[saNet: Formalization of a Verification Framework for Secure
Data Plane Protocols

Tobias Klenze, Christoph Sprenger

March 17, 2025

Contents

1 Verification Infrastructure 4
1.1 Event Systems e 5
1.1.1 Reachable states and invariants 5
1.1.2 Traces o o o o e e e 5
1.1.3 Simulation 8
1.1.4 Simulation up to simulation preorder 10

1.2 Atomic meSSages e e 11
1.2 Agents 11
1.2.2 Noncesand keys 11

1.3 Symmetric and Asymetric Keys oo o 12
1.3.1 Asymmetric Keys. 12
1.3.2 Basic properties of pubK and priK 12
1.3.3 'Image" equations that hold for injective functions 13
1.3.4 Symmetric Keys 13

1.4 Theory of ASes and Messages for Security Protocols 15
1.4.1 keysFor operator 16

1.4.2 Inductive relation "parts" L. 17
1.4.3 Inductive relation "analz", 21
1.4.4 Inductive relation "synth" 25
1.4.5 HPair: a combination of Hash and MPair 29

1.5 Tools. e e 33
1.5.1 Prefixes, suffixes, and fragments 33
1.5.2 Fragments Lo 33
1.5.3 Pair Fragments o o 34
1.54 Head and Tails o 35

1.6 takeW, holds and extract: Applying context-sensitive checks on list elements 36
1.6.1 Definitions 36

1.6.2 Lemmas e e e 37

1.7 Extending Take- While with an additional, mutable parameter 41
1.7.1 Definitions 41

1.7.2 Lemmas e e e 42

2 Abstract, and Concrete Parametrized Models 45
2.1 Network model 46
2.1.1 Imterface check 46

2.2 Abstract Model 48

3

221 Events 49

2.2.2 Transition system 51
2.2.3 Path authorization property oL 51
2.2.4 Detectability property L o 53
2.3 Intermediate Model 54
23.1 Events 54
2.3.2 Transition systemo 55
2.3.3 Auxilliary definitions oo 56
2.4 Concrete Parametrized Model 58
2.4.1 Hop validation check, authorized segments, and path extraction. . .. 59
2.4.2 Intruder Knowledge definition 62
243 Events e e 63
2.4.4 Transition system Lo 65
2.4.5 Assumptions of the parametrized model 65
2.4.6 Mapping dp2 state todpl state 66
2.4.7 Invariant: Derivable Intruder Knowledge is constant under dp2-trans . 67
2.4.8 Refinement proof 68
2.4.9 Property preservation oo 68
2.5 Network Assumptions used for authorized segments. 70
2.6 Parametrized dataplane protocol for directed protocols 71
2.6.1 Hop validation check, authorized segments, and path extraction. . .. 71
2.6.2 Conditions of the parametrized model 73
2.6.3 Lemmas that are needed for the refinement proof 75
2.7 Parametrized dataplane protocol for undirected protocols 79
2.7.1 Hop validation check, authorized segments, and path extraction. . .. 79
2.7.2 Conditions of the parametrized model 81
Instances 83
3.1 SCION . . . 84
3.1.1 Hop validation check and extract functions 84
3.1.2 Definitions and properties of the added intruder knowledge 86
3.1.3 Properties of the intruder knowledge, including ik-add and ik-oracle . 86
3.1.4 Direct proof goals for interpretation of dataplane-3-directed 87
3.1.5 Instantiation of dataplane-3-directed locale 88
3.2 SCION Variant o 89
3.3 SCION 90
3.3.1 Hop validation check and extract functions 90
3.3.2 Definitions and properties of the added intruder knowledge 92
3.3.3 Properties of the intruder knowledge, including ik-add and ik-oracle . 92
3.3.4 Direct proof goals for interpretation of dataplane-3-directed 93
3.3.5 Instantiation of dataplane-3-directed locale 94
3.4 EPIC Level 1 in the Basic Attacker Model 95
3.4.1 Hop validation check and extract functions 95
3.4.2 Definitions and properties of the added intruder knowledge 97
3.4.3 Properties of the intruder knowledge, including ik-add and ik-oracle . 98
3.4.4 Direct proof goals for interpretation of dataplane-3-directed 100
3.4.5 Instantiation of dataplane-3-directed locale 100

3.5

3.6

3.7

3.8

3.9

3.10

3.11

3.12

3.13

EPIC Level 1 in the Strong Attacker Model
3.5.1 Hop validation check and extract functions
3.5.2 Definitions and properties of the added intruder knowledge
3.5.3 Properties of the intruder knowledge, including ik-add and ik-oracle .
3.5.4 Direct proof goals for interpretation of dataplane-3-directed
3.5.5 Instantiation of dataplane-3-directed locale
EPIC Level 1 Example instantiation of locale
3.6.1 Left segment
3.6.2 Right segment
3.6.3 Executability
EPIC Level 2 in the Strong Attacker Model
3.7.1 Hop validation check and extract functions
3.7.2 Definitions and properties of the added intruder knowledge
3.7.3 Properties of the intruder knowledge, including ik-add and ik-oracle .
3.7.4 Direct proof goals for interpretation of dataplane-3-directed
3.7.5 Instantiation of dataplane-3-directed locale
Abstract XOR
3.8.1 Abstract XOR definition and lemmas
3.8.2 Lemmas refering to XOR and msgterm
Anapaya-SCION
3.9.1 Hop validation check and extract functions
3.9.2 Definitions and properties of the added intruder knowledge
3.9.3 Properties of the intruder knowledge, including fset.
3.9.4 Lemmas helping with conditions relating to extract
3.9.5 Direct proof goals for interpretation of dataplane-3-directed
3.9.6 Instantiation of dataplane-3-directed locale
3.9.7 Normalization of terms,
ICING . . . e
3.10.1 Hop validation check and extract functions
3.10.2 Definitions and properties of the added intruder knowledge
3.10.3 Properties of the intruder knowledge, including ik-add and ik-oracle

3.10.4 Direct proof goals for interpretation of dataplane-3-undirected
3.10.5 Instantiation of dataplane-3-undirected locale
ICING variant e
3.11.1 Hop validation check and extract functions
3.11.2 Definitions and properties of the added intruder knowledge
3.11.3 Properties of the intruder knowledge, including ik-add and ik-oracle

3.11.4 Direct proof goals for interpretation of dataplane-3-undirected
3.11.5 Instantiation of dataplane-3-undirected locale
ICING variant e
3.12.1 Hop validation check and extract functions
3.12.2 Definitions and properties of the added intruder knowledge
3.12.3 Properties of the intruder knowledge, including ik-add and ik-oracle .
3.12.4 Direct proof goals for interpretation of dataplane-3-undirected
3.12.5 Instantiation of dataplane-3-undirected locale
All Protocols e

The paper presenting this formalization is to appear in the Journal of Computer Security
under the title “IsaNet: A Framework for Verifying Secure Data Plane Protocols”.

This is a generated file containing all of our models, from abstract to parametrized to
protocol instances, that we formalized in Isabelle/HOL in a human-readable form. The the-
ory dependencies given in the figure on the next page are useful. Nevertheless, the most
convenient way of browsing the Isabelle theories is to use the GUI shipped with Isabelle. See
the README for details.

Abstract (from JCS paper)

Today’s Internet is built on decades-old networking protocols that lack scalability, reliabil-
ity and security. In response, the networking community has developed path-aware Internet
architectures that solve these issues while simultaneously empowering end hosts. In these ar-
chitectures, autonomous systems authorize forwarding paths in accordance with their routing
policies, and protect paths using cryptographic authenticators. For each packet, the sending
end host selects an authorized path and embeds it and its authenticators in the packet header.
This allows routers to efficiently determine how to forward the packet. The central security
property of the data plane, i.e., of forwarding, is that packets can only travel along autho-
rized paths. This property, which we call path authorization, protects the routing policies of
autonomous systems from malicious senders.

The fundamental role of packet forwarding in the Internet’s ecosystem and the complexity
of the authentication mechanisms employed call for a formal analysis. We develop IsaNet,
a parameterized verification framework for data plane protocols in Isabelle/HOL. We first
formulate an abstract model without an attacker for which we prove path authorization. We
then refine this model by introducing a Dolev—Yao attacker and by protecting authorized
paths using (generic) cryptographic validation fields. This model is parametrized by the path
authorization mechanism and assumes five simple verification conditions. We propose novel
attacker models and different sets of assumptions on the underlying routing protocol. We
validate our framework by instantiating it with nine concrete protocols variants and prove that
they each satisfy the verification conditions (and hence path authorization). The invariants
needed for the security proof are proven in the parametrized model instead of the instance
models. Our framework thus supports low-effort security proofs for data plane protocols. In
contrast to what could be achieved with state-of-the-art automated protocol verifiers, our
results hold for arbitrary network topologies and sets of authorized paths.

[Pure]
[tHoLs

Event_Systems | | Agents | | [HOL-Library]

| Take_While | | Message | | Take_While_Update |

Abstract_XOR

| Network_Model |

Parametrized_Dataplane_0 | | Network_Assumptions |

| Parametrized_Dataplane_1 |

| Parametrized_Dataplane_2 |

Parametrized_Dataplane_3_undirected | | Parametrized_Dataplane_3_directed

[1cnG | [1CING_variant | | ICING_variant2 | [EPiIc L1 BA| [EPicL1sA| [EPict2.sa| [scion| |[SclON_variant| | Anapaya_sclON

EPIC_L1_SA Example

All_Protocols

Figure 1: Theory dependencies

Chapter 1

Verification Infrastructure

Here we define event systems, the term algebra, and the Dolev—Yao adversary

1.1 Event Systems

This theory contains definitions of event systems, trace, traces, reachability, simulation, and
proves the soundness of simulation for proving trace inclusion. We also derive some related
simulation rules.

theory FEvent-Systems
imports Main
begin

record (e, 's) ES =
init :: 's = bool
trans :: 's = ‘e = 's = bool («(4-: -—-— -)» [50, 50, 50] 90)

1.1.1 Reachable states and invariants

inductive
reach :: ('e, 's) ES = 's = bool for E
where
reach-init [simp, intro]: init E s = reach E s
| reach-trans [intro]: [E: s —e— s'; reach E s | = reach E s’

thm reach.induct

Abbreviation for stating that a predicate is an invariant of an event system.

definition Inv :: (e, 's) ES = ('s = bool) = bool where
Inv ET <— (Vs. reach E s — I s)

lemmas Invl = Inv-def [THEN iffD2, rule-format)
lemmas InvE [elim| = Inv-def [THEN iff D1, elim-format, rule-format]

lemma Invariant-rule [case-names Inv-init Inv-trans):
assumes A\s0. init E s0 = I s0
and Ases’ [E:s—e— s’;reach Es; Is] = Is'
shows Inv E
(proof)

Invariant rule that allows strengthening the proof with another invariant.

lemma Invariant-rule-Inv [case-names Inv-other Inv-init Inv-trans]:
assumes Inv E J
and As0. init E s0 = I s0
and Ases' [E:s—e— s’ reach Es;Is;Js; Js| =15’
shows Inv E' I
(proof)

1.1.2 Traces

type-synonym ‘e trace = 'e list

inductive
trace :: (e, 's) ES = 's = 'e trace = s = bool («(4-: - —(-)= -)» [50, 50, 50] 90)
for F s
where

trace-nil [simp,introl]:
E:s —(])— s
| trace-snoc [intro):
[E:s —(r)— s’ E: s’ —e— s] = E: s —(7 Q [¢])— 5"

thm trace.induct

inductive-cases trace-nil-invert [elim!]: E: s —([])— ¢
inductive-cases trace-snoc-invert [elim]: E: s —(7 @ [e])— ¢

lemma trace-init-independence [elim]:
assumes E: s —(1)— s’ trans E = trans F
shows F: s —(1)— s’
(proof)

lemma trace-single [simp, introl]: [E: s —e— s’] = E: s —{([e])— s’

(proof)

Next, we prove an introduction rule for a "cons" trace and a case analysis rule distinguishing
the empty trace and a "cons" trace.

lemma trace-consl:
assumes
E:s" —(1)—> s' E: s —e— 5"
shows
E:s —(e # 1)— s
{proof)

lemma trace-cases-cons:
assumes

lemma trace-consD: (E: s —(e # 7)— s') = 3 s". (E: s —e— s') A (E: 8" —(1)— &)
(proof)

We show how a trace can be appended to another.

lemma trace-append: (E: s —(11)— s) A (E: s’ —(12)— §"") = E: s —(11Qr9)— 5"

(proof)

lemma trace-append-invert: (E: s —(T1Q19)— s’y = Is’ . (E: s —(11)— 8) A (E: 8" —(12)— s")
(proof)

We prove an induction scheme for combining two traces, similar to list-induct?.

lemma trace-induct? [consumes 3, case-names Nil Snocl:
[E: s —(1)— s"; F: t —(o)— t"; length T = length o;
Plst
AT s es” ot ft"
[E: s —(T)— s} E: s'—e— s"; F: t —{o)— t/; F: t'—f— t"; P15 o t]

= P (r@le]) s" (o0 @]f]) t"]
= Prs'’oct’
(proof)

Relate traces to reachability and invariants

lemma reach-trace-equiv: reach E s «— (3s0 1. init E s0 N E: s0 —(1)— s) (is A +— ?B)

(proof)

lemma reach-tracel: [init E s0; E: s0 —(1)— s] = reach E s
(proof)

lemma reach-trace-extend: [E: s —(T)— s'; reach E s] = reach E s’

(proof)

lemma Inv-trace: [Inv E I; init E s0; E: s0 —(1)— s'| = I s’
(proof)

Trace semantics of event systems

We define the set of traces of an event system.

definition traces :: (‘e, 's) ES = 'e trace set where
traces E = {r. 3s s’ init Es N E: s —(1)— s’}

lemma tracesl [intro): [init E s; E: s —(1)— s’]| = 7 € traces E

(proof)

lemma tracesE [elim]: [T € traces E; N\s s". [init Es; E: s —(1)—> s'] = P] = P
(proof)

lemma traces-nil [simp, introl]: init E s = [] € traces E

(proof)

We now define a trace property satisfaction relation: an event system satisfies a property ¢,
if its traces are contained in (.

definition trace-property :: ('e, 's) ES = 'e trace set = bool (infix (=gg> 90) where
E Egs ¢ «— traces E C ¢

lemmas trace-propertyl = trace-property-def [THEN iffD2, OF subsetl, rule-format)]
lemmas trace-propertyE [elim] = trace-property-def [THEN iffD1, THEN subsetD, elim-format]
lemmas trace-propertyD = trace-property-def [THEN iffD1, THEN subsetD, rule-format]

Rules for showing trace properties using a stronger trace-state invariant.

lemma trace-invariant:
assumes
T € traces £
NAss' [init Es; E:s —(t)—> s'] =175’
Ns.ITs=T€Q
shows 7 € ¢ (proof)

lemma trace-property-rule:
assumes

AsO. init E s0 = I]| s0
Nss' Tes”.
[init Es; E: s —(1)— s’y E: s' —e— sy I 7 s reach E s’ | = I (7Q[e]) s
AT s [ITsreachEs] = 71€yp
shows F Egs ¢

(proof)

Similar to [As0. init ?E s0 = 21 [| s0; N\s s’ 7 e s". [init ?E s; ?E: s —(1)— s'; ?E: s'—e—
s"s 21 T s' reach ?E s'] = 21 (7 Q [e]) s'; AT s. [?] T s; reach ?E s] = 7 € %] — ?E
Ers 7p, but allows matching pure state invariants directly.

lemma Inv-trace-property:
assumes Inv E [and [] € ¢
and (As 7 s’ es”.
[init E s; E: s —(1y— s, E: s' —e— s"'; I s; I s'; reach E s'; 7 € o] = 7Qle] € ¢)
shows FE Egg ¢
(proof)

1.1.3 Simulation

We first define the simulation preorder on pairs of states and derive a series of useful coin-
duction principles.

coinductive
sim :: (‘e, 's) ES = ('f, 't) ES = ('e = f) = ‘s = "t = bool
for EF 7
where
[Aes’. (B:s—e—s)= 3t . (Fit—nmest)NsimEFns't']= simEFmst

abbreviation
simS :: ('e, 's) ES = ('f, 't) ES = 's = (e = 'f) = 't = bool
(«(5-,- - C. -)» [50, 50, 50, 60, 50] 90)
where
ssimSEFsmt=simEFwst

lemmas sim-coinduct-id = sim.coinduct[where w=id, consumes 1, case-names sim]

We prove a simplified and slightly weaker coinduction rule for simulation and register it as
the default rule for sim.

lemma sim-coinduct-weak [consumes 1, case-names sim, coinduct pred: sim):
assumes
Rst
NAstas' [Rst, E:s—a— s] = (3t (F:t—ma—t') AN Rs't')
shows
EF:sC,t
(proof)

lemma sim-refl: EE: s C;d s
(proof)

10

lemma sim-trans: [E,F: s C;1t; F,G: t E 2 u] = E,G: sCm2 oml) u

(proof)

Extend transition simulation to traces.

lemma trace-sim:
assumes E: s —(1)— s’ E.F: s T t
shows Jt'. (F: t —(map = 7)— t') A (E,F: s’ T, t)
(proof)

Simulation for event systems

definition
stim-ES :: (e, 's) ES = (e = 'f) = ('f, 't) ES = bool (:(3- C- -)» [50, 60, 50] 95)
where
EC, F«— (3R.
(Vs0. init E sO0 — (3t0. init F t0 N R s0 t0)) A
(Vst. Rst— EF:sCr t))

lemma sim-ES-1I:
assumes
As0. init E s0 = (3t0. init F 10 A R s0 t0) and
NAst. Rst—= EF:sC,
shows F C, F

(proof)

lemma sim-ES-E:
assumes
EC, F
AR. [N\s0. init E s0 = (3¢0. init Ft0 AN R s0t0); Ast. Rst = E,F: sC,t] = P
shows P

(proof)

Different rules to set up a simulation proof. Include reachability or weaker invariant(s) in
precondition of “simulation square”.

lemma simulate-ES"
assumes
init: N\sO. init E s0 = (310. init F t0 A R s0 t0) and
step: Nsta s’ [R st; reach E s; reach F t; E: s—a— s’
— (3t" (F: t—m a— t') A R 5" t)
shows F C, F

(proof)

lemma simulate- ES-with-invariants:

assumes
init: N\sO. init E s0 = (3t0. init F t0 A R s0 t0) and
step: Nstas'.

[Rst; Is;Jt; E: s—a— '] = (3t". (F: t—m a— t') A R s’ t') and

invE: Ns. reach Es — I s and
invE: N\t. reach F't — Jt

shows F T, F (proof)

lemmas simulate- ES-with-invariant = simulate- ES-with-invariants[where J=M\s. True, simplified]

11

Variants with a functional simulation relation, aka refinement mapping.

lemma simulate-ES-fun:
assumes
init: \sO. init E s0 = init F (h s0) and
step: Ns a s'. [E: s—a— s; reach E s; reach F (h s) | = F: h s—m a— h s’
shows F C, F
(proof)

lemma simulate- ES-fun-with-invariants:
assumes
init: N\sO. init E s0 = init F (h s0) and
step: Nsa s [E: s—a— s I1s;J (hs)] = F:hs—ma— hs' and
invE: Ns. reach E's — I s and
invF: A\t. reach Ft — Jt
shows F C, F

(proof)

lemmas simulate-ES-fun-with-invariant =
simulate- ES-fun-with-invariantsjwhere J=At. True, simplified]

Reflexivity and transitivity for ES simulation.
lemma sim-ES-refl: F C;d E
(proof)

lemma sim-ES-trans:
assumes £ C, 1 FFand F C;2 G shows E C(m2 owl) G

(proof)

Soundness for trace inclusion and property preservation

lemma simulation-soundness: E T, F = (map 7) ‘traces E C traces F

(proof)

lemmas simulation-rule = simulate-ES [THEN simulation-soundness)
lemmas simulation-rule-id = simulation-rule[where w=id, simplified]

This allows us to show that properties are preserved under simulation.
corollary property-preservation:
[EC, F; FEgs P, A\t mapr T € P—=717€ Q] = E EFgs @
(proof)

1.1.4 Simulation up to simulation preorder

lemma sim-coinduct-upto-sim [consumes 1, case-names sim]:
assumes
major: R st and
S:ANstas . [Rst; E:s —a—] =
It (F:t =7 a— t") A ((sim E E id) OO R OO (sim F Fid)) s’ t’
shows
EF:.sC,t
(proof)

end

12

1.2 Atomic messages

theory Agents imports Main
begin

The definitions below are moved here from the message theory, since the higher levels of
protocol abstraction do not know about cryptographic messages.

1.2.1 Agents

type-synonym as = nat
type-synonym aso = as option

type-synonym ases = as set

locale compromised =

fixes
bad :: as set — compromised ASes
begin
abbreviation
good :: as set
where
good = —bad
end

1.2.2 Nonces and keys

We have an unspecified type of freshness identifiers. For executability, we may need to assume
that this type is infinite.

typedecl fid-t

datatype fresh-t =
mk-fresh fid-t nat (infixr «$» 65)

fun fid :: fresh-t = fid-t where
fid (f $n) = f

fun num :: fresh-t = nat where
num (f $ n) =n

Nonces

type-synonym
nonce = fresh-t

end

13

1.3 Symmetric and Asymetric Keys
theory Keys imports Agents begin

Divide keys into session and long-term keys. Define different kinds of long-term keys in second
step.

datatype key = — long-term keys
macK as — local MACing key

| pubK as — as’s public key

| priK as ~ — as’s private key

The inverse of a symmetric key is itself; that of a public key is the private key and vice versa

fun invKey :: key = key where
invKey (pubK A) = priK A

| invKey (priK A) = pubK A

| invKey K = K

definition
symKeys :: key set where
symKeys = {K. invKey K = K}

lemma invKey-K: K € symKeys = invKey K = K
(proof)

Most lemmas we need come for free with the inductive type definition: injectiveness and
distinctness.

lemma invKey-invKey-id [simp]: invKey (invKey K) = K
(proof)

lemma invKey-eq [simp]: (invKey K = invKey K') = (K=K")
(proof)

We get most lemmas below for free from the inductive definition of type key. Many of these
are just proved as a reality check.

1.3.1 Asymmetric Keys

No private key equals any public key (essential to ensure that private keys are private!). A
similar statement an axiom in Paulson’s theory!

lemma privateKey-neg-publicKey: priK A # pubK A’

(proof)

lemma publicKey-neg-privateKey: pubK A # priK A’
(proof)

1.3.2 Basic properties of pubK and priK

lemma publicKey-inject [iff]: (pubK A = pubK A’) = (A = A')
(proof)

lemma not-symKeys-pubK [iff]: pubK A ¢ symKeys

14

(proof)

lemma not-symKeys-priK [iff]: priK A ¢ symKeys
(proof)

lemma symKey-neq-priK: K € symKeys = K # priK A
(proof)

lemma symKeys-neg-imp-neq: (K € symKeys) # (K' € symKeys) = K # K’
(proof)

lemma symKeys-invKey-iff [iff]: (invKey K € symKeys) = (K € symKeys)
(proof)
1.3.3 "Image" equations that hold for injective functions

lemma invKey-image-eq [simp]: (invKey x € invKey‘A) = (z € A)

(proof)

lemma invKey-pubK-image-priK-image [simpl: invKey ‘ pubK < AS = priK < AS
(proof)

lemma publicKey-notin-image-privateKey: pubK A ¢ priK < AS
(proof)

lemma privateKey-notin-image-publicKey: priK © ¢ pubK ¢ AA
(proof)

lemma publicKey-image-eq [simp]: (pubK = € pubK ‘ AA) = (z € AA)
(proof)

lemma privateKey-image-eq [simp]: (priK A € priK < AS) = (A € AS)
(proof)

1.3.4 Symmetric Keys

The following was stated as an axiom in Paulson’s theory.

lemma sym-shrK: macK X € symKeys — All shared keys are symmetric
(proof)

Symmetric keys and inversion

lemma symK-eq-invKey: | SK = invKey K; SK € symKeys | = K = SK
(proof)

Image-related lemmas.

lemma publicKey-notin-image-shrK: pubK x ¢ macK ‘ AA

(proof)

lemma privateKey-notin-image-shrK: priK x ¢ macK < AA
(proof)

15

lemma shrK-notin-image-publicKey: macK z ¢ pubK ‘ AA
(proof)

lemma shrK-notin-image-privateKey: macK = ¢ priK ‘ AA
(proof)

lemma shrK-image-eq [simp]: (macK © € macK ‘ AA) = (z € AA)
(proof)

end

16

1.4 Theory of ASes and Messages for Security Protocols

theory Message imports Keys HOL— Library.Sublist HOL. Finite-Set HOL— Library.FSet
begin

datatype msgterm =

€ — Empty message. Used for instance to denote non-existent interface
| AS as — Autonomous System identifier, i.e. agents. Note that AS is an
alias of nat
| Num nat — Ordinary integers, timestamps, ...
| Key key — Crypto keys
| Nonce nonce — Unguessable nonces
| L msgterm list — Lists
| FS msgterm fset — Finite Sets. Used to represent XOR values.
| MPair msgterm msgterm — Compound messages
| Hash msgterm — Hashing
| Crypt key msgterm — Encryption, public- or shared-key

Syntax sugar

syntax

-MTuple :: ['a, args] = 'a x 'b (<(<indent=2 notation=<mizfix message tuple»>(-,/ -))»)
syntax-consts

-MTuple = MPair
translations

(z, y, 2) = (z, (y, 2))

(z, y) = CONST MPair x y

syntax
-MHF :: ['a, 'b, ‘¢, 'd, 'e] = 'a x 'bx 'c x 'd x ‘e («(6HF<-,/ -,/ -,/ -,/ ->))

abbreviation
Mac :: [msgterm,msgterm| = msgterm («(4Mac[-] /-)» [0, 1000])
where

— Message Y paired with a MAC computed with the help of X
Mac[X] Y = Hash (X,Y)

abbreviation macKey where macKey a = Key (macK a)

definition
keysFor :: msgterm set = key set

where
— Keys useful to decrypt elements of a message set
keysFor H = invKey ‘{K.3X. Crypt K X € H}

Inductive Definition of "All Parts" of a Message

inductive-set
parts :: msgterm set = msgterm set
for H :: msgterm set

where

Inj [intro]: X € H = X € parts H
| Fst: (X,-) € parts H= X € parts H
| Snd: (-,Y) € parts H= Y € parts H

17

| Lst: [L xzs € parts H; X € set xs | = X € parts H

| FSt: [FSzs € parts H; X |€] s | = X € parts H
| Body: Crypt K X € parts H = X € parts H
Monotonicity

lemma parts-mono: G C H = parts G C parts H

(proof)

Equations hold because constructors are injective.
lemma Other-image-eq [simp]: (AS z € AS‘A) = (z:4)
{proof)

lemma Key-image-eq [simp]: (Key x € Key‘A) = (z€A)
{proof)

lemma AS-Key-image-eq [simp]: (AS © ¢ Key‘A)
(proof)

lemma Num-Key-image-eq [simp]: (Num x ¢ Key‘A)
(proof)

1.4.1 keysFor operator

lemma keysFor-empty [simp): keysFor {} = {}
{proof)

lemma keysFor-Un [simp]: keysFor (H U H') = keysFor H U keysFor H'
(proof)

lemma keysFor-UN [simp]: keysFor (|Ji€A. H i) = (|Ji€A. keysFor (H 7))
(proof)

Monotonicity

lemma keysFor-mono: G C H = keysFor G C keysFor H

{proof)

lemma keysFor-insert-AS [simp]: keysFor (insert (AS A) H) = keysFor H
(proof)

lemma keysFor-insert-Num [simp|: keysFor (insert (Num N) H) = keysFor H
(proof)

lemma keysFor-insert-Key [simp]: keysFor (insert (Key K) H) = keysFor H
(proof)

lemma keysFor-insert-Nonce [simp]: keysFor (insert (Nonce n) H) = keysFor H

(proof)

lemma keysFor-insert-L [simp|: keysFor (insert (L X) H) = keysFor H
(proof)

18

lemma keysFor-insert-FS [simp: keysFor (insert (FS X) H) = keysFor H
(proof)

lemma keysFor-insert-Hash [simp): keysFor (insert (Hash X) H) = keysFor H
(proof)

lemma keysFor-insert-MPair [simp: keysFor (insert (X,Y) H) = keysFor H
(proof)

lemma keysFor-insert-Crypt [simp):
keysFor (insert (Crypt K X) H) = insert (invKey K) (keysFor H)
(proof)

lemma keysFor-image-Key [simp]: keysFor (Key‘E) = {}
(proof)

lemma Crypt-imp-invKey-keysFor: Crypt K X € H = invKey K € keysFor H
(proof)

1.4.2 Inductive relation "parts"

lemma MPair-parts:

[

(X,Y) € parts H;

[X € parts H; Y € parts H] = P
]= P

(proof)

lemma L-parts:

[

L1 € parts H;

[setl C parts H] = P
]=P

(proof)

lemma FS-parts:

[

FS| € parts H;
[fset 1 C parts H] = P
]= P

(proof)
thm parts. FSt subsetl

declare MPair-parts [elim!] L-parts [elim!] FS-parts [elim] parts.Body [dest!]

NB These two rules are UNSAFE in the formal sense, as they discard the compound message.
They work well on THIS FILE. MPair-parts is left as SAFE because it speeds up proofs. The
Crypt rule is normally kept UNSAFE to avoid breaking up certificates.

lemma parts-increasing: H C parts H
(proof)

lemmas parts-insert] = subset-insert] [THEN parts-mono, THEN subsetD)]

19

lemma parts-empty [simp]: parts{} = {}
(proof)

lemma parts-emptyE [elim!]: X€ parts{} = P
(proof)

WARNING: loops if H =Y, therefore must not be repeated!
lemma parts-singleton: X € parts H = 3Y € H. X € parts {Y}
(proof)

lemma parts-singleton-set: © € parts {s . Ps} = 3Y. PY Az € parts {Y}
(proof)

lemma parts-singleton-set-rev: [z € parts {Y}; P Y] = = € parts {s . P s}

(proof)

lemma parts-Hash: [\t .t € H = 3t' .t = Hash t'| = parts H = H
(proof)

Unions
lemma parts-Un-subset!: parts G U parts H C parts(G U H)
(proof)

lemma parts-Un-subset2: parts(G U H) C parts G U parts H
(proof)

lemma parts-Un [simp]: parts(G U H) = parts G U parts H
(proof)

lemma parts-insert: parts (insert X H) = parts {X} U parts H
(proof)

TWO inserts to avoid looping. This rewrite is better than nothing. Not suitable for Addsimps:
its behaviour can be strange.

lemma parts-insert2:
parts (insert X (insert Y H)) = parts {X} U parts {Y'} U parts H
(proof)

lemma parts-two: [z € parts {el, e2}; x ¢ parts {el }]— x € parts {e2}

(proof)

Added to simplify arguments to parts, analz and synth.

