[label ∶∶classid , attr1=E1, ... attr𝑛=E𝑛]‹ some SML code ›
value∗[label ∶∶classid , attr1=E1, ... attr𝑛=E𝑛]‹ some annotated 𝜆−term ›

Other instances of document elements belonging to these families are, for example, the
free-form Definition∗ and Lemma∗ as well as their formal counterparts definition∗ and
lemma∗, which allow in addition to their standard Isabelle functionality the creation and
management of ontology-generated meta-data associated to them (cf. -Section 3.2).
Depending on the family, we will speak about (formal) text-contexts, (ML) code-contexts

13

2 Background

and term-contexts if we refer to sub-elements inside the ‹...› cartouches of these command
families.

Text- code- or term contexts may contain a special form comment, that may be considered
as a ”semantic macro” or a machine-checked annotation: the so-called antiquotations. Its
Its general syntactic format reads as follows:

Isar@{antiquotation_name (args) [more_args] ‹sub−context› }

The sub-context may be different from the surrounding one; therefore, it is possible to
switch from a text-context to a term-context, for example. Therefore, antiquotations allow
the nesting of cartouches, albeit not all combinations are actually supported.2 Isabelle comes
with a number of built-in antiquotations for text- and code-contexts; a detailed overview can
be found in [23]. DOF reuses this general infrastructure but generates its own families of
antiquotations from ontologies.

An example for a text-element using built-in antoquotations may look like this:
Isar

text‹ According to the *‹reflexivity› axiom @{thm refl},
we obtain in Γ for @{term fac 5} the result @{value fac 5}.›

... so it is a command text followed by an argument (here in ‹ ... › parenthesis) which
contains characters and a special notation for semantic macros (here @{term fac 5}).

The above text element is represented in the final document (e. g., a PDF) by:
Document

According to the reflexivity axiom x = x, we obtain in Γ
for fac 5 the result 120.

Antiquotations seen as semantic macros are partial functions of type logical_context →
text; since they can use the system state, they can perform all sorts of specific checks or
evaluations (type-checks, executions of code-elements, references to text-elements or proven
theorems such as refl, which is the reference to the axiom of reflexivity).

Therefore, semantic macros can establish formal content inside informal content; they can
be type-checked before being displayed and can be used for calculations before being typeset.
They represent the device for linking formal with the informal content.

Since Isabelle’s commands are freely programmable, it is possible to implement DOF
as an extension of the system. In particular, the ontology language of DOF provides an
ontology definition language ODL that generates anti-quotations and the infrastructure to
check and evaluate them. This allows for checking an annotated document with respect to a
given ontology, which may be specific for a given domain-specific universe of discourse (see
Figure 2.3). ODL will be described in Chapter 3 in more detail.

2In the literature, this concept has been referred to Cascade−Syntax and was used in the Centaur-system
and is existing in some limited form in some Emacs-implementations these days.

14

2.3 Implementability of the Document Model in other ITP’s

HOL header

context
definition

text‹ … ›

 definition‹ … ›

value‹ … ›

lemma …

Onto
header

context
definition

 doc_class A ‹ … ›

datatype …

ML‹ … ›

Doc1
header

context
definition

term‹ … ›

typ ‹ … ›

 theorem‹ … ›

declare Doc2 header

context
definition

text*[a::A]‹ … ›

 definition*[b::B]‹ … ›

value*[c::A]‹ … ›

lemma*[d::B] ‹ … ›

 doc_class B ‹ … ›

The Isabelle_DOF  
Document Model

(a) A Document with Ontological Annotations.

Onto
header

context
definition

 doc_class A ‹ … ›

datatype …

ML ‹ … › Doc2 header

context
definition

text*[a::A]‹ … ›

 definition*[b::B]‹ … ›

value*[c::A]‹ … ›

lemma*[d::B] …

 doc_class B ‹ … ›

Ontological Annotations  
and References

(b) Ontological References.

Figure 2.3: Documents conform to Ontologies.

2.3 Implementability of the Document Model in other ITP’s
Batch-mode checkers for DOF can be implemented in all systems of the LCF-style prover

family, i. e., systems with a type-checked term, and abstract thm-type for theorems (protected
by a kernel). This includes, e. g., ProofPower, HOL4, HOL-light, Isabelle, or Coq and its
derivatives. DOF is, however, designed for fast interaction in an IDE. If a user wants to
benefit from this experience, only Isabelle and Coq have the necessary infrastructure of
asynchronous proof-processing and support by a PIDE [2, 11, 21, 22] which in many features
over-accomplishes the required features of DOF.

We call the present implementation of DOF on the Isabelle platform Isabelle/DOF . Fig-
ure 2.4 shows a screenshot of an introductory paper on Isabelle/DOF [5]: the Isabelle/DOF
PIDE can be seen on the left, while the generated presentation in PDF is shown on the right.
Isabelle provides, beyond the features required for DOF, a lot of additional benefits. Besides

UTF8-support for characters used in text-elements, Isabelle offers built-in already a mech-
anism for user-programmable antiquotations which we use to implement semantic macros
in Isabelle/DOF (We will actually use these two terms as synonym in the context of Is-
abelle/DOF). Moreover, Isabelle/DOF allows for the asynchronous evaluation and checking
of the document content [2, 21, 22] and is dynamically extensible. Its PIDE provides a contin-
uous build, continuous check functionality, syntax highlighting, and auto-completion. It also
provides infrastructure for displaying meta-information (e. g., binding and type annotation)
as pop-ups, while hovering over sub-expressions. A fine-grained dependency analysis allows
the processing of individual parts of theory files asynchronously, allowing Isabelle to interac-
tively process large (hundreds of theory files) documents. Isabelle can group sub-documents
into sessions, i. e., sub-graphs of the document-structure that can be “pre-compiled” and
loaded instantaneously, i. e., without re-processing, which is an important means to scale up.

15

2 Background

Figure 2.4: The Isabelle/DOF IDE (left) and the corresponding PDF (right), showing the
first page of [5].

16

3 Isabelle/DOF: A Guided Tour
In this chapter, we will give an introduction into using Isabelle/DOF for users that want

to create and maintain documents following an existing document ontology in ODL.

3.1 Getting Started
3.1.1 Installation
In this section, we will show how to install Isabelle/DOF. We assume a basic familiarity

with a Linux/Unix-like command line (i.e., a shell). We focus on the installation of the
latest official release of Isabelle/DOF as available in the Archive of Formal Proofs (AFP).1
Isabelle/DOF requires Isabelle with a recent LATEX-distribution (e.g., Tex Live 2022 or later).

Installing Isabelle and the AFP. Please download and install the latest official Isabelle
release from the Isabelle Website (https://isabelle.in.tum.de). After the successful
installation of Isabelle, you should be able to call the isabelle tool on the command line:

Bash
achim@logicalhacking:~$ isabelle version

Depending on your operating system and depending if you put Isabelle’s bin directory in
your PATH, you will need to invoke isabelle using its full qualified path.

Next, download the the AFP from https://www.isa-afp.org/download/ and follow
the instructions given at https://www.isa-afp.org/help/ for installing the AFP as an
Isabelle component.

Installing TEXLive. On a Debian-based Linux system (e. g., Ubuntu), the following com-
mand should install all required LATEX packages:

Bash
achim@logicalhacking:~$ sudo aptitude install texlive-full

Installing Isabelle/DOF

By installing the AFP in the previous steps, you already installed Isabelle/DOF. In fact,
Isabelle/DOF is currently consisting out of three AFP entries:

1If you want to work with the development version of Isabelle/DOF, please obtain its source code from the
Isabelle/DOF Git repostitory (https://git.logicalhacking.com/Isabelle_DOF/Isabelle_DOF and
follow the instructions in provided README.MD file.

17

https://isabelle.in.tum.de
https://www.isa-afp.org/download/
https://www.isa-afp.org/help/
https://git.logicalhacking.com/Isabelle_DOF/Isabelle_DOF

3 Isabelle/DOF: A Guided Tour

• Isabelle_DOF: This entry contains the Isabelle/DOF system itself, including the Is-
abelle/DOF manual.

• Isabelle_DOF-Example-I: This entry contains an example of an academic paper
written using the Isabelle/DOF system oriented towards an introductory paper. The
text is based on [5]; in the document, we deliberately refrain from integrating references
to formal content in order to demonstrate that Isabelle/DOF can be used for writing
documents with very little direct use of LATEX.

• Isabelle_DOF-Example-II: This entry contains another example of a mathematics-
oriented academic paper. It is based on [19]. It represents a typical mathematical
text, heavy in definitions with complex mathematical notation and a lot of non-trivial
cross-referencing between statements, definitions, and proofs which are ontologically
tracked. However, with respect to the possible linking between the underlying formal
theory and this mathematical presentation, it follows a pragmatic path without any
“deep” linking to types, terms and theorems, and therefore does deliberately not exploit
Isabelle/DOF ’s full potential.

3.2 Writing Documents
3.2.1 Document Generation

Isabelle/DOF provides an enhanced setup for generating PDF document. In particular,
it does not make use of a file called document/root.tex. Instead, the use of document
templates and ontology represenations is done within theory files. To make use of this
feature, one needs to add the option document_build = dof to the ROOT file. An example
ROOT file looks as follows:

ROOT
session example = Isabelle_DOF +
options [document = pdf, document_output = "output", document_build = dof]

(*theories [document = false]
A

theories
B*)

The document template and ontology can be selected as follows:
Isar

theory C imports Isabelle_DOF .technical_report Isabelle_DOF .scholarly_paper begin
list_templates
use_template scrreprt−modern
list_ontologies
use_ontology technical_report and scholarly_paper

end

18

3.2 Writing Documents

The commands list_templates and list_ontologies can be used for inspecting (and
selecting) the available ontologies and templates:

Isar
list_templates
list_ontologies

Note that you need to import the theories that define the ontologies that you want to use.
Otherwise, they will not be available.

Warning. Note that the session Isabelle_DOF needs to be part of the “main” session
hierarchy. Loading the Isabelle/DOF theories as part of a session section, e.g.,

ROOT
session example = HOL +
options [document = pdf, document_output = "output", document_build = dof]
session
Isabelle_DOF.scholarly_paper

theories
C

will not work. Trying to build a document using such a setup will result in the following
error message:

Bash
achim@logicalhacking:~$
isabelle build -D .
Running example ...
Bad document_build engine "dof"
example FAILED

3.2.2 Name-Spaces, Long- and Short-Names
Isabelle/DOF is built upon the name space and lexical conventions of Isabelle. Long-names

were composed of a name of the session, the name of the theory, and a sequence of local
names referring to, e. g., nested specification constructs that were used to identify types,
constant symbols, definitions, etc. The general format of a long-name is
session_name.theory_name.local_name.local_name
By lexical conventions, theory-names must be unique inside a session (and session names

must be unique too), such that long-names are unique by construction. There are actually
different name categories that form a proper name space, e. g., the name space for constant
symbols and type symbols are distinguished. Additionally, Isabelle/DOF objects also come
with a proper name space: classes (and monitors), instances, low-level class invariants (SML-
defined invariants) all follow the lexical conventions of Isabelle. For instance, a class can
be referenced outside its theory using its short-name or its long-name if another class with
the same name is defined in the current theory. Isabelle identifies names already with the

19

3 Isabelle/DOF: A Guided Tour

shortest suffix that is unique in the global context and in the appropriate name category.
This also holds for pretty-printing, which can at times be confusing since names stemming
from the same specification construct may be printed with different prefixes according to
their uniqueness.

3.2.3 Caveat: Lexical Conventions of Cartouches, Strings, Names, ...
WARNING: The embedding of strings, terms, names etc, as parts of commands, anti-

quotations, terms, etc, is unfortunately not always so consistent as one might expect, when
it comes to variants that should be lexically equivalent in principle. This can be a nuisance
for users, but is again a consequence that we build on existing technology that has been
developed over decades.

At times, this causes idiosyncrasies like the ones cited in the following incomplete list:
• text-antiquotations text‹@{thm "srac1_def"}› while text‹@{thm ‹srac1_def ›}› fails

• commands thm fundamental_theorem_of_calculus and thm "fundamen-
tal_theorem_of_calculus" or lemma "H" and lemma ‹H› and lemma H

• string expressions term‹''abc'' @ ''cd''› and equivalent term ‹‹abc› @ ‹cd››; but
term‹‹A ⟶ B›› not equivalent to term‹''A ⟶ B''› which fails.

3.3 Writing Academic Publications in scholarly_paper
3.3.1 Editing Major Examples
The ontology scholarly_paper is an ontology modeling academic/scientific papers, with
a slight bias towards texts in the domain of mathematics and engineering.

You can inspect/edit the example in Isabelle’s IDE, by either

• starting Isabelle/jEdit using your graphical user interface (e. g., by clicking on the
Isabelle-Icon provided by the Isabelle installation) and loading the file Isabelle_
DOF-Example-I/IsaDofApplications.thy"

You can build the PDF-document at the command line by calling:
Bash

achim@logicalhacking:~$ isabelle build Isabelle_DOF-Example-I

3.3.2 A Bluffers Guide to the scholarly_paper Ontology
In this section we give a minimal overview of the ontology formalized in Is-
abelle_DOF .scholarly_paper. We start by modeling the usual text-elements of an academic
paper: the title and author information, abstract, and text section:

20

3.3 Writing Academic Publications in scholarly_paper

Isardoc_class title =
short_title ∶∶ string option <= None

doc_class subtitle =
abbrev ∶∶ string option <= None

doc_class author =
email ∶∶ string <= ′′′′

http_site ∶∶ string <= ′′′′

orcid ∶∶ string <= ′′′′

affiliation ∶∶ string

doc_class abstract =
keywordlist ∶∶ string list <= []
principal_theorems ∶∶ thm list

Note short_title and abbrev are optional and have the default None (no value). Note
further, that abstracts may have a principal_theorems list, where the built-in Isabelle/DOF
type thm list contains references to formally proven theorems that must exist in the logi-
cal context of this document; this is a decisive feature of Isabelle/DOF that conventional
ontological languages lack.

We continue by the introduction of a main class: the text-element text_section (in contrast
to figure or table or similar). Note that the main_author is typed with the class author,
a HOL type that is automatically derived from the document class definition author shown
above. It is used to express which author currently “owns” this text_section, an information
that can give rise to presentational or even access-control features in a suitably adapted
front-end.

Isar
doc_class text_section = text_element +
main_author ∶∶ author option <= None
fixme_list ∶∶ string list <= []
level ∶∶ int option <= None

The text_element.level-attibute enables doc-notation support for headers, chapters, sec-
tions, and subsections; we follow here the LATEX terminology on levels to which Isabelle/DOF
is currently targeting at. The values are interpreted accordingly to the LATEX standard. The
correspondence between the levels and the structural entities is summarized as follows:

• part Some −1
• chapter Some 0
• section Some 1
• subsection Some 2
• subsubsection Some 3
Additional means assure that the following invariant is maintained in a document con-

forming to scholarly_paper: level > 0.

21

3 Isabelle/DOF: A Guided Tour

Figure 3.1: A mathematics paper as integrated document source ...

The rest of the ontology introduces concepts for introduction, conclusion, related_work,
bibliography etc. More details can be found in scholarly_paper contained in the theory
Isabelle_DOF .scholarly_paper.

3.3.3 Writing Academic Publications: A Freeform Mathematics Text
We present a typical mathematical paper focusing on its form, not referring in any sense to
its content which is out of scope here. As mentioned before, we chose the paper [19] for this
purpose, which is written in the so-called free-form style: Formulas are superficially parsed
and type-set, but no deeper type-checking and checking with the underlying logical context
is undertaken.

