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Abstract
The GeoCoq library contains a formalization of geometry using the Coq proof assistant. It contains

both proofs about the foundations of geometry [20, 15, 6, 16] and high-level proofs in the same style as in
high-school. [1](Code Repository https://github.com/GeoCoq/GeoCoq).

Some theorems also inspired by [20] are also formalized with others ITP(Metamath, Mizar) or ATP
[24, 25, 3, 23, 4, 2, 17, 5, 11, 19, 8, 9, 10].

We port a part of the GeoCoq 2.4.0 library within the Isabelle/Hol proof assistant: more precisely, the
files Chap02.v to Chap13_3.v, suma.v as well as the associated definitions and some useful files for the
demonstration of certain parallel postulates.

While the demonstrations in Coq are written in procedural language [26], the transcript is done in
declarative language Isar[18].

The synthetic approach of the demonstrations are directly inspired by those contained in GeoCoq. Some
demonstrations are credited to G.E Martin(«lemma bet_le_lt:» in Ch11_angles.thy, proved by Martin as
Theorem 18.17 in [14]) or Gupta H.N (Krippen Lemma, proved by Gupta in its PhD in 1965 as Theorem
3.45). (See [12]).

In this work, the proofs are not contructive. The sledeghammer tool being used to find some demonstra-
tions.

The names of the lemmas and theorems used are kept as far as possible as well as the definitions. A
different translation has been proposed when the name was already used in Isabel/Hol ("Len" is translated
as "TarskiLen") or that characters were not allowed in Isabel/Hol ("anga’" in Ch13_angles.v is translated
as "angaP"). For some definitions the highlighting of a variable has changed the order or the position of the
variables (Midpoint, Out, Inter,...).

All the lemmas are valid in absolute/neutral space defined with Tarski’s axioms.
It should be noted that T.J.M. Makarios [13] has begun some demonstrations of certain proposals mainly

those corresponding to SST chapters 2 and 3. It uses a definition that does not quite coincide with the
definition used in Geocoq and here. As an example, Makarios introduces the axiom A11 (Axiom of continuity)
in the definition of the locale "Tarski_absolute_space".

Furthermore, the definition of the locale "TarskiAbsolute" [22, 21] is not not identical to the one de-
fined in the "Tarski_neutral_dimensionless" class of GeoCoq. Indeed this one does not contain the axiom
"upper_dimension". In some cases particular, it is nevertheless to use the axiom "upper_dimension". The
addition of the word "_2D" in the file indicates its presence.

In the last part, it is formalized that, in the neutral/absolute space, the axiom of the parallels of the
system of Tarski implies the Playfair axiom, the 5th postulate of euclide and the postulate original from
Euclid. These proofs, which are not constructive, are directly inspired by [12, 7].
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theory Tarski-Neutral

imports
Main

begin

1 Tarski’s axiom system for neutral geometry
1.1 Tarski’s axiom system for neutral geometry: dimensionless
locale Tarski-neutral-dimensionless =

fixes Bet :: ′p ⇒ ′p ⇒ ′p ⇒ bool
fixes Cong :: ′p ⇒ ′p ⇒ ′p ⇒ ′p ⇒ bool
assumes cong-pseudo-reflexivity: ∀ a b.

Cong a b b a
and cong-inner-transitivity: ∀ a b p q r s.

Cong a b p q ∧
Cong a b r s
−→

Cong p q r s
and cong-identity: ∀ a b c.

Cong a b c c
−→

a = b
and segment-construction: ∀ a b c q.

∃ x. (Bet q a x ∧ Cong a x b c)
and five-segment: ∀ a b c a ′ b ′ c ′.

a 6= b ∧
Bet a b c ∧
Bet a ′ b ′ c ′∧
Cong a b a ′ b ′ ∧
Cong b c b ′ c ′ ∧
Cong a d a ′ d ′ ∧
Cong b d b ′ d ′

−→
Cong c d c ′ d ′

and between-identity: ∀ a b.
Bet a b a
−→

a = b
and inner-pasch: ∀ a b c p q.

Bet a p c ∧
Bet b q c
−→

(∃ x. Bet p x b ∧ Bet q x a)
and lower-dim: ∃ a b c. (¬ Bet a b c ∧ ¬ Bet b c a ∧ ¬ Bet c a b)

1.2 Tarski’s axiom system for neutral geometry: 2D
locale Tarski-2D = Tarski-neutral-dimensionless +

assumes upper-dim: ∀ a b c p q.
p 6= q ∧
Cong a p a q ∧
Cong b p b q ∧
Cong c p c q
−→
(Bet a b c ∨ Bet b c a ∨ Bet c a b)
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2 Definitions
2.1 Tarski’s axiom system for neutral geometry: dimensionless
context Tarski-neutral-dimensionless
begin

2.1.1 Congruence
definition OFSC ::
[ ′p, ′p, ′p, ′p, ′p, ′p, ′p, ′p] ⇒ bool
(‹- - - - OFSC - - - -› [99 ,99 ,99 ,99 ,99 ,99 ,99 ,99 ] 50 )
where

A B C D OFSC A ′ B ′ C ′ D ′ ≡

Bet A B C ∧
Bet A ′ B ′ C ′ ∧
Cong A B A ′ B ′ ∧
Cong B C B ′ C ′ ∧
Cong A D A ′ D ′ ∧
Cong B D B ′ D ′

definition Cong3 ::
[ ′p, ′p, ′p, ′p, ′p, ′p] ⇒ bool
(‹- - - Cong3 - - -› [99 ,99 ,99 ,99 ,99 ,99 ] 50 )
where

A B C Cong3 A ′ B ′ C ′ ≡

Cong A B A ′ B ′ ∧
Cong A C A ′ C ′ ∧
Cong B C B ′ C ′

2.1.2 Betweenness
definition Col ::
[ ′p, ′p, ′p] ⇒ bool
(‹Col - - -› [99 ,99 ,99 ] 50 )
where

Col A B C ≡

Bet A B C ∨ Bet B C A ∨ Bet C A B

definition Bet4 ::
[ ′p, ′p, ′p, ′p] ⇒ bool
(‹Bet4 - - - -› [99 ,99 ,99 ,99 ] 50 )
where

Bet4 A1 A2 A3 A4 ≡

Bet A1 A2 A3 ∧
Bet A2 A3 A4 ∧
Bet A1 A3 A4 ∧
Bet A1 A2 A4

definition BetS ::
[ ′p, ′p, ′p] ⇒ bool (‹BetS - - -› [99 ,99 ,99 ] 50 )
where

BetS A B C ≡

Bet A B C ∧
A 6= B ∧
B 6= C

2.1.3 Collinearity
definition FSC ::
[ ′p, ′p, ′p, ′p, ′p, ′p, ′p, ′p] ⇒ bool
(‹- - - - FSC - - - -› [99 ,99 ,99 ,99 ,99 ,99 ,99 ,99 ] 50 )
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where
A B C D FSC A ′ B ′ C ′ D ′ ≡

Col A B C ∧
A B C Cong3 A ′ B ′ C ′ ∧
Cong A D A ′ D ′ ∧
Cong B D B ′ D ′

2.1.4 Congruence and Betweenness
definition IFSC ::
[ ′p, ′p, ′p, ′p, ′p, ′p, ′p, ′p] ⇒ bool
(‹- - - - IFSC - - - -› [99 ,99 ,99 ,99 ,99 ,99 ,99 ,99 ] 50 )
where

A B C D IFSC A ′ B ′ C ′ D ′ ≡

Bet A B C ∧
Bet A ′ B ′ C ′ ∧
Cong A C A ′ C ′ ∧
Cong B C B ′ C ′ ∧
Cong A D A ′ D ′ ∧
Cong C D C ′ D ′

2.1.5 Between transivitity LE
definition Le ::
[ ′p, ′p, ′p, ′p] ⇒ bool (‹- - Le - -› [99 ,99 ,99 ,99 ] 50 )
where A B Le C D ≡

∃ E . (Bet C E D ∧ Cong A B C E)

definition Lt ::
[ ′p, ′p, ′p, ′p] ⇒ bool (‹- - Lt - -› [99 ,99 ,99 ,99 ] 50 )
where A B Lt C D ≡

A B Le C D ∧ ¬ Cong A B C D

definition Ge ::
[ ′p, ′p, ′p, ′p] ⇒ bool (‹- -Ge - -› [99 ,99 ,99 ,99 ] 50 )
where A B Ge C D ≡

C D Le A B

definition Gt ::
[ ′p, ′p, ′p, ′p] ⇒ bool (‹- - Gt - -› [99 ,99 ,99 ,99 ] 50 )
where A B Gt C D ≡

C D Lt A B

2.1.6 Out lines
definition Out ::
[ ′p, ′p, ′p] ⇒ bool (‹- Out - -› [99 ,99 ,99 ] 50 )
where P Out A B ≡

A 6= P ∧
B 6= P ∧
(Bet P A B ∨ Bet P B A)

2.1.7 Midpoint
definition Midpoint ::
[ ′p, ′p, ′p] ⇒ bool (‹- Midpoint - -› [99 ,99 ,99 ] 50 )
where M Midpoint A B ≡

Bet A M B ∧
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Cong A M M B

2.1.8 Orthogonality
definition Per ::
[ ′p, ′p, ′p] ⇒ bool (‹Per - - -› [99 ,99 ,99 ] 50 )
where Per A B C ≡

∃ C ′:: ′p. (B Midpoint C C ′ ∧ Cong A C A C ′)

definition PerpAt ::
[ ′p, ′p, ′p, ′p, ′p] ⇒ bool (‹- PerpAt - - - - › [99 ,99 ,99 ,99 ,99 ] 50 )
where X PerpAt A B C D ≡

A 6= B ∧
C 6= D ∧
Col X A B ∧
Col X C D ∧
(∀ U V . ((Col U A B ∧ Col V C D) −→ Per U X V ))

definition Perp ::
[ ′p, ′p, ′p, ′p] ⇒ bool (‹- - Perp - -› [99 ,99 ,99 ,99 ] 50 )
where A B Perp C D ≡

∃ X :: ′p. X PerpAt A B C D

2.1.9 Coplanar
definition Coplanar ::
[ ′p, ′p, ′p, ′p] ⇒ bool (‹Coplanar - - - -› [99 ,99 ,99 ,99 ] 50 )
where Coplanar A B C D ≡
∃ X . (Col A B X ∧ Col C D X) ∨

(Col A C X ∧ Col B D X) ∨
(Col A D X ∧ Col B C X)

definition TS ::
[ ′p, ′p, ′p, ′p] ⇒ bool (‹- - TS - -› [99 ,99 ,99 ,99 ] 50 )
where A B TS P Q ≡
¬ Col P A B ∧ ¬ Col Q A B ∧ (∃ T :: ′p. Col T A B ∧ Bet P T Q)

definition ReflectL ::
[ ′p, ′p, ′p, ′p] ⇒ bool (‹- - ReflectL - -› [99 ,99 ,99 ,99 ] 50 )
where P ′ P ReflectL A B ≡
(∃ X . X Midpoint P P ′ ∧ Col A B X) ∧ (A B Perp P P ′ ∨ P = P ′)

definition Reflect ::
[ ′p, ′p, ′p, ′p] ⇒ bool (‹- - Reflect - -› [99 ,99 ,99 ,99 ] 50 )
where P ′ P Reflect A B ≡
(A 6= B ∧ P ′ P ReflectL A B) ∨ (A = B ∧ A Midpoint P P ′)

definition InAngle ::
[ ′p, ′p, ′p, ′p] ⇒ bool (‹- InAngle - - -› [99 ,99 ,99 ,99 ] 50 )
where P InAngle A B C ≡
A 6= B ∧ C 6= B ∧ P 6= B ∧

(∃ X . Bet A X C ∧ (X = B ∨ B Out X P))

definition ParStrict::
[ ′p, ′p, ′p, ′p] ⇒ bool (‹- - ParStrict - -› [99 ,99 ,99 ,99 ] 50 )
where A B ParStrict C D ≡ Coplanar A B C D ∧ ¬ (∃ X . Col X A B ∧ Col X C D)

definition Par ::
[ ′p, ′p, ′p, ′p] ⇒ bool (‹- - Par - -› [99 ,99 ,99 ,99 ] 50 )
where A B Par C D ≡
A B ParStrict C D ∨ (A 6= B ∧ C 6= D ∧ Col A C D ∧ Col B C D)

definition Plg::
[ ′p, ′p, ′p, ′p] ⇒ bool (‹Plg - - - -› [99 ,99 ,99 ,99 ] 50 )
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where Plg A B C D ≡
(A 6= C ∨ B 6= D) ∧ (∃ M . M Midpoint A C ∧ M Midpoint B D)

definition ParallelogramStrict::
[ ′p, ′p, ′p, ′p] ⇒ bool (‹ParallelogramStrict - - - -› [99 ,99 ,99 ,99 ] 50 )
where ParallelogramStrict A B A ′ B ′ ≡
A A ′ TS B B ′ ∧ A B Par A ′ B ′ ∧ Cong A B A ′ B ′

definition ParallelogramFlat::
[ ′p, ′p, ′p, ′p] ⇒ bool (‹ParallelogramFlat - - - -› [99 ,99 ,99 ,99 ] 50 )
where ParallelogramFlat A B A ′ B ′ ≡
Col A B A ′ ∧ Col A B B ′ ∧
Cong A B A ′ B ′ ∧ Cong A B ′ A ′ B ∧
(A 6= A ′ ∨ B 6= B ′)

definition Parallelogram::
[ ′p, ′p, ′p, ′p] ⇒ bool (‹Parallelogram - - - -› [99 ,99 ,99 ,99 ] 50 )
where Parallelogram A B A ′ B ′ ≡
ParallelogramStrict A B A ′ B ′ ∨ ParallelogramFlat A B A ′ B ′

definition Rhombus::
[ ′p, ′p, ′p, ′p] ⇒ bool (‹Rhombus - - - -› [99 ,99 ,99 ,99 ] 50 )
where Rhombus A B C D ≡ Plg A B C D ∧ Cong A B B C

definition Rectangle::
[ ′p, ′p, ′p, ′p] ⇒ bool (‹Rectangle - - - -› [99 ,99 ,99 ,99 ] 50 )
where Rectangle A B C D ≡ Plg A B C D ∧ Cong A C B D

definition Square::
[ ′p, ′p, ′p, ′p] ⇒ bool (‹Square - - - -› [99 ,99 ,99 ,99 ] 50 )
where Square A B C D ≡ Rectangle A B C D ∧ Cong A B B C

definition Lambert::
[ ′p, ′p, ′p, ′p] ⇒ bool (‹Lambert - - - -› [99 ,99 ,99 ,99 ] 50 )
where Lambert A B C D ≡
A 6= B ∧ B 6= C ∧ C 6= D ∧

A 6= D ∧ Per B A D ∧ Per A D C ∧ Per A B C ∧ Coplanar A B C D

2.1.10 Plane
definition OS ::
[ ′p, ′p, ′p, ′p] ⇒ bool (‹- - OS - -› [99 ,99 ,99 ,99 ] 50 )
where A B OS P Q ≡
∃ R:: ′p. A B TS P R ∧ A B TS Q R

definition TSP ::
[ ′p, ′p, ′p, ′p, ′p] ⇒ bool (‹- - -TSP - -› [99 ,99 ,99 ,99 ,99 ] 50 )
where A B C TSP P Q ≡
(¬ Coplanar A B C P) ∧ (¬ Coplanar A B C Q) ∧

(∃ T . Coplanar A B C T ∧ Bet P T Q)

definition OSP ::
[ ′p, ′p, ′p, ′p, ′p] ⇒ bool (‹- - - OSP - -› [99 ,99 ,99 ,99 ,99 ] 50 )
where A B C OSP P Q ≡
∃ R. ((A B C TSP P R) ∧ (A B C TSP Q R))

definition Saccheri::
[ ′p, ′p, ′p, ′p] ⇒ bool (‹Saccheri - - - -› [99 ,99 ,99 ,99 ] 50 )
where Saccheri A B C D ≡
Per B A D ∧ Per A D C ∧ Cong A B C D ∧ A D OS B C

2.1.11 Line reflexivity 2D
definition ReflectLAt ::
[ ′p, ′p, ′p, ′p, ′p] ⇒ bool (‹- ReflectLAt - - - -› [99 ,99 ,99 ,99 ,99 ] 50 )
where M ReflectLAt P ′ P A B ≡
(M Midpoint P P ′ ∧ Col A B M ) ∧ (A B Perp P P ′ ∨ P = P ′)
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definition ReflectAt ::
[ ′p, ′p, ′p, ′p, ′p] ⇒ bool (‹- ReflectAt - - - -› [99 ,99 ,99 ,99 ,99 ] 50 )
where M ReflectAt P ′ P A B ≡

(A 6= B ∧ M ReflectLAt P ′ P A B) ∨ (A = B ∧ A = M ∧ M Midpoint P P ′)

2.1.12 Line reflexivity
definition upper-dim-axiom ::

bool (‹UpperDimAxiom› [] 50 )
where

upper-dim-axiom ≡

∀ A B C P Q.
P 6= Q ∧
Cong A P A Q ∧
Cong B P B Q ∧
Cong C P C Q
−→

(Bet A B C ∨ Bet B C A ∨ Bet C A B)

definition all-coplanar-axiom ::
bool (‹AllCoplanarAxiom› [] 50 )
where

AllCoplanarAxiom ≡

∀ A B C P Q.
P 6= Q ∧
Cong A P A Q ∧
Cong B P B Q ∧
Cong C P C Q
−→

(Bet A B C ∨ Bet B C A ∨ Bet C A B)

2.1.13 Angles
definition CongA ::
[ ′p, ′p, ′p, ′p, ′p, ′p] ⇒ bool (‹- - - CongA - - -› [99 ,99 ,99 ,99 ,99 ,99 ] 50 )
where A B C CongA D E F ≡
A 6= B ∧ C 6= B ∧ D 6= E ∧ F 6= E ∧

(∃ A ′ C ′ D ′ F ′. Bet B A A ′ ∧ Cong A A ′ E D ∧
Bet B C C ′ ∧ Cong C C ′ E F ∧
Bet E D D ′ ∧ Cong D D ′ B A ∧
Bet E F F ′ ∧ Cong F F ′ B C ∧
Cong A ′ C ′ D ′ F ′)

definition LeA ::
[ ′p, ′p, ′p, ′p, ′p, ′p] ⇒ bool (‹- - - LeA - - -› [99 ,99 ,99 ,99 ,99 ,99 ] 50 )
where A B C LeA D E F ≡
∃ P. (P InAngle D E F ∧ A B C CongA D E P)

definition LtA ::
[ ′p, ′p, ′p, ′p, ′p, ′p] ⇒ bool (‹- - - LtA - - -› [99 ,99 ,99 ,99 ,99 ,99 ] 50 )
where A B C LtA D E F ≡ A B C LeA D E F ∧ ¬ A B C CongA D E F

definition GtA ::
[ ′p, ′p, ′p, ′p, ′p, ′p] ⇒ bool (‹- - - GtA - - -› [99 ,99 ,99 ,99 ,99 ,99 ] 50 )
where A B C GtA D E F ≡ D E F LtA A B C

definition Acute ::
[ ′p, ′p, ′p] ⇒ bool (‹Acute - - -› [99 ,99 ,99 ] 50 )
where Acute A B C ≡
∃ A ′ B ′ C ′. (Per A ′ B ′ C ′ ∧ A B C LtA A ′ B ′ C ′)

definition Obtuse ::
[ ′p, ′p, ′p] ⇒ bool (‹Obtuse - - -› [99 ,99 ,99 ] 50 )
where Obtuse A B C ≡
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∃ A ′ B ′ C ′. (Per A ′ B ′ C ′ ∧ A ′ B ′ C ′ LtA A B C )

definition OrthAt ::
[ ′p, ′p, ′p, ′p, ′p, ′p] ⇒ bool (‹- OrthAt - - - - -› [99 ,99 ,99 ,99 ,99 ,99 ] 50 )
where X OrthAt A B C U V ≡
¬ Col A B C ∧ U 6= V ∧ Coplanar A B C X ∧ Col U V X ∧
(∀ P Q. (Coplanar A B C P ∧ Col U V Q) −→ Per P X Q)

definition Orth ::
[ ′p, ′p, ′p, ′p, ′p] ⇒ bool (‹- - - Orth - -› [99 ,99 ,99 ,99 ,99 ] 50 )
where A B C Orth U V ≡ ∃ X . X OrthAt A B C U V

definition SuppA ::
[ ′p, ′p, ′p, ′p, ′p, ′p] ⇒ bool
(‹- - - SuppA - - - › [99 ,99 ,99 ,99 ,99 ,99 ] 50 )
where

A B C SuppA D E F ≡
A 6= B ∧ (∃ A ′. Bet A B A ′ ∧ D E F CongA C B A ′)

2.1.14 Sum of angles
definition SumA ::
[ ′p, ′p, ′p, ′p, ′p, ′p, ′p, ′p, ′p] ⇒ bool (‹- - - - - - SumA - - -› [99 ,99 ,99 ,99 ,99 ,99 ,99 ,99 ,99 ] 50 )
where

A B C D E F SumA G H I ≡

∃ J . (C B J CongA D E F ∧ ¬ B C OS A J ∧ Coplanar A B C J ∧ A B J CongA G H I )

definition TriSumA ::
[ ′p, ′p, ′p, ′p, ′p, ′p] ⇒ bool (‹- - - TriSumA - - -› [99 ,99 ,99 ,99 ,99 ,99 ] 50 )
where

A B C TriSumA D E F ≡

∃ G H I . (A B C B C A SumA G H I ∧ G H I C A B SumA D E F)

definition SAMS ::
[ ′p, ′p, ′p, ′p, ′p, ′p] ⇒ bool (‹SAMS - - - - - -› [99 ,99 ,99 ,99 ,99 ,99 ] 50 )
where

SAMS A B C D E F ≡

(A 6= B ∧
(E Out D F ∨ ¬ Bet A B C )) ∧
(∃ J . (C B J CongA D E F ∧ ¬ (B C OS A J ) ∧ ¬ (A B TS C J ) ∧ Coplanar A B C J ))

2.1.15 Parallelism
definition Inter ::
[ ′p, ′p, ′p, ′p, ′p] ⇒ bool (‹- Inter - - - -› [99 ,99 ,99 ,99 ,99 ] 50 )
where X Inter A1 A2 B1 B2 ≡

B1 6= B2 ∧
(∃ P:: ′p. (Col P B1 B2 ∧ ¬ Col P A1 A2 )) ∧
Col A1 A2 X ∧ Col B1 B2 X

2.1.16 Perpendicularity
definition Perp2 ::
[ ′p, ′p, ′p, ′p, ′p] ⇒ bool (‹- Perp2 - - - -› [99 ,99 ,99 ,99 ,99 ] 50 )
where

P Perp2 A B C D ≡

∃ X Y . (Col P X Y ∧ X Y Perp A B ∧ X Y Perp C D)

2.1.17 Lentgh
definition QCong::
([ ′p, ′p] ⇒ bool) ⇒ bool (‹QCong -› [99 ] 50 )
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where
QCong l ≡

∃ A B. (∀ X Y . (Cong A B X Y ←→ l X Y ))

definition TarskiLen::
[ ′p, ′p,([ ′p, ′p] ⇒ bool)] ⇒ bool (‹TarskiLen - - -› [99 ,99 ,99 ] 50 )
where

TarskiLen A B l ≡

QCong l ∧ l A B

definition QCongNull ::
([ ′p, ′p] ⇒ bool) ⇒ bool (‹QCongNull -› [99 ] 50 )
where

QCongNull l ≡

QCong l ∧ (∃ A. l A A)

2.1.18 Equivalence Class of Angles
definition QCongA ::
([ ′p, ′p, ′p] ⇒ bool) ⇒ bool (‹QCongA -› [99 ] 50 )
where

QCongA a ≡

∃ A B C . (A 6= B ∧ C 6= B ∧ (∀ X Y Z . A B C CongA X Y Z ←→ a X Y Z))

definition Ang ::
[ ′p, ′p, ′p, ([ ′p, ′p, ′p] ⇒ bool) ] ⇒ bool (‹- - - Ang -› [99 ,99 ,99 ,99 ] 50 )
where

A B C Ang a ≡

QCongA a ∧
a A B C

definition QCongAAcute ::
([ ′p, ′p, ′p] ⇒ bool) ⇒ bool (‹QCongAACute -› [99 ] 50 )
where

QCongAAcute a ≡

∃ A B C . (Acute A B C ∧ (∀ X Y Z . (A B C CongA X Y Z ←→ a X Y Z)))

definition AngAcute ::
[ ′p, ′p, ′p, ([ ′p, ′p, ′p] ⇒ bool)] ⇒ bool (‹- - - AngAcute -› [99 ,99 ,99 ,99 ] 50 )
where

A B C AngAcute a ≡

((QCongAAcute a) ∧ (a A B C ))

definition QCongANullAcute ::
([ ′p, ′p, ′p] ⇒ bool) ⇒ bool (‹QCongANullAcute -› [99 ] 50 )
where

QCongANullAcute a ≡

QCongAAcute a ∧
(∀ A B C . (a A B C −→ B Out A C ))

definition QCongAnNull ::
([ ′p, ′p, ′p] ⇒ bool) ⇒ bool (‹QCongAnNull -› [99 ] 50 )
where

QCongAnNull a ≡

QCongA a ∧
(∀ A B C . (a A B C −→ ¬ B Out A C ))
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definition QCongAnFlat ::
([ ′p, ′p, ′p] ⇒ bool) ⇒ bool (‹QCongAnFlat -› [99 ] 50 )
where

QCongAnFlat a ≡

QCongA a ∧
(∀ A B C . (a A B C −→ ¬ Bet A B C ))

definition IsNullAngaP ::
([ ′p, ′p, ′p] ⇒ bool) ⇒ bool (‹IsNullAngaP -› [99 ] 50 )
where

IsNullAngaP a≡

QCongAAcute a ∧
(∃ A B C . (a A B C ∧ B Out A C ))

definition QCongANull ::
([ ′p, ′p, ′p] ⇒ bool) ⇒ bool (‹QCongANull -› [99 ] 50 )
where

QCongANull a ≡

QCongA a ∧
(∀ A B C . (a A B C −→ B Out A C ))

definition AngFlat ::
([ ′p, ′p, ′p] ⇒ bool) ⇒ bool (‹AngFlat -› [99 ] 50 )
where

AngFlat a ≡

QCongA a ∧
(∀ A B C . (a A B C −→ Bet A B C ))

2.2 Parallel’s definition Postulate
definition tarski-s-parallel-postulate ::

bool
(‹TarskiSParallelPostulate›)
where

tarski-s-parallel-postulate ≡
∀ A B C D T . (Bet A D T ∧ Bet B D C ∧ A 6= D) −→
(∃ X Y . Bet A B X ∧ Bet A C Y ∧ Bet X T Y )

definition euclid-5 ::
bool (‹Euclid5 ›)
where

euclid-5 ≡

∀ P Q R S T U .
(BetS P T Q ∧
BetS R T S ∧
BetS Q U R ∧
¬ Col P Q S ∧
Cong P T Q T ∧
Cong R T S T)
−→

(∃ I . BetS S Q I ∧ BetS P U I )

definition euclid-s-parallel-postulate ::
bool (‹EuclidSParallelPostulate›)
where

euclid-s-parallel-postulate ≡

∀ A B C D P Q R.
(B C OS A D ∧
SAMS A B C B C D ∧
A B C B C D SumA P Q R ∧
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¬ Bet P Q R)
−→

(∃ Y . B Out A Y ∧ C Out D Y )

definition playfair-s-postulate ::
bool
(‹PlayfairSPostulate›)
where

playfair-s-postulate ≡

∀ A1 A2 B1 B2 C1 C2 P.
(A1 A2 Par B1 B2 ∧
Col P B1 B2 ∧
A1 A2 Par C1 C2 ∧
Col P C1 C2 )
−→

(Col C1 B1 B2 ∧ Col C2 B1 B2 )

3 Propositions
3.1 Congruence properties
lemma cong-reflexivity:

shows Cong A B A B
using cong-inner-transitivity cong-pseudo-reflexivity by blast

lemma cong-symmetry:
assumes Cong A B C D
shows Cong C D A B
using assms cong-inner-transitivity cong-reflexivity by blast

lemma cong-transitivity:
assumes Cong A B C D and Cong C D E F
shows Cong A B E F
by (meson assms(1 ) assms(2 ) cong-inner-transitivity cong-pseudo-reflexivity)

lemma cong-left-commutativity:
assumes Cong A B C D
shows Cong B A C D
using assms cong-inner-transitivity cong-pseudo-reflexivity by blast

lemma cong-right-commutativity:
assumes Cong A B C D
shows Cong A B D C
using assms cong-left-commutativity cong-symmetry by blast

lemma cong-3421 :
assumes Cong A B C D
shows Cong C D B A
using assms cong-left-commutativity cong-symmetry by blast

lemma cong-4312 :
assumes Cong A B C D
shows Cong D C A B
using assms cong-left-commutativity cong-symmetry by blast

lemma cong-4321 :
assumes Cong A B C D
shows Cong D C B A
using assms cong-3421 cong-left-commutativity by blast

lemma cong-trivial-identity:
shows Cong A A B B
using cong-identity segment-construction by blast

lemma cong-reverse-identity:
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assumes Cong A A C D
shows C = D
using assms cong-3421 cong-identity by blast

lemma cong-commutativity:
assumes Cong A B C D
shows Cong B A D C
using assms cong-3421 by blast

lemma not-cong-2134 :
assumes ¬ Cong A B C D
shows ¬ Cong B A C D
using assms cong-left-commutativity by blast

lemma not-cong-1243 :
assumes ¬ Cong A B C D
shows ¬ Cong A B D C
using assms cong-right-commutativity by blast

lemma not-cong-2143 :
assumes ¬ Cong A B C D
shows ¬ Cong B A D C
using assms cong-commutativity by blast

lemma not-cong-3412 :
assumes ¬ Cong A B C D
shows ¬ Cong C D A B
using assms cong-symmetry by blast

lemma not-cong-4312 :
assumes ¬ Cong A B C D
shows ¬ Cong D C A B
using assms cong-3421 by blast

lemma not-cong-3421 :
assumes ¬ Cong A B C D
shows ¬ Cong C D B A
using assms cong-4312 by blast

lemma not-cong-4321 :
assumes ¬ Cong A B C D
shows ¬ Cong D C B A
using assms cong-4321 by blast

lemma five-segment-with-def :
assumes A B C D OFSC A ′ B ′ C ′ D ′ and A 6= B
shows Cong C D C ′ D ′

using assms(1 ) assms(2 ) OFSC-def five-segment by blast

lemma cong-diff :
assumes A 6= B and Cong A B C D
shows C 6= D
using assms(1 ) assms(2 ) cong-identity by blast

lemma cong-diff-2 :
assumes B 6= A and Cong A B C D
shows C 6= D
using assms(1 ) assms(2 ) cong-identity by blast

lemma cong-diff-3 :
assumes C 6= D and Cong A B C D
shows A 6= B
using assms(1 ) assms(2 ) cong-reverse-identity by blast

lemma cong-diff-4 :
assumes D 6= C and Cong A B C D
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shows A 6= B
using assms(1 ) assms(2 ) cong-reverse-identity by blast

lemma cong-3-sym:
assumes A B C Cong3 A ′ B ′ C ′

shows A ′ B ′ C ′ Cong3 A B C
using assms Cong3-def not-cong-3412 by blast

lemma cong-3-swap:
assumes A B C Cong3 A ′ B ′ C ′

shows B A C Cong3 B ′ A ′ C ′

using assms Cong3-def cong-commutativity by blast

lemma cong-3-swap-2 :
assumes A B C Cong3 A ′ B ′ C ′

shows A C B Cong3 A ′ C ′ B ′

using assms Cong3-def cong-commutativity by blast

lemma cong3-transitivity:
assumes A0 B0 C0 Cong3 A1 B1 C1 and

A1 B1 C1 Cong3 A2 B2 C2
shows A0 B0 C0 Cong3 A2 B2 C2
by (meson assms(1 ) assms(2 ) Cong3-def cong-inner-transitivity not-cong-3412 )

lemma eq-dec-points:
shows A = B ∨ ¬ A = B
by simp

lemma distinct:
assumes P 6= Q
shows R 6= P ∨ R 6= Q
using assms by simp

lemma l2-11 :
assumes Bet A B C and

Bet A ′ B ′ C ′ and
Cong A B A ′ B ′ and
Cong B C B ′ C ′

shows Cong A C A ′ C ′

by (smt assms(1 ) assms(2 ) assms(3 ) assms(4 ) cong-right-commutativity cong-symmetry cong-trivial-identity five-segment)

lemma bet-cong3 :
assumes Bet A B C and

Cong A B A ′ B ′

shows ∃ C ′. A B C Cong3 A ′ B ′ C ′

by (meson assms(1 ) assms(2 ) Cong3-def l2-11 not-cong-3412 segment-construction)

lemma construction-uniqueness:
assumes Q 6= A and

Bet Q A X and
Cong A X B C and
Bet Q A Y and
Cong A Y B C

shows X = Y
by (meson assms(1 ) assms(2 ) assms(3 ) assms(4 ) assms(5 ) cong-identity cong-inner-transitivity cong-reflexivity five-segment)

lemma Cong-cases:
assumes Cong A B C D ∨ Cong A B D C ∨ Cong B A C D ∨ Cong B A D C ∨ Cong C D A B ∨ Cong C D B A
∨ Cong D C A B ∨ Cong D C B A

shows Cong A B C D
using assms not-cong-3421 not-cong-4321 by blast

lemma Cong-perm :
assumes Cong A B C D
shows Cong A B C D ∧ Cong A B D C ∧ Cong B A C D ∧ Cong B A D C ∧ Cong C D A B ∧ Cong C D B A ∧

Cong D C A B ∧ Cong D C B A
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using assms not-cong-1243 not-cong-3412 by blast

3.2 Betweeness properties
lemma bet-col:

assumes Bet A B C
shows Col A B C
by (simp add: assms Col-def )

lemma between-trivial:
shows Bet A B B
using cong-identity segment-construction by blast

lemma between-symmetry:
assumes Bet A B C
shows Bet C B A
using assms between-identity between-trivial inner-pasch by blast

lemma Bet-cases:
assumes Bet A B C ∨ Bet C B A
shows Bet A B C
using assms between-symmetry by blast

lemma Bet-perm:
assumes Bet A B C
shows Bet A B C ∧ Bet C B A
using assms Bet-cases by blast

lemma between-trivial2 :
shows Bet A A B
using Bet-perm between-trivial by blast

lemma between-equality:
assumes Bet A B C and Bet B A C
shows A = B
using assms(1 ) assms(2 ) between-identity inner-pasch by blast

lemma between-equality-2 :
assumes Bet A B C and

Bet A C B
shows B = C
using assms(1 ) assms(2 ) between-equality between-symmetry by blast

lemma between-exchange3 :
assumes Bet A B C and

Bet A C D
shows Bet B C D
by (metis Bet-perm assms(1 ) assms(2 ) between-identity inner-pasch)

lemma bet-neq12--neq:
assumes Bet A B C and

A 6= B
shows A 6= C
using assms(1 ) assms(2 ) between-identity by blast

lemma bet-neq21--neq:
assumes Bet A B C and

B 6= A
shows A 6= C
using assms(1 ) assms(2 ) between-identity by blast

lemma bet-neq23--neq:
assumes Bet A B C and

B 6= C
shows A 6= C
using assms(1 ) assms(2 ) between-identity by blast
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lemma bet-neq32--neq:
assumes Bet A B C and

C 6= B
shows A 6= C
using assms(1 ) assms(2 ) between-identity by blast

lemma not-bet-distincts:
assumes ¬ Bet A B C
shows A 6= B ∧ B 6= C
using assms between-trivial between-trivial2 by blast

lemma between-inner-transitivity:
assumes Bet A B D and

Bet B C D
shows Bet A B C
using assms(1 ) assms(2 ) Bet-perm between-exchange3 by blast

lemma outer-transitivity-between2 :
assumes Bet A B C and

Bet B C D and
B 6= C

shows Bet A C D
proof −

obtain X where Bet A C X ∧ Cong C X C D
using segment-construction by blast

thus ?thesis
using assms(1 ) assms(2 ) assms(3 ) between-exchange3 cong-inner-transitivity construction-uniqueness by blast

qed

lemma between-exchange2 :
assumes Bet A B D and

Bet B C D
shows Bet A C D
using assms(1 ) assms(2 ) between-inner-transitivity outer-transitivity-between2 by blast

lemma outer-transitivity-between:
assumes Bet A B C and

Bet B C D and
B 6= C

shows Bet A B D
using assms(1 ) assms(2 ) assms(3 ) between-symmetry outer-transitivity-between2 by blast

lemma between-exchange4 :
assumes Bet A B C and

Bet A C D
shows Bet A B D
using assms(1 ) assms(2 ) between-exchange2 between-symmetry by blast

lemma l3-9-4 :
assumes Bet4 A1 A2 A3 A4
shows Bet4 A4 A3 A2 A1
using assms Bet4-def Bet-cases by blast

lemma l3-17 :
assumes Bet A B C and

Bet A ′ B ′ C and
Bet A P A ′

shows (∃ Q. Bet P Q C ∧ Bet B Q B ′)
proof −

obtain X where Bet B ′ X A ∧ Bet P X C
using Bet-perm assms(2 ) assms(3 ) inner-pasch by blast

moreover
then obtain Y where Bet X Y C ∧ Bet B Y B ′

using Bet-perm assms(1 ) inner-pasch by blast
ultimately show ?thesis
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using between-exchange2 by blast
qed

lemma lower-dim-ex:
∃ A B C . ¬ (Bet A B C ∨ Bet B C A ∨ Bet C A B)
using lower-dim by auto

lemma two-distinct-points:
∃ X :: ′p. ∃ Y :: ′p. X 6= Y
using lower-dim-ex not-bet-distincts by blast

lemma point-construction-different:
∃ C . Bet A B C ∧ B 6= C
using Tarski-neutral-dimensionless.two-distinct-points Tarski-neutral-dimensionless-axioms cong-reverse-identity seg-

ment-construction by blast

lemma another-point:
∃ B:: ′p. A 6= B
using point-construction-different by blast

lemma Cong-stability:
assumes ¬ ¬ Cong A B C D
shows Cong A B C D
using assms by simp

lemma l2-11-b:
assumes Bet A B C and

Bet A ′ B ′ C ′ and
Cong A B A ′ B ′ and
Cong B C B ′ C ′

shows Cong A C A ′ C ′

using assms(1 ) assms(2 ) assms(3 ) assms(4 ) l2-11 by auto

lemma cong-dec-eq-dec-b:
assumes ¬ A 6= B
shows A = B
using assms(1 ) by simp

lemma BetSEq:
assumes BetS A B C
shows Bet A B C ∧ A 6= B ∧ A 6= C ∧ B 6= C
using assms BetS-def between-identity by auto

3.3 Collinearity
3.3.1 Collinearity and betweenness
lemma l4-2 :

assumes A B C D IFSC A ′ B ′ C ′ D ′

shows Cong B D B ′ D ′

proof cases
assume A = C
thus ?thesis
by (metis IFSC-def Tarski-neutral-dimensionless.between-identity Tarski-neutral-dimensionless-axioms assms cong-diff-3 )

next
assume H1 : A 6= C
have H2 : Bet A B C ∧ Bet A ′ B ′ C ′ ∧

Cong A C A ′ C ′ ∧ Cong B C B ′ C ′ ∧
Cong A D A ′ D ′ ∧ Cong C D C ′ D ′

using IFSC-def assms by auto
obtain E where P1 : Bet A C E ∧ Cong C E A C

using segment-construction by blast
have P1A: Bet A C E

using P1 by simp
have P1B: Cong C E A C

using P1 by simp
obtain E ′ where P2 : Bet A ′ C ′ E ′ ∧ Cong C ′ E ′ C E
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using segment-construction by blast
have P2A: Bet A ′ C ′ E ′

using P2 by simp
have P2B: Cong C ′ E ′ C E

using P2 by simp
then have Cong C E C ′ E ′

using not-cong-3412 by blast
then have Cong E D E ′ D ′

using H1 H2 P1 P2 five-segment by blast
thus ?thesis
by (smt H1 H2 P1A P1B P2A P2B Tarski-neutral-dimensionless.cong-commutativity Tarski-neutral-dimensionless.cong-diff-3

Tarski-neutral-dimensionless.cong-symmetry Tarski-neutral-dimensionless-axioms between-inner-transitivity between-symmetry
five-segment)
qed

lemma l4-3 :
assumes Bet A B C and

Bet A ′ B ′ C ′ and
Cong A C A ′ C ′

and Cong B C B ′ C ′

shows Cong A B A ′ B ′

proof −
have A B C A IFSC A ′ B ′ C ′ A ′

using IFSC-def assms(1 ) assms(2 ) assms(3 ) assms(4 ) cong-trivial-identity not-cong-2143 by blast
thus ?thesis

using l4-2 not-cong-2143 by blast
qed

lemma l4-3-1 :
assumes Bet A B C and

Bet A ′ B ′ C ′ and
Cong A B A ′ B ′ and
Cong A C A ′ C ′

shows Cong B C B ′ C ′

by (meson assms(1 ) assms(2 ) assms(3 ) assms(4 ) between-symmetry cong-4321 l4-3 )

lemma l4-5 :
assumes Bet A B C and

Cong A C A ′ C ′

shows ∃ B ′. (Bet A ′ B ′ C ′ ∧ A B C Cong3 A ′ B ′ C ′)
proof −

obtain X ′ where P1 : Bet C ′ A ′ X ′ ∧ A ′ 6= X ′

using point-construction-different by auto
obtain B ′ where P2 : Bet X ′ A ′ B ′ ∧ Cong A ′ B ′ A B

using segment-construction by blast
obtain C ′′ where P3 : Bet X ′ B ′ C ′′ ∧ Cong B ′ C ′′ B C

using segment-construction by blast
then have P4 : Bet A ′ B ′ C ′′

using P2 between-exchange3 by blast
then have C ′′ = C ′

by (smt P1 P2 P3 assms(1 ) assms(2 ) between-exchange4 between-symmetry cong-symmetry construction-uniqueness
l2-11-b)

then show ?thesis
by (smt Cong3-def P1 P2 P3 Tarski-neutral-dimensionless.construction-uniqueness Tarski-neutral-dimensionless-axioms