This allows blast to simplify occurrences of parts (G U H) in the assumption.

lemmas in-parts-UnE = parts-Un [THEN equalityD1, THEN subsetD, THEN UnE]
declare in-parts-UnE [elim!]

lemma parts-insert-subset: insert X (parts H) C parts(insert X H)

(proof)

20

Idempotence
lemma parts-partsD [dest!]: X€ parts (parts H) = X€ parts H
(proof)

lemma parts-idem [simp|: parts (parts H) = parts H

(proof)

lemma parts-subset-iff [simp|: (parts G C parts H) = (G C parts H)
{proof)

Transitivity

lemma parts-trans: | X€ parts G; G C parts H | = X€ parts H

(proof)

Unions, revisited

You can take the union of parts h for all h in H
lemma parts-split: parts H = |J { parts {h} | h . h € H}
{proof)

Cut

lemma parts-cut:
[Ye parts (insert X G); X € parts H] = Y € parts (G U H)
(proof)

lemma parts-cut-eq [simpl: X € parts H = parts (insert X H) = parts H

(proof)

Rewrite rules for pulling out atomic messages

lemmas parts-insert-eq-I = equalityl [OF subsetl parts-insert-subset]

lemma parts-insert-AS [simp]:
parts (insert (AS agt) H) = insert (AS agt) (parts H)
(proof)

lemma parts-insert-Epsilon [simp:
parts (insert € H) = insert € (parts H)
(proof)

lemma parts-insert-Num [simp):
parts (insert (Num N) H) = insert (Num N) (parts H)
(proof)

lemma parts-insert-Key [simp]:
parts (insert (Key K) H) = insert (Key K) (parts H)
(proof)

lemma parts-insert-Nonce [simp):

21

parts (insert (Nonce n) H) = insert (Nonce n) (parts H)
(proof)

lemma parts-insert-Hash [simp):
parts (insert (Hash X) H) = insert (Hash X) (parts H)

(proof)

lemma parts-insert-Crypt [simp]:
parts (insert (Crypt K X) H) = insert (Crypt K X) (parts (insert X H))
{proof)

lemma parts-insert-MPair [simp]:
parts (insert (X,Y) H) =
insert (X,Y) (parts (insert X (insert Y H)))
(proof)

lemma parts-insert-L [simp]:
parts (insert (L xs) H) =
insert (L zs) (parts ((set zs) U H))
{proof)

lemma parts-insert-FS [simp]:
parts (insert (FS zs) H) =
insert (FS zs) (parts ((fset xs) U H))
(proof)

lemma parts-image-Key [simp]: parts (Key‘N) = Key‘N
(proof)

Parts of lists and finite sets.

lemma parts-list-set :
parts (Ls) = (Ls) U (U! € Is. parts (set 1))
(proof)

lemma parts-insert-list-set :
parts ((Ls) U H) = (Ls) U (J! € Is. parts ((set 1))) U parts H
{proof)

lemma parts-fset-set :
parts (FS‘ls) = (FS‘s) U (U! € Is. parts (fset 1))
(proof)

suffix of parts

lemma suffix-in-parts:
suffic (z#xs) ys = = € parts {L ys}
{proof)

lemma parts-L-set:
[z € parts {L ys}; ys € St] = = € parts (L°St)
(proof)

22

lemma suffiz-in-parts-set:
[suffic (z#xs) ys; ys € St] = = € parts (L‘St)
(proof)

1.4.3 Inductive relation "analz"

Inductive definition of "analz" — what can be broken down from a set of messages, including
keys. A form of downward closure. Pairs can be taken apart; messages decrypted with known
keys.

inductive-set
analz :: msgterm set = msgterm set
for H :: msgterm set

where
Inj [intro,simp] : X € H = X € analz H
| Fst: (X,)Y) € analz H = X € analz H
| Snd: (X,Y) € analz H =Y € analz H
| Lst: (Ly) € analz H = z € set (y) = z € analz H
| FSt: [FSzs € analz Hy; X |€| s] = X € analz H

| Decrypt [dest]: [Crypt K X € analz H; Key (invKey K) € analz H] = X € analz H

Monotonicity; Lemma 1 of Lowe’s paper

lemma analz-mono: G C H = analz(G) C analz(H)
(proof)

lemmas analz-monotonic = analz-mono [THEN [2] rev-subsetD)

Making it safe speeds up proofs

lemma MPair-analz [elim!]:

[

(X,Y) € analz H;

[X €analzH; Y € analze H] = P
|= P

(proof)

lemma L-analz [elim!]:

L1l € analz H;
[setl C analz H] = P
]= P

(proof)

lemma FS-analz [elim!]:

FS[€ analz H;

[fset! C analz H] = P
]=P

(proof)

thm parts. FSt subsetl
lemma analz-increasing: H C analz(H)

(proof)

23

lemma analz-subset-parts: analz H C parts H

(proof)

If there is no cryptography, then analz and parts is equivalent.

lemma no-crypt-analz-is-parts:
- (3 KX . Crypt K X € parts A) = analz A = parts A
(proof)

lemmas analz-into-parts = analz-subset-parts [THEN subsetD)

lemmas not-parts-not-analz = analz-subset-parts [THEN contra-subsetD]

lemma parts-analz [simp]: parts (analz H) = parts H

(proof)

lemma analz-parts [simp]: analz (parts H) = parts H

(proof)

lemmas analz-insert] = subset-insert] [THEN analz-mono, THEN [2] rev-subsetD]

General equational properties

lemma analz-empty [simp]: analz {} = {}

(proof)

Converse fails: we can analz more from the union than from the separate parts, as a key in
one might decrypt a message in the other

lemma analz-Un: analz(G) U analz(H) C analz(G U H)

(proof)

lemma analz-insert: insert X (analz H) C analz(insert X H)

{proof)

Rewrite rules for pulling out atomic messages

lemmas analz-insert-eq-I = equalityl [OF subset] analz-insert]

lemma analz-insert-AS [simp):
analz (insert (AS agt) H) = insert (AS agt) (analz H)
(proof)

lemma analz-insert-Num [simp):
analz (insert (Num N) H) = insert (Num N) (analz H)

(proof)
Can only pull out Keys if they are not needed to decrypt the rest

lemma analz-insert-Key [simp]:
K ¢ keysFor (analz H) =
analz (insert (Key K) H) = insert (Key K) (analz H)
{proof)

24

lemma analz-insert-LEmpty [simp):
analz (insert (L []) H) = insert (L []) (analz H)
(proof)

lemma analz-insert-L [simp]:
analz (insert (L'1) H) = insert (L 1) (analz (set 1 U H))

(proof)

lemma analz-insert-FS [simp):
analz (insert (FS 1) H) = insert (FS 1) (analz (fset I U H))
(proof)

lemma L[| € analz {L[L[]]}
{(proof)

lemma analz-insert-Hash [simp):
analz (insert (Hash X) H) = insert (Hash X) (analz H)

(proof)

lemma analz-insert-MPair [simp]:
analz (insert (X,Y) H) =
insert (X,Y) (analz (insert X (insert Y H)))
(proof)

Can pull out enCrypted message if the Key is not known

lemma analz-insert-Crypt:
Key (invKey K) ¢ analz H
= analz (insert (Crypt K X) H) = insert (Crypt K X) (analz H)

(proof)

lemma analz-insert-Decryptl:
Key (invKey K) € analz H =
analz (insert (Crypt K X) H) C
insert (Crypt K X) (analz (insert X H))
(proof)

lemma analz-insert-Decrypt2:
Key (invKey K) € analz H =
insert (Crypt K X) (analz (insert X H)) C
analz (insert (Crypt K X) H)

(proof)

lemma analz-insert-Decrypt:
Key (invKey K) € analz H =
analz (insert (Crypt K X) H) =
insert (Crypt K X) (analz (insert X H))
{proof)

Case analysis: either the message is secure, or it is not! Effective, but can cause subgoals to
blow up! Use with split-if; apparently split-tac does not cope with patterns such as analz
(insert (Crypt K X) H)

25

lemma analz-Crypt-if [simp]:
analz (insert (Crypt K X) H) =
(if (Key (invKey K) € analz H)
then insert (Crypt K X) (analz (insert X H))
else insert (Crypt K X) (analz H))

(proof)

This rule supposes "for the sake of argument" that we have the key.

lemma analz-insert-Crypt-subset:
analz (insert (Crypt K X) H) C
insert (Crypt K X) (analz (insert X H))
(proof)

lemma analz-image-Key [simp]: analz (Key‘N) = Key‘N
(proof)

Idempotence and transitivity

lemma analz-analzD [dest!]: X€ analz (analz H) = X€ analz H
(proof)

lemma analz-idem [simp]: analz (analz H) = analz H

(proof)

lemma analz-subset-iff [simp]: (analz G C analz H) = (G C analz H)

(proof)

lemma analz-trans: | X€ analz G; G C analz H | = X€ analz H

(proof)

Cut; Lemma 2 of Lowe

lemma analz-cut: [Y€ analz (insert X H); X€ analz H]| = Y€ analz H

(proof)

This rewrite rule helps in the simplification of messages that involve the forwarding of un-
known components (X). Without it, removing occurrences of X can be very complicated.

lemma analz-insert-eq: X€ analz H = analz (insert X H) = analz H

(proof)

A congruence rule for "analz"

lemma analz-subset-cong:
[analz G C analz G'; analz H C analz H' |
= analz (G U H) C analz (G'U H)

(proof)

lemma analz-cong:
[analz G = analz G'; analz H = analz H' |
= analz (G U H) = analz (G'U H)
{proof)

lemma analz-insert-cong:
analz H = analz H' = analz(insert X H) = analz(insert X H')

26

(proof)

If there are no pairs, lists or encryptions then analz does nothing

lemma analz-trivial:

[
VXY. (X)Y)¢ H;Vas. Las ¢ H;Vas. FSxs ¢ H,;
VXK. Crypt KX ¢ H

] = analzH =H

(proof)
These two are obsolete (with a single Spy) but cost little to prove...

lemma analz- UN-analz-lemmoa:
Xe analz (Ji€A. analz (H 7)) = X€ analz (|Ji€A. H 1)

(proof)

lemma analz-UN-analz [simp]: analz ((Ji€A. analz (H i) = analz (|Ji€A. H 1)
(proof)

Lemmas assuming absense of keys

If there are no keys in analz H, you can take the union of analz h for all h in H

lemma analz-split:
-(3 K . Key K € analz H)
= analz H =J { analz {h} | h . h € H}
(proof)

lemma analz-Un-eq:
assumes ~(3 K . Key K € analz H) and ~(3 K . Key K € analz G)
shows analz (H U G) = analz H U analz G

(proof)

lemma analz-Un-eq-Crypt:
assumes ~(3 K . Key K € analz G) and =(3 K X . Crypt K X € analz G)
shows analz (H U G) = analz H U analz G

(proof)

lemma analz-list-set :
-(3 K . Key K € analz (L4s))
= analz (L1s) = (L4s) U (U! € Is. analz (set 1))

(proof)

lemma analz-fset-set :
(3 K . Key K € analz (FSls))
= analz (FS1s) = (FS‘s) U (U! € Is. analz (fset 1))

(proof)

1.4.4 Inductive relation "synth"

Inductive definition of "synth" — what can be built up from a set of messages. A form of
upward closure. Pairs can be built, messages encrypted with known keys. AS names are
public domain. Nums can be guessed, but Nonces cannot be.

27

inductive-set
synth :: msgterm set = msgterm set
for H :: msgterm set
where
Inj [intro]: X € H = X € synth H
e [simp,introl]: e € synth H
AS [simp,introl]: AS agt € synth H
Num [simp,introl]: Num n € synth H
Lst [intro]: [Az .z € setzs = z € synth H] = L as € synth H
FSt [intro]: [Az .z € fset zs = z € synth H;
Nz ys .z € fset s = x # FS ys |
= FS s € synth H
| Hash [intro]: X € synth H = Hash X € synth H
| MPair [intro]: [X € synth H; Y € synth H | = (X,Y) € synth H
| Crypt [intro]: [X € synth H; Key K € H] = Crypt K X € synth H

Monotonicity

lemma synth-mono: G C H = synth(G) C synth(H)
(proof)

NO AS-synth, as any AS name can be synthesized. The same holds for Num

inductive-cases Key-synth [elim!]: Key K € synth H
inductive-cases Nonce-synth [elim!]: Nonce n € synth H
inductive-cases Hash-synth [elim!]: Hash X € synth H
inductive-cases MPair-synth [elim!]: (X,Y) € synth H
inductive-cases L-synth [elim!]: L X € synth H
inductive-cases FS-synth [elim!]: FS X € synth H
inductive-cases Crypt-synth [elim!]: Crypt K X € synth H

lemma synth-increasing: H C synth(H)

(proof)

lemma synth-analz-self: © € H = x € synth (analz H)

(proof)

Unions

Converse fails: we can synth more from the union than from the separate parts, building a
compound message using elements of each.

lemma synth-Un: synth(G) U synth(H) C synth(G U H)

(proof)

lemma synth-insert: insert X (synth H) C synth(insert X H)
(proof)

Idempotence and transitivity

lemma synth-synthD [dest!]: X€ synth (synth H) = X € synth H
(proof)

lemma synth-idem: synth (synth H) = synth H
(proof)

28

lemma synth-subset-iff [simp]: (synth G C synth H) = (G C synth H)
(proof)

lemma synth-trans: | X€ synth G; G C synth H | = X€ synth H
(proof)

Cut; Lemma 2 of Lowe
lemma synth-cut: [Y€ synth (insert X H); Xe€ synth H]| = Y€ synth H
(proof)

lemma Nonce-synth-eq [simp]: (Nonce N € synth H) = (Nonce N € H)
(proof)

lemma Key-synth-eq [simp]: (Key K € synth H) = (Key K € H)
(proof)

lemma Crypt-synth-eq [simpl:

Key K ¢ H—=— (Crypt K X € synth H) = (Crypt K X € H)
(proof)

lemma keysFor-synth [simp]:
keysFor (synth H) = keysFor H U invKey{K. Key K € H}
{proof)

lemma L-cons-synth [simp]:
(set zs C H) = (L zs € synth H)
(proof)

lemma FS-cons-synth [simpl:
[fset s C H; Az ys. © € fset 1s = x # FS ys; feard xs # Suc 0 | = (FS zs € synth H)
(proof)

Combinations of parts, analz and synth

lemma parts-synth [simp|: parts (synth H) = parts H U synth H
(proof)

lemma analz-analz-Un [simp]: analz (analz G U H) = analz (G U H)

(proof)

lemma analz-synth-Un [simp]: analz (synth G U H) = analz (G U H) U synth G
(proof)

lemma analz-synth [simp]: analz (synth H) = analz H U synth H
(proof)

lemma analz-Un-analz [simp]: analz (G U analz H) = analz (G U H)

(proof)

lemma analz-synth-Un2 [simp]: analz (G U synth H) = analz (G U H) U synth H

29

(proof)

For reasoning about the Fake rule in traces

lemma parts-insert-subset-Un: X€ G = parts(insert X H) C parts G U parts H

(proof)

More specifically for Fake. Very occasionally we could do with a version of the form parts
{X} C synth (analz H) U parts H

lemma Fake-parts-insert:
X € synth (analz H) =
parts (insert X H) C synth (analz H) U parts H

(proof)

lemma Fake-parts-insert-in-Un:
[Z € parts (insert X H); X € synth (analz H)]
= Z € synth (analz H) U parts H

(proof)
H is sometimes Key ‘ KK U spies evs, so can’t put G = H.

lemma Fake-analz-insert:
Xe synth (analz G) =
analz (insert X H) C synth (analz G) U analz (G U H)

(proof)

lemma analz-conj-parts [simp]:

(X € analz H & X € parts H) = (X € analz H)
(proof)

lemma analz-disj-parts [simp):
(X € analz H | X € parts H) = (X € parts H)
{proof)

Without this equation, other rules for synth and analz would yield redundant cases

lemma MPair-synth-analz [iff]:
((X,Y) € synth (analz H)) =
(X € synth (analz H) & Y € synth (analz H))
(proof)

lemma L-cons-synth-analz [iff]:
(L zs € synth (analz H)) =
(set zs C synth (analz H))

(proof)

lemma L-cons-synth-parts [iff]:
(L zs € synth (parts H)) =
(set zs C synth (parts H))

(proof)

lemma FS-cons-synth-analz [iff]:
[Nz ys . z € fset zs = x # FS ys; fecard xs # Suc 0 | =
(F'S xs € synth (analz H)) =

30

(fset xs C synth (analz H))
(proof)

lemma FS-cons-synth-parts [iff]:
[Nz ys . z € fset zs = x # FS ys; feard xs # Suc 0 | =
(FS xs € synth (parts H)) =
(fset s C synth (parts H))
(proof)

lemma Crypt-synth-analz:
[Key K € analz H; Key (invKey K) € analz H |
= (Crypt K X € synth (analz H)) = (X € synth (analz H))

(proof)

lemma Hash-synth-analz [simp:
X ¢ synth (analz H)
= (Hash(X,Y) € synth (analz H)) = (Hash(X,Y) € analz H)
(proof)

1.4.5 HPair: a combination of Hash and MPair

We do NOT want Crypt... messages broken up in protocols!!
declare parts.Body [rule del]

Rewrites to push in Key and Crypt messages, so that other messages can be pulled out using
the analz-insert rules

lemmas pushKeys =
insert-commute [of Key K AS C for K C]
insert-commute [of Key K Nonce N for K N|
insert-commute [of Key K Num N for K N]
insert-commute [of Key K Hash X for K X]
insert-commute [of Key K MPair X Y for K X Y]
insert-commute [of Key K Crypt X K' for K K' X]

lemmas pushCrypts =
insert-commute [of Crypt X K AS C for X K C]
insert-commute [of Crypt X K AS C for X K (]
insert-commute [of Crypt X K Nonce N for X K N|
insert-commute [of Crypt X K Num N for X K N|
insert-commute [of Crypt X K Hash X' for X K X]
insert-commute [of Crypt X K MPair X' Y for X K X' Y]

Cannot be added with [simp] — messages should not always be re-ordered.

lemmas pushes = pushKeys pushCrypts

By default only o-apply is built-in. But in the presence of eta-expansion this means that some
terms displayed as f o g will be rewritten, and others will not!

declare o-def [simp]

31

lemma Crypt-notin-image-Key [simp]: Crypt K X ¢ Key * A
(proof)

lemma Hash-notin-image-Key [simp| :Hash X ¢ Key * A
(proof)

lemma synth-analz-mono: GCH = synth (analz(G)) C synth (analz(H))
(proof)

lemma synth-parts-mono: GCH = synth (parts G) C synth (parts H)
(proof)

lemma Fake-analz-eq [simp]:
X € synth(analz H) = synth (analz (insert X H)) = synth (analz H)
(proof)

Two generalizations of analz-insert-eq

lemma gen-analz-insert-eq [rule-format):
X € analz H = ALL G. H C G ——> analz (insert X G) = analz G

(proof)

lemma Fake-parts-sing:
X € synth (analz H) = parts{ X} C synth (analz H) U parts H
(proof)

lemmas Fake-parts-sing-imp-Un = Fake-parts-sing [THEN [2] rev-subsetD]

For some reason, moving this up can make some proofs loop!

declare invKey-K [simp)

lemma synth-analz-insert:
assumes analz H C synth (analz H')
shows analz (insert X H) C synth (analz (insert X H'))

(proof)

lemma synth-parts-insert:

assumes parts H C synth (parts H')

shows parts (insert X H) C synth (parts (insert X H'))
(proof)

lemma parts-insert-subset-impl:
[z € parts (insert a G); x € parts G = © € synth (parts H); a € synth (parts H)]
= z € synth (parts H)

(proof)

lemma synth-parts-subset-elem:
[A C synth (parts B); x € parts A] = = € synth (parts B)
(proof)

lemma synth-parts-subset:

32

A C synth (parts B) = parts A C synth (parts B)
(proof)

lemma parts-synth-parts[simp|: parts (synth (parts H)) = synth (parts H)
(proof)

lemma synth-parts-trans:
assumes A C synth (parts B) and B C synth (parts C)
shows A C synth (parts C)

(proof)

lemma synth-parts-trans-elem:
assumes z € A and A C synth (parts B) and B C synth (parts C)
shows z € synth (parts C)

{proof)

lemma synth-un-parts-split:
assumes x € synth (parts A U parts B)
and Az . z € A = 1z € synth (parts C)
and Az . z € B = z € synth (parts C)
shows z € synth (parts C')

(proof)

Normalization of Messages

Prevent F'S from being contained directly in other FS. For instance, a term FS {|FS {|Num
0]}, Num 0|} is not normalized, whereas F'S {|Hash (FS {|Num 0|}), Num 0|} is normalized.

inductive normalized :: msgterm = bool where

e [simp,introl]: normalized €
| AS [simp,introl]: normalized (AS agt)
| Num [simp,introl]: normalized (Num n)
| Key [simp,introl]: normalized (Key n)
| Nonce [simp,introl]: normalized (Nonce n)
| Lst [intro]: [Az . z € set zs = normalized x | = normalized (L xs)
| FSt [intro]: [Az . z € fset zs = normalized ;

Nz ys .z € fset s = x # FS ys |
= normalized (FS xs)
| Hash [intro]: normalized X = normalized (Hash X)
| MPair [intro]: [normalized X; normalized Y | = normalized (X,Y)
| Crypt lintrol: [normalized X | = normalized (Crypt K X)

thm normalized.simps
find-theorems normalized

Examples

lemma normalized (FS {| Hash (FS {| Num 0 |}), Num 0 |}) (proof)
lemma — normalized (FS {| FS {| Num 0 |}, Num 0 |}) (proof)

Closure of normalized under parts, analz and synth

All synthesized terms are normalized (since synth prevents directly nested FSets).

33

lemma normalized-synthlelim!]: [t € synth H; \t. t € H = normalized t] = normalized t

(proof)

lemma normalized-parts[elim!]: [t € parts H; At. t € H = normalized t] = normalized t
(proof)

lemma normalized-analzlelim!]: [t € analz H; \t. t € H = normalized t] = normalized t

(proof)

Properties of normalized

lemma normalized-FS|elim]: [normalized (FS xs); x |€| xs] = normalized z

(proof)

lemma normalized-FS-FS[elim]: [normalized (FS xs); x |€| xs; x = FS ys] = False

(proof)

lemma normalized-subset: [normalized (FS xs); ys |C| xs] = normalized (FS ys)
(proof)

lemma normalized-insert[elim!]: normalized (FS (finsert x xs)) = normalized (FS s)

(proof)

lemma normalized-union:
assumes normalized (F'S xs) normalized (FS ys) zs |C| xs |U] ys
shows normalized (FS zs)

(proof)

lemma normalized-minus|elim):
assumes normalized (F'S (ys |—| zs)) normalized (FS xs)
shows normalized (FS ys)

(proof)

Lemmas that do not use normalized, but are helpful in proving its properties

lemma FS-mono: [zs-s = finsert (f (FS zs-s)) zs-b; \ z. size (f ©) > size 2] = Fulse

(proof)
lemma FS-contr: [zs = f (FS {|zs|}); \ z. size (f x) > size] = Fulse
(proof)

end

34

1.5 Tools

theory Tools imports Main HOL— Library.Sublist
begin

1.5.1 Prefixes, suffixes, and fragments

thm Cons-eg-appendl
lemma prefiz-cons: [prefic zs ys; zs = x # ys; prefix xs’ (z # xs)] = prefiz s’ zs
(proof)

lemma suffiz-nonempty-extendable:
[suffic zs I; s # 1] = 3 = . suffix (xftas) |
(proof)

lemma set-suffiz:
[z € setl; suffixc ' l]| = z € setl

(proof)

lemma set-prefiz:
[z € setl; prefix '] = x € set]

(proof)

lemma set-suffiz-elem: suffix (z#xs) p = x € set p
(proof)

lemma set-prefiz-elem: prefic (z#xs) p = x € set p
(proof)

lemma Cons-suffiz-set: © € set y = 3 zs . suffic (z#zs) y
(proof)

1.5.2 Fragments

definition fragment :: 'a list = ’a list set = bool
where fragment xs St +— (251 zs2. 251 Q xs @ 252 € St)

lemma fragmentl: [zs1 @ zs @ zs2 € St | = fragment zs St

(proof)

lemma fragmentE [elim]: [fragment xs St; Nzsl zs2. [zs1 Q 25 @ 282 € St] = P] = P
(proof)

lemma fragment-Nil [simp]: fragment [St +— St # {}
{proof)

lemma fragment-subset: [St C St'; fragment | St] = fragment | St’
(proof)

lemma fragment-prefic: [prefiz I’ I; fragment | St] = fragment 1’ St
(proof)

lemma fragment-suffiz: [suffiz I’ I; fragment 1 St] = fragment I’ St

35

(proof)

lemma fragment-self [simp, intro]: [l € St] = fragment | St
(proof)

lemma fragment-prefiz-self [simp, intro]:
[l € St; prefix I I] = fragment I’ St
(proof)

lemma fragment-suffiz-self [simp, intro|:
[l € St; suffix I'] = fragment I’ St
(proof)

lemma fragment-is-prefiz-suffiz:
fragment | St = A pre suff . prefix | pre A suffix pre suff N suff € St
(proof)

1.5.3 Pair Fragments

definition pfragment :: 'a = ('b list) = (‘a x ('b list)) set = bool
where pfragment a xs St +— (251 zs2. (a, 2s1 Q xs Q 2s2) € St)

lemma pfragmentl: [(ainf, zs1 Q xs Q 2s2) € St | = pfragment ainf zs St
(proof)

lemma pfragmentE [elim]: [pfragment ainf xs St; Nzsl zs2. [(ainf, zs1 Q zs Q zs2) € St | = P]
== P

(proof)

lemma pfragment-prefiz:
pfragment ainf (zs Q ys) St = pfragment ainf xs St

(proof)

lemma pfragment-prefiz”:
[pfragment ainf ys St; prefiz xs ys] = pfragment ainf xs St
(proof)

lemma pfragment-suffiz: [suffix I’ I; pfragment ainf | St] = pfragment ainf 1’ St
(proof)

lemma pfragment-self [simp, intro]: [(ainf, I) € St] = pfragment ainf | St

(proof)

lemma pfragment-suffiz-self [simp, intro]:
[(ainf, 1) € St; suffix I’] = pfragment ainf 1’ St
(proof)

lemma pfragment-self-eq:
[pfragment ainf 1 S; N\zsl zs2 . (ainf, 2s1QlQzs2) € S = (ainf, 2s1@1'Qzs2) € S| = pfragment
ainfl’ S

{proof)

36

lemma pfragment-self-eq-nil:
[pfragment ainf 1 S; Nzsl zs2 . (ainf, zs1QlQzs2) € S = (ainf, 1'Qzs2) € S| = pfragment ainf I’
S

(proof)

lemma pfragment-cons: pfragment ainfo (x # fut) S = pfragment ainfo fut S

(proof)

1.5.4 Head and Tails

fun head where head [| = None | head (z#xs) = Some x
fun ifhead where ifhead [| n = n | ifhead (z#zs) - = Some x
fun tail where tail [| = None | tail zs = Some (last xs)

lemma head-cons: zs # [| = head s = Some (hd xs) (proof)
lemma tail-cons: s # [| = tail s = Some (last xs) (proof)
lemma tail-snoc: tail (zs Q [z]) = Some z (proof)
lemmaVyys.l#ysQ [y = [=]

(proof)

lemma tl-append2: tl (pref Q [a, b]) = tl (pref Q [a])@[d]
(proof)

end

theory Tuke-While imports Tools
begin

37

1.6 takeW, holds and extract: Applying context-sensitive checks
on list elements

This theory defines three functions, takeW, holds and extract. It is embedded in a locale that
takes predicate P as an input that works on three arguments: pre, x, and z. x is an element
of a list, while pre is the left neighbour on that list and z is the right neighbour. They are
all of the same type ’a, except that pre and z are of ’a option type, since neighbours don’t
always exist at the beginning and the end of lists. The functions takeW and holds work on
an ’a list (with an additional pre and z ’a option parameter). Both repeatedly apply P on
elements xi in the list with their neighbours as context:

holds pre (x1#x2#...#xn#[]) z =
P pre x1 x2 /\ P x1 x2 %3 /\ ... /\ P (xn-2) (xn-1) xn /\ P xn-1 xn z
takeW pre (x1#x2#...#xn#[]) z = the prefix of the list for which ’holds’ holds.

extract is a function that returns the last element of the list, or z if the list is empty.
holds-take W-extract is an interesting lemma that relates all three functions.

In our applications, we usually invoke takeW and holds with the parameters None 1 None,
where 1 is a list of elements which we want to check for P (using their neighboring elements
as context). takeW and holds thus mostly have the pre and z parameters for their recursive
definition and induction schemes.

The predicate P gets both a predecessor and a successor (if existant). We originally used this
theory for both the interface check (which makes use of the predecessor) and the cryptographic
check (which makes use of the successor). However, with the introduction of mutable uinfo
fields, we have split up the takeWhile formalization for the cryptographic check into a separate
theory (Take-While-Update). Since the interface check does not make use of the successor,
the third parameter of the function P defined in this theory is not actually required.

locale TW =
fixes P :: (‘a option = 'a = 'a option = bool)
begin

1.6.1 Definitions

holds returns true iff every element of a list, together with its context, satisfies P.

fun holds :: 'a option = 'a list = 'a option = bool
where
holds pre (x # y # ys) nxt «— P pre x (Some y) A holds (Some z) (y # ys) nxt
| holds pre [z] nat <— P pre x nxt
| holds pre || nat «+— True

holds returns the longest prefix of a list for every element, together with its context, satisfies
P.

function takeW :: 'a option = 'a list = 'a option = 'a list where
takeW - [] - =]
| P pre x xzo = takeW pre [z] zo = [z]
| = P pre x xo = takeW pre [z] zo = []
| P pre x (Some y) = takeW pre (z # y # x8) zo = x # takeW (Some) (y # xs) xo

38

| = P pre x (Some y) = takeW pre (z # y # zs) xzo = |]
{proof)
termination

(proof)
extract returns the last element of a list, or nxt if the list is empty.

fun extract :: 'a option = 'a list = 'a option = 'a option
where
extract pre (x # y # ys) nat = (if P pre x (Some y) then extract (Some) (y # ys) nat else Some
z)
| extract pre [z] nxt = (if P pre x nat then nat else (Some z))
| extract pre [| nat = nxt

1.6.2 Lemmas

Lemmas packing singleton and at least two element cases into a single equation.

lemma take W-singleton:
takeW pre [z] zo = (if P pre x zo then [z] else [])
(proof)

lemma take W-two-or-more:
takeW pre (x # y # zs) zo = (if P pre x (Some y) then x # takeW (Some x) (y # zs) xo else [])

(proof)

Some lemmas for splitting the tail of the list argument.

Splitting lemma formulated with if-then-else rather than case.

lemma take W-split-tail:
takeW pre (z # xs) nxt =
(if ws = ||
then (if P pre x nxt then [z] else [])
else (if P pre xz (Some (hd xs)) then x # takeW (Some z) zs nat else []))

(proof)

lemma extract-split-tail:
extract pre (x # xs) nat =
(case zs of
[| = (if P pre x nat then nxt else (Some x))
(y # ys) = (if P pre x (Some y) then extract (Some x) (y # ys) nat else Some x))

|
{proof)

lemma holds-split-tail:
holds pre (x # xs) nat «—
(case zs of
[| = P prex nut
(y # ys) = P pre z (Some y) A holds (Some x) (y # ys) nat)

|
(proof)

lemma holds-Cons-P:
holds pre (z # xs) nat = Jy . Pprezx y
(proof)

39

lemma holds-Cons-holds:
holds pre (x # xs) nat = holds (Some) xs nat
(proof)

lemmas tail-splitting-lemmas =
extract-split-tail holds-split-tail

Interaction between holds, take While, and extract.

declare if-split-asm [split]

lemma holds-take W-extract: holds pre (takeW pre xs nat) (extract pre xs nat)
(proof)

Interaction of holds, take While, and extract with (@).

lemma take W-append:
takeW pre (zs Q ys) nat =
(let y = case ys of [| = nat | ¢ # - = Some z in
(let new-pre = case s of [| = pre | - = (Some (last zs)) in
if holds pre xs y then xs Q takeW new-pre ys nat
else takeW pre zs y))

(proof)

lemma holds-append:
holds pre (zs @ ys) nxt =
(let y = case ys of [| = nxt | @ # - = Some x in
(let new-pre = case xs of [| = pre | - = (Some (last zs)) in
holds pre xs y A holds new-pre ys nat))

(proof)

corollary holds-cutoff:
holds pre (11QI12) nat = 3 nat’ . holds pre l1 nxt’

(proof)

lemma ezxtract-append:
extract pre (zs @ ys) nzt =
(let y = case ys of [| = nxt | @ # - = Some x in
(let new-pre = case s of [| = pre | - = (Some (last xs)) in
if holds pre xs y then extract new-pre ys nxt else extract pre zs y))

(proof)

lemma take W-prefiz:
prefix (takeW pre | nxt) |

(proof)

lemma takeW-set: t € set (TW.takeW P pre | nat) = t € set |
(proof)

lemma holds-implies-take W-is-identity:

holds pre | nxt —> takeW pre | naxt = |
(proof)

40

lemma holds-take W-is-identity|simp]:
takeW pre | nxt = | +— holds pre | nxt
(proof)

lemma take W-take W-extract:
take W pre (takeW pre | nxt) (extract pre | nxt)
= takeW pre | nxt

(proof)

Show the equivalence of two takeW with different pres

lemma take W-pre-eql:
[Az . 1= [z] = P pre z nat +— P pre’ z nat;
Nzl 221 . 1 = z1#224#1' = P pre x1 (Some z2) «— P pre’ 1 (Some z2)] =
take W pre | nzt = takeW pre’ | nat
(proof)

lemma take W-replace-pre:
[P pre x1 n; n = ifhead xs nat] = prefiz (TW .takeW P pre’ (z1#xs) nat) (TW .takeW P pre (x1#xs)
nat)

(proof)

Holds unfolding

This section contains various lemmas that show how one can deduce P pre’ x’ nxt’ for some
of pre’ x’ nxt’ out of a list I, for which we know that holds pre | nxt is true.

lemma holds-set-list: [holds pre l nzt; z € setl]] = I py.Ppuzy
(proof)

lemma holds-unfold: holds pre | None =

=]V

(3 z.1=[z] NP prex None) V

(3 zyys.l= (z#y#ys) N P pre xz (Some y) A holds (Some z) (y#ys) None)
(proof)

lemma holds-unfold-prexnzt:

[suffiz (x0#x1H#x2#xs) I; holds pre | nat]
= P (Some 20) z1 (Some z2)

(proof)

lemma holds-unfold-prexznzt”:

[holds pre I nat; | = (2sQ(z0#x1 #x2#1s))]
= P (Some 20) z1 (Some z2)

(proof)

lemma holds-unfold-zz:
[suffic (x14#x2#xs) I; holds pre I nat] = 3 pre’. P pre’ x1 (Some z2)
(proof)

lemma holds-unfold-prezx:
[suffic (x1#x2#xs) I; holds pre I nat] = 3 nat’. P (Some x1) z2 nat’
(proof)

41

lemma holds-suffiz:
[holds pre I nzt; suffix I' [= 3 pre’. holds pre’ ' nat
(proof)

lemma holds-unfold-prelnil:
[holds pre I nat; | = (zsQ(z0#x1#])))]
= P (Some z0) x1 nxt

(proof)

end

end

theory Tuke-While-Update imports Tools
begin

42

1.7 Extending Take-While with an additional, mutable param-
eter

This theory defines takeW, holds and extract similarly to the other Take- While theory, but
removes the predecessor parameter and adds a parameter to P and an update function that
is applied to this parameter. In our formalization, the additional parameter is the uinfo field
and the update function is the update on uinfo fields.

locale TWu =
fixes P :: ('b = 'a = 'a option = bool)
fixes upd :: ('b = 'a = 'b)

begin

1.7.1 Definitions

Apply upds on a sequence

abbreviation upds :: 'b = 'a list = 'b where
upds = foldl upd

fun upd-opt :: ('b = 'a option = 'b) where
upd-opt info (Some hf) = upd info hf
| upd-opt info None = info

holds returns true iff every element of a list, together with its context, satisfies P.

fun holds :: 'b = 'a list = 'a option = bool
where
holds info (x # y # ys) nxt +— P info x (Some y) A holds (upd info y) (y # ys) nat
| holds info [z] nzt «— P info x nat
| holds info [| nxt «— True

holds returns the longest prefix of a list for every element, together with its context, satisfies
P.

function takeW :: 'b = ’a list = 'a option = ’a list where
takeW - [] - =]
| Pinfo x zo = takeW info [z] zo = [z]
| = P info © zo = take W info [z] zo = |]
| Pinfo z (Some y) = takeW info (x # y # xs) zo = = # takeW (upd info y) (y # zs) zo
| = P info z (Some y) = takeW info (z # y # xs) zo = |]
(proof)

termination
(proof)

extract returns the last element of a list, or nxt if the list is empty.

fun extract :: 'b = ‘a list = 'a option = 'a option
where
extract info (x # y # ys) nat = (if P info x (Some y) then extract (upd info y) (y # ys) nat else
Some)
| extract info [z] nat = (if P info x nxt then nat else (Some x))
| extract info [| nat = nat

43

1.7.2 Lemmas

Lemmas packing singleton and at least two element cases into a single equation.

lemma takeW-singleton:
takeW info [x] xo = (if P info x xo then [z] else [])
(proof)

lemma take W-two-or-more:

takeW info (x # y # 2s) xo = (if P info x (Some y) then x # takeW (upd info y) (y # zs) xo else
)
(proof)

Some lemmas for splitting the tail of the list argument.

Splitting lemma formulated with if-then-else rather than case.

lemma take W-split-tail:
takeW info (x # xs) nat =
(if ws = ||
then (if P info x nat then [z] else [])
else (if P info x (Some (hd xs)) then x # takeW (upd info (hd xs)) zs nat else []))

(proof)

lemma extract-split-tail:
extract info (z # xs) nzt =
(case zs of
[| = (if P info x nat then nat else (Some x))
(y # ys) = (if P info x (Some y) then extract (upd info y) (y # ys) nat else Some x))

|
{proof)

lemma holds-split-tail:
holds info (z # xs) nxt «—
(case zs of
[| = P info x nat
| (y # ys) = P info x (Some y) A holds (upd info y) (y # ys) nxt)
(proof)

lemma holds-Cons-P:
holds info (x # xs) nzt = Jy . Pinfozy
(proof)

lemma holds-Cons-holds:
holds info (z # xs) nxt = holds (upd-opt info (head xs)) zs nxt
(proof)

lemmas tail-splitting-lemmas =
extract-split-tail holds-split-tail

Interaction between holds, take While, and extract.

declare if-split-asm [split]

lemma holds-take W-extract: holds info (takeW info xs nxt) (extract info xs nat)

{proof)

44

Interaction of holds, take While, and extract with (@).

lemma holds-append:
holds info (zs Q ys) nat =
(case ys of [| = holds info xs nat | © # - =
holds info zs (Some x) A
(case zs of [| = holds info ys nat
| - = holds (upds info (tl xzsQ[z])) ys nat))
(proof)

lemma upds-snoc: upds winfo (zsQ[z]) = upd (upds uinfo xs) x
(proof)

lemma take W-prefiz:
prefiz (takeW info | nat) 1
(proof)

lemma take W-set: t € set (TWu.takeW P upd info | not) = t € set |
(proof)

lemma holds-implies-take W-is-identity:
holds info | nzt = takeW info | nat =1
(proof)

lemma holds-take W-is-identity[simp]:
take W info | nxt = | <— holds info | nxt
(proof)

lemma take W-take W-extract:
takeW info (takeW info I nat) (extract info | nat)
= takeW info | nxt

{proof)

Holds unfolding

This section contains various lemmas that show how one can deduce P info’ x’ nxt’ for some
of info’ x” nxt’ out of a list 1, for which we know that holds info | nxt is true.

lemma holds-set-list: [holds info I nat; x € setl] = I py.Ppzxy
(proof)

lemma holds-set-list-no-update: [holds info | nxt; x € set l; Na b. upd ab=a] = I y . Pinfoxy
(proof)

lemma holds-unfold: holds info | None =
=[]V
(3 z.1=[z] A Pinfox None) V
3 zyys.l= (z#y#ys) N Pinfo x (Some y) A holds (upd info y) (y#ys) None)
(proof)

lemma holds-unfold-preznzt’”:

45

[holds info | nxt; | = (2sQ(xl #x24#1s)); zs # []]
= P (upds info ((tl zs)Q[z1])) z1 (Some z2)
(proof)

lemma holds-suffiz:
[holds info | nxt; suffix I’ I] = 3 info’. holds info’ I’ nat
(proof)

lemma holds-unfold-prelnil:
[holds info | nxt; 1 = (2sQ(z1#])); zs # [|]
= P (upds info ((tl zs)Q[z1])) x1 nxt
(proof)

Update shifted

Usually, the update has already been applied to the head of the list. Hence, when given a
list to apply updates to (and a successor, i.e., the first element that comes after the list),
we remove the first element of the list and add the successor. We apply the updates on the
resulting list.
fun upd-shifted :: ('b = 'a list = 'a = 'b) where

upd-shifted uinfo (z#xs) nat = upds uinfo (xsQ[nat])
| upd-shifted uinfo [| nat = uinfo

This lemma is useful when there is an intermediate hop field hf of interest.

lemma holds-intermediate:
assumes holds uwinfo p nxt p = pre Q hf # post
shows holds (upd-shifted uinfo pre hf) (hf # post) nat

(proof)

lemma holds-intermediate-ex:
assumes holds uinfo hfs nxt hf € set hfs
shows dpre post . holds (upd-shifted winfo pre hf) (hf # post) nat A hfs = pre @ hf # post
(proof)

end

end

46

Chapter 2

Abstract, and Concrete
Parametrized Models

This is the core of our verification — the abstract and parametrized models that cover a wide

range of protocols.