The integrated source of this paper-excerpt is shown in Figure 3.1, while the document
build process converts this to the corresponding PDF-output shown in Figure 3.2.

Recall that the standard syntax for a text-element in Isabelle/DOF is
text∗[<id>∶∶<class_id>,<attrs>]‹ ... text ...›, but there are a few built-in abbrevia-
tions like title∗[<id>,<attrs>]‹ ... text ...› that provide special command-level syntax for
text-elements. The other text-elements provide the authors and the abstract as specified by
their class_id referring to the doc_classes of scholarly_paper; we say that these text
elements are instances of the doc_classes of the underlying ontology.

The paper proceeds by providing instances for introduction, technical sections, examples,
etc. We would like to concentrate on one — mathematical paper oriented — detail in the
ontology scholarly_paper:

22

3.3 Writing Academic Publications in scholarly_paper

Figure 3.2: ... and as corresponding PDF-output.

Isardoc_class technical = text_section + ...

type_synonym tc = technical

datatype math_content_class = defn ∣ axm ∣ thm ∣ lem ∣ cor ∣ prop ∣ ...

doc_class math_content = tc + ...

doc_class definition = math_content +
mcc ∶∶ math_content_class <= defn ...

doc_class theorem = math_content +
mcc ∶∶ math_content_class <= thm ...

The class technical regroups a number of text-elements that contain typical technical con-
tent in mathematical or engineering papers: code, definitions, theorems, lemmas, examples.
From this class, the stricter class of math_content is derived, which is grouped into defini-
tions and theorems (the details of these class definitions are omitted here). Note, however,
that class identifiers can be abbreviated by standard type_synonyms for convenience and
enumeration types can be defined by the standard inductive datatype definition mechanism
in Isabelle, since any HOL type is admitted for attribute declarations. Vice-versa, document
class definitions imply a corresponding HOL type definition.

23

3 Isabelle/DOF: A Guided Tour

Figure 3.3: A screenshot of the integrated source with definitions ...

Figure 3.4: ... and the corresponding PDF-output.

An example for a sequence of (Isabelle-formula-)texts, their ontological declarations as
definitions in terms of the scholarly_paper-ontology and their type-conform referencing
later is shown in Figure 3.3 in its presentation as the integrated source.

Note that the use in the ontology-generated antiquotation @{definition X4} is type-
checked; referencing X4 as theorem would be a type-error and be reported directly by Is-
abelle/DOF in Isabelle/jEdit. Note further, that if referenced correctly wrt. the sub-typing
hierarchy makes X4 navigable in Isabelle/jEdit; a click will cause the IDE to present the
defining occurrence of this text-element in the integrated source.

Note, further, how Isabelle/DOF-commands like text∗ interact with standard Isabelle
document antiquotations described in the Isabelle Isar Reference Manual in Chapter 4.2 in
great detail. We refrain ourselves here to briefly describe three freeform antiquotations used
in this text:

• the freeform term antiquotation, also called cartouche, written by @{cartouche
[style−parms] ‹...›} or just by ‹...› if the list of style parameters is empty,

• the freeform antiquotation for theory fragments written @{theory_text [style−parms]
‹...›} or just \<^theory_text>‹...› if the list of style parameters is empty,

• the freeform antiquotations for verbatim, emphasized, bold, or footnote text elements.

Isabelle/DOF text-elements such as text∗ allow to have such standard term-antiquotations
inside their text, permitting to give the whole text entity a formal, referentiable status with
typed meta-information attached to it that may be used for presentation issues, search, or
other technical purposes. The corresponding output of this snippet in the integrated source
is shown in Figure 3.4.

24

3.3 Writing Academic Publications in scholarly_paper

Figure 3.5: Declaring figures in the integrated source.

3.3.4 More Freeform Elements, and Resulting Navigation
In the following, we present some other text-elements provided by the Common Ontology
Library in Isabelle_DOF .Isa_COL. It provides a document class for figures:

Isar
datatype placement = h ∣ t ∣ b ∣ ht ∣ hb
doc_class figure = text_section +
relative_width ∶∶ int
src ∶∶ string
placement ∶∶ placement
spawn_columns ∶∶ bool <= True

The document class figure (supported by the Isabelle/DOF command abbreviation
figure∗) makes it possible to express the pictures and diagrams as shown in Figure 3.5,
which presents its own representation in the integrated source as screenshot.

Finally, we define a monitor class that enforces a textual ordering in the document core
by a regular expression:

Isar
doc_class article =
style_id ∶∶ string <= ′′LNCS ′′

version ∶∶ (int × int × int) <= (0,0,0)
accepts (title ∼∼ [[subtitle]] ∼∼ {∣author ∣}+ ∼∼ abstract ∼∼ {∣introduction∣}+

∼∼ {∣background ∣}∗ ∼∼ {∣technical ∣∣ example ∣}+ ∼∼ {∣conclusion∣}+
∼∼ bibliography ∼∼ {∣annex ∣}∗)

In a integrated document source, the body of the content can be paranthesized into:
Isar

open_monitor∗ [this∶∶article]
...
close_monitor∗[this]

which signals to Isabelle/DOF begin and end of the part of the integrated source in which
the text-elements instances are expected to appear in the textual ordering defined by article.

From these class definitions, Isabelle/DOF also automatically generated editing support
for Isabelle/jEdit. In Figure 3.6(left) and Figure 3.6(right) we show how hovering over links
permits to explore its meta-information. Clicking on a document class identifier permits
to hyperlink into the corresponding class definition (Figure 3.7(left) ; hovering over an

25

3 Isabelle/DOF: A Guided Tour

(a) Exploring a reference of a text-element. (b) Exploring the class of a text element.

Figure 3.6: Exploring text elements.

(a) Hyperlink to class-definition.
(b) Exploring an attribute (hyperlinked to the

class).

Figure 3.7: Navigation via generated hyperlinks.

attribute-definition (which is qualified in order to disambiguate; cf. Figure 3.7(right)) shows
its type.

An ontological reference application in Figure 3.8: the ontology-dependant antiquotation
@{example ‹ex1›} refers to the corresponding text-element ex1. Hovering allows for inspec-
tion, clicking for jumping to the definition. If the link does not exist or has a non-compatible
type, the text is not validated, i. e., Isabelle/jEdit will respond with an error.

We advise users to experiment with different notation variants. Note, further, that the
Isabelle @{cite ...}-text-anti-quotation makes its checking on the level of generated .aux-
files, which are not necessarily up-to-date. Ignoring the PIDE error-message and compiling
it with a consistent bibtex usually makes disappear this behavior.

3.3.5 Using Term-Antiquotations
The present version of Isabelle/DOF is the first version that supports the novel feature of
DOF-generated term-antiquotations, i. e., antiquotations embedded in HOL-𝜆-terms pos-
sessing arguments that were validated in the ontological context. These 𝜆-terms may occur
in definitions, lemmas, or in values to define attributes in class instances. They have the
format: @{name arg1 ... arg𝑛−1} arg𝑛

Logically, they are defined as an identity in the last argument arg𝑛; thus, ontologically
checked prior arguments arg1 ... arg𝑛−1 can be ignored during a proof process; ontologically,
they can be used to assure the traceability of, e. g., semi-formal assumptions throughout their
way to formalisation and use in lemmas and proofs.

Figure 3.8: Exploring an ontological reference.

26

3.3 Writing Academic Publications in scholarly_paper

Doc2 header

context
definition

text*[a::A]‹ … ›

 definition*[b::B, tt=“@{A a}”] ‹ … ›

value*[c::A]‹ … @{A a} … ›

lemma*[d::B]
 ‹ … @{A a} … ›

“Deep” Ontological Annotations for
References embedded in Term-Contexts

Figure 3.9: Term-Antiquotations Referencing to Annotated Elements

As shown in Figure 3.9, this feature of Isabelle/DOF substantially increases the express-
ibility of links between the formal and the informal in DOF documents.
In the following, we describe a common scenario linking semi-formal assumptions and

formal ones:
Isar

declare_reference∗[e2 ∶∶definition]

Assumption∗[a1∶∶assumption, short_name=‹safe environment.›]
‹The system shall only be used in the temperature range from 0 to 60 degrees Celsius.
Formally , this is stated as follows in @{definition (unchecked) ‹e2›}.›

definition∗[e2 , status=formal] safe_env ∶∶ state ⇒ bool
where safe_env 𝜎 ≡ (temp 𝜎 ∈ {0 .. 60})

theorem∗[e3∶∶theorem] safety_preservation∶∶ @{assumption ‹a1›} (safe_env 𝜎) ⟹ ...

Note that Isabelle procedes in a strict “declaration-before-use”-manner, i. e. assumes linear
visibility on all references. This also holds for the declaration of ontological references. In
order to represent cyclic dependencies, it is therefore necessary to start with the forward
declaration declare_reference∗. From there on, this reference can be used in text, term,
and code-contexts, albeit its definition appears textually later. The corresponding freeform-
formulation of this assumption can be explicitly referred in the assumption of a theorem
establishing the link. The theorem∗-variant of the common Isabelle/Isar theorem-command
will in contrast to the latter not ignore ‹a1›, i. e. parse just as string, but also validate it in
the previous context.
Note that the declare_reference∗ command will appear in the LATEX generated from

this document fragment. In order to avoid this, one has to enclose this command into the
document comments : (∗<∗) ... (∗>∗).

27

3 Isabelle/DOF: A Guided Tour

3.4 Writing Technical Reports in technical_report
While it is perfectly possible to write documents in the technical_report ontology in
freeform-style (this manual is mostly such an example), we will briefly explain here the tight-
checking-style in which most Isabelle reference manuals themselves are written.

The idea has already been put forward by Isabelle itself; besides the general infrastructure
on which this work is also based, current Isabelle versions provide around 20 built-in document
and code antiquotations described in the Reference Manual pp.75 ff. in great detail.

Most of them provide strict-checking, i. e. the argument strings were parsed and machine-
checked in the underlying logical context, which turns the arguments into formal content in
the integrated source, in contrast to the free-form antiquotations which basically influence
the presentation.

We still mention a few of these document antiquotations here:

• @{thm "refl"} or @{thm [display] "refl"} check that refl is indeed a reference to
a theorem; the additional “style” argument changes the presentation by printing the
formula into the output instead of the reference itself,

• @{lemma ‹prop› by method} allows deriving prop on the fly, thus guarantee that it
is a corollary of the current context,

• @{term ‹term› } parses and type-checks term,

• @{value ‹term› } performs the evaluation of term,

• @{ML ‹ml−term› } parses and type-checks ml−term,

• @{ML_file ‹ml−file› } parses the path for ml−file and verifies its existance in the
(Isabelle-virtual) file-system.

There are options to display sub-parts of formulas etc., but it is a consequence of tight-
checking that the information must be given complete and exactly in the syntax of Isabelle.
This may be over-precise and a burden to readers not familiar with Isabelle, which may
motivate authors to choose the aforementioned freeform-style.

Additionally, documents antiquotations were added to check and evaluate terms with term
antiquotations:

• @{term_ ‹term› } parses and type-checks term with term antiquotations, for instance
term_ ‹@{technical ‹isadof ›}› will parse and check that isadof is indeed an instance
of the class technical,

• @{value_ ‹term› } performs the evaluation of term with term antiquotations, for in-
stance @{value_ ‹definition_list @{technical ‹isadof ›}›} will print the value of the
definition_list attribute of the instance isadof. value_ may have an optional argument
between square brackets to specify the evaluator but this argument must be specified
after a default optional argument already defined by the text antiquotation implemen-
tation. So one must use the following syntax if he does not want to specify the first

28

3.5 Some Recommendations: A little Style Guide

Figure 3.10: A table with a number of SML functions, together with their type.

optional argument: @{value_ [] [nbe] ‹definition_list @{technical ‹isadof ›}›}. Note
the empty brackets.

They are text-contexts equivalents to the term∗ and value∗ commands for term-contexts
introduced in Section 5.2.3

3.4.1 A Technical Report with Tight Checking
An example of tight checking is a small programming manual to document programming
trick discoveries while implementing in Isabelle. While not necessarily a meeting standards
of a scientific text, it appears to us that this information is often missing in the Isabelle
community.
So, if this text addresses only a very limited audience and will never be famous for its

style, it is nevertheless important to be exact in the sense that code-snippets and interface
descriptions should be accurate with the most recent version of Isabelle in which this doc-
ument is generated. So its value is that readers can just reuse some of these snippets and
adapt them to their purposes.

This manual is written according to the technical_report ontology in Is-
abelle_DOF .technical_report. Figure 3.10 shows a snippet from this integrated source and
gives an idea why its tight-checking allows for keeping track of underlying Isabelle changes:
Any reference to an SML operation in some library module is type-checked, and the dis-
played SML-type really corresponds to the type of the operations in the underlying SML
environment. In the PDF output, these text-fragments were displayed verbatim.

3.5 Some Recommendations: A little Style Guide
The document generation of Isabelle/DOF is based on Isabelle’s document generation frame-
work, using LATEX as the underlying back-end. As Isabelle’s document generation framework,
it is possible to embed (nearly) arbitrary LATEX-commands in text-commands, e. g.:

Isar
text‹ This is \emph{emphasized} and this is a

citation∼\cite{brucker .ea∶isabelle−ontologies∶2018}›

29

3 Isabelle/DOF: A Guided Tour

In general, we advise against this practice and, whenever positive, use the Isabelle/DOF
(respetively Isabelle) provided alternatives:

Isar
text‹ This is ∗‹emphasized› and this is a

citation @{cite brucker .ea∶isabelle−ontologies∶2018}.›

The list of standard Isabelle document antiquotations, as well as their options and styles,
can be found in the Isabelle reference manual [23], section 4.2.

In practice, Isabelle/DOF documents with ambitious layout will contain a certain number
of LATEX-commands, but this should be restricted to layout improvements that otherwise are
(currently) not possible. As far as possible, raw LATEX should be restricted to the definition
of ontologies and macros (see Chapter 5). If raw LATEX commands can not be avoided, it is
recommended to use the Isabelle document comment \<^latex>‹argument› to isolate these
parts (cf. [23]).

Restricting the use of LATEX has two advantages: first, LATEX commands can circumvent
the consistency checks of Isabelle/DOF and, hence, only if no LATEX commands are used,
Isabelle/DOF can ensure that a document that does not generate any error messages in
Isabelle/jEdit also generated a PDF document. Second, future version of Isabelle/DOF
might support different targets for the document generation (e. g., HTML) which, naturally,
are only available to documents not using too complex native LATEX-commands.

Similarly, (unchecked) forward references should, if possible, be avoided, as they also
might create dangling references during the document generation that break the document
generation.

Finally, we recommend using the check_doc_global command at the end of your docu-
ment to check the global reference structure.