P4 assms(1 ) assms(2 ) between-exchange4 between-symmetry cong-commutativity cong-symmetry cong-trivial-identity
five-segment not-bet-distincts)
qed

lemma l4-6 :
assumes Bet A B C and

A B C Cong3 A ′ B ′ C ′

shows Bet A ′ B ′ C ′

proof −
obtain x where P1 : Bet A ′ x C ′ ∧ A B C Cong3 A ′ x C ′

using Cong3-def assms(1 ) assms(2 ) l4-5 by blast
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then have A ′ x C ′ Cong3 A ′ B ′ C ′

using assms(2 ) cong3-transitivity cong-3-sym by blast
then have A ′ x C ′ x IFSC A ′ x C ′ B ′

by (meson Cong3-def Cong-perm IFSC-def P1 cong-reflexivity)
then have Cong x x x B ′

using l4-2 by auto
then show ?thesis

using P1 cong-reverse-identity by blast
qed

lemma cong3-bet-eq:
assumes Bet A B C and

A B C Cong3 A X C
shows X = B

proof −
have A B C B IFSC A B C X

by (meson Cong3-def Cong-perm IFSC-def assms(1 ) assms(2 ) cong-reflexivity)
then show ?thesis

using cong-reverse-identity l4-2 by blast
qed

3.3.2 Collinearity
lemma col-permutation-1 :

assumes Col A B C
shows Col B C A
using assms(1 ) Col-def by blast

lemma col-permutation-2 :
assumes Col A B C
shows Col C A B
using assms(1 ) col-permutation-1 by blast

lemma col-permutation-3 :
assumes Col A B C
shows Col C B A
using assms(1 ) Bet-cases Col-def by auto

lemma col-permutation-4 :
assumes Col A B C
shows Col B A C
using assms(1 ) Bet-perm Col-def by blast

lemma col-permutation-5 :
assumes Col A B C
shows Col A C B
using assms(1 ) col-permutation-1 col-permutation-3 by blast

lemma not-col-permutation-1 :
assumes ¬ Col A B C
shows ¬ Col B C A
using assms col-permutation-2 by blast

lemma not-col-permutation-2 :
assumes ∼ Col A B C
shows ∼ Col C A B
using assms col-permutation-1 by blast

lemma not-col-permutation-3 :
assumes ¬ Col A B C
shows ¬ Col C B A
using assms col-permutation-3 by blast

lemma not-col-permutation-4 :
assumes ¬ Col A B C
shows ¬ Col B A C
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using assms col-permutation-4 by blast

lemma not-col-permutation-5 :
assumes ¬ Col A B C
shows ¬ Col A C B
using assms col-permutation-5 by blast

lemma Col-cases:
assumes Col A B C ∨ Col A C B ∨ Col B A C ∨ Col B C A ∨ Col C A B ∨ Col C B A
shows Col A B C
using assms not-col-permutation-4 not-col-permutation-5 by blast

lemma Col-perm:
assumes Col A B C
shows Col A B C ∧ Col A C B ∧ Col B A C ∧ Col B C A ∧ Col C A B ∧ Col C B A
using Col-cases assms by blast

lemma col-trivial-1 :
Col A A B
using bet-col not-bet-distincts by blast

lemma col-trivial-2 :
Col A B B
by (simp add: Col-def between-trivial2 )

lemma col-trivial-3 :
Col A B A
by (simp add: Col-def between-trivial2 )

lemma l4-13 :
assumes Col A B C and

A B C Cong3 A ′ B ′ C ′

shows Col A ′ B ′ C ′

by (metis Tarski-neutral-dimensionless.Col-def Tarski-neutral-dimensionless.cong-3-swap Tarski-neutral-dimensionless.cong-3-swap-2
Tarski-neutral-dimensionless-axioms assms(1 ) assms(2 ) l4-6 )

lemma l4-14R1 :
assumes Bet A B C and

Cong A B A ′ B ′

shows ∃ C ′. A B C Cong3 A ′ B ′ C ′

by (simp add: assms(1 ) assms(2 ) bet-cong3 )

lemma l4-14R2 :
assumes Bet B C A and

Cong A B A ′ B ′

shows ∃ C ′. A B C Cong3 A ′ B ′ C ′

by (meson assms(1 ) assms(2 ) between-symmetry cong-3-swap-2 l4-5 )

lemma l4-14R3 :
assumes Bet C A B and

Cong A B A ′ B ′

shows ∃ C ′. A B C Cong3 A ′ B ′ C ′

by (meson assms(1 ) assms(2 ) between-symmetry cong-3-swap l4-14R1 not-cong-2143 )

lemma l4-14 :
assumes Col A B C and

Cong A B A ′ B ′

shows ∃ C ′. A B C Cong3 A ′ B ′ C ′

using Col-def assms(1 ) assms(2 ) l4-14R1 l4-14R2 l4-14R3 by blast

lemma l4-16R1 :
assumes A B C D FSC A ′ B ′ C ′ D ′ and

A 6= B and
Bet A B C

shows Cong C D C ′ D ′

proof −
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have A B C Cong3 A ′ B ′ C ′

using FSC-def assms(1 ) by blast
then have Bet A ′ B ′ C ′

using assms(3 ) l4-6 by blast
then have A B C D OFSC A ′ B ′ C ′ D ′

by (meson Cong3-def FSC-def OFSC-def assms(1 ) cong-3-sym l4-6 )
thus ?thesis

using assms(2 ) five-segment-with-def by blast
qed

lemma l4-16R2 :
assumes A B C D FSC A ′ B ′ C ′ D ′

and Bet B C A
shows Cong C D C ′ D ′

proof −
have A B C Cong3 A ′ B ′ C ′

using FSC-def assms(1 ) by blast
then have Bet B ′ C ′ A ′

using Bet-perm assms(2 ) cong-3-swap-2 l4-6 by blast
then have B C A D IFSC B ′ C ′ A ′ D ′

by (meson Cong3-def FSC-def IFSC-def assms(1 ) assms(2 ) not-cong-2143 )
then show ?thesis

using l4-2 by auto
qed

lemma l4-16R3 :
assumes A B C D FSC A ′ B ′ C ′ D ′ and A 6= B

and Bet C A B
shows Cong C D C ′ D ′

proof −
have A B C Cong3 A ′ B ′ C ′

using FSC-def assms(1 ) by blast
then have Bet C ′ A ′ B ′

using assms(3 ) between-symmetry cong-3-swap l4-6 by blast
thus ?thesis

by (smt Cong3-def FSC-def assms(1 ) assms(2 ) assms(3 ) between-symmetry cong-commutativity five-segment)
qed

lemma l4-16 :
assumes A B C D FSC A ′ B ′ C ′ D ′ and

A 6= B
shows Cong C D C ′ D ′

by (meson Col-def FSC-def assms(1 ) assms(2 ) l4-16R1 l4-16R2 l4-16R3 )

lemma l4-17 :
assumes A 6= B and

Col A B C and
Cong A P A Q and
Cong B P B Q

shows Cong C P C Q
proof −

{
assume ¬ Bet B C A
then have ∃ p pa. Bet p pa C ∧ Cong pa P pa Q ∧ Cong p P p Q ∧ p 6= pa

using Col-def assms(1 ) assms(2 ) assms(3 ) assms(4 ) between-symmetry by blast
then have ?thesis

using cong-reflexivity five-segment by blast
}
then show ?thesis

by (meson IFSC-def assms(3 ) assms(4 ) cong-reflexivity l4-2 )
qed

lemma l4-18 :
assumes A 6= B and

Col A B C and
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Cong A C A C ′ and
Cong B C B C ′

shows C = C ′

using assms(1 ) assms(2 ) assms(3 ) assms(4 ) cong-diff-3 l4-17 by blast

lemma l4-19 :
assumes Bet A C B and

Cong A C A C ′ and
Cong B C B C ′

shows C = C ′

by (metis Col-def assms(1 ) assms(2 ) assms(3 ) between-equality between-trivial cong-identity l4-18 not-cong-3421 )

lemma not-col-distincts:
assumes ¬ Col A B C
shows ¬ Col A B C ∧ A 6= B ∧ B 6= C ∧ A 6= C
using Col-def assms between-trivial by blast

lemma NCol-cases:
assumes ¬ Col A B C ∨ ¬ Col A C B ∨ ¬ Col B A C ∨ ¬ Col B C A ∨ ¬ Col C A B ∨ ¬ Col C B A
shows ¬ Col A B C
using assms not-col-permutation-2 not-col-permutation-3 by blast

lemma NCol-perm:
assumes ¬ Col A B C
shows ¬ Col A B C ∧ ∼ Col A C B ∧ ∼ Col B A C ∧ ∼ Col B C A ∧ ∼ Col C A B ∧ ∼ Col C B A
using NCol-cases assms by blast

lemma col-cong-3-cong-3-eq:
assumes A 6= B

and Col A B C
and A B C Cong3 A ′ B ′ C1
and A B C Cong3 A ′ B ′ C2

shows C1 = C2
by (metis Tarski-neutral-dimensionless.Cong3-def Tarski-neutral-dimensionless.cong-diff Tarski-neutral-dimensionless.l4-18

Tarski-neutral-dimensionless-axioms assms(1 ) assms(2 ) assms(3 ) assms(4 ) cong-inner-transitivity l4-13 )

3.4 Between transitivity le
lemma l5-1 :

assumes A 6= B and
Bet A B C and
Bet A B D

shows Bet A C D ∨ Bet A D C
proof −

obtain C ′ where P1 : Bet A D C ′ ∧ Cong D C ′ C D
using segment-construction by blast

obtain D ′ where P2 : Bet A C D ′ ∧ Cong C D ′ C D
using segment-construction by blast

obtain B ′ where P3 : Bet A C ′ B ′ ∧ Cong C ′ B ′ C B
using segment-construction by blast

obtain B ′′ where P4 : Bet A D ′ B ′′ ∧ Cong D ′ B ′′ D B
using segment-construction by blast

then have P5 : Cong B C ′ B ′′ C
by (smt P1 P2 assms(3 ) between-exchange3 between-symmetry cong-4312 cong-inner-transitivity l2-11-b)

then have Cong B B ′ B ′′ B
by (meson Bet-cases P1 P2 P3 P4 assms(2 ) assms(3 ) between-exchange4 between-inner-transitivity l2-11-b)

then have P6 : B ′′ = B ′

by (meson P1 P2 P3 P4 assms(1 ) assms(2 ) assms(3 ) between-exchange4 cong-inner-transitivity construction-uniqueness
not-cong-2134 )

have Bet B C D ′

using P2 assms(2 ) between-exchange3 by blast
then have B C D ′ C ′ FSC B ′ C ′ D C
by (smt Cong3-def FSC-def P1 P2 P3 P5 P6 bet-col between-exchange3 between-symmetry cong-3421 cong-pseudo-reflexivity

cong-transitivity l2-11-b)
then have P8 : Cong D ′ C ′ D C

using P3 P4 P6 cong-identity l4-16 by blast
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obtain E where P9 : Bet C E C ′ ∧ Bet D E D ′

using P1 P2 between-trivial2 l3-17 by blast
then have P10 : D E D ′ C IFSC D E D ′ C ′

by (smt IFSC-def P1 P2 P8 Tarski-neutral-dimensionless.cong-reflexivity Tarski-neutral-dimensionless-axioms cong-3421
cong-inner-transitivity)

then have Cong E C E C ′

using l4-2 by auto
have P11 : C E C ′ D IFSC C E C ′ D ′

by (smt IFSC-def P1 P2 Tarski-neutral-dimensionless.cong-reflexivity Tarski-neutral-dimensionless-axioms P8 P9
cong-3421 cong-inner-transitivity)

then have Cong E D E D ′

using l4-2 by auto
obtain P where Bet C ′ C P ∧ Cong C P C D ′

using segment-construction by blast
obtain R where Bet D ′ C R ∧ Cong C R C E

using segment-construction by blast
obtain Q where Bet P R Q ∧ Cong R Q R P

using segment-construction by blast
have D ′ C R P FSC P C E D ′

by (meson Bet-perm Cong3-def FSC-def ‹Bet C E C ′ ∧ Bet D E D ′› ‹Bet C ′ C P ∧ Cong C P C D ′› ‹Bet D ′ C R
∧ Cong C R C E› bet-col between-exchange3 cong-pseudo-reflexivity l2-11-b not-cong-4321 )

have Cong R P E D ′

by (metis Cong-cases ‹D ′ C R P FSC P C E D ′› ‹Bet C ′ C P ∧ Cong C P C D ′› ‹Bet D ′ C R ∧ Cong C R C E›
cong-diff-2 l4-16 )

have Cong R Q E D
by (metis Cong-cases ‹Cong E D E D ′› ‹Cong R P E D ′› ‹Bet P R Q ∧ Cong R Q R P› cong-transitivity)

have D ′ E D C FSC P R Q C
by (meson Bet-perm Cong3-def FSC-def ‹Cong R P E D ′› ‹Cong R Q E D› ‹Bet C E C ′ ∧ Bet D E D ′› ‹Bet C ′

C P ∧ Cong C P C D ′› ‹Bet D ′ C R ∧ Cong C R C E› ‹Bet P R Q ∧ Cong R Q R P› bet-col l2-11-b not-cong-2143
not-cong-4321 )

have Cong D C Q C
using ‹D ′ E D C FSC P R Q C › ‹Cong E D E D ′› ‹Bet C E C ′ ∧ Bet D E D ′› cong-identity l4-16 l4-16R2 by blast

have Cong C P C Q
using P2 ‹Cong D C Q C › ‹Bet C ′ C P ∧ Cong C P C D ′› cong-right-commutativity cong-transitivity by blast

have Bet A C D ∨ Bet A D C
proof cases

assume R = C
then show ?thesis

by (metis P1 ‹Cong E C E C ′› ‹Bet D ′ C R ∧ Cong C R C E› cong-diff-4 )
next

assume R 6= C
{

have Cong D ′ P D ′ Q
proof −

have Col R C D ′

by (simp add: ‹Bet D ′ C R ∧ Cong C R C E› bet-col between-symmetry)
have Cong R P R Q

by (metis Tarski-neutral-dimensionless.Cong-cases Tarski-neutral-dimensionless-axioms ‹Bet P R Q ∧ Cong R
Q R P›)

have Cong C P C Q
by (simp add: ‹Cong C P C Q›)

then show ?thesis
using ‹Col R C D ′› ‹Cong R P R Q› ‹R 6= C › l4-17 by blast

qed
then have Cong B P B Q using ‹Cong C P C Q› ‹Bet B C D ′› cong-diff-4

by (metis Col-def ‹Bet C ′ C P ∧ Cong C P C D ′› cong-reflexivity l4-17 not-cong-3412 )
have Cong B ′ P B ′ Q
by (metis P2 P4 ‹B ′′ = B ′› ‹Cong C P C Q› ‹Cong D ′ P D ′ Q› ‹Bet C ′ C P ∧ Cong C P C D ′› between-exchange3

cong-diff-4 cong-identity cong-reflexivity five-segment)
have Cong C ′ P C ′ Q
proof −

have Bet B C ′ B ′

using P1 P3 assms(3 ) between-exchange3 between-exchange4 by blast
then show ?thesis

by (metis Col-def ‹Cong B P B Q› ‹Cong B ′ P B ′ Q› between-equality l4-17 not-bet-distincts)
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qed
have Cong P P P Q

by (metis Tarski-neutral-dimensionless.cong-diff-2 Tarski-neutral-dimensionless-axioms ‹Cong C P C Q› ‹Cong
C ′ P C ′ Q› ‹R 6= C › ‹Bet C E C ′ ∧ Bet D E D ′› ‹Bet C ′ C P ∧ Cong C P C D ′› ‹Bet D ′ C R ∧ Cong C R C E›
bet-col bet-neq12--neq l4-17 )

thus ?thesis
by (metis P2 ‹Cong R P E D ′› ‹Cong R Q E D› ‹Bet P R Q ∧ Cong R Q R P› bet-neq12--neq cong-diff-4 )

}
then have R 6= C −→ Bet A C D ∨ Bet A D C by blast

qed
thus ?thesis

by simp
qed

lemma l5-2 :
assumes A 6= B and

Bet A B C and
Bet A B D

shows Bet B C D ∨ Bet B D C
using assms(1 ) assms(2 ) assms(3 ) between-exchange3 l5-1 by blast

lemma segment-construction-2 :
assumes A 6= Q
shows ∃ X . ((Bet Q A X ∨ Bet Q X A) ∧ Cong Q X B C )

proof −
obtain A ′ where P1 : Bet A Q A ′ ∧ Cong Q A ′ A Q

using segment-construction by blast
obtain X where P2 : Bet A ′ Q X ∧ Cong Q X B C

using segment-construction by blast
then show ?thesis

by (metis P1 Tarski-neutral-dimensionless.cong-diff-4 Tarski-neutral-dimensionless-axioms between-symmetry l5-2 )
qed

lemma l5-3 :
assumes Bet A B D and

Bet A C D
shows Bet A B C ∨ Bet A C B
by (metis Bet-perm assms(1 ) assms(2 ) between-inner-transitivity l5-2 point-construction-different)

lemma bet3--bet:
assumes Bet A B E and

Bet A D E and
Bet B C D

shows Bet A C E
by (meson assms(1 ) assms(2 ) assms(3 ) between-exchange2 between-symmetry l5-3 )

lemma le-bet:
assumes C D Le A B
shows ∃ X . (Bet A X B ∧ Cong A X C D)
by (meson Le-def assms cong-symmetry)

lemma l5-5-1 :
assumes A B Le C D
shows ∃ X . (Bet A B X ∧ Cong A X C D)

proof −
obtain P where P1 : Bet C P D ∧ Cong A B C P

using Le-def assms by blast
obtain X where P2 : Bet A B X ∧ Cong B X P D

using segment-construction by blast
then have Cong A X C D

using P1 l2-11-b by blast
then show ?thesis

using P2 by blast
qed

lemma l5-5-2 :
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assumes ∃ X . (Bet A B X ∧ Cong A X C D)
shows A B Le C D

proof −
obtain P where P1 : Bet A B P ∧ Cong A P C D

using assms by blast
obtain B ′ where P2 : Bet C B ′ D ∧ A B P Cong3 C B ′ D

using P1 l4-5 by blast
then show ?thesis

using Cong3-def Le-def by blast
qed

lemma l5-6 :
assumes A B Le C D and

Cong A B A ′ B ′ and
Cong C D C ′ D ′

shows A ′ B ′ Le C ′ D ′

by (meson Cong3-def Le-def assms(1 ) assms(2 ) assms(3 ) cong-inner-transitivity l4-5 )

lemma le-reflexivity:
shows A B Le A B
using between-trivial cong-reflexivity l5-5-2 by blast

lemma le-transitivity:
assumes A B Le C D and

C D Le E F
shows A B Le E F
by (meson assms(1 ) assms(2 ) between-exchange4 cong-reflexivity l5-5-1 l5-5-2 l5-6 le-bet)

lemma between-cong:
assumes Bet A C B and

Cong A C A B
shows C = B
by (smt assms(1 ) assms(2 ) between-trivial cong-inner-transitivity five-segment l4-19 l4-3-1 )

lemma cong3-symmetry:
assumes A B C Cong3 A ′ B ′ C ′

shows A ′ B ′ C ′ Cong3 A B C
by (simp add: assms cong-3-sym)

lemma between-cong-2 :
assumes Bet A D B and

Bet A E B
and Cong A D A E

shows D = E using l5-3
by (smt Tarski-neutral-dimensionless-axioms assms(1 ) assms(2 ) assms(3 ) cong-diff cong-inner-transitivity l4-3-1 )

lemma between-cong-3 :
assumes A 6= B

and Bet A B D
and Bet A B E
and Cong B D B E

shows D = E
by (meson assms(1 ) assms(2 ) assms(3 ) assms(4 ) cong-reflexivity construction-uniqueness)

lemma le-anti-symmetry:
assumes A B Le C D and

C D Le A B
shows Cong A B C D
by (smt Le-def Tarski-neutral-dimensionless.between-exchange4 Tarski-neutral-dimensionless-axioms assms(1 ) assms(2 )

bet-neq21--neq between-cong between-exchange3 cong-transitivity l5-5-1 not-cong-3421 )

lemma cong-dec:
shows Cong A B C D ∨ ¬ Cong A B C D
by simp

lemma bet-dec:
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shows Bet A B C ∨ ¬ Bet A B C
by simp

lemma col-dec:
shows Col A B C ∨ ¬ Col A B C
by simp

lemma le-trivial:
shows A A Le C D
using Le-def between-trivial2 cong-trivial-identity by blast

lemma le-cases:
shows A B Le C D ∨ C D Le A B
by (metis (full-types) cong-reflexivity l5-5-2 l5-6 not-bet-distincts segment-construction-2 )

lemma le-zero:
assumes A B Le C C
shows A = B
by (metis assms cong-diff-4 le-anti-symmetry le-trivial)

lemma le-diff :
assumes A 6= B and A B Le C D
shows C 6= D
using assms(1 ) assms(2 ) le-zero by blast

lemma lt-diff :
assumes A B Lt C D
shows C 6= D
using Lt-def assms cong-trivial-identity le-zero by blast

lemma bet-cong-eq:
assumes Bet A B C and

Bet A C D and
Cong B C A D

shows C = D ∧ A = B
proof −

have Bet C B A
using Bet-perm assms(1 ) by blast

then show ?thesis
by (metis (no-types) Cong-perm Le-def assms(2 ) assms(3 ) between-cong cong-pseudo-reflexivity le-anti-symmetry)

qed

lemma cong--le:
assumes Cong A B C D
shows A B Le C D
using Le-def assms between-trivial by blast

lemma cong--le3412 :
assumes Cong A B C D
shows C D Le A B
using assms cong--le cong-symmetry by blast

lemma le1221 :
shows A B Le B A
by (simp add: cong--le cong-pseudo-reflexivity)

lemma le-left-comm:
assumes A B Le C D
shows B A Le C D
using assms le1221 le-transitivity by blast

lemma le-right-comm:
assumes A B Le C D
shows A B Le D C
by (meson assms cong-right-commutativity l5-5-1 l5-5-2 )
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lemma le-comm:
assumes A B Le C D
shows B A Le D C
using assms le-left-comm le-right-comm by blast

lemma ge-left-comm:
assumes A B Ge C D
shows B A Ge C D
by (meson Ge-def assms le-right-comm)

lemma ge-right-comm:
assumes A B Ge C D
shows A B Ge D C
using Ge-def assms le-left-comm by presburger

lemma ge-comm0 :
assumes A B Ge C D
shows B A Ge D C
by (meson assms ge-left-comm ge-right-comm)

lemma lt-right-comm:
assumes A B Lt C D
shows A B Lt D C
using Lt-def assms le-right-comm not-cong-1243 by blast

lemma lt-left-comm:
assumes A B Lt C D
shows B A Lt C D
using Lt-def assms le-comm lt-right-comm not-cong-2143 by blast

lemma lt-comm:
assumes A B Lt C D
shows B A Lt D C
using assms lt-left-comm lt-right-comm by blast

lemma gt-left-comm0 :
assumes A B Gt C D
shows B A Gt C D
by (meson Gt-def assms lt-right-comm)

lemma gt-right-comm:
assumes A B Gt C D
shows A B Gt D C
using Gt-def assms lt-left-comm by presburger

lemma gt-comm:
assumes A B Gt C D
shows B A Gt D C
by (meson assms gt-left-comm0 gt-right-comm)

lemma cong2-lt--lt:
assumes A B Lt C D and

Cong A B A ′ B ′ and
Cong C D C ′ D ′

shows A ′ B ′ Lt C ′ D ′

by (meson Lt-def assms(1 ) assms(2 ) assms(3 ) l5-6 le-anti-symmetry not-cong-3412 )

lemma fourth-point:
assumes A 6= B and

B 6= C and
Col A B P and
Bet A B C

shows Bet P A B ∨ Bet A P B ∨ Bet B P C ∨ Bet B C P
by (metis Col-def Tarski-neutral-dimensionless.l5-2 Tarski-neutral-dimensionless-axioms assms(3 ) assms(4 ) between-symmetry)

lemma third-point:
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assumes Col A B P
shows Bet P A B ∨ Bet A P B ∨ Bet A B P
using Col-def assms between-symmetry by blast

lemma l5-12-a:
assumes Bet A B C
shows A B Le A C ∧ B C Le A C
using assms between-symmetry cong-left-commutativity cong-reflexivity l5-5-2 le-left-comm by blast

lemma bet--le1213 :
assumes Bet A B C
shows A B Le A C
using assms l5-12-a by blast

lemma bet--le2313 :
assumes Bet A B C
shows B C Le A C
by (simp add: assms l5-12-a)

lemma bet--lt1213 :
assumes B 6= C and

Bet A B C
shows A B Lt A C
using Lt-def assms(1 ) assms(2 ) bet--le1213 between-cong by blast

lemma bet--lt2313 :
assumes A 6= B and

Bet A B C
shows B C Lt A C
using Lt-def assms(1 ) assms(2 ) bet--le2313 bet-cong-eq l5-1 by blast

lemma l5-12-b:
assumes Col A B C and

A B Le A C and
B C Le A C

shows Bet A B C
by (metis assms(1 ) assms(2 ) assms(3 ) between-cong col-permutation-5 l5-12-a le-anti-symmetry not-cong-2143 third-point)

lemma bet-le-eq:
assumes Bet A B C

and A C Le B C
shows A = B
by (meson assms(1 ) assms(2 ) bet--le2313 bet-cong-eq l5-1 le-anti-symmetry)

lemma or-lt-cong-gt:
A B Lt C D ∨ A B Gt C D ∨ Cong A B C D
by (meson Gt-def Lt-def cong-symmetry local.le-cases)

lemma lt--le:
assumes A B Lt C D
shows A B Le C D
using Lt-def assms by blast

lemma le1234-lt--lt:
assumes A B Le C D and

C D Lt E F
shows A B Lt E F
by (meson Lt-def assms(1 ) assms(2 ) cong--le3412 le-anti-symmetry le-transitivity)

lemma le3456-lt--lt:
assumes A B Lt C D and

C D Le E F
shows A B Lt E F
by (meson Lt-def assms(1 ) assms(2 ) cong2-lt--lt cong-reflexivity le1234-lt--lt)

lemma lt-transitivity:
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assumes A B Lt C D and
C D Lt E F

shows A B Lt E F
using Lt-def assms(1 ) assms(2 ) le1234-lt--lt by blast

lemma not-and-lt:
¬ (A B Lt C D ∧ C D Lt A B)
by (simp add: Lt-def le-anti-symmetry)

lemma nlt:
¬ A B Lt A B
using not-and-lt by blast

lemma le--nlt:
assumes A B Le C D
shows ¬ C D Lt A B
using assms le3456-lt--lt nlt by blast

lemma cong--nlt:
assumes Cong A B C D
shows ¬ A B Lt C D
by (simp add: Lt-def assms)

lemma nlt--le:
assumes ¬ A B Lt C D
shows C D Le A B
using Lt-def assms cong--le3412 local.le-cases by blast

lemma lt--nle:
assumes A B Lt C D
shows ¬ C D Le A B
using assms le--nlt by blast

lemma nle--lt:
assumes ¬ A B Le C D
shows C D Lt A B
using assms nlt--le by blast

lemma lt1123 :
assumes B 6= C
shows A A Lt B C
using assms le-diff nle--lt by blast

lemma bet2-le2--le-R1 :
assumes Bet a P b and

Bet A Q B and
P a Le Q A and
P b Le Q B and
B = Q

shows a b Le A B
by (metis assms(3 ) assms(4 ) assms(5 ) le-comm le-diff )

lemma bet2-le2--le-R2 :
assumes Bet a Po b and

Bet A PO B and
Po a Le PO A and
Po b Le PO B and
A 6= PO and
B 6= PO

shows a b Le A B
proof −

obtain b ′ where P1 : Bet A PO b ′ ∧ Cong PO b ′ b Po
using segment-construction by blast

obtain a ′ where P2 : Bet B PO a ′ ∧ Cong PO a ′ a Po
using segment-construction by blast

obtain a ′′ where P3 : Bet PO a ′′ A ∧ Cong Po a PO a ′′
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using Le-def assms(3 ) by blast
have P4 : a ′ = a ′′

by (meson Bet-cases P2 P3 assms(2 ) assms(6 ) between-inner-transitivity cong-right-commutativity construction-uniqueness
not-cong-3412 )

have P5 : B a ′ Le B A
using Bet-cases P3 P4 assms(2 ) bet--le1213 between-exchange2 by blast

obtain b ′′ where P6 : Bet PO b ′′ B ∧ Cong Po b PO b ′′

using Le-def assms(4 ) by blast
then have b ′ = b ′′

using P1 assms(2 ) assms(5 ) between-inner-transitivity cong-right-commutativity construction-uniqueness not-cong-3412
by blast

then have a ′ b ′ Le a ′ B
using Bet-cases P2 P6 bet--le1213 between-exchange2 by blast

then have a ′ b ′ Le A B
using P5 le-comm le-transitivity by blast

thus ?thesis
by (smt Cong-cases P1 P3 P4 Tarski-neutral-dimensionless.l5-6 Tarski-neutral-dimensionless-axioms assms(1 ) be-

tween-exchange3 between-symmetry cong-reflexivity l2-11-b)
qed

lemma bet2-le2--le:
assumes Bet a P b and

Bet A Q B and
P a Le Q A and
P b Le Q B

shows a b Le A B
proof cases

assume A = Q
thus ?thesis

using assms(3 ) assms(4 ) le-diff by force
next

assume ¬ A = Q
thus ?thesis

using assms(1 ) assms(2 ) assms(3 ) assms(4 ) bet2-le2--le-R1 bet2-le2--le-R2 by blast
qed

lemma Le-cases:
assumes A B Le C D ∨ B A Le C D ∨ A B Le D C ∨ B A Le D C
shows A B Le C D
using assms le-left-comm le-right-comm by blast

lemma Lt-cases:
assumes A B Lt C D ∨ B A Lt C D ∨ A B Lt D C ∨ B A Lt D C
shows A B Lt C D
using assms lt-comm lt-left-comm by blast

3.5 Out lines
lemma bet-out:

assumes B 6= A and
Bet A B C

shows A Out B C
using Out-def assms(1 ) assms(2 ) bet-neq12--neq by fastforce

lemma bet-out-1 :
assumes B 6= A and

Bet C B A
shows A Out B C
by (simp add: assms(1 ) assms(2 ) bet-out between-symmetry)

lemma out-dec:
shows P Out A B ∨ ¬ P Out A B
by simp

lemma out-diff1 :
assumes A Out B C
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shows B 6= A
using Out-def assms by auto

lemma out-diff2 :
assumes A Out B C
shows C 6= A
using Out-def assms by auto

lemma out-distinct:
assumes A Out B C
shows B 6= A ∧ C 6= A
using assms out-diff1 out-diff2 by auto

lemma out-col:
assumes A Out B C
shows Col A B C
using Col-def Out-def assms between-symmetry by auto

lemma l6-2 :
assumes A 6= P and

B 6= P and
C 6= P and
Bet A P C

shows Bet B P C ←→ P Out A B
by (smt Bet-cases Out-def assms(1 ) assms(2 ) assms(3 ) assms(4 ) between-inner-transitivity l5-2 outer-transitivity-between)

lemma bet-out--bet:
assumes Bet A P C and

P Out A B
shows Bet B P C
by (metis Tarski-neutral-dimensionless.l6-2 Tarski-neutral-dimensionless-axioms assms(1 ) assms(2 ) not-bet-distincts

out-diff1 )

lemma l6-3-1 :
assumes P Out A B
shows A 6= P ∧ B 6= P ∧ (∃ C . (C 6= P ∧ Bet A P C ∧ Bet B P C ))
using assms bet-out--bet out-diff1 out-diff2 point-construction-different by fastforce

lemma l6-3-2 :
assumes A 6= P and

B 6= P and
∃ C . (C 6= P ∧ Bet A P C ∧ Bet B P C )

shows P Out A B
using assms(1 ) assms(2 ) assms(3 ) l6-2 by blast

lemma l6-4-1 :
assumes P Out A B and

Col A P B
shows ¬ Bet A P B
using Out-def assms(1 ) between-equality between-symmetry by fastforce

lemma l6-4-2 :
assumes Col A P B

and ¬ Bet A P B
shows P Out A B
by (metis Out-def assms(1 ) assms(2 ) bet-out col-permutation-1 third-point)

lemma out-trivial:
assumes A 6= P
shows P Out A A
by (simp add: assms bet-out-1 between-trivial2 )

lemma l6-6 :
assumes P Out A B
shows P Out B A
using Out-def assms by auto
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lemma l6-7 :
assumes P Out A B and

P Out B C
shows P Out A C
by (smt Out-def assms(1 ) assms(2 ) between-exchange4 l5-1 l5-3 )

lemma bet-out-out-bet:
assumes Bet A B C and

B Out A A ′ and
B Out C C ′

shows Bet A ′ B C ′

by (metis Out-def assms(1 ) assms(2 ) assms(3 ) bet-out--bet between-inner-transitivity outer-transitivity-between)

lemma out2-bet-out:
assumes B Out A C and

B Out X P and
Bet A X C

shows B Out A P ∧ B Out C P
by (smt Out-def Tarski-neutral-dimensionless.l6-7 Tarski-neutral-dimensionless-axioms assms(1 ) assms(2 ) assms(3 )

between-exchange2 between-symmetry)

lemma l6-11-uniqueness:
assumes A Out X R and

Cong A X B C and
A Out Y R and
Cong A Y B C

shows X = Y
by (metis Out-def assms(1 ) assms(2 ) assms(3 ) assms(4 ) between-cong cong-symmetry cong-transitivity l6-6 l6-7 )

lemma l6-11-existence:
assumes R 6= A and

B 6= C
shows ∃ X . (A Out X R ∧ Cong A X B C )
by (metis Out-def assms(1 ) assms(2 ) cong-reverse-identity segment-construction-2 )

lemma segment-construction-3 :
assumes A 6= B and

X 6= Y
shows ∃ C . (A Out B C ∧ Cong A C X Y )
by (metis assms(1 ) assms(2 ) l6-11-existence l6-6 )

lemma l6-13-1 :
assumes P Out A B and

P A Le P B
shows Bet P A B
by (metis Out-def assms(1 ) assms(2 ) bet--lt1213 le--nlt)

lemma l6-13-2 :
assumes P Out A B and

Bet P A B
shows P A Le P B
by (simp add: assms(2 ) bet--le1213 )

lemma l6-16-1 :
assumes P 6= Q and

Col S P Q and
Col X P Q

shows Col X P S
by (smt Col-def assms(1 ) assms(2 ) assms(3 ) bet3--bet col-permutation-4 l5-1 l5-3 outer-transitivity-between third-point)

lemma col-transitivity-1 :
assumes P 6= Q and

Col P Q A and
Col P Q B
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shows Col P A B
by (meson Tarski-neutral-dimensionless.l6-16-1 Tarski-neutral-dimensionless-axioms assms(1 ) assms(2 ) assms(3 )

not-col-permutation-2 )

lemma col-transitivity-2 :
assumes P 6= Q and

Col P Q A and
Col P Q B

shows Col Q A B
by (metis Tarski-neutral-dimensionless.col-transitivity-1 Tarski-neutral-dimensionless-axioms assms(1 ) assms(2 ) assms(3 )

not-col-permutation-4 )

lemma l6-21 :
assumes ¬ Col A B C and

C 6= D and
Col A B P and
Col A B Q and
Col C D P and
Col C D Q

shows P = Q
by (metis assms(1 ) assms(2 ) assms(3 ) assms(4 ) assms(5 ) assms(6 ) col-transitivity-1 l6-16-1 not-col-distincts)

lemma col2--eq:
assumes Col A X Y and

Col B X Y and
¬ Col A X B

shows X = Y
using assms(1 ) assms(2 ) assms(3 ) l6-16-1 by blast

lemma not-col-exists:
assumes A 6= B
shows ∃ C . ¬ Col A B C
by (metis Col-def assms col-transitivity-2 lower-dim-ex)

lemma col3 :
assumes X 6= Y and

Col X Y A and
Col X Y B and
Col X Y C

shows Col A B C
by (metis assms(1 ) assms(2 ) assms(3 ) assms(4 ) col-transitivity-2 )

lemma colx:
assumes A 6= B and

Col X Y A and
Col X Y B and
Col A B C

shows Col X Y C
by (metis assms(1 ) assms(2 ) assms(3 ) assms(4 ) l6-21 not-col-distincts)

lemma out2--bet:
assumes A Out B C and

C Out A B
shows Bet A B C
by (metis Out-def assms(1 ) assms(2 ) between-equality between-symmetry)

lemma bet2-le2--le1346 :
assumes Bet A B C and

Bet A ′ B ′ C ′ and
A B Le A ′ B ′ and
B C Le B ′ C ′

shows A C Le A ′ C ′

using Le-cases assms(1 ) assms(2 ) assms(3 ) assms(4 ) bet2-le2--le by blast

lemma bet2-le2--le2356-R1 :
assumes Bet A A C and
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Bet A ′ B ′ C ′ and
A A Le A ′ B ′ and
A ′ C ′ Le A C

shows B ′ C ′ Le A C
using assms(2 ) assms(4 ) bet--le2313 le3456-lt--lt lt--nle nlt--le by blast

lemma bet2-le2--le2356-R2 :
assumes A 6= B and

Bet A B C and
Bet A ′ B ′ C ′ and
A B Le A ′ B ′ and
A ′ C ′ Le A C

shows B ′ C ′ Le B C
proof −

have A 6= C
using assms(1 ) assms(2 ) bet-neq12--neq by blast

obtain B0 where P1 : Bet A B B0 ∧ Cong A B0 A ′ B ′

using assms(4 ) l5-5-1 by blast
then have P2 : A 6= B0

using assms(1 ) bet-neq12--neq by blast
obtain C0 where P3 : Bet A C0 C ∧ Cong A ′ C ′ A C0

using Le-def assms(5 ) by blast
then have A 6= C0

using assms(1 ) assms(3 ) assms(4 ) bet-neq12--neq cong-diff le-diff by blast
then have P4 : Bet A B0 C0

by (smt Out-def P1 P2 P3 assms(1 ) assms(2 ) assms(3 ) bet--le1213 between-exchange2 between-symmetry l5-1 l5-3
l5-6 l6-13-1 not-cong-3412 )

have K1 : B0 C0 Le B C0
using P1 P4 between-exchange3 l5-12-a by blast

have K2 : B C0 Le B C
using P1 P3 P4 bet--le1213 between-exchange3 between-exchange4 by blast

then have Cong B0 C0 B ′ C ′

using P1 P3 P4 assms(3 ) l4-3-1 not-cong-3412 by blast
then show ?thesis

by (meson K1 K2 cong--nlt le-transitivity nlt--le)
qed

lemma bet2-le2--le2356 :
assumes Bet A B C and

Bet A ′ B ′ C ′ and
A B Le A ′ B ′ and
A ′ C ′ Le A C

shows B ′ C ′ Le B C
proof (cases)

assume A = B
then show ?thesis

using assms(1 ) assms(2 ) assms(3 ) assms(4 ) bet2-le2--le2356-R1 by blast
next

assume ¬ A = B
then show ?thesis

using assms(1 ) assms(2 ) assms(3 ) assms(4 ) bet2-le2--le2356-R2 by blast
qed

lemma bet2-le2--le1245 :
assumes Bet A B C and

Bet A ′ B ′ C ′ and
B C Le B ′ C ′ and
A ′ C ′ Le A C

shows A ′ B ′ Le A B
using assms(1 ) assms(2 ) assms(3 ) assms(4 ) bet2-le2--le2356 between-symmetry le-comm by blast

lemma cong-preserves-bet:
assumes Bet B A ′ A0 and

Cong B A ′ E D ′ and
Cong B A0 E D0 and
E Out D ′ D0
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shows Bet E D ′ D0
using Tarski-neutral-dimensionless.l6-13-1 Tarski-neutral-dimensionless-axioms assms(1 ) assms(2 ) assms(3 ) assms(4 )

bet--le1213 l5-6 by fastforce

lemma out-cong-cong:
assumes B Out A A0 and

E Out D D0 and
Cong B A E D and
Cong B A0 E D0

shows Cong A A0 D D0
by (meson Out-def assms(1 ) assms(2 ) assms(3 ) assms(4 ) cong-4321 cong-symmetry l4-3-1 l5-6 l6-13-1 l6-13-2 )

lemma not-out-bet:
assumes Col A B C and
¬ B Out A C

shows Bet A B C
using assms(1 ) assms(2 ) l6-4-2 by blast

lemma or-bet-out:
shows Bet A B C ∨ B Out A C ∨ ¬ Col A B C
using not-out-bet by blast

lemma not-bet-out:
assumes Col A B C and
¬ Bet A B C

shows B Out A C
by (simp add: assms(1 ) assms(2 ) l6-4-2 )

lemma not-bet-and-out:
shows ¬ (Bet A B C ∧ B Out A C )
using bet-col l6-4-1 by blast

lemma out-to-bet:
assumes Col A ′ B ′ C ′ and

B Out A C ←→ B ′ Out A ′ C ′ and
Bet A B C

shows Bet A ′ B ′ C ′

using assms(1 ) assms(2 ) assms(3 ) not-bet-and-out or-bet-out by blast

lemma col-out2-col:
assumes Col A B C and

B Out A AA and
B Out C CC

shows Col AA B CC using l6-21
by (smt Tarski-neutral-dimensionless.out-col Tarski-neutral-dimensionless-axioms assms(1 ) assms(2 ) assms(3 ) col-trivial-2

not-col-permutation-1 out-diff1 )

lemma bet2-out-out:
assumes B 6= A and

B ′ 6= A and
A Out C C ′ and
Bet A B C and
Bet A B ′ C ′

shows A Out B B ′

by (meson assms(1 ) assms(2 ) assms(3 ) assms(4 ) assms(5 ) bet-out l6-6 l6-7 )

lemma bet2--out:
assumes A 6= B and

A 6= B ′ and
Bet A B C
and Bet A B ′ C

shows A Out B B ′

using Out-def assms(1 ) assms(2 ) assms(3 ) assms(4 ) l5-3 by auto

lemma out-bet-out-1 :
assumes P Out A C and
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Bet A B C
shows P Out A B
by (metis assms(1 ) assms(2 ) not-bet-and-out out2-bet-out out-trivial)

lemma out-bet-out-2 :
assumes P Out A C and

Bet A B C
shows P Out B C
using assms(1 ) assms(2 ) l6-6 l6-7 out-bet-out-1 by blast

lemma out-bet--out:
assumes Bet P Q A and

Q Out A B
shows P Out A B
by (smt Out-def assms(1 ) assms(2 ) bet-out-1 bet-out--bet)

lemma segment-reverse:
assumes Bet A B C
shows ∃ B ′. Bet A B ′ C ∧ Cong C B ′ A B
by (metis Bet-perm Cong-perm assms bet-cong-eq cong-reflexivity segment-construction-2 )

lemma diff-col-ex:
shows ∃ C . A 6= C ∧ B 6= C ∧ Col A B C
by (metis bet-col bet-neq12--neq point-construction-different)

lemma diff-bet-ex3 :
assumes Bet A B C
shows ∃ D. A 6= D ∧ B 6= D ∧ C 6= D ∧ Col A B D
by (metis (mono-tags, opaque-lifting) Col-def bet-out-1 between-trivial2 col-transitivity-1 l6-4-1 point-construction-different)

lemma diff-col-ex3 :
assumes Col A B C
shows ∃ D. A 6= D ∧ B 6= D ∧ C 6= D ∧ Col A B D
by (metis Bet-perm Col-def between-equality between-trivial2 point-construction-different)

lemma Out-cases:
assumes A Out B C ∨ A Out C B
shows A Out B C
using assms l6-6 by blast

3.6 Midpoint
lemma midpoint-dec:

I Midpoint A B ∨ ¬ I Midpoint A B
by simp

lemma is-midpoint-id:
assumes A Midpoint A B
shows A = B
using Midpoint-def assms between-cong by blast

lemma is-midpoint-id-2 :
assumes A Midpoint B A
shows A = B
using Midpoint-def assms cong-diff-2 by blast

lemma l7-2 :
assumes M Midpoint A B
shows M Midpoint B A
using Bet-perm Cong-perm Midpoint-def assms by blast

lemma l7-3 :
assumes M Midpoint A A
shows M = A
using Midpoint-def assms bet-neq23--neq by blast
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lemma l7-3-2 :
A Midpoint A A
by (simp add: Midpoint-def between-trivial2 cong-reflexivity)

lemma symmetric-point-construction:
∃ P ′. A Midpoint P P ′

by (meson Midpoint-def cong--le cong--le3412 le-anti-symmetry segment-construction)

lemma symmetric-point-uniqueness:
assumes P Midpoint A P1 and

P Midpoint A P2
shows P1 = P2
by (metis Midpoint-def assms(1 ) assms(2 ) between-cong-3 cong-diff-4 cong-inner-transitivity)

lemma l7-9 :
assumes A Midpoint P X and

A Midpoint Q X
shows P = Q
using assms(1 ) assms(2 ) l7-2 symmetric-point-uniqueness by blast

lemma l7-9-bis:
assumes A Midpoint P X and

A Midpoint X Q
shows P = Q
using assms(1 ) assms(2 ) l7-2 symmetric-point-uniqueness by blast

lemma l7-13-R1 :
assumes A 6= P and

A Midpoint P ′ P and
A Midpoint Q ′ Q

shows Cong P Q P ′ Q ′

proof −
obtain X where P1 : Bet P ′ P X ∧ Cong P X Q A

using segment-construction by blast
obtain X ′ where P2 : Bet X P ′ X ′ ∧ Cong P ′ X ′ Q A

using segment-construction by blast
obtain Y where P3 : Bet Q ′ Q Y ∧ Cong Q Y P A

using segment-construction by blast
obtain Y ′ where P4 : Bet Y Q ′ Y ′ ∧ Cong Q ′ Y ′ P A

using segment-construction by blast
have P5 : Bet Y A Q ′

by (meson Midpoint-def P3 P4 assms(3 ) bet3--bet between-symmetry l5-3 )
have P6 : Bet P ′ A X

using Midpoint-def P1 assms(2 ) between-exchange4 by blast
have P7 : Bet A P X

using Midpoint-def P1 assms(2 ) between-exchange3 by blast
have P8 : Bet Y Q A

using Midpoint-def P3 assms(3 ) between-exchange3 between-symmetry by blast
have P9 : Bet A Q ′ Y ′

using P4 P5 between-exchange3 by blast
have P10 : Bet X ′ P ′ A

using P2 P6 between-exchange3 between-symmetry by blast
have P11 : Bet X A X ′

using P10 P2 P6 between-symmetry outer-transitivity-between2 by blast
have P12 : Bet Y A Y ′

using P4 P5 between-exchange4 by blast
have P13 : Cong A X Y A

using P1 P3 P7 P8 l2-11-b not-cong-4321 by blast
have P14 : Cong A Y ′ X ′ A
proof −

have Q1 : Cong Q ′ Y ′ P ′ A
using Midpoint-def P4 assms(2 ) cong-transitivity not-cong-3421 by blast

have Cong A Q ′ X ′ P ′

by (meson Midpoint-def P2 assms(3 ) cong-transitivity not-cong-3421 )
then show ?thesis

using P10 P9 Q1 l2-11-b by blast
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qed
have P15 : Cong A Y A Y ′

proof −
have Cong Q Y Q ′ Y ′

using P3 P4 cong-transitivity not-cong-3412 by blast
then show ?thesis

using Bet-perm Cong-perm Midpoint-def P8 P9 assms(3 ) l2-11-b by blast
qed
have P16 : Cong X A Y ′ A

using Cong-cases P13 P15 cong-transitivity by blast
have P17 : Cong A X ′ A Y

using P14 P15 cong-transitivity not-cong-3421 by blast
have P18 : X A X ′ Y ′ FSC Y ′ A Y X
proof −

have Q3 : Col X A X ′

by (simp add: Col-def P11 )
have Cong X X ′ Y ′ Y

using Bet-cases P11 P12 P16 P17 l2-11-b by blast
then show ?thesis

by (simp add: Cong3-def FSC-def P16 P17 Q3 cong-4321 cong-pseudo-reflexivity)
qed
then have Y Q A X IFSC Y ′ Q ′ A X ′

by (smt IFSC-def Midpoint-def P14 P15 P16 P7 P8 P9 assms(1 ) assms(3 ) bet-neq12--neq between-symmetry cong-4321
cong-inner-transitivity cong-right-commutativity l4-16 )

then have X P A Q IFSC X ′ P ′ A Q ′

by (meson IFSC-def Midpoint-def P10 P7 assms(2 ) between-symmetry cong-4312 l4-2 )
then show ?thesis

using l4-2 by auto
qed

lemma l7-13 :
assumes A Midpoint P ′ P and

A Midpoint Q ′ Q
shows Cong P Q P ′ Q ′

proof (cases)
assume A = P
then show ?thesis

using Midpoint-def assms(1 ) assms(2 ) cong-3421 is-midpoint-id-2 by blast
next

show ?thesis
by (metis Tarski-neutral-dimensionless.l7-13-R1 Tarski-neutral-dimensionless-axioms assms(1 ) assms(2 ) cong-trivial-identity

is-midpoint-id-2 not-cong-2143 )
qed

lemma l7-15 :
assumes A Midpoint P P ′ and

A Midpoint Q Q ′ and
A Midpoint R R ′ and
Bet P Q R

shows Bet P ′ Q ′ R ′

proof −
have P Q R Cong3 P ′ Q ′ R ′

using Cong3-def assms(1 ) assms(2 ) assms(3 ) l7-13 l7-2 by blast
then show ?thesis

using assms(4 ) l4-6 by blast
qed

lemma l7-16 :
assumes A Midpoint P P ′ and

A Midpoint Q Q ′ and
A Midpoint R R ′ and
A Midpoint S S ′ and
Cong P Q R S

shows Cong P ′ Q ′ R ′ S ′

by (meson assms(1 ) assms(2 ) assms(3 ) assms(4 ) assms(5 ) cong-transitivity l7-13 not-cong-3412 )
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lemma symmetry-preserves-midpoint:
assumes Z Midpoint A D and