47

2.1 Network model

theory Network-Model
imports
infrastructure/ Agents
infrastructure/ Tools
infrastructure/ Take- While
begin

as is already defined as a type synonym for nat.

type-synonym ifs = nat

The authenticated hop information consists of the interface identifiers UplF, DownlF and
an identifier of the AS to which the hop information belongs. Furthermore, this record is
extensible and can include additional authenticated hop information (aahi).

record ahi =
UplF :: ifs option
DownlF :: ifs option
ASID :: as

type-synonym ’aahi ahis = 'aahi ahi-scheme

locale network-model = compromised +
fixes
auth-seg0 :: (‘ainfo x 'aahi ahi-scheme list) set
and tgtas :: as = ifs = as option
and tgtif :: as = ifs = ifs option
begin

2.1.1 Interface check

Check if the interfaces of two adjacent hop fields match. If both hops are compromised we
also interpret the link as valid.

fun if-valid :: 'aahi ahis option = 'aahi ahis => 'aahi ahis option = bool where
if-valid None hf - — this is the case for the leaf AS
= True
| if-valid (Some hfl) (hf2) -
= ((3 downif . DownIF hf2 = Some downif A
tgtas (ASID hf2) downif = Some (ASID hfl) A
tgtif (ASID hf2) downif = UplF hf1)
V ASID hft € bad N ASID hf2 € bad)

makes sure that: the segment is terminated, i.e. the first AS’s HF has Eo = None

fun terminated :: 'aahi ahis list = bool where
terminated (hf#xs) +— DownlF hf = None V ASID hf € bad
| terminated [= True

makes sure that: the segment is rooted, i.e. the last HF has UpIF = None

fun rooted :: 'aahi ahis list = bool where
rooted [hf] +— UpIF hf = None V ASID hf € bad
| rooted (hf#wxs) = rooted xs

48

| rooted [| = True

abbreviation ifs-valid where
ifs-valid pre | not = TW .holds if-valid pre | nxt

abbreviation ifs-valid-prefix where
ifs-valid-prefix pre | nxt = TW .takeW if-valid pre | nxt

abbreviation ifs-valid-None where
ifs-valid-None | = ifs-valid None | None

abbreviation ifs-valid-None-prefic where
ifs-valid-None-prefiz | = ifs-valid-prefix None | None

lemma strip-ifs-valid-prefix:
pfragment ainfo | auth-seg0 = pfragment ainfo (ifs-valid-prefix pre | nat) auth-seg0
(proof)

Given the AS and an interface identifier of a channel, obtain the AS and interface at the other
end of the same channel.

abbreviation rev-link :: as = ifs = as option X ifs option where
rev-link al il = (tgtas al i1, tgtif al il)

end
end

49

2.2 Abstract Model

theory Parametrized-Dataplane-0
imports
Network-Model
infrastructure/ Event-Systems
begin

A packet consists of an authenticated info field (e.g., the timestamp of the control plane level
beacon creating the segment), as well as past and future paths. Furthermore, there is a history
variable history that accurately records the actual path — this is only used for the purpose of
expressing the desired security property ("Detectability’, see below).

record ('aahi, 'ainfo) pkt0 =
Alnfo :: 'ainfo
past :: 'aahi ahi-scheme list
future :: 'aahi ahi-scheme list
history :: ‘aahi ahi-scheme list

In this model, the state consists of channel state and local state, each containing sets of
packets (which we occasionally also call messages).

record ('aahi, 'ainfo) dp0-state =
chan :: (as X ifs x as x ifs) = ('aahi, 'ainfo) pkt0 set
loc :: as = ('aahi, 'ainfo) pkt0 set

We now define the events type; it will be explained below.

datatype (‘aahi, 'ainfo) evt0 =
evt-dispatch-int0 as ('aahi, 'ainfo) pkt0
| evt-recv0 as ifs (‘aahi, 'ainfo) pkt0
| evt-send0 as ifs ('aahi, 'ainfo) pkt0
| evi-deliver0 as ('aahi, 'ainfo) pkt0
| evt-dispatch-ext0 as ifs ('aahi, 'ainfo) pkt0
| evt-observed ('aahi, 'ainfo) dp0O-state
| evt-skip0

context network-model
begin

We define shortcuts denoting that from a state s, a packet pkt is added to either a local state
or a channel, yielding state s’ No other part of the state is modified.

definition dp0-add-loc :: ('aahi, 'ainfo) dp0-state = (‘aahi, 'ainfo) dp0-state
= as = (‘aahi, 'ainfo) pkt0 = bool
where
dp0-add-loc s s' asid pkt = s’ = s(loc := (loc s)(asid := loc s asid U {pkt}))

This is a shortcut to denote adding a message to an inter-AS channel. Note that it requires
the link to exist.

definition dp0-add-chan :: (‘aahi, 'ainfo) dp0O-state = ('aahi, 'ainfo) dp0-state
= as = ifs = (‘aahi, 'ainfo) pkt0 = bool where
dp0-add-chan s s’ al il pkt =
Ja2 i2 . rev-link al i1 = (Some a2, Some i2) A
s" = s(chan := (chan s)((al, i1, a2, i2) := chan s (al, i1, a2, i2) U {pkt}))

50

Predicate that returns true if a given packet is contained in a given channel.

definition dp0-in-chan :: ('aahi, 'ainfo) dp0-state = as = ifs = (‘aahi, 'ainfo) pkt0 = bool where
dp0-in-chan s al il pkt =
Ja2 i2 . rev-link al i1 = (Some a2, Some i2) A pkt € (chan s)(a2, i2, al, il)

lemmas dp0-msgs = dp0-add-loc-def dp0-add-chan-def dp0-in-chan-def

2.2.1 Events

A typical sequence of events is the following:

e An AS creates a new packet using evt-dispatch-int0 event and puts the packet into its
local state.

e The AS forwards the packet to the next AS with the evt-send0 event, which puts the
message into an inter-AS channel.

e The next AS takes the packet from the channel and puts it in the local state in evt-recv0.

e The last two steps are repeated as the packet gets forwarded from hop to hop through
the network, until it reaches the final AS.

e The final AS delivers the packet internally to the intended destination with the event
evt-deliver(.

definition
dp0-dispatch-int
where
dpO-dispatch-int s m ainfo asid pas fut hist s’ =
— guard: check that the future path is a fragment of an authorized segment. In reality, honest
agents will always choose a path that is a prefix of an authorized segment, but for our models this
difference is not significant.
m = (Alnfo = ainfo, past = pas, future = fut, history = hist |) A
hist =[] A
pfragment ainfo fut auth-seg0 N
— action: Update the state to include m
dp0-add-loc s s’ asid m

definition
dp0-recv
where
dpO-recv s m asid ainfo hfl downif pas fut hist s’ =
— guard: there are at least two hop fields left, which means we can advance the packet by one hop.
m = (Alnfo = ainfo, past = pas, future = hfl # fut, history = hist |) A
dp0-in-chan s asid downif m A

ASID hfl = asid A
— action: Update state to include message
dp0-add-loc s s asid (

Alnfo = ainfo,
past = pas,

o1

future = hfl # fut,
history = hist

)

definition
dp0-send
where
dp0-send s m asid ainfo hfl upif pas fut hist s’ =
— guard: there are at least two hop fields left, which means we can advance the packet by one hop.
m = (| Alnfo = ainfo, past = pas, future = hfl#fut, history = hist |) A
m € (loc s) asid A
UplIF hfl = Some upif A
ASID hfl = asid A

— action: Update state to include modified message
dp0-add-chan s s’ asid upif
Alnfo = ainfo,
past = hfl # pas,
future = fut,
history = hfl # hist
)

This event represents the destination receiving the packet. Our properties are not expressed
over what happens when an end hosts receives a packet (but rather what happens with a
packet while it traverses the network). We only need this event to push the last hop field
from the future path into the past path, as the detectability property is expressed over the
past path.

definition
dp0-deliver
where
dpO-deliver s m asid ainfo hf1 pas fut hist s’ =
m = (| Alnfo = ainfo, past = pas, future = hfl#fut, history = hist |) A
ASID hfl = asid A
m € (loc s) asid A

fut = [A

— action: Update state to include modified message
dp0-add-loc s s’ asid

Alnfo = ainfo,

past = hfl # pas,
future =[],

history = hfl # hist

)

— Direct dispatch event. A node with asid sends a packet on its outgoing interface upif.
Note that the attacker is NOT part of the real past path. However, detectability is still achieved in

practice, since hf (the hop field of the next AS) points with its downif towards the attacker node.
definition

dp0-dispatch-ext
where
dpO-dispatch-ext s m asid ainfo upif pas fut hist s’ =

92

m = (| Alnfo = ainfo, past = pas, future = fut, history = hist) A
hist =[] A

pfragment ainfo fut auth-seg0 N

— action: Update state to include attacker message
dp0-add-chan s s’ asid upif m

2.2.2 Transition system

fun dp0-trans where

dp0-trans s (evt-dispatch-int0 asid m) s’ <—

(F ainfo pas fut hist. dp0-dispatch-int s m ainfo asid pas fut hist s’) |
dpO-trans s (evt-recv0 asid downif m) s’ +—

(F ainfo hfl pas fut hist. dpO-recv s m asid ainfo hfl downif pas fut hist s') |
dp0O-trans s (evt-send0 asid upif m) s’ +—

(3 ainfo hfl pas fut hist. dp0-send s m asid ainfo hfl upif pas fut hist s’) |
dpO-trans s (evt-deliver(asid m) s’ <—

(F ainfo hfl pas fut hist. dpO-deliver s m asid ainfo hfl pas fut hist s’) |
dp0O-trans s (evt-dispatch-ext0 asid upif m) s’ +—

(3 ainfo pas fut hist. dp0-dispatch-ext s m asid ainfo upif pas fut hist s’) |
dpO-trans s (evt-observe0 s") s’ «— s =s' N s = s""|
dpO-trans s evt-skip0 s’ <— s = s’

definition dp0-init :: (‘aahi, 'ainfo) dp0-state where
dp0-init = (chan = (A-. {}), loc = (A-. {}))

definition dp0 :: ((‘aahi, 'ainfo) evt0, (‘aahi, 'ainfo) dp0-state) ES where
dp0 =
init = (=) dp0-init,
trans = dp0-trans

)

lemmas dp0-trans-defs = dp0-dispatch-int-def dp0-recv-def dp0-send-def dp0-deliver-def dp0-dispatch-ext-def
lemmas dp0-defs = dp0-def dp0-init-def dp0-trans-defs

soup is a predicate that is true for a packet m and a state s, if m is contained anywhere in
the system (either in the local state or channels).
definition soup where soup m s = 3z. m € (loc s) x V (Fz. m € (chan s) z)

declare soup-def [simp)
declare if-split-asm [split]

lemma dp0-add-chan-msgs:
assumes dp0-add-chan s s’ asid upif m and soup n s’ and n # m
shows soup n s

{(proof)

2.2.3 Path authorization property

Path authorization is defined as: For all messages in the system: the future path is a fragment
of an authorized path. We strengthen this property by including the real past path (the

93

recorded history that can not be faked by the attacker). The concatenation of these path
remains invariant during forwarding, makes this invariant inductive. Note that the history
path is in reverse order.

definition auth-path :: (‘aahi, 'ainfo) pkt0 = bool where
auth-path m = pfragment (AlInfo m) (rev (history m) @ future m) auth-seg0

definition inv-auth :: (‘aahi, 'ainfo) dp0-state = bool where
nv-auth s =V m . soup m s — auth-path m

lemma inv-authl:
assumes A\m . soup m s = pfragment (Alnfo m) (rev (history m) Q future m) auth-seg0
shows inv-auth s

(proof)

lemma inv-authD:
assumes inv-auth s soup m s
shows pfragment (Alnfo m) (rev (history m) Q future m) auth-seg0

(proof)

lemma inv-auth-add-chan[elim!]:
assumes dp0-add-chan s s’ asid upif m and inv-auth s
and pfragment (AInfo m) (rev (history m) @Q future m) auth-seg0
shows inv-auth s’

(proof)

lemma inv-auth-add-loc[elim!]:
assumes dp0-add-loc s s’ asid m and inv-auth s
and pfragment (AInfo m) (rev (history m) @Q future m) auth-seg0
shows inv-auth s’

(proof)

lemma Inv-inv-auth: Inv dp0 inv-auth

(proof)

abbreviation TR-aquth where TR-auth =
{T| 7.V s. evt-observel s € set T — inv-auth s}

lemma tr0-satisfies-pathauthorization: dp0 =gs TR-auth
(proof)

Easier to read

definition inv-authorized :: ('aahi, 'ainfo) dp0-state = bool where
inv-authorized s =V'm . soup m s —
(3 timestamp auth-path. (timestamp, auth-path) € auth-seg0 N
(3 pre post. auth-path = pre Q (rev (history m)) @ post))

lemma inv-auth s = inv-authorized s

(proof)

54

2.2.4 Detectability property

The attacker sending a packet to another AS is not part of the real path. However, the
next hop’s interface will point to the attacker AS (if the hop field is valid), thus the attacker
remains identifiable.

Detectability, the first property: the past real path is a prefix of the past path

definition inv-detect :: ('aahi, 'ainfo) dp0-state = bool where
inv-detect s =Y m . soup m s — prefix (history m) (past m)

lemma inv-detect!:
assumes A\m x . soup m s = prefix (history m) (past m)
shows inv-detect s

(proof)

lemma inv-detectD:
assumes inv-detect s
shows Am z .m € (loc s) x = prefiz (history m) (past m)
and Am z .m € (chan s) x = prefiz (history m) (past m)

(proof)

lemma inv-detect-add-chan|elim!]:
assumes dp0-add-chan s s’ asid upif m inv-detect s prefix (history m) (past m)
shows inv-detect s’

(proof)

lemma inv-detect-add-loc[elim!]:
assumes dp0-add-loc s s" asid m inv-detect s prefix (history m) (past m)
shows inv-detect s’

(proof)

lemma Inv-inv-detect: Inv dp0 inv-detect
(proof)

abbreviation TR-detect where TR-detect = {7 | 7.V s . evt-observel s € set T — inv-detect s}

lemma {r0-satisfies-detectability: dp0 =rs TR-detect
(proof)

end
end

95

2.3 Intermediate Model

theory Parametrized-Dataplane-1
imports
Parametrized-Dataplane-0
infrastructure/ Message
begin

This model is almost identical to the previous one. The only changes are (i) that the receive
event performs an interface check and (ii) that we permit the attacker to send any packet
with a future path whose interface-valid prefix is authorized, as opposed to requiring that
the entire future path is authorized. This means that the attacker can combine hop fields
of subsequent ASes as long as the combination is either authorized, or the interfaces of the
two hop fields do not correspond to each other. In the latter case the packet will not be
delivered to (or accepted by) the second AS. Because (i) requires the evt-recv0 event to check
the interface over which packets are received, in the mapping from this model to the abstract
model we can thus cut off all invalid hop fields from the future path.

type-synonym (‘aahi, 'ainfo) dpl-state = (‘aahi, 'ainfo) dp0-state

type-synonym (‘aahi, 'ainfo) pkt1 = (‘aahi, 'ainfo) pkt0

type-synonym (‘aahi, 'ainfo) evtl = ('aahi, 'ainfo) evt0

context network-model
begin

2.3.1 Events

definition
dp1-dispatch-int
where
dp1-dispatch-int s m ainfo asid pas fut hist s’ =
— guard: check that the future path is a fragment of an authorized segment. In reality, honest
agents will always choose a path that is a prefix of an authorized segment, but for our models this
difference is not significant.
m = (| Alnfo = ainfo, past = pas, future = fut, history = hist |) A
hist =[] A
pfragment ainfo (ifs-valid-prefiz None fut None) auth-seg0 A
— action: Update the state to include m
dp0-add-loc s s’ asid m

We construct an artificial hop field that contains a specified asid and upif. The other fields are
irrelevant, as we only use this artificial hop field as "previous" hop field in the ifs-valid-prefix
function. This is used in the direct dispatch event: the interface-valid prefix must be autho-
rized. Since the dispatching AS’ own hop field is not part of the future path, but the AS
directly after the it does check for the interface correctness, we need this artificial hop field.

abbreviation prev-hf where
prev-hf asid upif =
(Some (UpIF = Some upif, DownIF = None, ASID = asid, ... = undefined)))

definition
dp1-dispatch-ext

o6

where
dp1-dispatch-ext s m asid ainfo upif pas fut hist s’ =
m = (Alnfo = ainfo, past = pas, future = fut, history = hist |) A
hist =[] A
pfragment ainfo (ifs-valid-prefix (prev-hf asid upif) fut None) auth-seg0 A

— action: Update state to include attacker message
dp0-add-chan s s' asid upif m

definition
dp1-recv
where
dpl-recv s m asid ainfo hfl downif pas fut hist s’ =
DownlF hfl = Some downif
A dpO-recv s m asid ainfo hfl downif pas fut hist s’

2.3.2 Transition system

fun dpI-trans where

dp1-trans s (evt-dispatch-int0 asid m) s’ «—

(3 ainfo pas fut hist. dpl-dispatch-int s m ainfo asid pas fut hist s’) |
dp1-trans s (evt-dispatch-ext0 asid upif m) s’ +—

(F ainfo pas fut hist . dpl-dispatch-ext s m asid ainfo upif pas fut hist s') |
dp1-trans s (evt-recv0 asid downif m) s’ +—

(F ainfo hfl pas fut hist. dpl-recv s m asid ainfo hfl downif pas fut hist s') |
dpl-trans s e 8’ +— dpO-trans s e s’

definition dpI-init :: (‘aahi, 'ainfo) dpl-state where
dp1-init = (chan = (A-. {}), loc = (A-. {}))

definition dp! :: ((‘aahi, 'ainfo) evtl, (‘aahi, 'ainfo) dpi-state) ES where
dp1 =
init = (=) dpl-init,
trans = dpl-trans

)

lemmas dpi-trans-defs = dp0-trans-defs dp1-dispatch-ext-def dp1-recv-def
lemmas dpi-defs = dpi-def dpl-dispatch-int-def dp1-init-def dpl-trans-defs

fun pktitoOchan :: as = ifs = (‘aahi, 'ainfo) pktl = (‘aahi, 'ainfo) pkt0 where
pktltoOchan asid upif (| Alnfo = ainfo, past = pas, future = fut, history = hist |) =
(pkt0.Alnfo = ainfo, past = pas, future = ifs-valid-prefix (prev-hf asid upif) fut None,
history = hist))

fun pktitoOloc :: (‘aahi, 'ainfo) pktl = (‘aahi, 'ainfo) pkt0 where
pktltoOloc (| Alnfo = ainfo, past = pas, future = fut, history = hist |) =
(pkt0.AInfo = ainfo, past = pas, future = ifs-valid-prefiz None fut None, history = hist))

definition R10 :: (‘aahi, 'ainfo) dpl-state = (‘aahi, 'ainfo) dp0-state where
R10 s =
(chan = X(al, i1, a2, i2) . (pktitoOchan al i1) ‘ ((chan s) (al, il, a2, i2)),
loc = Az . pktitoOloc ‘ ((loc s) x))

o7

fun 7 :: (‘achi, 'ainfo) evtl = (‘aahi, 'ainfo) evt0 where
w1 (evt-dispatch-int0 asid m) = evt-dispatch-int0 asid (pktitoOloc m)
| m1 (evt-recvl asid downif m) = evt-recvl asid downif (pktitoOloc m)
| m1 (evt-send0 asid upif m) = evt-send0 asid upif (pktitoOloc m)
| 71 (evt-deliver0 asid m) = evt-deliver0 asid (pktltoOloc m)
| 71 (evt-dispatch-ext0 asid upif m) = evt-dispatch-ext0 asid upif (pktitoOchan asid upif m)
| 71 (evt-observel s) = evt-observel (R10 s)
| 71 evt-skip0 = euvt-skip0

declare TW.take W .elims|elim]

lemma dpi-refines-dp0: dpl Ty dp0
(proof)

2.3.3 Auxilliary definitions

These definitions are not directly needed in the parametrized models, but they are useful for
instances.

Check if interface option is matched by a msgterm.

fun ASIF :: ifs option = msgterm = bool where
ASIF (Some a) (AS o) = (a=a’)

| ASIF None ¢ = True

| ASIF - - = False

lemma ASIF-None[simp|: ASIF ifopt ¢ «+— ifopt = None (proof)
lemma ASIF-AS[simp]: ASIF ifopt (AS a) <— ifopt = Some a (proof)

Turn a msgterm to an ifs option. Note that this maps both e (the msgterm denoting the lack
of an interface) and arbitrary other msgterms that are not of the form "AS t" to None. The
result may thus be ambiguous. Use with care.

fun term?2if :: msgterm = ifs option where
term2if (AS a) = Some a

| term2if € = None

| term2if - = None

lemma ASIF-term2if[intro]: ASIF i mi = ASIF (term2if mi) mi
(proof)

fun if2term :: ifs option = msgterm where if2term (Some a) = AS a | if2term None = ¢

lemma if2term-eq[elim]: if2term a = if2term b = a = b
(proof)

lemma term2if-if2termm|simp|: term2if (if2term a) = a (proof)
fun hf2term :: ahi = msgterm where
hf2term (UpIF = upif, DownIF = downif, ASID = asid|) = L [if2term upif, if2term downif, Num

asid)

fun term2hf :: msgterm = ahi where

o8

term2hf (L [upif, downif, Num asid]) = (UpIF = term2if upif, DownIF = term2if downif, ASID
= asid)

lemma term2hf-hf2term[simp|: term2hf (hf2term hf) = hf (proof)
lemma ahi-eq:
[ASID ahi’ = ASID (ahi::ahi); ASIF (DownlF ahi’) downif; ASIF (UpIF ahi’) upif;

ASIF (DownlIF ahi) downif; ASIF (UpIF ahi) upif] = ahi = ahi’
(proof)

end
end

99

2.4 Concrete Parametrized Model

This is the refinement of the intermediate dataplane model. This model is parametric, and
requires instantiation of the hop validation function, (and other parameters). We do so
in the Parametrized-Dataplane-3-directed and Parametrized-Dataplane-3-undirected models.
Nevertheless, this model contains the complete refinement proof, albeit the hard case, the
refinement of the attacker event, is assumed to hold. The crux of the refinement proof is
thus shown in these directed/undirected instance models. The definitions to be given by
the instance are those of the locales dataplane-2-defs (which contains the basic definitions
needed for the protocol, such as the verification of a hop field, called hf-valid-generic), and
dataplane-2-ik-defs (containing the definition of components of the intruder knowledge). The
proof obligations are those in the locale dataplane-2.

theory Parametrized-Dataplane-2
imports
Parametrized-Dataplane-1 Network-Model
begin

record ('aahi, 'uhi) HF =
AHI :: 'aahi ahi-scheme
UHI :: 'uhi
HVF :: msgterm

record ('aahi, 'vinfo, 'uhi, 'ainfo) pkt2 =
Alnfo :: 'ainfo
Ulnfo :: "winfo
past :: ('aahi, 'uhi) HF list
future :: ('aahi, 'uhi) HF list
history :: 'aahi ahi-scheme list

We use pkt2 instead of pkt, but otherwise the state remains unmodified in this model.

record ('aahi, 'vinfo, 'uhi, 'ainfo) dp2-state =
chan2 :: (as X ifs x as x ifs) = ('aahi, 'uinfo, 'uhi, 'ainfo) pkt2 set
loc2 :: as = ('aahi, "winfo, 'uhi, 'ainfo) pkt2 set

datatype (‘aahi, "winfo, 'uhi, 'ainfo) evt2 =
evt-dispatch-int2 as ('aahi, 'uinfo, 'uhi, 'ainfo) pkt2
| evt-recv2 as ifs ('aahi, 'winfo, "uhi, 'ainfo) pkt2
| evt-send?2 as ifs ('aahi, "winfo, 'uhi, 'ainfo) pkt2
| evt-deliver2 as ('aahi, 'uinfo, "uhi, 'ainfo) pkt2
| evt-dispatch-ext2 as ifs ('aahi, 'winfo, 'uhi, 'ainfo) pkt2
| evt-observe2 ('aahi, 'uinfo, 'uhi, 'ainfo) dp2-state
| evt-skip2

definition soup2 where soup2 m s = 3z. m € (loc2 s) z V (3z. m € (chan2 s) x)
declare soup2-def [simp]
fun fwd-pkt :: ('aahi, 'vinfo, 'uhi, ‘ainfo) pkt2 = ('aahi, 'uinfo, 'uhi, 'ainfo) pkt2 where

fwd-pkt (| Alnfo = ainfo, Ulnfo = winfo, past = pas, future = hfl#fut, history = hist |)
= (AlInfo = ainfo, Ulnfo = winfo, past = hfl#pas, future = fut, history = (AHI hf1)#hist |

60

2.4.1 Hop validation check, authorized segments, and path extraction.

First we define a locale that requires a number of functions. We will later extend this to a
locale dataplane-2, which makes assumptions on how these functions operate. We separate
the assumptions in order to make use of some auxiliary definitions defined in this locale.

locale dataplane-2-defs = network-model - auth-seg0
for auth-seq0 :: (‘ainfo x 'aahi ahi-scheme list) set +
— hf-valid-generic is the check that every hop performs. Besides the hop’s own field, the check may
require access to its neighboring hop fields as well as on ainfo, uinfo and the entire sequence of hop
fields. Note that this check should include checking the validity of the info fields. Depending on the
directed vs. undirected setting, this check may only have access to specific fields.
fixes hf-valid-generic :: 'ainfo = 'uinfo
= ('aahi, "uhi) HF list
= ('aahi, 'uhi) HF option
= ('aahi, 'uhi) HF
= (‘aahi, 'uhi) HF option = bool
— hfs-valid-prefiz-generic is the longest prefix of a given future path, such that hf-valid-generic passes
for each hop field on the prefix.
and hfs-valid-prefix-generic ::
'"ainfo = 'winfo
= (‘aahi, 'uhi) HF list
= ('aahi, 'uhi) HF option
= ('aahi, 'uhi) HF list
= ('aahi, "uhi) HF option = (‘aahi, 'uhi) HF list
— We need auth-restrict to further restrict the set of authorized segments. For instance, we need it
for the empty segment (ainfo, []) since according to the definition any such ainfo will be contained in
the intruder knowledge. With auth-restrict we can restrict this.
and auth-restrict :: ‘ainfo = 'uinfo = (‘aahi, 'uhi) HF list = bool
— extr extracts from a given hop validation field (HVF hf) the entire authenticated future path that
is embedded in the HVF.
and extr :: msgterm = 'aahi ahi-scheme list
— extr-ainfo extracts the authenticated info field (ainfo) from a given hop validation field.
and extr-ainfo :: msgterm = 'ainfo
— term-ainfo extracts what msgterms the intruder can learn from analyzing a given authenticated
info field.
and term-ainfo :: 'ainfo = msgterm
— terms-hf extracts what msgterms the intruder can learn from analyzing a given hop field; for
instance, the hop validation field HVF hf and the segment identifier UHI hf.
and terms-hf :: ('aahi, 'uhi) HF = msgterm set
— terms-winfo extracts what msgterms the intruder can learn from analyzing a given uinfo field.
and terms-uinfo :: 'uinfo = msgterm set
— upd-uinfo takes a uinfo field an a hop field and returns the updated uinfo field.
and upd-uinfo :: 'uinfo = ('aahi, 'uhi) HF = 'uinfo
— As ik-oracle (defined below) gives the attacker direct access to hop validation fields that could be
used to break the property, we have to either restrict the scope of the property, or restrict the attacker
such that he cannot use the oracle-obtained hop validation fields in packets whose path origin matches
the path origin of the oracle query. We choose the latter approach and fix a predicate no-oracle that
tells us if the oracle has not been queried for a path origin (ainfo, uinfo combination). This is a
prophecy variable.
and no-oracle :: 'ainfo = 'uinfo = bool

begin

61

Auxiliary definitions and lemmas

Define uinfo field updates.

fun upd-uinfo-pkt :: ("aahi, 'wvinfo, 'uhi, 'ainfo) pkt2 = 'uinfo where
upd-uinfo-pkt (| AInfo = ainfo, Ulnfo = winfo, past = pas, future = hfl#fut, history = hist |)
= upd-uinfo winfo hfl
| upd-uinfo-pkt (| Alnfo = ainfo, UInfo = winfo, past = pas, future = [], history = hist |) = uinfo

definition upd-pkt :: (‘aahi, "vinfo, "uhi, ‘ainfo) pkt2 = (‘aahi, "winfo, 'uhi, 'ainfo) pkt2 where
upd-pkt pkt = pkt(Ulnfo := upd-uinfo-pkt pkt)

This function maps hop fields of the dp2 format to hop fields of dp0 format.

definition AHIS :: (‘aahi, 'uhi) HF list = 'aahi ahi-scheme list where
AHIS hfs = map AHI hfs

declare AHIS-def[simp]

fun extr-from-hd :: ('aahi, 'uhi) HF list = 'aahi ahi-scheme list where
extr-from-hd (hf#xs) = extr (HVF hf)
| extr-from-hd - = ||

fun extr-ainfoHd where
extr-ainfoHd (hf#xs) = Some (extr-ainfo (HVF hf))
| extr-ainfoHd - = None

lemma prefiz-AHIS:
prefix 1 2 = prefic (AHIS z1) (AHIS z2)

(proof)

lemma AHIS-set: hf € set (AHIS 1) = Jhfc . hfc € set I A hf = AHI hfc
(proof)

lemma AHIS-set-rev: (AHI = ahi, UHI = uhi, HVF = x| € set hfs = ahi € set (AHIS hfs)
(proof)

fun pkt2tolloc :: (‘aahi, 'uinfo, "uhi, 'ainfo) pkt2 = (‘aahi, 'ainfo) pktl where
pkt2tolloc (| Alnfo = ainfo, Ulnfo = uinfo, past = pas, future = fut, history = hist |) =
(pkt0.AlInfo = ainfo,
past = AHIS pas,
future = AHIS (hfs-valid-prefiz-generic ainfo uinfo pas (head pas) fut None),
history = hist|

fun pkt2toichan :: (‘aahi, 'uinfo, "uhi, 'ainfo) pkt2 = ('aahi, 'ainfo) pkt! where
pkt2tolchan (| Alnfo = ainfo, Ulnfo = winfo, past = pas, future = fut, history = hist |) =
(pkt0.Alnfo = ainfo,

past = AHIS pas,

future = AHIS (hfs-valid-prefiz-generic ainfo
(upd-uinfo-pkt (| Alnfo = ainfo, Ulnfo = winfo, past = pas, future = fut, history = hist |))
pas (head pas) fut None),

history = hist)

62

abbreviation AHIo :: (‘aahi, 'uhi) HF option = 'aahi ahi-scheme option where
AHIo = map-option AHI

Authorized segments

Main definition of authorized up-segments. Makes sure that:

the segment is rooted

the segment is terminated

the segment has matching interfaces

the projection to AS owners is an authorized segment in the abstract model.

definition auth-seg2 :: ‘uinfo = (‘ainfo x (‘aahi, 'uhi) HF list) set where
auth-seg?2 uinfo = ({(ainfo, 1) | ainfo | . hfs-valid-prefiz-generic ainfo uinfo [| None | None = [
A auth-restrict ainfo winfo [
A no-oracle ainfo uinfo
A (ainfo, AHIS) € auth-seg0})

lemma auth-seg20:
(z, y) € auth-seg2 winfo = (z, AHIS y) € auth-seg0 (proof)

lemma pfragment-auth-seg20:
pfragment ainfo | (auth-seg2 winfo) = pfragment ainfo (AHIS l) auth-seg0
(proof)

lemma pfragment-auth-seg20’:
[pfragment ainfo | (auth-seg2 winfo); I’ = AHIS] = pfragment ainfo I’ auth-seg0
(proof)

This is a shortcut to denote adding a message to a local channel.

definition
dp2-add-loc?2 ::
("aahi, 'uinfo, 'uhi, 'ainfo, ‘more) dp2-state-scheme =
("aahi, "uinfo, 'uhi, 'ainfo, 'more) dp2-state-scheme = as = ('aahi, 'uinfo, 'uhi, ‘ainfo) pkt2 =
bool
where
dp2-add-loc2 s s’ asid pkt = s' = s(loc2 := (loc2 s)(asid := loc2 s asid U {pkt})])

This is a shortcut to denote adding a message to an inter-AS channel. Note that it requires
the link to exist.

definition
dp2-add-chan?2 ::
('aahi, 'uinfo, 'uhi, 'ainfo, 'more) dp2-state-scheme = (‘aahi, 'winfo, 'uhi, 'ainfo, 'more) dp2-state-scheme
= as = ifs = (‘aahi, "winfo, 'uhi, ‘ainfo) pkt2 = bool
where
dp2-add-chan2 s s’ al i1 pkt =
Ja2 i2 . rev-link al i1 = (Some a2, Some i2) A
s" = s(chan2 = (chan2 s)((al, il, a2, i2) := chan2 s (al, il, a2, i2) U {pkt}))

63

This is a shortcut to denote receiving a message from an inter-AS channel. Note that it
requires the link to exist.

definition
dp2-in-chan?2 :: (‘aahi, 'uinfo, 'uhi, 'ainfo, 'more) dp2-state-scheme = as = ifs = ('aahi, 'uinfo,
uhi, 'ainfo) pkt2 = bool
where
dp2-in-chan2 s al il pkt =
Ja2 i2 . rev-link al i1 = (Some a2, Some i2) A
pkt € (chan2 s)(a2, i2, al, il)

/

lemmas dp2-msgs = dp2-add-loc2-def dp2-add-chan2-def dp2-in-chan2-def

end

2.4.2 Intruder Knowledge definition

print-locale dataplane-2-defs
locale dataplane-2-ik-defs = dataplane-2-defs - - - - hf-valid-generic - - - - - - - upd-uinfo
for hf-valid-generic :: 'ainfo = 'uinfo
= ('aahi, 'uhi) HF list
= ('aahi, 'uhi) HF option
= (‘aahi, 'uhi) HF
= ('aahi, 'uhi) HF option = bool
and upd-uinfo :: 'uinfo = (‘aahi, 'uhi) HF = 'uinfo +
— ik-add is Additional Intruder Knowledge, such as hop authenticators in EPIC L1.
fixes ik-add :: msgterm set
— dk-oracle is another type of additional Intruder Knowledge. We use it to model the attacker’s ability
to brute-force individual hop validation fields and segment identifiers.
and ik-oracle :: msgterm set
begin

This set should contain all terms that can be learned from analyzing a hop field, in particular
the content of the HVF and UHI fields but not the uinfo field (see below).

definition ik-hfs :: msgterm set where
ik-hfs = {t | t hf hfs ainfo uinfo. t € terms-hf hf N hf € set hfs A (ainfo, hfs) € (auth-seg2 uinfo)}

This set should contain all terms that can be learned from analyzing the uinfo field.

definition ik-uinfo :: msgterm set where
ik-uinfo = {t | ainfo hfs uinfo t. t € terms-uinfo uwinfo N (ainfo, hfs) € (auth-seg2 uinfo)}

declare ik-hfs-def[simp] ik-uinfo-def[simp]

definition ik :: msgterm set where
ik = ik-hfs
U {term-ainfo ainfo | ainfo hfs uinfo. (ainfo, hfs) € (auth-seg2 uinfo)}
U k-uinfo
U Key(macK ‘bad)
U ik-add
U tk-oracle

definition terms-pkt :: ("aahi, 'winfo, 'uhi, 'ainfo) pkt2 = msgterm set where

64

terms-pkt m = {t | t hf. t € terms-hf hf A hf € set (past m) U set (future m)}
U {term-ainfo ainfo | ainfo . ainfo = Alnfo m}
U U {terms-uinfo uinfo | uinfo . uwinfo = Ulnfo m}

Intruder knowledge. We make a simplifying assumption about the attacker’s passive capa-
bilities: In contrast to his ability to insert messages (which is restricted to the locality of
ASes that are compromised, i.e. in the set ’bad’, the attacker has global eavesdropping abil-
ities. This simplifies modelling and does not make the proofs more difficult, while providing
stronger guarantees. We will later prove that the Dolev-Yao closure of #k-dyn remains con-
stant, i.e., the attacker does not learn anything new by observing messages on the network
(see Inv-inv-ik-dyn).
definition ik-dyn :: (‘aahi, 'uinfo, 'uhi, 'ainfo, 'more) dp2-state-scheme = msgterm set where
ik-dyn s = ik U (U {terms-pkt m | m z . m € loc2 s z}) U (| {terms-pkt m | m z . m € chan2 s z})

Different way of presenting the intruder knowledge

definition ik-dynamic :: (‘aahi, 'winfo, 'uhi, 'ainfo, 'more) dp2-state-scheme = msgterm set where
ik-dynamic s = ik U (| {terms-pkt m | m . soup2 m s})

lemma ik-dynamic s = ik-dyn s
(proof)

lemma ik-dyn-mono: [z € ik-dyn s; Am . soup2 m s = soup2 m s'| = z € ik-dyn s’
(proof)

lemma ik-infolelim]:
(ainfo, hfs) € (auth-seg2 uinfo) = term-ainfo ainfo € synth (analz ik)

(proof)

lemma ik-ik-hfs: t € ik-hfs = t € ik (proof)

2.4.3 Events

This is an attacker event.