⟨ML⟩

30

3.5 Some Recommendations: A little Style Guide

Isardoc_class title = short_title ∶∶ string option <= None
doc_class affiliation =
journal_style ∶∶ ′𝛼

doc_class author =
affiliations ∶∶ ′𝛼 affiliation list
name ∶∶ string
email ∶∶ string <= ′′′′

invariant ne_name ∶∶ name 𝜎 ≠ ′′′′

doc_class text_element =
authored_by ∶∶ (′𝛼 author) set <= {}
level ∶∶ int option <= None
invariant authors_req ∶∶ authored_by ≠ {}
and level_req ∶∶ the (level) > 1

doc_class introduction = text_element +
authored_by ∶∶ (′𝛼 author) set <= UNIV

doc_class technical = text_element +
formal_results ∶∶ thm list

doc_class definition = technical +
is_formal ∶∶ bool

doc_class theorem = technical +
assumptions ∶∶ term list <= []
statement ∶∶ term option <= None

doc_class conclusion = text_element +
resumee ∶∶ (definition set × theorem set)
invariant (∀ x∈fst resumee. is_formal x)

⟶ (∃ y∈snd resumee. is_formal y)
doc_class article =

style_id ∶∶ string <= ′′LNCS ′′

accepts (title ∼∼ {∣author ∣}+ ∼∼ {∣introduction∣}+
∼∼ {∣{∣definition ∼∼ example∣}+ ∣∣ theorem∣}+ ∼∼ {∣conclusion∣}+)

Figure 3.11: A Basic Document Ontology: paper𝑚

31

4 Proofs over Ontologies
It is a distinguishing feature of DOF that it does not directly generate meta-data rather

than generating a theory of meta-data that can be used in HOL-terms on various levels
of the Isabelle-system and its document generation technology. Meta-data theories can be
converted into executable code and efficiently used in validations, but also used for theoretic
reasoning over given ontologies. While the full potential of this latter possibility still needs
to be explored, we present in the following sections two applications:

1. Verified ontological morphisms, also called ontological mappings in the literature [1,
8, 10], i. e. proofs of invariant preservation along translation-functions of all instances
of doc_class-es.

2. Verified refinement relations between the structural descriptions of theory documents,
i. e. proofs of language inclusions of monitors of global ontology classes.

4.1 Proving Properties over Ontologies
4.1.1 Ontology-Morphisms: a Prototypical Example
We define a small ontology with the following classes:
doc_class AA = aa ∶∶ nat
doc_class BB = bb ∶∶ int
doc_class CC = cc ∶∶ int

doc_class DD = dd ∶∶ int
doc_class EE = ee ∶∶ int
doc_class FF = ff ∶∶ int

onto_morphism (AA, BB) to CC and (DD, EE) to FF
where convert𝐴𝐴×𝐵𝐵⇒𝐶𝐶 𝜎 = (∣ CC .tag_attribute = 1∶∶int,

CC .cc = int(aa (fst 𝜎)) + bb (snd 𝜎)∣)
and convert𝐷𝐷×𝐸𝐸⇒𝐹𝐹 𝜎 = (∣ FF .tag_attribute = 1∶∶int,

FF .ff = dd (fst 𝜎) + ee (snd 𝜎) ∣)

Note that the convert𝐴𝐴×𝐵𝐵⇒𝐶𝐶-morphism involves a data-format conversion, and that
the resulting transformation of AA-instances and BB-instances is surjective but not injective.
The CC .tag_attribute is used to potentially differentiate instances with equal attribute-
content and is irrelevant here.
This specification construct introduces the following constants and definitions:

• convert𝐴𝐴_𝐵𝐵_𝐶𝐶 ∶∶ AA × BB ⇒ CC

33

4 Proofs over Ontologies

• convert𝐷𝐷_𝐸𝐸_𝐹𝐹 ∶∶ DD × EE ⇒ FF

and corresponding definitions.

4.1.2 Proving the Preservation of Ontological Mappings : A
Document-Ontology Morphism

DOF as a system is currently particularly geared towards document-ontologies, in particular
for documentations generated from Isabelle theories. We used it meanwhile for the generation
of various conference and journal papers, notably using the Isabelle_DOF .scholarly_paper
and Isabelle_DOF .technical_report-ontologies, targeting a (small) variety of LATEX style-files.
A particular aspect of these ontologies, especially when targeting journals from publishers
such as ACM, Springer or Elsevier, is the description of publication meta-data. Publishers
tend to have their own styles on what kind meta-data should be associated with a journal
publication; thus, the depth and precise format of affiliations, institution, their relation to
authors, and author descriptions (with photos or without, hair left-combed or right-combed,
etcpp...) varies.

In the following, we present an attempt to generalized ontology with several on-
tology mappings to more specialized ones such as concrete journals and/or the Is-
abelle_DOF .scholarly_paper - ontology which we mostly used for our own publications.
doc_class elsevier_org =
organization ∶∶ string
address_line ∶∶ string
postcode ∶∶ int
city ∶∶ string

doc_class acm_org =
position ∶∶ string
institution ∶∶ string
department ∶∶ int
street_address ∶∶ string
city ∶∶ string
state ∶∶ int
country ∶∶ string
postcode ∶∶ int

doc_class lncs_inst =
institution ∶∶ string

doc_class author =
name ∶∶ string
email ∶∶ string <= ′′′′

invariant ne_fsnames ∶∶ name 𝜎 ≠ ′′′′

doc_class elsevierAuthor = author +
affiliations ∶∶ elsevier_org list
firstname ∶∶ string

34

4.1 Proving Properties over Ontologies

surname ∶∶ string
short_author ∶∶ string
url ∶∶ string
footnote ∶∶ string
invariant ne_fsnames ∶∶ firstname 𝜎 ≠ ′′′′ ∧ surname 𝜎 ≠ ′′′′

doc_class acmAuthor = author +
affiliations ∶∶ acm_org list
firstname ∶∶ string
familyname ∶∶ string
orcid ∶∶ int
footnote ∶∶ string
invariant ne_fsnames ∶∶ firstname 𝜎 ≠ ′′′′ ∧ familyname 𝜎 ≠ ′′′′

doc_class lncs_author = author +
affiliations ∶∶ lncs list
orcid ∶∶ int
short_author ∶∶ string
footnote ∶∶ string

definition acm_name where acm_name f s = f @ ′′ ′′ @ s

fun concatWith ∶∶ string ⇒ string list ⇒ string
where concatWith str [] = ′′′′

∣concatWith str [a] = a
∣concatWith str (a#R) = a@str@(concatWith str R)

lemma concatWith_non_mt ∶ (S≠[] ∧ (∃ s∈set S. s≠ ′′′′)) ⟶ (concatWith sep S) ≠ ′′′′

⟨proof ⟩

onto_morphism (acm) to elsevier
where convert𝑎𝑐𝑚⇒𝑒𝑙𝑠𝑒𝑣𝑖𝑒𝑟 𝜎 =

(∣elsevier .tag_attribute = acm.tag_attribute 𝜎,
organization = acm.institution 𝜎,
address_line = concatWith ′′, ′′ [acm.street_address 𝜎, acm.city 𝜎],
postcode = acm.postcode 𝜎 ,
city = acm.city 𝜎 ∣)

Here is a more basic, but equivalent definition for the other way round:
definition elsevier_to_acm_morphism ∶∶ elsevier_org ⇒ acm_org

(‹_ ⟨acm⟩𝑒𝑙𝑠𝑒𝑣𝑖𝑒𝑟› [1000]999)
where 𝜎 ⟨acm⟩𝑒𝑙𝑠𝑒𝑣𝑖𝑒𝑟 = (∣ acm_org .tag_attribute = 1∶∶int,

acm_org .position = ′′no position ′′,
acm_org .institution = organization 𝜎,
acm_org .department = 0,
acm_org .street_address = address_line 𝜎,
acm_org .city = elsevier_org .city 𝜎,

35

4 Proofs over Ontologies

acm_org .state = 0,
acm_org .country = ′′no country ′′,
acm_org .postcode = elsevier_org .postcode 𝜎 ∣)

The following onto-morphism links elsevierAuthor ’s and acmAuthor. Note that the
conversion implies trivial data-conversions (renaming of attributes in the classes), string-
representation conversions, and conversions of second-staged, referenced instances.
onto_morphism (elsevierAuthor) to acmAuthor
where convert𝑒𝑙𝑠𝑒𝑣𝑖𝑒𝑟𝐴𝑢𝑡ℎ𝑜𝑟⇒𝑎𝑐𝑚𝐴𝑢𝑡ℎ𝑜𝑟 𝜎 =

(∣author .tag_attribute = undefined ,
name = concatWith ′′, ′′ [elsevierAuthor .firstname 𝜎,elsevierAuthor .surname 𝜎],
email = author .email 𝜎,
acmAuthor .affiliations = (elsevierAuthor .affiliations 𝜎)

∣> map (𝜆x . x ⟨acm⟩𝑒𝑙𝑠𝑒𝑣𝑖𝑒𝑟),
firstname = elsevierAuthor .firstname 𝜎,
familyname = elsevierAuthor .surname 𝜎,
orcid = 0, — la triche ! ! !
footnote = elsevierAuthor .footnote 𝜎∣)

lemma elsevier_inv_preserved ∶
elsevierAuthor .ne_fsnames_inv 𝜎
⟹ acmAuthor .ne_fsnames_inv (convert𝑒𝑙𝑠𝑒𝑣𝑖𝑒𝑟𝐴𝑢𝑡ℎ𝑜𝑟⇒𝑎𝑐𝑚𝐴𝑢𝑡ℎ𝑜𝑟 𝜎)

∧ author .ne_fsnames_inv (convert𝑒𝑙𝑠𝑒𝑣𝑖𝑒𝑟𝐴𝑢𝑡ℎ𝑜𝑟⇒𝑎𝑐𝑚𝐴𝑢𝑡ℎ𝑜𝑟 𝜎)
⟨proof ⟩

The proof is, in order to quote Tony Hoare, “as simple as it should be”. Note that it
involves the lemmas like ?S ≠ [] ∧ (∃ s∈set ?S. s ≠ []) ⟶ concatWith ?sep ?S ≠ [] which
in itself require inductions, i. e., which are out of reach of pure ATP proof-techniques.

4.1.3 Proving the Preservation of Ontological Mappings : A
Domain-Ontology Morphism

The following example is drawn from a domain-specific scenario: For conventional data-
models, be it represented by UML-class diagrams or SQL-like ”tables” or Excel-sheet like
presentations of uniform data, we can conceive an ontology (which is equivalent here to a
conventional style-sheet) and annotate textual raw data. This example describes how meta-
data can be used to calculate and transform this kind of representations in a type-safe and
verified way.

We model some basic enumerations as inductive data-types:
datatype Hardware_Type =
Motherboard ∣ Expansion_Card ∣ Storage_Device ∣ Fixed_Media ∣
Removable_Media ∣ Input_Device ∣ Output_Device

datatype Software_Type =
Operating_system ∣ Text_editor ∣ Web_Navigator ∣ Development_Environment

36

4.1 Proving Properties over Ontologies

In the sequel, we model a ”Reference Ontology”, i. e. a data structure in which we
assume that standards or some de-facto-standard data-base refer to the data in the domain
of electronic devices:
onto_class Resource =
name ∶∶ string

onto_class Electronic = Resource +
provider ∶∶ string
manufacturer ∶∶ string

onto_class Component = Electronic +
mass ∶∶ int

onto_class Simulation_Model = Electronic +
simulate ∶∶ Component
composed_of ∶∶ Component list
version ∶∶ int

onto_class Informatic = Resource +
description ∶∶ string

onto_class Hardware = Informatic +
type ∶∶ Hardware_Type
mass ∶∶ int
composed_of ∶∶ Component list
invariant c1 ∶∶ mass 𝜎 = sum(map Component.mass (composed_of 𝜎))

onto_class Software = Informatic +
type ∶∶ Software_Type
version ∶∶ int

Finally, we present a local ontology, i. e. a data structure used in a local store in its
data-base of cash-system:
onto_class Item =
name ∶∶ string

onto_class Product = Item +
serial_number ∶∶ int
provider ∶∶ string
mass ∶∶ int

onto_class Electronic_Component = Product +
serial_number ∶∶ int

onto_class Monitor = Product +
composed_of ∶∶ Electronic_Component list
invariant c2 ∶∶ Product.mass 𝜎 = sum(map Product.mass (composed_of 𝜎))

term‹Product.mass 𝜎 = sum(map Product.mass (composed_of 𝜎))›

37

4 Proofs over Ontologies

onto_class Computer_Software = Item +
type ∶∶ Software_Type
version ∶∶ int

These two example ontologies were linked via conversion functions called morphisms. The
hic is that we can prove for the morphisms connecting these ontologies, that the conversions
are guaranteed to preserve the data-invariants, although the data-structures (and, of course,
the presentation of them) is very different. Besides, morphisms functions can be “forgetful”
(i. e. surjective), “embedding” (i. e. injective) or even “one-to-one” ((i. e. bijective).
definition Item_to_Resource_morphism ∶∶ Item ⇒ Resource

(‹_ ⟨Resource⟩𝐼𝑡𝑒𝑚› [1000]999)
where 𝜎 ⟨Resource⟩𝐼𝑡𝑒𝑚 =

(∣ Resource.tag_attribute = 1∶∶int ,
Resource.name = name 𝜎 ∣)

definition Product_to_Resource_morphism ∶∶ Product ⇒ Resource
(‹_ ⟨Resource⟩𝑃𝑟𝑜𝑑𝑢𝑐𝑡› [1000]999)
where 𝜎 ⟨Resource⟩𝑃𝑟𝑜𝑑𝑢𝑐𝑡 =

(∣ Resource.tag_attribute = 2 ∶∶int ,
Resource.name = name 𝜎 ∣)

definition Computer_Software_to_Software_morphism ∶∶ Computer_Software ⇒ Software
(‹_ ⟨Software⟩𝑆𝑜𝑓𝑡𝐶𝑚𝑝› [1000]999)
where 𝜎 ⟨Software⟩𝑆𝑜𝑓𝑡𝐶𝑚𝑝 =

(∣ Resource.tag_attribute = 3∶∶int ,
Resource.name = name 𝜎 ,
Informatic.description = ′′no description ′′,
Software.type = type 𝜎 ,
Software.version = version 𝜎 ∣)

definition Electronic_Component_to_Component_morphism ∶∶ Electronic_Component ⇒ Compo-
nent

(‹_ ⟨Component⟩𝐸𝑙𝑒𝑐𝐶𝑚𝑝› [1000]999)
where 𝜎 ⟨Component⟩𝐸𝑙𝑒𝑐𝐶𝑚𝑝 =

(∣ Resource.tag_attribute = 4∶∶int ,
Resource.name = name 𝜎 ,
Electronic.provider = provider 𝜎 ,
Electronic.manufacturer = ′′no manufacturer ′′ ,
Component.mass = mass 𝜎 ∣)

definition Monitor_to_Hardware_morphism ∶∶ Monitor ⇒ Hardware
(‹_ ⟨Hardware⟩𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑟𝐻𝑎𝑟𝑑𝑤𝑎𝑟𝑒› [1000]999)
where 𝜎 ⟨Hardware⟩𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑟𝐻𝑎𝑟𝑑𝑤𝑎𝑟𝑒 =

(∣ Resource.tag_attribute = 5∶∶int ,
Resource.name = name 𝜎 ,
Informatic.description = ′′no description ′′,
Hardware.type = Output_Device,
Hardware.mass = mass 𝜎 ,

38

4.1 Proving Properties over Ontologies

Hardware.composed_of = map Electronic_Component_to_Component_morphism
(composed_of 𝜎)

∣)

On this basis, we can state the following invariant preservation theorems:
lemma inv_c2_preserved ∶
c2_inv 𝜎 ⟹ c1_inv (𝜎 ⟨Hardware⟩𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑟𝐻𝑎𝑟𝑑𝑤𝑎𝑟𝑒)
⟨proof ⟩

lemma Monitor_to_Hardware_morphism_total ∶
Monitor_to_Hardware_morphism ‘ ({X ∶∶Monitor . c2_inv X}) ⊆ ({X ∶∶Hardware. c1_inv X})
⟨proof ⟩

type_synonym local_ontology = Item ∗ Electronic_Component ∗ Monitor
type_synonym reference_ontology = Resource ∗ Component ∗ Hardware

fun ontology_mapping ∶∶ local_ontology ⇒ reference_ontology
where ontology_mapping (x , y , z) = (x⟨Resource⟩𝐼𝑡𝑒𝑚, y⟨Component⟩𝐸𝑙𝑒𝑐𝐶𝑚𝑝,

z⟨Hardware⟩𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑟𝐻𝑎𝑟𝑑𝑤𝑎𝑟𝑒)

lemma ontology_mapping_total ∶
ontology_mapping ‘ {X . c2_inv (snd (snd X))} ⊆ {X . c1_inv (snd (snd X))}

⟨proof ⟩

Note that in contrast to conventional data-translations, the preservation of a class-invariant
is not just established by a validation of the result, it is proven once and for all for all instances
of the classes.