Z Midpoint B E and
Z Midpoint C F and
B Midpoint A C

shows E Midpoint D F
by (meson Midpoint-def assms(1 ) assms(2 ) assms(3 ) assms(4 ) l7-15 l7-16 )

lemma Mid-cases:
assumes A Midpoint B C ∨ A Midpoint C B
shows A Midpoint B C
using assms l7-2 by blast

lemma Mid-perm:
assumes A Midpoint B C
shows A Midpoint B C ∧ A Midpoint C B
by (simp add: assms l7-2 )

lemma l7-17 :
assumes A Midpoint P P ′ and

B Midpoint P P ′

shows A = B
proof −

obtain pp :: ′p ⇒ ′p ⇒ ′p where
f1 : ∀ p pa. p Midpoint pa (pp p pa)
by (meson symmetric-point-construction)

then have ∀ p pa. Bet pa p (pp p pa)
by (meson Midpoint-def )

then have f2 : ∀ p. Bet p p p
by (meson between-inner-transitivity)

have f3 : ∀ p pa. Bet (pp pa p) pa p
using f1 Mid-perm Midpoint-def by blast

have f4 : ∀ p. pp p p = p
using f2 f1 by (metis Midpoint-def bet-cong-eq)

have f5 : Bet (pp P P ′) P B
using f3 by (meson Midpoint-def assms(2 ) between-inner-transitivity)

have f6 : A Midpoint P ′ P
using Mid-perm assms(1 ) by blast

have f7 : Bet (pp P P ′) P A
using f3 Midpoint-def assms(1 ) between-inner-transitivity by blast

have f8 : Bet P ′ A P
using f6 by (simp add: Midpoint-def )

have Cong P ′ A A P
using f6 Midpoint-def by blast

then have P ′ = P −→ A = B
using f8 by (metis (no-types) Midpoint-def assms(2 ) bet-cong-eq between-inner-transitivity l5-2 )

then show ?thesis
using f7 f6 f5 f4 f1 by (metis (no-types) Col-perm Mid-perm assms(2 ) bet-col l4-18 l5-2 l7-13 )

qed

lemma l7-17-bis:
assumes A Midpoint P P ′ and

B Midpoint P ′ P
shows A = B
by (meson Tarski-neutral-dimensionless.l7-17 Tarski-neutral-dimensionless.l7-2 Tarski-neutral-dimensionless-axioms

assms(1 ) assms(2 ))

lemma l7-20 :
assumes Col A M B and

Cong M A M B
shows A = B ∨ M Midpoint A B
by (metis Bet-cases Col-def Midpoint-def assms(1 ) assms(2 ) between-cong cong-left-commutativity not-cong-3412 )

lemma l7-20-bis:
assumes A 6= B and

Col A M B and
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Cong M A M B
shows M Midpoint A B
using assms(1 ) assms(2 ) assms(3 ) l7-20 by blast

lemma cong-col-mid:
assumes A 6= C and

Col A B C and
Cong A B B C

shows B Midpoint A C
using assms(1 ) assms(2 ) assms(3 ) cong-left-commutativity l7-20 by blast

lemma l7-21-R1 :
assumes ¬ Col A B C and

B 6= D and
Cong A B C D and
Cong B C D A and
Col A P C and
Col B P D

shows P Midpoint A C
proof −

obtain X where P1 : B D P Cong3 D B X
using Col-perm assms(6 ) cong-pseudo-reflexivity l4-14 by blast

have P2 : Col D B X
using P1 assms(6 ) l4-13 not-col-permutation-5 by blast

have P3 : B D P A FSC D B X C
using FSC-def P1 assms(3 ) assms(4 ) assms(6 ) not-col-permutation-5 not-cong-2143 not-cong-3412 by blast

have P4 : B D P C FSC D B X A
by (simp add: FSC-def P1 assms(3 ) assms(4 ) assms(6 ) col-permutation-5 cong-4321 )

have A P C Cong3 C X A
using Cong3-def Cong-perm P3 P4 assms(2 ) cong-pseudo-reflexivity l4-16 by blast

then show ?thesis
by (smt Cong3-def NCol-cases P2 assms(1 ) assms(2 ) assms(5 ) assms(6 ) colx cong-col-mid l4-13 not-col-distincts

not-col-permutation-1 not-cong-1243 )
qed

lemma l7-21 :
assumes ¬ Col A B C and

B 6= D and
Cong A B C D and
Cong B C D A and
Col A P C and
Col B P D

shows P Midpoint A C ∧ P Midpoint B D
by (smt assms(1 ) assms(2 ) assms(3 ) assms(4 ) assms(5 ) assms(6 ) col-transitivity-2 is-midpoint-id-2 l7-21-R1 not-col-distincts

not-cong-3412 )

lemma l7-22-aux-R1 :
assumes Bet A1 C C and

Bet B1 C B2 and
Cong C A1 C B1 and
Cong C C C B2 and
M1 Midpoint A1 B1 and
M2 Midpoint A2 B2and
C A1 Le C C

shows Bet M1 C M2
by (metis assms(3 ) assms(5 ) assms(7 ) cong-diff-3 l7-3 le-diff not-bet-distincts)

lemma l7-22-aux-R2 :
assumes A2 6= C and

Bet A1 C A2 and
Bet B1 C B2 and
Cong C A1 C B1 and
Cong C A2 C B2 and
M1 Midpoint A1 B1 and
M2 Midpoint A2 B2 and
C A1 Le C A2
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shows Bet M1 C M2
proof −

obtain X where P1 : C Midpoint A2 X
using symmetric-point-construction by blast

obtain X0 where P2 : C Midpoint B2 X0
using symmetric-point-construction by blast

obtain X1 where P3 : C Midpoint M2 X1
using symmetric-point-construction by blast

have P4 : X1 Midpoint X X0
using P1 P2 P3 assms(7 ) symmetry-preserves-midpoint by blast

have P5 : C A1 Le C X
using Cong-perm Midpoint-def P1 assms(8 ) cong-reflexivity l5-6 by blast

have P6 : Bet C A1 X
by (smt Midpoint-def P1 P5 assms(1 ) assms(2 ) bet2--out between-symmetry is-midpoint-id-2 l5-2 l6-13-1 )

have P7 : C B1 Le C X0
proof −

have Q1 : Cong C A1 C B1
by (simp add: assms(4 ))

have Cong C X C X0
using P1 P2 assms(5 ) l7-16 l7-3-2 by blast

then show ?thesis
using P5 Q1 l5-6 by blast

qed
have P8 : Bet C B1 X0

by (smt Midpoint-def P2 P7 assms(1 ) assms(3 ) assms(5 ) bet2--out between-symmetry cong-identity l5-2 l6-13-1 )
obtain Q where P9 : Bet X1 Q C ∧ Bet A1 Q B1

by (meson Bet-perm Midpoint-def P4 P6 P8 l3-17 )
have P10 : X A1 C X1 IFSC X0 B1 C X1

by (smt Cong-perm IFSC-def Midpoint-def P1 P2 P4 P6 P8 assms(4 ) assms(5 ) between-symmetry cong-reflexivity
l7-16 l7-3-2 )

have P11 : Cong A1 X1 B1 X1
using P10 l4-2 by blast

have P12 : Cong Q A1 Q B1
proof (cases)

assume C = X1
then show ?thesis

using P9 assms(4 ) bet-neq12--neq by blast
next

assume Q1 : ¬ C = X1
have Q2 : Col C X1 Q

using Col-def P9 by blast
have Q3 : Cong C A1 C B1

by (simp add: assms(4 ))
have Cong X1 A1 X1 B1

using P11 not-cong-2143 by blast
then show ?thesis

using Q1 Q2 Q3 l4-17 by blast
qed
have P13 : Q Midpoint A1 B1

by (simp add: Midpoint-def P12 P9 cong-left-commutativity)
then show ?thesis

using Midpoint-def P3 P9 assms(6 ) between-inner-transitivity between-symmetry l7-17 by blast
qed

lemma l7-22-aux:
assumes Bet A1 C A2 and

Bet B1 C B2 and
Cong C A1 C B1 and
Cong C A2 C B2 and
M1 Midpoint A1 B1 and
M2 Midpoint A2 B2 and
C A1 Le C A2

shows Bet M1 C M2
by (smt assms(1 ) assms(2 ) assms(3 ) assms(4 ) assms(5 ) assms(6 ) assms(7 ) l7-22-aux-R1 l7-22-aux-R2 )

lemma l7-22 :
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assumes Bet A1 C A2 and
Bet B1 C B2 and
Cong C A1 C B1 and
Cong C A2 C B2 and
M1 Midpoint A1 B1 and
M2 Midpoint A2 B2

shows Bet M1 C M2
by (meson assms(1 ) assms(2 ) assms(3 ) assms(4 ) assms(5 ) assms(6 ) between-symmetry l7-22-aux local.le-cases)

lemma bet-col1 :
assumes Bet A B D and

Bet A C D
shows Col A B C
using Bet-perm Col-def assms(1 ) assms(2 ) l5-3 by blast

lemma l7-25-R1 :
assumes Cong C A C B and

Col A B C
shows ∃ X . X Midpoint A B
using assms(1 ) assms(2 ) l7-20 l7-3-2 not-col-permutation-5 by blast

lemma l7-25-R2 :
assumes Cong C A C B and
¬ Col A B C

shows ∃ X . X Midpoint A B
proof −

obtain P where P1 : Bet C A P ∧ A 6= P
using point-construction-different by auto

obtain Q where P2 : Bet C B Q ∧ Cong B Q A P
using segment-construction by blast

obtain R where P3 : Bet A R Q ∧ Bet B R P
using P1 P2 between-symmetry inner-pasch by blast

obtain X where P4 : Bet A X B ∧ Bet R X C
using P1 P3 inner-pasch by blast

have Cong X A X B
proof −

have Q1 : Cong R A R B −→ Cong X A X B
proof (cases)

assume R = C
then show ?thesis

using P4 bet-neq12--neq by blast
next

assume Q2 : ¬ R = C
have Col R C X

using Col-perm P4 bet-col by blast
then show ?thesis

using Q2 assms(1 ) l4-17 by blast
qed
have Cong R A R B
proof −

have Q3 : C A P B OFSC C B Q A
by (simp add: OFSC-def P1 P2 assms(1 ) cong-pseudo-reflexivity cong-symmetry)

have Q4 : Cong P B Q A
using Q3 assms(2 ) five-segment-with-def not-col-distincts by blast

obtain R ′ where Q5 : Bet A R ′ Q ∧ B R P Cong3 A R ′ Q
using Cong-perm P3 Q4 l4-5 by blast

have Q6 : B R P A IFSC A R ′ Q B
by (meson Cong3-def IFSC-def OFSC-def P3 Q3 Q5 not-cong-2143 )

have Q7 : B R P Q IFSC A R ′ Q P
using IFSC-def P2 Q6 cong-pseudo-reflexivity by auto

have Q8 : Cong R A R ′ B
using Q6 l4-2 by auto

have Q9 : Cong R Q R ′ P
using Q7 l4-2 by auto

have Q10 : A R Q Cong3 B R ′ P
using Cong3-def Q4 Q8 Q9 cong-commutativity not-cong-4321 by blast
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have Q11 : Col B R ′ P
using P3 Q10 bet-col l4-13 by blast

have R = R ′

proof −
have R1 : B 6= P

using P1 assms(1 ) between-cong by blast
then have R2 : A 6= Q

using Q4 cong-diff-2 by blast
have R3 : B 6= Q

using P1 P2 cong-diff-3 by blast
then have R4 : B 6= R

by (metis Cong3-def P1 Q11 Q5 assms(2 ) bet-col cong-diff-3 l6-21 not-col-distincts)
have R5 : ¬ Col A Q B

by (metis P2 R3 assms(2 ) bet-col col-permutation-3 col-trivial-2 l6-21 )
have R6 : B 6= P

by (simp add: R1 )
have R7 : Col A Q R

using NCol-cases P3 bet-col by blast
have R8 : Col A Q R ′

using Q5 bet-col col-permutation-5 by blast
have R9 : Col B P R

using NCol-cases P3 bet-col by blast
have Col B P R ′

using Col-perm Q11 by blast
then show ?thesis

using R5 R6 R7 R8 R9 l6-21 by blast
qed
then show ?thesis

using Q8 by blast
qed
then show ?thesis

using Q1 by blast
qed
then show ?thesis

using P4 assms(2 ) bet-col l7-20-bis not-col-distincts by blast
qed

lemma l7-25 :
assumes Cong C A C B
shows ∃ X . X Midpoint A B
using assms l7-25-R1 l7-25-R2 by blast

lemma midpoint-distinct-1 :
assumes A 6= B and

I Midpoint A B
shows I 6= A ∧ I 6= B
using assms(1 ) assms(2 ) is-midpoint-id is-midpoint-id-2 by blast

lemma midpoint-distinct-2 :
assumes I 6= A and

I Midpoint A B
shows A 6= B ∧ I 6= B
using assms(1 ) assms(2 ) is-midpoint-id-2 l7-3 by blast

lemma midpoint-distinct-3 :
assumes I 6= B and

I Midpoint A B
shows A 6= B ∧ I 6= A
using assms(1 ) assms(2 ) is-midpoint-id l7-3 by blast

lemma midpoint-def :
assumes Bet A B C and

Cong A B B C
shows B Midpoint A C
using Midpoint-def assms(1 ) assms(2 ) by blast
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lemma midpoint-bet:
assumes B Midpoint A C
shows Bet A B C
using Midpoint-def assms by blast

lemma midpoint-col:
assumes M Midpoint A B
shows Col M A B
using assms bet-col col-permutation-4 midpoint-bet by blast

lemma midpoint-cong:
assumes B Midpoint A C
shows Cong A B B C
using Midpoint-def assms by blast

lemma midpoint-out:
assumes A 6= C and

B Midpoint A C
shows A Out B C
using assms(1 ) assms(2 ) bet-out midpoint-bet midpoint-distinct-1 by blast

lemma midpoint-out-1 :
assumes A 6= C and

B Midpoint A C
shows C Out A B
by (metis Tarski-neutral-dimensionless.midpoint-bet Tarski-neutral-dimensionless.midpoint-distinct-1 Tarski-neutral-dimensionless-axioms

assms(1 ) assms(2 ) bet-out-1 l6-6 )

lemma midpoint-not-midpoint:
assumes A 6= B and

I Midpoint A B
shows ¬ B Midpoint A I
using assms(1 ) assms(2 ) between-equality-2 midpoint-bet midpoint-distinct-1 by blast

lemma swap-diff :
assumes A 6= B
shows B 6= A
using assms by auto

lemma cong-cong-half-1 :
assumes M Midpoint A B and

M ′ Midpoint A ′ B ′ and
Cong A B A ′ B ′

shows Cong A M A ′ M ′

proof −
obtain M ′′ where P1 : Bet A ′ M ′′ B ′ ∧ A M B Cong3 A ′ M ′′ B ′

using assms(1 ) assms(3 ) l4-5 midpoint-bet by blast
have P2 : M ′′ Midpoint A ′ B ′

by (meson Cong3-def P1 assms(1 ) cong-inner-transitivity midpoint-cong midpoint-def )
have P3 : M ′ = M ′′

using P2 assms(2 ) l7-17 by auto
then show ?thesis

using Cong3-def P1 by blast
qed

lemma cong-cong-half-2 :
assumes M Midpoint A B and

M ′ Midpoint A ′ B ′ and
Cong A B A ′ B ′

shows Cong B M B ′ M ′

using assms(1 ) assms(2 ) assms(3 ) cong-cong-half-1 l7-2 not-cong-2143 by blast

lemma cong-mid2--cong:
assumes M Midpoint A B and

M ′ Midpoint A ′ B ′ and
Cong A M A ′ M ′
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shows Cong A B A ′ B ′

by (meson assms(1 ) assms(2 ) assms(3 ) cong-inner-transitivity l2-11-b midpoint-bet midpoint-cong)

lemma mid--lt:
assumes A 6= B and

M Midpoint A B
shows A M Lt A B
using assms(1 ) assms(2 ) bet--lt1213 midpoint-bet midpoint-distinct-1 by blast

lemma le-mid2--le13 :
assumes M Midpoint A B and

M ′ Midpoint A ′ B ′ and
A M Le A ′ M ′

shows A B Le A ′ B ′

by (smt Tarski-neutral-dimensionless.cong-mid2--cong Tarski-neutral-dimensionless.l7-13 Tarski-neutral-dimensionless-axioms
assms(1 ) assms(2 ) assms(3 ) bet2-le2--le2356 l5-6 l7-3-2 le-anti-symmetry le-comm local.le-cases midpoint-bet)

lemma le-mid2--le12 :
assumes M Midpoint A B and

M ′ Midpoint A ′ B ′

and A B Le A ′ B ′

shows A M Le A ′ M ′

by (meson assms(1 ) assms(2 ) assms(3 ) cong--le3412 cong-cong-half-1 le-anti-symmetry le-mid2--le13 local.le-cases)

lemma lt-mid2--lt13 :
assumes M Midpoint A B and

M ′ Midpoint A ′ B ′ and
A M Lt A ′ M ′

shows A B Lt A ′ B ′

by (meson Tarski-neutral-dimensionless.le-mid2--le12 Tarski-neutral-dimensionless-axioms assms(1 ) assms(2 ) assms(3 )
lt--nle nlt--le)

lemma lt-mid2--lt12 :
assumes M Midpoint A B and

M ′ Midpoint A ′ B ′ and
A B Lt A ′ B ′

shows A M Lt A ′ M ′

by (meson Tarski-neutral-dimensionless.le-mid2--le13 Tarski-neutral-dimensionless-axioms assms(1 ) assms(2 ) assms(3 )
le--nlt nle--lt)

lemma midpoint-preserves-out:
assumes A Out B C and

M Midpoint A A ′ and
M Midpoint B B ′ and
M Midpoint C C ′

shows A ′ Out B ′ C ′

by (smt Out-def assms(1 ) assms(2 ) assms(3 ) assms(4 ) l6-4-2 l7-15 l7-2 not-bet-and-out not-col-distincts)

lemma col-cong-bet:
assumes Col A B D and

Cong A B C D and
Bet A C B

shows Bet C A D ∨ Bet C B D
by (smt Col-def assms(1 ) assms(2 ) assms(3 ) bet-cong-eq between-inner-transitivity col-transitivity-2 cong-4321 l6-2

not-bet-and-out not-cong-4312 third-point)

lemma col-cong2-bet1 :
assumes Col A B D and

Bet A C B and
Cong A B C D and
Cong A C B D

shows Bet C B D
by (metis assms(1 ) assms(2 ) assms(3 ) assms(4 ) bet--le1213 bet-cong-eq between-symmetry col-cong-bet cong--le cong-left-commutativity

l5-12-b l5-6 outer-transitivity-between2 )

lemma col-cong2-bet2 :
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assumes Col A B D and
Bet A C B and
Cong A B C D and
Cong A D B C

shows Bet C A D
by (metis assms(1 ) assms(2 ) assms(3 ) assms(4 ) bet-cong-eq col-cong-bet cong-identity not-bet-distincts not-cong-3421

outer-transitivity-between2 )

lemma col-cong2-bet3 :
assumes Col A B D and

Bet A B C and
Cong A B C D and
Cong A C B D

shows Bet B C D
by (metis assms(1 ) assms(2 ) assms(3 ) assms(4 ) bet--le1213 bet--le2313 bet-col col-transitivity-2 cong-diff-3 cong-reflexivity

l5-12-b l5-6 not-bet-distincts)

lemma col-cong2-bet4 :
assumes Col A B C and

Bet A B D and
Cong A B C D and
Cong A D B C

shows Bet B D C
using assms(1 ) assms(2 ) assms(3 ) assms(4 ) col-cong2-bet3 cong-right-commutativity by blast

lemma col-bet2-cong1 :
assumes Col A B D and

Bet A C B and
Cong A B C D and
Bet C B D

shows Cong A C D B
by (meson assms(2 ) assms(3 ) assms(4 ) between-symmetry cong-pseudo-reflexivity cong-right-commutativity l4-3 )

lemma col-bet2-cong2 :
assumes Col A B D and

Bet A C B and
Cong A B C D and
Bet C A D

shows Cong D A B C
by (meson assms(2 ) assms(3 ) assms(4 ) between-symmetry cong-commutativity cong-pseudo-reflexivity cong-symmetry

l4-3 )

lemma bet2-lt2--lt:
assumes Bet a Po b and

Bet A PO B and
Po a Lt PO A and
Po b Lt PO B

shows a b Lt A B
by (metis Lt-cases Tarski-neutral-dimensionless.nle--lt Tarski-neutral-dimensionless-axioms assms(1 ) assms(2 ) assms(3 )

assms(4 ) bet2-le2--le1245 le--nlt lt--le)

lemma bet2-lt-le--lt:
assumes Bet a Po b and

Bet A PO B and
Cong Po a PO A and
Po b Lt PO B

shows a b Lt A B
by (smt Lt-def Tarski-neutral-dimensionless.l4-3-1 Tarski-neutral-dimensionless-axioms assms(1 ) assms(2 ) assms(3 )

assms(4 ) bet2-le2--le cong--le not-cong-2143 )

3.7 Orthogonality
lemma per-dec:

Per A B C ∨ ¬ Per A B C
by simp
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lemma l8-2 :
assumes Per A B C
shows Per C B A

proof −
obtain C ′ where P1 : B Midpoint C C ′ ∧ Cong A C A C ′

using Per-def assms by blast
obtain A ′ where P2 : B Midpoint A A ′

using symmetric-point-construction by blast
have Cong C ′ A C A ′

using Mid-perm P1 P2 l7-13 by blast
thus ?thesis

using P1 P2 Per-def cong-4321 cong-inner-transitivity by blast
qed

lemma Per-cases:
assumes Per A B C ∨ Per C B A
shows Per A B C
using assms l8-2 by blast

lemma Per-perm :
assumes Per A B C
shows Per A B C ∧ Per C B A
by (simp add: assms l8-2 )

lemma l8-3 :
assumes Per A B C and

A 6= B and
Col B A A ′

shows Per A ′ B C
by (smt Per-def assms(1 ) assms(2 ) assms(3 ) l4-17 l7-13 l7-2 l7-3-2 )

lemma l8-4 :
assumes Per A B C and

B Midpoint C C ′

shows Per A B C ′

by (metis Tarski-neutral-dimensionless.l8-2 Tarski-neutral-dimensionless-axioms assms(1 ) assms(2 ) l8-3 midpoint-col
midpoint-distinct-1 )

lemma l8-5 :
Per A B B
using Per-def cong-reflexivity l7-3-2 by blast

lemma l8-6 :
assumes Per A B C and

Per A ′ B C and
Bet A C A ′

shows B = C
by (metis Per-def assms(1 ) assms(2 ) assms(3 ) l4-19 midpoint-distinct-3 symmetric-point-uniqueness)

lemma l8-7 :
assumes Per A B C and

Per A C B
shows B = C

proof −
obtain C ′ where P1 : B Midpoint C C ′ ∧ Cong A C A C ′

using Per-def assms(1 ) by blast
obtain A ′ where P2 : C Midpoint A A ′

using Per-def assms(2 ) l8-2 by blast
have Per C ′ C A
by (metis P1 Tarski-neutral-dimensionless.l8-3 Tarski-neutral-dimensionless-axioms assms(2 ) bet-col l8-2 midpoint-bet

midpoint-distinct-3 )
then have Cong A C ′ A ′ C ′

using Cong-perm P2 Per-def symmetric-point-uniqueness by blast
then have Cong A ′ C A ′ C ′

using P1 P2 cong-inner-transitivity midpoint-cong not-cong-2134 by blast
then have Q4 : Per A ′ B C
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using P1 Per-def by blast
have Bet A ′ C A

using Mid-perm P2 midpoint-bet by blast
thus ?thesis

using Q4 assms(1 ) l8-6 by blast
qed

lemma l8-8 :
assumes Per A B A
shows A = B
using Tarski-neutral-dimensionless.l8-6 Tarski-neutral-dimensionless-axioms assms between-trivial2 by fastforce

lemma per-distinct:
assumes Per A B C and

A 6= B
shows A 6= C
using assms(1 ) assms(2 ) l8-8 by blast

lemma per-distinct-1 :
assumes Per A B C and

B 6= C
shows A 6= C
using assms(1 ) assms(2 ) l8-8 by blast

lemma l8-9 :
assumes Per A B C and

Col A B C
shows A = B ∨ C = B
using Col-cases assms(1 ) assms(2 ) l8-3 l8-8 by blast

lemma l8-10 :
assumes Per A B C and

A B C Cong3 A ′ B ′ C ′

shows Per A ′ B ′ C ′

proof −
obtain D where P1 : B Midpoint C D ∧ Cong A C A D

using Per-def assms(1 ) by blast
obtain D ′ where P2 : Bet C ′ B ′ D ′ ∧ Cong B ′ D ′ B ′ C ′

using segment-construction by blast
have P3 : B ′ Midpoint C ′ D ′

by (simp add: Midpoint-def P2 cong-4312 )
have Cong A ′ C ′ A ′ D ′

proof (cases)
assume C = B
thus ?thesis

by (metis Cong3-def P3 assms(2 ) cong-diff-4 cong-reflexivity is-midpoint-id)
next

assume Q1 : ¬ C = B
have C B D A OFSC C ′ B ′ D ′ A ′

by (metis Cong3-def OFSC-def P1 P3 Tarski-neutral-dimensionless.cong-mid2--cong Tarski-neutral-dimensionless-axioms
assms(2 ) cong-commutativity l4-3-1 midpoint-bet)

thus ?thesis
by (meson OFSC-def P1 Q1 cong-4321 cong-inner-transitivity five-segment-with-def )

qed
thus ?thesis

using Per-def P3 by blast
qed

lemma col-col-per-per :
assumes A 6= X and

C 6= X and
Col U A X and
Col V C X and
Per A X C

shows Per U X V
by (meson Tarski-neutral-dimensionless.l8-2 Tarski-neutral-dimensionless.l8-3 Tarski-neutral-dimensionless-axioms
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assms(1 ) assms(2 ) assms(3 ) assms(4 ) assms(5 ) not-col-permutation-3 )

lemma perp-in-dec:
X PerpAt A B C D ∨ ¬ X PerpAt A B C D
by simp

lemma perp-distinct:
assumes A B Perp C D
shows A 6= B ∧ C 6= D
using PerpAt-def Perp-def assms by auto

lemma l8-12 :
assumes X PerpAt A B C D
shows X PerpAt C D A B
using Per-perm PerpAt-def assms by auto

lemma per-col:
assumes B 6= C and

Per A B C and
Col B C D

shows Per A B D
by (metis Tarski-neutral-dimensionless.l8-3 Tarski-neutral-dimensionless-axioms assms(1 ) assms(2 ) assms(3 ) l8-2 )

lemma l8-13-2 :
assumes A 6= B and

C 6= D and
Col X A B and
Col X C D and
∃ U . ∃ V . Col U A B ∧ Col V C D ∧ U 6= X ∧ V 6= X ∧ Per U X V

shows X PerpAt A B C D
proof −

obtain pp :: ′p and ppa :: ′p where
f1 : Col pp A B ∧ Col ppa C D ∧ pp 6= X ∧ ppa 6= X ∧ Per pp X ppa
using assms(5 ) by blast

obtain ppb :: ′p ⇒ ′p ⇒ ′p ⇒ ′p ⇒ ′p ⇒ ′p and ppc :: ′p ⇒ ′p ⇒ ′p ⇒ ′p ⇒ ′p ⇒ ′p where
∀ x0 x1 x2 x3 x4 . (∃ v5 v6 . (Col v5 x3 x2 ∧ Col v6 x1 x0 ) ∧ ¬ Per v5 x4 v6 ) = ((Col (ppb x0 x1 x2 x3 x4 ) x3 x2 ∧

Col (ppc x0 x1 x2 x3 x4 ) x1 x0 ) ∧ ¬ Per (ppb x0 x1 x2 x3 x4 ) x4 (ppc x0 x1 x2 x3 x4 ))
by moura

then have f2 : ∀ p pa pb pc pd. (¬ p PerpAt pa pb pc pd ∨ pa 6= pb ∧ pc 6= pd ∧ Col p pa pb ∧ Col p pc pd ∧ (∀ pe
pf . (¬ Col pe pa pb ∨ ¬ Col pf pc pd) ∨ Per pe p pf )) ∧ (p PerpAt pa pb pc pd ∨ pa = pb ∨ pc = pd ∨ ¬ Col p pa pb
∨ ¬ Col p pc pd ∨ (Col (ppb pd pc pb pa p) pa pb ∧ Col (ppc pd pc pb pa p) pc pd) ∧ ¬ Per (ppb pd pc pb pa p) p (ppc
pd pc pb pa p))

using PerpAt-def by fastforce
{ assume ¬ Col (ppb D C B A X) pp X

then have ¬ Col (ppb D C B A X) A B ∨ ¬ Col (ppc D C B A X) C D ∨ Per (ppb D C B A X) X (ppc D C B A
X)

using f1 by (meson assms(1 ) assms(3 ) col3 not-col-permutation-2 ) }
moreover
{ assume ¬ Col (ppc D C B A X) ppa X

then have ¬ Col (ppb D C B A X) A B ∨ ¬ Col (ppc D C B A X) C D ∨ Per (ppb D C B A X) X (ppc D C B A
X)

using f1 by (meson assms(2 ) assms(4 ) col3 not-col-permutation-2 ) }
ultimately have ¬ Col (ppb D C B A X) A B ∨ ¬ Col (ppc D C B A X) C D ∨ Per (ppb D C B A X) X (ppc D C

B A X)
using f1 by (meson Tarski-neutral-dimensionless.col-col-per-per Tarski-neutral-dimensionless-axioms)

then have (X PerpAt A B C D ∨ A = B ∨ C = D ∨ ¬ Col X A B ∨ ¬ Col X C D ∨ Col (ppb D C B A X) A B ∧
Col (ppc D C B A X) C D ∧ ¬ Per (ppb D C B A X) X (ppc D C B A X)) ∧ (¬ Col (ppb D C B A X) A B ∨ ¬ Col
(ppc D C B A X) C D ∨ Per (ppb D C B A X) X (ppc D C B A X))

using f2 by presburger
thus ?thesis

using assms(1 ) assms(2 ) assms(3 ) assms(4 ) by blast
qed

lemma l8-14-1 :
¬ A B Perp A B
by (metis PerpAt-def Perp-def Tarski-neutral-dimensionless.col-trivial-1 Tarski-neutral-dimensionless.col-trivial-3 Tarski-neutral-dimensionless-axioms
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l8-8 )

lemma l8-14-2-1a:
assumes X PerpAt A B C D
shows A B Perp C D
using Perp-def assms by blast

lemma perp-in-distinct:
assumes X PerpAt A B C D
shows A 6= B ∧ C 6= D
using PerpAt-def assms by blast

lemma l8-14-2-1b:
assumes X PerpAt A B C D and

Col Y A B and
Col Y C D

shows X = Y
by (metis PerpAt-def assms(1 ) assms(2 ) assms(3 ) l8-13-2 l8-14-1 l8-14-2-1a)

lemma l8-14-2-1b-bis:
assumes A B Perp C D and

Col X A B and
Col X C D

shows X PerpAt A B C D
using Perp-def assms(1 ) assms(2 ) assms(3 ) l8-14-2-1b by blast

lemma l8-14-2-2 :
assumes A B Perp C D and
∀ Y . (Col Y A B ∧ Col Y C D) −→ X = Y

shows X PerpAt A B C D
by (metis Tarski-neutral-dimensionless.PerpAt-def Tarski-neutral-dimensionless.Perp-def Tarski-neutral-dimensionless-axioms

assms(1 ) assms(2 ))

lemma l8-14-3 :
assumes X PerpAt A B C D and

Y PerpAt A B C D
shows X = Y
by (meson PerpAt-def assms(1 ) assms(2 ) l8-14-2-1b)

lemma l8-15-1 :
assumes Col A B X and

A B Perp C X
shows X PerpAt A B C X
using NCol-perm assms(1 ) assms(2 ) col-trivial-3 l8-14-2-1b-bis by blast

lemma l8-15-2 :
assumes Col A B X and

X PerpAt A B C X
shows A B Perp C X
using assms(2 ) l8-14-2-1a by blast

lemma perp-in-per :
assumes B PerpAt A B B C
shows Per A B C
by (meson NCol-cases PerpAt-def assms col-trivial-3 )

lemma perp-sym:
assumes A B Perp A B
shows C D Perp C D
using assms l8-14-1 by auto

lemma perp-col0 :
assumes A B Perp C D and

X 6= Y and
Col A B X and
Col A B Y
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shows C D Perp X Y
proof −

obtain X0 where P1 : X0 PerpAt A B C D
using Perp-def assms(1 ) by blast

then have P2 : A 6= B ∧ C 6= D ∧ Col X0 A B ∧ Col X0 C D ∧
((Col U A B ∧ Col V C D) −→ Per U X0 V ) using PerpAt-def by blast
have Q1 : C 6= D using P2 by blast
have Q2 : X 6= Y using assms(2 ) by blast
have Q3 : Col X0 C D using P2 by blast
have Q4 : Col X0 X Y
proof −

have ∃ p pa. Col p pa Y ∧ Col p pa X ∧ Col p pa X0 ∧ p 6= pa
by (metis (no-types) Col-cases P2 assms(3 ) assms(4 ))

thus ?thesis
using col3 by blast

qed
have X0 PerpAt C D X Y
proof −

have ∀ U V . (Col U C D ∧ Col V X Y ) −→ Per U X0 V
by (metis Col-perm P1 Per-perm Q2 Tarski-neutral-dimensionless.PerpAt-def Tarski-neutral-dimensionless-axioms

assms(3 ) assms(4 ) colx)
thus ?thesis using Q1 Q2 Q3 Q4 PerpAt-def by blast

qed
thus ?thesis

using Perp-def by auto
qed

lemma per-perp-in:
assumes A 6= B and

B 6= C and
Per A B C

shows B PerpAt A B B C
by (metis Col-def assms(1 ) assms(2 ) assms(3 ) between-trivial2 l8-13-2 )

lemma per-perp:
assumes A 6= B and

B 6= C and
Per A B C

shows A B Perp B C
using Perp-def assms(1 ) assms(2 ) assms(3 ) per-perp-in by blast

lemma perp-left-comm:
assumes A B Perp C D
shows B A Perp C D

proof −
obtain X where X PerpAt A B C D

using Perp-def assms by blast
then have X PerpAt B A C D

using PerpAt-def col-permutation-5 by auto
thus ?thesis

using Perp-def by blast
qed

lemma perp-right-comm:
assumes A B Perp C D
shows A B Perp D C
by (meson Perp-def assms l8-12 perp-left-comm)

lemma perp-comm:
assumes A B Perp C D
shows B A Perp D C
by (simp add: assms perp-left-comm perp-right-comm)

lemma perp-in-sym:
assumes X PerpAt A B C D
shows X PerpAt C D A B
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by (simp add: assms l8-12 )

lemma perp-in-left-comm:
assumes X PerpAt A B C D
shows X PerpAt B A C D
by (metis Col-cases PerpAt-def assms)

lemma perp-in-right-comm:
assumes X PerpAt A B C D
shows X PerpAt A B D C
using assms perp-in-left-comm perp-in-sym by blast

lemma perp-in-comm:
assumes X PerpAt A B C D
shows X PerpAt B A D C
by (simp add: assms perp-in-left-comm perp-in-right-comm)

lemma Perp-cases:
assumes A B Perp C D ∨ B A Perp C D ∨ A B Perp D C ∨ B A Perp D C ∨ C D Perp A B ∨ C D Perp B A ∨

D C Perp A B ∨ D C Perp B A
shows A B Perp C D
by (meson Perp-def assms perp-in-sym perp-left-comm)

lemma Perp-perm :
assumes A B Perp C D
shows A B Perp C D ∧ B A Perp C D ∧ A B Perp D C ∧ B A Perp D C ∧ C D Perp A B ∧ C D Perp B A ∧ D C

Perp A B ∧ D C Perp B A
by (meson Perp-def assms perp-in-sym perp-left-comm)

lemma Perp-in-cases:
assumes X PerpAt A B C D ∨ X PerpAt B A C D ∨ X PerpAt A B D C ∨ X PerpAt B A D C ∨ X PerpAt C D A

B ∨ X PerpAt C D B A ∨ X PerpAt D C A B ∨ X PerpAt D C B A
shows X PerpAt A B C D
using assms perp-in-left-comm perp-in-sym by blast

lemma Perp-in-perm:
assumes X PerpAt A B C D
shows X PerpAt A B C D ∧ X PerpAt B A C D ∧ X PerpAt A B D C ∧ X PerpAt B A D C ∧ X PerpAt C D A B
∧ X PerpAt C D B A ∧ X PerpAt D C A B ∧ X PerpAt D C B A

using Perp-in-cases assms by blast

lemma perp-in-col:
assumes X PerpAt A B C D
shows Col A B X ∧ Col C D X
using PerpAt-def assms col-permutation-2 by presburger

lemma perp-perp-in:
assumes A B Perp C A
shows A PerpAt A B C A
using assms l8-15-1 not-col-distincts by blast

lemma perp-per-1 :
assumes A B Perp C A
shows Per B A C
using Perp-in-cases assms perp-in-per perp-perp-in by blast

lemma perp-per-2 :
assumes A B Perp A C
shows Per B A C
by (simp add: Perp-perm assms perp-per-1 )

lemma perp-col:
assumes A 6= E and

A B Perp C D and
Col A B E

shows A E Perp C D
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using Perp-perm assms(1 ) assms(2 ) assms(3 ) col-trivial-3 perp-col0 by blast

lemma perp-col2 :
assumes A B Perp X Y and

C 6= D and
Col A B C and
Col A B D

shows C D Perp X Y
using Perp-perm assms(1 ) assms(2 ) assms(3 ) assms(4 ) perp-col0 by blast

lemma perp-col4 :
assumes P 6= Q and

R 6= S and
Col A B P and
Col A B Q and
Col C D R and
Col C D S and
A B Perp C D

shows P Q Perp R S
using assms(1 ) assms(2 ) assms(3 ) assms(4 ) assms(5 ) assms(6 ) assms(7 ) perp-col0 by blast

lemma perp-not-eq-1 :
assumes A B Perp C D
shows A 6= B
using assms perp-distinct by auto

lemma perp-not-eq-2 :
assumes A B Perp C D
shows C 6= D
using assms perp-distinct by auto

lemma diff-per-diff :
assumes A 6= B and

Cong A P B R and
Per B A P
and Per A B R

shows P 6= R
using assms(1 ) assms(3 ) assms(4 ) l8-2 l8-7 by blast

lemma per-not-colp:
assumes A 6= B and

A 6= P and
B 6= R and
Per B A P
and Per A B R

shows ¬ Col P A R
by (metis Per-cases Tarski-neutral-dimensionless.col-permutation-4 Tarski-neutral-dimensionless-axioms assms(1 ) assms(2 )

assms(4 ) assms(5 ) l8-3 l8-7 )

lemma per-not-col:
assumes A 6= B and

B 6= C and
Per A B C

shows ¬ Col A B C
using assms(1 ) assms(2 ) assms(3 ) l8-9 by auto

lemma perp-not-col2 :
assumes A B Perp C D
shows ¬ Col A B C ∨ ¬ Col A B D
using assms l8-14-1 perp-col2 perp-distinct by blast

lemma perp-not-col:
assumes A B Perp P A
shows ¬ Col A B P

proof −
have A PerpAt A B P A
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using assms perp-perp-in by auto
then have Per P A B

by (simp add: perp-in-per perp-in-sym)
then have ¬ Col B A P
by (metis NCol-perm Tarski-neutral-dimensionless.perp-not-eq-1 Tarski-neutral-dimensionless.perp-not-eq-2 Tarski-neutral-dimensionless-axioms

assms per-not-col)
thus ?thesis

using Col-perm by blast
qed

lemma perp-in-col-perp-in:
assumes C 6= E and

Col C D E and
P PerpAt A B C D

shows P PerpAt A B C E
proof −

have P2 : C 6= D
using assms(3 ) perp-in-distinct by blast

have P3 : Col P A B
using PerpAt-def assms(3 ) by auto

have Col P C D
using PerpAt-def assms(3 ) by blast

then have Col P C E
using P2 assms(2 ) col-trivial-2 colx by blast

thus ?thesis
by (smt P3 Perp-perm Tarski-neutral-dimensionless.l8-14-2-1b-bis Tarski-neutral-dimensionless.perp-col Tarski-neutral-dimensionless-axioms

assms(1 ) assms(2 ) assms(3 ) l8-14-2-1a)
qed

lemma perp-col2-bis:
assumes A B Perp C D and

Col C D P and
Col C D Q and
P 6= Q

shows A B Perp P Q
using Perp-cases assms(1 ) assms(2 ) assms(3 ) assms(4 ) perp-col0 by blast

lemma perp-in-perp-bis-R1 :
assumes X 6= A and

X PerpAt A B C D
shows X B Perp C D ∨ A X Perp C D
by (metis assms(2 ) l8-14-2-1a perp-col perp-in-col)

lemma perp-in-perp-bis:
assumes X PerpAt A B C D
shows X B Perp C D ∨ A X Perp C D
by (metis assms l8-14-2-1a perp-in-perp-bis-R1 )

lemma col-per-perp:
assumes A 6= B and

B 6= C and

D 6= C and
Col B C D and
Per A B C

shows C D Perp A B
by (metis Perp-cases assms(1 ) assms(2 ) assms(3 ) assms(4 ) assms(5 ) col-trivial-2 per-perp perp-col2-bis)

lemma per-cong-mid-R1 :
assumes B = H and

Bet A B C and
Cong A H C H and
Per H B C

shows B Midpoint A C
using assms(1 ) assms(2 ) assms(3 ) midpoint-def not-cong-1243 by blast
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lemma per-cong-mid-R2 :
assumes

B 6= C and
Bet A B C and
Cong A H C H and
Per H B C

shows B Midpoint A C
proof −

have P1 : Per C B H
using Per-cases assms(4 ) by blast

have P2 : Per H B A
using assms(1 ) assms(2 ) assms(4 ) bet-col col-permutation-1 per-col by blast

then have P3 : Per A B H
using Per-cases by blast

obtain C ′ where P4 : B Midpoint C C ′ ∧ Cong H C H C ′

using Per-def assms(4 ) by blast
obtain H ′ where P5 : B Midpoint H H ′ ∧ Cong C H C H ′

using P1 Per-def by blast
obtain A ′ where P6 : B Midpoint A A ′ ∧ Cong H A H A ′

using P2 Per-def by blast
obtain H ′′ where P7 : B Midpoint H H ′′ ∧ Cong A H A H ′

using P3 P5 Tarski-neutral-dimensionless.Per-def Tarski-neutral-dimensionless-axioms symmetric-point-uniqueness
by fastforce

then have P8 : H ′ = H ′′

using P5 symmetric-point-uniqueness by blast
have H B H ′ A IFSC H B H ′ C
proof −

have Q1 : Bet H B H ′

by (simp add: P7 P8 midpoint-bet)
have Q2 : Cong H H ′ H H ′

by (simp add: cong-reflexivity)
have Q3 : Cong B H ′ B H ′

by (simp add: cong-reflexivity)
have Q4 : Cong H A H C

using assms(3 ) not-cong-2143 by blast
have Cong H ′ A H ′ C

using P5 P7 assms(3 ) cong-commutativity cong-inner-transitivity by blast
thus ?thesis

by (simp add: IFSC-def Q1 Q2 Q3 Q4 )
qed
thus ?thesis

using assms(1 ) assms(2 ) bet-col bet-neq23--neq l4-2 l7-20-bis by auto
qed

lemma per-cong-mid:
assumes B 6= C and

Bet A B C and
Cong A H C H and
Per H B C

shows B Midpoint A C
using assms(1 ) assms(2 ) assms(3 ) assms(4 ) per-cong-mid-R1 per-cong-mid-R2 by blast

lemma per-double-cong:
assumes Per A B C and

B Midpoint C C ′

shows Cong A C A C ′

using Mid-cases Per-def assms(1 ) assms(2 ) l7-9-bis by blast

lemma cong-perp-or-mid-R1 :
assumes Col A B X and

A 6= B and
M Midpoint A B and
Cong A X B X

shows X = M ∨ ¬ Col A B X ∧ M PerpAt X M A B
using assms(1 ) assms(2 ) assms(3 ) assms(4 ) col-permutation-5 cong-commutativity l7-17-bis l7-2 l7-20 by blast
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lemma cong-perp-or-mid-R2 :
assumes ¬ Col A B X and

A 6= B and
M Midpoint A B and
Cong A X B X

shows X = M ∨ ¬ Col A B X ∧ M PerpAt X M A B
proof −

have P1 : Col M A B
by (simp add: assms(3 ) midpoint-col)

have Per X M A
using Per-def assms(3 ) assms(4 ) cong-commutativity by blast

thus ?thesis
by (metis P1 assms(1 ) assms(2 ) assms(3 ) midpoint-distinct-1 not-col-permutation-4 per-perp-in perp-in-col-perp-in

perp-in-right-comm)
qed

lemma cong-perp-or-mid:
assumes A 6= B and

M Midpoint A B and
Cong A X B X

shows X = M ∨ ¬ Col A B X ∧ M PerpAt X M A B
using assms(1 ) assms(2 ) assms(3 ) cong-perp-or-mid-R1 cong-perp-or-mid-R2 by blast

lemma col-per2-cases:
assumes B 6= C and

B ′ 6= C and
C 6= D and
Col B C D and
Per A B C and
Per A B ′ C

shows B = B ′ ∨ ¬ Col B ′ C D
by (meson Tarski-neutral-dimensionless.l8-7 Tarski-neutral-dimensionless-axioms assms(1 ) assms(2 ) assms(3 ) assms(4 )

assms(5 ) assms(6 ) l6-16-1 per-col)

lemma l8-16-1 :
assumes Col A B X and

Col A B U and
A B Perp C X

shows ¬ Col A B C ∧ Per C X U
by (metis assms(1 ) assms(2 ) assms(3 ) l8-5 perp-col0 perp-left-comm perp-not-col2 perp-per-2 )

lemma l8-16-2 :
assumes Col A B X and

Col A B U
and U 6= X and
¬ Col A B C and
Per C X U

shows A B Perp C X
proof −

obtain X where X PerpAt A B C X
by (metis (no-types) NCol-perm assms(1 ) assms(2 ) assms(3 ) assms(4 ) assms(5 ) l8-13-2 l8-2 not-col-distincts)

thus ?thesis
by (smt Perp-perm assms(1 ) assms(2 ) assms(3 ) assms(4 ) assms(5 ) col3 col-per-perp not-col-distincts per-col

per-perp)
qed

lemma l8-18-uniqueness:
assumes

Col A B X and
A B Perp C X and
Col A B Y and
A B Perp C Y

shows X = Y
using assms(1 ) assms(2 ) assms(3 ) assms(4 ) l8-16-1 l8-7 by blast
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lemma midpoint-distinct:
assumes ¬ Col A B C and