The attacker is allowed to send any message that he can derive from his intruder knowledge,
except for messages whose path origin he has queried the oracle for.

definition
dp2-dispatch-int
where
dp2-dispatch-int s m ainfo winfo asid pas fut hist s’ =
m = (| Alnfo = ainfo, Ulnfo = uinfo, past = pas, future = fut, history = hist |) A
hist =[] A
terms-pkt m C synth (analz (ik-dyn s)) A
no-oracle ainfo uinfo N
— action: Update the state to include m
dp2-add-loc2 s s’ asid m

definition
dp2-recv
where
dp2-recv s m asid ainfo uinfo hfl downif pas fut hist s’ =

65

— guard: a packet with valid interfaces and valid validation fields is in the incoming channel.
m = (Alnfo = ainfo, Ulnfo = uinfo, past = pas, future = hf14fut, history = hist) A
dp2-in-chan?2 s (ASID (AHI hfl)) downif m A

DownlIF (AHI hfl) = Some downif A

ASID (AHI hf1) = asid A

hf-valid-generic ainfo (upd-uinfo winfo hfl) (rev(pas)@Qhf1#fut) (head pas) hfl (head fut) A

— action: Update local state to include message
dp2-add-loc2 s s’ asid (upd-pkt m)

definition
dp2-send
where
dp2-send s m asid ainfo winfo hfl upif pas fut hist s’ =
— guard: forward the packet on the external channel and advance the path by one hop.
m = (| Alnfo = ainfo, Ulnfo = uinfo, past = pas, future = hfl#fut, history = hist |) A
m € (loc2 s) asid A
UpIF (AHI hf1) = Some upif A
ASID (AHI hf1) = asid A
hf-valid-generic ainfo winfo (rev(pas)Qhfl#fut) (head pas) hfl (head fut) A

— action: Update state to include modified message
dp2-add-chan2 s s’ asid upif |

Alnfo = ainfo,

Ulnfo = winfo,

past = hfl # pas,

future = fut,
history = AHI hfl # hist
D
definition
dp2-deliver
where

dp2-deliver s m asid ainfo uinfo hfl pas fut hist s’ =
m = (Alnfo = ainfo, Ulnfo = uinfo, past = pas, future = hf1#fut, history = hist |) A
m € (loc2 s) asid A
ASID (AHI hf1) = asid A
Jut =[] A
hf-valid-generic ainfo winfo (rev(pas)Qhfl#fut) (head pas) hfl (head fut) A

— action: Update state to include modified message
dp2-add-loc2 s s’ asid
(
Alnfo = ainfo,
Ulnfo = winfo,
past = hfl # pas,
future =[],
history = (AHI hfl) # hist
)

This is an attacker event.

The attacker is allowed to send any message that he can derive from his intruder knowledge,

66

except for messages whose path origin he has queried the oracle for.

definition
dp2-dispatch-ext
where
dp2-dispatch-ext s m asid ainfo winfo upif pas fut hist s’ =
m = (| Alnfo = ainfo, UInfo = uinfo, past = pas, future = fut, history = hist |) A
asid € bad A
hist =[] A
terms-pkt m C synth (analz (ik-dyn s)) A
no-oracle ainfo winfo N

— action
dp2-add-chan2 s s’ asid upif m

2.4.4 Transition system

fun dp2-trans where

dp2-trans s (evt-dispatch-int2 asid m) s’ +—

(3 ainfo winfo pas fut hist . dp2-dispatch-int s m ainfo winfo asid pas fut hist s’) |
dp2-trans s (evt-recv2 asid downif m) s’ +—

(3 ainfo winfo hfl pas fut hist . dp2-recv s m asid ainfo uinfo hfl downif pas fut hist s’) |
dp2-trans s (evt-send2 asid upif m) s’ «—

(3 ainfo winfo hfl pas fut hist. dp2-send s m asid ainfo uinfo hfl upif pas fut hist s’) |
dp2-trans s (evt-deliver2 asid m) s’ +—

(3 ainfo winfo hfl pas fut hist. dp2-deliver s m asid ainfo uinfo hfl pas fut hist s’) |
dp2-trans s (evt-dispatch-ext2 asid upif m) s’ «—

(3 ainfo uwinfo pas fut hist . dp2-dispatch-ext s m asid ainfo winfo upif pas fut hist s’) |
dp2-trans s (evt-observe2 s'') s’ «— s =s'"Ns=s""|
dp2-trans s evt-skip2 s’ +— s = s’

definition dp2-init :: ('aahi, 'winfo, 'uhi, 'ainfo) dp2-state where
dp2-init = (chan2 = (A-. {}), loc2 = (A-. {}))

definition dp2 :: ((‘aahi, 'vinfo, 'uhi, ‘ainfo) evt2, ('aahi, 'uinfo, "uhi, 'ainfo) dp2-state) ES where
dp2 =
init = (=) dp2-init,
trans = dp2-trans

)

lemmas dp2-trans-defs = dp2-dispatch-int-def dp2-recv-def dp2-send-def dp2-deliver-def dp2-dispatch-ext-def
lemmas dp2-defs = dp2-def dp2-init-def dp2-trans-defs

end

2.4.5 Assumptions of the parametrized model

We now list the assumptions of this parametrized model.

print-locale dataplane-2-ik-defs
locale dataplane-2 = dataplane-2-ik-defs - - - - - - - - - - - - hf-valid-generic upd-uinfo - -
for hf-valid-generic :: 'ainfo = 'uinfo
= ('aahi, 'uhi) HF list
= (‘aahi, 'uhi) HF option

67

= ('aahi, 'uhi) HF
= (‘aahi, 'uhi) HF option = bool
and upd-uinfo :: 'uinfo = ('aahi, 'uhi) HF = 'uinfo +

assumes ik-seg-is-auth:
[terms-pkt m C synth (analz ik);
future m = hfs; Alnfo m = ainfo;
nxzt = None; no-oracle ainfo winfo]
= pfragment ainfo
(ifs-valid-prefix prev’
(AHIS (hfs-valid-prefiz-generic ainfo uinfo pas pre hfs nat))
None)
auth-seg0
and upd-uinfo-ik:
[terms-uinfo winfo C synth (analz ik); terms-hf hf C synth (analz ik)]
= terms-uinfo (upd-uinfo uinfo hf) C synth (analz ik)

and upd-uinfo-no-oracle: no-oracle ainfo uinfo = no-oracle ainfo (upd-uinfo winfo fld)

— We require that hfs-valid-prefiz-generic behaves as expected, i.e., that it implements the check
mentioned above.
and prefiz-hfs-valid-prefiz-generic:
prefiz (hfs-valid-prefiz-generic ainfo uinfo pas pre fut nat) fut
and cons-hfs-valid-prefiz-generic:
[hf-valid-generic ainfo winfo hfs (head pas) hfl (head fut); hfs = (rev pas)Qhf1 #fut;
m = (Alnfo = ainfo, Ulnfo = winfo, past = pas, future = hfl # fut, history = hist))]
= hfs-valid-prefiz-generic ainfo uinfo pas (head pas) (hfl # fut) None =
hfl # (hfs-valid-prefiz-generic ainfo (upd-uinfo-pkt (fwd-pkt m)) (hfl#pas) (Some hfl) fut None)
begin

2.4.6 Mapping dp2 state to dpl state

definition R21 : (‘aahi, "uinfo, 'uhi, 'ainfo) dp2-state = (‘aahi, 'ainfo) dpl-state where
R21 s = (chan = Az . pkt2tolchan ‘ ((chan? s) x),
loc = Az . pkt2tolloc ((loc2 s) x))

lemma auth-seg2-pfragment:
[pfragment ainfo (hf # fut) (auth-seg2 winfo); AHIS (hf # fut) = x # xs]
= pfragment ainfo (z # xs) auth-seg0
(proof)

lemma dp2-in-chan2-to-0E]elim):
[dp2-in-chan2 sl al il pkt2; pkt2tolchan pkt2 = pkt0; sO0 = R21 s1] =
dp0-in-chan s0 al i1 pkt0
(proof)

lemma dp2-in-loc2-to-0E[elim]:
[pkt2 € (loc2 s1) asid; pkt2tolloc pkt2 = pkt0; P = pkt2tolloc ‘ loc2 sl asid] =
pkt0 € P

(proof)

lemma dp2-add-loc20FE:
[dp2-add-loc2 s1 s1’ asid p1; p0 = pkt2tolloc p1; sO0 = R21 s1; sO0’ = R21 s1]

68

= dp0-add-loc s0 s0' asid p0
(proof)

lemma dp2-add-chan20F:
[dp2-add-chan2 s1 s1' al il p1; p0 = pkt2tolchan pl; s0 = R21 s1; s0' = R21 s1']
= dp0-add-chan s0 s0' al i1 p0
(proof)

2.4.7 Invariant: Derivable Intruder Knowledge is constant under dp2-trans

Derivable Intruder Knowledge stays constant throughout all reachable states

definition inv-ik-dyn :: (‘aahi, 'vinfo, "uhi, ‘ainfo) dp2-state = bool where
inv-ik-dyn s = ik-dyn s C synth (analz ik)

lemma inv-ik-dynl:
assumes A\t m z . [t € terms-pkt m; m € loc2 s] = ¢ € synth (analz ik)
and Atmz. [t € terms-pkt m; m € chan2 s z] = ¢ € synth (analz ik)
shows inv-ik-dyn s
(proo)

lemma inv-ik-dynD:
assumes nv-ik-dyn s
shows At m z . [m € chan2 s x; t € terms-pkt m] = t € synth (analz ik)
Nt mz . [m € loc2 s z; t € terms-pkt m] = ¢ € synth (analz ik)

(proof)
lemmas inv-ik-dynE = inv-ik-dynD][elim-format)

lemma inv-ik-dyn-add-loc2[elim!]:
[dp2-add-loc2 s s’ asid m; inv-ik-dyn s; terms-pkt m C synth (analz ik)]
= inv-ik-dyn s’
(proof)

lemma inv-ik-dyn-add-chan2|elim!]:
[dp2-add-chan2 s s' al il m; inv-ik-dyn s; terms-pkt m C synth (analz ik)]
= inv-ik-dyn s’

(proof)

lemma inv-ik-dyn-ik-dyn-ik[simp):
assumes inv-ik-dyn s shows synth (analz (ik-dyn s)) = synth (analz ik)
{proof)

lemma terms-pkt-upd:
[x € terms-pkt (upd-pkt p); N\z. x € terms-pkt p = x € synth (analz k)] = x € synth (analz ik)
(proof)

lemma Inv-inv-tk-dyn: reach dp2 s = inv-ik-dyn s

(proof)

69

Attacker dispatch events also capture honest dispatchers

This lemma shows that our definition of dp2-dispatch-int also works for honest senders. All
packets than an honest sender would send are authorized. According to the definition of
the intruder knowledge, they are then also derivable from the intruder knowledge. Hence,
an honest sender can send packets with authorized segments. However, the restriction on
no-oracle remains.

lemma dp2-dispatch-int-also-works-for-honest:
assumes pfragment ainfo fut (auth-seg2 winfo) past m = [| Alnfo m = ainfo Ulnfo m = uinfo
future m = fut
shows terms-pkt m C synth (analz (ik-dyn s))

(proof)

2.4.8 Refinement proof
fun my :: (‘achi, "winfo, 'uhi, 'ainfo) evt2 = (‘aahi, 'ainfo) evt0 where
mo (evt-dispatch-int2 asid m) = evt-dispatch-int0 asid (pkt2tolloc m)
| mo (evt-recv2 asid downif m) = evt-recv0 asid downif (pkt2tolchan m)
| w2 (evt-send2 asid upif m) = evt-send0 asid upif (pkt2tolloc m)
| mo (evt-deliver2 asid m) = evt-deliver0 asid (pkt2tolloc m)
| mo (evt-dispatch-ext2 asid upif m) = evt-dispatch-ext0 asid upif (pkt2tolchan m)
| T2 (evt-observe2 s) = evt-observel (R21 s)
| o evt-skip2 = euvt-skip0

lemma dp2-refines-dpl: dp2 Cro dpl
(proof)

2.4.9 Property preservation

The following property is weaker than TR-auth in that it does not include the future path.
However, this is inconsequential, since we only included the future path in order for the
original invariant to be inductive. The actual path authorization property only requires the
history to be authorized. We remove the future path for clarity, as including it would require
us to also restrict it using the interface- and cryptographic valid-prefix functions.

definition auth-path2 :: (‘aahi, 'uinfo, 'uhi, '‘ainfo) pkt2 = bool where
auth-path2 m = pfragment (AInfo m) (rev (history m)) auth-seg0

abbreviation TR-auth2-hist :: (‘aahi, "winfo, 'uhi, 'ainfo) evt2 list set where TR-auth2-hist =
{T|7.Vsm. evt-observe2 s € set T A soup2 m s —> auth-path2 m}

lemma evt-observe2-0:
evt-observe? s € set T = euvt-observe() (R10 (R21 s)) € (Ax. w1 (w2 x)) ‘set T

(proof)

declare soup2-def [simp del]
declare soup-def [simp del]

lemma loc2to0: [me € loc2 sc x; sa = R10 (R21 sc); ma = pktitoOloc (pkt2tolloc mc)] = ma €
loc sa z

(proof)

70

lemma chan2to0: [mc € chan2 sc (al, il, a2, i2); sa = R10 (R21 sc); ma = pktltoOchan al il
(pkt2tolchan mc)]

= ma € chan sa (al, il, a2, i2)

(proof)

lemma loc2to0-auth:
[me € loc2 sc x; sa = R10 (R21 sc); ma = pktitoOloc (pkt2tolloc mc); auth-path ma] = auth-path2
me

(proof)

lemma chan2to0-auth:
[me € chan?2 sc (al, il, a2, i2); sa = R10 (R21 sc); ma = pktitoOchan al i1 (pkt2tolchan mc);
auth-path ma)] = auth-path2 mc

(proof)

lemma tr2-satisfies-pathauthorization: dp2 Egs TR-auth2-hist
(proof)

definition inv-detect2 :: (‘aahi, 'winfo, 'uhi, 'ainfo) dp2-state = bool where
inv-detect2 s =V m . soup2 m s — prefiz (history m) (AHIS (past m))

abbreviation TR-detect?2 where TR-detect?2 = {7 | 7.V s. evt-observe2 s € set T — inv-detect?

s}

lemma tr2-satisfies-detectability: dp2 E=gps TR-detect?2
(proof)

end
end

71

2.5 Network Assumptions used for authorized segments.

theory Network-Assumptions
imports
Network-Model
begin

locale network-assums-generic = network-model - auth-seg0 for
auth-seg0 :: (‘ainfo x 'aahi ahi-scheme list) set +

assumes

— All authorized segments have valid interfaces
ASM-if-valid: (info, 1) € auth-seg0 = ifs-valid-None | and

— All authorized segments are rooted, i.e., they start with None
ASM-empty [simp, introl]: (info, []) € auth-seg0 and
ASM-rooted: (info, l) € auth-seg0 = rooted | and
ASM-terminated: (info, l) € auth-seg0 = terminated |

locale network-assums-undirect = network-assums-generic - - +
assumes
ASM-adversary: [Ahf. hf € set hfs = ASID hf € bad] = (info, hfs) € auth-seg0

locale network-assums-direct = network-assums-generic - - +
assumes
ASM-singleton: [ASID hf € bad] = (info, [hf]) € auth-seg0 and
ASM-extension: [(info, hf2#ys) € auth-seg0; ASID hf2 € bad; ASID hfl € bad]
= (info, hfl #hf24ys) € auth-seg0 and

ASM-modify: [(info, hf#ys) € auth-seq0; ASID hf = a; ASID hf' = a; UpIF hf' = UpIF hf; a €

bad]
= (info, hf'#ys) € auth-seg0 and

ASM-cutoff: [(info, zsQhf#ys) € auth-seg0; ASID hf = a; a € bad] => (info, hf #ys) € auth-seg0

begin

lemma auth-seg0-non-empty [simp, intro!]: auth-seg0 # {}

(proof)

lemma auth-seg0-non-empty-frag [simp, intro!]: 3 info . pfragment info [| auth-seg0
(proof)

This lemma applies the extendability assumptions on auth-seg0 to pfragments of auth-seg0.

lemma extend-pfragment0:
assumes pfragment ainfo (hf2#zs) auth-seg0
assumes ASID hfl € bad
assumes ASID hf2 € bad
shows pfragment ainfo (hf1#hf2#xs) auth-seg0
(proof)

This lemma shows that the above assumptions imply that of the undirected setting

lemma [Ahf. hf € set hfs = ASID hf € bad] = (info, hfs) € auth-seg0
(proof)

end
end

72

2.6 Parametrized dataplane protocol for directed protocols

This is an instance of the Parametrized-Dataplane-2 model, specifically for protocols that
authorize paths in an undirected fashion. We specialize the hf-valid-generic check to a still
parametrized, but more concrete hf-valid check. The rest of the parameters remain abstract
until a later instantiation with a concrete protocols (see the instances directory).

While both the models for undirected and directed protocols import assumptions from the
theory Network-Assumptions, they differ in strength: the assumptions made by undirected
protocols are strictly weaker, since the entire forwarding path is authorized by each AS, and
not only the future path from the perspective of each AS. In addition, the specific conditions
that instances have to verify differs between the undirected and the directed setting (compare
the locales dataplane-3-undirected and dataplane-3-directed).

This explains the need to split up the verification of the attacker event into two theories.
Despite the differences that concrete protocols may exhibit, these two theories suffice to show
the crux of the refinement proof. The instances merely have to show a set of static conditions

theory Parametrized-Dataplane-3-directed
imports
Parametrized-Dataplane-2 Network-Assumptions infrastructure/ Take- While-Update
begin

2.6.1 Hop validation check, authorized segments, and path extraction.

First we define a locale that requires a number of functions. We will later extend this to a
locale dataplane-3-directed, which makes assumptions on how these functions operate. We
separate the assumptions in order to make use of some auxiliary definitions defined in this
locale.

locale dataplane-3-directed-defs = network-assums-direct - - - auth-seg0

for auth-seg0 :: (‘ainfo x 'aahi ahi-scheme list) set +
— hf-valid is the check that every hop performs on its own and next hop field as well as on ainfo and
uinfo. Note that this includes checking the validity of the info fields.

fixes hf-valid :: 'ainfo = 'uinfo

= (‘aahi, 'uhi) HF
= ('aahi, 'uhi) HF option = bool

— We need auth-restrict to further restrict the set of authorized segments. For instance, we need it
for the empty segment (ainfo, []) since according to the definition any such ainfo will be contained in
the intruder knowledge. With auth-restrict we can restrict this.

and auth-restrict :: 'ainfo = 'uinfo = (‘aahi, 'uhi) HF list = bool
— extr extracts from a given hop validation field (HVF hf) the entire authenticated future path that
is embedded in the HVF.

and eztr :: msgterm = 'aahi ahi-scheme list
— exlr-ainfo extracts the authenticated info field (ainfo) from a given hop validation field.

and extr-ainfo :: msgterm = 'ainfo
— term-ainfo extracts what msgterms the intruder can learn from analyzing a given authenticated
info field.

and term-ainfo :: 'ainfo = msgterm
— terms-hf extracts what msgterms the intruder can learn from analyzing a given hop field; for
instance, the hop validation field HVF hf and the segment identifier UHI hf.

and terms-hf :: (‘aahi, 'uhi) HF = msgterm set
— terms-uinfo extracts what msgterms the intruder can learn from analyzing a given uinfo field.

73

and terms-uinfo :: 'uinfo = msgterm set
— upd-uinfo returns the updated uinfo field of a packet.

and upd-uinfo :: 'uinfo = ('aahi, 'uhi) HF = 'uinfo
— As ik-oracle (defined below) gives the attacker direct access to hop validation fields that could be
used to break the property, we have to either restrict the scope of the property, or restrict the attacker
such that he cannot use the oracle-obtained hop validation fields in packets whose path origin matches
the path origin of the oracle query. We choose the latter approach and fix a predicate no-oracle that
tells us if the oracle has not been queried for a path origin (ainfo, uinfo combination). This is a
prophecy variable.

and no-oracle :: 'ainfo = 'uinfo = bool
begin

abbreviation hf-valid-generic :: 'ainfo = 'uinfo
= ('aahi, 'uhi) HF list
= ('aahi, 'uhi) HF option
= ('aahi, 'uhi) HF
= (‘aahi, 'uhi) HF option = bool where
hf-valid-generic ainfo uinfo pas pre hf nxt = hf-valid ainfo uinfo hf nxt

definition hfs-valid-prefiz-generic ::
'ainfo = 'winfo = ('aahi, 'uhi) HF list = ('aahi, 'uhi) HF option = ('aahi, 'uhi) HF list =
('aahi, 'uhi) HF option = ('aahi, 'uhi) HF listwhere
hfs-valid-prefiz-generic ainfo uinfo pas pre fut nxt =
TWu.takeW (X uinfo hf nat . hf-valid ainfo winfo hf nat) upd-uinfo winfo fut nxt

declare hfs-valid-prefiz-generic-def|[simp)

sublocale dataplane-2-defs - - - auth-seg0 hf-valid-generic hfs-valid-prefiz-generic
auth-restrict extr extr-ainfo term-ainfo terms-hf terms-uinfo upd-uinfo
(proof)

abbreviation Afs-valid where
hfs-valid ainfo winfo | nzt = TWu.holds (hf-valid ainfo) upd-uinfo winfo | nat

abbreviation Afs-valid-prefix where
hfs-valid-prefiz ainfo winfo | nazt = TWu.takeW (hf-valid ainfo) upd-uinfo winfo 1 nat

abbreviation hfs-valid-None where
hfs-valid-None ainfo winfo | = hfs-valid ainfo uinfo | None

abbreviation Afs-valid-None-prefix where
hfs-valid-None-prefix ainfo uinfo | = hfs-valid-prefiz ainfo uinfo | None
abbreviation upds-uinfo where

upds-uinfo = foldl upd-winfo

abbreviation upds-uinfo-shifted where
upds-uinfo-shifted winfo | nxt = T Wu.upd-shifted upd-uinfo uinfo | nxt

end

74

print-locale dataplane-3-directed-defs
locale dataplane-3-directed-ik-defs = dataplane-3-directed-defs - - - - hf-valid auth-restrict
extr extr-ainfo term-ainfo terms-hf - upd-uinfo for
hf-valid :: 'ainfo = 'uinfo = (‘aahi, 'uhi) HF = ('aahi, 'uhi) HF option = bool
and auth-restrict :: 'ainfo => "winfo = (‘aahi, 'uhi) HF list = bool
and extr :: msgterm = 'aahi ahi-scheme list
and extr-ainfo :: msgterm = 'ainfo
and term-ainfo :: 'ainfo = msgterm
and terms-hf :: ('aahi, 'uhi) HF = msgterm set
and upd-uinfo :: 'uinfo = (‘aahi, 'uhi) HF = 'uinfo
+
— tk-add is Additional Intruder Knowledge, such as hop authenticators in EPIC L1.
fixes ik-add :: msgterm set
— tk-oracle is another type of additional Intruder Knowledge. We use it to model the attacker’s ability
to brute-force individual hop validation fields and segment identifiers.
and ik-oracle :: msgterm set
begin

lemma auth-seg2-elem: [(ainfo, hfs) € (auth-seg2 winfo); hf € set hfs]

= Inzt uinfo’. hf-valid ainfo uinfo’ hf nzt N auth-restrict ainfo uinfo hfs A (ainfo, AHIS hfs) €
auth-seg0

(proof)

lemma prefiz-hfs-valid-prefiz-generic:
prefiz (hfs-valid-prefiz-generic ainfo winfo pas pre fut nat) fut
(proof)

lemma cons-hfs-valid-prefiz-generic:
[hf-valid-generic ainfo winfo hfs (head pas) hfl (head fut); hfs = (rev pas)Qhf1 #fut;
m = (Alnfo = ainfo, Ulnfo = winfo, past = pas, future = hfl # fut, history = hist|)]
= hfs-valid-prefiz-generic ainfo uinfo pas (head pas) (hfl # fut) None =
hfl # (hfs-valid-prefiz-generic ainfo (upd-uinfo-pkt (fwd-pkt m)) (hfl1#pas) (Some hfl) fut None)
(proof)

print-locale dataplane-2-ik-defs

sublocale dataplane-2-ik-defs - - - - hfs-valid-prefiz-generic auth-restrict extr extr-ainfo term-ainfo
terms-hf - no-oracle hf-valid-generic upd-uinfo ik-add ik-oracle
(proof)

end

2.6.2 Conditions of the parametrized model

We now list the assumptions of this parametrized model.

print-locale dataplane-3-directed-ik-defs
locale dataplane-3-directed = dataplane-3-directed-ik-defs - - - - - no-oracle hf-valid auth-restrict
extr extr-ainfo term-ainfo - upd-uinfo ik-add ik-oracle
for hf-valid :: 'ainfo = 'winfo
= ('aahi, 'uhi) HF
= ('aahi, 'uhi) HF option = bool
and auth-restrict :: 'ainfo => "winfo = ('aahi, 'uhi) HF list = bool
and eztr :: msgterm = 'aahi ahi-scheme list
and eztr-ainfo :: msgterm = 'ainfo

75

and term-ainfo :: 'ainfo = msgterm

and upd-uinfo :: 'uinfo = ('aahi, 'vhi) HF = 'uinfo
and ik-add :: msgterm set

and ik-oracle :: msgterm set

and no-oracle :: 'ainfo = 'uinfo = bool +

— A valid validation field that is contained in ik corresponds to an authorized hop field. (The notable
exceptions being oracle-obtained validation fields.) This relates the result of terms-hf to its argument.
terms-hf has to produce a msgterm that is either unique for each given hop field x, or it is only
produced by an ’equivalence class’ of hop fields such that either all of the hop fields of the class are
authorized, or none are. While the extr function (constrained by assumptions below) also binds the
hop information to the validation field, it does so only for AHI and Alnfo, but not for UHI.
assumes COND-terms-hf:
[hf-valid ainfo winfo hf nat; terms-hf hf C analz ik; no-oracle ainfo winfo]
= Jhfs . hf € set hfs A (Juinfo’ . (ainfo, hfs) € (auth-seg2 uinfo’))
— A wvalid validation field that can be synthesized from the initial intruder knowledge is already
contained in the initial intruder knowledge if it belongs to an honest AS. This can be combined with
the previous assumption.
and COND-honest-hf-analz:
[ASID (AHI hf) ¢ bad; hf-valid ainfo uinfo hf nzt; terms-hf hf C synth (analz ik);
no-oracle ainfo uinfo]
= terms-hf hf C analz ik
— Extracting the path from the validation field of the first hop field of some path 1 returns an extension
of the AHI-level path of the valid prefix of 1.
and COND-path-prefiz-extr:
prefiz (AHIS (hfs-valid-prefix ainfo winfo 1 nxt))
(extr-from-hd 1)
— Extracting the path from the validation field of the first hop field of a completely valid path 1
returns a prefix of the AHI-level path of 1. Together with prefix (AHIS (hfs-valid-prefix 2ainfo 2uinfo
21 ?nxt)) (extr-from-hd ?1), this implies that extr of a completely valid path 1 is exactly the same
AHI-level path as 1 (see lemma below).
and COND-ezxtr-prefix-path:
[hfs-valid ainfo uinfo | nxzt; auth-restrict ainfo winfo l; nxt = None]
= prefiz (extr-from-hd 1) (AHIS 1)
— A valid hop field is only valid for one specific uinfo.
and COND-hf-valid-uinfo:
[hf-valid ainfo uinfo hf nat; hf-valid ainfo’ winfo’ hf nat’]
= winfo’ = uinfo
— Updating a uinfo field does not reveal anything novel to the attacker.
and COND-upd-uinfo-ik:
[terms-uinfo winfo C synth (analz ik); terms-hf hf C synth (analz ik)]
= terms-uinfo (upd-uinfo uinfo hf) C synth (analz ik)
— The determination of whether a packet is an oracle packet is invariant under uinfo field updates.
and COND-upd-uinfo-no-oracle:
no-oracle ainfo uinfo = no-oracle ainfo (upd-uinfo winfo fld)
— The restriction on authorized paths is invariant under uinfo field updates.
and COND-auth-restrict-upd:
auth-restrict ainfo winfo (hf1 # hf2 # xs) = auth-restrict ainfo (upd-uinfo uinfo hf2) (hf2 # xs)
begin

lemma holds-path-eq-extr:

[hfs-valid ainfo uinfo | nxt; auth-restrict ainfo winfo l; nxt = None] = extr-from-hd | = AHIS |
(proof)

76

lemma upds-uinfo-no-oracle:
no-oracle ainfo winfo = no-oracle ainfo (upds-uinfo uinfo hfs)
(proof)

2.6.3 Lemmas that are needed for the refinement proof

thm COND-upd-uinfo-ik COND-upd-uinfo-ik| THEN subsetD] subset]
lemma upd-uinfo-ik-elem:

[t € terms-uinfo (upd-uinfo uwinfo hf); terms-uinfo winfo C synth (analz ik); terms-hf hf C synth
(analz k)]

= t € synth (analz ik)

(proof)

lemma honest-hf-analz-subsetl:
[t € terms-hf hf; ASID (AHI hf) ¢ bad; hf-valid ainfo winfo hf nxzt; terms-hf hf C synth (analz
ik);
no-oracle ainfo uinfo]
= t € analz ik

(proof)

lemma extr-from-hd-eq: (I [AU Z [ANhdl=hdl) Vv (I=[] ANl =]) = extr-from-hd | =
extr-from-hd 1’
(proof)

lemma path-prefiz-extr-1:
[hd 1 = hd 1 U # []] = prefix (AHIS (hfs-valid-prefiz ainfo uinfo 1 nat))
(extr-from-hd 1)
(proof)

lemma path-prefiz-extr-1":
[hd 1 = hd 1, I" £ []; hf = hd '] = prefiz (AHIS (hfs-valid-prefiz ainfo uinfo | nxt))
(extr (HVF' hf))
(proof)

lemma auth-restrict-app:
assumes auth-restrict ainfo winfo p p = pre Q hf # post
shows auth-restrict ainfo (upds-uinfo-shifted winfo pre hf) (hf # post)
(proof)

lemma hfs-valid-None-Cons:
assumes hfs-valid-None ainfo winfo p p = hfl # hf2 # post
shows hfs-valid-None ainfo (upd-uinfo uinfo hf2) (hf2 # post)
(proof)

lemma pfrag-extr-auth:

assumes hf € set p and (ainfo, p) € (auth-seg2 uinfo)

shows pfragment ainfo (extr (HVFE hf)) auth-seg0

(proof)

lemma X-in-ik-is-auth:

77

assumes terms-hf hfl C analz ik and no-oracle ainfo uinfo
shows pfragment ainfo (AHIS (hfs-valid-prefiz ainfo uinfo
(hft # fut)
nat))
auth-seg0
(proof)

Fragment is extendable

makes sure that: the segment is terminated, i.e. the leaf AS’s HF has Fo = None

fun terminated? :: (‘aahi, 'uhi) HF list = bool where
terminated? (hf#xs) +— DownlF (AHI hf) = None V ASID (AHI hf) € bad
| terminated2 [| = True

lemma terminated20: terminated (AHIS m) = terminated2 m (proof)

lemma cons-snoc: Jy ys. © # xs = ys Q [y]
{proof)

lemma terminated2-suffiz:
[terminated2 I; | = zs Q x # xs; DownlF (AHI z) # None; ASID (AHI z) ¢ bad] = Jy ys. zs =

ys @ [y]
(proof)

lemma attacker-modify-cutoff: [(info, zsQhf#ys) € auth-seq0; ASID hf = a;
ASID hf’ = a; UpIF hf’ = UplF hf; a € bad; ys' = hf'#ys] = (info, ys’) € auth-seg0
(proof)

lemma auth-seg2-terms-hf|[elim]:
[x € terms-hf hf; hf € set hfs; (ainfo, hfs) € (auth-seg2 uinfo) | = = € analz ik
(proof)

lemma [hfs-valid ainfo uinfo hfs nat; hfs = pref Q [hf]] = hf-valid ainfo (upds-uinfo winfo pref) hf
nwt
(proof)

This lemma proves that an attacker-derivable segment that starts with an attacker hop field,
and has a next hop field which belongs to an honest AS, when restricted to its valid prefix, is
authorized. Essentially this is the case because the hop field of the honest AS already contains
an interface identifier DownlIF that points to the attacker-controlled AS. Thus, there must have
been some attacker-owned hop field on the original authorized path. Given the assumptions
we make in the directed setting, the attacker can make take a suffix of an authorized path,
such that his hop field is first on the path, and he can change his own hop field if his hop field
is the first on the path, thus, that segment is also authorized.

lemma fragment-with-FEo-Some-extendable:
assumes terms-hf hf2 C synth (analz ik)

78

and ASID (AHI hf1) € bad
and ASID (AHI hf2) ¢ bad
and hf-valid ainfo winfo hfl (Some hf2)
and no-oracle ainfo uinfo
shows
pfragment ainfo
(ifs-valid-prefix pre’
(AHIS (hfs-valid-prefix ainfo uinfo
(hf1 # hf2 # fut)
None))
None)
auth-seg0
(proof)

A1l and A2 collude to make a wormhole

We lift extend-pfragment0 to DP2.

lemma extend-pfragment2:
assumes pfragment ainfo
(ifs-valid-prefiz (Some (AHI hf1))
(AHIS (hfs-valid-prefiz ainfo (upd-winfo winfo hf2)
(hf2 4 fut)
nat))
None)
auth-seg0
assumes hf-valid ainfo uinfo hfl (Some hf2)
assumes ASID (AHI hf1) € bad
assumes ASID (AHI hf2) € bad
shows pfragment ainfo
(ifs-valid-prefix pre’
(AHIS (hfs-valid-prefiz ainfo uinfo
(hf1 # hf2 4 fut)
nt))
None)
auth-seg0
(proof)

declare hfs-valid-prefiz-generic-def [simp del]

This is the central lemma that we need to prove to show the refinement between this model
and dpl. It states: If an attacker can synthesize a segment from his knowledge, and does not
use a path origin that was used to query the oracle, then the valid prefix of the segment is
authorized. Thus, the attacker cannot create any valid but unauthorized segments.

lemma ik-seg-is-auth:
assumes terms-pkt m C synth (analz ik) and future m = hfs and Alnfo m = ainfo
and nzt = None and no-oracle ainfo uinfo
shows pfragment ainfo
(ifs-valid-prefix prev’
(AHIS (hfs-valid-prefix ainfo uinfo hfs nat))
None)
auth-seg0
(proof)

79

lemma ik-seg-is-auth”:
assumes terms-pkt m C synth (analz ik)
and future m = hfs and Alnfo m = ainfo and nat = None and no-oracle ainfo uinfo
shows pfragment ainfo
(ifs-valid-prefix prev’
(AHIS (hfs-valid-prefiz-generic ainfo winfo pas pre hfs nxt))

None)
auth-seg0

(proof)
print-locale dataplane-2
sublocale dataplane-2 - - - - hfs-valid-prefiz-generic - - - - - - no-oracle - - hf-valid-generic upd-uinfo

(proof)
end
end

80

2.7 Parametrized dataplane protocol for undirected protocols

This is an instance of the Parametrized-Dataplane-2 model, specifically for protocols that
authorize paths in an undirected fashion. We specialize the hf-valid-generic check to a still
parametrized, but more concrete hf-valid check. The rest of the parameters remain abstract
until a later instantiation with a concrete protocols (see the instances directory).