4.1.4 Proving Monitor-Refinements
Monitors are regular-expressions that allow for specifying instances of classes to appear in a
particular order in a document. They are used to specify some structural aspects of a docu-
ment. Based on an AFP theory by Tobias Nipkow on Functional Automata (i. e. a character-
ization of regular automata using functional polymorphic descriptions of transition functions
avoiding any of the ad-hoc finitizations commonly used in automata theory), which com-
prises also functions to generate executable deterministic and non-deterministic automata,
this theory is compiled to SML-code that was integrated in the DOF system. The neces-
sary adaptions of this integration can be found in the theory Isabelle_DOF .RegExpInterface,
which also contains the basic definitions and theorems for the concepts used here.
Recall that the monitor of scholarly_paper .article is defined by:

article_monitor ≡ title ∼∼ opt subtitle ∼∼ rep1 author ∼∼ abstract ∼∼ rep1 introduc-
tion ∼∼ {∣background ∣}∗ ∼∼ rep1 (technical ∣∣ example ∣∣ float) ∼∼ rep1 conclusion ∼∼

bibliography ∼∼ {∣annex ∣}∗

However, it is possible to reason over the language of monitors and prove classical re-
finement notions such as trace-refinement on the monitor-level, so once-and-for-all for all

39

4 Proofs over Ontologies

instances of validated documents conforming to a particular ontology. The primitive recur-
sive operators Lang and L𝑠𝑢𝑏 generate the languages of the regular expression language,
where L𝑠𝑢𝑏 takes the sub-ordering relation of classes into account.

The proof of :

Lang article_monitor ⊆ Lang report_monitor

can be found in theory Isabelle_DOF .technical_report; it is, again, ”as simple as it should
be” (to cite Tony Hoare).

The proof of:

L𝑠𝑢𝑏 article_monitor ⊆ L𝑠𝑢𝑏 report_monitor

is slightly more evolved; this is due to the fact that DOF does not generate a proof of the
acyclicity of the graph of the class-hierarchy doc_class_rel automatically. For a given hierar-
chy, this proof will always succeed (since DOF checks this on the meta-level, of course), which
permits to deduce the anti-symmetry of the transitive closure of doc_class_rel and therefore
to establish that the doc-classes can be organized in an order (i. e. the type doc_class is an
instance of the type-class order). On this basis, the proof of the above language refinement
is quasi automatic. This proof is also part of Isabelle_DOF .technical_report.

40

5 Ontologies and their Development
In this chapter, we explain the concepts of Isabelle/DOF in a more systematic way, and

give guidelines for modeling new ontologies, present underlying concepts for a mapping to a
representation, and give hints for the development of new document templates.
Isabelle/DOF is embedded in the underlying generic document model of Isabelle as de-

scribed in Section 2.2. Recall that the document language can be extended dynamically,
i. e., new user-defined can be introduced at run-time. This is similar to the definition of
new functions in an interpreter. Isabelle/DOF as a system plugin provides a number of new
command definitions in Isabelle’s document model.
Isabelle/DOF consists consists basically of five components:
• the core in Isabelle_DOF .Isa_DOF providing the ontology definition language (ODL)

which allow for the definitions of document-classes and necessary datatypes,

• the core also provides an own family of commands such as text∗, ML∗, value∗ , etc.;
They allow for the annotation of document-elements with meta-information defined in
ODL,

• the Isabelle/DOF library Isabelle_DOF .Isa_COL providing ontological basic (docu-
ments) concepts as well as supporting infrastructure,

• an infrastructure for ontology-specific layout definitions, exploiting this meta-
information, and

• an infrastructure for generic layout definitions for documents following, e. g., the format
guidelines of publishers or standardization bodies.

Similarly to Isabelle, which is based on a core logic Pure and then extended by libraries to
major systems like HOL, Isabelle/DOF has a generic core infrastructure DOF and then presents
itself to users via major library extensions, which add domain-specific system-extensions. On-
tologies in Isabelle/DOF are not just a sequence of descriptions in Isabelle/DOF’s Ontology
Definition Language (ODL). Rather, they are themselves presented as integrated sources that
provide textual descriptions, abbreviations, macro-support and even ML-code. Conceptually,
the library of Isabelle/DOF is currently organized as follows1 :

COL ... The Common Ontology Library
scholarly_paper...Scientific Papers

technical_report.......................Extended Papers, Technical Reports
CENELEC_50128........................Papers according to CENELEC_50128
CC_v3_1_R5Papers according to Common Criteria
…

1The technical organization is slightly different and shown in Section 5.5.

41

5 Ontologies and their Development

These libraries not only provide ontological concepts, but also syntactic sugar in Isabelle’s
command language Isar that is of major importance for users (and may be felt as Is-
abelle/DOF key features by many authors). In reality, they are derived concepts from more
generic ones; for example, the commands title∗, section∗, subsection∗, etc, are in reality a
kind of macros for text∗[<label>∶∶title]..., text∗[<label>∶∶section]..., respectively. These
example commands are defined in COL (the common ontology library).

As mentioned earlier, our ontology framework is currently particularly geared towards
document editing, structuring and presentation (future applications might be advanced
”knowledge-based” search procedures as well as tool interaction). For this reason, ontologies
are coupled with layout definitions allowing an automatic mapping of an integrated source
into LATEX and finally PDF. The mapping of an ontology to a specific representation in LATEX
is steered via associated LATEX style files which were included during Isabelle’s document gen-
eration process. This mapping is potentially a one-to-many mapping; this implies a certain
technical organization and some resulting restrictions described in Section 5.5 in more detail.

5.1 The Ontology Definition Language (ODL)
ODL shares some similarities with meta-modeling languages such as UML class models:
It builds upon concepts like class, inheritance, class-instances, attributes, references to in-
stances, and class-invariants. Some concepts like advanced type-checking, referencing to
formal entities of Isabelle, and monitors are due to its specific application in the Isabelle
context. Conceptually, ontologies specified in ODL consist of:

• document classes (doc_class) that describe concepts, the keyword (onto_class) is
syntactically equivalent,

• an optional document base class expressing single inheritance class extensions, restrict-
ing the class-hierarchy basically to a tree,

• attributes specific to document classes, where

– attributes are HOL-typed,
– attributes of instances of document elements are mutable,
– attributes can refer to other document classes, thus, document classes must also

be HOL-types (such attributes are called links),
– attribute values were denoted by HOL-terms,

• a special link, the reference to a super-class, establishes an is-a relation between classes,

• classes may refer to other classes via a regular expression in an accepts clause, or via
a list in a rejects clause,

• attributes may have default values in order to facilitate notation.

42

5.1 The Ontology Definition Language (ODL)

doc_class’es and onto_class’es respectively, have a semantics, i. e., a logical represen-
tation as extensible records in HOL ([23], pp. 11.6); there are therefore amenable to logical
reasoning.

The Isabelle/DOF ontology specification language consists basically of a notation for doc-
ument classes, where the attributes were typed with HOL-types and can be instantiated by
HOL-terms, i. e., the actual parsers and type-checkers of the Isabelle system were reused.
This has the particular advantage that Isabelle/DOF commands can be arbitrarily mixed with
Isabelle/HOL commands providing the machinery for type declarations and term specifica-
tions such as enumerations. In particular, document class definitions provide:

• a HOL-type for each document class as well as inheritance,

• support for attributes with HOL-types and optional default values,

• support for overriding of attribute defaults but not overloading, and

• text-elements annotated with document classes; they are mutable instances of docu-
ment classes.

Attributes referring to other ontological concepts are called links. The HOL-types inside
the document specification language support built-in types for Isabelle/HOL typ’s, term’s,
and thm’s reflecting internal Isabelle’s internal types for these entities; when denoted in
HOL-terms to instantiate an attribute, for example, there is a specific syntax (called term
antiquotations) that is checked by Isabelle/DOF for consistency.
Document classes support accepts-clauses containing a regular expression over class

names. Classes with an accepts-clause were called monitor classes. While document classes
and their inheritance relation structure meta-data of text-elements in an object-oriented man-
ner, monitor classes enforce structural organization of documents via the language specified
by the regular expression enforcing a sequence of text-elements.
A major design decision of ODL is to denote attribute values by HOL-terms and HOL-

types. Consequently, ODL can refer to any predefined type defined in the HOL library, e. g.,
string or int as well as parameterized types, e. g., _ option, _ list, _ set, or products _ ×
_. As a consequence of the document model, ODL definitions may be arbitrarily intertwined
with standard HOL type definitions. Finally, document class definitions result in themselves
in a HOL-type in order to allow links to and between ontological concepts.

5.1.1 Some Isabelle/HOL Specification Constructs Revisited
As ODL is an extension of Isabelle/HOL, document class definitions can therefore be arbitrar-
ily mixed with standard HOL specification constructs. To make this manual self-contained,
we present syntax and semantics of the specification constructs that are most likely relevant
for the developer of ontologies (for more details, see [23]). Our presentation is a simplification
of the original sources following the needs of ontology developers in Isabelle/DOF:

43

5 Ontologies and their Development

• name: with the syntactic category of name’s we refer to alpha-numerical identifiers
(called short_ident’s in [23]) and identifiers in ... which might contain certain “quasi-
letters” such as _, −, . (see [23] for details).

• tyargs:

typefree�
� (

����
� typefree�

� ,
���

�

�

)
���

�

typefree denotes fixed type variable (′a, ′b, ...) (see [23])

• dt_name:

�
� tyargs

�

name �
�mixfix

�

The syntactic entity name denotes an identifier, mixfix denotes the usual parenthesized
mixfix notation (see [23]). The name’s referred here are type names such as int, string,
list, set, etc.

• type_spec:

�
� tyargs

�

name

The name’s referred here are type names such as int, string, list, set, etc.

• type:

�
� (

����
� type�

� ,
���

�

�

)
���

�

name�

� typefree

�

• dt_ctor :

44

5.1 The Ontology Definition Language (ODL)

name �
� type

�

�
�mixfix

�

• datatype_specification:

datatype
�� �dt-name =

����
� dt-ctor�

� |
���

�

�

• type_synonym_specification:

type_synonym
�� �type-spec =

���type

• constant_definition :

definition
�� �name ::

�� �type where
�� �"

���name =
����

�
� expr "

���
• expr : the syntactic category expr here denotes the very rich language of mathematical

notations encoded in 𝜆-terms in Isabelle/HOL. Example expressions are: 1+2 (arith-
metics), [1,2 ,3] (lists), ab c (strings), {1,2 ,3} (sets), (1,2 ,3) (tuples), ∀ x . P(x) ∧
Q x = C (formulas). For comprehensive overview, see [17].

Advanced ontologies can, e. g., use recursive function definitions with pattern-
matching [14], extensible record specifications [23], and abstract type declarations.

Isabelle/DOF works internally with fully qualified names in order to avoid confusions oc-
curring otherwise, for example, in disjoint class hierarchies. This also extends to names for
doc_classes, which must be representable as type-names as well since they can be used in
attribute types. Since theory names are lexically very liberal (0.thy is a legal theory name),
this can lead to subtle problems when constructing a class: foo can be a legal name for a
type definition, the corresponding type-name 0.foo is not. For this reason, additional checks
at the definition of a doc_class reject problematic lexical overlaps.

5.1.2 Defining Document Classes
A document class can be defined using the doc_class keyword:

• class_id : a type-name that has been introduced via a doc_class_specification.

45

5 Ontologies and their Development

• doc_class_specification: We call document classes with an accepts_clause monitor
classes or monitors for short.

doc_class
�� ��

�onto_class
�� �

�

class-id =
����

� class-id +
���

�

attribute-decl�
�

�

�
�

��
� invariant-decl

�

�
� rejects-clause accepts-clause

�

�
�

��
� accepts-clause

�

• attribute_decl :

name ::
�� �"

���type "
����

�default-clause

�

• invariant_decl : Invariants can be specified as predicates over document classes rep-
resented as records in HOL. Sufficient type information must be provided in order to
disambiguate the argument of the expression and the 𝜎 symbol is reserved to reference
the instance of the class itself.

invariant
�� � name ::

�� �"
���term "

����
� and

�� �
�

• rejects_clause:

rejects
�� ��

� class-id�
� ,

���
�

�

• accepts_clause:

accepts
�� � "

���regexpr "
����

� and
�� �

�

46

5.1 The Ontology Definition Language (ODL)

• default_clause:

<=
�� �"

���expr "
���

• regexpr :

⌊
���class-id ⌋

����
� (

���regexpr)
���� regexpr ||

�� �regexpr

� regexpr ~~
�� �regexpr

� {∣
���regexpr ∣}+

�� �� {∣
���regexpr ∣}∗

�� �

�

Regular expressions describe sequences of class_ids (and indirect sequences of docu-
ment items corresponding to the class_ids). The constructors for alternative, sequence,
repetitions and non-empty sequence follow in the top-down order of the above diagram.

Isabelle/DOF provides a default document representation (i. e., content and layout of the
generated PDF) that only prints the main text, omitting all attributes. Isabelle/DOF provides
the \newisadof[]{} command for defining a dedicated layout for a document class in LATEX.
Such a document class-specific LATEX-definition can not only provide a specific layout (e. g.,
a specific highlighting, printing of certain attributes), it can also generate entries in the table
of contents or an index. Overall, the \newisadof[]{} command follows the structure of the
doc_class-command:

LATEX
\newisadof{class_id}[label=,type=, attribute_decl][1]{%
% LATEX-definition of the document class representation
\begin{isamarkuptext}%
#1%
\end{isamarkuptext}%
}

The class_id (or cid for short) is the full-qualified name of the document class and the list
of attribute_decl needs to declare all attributes of the document class. Within the LATEX-
definition of the document class representation, the identifier #1 refers to the content of the
main text of the document class (written in ‹ ... ›) and the attributes can be referenced
by their name using the \commandkey{...}-command (see the documentation of the LATEX-
package “keycommand” [6] for details). Usually, the representations definition needs to be
wrapped in a \begin{isarmarkup}...\end{isamarkup}-environment, to ensure the correct
context within Isabelle’s LATEX-setup. Moreover, Isabelle/DOF also provides the following
two variants of \newisadof{}[]{}:

47

5 Ontologies and their Development

• \renewisadof{}[]{} for re-defining (over-writing) an already defined command, and

• \provideisadof{}[]{} for providing a definition if it is not yet defined.

While arbitrary LATEX-commands can be used within these commands, special care is re-
quired for arguments containing special characters (e. g., the underscore “_”) that do have a
special meaning in LATEX. Moreover, as usual, special care has to be taken for commands that
write into aux-files that are included in a following LATEX-run. For such complex examples,
we refer the interested reader to the style files provided in the Isabelle/DOF distribution. In
particular the definitions of the concepts title∗ and author∗ in LATEX-style for the ontology
Isabelle_DOF .scholarly_paper shows examples of protecting special characters in definitions
that need to make use of a entries in an aux-file.