Col A B X and
X Midpoint C C ′

shows C 6= C ′

using assms(1 ) assms(2 ) assms(3 ) l7-3 by auto

lemma l8-20-1-R1 :
assumes A = B
shows Per B A P
by (simp add: assms l8-2 l8-5 )

lemma l8-20-1-R2 :
assumes A 6= B and

Per A B C and
P Midpoint C ′ D and
A Midpoint C ′ C and
B Midpoint D C

shows Per B A P
proof −

obtain B ′ where P1 : A Midpoint B B ′

using symmetric-point-construction by blast
obtain D ′ where P2 : A Midpoint D D ′

using symmetric-point-construction by blast
obtain P ′ where P3 : A Midpoint P P ′

using symmetric-point-construction by blast
have P4 : Per B ′ B C
by (metis P1 Tarski-neutral-dimensionless.Per-cases Tarski-neutral-dimensionless.per-col Tarski-neutral-dimensionless-axioms

assms(1 ) assms(2 ) midpoint-col not-col-permutation-4 )
have P5 : Per B B ′ C ′

proof −
have Per B ′ B C

by (simp add: P4 )
have B ′ B C Cong3 B B ′ C ′

by (meson Cong3-def P1 assms(4 ) l7-13 l7-2 )
thus ?thesis

using P4 l8-10 by blast
qed
have P6 : B ′ Midpoint D ′ C ′

by (meson P1 P2 assms(4 ) assms(5 ) l7-15 l7-16 l7-2 midpoint-bet midpoint-cong midpoint-def )
have P7 : P ′ Midpoint C D ′

using P2 P3 assms(3 ) assms(4 ) symmetry-preserves-midpoint by blast
have P8 : A Midpoint P P ′

by (simp add: P3 )
obtain D ′′ where P9 : B Midpoint C D ′′ ∧ Cong B ′ C B ′ D

using P4 assms(5 ) l7-2 per-double-cong by blast
have P10 : D ′′ = D

using P9 assms(5 ) l7-9-bis by blast
obtain D ′′ where P11 : B ′ Midpoint C ′ D ′′ ∧ Cong B C ′ B D ′′

using P5 Per-def by blast
have P12 : D ′ = D ′′

by (meson P11 P6 Tarski-neutral-dimensionless.l7-9-bis Tarski-neutral-dimensionless-axioms)
have P13 : P Midpoint C ′ D

using assms(3 ) by blast
have P14 : Cong C D C ′ D ′

using P2 assms(4 ) l7-13 l7-2 by blast
have P15 : Cong C ′ D C D ′

using P2 assms(4 ) cong-4321 l7-13 by blast
have P16 : Cong P D P ′ D ′

using P2 P8 cong-symmetry l7-13 by blast
have P17 : Cong P D P ′ C

using P16 P7 cong-3421 cong-transitivity midpoint-cong by blast
have P18 : C ′ P D B IFSC D ′ P ′ C B

by (metis Bet-cases IFSC-def P10 P11 P12 P13 P15 P17 P7 P9 cong-commutativity cong-right-commutativity l7-13
l7-3-2 midpoint-bet)

then have Cong B P B P ′
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using Tarski-neutral-dimensionless.l4-2 Tarski-neutral-dimensionless-axioms not-cong-2143 by fastforce
thus ?thesis

using P8 Per-def by blast
qed

lemma l8-20-1 :
assumes Per A B C and

P Midpoint C ′ D and
A Midpoint C ′ C and
B Midpoint D C

shows Per B A P
using assms(1 ) assms(2 ) assms(3 ) assms(4 ) l8-20-1-R1 l8-20-1-R2 by fastforce

lemma l8-20-2 :
assumes P Midpoint C ′ D and

A Midpoint C ′ C and
B Midpoint D C and
B 6= C

shows A 6= P
using assms(1 ) assms(2 ) assms(3 ) assms(4 ) l7-3 symmetric-point-uniqueness by blast

lemma perp-col1 :
assumes C 6= X and

A B Perp C D and
Col C D X

shows A B Perp C X
using assms(1 ) assms(2 ) assms(3 ) col-trivial-3 perp-col2-bis by blast

lemma l8-18-existence:
assumes ¬ Col A B C
shows ∃ X . Col A B X ∧ A B Perp C X

proof −
obtain Y where P1 : Bet B A Y ∧ Cong A Y A C

using segment-construction by blast
then obtain P where P2 : P Midpoint C Y

using Mid-cases l7-25 by blast
then have P3 : Per A P Y

using P1 Per-def l7-2 by blast
obtain Z where P3 : Bet A Y Z ∧ Cong Y Z Y P

using segment-construction by blast
obtain Q where P4 : Bet P Y Q ∧ Cong Y Q Y A

using segment-construction by blast
obtain Q ′ where P5 : Bet Q Z Q ′ ∧ Cong Z Q ′ Q Z

using segment-construction by blast
then have P6 : Z Midpoint Q Q ′

using midpoint-def not-cong-3412 by blast
obtain C ′ where P7 : Bet Q ′ Y C ′ ∧ Cong Y C ′ Y C

using segment-construction by blast
obtain X where P8 : X Midpoint C C ′

using Mid-cases P7 l7-25 by blast
have P9 : A Y Z Q OFSC Q Y P A

by (simp add: OFSC-def P3 P4 between-symmetry cong-4321 cong-pseudo-reflexivity)
have P10 : A 6= Y

using P1 assms cong-reverse-identity not-col-distincts by blast
then have P11 : Cong Z Q P A

using P9 five-segment-with-def by blast
then have P12 : A P Y Cong3 Q Z Y

using Cong3-def P3 P4 not-cong-4321 by blast
have P13 : Per Q Z Y

using Cong-perm P1 P12 P2 Per-def l8-10 l8-4 by blast
then have P14 : Per Y Z Q

by (simp add: l8-2 )
have P15 : P 6= Y

using NCol-cases P1 P2 assms bet-col l7-3-2 l7-9-bis by blast
obtain Q ′′ where P16 :Z Midpoint Q Q ′′ ∧ Cong Y Q Y Q ′

using P14 P6 per-double-cong by blast
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then have P17 : Q ′ = Q ′′

using P6 symmetric-point-uniqueness by blast
have P18 : Bet Z Y X
proof −

have Bet Q Y C
using P15 P2 P4 between-symmetry midpoint-bet outer-transitivity-between2 by blast

thus ?thesis
using P16 P6 P7 P8 l7-22 not-cong-3412 by blast

qed
have P19 : Q 6= Y

using P10 P4 cong-reverse-identity by blast
have P20 : Per Y X C
proof −

have Bet C P Y
by (simp add: P2 midpoint-bet)

thus ?thesis
using P7 P8 Per-def not-cong-3412 by blast

qed
have P21 : Col P Y Q

by (simp add: Col-def P4 )
have P22 : Col P Y C

using P2 midpoint-col not-col-permutation-5 by blast
have P23 : Col P Q C

using P15 P21 P22 col-transitivity-1 by blast
have P24 : Col Y Q C

using P15 P21 P22 col-transitivity-2 by auto
have P25 : Col A Y B

by (simp add: Col-def P1 )
have P26 : Col A Y Z

using P3 bet-col by blast
have P27 : Col A B Z

using P10 P25 P26 col-transitivity-1 by blast
have P28 : Col Y B Z

using P10 P25 P26 col-transitivity-2 by blast
have P29 : Col Q Y P

using P21 not-col-permutation-3 by blast
have P30 : Q 6= C

using P15 P2 P4 between-equality-2 between-symmetry midpoint-bet by blast
have P31 : Col Y B Z

using P28 by auto
have P32 : Col Y Q ′ C ′

by (simp add: P7 bet-col col-permutation-4 )
have P33 : Q 6= Q ′

using P11 P15 P22 P25 P5 assms bet-neq12--neq col-transitivity-1 cong-reverse-identity by blast
have P34 : C 6= C ′

by (smt P15 P18 P3 P31 P8 assms bet-col col3 col-permutation-2 col-permutation-3 cong-3421 cong-diff mid-
point-distinct-3 )

have P35 : Q Y C Z OFSC Q ′ Y C ′ Z
by (meson OFSC-def P15 P16 P2 P4 P5 P7 between-symmetry cong-3421 cong-reflexivity midpoint-bet not-cong-3412

outer-transitivity-between2 )
then have P36 : Cong C Z C ′ Z

using P19 five-segment-with-def by blast
have P37 : Col Z Y X

by (simp add: P18 bet-col)
have P38 : Y 6= Z

using P15 P3 cong-reverse-identity by blast
then have P40 : X 6= Y
by (metis (mono-tags, opaque-lifting) Col-perm Cong-perm P14 P24 P25 P27 P36 P8 Per-def assms colx per-not-colp)

have Col A B X
using Col-perm P26 P31 P37 P38 col3 by blast

thus ?thesis
by (metis P18 P20 P27 P37 P40 Tarski-neutral-dimensionless.per-col Tarski-neutral-dimensionless-axioms assms

between-equality col-permutation-3 l5-2 l8-16-2 l8-2 )
qed

lemma l8-21-aux:
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assumes ¬ Col A B C
shows ∃ P. ∃ T . (A B Perp P A ∧ Col A B T ∧ Bet C T P)

proof −
obtain X where P1 : Col A B X ∧ A B Perp C X

using assms l8-18-existence by blast
have P2 : X PerpAt A B C X

by (simp add: P1 l8-15-1 )
have P3 : Per A X C

by (meson P1 Per-perm Tarski-neutral-dimensionless.l8-16-1 Tarski-neutral-dimensionless-axioms col-trivial-3 )
obtain C ′ where P4 : X Midpoint C C ′ ∧ Cong A C A C ′

using P3 Per-def by blast
obtain C ′′ where P5 : A Midpoint C C ′′

using symmetric-point-construction by blast
obtain P where P6 : P Midpoint C ′ C ′′

by (metis Cong-perm P4 P5 Tarski-neutral-dimensionless.Midpoint-def Tarski-neutral-dimensionless-axioms cong-inner-transitivity
l7-25 )

have P7 : Per X A P
by (smt P3 P4 P5 P6 l7-2 l8-20-1-R2 l8-4 midpoint-distinct-3 symmetric-point-uniqueness)

have P8 : X 6= C
using P1 assms by auto

have P9 : A 6= P
using P4 P5 P6 P8 l7-9 midpoint-distinct-2 by blast

obtain T where P10 : Bet P T C ∧ Bet A T X
by (meson Mid-perm Midpoint-def P4 P5 P6 l3-17 )

have A B Perp P A ∧ Col A B T ∧ Bet C T P
proof cases

assume A = X
thus ?thesis

by (metis Bet-perm Col-def P1 P10 P9 between-identity col-trivial-3 perp-col2-bis)
next

assume A 6= X
thus ?thesis

by (metis Bet-perm Col-def P1 P10 P7 P9 Perp-perm col-transitivity-2 col-trivial-1 l8-3 per-perp perp-not-col2 )
qed
thus ?thesis

by blast
qed

lemma l8-21 :
assumes A 6= B
shows ∃ P T . A B Perp P A ∧ Col A B T ∧ Bet C T P
by (meson assms between-trivial2 l8-21-aux not-col-exists)

lemma per-cong:
assumes A 6= B and

A 6= P and
Per B A P and
Per A B R and
Cong A P B R and
Col A B X and
Bet P X R

shows Cong A R P B
proof −

have P1 : Per P A B
using Per-cases assms(3 ) by blast

obtain Q where P2 : R Midpoint B Q
using symmetric-point-construction by auto

have P3 : B 6= R
using assms(2 ) assms(5 ) cong-identity by blast

have P4 : Per A B Q
by (metis P2 P3 assms(1 ) assms(4 ) bet-neq23--neq col-permutation-4 midpoint-bet midpoint-col per-perp-in perp-in-col-perp-in

perp-in-per)
have P5 : Per P A X

using P1 assms(1 ) assms(6 ) per-col by blast
have P6 : B 6= Q

using P2 P3 l7-3 by blast
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have P7 : Per R B X
by (metis assms(1 ) assms(4 ) assms(6 ) l8-2 not-col-permutation-4 per-col)

have P8 : X 6= A
using P3 assms(1 ) assms(2 ) assms(3 ) assms(4 ) assms(7 ) bet-col per-not-colp by blast

obtain P ′ where P9 : A Midpoint P P ′

using Per-def assms(3 ) by blast
obtain R ′ where P10 : Bet P ′ X R ′ ∧ Cong X R ′ X R

using segment-construction by blast
obtain M where P11 : M Midpoint R R ′

by (meson P10 Tarski-neutral-dimensionless.l7-2 Tarski-neutral-dimensionless-axioms l7-25 )
have P12 : Per X M R

using P10 P11 Per-def cong-symmetry by blast
have P13 : Cong X P X P ′

using P9 assms(1 ) assms(3 ) assms(6 ) cong-left-commutativity l4-17 midpoint-cong per-double-cong by blast
have P14 : X 6= P ′

using P13 P8 P9 cong-identity l7-3 by blast
have P15 : P 6= P ′

using P9 assms(2 ) midpoint-distinct-2 by blast
have P16 : ¬ Col X P P ′

using P13 P15 P8 P9 l7-17 l7-20 not-col-permutation-4 by blast
have P17 : Bet A X M

using P10 P11 P13 P9 assms(7 ) cong-symmetry l7-22 by blast
have P18 : X 6= R

using P3 P7 per-distinct-1 by blast
have P19 : X 6= R ′

using P10 P18 cong-diff-3 by blast
have P20 : X 6= M

by (metis Col-def P10 P11 P16 P18 P19 assms(7 ) col-transitivity-1 midpoint-col)
have P21 : M = B

by (smt Col-def P12 P17 P20 P8 Per-perm assms(1 ) assms(4 ) assms(6 ) col-transitivity-2 l8-3 l8-7 )
have P X R P ′ OFSC P ′ X R ′ P

by (simp add: OFSC-def P10 P13 assms(7 ) cong-commutativity cong-pseudo-reflexivity cong-symmetry)
then have Cong R P ′ R ′ P

using P13 P14 cong-diff-3 five-segment-with-def by blast
then have P ′ A P R IFSC R ′ B R P
by (metis Bet-perm Cong-perm Midpoint-def P11 P21 P9 Tarski-neutral-dimensionless.IFSC-def Tarski-neutral-dimensionless-axioms

assms(5 ) cong-mid2--cong cong-pseudo-reflexivity)
thus ?thesis

using l4-2 not-cong-1243 by blast
qed

lemma perp-cong:
assumes A 6= B and

A 6= P and
A B Perp P A and
A B Perp R B and
Cong A P B R and
Col A B X and
Bet P X R

shows Cong A R P B
using Perp-cases assms(1 ) assms(2 ) assms(3 ) assms(4 ) assms(5 ) assms(6 ) assms(7 ) per-cong perp-per-1 by blast

lemma perp-exists:
assumes A 6= B
shows ∃ X . PO X Perp A B

proof cases
assume Col A B PO
then obtain C where P1 : A 6= C ∧ B 6= C ∧ PO 6= C ∧ Col A B C

using diff-col-ex3 by blast
then obtain P T where P2 : PO C Perp P PO ∧ Col PO C T ∧ Bet PO T P using l8-21

by blast
then have PO P Perp A B

by (metis P1 Perp-perm ‹Col A B PO› assms col3 col-trivial-2 col-trivial-3 perp-col2 )
thus ?thesis

by blast
next
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assume ¬ Col A B PO
thus ?thesis using l8-18-existence

using assms col-trivial-2 col-trivial-3 l8-18-existence perp-col0 by blast
qed

lemma perp-vector :
assumes A 6= B
shows ∃ X Y . A B Perp X Y
using assms l8-21 by blast

lemma midpoint-existence-aux:
assumes A 6= B and

A B Perp Q B and
A B Perp P A and
Col A B T and
Bet Q T P and
A P Le B Q

shows ∃ X . X Midpoint A B
proof −

obtain R where P1 : Bet B R Q ∧ Cong A P B R
using Le-def assms(6 ) by blast

obtain X where P2 : Bet T X B ∧ Bet R X P
using P1 assms(5 ) between-symmetry inner-pasch by blast

have P3 : Col A B X
by (metis Col-def Out-cases P2 assms(4 ) between-equality l6-16-1 not-out-bet out-diff1 )

have P4 : B 6= R
using P1 assms(3 ) cong-identity perp-not-eq-2 by blast

have P5 : ¬ Col A B Q
using assms(2 ) col-trivial-2 l8-16-1 by blast

have P6 : ¬ Col A B R
using Col-def P1 P4 P5 l6-16-1 by blast

have P7 : P 6= R
using P2 P3 P6 between-identity by blast

have ∃ X . X Midpoint A B
proof cases

assume A = P
thus ?thesis

using assms(3 ) col-trivial-3 perp-not-col2 by blast
next

assume Q1 : ¬ A = P
have Q2 : A B Perp R B

by (metis P1 P4 Perp-perm Tarski-neutral-dimensionless.bet-col1 Tarski-neutral-dimensionless-axioms assms(2 )
l5-1 perp-col1 )

then have Q3 : Cong A R P B
using P1 P2 P3 Q1 assms(1 ) assms(3 ) between-symmetry perp-cong by blast

then have X Midpoint A B ∧ X Midpoint P R
by (smt P1 P2 P3 P6 P7 bet-col cong-left-commutativity cong-symmetry l7-2 l7-21 not-col-permutation-1 )

thus ?thesis
by blast

qed
thus ?thesis by blast

qed

lemma midpoint-existence:
∃ X . X Midpoint A B

proof cases
assume A = B
thus ?thesis

using l7-3-2 by blast
next

assume P1 : ¬ A = B
obtain Q where P2 : A B Perp B Q

by (metis P1 l8-21 perp-comm)
obtain P T where P3 : A B Perp P A ∧ Col A B T ∧ Bet Q T P

using P2 l8-21-aux not-col-distincts perp-not-col2 by blast
have P4 : A P Le B Q ∨ B Q Le A P
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by (simp add: local.le-cases)
have P5 : A P Le B Q −→ (∃ X . X Midpoint A B)

by (meson P1 P2 P3 Tarski-neutral-dimensionless.Perp-cases Tarski-neutral-dimensionless.midpoint-existence-aux
Tarski-neutral-dimensionless-axioms)

have P6 : B Q Le A P −→ (∃ X . X Midpoint A B)
proof −

{
assume H1 : B Q Le A P
have Q6 : B 6= A

using P1 by auto
have Q2 : B A Perp P A

by (simp add: P3 perp-left-comm)
have Q3 : B A Perp Q B

using P2 Perp-perm by blast
have Q4 : Col B A T

using Col-perm P3 by blast
have Q5 : Bet P T Q

using Bet-perm P3 by blast
obtain X where X Midpoint B A

using H1 Q2 Q3 Q4 Q5 Q6 midpoint-existence-aux by blast
then have ∃ X . X Midpoint A B

using l7-2 by blast
}
thus ?thesis

by simp
qed
thus ?thesis

using P4 P5 by blast
qed

lemma perp-in-id:
assumes X PerpAt A B C A
shows X = A
by (meson Col-cases assms col-trivial-3 l8-14-2-1b)

lemma l8-22 :
assumes A 6= B and

A 6= P and
Per B A P and
Per A B R and
Cong A P B R and
Col A B X and
Bet P X R and
Cong A R P B

shows X Midpoint A B ∧ X Midpoint P R
by (metis assms(1 ) assms(2 ) assms(3 ) assms(4 ) assms(5 ) assms(6 ) assms(7 ) assms(8 ) bet-col cong-commutativity

cong-diff cong-right-commutativity l7-21 not-col-permutation-5 per-not-colp)

lemma l8-22-bis:
assumes A 6= B and

A 6= P and
A B Perp P A and
A B Perp R B and
Cong A P B R and
Col A B X and
Bet P X R

shows Cong A R P B ∧ X Midpoint A B ∧ X Midpoint P R
by (metis l8-22 Perp-cases assms(1 ) assms(2 ) assms(3 ) assms(4 ) assms(5 ) assms(6 ) assms(7 ) perp-cong perp-per-2 )

lemma perp-in-perp:
assumes X PerpAt A B C D
shows A B Perp C D
using assms l8-14-2-1a by auto

lemma perp-proj:
assumes A B Perp C D and
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¬ Col A C D
shows ∃ X . Col A B X ∧ A X Perp C D
using assms(1 ) not-col-distincts by auto

lemma l8-24 :
assumes P A Perp A B and

Q B Perp A B and
Col A B T and
Bet P T Q and
Bet B R Q and
Cong A P B R

shows ∃ X . X Midpoint A B ∧ X Midpoint P R
proof −

obtain X where P1 : Bet T X B ∧ Bet R X P
using assms(4 ) assms(5 ) inner-pasch by blast

have P2 : Col A B X
by (metis Out-cases P1 assms(3 ) bet-out-1 col-out2-col not-col-distincts out-trivial)

have P3 : A 6= B
using assms(1 ) col-trivial-2 l8-16-1 by blast

have P4 : A 6= P
using assms(1 ) col-trivial-1 l8-16-1 by blast

have ∃ X . X Midpoint A B ∧ X Midpoint P R
proof cases

assume Col A B P
thus ?thesis

using Perp-perm assms(1 ) perp-not-col by blast
next

assume Q1 : ¬ Col A B P
have Q2 : B 6= R

using P4 assms(6 ) cong-diff by blast
have Q3 : Q 6= B

using Q2 assms(5 ) between-identity by blast
have Q4 : ¬ Col A B Q

by (metis assms(2 ) col-permutation-3 l8-14-1 perp-col1 perp-not-col)
have Q5 : ¬ Col A B R

by (meson Q2 Q4 assms(5 ) bet-col col-transitivity-1 not-col-permutation-2 )
have Q6 : P 6= R

using P1 P2 Q5 between-identity by blast
have ∃ X . X Midpoint A B ∧ X Midpoint P R
proof cases

assume A = P
thus ?thesis

using P4 by blast
next

assume R0 : ¬ A = P
have R1 : A B Perp R B

by (metis Perp-cases Q2 Tarski-neutral-dimensionless.bet-col1 Tarski-neutral-dimensionless-axioms assms(2 )
assms(5 ) bet-col col-transitivity-1 perp-col1 )

have R2 : Cong A R P B
using P1 P2 P3 Perp-perm R0 R1 assms(1 ) assms(6 ) between-symmetry perp-cong by blast

have R3 : ¬ Col A P B
using Col-perm Q1 by blast

have R4 : P 6= R
by (simp add: Q6 )

have R5 : Cong A P B R
by (simp add: assms(6 ))

have R6 : Cong P B R A
using R2 not-cong-4312 by blast

have R7 : Col A X B
using Col-perm P2 by blast

have R8 : Col P X R
by (simp add: P1 bet-col between-symmetry)

thus ?thesis using l7-21
using R3 R4 R5 R6 R7 by blast

qed
thus ?thesis by simp
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qed
thus ?thesis

by simp
qed

lemma col-per2--per :
assumes A 6= B and

Col A B C and
Per A X P and
Per B X P

shows Per C X P
by (meson Per-def assms(1 ) assms(2 ) assms(3 ) assms(4 ) l4-17 per-double-cong)

lemma perp-in-per-1 :
assumes X PerpAt A B C D
shows Per A X C
using PerpAt-def assms col-trivial-1 by auto

lemma perp-in-per-2 :
assumes X PerpAt A B C D
shows Per A X D
using assms perp-in-per-1 perp-in-right-comm by blast

lemma perp-in-per-3 :
assumes X PerpAt A B C D
shows Per B X C
using assms perp-in-comm perp-in-per-2 by blast

lemma perp-in-per-4 :
assumes X PerpAt A B C D
shows Per B X D
using assms perp-in-per-3 perp-in-right-comm by blast

3.8 Planes
3.8.1 Coplanar
lemma coplanar-perm-1 :

assumes Coplanar A B C D
shows Coplanar A B D C

proof −
obtain X where P1 : (Col A B X ∧ Col C D X) ∨ (Col A C X ∧ Col B D X) ∨ (Col A D X ∧ Col B C X)

using Coplanar-def assms by blast
then show ?thesis

using Coplanar-def col-permutation-4 by blast
qed

lemma coplanar-perm-2 :
assumes Coplanar A B C D
shows Coplanar A C B D

proof −
obtain X where P1 : (Col A B X ∧ Col C D X) ∨ (Col A C X ∧ Col B D X) ∨ (Col A D X ∧ Col B C X)

using Coplanar-def assms by blast
then show ?thesis

using Coplanar-def col-permutation-4 by blast
qed

lemma coplanar-perm-3 :
assumes Coplanar A B C D
shows Coplanar A C D B

proof −
obtain X where P1 : (Col A B X ∧ Col C D X) ∨ (Col A C X ∧ Col B D X) ∨ (Col A D X ∧ Col B C X)

using Coplanar-def assms by blast
then show ?thesis

using Coplanar-def col-permutation-4 by blast
qed
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lemma coplanar-perm-4 :
assumes Coplanar A B C D
shows Coplanar A D B C

proof −
obtain X where P1 : (Col A B X ∧ Col C D X) ∨ (Col A C X ∧ Col B D X) ∨ (Col A D X ∧ Col B C X)

using Coplanar-def assms by blast
then show ?thesis

using Coplanar-def col-permutation-4 by blast
qed

lemma coplanar-perm-5 :
assumes Coplanar A B C D
shows Coplanar A D C B

proof −
obtain X where P1 : (Col A B X ∧ Col C D X) ∨ (Col A C X ∧ Col B D X) ∨ (Col A D X ∧ Col B C X)

using Coplanar-def assms by blast
then show ?thesis

using Coplanar-def col-permutation-4 by blast
qed

lemma coplanar-perm-6 :
assumes Coplanar A B C D
shows Coplanar B A C D

proof −
obtain X where P1 : (Col A B X ∧ Col C D X) ∨ (Col A C X ∧ Col B D X) ∨ (Col A D X ∧ Col B C X)

using Coplanar-def assms by blast
then show ?thesis

using Coplanar-def col-permutation-4 by blast
qed

lemma coplanar-perm-7 :
assumes Coplanar A B C D
shows Coplanar B A D C

proof −
obtain X where P1 : (Col A B X ∧ Col C D X) ∨ (Col A C X ∧ Col B D X) ∨ (Col A D X ∧ Col B C X)

using Coplanar-def assms by blast
then show ?thesis

using Coplanar-def col-permutation-4 by blast
qed

lemma coplanar-perm-8 :
assumes Coplanar A B C D
shows Coplanar B C A D

proof −
obtain X where P1 : (Col A B X ∧ Col C D X) ∨ (Col A C X ∧ Col B D X) ∨ (Col A D X ∧ Col B C X)

using Coplanar-def assms by blast
then show ?thesis

using Coplanar-def col-permutation-4 by blast
qed

lemma coplanar-perm-9 :
assumes Coplanar A B C D
shows Coplanar B C D A

proof −
obtain X where P1 : (Col A B X ∧ Col C D X) ∨ (Col A C X ∧ Col B D X) ∨ (Col A D X ∧ Col B C X)

using Coplanar-def assms by blast
then show ?thesis

using Coplanar-def col-permutation-4 by blast
qed

lemma coplanar-perm-10 :
assumes Coplanar A B C D
shows Coplanar B D A C

proof −
obtain X where P1 : (Col A B X ∧ Col C D X) ∨ (Col A C X ∧ Col B D X) ∨ (Col A D X ∧ Col B C X)

using Coplanar-def assms by blast
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then show ?thesis
using Coplanar-def col-permutation-4 by blast

qed

lemma coplanar-perm-11 :
assumes Coplanar A B C D
shows Coplanar B D C A

proof −
obtain X where P1 : (Col A B X ∧ Col C D X) ∨ (Col A C X ∧ Col B D X) ∨ (Col A D X ∧ Col B C X)

using Coplanar-def assms by blast
then show ?thesis

using Coplanar-def col-permutation-4 by blast
qed

lemma coplanar-perm-12 :
assumes Coplanar A B C D
shows Coplanar C A B D

proof −
obtain X where P1 : (Col A B X ∧ Col C D X) ∨ (Col A C X ∧ Col B D X) ∨ (Col A D X ∧ Col B C X)

using Coplanar-def assms by blast
then show ?thesis

using Coplanar-def col-permutation-4 by blast
qed

lemma coplanar-perm-13 :
assumes Coplanar A B C D
shows Coplanar C A D B

proof −
obtain X where P1 : (Col A B X ∧ Col C D X) ∨ (Col A C X ∧ Col B D X) ∨ (Col A D X ∧ Col B C X)

using Coplanar-def assms by blast
then show ?thesis

using Coplanar-def col-permutation-4 by blast
qed

lemma coplanar-perm-14 :
assumes Coplanar A B C D
shows Coplanar C B A D

proof −
obtain X where P1 : (Col A B X ∧ Col C D X) ∨ (Col A C X ∧ Col B D X) ∨ (Col A D X ∧ Col B C X)

using Coplanar-def assms by blast
then show ?thesis

using Coplanar-def col-permutation-4 by blast
qed

lemma coplanar-perm-15 :
assumes Coplanar A B C D
shows Coplanar C B D A

proof −
obtain X where P1 : (Col A B X ∧ Col C D X) ∨ (Col A C X ∧ Col B D X) ∨ (Col A D X ∧ Col B C X)

using Coplanar-def assms by blast
then show ?thesis

using Coplanar-def col-permutation-4 by blast
qed

lemma coplanar-perm-16 :
assumes Coplanar A B C D
shows Coplanar C D A B

proof −
obtain X where P1 : (Col A B X ∧ Col C D X) ∨ (Col A C X ∧ Col B D X) ∨ (Col A D X ∧ Col B C X)

using Coplanar-def assms by blast
then show ?thesis

using Coplanar-def col-permutation-4 by blast
qed

lemma coplanar-perm-17 :
assumes Coplanar A B C D
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shows Coplanar C D B A
proof −

obtain X where P1 : (Col A B X ∧ Col C D X) ∨ (Col A C X ∧ Col B D X) ∨ (Col A D X ∧ Col B C X)
using Coplanar-def assms by blast

then show ?thesis
using Coplanar-def col-permutation-4 by blast

qed

lemma coplanar-perm-18 :
assumes Coplanar A B C D
shows Coplanar D A B C

proof −
obtain X where P1 : (Col A B X ∧ Col C D X) ∨ (Col A C X ∧ Col B D X) ∨ (Col A D X ∧ Col B C X)

using Coplanar-def assms by blast
then show ?thesis

using Coplanar-def col-permutation-4 by blast
qed

lemma coplanar-perm-19 :
assumes Coplanar A B C D
shows Coplanar D A C B

proof −
obtain X where P1 : (Col A B X ∧ Col C D X) ∨ (Col A C X ∧ Col B D X) ∨ (Col A D X ∧ Col B C X)

using Coplanar-def assms by blast
then show ?thesis

using Coplanar-def col-permutation-4 by blast
qed

lemma coplanar-perm-20 :
assumes Coplanar A B C D
shows Coplanar D B A C

proof −
obtain X where P1 : (Col A B X ∧ Col C D X) ∨ (Col A C X ∧ Col B D X) ∨ (Col A D X ∧ Col B C X)

using Coplanar-def assms by blast
then show ?thesis

using Coplanar-def col-permutation-4 by blast
qed

lemma coplanar-perm-21 :
assumes Coplanar A B C D
shows Coplanar D B C A

proof −
obtain X where P1 : (Col A B X ∧ Col C D X) ∨ (Col A C X ∧ Col B D X) ∨ (Col A D X ∧ Col B C X)

using Coplanar-def assms by blast
then show ?thesis

using Coplanar-def col-permutation-4 by blast
qed

lemma coplanar-perm-22 :
assumes Coplanar A B C D
shows Coplanar D C A B

proof −
obtain X where P1 : (Col A B X ∧ Col C D X) ∨ (Col A C X ∧ Col B D X) ∨ (Col A D X ∧ Col B C X)

using Coplanar-def assms by blast
then show ?thesis

using Coplanar-def col-permutation-4 by blast
qed

lemma coplanar-perm-23 :
assumes Coplanar A B C D
shows Coplanar D C B A

proof −
obtain X where P1 : (Col A B X ∧ Col C D X) ∨ (Col A C X ∧ Col B D X) ∨ (Col A D X ∧ Col B C X)

using Coplanar-def assms by blast
then show ?thesis

using Coplanar-def col-permutation-4 by blast
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qed

lemma ncoplanar-perm-1 :
assumes ¬ Coplanar A B C D
shows ¬ Coplanar A B D C
using assms coplanar-perm-1 by blast

lemma ncoplanar-perm-2 :
assumes ¬ Coplanar A B C D
shows ¬ Coplanar A C B D
using assms coplanar-perm-2 by blast

lemma ncoplanar-perm-3 :
assumes ¬ Coplanar A B C D
shows ¬ Coplanar A C D B
using assms coplanar-perm-4 by blast

lemma ncoplanar-perm-4 :
assumes ¬ Coplanar A B C D
shows ¬ Coplanar A D B C
using assms coplanar-perm-3 by blast

lemma ncoplanar-perm-5 :
assumes ¬ Coplanar A B C D
shows ¬ Coplanar A D C B
using assms coplanar-perm-5 by blast

lemma ncoplanar-perm-6 :
assumes ¬ Coplanar A B C D
shows ¬ Coplanar B A C D
using assms coplanar-perm-6 by blast

lemma ncoplanar-perm-7 :
assumes ¬ Coplanar A B C D
shows ¬ Coplanar B A D C
using assms coplanar-perm-7 by blast

lemma ncoplanar-perm-8 :
assumes ¬ Coplanar A B C D
shows ¬ Coplanar B C A D
using assms coplanar-perm-12 by blast

lemma ncoplanar-perm-9 :
assumes ¬ Coplanar A B C D
shows ¬ Coplanar B C D A
using assms coplanar-perm-18 by blast

lemma ncoplanar-perm-10 :
assumes ¬ Coplanar A B C D
shows ¬ Coplanar B D A C
using assms coplanar-perm-13 by blast

lemma ncoplanar-perm-11 :
assumes ¬ Coplanar A B C D
shows ¬ Coplanar B D C A
using assms coplanar-perm-19 by blast

lemma ncoplanar-perm-12 :
assumes ¬ Coplanar A B C D
shows ¬ Coplanar C A B D
using assms coplanar-perm-8 by blast

lemma ncoplanar-perm-13 :
assumes ¬ Coplanar A B C D
shows ¬ Coplanar C A D B
using assms coplanar-perm-10 by blast
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lemma ncoplanar-perm-14 :
assumes ¬ Coplanar A B C D
shows ¬ Coplanar C B A D
using assms coplanar-perm-14 by blast

lemma ncoplanar-perm-15 :
assumes ¬ Coplanar A B C D
shows ¬ Coplanar C B D A
using assms coplanar-perm-20 by blast

lemma ncoplanar-perm-16 :
assumes ¬ Coplanar A B C D
shows ¬ Coplanar C D A B
using assms coplanar-perm-16 by blast

lemma ncoplanar-perm-17 :
assumes ¬ Coplanar A B C D
shows ¬ Coplanar C D B A
using assms coplanar-perm-22 by blast

lemma ncoplanar-perm-18 :
assumes ¬ Coplanar A B C D
shows ¬ Coplanar D A B C
using assms coplanar-perm-9 by blast

lemma ncoplanar-perm-19 :
assumes ¬ Coplanar A B C D
shows ¬ Coplanar D A C B
using assms coplanar-perm-11 by blast

lemma ncoplanar-perm-20 :
assumes ¬ Coplanar A B C D
shows ¬ Coplanar D B A C
using assms coplanar-perm-15 by blast

lemma ncoplanar-perm-21 :
assumes ¬ Coplanar A B C D
shows ¬ Coplanar D B C A
using assms coplanar-perm-21 by blast

lemma ncoplanar-perm-22 :
assumes ¬ Coplanar A B C D
shows ¬ Coplanar D C A B
using assms coplanar-perm-17 by blast

lemma ncoplanar-perm-23 :
assumes ¬ Coplanar A B C D
shows ¬ Coplanar D C B A
using assms coplanar-perm-23 by blast

lemma coplanar-trivial:
shows Coplanar A A B C
using Coplanar-def NCol-cases col-trivial-1 by blast

lemma col--coplanar :
assumes Col A B C
shows Coplanar A B C D
using Coplanar-def assms not-col-distincts by blast

lemma ncop--ncol:
assumes ¬ Coplanar A B C D
shows ¬ Col A B C
using assms col--coplanar by blast

lemma ncop--ncols:
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assumes ¬ Coplanar A B C D
shows ¬ Col A B C ∧ ¬ Col A B D ∧ ¬ Col A C D ∧ ¬ Col B C D
by (meson assms col--coplanar coplanar-perm-4 ncoplanar-perm-9 )

lemma bet--coplanar :
assumes Bet A B C
shows Coplanar A B C D
using assms bet-col ncop--ncol by blast

lemma out--coplanar :
assumes A Out B C
shows Coplanar A B C D
using assms col--coplanar out-col by blast

lemma midpoint--coplanar :
assumes A Midpoint B C
shows Coplanar A B C D
using assms midpoint-col ncop--ncol by blast

lemma perp--coplanar :
assumes A B Perp C D
shows Coplanar A B C D

proof −
obtain P where P PerpAt A B C D

using Perp-def assms by blast
then show ?thesis

using Coplanar-def perp-in-col by blast
qed

lemma ts--coplanar :
assumes A B TS C D
shows Coplanar A B C D
by (metis (full-types) Coplanar-def TS-def assms bet-col col-permutation-2 col-permutation-3 )

lemma reflectl--coplanar :
assumes A B ReflectL C D
shows Coplanar A B C D
by (metis (no-types) ReflectL-def Tarski-neutral-dimensionless.perp--coplanar Tarski-neutral-dimensionless-axioms assms

col--coplanar col-trivial-1 ncoplanar-perm-17 )

lemma reflect--coplanar :
assumes A B Reflect C D
shows Coplanar A B C D
by (metis (no-types) Reflect-def Tarski-neutral-dimensionless.reflectl--coplanar Tarski-neutral-dimensionless-axioms

assms col-trivial-2 ncop--ncols)

lemma inangle--coplanar :
assumes A InAngle B C D
shows Coplanar A B C D

proof −
obtain X where P1 : Bet B X D ∧ (X = C ∨ C Out X A)

using InAngle-def assms by auto
then show ?thesis

by (meson Col-cases Coplanar-def bet-col ncop--ncols out-col)
qed

lemma pars--coplanar :
assumes A B ParStrict C D
shows Coplanar A B C D
using ParStrict-def assms by auto

lemma par--coplanar :
assumes A B Par C D
shows Coplanar A B C D
using Par-def assms ncop--ncols pars--coplanar by blast
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lemma plg--coplanar :
assumes Plg A B C D
shows Coplanar A B C D

proof −
obtain M where Bet A M C ∧ Bet B M D

by (meson Plg-def assms midpoint-bet)
then show ?thesis

by (metis InAngle-def bet-out-1 inangle--coplanar ncop--ncols not-col-distincts)
qed

lemma plgs--coplanar :
assumes ParallelogramStrict A B C D
shows Coplanar A B C D
using ParallelogramStrict-def assms par--coplanar by blast

lemma plgf--coplanar :
assumes ParallelogramFlat A B C D
shows Coplanar A B C D
using ParallelogramFlat-def assms col--coplanar by auto

lemma parallelogram--coplanar :
assumes Parallelogram A B C D
shows Coplanar A B C D
using Parallelogram-def assms plgf--coplanar plgs--coplanar by auto

lemma rhombus--coplanar :
assumes Rhombus A B C D
shows Coplanar A B C D
using Rhombus-def assms plg--coplanar by blast

lemma rectangle--coplanar :
assumes Rectangle A B C D
shows Coplanar A B C D
using Rectangle-def assms plg--coplanar by blast

lemma square--coplanar :
assumes Square A B C D
shows Coplanar A B C D
using Square-def assms rectangle--coplanar by blast

lemma lambert--coplanar :
assumes Lambert A B C D
shows Coplanar A B C D
using Lambert-def assms by presburger

3.8.2 Planes
lemma ts-distincts:

assumes A B TS P Q
shows A 6= B ∧ A 6= P ∧ A 6= Q ∧ B 6= P ∧ B 6= Q ∧ P 6= Q
using TS-def assms bet-neq12--neq not-col-distincts by blast

lemma l9-2 :
assumes A B TS P Q
shows A B TS Q P
using TS-def assms between-symmetry by blast

lemma invert-two-sides:
assumes A B TS P Q
shows B A TS P Q
using TS-def assms not-col-permutation-5 by blast

lemma l9-3 :
assumes P Q TS A C and

Col M P Q and
M Midpoint A C and
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Col R P Q and
R Out A B

shows P Q TS B C
proof −

have P1 : ¬ Col A P Q
using TS-def assms(1 ) by blast

have P2 : P 6= Q
using P1 not-col-distincts by auto

obtain T where P3 : Col T P Q ∧ Bet A T C
using assms(2 ) assms(3 ) midpoint-bet by blast

have P4 : A 6= C
using assms(1 ) ts-distincts by blast

have P5 : T = M
by (smt P1 P3 Tarski-neutral-dimensionless.bet-col1 Tarski-neutral-dimensionless-axioms assms(2 ) assms(3 ) col-permutation-2

l6-21 midpoint-bet)
have P Q TS B C
proof cases

assume C = M
then show ?thesis

using P4 assms(3 ) midpoint-distinct-1 by blast
next

assume P6 : ¬ C = M
have P7 : ¬ Col B P Q

by (metis P1 assms(4 ) assms(5 ) col-permutation-1 colx l6-3-1 out-col)
have P97 : Bet R A B ∨ Bet R B A

using Out-def assms(5 ) by auto
{

assume Q1 : Bet R A B
obtain B ′ where Q2 : M Midpoint B B ′

using symmetric-point-construction by blast
obtain R ′ where Q3 : M Midpoint R R ′

using symmetric-point-construction by blast
have Q4 : Bet B ′ C R ′

using Q1 Q2 Q3 assms(3 ) between-symmetry l7-15 by blast
obtain X where Q5 : Bet M X R ′ ∧ Bet C X B

using Bet-perm Midpoint-def Q2 Q4 between-trivial2 l3-17 by blast
have Q6 : Col X P Q
proof −

have R1 : Col P M R
using P2 assms(2 ) assms(4 ) col-permutation-4 l6-16-1 by blast

have R2 : Col Q M R
by (metis R1 assms(2 ) assms(4 ) col-permutation-5 l6-16-1 not-col-permutation-3 )

{
assume M = X
then have Col X P Q

using assms(2 ) by blast
}
then have R3 : M = X −→ Col X P Q by simp
{

assume M 6= X
then have S1 : M 6= R ′

using Q5 bet-neq12--neq by blast
have M 6= R

using Q3 S1 midpoint-distinct-1 by blast
then have Col X P Q

by (smt Col-perm Q3 Q5 R1 R2 S1 bet-out col-transitivity-2 midpoint-col out-col)
}
then have M 6= X −→ Col X P Q by simp
then show ?thesis using R3 by blast

qed
have Bet B X C

using Q5 between-symmetry by blast
then have P Q TS B C using Q6

using P7 TS-def assms(1 ) by blast
}
then have P98 : Bet R A B −→ P Q TS B C by simp
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{
assume S2 : Bet R B A
have S3 : Bet C M A

using Bet-perm P3 P5 by blast
then obtain X where Bet B X C ∧ Bet M X R

using S2 inner-pasch by blast
then have P Q TS B C

by (metis Col-def P7 TS-def assms(1 ) assms(2 ) assms(4 ) between-inner-transitivity between-trivial l6-16-1
not-col-permutation-5 )

}
then have Bet R B A −→ P Q TS B C by simp
then show ?thesis using P97 P98

by blast
qed
then show ?thesis by blast

qed

lemma mid-preserves-col:
assumes Col A B C and

M Midpoint A A ′ and
M Midpoint B B ′ and
M Midpoint C C ′

shows Col A ′ B ′ C ′

using Col-def assms(1 ) assms(2 ) assms(3 ) assms(4 ) l7-15 by auto

lemma per-mid-per :
assumes

Per X A B and
M Midpoint A B and
M Midpoint X Y

shows Cong A X B Y ∧ Per Y B A
by (meson Cong3-def Mid-perm assms(1 ) assms(2 ) assms(3 ) l7-13 l8-10 )

lemma sym-preserve-diff :
assumes A 6= B and

M Midpoint A A ′ and
M Midpoint B B ′

shows A ′6= B ′

using assms(1 ) assms(2 ) assms(3 ) l7-9 by blast

lemma l9-4-1-aux-R1 :
assumes R = S and

S C Le R A and
P Q TS A C and
Col R P Q and
P Q Perp A R and
Col S P Q and
P Q Perp C S and
M Midpoint R S

shows ∀ U C ′. M Midpoint U C ′ −→ (R Out U A ←→ S Out C C ′)
proof −

have P1 : M = R
using assms(1 ) assms(8 ) l7-3 by blast

have P2 : ¬ Col A P Q
using TS-def assms(3 ) by auto

then have P3 : P 6= Q
using not-col-distincts by blast

obtain T where P4 : Col T P Q ∧ Bet A T C
using TS-def assms(3 ) by blast

{
assume ¬ M = T
then have M PerpAt M T A M using perp-col2

by (metis P1 P4 assms(4 ) assms(5 ) not-col-permutation-3 perp-left-comm perp-perp-in)
then have M T Perp C M

using P1 P4 ‹M 6= T› assms(1 ) assms(4 ) assms(7 ) col-permutation-1 perp-col2 by blast
then have Per T M A
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using ‹M PerpAt M T A M › perp-in-per-3 by blast
have Per T M C

by (simp add: ‹M T Perp C M › perp-per-1 )
have M = T
proof −

have Per C M T
by (simp add: ‹Per T M C › l8-2 )

then show ?thesis using l8-6 l8-2
using P4 ‹Per T M A› by blast

qed
then have False

using ‹M 6= T› by blast
}
then have Q0 : M = T by blast
have R1 : ∀ U C ′. ((M Midpoint U C ′ ∧ M Out U A) −→ M Out C C ′)
proof −

{
fix U C ′

assume Q1 : M Midpoint U C ′ ∧ M Out U A
have Q2 : C 6= M

using P1 assms(1 ) assms(7 ) perp-not-eq-2 by blast
have Q3 : C ′ 6= M

using Q1 midpoint-not-midpoint out-diff1 by blast
have Q4 : Bet U M C

using P4 Q0 Q1 bet-out--bet l6-6 by blast
then have M Out C C ′

by (metis (full-types) Out-def Q1 Q2 Q3 l5-2 midpoint-bet)
}
then show ?thesis by blast

qed
have R2 : ∀ U C ′. ((M Midpoint U C ′ ∧ M Out C C ′) −→ M Out U A)
proof −

{
fix U C ′

assume Q1 : M Midpoint U C ′ ∧ M Out C C ′

have Q2 : C 6= M
using P1 assms(1 ) assms(7 ) perp-not-eq-2 by blast

have Q3 : C ′ 6= M
using Q1 l6-3-1 by blast

have Q4 : Bet U M C
by (metis Out-def Q1 between-inner-transitivity midpoint-bet outer-transitivity-between)

then have M Out U A
by (metis P2 P4 Q0 Q1 Q2 Q3 l6-2 midpoint-distinct-1 )