While both the models for undirected and directed protocols import assumptions from the
theory Network-Assumptions, they differ in strength: the assumptions made by undirected
protocols are strictly weaker, since the entire forwarding path is authorized by each AS, and
not only the future path from the perspective of each AS. In addition, the specific conditions
that instances have to verify differs between the undirected and the directed setting (compare
the locales dataplane-3-undirected and dataplane-3-directed).

This explains the need to split up the verification of the attacker event into two theories.
Despite the differences that concrete protocols may exhibit, these two theories suffice to show
the crux of the refinement proof. The instances merely have to show a set of static conditions.

Note that we don’t use the update function in the undirected setting, since none of the
instances require it.

theory Parametrized-Dataplane-3-undirected
imports
Parametrized-Dataplane-2 Network-Assumptions
begin

type-synonym UINFO = msgterm

2.7.1 Hop validation check, authorized segments, and path extraction.

First we define a locale that requires a number of functions. We will later extend this to a
locale dataplane-3-undirected, which makes assumptions on how these functions operate. We
separate the assumptions in order to make use of some auxiliary definitions defined in this
locale.

locale dataplane-3-undirected-defs = network-assums-undirect - - - auth-seq0
for auth-seqg0 :: (‘ainfo x 'aahi ahi-scheme list) set +
— hf-valid is the check that every hop performs on its own and the entire path as well as on ainfo and
uinfo. Note that this includes checking the validity of the info fields.
fixes hf-valid :: 'ainfo = UINFO
= ('aahi, 'uhi) HF list
= ('aahi, 'uhi) HF
= bool
— We need auth-restrict to further restrict the set of authorized segments. For instance, we need it
for the empty segment (ainfo, []) since according to the definition any such ainfo will be contained in
the intruder knowledge. With auth-restrict we can restrict this.
and auth-restrict :: 'ainfo = UINFO = ('aahi, "uhi) HF list = bool
— extr extracts from a given hop validation field (HVF hf) the entire authenticated future path that
is embedded in the HVF.
and extr :: msgterm = 'aahi ahi-scheme list
— extr-ainfo extracts the authenticated info field (ainfo) from a given hop validation field.
and eztr-ainfo :: msgterm = 'ainfo
— term-ainfo extracts what msgterms the intruder can learn from analyzing a given authenticated
info field. Note that currently we do not have a similar function for the unauthenticated info field

81

winfo. Protocols should thus only use that field with terms that the intruder can already synthesize
(such as Numbers).

and term-ainfo :: 'ainfo = msgterm
— terms-hf extracts what msgterms the intruder can learn from analyzing a given hop field; for
instance, the hop validation field HVF hf and the segment identifier UHI hf.

and terms-hf :: (‘aahi, 'uhi) HF = msgterm set
— terms-uinfo extracts what msgterms the intruder can learn from analyzing a given uinfo field.

and terms-uinfo :: UINFO = msgterm set
— As ik-oracle (defined below) gives the attacker direct access to hop validation fields that could be
used to break the property, we have to either restrict the scope of the property, or restrict the attacker
such that he cannot use the oracle-obtained hop validation fields in packets whose path origin matches
the path origin of the oracle query. We choose the latter approach and fix a predicate no-oracle that
tells us if the oracle has not been queried for a path origin (ainfo, uinfo combination). This is a
prophecy variable.

and no-oracle :: 'ainfo = UINFO = bool

begin

abbreviation upd-uinfo :: UINFO = (‘aahi, 'uhi) HF = UINFO where
upd-uinfo u hf = u

abbreviation hf-valid-generic :: 'ainfo = msgterm
= (‘aahi, 'uhi) HF list
= ('aahi, 'uhi) HF option
= ('aahi, 'uhi) HF
= ('aahi, "uhi) HF option = bool where
hf-valid-generic ainfo uinfo hfs pre hf nzt = hf-valid ainfo winfo hfs hf

abbreviation hfs-valid-prefix where
hfs-valid-prefiz ainfo winfo pas fut = (take While (Ahf . hf-valid ainfo uinfo (rev(pas)@fut) hf) fut)

definition hfs-valid-prefiz-generic ::
'"ainfo = msgterm = (‘aahi, 'uhi) HF list = (‘aahi, 'uhi) HF option = (‘aahi, 'uhi) HF list =
('aahi, 'uhi) HF option = (‘aahi, 'uhi) HF listwhere
hfs-valid-prefiz-generic ainfo uinfo pas pre fut nxt =
hfs-valid-prefiz ainfo winfo pas fut

declare hfs-valid-prefiz-generic-def[simp)

sublocale dataplane-2-defs - - - auth-seg0 hf-valid-generic hfs-valid-prefiz-generic
auth-restrict extr extr-ainfo term-ainfo terms-hf terms-uinfo upd-uinfo
(proof)

lemma auth-seg2-elem: [(ainfo, hfs) € auth-seg2 uinfo; hf € set hfs]
= Juinfo . hf-valid ainfo winfo hfs hf N\ auth-restrict ainfo winfo hfs A (ainfo, AHIS hfs) € auth-seg0
(proof)

end
print-locale dataplane-3-undirected-defs
locale dataplane-3-undirected-ik-defs = dataplane-3-undirected-defs - - - - hf-valid auth-restrict

extr extr-ainfo term-ainfo terms-hf - for
hf-valid :: 'ainfo = UINFO = (‘aahi, 'uhi) HF list = ('aahi, 'uhi) HF = bool

82

and auth-restrict :: '‘ainfo => UINFO = ('aahi, 'uhi) HF list = bool
and extr :: msgterm = 'aahi ahi-scheme list
and extr-ainfo :: msgterm = 'ainfo
and term-ainfo :: 'ainfo = msgterm
and terms-hf :: ('aahi, 'uhi) HF = msgterm set
+
— ik-add is Additional Intruder Knowledge, such as hop authenticators in EPIC L1.
fixes ik-add :: msgterm set
— tk-oracle is another type of additional Intruder Knowledge. We use it to model the attacker’s ability
to brute-force individual hop validation fields and segment identifiers.
and ik-oracle :: msgterm set
begin

lemma prefiz-hfs-valid-prefiz-generic:
prefiz (hfs-valid-prefiz-generic ainfo uinfo pas pre fut nat) fut
(proof)

lemma cons-hfs-valid-prefiz-generic:
[hf-valid-generic ainfo winfo hfs (head pas) hfl (head fut); hfs = (rev pas)@hf1 #fut]
= hfs-valid-prefiz-generic ainfo uinfo pas (head pas) (hfl # fut) None =
hfl # (hfs-valid-prefiz-generic ainfo uinfo (hf1#pas) (Some hfl) fut None)
(proof)

print-locale dataplane-2-ik-defs

sublocale dataplane-2-ik-defs - - - - hfs-valid-prefix-generic auth-restrict extr extr-ainfo term-ainfo
terms-hf - no-oracle hf-valid-generic upd-uinfo ik-add ik-oracle
(proof)

end

2.7.2 Conditions of the parametrized model

We now list the assumptions of this parametrized model.

print-locale dataplane-3-undirected-ik-defs
locale dataplane-3-undirected = dataplane-3-undirected-ik-defs - - - - terms-uinfo no-oracle hf-valid
auth-restrict extr
extr-ainfo term-ainfo terms-hf ik-add ik-oracle

for hf-valid :: 'ainfo = msgterm = (‘aahi, 'uhi) HF list = (‘aahi, 'uhi) HF = bool

and auth-restrict :: ‘ainfo => UINFO = ('aahi, 'uhi) HF list = bool

and extr :: msgterm = 'aahi ahi-scheme list

and extr-ainfo :: msgterm = 'ainfo

and term-ainfo :: 'ainfo = msgterm

and terms-uinfo :: UINFO = msgterm set

and ik-add :: msgterm set

and terms-hf :: (‘aahi, 'uhi) HF = msgterm set

and ik-oracle :: msgterm set

and no-oracle :: 'ainfo = UINFO = bool +

— A valid validation field that is contained in ik corresponds to an authorized hop field. (The notable
exceptions being oracle-obtained validation fields.) This relates the result of terms-hf to its argument.
terms-hf has to produce a msgterm that is either unique for each given hop field x, or it is only
produced by an ’equivalence class’ of hop fields such that either all of the hop fields of the class are
authorized, or none are. While the extr function (constrained by assumptions below) also binds the

83

hop information to the validation field, it does so only for AHI and Alnfo, but not for UHI.
assumes COND-terms-hf:
[hf-valid ainfo winfo 1 hf; terms-hf hf C analz ik; no-oracle ainfo winfo; hf € set]
= Jhfs . hf € set hfs A (Juinfo’ . (ainfo, hfs) € (auth-seg2 uinfo’))
— A wvalid validation field that can be synthesized from the initial intruder knowledge is already
contained in the initial intruder knowledge if it belongs to an honest AS. This can be combined with
the previous assumption.
and COND-honest-hf-analz:
[ASID (AHI hf) ¢ bad; hf-valid ainfo uinfo I hf; terms-hf hf C synth (analz ik);
no-oracle ainfo uinfo; hf € set I
= terms-hf hf C analz ik
— Each valid hop field contains the entire path.
and COND-extr:
[hf-valid ainfo winfo | hf] = extr (HVF hf) = AHIS |
— A valid hop field is only valid for one specific uinfo.
and COND-hf-valid-uinfo:
[hf-valid ainfo uinfo I hf; hf-valid ainfo’ winfo’ I’ hf]
= winfo’ = uinfo
begin

This is the central lemma that we need to prove to show the refinement between this model
and dpl. It states: If an attacker can synthesize a segment from his knowledge, and does not
use a path origin that was used to query the oracle, then the valid prefix of the segment is
authorized. Thus, the attacker cannot create any valid but unauthorized segments.
lemma ik-seg-is-auth:
assumes terms-pkt m C synth (analz ik) and
future m = fut and Alnfo m = ainfo and nat = None and no-oracle ainfo uinfo

shows pfragment ainfo
(AHIS (hfs-valid-prefiz ainfo uinfo pas fut))

auth-seg0
(proof)
lemma upd-uinfo-pkt-id[simp|: upd-uinfo-pkt pkt = Ulnfo pkt
(proof)
print-locale dataplane-2
sublocale dataplane-2 - - - - hfs-valid-prefiz-generic - - - - - - no-oracle - - hf-valid-generic upd-uinfo
(proof)
end
end

84

Chapter 3

Instances

Here we instantiate our concrete parametrized models with a number of protocols from the
literature and variants of them that we derive ourselves.

85

3.1 SCION

theory SCION

imports
../ Parametrized-Dataplane-3-directed
../ infrastructure/ Keys
begin
locale scion-defs = network-assums-direct - - - auth-seg0
for auth-seg0 :: (msgterm X ahi list) set
begin

3.1.1 Hop validation check and extract functions

type-synonym SCION-HF = (unit, unit) HF

The predicate hf-valid is given to the concrete parametrized model as a parameter. It ensures
the authenticity of the hop authenticator in the hop field. The predicate takes an authenti-
cated info field (in this model always a numeric value, hence the matching on Num ts), the
hop field to be validated and in some cases the next hop field.

We distinguish if there is a next hop field (this yields the two cases below). If there is not,
then the hvf simply consists of a MAC over the authenticated info field and the local routing
information of the hop, using the key of the hop to which the hop field belongs. If on the
other hand, there is a subsequent hop field, then the hvf of that hop field is also included in
the MAC computation.

fun hf-valid :: msgterm = msgterm
= SCION-HF
= SCION-HF option = bool where
hf-valid (Num ts) winfo (AHI = ahi, UHI = -, HVF = z|) (Some (AHI = ahi2, UHI = -, HVF =
(3 upif downif upif2 downif?.
z = Mac[macKey (ASID ahi)] (L [Num ts, upif, downif, upif2, downif2, z2]) A
ASIF (DownlF ahi) downif N ASIF (UpIF ahi) upif A
ASIF (DownlIF ahi2) downif2 N ASIF (UpIF ahi2) upif2 A uinfo = €)
| hf-valid (Num ts) winfo (AHI = ahi, UHI = -, HVF = z|) None +—
(Fupif downif. x = Mac|macKey (ASID ahi)] (L [Num ts, upif, downif]) A
ASIF (DownlIF ahi) downif N ASIF (UpIF ahi) upif A winfo = €)
| hf-valid - - - - = False

definition upd-uinfo :: msgterm = SCION-HF = msgterm where
upd-uinfo winfo hf = winfo

We can extract the entire path from the hvf field, which includes the local forwarding of the
current hop, the local forwarding information of the next hop (if existant) and, recursively,
all upstream hvf fields and their hop information.

fun extr :: msgterm = ahi list where
extr (Mac[macKey asid] (L [ts, upif, downif, upif2, downif2, z2]))
= (UpIF = term2if upif, DownIF = term2if downif, ASID = asid|) # extr x2
| extr (Mac[macKey asid] (L [ts, upif, downif]))
= [(UpIF = term2if upif, DownlF = term2if downif, ASID = asid])]
| extr - =]

86

Extract the authenticated info field from a hop validation field.

fun extr-ainfo :: msgterm = msgterm where
extr-ainfo (Mac|macKey asid] (L (Num ts # zs))) = Num ts
| extr-ainfo - = ¢

abbreviation term-ainfo :: msgterm = msgterm where
term-ainfo = id

When observing a hop field, an attacker learns the HVF. UHI is empty and the AHI only
contains public information that are not terms.

fun terms-hf :: SCION-HF = msgterm set where
terms-hf hf = {HVF hf}

abbreviation terms-uinfo :: msgterm = msgterm set where
terms-uinfo x = {z}

An authenticated info field is always a number (corresponding to a timestamp). The unau-
thenticated info field is set to the empty term e.

definition auth-restrict where
auth-restrict ainfo winfo | = (I ts. ainfo = Num ts) A (uinfo = €)

abbreviation no-oracle where no-oracle = (X - -. True)

We now define useful properties of the above definition.

lemma hf-valid-invert:
hf-valid tsn winfo hf mo «—
((3 ahi ahi2 ts upif downif asid x upif2 downif2 z2.
hf = (AHI = ahi, UHI = (), HVF = a|) A
ASID ahi = asid N ASIF (DownlF' ahi) downif N ASIF (UpIF ahi) upif A
mo = Some (AHI = ahi2, UHI = (), HVF = z2)) A
ASIF (DownlF ahi2) downif2 N ASIF (UplF ahi2) upif2 A
x = Mac[macKey asid] (L [tsn, upif, downif, upif2, downif2, x2]) A
tsn = Num ts A
uinfo = €)
V (3 ahi ts upif downif asid x.
hf = (AHI = ahi, UHI = (), HVF = a)) A
ASID ahi = asid N ASIF (DownlIF ahi) downif N ASIF (UpIF ahi) upif A
mo = None A
z = Mac[macKey asid] (L [tsn, upif, downif]) A
tsn = Num ts A
uinfo = €)
)
(proof)

lemma hf-valid-auth-restrict[dest]: hf-valid ainfo winfo hf z = auth-restrict ainfo winfo |

(proof)

lemma info-hvf:
assumes hf-valid ainfo winfo m z hf-valid ainfo’ winfo’ m’ z' HVF m = HVF m’
shows ainfo’ = ainfo m’' = m

(proof)

87

3.1.2 Definitions and properties of the added intruder knowledge

Here we define a ik-add and ik-oracle as being empty, as these features are not used in this
instance model.

print-locale dataplane-3-directed-defs
sublocale dataplane-3-directed-defs - - - auth-seg0 hf-valid auth-restrict extr extr-ainfo term-ainfo
terms-hf terms-uinfo upd-uinfo no-oracle

(proof)

declare TWu.holds-set-list[dest)
declare TWu.holds-take W-is-identity[simp]
declare parts-singleton[dest)

abbreviation ik-add :: msgterm set where ik-add = {}

abbreviation ik-oracle :: msgterm set where ik-oracle = {}

3.1.3 Properties of the intruder knowledge, including ik-add and ik-oracle

We now instantiate the parametrized model’s definition of the intruder knowledge, using the
definitions of ik-add and ik-oracle from above. We then prove the properties that we need to
instantiate the dataplane-3-directed locale.

sublocale
dataplane-3-directed-ik-defs - - - auth-seg0 terms-uinfo no-oracle hf-valid auth-restrict extr extr-ainfo
term-ainfo
terms-hf upd-uinfo ik-add ik-oracle
(proof)

lemma auth-ainfo[dest]: [(ainfo, hfs) € auth-seg2 uinfo] = 3 ts . ainfo = Num ts
(proof)

lemma auth-uinfo[dest]: [(ainfo, hfs) € auth-seg2 winfo] = uinfo = ¢

(proof)

lemma upds-simp[simpl: TWu.upds upd-uinfo uinfo hfs = winfo
(proof)

lemma upd-shifted-simp[simpl: T Wu.upd-shifted upd-uinfo winfo hfs nat = uinfo
(proof)

lemma ik-hfs-form: t € parts ik-hfs = 3 t’ . t = Hash t’
(proof)

declare ik-hfs-def[simp del]

lemma parts-ik-hfs[simp|: parts ik-hfs = ik-hfs
(proof)

This lemma allows us not only to expand the definition of ik-hfs, but also to obtain useful
properties, such as a term being a Hash, and it being part of a valid hop field.

88

lemma ik-hfs-simp:
t € ik-hfs +— (3t'. t = Hash t') N (3hf . t = HVF hf
A (hfs. hf € set hfs A (T ainfo . (ainfo, hfs) € (auth-seg2)
A (3 nat. hf-valid ainfo € hf nat)))) (is ?lhs <— ?rhs)
(proof)

Properties of Intruder Knowledge

lemma Num-ik[intro]: Num ts € ik
(proof)

There are no ciphertexts (or signatures) in parts ik. Thus, analz ik and parts ik are identical.

lemma analz-parts-ik[simp]: analz ik = parts ik

(proof)

lemma parts-ik[simp]: parts ik = ik
(proof)

lemma key-ik-bad: Key (macK asid) € ik = asid € bad
(proof)

lemma MAC-synth-helper:
assumes hf-valid ainfo uinfo m z HVF m = Mac[Key (macK asid)] j HVF m € ik
shows Jhfs. m € set hfs A (Fuinfo’. (ainfo, hfs) € auth-seg2 winfo’)

(proof)

This definition helps with the limiting the number of cases generated. We don’t require it, but
it is convenient. Given a hop validation field and an asid, return if the hvf has the expected
format.

definition mac-format :: msgterm = as = bool where
mac-format m asid = 3 j . m = Mac[macKey asid] j

If a valid hop field is derivable by the attacker, but does not belong to the attacker, then the
hop field is already contained in the set of authorized segments.

lemma MAC-synth:
assumes hf-valid ainfo uinfo m z HVF m € synth ik mac-format (HVF m) asid
asid ¢ bad checkInfo ainfo
shows Jhfs . m € set hfs A (Fuinfo’. (ainfo, hfs) € auth-seg2 winfo’)
(proof)

3.1.4 Direct proof goals for interpretation of dataplane-3-directed

lemma COND-honest-hf-analz:
assumes ASID (AHI hf) ¢ bad hf-valid ainfo uinfo hf nat terms-hf hf C synth (analz ik)
no-oracle ainfo uinfo
shows terms-hf hf C analz ik

(proof)
lemma COND-terms-hf:

assumes hf-valid ainfo winfo hf z and terms-hf hf C analz ik and no-oracle ainfo uinfo
shows I hfs. hf € set hfs A (Fuinfo’ . (ainfo, hfs) € auth-seg2 uinfo’)

89

(proof)

lemma COND-extr-prefix-path:
[hfs-valid ainfo winfo | nxt; nzt = None]| = prefix (extr-from-hd 1) (AHIS 1)
(proof)

lemma COND-path-prefiz-extr:
prefiz (AHIS (hfs-valid-prefix ainfo uinfo | nxt))
(extr-from-hd 1)
(proof)

lemma COND-hf-valid-uinfo:
[hf-valid ainfo uinfo hf nxt; hf-valid ainfo’ winfo’ hf nzt'] = winfo’ = winfo
(proof)

lemma COND-upd-uinfo-ik:
[terms-uinfo winfo C synth (analz ik); terms-hf hf C synth (analz ik)]
= terms-uinfo (upd-winfo uinfo hf) C synth (analz ik)

(proof)

lemma COND-upd-uinfo-no-oracle:
no-oracle ainfo uinfo = no-oracle ainfo (upd-uinfo uinfo fld)

(proof)

lemma COND-auth-restrict-upd:
auth-restrict ainfo uinfo (x#yF#hfs)
= auth-restrict ainfo (upd-uinfo winfo y) (y#hfs)
(proof)

3.1.5 Instantiation of dataplane-3-directed locale

print-locale dataplane-3-directed
sublocale
dataplane-3-directed - - - auth-seg0 terms-uinfo terms-hf hf-valid auth-restrict extr extr-ainfo term-ainfo

upd-uinfo ik-add
ik-oracle no-oracle

(proof)

end
end

90

3.2 SCION Variant

This is a slightly variant version of SCION, in which the successor’s hop information is not
embedded in the MAC of a hop field. This difference shows up in the definition of Af-valid.

91

3.3 SCION

theory SCION-variant

imports
../ Parametrized-Dataplane-3-directed
../ infrastructure/ Keys
begin
locale scion-defs = network-assums-direct - - - auth-seg0
for auth-seg0 :: (msgterm X ahi list) set
begin

3.3.1 Hop validation check and extract functions

type-synonym SCION-HF = (unit, unit) HF

The predicate hf-valid is given to the concrete parametrized model as a parameter. It ensures
the authenticity of the hop authenticator in the hop field. The predicate takes an authenti-
cated info field (in this model always a numeric value, hence the matching on Num ts), the
hop field to be validated and in some cases the next hop field.

We distinguish if there is a next hop field (this yields the two cases below). If there is not,
then the hvf simply consists of a MAC over the authenticated info field and the local routing
information of the hop, using the key of the hop to which the hop field belongs. If on the
other hand, there is a subsequent hop field, then the hvf of that hop field is also included in
the MAC computation.

fun hf-valid :: msgterm = msgterm
= SCION-HF
= SCION-HF option = bool where
hf-valid (Num ts) winfo (AHI = ahi, UHI = -, HVF = z|) (Some (AHI = ahi2, UHI = -, HVF =
(3 upif downif. z = Mac[macKey (ASID ahi)] (L [Num ts, upif, downif, z2]) A
ASIF (DownlF' ahi) downif N ASIF (UpIF ahi) upif A winfo = €)
| hf-valid (Num ts) winfo (AHI = ahi, UHI = -, HVF = z|) None +—
(Fupif downif. x = Mac[macKey (ASID ahi)] (L [Num ts, upif, downif]) A
ASIF (DownIF ahi) downif N ASIF (UpIF ahi) upif N winfo = ¢)
| hf-valid - - - - = False

definition upd-uinfo :: msgterm = SCION-HF = msgterm where
upd-uinfo winfo hf = winfo

We can extract the entire path from the hvf field, which includes the local forwarding of the
current hop, the local forwarding information of the next hop (if existant) and, recursively,
all upstream hvf fields and their hop information.

fun extr :: msgterm = ahi list where
extr (Mac[macKey asid] (L [ts, upif, downif, z2]))
= (UpIF = term?2if upif, DownIF = term2if downif, ASID = asid|) # extr z2
| extr (Mac[macKey asid] (L [ts, upif, downif]))
= [(UpIF = term?2if upif, DownIF = term2if downif, ASID = asid|)]
| extr - =]

Extract the authenticated info field from a hop validation field.

92

fun extr-ainfo :: msgterm = msgterm where
extr-ainfo (Mac[macKey asid] (L (Num ts # zs))) = Num ts
| extr-ainfo - = ¢

abbreviation term-ainfo :: msgterm = msgterm where
term-ainfo = id

When observing a hop field, an attacker learns the HVF. UHI is empty and the AHI only
contains public information that are not terms.

fun terms-hf :: SCION-HF = msgterm set where
terms-hf hf = {HVF hf}

abbreviation terms-uinfo :: msgterm = msgterm set where
terms-uinfo x = {z}

An authenticated info field is always a number (corresponding to a timestamp). The unau-
thenticated info field is set to the empty term e.

definition auth-restrict where
auth-restrict ainfo winfo | = (I ts. ainfo = Num ts) A (uinfo = €)

abbreviation no-oracle where no-oracle = (A - -. True)

We now define useful properties of the above definition.

lemma hf-valid-invert:
hf-valid tsn winfo hf mo +—
((3 ahi ahi2 ts upif downif asid x x2.
hf = (AHI = ahi, UHI = (), HVF =) A
ASID ahi = asid N ASIF (DownlIF ahi) downif N ASIF (UpIF ahi) upif A
mo = Some (AHI = ahi2, UHI = (), HVF = 22) A
z = Mac[macKey asid] (L [tsn, upif, downif, x2]) A
tsn = Num ts A
uinfo = €)
V (Fahi ts upif downif asid .
hf = (AHI = ahi, UHI = (), HVF = af) A
ASID ahi = asid N ASIF (DownlIF ahi) downif N ASIF (UpIF ahi) upif A
mo = None A
z = Mac[macKey asid] (L [tsn, upif, downif]) A
tsn = Num ts A
uinfo = €)
)
(proof)

lemma hf-valid-auth-restrict[dest]: hf-valid ainfo uinfo hf z = auth-restrict ainfo uinfo |
(proof)

lemma info-huf:
assumes hf-valid ainfo winfo m z hf-valid ainfo’ vinfo’ m’ z/ HVF m = HVF m’'
shows ainfo’ = ainfo m’ = m
(proof)

93

3.3.2 Definitions and properties of the added intruder knowledge

Here we define a ik-add and ik-oracle as being empty, as these features are not used in this
instance model.

print-locale dataplane-3-directed-defs
sublocale dataplane-3-directed-defs - - - auth-seg0 hf-valid auth-restrict extr extr-ainfo term-ainfo
terms-hf terms-uinfo upd-uinfo no-oracle

(proof)

declare TWu.holds-set-list[dest)
declare TWu.holds-take W-is-identity[simp]
declare parts-singleton[dest)

abbreviation ik-add :: msgterm set where ik-add = {}

abbreviation ik-oracle :: msgterm set where ik-oracle = {}

3.3.3 Properties of the intruder knowledge, including ik-add and ik-oracle

We now instantiate the parametrized model’s definition of the intruder knowledge, using the
definitions of ik-add and ik-oracle from above. We then prove the properties that we need to
instantiate the dataplane-3-directed locale.

sublocale
dataplane-3-directed-ik-defs - - - auth-seg0 terms-uinfo no-oracle hf-valid auth-restrict extr extr-ainfo
term-ainfo
terms-hf upd-uinfo ik-add ik-oracle
(proof)

lemma auth-ainfo[dest]: [(ainfo, hfs) € auth-seg2 uinfo] = 3 ts . ainfo = Num ts
(proof)

lemma auth-uinfo[dest]: [(ainfo, hfs) € auth-seg2 winfo] = uinfo = ¢

(proof)

lemma upds-simp[simpl: TWu.upds upd-uinfo uinfo hfs = winfo
(proof)

lemma upd-shifted-simp[simpl: T Wu.upd-shifted upd-uinfo winfo hfs nat = uinfo
(proof)

lemma ik-hfs-form: t € parts ik-hfs = 3 t’ . t = Hash t’
(proof)

declare ik-hfs-def[simp del]

lemma parts-ik-hfs[simp|: parts ik-hfs = ik-hfs
(proof)

This lemma allows us not only to expand the definition of ik-hfs, but also to obtain useful
properties, such as a term being a Hash, and it being part of a valid hop field.

94

lemma ik-hfs-simp:
t € ik-hfs +— (3t'. t = Hash t') N (3hf . t = HVF hf
A (hfs. hf € set hfs A (T ainfo . (ainfo, hfs) € (auth-seg2)
A (3 nat. hf-valid ainfo € hf nat)))) (is ?lhs <— ?rhs)
(proof)

Properties of Intruder Knowledge

lemma Num-ik[intro]: Num ts € ik
(proof)

There are no ciphertexts (or signatures) in parts ik. Thus, analz ik and parts ik are identical.

lemma analz-parts-ik[simp]: analz ik = parts ik

(proof)

lemma parts-ik[simp]: parts ik = ik
(proof)

lemma key-ik-bad: Key (macK asid) € ik = asid € bad
(proof)

lemma MAC-synth-helper:
assumes hf-valid ainfo uinfo m z HVF m = Mac[Key (macK asid)] j HVF m € ik
shows Jhfs. m € set hfs A (Fuinfo’. (ainfo, hfs) € auth-seg2 winfo’)

(proof)

This definition helps with the limiting the number of cases generated. We don’t require it, but
it is convenient. Given a hop validation field and an asid, return if the hvf has the expected
format.

definition mac-format :: msgterm = as = bool where
mac-format m asid = 3 j . m = Mac[macKey asid] j

If a valid hop field is derivable by the attacker, but does not belong to the attacker, then the
hop field is already contained in the set of authorized segments.

lemma MAC-synth:
assumes hf-valid ainfo uinfo m z HVF m € synth ik mac-format (HVF m) asid
asid ¢ bad checkInfo ainfo
shows Jhfs . m € set hfs A (Fuinfo’. (ainfo, hfs) € auth-seg2 winfo’)
(proof)

3.3.4 Direct proof goals for interpretation of dataplane-3-directed

lemma COND-honest-hf-analz:
assumes ASID (AHI hf) ¢ bad hf-valid ainfo uinfo hf nat terms-hf hf C synth (analz ik)
no-oracle ainfo uinfo
shows terms-hf hf C analz ik

(proof)
lemma COND-terms-hf:

assumes hf-valid ainfo winfo hf z and terms-hf hf C analz ik and no-oracle ainfo uinfo
shows I hfs. hf € set hfs A (Fuinfo’ . (ainfo, hfs) € auth-seg2 uinfo’)

95

(proof)

lemma COND-extr-prefix-path:
[hfs-valid ainfo winfo | nxt; nzt = None]| = prefix (extr-from-hd 1) (AHIS 1)
(proof)

lemma COND-path-prefiz-extr:
prefiz (AHIS (hfs-valid-prefix ainfo uinfo | nxt))
(extr-from-hd 1)
(proof)

lemma COND-hf-valid-uinfo:
[hf-valid ainfo uinfo hf nxt; hf-valid ainfo’ winfo’ hf nzt'] = winfo’ = winfo
(proof)

lemma COND-upd-uinfo-ik:
[terms-uinfo winfo C synth (analz ik); terms-hf hf C synth (analz ik)]
= terms-uinfo (upd-winfo uinfo hf) C synth (analz ik)

(proof)

lemma COND-upd-uinfo-no-oracle: no-oracle ainfo uinfo = no-oracle ainfo (upd-uinfo-pkt m)

(proof)

lemma COND-auth-restrict-upd:
auth-restrict ainfo winfo (x#yF#hfs)
= auth-restrict ainfo (upd-uinfo uinfo y) (y#hfs)
(proof)

3.3.5 Instantiation of dataplane-3-directed locale

print-locale dataplane-3-directed
sublocale
dataplane-3-directed - - - auth-seg0 terms-uinfo terms-hf hf-valid auth-restrict extr extr-ainfo term-ainfo

upd-uinfo ik-add
ik-oracle no-oracle

(proof)

end
end

96

3.4 EPIC Level 1 in the Basic Attacker Model

theory EPIC-L1-BA

imports
../ Parametrized-Dataplane-3-directed
../ infrastructure/ Keys
begin
locale epic-l1-defs = network-assums-direct - - - auth-seg0
for auth-seg0 :: (msgterm X ahi list) set
begin

3.4.1 Hop validation check and extract functions

type-synonym EPIC-HF = (unit, msgterm) HF
type-synonym UINFO = nat

The predicate hf-valid is given to the concrete parametrized model as a parameter. It ensures
the authenticity of the hop authenticator in the hop field. The predicate takes an authenti-
cated info field (in this model always a numeric value, hence the matching on Num ts), an
unauthenticated info field uinfo, the hop field to be validated and in some cases the next hop
field.

We distinguish if there is a next hop field (this yields the two cases below). If there is not,
then the hop authenticator o simply consists of a MAC over the authenticated info field and
the local routing information of the hop, using the key of the hop to which the hop field
belongs. If on the other hand, there is a subsequent hop field, then the uhi field of that hop
field is also included in the MAC computation.

The hop authenticator o is used to compute both the hop validation field and the uhi field.
The first is computed as a MAC over the path origin (pair of absolute timestamp ts and the
relative timestamp given in uinfo), using the hop authenticator as a key to the MAC. The
hop authenticator is not secret, and any end host can use it to create a valid hvf. The uhi
field, according to the protocol description, is ¢ shortened to a few bytes. We model this as
applying the hash on o.