5.2 The main Ontology-aware Document Elements
Besides the core-commands to define an ontology as presented in the previous section, the
Isabelle/DOF core provides a number of mechanisms to use the resulting data to annotate
texts, code, and terms. As mentioned already in the introduction, this boils down two three
major groups of commands used to annotate text-. code-, and term contexts with instances
of ontological classes, i. e., meta-information specified in an ontology. Representatives of
these three groups, which refer by name to equivalent standard Isabelle commands by their
name suffixed with a ∗, are presented as follows in a railroad diagram:

• annotated_text_element :

text*
�� �[

���meta-args]
���‹

���text context ›
���

• annotated_code_element :

ML*
�� �[

���meta-args]
���‹

���code context ›
���

• annotated_term_element :

value*
�� �[

���meta-args]
���‹

���term context ›
���

In the following, we will formally introduce the syntax of the core commands as supported
on the Isabelle/Isar level. On this basis, concepts such as the freeform Definition∗ and
Lemma∗ elements were derived from text∗. Similarly,the corresponding formal definition∗
and lemma∗ elements were built on top of functionality of the value∗-family.

48

5.2 The main Ontology-aware Document Elements

5.2.1 General Syntactic Elements for Document Management
Recall that except text∗[]‹...›, all Isabelle/DOF commands were mapped to visible layout;
these commands have to be wrapped into (*<*) ... (*>*) if this is undesired.

• obj_id : (or oid for short) a name as specified in Section 5.1.1.

• meta_args :

obj-id ::
�� �class-id �

�HOL-term =
���attribute ,

���
�

• evaluator : from [23], evaluation is tried first using ML, falling back to normalization by
evaluation if this fails. Alternatively a specific evaluator can be selected using square
brackets; typical evaluators use the current set of code equations to normalize and
include simp for fully symbolic evaluation using the simplifier, nbe for normalization
by evaluation and code for code generation in SML.

• upd_meta_args :

obj-id ::
�� �class-id �

�HOL-term :=
�� ��

� +=
�� �

�

attribute ,
���

�

• annotated_text_element :

open_monitor*
�� ��

� close_monitor*
�� ��declare_reference*
�� �

�

[
���meta-args]

����

� change-status-command

� inspection-command

�macro-command

�

• Isabelle/DOF change_status_command :

update_instance*
�� �[

���upd-meta-args]
���

49

5 Ontologies and their Development

With respect to the family of text elements, text∗[oid ∶∶cid , ...] ‹ … text … › is the
core-command of Isabelle/DOF: it permits to create an object of meta-data belonging
to the class cid . This is viewed as the definition of an instance of a document class.
The class invariants were checked for all attribute values at creation time if not specified
otherwise. Unspecified attributed values were represented by fresh free variables. This
instance object is attached to the text-element and makes it thus “trackable” for
Isabelle/DOF, i. e., it can be referenced via the oid , its attributes can be set by defaults
in the class-definitions, or set at creation time, or modified at any point after creation
via update_instance∗[oid , ...]. The class_id is syntactically optional; if ommitted,
an object belongs to an anonymous superclass of all classes. The class_id is used to
generate a class-type in HOL; note that this may impose lexical restrictions as well as
to name-conflicts in the surrounding logical context. In many cases, it is possible to use
the class-type to denote the class_id ; this also holds for type-synonyms on class-types.
References to text-elements can occur textually before creation; in these cases, they
must be declared via declare_reference∗[...] in order to compromise to Isabelle’s fun-
damental “declaration-before-use” linear-visibility evaluation principle. The forward-
declared class-type must be identical with the defined class-type.
For a declared class cid, there exists a text antiquotation of the form @{cid ‹oid›}.
The precise presentation is decided in the layout definitions, for example by suitable
LATEX-template code. Declared but not yet defined instances must be referenced with
a particular pragma in order to enforce a relaxed checking @{cid (unchecked) ‹oid›}.
The choice of the default class in a declare_reference∗-command can be influenced
by setting globally an attribute:

Isardeclare[[declare_reference_default_class = definition]]

Then in this example:

Isardeclare_reference∗[def1]

def1 will be a declared instance of the class definition.

5.2.2 Ontological Code-Contexts and their Management
• annotated_code_element:

ML*
�� �[

���meta-args]
���‹

���SML-code ›
���

The ML∗[oid ∶∶cid , ...] ‹ … SML−code … ›-document elements proceed similarly: a
referentiable meta-object of class cid is created, initialized with the optional attributes
and bound to oid. In fact, the entire the meta-argument list is optional. The SML-
code is type-checked and executed in the context of the SML toplevel of the Isabelle

50

5.2 The main Ontology-aware Document Elements

system as in the corresponding ML‹ … SML−code … ›-command. Additionally, ML
antiquotations were added to check and evaluate terms with term antiquotations:

• @{term_ ‹term› } parses and type-checks term with term antiquotations, for instance
@{term_ ‹@{technical ‹odl−manual1›}›} will parse and check that odl−manual1 is
indeed an instance of the class M_04_Document_Ontology .technical,

• @{value_ ‹term› } performs the evaluation of term with term antiquotations, for
instance @{value_ ‹definition_list @{technical ‹odl−manual1›}›} will get the value
of the definition_list attribute of the instance odl−manual1. value_ may have an
optional argument between square brackets to specify the evaluator: @{value_ [nbe]
‹definition_list @{technical ‹odl−manual1›}›} forces value_ to evaluate the term
using normalization by evaluation (see [23]).

⟨proof ⟩⟨proof ⟩

5.2.3 Ontological Term-Contexts and their Management
• annotated_term_element

term*
�� ��

� [
���meta-args]

���
�

‹
���HOL-term ›

����
� value*

�� ��
�assert*

�� �
�

�
�

��
� [

���evaluator]
���

�

�
� [

���meta-args]
���

�

‹
���HOL-term ›

���
�definition*

�� ��
� [

���meta-args]
���

�

... see ref manual
�� �

� lemma*
�� ��

� theorem*
�� �� corollary*
�� ��proposition*
�� �

�

�
� [

���meta-args]
���

�

... see ref manual
�� �

�

51

5 Ontologies and their Development

For a declared class cid, there exists a term-antiquotation of the form @{cid ‹oid›}.
The major commands providing term-contexts are2

– term∗[oid ∶∶cid , ...] ‹ … HOL−term … ›,
– value∗[oid ∶∶cid , ...] ‹ … HOL−term … ›, and
– assert∗[oid ∶∶cid , ...] ‹ … HOL−term … ›
– definition∗[oid ∶∶cid , ...] const_name where ‹ … HOL−term … ›, and
– lemma∗[oid ∶∶cid , ...] name ∶∶ ‹ … HOL−term … ›.

Wrt. creation, checking and traceability, these commands are analogous to the
ontological text and code-commands. However the argument terms may con-
tain term-antiquotations stemming from an ontology definition. Term-contexts
were type-checked and validated against the global context (so: in the term
@{scholarly_paper .author ‹bu›}, bu is indeed a string which refers to a meta-object be-
longing to the document class M_05_Proofs_Ontologies.author, for example). With
the exception of the term∗-command, the term-antiquotations in the other term-
contexts are additionally expanded (e. g. replaced) by the instance of the class, e. g.,
the HOL-term denoting this meta-object. This expansion happens before evaluation
of the term, thus permitting executable HOL-functions to interact with meta-objects.
The assert∗-command allows for logical statements to be checked in the global con-
text (see Section 5.3.1). This is particularly useful to explore formal definitions wrt.
their border cases. For assert∗, the evaluation of the term can be disabled with the
disable_assert_evaluation theory attribute:

Isar
declare[[disable_assert_evaluation]]

Then assert∗ will act like term∗.
The definition∗-command allows prop, spec_prems, and for_fixes (see the definition
command in [23]) to contain term-antiquotations. For example:

Isardoc_class A =
level ∶∶ int option
x ∶∶ int

definition∗[a1∶∶A, x=5, level=Some 1] xx ′ where xx ′ ≡ A.x @{A ‹a1›} if A.x @{A
‹a1›} = 5

The @{A ‹a1›} term-antiquotation is used both in prop and in spec_prems.
lemma∗, theorem∗, etc., are extended versions of the goal commands defined in [23].
Term-antiquotations can be used either in a long_statement or in a short_statement.
For instance:

2The meta-argument list is optional.

52

5.2 The main Ontology-aware Document Elements

Isarlemma∗[e5∶∶E] testtest ∶ xx + A.x @{A ‹a1›} = yy + A.x @{A ‹a1›} ⟹ xx = yy
by simp

This lemma∗-command is defined using the @{A ‹a1›} term-antiquotation and at-
taches the e5 instance meta-data to the testtest-lemma.

Isardoc_class cc_assumption_test =
a ∶∶ int
text∗[cc_assumption_test_ref ∶∶cc_assumption_test]‹›

definition tag_l ∶∶ ′a ⇒ ′b ⇒ ′b where tag_l ≡ 𝜆x y . y

lemma∗ tagged ∶ tag_l @{cc−assumption−test ‹cc_assumption_test_ref ›} AA ⟹
AA
by (simp add ∶ tag_l_def)

find_theorems name∶tagged (_∶∶cc_assumption_test ⇒ _ ⇒ _) _ _ ⟹_

In this example, the definition tag_l adds a tag to the tagged lemma using the term-
antiquotation @{cc_assumption_test ‹cc_assumption_test_ref ›} inside the prop dec-
laration.
Note unspecified attribute values were represented by free fresh variables which con-
strains DOF to choose either the normalization-by-evaluation strategy nbe or a proof
attempt via the auto method. A failure of these strategies will be reported and re-
garded as non-validation of this meta-object. The latter leads to a failure of the entire
command.

5.2.4 Status and Query Commands
• Isabelle/DOF inspection_command :

print_doc_classes
�� ��

�print_doc_items
�� �� check_doc_global
�� �

�

Isabelle/DOF provides a number of inspection commands.

• print_doc_classes allows to view the status of the internal class-table resulting from
ODL definitions,

• DOF_core.print_doc_class_tree allows for presenting (fragments) of class-
inheritance trees (currently only available at ML level),

53

5 Ontologies and their Development

• print_doc_items allows to view the status of the internal object-table of text-elements
that were tracked. The theory attribute object_value_debug allows to inspect the term
of instances value before its elaboration and normalization. Adding:

Isar
declare[[object_value_debug = true]]

... to the theory will add the raw value term to the instance object-table for all
the subsequent declared instances (using text∗ for instance). The raw term will be
available in the input_term field of print_doc_items output and,

• check_doc_global checks if all declared object references have been defined, all mon-
itors are in a final state, and checks the final invariant on all objects (cf. Section 5.4)

5.2.5 Macros
• Isabelle/DOF macro_command :

define_shortcut*
�� �name ⇌

�� ��
� ==

�� �
�

‹
���string ›

����
�define_macro*

�� �name ⇌
�� ��

� ==
�� �

�

�
�

� ‹
���string ›

���_
���‹

���string ›
���

�

There is a mechanism to define document-local macros which were PIDE-supported
but lead to an expansion in the integrated source; this feature can be used to define

• shortcuts, i. e., short names that were expanded to, for example, LATEX-code,

• macro’s (= parameterized short-cuts), which allow for passing an argument to the
expansion mechanism.

The argument can be checked by an own SML-function with respect to syntactic as well
as semantic regards; however, the latter feature is currently only accessible at the SML level
and not directly in the Isar language. We would like to stress, that this feature is basically
an abstract interface to existing Isabelle functionality in the document generation.

54

5.3 The Standard Ontology Libraries

Examples

• common short-cut hiding LATEX code in the integrated source:

define_shortcut∗ eg ⇌ ‹\eg›
clearpage ⇌ ‹\clearpage{}›

• non-checking macro:

define_macro∗ index ⇌ ‹\index{› _ ‹}›

• checking macro:

setup‹ DOF_lib.define_macro binding ‹vs› \\vspace{ } (check_latex_measure) ›

where check_latex_measure is a hand-programmed function that checks the input
for syntactical and static semantic constraints.

5.3 The Standard Ontology Libraries
We will describe the backbone of the Standard Library with the already mentioned hierarchy
COL (the common ontology library), scholarly_paper (for MINT-oriented scientific papers)
or technical_report (for MINT-oriented technical reports).

5.3.1 Common Ontology Library (COL)
⟨ML⟩
Isabelle/DOF provides a Common Ontology Library (COL) 3 that introduces several on-

tology concepts; its overall class-tree it provides looks as follows:

Isa_COL.text_element
Isa_COL.chapter
Isa_COL.section
Isa_COL.subsection
Isa_COL.subsubsection

Isa_COL.float...
Isa_COL.figure...
Isa_COL.listing...

…

3contained in Isabelle_DOF .Isa_COL

55

5 Ontologies and their Development

In particular it defines the super-classM_04_Document_Ontology .text_element: the root
of all text-elements:

Isar
doc_class text_element =
level ∶∶ int option <= None
referentiable ∶∶ bool <= False
variants ∶∶ String .literal set <= {STR ′′outline ′′, STR ′′document ′′}

As mentioned in Section 3.3.2, A.level defines the section-level (e. g., using a LATEX-
inspired hierarchy: from Some −1 (corresponding to \part) to Some 0 (corresponding to
\chapter, respectively, chapter∗) to Some 3 (corresponding to \subsubsection, respec-
tively, subsubsection∗). Using an invariant, a derived ontology could, e. g., require that
any sequence of technical-elements must be introduced by a text-element with a higher level
(this requires that technical text section are introduce by a section element).

The attribute referentiable captures the information if a text-element can be a target for
a reference, which is the case for sections or subsections, for example, but not arbitrary ele-
ments such as, i. e., paragraphs (this mirrors restrictions of the target LATEX representation).
The attribute variants refers to an Isabelle-configuration attribute that permits to steer the
different versions of a LATEX-presentation of the integrated source.

For further information of the root classes such as float’s, please consult the ontology in
Isabelle_DOF .Isa_COL directly and consult the Example I and II for their pragmatics. The
Isabelle_DOF .Isa_COL also provides the subclasses figure and listing which together with
specific text-antiquotations like:

1. @{theory_text [options] path} (Isabelle)

2. @{fig_content (width=… , height=… , caption=…) path} (COL)

3. @{boxed_theory_text [display] ‹ ... › } (local, e.g. manual)

4. @{boxed_sml [display] ‹ ... › } (local, e.g. manual)

5. @{boxed_pdf [display] ‹ ... › } (local, e.g. manual)

6. @{boxed_latex [display] ‹ ... › } (local, e.g. manual)

7. @{boxed_bash [display] ‹ ... › } (local, e.g. manual)

COL finally provides macros that extend the command-language of the DOF core by the
following abbreviations:

• derived_text_element :

56

5.3 The Standard Ontology Libraries

chapter*
�� ��

� section*
�� �� subsection*
�� �� subsubsection*
�� ��paragraph*
�� ��figure*
�� �� listing*
�� �

�

�

�
� [

���meta-args]
���‹

���text ›
���

The command syntax follows the implicit convention to add a “*” to distinguish them
from the (similar) standard Isabelle text-commands which are not ontology-aware.