}
then show ?thesis by blast

qed
then show ?thesis

using R1 P1 P2 assms by blast
qed

lemma l9-4-1-aux-R21 :
assumes R 6= S and

S C Le R A and
P Q TS A C and
Col R P Q and
P Q Perp A R and
Col S P Q and
P Q Perp C S and
M Midpoint R S

shows ∀ U C ′. M Midpoint U C ′ −→ (R Out U A ←→ S Out C C ′)
proof −

obtain D where P1 : Bet R D A ∧ Cong S C R D
using Le-def assms(2 ) by blast

have P2 : C 6= S
using assms(7 ) perp-not-eq-2 by auto

have P3 : R 6= D
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using P1 P2 cong-identity by blast
have P4 : R S Perp A R

using assms(1 ) assms(4 ) assms(5 ) assms(6 ) not-col-permutation-2 perp-col2 by blast
have ∃ M . (M Midpoint S R ∧ M Midpoint C D)
proof −

have Q1 : ¬ Col A P Q
using TS-def assms(3 ) by blast

have Q2 : P 6= Q
using Q1 not-col-distincts by blast

obtain T where Q3 : Col T P Q ∧ Bet A T C
using TS-def assms(3 ) by blast

have Q4 : C S Perp S R
by (metis NCol-perm assms(1 ) assms(4 ) assms(6 ) assms(7 ) perp-col0 )

have Q5 : A R Perp S R
using P4 Perp-perm by blast

have Q6 : Col S R T
using Col-cases Q2 Q3 assms(4 ) assms(6 ) col3 by blast

have Q7 : Bet C T A
using Bet-perm Q3 by blast

have Q8 : Bet R D A
by (simp add: P1 )

have Cong S C R D
by (simp add: P1 )

then show ?thesis using P1 Q4 Q5 Q6 Q7 l8-24 by blast
qed
then obtain M ′ where P5 : M ′ Midpoint S R ∧ M ′ Midpoint C D by blast
have P6 : M = M ′

by (meson P5 assms(8 ) l7-17-bis)
have L1 : ∀ U C ′. (M Midpoint U C ′ ∧ R Out U A) −→ S Out C C ′

proof −
{

fix U C ′

assume R1 : M Midpoint U C ′ ∧ R Out U A
have R2 : C 6= S

using P2 by auto
have R3 : C ′ 6= S

using P5 R1 P6 l7-9-bis out-diff1 by blast
have R4 : Bet S C C ′ ∨ Bet S C ′ C
proof −

have R5 : Bet R U A ∨ Bet R A U
using Out-def R1 by auto

{
assume Bet R U A
then have Bet R U D ∨ Bet R D U

using P1 l5-3 by blast
then have Bet S C C ′ ∨ Bet S C ′ C

using P5 P6 R1 l7-15 l7-2 by blast
}
then have R6 : Bet R U A −→ Bet S C C ′ ∨ Bet S C ′ C by simp
have Bet R A U −→ Bet S C C ′ ∨ Bet S C ′ C

using P1 P5 P6 R1 between-exchange4 l7-15 l7-2 by blast
then show ?thesis using R5 R6 by blast

qed
then have S Out C C ′

by (simp add: Out-def R2 R3 )
}
then show ?thesis by simp

qed
have ∀ U C ′. (M Midpoint U C ′ ∧ S Out C C ′) −→ R Out U A
proof −

{
fix U C ′

assume Q1 : M Midpoint U C ′ ∧ S Out C C ′

then have Q2 : U 6= R
using P5 P6 l7-9-bis out-diff2 by blast

have Q3 : A 6= R
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using assms(5 ) perp-not-eq-2 by auto
have Q4 : Bet S C C ′ ∨ Bet S C ′ C

using Out-def Q1 by auto
{

assume V0 : Bet S C C ′

have V1 : R 6= D
by (simp add: P3 )

then have V2 : Bet R D U
proof −

have W1 : M Midpoint S R
using P5 P6 by blast

have W2 : M Midpoint C D
by (simp add: P5 P6 )

have M Midpoint C ′ U
by (simp add: Q1 l7-2 )

then show ?thesis
using V0 P5 P6 l7-15 by blast

qed
have Bet R D A

using P1 by auto
then have Bet R U A ∨ Bet R A U

using V1 V2 l5-1 by blast
}
then have Q5 : Bet S C C ′ −→ Bet R U A ∨ Bet R A U by simp
{

assume R1 : Bet S C ′ C
have Bet R U A

using P1 P5 P6 Q1 R1 between-exchange4 l7-15 l7-2 by blast
}
then have Bet S C ′ C −→ Bet R U A ∨ Bet R A U by simp
then have Bet R U A ∨ Bet R A U

using Q4 Q5 by blast
then have R Out U A

by (simp add: Out-def Q2 Q3 )
}
then show ?thesis by simp

qed
then show ?thesis

using L1 by blast
qed

lemma l9-4-1-aux:
assumes S C Le R A and

P Q TS A C and
Col R P Q and
P Q Perp A R and
Col S P Q and
P Q Perp C S and
M Midpoint R S

shows ∀ U C ′. (M Midpoint U C ′ −→ (R Out U A ←→ S Out C C ′))
using l9-4-1-aux-R1 l9-4-1-aux-R21 assms by smt

lemma per-col-eq:
assumes Per A B C and

Col A B C and
B 6= C

shows A = B
using assms(1 ) assms(2 ) assms(3 ) l8-9 by blast

lemma l9-4-1 :
assumes P Q TS A C and

Col R P Q and
P Q Perp A R and
Col S P Q and
P Q Perp C S and
M Midpoint R S
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shows ∀ U C ′. M Midpoint U C ′ −→ (R Out U A ←→ S Out C C ′)
proof −

have P1 : S C Le R A ∨ R A Le S C
using local.le-cases by blast

{
assume Q1 : S C Le R A
{

fix U C ′

assume M Midpoint U C ′

then have (R Out U A ←→ S Out C C ′)
using Q1 assms(1 ) assms(2 ) assms(3 ) assms(4 ) assms(5 ) assms(6 ) l9-4-1-aux by blast

}
then have ∀ U C ′. M Midpoint U C ′ −→ (R Out U A ←→ S Out C C ′) by simp

}
then have P2 : S C Le R A −→ (∀ U C ′. M Midpoint U C ′ −→ (R Out U A ←→ S Out C C ′)) by simp
{

assume Q2 : R A Le S C
{

fix U C ′

assume M Midpoint U C ′

then have (R Out A U ←→ S Out C ′ C )
using Q2 assms(1 ) assms(2 ) assms(3 ) assms(4 ) assms(5 ) assms(6 ) l7-2 l9-2 l9-4-1-aux by blast

then have (R Out U A ←→ S Out C C ′)
using l6-6 by blast

}
then have ∀ U C ′. M Midpoint U C ′ −→ (R Out U A ←→ S Out C C ′) by simp

}
then have P3 : R A Le S C −→ (∀ U C ′. M Midpoint U C ′ −→ (R Out U A ←→ S Out C C ′)) by simp

then show ?thesis
using P1 P2 by blast

qed

lemma mid-two-sides:
assumes M Midpoint A B and
¬ Col A B X and
M Midpoint X Y

shows A B TS X Y
proof −

have f1 : ¬ Col Y A B
by (meson Mid-cases Tarski-neutral-dimensionless.mid-preserves-col Tarski-neutral-dimensionless-axioms assms(1 )

assms(2 ) assms(3 ) col-permutation-3 )
have Bet X M Y

using assms(3 ) midpoint-bet by blast
then show ?thesis

using f1 by (metis (no-types) TS-def assms(1 ) assms(2 ) col-permutation-1 midpoint-col)
qed

lemma col-preserves-two-sides:
assumes C 6= D and

Col A B C and
Col A B D and
A B TS X Y

shows C D TS X Y
proof −

have P1 : ¬ Col X A B
using TS-def assms(4 ) by blast

then have P2 : A 6= B
using not-col-distincts by blast

have P3 : ¬ Col X C D
by (metis Col-cases P1 Tarski-neutral-dimensionless.colx Tarski-neutral-dimensionless-axioms assms(1 ) assms(2 )

assms(3 ))
have P4 : ¬ Col Y C D
by (metis Col-cases TS-def Tarski-neutral-dimensionless.colx Tarski-neutral-dimensionless-axioms assms(1 ) assms(2 )

assms(3 ) assms(4 ))
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then show ?thesis
proof −

obtain pp :: ′p ⇒ ′p ⇒ ′p ⇒ ′p ⇒ ′p where
∀ x0 x1 x2 x3 . (∃ v4 . Col v4 x3 x2 ∧ Bet x1 v4 x0 ) = (Col (pp x0 x1 x2 x3 ) x3 x2 ∧ Bet x1 (pp x0 x1 x2 x3 ) x0 )
by moura

then have f1 : ¬ Col X A B ∧ ¬ Col Y A B ∧ Col (pp Y X B A) A B ∧ Bet X (pp Y X B A) Y
using TS-def assms(4 ) by presburger

then have Col (pp Y X B A) C D
by (meson P2 assms(2 ) assms(3 ) col3 not-col-permutation-3 not-col-permutation-4 )

then show ?thesis
using f1 TS-def P3 P4 by blast

qed
qed

lemma out-out-two-sides:
assumes A 6= B and

A B TS X Y and
Col I A B and
Col I X Y and
I Out X U and
I Out Y V

shows A B TS U V
proof −

have P0 : ¬ Col X A B
using TS-def assms(2 ) by blast

then have P1 : ¬ Col V A B
by (smt assms(2 ) assms(3 ) assms(4 ) assms(6 ) col-out2-col col-transitivity-1 not-col-permutation-3 not-col-permutation-4

out-diff2 out-trivial ts-distincts)
have P2 : ¬ Col U A B

by (metis P0 assms(3 ) assms(5 ) col-permutation-2 colx out-col out-distinct)
obtain T where P3 : Col T A B ∧ Bet X T Y

using TS-def assms(2 ) by blast
have I = T
proof −

have f1 : ∀ p pa pb. ¬ Col p pa pb ∧ ¬ Col p pb pa ∧ ¬ Col pa p pb ∧ ¬ Col pa pb p ∧ ¬ Col pb p pa ∧ ¬ Col pb pa
p ∨ Col p pa pb

using Col-cases by blast
then have f2 : Col X Y I

using assms(4 ) by blast
have f3 : Col B A I

using f1 assms(3 ) by blast
have f4 : Col B A T

using f1 P3 by blast
have f5 : ¬ Col X A B ∧ ¬ Col X B A ∧ ¬ Col A X B ∧ ¬ Col A B X ∧ ¬ Col B X A ∧ ¬ Col B A X

using f1 ‹¬ Col X A B› by blast
have f6 : A 6= B ∧ A 6= X ∧ A 6= Y ∧ B 6= X ∧ B 6= Y ∧ X 6= Y

using assms(2 ) ts-distincts by presburger
have Col X Y T

using f1 by (meson P3 bet-col)
then show ?thesis

using f6 f5 f4 f3 f2 by (meson Tarski-neutral-dimensionless.l6-21 Tarski-neutral-dimensionless-axioms)
qed
then have Bet U T V

using P3 assms(5 ) assms(6 ) bet-out-out-bet by blast
then show ?thesis

using P1 P2 P3 TS-def by blast
qed

lemma l9-4-2-aux-R1 :
assumes R = S and

S C Le R A and
P Q TS A C and
Col R P Q and
P Q Perp A R and
Col S P Q and
P Q Perp C S and
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R Out U A and
S Out V C

shows P Q TS U V
proof −

have ¬ Col A P Q
using TS-def assms(3 ) by auto

then have P2 : P 6= Q
using not-col-distincts by blast

obtain T where P3 : Col T P Q ∧ Bet A T C
using TS-def assms(3 ) by blast

have R = T using assms(1 ) assms(5 ) assms(6 ) assms(7 ) col-permutation-1 l8-16-1 l8-6
by (meson P3 )

then show ?thesis
by (smt P2 P3 assms(1 ) assms(3 ) assms(8 ) assms(9 ) bet-col col-transitivity-2 l6-6 not-col-distincts out-out-two-sides)

qed

lemma l9-4-2-aux-R2 :
assumes R 6= S and

S C Le R A and
P Q TS A C and
Col R P Q and
P Q Perp A R and
Col S P Q and
P Q Perp C S and
R Out U A and
S Out V C

shows P Q TS U V
proof −

have P1 : P 6= Q
using assms(7 ) perp-distinct by auto

have P2 : R S TS A C
using assms(1 ) assms(3 ) assms(4 ) assms(6 ) col-permutation-1 col-preserves-two-sides by blast

have P3 : Col R S P
using P1 assms(4 ) assms(6 ) col2--eq not-col-permutation-1 by blast

have P4 : Col R S Q
by (metis P3 Tarski-neutral-dimensionless.colx Tarski-neutral-dimensionless-axioms assms(4 ) assms(6 ) col-trivial-2 )

have P5 : R S Perp A R
using NCol-perm assms(1 ) assms(4 ) assms(5 ) assms(6 ) perp-col2 by blast

have P6 : R S Perp C S
using assms(1 ) assms(4 ) assms(6 ) assms(7 ) col-permutation-1 perp-col2 by blast

have P7 : ¬ Col A R S
using P2 TS-def by blast

obtain T where P8 : Col T R S ∧ Bet A T C
using P2 TS-def by blast

obtain C ′ where P9 : Bet R C ′ A ∧ Cong S C R C ′

using Le-def assms(2 ) by blast
have ∃ X . X Midpoint S R ∧ X Midpoint C C ′

proof −
have Q1 : C S Perp S R

using P6 Perp-perm by blast
have Q2 : A R Perp S R

using P5 Perp-perm by blast
have Q3 : Col S R T

using Col-cases P8 by blast
have Q4 : Bet C T A

using Bet-perm P8 by blast
have Q5 : Bet R C ′ A

by (simp add: P9 )
have Cong S C R C ′

by (simp add: P9 )
then show ?thesis using Q1 Q2 Q3 Q4 Q5 l8-24

by blast
qed
then obtain M where P10 : M Midpoint S R ∧ M Midpoint C C ′ by blast
obtain U ′ where P11 : M Midpoint U U ′

using symmetric-point-construction by blast
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have P12 : R 6= U
using assms(8 ) out-diff1 by blast

have P13 : R S TS U U ′

by (smt P10 P11 P12 P7 assms(8 ) col-transitivity-2 invert-two-sides mid-two-sides not-col-permutation-3 not-col-permutation-4
out-col)

have P14 : R S TS V U
proof −

have Q1 : Col M R S
using P10 midpoint-col not-col-permutation-5 by blast

have Q2 : M Midpoint U ′ U
by (meson P11 Tarski-neutral-dimensionless.Mid-cases Tarski-neutral-dimensionless-axioms)

have S Out U ′ V
by (meson P10 P11 P2 P5 P6 Tarski-neutral-dimensionless.l7-2 Tarski-neutral-dimensionless-axioms assms(1 )

assms(2 ) assms(8 ) assms(9 ) l6-6 l6-7 l9-4-1-aux-R21 not-col-distincts)
then show ?thesis

using P13 Q1 Q2 col-trivial-3 l9-2 l9-3 by blast
qed
then show ?thesis

using P1 P3 P4 col-preserves-two-sides l9-2 by blast
qed

lemma l9-4-2-aux:
assumes S C Le R A and

P Q TS A C and
Col R P Q and
P Q Perp A R and
Col S P Q and
P Q Perp C S and
R Out U A and
S Out V C

shows P Q TS U V
using l9-4-2-aux-R1 l9-4-2-aux-R2
by (metis assms(1 ) assms(2 ) assms(3 ) assms(4 ) assms(5 ) assms(6 ) assms(7 ) assms(8 ))

lemma l9-4-2 :
assumes P Q TS A C and

Col R P Q and
P Q Perp A R and
Col S P Q and
P Q Perp C S and
R Out U A and
S Out V C

shows P Q TS U V
proof −

have P1 : S C Le R A ∨ R A Le S C
by (simp add: local.le-cases)

have P2 : S C Le R A −→ P Q TS U V
by (simp add: assms(1 ) assms(2 ) assms(3 ) assms(4 ) assms(5 ) assms(6 ) assms(7 ) l9-4-2-aux)

have R A Le S C −→ P Q TS U V
by (simp add: assms(1 ) assms(2 ) assms(3 ) assms(4 ) assms(5 ) assms(6 ) assms(7 ) l9-2 l9-4-2-aux)

then show ?thesis
using P1 P2 by blast

qed

lemma l9-5 :
assumes P Q TS A C and

Col R P Q and
R Out A B

shows P Q TS B C
proof −

have P1 : P 6= Q
using assms(1 ) ts-distincts by blast

obtain A ′ where P2 : Col P Q A ′ ∧ P Q Perp A A ′

by (metis NCol-perm Tarski-neutral-dimensionless.TS-def Tarski-neutral-dimensionless-axioms assms(1 ) l8-18-existence)
obtain C ′ where P3 : Col P Q C ′ ∧ P Q Perp C C ′

using Col-perm TS-def assms(1 ) l8-18-existence by blast
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obtain M where P5 : M Midpoint A ′ C ′

using midpoint-existence by blast
obtain D where S2 : M Midpoint A D

using symmetric-point-construction by auto
have ∃ B0 . Col P Q B0 ∧ P Q Perp B B0
proof −

have S1 : ¬ Col P Q B
by (metis P2 Tarski-neutral-dimensionless.colx Tarski-neutral-dimensionless.perp-not-col2 Tarski-neutral-dimensionless-axioms

assms(2 ) assms(3 ) col-permutation-1 l6-3-1 out-col)
then show ?thesis

by (simp add: l8-18-existence)
qed
then obtain B ′ where P99 : Col P Q B ′ ∧ P Q Perp B B ′ by blast
have P Q TS B C
proof −

have S3 : C ′ Out D C ←→ A ′ Out A A
using Out-cases P2 P3 P5 S2 assms(1 ) l9-4-1 not-col-permutation-1 by blast

then have S4 : C ′ Out D C
using P2 Tarski-neutral-dimensionless.perp-not-eq-2 Tarski-neutral-dimensionless-axioms out-trivial by fastforce

have S5 : P Q TS A D
using P2 P3 S3 S4 assms(1 ) col-permutation-2 l9-4-2 by blast

{
assume A ′ 6= C ′

then have Col M P Q
by (smt P2 P3 P5 col-trivial-2 l6-21 midpoint-col not-col-permutation-1 )

then have P Q TS B D
using S2 S5 assms(2 ) assms(3 ) l9-3 by blast

}
then have A ′ 6= C ′ −→ P Q TS B D by simp
then have S6 : P Q TS B D

by (metis P3 P5 S2 S5 assms(2 ) assms(3 ) l9-3 midpoint-distinct-2 not-col-permutation-1 )
have S7 : Col B ′ P Q

using Col-perm P99 by blast
have S8 : P Q Perp B B ′

using P99 by blast
have S9 : Col C ′ P Q

using Col-cases P3 by auto
have S10 : P Q Perp D C ′

by (metis Col-perm P3 S4 l6-3-1 out-col perp-col1 perp-right-comm)
have S11 : B ′ Out B B

by (metis (no-types) P99 out-trivial perp-not-eq-2 )
have C ′ Out C D

by (simp add: S4 l6-6 )
then show ?thesis using S6 S7 S8 S9 S10 S11 l9-4-2 by blast

qed
then show ?thesis using l8-18-existence by blast

qed

lemma outer-pasch-R1 :
assumes Col P Q C and

Bet A C P and
Bet B Q C

shows ∃ X . Bet A X B ∧ Bet P Q X
by (smt Bet-perm Col-def assms(1 ) assms(2 ) assms(3 ) between-exchange3 between-trivial outer-transitivity-between2 )

lemma outer-pasch-R2 :
assumes ¬ Col P Q C and

Bet A C P and
Bet B Q C

shows ∃ X . Bet A X B ∧ Bet P Q X
proof cases

assume B = Q
then show ?thesis

using between-trivial by blast
next

assume P1 : B 6= Q
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have P2 : A 6= P
using assms(1 ) assms(2 ) between-identity col-trivial-3 by blast

have P3 : P 6= Q
using assms(1 ) col-trivial-1 by blast

have P4 : P 6= B
using assms(1 ) assms(3 ) bet-col by blast

have P5 : P Q TS C B
proof −

have Q1 : ¬ Col C P Q
using Col-cases assms(1 ) by blast

have Q2 : ¬ Col B P Q
by (metis Col-cases P1 Tarski-neutral-dimensionless.colx Tarski-neutral-dimensionless-axioms assms(1 ) assms(3 )

bet-col col-trivial-2 )
have ∃ T . Col T P Q ∧ Bet C T B

using Col-cases assms(3 ) between-symmetry col-trivial-2 by blast
then show ?thesis

by (simp add: Q1 Q2 TS-def )
qed
have P6 : P Q TS A B

by (metis P5 assms(1 ) assms(2 ) bet-out-1 l9-5 not-col-distincts)
obtain X where P7 : Col X P Q ∧ Bet A X B

using P6 TS-def by blast
have Bet P Q X
proof −

obtain T where P8 : Bet X T P ∧ Bet C T B
using P7 assms(2 ) between-symmetry inner-pasch by blast

have P9 : B 6= C
using P1 assms(3 ) bet-neq12--neq by blast

have P10 : T = Q
proof −

have f1 : ∀ p pa pb. Col pb pa p ∨ ¬ Bet pb pa p
by (meson bet-col1 between-trivial)

then have f2 : Col Q C B
using NCol-cases assms(3 ) by blast

have Col T C B
using f1 NCol-cases P8 by blast

then show ?thesis
using f2 f1 by (metis (no-types) NCol-cases P7 P8 assms(1 ) between-trivial l6-16-1 l6-2 not-bet-and-out)

qed
then show ?thesis

using P8 between-symmetry by blast
qed
then show ?thesis using P7 by blast

qed

lemma outer-pasch:
assumes Bet A C P and

Bet B Q C
shows ∃ X . Bet A X B ∧ Bet P Q X
using assms(1 ) assms(2 ) outer-pasch-R1 outer-pasch-R2 by blast

lemma os-distincts:
assumes A B OS X Y
shows A 6= B ∧ A 6= X ∧ A 6= Y ∧ B 6= X ∧ B 6= Y
using OS-def assms ts-distincts by blast

lemma invert-one-side:
assumes A B OS P Q
shows B A OS P Q

proof −
obtain T where A B TS P T ∧ A B TS Q T

using OS-def assms by blast
then have B A TS P T ∧ B A TS Q T

using invert-two-sides by blast
thus ?thesis

using OS-def by blast
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qed

lemma l9-8-1 :
assumes P Q TS A C and

P Q TS B C
shows P Q OS A B

proof −
have ∃ R:: ′p. (P Q TS A R ∧ P Q TS B R)

using assms(1 ) assms(2 ) by blast
then show ?thesis

using OS-def by blast
qed

lemma not-two-sides-id:
shows ¬ P Q TS A A
using ts-distincts by blast

lemma l9-8-2 :
assumes P Q TS A C and

P Q OS A B
shows P Q TS B C

proof −
obtain D where P1 : P Q TS A D ∧ P Q TS B D

using assms(2 ) OS-def by blast
then have P 6= Q

using ts-distincts by blast
obtain T where P2 : Col T P Q ∧ Bet A T C

using TS-def assms(1 ) by blast
obtain X where P3 : Col X P Q ∧ Bet A X D

using TS-def P1 by blast
obtain Y where P4 : Col Y P Q ∧ Bet B Y D

using TS-def P1 by blast
then obtain M where P5 : Bet Y M A ∧ Bet X M B using P3 inner-pasch by blast
have P6 : A 6= D

using P1 ts-distincts by blast
have P7 : B 6= D

using P1 not-two-sides-id by blast
{

assume Q0 : Col A B D
have P Q TS B C
proof cases

assume Q1 : M = Y
have X = Y
proof −

have S1 : ¬ Col P Q A
using TS-def assms(1 ) not-col-permutation-1 by blast

have S3 : Col P Q X
using Col-perm P3 by blast

have S4 : Col P Q Y
using Col-perm P4 by blast

have S5 : Col A D X
by (simp add: P3 bet-col col-permutation-5 )

have Col A D Y
by (metis Col-def P5 Q1 S5 Q0 between-equality between-trivial l6-16-1 )

then show ?thesis using S1 S3 S4 S5 P6 l6-21
by blast

qed
then have X Out A B

by (metis P1 P3 P4 TS-def l6-2 )
then show ?thesis using assms(1 ) P3 l9-5 by blast

next
assume Z1 : ¬ M = Y
have X = Y
proof −

have S1 : ¬ Col P Q A
using TS-def assms(1 ) not-col-permutation-1 by blast
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have S3 : Col P Q X
using Col-perm P3 by blast

have S4 : Col P Q Y
using Col-perm P4 by blast

have S5 : Col A D X
by (simp add: P3 bet-col col-permutation-5 )

have Col A D Y
by (metis Col-def P4 Q0 P7 l6-16-1 )

then show ?thesis using S1 S3 S4 S5 P6 l6-21
by blast

qed
then have Z3 : M 6= X using Z1 by blast
have Z4 : P Q TS M C

by (meson Out-cases P4 P5 Tarski-neutral-dimensionless.l9-5 Tarski-neutral-dimensionless-axioms Z1 assms(1 )
bet-out)

have X Out M B
using P5 Z3 bet-out by auto

then show ?thesis using Z4 P3 l9-5 by blast
qed

}
then have Z99 : Col A B D −→ P Q TS B C by blast
{

assume Q0 : ¬ Col A B D
have Q1 : P Q TS M C
proof −

have S3 : Y Out A M
proof −

have T1 : A 6= Y
using Col-def P4 Q0 col-permutation-4 by blast

have T2 : M 6= Y
proof −

{
assume T3 : M = Y
have Col B D X
proof −

have U1 : B 6= M
using P1 P4 T3 TS-def by blast

have U2 : Col B M D
by (simp add: P4 T3 bet-col)

have Col B M X
by (simp add: P5 bet-col between-symmetry)

then show ?thesis using U1 U2
using col-transitivity-1 by blast

qed
have False

by (metis NCol-cases P1 P3 TS-def ‹Col B D X› Q0 bet-col col-trivial-2 l6-21 )
}
then show ?thesis by blast

qed
have Bet Y A M ∨ Bet Y M A using P5 by blast
then show ?thesis using T1 T2

by (simp add: Out-def )
qed
then have X Out M B

by (metis P1 P3 P4 P5 TS-def bet-out l9-5 )
then show ?thesis using assms(1 ) S3 l9-5 P3 P4 by blast

qed
have X Out M B

by (metis P3 P5 Q1 TS-def bet-out)
then have P Q TS B C using Q1 P3 l9-5 by blast

}
then have ¬ Col A B D −→ P Q TS B C by blast
then show ?thesis using Z99 by blast

qed

lemma l9-9 :
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assumes P Q TS A B
shows ¬ P Q OS A B
using assms l9-8-2 not-two-sides-id by blast

lemma l9-9-bis:
assumes P Q OS A B
shows ¬ P Q TS A B
using assms l9-9 by blast

lemma one-side-chara:
assumes P Q OS A B
shows ∀ X . Col X P Q −→ ¬ Bet A X B

proof −
have ¬ Col A P Q ∧ ¬ Col B P Q

using OS-def TS-def assms by auto
then show ?thesis

using l9-9-bis TS-def assms by blast
qed

lemma l9-10 :
assumes ¬ Col A P Q
shows ∃ C . P Q TS A C
by (meson Col-perm assms mid-two-sides midpoint-existence symmetric-point-construction)

lemma one-side-reflexivity:
assumes ¬ Col A P Q
shows P Q OS A A
using assms l9-10 l9-8-1 by blast

lemma one-side-symmetry:
assumes P Q OS A B
shows P Q OS B A
by (meson Tarski-neutral-dimensionless.OS-def Tarski-neutral-dimensionless-axioms assms invert-two-sides)

lemma one-side-transitivity:
assumes P Q OS A B and

P Q OS B C
shows P Q OS A C
by (meson Tarski-neutral-dimensionless.OS-def Tarski-neutral-dimensionless.l9-8-2 Tarski-neutral-dimensionless-axioms

assms(1 ) assms(2 ))

lemma l9-17 :
assumes P Q OS A C and

Bet A B C
shows P Q OS A B

proof cases
assume A = C
then show ?thesis

using assms(1 ) assms(2 ) between-identity by blast
next

assume P1 : ¬ A = C
obtain D where P2 : P Q TS A D ∧ P Q TS C D

using OS-def assms(1 ) by blast
then have P3 : P 6= Q

using ts-distincts by blast
obtain X where P4 : Col X P Q ∧ Bet A X D

using P2 TS-def by blast
obtain Y where P5 : Col Y P Q ∧ Bet C Y D

using P2 TS-def by blast
obtain T where P6 : Bet B T D ∧ Bet X T Y

using P4 P5 assms(2 ) l3-17 by blast
have P7 : P Q TS A D

by (simp add: P2 )
have P Q TS B D
proof −

have Q1 : ¬ Col B P Q
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using assms(1 ) assms(2 ) one-side-chara by blast
have Q2 : ¬ Col D P Q

using P2 TS-def by blast
obtain T0 where Col T0 P Q ∧ Bet B T0 D
proof −

assume a1 :
∧

T0 . Col T0 P Q ∧ Bet B T0 D =⇒ thesis
obtain pp :: ′p where

f2 : Bet B pp D ∧ Bet X pp Y
using ‹

∧
thesis. (

∧
T . Bet B T D ∧ Bet X T Y =⇒ thesis) =⇒ thesis› by blast

have Col P Q Y
using Col-def P5 by blast

then have Y = X ∨ Col P Q pp
using f2 Col-def P4 colx by blast

then show ?thesis
using f2 a1 by (metis BetSEq BetS-def Col-def P4 )

qed
then show ?thesis using Q1 Q2

using TS-def by blast
qed
then show ?thesis using P7

using OS-def by blast
qed

lemma l9-18-R1 :
assumes Col X Y P and

Col A B P
and X Y TS A B

shows Bet A P B ∧ ¬ Col X Y A ∧ ¬ Col X Y B
by (meson TS-def assms(1 ) assms(2 ) assms(3 ) col-permutation-5 l9-5 not-col-permutation-1 not-out-bet not-two-sides-id)

lemma l9-18-R2 :
assumes Col X Y P and

Col A B P and
Bet A P B and
¬ Col X Y A and
¬ Col X Y B

shows X Y TS A B
using Col-perm TS-def assms(1 ) assms(3 ) assms(4 ) assms(5 ) by blast

lemma l9-18 :
assumes Col X Y P and

Col A B P
shows X Y TS A B ←→ (Bet A P B ∧ ¬ Col X Y A ∧ ¬ Col X Y B)
using l9-18-R1 l9-18-R2 assms(1 ) assms(2 ) by blast

lemma l9-19-R1 :
assumes Col X Y P and

Col A B P and
X Y OS A B

shows P Out A B ∧ ¬ Col X Y A
by (meson OS-def TS-def assms(1 ) assms(2 ) assms(3 ) col-permutation-5 not-col-permutation-1 not-out-bet one-side-chara)

lemma l9-19-R2 :
assumes Col X Y P and

P Out A B and
¬ Col X Y A

shows X Y OS A B
proof −

obtain D where X Y TS A D
using Col-perm assms(3 ) l9-10 by blast

then show ?thesis
using OS-def assms(1 ) assms(2 ) l9-5 not-col-permutation-1 by blast

qed

lemma l9-19 :
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assumes Col X Y P and
Col A B P

shows X Y OS A B ←→ (P Out A B ∧ ¬ Col X Y A)
using l9-19-R1 l9-19-R2 assms(1 ) assms(2 ) by blast

lemma one-side-not-col123 :
assumes A B OS X Y
shows ¬ Col A B X
using assms col-trivial-3 l9-19 by blast

lemma one-side-not-col124 :
assumes A B OS X Y
shows ¬ Col A B Y
using assms one-side-not-col123 one-side-symmetry by blast

lemma col-two-sides:
assumes Col A B C and

A 6= C and
A B TS P Q

shows A C TS P Q
using assms(1 ) assms(2 ) assms(3 ) col-preserves-two-sides col-trivial-3 by blast

lemma col-one-side:
assumes Col A B C and

A 6= C and
A B OS P Q

shows A C OS P Q
proof −

obtain T where A B TS P T ∧ A B TS Q T using assms(1 ) assms(2 ) assms(3 ) OS-def by blast
then show ?thesis

using col-two-sides OS-def assms(1 ) assms(2 ) by blast
qed

lemma out-out-one-side:
assumes A B OS X Y and

A Out Y Z
shows A B OS X Z
by (meson Col-cases Tarski-neutral-dimensionless.OS-def Tarski-neutral-dimensionless-axioms assms(1 ) assms(2 )

col-trivial-3 l9-5 )

lemma out-one-side:
assumes ¬ Col A B X ∨ ¬ Col A B Y and

A Out X Y
shows A B OS X Y
using assms(1 ) assms(2 ) l6-6 not-col-permutation-2 one-side-reflexivity one-side-symmetry out-out-one-side by blast

lemma bet--ts:
assumes A 6= Y and
¬ Col A B X and
Bet X A Y

shows A B TS X Y
proof −

have ¬ Col Y A B
using NCol-cases assms(1 ) assms(2 ) assms(3 ) bet-col col2--eq by blast

then show ?thesis
by (meson TS-def assms(2 ) assms(3 ) col-permutation-3 col-permutation-5 col-trivial-3 )

qed

lemma bet-ts--ts:
assumes A B TS X Y and

Bet X Y Z
shows A B TS X Z

proof −
have ¬ Col Z A B

using assms(1 ) assms(2 ) bet-col between-equality-2 col-permutation-1 l9-18 by blast
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then show ?thesis
using TS-def assms(1 ) assms(2 ) between-exchange4 by blast

qed

lemma bet-ts--os:
assumes A B TS X Y and

Bet X Y Z
shows A B OS Y Z
using OS-def assms(1 ) assms(2 ) bet-ts--ts l9-2 by blast

lemma l9-31 :
assumes A X OS Y Z and

A Z OS Y X
shows A Y TS X Z

proof −
have P1 : A 6= X ∧ A 6= Z ∧ ¬ Col Y A X ∧ ¬ Col Z A X ∧ ¬ Col Y A Z

using assms(1 ) assms(2 ) col-permutation-1 one-side-not-col123 one-side-not-col124 os-distincts by blast
obtain Z ′ where P2 : Bet Z A Z ′ ∧ Cong A Z ′ Z A

using segment-construction by blast
have P3 : Z ′ 6= A

using P1 P2 cong-diff-4 by blast
have P4 : A X TS Y Z ′

by (metis (no-types) P2 P3 assms(1 ) bet--ts l9-8-2 one-side-not-col124 one-side-symmetry)
have P5 : ¬ Col Y A X

using P1 by blast
obtain T where P6 : Col A T X ∧ Bet Y T Z ′

using P4 TS-def not-col-permutation-4 by blast
then have P7 : T 6= A
proof −

have ¬ Col A Z Y
by (simp add: P1 not-col-permutation-1 )

then have f1 : ¬ A Out Z Y
using out-col by blast

have A 6= Z ′

using P1 P2 cong-diff-4 by blast
then show ?thesis

using f1 by (metis (no-types) P1 P2 P6 l6-2 )
qed
have P8 : Y A OS Z ′ T
by (smt P1 P2 P3 P6 Tarski-neutral-dimensionless.l6-6 Tarski-neutral-dimensionless-axioms bet-col bet-out col-trivial-2

l6-21 not-col-permutation-1 out-one-side)
have P9 : A Y TS Z ′ Z

using Col-perm P1 P2 P8 bet--ts between-symmetry one-side-not-col123 by blast
{

assume Q0 : Bet T A X
have Q1 : Z ′ Z OS Y T
by (metis BetSEq BetS-def P1 P2 P4 P6 TS-def Tarski-neutral-dimensionless.l6-6 Tarski-neutral-dimensionless-axioms

bet-col bet-out-1 col-trivial-3 colx not-col-permutation-3 not-col-permutation-4 out-one-side)
then have Q2 : Z ′ Out T Y

by (metis P6 bet-out-1 os-distincts)
then have Q3 : A Z OS Y T

by (meson Out-cases P1 P2 P6 bet-col col-permutation-3 invert-one-side l9-19-R2 )
have A Z TS X T
proof −

have R1 : ¬ Col X A Z
using P1 col-permutation-3 by blast

have R2 : ¬ Col T A Z
using Q3 between-trivial one-side-chara by blast

have ∃ T0 . Col T0 A Z ∧ Bet X T0 T
proof −

have S1 : Col A A Z
by (simp add: col-trivial-1 )

have Bet X A T
by (simp add: Q0 between-symmetry)

then show ?thesis using S1 by blast
qed
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then show ?thesis using R1 R2
using TS-def by auto

qed
have A Y TS X Z
by (meson Q3 Tarski-neutral-dimensionless.l9-8-2 Tarski-neutral-dimensionless.one-side-symmetry Tarski-neutral-dimensionless-axioms

‹A Z TS X T› assms(2 ) l9-9-bis)
}
then have P10 : Bet T A X −→ A Y TS X Z by blast
{

assume R1 : Bet A X T
then have R3 : A Y OS Z ′ X
by (meson Bet-cases P1 P6 P8 R1 between-equality invert-one-side not-col-permutation-4 not-out-bet out-out-one-side)
have A Y TS X Z

using R3 P9 l9-8-2 by blast
}
then have P11 : Bet A X T −→ A Y TS X Z by blast
{

assume R1 : Bet X T A
then have R3 : A Y OS T X

by (simp add: P5 P7 R1 bet-out-1 not-col-permutation-4 out-one-side)
then have A Y TS X Z

using P8 P9 invert-two-sides l9-8-2 by blast
}
then have Bet X T A −→ A Y TS X Z by blast
then show ?thesis using P10 P11

using P6 between-symmetry third-point by blast
qed

lemma col123--nos:
assumes Col P Q A
shows ¬ P Q OS A B
using assms one-side-not-col123 by blast

lemma col124--nos:
assumes Col P Q B
shows ¬ P Q OS A B
using assms one-side-not-col124 by blast

lemma col2-os--os:
assumes C 6= D and

Col A B C and
Col A B D and
A B OS X Y

shows C D OS X Y
by (metis assms(1 ) assms(2 ) assms(3 ) assms(4 ) col3 col-one-side col-trivial-3 invert-one-side os-distincts)

lemma os-out-os:
assumes Col A B P and

A B OS C D and
P Out C C ′

shows A B OS C ′ D
using OS-def assms(1 ) assms(2 ) assms(3 ) l9-5 not-col-permutation-1 by blast

lemma ts-ts-os:
assumes A B TS C D and

C D TS A B
shows A C OS B D

proof −
obtain T1 where P1 : Col T1 A B ∧ Bet C T1 D

using TS-def assms(1 ) by blast
obtain T where P2 : Col T C D ∧ Bet A T B

using TS-def assms(2 ) by blast
have P3 : T1 = T
proof −

have A 6= B
using assms(2 ) ts-distincts by blast
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then show ?thesis
proof −

have Col T1 D C
using Col-def P1 by blast

then have f1 : ∀ p. (C = T1 ∨ Col C p T1 ) ∨ ¬ Col C T1 p
by (metis assms(1 ) col-transitivity-1 l6-16-1 ts-distincts)

have f2 : ¬ Col C A B
using TS-def assms(1 ) by presburger

have f3 : (Bet B T1 A ∨ Bet T1 A B) ∨ Bet A B T1
using Col-def P1 by blast

{
assume T1 6= B
then have C 6= T1 ∧ ¬ Col C T1 B ∨ (∃ p. ¬ Col p T1 B ∧ Col p T1 T) ∨ T 6= A ∧ T 6= B

using f3 f2 by (metis (no-types) Col-def col-transitivity-1 l6-16-1 )
then have T 6= A ∧ T 6= B ∨ C 6= T1 ∧ ¬ Col C T1 T ∨ T1 = T

using f3 by (meson Col-def l6-16-1 )
}
moreover
{

assume T 6= A ∧ T 6= B
then have C 6= T1 ∧ ¬ Col C T1 T ∨ T1 = T

using f2 by (metis (no-types) Col-def P1 P2 ‹A 6= B› col-transitivity-1 l6-16-1 )
}
ultimately have C 6= T1 ∧ ¬ Col C T1 T ∨ T1 = T

using f2 f1 assms(1 ) ts-distincts by blast
then show ?thesis

by (metis (no-types) Col-def P1 P2 assms(1 ) l6-16-1 ts-distincts)
qed

qed
have P4 : A C OS T B

by (metis Col-cases P2 TS-def assms(1 ) assms(2 ) bet-out out-one-side)
then have C A OS T D

by (metis Col-cases P1 TS-def P3 assms(2 ) bet-out os-distincts out-one-side)
then show ?thesis
by (meson P4 Tarski-neutral-dimensionless.invert-one-side Tarski-neutral-dimensionless.one-side-symmetry Tarski-neutral-dimensionless-axioms

one-side-transitivity)
qed

lemma col-one-side-out:
assumes Col A X Y and

A B OS X Y
shows A Out X Y
by (meson assms(1 ) assms(2 ) l6-4-2 not-col-distincts not-col-permutation-4 one-side-chara)

lemma col-two-sides-bet:
assumes Col A X Y and

A B TS X Y
shows Bet X A Y
using Col-cases assms(1 ) assms(2 ) l9-8-1 l9-9 or-bet-out out-out-one-side by blast

lemma os-ts1324--os:
assumes A X OS Y Z and

A Y TS X Z
shows A Z OS X Y

proof −
obtain P where P1 : Col P A Y ∧ Bet X P Z

using TS-def assms(2 ) by blast
have P2 : A Z OS X P

by (metis Col-cases P1 TS-def assms(1 ) assms(2 ) bet-col bet-out-1 col124--nos col-trivial-2 l6-6 l9-19 )
have A Z OS P Y
proof −

have ¬ Col A Z P ∨ ¬ Col A Z Y
using P2 col124--nos by blast

moreover have A Out P Y
proof −

have X A OS P Z
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by (metis Col-cases P1 P2 assms(1 ) bet-out col123--nos out-one-side)
then have A X OS P Y
by (meson Tarski-neutral-dimensionless.invert-one-side Tarski-neutral-dimensionless.one-side-symmetry Tarski-neutral-dimensionless-axioms

assms(1 ) one-side-transitivity)
then show ?thesis

using P1 col-one-side-out not-col-permutation-4 by blast
qed
ultimately show ?thesis

by (simp add: out-one-side)
qed
then show ?thesis

using P2 one-side-transitivity by blast
qed

lemma ts2--ex-bet2 :
assumes A C TS B D and

B D TS A C
shows ∃ X . Bet A X C ∧ Bet B X D
by (metis TS-def assms(1 ) assms(2 ) bet-col col-permutation-5 l9-18-R1 not-col-permutation-2 )

lemma out-one-side-1 :
assumes ¬ Col A B C and

Col A B X and
X Out C D

shows A B OS C D
using assms(1 ) assms(2 ) assms(3 ) not-col-permutation-2 one-side-reflexivity one-side-symmetry os-out-os by blast

lemma out-two-sides-two-sides:
assumes

Col A B PX and
PX Out X P and
A B TS P Y

shows A B TS X Y
using assms(1 ) assms(2 ) assms(3 ) l6-6 l9-5 not-col-permutation-1 by blast

lemma l8-21-bis:
assumes X 6= Y and
¬ Col C A B

shows ∃ P. Cong A P X Y ∧ A B Perp P A ∧ A B TS C P
proof −

have P1 : A 6= B
using assms(2 ) not-col-distincts by blast

then have ∃ P T . A B Perp P A ∧ Col A B T ∧ Bet C T P
using l8-21 by auto

then obtain P T where P2 : A B Perp P A ∧ Col A B T ∧ Bet C T P by blast
have P3 : A B TS C P
proof −

have ¬ Col P A B
using P2 col-permutation-1 perp-not-col by blast

then show ?thesis
using P2 TS-def assms(2 ) not-col-permutation-1 by blast

qed
have P4 : P 6= A

using P3 ts-distincts by blast
obtain P ′ where P5 : (Bet A P P ′ ∨ Bet A P ′ P) ∧ Cong A P ′ X Y

using segment-construction-2 P4 by blast
have P6 : A B Perp P ′ A

by (smt P2 P5 Perp-perm assms(1 ) bet-col cong-identity cong-symmetry not-bet-distincts not-col-permutation-2
perp-col2 )

have P7 : ¬ Col P ′ A B
using NCol-perm P6 col-trivial-3 l8-16-1 by blast

then have P8 : A B OS P P ′

by (metis Out-def P4 P5 P6 col-permutation-2 out-one-side perp-not-eq-2 )
then have P9 : A B TS C P ′

using P3 l9-2 l9-8-2 by blast
then show ?thesis
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using P5 P6 by blast
qed

lemma ts--ncol:
assumes A B TS X Y
shows ¬ Col A X Y ∨ ¬ Col B X Y
by (metis TS-def assms col-permutation-1 col-transitivity-2 ts-distincts)

lemma one-or-two-sides-aux:
assumes ¬ Col C A B and
¬ Col D A B and
Col A C X
and Col B D X

shows A B TS C D ∨ A B OS C D
proof −

have P1 : A 6= X
using assms(2 ) assms(4 ) col-permutation-2 by blast

have P2 : B 6= X
using assms(1 ) assms(3 ) col-permutation-4 by blast

have P3 : ¬ Col X A B
using P1 assms(1 ) assms(3 ) col-permutation-5 col-transitivity-1 not-col-permutation-4 by blast

{
assume Q0 : Bet A C X ∧ Bet B D X
then have Q1 : A B OS C X

using assms(1 ) bet-out not-col-distincts not-col-permutation-1 out-one-side by blast
then have A B OS X D
by (metis Q0 assms(2 ) assms(4 ) bet-out-1 col-permutation-2 col-permutation-3 invert-one-side l6-4-2 not-bet-and-out

not-col-distincts out-one-side)
then have A B OS C D

using Q1 one-side-transitivity by blast
}
then have P4 : Bet A C X ∧ Bet B D X −→ A B OS C D by blast
{

assume Bet A C X ∧ Bet D X B
then have A B OS C D

by (smt P2 assms(1 ) assms(4 ) bet-out between-equality-2 l9-10 l9-5 l9-8-1 not-bet-and-out not-col-distincts
not-col-permutation-4 out-to-bet out-two-sides-two-sides)