The predicate hf-valid checks if the hop authenticator, hvf and uhi field are computed cor-
rectly.

fun hf-valid :: msgterm = UINFO
= EPIC-HF
= EPIC-HF option = bool where
hf-valid (Num ts) tspkt (AHI = ahi, UHI = uhi, HVF = z|) (Some (AHI = ahi2, UHI = uhi2,
HVF = 22)) «—
(o upif downif. o = Mac[macKey (ASID ahi)] (L [Num ts, upif, downif, uhi2]) A
ASIF (DownlIF ahi) downif N ASIF (UpIF ahi) upif A uhi = Hash o A © = Mac[o] (Num
ts, Num tspkt))
| hf-valid (Num ts) tspkt (AHI = ahi, UHI = uhi, HVF = z|) None <—
(3o upif downif. 0 = Mac[macKey (ASID ahi)] (L [Num ts, upif, downif]) A
ASIF (DownlIF ahi) downif N ASIF (UpIF ahi) upif A uhi = Hash o A © = Mac[o] (Num
ts, Num tspkt))
| hf-valid - - - - = False

definition upd-uinfo :: nat = EPIC-HF = nat where

97

upd-uinfo winfo hf = winfo

We can extract the entire path from the uhi field, since it includes the hop authenticator,
which includes the local forwarding information as well as, recursively, all upstream hop au-
thenticators and their hop information. However, the parametrized model defines the extract
function to operate on the hop validation field, not the uhi field. We therefore define a sepa-
rate function that extracts the path from a hvf. We can do so, as both hvf and uhi contain
the hop authenticator. Internally, that function uses extrUhi.

fun extrUhi :: msgterm = ahi list where
extrUhi (Hash (Mac[macKey asid] (L [ts, upif, downif, uhi2])))
= (UpIF = term2if upif, DownIF = term2if downif, ASID = asid|) # extrUhi uhi2
| extrUhi (Hash (Mac[macKey asid] (L [ts, upif, downif])))
= [(UpIF = term2if upif, DownIF = term2if downif, ASID = asid|)]
| extrUhi - = |]

This function extracts from a hop validation field (HVF hf) the entire path.

fun extr :: msgterm = ahi list where
extr (Maclo] -) = extrUhi (Hash o)
| extr - =]

Extract the authenticated info field from a hop validation field.

fun extr-ainfo :: msgterm = msgterm where
extr-ainfo (Mac[Mac[macKey asid] (L (Num ts # zs))] -) = Num ts
| extr-ainfo - = ¢

abbreviation term-ainfo :: msgterm = msgterm where
term-ainfo = id

When observing a hop field, an attacker learns the HVF and the UHI. The AHI only contains
public information that are not terms.

fun terms-hf :: EPIC-HF = msgterm set where
terms-hf hf = {HVF hf, UHI hf}

abbreviation terms-uinfo :: UINFO = msgterm set where
terms-uinfo x = {}

An authenticated info field is always a number (corresponding to a timestamp). The unau-
thenticated info field is as well a number, representing combination of timestamp offset and
SRC address.

definition auth-restrict where
auth-restrict ainfo winfo | = (I ts. ainfo = Num ts)

abbreviation no-oracle where no-oracle = (A - -. True)

We now define useful properties of the above definition.

lemma hf-valid-invert:
hf-valid tsn winfo hf mo +—
((3 ahi ahi2 o ts upif downif asid x upif2 downif2 asid2 uhi uhi2 z2.
hf = (AHI = ahi, UHI = uhi, HVF = z)) A
ASID ahi = asid N ASIF (DownlIF ahi) downif N ASIF (UpIF ahi) upif A

98

mo = Some (AHI = ahi2, UHI = uhi2, HVF = z2]) A
ASID ahi2 = asid2 N ASIF (DownlF ahi2) downif2 N ASIF (UplF ahi2) upif2 A
o = Mac[macKey asid) (L [tsn, upif, downif, uhi2]) A
tsn = Num ts A
uhi = Hash o N
z = Mac[o] (tsn, Num uinfo))
V (Fahi o ts upif downif asid uhi x.
hf = (AHI = ahi, UHI = uhi, HVF = z)) A
ASID ahi = asid N ASIF (DownlF ahi) downif N ASIF (UpIF ahi) upif A
mo = None A
o = Mac[macKey asid] (L [tsn, upif, downif]) A
tsn = Num ts A
uhi = Hash o A
x = Mac[o] (tsn, Num uinfo))

(proof)

lemma hf-valid-auth-restrict[dest]: hf-valid ainfo winfo hf z = auth-restrict ainfo winfo |

(proof)

lemma auth-restrict-ainfo[dest]: auth-restrict ainfo uwinfo | = Its. ainfo = Num ts

(proof)

lemma info-hvf:
assumes hf-valid ainfo winfo m z HVF m = Mac|o| (ainfo’, Num winfo’y V hf-valid ainfo’ uinfo’ m

Z/

shows uinfo = uinfo’ ainfo’ = ainfo

(proof)

3.4.2 Definitions and properties of the added intruder knowledge

Here we define a sets which are added to the intruder knowledge: ik-add, which contains hop
authenticators.

print-locale dataplane-3-directed-defs
sublocale dataplane-3-directed-defs - - - auth-seg0 hf-valid auth-restrict extr extr-ainfo term-ainfo
terms-hf terms-uinfo upd-uinfo no-oracle

(proof)

declare TWu.holds-set-list|dest)
declare TWu.holds-take W-is-identity[simp]
declare parts-singleton[dest)

This additional Intruder Knowledge allows us to model the attacker’s access not only to the
hop validation fields and segment identifiers of authorized segments (which are already given
in #k-hfs), but to the underlying hop authenticators that are used to create them.

definition ik-add :: msgterm set where
ik-add = { o | ainfo uinfo l hf o.
(ainfo, 1) € auth-seg2 winfo N hf € set | N HVF hf = Mac[o] {ainfo, Num uinfo) }

lemma ik-addl:

[(ainfo, 1) € auth-seg2 uinfo; hf € set l; HVF hf = Maclo] (ainfo, Num uinfo)] = o € ik-add
(proof)

99

lemma ik-add-form: t € ik-add = 3 asid | . t = Mac[macKey asid] 1
(proof)

lemma parts-ik-add[simp): parts ik-add = ik-add
(proof)

abbreviation ik-oracle :: msgterm set where ik-oracle = {}

3.4.3 Properties of the intruder knowledge, including ik-add and ik-oracle

We now instantiate the parametrized model’s definition of the intruder knowledge, using the
definitions of ik-add and ik-oracle from above. We then prove the properties that we need to
instantiate the dataplane-3-directed locale.

sublocale
dataplane-3-directed-ik-defs - - - auth-seg0 terms-uinfo no-oracle hf-valid auth-restrict extr extr-ainfo
term-ainfo
terms-hf upd-uinfo ik-add ik-oracle
(proof)

lemma ik-hfs-form: t € parts ik-hfs = 3 t’ . t = Hash t’
(proof)

declare ik-hfs-def[simp del]

lemma parts-ik-hfs[simp|: parts ik-hfs = ik-hfs
(proof)

This lemma allows us not only to expand the definition of ik-hfs, but also to obtain useful
properties, such as a term being a Hash, and it being part of a valid hop field.

lemma ik-hfs-simp:
t € ik-hfs «— (3t'. t = Hash t') A (3hf . (t = HVF hf V t = UHI hf)
A (Fhfs. hf € set hfs A (3 ainfo uinfo. (ainfo, hfs) € auth-seg2 winfo
A (3 nat. hf-valid ainfo uinfo hf nat)))) (is ?lhs «— ?rhs)
(proof)

Properties of Intruder Knowledge

lemma auth-ainfodest]: [(ainfo, hfs) € auth-seg2 uwinfo] = 3 ts . ainfo = Num ts

(proof)

lemma Num-ik[intro|: Num ts € ik
(proof)

There are no ciphertexts (or signatures) in parts ik. Thus, analz ik and parts ik are identical.

lemma analz-parts-ik[simp]: analz ik = parts ik

(proof)

lemma parts-ik[simp]: parts ik = ik
(proof)

100

lemma key-ik-bad: Key (macK asid) € ik = asid € bad

(proof)

Hop authenticators are agnostic to uinfo field

Those hop validation fields contained in auth-seg2 or that can be generated from the hop
authenticators in ik-add have the property that they are agnostic about the uinfo field. If a
hop validation field is contained in auth-seg2 (resp. derivable from ik-add), then a field with
a different uinfo is also contained (resp. derivable). To show this, we first define a function
that changes uinfo in a hop validation field.

fun winfo-change-hf :: UINFO = EPIC-HF = EPIC-HF where
winfo-change-hf new-uinfo hf =
(case HVF hf of Mac|o] (ainfo, uinfo) = hf(HVF := Maclo] (ainfo, Num new-uinfo)) | - = hf)

fun winfo-change :: UINFO = EPIC-HF list = EPIC-HF list where
winfo-change new-uinfo hfs = map (uinfo-change-hf new-uinfo) hfs

lemma uinfo-change-valid:
hfs-valid ainfo winfo | nxt = hfs-valid ainfo new-uinfo (uinfo-change new-uinfo 1) nxt
(proof)

lemma wuinfo-change-hf-AHI: AHI (uinfo-change-hf new-uinfo hf) = AHI hf
(proof)

lemma winfo-change-hf-AHIS[simp|: AHIS (map (uinfo-change-hf new-uinfo) 1) = AHIS |
(proof)

lemma uinfo-change-auth-seg2:
assumes hf-valid ainfo uinfo m z o = Mac[Key (macK asid)] j
HVF m = Maclo] (ainfo, Num uinfo’) o € ik-add
shows A hfs. m € set hfs A (Fuinfo”. (ainfo, hfs) € auth-seg2 uwinfo’’)
(proof)

lemma MAC-synth-helper:
[hf-valid ainfo uinfo m z;
HVF m = Macl|o] (ainfo, Num uinfo); 0 = Mac[Key (macK asid)] j; o € ik V HVF m € ik]
= Jhfs. m € set hfs A (uinfo’. (ainfo, hfs) € auth-seg2 uinfo’)
(proof)

This definition helps with the limiting the number of cases generated. We don’t require it, but
it is convenient. Given a hop validation field and an asid, return if the hvf has the expected
format.

definition mac-format :: msgterm = as = bool where
mac-format m asid = 3 j ts winfo . m = Mac[Mac|macKey asid] j) (Num ts, uinfo)

If a valid hop field is derivable by the attacker, but does not belong to the attacker, then the
hop field is already contained in the set of authorized segments.
lemma MAC-synth:
assumes hf-valid ainfo uinfo m z HVF m € synth ik mac-format (HVF m) asid
asid ¢ bad
shows Jhfs . m € set hfs A (Fuinfo’. (ainfo, hfs) € auth-seg2 winfo’)

101

(proof)

3.4.4 Direct proof goals for interpretation of dataplane-3-directed

lemma COND-honest-hf-analz:
assumes ASID (AHI hf) ¢ bad hf-valid ainfo winfo hf nat terms-hf hf C synth (analz ik)
no-oracle ainfo uinfo
shows terms-hf hf C analz ik

(proof)

lemma COND-terms-hf:
assumes hf-valid ainfo uinfo hf z and HVF hf € ik and no-oracle ainfo uinfo
shows 3 hfs. hf € set hfs A (uinfo . (ainfo, hfs) € auth-seg2 uinfo)

(proof)

lemma COND-extr-prefix-path:
[hfs-valid ainfo winfo | nat; nat = None] = prefix (extr-from-hd 1) (AHIS 1)
(proof)

lemma COND-path-prefiz-extr:
prefiz (AHIS (hfs-valid-prefix ainfo uinfo | nxt))
(extr-from-hd 1)
(proof)

lemma COND-hf-valid-uinfo:
[hf-valid ainfo uinfo hf nat; hf-valid ainfo’ winfo’ hf nzt']| = winfo’ = uinfo
(proof)

lemma COND-upd-uinfo-ik:
[terms-uwinfo winfo C synth (analz ik); terms-hf hf C synth (analz ik)]
= terms-uinfo (upd-uinfo uinfo hf) C synth (analz ik)

(proof)

lemma COND-upd-uinfo-no-oracle:
no-oracle ainfo uinfo = no-oracle ainfo (upd-uinfo uinfo fld)

(proof)

lemma COND-auth-restrict-upd:
auth-restrict ainfo winfo (x#yFhfs)
= auth-restrict ainfo (upd-uinfo uinfo y) (y#hfs)
{proof)

3.4.5 Instantiation of dataplane-3-directed locale

print-locale dataplane-3-directed
sublocale
dataplane-3-directed - - - auth-seg0 terms-uinfo terms-hf hf-valid auth-restrict extr extr-ainfo term-ainfo

upd-uinfo ik-add
ik-oracle no-oracle

(proof)

end

102

end

103

3.5 EPIC Level 1 in the Strong Attacker Model

theory EPIC-L1-SA
imports
../ Parametrized-Dataplane-3-directed
../ infrastructure/ Keys
begin

type-synonym EPIC-HF = (unit, msgterm) HF
type-synonym UINFO = nat

locale epic-l1-defs = network-assums-direct - - - auth-seg0
for auth-seg0 :: (msgterm X ahi list) set +
fixes no-oracle :: msgterm = UINFO = bool

begin

3.5.1 Hop validation check and extract functions

The predicate hf-valid is given to the concrete parametrized model as a parameter. It ensures
the authenticity of the hop authenticator in the hop field. The predicate takes an authenti-
cated info field (in this model always a numeric value, hence the matching on Num ts), an
unauthenticated info field uinfo, the hop field to be validated and in some cases the next hop
field.

We distinguish if there is a next hop field (this yields the two cases below). If there is not,
then the hop authenticator ¢ simply consists of a MAC over the authenticated info field and
the local routing information of the hop, using the key of the hop to which the hop field
belongs. If on the other hand, there is a subsequent hop field, then the uhi field of that hop
field is also included in the MAC computation.

The hop authenticator ¢ is used to compute both the hop validation field and the uhi field.
The first is computed as a MAC over the path origin (pair of absolute timestamp ts and the
relative timestamp given in uinfo), using the hop authenticator as a key to the MAC. The
hop authenticator is not secret, and any end host can use it to create a valid hvf. The uhi
field, according to the protocol description, is ¢ shortened to a few bytes. We model this as
applying the hash on o.

The predicate hf-valid checks if the hop authenticator, hvf and uhi field are computed cor-
rectly.

fun hf-valid :: msgterm = UINFO
= EPIC-HF
= EPIC-HF option = bool where
hf-valid (Num ts) winfo (AHI = ahi, UHI = uhi, HVF = z|) (Some (AHI = ahi2, UHI = uhi2,
HVF = 12)) +—
(o upif downif. 0 = Mac[macKey (ASID ahi)] (L [Num ts, upif, downif, uhi2]) A
ASIF (DownlIF ahi) downif N ASIF (UpIF ahi) upif A uhi = Hash o A x = Mac[o] (Num
ts, Num uinfo))
| hf-valid (Num ts) winfo (AHI = ahi, UHI = uhi, HVF = z|) None +—
(o upif downif. o = Mac[macKey (ASID ahi)] (L [Num ts, upif, downif]) A
ASIF (DownlIF ahi) downif N ASIF (UpIF ahi) upif A uhi = Hash o A © = Mac[o] (Num
ts, Num uinfo))
| hf-valid - - - - = False

104

definition upd-uinfo :: nat = EPIC-HF = nat where
upd-uinfo winfo hf = winfo

We can extract the entire path from the uhi field, since it includes the hop authenticator,
which includes the local forwarding information as well as, recursively, all upstream hop au-
thenticators and their hop information. However, the parametrized model defines the extract
function to operate on the hop validation field, not the uhi field. We therefore define a sepa-
rate function that extracts the path from a hvf. We can do so, as both hvf and uhi contain
the hop authenticator. Internally, that function uses extrUhi.

fun extrUhi :: msgterm = ahi list where
extrUhi (Hash (Mac[macKey asid] (L [ts, upif, downif, uhi2])))
= (UpIF = term2if upif, DownlF = term2if downif, ASID = asid|) # extrUhi uhi2
| extrUhi (Hash (Mac[macKey asid] (L [ts, upif, downif])))
= [(UpIF = term?2if upif, DownIF = term2if downif, ASID = asid|)]
| extrUhi - = |]

This function extracts from a hop validation field (HVF hf) the entire path.

fun extr :: msgterm = ahi list where
extr (Maclo] -) = extrUhi (Hash o)
| extr - =[]

Extract the authenticated info field from a hop validation field.

fun extr-ainfo :: msgterm = msgterm where
extr-ainfo (Mac[-] (Num ts, -)) = Num ts
| extr-ainfo - = ¢

abbreviation term-ainfo :: msgterm = msgterm where
term-ainfo = id

When observing a hop field, an attacker learns the HVF and the UHI. The AHI only contains
public information that are not terms.

fun terms-hf :: EPIC-HF = msgterm set where
terms-hf hf = {HVF hf, UHI hf}

abbreviation terms-uinfo :: UINFO = msgterm set where
terms-uinfo x = {}

An authenticated info field is always a number (corresponding to a timestamp). The unau-
thenticated info field is as well a number, representing combination of timestamp offset and
SRC address.

definition auth-restrict where
auth-restrict ainfo winfo | = (I ts. ainfo = Num ts)

We now define useful properties of the above definition.

lemma hf-valid-invert:
hf-valid tsn winfo hf mo +—
((3 ahi ahi2 o ts upif downif asid x upif2 downif2 asid2 uhi uhi2 z2.
hf = (AHI = ahi, UHI = uhi, HVF = z)) A
ASID ahi = asid N ASIF (DownlIF ahi) downif N ASIF (UpIF ahi) upif A

105

mo = Some (AHI = ahi2, UHI = uhi2, HVF = z2]) A
ASID ahi2 = asid2 N ASIF (DownlF ahi2) downif2 N ASIF (UplF ahi2) upif2 A
o = Mac[macKey asid) (L [tsn, upif, downif, uhi2]) A
tsn = Num ts A
uhi = Hash o N
z = Mac[o] (tsn, Num uinfo))
V (Fahi o ts upif downif asid uhi x.
hf = (AHI = ahi, UHI = uhi, HVF = z)) A
ASID ahi = asid N ASIF (DownlF ahi) downif N ASIF (UpIF ahi) upif A
mo = None A
o = Mac[macKey asid] (L [tsn, upif, downif]) A
tsn = Num ts A
uhi = Hash o A
x = Mac[o] (tsn, Num uinfo))

(proof)

lemma hf-valid-auth-restrict[dest]: hf-valid ainfo winfo hf z = auth-restrict ainfo winfo |

(proof)

lemma auth-restrict-ainfo[dest]: auth-restrict ainfo uwinfo | = Its. ainfo = Num ts

(proof)

lemma info-hvf:
assumes hf-valid ainfo winfo m z HVF m = Mac|o| (ainfo’, Num winfo’y V hf-valid ainfo’ uinfo’ m

Z/

shows uinfo = uinfo’ ainfo’ = ainfo

(proof)

3.5.2 Definitions and properties of the added intruder knowledge

Here we define two sets which are added to the intruder knowledge: ik-add, which contains
hop authenticators. And 7k-oracle, which contains the oracle’s output to the strong attacker.

print-locale dataplane-3-directed-defs
sublocale dataplane-3-directed-defs - - - auth-seg0 hf-valid auth-restrict extr extr-ainfo term-ainfo
terms-hf terms-uinfo upd-uinfo no-oracle

(proof)

abbreviation is-oracle where is-oracle ainfo t = — no-oracle ainfo t

declare TWu.holds-set-list[dest)
declare TWu.holds-take W-is-identity|simp]
declare parts-singleton|dest)

This additional Intruder Knowledge allows us to model the attacker’s access not only to the
hop validation fields and segment identifiers of authorized segments (which are already given
in ik-hfs), but to the underlying hop authenticators that are used to create them.
definition ik-add :: msgterm set where
ik-add = { o | ainfo uinfo | hf o.
(ainfo::msgterm, l::(EPIC-HF list)) €
((local.auth-seg2 winfo)::((msgterm x EPIC-HF list) set))

106

A hf € set | N HVF hf = Mac|o] (ainfo, Num uinfo) }

lemma ik-addl:
[(ainfo, 1) € local.auth-seg2 uinfo; hf € set l; HVF hf = Mac[o] (ainfo, Num uinfo)] = o € ik-add
(proof)

lemma ik-add-form: t € local.ik-add = 3 asid | . t = Mac[macKey asid] 1

(proof)

lemma parts-ik-add[simp): parts ik-add = ik-add
(proof)

This is the oracle output provided to the adversary. Only those hop validation fields and
segment identifiers whose path origin (combination of ainfo uinfo) is not contained in no-oracle
appears here.

definition ik-oracle :: msgterm set where
ik-oracle = {t | t ainfo hf l uinfo . hf € set Il A hfs-valid-None ainfo uinfo I A
is-oracle ainfo winfo N (Y uinfo’ . (ainfo, 1) ¢ auth-seg2 uinfo’) A
(t = HVF hf Vv t = UHI bf) }

lemma ik-oracle-parts-form:

t € ik-oracle =
(3 asid [ainfo uinfo . t = Mac[Mac[macKey asid]] {ainfo, uinfo)) V
(3 asid I . t = Hash (Mac|macKey asid] 1))
(proof)

lemma parts-ik-oracle[simp]: parts ik-oracle = ik-oracle
(proof)

lemma ik-oracle-simp: t € ik-oracle +—
(F ainfo hf I winfo. hf € set | A hfs-valid-None ainfo winfo | A is-oracle ainfo uinfo
A (Yuinfo'. (ainfo, l) ¢ auth-seg2 winfo’) N (t = HVF hf V t = UHI hf))
(proof)

3.5.3 Properties of the intruder knowledge, including ik-add and ik-oracle

We now instantiate the parametrized model’s definition of the intruder knowledge, using the
definitions of ik-add and ik-oracle from above. We then prove the properties that we need to
instantiate the dataplane-3-directed locale.

sublocale
dataplane-3-directed-ik-defs - - - auth-seg0 terms-uinfo no-oracle hf-valid auth-restrict extr extr-ainfo
term-ainfo
terms-hf upd-uinfo ik-add ik-oracle
(proof)

lemma ik-hfs-form: t € parts ik-hfs = 3 t’ . t = Hash t’
(proof)

declare ik-hfs-def[simp del]

107

lemma parts-ik-hfs[simp|: parts ik-hfs = ik-hfs
(proof)

This lemma allows us not only to expand the definition of ik-hfs, but also to obtain useful
properties, such as a term being a Hash, and it being part of a valid hop field.
lemma ik-hfs-simp:
t € ik-hfs < (3t'. t = Hash t') A (3hf . (t = HVF hf Vv t = UHI hf)
A (hfs. hf € set hfs A (3 ainfo uwinfo . (ainfo, hfs) € auth-seg2 winfo
A (3 nzt. hf-valid ainfo winfo hf nxt)))) (is ?lhs <— ?rhs)
(proof)

Properties of Intruder Knowledge

lemma auth-ainfo[dest]: [(ainfo, hfs) € auth-seg2 uinfo] = 3 ts . ainfo = Num ts
(proof)

There are no ciphertexts (or signatures) in parts ik. Thus, analz ik and parts ik are identical.

lemma analz-parts-ik[simp]: analz ik = parts ik

(proof)

lemma parts-ik[simp]: parts ik = ik
(proof)

lemma key-ik-bad: Key (macK asid) € ik = asid € bad

(proof)

Hop authenticators are agnostic to uinfo field

Those hop validation fields contained in auth-seg2 or that can be generated from the hop
authenticators in ik-add have the property that they are agnostic about the uinfo field. If a
hop validation field is contained in auth-seg2 (resp. derivable from ik-add), then a field with
a different uinfo is also contained (resp. derivable). To show this, we first define a function
that updates uinfo in a hop validation field.

fun uinfo-change-hf :: UINFO = EPIC-HF = EPIC-HF where
winfo-change-hf new-uinfo hf =
(case HVF hf of Mac|o] (ainfo, uwinfo) = hf(HVF := Maclo] {(ainfo, Num new-uinfo)) | - = hf)

fun winfo-change :: UINFO = EPIC-HF list = EPIC-HF list where
uinfo-change new-uinfo hfs = map (winfo-change-hf new-uinfo) hfs

lemma uinfo-change-valid:
hfs-valid ainfo winfo | nxt = hfs-valid ainfo new-uinfo (uinfo-change new-uinfo 1) nxt
(proof)

lemma wuinfo-change-hf-AHI: AHI (uinfo-change-hf new-uinfo hf) = AHI hf
(proof)

lemma wuinfo-change-hf-AHIS[simp): AHIS (map (uinfo-change-hf new-uinfo) 1) = AHIS |
(proof)

lemma uinfo-change-auth-seg2:

108

assumes hf-valid ainfo uinfo m z o = Mac[Key (macK asid)] j
HVF m = Mac[o] (ainfo, Num winfo’y o € ik-add no-oracle ainfo uinfo
shows J hfs. m € set hfs A (Juinfo”. (ainfo, hfs) € auth-seg2 uinfo'")
(proof)

lemma MAC-synth-oracle:
assumes hf-valid ainfo uinfo m z HVF m € ik-oracle
shows is-oracle ainfo winfo

(proof)

lemma ik-oracle-is-oracle:
[Maclo] {ainfo, Num uinfo) € ik-oracle] = is-oracle ainfo uinfo

(proof)

lemma MAC-synth-helper:
[hf-valid ainfo winfo m z; no-oracle ainfo winfo;
HVF m = Mac[o] {ainfo, Num uinfo); o = Mac[Key (macK asid)] j; o € ik V HVF m € ik]
= Ihfs. m € set hfs A (Fuinfo’. (ainfo, hfs) € auth-seg2 uinfo’)
(proof)

This definition helps with the limiting the number of cases generated. We don’t require it, but
it is convenient. Given a hop validation field and an asid, return if the hvf has the expected
format.

definition mac-format :: msgterm = as = bool where
mac-format m asid = 3 j ts uinfo . m = Mac[Mac[macKey asid] j] (Num ts, uinfo)

If a valid hop field is derivable by the attacker, but does not belong to the attacker, and is over
a path origin that does not belong to an oracle query, then the hop field is already contained
in the set of authorized segments.

lemma MAC-synth:
assumes hf-valid ainfo uinfo m z HVF m € synth ik mac-format (HVF m) asid
asid ¢ bad no-oracle ainfo uinfo
shows A hfs . m € set hfs A (Suinfo’. (ainfo, hfs) € auth-seg2 winfo’)
(proof)

3.5.4 Direct proof goals for interpretation of dataplane-3-directed

lemma COND-honest-hf-analz:
assumes ASID (AHI hf) ¢ bad hf-valid ainfo winfo hf nat terms-hf hf C synth (analz ik)
no-oracle ainfo uinfo
shows terms-hf hf C analz ik

(proof)

lemma COND-terms-hf:
assumes hf-valid ainfo uinfo hf z and HVF hf € ik and no-oracle ainfo uinfo
shows I hfs. hf € set hfs A (uinfo . (ainfo, hfs) € auth-seg2 winfo)

(proof)

lemma COND-extr-prefix-path:
[hfs-valid ainfo winfo | nat; nat = None] = prefiz (extr-from-hd 1) (AHIS 1)
(proof)

109

lemma COND-path-prefiz-extr:
prefiz (AHIS (hfs-valid-prefix ainfo uinfo | nxt))
(extr-from-hd 1)
(proof)

lemma COND-hf-valid-uinfo:
[hf-valid ainfo winfo hf nxt; hf-valid ainfo’ winfo’ hf nzt'] = winfo’ = winfo
(proof)

lemma COND-upd-uinfo-ik:
[terms-uinfo winfo C synth (analz ik); terms-hf hf C synth (analz ik)]
= terms-uinfo (upd-winfo uinfo hf) C synth (analz ik)
(proof)

lemma COND-upd-uinfo-no-oracle:
no-oracle ainfo uinfo = no-oracle ainfo (upd-uinfo uinfo fld)

(proof)

lemma COND-auth-restrict-upd:
auth-restrict ainfo winfo (z#y#hfs)
= auth-restrict ainfo (upd-uinfo winfo y) (y#hfs)
(proof)

3.5.5 Instantiation of dataplane-3-directed locale

print-locale dataplane-3-directed
sublocale
dataplane-3-directed - - - auth-seg0 terms-uinfo terms-hf hf-valid auth-restrict extr extr-ainfo term-ainfo

upd-uinfo ik-add
ik-oracle no-oracle
(proof)

end
end

110

3.6 EPIC Level 1 Example instantiation of locale

In this theory we instantiate the locale dataplane0 and thus show that its assumptions are

satisfiable.

In particular, this involves the assumptions concerning the network. We also

instantiate the locale epic-l1-defs.

theory EPIC-L1-SA-Ezample

imports
EPIC-L1-S5A
begin

The network topology that we define is the same as in the paper.

abbreviation
abbreviation
abbreviation
abbreviation
abbreviation
abbreviation
abbreviation

abbreviation bad ::

nA
nB
nC ::
nD ::
nk ::
nkF
nG ::

as where nA = 3
as where nB =
as where nC
as where nD
as where nE
as where nF
as where nG =

b
6
7
8
9

as set where bad = {nF}

We assume a complete graph, in which interfaces contain the name of the adjacent AS

fun tgtas ::

as = ifs = as option where
tgtas a i = Some i

fun tgtif :: as = ifs = ifs option where

tgtif a 1 = Some a

3.6.1 Left segment

abbreviation hiAl :
abbreviation hiBI ::
abbreviation hiDI ::
abbreviation hiFl ::
abbreviation hiFl ::

ahi where hiAl = (UpIF = None, DownlIF = Some nB, ASID = nA)|
ahi where hiBl = (UpIF = Some nA, DownlIF = Some nD, ASID = nB)
ahi where hiDl = (UpIF = Some nB, DownlF = Some nE, ASID = nD)
ahi where hiEl = (UpIF = Some nD, DownIF = Some nF, ASID = nE)
ahi where hiFl = (UpIF = Some nE, DownlF = None, ASID = nF)

3.6.2 Right segment

abbreviation hiAr ::
abbreviation hiBr :
abbreviation hiDr ::
abbreviation hiEr ::
abbreviation hiGr :

ahi where hiAr = (UpIF = None, DownlF = Some nB, ASID = nA|)
ahi where hiBr = (UpIF = Some nA, DownlIF = Some nD, ASID = nB))
ahi where hiDr = (UpIF = Some nB, DownIF = Some nE, ASID = nD)
ahi where hiEr = (UpIF = Some nD, DownIF = Some nG, ASID = nE)
ahi where hiGr = (UpIF = Some nE, DownIF = None, ASID = nQ)

abbreviation hfF-attr-E :: ahi set where hfF-attr-E = {hi . ASID hi = nF' N\ UplF hi = Some nE}

abbreviation AfF-attr ::

ahi set where hfF-attr = {hi . ASID hi = nF'}

abbreviation leftpath :: ahi list where
leftpath = [hiFl, hiEl, hiDl, hiBl, hiAl)
abbreviation rightpath :: ahi list where
rightpath = [hiGr, hiEr, hiDr, hiBr, hiAr]
abbreviation rightsegment where rightsegment = (Num 0, rightpath)

111

abbreviation leftpath-wormholed :: ahi list set where
leftpath-wormholed =
{ zsQ[hf, hiEl, hiDl, hiBl, hiAl] | hf xs . hf € hfF-attr-E A set zs C hfF-atir}

definition leftsegment-wormholed :: (msgterm X ahi list) set where
leftsegment-wormholed = { (Num 0, leftpath) | leftpath . leftpath € leftpath-wormholed}

definition attr-segment :: (msgterm X ahi list) set where
attr-segment = { (ainfo, path) | ainfo path . set path C hfF-atir}

definition auth-seg0 :: (msgterm x ahi list) set where
auth-seg0 = leftsegment-wormholed U {rightsegment} U attr-segment

lemma tgtasif-inv:
[tgtas w i = Some v; tgtif u i = Some j] = tgtas v j = Some u
[tgtas w i = Some v; tgtif u i = Some j] = tgtif v j = Some @
(proof)

locale no-assumptions-left
begin

sublocale d0: network-model bad auth-seg0 tgtas tgtif
(proof)

lemma attr-ifs-valid: [ASID y = nF; set ys C hfF-attr] = d0.ifs-valid (Some y) ys nat
(proof)

lemma attr-ifs-valid”: [set ys C hfF-attr; pre = None] = d0.ifs-valid pre ys nxt

(proof)

lemma leftpath-ifs-valid: [pre = None; ASID hf = nF'; UpIF hf = Some nE; set s C hfF-attr]
= d0.ifs-valid pre (zs Q [hf, hiEl, hiDI, hiBl, hiAl]) nxt
(proof)

lemma ASM-if-valid: [(info, l) € auth-seg0; pre = None] = d0.ifs-valid pre | nat
(proof)

lemma rooted-app[simp|: d0.rooted (zsQy#ys) «+— d0.rooted (y#ys)
(proof)

lemma ASM-rooted: (info, l) € auth-seg0 = d0.rooted |
(proof)

lemma ASM-terminated: (info, 1) € auth-seg) = d0.terminated
(proof)

lemma ASM-empty: (info, [|) € auth-seg0
(proof)

lemma ASM-singleton: [ASID hf € bad] = (info, [hf]) € auth-seg0
(proof)

112

lemma ASM-extension:

[(info, hf2#ys) € auth-seg0; ASID hf2 € bad; ASID hfl € bad]
= (info, hfl #hf24ys) € auth-seg0

(proof)

lemma ASM-modify: [(info, hf#ys) € auth-seg0; ASID hf = a;
ASID hf' = a; UpIF hf' = UpIF hf; a € bad] = (info, hf '#ys) € auth-seg0
(proof)

lemma rightpath-no-nF: [ASID hf = nF; zs Q hf # ys = rightpath] = False
(proof)

lemma ASM-cutoff-leftpath:
[ASID hf = nF;
V hfa. UpIF hfa = Some nE — ASID hfa = nF — (Vas. hf # ys = zs Q [hfa, hiEl, hiDr, hiBr,
hiAr] —
- set s C hfF-attr); x© € set ys; info = Num 0,
zs Q hf # ys = xs Q [hfa, hiEl, hiDr, hiBr, hiAr]; ASID hfa = nF; UpIF hfa = Some nFE; set
zs C hfF-attr]
= ASID z = nF
(proof)

lemma ASM-cutoff: [(info, zsQhf#ys) € auth-seg0; ASID hf € bad] = (info, hf#ys) € auth-seg0
(proof)

sublocale network-assums-direct-instance: network-assums-direct bad tgtas tgtif auth-seg0

(proof)

definition no-oracle :: msgterm = nat = bool where
no-oracle ainfo uinfo = True

sublocale el: epic-l1-defs bad tgtas tgtif auth-seg0 no-oracle
(proof)

declare el.upd-uinfo-def[simp]

declare TWu.holds-take W-is-identity|simp]
thm TWu.holds-take W-is-identity
declare el.auth-restrict-def [simp]
declare no-oracle-def [simp]

declare el.upd-pkt-def [simp)

3.6.3 Executability

Honest sender’s packet forwarding

abbreviation ainfo where ainfo = Num 0

abbreviation uinfo :: nat where winfo = 1

abbreviation 04 where 0 A = Mac[macKey nA] (L [ainfo, e, AS nB])

abbreviation ¢B where 0B = Mac|macKey nB] (L [ainfo, AS nA, AS nD, Hash oA])
abbreviation ¢D where 0D = Mac[macKey nD] (L [ainfo, AS nB, AS nE, Hash o B])
abbreviation ¢ F where o F = Mac[macKey nE] (L [ainfo, AS nD, AS nF, Hash cD))
abbreviation o F' where o F = Mac[macKey nF)| (L [ainfo, AS nE, €, Hash cE])

113

definition hfAl where hfAl = (AHI = hiAl, UHI = Hash 0 A, HVF = Maclo
definition hfBl where hfBl = (AHI = hiBl, UHI = Hash cB, HVF = Mac[c B

definition hfEl where hfEl = (AHI = hiEl, UHI = Hash o E, HVF = Mac|o

ainfo, Num uinfo
ainfo, Num uinfo

E) {ainfo, Num uinfo
F

[oA] ()
[oB] ())
definition hfDl where hfDl = (AHI = hiDIl, UHI = Hash 0D, HVF = Mac[o D] {ainfo, Num uinfo))
[oE] ())
[oF] ()

definition hfFl where hfFl = (AHI = hiFl, UHI = Hash o F, HVF = Mac[o

lemmas hfl-defs = hfAl-def hfBl-def hfDl-def hfEl-def hfFl-def

lemma el .hf-valid ainfo winfo hfAl None

(proof)
lemma el .hf-valid ainfo uinfo hfBl (Some hfAl)

(proof)

lemma e!.hf-valid ainfo winfo hfFl (Some hfEl)
(proof)

abbreviation forwardingpath where
forwardingpath = [hfFl, hfEL, hfDI, hfBl, hfAl]

definition pkt0 where pkt0 = (
Alnfo = ainfo,
Ulnfo = winfo,
past =[],
future = forwardingpath,
history = |]

definition pkt! where pkt! = (
Alnfo = ainfo,
Ulnfo = winfo,
past = [hfFl],
future = [hfEL, hfDl, hfBl, hfAl],
history = [hiFI]

definition pkt2 where pkt2 = (
Alnfo = ainfo,
Ulnfo = winfo,
past = [hfEL, hfFl),
future = [hfDI, hfBI, hfAl],
history = [hiEl, hiFl)

definition pkt3 where pkt3 = (
Alnfo = ainfo,
Ulnfo = winfo,
past = [hfDl, hfEl, hfFl],
future = [hfBI, hfAl],
history = [hiDl, hiEl, hiFl]
)
definition pkt/ where pkt] = (
Alnfo = ainfo,
Ulnfo = winfo,
past = [hfBl, hfDl, hfEl, hfFl],
future = [hfAl],
history = [hiBl, hiDl, hiEl, hiFl]

114

ainfo, Num uinfo

definition pkt5 where pkt5 = (
Alnfo = ainfo,
Ulnfo = winfo,
past = [hfAl, hfBl, hfDI, hfEl, hfFl,
future =[],
history = [hiAl, hiBl, hiDl, hiEl, hiFl|
)

definition s0 where s0 = el.dp2-init
definition s! where s1 = s0(loc2 := (loc2 s0)(nF = {pkt0}))
definition s2 where

s2 = sl(chan2 = (chan2 s1)((nF, nE, nE, nF') := chan2 s1 (nF, nE, nE, nF) U {pkt1}))
definition s3 where s3 = s2(loc2 := (loc2 s2)(nE := {pkt1}))
definition s/ where

s4 = s3(chan2 = (chan2 s3)((nE, nD, nD, nE) := chan2 s3 (nE, nD, nD, nE) U {pkt2}))
definition s5 where s5 = s/ (loc2 := (loc2 s4)(nD := {pkt2}))
definition s6 where

s6 = s5(chan2 = (chan2 s5)((nD, nB, nB, nD) := chan2 s5 (nD, nB, nB, nD) U {pkt3}))
definition s7 where s7 = s6(loc2 := (loc2 s6)(nB := {pkt3}))
definition s§ where

s8 = s7(chan2 = (chan2 s7)((nB, nA, nA, nB) := chan2 s7 (nB, nA, nA, nB) U {pkt4}))
definition s9 where s9 = s8(loc2 = (loc2 s8)(nA = {pkt4}))
definition s10 where 510 = s9(loc2 := (loc2 s9)(nA = {pkt{, pkt5}))

lemmas forwading-states =
sO-def s1-def s2-def s3-def s4-def s5-def s6-def s7-def s8-def s9-def s10-def

lemma forwardingpath-valid: el .hfs-valid-None ainfo uinfo forwardingpath
(proof)

lemma forwardingpath-auth: pfragment ainfo forwardingpath (el.auth-seg2 winfo)

(proof)

lemma reach-s0: reach el.dp2 sO (proof)

lemma s0-s1: el.dp2: sO0 —evt-dispatch-int2 nF pkt0— sl
(proof)

lemma s1-s2: el.dp2: s1 —evt-send2 nF nE pkt0— s2
(proof)

lemma s2-s3: el.dp2: s2 —evt-recv2 nE nF pktl— s3
(proof)

lemma s3-s4: el.dp2: s3 —evt-send2 nE nD pktl — sj
(proof)

lemma s4-s5: el.dp2: s4 —evt-recv? nD nE pkt2— s5
(proof)

lemma s5-s6: el.dp2: s5 —evt-send2 nD nB pkt2— s6

115

(proof)

lemma s6-s7: el.dp2: s6 —evt-recv? nB nD pkt3— s7
(proof)

lemma s7-s8: el.dp2: s7 —evt-send2 nB nA pkt3— s8
(proof)

lemma $8-s9: el.dp2: s8 —evt-recv? nA nB pkt]/— s9
(proof)

lemma s9-s10: el.dp2: s9 —evt-deliver2 nA pkti— s10
(proof)

The state in which the packet is received is reachable

lemma executability: reach el.dp2 s10
(proof)

Attacker event executability

We also show that the attacker event can be executed.
definition pkt-attr where pkt-atir = ||

Alnfo = ainfo,

Ulnfo = winfo,

past = [,
future = [hfEI],

history = |]

)

definition s-atir where
s-attr = s0(chan2 := (chan2 s0)((nF, nE, nE, nF) := chan2 s0 (nF, nE, nE, nF) U {pkt-attr})|

lemma ik-hfs-in-ik: t € el.ik-hfs = t € synth (analz (el.ik-dyn s))
(proof)

lemma hvf-e-auth: HVF hfEl € el .ik-hfs
(proof)

lemma uhi-e-auth: UHI hfEl € el .ik-hfs
(proof)

The attacker can also execute her event.

lemma attr-executability: reach el.dp2 s-attr

(proof)

end
end

116

3.7 EPIC Level 2 in the Strong Attacker Model

theory EPIC-L2-SA
imports
../ Parametrized-Dataplane-3-directed
../ infrastructure/ Keys
begin

type-synonym EPIC-HF = (unit, msgterm) HF
type-synonym UINFO = nat

locale epic-12-defs = network-assums-direct - - - auth-seg0
for auth-seg0 :: (msgterm X ahi list) set +
fixes no-oracle :: msgterm = UINFO = bool

begin

3.7.1 Hop validation check and extract functions

We model the host key, i.e., the DRKey shared between an AS and an end host as a pair of
AS identifier and source identifier. Note that this "key" is not necessarily secret. Because the
source identifier is not directly embedded, we extract it from the uinfo field. The uinfo (i.e.,
the token) is derived from the source address. We thus assume that there is some function
that extracts the source identifier from the uinfo field.

definition source-extract :: msgterm = msgterm where source-extract = undefined

definition K-i :: as = msgterm = msgterm where
K-i asid winfo = (AS asid, source-extract uinfo)

The predicate hf-valid is given to the concrete parametrized model as a parameter. It ensures
the authenticity of the hop authenticator in the hop field. The predicate takes an authenti-
cated info field (in this model always a numeric value, hence the matching on Num ts), an
unauthenticated info field uinfo, the hop field to be validated and in some cases the next hop
field.