5.3.2 The Ontology scholarly_paper

⟨ML⟩
The scholarly_paper ontology is oriented towards the classical domains in science:

mathematics, informatics, natural sciences, technology, or engineering.
It extends COL by the following concepts:

57

5 Ontologies and their Development

scholarly_paper.title
scholarly_paper.subtitle
scholarly_paper.author...............................An Author Entity Declaration
scholarly_paper.abstract
Isa_COL.text_element

scholarly_paper.text_section........................Major Paper Text-Elements
scholarly_paper.introduction...
scholarly_paper.conclusion ...

scholarly_paper.related_work...
scholarly_paper.bibliography...
scholarly_paper.annex...
scholarly_paper.example...........................Example in General Sense
scholarly_paper.technical......................Root for Technical Content

scholarly_paper.math_content...
scholarly_paper.definition...................................Freeform
scholarly_paper.lemma...Freeform
scholarly_paper.theorem......................................Freeform
scholarly_paper.corollary....................................Freeform
scholarly_paper.math_example................................Freeform
scholarly_paper.math_semiformal.............................Freeform
scholarly_paper.math_formal..........................Formal Content

scholarly_paper.assertion..............................Assertions
scholarly_paper.tech_example...
scholarly_paper.math_motivation..
scholarly_paper.math_explanation..
scholarly_paper.engineering_content.....................................

scholarly_paper.data
scholarly_paper.evaluation
scholarly_paper.experiment

..
..
scholarly_paper.article...The Paper Monitor
…

Recall that Formal Content means machine-checked, validated content.

A pivotal abstract class in the hierarchy is:
Isar

doc_class text_section = text_element +
main_author ∶∶ author option <= None
fixme_list ∶∶ string list <= []
level ∶∶ int option <= None

58

5.3 The Standard Ontology Libraries

Besides attributes of more practical considerations like a fixme_list, that can be modified
during the editing process but is only visible in the integrated source but usually ignored in the
LATEX, this class also introduces the possibility to assign an “ownership” or “responsibility” of a
M_04_Document_Ontology .text_element to a specific M_05_Proofs_Ontologies.author.
Note that this is possible since Isabelle/DOF assigns to each document class also a class-type
which is declared in the HOL environment.

Recall that concrete authors can be denoted by term-antiquotations generated by Is-
abelle/DOF; for example, this may be for a text fragment like

Isartext∗[… ∶∶example, main_author = Some(@{author ′′bu ′′})] ‹ … ›

or
Isartext∗[… ∶∶example, main_author = Some(@{author ‹bu›})] ‹ … ›

where ′′bu ′′ is a string presentation of the reference to the author text element (see below
in Section 5.3.1).

Some of these concepts were supported as command-abbreviations leading to the extension
of the Isabelle/DOF language:

• derived_text_elements :

59

5 Ontologies and their Development

author*
�� ��

�abstract*
�� ��Definition*
�� ��Lemma*
�� ��Theorem*
�� ��Proposition*
�� ��Proof*
�� ��Example*
�� ��Premise*
�� ��Assumption*
�� ��Hypothesis*
�� ��Corollary*
�� ��Consequence*
�� ��Assertion*
�� ��Conclusion*
�� �

�

�

�
� [

���meta-args]
���‹

���text ›
���

Usually, command macros for text elements will assign the generated instance to the de-
fault class corresponding for this class. For pragmatic reasons, Definition∗, Lemma∗ and
Theorem∗ represent an exception to this rule and are set up such that the default class is the
super class math_content (rather than to the class M_04_Document_Ontology .definition).
This way, it is possible to use these macros for several sorts of the very generic concept “def-
inition”, which can be used as a freeform mathematical definition but also for a freeform
terminological definition as used in certification standards. Moreover, new subclasses of
math_content might be introduced in a derived ontology with an own specific layout defi-
nition.

While this library is intended to give a lot of space to freeform text elements in order to
counterbalance Isabelle’s standard view, it should not be forgotten that the real strength of
Isabelle is its ability to handle both, and to establish links between both worlds. Therefore,

60

5.3 The Standard Ontology Libraries

the formal assertion command has been integrated to capture some form of formal content.

Examples

While the default user interface for class definitions via the text∗‹ ... ›-command allow to
access all features of the document class, Isabelle/DOF provides short-hands for certain,
widely-used, concepts such as title∗‹ ... › or section∗‹ ... ›, e. g.:

Isar
title∗[title∶∶title]‹Isabelle/DOF ›
subtitle∗[subtitle∶∶subtitle]‹User and Implementation Manual›
author∗[adb∶∶author , email=‹a.brucker@exeter .ac.uk›,

orcid=‹0000−0002−6355−1200›, http_site=‹https∶//brucker .ch/›,
affiliation=‹University of Exeter , Exeter , UK ›] ‹Achim D. Brucker ›

author∗[bu∶∶author , email = ‹wolff @lri .fr ›,
affiliation = ‹Université Paris−Saclay , LRI, Paris, France›]‹Burkhart Wolff ›

Assertions allow for logical statements to be checked in the global context. This is partic-
ularly useful to explore formal definitions wrt. their border cases.

Isar
assert∗[ass1∶∶assertion, short_name = ‹This is an assertion›] ‹last [3] < (4∶∶int)›

We want to check the consequences of this definition and can add the following statements:
Isar

text∗[claim∶∶assertion]‹For non−empty lists, our definition yields indeed
the last element of a list.›

assert∗[claim1∶∶assertion] ‹last[4∶∶int] = 4›
assert∗[claim2 ∶∶assertion] ‹last[1,2 ,3,4∶∶int] = 4›

As mentioned before, the command macros of Definition∗, Lemma∗ and Theorem∗ set
the default class to the super-class of M_04_Document_Ontology .definition. However, in
order to avoid the somewhat tedious consequence:

IsarTheorem∗[T1∶∶theorem, short_name=‹DF definition captures deadlock−freeness›] ‹ … ›

the choice of the default class can be influenced by setting globally an attribute such as
Isardeclare[[Definition_default_class = definition]]

declare[[Theorem_default_class = theorem]]

which allows the above example be shortened to:
IsarTheorem∗[T1, short_name=‹DF definition captures deadlock−freeness›] ‹ … ›

5.3.3 The Ontology technical_report

⟨ML⟩

61

5 Ontologies and their Development

The technical_report ontology in Isabelle_DOF .technical_report extends
scholarly_paper by concepts needed for larger reports in the domain of mathematics and
engineering. The concepts are fairly high-level arranged at root-class level,

technical_report.front_matter..
technical_report.table_of_contents..
Isa_COL.text_element..

scholarly_paper.text_section...
technical_report.code

technical_report.SML...
technical_report.ISAR..
technical_report.LATEX ..

technical_report.index..
..
technical_report.report...

For Isabelle Hackers: Defining New Top-Level Commands

Defining such new top-level commands requires some Isabelle knowledge as well as extending
the dispatcher of the LATEX-backend. For the details of defining top-level commands, we refer
the reader to the Isar manual [23]. Here, we only give a brief example how the section∗-
command is defined; we refer the reader to the source code of Isabelle/DOF for details.

First, new top-level keywords need to be declared in the keywords-section of the theory
header defining new keywords:

Isar
theory

...
imports
...

keywords
section∗

begin
...
end

Second, given an implementation of the functionality of the new keyword (implemented
in SML), the new keyword needs to be registered, together with its parser, as outer syntax:

SML
val _ =
Outer_Syntax.command ("section*", <@>{here}) "section heading"
(attributes -- Parse.opt_target -- Parse.document_source --| semi
>> (Toplevel.theory o (enriched_document_command (SOME(SOME 1))

{markdown = false})));

62

5.4 Advanced ODL Concepts

Finally, for the document generation, a new dispatcher has to be defined in LATEX—this is
mandatory, otherwise the document generation will break. These dispatchers always follow
the same schemata:

LATEX
%%
% begin: section*-dispatcher
\NewEnviron{isamarkupsection*}[1][]{\isaDof[env={section},#1]{\BODY}}
% end: section*-dispatcher
%%

After the definition of the dispatcher, one can, optionally, define a custom representation
using the \newisadof-command, as introduced in the previous section:

LATEX
\newisadof{section}[label=,type=][1]{%
\isamarkupfalse%
\isamarkupsection{#1}\label{\commandkey{label}}%

\isamarkuptrue%
}

5.4 Advanced ODL Concepts
5.4.1 Example
We assume in this section the following local ontology:

63

5 Ontologies and their Development

Isar
doc_class title =
short_title ∶∶ string option <= None

doc_class author =
email ∶∶ string <= ′′′′

datatype classification = SIL0 ∣ SIL1 ∣ SIL2 ∣ SIL3 ∣ SIL4
doc_class abstract =
keywordlist ∶∶ string list <= []
safety_level ∶∶ classification <= SIL3

doc_class text_section =
authored_by ∶∶ author set <= {}
level ∶∶ int option <= None

type_synonym notion = string
doc_class introduction = text_section +
authored_by ∶∶ author set <= UNIV
uses ∶∶ notion set

doc_class claim = introduction +
based_on ∶∶ notion list

doc_class technical = text_section +
formal_results ∶∶ thm list

doc_class definition = technical +
is_formal ∶∶ bool
property ∶∶ term list <= []

datatype kind = expert_opinion ∣ argument ∣ proof
doc_class result = technical +
evidence ∶∶ kind
property ∶∶ thm list <= []

doc_class example = technical +
referring_to ∶∶ (notion + definition) set <= {}

doc_class conclusion = text_section +
establish ∶∶ (claim × result) set

5.4.2 Meta-types as Types
To express the dependencies between text elements to the formal entities, e. g., term (𝜆-
term), typ, or thm, we represent the types of the implementation language inside the HOL
type system. We do, however, not reflect the data of these types. They are just types
declared in HOL, which are “inhabited” by special constant symbols carrying strings, for
example of the format @{thm <string>}. When HOL expressions were used to denote
values of doc_class instance attributes, this requires additional checks after conventional
type-checking that this string represents actually a defined entity in the context of the system
state 𝜗. For example, the establish attribute in our example is the power of the ODL: here,
we model a relation between claims and results which may be a formal, machine-check
theorem of type thm denoted by, for example: property = [@{thm system_is_safe}] in a
system context 𝜗 where this theorem is established. Similarly, attribute values like property
= @{term ‹A ⟷ B›} require that the HOL-string A ⟷ B is again type-checked and

64

5.4 Advanced ODL Concepts

represents indeed a formula in 𝜗. Another instance of this process, which we call second-
level type-checking, are term-constants generated from the ontology such as @{definition
<string>}.

5.4.3 ODL Class Invariants
Ontological classes as described so far are too liberal in many situations. There is a first
high-level syntax implementation for class invariants. These invariants are checked when an
instance of the class is defined, and trigger warnings. The checking is enabled by default but
can be disabled with the invariants_checking theory attribute:

Isar
declare[[invariants_checking = false]]

To enable the strict checking of the invariants, that is to trigger errors instead of warnings,
the invariants_strict_checking theory attribute must be set:

Isar
declare[[invariants_strict_checking = true]]

For example, let’s define the following two classes:
Isar

doc_class class_inv1 =
int1 ∶∶ int
invariant inv1 ∶∶ int1 𝜎 ≥ 3

doc_class class_inv2 = class_inv1 +
int2 ∶∶ int
invariant inv2 ∶∶ int2 𝜎 < 2

The 𝜎 symbol is reserved and references the future instance class. By relying on the
implementation of the Records in Isabelle/HOL [23], one can reference an attribute of an
instance using its selector function. For example, int1 𝜎 denotes the value of the int1 attribute
of the future instance of the class class_inv1.
Now let’s define two instances, one of each class:

Isar
text∗[testinv1∶∶class_inv1, int1=4]‹lorem ipsum...›
text∗[testinv2 ∶∶class_inv2 , int1=3, int2=1]‹lorem ipsum...›

The value of each attribute defined for the instances is checked against their classes
invariants. As the class class_inv2 is a subsclass of the class class_inv1, it inherits class_inv1
invariants. Hence, the inv1 invariant is checked when the instance testinv2 is defined.
Now let’s add some invariants to our example in Section 5.4.1. For example, one would

like to express that any instance of a result class finally has a non-empty property list, if its
kind is proof, or that the establish relation between claim and result is total. In a high-level
syntax, this type of constraints could be expressed, e. g., by:

65

5 Ontologies and their Development

Isar
doc_class introduction = text_section +
authored_by ∶∶ author set <= UNIV
uses ∶∶ notion set
invariant author_finite ∶∶ finite (authored_by 𝜎)

doc_class result = technical +
evidence ∶∶ kind
property ∶∶ thm list <= []
invariant has_property ∶∶ evidence 𝜎 = proof ⟷ property 𝜎 ≠ []

doc_class example = technical +
referring_to ∶∶ (notion + definition) set <= {}

doc_class conclusion = text_section +
establish ∶∶ (claim × result) set
invariant total_rel ∶∶ ∀ x . x ∈ Domain (establish 𝜎)

⟶ (∃ y ∈ Range (establish 𝜎). (x , y) ∈ establish 𝜎)

All specified constraints are already checked in the IDE of DOF while editing. The invariant
author_finite enforces that the user sets the authored_by set. The invariants author_finite
and establish_defined can not be checked directly and need a little help. We can set the
invariants_checking_with_tactics theory attribute to help the checking. It will enable a
basic tactic, using unfold and auto:

Isar
declare[[invariants_checking_with_tactics = true]]

There are still some limitations with this high-level syntax. For now, the high-level syntax
does not support the checking of specific monitor behaviors (see Section 5.4.5). For example,
one would like to delay a final error message till the closing of a monitor. For this use-case
you can use low-level class invariants (see Section 5.4.4). Also, for now, term-antiquotations
can not be used in an invariant formula.

5.4.4 ODL Low-level Class Invariants
If one want to go over the limitations of the actual high-level syntax of the invariant, one
can define a function using SML. A formulation, in SML, of the class-invariant has_property
in Section 5.4.3, defined in the supposedly Low_Level_Syntax_Invariants theory (note the
long name of the class), is straight-forward:

66

5.4 Advanced ODL Concepts

SML
fun check_result_inv oid {is_monitor:bool} ctxt =

let
val kind =
ISA_core.compute_attr_access ctxt "evidence" oid NONE @{here}

val prop =
ISA_core.compute_attr_access ctxt "property" oid NONE @{here}

val tS = HOLogic.dest_list prop
in case kind of

@{term "proof"} => if not(null tS) then true
else error("class result invariant violation")

| _ => true
end

val cid_long = DOF_core.get_onto_class_name_global "result" @{theory}
val bind = Binding.name "Check_Result"
val _ = Theory.setup (DOF_core.make_ml_invariant (check_result_inv, cid_long)

|> DOF_core.add_ml_invariant bind)

The Theory.setup-command (last line) registers the check_result_inv function into the
Isabelle/DOF kernel, which activates any creation or modification of an instance of result. We
cannot replace compute_attr_access by the corresponding antiquotation value_ ‹evidence
@{result ‹oid›}›, since oid is bound to a variable here and can therefore not be statically
expanded.

5.4.5 ODL Monitors
We call a document class with an accepts_clause a monitor. Syntactically, an accepts_clause
contains a regular expression over class identifiers. For example:

Isar
doc_class article =
style_id ∶∶ string <= ′′LNCS ′′

version ∶∶ (int × int × int) <= (0,0,0)
accepts (title ∼∼ [[subtitle]] ∼∼ {∣author ∣}+ ∼∼ abstract ∼∼ {∣introduction∣}+

∼∼ {∣background ∣}∗ ∼∼ {∣technical ∣∣ example ∣}+ ∼∼ {∣conclusion∣}+
∼∼ bibliography ∼∼ {∣annex ∣}∗)

Semantically, monitors introduce a behavioral element into ODL:
Isar

open_monitor∗[this∶∶article]
...

close_monitor∗[this]

Inside the scope of a monitor, all instances of classes mentioned in its accepts_clause
(the accept-set) have to appear in the order specified by the regular expression; instances
not covered by an accept-set may freely occur. Monitors may additionally contain a

67

5 Ontologies and their Development

rejects_clause with a list of class-ids (the reject-list). This allows specifying ranges
of admissible instances along the class hierarchy:

• a superclass in the reject-list and a subclass in the accept-expression forbids instances
superior to the subclass, and

• a subclass 𝑆 in the reject-list and a superclass T in the accept-list allows instances of
superclasses of T to occur freely, instances of T to occur in the specified order and
forbids instances of S.