}
then have P5 : Bet A C X ∧ Bet D X B −→ A B OS C D by blast
{

assume Q0 : Bet A C X ∧ Bet X B D
have Q1 : A B TS X D

using P3 Q0 TS-def assms(2 ) col-trivial-3 by blast
have A B OS X C

using Q0 assms(1 ) bet-out not-col-distincts one-side-reflexivity one-side-symmetry out-out-one-side by blast
then have A B TS C D

using Q1 l9-8-2 by blast
}
then have P6 : Bet A C X ∧ Bet X B D −→ A B TS C D by blast
{

assume Q1 : Bet C X A ∧ Bet B D X
then have Q2 : A B OS C X
using P1 assms(1 ) assms(3 ) between-equality-2 l6-4-2 not-col-permutation-1 not-col-permutation-4 out-one-side by

blast
have A B OS X D

using Q1 assms(2 ) bet-out not-col-distincts one-side-reflexivity os-out-os by blast
then have A B OS C D using Q2

using one-side-transitivity by blast
}
then have P7 : Bet C X A ∧ Bet B D X −→ A B OS C D by blast
{

assume Bet C X A ∧ Bet D X B
then have A B OS C D

by (smt ‹Bet A C X ∧ Bet D X B =⇒ A B OS C D› ‹Bet C X A ∧ Bet B D X =⇒ A B OS C D› assms(1 )
assms(2 ) assms(3 ) assms(4 ) between-symmetry l6-21 l9-18-R2 not-col-distincts ts-ts-os)

}
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then have P8 : Bet C X A ∧ Bet D X B −→ A B OS C D by blast
{

assume Q1 : Bet C X A ∧ Bet X B D
have Q2 : A B TS X D

by (metis P3 Q1 assms(2 ) bet--ts invert-two-sides not-col-distincts not-col-permutation-3 )
have Q3 : A B OS X C

using P1 Q1 assms(1 ) bet-out-1 not-col-permutation-1 out-one-side by auto
then have A B TS C D

using Q2 l9-8-2 by blast
}
then have P9 : Bet C X A ∧ Bet X B D −→ A B TS C D by blast
{

assume Q0 : Bet X A C ∧ Bet B D X
have Q1 : A B TS X C

by (metis P3 Q0 assms(1 ) bet--ts col-permutation-2 not-col-distincts)
have A B OS X D

by (metis NCol-cases Q0 Tarski-neutral-dimensionless.out-one-side Tarski-neutral-dimensionless-axioms assms(2 )
assms(4 ) bet-out-1 invert-one-side l6-4-1 not-col-distincts not-out-bet)

then have A B TS C D
using Q1 l9-2 l9-8-2 by blast

}
then have P10 : Bet X A C ∧ Bet B D X −→ A B TS C D by blast
{

assume Q0 : Bet X A C ∧ Bet D X B
have Q1 : A B TS X C

by (metis NCol-cases P3 Q0 assms(1 ) bet--ts not-col-distincts)
have A B OS X D

by (metis P2 P3 Q0 bet-out-1 col-permutation-3 invert-one-side out-one-side)
then have A B TS C D

using Q1 l9-2 l9-8-2 by blast
}
then have P11 : Bet X A C ∧ Bet D X B −→ A B TS C D

by blast
{

assume Q0 : Bet X A C ∧ Bet X B D
then have Q1 : A B TS C X

by (simp add: P1 Q0 assms(1 ) bet--ts between-symmetry not-col-permutation-1 )
have A B TS D X

by (simp add: P2 Q0 assms(2 ) bet--ts between-symmetry invert-two-sides not-col-permutation-3 )
then have A B OS C D

using Q1 l9-8-1 by blast
}
then have P12 : Bet X A C ∧ Bet X B D −→ A B OS C D by blast
then show ?thesis using P4 P5 P6 P7 P8 P9 P10 P11

using Col-def assms(3 ) assms(4 ) by auto
qed

lemma cop--one-or-two-sides:
assumes Coplanar A B C D and
¬ Col C A B and
¬ Col D A B

shows A B TS C D ∨ A B OS C D
proof −

obtain X where P1 : Col A B X ∧ Col C D X ∨ Col A C X ∧ Col B D X ∨ Col A D X ∧ Col B C X
using Coplanar-def assms(1 ) by auto

have P2 : Col A B X ∧ Col C D X −→ A B TS C D ∨ A B OS C D
by (metis TS-def Tarski-neutral-dimensionless.l9-19-R2 Tarski-neutral-dimensionless-axioms assms(2 ) assms(3 )

not-col-permutation-3 not-col-permutation-5 not-out-bet)
have P3 : Col A C X ∧ Col B D X −→ A B TS C D ∨ A B OS C D

using assms(2 ) assms(3 ) one-or-two-sides-aux by blast
have Col A D X ∧ Col B C X −→ A B TS C D ∨ A B OS C D

using assms(2 ) assms(3 ) l9-2 one-or-two-sides-aux one-side-symmetry by blast
then show ?thesis

using P1 P2 P3 by blast
qed
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lemma os--coplanar :
assumes A B OS C D
shows Coplanar A B C D

proof −
have P1 : ¬ Col A B C

using assms one-side-not-col123 by blast
obtain C ′ where P2 : Bet C B C ′ ∧ Cong B C ′ B C

using segment-construction by presburger
have P3 : A B TS D C ′

by (metis (no-types) Cong-perm OS-def P2 TS-def assms bet--ts bet-cong-eq invert-one-side l9-10 l9-8-2 one-side-not-col123
ts-distincts)

obtain T where P4 : Col T A B ∧ Bet D T C ′

using P3 TS-def by blast
have P5 : C ′ 6= T

using P3 P4 TS-def by blast
have P6 : Col T B C −→ Coplanar A B C D

by (metis Col-def Coplanar-def P2 P4 P5 col-trivial-2 l6-16-1 )
{

assume Q0 : ¬ Col T B C
{

assume R0 : Bet T B A
have S1 : B C TS T A

by (metis P1 Q0 R0 bet--ts col-permutation-2 not-col-distincts)
have C ′ Out T D

using P4 P5 bet-out-1 by auto
then have B C OS T D

using P2 Q0 bet-col invert-one-side not-col-permutation-3 out-one-side-1 by blast
then have R1 : B C TS D A

using S1 l9-8-2 by blast
then have Coplanar A B C D

using ncoplanar-perm-9 ts--coplanar by blast
}
then have Q1 : Bet T B A −→ Coplanar A B C D by blast
{

assume R0 : ¬ Bet T B A
{

have R2 : B C OS D T
proof −

have S1 : ¬ Col B C D
by (metis Col-perm P2 P3 P4 Q0 bet-col colx ts-distincts)

have S2 : Col B C C ′

by (simp add: P2 bet-col col-permutation-4 )
have S3 : C ′ Out D T

using P4 P5 bet-out-1 l6-6 by auto
then show ?thesis

using S1 S2 out-one-side-1 by blast
qed

have R3 : B C OS T A
using P4 Q0 R0 col-permutation-2 col-permutation-5 not-bet-out out-one-side by blast

}
then have R1 : B C OS D A

by (metis P2 P4 Q0 bet-col bet-out-1 col-permutation-2 col-permutation-5 os-out-os)
then have Coplanar A B C D

by (simp add: R1 assms coplanar-perm-19 invert-one-side l9-31 one-side-symmetry ts--coplanar)
}
then have ¬ Bet T B A −→ Coplanar A B C D by blast
then have Coplanar A B C D using Q1 by blast

}
then have ¬ Col T B C −→ Coplanar A B C D by blast
then show ?thesis using P6 by blast

qed

lemma coplanar-trans-1 :
assumes ¬ Col P Q R and

Coplanar P Q R A and
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Coplanar P Q R B
shows Coplanar Q R A B

proof −
have P1 : Col Q R A −→ Coplanar Q R A B

by (simp add: col--coplanar)
{

assume T1 : ¬ Col Q R A
{

assume T2 : ¬ Col Q R B
{

have Col Q A B −→ Coplanar Q R A B
using ncop--ncols by blast

{
assume S1 : ¬ Col Q A B
have U1 : Q R TS P A ∨ Q R OS P A

by (simp add: T1 assms(1 ) assms(2 ) cop--one-or-two-sides coplanar-perm-8 not-col-permutation-2 )
have U2 : Q R TS P B ∨ Q R OS P B

using T2 assms(1 ) assms(3 ) col-permutation-1 cop--one-or-two-sides coplanar-perm-8 by blast
have W1 : Q R TS P A ∧ Q R OS P A −→ Q R TS A B ∨ Q R OS A B

using l9-9 by blast
have W2 : Q R TS P A ∧ Q R OS P B −→ Q R TS A B ∨ Q R OS A B

using l9-2 l9-8-2 by blast
have W3 : Q R TS P B ∧ Q R OS P A −→ Q R TS A B ∨ Q R OS A B

using l9-8-2 by blast
have Q R TS P B ∧ Q R OS P B −→ Q R TS A B ∨ Q R OS A B

using l9-9 by blast
then have S2 : Q R TS A B ∨ Q R OS A B using U1 U2 W1 W2 W3

using OS-def l9-2 one-side-transitivity by blast
have Coplanar Q R A B

using S2 os--coplanar ts--coplanar by blast
}
then have ¬ Col Q A B −→ Coplanar Q R A B by blast

}
then have Coplanar Q R A B

using ncop--ncols by blast
}
then have ¬ Col Q R B −→ Coplanar Q R A B

by blast
}
then have ¬ Col Q R A −→ Coplanar Q R A B

using ncop--ncols by blast
then show ?thesis using P1 by blast

qed

lemma col-cop--cop:
assumes Coplanar A B C D and

C 6= D and
Col C D E

shows Coplanar A B C E
proof −

have Col D A C −→ Coplanar A B C E
by (meson assms(2 ) assms(3 ) col-permutation-1 l6-16-1 ncop--ncols)

moreover
{

assume ¬ Col D A C
then have Coplanar A C B E

by (meson assms(1 ) assms(3 ) col--coplanar coplanar-trans-1 ncoplanar-perm-11 ncoplanar-perm-13 )
then have Coplanar A B C E

using ncoplanar-perm-2 by blast
}
ultimately show ?thesis

by blast
qed

lemma bet-cop--cop:
assumes Coplanar A B C E and
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Bet C D E
shows Coplanar A B C D
by (metis NCol-perm Tarski-neutral-dimensionless.col-cop--cop Tarski-neutral-dimensionless-axioms assms(1 ) assms(2 )

bet-col bet-neq12--neq)

lemma col2-cop--cop:
assumes Coplanar A B C D and

C 6= D and
Col C D E and
Col C D F

shows Coplanar A B E F
proof cases

assume C = E
then show ?thesis

using assms(1 ) assms(2 ) assms(4 ) col-cop--cop by blast
next

assume C 6= E
then show ?thesis
by (metis assms(1 ) assms(2 ) assms(3 ) assms(4 ) col-cop--cop col-transitivity-1 ncoplanar-perm-1 not-col-permutation-4 )

qed

lemma col-cop2--cop:
assumes U 6= V and

Coplanar A B C U and
Coplanar A B C V and
Col U V P

shows Coplanar A B C P
proof cases

assume Col A B C
then show ?thesis

using ncop--ncol by blast
next

assume ¬ Col A B C
then show ?thesis

by (smt Col-perm assms(1 ) assms(2 ) assms(3 ) assms(4 ) col-cop--cop coplanar-trans-1 ncoplanar-perm-1 ncopla-
nar-perm-14 ncoplanar-perm-15 ncoplanar-perm-23 )
qed

lemma bet-cop2--cop:
assumes Coplanar A B C U and

Coplanar A B C W and
Bet U V W

shows Coplanar A B C V
proof −

have Col U V W
using assms(3 ) bet-col by blast

then have Col U W V
by (meson not-col-permutation-5 )

then show ?thesis
using assms(1 ) assms(2 ) assms(3 ) bet-neq23--neq col-cop2--cop by blast

qed

lemma coplanar-pseudo-trans:
assumes ¬ Col P Q R and

Coplanar P Q R A and
Coplanar P Q R B and
Coplanar P Q R C and
Coplanar P Q R D

shows Coplanar A B C D
proof cases

have LEM1 : (¬ Col P Q R ∧ Coplanar P Q R A ∧ Coplanar P Q R B ∧ Coplanar P Q R C ) −→ Coplanar A B C R
by (smt col-transitivity-2 coplanar-trans-1 ncop--ncols ncoplanar-perm-19 ncoplanar-perm-21 )

assume P2 : Col P Q D
have P3 : P 6= Q

using assms(1 ) col-trivial-1 by blast
have P4 : Coplanar A B C Q
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by (smt assms(1 ) assms(2 ) assms(3 ) assms(4 ) col2-cop--cop coplanar-trans-1 ncoplanar-perm-9 not-col-distincts)
have P5 : ¬ Col Q R P

using Col-cases assms(1 ) by blast
have P6 : Coplanar Q R P A

using assms(2 ) ncoplanar-perm-12 by blast
have P7 : Coplanar Q R P B

using assms(3 ) ncoplanar-perm-12 by blast
have P8 : Coplanar Q R P C

using assms(4 ) ncoplanar-perm-12 by blast
then have Coplanar A B C P using LEM1 P5 P6 P7

by (smt col-transitivity-2 coplanar-trans-1 ncop--ncols ncoplanar-perm-19 )
then show ?thesis

using LEM1 P2 P3 P4 col-cop2--cop by blast
next

assume P9 : ¬ Col P Q D
have P10 : Coplanar P Q D A

using NCol-cases assms(1 ) assms(2 ) assms(5 ) coplanar-trans-1 ncoplanar-perm-8 by blast
have P11 : Coplanar P Q D B

using assms(1 ) assms(3 ) assms(5 ) col-permutation-1 coplanar-perm-12 coplanar-trans-1 by blast
have Coplanar P Q D C
by (meson assms(1 ) assms(4 ) assms(5 ) coplanar-perm-7 coplanar-trans-1 ncoplanar-perm-14 not-col-permutation-3 )

then show ?thesis using P9 P10 P11
by (smt P10 P11 P9 col3 coplanar-trans-1 ncop--ncol ncoplanar-perm-20 ncoplanar-perm-23 not-col-distincts)

qed

lemma l9-30 :
assumes ¬ Coplanar A B C P and
¬ Col D E F and
Coplanar D E F P and
Coplanar A B C X and
Coplanar A B C Y and
Coplanar A B C Z and
Coplanar D E F X and
Coplanar D E F Y and
Coplanar D E F Z

shows Col X Y Z
proof −

{
assume P1 : ¬ Col X Y Z
have P2 : ¬ Col A B C

using assms(1 ) col--coplanar by blast
have Coplanar A B C P
proof −

have Q2 : Coplanar X Y Z A
by (smt P2 assms(4 ) assms(5 ) assms(6 ) col2-cop--cop coplanar-trans-1 ncoplanar-perm-18 not-col-distincts)

have Q3 : Coplanar X Y Z B
using P2 assms(4 ) assms(5 ) assms(6 ) col-trivial-3 coplanar-pseudo-trans ncop--ncols by blast

have Q4 : Coplanar X Y Z C
using P2 assms(4 ) assms(5 ) assms(6 ) col-trivial-2 coplanar-pseudo-trans ncop--ncols by blast

have Coplanar X Y Z P
using assms(2 ) assms(3 ) assms(7 ) assms(8 ) assms(9 ) coplanar-pseudo-trans by blast

then show ?thesis using P1 Q2 Q3 Q4
using assms(2 ) assms(3 ) assms(7 ) assms(8 ) assms(9 ) coplanar-pseudo-trans by blast

qed
then have False using assms(1 ) by blast

}
then show ?thesis by blast

qed

lemma cop-per2--col:
assumes Coplanar A X Y Z and

A 6= Z and
Per X Z A and
Per Y Z A

shows Col X Y Z
proof cases
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assume X = Y ∨ X = Z ∨ Y = Z
then show ?thesis

using not-col-distincts by blast
next

assume H1 :¬ (X = Y ∨ X = Z ∨ Y = Z)
obtain B where P1 : Cong X A X B ∧ Z Midpoint A B ∧ Cong Y A Y B

using Per-def assms(3 ) assms(4 ) per-double-cong by blast
have P2 : X 6= Y

using H1 by blast
have P3 : X 6= Z

using H1 by blast
have P4 : Y 6= Z

using H1 by blast
obtain I where P5 : Col A X I ∧ Col Y Z I ∨

Col A Y I ∧ Col X Z I ∨ Col A Z I ∧ Col X Y I
using Coplanar-def assms(1 ) by auto

have P6 : Col A X I ∧ Col Y Z I −→ Col X Y Z
by (smt P1 P4 assms(2 ) l4-17 l4-18 l7-13 l7-2 l7-3-2 midpoint-distinct-2 not-col-permutation-1 )

have P7 : Col A Y I ∧ Col X Z I −→ Col X Y Z
by (smt P1 P3 assms(2 ) col-permutation-1 col-permutation-5 l4-17 l4-18 l7-13 l7-2 l7-3-2 midpoint-distinct-2 )

have Col A Z I ∧ Col X Y I −→ Col X Y Z
by (metis P1 P2 assms(2 ) col-permutation-1 l4-17 l4-18 l7-13 l7-2 l7-3-2 midpoint-distinct-2 )

then show ?thesis
using P5 P6 P7 by blast

qed

lemma cop-perp2--col:
assumes Coplanar A B Y Z and

X Y Perp A B and
X Z Perp A B

shows Col X Y Z
proof cases

assume P1 : Col A B X
{

assume Q0 : X = A
then have Q1 : X 6= B

using assms(3 ) perp-not-eq-2 by blast
have Q2 : Coplanar B Y Z X

by (simp add: Q0 assms(1 ) coplanar-perm-9 )
have Q3 : Per Y X B

using Q0 assms(2 ) perp-per-2 by blast
have Per Z X B

using Q0 assms(3 ) perp-per-2 by blast
then have Col X Y Z

using Q1 Q2 Q3 cop-per2--col not-col-permutation-1 by blast
}
then have P2 : X = A −→ Col X Y Z by blast
{

assume Q0 : X 6= A
have Q1 : A X Perp X Y

by (metis P1 Perp-perm Q0 assms(2 ) perp-col1 )
have Q2 : A X Perp X Z

by (metis P1 Perp-perm Q0 assms(3 ) perp-col1 )
have Q3 : Coplanar A Y Z X

by (smt P1 assms(1 ) assms(2 ) col2-cop--cop col-trivial-3 coplanar-perm-12 coplanar-perm-16 perp-distinct)
have Q4 : Per Y X A

using Perp-perm Q1 perp-per-2 by blast
have Per Z X A

using P1 Q0 assms(3 ) perp-col1 perp-per-1 by auto
then have Col X Y Z

using Q0 Q3 Q4 cop-per2--col not-col-permutation-1 by blast
}
then have X 6= A −→ Col X Y Z by blast
then show ?thesis

using P2 by blast
next
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assume P1 : ¬ Col A B X
obtain Y0 where P2 : Y0 PerpAt X Y A B

using Perp-def assms(2 ) by blast
obtain Z0 where P3 : Z0 PerpAt X Z A B

using Perp-def assms(3 ) by auto
have P4 : X Y0 Perp A B

by (metis P1 P2 assms(2 ) perp-col perp-in-col)
have P5 : X Z0 Perp A B

by (metis P1 P3 assms(3 ) perp-col perp-in-col)
have P6 : Y0 = Z0

by (meson P1 P2 P3 P4 P5 Perp-perm l8-18-uniqueness perp-in-col)
have P7 : X 6= Y0

using P4 perp-not-eq-1 by blast
have P8 : Col X Y0 Y

using P2 col-permutation-5 perp-in-col by blast
have Col X Y0 Z

using P3 P6 col-permutation-5 perp-in-col by blast
then show ?thesis

using P7 P8 col-transitivity-1 by blast
qed

lemma two-sides-dec:
shows A B TS C D ∨ ¬ A B TS C D
by simp

lemma cop-nts--os:
assumes Coplanar A B C D and
¬ Col C A B and
¬ Col D A B and
¬ A B TS C D

shows A B OS C D
using assms(1 ) assms(2 ) assms(3 ) assms(4 ) cop--one-or-two-sides by blast

lemma cop-nos--ts:
assumes Coplanar A B C D and
¬ Col C A B and
¬ Col D A B and
¬ A B OS C D

shows A B TS C D
using assms(1 ) assms(2 ) assms(3 ) assms(4 ) cop-nts--os by blast

lemma one-side-dec:
A B OS C D ∨ ¬ A B OS C D
by simp

lemma cop-dec:
Coplanar A B C D ∨ ¬ Coplanar A B C D
by simp

lemma ex-diff-cop:
∃ E . Coplanar A B C E ∧ D 6= E
by (metis col-trivial-2 diff-col-ex ncop--ncols)

lemma ex-ncol-cop:
assumes D 6= E
shows ∃ F . Coplanar A B C F ∧ ¬ Col D E F

proof cases
assume Col A B C
then show ?thesis

using assms ncop--ncols not-col-exists by blast
next

assume P1 : ¬ Col A B C
then show ?thesis
proof −

have P2 : (Col D E A ∧ Col D E B) −→ (∃ F . Coplanar A B C F ∧ ¬ Col D E F)
by (meson P1 assms col3 col-trivial-2 ncop--ncols)
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have P3 : (¬Col D E A ∧ Col D E B) −→ (∃ F . Coplanar A B C F ∧ ¬ Col D E F)
using col-trivial-3 ncop--ncols by blast

have P4 : (Col D E A ∧ ¬Col D E B) −→ (∃ F . Coplanar A B C F ∧ ¬ Col D E F)
using col-trivial-2 ncop--ncols by blast

have (¬Col D E A ∧ ¬Col D E B) −→ (∃ F . Coplanar A B C F ∧ ¬ Col D E F)
using col-trivial-3 ncop--ncols by blast

then show ?thesis using P2 P3 P4 by blast
qed

qed

lemma ex-ncol-cop2 :
∃ E F . (Coplanar A B C E ∧ Coplanar A B C F ∧ ¬ Col D E F)

proof −
have f1 : ∀ p pa pb. Coplanar pb pa p pb

by (meson col-trivial-3 ncop--ncols)
have f2 : ∀ p pa pb. Coplanar pb pa p p

by (meson Col-perm col-trivial-3 ncop--ncols)
obtain pp :: ′p ⇒ ′p ⇒ ′p where

f3 : ∀ p pa. p = pa ∨ ¬ Col p pa (pp p pa)
using not-col-exists by moura

have f4 : ∀ p pa pb. Coplanar pb pb pa p
by (meson Col-perm col-trivial-3 ncop--ncols)

have ∃ p. A 6= p
by (meson col-trivial-3 diff-col-ex3 )

moreover
{ assume B 6= A

then have D = B −→ (∃ p. ¬ Col D p A ∧ Coplanar A B C p)
using f3 f2 by (metis (no-types) Col-perm ncop--ncols)

then have D = B −→ (∃ p pa. Coplanar A B C p ∧ Coplanar A B C pa ∧ ¬ Col D p pa)
using f1 by blast }

moreover
{ assume D 6= B

moreover
{ assume ∃ p. D 6= B ∧ ¬ Coplanar A B C p

then have D 6= B ∧ ¬ Col A B C
using ncop--ncols by blast

then have ∃ p. ¬ Col D p B ∧ Coplanar A B C p
using f2 f1 by (metis (no-types) Col-perm col-transitivity-1 ) }

ultimately have ?thesis
using f3 by (metis (no-types) col-trivial-3 ncop--ncols) }

ultimately show ?thesis
using f4 f3 by blast

qed

lemma col2-cop2--eq:
assumes ¬ Coplanar A B C U and

U 6= V and
Coplanar A B C P and
Coplanar A B C Q and
Col U V P and
Col U V Q

shows P = Q
proof −

have Col U Q P
by (meson assms(2 ) assms(5 ) assms(6 ) col-transitivity-1 )

then have Col P Q U
using not-col-permutation-3 by blast

then show ?thesis
using assms(1 ) assms(3 ) assms(4 ) col-cop2--cop by blast

qed

lemma cong3-cop2--col:
assumes Coplanar A B C P and

Coplanar A B C Q and
P 6= Q and
Cong A P A Q and
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Cong B P B Q and
Cong C P C Q

shows Col A B C
proof cases

assume Col A B C
then show ?thesis by blast

next
assume P1 : ¬ Col A B C
obtain M where P2 : M Midpoint P Q

using assms(6 ) l7-25 by blast
have P3 : Per A M P

using P2 Per-def assms(4 ) by blast
have P4 : Per B M P

using P2 Per-def assms(5 ) by blast
have P5 : Per C M P

using P2 Per-def assms(6 ) by blast
have False
proof cases

assume Q1 : A = M
have Q2 : Coplanar P B C A

using assms(1 ) ncoplanar-perm-21 by blast
have Q3 : P 6= A

by (metis assms(3 ) assms(4 ) cong-diff-4 )
have Q4 : Per B A P

by (simp add: P4 Q1 )
have Q5 : Per C A P

by (simp add: P5 Q1 )
then show ?thesis using Q1 Q2 Q3 Q4 cop-per2--col

using P1 not-col-permutation-1 by blast
next

assume Q0 : A 6= M
have Q1 : Col A B M
proof −

have R1 : Coplanar A B P Q
using P1 assms(1 ) assms(2 ) coplanar-trans-1 ncoplanar-perm-8 not-col-permutation-2 by blast

then have R2 : Coplanar P A B M
using P2 bet-cop--cop coplanar-perm-14 midpoint-bet ncoplanar-perm-6 by blast

have R3 : P 6= M
using P2 assms(3 ) l7-3-2 l7-9-bis by blast

have R4 : Per A M P
by (simp add: P3 )

have R5 : Per B M P
by (simp add: P4 )

then show ?thesis
using R2 R3 R4 cop-per2--col by blast

qed
have Col A C M
proof −

have R1 : Coplanar P A C M
using P1 Q1 assms(1 ) col2-cop--cop coplanar-perm-22 ncoplanar-perm-3 not-col-distincts by blast

have R2 : P 6= M
using P2 assms(3 ) l7-3-2 symmetric-point-uniqueness by blast

have R3 : Per A M P
by (simp add: P3 )

have Per C M P
by (simp add: P5 )

then show ?thesis
using R1 R2 R3 cop-per2--col by blast

qed
then show ?thesis

using NCol-perm P1 Q0 Q1 col-trivial-3 colx by blast
qed
then show ?thesis by blast

qed

lemma l9-38 :
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assumes A B C TSP P Q
shows A B C TSP Q P
using Bet-perm TSP-def assms by blast

lemma l9-39 :
assumes A B C TSP P R and

Coplanar A B C D and
D Out P Q

shows A B C TSP Q R
proof −

have P1 : ¬ Col A B C
using TSP-def assms(1 ) ncop--ncol by blast

have P2 : ¬ Coplanar A B C Q
by (metis TSP-def assms(1 ) assms(2 ) assms(3 ) col-cop2--cop l6-6 out-col out-diff2 )

have P3 : ¬ Coplanar A B C R
using TSP-def assms(1 ) by blast

obtain T where P3A: Coplanar A B C T ∧ Bet P T R
using TSP-def assms(1 ) by blast

have W1 : D = T −→ A B C TSP Q R
using P2 P3 P3A TSP-def assms(3 ) bet-out--bet by blast

{
assume V1 : D 6= T
have V1A: ¬ Col P D T using P3A col-cop2--cop

by (metis TSP-def V1 assms(1 ) assms(2 ) col2-cop2--eq col-trivial-2 )
have V1B: D T TS P R

by (metis P3 P3A V1A bet--ts invert-two-sides not-col-permutation-3 )
have D T OS P Q

using V1A assms(3 ) not-col-permutation-1 out-one-side by blast
then have V2 : D T TS Q R

using V1B l9-8-2 by blast
then obtain T ′ where V3 : Col T ′ D T ∧ Bet Q T ′ R

using TS-def by blast
have V4 : Coplanar A B C T ′

using Col-cases P3A V1 V3 assms(2 ) col-cop2--cop by blast
then have A B C TSP Q R

using P2 P3 TSP-def V3 by blast
}
then have D 6= T −→ A B C TSP Q R by blast
then show ?thesis using W1 by blast

qed

lemma l9-41-1 :
assumes A B C TSP P R and

A B C TSP Q R
shows A B C OSP P Q
using OSP-def assms(1 ) assms(2 ) by blast

lemma l9-41-2 :
assumes A B C TSP P R and

A B C OSP P Q
shows A B C TSP Q R

proof −
have P1 : ¬ Coplanar A B C P

using TSP-def assms(1 ) by blast
obtain S where P2 : A B C TSP P S ∧ A B C TSP Q S

using OSP-def assms(2 ) by blast
obtain X where P3 : Coplanar A B C X ∧ Bet P X S

using P2 TSP-def by blast
have P4 : ¬ Coplanar A B C P ∧ ¬ Coplanar A B C S

using P2 TSP-def by blast
obtain Y where P5 : Coplanar A B C Y ∧ Bet Q Y S

using P2 TSP-def by blast
have P6 : ¬ Coplanar A B C Q ∧ ¬ Coplanar A B C S

using P2 TSP-def by blast
have P7 : X 6= P ∧ S 6= X ∧ Q 6= Y ∧ S 6= Y

using P3 P4 P5 P6 by blast
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{
assume Q1 : Col P Q S
have Q2 : X = Y
proof −

have R2 : Q 6= S
using P5 P6 bet-neq12--neq by blast

have R5 : Col Q S X
by (smt Col-def P3 Q1 between-inner-transitivity between-symmetry col-transitivity-2 )

have Col Q S Y
by (simp add: P5 bet-col col-permutation-5 )

then show ?thesis
using P2 P3 P5 R2 R5 TSP-def col2-cop2--eq by blast

qed
then have X Out P Q

by (metis P3 P5 P7 l6-2 )
then have A B C TSP Q R

using P3 assms(1 ) l9-39 by blast
}
then have P7 : Col P Q S −→ A B C TSP Q R by blast
{

assume Q1 : ¬ Col P Q S
obtain Z where Q2 : Bet X Z Q ∧ Bet Y Z P

using P3 P5 inner-pasch by blast
{

assume X = Z
then have False

by (metis P2 P3 P5 Q1 Q2 TSP-def bet-col col-cop2--cop l6-16-1 not-col-permutation-5 )
}
then have Q3 : X 6= Z by blast
have Y 6= Z
proof −

have X 6= Z
by (meson ‹X = Z =⇒ False›)

then have Z 6= Y
by (metis (no-types) P2 P3 P5 Q2 TSP-def bet-col col-cop2--cop)

then show ?thesis
by meson

qed
then have Y Out P Z

using Q2 bet-out l6-6 by auto
then have Q4 : A B C TSP Z R

using assms(1 ) P5 l9-39 by blast
have X Out Z Q

using Q2 Q3 bet-out by auto
then have A B C TSP Q R

using Q4 P3 l9-39 by blast
}
then have ¬ Col P Q S −→ A B C TSP Q R by blast
then show ?thesis using P7 by blast

qed

lemma tsp-exists:
assumes ¬ Coplanar A B C P
shows ∃ Q. A B C TSP P Q

proof −
obtain Q where P1 : Bet P A Q ∧ Cong A Q A P

using segment-construction by blast
have P2 : Coplanar A B C A

using coplanar-trivial ncoplanar-perm-5 by blast
have P3 : ¬ Coplanar A B C P

by (simp add: assms)
have P4 : ¬ Coplanar A B C Q
by (metis P1 P2 Tarski-neutral-dimensionless.col-cop2--cop Tarski-neutral-dimensionless-axioms assms bet-col cong-diff-4

not-col-permutation-2 )
then show ?thesis

using P1 P2 TSP-def assms by blast
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qed

lemma osp-reflexivity:
assumes ¬ Coplanar A B C P
shows A B C OSP P P
by (meson assms l9-41-1 tsp-exists)

lemma osp-symmetry:
assumes A B C OSP P Q
shows A B C OSP Q P
using OSP-def assms by auto

lemma osp-transitivity:
assumes A B C OSP P Q and

A B C OSP Q R
shows A B C OSP P R
using OSP-def assms(1 ) assms(2 ) l9-41-2 by blast

lemma cop3-tsp--tsp:
assumes ¬ Col D E F and

Coplanar A B C D and
Coplanar A B C E and
Coplanar A B C F and
A B C TSP P Q

shows D E F TSP P Q
proof −

obtain T where P1 : Coplanar A B C T ∧ Bet P T Q
using TSP-def assms(5 ) by blast

have P2 : ¬ Col A B C
using TSP-def assms(5 ) ncop--ncols by blast

have P3 : Coplanar D E F A ∧ Coplanar D E F B ∧ Coplanar D E F C ∧ Coplanar D E F T
proof −

have P3A: Coplanar D E F A
using P2 assms(2 ) assms(3 ) assms(4 ) col-trivial-3 coplanar-pseudo-trans ncop--ncols by blast

have P3B: Coplanar D E F B
using P2 assms(2 ) assms(3 ) assms(4 ) col-trivial-2 coplanar-pseudo-trans ncop--ncols by blast

have P3C : Coplanar D E F C
by (meson P2 assms(2 ) assms(3 ) assms(4 ) coplanar-perm-16 coplanar-pseudo-trans coplanar-trivial)

have Coplanar D E F T
using P1 P2 assms(2 ) assms(3 ) assms(4 ) coplanar-pseudo-trans by blast

then show ?thesis using P3A P3B P3C by simp
qed
have P4 : ¬ Coplanar D E F P

using P3 TSP-def assms(1 ) assms(5 ) coplanar-pseudo-trans by auto
have P5 : ¬ Coplanar D E F Q

by (metis P1 P3 P4 TSP-def assms(5 ) bet-col bet-col1 col2-cop2--eq)
have P6 : Coplanar D E F T

by (simp add: P3 )
have Bet P T Q

by (simp add: P1 )
then show ?thesis

using P4 P5 P6 TSP-def by blast
qed

lemma cop3-osp--osp:
assumes ¬ Col D E F and

Coplanar A B C D and
Coplanar A B C E and
Coplanar A B C F and
A B C OSP P Q

shows D E F OSP P Q
proof −

obtain R where P1 : A B C TSP P R ∧ A B C TSP Q R
using OSP-def assms(5 ) by blast

then show ?thesis
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using OSP-def assms(1 ) assms(2 ) assms(3 ) assms(4 ) cop3-tsp--tsp by blast
qed

lemma ncop-distincts:
assumes ¬ Coplanar A B C D
shows A 6= B ∧ A 6= C ∧ A 6= D ∧ B 6= C ∧ B 6= D ∧ C 6= D
using Coplanar-def assms col-trivial-1 col-trivial-2 by blast

lemma tsp-distincts:
assumes A B C TSP P Q
shows A 6= B ∧ A 6= C ∧ B 6= C ∧ A 6= P ∧ B 6= P ∧ C 6= P ∧ A 6= Q ∧ B 6= Q ∧ C 6= Q ∧ P 6= Q

proof −
obtain pp :: ′p ⇒ ′p ⇒ ′p ⇒ ′p ⇒ ′p ⇒ ′p where
∀ x0 x1 x2 x3 x4 . (∃ v5 . Coplanar x4 x3 x2 v5 ∧ Bet x1 v5 x0 ) = (Coplanar x4 x3 x2 (pp x0 x1 x2 x3 x4 ) ∧ Bet x1

(pp x0 x1 x2 x3 x4 ) x0 )
by moura

then have f1 : ¬ Coplanar A B C P ∧ ¬ Coplanar A B C Q ∧ Coplanar A B C (pp Q P C B A) ∧ Bet P (pp Q P
C B A) Q

using TSP-def assms by presburger
then have Q 6= pp Q P C B A

by force
then show ?thesis

using f1 by (meson bet-neq32--neq ncop-distincts)
qed

lemma osp-distincts:
assumes A B C OSP P Q
shows A 6= B ∧ A 6= C ∧ B 6= C ∧ A 6= P ∧ B 6= P ∧ C 6= P ∧ A 6= Q ∧ B 6= Q ∧ C 6= Q
using OSP-def assms tsp-distincts by blast

lemma tsp--ncop1 :
assumes A B C TSP P Q
shows ¬ Coplanar A B C P
using TSP-def assms by blast

lemma tsp--ncop2 :
assumes A B C TSP P Q
shows ¬ Coplanar A B C Q
using TSP-def assms by auto

lemma osp--ncop1 :
assumes A B C OSP P Q
shows ¬ Coplanar A B C P
using OSP-def TSP-def assms by blast

lemma osp--ncop2 :
assumes A B C OSP P Q
shows ¬ Coplanar A B C Q
using assms osp--ncop1 osp-symmetry by blast

lemma tsp--nosp:
assumes A B C TSP P Q
shows ¬ A B C OSP P Q
using assms l9-41-2 tsp-distincts by blast

lemma osp--ntsp:
assumes A B C OSP P Q
shows ¬ A B C TSP P Q
using assms tsp--nosp by blast

lemma osp-bet--osp:
assumes A B C OSP P R and

Bet P Q R
shows A B C OSP P Q

proof −
obtain S where P1 : A B C TSP P S
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using OSP-def assms(1 ) by blast
then obtain Y where P2 : Coplanar A B C Y ∧ Bet R Y S

using TSP-def assms(1 ) l9-41-2 by blast
obtain X where Q1 : Coplanar A B C X ∧ Bet P X S

using P1 TSP-def by blast
have Q2 : P 6= X ∧ S 6= X ∧ R 6= Y

using P1 P2 Q1 TSP-def assms(1 ) osp--ncop2 by auto
{

assume P3 : Col P R S
have P5 : A B C TSP Q S
proof −

have Q3 : X = Y
proof −

have R1 : ¬ Coplanar A B C R
using assms(1 ) osp--ncop2 by blast

have R2 : R 6= S
using P1 assms(1 ) osp--ntsp by blast

have R5 : Col R S X
by (smt Col-def P3 Q1 bet-col1 between-exchange4 between-symmetry)

have Col R S Y
using P2 bet-col col-permutation-5 by blast

then show ?thesis
using R1 R2 Q1 P2 R5 col2-cop2--eq by blast

qed
then have Y Out P Q

by (smt P2 P3 Q1 Q2 assms(2 ) bet-col1 between-exchange4 between-symmetry l6-3-2 l6-4-2 not-bet-and-out
third-point)

then show ?thesis
using P1 P2 l9-39 by blast

qed
then have A B C OSP P Q

using OSP-def P1 P2 l9-39 by blast
}
then have H1 : Col P R S −→ A B C OSP P Q by blast
{

assume T1 : ¬ Col P R S
have T2 : X Y OS P R
proof −

have T3 : P 6= X ∧ S 6= X ∧ R 6= Y ∧ S 6= Y
using P1 P2 Q2 TSP-def by auto

have T4 : ¬ Col S X Y
by (metis P2 Q1 T1 T3 bet-out-1 col-out2-col col-permutation-5 not-col-permutation-4 )

have T5 : X Y TS P S
by (metis Col-perm Q1 Q2 T4 bet--ts bet-col col-transitivity-2 )

have T6 : X Y TS R S
by (metis P2 Q1 T4 assms(1 ) bet--ts col-cop2--cop invert-two-sides not-col-distincts osp--ncop2 )

then show ?thesis
using T5 l9-8-1 by auto

qed
then have T7 : X Y OS P Q

using assms(2 ) l9-17 by blast
then obtain S ′ where T7A: X Y TS P S ′ ∧ X Y TS Q S ′

using OS-def by blast
have T7B: ¬ Col P X Y ∧ ¬ Col S ′ X Y ∧ (∃ T :: ′p. Col T X Y ∧ Bet P T S ′)

using T7A TS-def by auto
have T7C : ¬ Col Q X Y ∧ ¬ Col S ′ X Y ∧ (∃ T :: ′p. Col T X Y ∧ Bet Q T S ′)

using T7A TS-def by blast
obtain X ′ where T9 : Col X ′ X Y ∧ Bet P X ′ S ′ ∧ X Y TS Q S ′

using T7A T7B by blast
obtain Y ′ where T10 : Col Y ′ X Y ∧ Bet Q Y ′ S ′

using T7C by blast
have T11 : Coplanar A B C X ′

using Col-cases P2 Q1 T9 col-cop2--cop ts-distincts by blast
have T12 : Coplanar A B C Y ′

using Col-cases P2 Q1 T10 T9 col-cop2--cop ts-distincts by blast
have T13 : ¬ Coplanar A B C S ′
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using T11 T7C T9 assms(1 ) bet-col bet-col1 col2-cop2--eq osp--ncop1 by fastforce
then have A B C OSP P Q
proof −

have R1 : A B C TSP P S ′

using P1 T11 T13 T9 TSP-def by blast
have A B C TSP Q S ′

by (metis T10 T12 T13 T7C TSP-def bet-col col-cop2--cop)
then show ?thesis using R1 by (smt l9-41-1 )

qed
}
then show ?thesis using H1 by blast

qed

lemma l9-18-3 :
assumes Coplanar A B C P and

Col X Y P
shows A B C TSP X Y ←→ (Bet X P Y ∧ ¬ Coplanar A B C X ∧ ¬ Coplanar A B C Y )
by (meson TSP-def assms(1 ) assms(2 ) l9-39 not-bet-out not-col-permutation-5 tsp-distincts)

lemma bet-cop--tsp:
assumes ¬ Coplanar A B C X and

P 6= Y and
Coplanar A B C P and
Bet X P Y

shows A B C TSP X Y
using TSP-def assms(1 ) assms(2 ) assms(3 ) assms(4 ) bet-col bet-col1 col2-cop2--eq by fastforce

lemma cop-out--osp:
assumes ¬ Coplanar A B C X and

Coplanar A B C P and
P Out X Y

shows A B C OSP X Y
by (meson OSP-def assms(1 ) assms(2 ) assms(3 ) l9-39 tsp-exists)

lemma l9-19-3 :
assumes Coplanar A B C P and

Col X Y P
shows A B C OSP X Y ←→ (P Out X Y ∧ ¬ Coplanar A B C X)
by (meson assms(1 ) assms(2 ) cop-out--osp l6-4-2 l9-18-3 not-col-permutation-5 osp--ncop1 osp--ncop2 tsp--nosp)

lemma cop2-ts--tsp:
assumes ¬ Coplanar A B C X and Coplanar A B C D and

Coplanar A B C E and D E TS X Y
shows A B C TSP X Y

proof −
obtain T where P1 : Col T D E ∧ Bet X T Y

using TS-def assms(4 ) by blast
have P2 : Coplanar A B C T

using P1 assms(2 ) assms(3 ) assms(4 ) col-cop2--cop not-col-permutation-2 ts-distincts by blast
then show ?thesis

by (metis P1 TS-def assms(1 ) assms(4 ) bet-cop--tsp)
qed

lemma cop2-os--osp:
assumes ¬ Coplanar A B C X and

Coplanar A B C D and
Coplanar A B C E and
D E OS X Y

shows A B C OSP X Y
proof −

obtain Z where P1 : D E TS X Z ∧ D E TS Y Z
using OS-def assms(4 ) by blast

then have P2 : A B C TSP X Z
using assms(1 ) assms(2 ) assms(3 ) cop2-ts--tsp by blast

then have P3 : A B C TSP Y Z
by (meson P1 assms(2 ) assms(3 ) cop2-ts--tsp l9-2 tsp--ncop2 )
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then show ?thesis
using P2 l9-41-1 by blast

qed

lemma cop3-tsp--ts:
assumes D 6= E and

Coplanar A B C D and
Coplanar A B C E and
Coplanar D E X Y and
A B C TSP X Y

shows D E TS X Y
by (meson assms(1 ) assms(2 ) assms(3 ) assms(4 ) assms(5 ) col-cop2--cop cop2-os--osp cop-nts--os not-col-permutation-2

tsp--ncop1 tsp--ncop2 tsp--nosp)

lemma cop3-osp--os:
assumes D 6= E and

Coplanar A B C D and
Coplanar A B C E and
Coplanar D E X Y and
A B C OSP X Y

shows D E OS X Y
by (meson assms(1 ) assms(2 ) assms(3 ) assms(4 ) assms(5 ) col-cop2--cop cop2-ts--tsp cop-nts--os not-col-permutation-2

osp--ncop1 osp--ncop2 tsp--nosp)

lemma cop-tsp--ex-cop2 :
assumes

A B C TSP D E
shows ∃ Q. (Coplanar A B C Q ∧ Coplanar D E P Q ∧ P 6= Q)

proof cases
assume Col D E P
then show ?thesis

by (meson ex-diff-cop ncop--ncols)
next

assume ¬ Col D E P
then obtain Q where Coplanar A B C Q ∧ Bet D Q E ∧ ¬ Col D E P

using TSP-def assms(1 ) by blast
then show ?thesis

using Col-perm bet-col ncop--ncols by blast
qed

lemma cop-osp--ex-cop2 :
assumes Coplanar A B C P and

A B C OSP D E
shows ∃ Q. Coplanar A B C Q ∧ Coplanar D E P Q ∧ P 6= Q

proof cases
assume Col D E P
then show ?thesis

by (metis col-trivial-3 diff-col-ex ncop--ncols)
next

assume P1 : ¬ Col D E P
obtain E ′ where P2 : Bet E P E ′ ∧ Cong P E ′ P E

using segment-construction by blast
have P3 : ¬ Col D E ′ P

by (metis P1 P2 bet-col bet-cong-eq between-symmetry col-permutation-5 l5-2 l6-16-1 )
have P4 : A B C TSP D E ′

by (metis P2 P3 assms(1 ) assms(2 ) bet-cop--tsp l9-41-2 not-col-distincts osp--ncop2 osp-symmetry)
then have ¬ Coplanar A B C D ∧ ¬ Coplanar A B C E ′ ∧ (∃ T . Coplanar A B C T ∧ Bet D T E ′)

by (simp add: TSP-def )
then obtain Q where P7 : Coplanar A B C Q ∧ Bet D Q E ′

by blast
then have Coplanar D E ′ P Q

using bet-col ncop--ncols ncoplanar-perm-5 by blast
then have Coplanar D E P Q

using Col-perm P2 P3 bet-col col-cop--cop ncoplanar-perm-5 not-col-distincts by blast
then show ?thesis

using P3 P7 bet-col col-permutation-5 by blast
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qed

lemma sac--coplanar :
assumes Saccheri A B C D
shows Coplanar A B C D
using Saccheri-def assms ncoplanar-perm-4 os--coplanar by blast