We distinguish if there is a next hop field (this yields the two cases below). If there is not,
then the hop authenticator ¢ simply consists of a MAC over the authenticated info field and
the local routing information of the hop, using the key of the hop to which the hop field
belongs. If on the other hand, there is a subsequent hop field, then the uhi field of that hop
field is also included in the MAC computation.

The hop authenticator o is used to compute both the hop validation field and the uhi field.
The first is computed as a MAC over the path origin (pair of absolute timestamp ts and the
relative timestamp given in uinfo), using the hop authenticator as a key to the MAC. The
hop authenticator is not secret, and any end host can use it to create a valid hvf. The uhi
field, according to the protocol description, is ¢ shortened to a few bytes. We model this as
applying the hash on o.

The predicate hf-valid checks if the hop authenticator, hvf and uhi field are computed cor-
rectly.

fun hf-valid :: msgterm = UINFO
= FEPIC-HF
= EPIC-HF option = bool where

117

hf-valid (Num ts) winfo (AHI = ahi, UHI = uhi, HVF = z|) (Some (AHI = ahi2, UHI = uhi2,
HVF = 22)) «—
(3o upif downif. 0 = Mac[macKey (ASID ahi)] (L [Num ts, upif, downif, uhi2]) A
ASIF (DownlIF' ahi) downif N ASIF (UplIF ahi) upif A uhi = Hash o A
x = Mac[K-i (ASID ahi) (Num winfo)] (Num ts, Num winfo, o))
| hf-valid (Num ts) winfo (AHI = ahi, UHI = uhi, HVF = z|) None +—
(o upif downif. o = Mac[macKey (ASID ahi)] (L [Num ts, upif, downif]) A
ASIF (DownlIF ahi) downif N ASIF (UpIF ahi) upif A uhi = Hash o A
z = Mac[K-i (ASID ahi) (Num uinfo)] (Num ts, Num uinfo, o))
| hf-valid - - - - = False

abbreviation upd-uinfo :: nat = EPIC-HF = nat where
upd-uinfo winfo hf = winfo

We can extract the entire path from the uhi field, since it includes the hop authenticator,
which includes the local forwarding information as well as, recursively, all upstream hop au-
thenticators and their hop information. However, the parametrized model defines the extract
function to operate on the hop validation field, not the uhi field. We therefore define a sepa-
rate function that extracts the path from a hvf. We can do so, as both hvf and uhi contain
the hop authenticator. Internally, that function uses extrUhi.

fun extrUhi :: msgterm = ahi list where
extrUhi (Hash (Mac[macKey asid] (L [ts, upif, downif, uhi2])))
= (UpIF = term2if upif, DownIF = term2if downif, ASID = asid|) # extrUhi uhi2
| extrUhi (Hash (Mac|macKey asid] (L [ts, upif, downif])))
= [(UpIF = term2if upif, DownIF = term2if downif, ASID = asid|)]
| extrUhi - = |]

This function extracts from a hop validation field (HVF hf) the entire path.

fun extr :: msgterm = ahi list where
extr (Mac[-] (-, -, o)) = extrUhi (Hash o)
| extr - =]

Extract the authenticated info field from a hop validation field.

fun extr-ainfo :: msgterm = msgterm where
extr-ainfo (Mac[-] (Num ts, -, -)) = Num ts
| extr-ainfo - = ¢

abbreviation term-ainfo :: msgterm = msgterm where
term-ainfo = id

When observing a hop field, an attacker learns the HVF and the UHI. The AHI only contains
public information that are not terms.
fun terms-hf :: EPIC-HF = msgterm set where

terms-hf hf = {HVF hf, UHI hf}

abbreviation terms-uinfo :: UINFO = msgterm set where
terms-uinfo x = {}

An authenticated info field is always a number (corresponding to a timestamp). The unau-
thenticated info field is as well a number, representing combination of timestamp offset and
SRC address.

118

definition auth-restrict where
auth-restrict ainfo winfo | = (I ts. ainfo = Num ts)

We now define useful properties of the above definition.

lemma hf-valid-invert:

hf-valid tsn winfo hf mo +—

((3 ahi ahi2 o ts upif downif asid x upif2 downif2 asid2 uhi uhi2 z2.
hf = (AHI = ahi, UHI = uhi, HVF = z) A
ASID ahi = asid N ASIF (DownlF ahi) downif N ASIF (UplF ahi) upif A
mo = Some (AHI = ahi2, UHI = uhi2, HVF = 22| A
ASID ahi2 = asid2 N ASIF (DownlF ahi2) downif2 N ASIF (UpIF ahi2) upif2 A
o = Mac[macKey asid] (L [tsn, upif, downif, uhi2]) A
tsn = Num ts A
uhi = Hash o A
xz = Mac[K-i (ASID ahi) (Num winfo)] (tsn, Num uinfo, o))

V (Fahi o ts upif downif asid uhi z.

hf = (AHI = ahi, UHI = uhi, HVF = z) A
ASID ahi = asid N ASIF (DownlF' ahi) downif N ASIF (UpIF ahi) upif A
mo = None A
o = Mac[macKey asid) (L [tsn, upif, downif]) A
tsn = Num ts A
uhi = Hash o N
z = Mac[K-i (ASID ahi) (Num uinfo)] (tsn, Num uinfo, o))
)

(proof)

lemma hf-valid-auth-restrict[dest]: hf-valid ainfo uwinfo hf z = auth-restrict ainfo uinfo |
(proof)

lemma auth-restrict-ainfo[dest]: auth-restrict ainfo uinfo | = Its. ainfo = Num ts

(proof)

lemma info-hvf:

assumes hf-valid ainfo uinfo m z HVF m = Maclk-i] {(ainfo’, Num uinfo’, o) V hf-valid ainfo’ uinfo’
m z’

shows uinfo = uinfo’ ainfo’ = ainfo

(proof)

3.7.2 Definitions and properties of the added intruder knowledge

Here we define two sets which are added to the intruder knowledge: ik-add, which contains
hop authenticators. And ik-oracle, which contains the oracle’s output to the strong attacker.

Here we define two sets which are added to the intruder knowledge: ik-add, which contains
hop authenticators. And ik-oracle, which contains the oracle’s output to the strong attacker.

print-locale dataplane-3-directed-defs
sublocale dataplane-3-directed-defs - - - auth-seg0 hf-valid auth-restrict extr extr-ainfo term-ainfo
terms-hf terms-uinfo upd-uinfo no-oracle
(proof)

abbreviation is-oracle where is-oracle ainfo t = = no-oracle ainfo t

119

declare TWu.holds-set-list[dest)
declare TWu.holds-take W-is-identity[simp]
declare parts-singleton[dest]

This additional Intruder Knowledge allows us to model the attacker’s access not only to the
hop validation fields and segment identifiers of authorized segments (which are already given
in #k-hfs), but to the underlying hop authenticators that are used to create them.

definition ik-add :: msgterm set where
ik-add = { o | ainfo uinfo | hf o k-i.
(ainfo, 1) € auth-seg2 winfo
A hf € set I N HVF hf = Mac[k-i] {ainfo, Num winfo, o) }

lemma ik-addl:
[(ainfo, 1) € auth-seg2 uinfo; hf € set l; HVF hf = Mac[k-i] {(ainfo, Num uinfo, 0)] = o € ik-add
(proof)

lemma ik-add-form: t € ik-add = 3 asid | . t = Mac[macKey asid]

(proof)

lemma parts-ik-add[simp): parts ik-add = ik-add
(proof)

This is the oracle output provided to the adversary. Only those hop validation fields and
segment identifiers whose path origin (combination of ainfo uinfo) is not contained in no-oracle
appears here.

definition ik-oracle :: msgterm set where
ik-oracle = {t | t ainfo hf l uinfo . hf € set I A\ hfs-valid-None ainfo uinfo | A
is-oracle ainfo winfo A (ainfo, 1) ¢ auth-seg2 uinfo N (t = HVF hf VvV t = UHI hf) }

lemma ik-oracle-parts-form:

t € ik-oracle =
(3 asid I ainfo uwinfo k-i . t = Mac[k-i] (ainfo, Num winfo, Mac[macKey asid] 1)) V
(3 asid I . t = Hash (Mac|macKey asid] 1))
(proof)

lemma parts-ik-oracle[simp]: parts ik-oracle = ik-oracle
(proof)

lemma ik-oracle-simp: t € ik-oracle +—
(F ainfo hf 1 winfo. hf € set | A hfs-valid-None ainfo winfo | A is-oracle ainfo uinfo
A (ainfo, 1) ¢ auth-seg2 winfo N (t = HVF hf V t = UHI hf))
(proof)

3.7.3 Properties of the intruder knowledge, including ik-add and ik-oracle

We now instantiate the parametrized model’s definition of the intruder knowledge, using the
definitions of ik-add and ik-oracle from above. We then prove the properties that we need to
instantiate the dataplane-3-directed locale.

sublocale

120

dataplane-3-directed-ik-defs - - - auth-seg0 terms-uinfo no-oracle hf-valid auth-restrict extr extr-ainfo
term-ainfo
terms-hf upd-uinfo ik-add ik-oracle
(proof)

lemma ik-hfs-form: t € parts ik-hfs = 3 t’ . t = Hash t’
(proof)

declare ik-hfs-def[simp del]

lemma parts-ik-hfs[simpl: parts ik-hfs = ik-hfs
(proof)

This lemma allows us not only to expand the definition of ik-hfs, but also to obtain useful
properties, such as a term being a Hash, and it being part of a valid hop field.
lemma ik-hfs-simp:
t € ik-hfs < (3t'. t = Hash t') A (3hf . (t = HVF hf V t = UHI hf)
A (3 hfs. hf € set hfs A (T ainfo uinfo . (ainfo, hfs) € auth-seg2 winfo
A (3 nat. hf-valid ainfo winfo hf nxzt)))) (is 2lhs <— ?rhs)
(proof)

Properties of Intruder Knowledge

lemma auth-ainfodest]: [(ainfo, hfs) € auth-seg2 winfo] = 3 ts . ainfo = Num ts

(proof)

There are no ciphertexts (or signatures) in parts ik. Thus, analz ik and parts ik are identical.

lemma analz-parts-ik[simp]: analz ik = parts ik

(proof)

lemma parts-ik[simp]: parts ik = ik
(proof)

lemma key-ik-bad: Key (macK asid) € ik = asid € bad
(proof)

Hop authenticators are agnostic to uinfo field

fun K-i-upd :: msgterm = msgterm = msgterm where
K-i-upd (AS asid, -) uwinfo’ = (AS asid, source-extract uinfo’)
| K-i-upd - - = ¢

Those hop validation fields contained in auth-seg2 or that can be generated from the hop
authenticators in ik-add have the property that they are agnostic about the uinfo field. If a
hop validation field is contained in auth-seg2 (resp. derivable from ik-add), then a field with
a different uinfo is also contained (resp. derivable). To show this, we first define a function
that updates uinfo in a hop validation field.

fun winfo-change-hf :: UINFO = EPIC-HF = EPIC-HF where
winfo-change-hf new-winfo hf =
(case HVF hf of Mac|k-i] {ainfo, Num uinfo, o)
= hf(HVF := Mac|K-i-upd k-i (Num new-uinfo)] (ainfo, Num new-uinfo, o)|) | - = hf)

121

fun winfo-change :: UINFO = EPIC-HF list = FEPIC-HF list where
winfo-change new-uinfo hfs = map (uinfo-change-hf new-uinfo) hfs

lemma uinfo-change-valid:
hfs-valid ainfo uinfo | net = hfs-valid ainfo new-uinfo (uinfo-change new-uinfo 1) nxt

(proof)

lemma winfo-change-hf-AHI: AHI (uinfo-change-hf new-uinfo hf) = AHI hf
(proof)

lemma wuinfo-change-hf-AHIS[simp): AHIS (map (uinfo-change-hf new-uinfo) 1) = AHIS |
(proof)

lemma uinfo-change-auth-seg2:
assumes hf-valid ainfo uinfo m z o = Mac[Key (macK asid)] j
HVF m = Mac[k-i] {ainfo, uinfo’, o) o € ik-add no-oracle ainfo uinfo
shows Jhfs. m € set hfs A (Fuinfo”. (ainfo, hfs) € auth-seg2 winfo’’)
(proof)

lemma MAC-synth-oracle:
assumes hf-valid ainfo uinfo m z HVF m € ik-oracle
shows is-oracle ainfo uinfo

(proof)

lemma ik-oracle-is-oracle:
[Maclo] {ainfo, Num uinfo) € ik-oracle] = is-oracle ainfo uinfo

(proof)

lemma MAC-synth-helper:
[hf-valid ainfo winfo m z; no-oracle ainfo uinfo;

HVF m = Mac[k-i] (ainfo, Num winfo, o); o = Mac[Key (macK asid)] j; o € ik V HVF m € ik]

= Jhfs. m € set hfs A (uinfo’. (ainfo, hfs) € auth-seg2 uinfo”)
(proof)

This definition helps with the limiting the number of cases generated. We don’t require it, but
it is convenient. Given a hop validation field and an asid, return if the hvf has the expected

format.

definition mac-format :: msgterm = as = bool where
mac-format m asid = 3 j ts winfo k-i . m = Mac[k-i] (Num ts, winfo, Mac[macKey asid] j)

If a valid hop field is derivable by the attacker, but does not belong to the attacker, and is over
a path origin that does not belong to an oracle query, then the hop field is already contained

in the set of authorized segments.

lemma MAC-synth:
assumes hf-valid ainfo uinfo m z HVEF m € synth ik mac-format (HVF m) asid
asid ¢ bad checkInfo ainfo no-oracle ainfo uinfo
shows Jhfs . m € set hfs A (Fuinfo’. (ainfo, hfs) € auth-seg2 uinfo’)
(proof)

3.7.4 Direct proof goals for interpretation of dataplane-3-directed
lemma COND-honest-hf-analz:

122

assumes ASID (AHI hf) ¢ bad hf-valid ainfo winfo hf nat terms-hf hf C synth (analz ik)
no-oracle ainfo winfo
shows terms-hf hf C analz ik
(proof)

lemma COND-terms-hf:
assumes hf-valid ainfo winfo hf z and HVF hf € ik and no-oracle ainfo uinfo
shows I hfs. hf € set hfs A (uinfo . (ainfo, hfs) € auth-seg2 winfo)

(proof)

lemma COND-extr-prefix-path:
[hfs-valid ainfo uinfo | nxt; nat = None]| = prefix (extr-from-hd 1) (AHIS 1)
(proof)

lemma COND-path-prefix-extr:
prefix (AHIS (hfs-valid-prefiz ainfo winfo 1 nat))
(extr-from-hd 1)
(proof)

lemma COND-hf-valid-uinfo:
[hf-valid ainfo uinfo hf nat; hf-valid ainfo’ uinfo’ hf nzt'] = winfo’ = uinfo
(proof)

lemma COND-upd-uinfo-ik:
[terms-uinfo winfo C synth (analz ik); terms-hf hf C synth (analz ik)]
= terms-uinfo (upd-uinfo uinfo hf) C synth (analz ik)

(proof)

lemma COND-upd-uinfo-no-oracle:
no-oracle ainfo winfo = no-oracle ainfo (upd-winfo uwinfo fld)
(proof)

lemma COND-auth-restrict-upd:
auth-restrict ainfo winfo (x#y#hfs)
= auth-restrict ainfo (upd-uinfo uinfo y) (y#hfs)
(proof)

3.7.5 Instantiation of dataplane-3-directed locale

print-locale dataplane-3-directed
sublocale
dataplane-3-directed - - - auth-seg0 terms-uinfo terms-hf hf-valid auth-restrict extr extr-ainfo term-ainfo

upd-uinfo ik-add
ik-oracle no-oracle
(proof)

end
end

123

3.8 Abstract XOR
theory Abstract-XOR

imports
HOL.Finite-Set HOL— Library.FSet Message

begin
3.8.1 Abstract XOR definition and lemmas

We model xor as an operation on finite sets (fset). {||} is defined as the identity element.

xor of two fsets is the symmetric difference

definition zor :: a fset = 'a fset = ’a fset where
zor zs ys = (zs |U| ys) |—| (zs |N] ys)

lemma zor-singleton:

zor zs {| z |} = (if z |€| s then zs |—| {| z |} else finsert z xs)
zor {| z |} xs = (if z |€| ws then xs |—| {| z |} else finsert z xs)
(proof)

declare finsertCI[rule del]
declare finsertCI|[intro]

lemma zor-assoc: zor (zor xs ys) zs = xor xs (zor ys zs)

(proof)

lemma zor-commut: zor xs ys = xor ys s
(proof)

lemma zor-self-inv: [zor zs ys = zs; xs = ys] = zs = {||}

(proof)

lemma zor-self-inv”: xor zs zs = {||}

(proof)

lemma zor-self-inv’/[dest!]: zor zs ys = {||} = s = ys
(proof)

lemma zor-identityl [simp|: zor zs {||} = zs

(proof)

lemma zor-identity2[simp|: zor {||} zs = xs
(proof)

lemma zor-in: z |€] s = z |¢| (zor zs {| z |})

(proof)

lemma zor-out: z |¢| xs = z |€| (zor s {| z |})
(proof)

lemma zor-elem1[dest]: [z € fset (zor X YV); z |¢| X] = =z |€| ¥V

124

(proof)

lemma zor-elem2|dest]: [z € fset (zor X Y); z |¢] Y] = z |€| X
(proof)

lemma zor-finsert-self: zor (finsert x xs) {|z|} = zs — {| z |}

(proof)

3.8.2 Lemmas refering to XOR and msgterm

lemma FS-contains-elem:
assumes elem = f (FS zs-s) zs-s = zor zs-b {| elem |} N\ z. size (f x) > size
shows elem € fset zs-b

(proof)

lemma FS-is-finsert-elem:
assumes elem = f (FS zs-s) zs-s = zor zs-b {| elem |} N\ z. size (f x) > size
shows zs-b = finsert elem zs-s

(proof)

lemma FS-update-eq:
assumes zs = f (FS (zor zs {|zs|}))
and ys = g (FS (zor zs {|ys|}))
and A z. size (fz) > size x
and A z. size (g x) > size ©
shows zs = ys

(proof)

declare fminusE[rule del)
declare finsertCI[rule del]

declare fminusE[elim]
declare finsertCI[intro]

lemma fset-size-le:
assumes z € fset zs
shows size x < Suc (> z€fset xs. Suc (size 1))

(proof)

We can show that xor is a commutative function.

locale abstract-zor
begin
sublocale comp-fun-commute xor

(proof)

end
end

125

3.9 Anapaya-SCION

This is the "new" SCION protocol, as specified on the website of Anapaya: https://scion.
docs.anapaya.net/en/latest /protocols/scion-header.html (Accessed 2021-03-02). It does not
use the next hop field in its MAC computation, but instead refers uses a mutable uinfo field
which acts as an XOR-based accumulator for all upstream MACs.

This protocol instance requires the use of the extensions of our formalization that provide
mutable uinfo field and an XOR abstraction.

theory Anapaya-SCION
imports
../ Parametrized-Dataplane-3-directed
../ infrastructure/ Abstract-XOR

begin

locale scion-defs = network-assums-direct - - - auth-seq0
for auth-seg0 :: (msgterm X ahi list) set

begin

sublocale comp-fun-commute xor

(proof)

3.9.1 Hop validation check and extract functions

type-synonym SCION-HF = (unit, unit) HF

The predicate hf-valid is given to the concrete parametrized model as a parameter. It ensures
the authenticity of the hop authenticator in the hop field. The predicate takes an authenti-
cated info field (in this model always a numeric value, hence the matching on Num ts), the
unauthenticated info field and the hop field to be validated. The next hop field is not used
in this instance.

fun hf-valid :: msgterm = msgterm fset
= SCION-HF
= SCION-HF option = bool where
hf-valid (Num ts) winfo (AHI = ahi, UHI = -, HVF = x| nat +—
(3 upif downif. z = Mac[macKey (ASID ahi)] (L [Num ts, upif, downif, FS uinfo]) A
ASIF (DownlIF ahi) downif N ASIF (UpIF ahi) upif)
| hf-valid - - - - = False

Updating the uinfo field involves XORin the current hop validation field onto it. Note that in
all authorized segments, the hvf will already have been contained in segid, hence this operation
only removes terms from the fset in the forwarding of honestly created packets.

definition upd-uinfo :: msgterm fset = SCION-HF = msgterm fset where
upd-uinfo segid hf = xor segid {| HVF hf |}
declare upd-uinfo-def[simp)

The following lemma is needed to show the termination of extr, defined below.

lemma extr-helper:
[x = Mac[macKey asid’a] (L [ts, upif'a, downif’a, FS segid]);
feard segid’ = feard (zor segid {|z|}); = |€| segid]

126

https://scion.docs.anapaya.net/en/latest/protocols/scion-header.html
https://scion.docs.anapaya.net/en/latest/protocols/scion-header.html

= (case = of Hash (Key (macK asid), L [|) = 0 | Hash (Key (macK asid), L [ts]) = 0
| Hash (Key (macK asid), L [ts, upif]) = 0 | Hash (Key (macK asid), L [ts, upif, downif]) = 0
| Hash (Key (macK asid), L [ts, upif, downif, FS segid]) = Suc (fcard segid)
| Hash (Key (macK asid), L (ts # upif # downif # FS segid # ac # lista)) = 0
| Hash (Key (macK asid), L (ts # upif # downif # - # list)) = 0
| Hash (Key (macK asid), -) = 0 | Hash (Key -, msgterm2) = 0 | Hash (-, msgterm2) = 0
| Hash - = 0| - = 0)
< Suc (feard segid)
(proof)

We can extract the entire path from the hvf field, which includes the local forwarding infor-
mation as well as, recursively, all upstream hvf fields and their hop information.

function (sequential) extr :: msgterm = ahi list where
extr (Mac[macKey asid] (L [ts, upif, downif, FS segid)))
= (UpIF = term?2if upif, DownIF = term2if downif, ASID = asid)) # (if (I nextmac asid’ upif’
downif’ segid’.
segid’ = zor segid {| nextmac |} A
nextmac = Mac[macKey asid’] (L [ts, upif’, downif’, FS segid’]))
then extr (THE nextmac. (3 asid’ upif’ downif’ segid’.
segid’ = xor segid {| nextmac |} A
nextmac = Mac[macKey asid’] (L [ts, upif’, downif’, FS segid’))))
else [])
| extr - =[]

(proof)
termination

(proof)
Extract the authenticated info field from a hop validation field.

fun extr-ainfo :: msgterm = msgterm where
extr-ainfo (Mac[macKey asid] (L (Num ts # zs))) = Num ts
| extr-ainfo - = ¢

abbreviation term-ainfo :: msgterm = msgterm where
term-ainfo = id

The ainfo field must be a Num, since it represents the timestamp (this is only needed for
authorized segments (ainfo, []), since for all other segments, hf-valid enforces this.
Furthermore, we require that the last hop field on 1 has a MAC that is computed with the
empty uinfo field. This restriction cannot be introduced via hf-valid, since it is not a check
performed by the on-path routers, but rather results from the way that authorized paths are
set up on the control plane. We need this restriction to ensure that the uinfo field of the top
node does not contain extra terms (e.g. secret keys).

definition auth-restrict where
auth-restrict ainfo uinfo | =
(I ts. ainfo = Num ts)

A (case l of [] = (uinfo = {||}) |
- = hf-valid ainfo {||} (last I) None)

When observing a hop field, an attacker learns the HVF. UHI is empty and the AHI only
contains public information that are not terms.

fun terms-hf :: SCION-HF = msgterm set where

127

terms-hf hf = {HVF hf}

When analyzing a uinfo field (which is an fset of message terms), the attacker learns all
elements of the fset.

abbreviation terms-uinfo :: msgterm fset = msgterm set where
terms-uinfo = fset

abbreviation no-oracle :: 'ainfo = msgterm fset = bool where no-oracle = (A - -. True)

Properties following from definitions

We now define useful properties of the above definition.

lemma hf-valid-invert:
hf-valid tsn winfo hf nzt +—
((3 ahi ts upif downif asid .
hf = (AHI = ahi, UHI = (), HVF = a|) A
ASID ahi = asid N ASIF (DownlF ahi) downif N ASIF (UpIF ahi) upif A
x = Mac[macKey asid] (L [tsn, upif, downif, FS winfo]) A
tsn = Num ts)

)
(proof)

lemma info-hvf:
assumes hf-valid ainfo uinfo m z hf-valid ainfo’ vinfo’ m’ 2’ HVF m = HVF m’'
shows ainfo’ = ainfo m’ = m

(proof)

3.9.2 Definitions and properties of the added intruder knowledge

Here we define ik-add and ik-oracle as being empty, as these features are not used in this
instance model.

print-locale dataplane-3-directed-defs
sublocale dataplane-3-directed-defs - - - auth-seg0 hf-valid auth-restrict extr extr-ainfo term-ainfo
terms-hf terms-uinfo upd-uinfo no-oracle
(proof)
declare TWu.holds-set-list[dest)
declare TWu.holds-take W-is-identity[simp]
declare parts-singleton[dest)

abbreviation ik-add :: msgterm set where ik-add = {}

abbreviation ik-oracle :: msgterm set where ik-oracle = {}

3.9.3 Properties of the intruder knowledge, including fset.

We now instantiate the parametrized model’s definition of the intruder knowledge, using the
definitions of fset and ik-oracle from above. We then prove the properties that we need to
instantiate the dataplane-3-directed locale.

print-locale dataplane-3-directed-ik-defs
sublocale

128

dataplane-3-directed-ik-defs - - - auth-seg0 terms-uinfo no-oracle hf-valid auth-restrict extr extr-ainfo
term-ainfo
terms-hf upd-uinfo ik-add ik-oracle
(proof)

For this instance model, the neighboring hop field is irrelevant. Hence, if we are interested
in establishing the first hop field’s validity given hfs-valid, we do not need to make a case
distinction on the rest of the hop fields (which would normally be required by T'Wa.

lemma hfs-valid-first[elim]: hfs-valid ainfo uinfo (hf # post) nat = hf-valid ainfo winfo hf nat’
{proof)

Properties of HVF of valid hop fields that fulfill the restriction.

lemma auth-properties:
assumes hf € set hfs hfs-valid ainfo winfo hfs nat auth-restrict ainfo uinfo hfs
t = HVF hf
shows (3t’. t = Hash t’)
A (Fuinfo’. auth-restrict ainfo winfo’ hfs
A (I nxt. hf-valid ainfo winfo’ hf nat))
(proof)

lemma ik-hfs-form: t € parts ik-hfs = 3 t’ . t = Hash t’
(proof)

declare ik-hfs-def[simp del]

lemma parts-ik-hfs[simp|: parts ik-hfs = ik-hfs
(proof)

This lemma allows us not only to expand the definition of ik-hfs, but also to obtain useful
properties, such as a term being a Hash, and it being part of a valid hop field.
lemma ik-hfs-simp:
t € ik-hfs < (3t'. t = Hash t') A (3hf . t = HVF hf
A (3 hfs winfo. hf € set hfs A (Fainfo . (ainfo, hfs) € (auth-seg2 uinfo)
A (3 nat uwinfo'. hf-valid ainfo uinfo’ hf nxzt)))) (is ?lhs «— ?rhs)
(proof)

The following lemma is one of the conditions. We already prove it here, since it is helpful
elsewhere.

lemma auth-restrict-upd:
auth-restrict ainfo uwinfo (z#y#hfs)
= auth-restrict ainfo (upd-uinfo uinfo y) (y#hfs)
(proof)

We now show that ik-uinfo is redundant, since all of its terms are already contained in #k-hfs.
To this end, we first show that a term contained in the uinfo field of an authorized paths is
also contained in the HVF of the same path.

lemma uinfo-contained-in-HVF'
assumes t € fset uinfo (ainfo, hfs) € (auth-seg2 winfo)
shows JAf. t = HVF hf A hf € set hfs

(proof)

129

The following lemma allows us to ignore ik-uinfo when we unfold k.

lemma ik-uinfo-in-ik-hfs: t € ik-uinfo = t € ik-hfs
(proof)

Properties of Intruder Knowledge

lemma auth-ainfo[dest]: [(ainfo, hfs) € (auth-seg2 winfo)] = 3 ts . ainfo = Num ts
(proof)

This lemma unfolds the definition of the intruder knowledge but also already applies some
simplifications, such as ignoring ik-uinfo.
lemma ik-simpler:
ik = ik-hfs
U {term-ainfo ainfo | ainfo hfs uinfo. (ainfo, hfs) € (auth-seg2 uinfo)}
U Key‘(macK ‘bad)
(proof)

There are no ciphertexts (or signatures) in parts ik. Thus, analz ik and parts ik are identical.

lemma analz-parts-ik[simp]: analz ik = parts ik

(proof)

lemma parts-ik[simp]: parts ik = ik
(proof)

lemma key-ik-bad: Key (macK asid) € ik = asid € bad
(proof)

lemma MAC-synth-helper:
assumes hf-valid ainfo uinfo m z HVF m = Mac[Key (macK asid)] j HVF m € ik
shows J hfs. m € set hfs A (Fuinfo’. (ainfo, hfs) € auth-seg2 winfo’)

(proof)

This definition helps with the limiting the number of cases generated. We don’t require it, but
it is convenient. Given a hop validation field and an asid, return if the hvf has the expected
format.

definition mac-format :: msgterm = as = bool where
mac-format m asid = 3 j . m = Mac[macKey asid] j
If a valid hop field is derivable by the attacker, but does not belong to the attacker, then the

hop field is already contained in the set of authorized segments.

lemma MAC-synth:
assumes hf-valid ainfo uinfo m z HVF m € synth ik mac-format (HVF m) asid asid ¢ bad
shows Jhfs. m € set hfs A
(Juinfo’. (ainfo, hfs) € auth-seg2 uinfo’)
(proof)

3.9.4 Lemmas helping with conditions relating to extract

Resolve the definite descriptor operator THE.

lemma THE-nextmac:

130

assumes hof = Mac[macKey askey] (L [Num ts, upif, downif, FS (zor info {|hvf|})])
shows (THE nextmac. 3 asid” upif’ downif’.
nextmac = Mac[macKey asid’] (L [Num ts, upif’, downif’, FS (zor info {|nextmac|})]))
= huf
(proof)

lemma hf-valid-uinfo:
assumes hf-valid ainfo (upd-winfo winfo y) y nxt hufy = HVF y
shows hufy € fset uinfo
(proof)

A single step of extract. Extract on a single valid hop field is equivalent to that hop field’s
hop info field concat extract on the next hop field, where the next hop field has to be valid
with uinfo updated.
lemma extr-hf-valid:

assumes hf-valid ainfo uinfo x nxt hf-valid ainfo (upd-uinfo winfo y) y nat’

shows extr (HVF z) = AHI x # extr (HVF y)
(proof)

3.9.5 Direct proof goals for interpretation of dataplane-3-directed

lemma COND-honest-hf-analz:
assumes ASID (AHI hf) ¢ bad hf-valid ainfo winfo hf nat terms-hf hf C synth (analz ik)
no-oracle ainfo uinfo
shows terms-hf hf C analz ik

(proof)

lemma COND-terms-hf:
assumes hf-valid ainfo winfo hf nxt terms-hf hf C analz ik
no-oracle ainfo winfo
shows I hfs. hf € set hfs A (Fuinfo’ . (ainfo, hfs) € (auth-seg2 uinfo’))
(proof)

lemmas COND-auth-restrict-upd = auth-restrict-upd

lemma COND-extr-prefix-path:
[hfs-valid ainfo winfo | nxt; auth-restrict ainfo winfo | = prefix (extr-from-hd 1) (AHIS 1)
(proof)

lemma COND-path-prefix-extr:
prefic (AHIS (hfs-valid-prefic ainfo winfo 1 nat))
(extr-from-hd 1)
(proof)

lemma COND-hf-valid-uinfo:
[hf-valid ainfo uinfo hf nat; hf-valid ainfo’ uinfo’ hf nzt'] = winfo’ = uinfo
(proof)

lemma COND-upd-uinfo-ik:
[terms-uinfo winfo C synth (analz ik); terms-hf hf C synth (analz ik)]
= terms-uinfo (upd-uinfo uinfo hf) C synth (analz ik)

(proof)

131

lemma COND-upd-uinfo-no-oracle:
no-oracle ainfo winfo = no-oracle ainfo (upd-winfo winfo fld)

(proof)

3.9.6 Instantiation of dataplane-3-directed locale

print-locale dataplane-3-directed
sublocale
dataplane-3-directed - - - auth-seg0 terms-uinfo terms-hf hf-valid auth-restrict extr extr-ainfo term-ainfo

upd-uinfo ik-add
ik-oracle no-oracle

(proof)

3.9.7 Normalization of terms

We now show that all terms that occur in reachable states are normalized, meaning that they
do not have directly nested FSets. For instance, a term FS {|FS {|Num 0|}, Num 0|} is not
normalized, whereas FS {|Hash (FS {|Num 0|}), Num 0|} is normalized.
lemma normalized-upd:

[normalized (F'S (upd-uinfo info y)); normalized (F'S {| HVF y |})]

= normalized (FS info)

(proof)

declare normalized. Lst[introl] normalized. FSt[intro!] normalized. Hash[introl] normalized. MPair|[intro!]

lemma auth-uinfo-normalized:
[hfs-valid ainfo winfo hfs nat; auth-restrict ainfo winfo hfs] = normalized (F'S winfo)

(proof)

lemma auth-normalized-hf:
assumes auth-restrict ainfo winfo (pre @ hf # post)
hfs-valid ainfo (upds-uinfo-shifted uinfo pre hf) (hf # post) nat
upds-uinfo-shifted winfo pre hf = hf-uinfo
shows normalized (HVF hf)
(proof)

lemma auth-normalized:
[hf € set hfs; hfs-valid ainfo uinfo hfs nzt; auth-restrict ainfo uinfo hfs]
= normalized (HVF hf)
(proof)

All terms derivable by the intruder are normalized. Note that (i) the dynamic intruder
knowledge ik-dyn contains all terms of messages contained in the state and (ii) the dynamic
intruder knowledge remains constant. Hence this lemma suffices to show that all terms
contained in int and ext channels of reachable states are normalized as well.

lemma ik-synth-normalized: t € synth (analz ik) = normalized t

(proof)

end
end

132

3.10 ICING

We abstract and simplify from the protocol ICING in several ways. First, we only consider
Proofs of Consent (PoC), not Proofs of Provenance (PoP). Our framework does not support
proving the path validation properties that PoPs provide, and it also currently does not
support XOR, and dynamically changing hop fields. Thus, instead of embedding A; ® PoF 1,
we embed A; directly. We also remove the payload from the Hash that is included in each
packet.