Should the specified ranges of admissible instances not be observed, warnings will
be triggered. To forbid the violation of the specified ranges, one can enable the
strict_monitor_checking theory attribute:

Isardeclare[[strict_monitor_checking = true]]

It is possible to enable the tracing of free classes occurring inside the scope of a monitor
by enabling the free_class_in_monitor_checking theory attribute:

Isardeclare[[free_class_in_monitor_checking = true]]

Then a warning will be triggered when defining an instance of a free class inside the
scope of a monitor. To forbid free classes inside the scope of a monitor, one can enable the
free_class_in_monitor_strict_checking theory attribute:

Isardeclare[[free_class_in_monitor_strict_checking = true]]

Monitored document sections can be nested and overlap; thus, it is possible to combine
the effect of different monitors. For example, it would be possible to refine the example
section by its own monitor and enforce a particular structure in the presentation of examples.

Monitors manage an implicit attribute trace containing the list of “observed” text element
instances belonging to the accept-set. Together with the concept of ODL class invariants,
it is possible to specify properties of a sequence of instances occurring in the document
section. For example, it is possible to express that in the sub-list of introduction-elements,
the first has an introduction element with a level strictly smaller than the others. Thus, an
introduction is forced to have a header delimiting the borders of its representation. Class
invariants on monitors allow for specifying structural properties on document sections. For
now, the high-level syntax of invariants does not support the checking of specific monitor
behaviors like the one just described and you must use the low-level class invariants (see
Section 5.4.4).

Low-level invariants checking can be set up to be triggered when opening a monitor,
when closing a monitor, or both by using the DOF_core.add_opening_ml_invariant,
DOF_core.add_closing_ml_invariant, or DOF_core.add_ml_invariant commands re-
spectively, to add the invariants to the theory context (See Section 5.4.4 for an example).

68

5.5 Technical Infrastructure

5.4.6 Queries On Instances
Any class definition generates term antiquotations checking a class instance or the set of
instances in a particular logical context; these references were elaborated to objects they refer
to. This paves the way for a new mechanism to query the “current” instances presented as
a HOL list. Arbitrarily complex queries can therefore be defined inside the logical language.
To get the list of the properties of the instances of the class result, or to get the list of the
authors of the instances of introduction, it suffices to treat this meta-data as usual:

value∗‹map (result.property) @{instances_of ‹result›}›
value∗‹map (text_section.authored_by) @{instances_of ‹introduction›}›

In order to get the list of the instances of the class myresult whose evidence is a proof, one
can use the command:

value∗‹filter (𝜆𝜎. result.evidence 𝜎 = proof) @{instances_of ‹result›}›

The list of the instances of the class introduction whose level > 1, can be filtered by:

value∗‹filter (𝜆𝜎. the (text_section.level 𝜎) > 1) @{instances_of ‹introduction›}›

5.5 Technical Infrastructure
5.5.1 The Previewer
A screenshot of the editing environment is shown in Figure 5.1. It supports incremental
continuous PDF generation which improves usability. Currently, the granularity is restricted
to entire theories (which have to be selected in a specific document pane). The response
times can not (yet) compete with a Word- or Overleaf editor, though, which is mostly due
to the checking and evaluation overhead (the turnaround of this section is about 30 s).
However, we believe that better parallelization and evaluation techniques will decrease this
gap substantially for the most common cases in future versions.

5.5.2 Developing Ontologies and their Representation Mappings
The document core may, but must not use Isabelle definitions or proofs for checking the
formal content—this manual is actually an example of a document not containing any proof.
Consequently, the document editing and checking facility provided by Isabelle/DOF addresses
the needs of common users for an advanced text-editing environment, neither modeling nor
proof knowledge is inherently required.

69

5 Ontologies and their Development

Figure 5.1: A Screenshot while editing this Paper in DOF with Preview.

We expect authors of ontologies to have experience in the use of Isabelle/DOF, basic
modeling (and, potentially, some basic SML programming) experience, basic LATEX knowl-
edge, and, last but not least, domain knowledge of the ontology to be modeled. Users with
experience in UML-like meta-modeling will feel familiar with most concepts; however, we ex-
pect no need for insight in the Isabelle proof language, for example, or other more advanced
concepts.

Technically, ontologies are stored in a directory ontologies and consist of an Isabelle
theory file and a LATEX-style file:

ontologies...Ontologies
ontologies.thy...Ontology Registration
scholarly_paper...scholarly_paper

scholarly_paper.thy
DOF-scholarly_paper.sty

technical_report..technical_paper
technical_report.thy
DOF-technical_report.sty

Developing a new ontology “foo” requires the following steps:

• definition of the ontological concepts, using Isabelle/DOF’s Ontology Definition Lan-
guage (ODL), in a new theory file ontologies/foo/foo.thy.

70

5.6 Defining Document Templates

• definition of the document representation for the ontological concepts in a LATEX-style
stored in the same directory as the theory file containing the ODL definitions. The file
name should start with the prefix “DOF-“. For instance: DOF-foo.sty

• registration of the LATEX-style by adding a suitable define_ontology command to the
theory containing the ODL definitions.

5.5.3 Document Templates
Document-templates define the overall layout (page size, margins, fonts, etc.) of the gener-
ated documents. Document-templates are stored in a directory src/document-templates:

document-templates..Document templates
root-lncs.tex
root-scrartcl.tex
root-scrreprt-modern.tex
root-scrreprt.tex

Developing a new document template “bar” requires the following steps:

• develop a new LATEX-template src/document-templates/root-bar.tex

• add a suitable define_template command to a theory that is imported by the project
that shall use the new document template.

As the document generation of Isabelle/DOF is based on LATEX, the Isabelle/DOF docu-
ment templates can (and should) make use of any LATEX-classes provided by publishers or
standardization bodies.

5.6 Defining Document Templates
5.6.1 The Core Template
Document-templates define the overall layout (page size, margins, fonts, etc.) of the gen-
erated documents. If a new layout is already supported by a LATEX-class, then developing
basic support for it is straightforward: In most cases, it is sufficient to replace the document
class in Line 1 of the template and add the LATEX-packages that are (strictly) required by
the used LATEX-setup. In general, we recommend to only add LATEX-packages that are always
necessary for this particular template, as loading packages in the templates minimizes the
freedom users have by adapting the preample.tex. The file name of the new template
should start with the prefix root- and need to be registered using the define_template
command. a typical Isabelle/DOF document template looks as follows:

71

5 Ontologies and their Development

LATEX
1 \documentclass{article} % The LaTeX-class of your template
2 \usepackage{DOF-core}
3 \usepackage{subcaption}
4 \usepackage[size=footnotesize]{caption}
5 \usepackage{hyperref}
6

7 %% Main document, do not modify
8 \begin{document}
9 \maketitle

10 \IfFileExists{dof_session.tex}{\input{dof_session}}{\input{session}}
11 \IfFileExists{root.bib}{\bibliography{root}}{}
12 \end{document}

5.6.2 Tips, Tricks, and Known Limitations
In this section, we will discuss several tips and tricks for developing new or adapting existing
document templates or LATEX-representations of ontologies.

Getting Started

In general, we recommend creating a test project (e. g., using isabelle dof_mkroot) to
develop new document templates or ontology representations. The default setup of the
Isabelle/DOF build system generated a output/document directory with a self-contained
LATEX-setup. In this directory, you can directly use LATEX on the main file, called root.tex:

Bash
achim@logicalhacking:~/MyProject/output/document$ lualatex root.tex

This allows you to develop and check your LATEX-setup without the overhead of running
isabelle build after each change of your template (or ontology-style). Note that the
content of the output directory is overwritten by executing isabelle build.

Truncated Warning and Error Messages

By default, LATEX cuts of many warning or error messages after 79 characters. Due to the
use of full-qualified names in Isabelle/DOF, this can often result in important information
being cut off. Thus, it can be very helpful to configure LATEX in such a way that it prints
long error or warning messages. This can easily be done for individual LATEX invocations:

Bash
achim@logicalhacking:~/MyProject/output/document$ max_print_line=200 \

error_line=200 half_error_line=100 lualatex root.tex

72

5.6 Defining Document Templates

Deferred Declaration of Information

During document generation, sometimes, information needs to be printed prior to its declara-
tion in a Isabelle/DOF theory. This violation of the declaration-before-use-principle requires
that information is written into an auxiliary file during the first run of LATEX so that the
information is available at further runs of LATEX. While, on the one hand, this is a standard
process (e. g., used for updating references), implementing it correctly requires a solid un-
derstanding of LATEX’s expansion mechanism. Examples of this can be found, e. g., in the
ontology-style ../../ontologies/scholarly_paper/DOF-scholarly_paper.sty. For
details about the expansion mechanism in general, we refer the reader to the LATEX literature
(e. g., [9, 13, 15]).

Authors and Affiliation Information

In the context of academic papers, the defining of the representations for the author and
affiliation information is particularly challenging as, firstly, they inherently are breaking the
declare-before-use-principle and, secondly, each publisher uses a different LATEX-setup for
their declaration. Moreover, the mapping from the ontological modeling to the document
representation might also need to bridge the gap between different common modeling styles
of authors and their affiliations, namely: affiliations as attributes of authors vs. authors and
affiliations both as entities with a many-to-many relationship.
The ontology representation ../../ontologies/scholarly_paper/

DOF-scholarly_paper.sty contains an example that, firstly, shows how to write
the author and affiliation information into the auxiliary file for re-use in the next LATEX-run
and, secondly, shows how to collect the author and affiliation information into an \author
and a \institution statement, each of which containing the information for all authors.
The collection of the author information is provided by the following LATEX-code:

LATEX
\def\dof@author{}%
\newcommand{\DOFauthor}{\author{\dof@author}}
\AtBeginDocument{\DOFauthor}
\def\leftadd#1#2{\expandafter\leftaddaux\expandafter{#1}{#2}{#1}}
\def\leftaddaux#1#2#3{\gdef#3{#1#2}}
\newcounter{dof@cnt@author}
\newcommand{\addauthor}[1]{%
\ifthenelse{\equal{\dof@author}{}}{%
\gdef\dof@author{#1}%

}{%
\leftadd\dof@author{\protect\and #1}%

}
}

The new command \addauthor and a similarly defined command \addaffiliation
can now be used in the definition of the representation of the concept

text.scholarly_paper .author, which writes the collected information in the job’s aux-file.

73

5 Ontologies and their Development

The intermediate step of writing this information into the job’s aux-file is necessary, as the
author and affiliation information is required right at the beginning of the document while
Isabelle/DOF allows defining authors at any place within a document:

LATEX
\provideisadof{text.scholarly_paper.author}%
[label=,type=%
,scholarly_paper.author.email=%
,scholarly_paper.author.affiliation=%
,scholarly_paper.author.orcid=%
,scholarly_paper.author.http_site=%
][1]{%
\stepcounter{dof@cnt@author}
\def\dof@a{\commandkey{scholarly_paper.author.affiliation}}
\ifthenelse{\equal{\commandkey{scholarly_paper.author.orcid}}{}}{%
\immediate\write\@auxout%

{\noexpand\addauthor{#1\noexpand\inst{\thedof@cnt@author}}}%
}{%
\immediate\write\@auxout%

{\noexpand\addauthor{#1\noexpand%
\inst{\thedof@cnt@author}%

\orcidID{\commandkey{scholarly_paper.author.orcid}}}}%
}
\protected@write\@auxout{}{%

\string\addaffiliation{\dof@a\\\string\email{%
\commandkey{scholarly_paper.author.email}}}}%

}

Finally, the collected information is used in the \author command using the
AtBeginDocument-hook:

LATEX
\newcommand{\DOFauthor}{\author{\dof@author}}
\AtBeginDocument{%
\DOFauthor

}

Restricting the Use of Ontologies to Specific Templates

As ontology representations might rely on features only provided by certain templates (LATEX-
classes), authors of ontology representations might restrict their use to specific classes. This
can, e. g., be done using the \@ifclassloaded{} command:

74

5.6 Defining Document Templates

LATEX
\@ifclassloaded{llncs}{}%
{% LLNCS class not loaded

\PackageError{DOF-scholarly_paper}
{Scholarly Paper only supports LNCS as document class.}{}\stop%

}

We encourage this clear and machine-checkable enforcement of restrictions while, at the
same time, we also encourage to provide a package option to overwrite them. The latter
allows inherited ontologies to overwrite these restrictions and, therefore, to provide also
support for additional document templates. For example, the ontology technical_report
extends the scholarly_paper ontology and its LATEX supports provides support for the scrrept
-class which is not supported by the LATEX support for scholarly_paper.

75

6 Extending Isabelle/DOF
In this chapter, we describe the basic implementation aspects of Isabelle/DOF, which is

based on the following design-decisions:
• the entire Isabelle/DOF is a “pure add-on,” i. e., we deliberately resign to the possibility

to modify Isabelle itself,

• Isabelle/DOF has been organized as an AFP entry and a form of an Isabelle component
that is compatible with this goal,

• we decided to make the markup-generation by itself to adapt it as well as possible to
the needs of tracking the linking in documents,

• Isabelle/DOF is deeply integrated into the Isabelle’s IDE (PIDE) to give immediate
feedback during editing and other forms of document evolution.

Semantic macros, as required by our document model, are called document antiquotations
in the Isabelle literature [23]. While Isabelle’s code-antiquotations are an old concept going
back to Lisp and having found via SML and OCaml their ways into modern proof systems,
special annotation syntax inside documentation comments have their roots in documentation
generators such as Javadoc. Their use, however, as a mechanism to embed machine-checked
formal content is usually very limited and also lacks IDE support.

6.1 Isabelle/DOF: A User-Defined Plugin in Isabelle/Isar
A plugin in Isabelle starts with defining the local data and registering it in the framework.
As mentioned before, contexts are structures with independent cells/compartments having
three primitives init, extend and merge. Technically this is done by instantiating a functor
Theory_Data, and the following fairly typical code-fragment is drawn from Isabelle/DOF:

SML
structure Onto_Classes = Theory_Data
(

type T = onto_class Name_Space.table;
val empty : T = Name_Space.empty_table onto_classN;
fun merge data : T = Name_Space.merge_tables data;

);

where the table Name_Space.table manages the environment for class definitions
(onto_class), inducing the inheritance relation, using a Name_Space table. Other tables
capture, e. g., the class instances, class invariants, inner-syntax antiquotations. Operations

77

6 Extending Isabelle/DOF

follow the MVC-pattern, where Isabelle/Isar provides the controller part. A typical model
operation has the type:

SML
val opn :: <args_type> -> theory -> theory

representing a transformation on system contexts. For example, the operation of defining
a class in the context is presented as follows:

SML
fun add_onto_class name onto_class thy =

thy |> Onto_Classes.map
(Name_Space.define (Context.Theory thy) true (name, onto_class) #> #2);

This code fragment uses operations from the library structure Name_Space that were
used to update the appropriate table for document objects in the plugin-local state. A
name space manages a collection of long names, together with a mapping between partially
qualified external names and fully qualified internal names (in both directions). It can also
keep track of the declarations and updates position of objects, and then allows a simple
markup-generation. Possible exceptions to the update operation are automatically triggered.