3.9 Line reflexivity
3.9.1 Dimensionless
lemma Ch10-Goal1 :

assumes ¬ Coplanar D C B A
shows ¬ Coplanar A B C D
by (simp add: assms ncoplanar-perm-23 )

lemma ex-sym:
∃ Y . (A B Perp X Y ∨ X = Y ) ∧ (∃ M . Col A B M ∧ M Midpoint X Y )

proof cases
assume Col A B X
thus ?thesis

using l7-3-2 by blast
next

assume ¬ Col A B X
then obtain M0 where P1 : Col A B M0 ∧ A B Perp X M0

using l8-18-existence by blast
obtain Z where P2 : M0 Midpoint X Z

using symmetric-point-construction by blast
thus ?thesis

by (metis (full-types) P1 Perp-cases bet-col midpoint-bet perp-col)
qed

lemma is-image-is-image-spec:
assumes A 6= B
shows P ′ P Reflect A B ←→ P ′ P ReflectL A B
by (simp add: Reflect-def assms)

lemma ex-sym1 :
assumes A 6= B
shows ∃ Y . (A B Perp X Y ∨ X = Y ) ∧ (∃ M . Col A B M ∧ M Midpoint X Y ∧ X Y Reflect A B)

proof cases
assume Col A B X
thus ?thesis

by (meson ReflectL-def Reflect-def assms l7-3-2 )
next

assume P0 : ¬ Col A B X
then obtain M0 where P1 : Col A B M0 ∧ A B Perp X M0

using l8-18-existence by blast
obtain Z where P2 : M0 Midpoint X Z

using symmetric-point-construction by blast
have P3 : A B Perp X Z
proof cases

assume X = Z
thus ?thesis

using P1 P2 P0 midpoint-distinct by blast
next

assume X 6= Z
then have P2 : X Z Perp A B

using P1 P2 Perp-cases bet-col midpoint-bet perp-col by blast
show ?thesis

by (simp add: Tarski-neutral-dimensionless.Perp-perm Tarski-neutral-dimensionless-axioms P2 )
qed
have P10 : (A B Perp X Z ∨ X = Z)

by (simp add: P3 )
have ∃ M . Col A B M ∧ M Midpoint X Z ∧ X Z Reflect A B

using P1 P2 P3 ReflectL-def assms is-image-is-image-spec l7-2 perp-right-comm by blast
thus ?thesis
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using P3 by blast
qed

lemma l10-2-uniqueness:
assumes P1 P Reflect A B and

P2 P Reflect A B
shows P1 = P2

proof cases
assume A = B
thus ?thesis

using Reflect-def assms(1 ) assms(2 ) symmetric-point-uniqueness by auto
next

assume P1 : A 6= B
have P1A: P1 P ReflectL A B

using P1 assms(1 ) is-image-is-image-spec by auto
then have P1B: A B Perp P P1 ∨ P = P1

using ReflectL-def by blast
have P2A: P2 P ReflectL A B

using P1 assms(2 ) is-image-is-image-spec by auto
then have P2B: A B Perp P P2 ∨ P = P2

using ReflectL-def by blast
obtain X where R1 : X Midpoint P P1 ∧ Col A B X

by (metis ReflectL-def assms(1 ) col-trivial-1 is-image-is-image-spec midpoint-existence)
obtain Y where R2 : Y Midpoint P P2 ∧ Col A B Y

by (metis ReflectL-def assms(2 ) col-trivial-1 is-image-is-image-spec midpoint-existence)
{

assume Q1 :(A B Perp P P1 ∧ A B Perp P P2 )
have S1 : P 6= X
proof −

{
assume P = X
then have P = P1

using R1 is-midpoint-id by blast
then have A B Perp P P

using Q1 by blast
then have False

using perp-distinct by blast
}
thus ?thesis by blast

qed
then have P1 = P2

by (smt Perp-cases Q1 ‹
∧

thesis. (
∧

X . X Midpoint P P1 ∧ Col A B X =⇒ thesis) =⇒ thesis› ‹
∧

thesis. (
∧

Y . Y
Midpoint P P2 ∧ Col A B Y =⇒ thesis) =⇒ thesis› col-permutation-1 l7-2 l7-9 l8-18-uniqueness midpoint-col perp-col
perp-not-col2 )

}
then have T1 : (A B Perp P P1 ∧ A B Perp P P2 ) −→ P1 = P2 by blast
have T2 : (P = P1 ∧ A B Perp P P2 ) −→ P1 = P2

by (metis R1 R2 col3 col-trivial-2 col-trivial-3 midpoint-col midpoint-distinct-1 midpoint-distinct-2 perp-not-col2 )
have T3 : (P = P2 ∧ A B Perp P P1 ) −→ P1 = P2

by (metis R1 R2 col-trivial-2 midpoint-col midpoint-distinct-3 perp-col2 perp-not-col2 )
thus ?thesis

using T1 T2 T3 P1B P2B by blast
qed

lemma l10-2-uniqueness-spec:
assumes P1 P ReflectL A B and

P2 P ReflectL A B
shows P1 = P2

proof −
have A B Perp P P1 ∨ P = P1

using ReflectL-def assms(1 ) by blast
moreover obtain X1 where X1 Midpoint P P1 ∧ Col A B X1

using ReflectL-def assms(1 ) by blast
moreover have A B Perp P P2 ∨ P = P2

using ReflectL-def assms(2 ) by blast
moreover obtain X2 where X2 Midpoint P P2 ∧ Col A B X2
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using ReflectL-def assms(2 ) by blast
ultimately show ?thesis
by (smt col-permutation-1 l8-16-1 l8-18-uniqueness midpoint-col midpoint-distinct-3 perp-col1 symmetric-point-uniqueness)

qed

lemma l10-2-existence-spec:
∃ P ′. P ′ P ReflectL A B

proof cases
assume Col A B P
thus ?thesis

using ReflectL-def l7-3-2 by blast
next

assume ¬ Col A B P
then obtain X where Col A B X ∧ A B Perp P X

using l8-18-existence by blast
moreover obtain P ′ where X Midpoint P P ′

using symmetric-point-construction by blast
ultimately show ?thesis

using ReflectL-def bet-col midpoint-bet perp-col1 by blast
qed

lemma l10-2-existence:
∃ P ′. P ′ P Reflect A B
by (metis Reflect-def l10-2-existence-spec symmetric-point-construction)

lemma l10-4-spec:
assumes P P ′ ReflectL A B
shows P ′ P ReflectL A B

proof −
obtain X where X Midpoint P P ′ ∧ Col A B X

using ReflectL-def assms l7-2 by blast
thus ?thesis

using Perp-cases ReflectL-def assms by auto
qed

lemma l10-4 :
assumes P P ′ Reflect A B
shows P ′ P Reflect A B
using Reflect-def Tarski-neutral-dimensionless.l7-2 Tarski-neutral-dimensionless-axioms assms l10-4-spec by fastforce

lemma l10-5 :
assumes P ′ P Reflect A B and

P ′′ P ′ Reflect A B
shows P = P ′′

by (meson assms(1 ) assms(2 ) l10-2-uniqueness l10-4 )

lemma l10-6-uniqueness:
assumes P P1 Reflect A B and

P P2 Reflect A B
shows P1 = P2
using assms(1 ) assms(2 ) l10-4 l10-5 by blast

lemma l10-6-uniqueness-spec:
assumes P P1 ReflectL A B and

P P2 ReflectL A B
shows P1 = P2
using assms(1 ) assms(2 ) l10-2-uniqueness-spec l10-4-spec by blast

lemma l10-6-existence-spec:
assumes A 6= B
shows ∃ P. P ′ P ReflectL A B
using l10-2-existence-spec l10-4-spec by blast

lemma l10-6-existence:
∃ P. P ′ P Reflect A B
using l10-2-existence l10-4 by blast
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lemma l10-7 :
assumes P ′ P Reflect A B and

Q ′ Q Reflect A B and
P ′ = Q ′

shows P = Q
using assms(1 ) assms(2 ) assms(3 ) l10-6-uniqueness by blast

lemma l10-8 :
assumes P P Reflect A B
shows Col P A B
by (metis Col-perm assms col-trivial-2 ex-sym1 l10-6-uniqueness l7-3 )

lemma col--refl:
assumes Col P A B
shows P P ReflectL A B
using ReflectL-def assms col-permutation-1 l7-3-2 by blast

lemma is-image-col-cong:
assumes A 6= B and

P P ′ Reflect A B and
Col A B X

shows Cong P X P ′ X
proof −

have P1 : P P ′ ReflectL A B
using assms(1 ) assms(2 ) is-image-is-image-spec by blast

obtain M0 where P2 : M0 Midpoint P ′ P ∧ Col A B M0
using P1 ReflectL-def by blast

have A B Perp P ′ P ∨ P ′ = P
using P1 ReflectL-def by auto

moreover
{

assume S1 : A B Perp P ′ P
then have A 6= B ∧ P ′ 6= P

using perp-distinct by blast
have S2 : M0 = X −→ Cong P X P ′ X

using P2 cong-4312 midpoint-cong by blast
{

assume M0 6= X
then have M0 X Perp P ′ P

using P2 S1 assms(3 ) perp-col2 by blast
then have ¬ Col A B P ∧ Per P M0 X

by (metis Col-perm P2 S1 colx l8-2 midpoint-col midpoint-distinct-1 per-col perp-col1 perp-not-col2 perp-per-1 )
then have Cong P X P ′ X

using P2 cong-commutativity l7-2 l8-2 per-double-cong by blast
}
then have Cong P X P ′ X

using S2 by blast
}
then have A B Perp P ′ P −→ Cong P X P ′ X by blast
moreover
{

assume P = P ′

then have Cong P X P ′ X
by (simp add: cong-reflexivity)

}
ultimately show ?thesis by blast

qed

lemma is-image-spec-col-cong:
assumes P P ′ ReflectL A B and

Col A B X
shows Cong P X P ′ X
by (metis Col-def Reflect-def assms(1 ) assms(2 ) between-trivial col--refl cong-reflexivity is-image-col-cong l10-6-uniqueness-spec)

lemma image-id:
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assumes A 6= B and
Col A B T and
T T ′ Reflect A B

shows T = T ′

using assms(1 ) assms(2 ) assms(3 ) cong-diff-4 is-image-col-cong by blast

lemma osym-not-col:
assumes P P ′ Reflect A B and
¬ Col A B P

shows ¬ Col A B P ′

using assms(1 ) assms(2 ) l10-4 local.image-id not-col-distincts by blast

lemma midpoint-preserves-image:
assumes A 6= B and

Col A B M and
P P ′ Reflect A B and
M Midpoint P Q and
M Midpoint P ′ Q ′

shows Q Q ′ Reflect A B
proof −

obtain X where P1 : X Midpoint P ′ P ∧ Col A B X
using ReflectL-def assms(1 ) assms(3 ) is-image-is-image-spec by blast

{
assume S1 : A B Perp P ′ P
obtain Y where S2 : M Midpoint X Y

using symmetric-point-construction by blast
have S3 : Y Midpoint Q Q ′

proof −
have R4 : X Midpoint P P ′

by (simp add: P1 l7-2 )
thus ?thesis

using assms(4 ) assms(5 ) S2 symmetry-preserves-midpoint by blast
qed
have S4 : P 6= P ′

using S1 perp-not-eq-2 by blast
then have S5 : Q 6= Q ′

using Tarski-neutral-dimensionless.l7-9 Tarski-neutral-dimensionless-axioms assms(4 ) assms(5 ) by fastforce
have S6 : Y Midpoint Q ′ Q ∧ Col A B Y

by (metis P1 S2 S3 assms(2 ) colx l7-2 midpoint-col midpoint-distinct-1 )
have S7 : A B Perp Q ′ Q ∨ Q = Q ′

proof −
have R3 : Per M Y Q
proof −

have S1 : Y Midpoint Q Q ′

using S3 by auto
have Cong M Q M Q ′

using assms(1 ) assms(2 ) assms(3 ) assms(4 ) assms(5 ) cong-commutativity is-image-col-cong l7-16 l7-3-2 by
blast

thus ?thesis
using Per-def S1 by blast

qed
{

have X = Y −→ (A B Perp Q ′ Q ∨ Q = Q ′)
by (metis P1 Perp-cases S1 S2 S6 assms(5 ) l7-3 l7-9-bis)

{
assume X 6= Y
then have Y PerpAt M Y Y Q

using R3 S2 S3 S5 midpoint-distinct-1 per-perp-in by blast
then have V1 : Y Y Perp Y Q ∨ M Y Perp Y Q

by (simp add: perp-in-perp-bis)
{

have Y Y Perp Y Q −→ A B Perp Q ′ Q ∨ Q = Q ′

using perp-not-eq-1 by blast
{

assume T1 : M Y Perp Y Q
have T2 : Y Q Perp A B
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proof cases
assume A = M
thus ?thesis

using Perp-cases S6 T1 assms(1 ) col-permutation-5 perp-col by blast
next

assume A 6= M
thus ?thesis

by (smt S6 T1 assms(1 ) assms(2 ) col2--eq col-transitivity-2 perp-col0 perp-not-eq-1 )
qed
have A B Perp Q ′ Q ∨ Q = Q ′

by (metis S3 T2 midpoint-col not-col-distincts perp-col0 )
}
then have M Y Perp Y Q −→ A B Perp Q ′ Q ∨ Q = Q ′ by blast

}
then have A B Perp Q ′ Q ∨ Q = Q ′

using V1 perp-distinct by blast
}
then have X 6= Y −→ (A B Perp Q ′ Q ∨ Q = Q ′) by blast

}
thus ?thesis

by (metis P1 Perp-cases S1 S2 S6 assms(5 ) l7-3 l7-9-bis)
qed
then have Q Q ′ ReflectL A B

using ReflectL-def S6 by blast
}
then have A B Perp P ′ P −→ Q Q ′ ReflectL A B by blast
moreover
{

assume P = P ′

then have Q Q ′ ReflectL A B
by (metis P1 assms(2 ) assms(4 ) assms(5 ) col--refl col-permutation-2 colx midpoint-col midpoint-distinct-3 sym-

metric-point-uniqueness)
}
ultimately show ?thesis

using ReflectL-def assms(1 ) assms(3 ) is-image-is-image-spec by auto
qed

lemma image-in-is-image-spec:
assumes M ReflectLAt P P ′ A B
shows P P ′ ReflectL A B

proof −
have P1 : M Midpoint P ′ P

using ReflectLAt-def assms by blast
have P2 : Col A B M

using ReflectLAt-def assms by blast
have A B Perp P ′ P ∨ P ′ = P

using ReflectLAt-def assms by blast
thus ?thesis using P1 P2

using ReflectL-def by blast
qed

lemma image-in-gen-is-image:
assumes M ReflectAt P P ′ A B
shows P P ′ Reflect A B
using ReflectAt-def Reflect-def assms image-in-is-image-spec by auto

lemma image-image-in:
assumes P 6= P ′ and

P P ′ ReflectL A B and
Col A B M and
Col P M P ′

shows M ReflectLAt P P ′ A B
proof −

obtain M ′ where P1 : M ′ Midpoint P ′ P ∧ Col A B M ′

using ReflectL-def assms(2 ) by blast
have Q1 : P M ′ Perp A B
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by (metis Col-cases P1 Perp-perm ReflectL-def assms(1 ) assms(2 ) bet-col cong-diff-3 midpoint-bet midpoint-cong
not-cong-4321 perp-col1 )

{
assume R1 : A B Perp P ′ P
have R3 : P 6= M ′

using Q1 perp-not-eq-1 by auto
have R4 : A B Perp P ′ P

by (simp add: R1 )
have R5 : Col P P ′ M ′

using P1 midpoint-col not-col-permutation-3 by blast
have R6 : M ′ Midpoint P ′ P

by (simp add: P1 )
have R7 : ¬ Col A B P

using assms(1 ) assms(2 ) col--refl col-permutation-2 l10-2-uniqueness-spec l10-4-spec by blast
have R8 : P 6= P ′

by (simp add: assms(1 ))
have R9 : Col A B M ′

by (simp add: P1 )
have R10 : Col A B M

by (simp add: assms(3 ))
have R11 : Col P P ′ M ′

by (simp add: R5 )
have R12 : Col P P ′ M

using Col-perm assms(4 ) by blast
have M = M ′

proof cases
assume S1 : A = M ′

have Per P M ′ A
by (simp add: S1 l8-5 )

thus ?thesis using l6-21 R8 R9 R10 R11 R12
using R7 by blast

next
assume A 6= M ′

thus ?thesis
using R10 R12 R5 R7 R8 R9 l6-21 by blast

qed
then have M Midpoint P ′ P

using R6 by blast
}
then have Q2 : A B Perp P ′ P −→ M Midpoint P ′ P by blast
have Q3 : P ′ = P −→ M Midpoint P ′ P

using assms(1 ) by auto
have Q4 : A B Perp P ′ P ∨ P ′ = P

using ReflectL-def assms(2 ) by auto
then have M Midpoint P ′ P

using Q2 Q3 by blast
thus ?thesis

by (simp add: ReflectLAt-def Q4 assms(3 ))
qed

lemma image-in-col:
assumes Y ReflectLAt P P ′ A B
shows Col P P ′ Y
using Col-perm ReflectLAt-def assms midpoint-col by blast

lemma is-image-spec-rev:
assumes P P ′ ReflectL A B
shows P P ′ ReflectL B A

proof −
obtain M0 where P1 : M0 Midpoint P ′ P ∧ Col A B M0

using ReflectL-def assms by blast
have P2 : Col B A M0

using Col-cases P1 by blast
have A B Perp P ′ P ∨ P ′ = P

using ReflectL-def assms by blast
thus ?thesis
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using P1 P2 Perp-cases ReflectL-def by auto
qed

lemma is-image-rev:
assumes P P ′ Reflect A B
shows P P ′ Reflect B A
using Reflect-def assms is-image-spec-rev by auto

lemma midpoint-preserves-per :
assumes Per A B C and

M Midpoint A A1 and
M Midpoint B B1 and
M Midpoint C C1

shows Per A1 B1 C1
proof −

obtain C ′ where P1 : B Midpoint C C ′ ∧ Cong A C A C ′

using Per-def assms(1 ) by blast
obtain C1 ′ where P2 : M Midpoint C ′ C1 ′

using symmetric-point-construction by blast
thus ?thesis

by (meson P1 Per-def assms(2 ) assms(3 ) assms(4 ) l7-16 symmetry-preserves-midpoint)
qed

lemma col--image-spec:
assumes Col A B X
shows X X ReflectL A B
by (simp add: assms col--refl col-permutation-2 )

lemma image-triv:
A A Reflect A B
by (simp add: Reflect-def col--refl col-trivial-1 l7-3-2 )

lemma cong-midpoint--image:
assumes Cong A X A Y and

B Midpoint X Y
shows Y X Reflect A B

proof cases
assume A = B
thus ?thesis

by (simp add: Reflect-def assms(2 ))
next

assume S0 : A 6= B
{

assume S1 : X 6= Y
then have X Y Perp A B
proof −

have T1 : B 6= X
using S1 assms(2 ) midpoint-distinct-1 by blast

have T2 : B 6= Y
using S1 assms(2 ) midpoint-not-midpoint by blast

have Per A B X
using Per-def assms(1 ) assms(2 ) by auto

thus ?thesis
using S0 S1 T1 T2 assms(2 ) col-per-perp midpoint-col by auto

qed
then have A B Perp X Y ∨ X = Y

using Perp-perm by blast
then have Y X Reflect A B

using ReflectL-def S0 assms(2 ) col-trivial-2 is-image-is-image-spec by blast
}
then have X 6= Y −→ Y X Reflect A B by blast
thus ?thesis

using assms(2 ) image-triv is-image-rev l7-3 by blast
qed
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lemma col-image-spec--eq:
assumes Col A B P and

P P ′ ReflectL A B
shows P = P ′

using assms(1 ) assms(2 ) col--image-spec l10-2-uniqueness-spec l10-4-spec by blast

lemma image-spec-triv:
A A ReflectL B B
using col--image-spec not-col-distincts by blast

lemma image-spec--eq:
assumes P P ′ ReflectL A A
shows P = P ′

using assms col-image-spec--eq not-col-distincts by blast

lemma image--midpoint:
assumes P P ′ Reflect A A
shows A Midpoint P ′ P
using Reflect-def assms by auto

lemma is-image-spec-dec:
A B ReflectL C D ∨ ¬ A B ReflectL C D
by simp

lemma l10-14 :
assumes P 6= P ′ and

A 6= B and
P P ′ Reflect A B

shows A B TS P P ′

proof −
have P1 : P P ′ ReflectL A B

using assms(2 ) assms(3 ) is-image-is-image-spec by blast
then obtain M0 where M0 Midpoint P ′ P ∧ Col A B M0

using ReflectL-def by blast
then have A B Perp P ′ P −→ A B TS P P ′

by (meson TS-def assms(1 ) assms(2 ) assms(3 ) between-symmetry col-permutation-2 local.image-id midpoint-bet
osym-not-col)

thus ?thesis
using assms(1 ) P1 ReflectL-def by blast

qed

lemma l10-15 :
assumes Col A B C and
¬ Col A B P

shows ∃ Q. A B Perp Q C ∧ A B OS P Q
proof −

have P1 : A 6= B
using assms(2 ) col-trivial-1 by auto

obtain X where P2 : A B TS P X
using assms(2 ) col-permutation-1 l9-10 by blast

{
assume Q1 : A = C
obtain Q where Q2 : ∃ T . A B Perp Q A ∧ Col A B T ∧ Bet X T Q

using P1 l8-21 by blast
then obtain T where A B Perp Q A ∧ Col A B T ∧ Bet X T Q by blast
then have A B TS Q X

by (meson P2 TS-def between-symmetry col-permutation-2 perp-not-col)
then have Q5 : A B OS P Q

using P2 l9-8-1 by blast
then have ∃ Q. A B Perp Q C ∧ A B OS P Q

using Q1 Q2 by blast
}
then have P3 : A = C −→ (∃ Q. A B Perp Q C ∧ A B OS P Q) by blast
{

assume Q1 : A 6= C
then obtain Q where Q2 : ∃ T . C A Perp Q C ∧ Col C A T ∧ Bet X T Q
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using l8-21 by presburger
then obtain T where Q3 : C A Perp Q C ∧ Col C A T ∧ Bet X T Q by blast
have Q4 : A B Perp Q C

using NCol-perm P1 Q2 assms(1 ) col-trivial-2 perp-col2 by blast
have A B TS Q X
proof −

have R1 : ¬ Col Q A B
using Col-perm P1 Q2 assms(1 ) col-trivial-2 colx perp-not-col by blast

have R2 : ¬ Col X A B
using P2 TS-def by auto

have R3 : Col T A B
by (metis Q1 Q3 assms(1 ) col-trivial-2 colx not-col-permutation-1 )

have Bet Q T X
using Bet-cases Q3 by blast

then have ∃ T . Col T A B ∧ Bet Q T X
using R3 by blast

thus ?thesis using R1 R2
by (simp add: TS-def )

qed
then have A B OS P Q

using P2 l9-8-1 by blast
then have ∃ Q. A B Perp Q C ∧ A B OS P Q

using Q4 by blast
}
thus ?thesis using P3 by blast

qed

lemma ex-per-cong:
assumes A 6= B and

X 6= Y and
Col A B C and
¬ Col A B D

shows ∃ P. Per P C A ∧ Cong P C X Y ∧ A B OS P D
proof −

obtain Q where P1 : A B Perp Q C ∧ A B OS D Q
using assms(3 ) assms(4 ) l10-15 by blast

obtain P where P2 : C Out Q P ∧ Cong C P X Y
by (metis P1 assms(2 ) perp-not-eq-2 segment-construction-3 )

have P3 : Per P C A
using P1 P2 assms(3 ) col-trivial-3 l8-16-1 l8-3 out-col by blast

have A B OS P D
using P1 P2 assms(3 ) one-side-symmetry os-out-os by blast

thus ?thesis
using P2 P3 cong-left-commutativity by blast

qed

lemma exists-cong-per :
∃ C . Per A B C ∧ Cong B C X Y

proof cases
assume A = B
thus ?thesis

by (meson Tarski-neutral-dimensionless.l8-5 Tarski-neutral-dimensionless-axioms l8-2 segment-construction)
next

assume A 6= B
thus ?thesis

by (metis Perp-perm bet-col between-trivial l8-16-1 l8-21 segment-construction)
qed

3.9.2 Upper dim 2
lemma upper-dim-implies-per2--col:

assumes upper-dim-axiom
shows ∀ A B C X . (Per A X C ∧ X 6= C ∧ Per B X C ) −→ Col A B X

proof −
{

fix A B C X
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assume Per A X C ∧ X 6= C ∧ Per B X C
moreover then obtain C ′ where X Midpoint C C ′ ∧ Cong A C A C ′

using Per-def by blast
ultimately have Col A B X

by (smt Col-def assms midpoint-cong midpoint-distinct-2 not-cong-2134 per-double-cong upper-dim-axiom-def )
}
then show ?thesis by blast

qed

lemma upper-dim-implies-col-perp2--col:
assumes upper-dim-axiom
shows ∀ A B X Y P. (Col A B P ∧ A B Perp X P ∧ P A Perp Y P) −→ Col Y X P

proof −
{

fix A B X Y P
assume H1 : Col A B P ∧ A B Perp X P ∧ P A Perp Y P
then have H2 : P 6= A

using perp-not-eq-1 by blast
have Col Y X P
proof −

have T1 : Per Y P A
using H1 l8-2 perp-per-1 by blast

moreover have Per X P A
using H1 col-trivial-3 l8-16-1 by blast

then show ?thesis using T1 H2
using assms upper-dim-implies-per2--col by blast

qed
}
then show ?thesis by blast

qed

lemma upper-dim-implies-perp2--col:
assumes upper-dim-axiom
shows ∀ X Y Z A B. (X Y Perp A B ∧ X Z Perp A B) −→ Col X Y Z

proof −
{

fix X Y Z A B
assume H1 : X Y Perp A B ∧ X Z Perp A B
then have H1A: X Y Perp A B by blast
have H1B: X Z Perp A B using H1 by blast
obtain C where H2 : C PerpAt X Y A B

using H1 Perp-def by blast
obtain C ′ where H3 : C ′ PerpAt X Z A B

using H1 Perp-def by blast
have Col X Y Z
proof cases

assume H2 : Col A B X
{

assume X = A
then have Col X Y Z using upper-dim-implies-col-perp2--col

by (metis H1 H2 Perp-cases assms col-permutation-1 )
}
then have P1 : X = A −→ Col X Y Z by blast
{

assume P2 : X 6= A
then have P3 : A B Perp X Y using perp-sym

using H1 Perp-perm by blast
have Col A B X

by (simp add: H2 )
then have P4 : A X Perp X Y using perp-col

using P2 P3 by auto
have P5 : A X Perp X Z

by (metis H1 H2 P2 Perp-perm col-trivial-3 perp-col0 )
have P6 : Col Y Z X
proof −

have Q1 : upper-dim-axiom
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by (simp add: assms)
have Q2 : Per Y X A

using P4 Perp-cases perp-per-2 by blast
have Per Z X A

by (meson P5 Tarski-neutral-dimensionless.Perp-cases Tarski-neutral-dimensionless-axioms perp-per-2 )
then show ?thesis using Q1 Q2 P2

using upper-dim-implies-per2--col by blast
qed
then have Col X Y Z

using Col-perm by blast
}
then show ?thesis

using P1 by blast
next

assume T1 : ¬ Col A B X
obtain Y0 where Q3 : Y0 PerpAt X Y A B

using H1 Perp-def by blast
obtain Z0 where Q4 : Z0 PerpAt X Z A B

using Perp-def H1 by blast
have Q5 : X Y0 Perp A B
proof −

have R1 : X 6= Y0
using Q3 T1 perp-in-col by blast

have R2 : X Y Perp A B
by (simp add: H1A)

then show ?thesis using R1
using Q3 perp-col perp-in-col by blast

qed
have X Z0 Perp A B

by (metis H1B Q4 T1 perp-col perp-in-col)
then have Q7 : Y0 = Z0
by (meson Q3 Q4 Q5 T1 Tarski-neutral-dimensionless.Perp-perm Tarski-neutral-dimensionless-axioms l8-18-uniqueness

perp-in-col)
have Col X Y Z
proof −

have X 6= Y0
using Q5 perp-distinct by auto

moreover have Col X Y0 Y
using Q3 not-col-permutation-5 perp-in-col by blast

moreover have Col X Y0 Z
using Q4 Q7 col-permutation-5 perp-in-col by blast

ultimately show ?thesis
using col-transitivity-1 by blast

qed
then show ?thesis using l8-18-uniqueness

by (smt H1 H2 Perp-cases T1 col-trivial-3 perp-col1 perp-in-col perp-not-col)
qed

}
then show ?thesis by blast

qed

lemma upper-dim-implies-not-two-sides-one-side-aux:
assumes upper-dim-axiom
shows ∀ A B X Y PX . (A 6= B ∧ PX 6= A ∧ A B Perp X PX ∧ Col A B PX ∧ ¬ Col X A B ∧ ¬ Col Y A B ∧ ¬

A B TS X Y ) −→ A B OS X Y
proof −

{
fix A B X Y PX
assume H1 : A 6= B ∧ PX 6= A ∧ A B Perp X PX ∧ Col A B PX ∧ ¬ Col X A B ∧ ¬ Col Y A B ∧ ¬ A B TS X Y
have H1A: A 6= B using H1 by simp
have H1B: PX 6= A using H1 by simp
have H1C : A B Perp X PX using H1 by simp
have H1D: Col A B PX using H1 by simp
have H1E : ¬ Col X A B using H1 by simp
have H1F : ¬ Col Y A B using H1 by simp
have H1G: ¬ A B TS X Y using H1 by simp
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have ∃ P T . PX A Perp P PX ∧ Col PX A T ∧ Bet Y T P
using H1B l8-21 by blast

then obtain P T where T1 : PX A Perp P PX ∧ Col PX A T ∧ Bet Y T P
by blast

have J1 : PX A Perp P PX using T1 by blast
have J2 : Col PX A T using T1 by blast
have J3 : Bet Y T P using T1 by blast
have P9 : Col P X PX using upper-dim-implies-col-perp2--col

using H1C H1D J1 assms by blast
have J4 : ¬ Col P A B

using H1A H1D T1 col-trivial-2 colx not-col-permutation-3 perp-not-col by blast
have J5 : PX A TS P Y
proof −

have f1 : Col PX A B
using H1D not-col-permutation-1 by blast

then have f2 : Col B PX A
using not-col-permutation-1 by blast

have f3 : ∀ p. (T = A ∨ Col p A PX) ∨ ¬ Col p A T
by (metis J2 l6-16-1 )

have f4 : Col T PX A
using J2 not-col-permutation-1 by blast

have f5 : ∀ p. Col p PX B ∨ ¬ Col p PX A
using f2 by (meson H1B l6-16-1 )

have f6 : ∀ p. (B = PX ∨ Col p B A) ∨ ¬ Col p B PX
using H1D l6-16-1 by blast

have f7 : ∀ p pa. ((B = PX ∨ Col p PX pa) ∨ ¬ Col p PX B) ∨ ¬ Col pa PX A
using f5 by (metis l6-16-1 )

have f8 : ∀ p. ((T = A ∨ B = PX) ∨ Col p A B) ∨ ¬ Col p A PX
using f2 by (metis H1B l6-16-1 not-col-permutation-1 )

have Col B T PX
using f5 f4 not-col-permutation-1 by blast

then have f9 : ∀ p. (T = PX ∨ Col p T B) ∨ ¬ Col p T PX
using l6-16-1 by blast

have B = PX −→ ¬ Col Y PX A ∧ ¬ Col P PX A
using f1 by (metis (no-types) H1B H1F J4 l6-16-1 not-col-permutation-1 )

then show ?thesis
using f9 f8 f7 f6 f5 f4 f3 by (metis (no-types) H1B H1F J3 J4 TS-def l9-2 not-col-permutation-1 )

qed
have J6 : X 6= PX

using H1 perp-not-eq-2 by blast
have J7 : P 6= X

using H1A H1D H1G J5 col-preserves-two-sides col-trivial-2 not-col-permutation-1 by blast
have J8 : Bet X PX P ∨ PX Out X P ∨ ¬ Col X PX P

using l6-4-2 by blast
have J9 : PX A TS P X
by (metis H1A H1D H1G J5 J6 J8 Out-cases P9 TS-def bet--ts between-symmetry col-permutation-1 col-preserves-two-sides

col-trivial-2 l9-5 )
then have A B OS X Y

by (meson H1A H1D J5 col2-os--os col-trivial-2 l9-2 l9-8-1 not-col-permutation-1 )
}
then show ?thesis by blast

qed

lemma upper-dim-implies-not-two-sides-one-side:
assumes upper-dim-axiom
shows ∀ A B X Y . (¬ Col X A B ∧ ¬ Col Y A B ∧ ¬ A B TS X Y ) −→ A B OS X Y

proof −
{

fix A B X Y
assume H1 : ¬ Col X A B ∧ ¬ Col Y A B ∧ ¬ A B TS X Y
have H1A: ¬ Col X A B using H1 by simp
have H1B: ¬ Col Y A B using H1 by simp
have H1C : ¬ A B TS X Y using H1 by simp
have P1 : A 6= B

using H1A col-trivial-2 by blast
obtain PX where P2 : Col A B PX ∧ A B Perp X PX
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using Col-cases H1 l8-18-existence by blast
have A B OS X Y
proof cases

assume H5 : PX = A
have B A OS X Y
proof −

have F1 : B A Perp X A
using P2 Perp-perm H5 by blast

have F2 : Col B A A
using not-col-distincts by blast

have F3 : ¬ Col X B A
using Col-cases H1A by blast

have F4 : ¬ Col Y B A
using Col-cases H1B by blast

have ¬ B A TS X Y
using H1C invert-two-sides by blast

then show ?thesis
by (metis F1 F3 F4 assms col-trivial-2 upper-dim-implies-not-two-sides-one-side-aux)

qed
then show ?thesis

by (simp add: invert-one-side)
next

assume PX 6= A
then show ?thesis

using H1 P1 P2 assms upper-dim-implies-not-two-sides-one-side-aux by blast
qed

}
then show ?thesis by blast

qed

lemma upper-dim-implies-not-one-side-two-sides:
assumes upper-dim-axiom
shows ∀ A B X Y . (¬ Col X A B ∧ ¬ Col Y A B ∧ ¬ A B OS X Y ) −→ A B TS X Y
using assms upper-dim-implies-not-two-sides-one-side by blast

lemma upper-dim-implies-one-or-two-sides:
assumes upper-dim-axiom
shows ∀ A B X Y . (¬ Col X A B ∧ ¬ Col Y A B) −→ (A B TS X Y ∨ A B OS X Y )
using assms upper-dim-implies-not-two-sides-one-side by blast

lemma upper-dim-implies-all-coplanar :
assumes upper-dim-axiom
shows all-coplanar-axiom
using all-coplanar-axiom-def assms upper-dim-axiom-def by auto

lemma all-coplanar-implies-upper-dim:
assumes all-coplanar-axiom
shows upper-dim-axiom
using all-coplanar-axiom-def assms upper-dim-axiom-def by auto

lemma all-coplanar-upper-dim:
shows all-coplanar-axiom ←→ upper-dim-axiom
using all-coplanar-implies-upper-dim upper-dim-implies-all-coplanar by auto

lemma upper-dim-stab:
shows ¬ ¬ upper-dim-axiom −→ upper-dim-axiom by blast

lemma cop--cong-on-bissect:
assumes Coplanar A B X P and

M Midpoint A B and
M PerpAt A B P M and
Cong X A X B

shows Col M P X
proof −

have P1 : X = M ∨ ¬ Col A B X ∧ M PerpAt X M A B
using assms(2 ) assms(3 ) assms(4 ) cong-commutativity cong-perp-or-mid perp-in-distinct by blast
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{
assume H1 : ¬ Col A B X ∧ M PerpAt X M A B
then have Q1 : X M Perp A B

using perp-in-perp by blast
have Q2 : A B Perp P M

using assms(3 ) perp-in-perp by blast
have P2 : Col M A B

by (simp add: assms(2 ) midpoint-col)
then have Col M P X using cop-perp2--col

by (meson Perp-perm Q1 Q2 assms(1 ) coplanar-perm-1 )
}
then show ?thesis

using P1 not-col-distincts by blast
qed

lemma cong-cop-mid-perp--col:
assumes Coplanar A B X P and

Cong A X B X and
M Midpoint A B and
A B Perp P M

shows Col M P X
proof −

have M PerpAt A B P M
using Col-perm assms(3 ) assms(4 ) bet-col l8-15-1 midpoint-bet by blast

then show ?thesis
using assms(1 ) assms(2 ) assms(3 ) cop--cong-on-bissect not-cong-2143 by blast

qed

lemma cop-image-in2--col:
assumes Coplanar A B P Q and

M ReflectLAt P P ′ A B and
M ReflectLAt Q Q ′ A B

shows Col M P Q
proof −

have P1 : P P ′ ReflectL A B
using assms(2 ) image-in-is-image-spec by auto

then have P2 : A B Perp P ′ P ∨ P ′ = P
using ReflectL-def by auto

have P3 : Q Q ′ ReflectL A B
using assms(3 ) image-in-is-image-spec by blast

then have P4 : A B Perp Q ′ Q ∨ Q ′ = Q
using ReflectL-def by auto

{
assume S1 : A B Perp P ′ P ∧ A B Perp Q ′ Q
{

assume T1 : A = M
have T2 : Per B A P

by (metis P1 Perp-perm S1 T1 assms(2 ) image-in-col is-image-is-image-spec l10-14 perp-col1 perp-distinct
perp-per-1 ts-distincts)

have T3 : Per B A Q
by (metis S1 T1 assms(3 ) image-in-col l8-5 perp-col1 perp-per-1 perp-right-comm)

have T4 : Coplanar B P Q A
using assms(1 ) ncoplanar-perm-18 by blast

have T5 : B 6= A
using S1 perp-distinct by blast

have T6 : Per P A B
by (simp add: T2 l8-2 )

have T7 : Per Q A B
using Per-cases T3 by blast

then have Col P Q A using T4 T5 T6
using cop-per2--col by blast

then have Col A P Q
using not-col-permutation-1 by blast

then have Col M P Q
using T1 by blast

}
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then have S2 : A = M −→ Col M P Q by blast
{

assume D0 : A 6= M
have D1 : Per A M P
proof −

have E1 : M Midpoint P P ′

using ReflectLAt-def assms(2 ) l7-2 by blast
have Cong P A P ′ A

using P1 col-trivial-3 is-image-spec-col-cong by blast
then have Cong A P A P ′

using Cong-perm by blast
then show ?thesis

using E1 Per-def by blast
qed
have D2 : Per A M Q
proof −

have E2 : M Midpoint Q Q ′

using ReflectLAt-def assms(3 ) l7-2 by blast
have Cong A Q A Q ′

using P3 col-trivial-3 cong-commutativity is-image-spec-col-cong by blast
then show ?thesis

using E2 Per-def by blast
qed
have Col P Q M
proof −

have W1 : Coplanar P Q A B
using assms(1 ) ncoplanar-perm-16 by blast

have W2 : A 6= B
using S1 perp-distinct by blast

have Col A B M
using ReflectLAt-def assms(2 ) by blast

then have Coplanar P Q A M
using W1 W2 col2-cop--cop col-trivial-3 by blast

then have V1 : Coplanar A P Q M
using ncoplanar-perm-8 by blast

have V3 : Per P M A
by (simp add: D1 l8-2 )

have Per Q M A
using D2 Per-perm by blast

then show ?thesis
using V1 D0 V3 cop-per2--col by blast

qed
then have Col M P Q

using Col-perm by blast
}
then have A 6= M −→ Col M P Q by blast
then have Col M P Q

using S2 by blast
}
then have P5 : (A B Perp P ′ P ∧ A B Perp Q ′ Q) −→ Col M P Q by blast
have P6 : (A B Perp P ′ P ∧ (Q ′ = Q)) −→ Col M P Q

using ReflectLAt-def assms(3 ) l7-3 not-col-distincts by blast
have P7 : (P ′ = P ∧ A B Perp Q ′ Q) −→ Col M P Q

using ReflectLAt-def assms(2 ) l7-3 not-col-distincts by blast
have (P ′ = P ∧ Q ′ = Q) −→ Col M P Q

using ReflectLAt-def assms(3 ) col-trivial-3 l7-3 by blast
then show ?thesis

using P2 P4 P5 P6 P7 by blast
qed

lemma l10-10-spec:
assumes P ′ P ReflectL A B and

Q ′ Q ReflectL A B
shows Cong P Q P ′ Q ′

proof cases
assume A = B
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then show ?thesis
using assms(1 ) assms(2 ) cong-reflexivity image-spec--eq by blast

next
assume H1 : A 6= B
obtain X where P1 : X Midpoint P P ′ ∧ Col A B X

using ReflectL-def assms(1 ) by blast
obtain Y where P2 : Y Midpoint Q Q ′ ∧ Col A B Y

using ReflectL-def assms(2 ) by blast
obtain Z where P3 : Z Midpoint X Y

using midpoint-existence by blast
have P4 : Col A B Z
proof cases

assume X = Y
then show ?thesis

by (metis P2 P3 midpoint-distinct-3 )
next

assume X 6= Y
then show ?thesis

by (metis P1 P2 P3 l6-21 midpoint-col not-col-distincts)
qed
obtain R where P5 : Z Midpoint P R

using symmetric-point-construction by blast
obtain R ′ where P6 : Z Midpoint P ′ R ′

using symmetric-point-construction by blast
have P7 : A B Perp P P ′ ∨ P = P ′

using ReflectL-def assms(1 ) by auto
have P8 : A B Perp Q Q ′ ∨ Q = Q ′

using ReflectL-def assms(2 ) by blast
{

assume Q1 : A B Perp P P ′ ∧ A B Perp Q Q ′

have Q2 : R R ′ ReflectL A B
proof −

have P P ′ Reflect A B
by (simp add: H1 assms(1 ) is-image-is-image-spec l10-4-spec)

then have R R ′ Reflect A B
using H1 P4 P5 P6 midpoint-preserves-image by blast

then show ?thesis
using H1 is-image-is-image-spec by blast

qed
have Q3 : R 6= R ′

using P5 P6 Q1 l7-9 perp-not-eq-2 by blast
have Q4 : Y Midpoint R R ′

using P1 P3 P5 P6 symmetry-preserves-midpoint by blast
have Q5 : Cong Q ′ R ′ Q R

using P2 Q4 l7-13 by blast
have Q6 : Cong P ′ Z P Z

using P4 assms(1 ) is-image-spec-col-cong by auto
have Q7 : Cong Q ′ Z Q Z

using P4 assms(2 ) is-image-spec-col-cong by blast
then have Cong P Q P ′ Q ′

proof −
have S1 : Cong R Z R ′ Z

using P5 P6 Q6 cong-symmetry l7-16 l7-3-2 by blast
have R 6= Z

using Q3 S1 cong-reverse-identity by blast
then show ?thesis

by (meson P5 P6 Q5 Q6 Q7 S1 between-symmetry five-segment midpoint-bet not-cong-2143 not-cong-3412 )
qed

}
then have P9 : (A B Perp P P ′ ∧ A B Perp Q Q ′) −→ Cong P Q P ′ Q ′ by blast
have P10 : (A B Perp P P ′ ∧ Q = Q ′) −→ Cong P Q P ′ Q ′

using P2 Tarski-neutral-dimensionless.l7-3 Tarski-neutral-dimensionless-axioms assms(1 ) cong-symmetry is-image-spec-col-cong
by fastforce

have P11 : (P = P ′ ∧ A B Perp Q Q ′) −→ Cong P Q P ′ Q ′

using P1 Tarski-neutral-dimensionless.l7-3 Tarski-neutral-dimensionless.not-cong-4321 Tarski-neutral-dimensionless-axioms
assms(2 ) is-image-spec-col-cong by fastforce