We offer three versions of this protocol:

e ICING, which contains our best effort at modeling the protocol as accurately as possible.

e ICING-variant, in which we strip down the protocol to what is required to obtain the
security guarantees and remove unnecessary fields.

e ICING-variant2, in which we furthermore simplify the protocol. The key of the MAC
in this protocol is only the key of the AS, as opposed to a key derived specifically for
this hop field. In order to prove that this scheme is secure, we have to assume that ASes
only occur once on an authorized path, since otherwise the MAC for two different hop
fields (by the same AS) would be the same, and the AS could not distinguish the hop
fields based on the MAC.

theory ICING

imports
../ Parametrized-Dataplane-3-undirected
begin
locale icing-defs = network-assums-undirect - - - auth-seg0
for auth-seg0 :: (msgterm X nat ahi-scheme list) set
begin

3.10.1 Hop validation check and extract functions
type-synonym ICING-HF = (nat, unit) HF
The term sntag is a key that is derived from the key of an AS and a specific hop field. We

use it in the computation of Af-valid. The "tag" field is a opaque numeric value which is used
to encode further routing information of a node.

fun sntag :: nat ahi-scheme = msgterm where
sntag (UpIF = upif, DownlIF = downif, ASID = asid, ... = tag|
= (macKey asid, if2term upif, if2term downif, Num tag)

lemma sntag-eq: sntag ahi2 = sntag ahil = ahi2 = ahil

(proof)

fun hf2term :: nat ahi-scheme = msgterm where
hf2term (UpIF = upif, DownlF = downif, ASID = asid, ... = tag)
= L [if2term upif, if2term downif, Num asid, Num tag]

fun term2hf :: msgterm = nat ahi-scheme where

133

term2hf (L [upif, downif, Num asid, Num tag])
= (UpIF = term2if upif, DownIF = term2if downif, ASID = asid, ... = tag)

lemma term2hf-hf2term[simp|: term2hf (hf2term hf) = hf (proof)

We make some useful definitions that will be used to define the predicate hf-valid. Having
them as separate definitions is useful to prevent unfolding in proofs that don’t require it.

definition fullpath :: ICING-HF list = msgterm where
fullpath hfs = L (map (hf2term o AHI) hfs)

definition maccontents where
maccontents ahi hfs PoC-i-expire
= (Mac[sntag ahi] (fullpath hfs, Num PoC-i-expire), (Num 0, Hash (fullpath hfs)))

The predicate hf-valid is given to the concrete parametrized model as a parameter. It ensures
the authenticity of the hop authenticator in the hop field. The predicate takes an expiration
timestamp (in this model always a numeric value, hence the matching on Num PoC-i-expire),
the entire segment and the hop field to be validated.

fun hf-valid :: msgterm = msgterm
= ICING-HF list
= ICING-HF
= bool where
hf-valid (Num PoC-i-expire) uinfo hfs (AHI = ahi, UHI = uhi, HVF = A-i) <—
uhi = () A uinfo = e A A-i = Hash (maccontents ahi hfs PoC-i-expire)
| hf-valid - - - - = False

We can extract the entire path (past and future) from the hvf field.

fun extr :: msgterm = nat ahi-scheme list where

extr (Mac[Mac[-] (L fullpathhfs, Num PoC-i-expire)] -)
= map term2hf fullpathhfs
| extr - =]

Extract the authenticated info field from a hop validation field.

fun extr-ainfo :: msgterm = msgterm where
extr-ainfo (Mac[-] (L (Num ts # xs))) = Num ts
| extr-ainfo - = ¢

abbreviation term-ainfo :: msgterm = msgterm where
term-ainfo = id

An authenticated info field is always a number (corresponding to a timestamp). The unau-
thenticated info field is set to the empty term e.

definition auth-restrict where
auth-restrict ainfo winfo | = (I ts. ainfo = Num ts) A (uinfo = ¢)
When observing a hop field, an attacker learns the HVF. UHI is empty and the AHI only

contains public information that are not terms.

fun terms-hf :: ICING-HF = msgterm set where
terms-hf hf = {HVF hf}

134

abbreviation terms-uinfo :: msgterm = msgterm set where
terms-uinfo x = {z}

abbreviation no-oracle where no-oracle = (A - -. True)

We now define useful properties of the above definition.

lemma hf-valid-invert:
hf-valid tsn winfo hfs hf +—
(3 PoC-i-expire ahi A-i . tsn = Num PoC-i-expire A ahi = AHI hf A
UHI hf = () A uinfo =¢ A
HVF hf = A-i A
A-i = Hash (maccontents ahi hfs PoC-i-expire))
(proof)

lemma hf-valid-auth-restrict[dest]: hf-valid ainfo winfo hfs hf = auth-restrict ainfo uinfo 1

(proof)

lemma auth-restrict-ainfo[dest]: auth-restrict ainfo uwinfo | = Its. ainfo = Num ts

(proof)
lemma auth-restrict-uinfo[dest]: auth-restrict ainfo winfo | = winfo = ¢

(proof)

lemma info-hvf:
assumes hf-valid ainfo winfo hfs m hf-valid ainfo’ uinfo’ hfs’ m’
HVF m = HVF m’ m € set hfs m’ € set hfs’
shows ainfo’ = ainfo m’ = m

(proof)

3.10.2 Definitions and properties of the added intruder knowledge

Here we define a ik-add and ik-oracle as being empty, as these features are not used in this
instance model.

print-locale dataplane-3-undirected-defs
sublocale dataplane-3-undirected-defs - - - auth-seg0 hf-valid auth-restrict extr extr-ainfo
term-ainfo terms-hf terms-uinfo no-oracle

(proof)

declare parts-singleton[dest]

definition ik-add :: msgterm set where
ik-add = { PoC' | ainfo 1 uinfo hf PoC pkthash.
(ainfo, 1) € auth-seg2 winfo
A hf € set I N HVF hf = Mac[PoC) pkthash }

lemma ik-addl:
[(ainfo, 1) € local.auth-seg2 uinfo; hf € set l; HVF hf = Mac[PoC] pkthash] = PoC € ik-add
(proof)

lemma ik-add-form:
t € ik-add = 3 asid upif downif tag | . t = Mac[{(macKey asid, if2term upif, if2term downif, Num

tag)] 1
(proof)

135

lemma elem-eq: [z € xs; x = y; s = ys] = y € ys

(proof)

lemma valid-hf-eq:
[HVFE hf = Mac[Mac|sntag (AHI hf)] (fullpath hfs, ainfo’)] (Num 0, Hash (fullpath hfs));
HVF hf’ = Mac[Mac[sntag (AHI hf)] (fullpath hfs, ainfo’)] pkthash;
(ainfo’, 1) € auth-seg2 uinfo; hf' € set]
= hf = hf’
(proof)

lemma parts-ik-add[simp): parts ik-add = ik-add
(proof)

abbreviation ik-oracle :: msgterm set where ik-oracle = {}

lemma wuinfo-empty|dest]: (ainfo, hfs) € auth-seg2 winfo — uinfo = ¢

(proof)

3.10.3 Properties of the intruder knowledge, including ik-add and ik-oracle

We now instantiate the parametrized model’s definition of the intruder knowledge, using the
definitions of ik-add and ik-oracle from above. We then prove the properties that we need to
instantiate the dataplane-3-undirected locale.

print-locale dataplane-3-undirected-ik-defs

sublocale
dataplane-3-undirected-ik-defs - - - auth-seg0 terms-uinfo no-oracle hf-valid auth-restrict extr
extr-ainfo term-ainfo terms-hf ik-add ik-oracle
(proof)

lemma ik-hfs-form: t € parts ik-hfs = 3 ¢’ . t = Hash t’
(proof)

declare ik-hfs-def[simp del]

lemma parts-ik-hfs[simp|: parts ik-hfs = ik-hfs
(proof)

This lemma allows us not only to expand the definition of ik-hfs, but also to obtain useful
properties, such as a term being a Hash, and it being part of a valid hop field.
lemma ik-hfs-simp:
t € ik-hfs < (3t'. t = Hash t') A (3bf . t = HVF hf
A (hfs. hf € set hfs A (3 ainfo uinfo. (ainfo, hfs) € auth-seg2 winfo
A hf-valid ainfo uinfo hfs hf))) (is ?lhs +— 2rhs)
(proof)

lemma ik-uinfo-empty[simp|: ik-uinfo = {e}

(proof)
declare ik-uinfo-def[simp del)

136

Properties of Intruder Knowledge

lemma auth-ainfo[dest]: [(ainfo, hfs) € auth-seg2 uwinfo] = 3 ts . ainfo = Num ts
(proof)

lemma Num-ik[intro]: Num ts € ik

(proof)

There are no ciphertexts (or signatures) in parts ik. Thus, analz ik and parts ik are identical.

lemma analz-parts-ik[simp|: analz ik = parts ik
(proof)

lemma parts-ik[simp]: parts ik = ik

(proof)

lemma sntag-synth-bad: sntag ahi € synth ik = ASID ahi € bad
(proof)

lemma HF-eq:
[AHI hf" = AHI hf, UHI hf' = UHI hf; HVF hf' = HVF hf] = hf' = (hf:('z, 'y)HF)
(proof)

3.10.4 Direct proof goals for interpretation of dataplane-3-undirected

lemma COND-honest-hf-analz:
assumes ASID (AHI hf) ¢ bad hf-valid ainfo winfo hfs hf terms-hf hf C synth (analz ik)
no-oracle ainfo uinfo hf € set hfs
shows terms-hf hf C analz ik

(proof)

lemma COND-terms-hf:
assumes hf-valid ainfo uinfo hfs hf and HVF hf € ik and no-oracle ainfo uinfo and hf € set hfs
shows I hfs. hf € set hfs A (Fuinfo’ . (ainfo, hfs) € auth-seg2 uinfo’)
(proof)

lemma COND-ezxtr:
[hf-valid ainfo uinfo | hf] = extr (HVF hf) = AHIS |
(proof)

lemma COND-hf-valid-uinfo:
[hf-valid ainfo uinfo I hf; hf-valid ainfo’ uinfo’ I’ hf]
= winfo’ = winfo
(proof)

3.10.5 Instantiation of dataplane-3-undirected locale

print-locale dataplane-3-undirected
sublocale
dataplane-3-undirected - - - auth-seg0 hf-valid auth-restrict extr extr-ainfo term-ainfo terms-uinfo
tk-add terms-hf
ik-oracle mo-oracle

(proof)

137

end
end

138

3.11 ICING variant

We abstract and simplify from the protocol ICING in several ways. First, we only consider
Proofs of Consent (PoC), not Proofs of Provenance (PoP). Our framework does not support
proving the path validation properties that PoPs provide, and it also currently does not
support XOR, and dynamically changing hop fields. Thus, instead of embedding A; ® PoF 1,
we embed A; directly. We also remove the payload from the Hash that is included in each
packet.

We offer three versions of this protocol:

e ICING, which contains our best effort at modeling the protocol as accurately as possible.

e ICING-variant, in which we strip down the protocol to what is required to obtain the
security guarantees and remove unnecessary fields.

e ICING-variant2, in which we furthermore simplify the protocol. The key of the MAC
in this protocol is only the key of the AS, as opposed to a key derived specifically for
this hop field. In order to prove that this scheme is secure, we have to assume that ASes
only occur once on an authorized path, since otherwise the MAC for two different hop
fields (by the same AS) would be the same, and the AS could not distinguish the hop
fields based on the MAC.

theory ICING-variant

imports
../ Parametrized-Dataplane-3-undirected
begin
locale icing-defs = network-assums-undirect - - - auth-seg0
for auth-seg0 :: (msgterm x ahi list) set
begin

3.11.1 Hop validation check and extract functions

type-synonym ICING-HF = (unit, unit) HF

The term sntag is a key that is derived from the key of an AS and a specific hop field. We
use it in the computation of hf-valid.

fun sntag :: ahi = msgterm where
sntag (UpIlF = upif, DownlF = downif, ASID = asid|) = (macKey asid,(if2term upif,if2term
downif))

lemma sntag-eq: sntag ahi2 = sntag ahil = ahi2 = ahil

(proof)

The predicate hf-valid is given to the concrete parametrized model as a parameter. It ensures
the authenticity of the hop authenticator in the hop field. The predicate takes an expiration
timestamp (in this model always a numeric value, hence the matching on Num PoC-i-expire),
the entire segment and the hop field to be validated.

fun hf-valid :: msgterm = msgterm
= ICING-HF list

139

= ICING-HF
= bool where
hf-valid (Num PoC-i-expire) winfo hfs (AHI = ahi, UHI = uhi, HVF = z|) +— uhi = () A
z = Mac[sntag ahi] (L ((Num PoC-i-expire)#(map (hf2term o AHI) hfs))) A uinfo = ¢
| hf-valid - - - - = False

We can extract the entire path (past and future) from the hvf field.

fun extr :: msgterm = ahi list where
extr (Mac[-] (L hfs))

= map term2hf (tl hfs)

| extr - =]

Extract the authenticated info field from a hop validation field.

fun extr-ainfo :: msgterm = msgterm where
extr-ainfo (Mac[-] (L (Num ts # xs))) = Num ts
| extr-ainfo - = ¢

abbreviation term-ainfo :: msgterm = msgterm where
term-ainfo = id

An authenticated info field is always a number (corresponding to a timestamp). The unau-
thenticated info field is set to the empty term e.

definition auth-restrict where
auth-restrict ainfo winfo | = (I ts. ainfo = Num ts) A (uinfo = €)

When observing a hop field, an attacker learns the HVF. UHI is empty and the AHI only
contains public information that are not terms.

fun terms-hf :: ICING-HF = msgterm set where
terms-hf hf = {HVF hf}

abbreviation terms-uinfo :: msgterm = msgterm set where
terms-uinfo x = {x}

abbreviation no-oracle where no-oracle = (X - -. True)

We now define useful properties of the above definition.

lemma hf-valid-invert:
hf-valid tsn winfo hfs hf <—

(3 ts ahi. tsn = Num ts A\ ahi = AHI hf A

UHI hf = () A

HVF hf = Mac|[sntag ahi] (L ((Num ts)#(map (hf2term o AHI) hfs))) A winfo = ¢€)
(proof)

lemma hf-valid-auth-restrict|dest]: hf-valid ainfo winfo hfs hf = auth-restrict ainfo winfo 1
(proof)

lemma auth-restrict-ainfo[dest]: auth-restrict ainfo uinfo | => Its. ainfo = Num ts

(proof)

lemma auth-restrict-uinfo[dest]: auth-restrict ainfo uwinfo | = winfo = ¢
(proof)

140

lemma info-huf:
assumes hf-valid ainfo uinfo hfs m hf-valid ainfo’ winfo’ hfs’ m’
HVF m = HVF m’ m € set hfs m’ € set hfs’
shows ainfo’ = ainfo m’' = m

(proof)

3.11.2 Definitions and properties of the added intruder knowledge
Here we define a ik-add and ik-oracle as being empty, as these features are not used in this
instance model.

print-locale dataplane-3-undirected-defs
sublocale dataplane-3-undirected-defs - - - auth-seg0 hf-valid auth-restrict extr extr-ainfo
term-ainfo terms-hf terms-uinfo no-oracle

(proof)
declare parts-singleton[dest]
abbreviation ik-add :: msgterm set where ik-add = {}
abbreviation ik-oracle :: msgterm set where ik-oracle = {}

lemma uinfo-empty[dest]: (ainfo, hfs) € auth-seg2 uinfo —> uinfo = ¢
(proof)

3.11.3 Properties of the intruder knowledge, including ik-add and ik-oracle

We now instantiate the parametrized model’s definition of the intruder knowledge, using the
definitions of ik-add and ik-oracle from above. We then prove the properties that we need to
instantiate the dataplane-3-undirected locale.

print-locale dataplane-3-undirected-ik-defs

sublocale
dataplane-3-undirected-ik-defs - - - auth-seg0 terms-uinfo no-oracle hf-valid auth-restrict extr
extr-ainfo term-ainfo terms-hf ik-add ik-oracle
(proof)

lemma ik-hfs-form: t € parts ik-hfs = 3 t’ . t = Hash t’
(proof)

declare ik-hfs-def[simp del]

lemma parts-ik-hfs[simp|: parts ik-hfs = ik-hfs
{proof)

This lemma allows us not only to expand the definition of ik-hfs, but also to obtain useful
properties, such as a term being a Hash, and it being part of a valid hop field.
lemma ik-hfs-simp:
t € ik-hfs < (3t'. t = Hash t') A (3hf . t = HVF hf
A (Fhfs. hf € set hfs A (3 ainfo uinfo. (ainfo, hfs) € auth-seg2 winfo
A hf-valid ainfo winfo hfs hf))) (is ?lhs +— 2rhs)
(proof)

141

lemma ik-uinfo-empty[simp]: ik-uinfo = {e}
(proof)
declare ik-uinfo-def[simp del]

Properties of Intruder Knowledge

lemma auth-ainfo[dest]: [(ainfo, hfs) € auth-seg2 uwinfo] = 3 ts . ainfo = Num ts
(proof)

lemma Num-ik[intro]: Num ts € ik

(proof)

There are no ciphertexts (or signatures) in parts ik. Thus, analz ik and parts ik are identical.

lemma analz-parts-ik[simp|: analz ik = parts ik
(proof)

lemma parts-ik[simp]: parts ik = ik

(proof)

lemma sntag-synth-bad: sntag ahi € synth ik = ASID ahi € bad
(proof)

3.11.4 Direct proof goals for interpretation of dataplane-3-undirected

lemma COND-honest-hf-analz:
assumes ASID (AHI hf) ¢ bad hf-valid ainfo winfo hfs hf terms-hf hf C synth (analz ik)
no-oracle ainfo uinfo hf € set hfs
shows terms-hf hf C analz ik

(proof)

lemma COND-terms-hf:
assumes hf-valid ainfo winfo hfs hf and HVF hf € ik and no-oracle ainfo winfo and hf € set hfs
shows I hfs. hf € set hfs A (Juinfo’ . (ainfo, hfs) € auth-seg2 winfo’)
(proof)

lemma COND-egxtr:
[hf-valid ainfo uinfo | hf] = extr (HVF hf) = AHIS |
(proof)

lemma COND-hf-valid-uinfo:
[hf-valid ainfo uinfo I hf; hf-valid ainfo’ uwinfo’ I’ hf]
= winfo’ = uinfo

(proof)

3.11.5 Instantiation of dataplane-3-undirected locale

print-locale dataplane-3-undirected
sublocale
dataplane-3-undirected - - - auth-seg0 hf-valid auth-restrict extr extr-ainfo term-ainfo terms-uinfo
tk-add terms-hf
ik-oracle mo-oracle

(proof)

142

end
end

143

3.12 ICING variant

We abstract and simplify from the protocol ICING in several ways. First, we only consider
Proofs of Consent (PoC), not Proofs of Provenance (PoP). Our framework does not support
proving the path validation properties that PoPs provide, and it also currently does not
support XOR, and dynamically changing hop fields. Thus, instead of embedding A; ® PoF 1,
we embed A; directly. We also remove the payload from the Hash that is included in each
packet.

We offer three versions of this protocol:

e ICING, which contains our best effort at modeling the protocol as accurately as possible.

e ICING-variant, in which we strip down the protocol to what is required to obtain the
security guarantees and remove unnecessary fields.

e ICING-variant2, in which we furthermore simplify the protocol. The key of the MAC
in this protocol is only the key of the AS, as opposed to a key derived specifically for
this hop field. In order to prove that this scheme is secure, we have to assume that ASes
only occur once on an authorized path, since otherwise the MAC for two different hop
fields (by the same AS) would be the same, and the AS could not distinguish the hop
fields based on the MAC.

theory ICING-variant2

imports
../ Parametrized-Dataplane-3-undirected
begin
locale icing-defs = network-assums-undirect - - - auth-seg0

for auth-seg0 :: (msgterm x ahi list) set
+ assumes auth-seg0-no-dups:

[(ainfo, hfs) € auth-seq0; hf € set hfs; hf' € set hfs; ASID hf’ = ASID hf] = hf’' = hf
begin

3.12.1 Hop validation check and extract functions

type-synonym ICING-HF = (unit, unit) HF

The term sntag simply is the AS key. We use it in the computation of hf-valid.

fun sntag :: ahi = msgterm where
sntag (UpIF = upif, DownlF = downif, ASID = asid|) = macKey asid

The predicate hf-valid is given to the concrete parametrized model as a parameter. It ensures
the authenticity of the hop authenticator in the hop field. The predicate takes an expiration
timestamp (in this model always a numeric value, hence the matching on Num PoC-i-expire),
the entire segment and the hop field to be validated.

fun hf-valid :: msgterm = msgterm
= ICING-HF list
= ICING-HF
= bool where
hf-valid (Num PoC-i-expire) winfo hfs (AHI = ahi, UHI = uhi, HVF = z|) +— uhi = () A

144

x = Mac[sntag ahi] (L ((Num PoC-i-expire)#(map (hf2term o AHI) hfs))) A winfo = ¢
| hf-valid - - - - = False

We can extract the entire path (past and future) from the hvf field.
fun extr :: msgterm = ahi list where
extr (Mac[-] (L hfs))
= map term2hf (tl hfs)
| extr - =]

Extract the authenticated info field from a hop validation field.
fun extr-ainfo :: msgterm = msgterm where

extr-ainfo (Macl-] (L (Num ts # zs))) = Num ts
| extr-ainfo - = ¢

abbreviation term-ainfo :: msgterm = msgterm where
term-ainfo = id

An authenticated info field is always a number (corresponding to a timestamp). The unau-
thenticated info field is set to the empty term e.
definition auth-restrict where

auth-restrict ainfo uinfo | = (I ts. ainfo = Num ts) A (uinfo = ¢)
When observing a hop field, an attacker learns the HVF. UHI is empty and the AHI only
contains public information that are not terms.

fun terms-hf :: ICING-HF = msgterm set where
terms-hf hf = {HVF hf}

abbreviation terms-uinfo :: msgterm = msgterm set where
terms-uinfo x = {z}

abbreviation no-oracle where no-oracle = (X - -. True)

We now define useful properties of the above definition.

lemma hf-valid-invert:
hf-valid tsn winfo hfs hf <—

(3 ts ahi. tsn = Num ts A ahi = AHI hf A

UHI hf = () A

HVF hf = Mac|sntag ahi] (L ((Num ts)#(map (hf2term o AHI) hfs))) A winfo = €)
(proof)

lemma hf-valid-auth-restrict[dest]: hf-valid ainfo winfo hfs hf = auth-restrict ainfo uinfo 1
(proof)

lemma auth-restrict-ainfo[dest]: auth-restrict ainfo uwinfo | = Its. ainfo = Num ts

(proof)

lemma auth-restrict-uinfo[dest]: auth-restrict ainfo winfo | = winfo = ¢
(proof)

3.12.2 Definitions and properties of the added intruder knowledge

Here we define a ik-add and ik-oracle as being empty, as these features are not used in this
instance model.

145

print-locale dataplane-3-undirected-defs
sublocale dataplane-3-undirected-defs - - - auth-seg0 hf-valid auth-restrict extr extr-ainfo
term-ainfo terms-hf terms-uinfo no-oracle

(proof)
declare parts-singleton|dest)
abbreviation ik-add :: msgterm set where ik-add = {}
abbreviation ik-oracle :: msgterm set where ik-oracle = {}

lemma wuinfo-empty|dest]: (ainfo, hfs) € auth-seg2 winfo — uinfo = ¢

(proof)

3.12.3 Properties of the intruder knowledge, including k-add and ik-oracle

We now instantiate the parametrized model’s definition of the intruder knowledge, using the
definitions of ik-add and ik-oracle from above. We then prove the properties that we need to
instantiate the dataplane-3-undirected locale.

print-locale dataplane-3-undirected-ik-defs

sublocale
dataplane-3-undirected-ik-defs - - - auth-seg0 terms-uinfo no-oracle hf-valid auth-restrict extr
extr-ainfo term-ainfo terms-hf ik-add ik-oracle
(proof)

lemma ik-hfs-form: t € parts ik-hfs = 3 t’' . t = Hash t’
(proof)

declare ik-hfs-def[simp del]

lemma parts-ik-hfs[simp|: parts ik-hfs = ik-hfs
(proof)

This lemma allows us not only to expand the definition of k-hfs, but also to obtain useful
properties, such as a term being a Hash, and it being part of a valid hop field.
lemma ik-hfs-simp:
t € ik-hfs «— (3t'. t = Hash t') A (3hf . t = HVF hf
A (T hfs uinfo. hf € set hfs A (Fainfo . (ainfo, hfs) € auth-seg2 uinfo
A hf-valid ainfo uinfo hfs hf))) (is ?lhs +— 2rhs)
(proof)

lemma ik-uinfo-empty[simp]: ik-uinfo = {e}

(proof)
declare ik-uinfo-def[simp del)

Properties of Intruder Knowledge

lemma auth-ainfo[dest]: [(ainfo, hfs) € auth-seg2 uwinfo] = 3 ts . ainfo = Num ts
(proof)

lemma Num-ik[intro]: Num ts € ik

(proof)

146

There are no ciphertexts (or signatures) in parts ik. Thus, analz ik and parts ik are identical.

lemma analz-parts-ik[simp|: analz ik = parts ik
(proof)

lemma parts-ik[simp]: parts ik = ik

(proof)

lemma sntag-synth-bad: sntag ahi € synth ik = ASID ahi € bad
(proof)

lemma back-subst-set-member: [hf' € set hfs; hf’ = hf] = hf € set hfs (proof)
lemma sntag-asid: sntag hf = sntag hf' = ASID hf’ = ASID hf {proof)

lemma map-hf2term-eq: map (Ax. hf2term (AHI z)) hfs = map (Az. hf2term (AHI x)) hfs’
= AHIS hfs’ = AHIS hfs (proof)

3.12.4 Direct proof goals for interpretation of dataplane-3-undirected

lemma COND-honest-hf-analz:
assumes ASID (AHI hf) ¢ bad hf-valid ainfo uinfo hfs hf terms-hf hf C synth (analz ik)
no-oracle ainfo uinfo hf € set hfs
shows terms-hf hf C analz ik

{proof)

lemma COND-terms-hf:
assumes hf-valid ainfo winfo hfs hf and HVF hf € ik and no-oracle ainfo uinfo and hf € set hfs
shows I hfs. hf € set hfs A (Fuinfo’ . (ainfo, hfs) € auth-seg2 winfo’)
(proof)

lemma COND-extr:
[hf-valid ainfo uinfo | hf] = extr (HVF hf) = AHIS |
(proof)

lemma COND-hf-valid-uinfo:
[hf-valid ainfo uinfo I hf; hf-valid ainfo’ winfo’ I’ hf]
= winfo’ = winfo
(proof)

3.12.5 Instantiation of dataplane-3-undirected locale

print-locale dataplane-3-undirected
sublocale

dataplane-3-undirected - - - auth-seg0 hf-valid auth-restrict extr extr-ainfo term-ainfo terms-uinfo
tk-add terms-hf

ik-oracle mno-oracle
(proof)

end
end

147

3.13 All Protocols

We import all protocols.

theory All-Protocols
imports

instances/ SCION
instances/SCION-variant
instances/ EPIC-L1-BA
instances/ EPIC-L1-SA
instances/ EPIC-L1-SA-Example
instances/ EPIC-L2-SA
instances/ICING
instances/ICING-variant
instances/ICING-variant2
instances/ Anapaya-SCION

begin

end

148

	Verification Infrastructure
	Event Systems
	Reachable states and invariants
	Traces
	Simulation
	Simulation up to simulation preorder

	Atomic messages
	Agents
	Nonces and keys

	Symmetric and Asymetric Keys
	Asymmetric Keys
	Basic properties of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 pubK and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 priK
	"Image" equations that hold for injective functions
	Symmetric Keys

	Theory of ASes and Messages for Security Protocols
	keysFor operator
	Inductive relation "parts"
	Inductive relation "analz"
	Inductive relation "synth"
	HPair: a combination of Hash and MPair

	Tools
	Prefixes, suffixes, and fragments
	Fragments
	Pair Fragments
	Head and Tails

	takeW, holds and extract: Applying context-sensitive checks on list elements
	Definitions
	Lemmas

	Extending 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 Take-While with an additional, mutable parameter
	Definitions
	Lemmas

	Abstract, and Concrete Parametrized Models
	Network model
	Interface check

	Abstract Model
	Events
	Transition system
	Path authorization property
	Detectability property

	Intermediate Model
	Events
	Transition system
	Auxilliary definitions

	Concrete Parametrized Model
	Hop validation check, authorized segments, and path extraction.
	Intruder Knowledge definition
	Events
	Transition system
	Assumptions of the parametrized model
	Mapping dp2 state to dp1 state
	Invariant: Derivable Intruder Knowledge is constant under 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 dp2-trans
	Refinement proof
	Property preservation

	Network Assumptions used for authorized segments.
	Parametrized dataplane protocol for directed protocols
	Hop validation check, authorized segments, and path extraction.
	Conditions of the parametrized model
	Lemmas that are needed for the refinement proof

	Parametrized dataplane protocol for undirected protocols
	Hop validation check, authorized segments, and path extraction.
	Conditions of the parametrized model

	Instances
	SCION
	Hop validation check and extract functions
	Definitions and properties of the added intruder knowledge
	Properties of the intruder knowledge, including 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 ik-add and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 ik-oracle
	Direct proof goals for interpretation of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 dataplane-3-directed
	Instantiation of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 dataplane-3-directed locale

	SCION Variant
	SCION
	Hop validation check and extract functions
	Definitions and properties of the added intruder knowledge
	Properties of the intruder knowledge, including 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 ik-add and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 ik-oracle
	Direct proof goals for interpretation of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 dataplane-3-directed
	Instantiation of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 dataplane-3-directed locale

	EPIC Level 1 in the Basic Attacker Model
	Hop validation check and extract functions
	Definitions and properties of the added intruder knowledge
	Properties of the intruder knowledge, including 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 ik-add and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 ik-oracle
	Direct proof goals for interpretation of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 dataplane-3-directed
	Instantiation of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 dataplane-3-directed locale

	EPIC Level 1 in the Strong Attacker Model
	Hop validation check and extract functions
	Definitions and properties of the added intruder knowledge
	Properties of the intruder knowledge, including 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 ik-add and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 ik-oracle
	Direct proof goals for interpretation of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 dataplane-3-directed
	Instantiation of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 dataplane-3-directed locale

	EPIC Level 1 Example instantiation of locale
	Left segment
	Right segment
	Executability

	EPIC Level 2 in the Strong Attacker Model
	Hop validation check and extract functions
	Definitions and properties of the added intruder knowledge
	Properties of the intruder knowledge, including 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 ik-add and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 ik-oracle
	Direct proof goals for interpretation of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 dataplane-3-directed
	Instantiation of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 dataplane-3-directed locale

	Abstract XOR
	Abstract XOR definition and lemmas
	Lemmas refering to XOR and msgterm

	Anapaya-SCION
	Hop validation check and extract functions
	Definitions and properties of the added intruder knowledge
	Properties of the intruder knowledge, including 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 fset.
	Lemmas helping with conditions relating to extract
	Direct proof goals for interpretation of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 dataplane-3-directed
	Instantiation of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 dataplane-3-directed locale
	Normalization of terms

	ICING
	Hop validation check and extract functions
	Definitions and properties of the added intruder knowledge
	Properties of the intruder knowledge, including 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 ik-add and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 ik-oracle
	Direct proof goals for interpretation of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 dataplane-3-undirected
	Instantiation of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 dataplane-3-undirected locale

	ICING variant
	Hop validation check and extract functions
	Definitions and properties of the added intruder knowledge
	Properties of the intruder knowledge, including 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 ik-add and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 ik-oracle
	Direct proof goals for interpretation of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 dataplane-3-undirected
	Instantiation of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 dataplane-3-undirected locale

	ICING variant
	Hop validation check and extract functions
	Definitions and properties of the added intruder knowledge
	Properties of the intruder knowledge, including 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 ik-add and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 ik-oracle
	Direct proof goals for interpretation of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 dataplane-3-undirected
	Instantiation of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 dataplane-3-undirected locale

	All Protocols