Finally, the view-aspects were handled by an API for parsing-combinators. The library
structure Scan provides the operators:

SML
op || : ('a -> 'b) * ('a -> 'b) -> 'a -> 'b
op -- : ('a -> 'b * 'c) * ('c -> 'd * 'e) -> 'a -> ('b * 'd) * 'e
op >> : ('a -> 'b * 'c) * ('b -> 'd) -> 'a -> 'd * 'c
op option : ('a -> 'b * 'a) -> 'a -> 'b option * 'a
op repeat : ('a -> 'b * 'a) -> 'a -> 'b list * 'a

for alternative, sequence, and piping, as well as combinators for option and repeat. Parsing
combinators have the advantage that they can be integrated into standard programs, and
they enable the dynamic extension of the grammar. There is a more high-level structure
Parse providing specific combinators for the command-language Isar:

SML
val attribute = Parse.position Parse.name

-- Scan.optional(Parse.$$$ "=" |-- Parse.!!! Parse.name)"";
val reference = Parse.position Parse.name

-- Scan.option (Parse.$$$ "::" |-- Parse.!!!
(Parse.position Parse.name));

val attributes =(Parse.$$$ "[" |-- (reference
-- (Scan.optional(Parse.$$$ ","

|--(Parse.enum ","attribute)))[]))--| Parse.$$$ "]"

The “model” create_and_check_docitem and “new”
ODL_Meta_Args_Parser.attributes parts were combined via the piping operator
and registered in the Isar toplevel:

78

6.2 Programming Antiquotations

SML
val _ =

let fun create_and_check_docitem (((oid, pos),cid_pos),doc_attrs)
= (Value_Command.Docitem_Parser.create_and_check_docitem

{is_monitor = false} {is_inline=true}
{define = false} oid pos (cid_pos) (doc_attrs))

in Outer_Syntax.command @{command_keyword "declare_reference*"}
"declare document reference"
(ODL_Meta_Args_Parser.attributes
>> (Toplevel.theory o create_and_check_docitem))

end;

Altogether, this gives the extension of Isabelle/HOL with Isar syntax and semantics for
the new command :

Isar
declare_reference∗ [lal ∶∶requirement, alpha=main, beta=42]

The construction also generates implicitly some markup information; for example, when
hovering over the declare_reference∗ command in the IDE, a popup window with the text:
“declare document reference” will appear.

6.2 Programming Antiquotations
The definition and registration of text antiquotations and ML-antiquotations is similar in
principle: based on a number of combinators, new user-defined antiquotation syntax and
semantics can be added to the system that works on the internal plugin-data freely. For
example, in

SML
val _ = Theory.setup

(docitem_antiquotation @{binding "docitem"} DOF_core.default_cid #>

ML_Antiquotation.inline @{binding "docitem_value"}
ML_antiquotation_docitem_value)

the text antiquotation docitem is declared and bounded to a parser for the argument
syntax and the overall semantics. This code defines a generic antiquotation to be used in
text elements such as

Isar
text‹as defined in @{docitem ‹d1›} ...›

The subsequent registration docitem_value binds code to a ML-antiquotation usable in
an ML context for user-defined extensions; it permits the access to the current “value” of
document element, i. e., a term with the entire update history.
It is possible to generate antiquotations dynamically, as a consequence of a class definition

in ODL. The processing of the ODL class M_06_RefMan.definition also generates a text

79

6 Extending Isabelle/DOF

antiquotation @{definition ‹d1›}, which works similar to @{docitem ‹d1›} except for an
additional type-check that assures that d1 is a reference to a definition. These type-checks
support the subclass hierarchy.

6.3 Implementing Second-level Type-Checking
On expressions for attribute values, for which we chose to use HOL syntax to avoid that
users need to learn another syntax, we implemented an own pass over type-checked terms.
Stored in the late-binding table ISA_transformer_tab, we register for each term-annotation
(ISA’s), a function of type

SML
theory -> term * typ * Position.T -> term option

Executed in a second pass of term parsing, ISA’s may just return None. This is adequate for
ISA’s just performing some checking in the logical context theory; ISA’s of this kind report
errors by exceptions. In contrast, transforming ISA’s will yield a term; this is adequate, for
example, by replacing a string-reference to some term denoted by it. This late-binding table
is also used to generate standard inner-syntax-antiquotations from a doc_class.

6.4 Programming Class Invariants
See Section 5.4.4.

6.5 Implementing Monitors
Since monitor-clauses have a regular expression syntax, it is natural to implement them as
deterministic automata. These are stored in the docobj_tab for monitor-objects in the
Isabelle/DOF component. We implemented the functions:

SML
val enabled : automaton -> env -> cid list

val next : automaton -> env -> cid -> automaton

where env is basically a map between internal automaton states and class-id’s (cid’s).
An automaton is said to be enabled for a class-id, iff it either occurs in its accept-set or
its reject-set (see Section 5.4.5). During top-down document validation, whenever a text-
element is encountered, it is checked if a monitor is enabled for this class; in this case, the
next-operation is executed. The transformed automaton recognizing the suffix is stored
in docobj_tab if possible; otherwise, if next fails, an error is reported. The automata
implementation is, in large parts, generated from a formalization of functional automata
[16].

80

6.6 The LATEX-Core of Isabelle/DOF

6.6 The LATEX-Core of Isabelle/DOF
The LATEX-implementation of Isabelle/DOF heavily relies on the “keycommand” [6] package.
In fact, the core Isabelle/DOF LATEX-commands are just wrappers for the corresponding
commands from the keycommand package:

LATEX
\newcommand\newisadof[1]{%
\expandafter\newkeycommand\csname isaDof.#1\endcsname}%

\newcommand\renewisadof[1]{%
\expandafter\renewkeycommand\csname isaDof.#1\endcsname}%

\newcommand\provideisadof[1]{%
\expandafter\providekeycommand\csname isaDof.#1\endcsname}%

The LATEX-generator of Isabelle/DOF maps each doc_item to an LATEX-environment (recall
Section 5.3.2). As generic doc_items are derived from the text element, the environment
isamarkuptext* builds the core of Isabelle/DOF’s LATEX implementation.

⟨ML⟩

81

Bibliography

[1] Y. A. Ameur, F. Besnard, P. Girard, G. Pierra, and J. Potier. Formal specification and
metaprogramming in the EXPRESS language. In The 7th International Conference on
Software Engineering and Knowledge Engineering (SEKE), pages 181–188. Knowledge
Systems Institute, 1995.

[2] B. Barras, L. D. C. González-Huesca, H. Herbelin, Y. Régis-Gianas, E. Tassi, M. Wen-
zel, and B. Wolff. Pervasive parallelism in highly-trustable interactive theorem proving
systems. In MKM, pages 359–363, 2013. doi: 10.1007/978-3-642-39320-4_29.

[3] J.-L. Boulanger. CENELEC 50128 and IEC 62279 Standards. Wiley-ISTE, Boston,
2015.

[4] A. D. Brucker and B. Wolff. Isabelle/DOF: Design and implementation. In P. C.
Ölveczky and G. Salaün, editors, Software Engineering and Formal Methods (SEFM),
number 11724 in Lecture Notes in Computer Science. Springer-Verlag, Heidelberg,
2019. ISBN 3-540-25109-X. doi: 10.1007/978-3-030-30446-1_15. URL https:
//www.brucker.ch/bibliography/abstract/brucker.ea-isabelledof-2019.

[5] A. D. Brucker, I. Ait-Sadoune, P. Crisafulli, and B. Wolff. Using the Is-
abelle ontology framework: Linking the formal with the informal. In Confer-
ence on Intelligent Computer Mathematics (CICM), number 11006 in Lecture
Notes in Computer Science. Springer-Verlag, Heidelberg, 2018. doi: 10.1007/
978-3-319-96812-4_3. URL https://www.brucker.ch/bibliography/abstract/
brucker.ea-isabelle-ontologies-2018.

[6] F. Chervet. The free and open source keycommand package: key-value interface for
commands and environments in LATEX., 2010.

[7] Common Criteria. Common criteria for information technology security evaluation (ver-
sion 3.1), Part 3: Security assurance components, Sept. 2006. Available as document
CCMB-2006-09-003.

[8] Eclipse Foundation. ATL – a model transformation technology. URL https://www.
eclipse.org/atl/.

[9] V. Eijkhout. The Computer Science of TeX and LaTeX. Texas Advanced Computing
Center, 2012.

[10] J. Euzenat and P. Shvaiko. Ontology Matching, Second Edition. Springer, 2013. ISBN
978-3-642-38720-3. doi: 10.1007/978-3-642-38721-0.

83

https://www.brucker.ch/bibliography/abstract/brucker.ea-isabelledof-2019
https://www.brucker.ch/bibliography/abstract/brucker.ea-isabelledof-2019
https://www.brucker.ch/bibliography/abstract/brucker.ea-isabelle-ontologies-2018
https://www.brucker.ch/bibliography/abstract/brucker.ea-isabelle-ontologies-2018
http://www.commoncriteriaportal.org/public/files/CCPART3V3.1R1.pdf
https://www.eclipse.org/atl/
https://www.eclipse.org/atl/

Bibliography

[11] A. Faithfull, J. Bengtson, E. Tassi, and C. Tankink. Coqoon. Int. J. Softw.
Tools Technol. Transf., 20(2):125–137, Apr. 2018. ISSN 1433-2779. doi: 10.1007/
s10009-017-0457-2.

[12] IBM. IBM engineering requirements management DOORS family, 2019. https://
www.ibm.com/us-en/marketplace/requirements-management.

[13] D. E. Knuth. The TeXbook. Addison-Wesley Professional, 1986. ISBN 0201134470.

[14] A. Kraus. Defining recursive functions in isabelle/hol, 2020. https://isabelle.in.
tum.de/doc/functions.pdf.

[15] F. Mittelbach, M. Goossens, J. Braams, D. Carlisle, and C. Rowley. The LaTeX Com-
panion. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2nd edition,
2004.

[16] T. Nipkow. Functional automata. Archive of Formal Proofs, Mar. 2004. ISSN 2150-
914x. https://isa-afp.org/entries/Functional-Automata.html, Formal proof
development.

[17] T. Nipkow. What’s in main, 2020. https://isabelle.in.tum.de/doc/main.pdf.

[18] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL—A Proof Assistant for Higher-
Order Logic, volume 2283 of LNCS. Springer, 2002. doi: 10.1007/3-540-45949-9.

[19] S. Taha, B. Wolff, and L. Ye. Philosophers may dine — definitively! In International
Conference on Integrated Formal Methods (IFM), number to appear in Lecture Notes
in Computer Science. Springer-Verlag, Heidelberg, 2020.

[20] W3C. Ontologies, 2015. URL https://www.w3.org/standards/semanticweb/
ontology.

[21] M. Wenzel. Asynchronous user interaction and tool integration in Isabelle/PIDE. In
G. Klein and R. Gamboa, editors, ITP, volume 8558 of LNCS, pages 515–530. Springer,
2014. doi: 10.1007/978-3-319-08970-6_33.

[22] M. Wenzel. System description: Isabelle/jEdit in 2014. In UITP, pages 84–94, 2014.
doi: 10.4204/EPTCS.167.10.

[23] M. Wenzel. The Isabelle/Isar Reference Manual, 2022. Part of the Isabelle distribution.

[24] M. Wenzel and B. Wolff. Building formal method tools in the Isabelle/Isar framework.
In K. Schneider and J. Brandt, editors, TPHOLs 2007, number 4732 in LNCS, pages
352–367. Springer, 2007. doi: 10.1007/978-3-540-74591-4_26.

84

https://www.ibm.com/us-en/marketplace/requirements-management
https://www.ibm.com/us-en/marketplace/requirements-management
https://isabelle.in.tum.de/doc/functions.pdf
https://isabelle.in.tum.de/doc/functions.pdf
https://isa-afp.org/entries/Functional-Automata.html
https://isabelle.in.tum.de/doc/main.pdf
https://www.w3.org/standards/semanticweb/ontology
https://www.w3.org/standards/semanticweb/ontology

	1 Introduction
	How to Read This Manual
	Typographical Conventions
	How to Cite Isabelle/DOF

	2 Background
	2.1 The Isabelle System Architecture
	2.2 The Document Model Required by DOF
	2.3 Implementability of the Document Model in other ITP's

	3 Isabelle/DOF: A Guided Tour
	3.1 Getting Started
	3.1.1 Installation
	Installing Isabelle/DOF

	3.2 Writing Documents
	3.2.1 Document Generation
	3.2.2 Name-Spaces, Long- and Short-Names
	3.2.3 Caveat: Lexical Conventions of Cartouches, Strings, Names, ...

	3.3 Writing Academic Publications in 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 scholarly_paper
	3.3.1 Editing Major Examples
	3.3.2 A Bluffers Guide to the 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 scholarly`_paper Ontology
	3.3.3 Writing Academic Publications: A Freeform Mathematics Text
	3.3.4 More Freeform Elements, and Resulting Navigation
	3.3.5 Using Term-Antiquotations

	3.4 Writing Technical Reports in 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 technical_report
	3.4.1 A Technical Report with Tight Checking

	3.5 Some Recommendations: A little Style Guide

	4 Proofs over Ontologies
	4.1 Proving Properties over Ontologies
	4.1.1 Ontology-Morphisms: a Prototypical Example
	4.1.2 Proving the Preservation of Ontological Mappings : A Document-Ontology Morphism
	4.1.3 Proving the Preservation of Ontological Mappings : A Domain-Ontology Morphism
	4.1.4 Proving Monitor-Refinements

	5 Ontologies and their Development
	5.1 The Ontology Definition Language (ODL)
	5.1.1 Some Isabelle/HOL Specification Constructs Revisited
	5.1.2 Defining Document Classes

	5.2 The main Ontology-aware Document Elements
	5.2.1 General Syntactic Elements for Document Management
	5.2.2 Ontological Code-Contexts and their Management
	5.2.3 Ontological Term-Contexts and their Management
	5.2.4 Status and Query Commands
	5.2.5 Macros
	Examples

	5.3 The Standard Ontology Libraries
	5.3.1 Common Ontology Library (COL)
	5.3.2 The Ontology 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 scholarly`_paper
	Examples

	5.3.3 The Ontology 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 technical`_report
	For Isabelle Hackers: Defining New Top-Level Commands

	5.4 Advanced ODL Concepts
	5.4.1 Example
	5.4.2 Meta-types as Types
	5.4.3 ODL Class Invariants
	5.4.4 ODL Low-level Class Invariants
	5.4.5 ODL Monitors
	5.4.6 Queries On Instances

	5.5 Technical Infrastructure
	5.5.1 The Previewer
	5.5.2 Developing Ontologies and their Representation Mappings
	5.5.3 Document Templates

	5.6 Defining Document Templates
	5.6.1 The Core Template
	5.6.2 Tips, Tricks, and Known Limitations
	Getting Started
	Truncated Warning and Error Messages
	Deferred Declaration of Information
	Authors and Affiliation Information
	Restricting the Use of Ontologies to Specific Templates

	6 Extending Isabelle/DOF
	6.1 Isabelle/DOF: A User-Defined Plugin in Isabelle/Isar
	6.2 Programming Antiquotations
	6.3 Implementing Second-level Type-Checking
	6.4 Programming Class Invariants
	6.5 Implementing Monitors
	6.6 The LaTeX-Core of Isabelle/DOF