126



have (P = P ′ ∧ Q = Q ′) −→ Cong P Q P ′ Q ′

using cong-reflexivity by blast
then show ?thesis

using P10 P11 P7 P8 P9 by blast
qed

lemma l10-10 :
assumes P ′ P Reflect A B and

Q ′ Q Reflect A B
shows Cong P Q P ′ Q ′

using Reflect-def assms(1 ) assms(2 ) cong-4321 l10-10-spec l7-13 by auto

lemma image-preserves-bet:
assumes A A ′ ReflectL X Y and

B B ′ ReflectL X Y and
C C ′ ReflectL X Y and
Bet A B C

shows Bet A ′ B ′ C ′

proof −
have P3 : A B C Cong3 A ′ B ′ C ′

using Cong3-def assms(1 ) assms(2 ) assms(3 ) l10-10-spec l10-4-spec by blast
then show ?thesis

using assms(4 ) l4-6 by blast
qed

lemma image-gen-preserves-bet:
assumes A A ′ Reflect X Y and

B B ′ Reflect X Y and
C C ′ Reflect X Y and
Bet A B C

shows Bet A ′ B ′ C ′

proof cases
assume X = Y
then show ?thesis

by (metis (full-types) assms(1 ) assms(2 ) assms(3 ) assms(4 ) image--midpoint l7-15 l7-2 )
next

assume P1 : X 6= Y
then have P2 : A A ′ ReflectL X Y

using assms(1 ) is-image-is-image-spec by blast
have P3 : B B ′ ReflectL X Y

using P1 assms(2 ) is-image-is-image-spec by auto
have C C ′ ReflectL X Y

using P1 assms(3 ) is-image-is-image-spec by blast
then show ?thesis using image-preserves-bet

using assms(4 ) P2 P3 by blast
qed

lemma image-preserves-col:
assumes A A ′ ReflectL X Y and

B B ′ ReflectL X Y and
C C ′ ReflectL X Y and
Col A B C

shows Col A ′ B ′ C ′ using image-preserves-bet
using Col-def assms(1 ) assms(2 ) assms(3 ) assms(4 ) by auto

lemma image-gen-preserves-col:
assumes A A ′ Reflect X Y and

B B ′ Reflect X Y and
C C ′ Reflect X Y and
Col A B C

shows Col A ′ B ′ C ′

using Col-def assms(1 ) assms(2 ) assms(3 ) assms(4 ) image-gen-preserves-bet by auto

lemma image-gen-preserves-ncol:
assumes A A ′ Reflect X Y and

B B ′ Reflect X Y and
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C C ′ Reflect X Y and
¬ Col A B C

shows ¬ Col A ′ B ′ C ′

using assms(1 ) assms(2 ) assms(3 ) assms(4 )image-gen-preserves-col l10-4 by blast

lemma image-gen-preserves-inter :
assumes A A ′ Reflect X Y and

B B ′ Reflect X Y and
C C ′ Reflect X Y and
D D ′ Reflect X Y and
¬ Col A B C and
C 6= D and
Col A B I and
Col C D I and
Col A ′ B ′ I ′ and
Col C ′ D ′ I ′

shows I I ′ Reflect X Y
proof −

obtain I0 where P1 : I I0 Reflect X Y
using l10-6-existence by blast

then show ?thesis
by (smt Tarski-neutral-dimensionless.image-gen-preserves-col Tarski-neutral-dimensionless-axioms assms(1 ) assms(10 )

assms(2 ) assms(3 ) assms(4 ) assms(5 ) assms(6 ) assms(7 ) assms(8 ) assms(9 ) l10-4 l10-7 l6-21 )
qed

lemma intersection-with-image-gen:
assumes A A ′ Reflect X Y and

B B ′ Reflect X Y and
¬ Col A B A ′ and
Col A B C and
Col A ′ B ′ C

shows Col C X Y
by (smt assms(1 ) assms(2 ) assms(3 ) assms(4 ) assms(5 ) image-gen-preserves-inter l10-2-uniqueness l10-4 l10-8

not-col-distincts)

lemma image-preserves-midpoint :
assumes A A ′ ReflectL X Y and

B B ′ ReflectL X Y and
C C ′ ReflectL X Y and
A Midpoint B C

shows A ′ Midpoint B ′ C ′

proof −
have P1 : Bet B ′ A ′ C ′ using image-preserves-bet

using assms(1 ) assms(2 ) assms(3 ) assms(4 ) midpoint-bet by auto
have Cong B ′ A ′ A ′ C ′

by (metis Cong-perm Tarski-neutral-dimensionless.l10-10-spec Tarski-neutral-dimensionless.l7-13 Tarski-neutral-dimensionless-axioms
assms(1 ) assms(2 ) assms(3 ) assms(4 ) cong-transitivity l7-3-2 )

then show ?thesis
by (simp add: Midpoint-def P1 )

qed

lemma image-spec-preserves-per :
assumes A A ′ ReflectL X Y and

B B ′ ReflectL X Y and
C C ′ ReflectL X Y and
Per A B C

shows Per A ′ B ′ C ′

proof cases
assume X = Y
then show ?thesis

using assms(1 ) assms(2 ) assms(3 ) assms(4 ) image-spec--eq by blast
next

assume P1 : X 6= Y
obtain C1 where P2 : B Midpoint C C1

using symmetric-point-construction by blast
obtain C1 ′ where P3 : C1 C1 ′ ReflectL X Y
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by (meson P1 l10-6-existence-spec)
then have P4 : B ′ Midpoint C ′ C1 ′

using P2 assms(2 ) assms(3 ) image-preserves-midpoint by blast
have Cong A ′ C ′ A ′ C1 ′

proof −
have Q1 : Cong A ′ C ′ A C

using assms(1 ) assms(3 ) l10-10-spec by auto
have Cong A C A ′ C1 ′

by (metis P2 P3 Tarski-neutral-dimensionless.l10-10-spec Tarski-neutral-dimensionless-axioms assms(1 ) assms(4 )
cong-inner-transitivity cong-symmetry per-double-cong)

then show ?thesis
using Q1 cong-transitivity by blast

qed
then show ?thesis

using P4 Per-def by blast
qed

lemma image-preserves-per :
assumes A A ′ Reflect X Y and

B B ′ Reflect X Y and
C C ′ Reflect X Y and
Per A B C

shows Per A ′ B ′ C ′

proof cases
assume X = Y
then show ?thesis using midpoint-preserves-per

using assms(1 ) assms(2 ) assms(3 ) assms(4 ) image--midpoint l7-2 by blast
next

assume P1 : X 6= Y
have P2 : X 6= Y ∧ A A ′ ReflectL X Y

using P1 assms(1 ) is-image-is-image-spec by blast
have P3 : X 6= Y ∧ B B ′ ReflectL X Y

using P1 assms(2 ) is-image-is-image-spec by blast
have P4 : X 6= Y ∧ C C ′ ReflectL X Y

using P1 assms(3 ) is-image-is-image-spec by blast
then show ?thesis using image-spec-preserves-per

using P2 P3 assms(4 ) by blast
qed

lemma l10-12 :
assumes Per A B C and

Per A ′ B ′ C ′ and
Cong A B A ′ B ′ and
Cong B C B ′ C ′

shows Cong A C A ′ C ′

proof cases
assume P1 : B = C
then have B ′ = C ′

using assms(4 ) cong-reverse-identity by blast
then show ?thesis

using P1 assms(3 ) by blast
next

assume P2 : B 6= C
have Cong A C A ′ C ′

proof cases
assume A = B
then show ?thesis

using assms(3 ) assms(4 ) cong-diff-3 by force
next

assume P3 : A 6= B
obtain X where P4 : X Midpoint B B ′

using midpoint-existence by blast
obtain A1 where P5 : X Midpoint A ′ A1

using Mid-perm symmetric-point-construction by blast
obtain C1 where P6 : X Midpoint C ′ C1

using Mid-perm symmetric-point-construction by blast
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have Q1 : A ′ B ′ C ′ Cong3 A1 B C1
using Cong3-def P4 P5 P6 l7-13 l7-2 by blast

have Q2 : Per A1 B C1
using assms(2 )Q1 l8-10 by blast

have Q3 : Cong A B A1 B
by (metis Cong3-def Q1 Tarski-neutral-dimensionless.cong-symmetry Tarski-neutral-dimensionless-axioms assms(3 )

cong-inner-transitivity)
have Q4 : Cong B C B C1
by (metis Cong3-def Q1 Tarski-neutral-dimensionless.cong-symmetry Tarski-neutral-dimensionless-axioms assms(4 )

cong-inner-transitivity)
obtain Y where P7 : Y Midpoint C C1

using midpoint-existence by auto
then have R1 : C1 C Reflect B Y using cong-midpoint--image

using Q4 by blast
obtain A2 where R2 : A1 A2 Reflect B Y

using l10-6-existence by blast
have R3 : Cong C A2 C1 A1

using R1 R2 l10-10 by blast
have R5 : B B Reflect B Y

using image-triv by blast
have R6 : Per A2 B C using image-preserves-per

using Q2 R1 R2 image-triv by blast
have R7 : Cong A B A2 B

using l10-10 Cong-perm Q3 R2 cong-transitivity image-triv by blast
obtain Z where R7A: Z Midpoint A A2

using midpoint-existence by blast
have Cong B A B A2

using Cong-perm R7 by blast
then have T1 : A2 A Reflect B Z using R7A cong-midpoint--image

by blast
obtain C0 where T2 : B Midpoint C C0

using symmetric-point-construction by blast
have T3 : Cong A C A C0

using T2 assms(1 ) per-double-cong by blast
have T4 : Cong A2 C A2 C0

using R6 T2 per-double-cong by blast
have T5 : C0 C Reflect B Z
proof −

have C0 C Reflect Z B
proof cases

assume A = A2
then show ?thesis

by (metis R7A T2 T3 cong-midpoint--image midpoint-distinct-3 )
next

assume A 6= A2
then show ?thesis using l4-17 cong-midpoint--image

by (metis R7A T2 T3 T4 midpoint-col not-col-permutation-3 )
qed
then show ?thesis

using is-image-rev by blast
qed
have T6 : Cong A C A2 C0

using T1 T5 l10-10 by auto
have R4 : Cong A C A2 C
by (metis T4 T6 Tarski-neutral-dimensionless.cong-symmetry Tarski-neutral-dimensionless-axioms cong-inner-transitivity)
then have Q5 : Cong A C A1 C1

by (meson R3 cong-inner-transitivity not-cong-3421 )
then show ?thesis

using Cong3-def Q1 Q5 cong-symmetry cong-transitivity by blast
qed
then show ?thesis by blast

qed

lemma l10-16 :
assumes ¬ Col A B C and
¬ Col A ′ B ′ P and
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Cong A B A ′ B ′

shows ∃ C ′. A B C Cong3 A ′ B ′ C ′ ∧ A ′ B ′ OS P C ′

proof cases
assume A = B
then show ?thesis

using assms(1 ) not-col-distincts by auto
next

assume P1 : A 6= B
obtain X where P2 : Col A B X ∧ A B Perp C X

using assms(1 ) l8-18-existence by blast
obtain X ′ where P3 : A B X Cong3 A ′ B ′ X ′

using P2 assms(3 ) l4-14 by blast
obtain Q where P4 : A ′ B ′ Perp Q X ′ ∧ A ′ B ′ OS P Q

using P2 P3 assms(2 ) l10-15 l4-13 by blast
obtain C ′ where P5 : X ′ Out C ′ Q ∧ Cong X ′ C ′ X C

by (metis P2 P4 l6-11-existence perp-distinct)
have P6 : Cong A C A ′ C ′

proof cases
assume A = X
then show ?thesis

by (metis Cong3-def P3 P5 cong-4321 cong-commutativity cong-diff-3 )
next

assume A 6= X
have P7 : Per A X C

using P2 col-trivial-3 l8-16-1 l8-2 by blast
have P8 : Per A ′ X ′ C ′

proof −
have X ′ PerpAt A ′ X ′ X ′ C ′

proof −
have Z1 : A ′ X ′ Perp X ′ C ′

proof −
have W1 : X ′ 6= C ′

using P5 out-distinct by blast
have W2 : X ′ Q Perp A ′ B ′

using P4 Perp-perm by blast
then have X ′ C ′ Perp A ′ B ′

by (metis P5 Perp-perm W1 col-trivial-3 not-col-permutation-5 out-col perp-col2-bis)
then show ?thesis

by (metis Cong3-def P2 P3 Perp-perm ‹A 6= X› col-trivial-3 cong-identity l4-13 perp-col2-bis)
qed
have Z2 : Col X ′ A ′ X ′

using not-col-distincts by blast
have Col X ′ X ′ C ′

by (simp add: col-trivial-1 )
then show ?thesis

by (simp add: Z1 Z2 l8-14-2-1b-bis)
qed
then show ?thesis

by (simp add: perp-in-per)
qed
have P9 : Cong A X A ′ X ′

using Cong3-def P3 by auto
have Cong X C X ′ C ′

using Cong-perm P5 by blast
then show ?thesis using l10-12

using P7 P8 P9 by blast
qed
have P10 : Cong B C B ′ C ′

proof cases
assume B = X
then show ?thesis

by (metis Cong3-def P3 P5 cong-4321 cong-commutativity cong-diff-3 )
next

assume B 6= X
have Q1 : Per B X C

using P2 col-trivial-2 l8-16-1 l8-2 by blast
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have X ′ PerpAt B ′ X ′ X ′ C ′

proof −
have Q2 : B ′ X ′ Perp X ′ C ′

proof −
have R1 : B ′ 6= X ′

using Cong3-def P3 ‹B 6= X› cong-identity by blast
have X ′ C ′ Perp B ′ A ′

proof −
have S1 : X ′ 6= C ′

using Out-def P5 by blast
have S2 : X ′ Q Perp B ′ A ′

using P4 Perp-perm by blast
have Col X ′ Q C ′

using Col-perm P5 out-col by blast
then show ?thesis

using S1 S2 perp-col by blast
qed
then have R2 : B ′ A ′ Perp X ′ C ′

using Perp-perm by blast
have R3 : Col B ′ A ′ X ′

using Col-perm P2 P3 l4-13 by blast
then show ?thesis

using R1 R2 perp-col by blast
qed
have Q3 : Col X ′ B ′ X ′

by (simp add: col-trivial-3 )
have Col X ′ X ′ C ′

by (simp add: col-trivial-1 )
then show ?thesis using l8-14-2-1b-bis

using Q2 Q3 by blast
qed
then have Q2 : Per B ′ X ′ C ′

by (simp add: perp-in-per)
have Q3 : Cong B X B ′ X ′

using Cong3-def P3 by blast
have Q4 : Cong X C X ′ C ′

using P5 not-cong-3412 by blast
then show ?thesis

using Q1 Q2 Q3 l10-12 by blast
qed
have P12 : A ′ B ′ OS C ′ Q ←→ X ′ Out C ′ Q ∧ ¬ Col A ′ B ′ C ′ using l9-19 l4-13

by (meson P2 P3 P5 one-side-not-col123 out-one-side-1 )
then have P13 : A ′ B ′ OS C ′ Q using l4-13

by (meson P2 P3 P4 P5 l6-6 one-side-not-col124 out-one-side-1 )
then show ?thesis

using Cong3-def P10 P4 P6 assms(3 ) one-side-symmetry one-side-transitivity by blast
qed

lemma cong-cop-image--col:
assumes P 6= P ′ and

P P ′ Reflect A B and
Cong P X P ′ X and
Coplanar A B P X

shows Col A B X
proof −

have P1 : (A 6= B ∧ P P ′ ReflectL A B) ∨ (A = B ∧ A Midpoint P ′ P)
by (metis assms(2 ) image--midpoint is-image-is-image-spec)

{
assume Q1 : A 6= B ∧ P P ′ ReflectL A B
then obtain M where Q2 : M Midpoint P ′ P ∧ Col A B M

using ReflectL-def by blast
have Col A B X
proof cases

assume R1 : A = M
have R2 : P A Perp A B
proof −
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have S1 : P 6= A
using Q2 R1 assms(1 ) midpoint-distinct-2 by blast

have S2 : P P ′ Perp A B
using Perp-perm Q1 ReflectL-def assms(1 ) by blast

have Col P P ′ A
using Q2 R1 midpoint-col not-col-permutation-3 by blast

then show ?thesis using perp-col
using S1 S2 by blast

qed
have R3 : Per P A B

by (simp add: R2 perp-comm perp-per-1 )
then have R3A: Per B A P using l8-2

by blast
have A Midpoint P P ′ ∧ Cong X P X P ′

using Cong-cases Q2 R1 assms(3 ) l7-2 by blast
then have R4 : Per X A P

using Per-def by blast
have R5 : Coplanar P B X A

using assms(4 ) ncoplanar-perm-20 by blast
have P 6= A

using R2 perp-not-eq-1 by auto
then show ?thesis using R4 R5 R3A

using cop-per2--col not-col-permutation-1 by blast
next

assume T1 : A 6= M
have T3 : P 6= M

using Q2 assms(1 ) l7-3-2 sym-preserve-diff by blast
have T2 : P M Perp M A
proof −

have T4 : P P ′ Perp M A
using Perp-perm Q1 Q2 ReflectL-def T1 assms(1 ) col-trivial-3 perp-col0 by blast

have Col P P ′ M
by (simp add: Col-perm Q2 midpoint-col)

then show ?thesis using T3 T4 perp-col by blast
qed
then have M P Perp A M

using perp-comm by blast
then have M PerpAt M P A M

using perp-perp-in by blast
then have M PerpAt P M M A

by (simp add: perp-in-comm)
then have U1 : Per P M A

by (simp add: perp-in-per)
have U2 : Per X M P using l7-2 cong-commutativity

using Per-def Q2 assms(3 ) by blast
have Col A X M
proof −

have W2 : Coplanar P A X M
by (meson Q1 Q2 assms(4 ) col-cop2--cop coplanar-perm-13 ncop-distincts)

have Per A M P
by (simp add: U1 l8-2 )

then show ?thesis using cop-per2--col
using U2 T3 W2 by blast

qed
then show ?thesis

using Q2 T1 col2--eq not-col-permutation-4 by blast
qed

}
then have P2 : (A 6= B ∧ P P ′ ReflectL A B) −→ Col A B X by blast
have (A = B ∧ A Midpoint P ′ P) −→ Col A B X

using col-trivial-1 by blast
then show ?thesis using P1 P2 by blast

qed

lemma cong-cop-per2-1 :
assumes A 6= B and
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Per A B X and
Per A B Y and
Cong B X B Y and
Coplanar A B X Y

shows X = Y ∨ B Midpoint X Y
by (meson Per-cases assms(1 ) assms(2 ) assms(3 ) assms(4 ) assms(5 ) cop-per2--col coplanar-perm-3 l7-20-bis not-col-permutation-5 )

lemma cong-cop-per2 :
assumes A 6= B and

Per A B X and
Per A B Y and
Cong B X B Y and
Coplanar A B X Y

shows X = Y ∨ X Y ReflectL A B
proof −

have X = Y ∨ B Midpoint X Y
using assms(1 ) assms(2 ) assms(3 ) assms(4 ) assms(5 ) cong-cop-per2-1 by blast

then show ?thesis
by (metis Mid-perm Per-def Reflect-def assms(1 ) assms(3 ) cong-midpoint--image symmetric-point-uniqueness)

qed

lemma cong-cop-per2-gen:
assumes A 6= B and

Per A B X and
Per A B Y and
Cong B X B Y and
Coplanar A B X Y

shows X = Y ∨ X Y Reflect A B
proof −

have X = Y ∨ B Midpoint X Y
using assms(1 ) assms(2 ) assms(3 ) assms(4 ) assms(5 ) cong-cop-per2-1 by blast

then show ?thesis
using assms(2 ) cong-midpoint--image l10-4 per-double-cong by blast

qed

lemma ex-perp-cop:
assumes A 6= B
shows ∃ Q. A B Perp Q C ∧ Coplanar A B P Q

proof −
{

assume Col A B C ∧ Col A B P
then have ∃ Q. A B Perp Q C ∧ Coplanar A B P Q

using assms ex-ncol-cop l10-15 ncop--ncols by blast
}
then have T1 : (Col A B C ∧ Col A B P) −→
(∃ Q. A B Perp Q C ∧ Coplanar A B P Q) by blast

{
assume ¬Col A B C ∧ Col A B P
then have ∃ Q. A B Perp Q C ∧ Coplanar A B P Q

by (metis Perp-cases ncop--ncols not-col-distincts perp-exists)
}
then have T2 : (¬Col A B C ∧ Col A B P) −→
(∃ Q. A B Perp Q C ∧ Coplanar A B P Q) by blast

{
assume Col A B C ∧ ¬Col A B P
then have ∃ Q. A B Perp Q C ∧ Coplanar A B P Q

using l10-15 os--coplanar by blast
}
then have T3 : (Col A B C ∧ ¬Col A B P) −→
(∃ Q. A B Perp Q C ∧ Coplanar A B P Q) by blast

{
assume ¬Col A B C ∧ ¬Col A B P
then have ∃ Q. A B Perp Q C ∧ Coplanar A B P Q

using l8-18-existence ncop--ncols perp-right-comm by blast
}
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then have (¬Col A B C ∧ ¬Col A B P) −→
(∃ Q. A B Perp Q C ∧ Coplanar A B P Q) by blast

then show ?thesis using T1 T2 T3 by blast
qed

lemma hilbert-s-version-of-pasch-aux:
assumes Coplanar A B C P and
¬ Col A I P and
¬ Col B C P and
Bet B I C and
B 6= I and
I 6= C and
B 6= C

shows ∃ X . Col I P X ∧ ((Bet A X B ∧ A 6= X ∧ X 6= B ∧ A 6= B) ∨ (Bet A X C ∧ A 6= X ∧ X 6= C ∧ A 6= C ))
proof −

have T1 : I P TS B C
using Col-perm assms(3 ) assms(4 ) assms(5 ) assms(6 ) bet--ts bet-col col-transitivity-1 by blast

have T2 : Coplanar A P B I
using assms(1 ) assms(4 ) bet-cop--cop coplanar-perm-6 ncoplanar-perm-9 by blast

have T3 : I P TS A B ∨ I P TS A C
by (meson T1 T2 TS-def assms(2 ) cop-nos--ts coplanar-perm-21 l9-2 l9-8-2 )

have T4 : I P TS A B −→
(∃ X . Col I P X ∧

((Bet A X B ∧ A 6= X ∧ X 6= B ∧ A 6= B) ∨
(Bet A X C ∧ A 6= X ∧ X 6= C ∧ A 6= C )))

by (metis TS-def not-col-permutation-2 ts-distincts)
have I P TS A C −→

(∃ X . Col I P X ∧
((Bet A X B ∧ A 6= X ∧ X 6= B ∧ A 6= B) ∨
(Bet A X C ∧ A 6= X ∧ X 6= C ∧ A 6= C )))

by (metis TS-def not-col-permutation-2 ts-distincts)

then show ?thesis using T3 T4 by blast
qed

lemma hilbert-s-version-of-pasch:
assumes Coplanar A B C P and
¬ Col C Q P and
¬ Col A B P and
BetS A Q B

shows ∃ X . Col P Q X ∧ (BetS A X C ∨ BetS B X C )
proof −

obtain X where Col Q P X ∧
(Bet C X A ∧ C 6= X ∧ X 6= A ∧ C 6= A ∨

Bet C X B ∧ C 6= X ∧ X 6= B ∧ C 6= B)
using BetSEq assms(1 ) assms(2 ) assms(3 ) assms(4 ) coplanar-perm-12 hilbert-s-version-of-pasch-aux by fastforce

then show ?thesis
by (metis BetS-def Bet-cases Col-perm)

qed

lemma two-sides-cases:
assumes ¬ Col PO A B and

PO P OS A B
shows PO A TS P B ∨ PO B TS P A
by (meson assms(1 ) assms(2 ) cop-nts--os l9-31 ncoplanar-perm-3 not-col-permutation-4 one-side-not-col124 one-side-symmetry

os--coplanar)

lemma not-par-two-sides:
assumes C 6= D and

Col A B I and
Col C D I and
¬ Col A B C

shows ∃ X Y . Col C D X ∧ Col C D Y ∧ A B TS X Y
proof −

obtain pp :: ′p ⇒ ′p ⇒ ′p where
f1 : ∀ p pa. Bet p pa (pp p pa) ∧ pa 6= (pp p pa)
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by (meson point-construction-different)
then have f2 : ∀ p pa pb pc. (Col pc pb p ∨ ¬ Col pc pb (pp p pa)) ∨ ¬ Col pc pb pa

by (meson Col-def colx)
have f3 : ∀ p pa. Col pa p pa

by (meson Col-def between-trivial)
have f4 : ∀ p pa. Col pa p p

by (meson Col-def between-trivial)
have f5 : Col I D C

by (meson Col-perm assms(3 ))
have f6 : ∀ p pa. Col (pp pa p) p pa

using f4 f3 f2 by blast
then have f7 : ∀ p pa. Col pa (pp pa p) p

by (meson Col-perm)
then have f8 : ∀ p pa pb pc. (pc pb TS p (pp p pa) ∨ Col pc pb p) ∨ ¬ Col pc pb pa

using f2 f1 by (meson l9-18 )
have I = D ∨ Col D (pp D I ) C

using f7 f5 f3 colx by blast
then have I = D ∨ Col C D (pp D I )

using Col-perm by blast
then show ?thesis

using f8 f6 f3 by (metis Col-perm assms(2 ) assms(4 ))
qed

lemma cop-not-par-other-side:
assumes C 6= D and

Col A B I and
Col C D I and
¬ Col A B C and
¬ Col A B P and
Coplanar A B C P

shows ∃ Q. Col C D Q ∧ A B TS P Q
proof −

obtain X Y where P1 :Col C D X ∧ Col C D Y ∧ A B TS X Y
using assms(1 ) assms(2 ) assms(3 ) assms(4 ) not-par-two-sides by blast

then have Coplanar C A B X
using Coplanar-def assms(1 ) assms(2 ) assms(3 ) col-transitivity-1 by blast

then have Coplanar A B P X
using assms(4 ) assms(6 ) col-permutation-3 coplanar-trans-1 ncoplanar-perm-2 ncoplanar-perm-6 by blast

then show ?thesis
by (meson P1 l9-8-2 TS-def assms(5 ) cop-nts--os not-col-permutation-2 one-side-symmetry)

qed

lemma cop-not-par-same-side:
assumes C 6= D and

Col A B I and
Col C D I and
¬ Col A B C and
¬ Col A B P and
Coplanar A B C P

shows ∃ Q. Col C D Q ∧ A B OS P Q
proof −

obtain X Y where P1 : Col C D X ∧ Col C D Y ∧ A B TS X Y
using assms(1 ) assms(2 ) assms(3 ) assms(4 ) not-par-two-sides by blast

then have Coplanar C A B X
using Coplanar-def assms(1 ) assms(2 ) assms(3 ) col-transitivity-1 by blast

then have Coplanar A B P X
using assms(4 ) assms(6 ) col-permutation-1 coplanar-perm-2 coplanar-trans-1 ncoplanar-perm-14 by blast

then show ?thesis
by (meson P1 TS-def assms(5 ) cop-nts--os l9-2 l9-8-1 not-col-permutation-2 )

qed

end
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3.9.3 Line reflexivity: 2D
context Tarski-2D

begin

lemma all-coplanar :
Coplanar A B C D

proof −
have ∀ A B C P Q. P 6= Q −→ Cong A P A Q −→ Cong B P B Q−→ Cong C P C Q −→

(Bet A B C ∨ Bet B C A ∨ Bet C A B)
using upper-dim by blast

then show ?thesis using upper-dim-implies-all-coplanar
by (smt Tarski-neutral-dimensionless.not-col-permutation-2 Tarski-neutral-dimensionless-axioms all-coplanar-axiom-def

all-coplanar-implies-upper-dim coplanar-perm-9 ncop--ncol os--coplanar ts--coplanar upper-dim-implies-not-one-side-two-sides)
qed

lemma per2--col:
assumes Per A X C and

X 6= C and
Per B X C

shows Col A B X
using all-coplanar-axiom-def all-coplanar-upper-dim assms(1 ) assms(2 ) assms(3 ) upper-dim upper-dim-implies-per2--col

by blast

lemma perp2--col:
assumes X Y Perp A B and

X Z Perp A B
shows Col X Y Z
by (meson Tarski-neutral-dimensionless.cop-perp2--col Tarski-neutral-dimensionless-axioms all-coplanar assms(1 ) assms(2 ))

end

3.10 Angles
3.10.1 Some generalites
context Tarski-neutral-dimensionless

begin

lemma l11-3 :
assumes A B C CongA D E F
shows ∃ A ′ C ′ D ′ F ′. B Out A ′ A ∧ B Out C C ′ ∧ E Out D ′ D ∧ E Out F F ′ ∧ A ′ B C ′ Cong3 D ′ E F ′

proof −
obtain A ′ C ′ D ′ F ′ where P1 : Bet B A A ′ ∧ Cong A A ′ E D ∧ Bet B C C ′ ∧ Cong C C ′ E F ∧ Bet E D D ′ ∧

Cong D D ′ B A ∧ Bet E F F ′ ∧ Cong F F ′ B C ∧ Cong A ′ C ′ D ′ F ′ using CongA-def
using assms by auto

then have A ′ B C ′ Cong3 D ′ E F ′

by (meson Cong3-def between-symmetry l2-11-b not-cong-1243 not-cong-4312 )
thus ?thesis

by (metis CongA-def P1 assms bet-out l6-6 )
qed

lemma l11-aux:
assumes B Out A A ′ and

E Out D D ′ and
Cong B A ′ E D ′ and
Bet B A A0 and
Bet E D D0 and
Cong A A0 E D and
Cong D D0 B A

shows Cong B A0 E D0 ∧ Cong A ′ A0 D ′ D0
proof −

have P2 : Cong B A0 E D0
by (meson Bet-cases assms(4 ) assms(5 ) assms(6 ) assms(7 ) l2-11-b not-cong-1243 not-cong-4312 )

have P3 : Bet B A A ′ ∨ Bet B A ′ A
using Out-def assms(1 ) by auto
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have P4 : Bet E D D ′ ∨ Bet E D ′ D
using Out-def assms(2 ) by auto

have P5 : Bet B A A ′ −→ Cong A ′ A0 D ′ D0
by (smt P2 assms(1 ) assms(2 ) assms(3 ) assms(4 ) assms(5 ) bet-out l6-6 l6-7 out-cong-cong out-diff1 )

have P6 : Bet B A ′ A −→ Cong A ′ A0 D ′ D0
proof −

have E Out D D0
using assms(2 ) assms(5 ) bet-out out-diff1 by blast

thus ?thesis
by (meson P2 assms(2 ) assms(3 ) assms(4 ) between-exchange4 cong-preserves-bet l4-3-1 l6-6 l6-7 )

qed
have P7 : Bet E D D ′ −→ Cong A ′ A0 D ′ D0

using P3 P5 P6 by blast
have Bet E D ′ D −→ Cong A ′ A0 D ′ D0

using P3 P5 P6 by blast
thus ?thesis

using P2 P3 P4 P5 P6 P7 by blast
qed

lemma l11-3-bis:
assumes ∃ A ′ C ′ D ′ F ′. (B Out A ′ A ∧ B Out C ′ C ∧ E Out D ′ D ∧ E Out F ′ F ∧ A ′ B C ′ Cong3 D ′ E F ′)
shows A B C CongA D E F

proof −
obtain A ′ C ′ D ′ F ′ where P1 :

B Out A ′ A ∧ B Out C ′ C ∧ E Out D ′ D ∧ E Out F ′ F ∧ A ′ B C ′ Cong3 D ′ E F ′

using assms by blast
obtain A0 where P2 : Bet B A A0 ∧ Cong A A0 E D

using segment-construction by presburger
obtain C0 where P3 : Bet B C C0 ∧ Cong C C0 E F

using segment-construction by presburger
obtain D0 where P4 : Bet E D D0 ∧ Cong D D0 B A

using segment-construction by presburger
obtain F0 where P5 : Bet E F F0 ∧ Cong F F0 B C

using segment-construction by presburger
have P6 : A 6= B ∧ C 6= B ∧ D 6= E ∧ F 6= E

using P1 out-diff2 by blast
have Cong A0 C0 D0 F0
proof −

have Q1 : Cong B A0 E D0 ∧ Cong A ′ A0 D ′ D0
proof −

have R1 : B Out A A ′

by (simp add: P1 l6-6 )
have R2 : E Out D D ′

by (simp add: P1 l6-6 )
have Cong B A ′ E D ′

using Cong3-def P1 cong-commutativity by blast
thus ?thesis using l11-aux

using P2 P4 R1 R2 by blast
qed
have Q2 : Cong B C0 E F0 ∧ Cong C ′ C0 F ′ F0

by (smt Cong3-def Out-cases P1 P3 P5 Tarski-neutral-dimensionless.l11-aux Tarski-neutral-dimensionless-axioms)
have Q3 : B A ′ A0 Cong3 E D ′ D0

by (meson Cong3-def P1 Q1 cong-3-swap)
have Q4 : B C ′ C0 Cong3 E F ′ F0

using Cong3-def P1 Q2 by blast
have Cong C0 A ′ F0 D ′

proof −
have R1 : B C ′ C0 A ′ FSC E F ′ F0 D ′

proof −
have S1 : Col B C ′ C0

by (metis (no-types) Col-perm P1 P3 P6 bet-col col-transitivity-1 out-col)
have S3 : Cong B A ′ E D ′

using Cong3-def Q3 by blast
have Cong C ′ A ′ F ′ D ′

using Cong3-def P1 cong-commutativity by blast
thus ?thesis
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by (simp add: FSC-def S1 Q4 S3 )
qed
have B 6= C ′

using P1 out-distinct by blast
thus ?thesis

using R1 l4-16 by blast
qed
then have Q6 : B A ′ A0 C0 FSC E D ′ D0 F0

by (meson FSC-def P1 P2 P6 Q2 Q3 bet-out l6-7 not-cong-2143 out-col)
have B 6= A ′

using Out-def P1 by blast
thus ?thesis

using Q6 l4-16 by blast
qed
thus ?thesis using P6 P2 P3 P4 P5 CongA-def by auto

qed

lemma l11-4-1 :
assumes A B C CongA D E F and

B Out A ′ A and
B Out C ′ C and
E Out D ′ D and
E Out F ′ F and
Cong B A ′ E D ′ and Cong B C ′ E F ′

shows Cong A ′ C ′ D ′ F ′

proof −
obtain A0 C0 D0 F0 where P1 : B Out A0 A ∧ B Out C C0 ∧ E Out D0 D ∧ E Out F F0 ∧ A0 B C0 Cong3 D0

E F0
using assms(1 ) l11-3 by blast

have P2 : B Out A ′ A0
using P1 assms(2 ) l6-6 l6-7 by blast

have P3 : E Out D ′ D0
by (meson P1 assms(4 ) l6-6 l6-7 )

have P4 : Cong A ′ A0 D ′ D0
proof −

have Cong B A0 E D0
using Cong3-def P1 cong-3-swap by blast

thus ?thesis using P2 P3
using assms(6 ) out-cong-cong by blast

qed
have P5 : Cong A ′ C0 D ′ F0
proof −

have P6 : B A0 A ′ C0 FSC E D0 D ′ F0
by (meson Cong3-def Cong-perm FSC-def P1 P2 P4 assms(6 ) not-col-permutation-5 out-col)

thus ?thesis
using P2 Tarski-neutral-dimensionless.l4-16 Tarski-neutral-dimensionless-axioms out-diff2 by fastforce

qed
have P6 : B Out C ′ C0

using P1 assms(3 ) l6-7 by blast
have E Out F ′ F0

using P1 assms(5 ) l6-7 by blast
then have Cong C ′ C0 F ′ F0

using Cong3-def P1 P6 assms(7 ) out-cong-cong by auto
then have P9 : B C0 C ′ A ′ FSC E F0 F ′ D ′

by (smt Cong3-def Cong-perm FSC-def P1 P5 P6 assms(6 ) assms(7 ) not-col-permutation-5 out-col)
then have Cong C ′ A ′ F ′ D ′

using P6 Tarski-neutral-dimensionless.l4-16 Tarski-neutral-dimensionless-axioms out-diff2 by fastforce
thus ?thesis

using Tarski-neutral-dimensionless.not-cong-2143 Tarski-neutral-dimensionless-axioms by fastforce
qed

lemma l11-4-2 :
assumes A 6= B and

C 6= B and
D 6= E and
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F 6= E and
∀ A ′ C ′ D ′ F ′. (B Out A ′ A ∧ B Out C ′ C ∧ E Out D ′ D ∧ E Out F ′ F ∧ Cong B A ′ E D ′ ∧ Cong B C ′ E F ′ −→

Cong A ′ C ′ D ′ F ′)
shows A B C CongA D E F

proof −
obtain A ′ where P1 : Bet B A A ′ ∧ Cong A A ′ E D

using segment-construction by fastforce
obtain C ′ where P2 : Bet B C C ′ ∧ Cong C C ′ E F

using segment-construction by fastforce
obtain D ′ where P3 : Bet E D D ′ ∧ Cong D D ′ B A

using segment-construction by fastforce
obtain F ′ where P4 : Bet E F F ′ ∧ Cong F F ′ B C

using segment-construction by fastforce
have P5 : Cong A ′ B D ′ E

by (meson Bet-cases P1 P3 l2-11-b not-cong-1243 not-cong-4312 )
have P6 : Cong B C ′ E F ′

by (meson P2 P4 between-symmetry cong-3421 cong-right-commutativity l2-11-b)
have B Out A ′ A ∧ B Out C ′ C ∧ E Out D ′ D ∧ E Out F ′ F ∧ A ′ B C ′ Cong3 D ′ E F ′

by (metis (no-types, lifting) Cong3-def P1 P2 P3 P4 P5 P6 Tarski-neutral-dimensionless.Out-def Tarski-neutral-dimensionless-axioms
assms(1 ) assms(2 ) assms(3 ) assms(4 ) assms(5 ) bet-neq12--neq cong-commutativity)

thus ?thesis
using l11-3-bis by blast

qed

lemma conga-refl:
assumes A 6= B and

C 6= B
shows A B C CongA A B C
by (meson CongA-def assms(1 ) assms(2 ) cong-reflexivity segment-construction)

lemma conga-sym:
assumes A B C CongA A ′ B ′ C ′

shows A ′ B ′ C ′ CongA A B C
proof −

obtain A0 C0 D0 F0 where
P1 : Bet B A A0 ∧ Cong A A0 B ′ A ′ ∧ Bet B C C0 ∧ Cong C C0 B ′ C ′ ∧ Bet B ′ A ′ D0 ∧ Cong A ′ D0 B A ∧ Bet

B ′ C ′ F0 ∧ Cong C ′ F0 B C ∧ Cong A0 C0 D0 F0
using CongA-def assms by auto

thus ?thesis
proof −

have ∃ p pa pb pc. Bet B ′ A ′ p ∧ Cong A ′ p B A ∧ Bet B ′ C ′ pa ∧ Cong C ′ pa B C ∧Bet B A pb ∧ Cong A pb B ′

A ′ ∧Bet B C pc ∧ Cong C pc B ′ C ′ ∧ Cong p pa pb pc
by (metis (no-types) Tarski-neutral-dimensionless.cong-symmetry Tarski-neutral-dimensionless-axioms P1 )

thus ?thesis
using CongA-def assms by auto

qed
qed

lemma l11-10 :
assumes A B C CongA D E F and

B Out A ′ A and
B Out C ′ C and
E Out D ′ D and
E Out F ′ F

shows A ′ B C ′ CongA D ′ E F ′

proof −
have P1 : A ′ 6= B

using assms(2 ) out-distinct by auto
have P2 : C ′ 6= B

using Out-def assms(3 ) by force
have P3 : D ′ 6= E

using Out-def assms(4 ) by blast
have P4 : F ′ 6= E

using assms(5 ) out-diff1 by auto
have P5 : ∀ A ′0 C ′0 D ′0 F ′0 . (B Out A ′0 A ′ ∧ B Out C ′0 C ′ ∧ E Out D ′0 D ′ ∧ E Out F ′0 F ′ ∧ Cong B A ′0 E D ′0
∧ Cong B C ′0 E F ′0 ) −→ Cong A ′0 C ′0 D ′0 F ′0
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by (meson assms(1 ) assms(2 ) assms(3 ) assms(4 ) assms(5 ) l11-4-1 l6-7 )
thus ?thesis using P1 P2 P3 P4 P5 l11-4-2 by blast

qed

lemma out2--conga:
assumes B Out A ′ A and

B Out C ′ C
shows A B C CongA A ′ B C ′

by (smt assms(1 ) assms(2 ) between-trivial2 conga-refl l11-10 out2-bet-out out-distinct)

lemma cong3-diff :
assumes A 6= B and

A B C Cong3 A ′ B ′ C ′

shows A ′ 6= B ′

using Cong3-def assms(1 ) assms(2 ) cong-diff by blast

lemma cong3-diff2 :
assumes B 6= C and

A B C Cong3 A ′ B ′ C ′

shows B ′ 6= C ′

using Cong3-def assms(1 ) assms(2 ) cong-diff by blast

lemma cong3-conga:
assumes A 6= B and

C 6= B and
A B C Cong3 A ′ B ′ C ′

shows A B C CongA A ′ B ′ C ′

by (metis assms(1 ) assms(2 ) assms(3 ) cong3-diff cong3-diff2 l11-3-bis out-trivial)

lemma cong3-conga2 :
assumes A B C Cong3 A ′ B ′ C ′ and

A B C CongA A ′′ B ′′ C ′′

shows A ′ B ′ C ′ CongA A ′′ B ′′ C ′′

proof −
obtain A0 C0 A2 C2 where P1 : Bet B A A0 ∧ Cong A A0 B ′′ A ′′ ∧ Bet B C C0 ∧ Cong C C0 B ′′ C ′′∧ Bet B ′′

A ′′ A2 ∧ Cong A ′′ A2 B A ∧ Bet B ′′ C ′′ C2 ∧ Cong C ′′ C2 B C ∧ Cong A0 C0 A2 C2
using CongA-def assms(2 ) by auto

obtain A1 where P5 : Bet B ′ A ′ A1 ∧ Cong A ′ A1 B ′′ A ′′

using segment-construction by blast
obtain C1 where P6 : Bet B ′ C ′ C1 ∧ Cong C ′ C1 B ′′ C ′′

using segment-construction by blast
have P7 : Cong A A0 A ′ A1
proof −

have Cong B ′′ A ′′ A ′ A1 using P5
using Cong-perm by blast

thus ?thesis
using Cong-perm P1 cong-inner-transitivity by blast

qed
have P8 : Cong B A0 B ′ A1

using Cong3-def P1 P5 P7 assms(1 ) cong-commutativity l2-11-b by blast
have P9 : Cong C C0 C ′ C1

using P1 P6 cong-inner-transitivity cong-symmetry by blast
have P10 : Cong B C0 B ′ C1

using Cong3-def P1 P6 P9 assms(1 ) l2-11-b by blast
have B A A0 C FSC B ′ A ′ A1 C ′

using FSC-def P1 P5 P7 P8 Tarski-neutral-dimensionless.Cong3-def Tarski-neutral-dimensionless-axioms assms(1 )
bet-col l4-3 by fastforce

then have P12 : Cong A0 C A1 C ′

using CongA-def assms(2 ) l4-16 by auto
then have B C C0 A0 FSC B ′ C ′ C1 A1

using Cong3-def FSC-def P1 P10 P8 P9 assms(1 ) bet-col cong-commutativity by auto
then have P13 : Cong C0 A0 C1 A1

using l4-16 CongA-def assms(2 ) by blast
have Q2 : Cong A ′ A1 B ′′ A ′′

using P1 P7 cong-inner-transitivity by blast
have Q5 : Bet B ′′ A ′′ A2 using P1 by blast
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have Q6 : Cong A ′′ A2 B ′ A ′

proof −
have Cong B A B ′ A ′

using P1 P7 P8 P5 l4-3 by blast
thus ?thesis

using P1 cong-transitivity by blast
qed
have Q7 : Bet B ′′ C ′′ C2

using P1 by blast
have Q8 : Cong C ′′ C2 B ′ C ′

proof −
have Cong B C B ′ C ′

using Cong3-def assms(1 ) by blast
thus ?thesis

using P1 cong-transitivity by blast
qed
have R2 : Cong C0 A0 C2 A2

using Cong-cases P1 by blast
have Cong C1 A1 A0 C0

using Cong-cases P13 by blast
then have Q9 : Cong A1 C1 A2 C2

using R2 P13 cong-inner-transitivity not-cong-4321 by blast
thus ?thesis

using CongA-def P5 Q2 P6 Q5 Q6 Q7 Q8
by (metis assms(1 ) assms(2 ) cong3-diff cong3-diff2 )

qed

lemma conga-diff1 :
assumes A B C CongA A ′ B ′ C ′

shows A 6= B
using CongA-def assms by blast

lemma conga-diff2 :
assumes A B C CongA A ′ B ′ C ′

shows C 6= B
using CongA-def assms by blast

lemma conga-diff45 :
assumes A B C CongA A ′ B ′ C ′

shows A ′ 6= B ′

using CongA-def assms by blast

lemma conga-diff56 :
assumes A B C CongA A ′ B ′ C ′

shows C ′ 6= B ′

using CongA-def assms by blast

lemma conga-trans:
assumes A B C CongA A ′ B ′ C ′ and

A ′ B ′ C ′ CongA A ′′ B ′′ C ′′

shows A B C CongA A ′′ B ′′ C ′′

proof −
obtain A0 C0 A1 C1 where P1 : Bet B A A0 ∧ Cong A A0 B ′ A ′ ∧

Bet B C C0 ∧ Cong C C0 B ′ C ′∧ Bet B ′ A ′ A1 ∧ Cong A ′ A1 B A ∧
Bet B ′ C ′ C1 ∧ Cong C ′ C1 B C ∧ Cong A0 C0 A1 C1

using CongA-def assms(1 ) by auto
have P2 : A ′′6= B ′′ ∧ C ′′ 6= B ′′

using CongA-def assms(2 ) by auto
have P3 : A1 B ′ C1 CongA A ′′ B ′′ C ′′

proof −
have L2 : B ′ Out A1 A ′ using P1

by (metis Out-def assms(2 ) bet-neq12--neq conga-diff1 )
have L3 : B ′ Out C1 C ′ using P1

by (metis Out-def assms(1 ) bet-neq12--neq conga-diff56 )
have L4 : B ′′ Out A ′′ A ′′

using P2 out-trivial by auto
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have B ′′ Out C ′′ C ′′

by (simp add: P2 out-trivial)
thus ?thesis

using assms(2 ) L2 L3 L4 l11-10 by blast
qed
have L6 : A0 B C0 CongA A ′ B ′ C ′

by (smt Out-cases P1 Tarski-neutral-dimensionless.conga-diff1 Tarski-neutral-dimensionless.conga-diff2 Tarski-neutral-dimensionless.conga-diff45
Tarski-neutral-dimensionless-axioms assms(1 ) bet-out conga-diff56 l11-10 l5-3 )

have L7 : Cong B A0 B ′ A1
by (meson P1 between-symmetry cong-3421 l2-11-b not-cong-1243 )

have L8 : Cong B C0 B ′ C1
using P1 between-symmetry cong-3421 l2-11-b not-cong-1243 by blast

have L10 : A0 B C0 Cong3 A1 B ′ C1
by (simp add: Cong3-def L7 L8 P1 cong-commutativity)

then have L11 : A0 B C0 CongA A ′′ B ′′ C ′′

by (meson Tarski-neutral-dimensionless.cong3-conga2 Tarski-neutral-dimensionless-axioms P3 cong-3-sym)
thus ?thesis using l11-10
proof −

have D2 : B Out A A0 using P1
using CongA-def assms(1 ) bet-out by auto

have D3 : B Out C C0 using P1
using CongA-def assms(1 ) bet-out by auto

have D4 : B ′′ Out A ′′ A ′′

using P2 out-trivial by blast
have B ′′ Out C ′′ C ′′

using P2 out-trivial by auto
thus ?thesis using l11-10 L11 D2 D3 D4

by blast
qed

qed

lemma conga-pseudo-refl:
assumes A 6= B and

C 6= B
shows A B C CongA C B A
by (meson CongA-def assms(1 ) assms(2 ) between-trivial cong-pseudo-reflexivity segment-construction)

lemma conga-trivial-1 :
assumes A 6= B and

C 6= D
shows A B A CongA C D C
by (meson CongA-def assms(1 ) assms(2 ) cong-trivial-identity segment-construction)

lemma l11-13 :
assumes A B C CongA D E F and

Bet A B A ′ and
A ′6= B and
Bet D E D ′ and
D ′6= E

shows A ′ B C CongA D ′ E F
proof −

obtain A ′′ C ′′ D ′′ F ′′ where P1 :
Bet B A A ′′ ∧ Cong A A ′′ E D ∧

Bet B C C ′′ ∧ Cong C C ′′ E F ∧ Bet E D D ′′ ∧
Cong D D ′′ B A ∧
Bet E F F ′′ ∧ Cong F F ′′ B C ∧ Cong A ′′ C ′′ D ′′ F ′′

using CongA-def assms(1 ) by auto
obtain A0 where P2 :Bet B A ′ A0 ∧ Cong A ′ A0 E D ′

using segment-construction by blast
obtain D0 where P3 : Bet E D ′ D0 ∧ Cong D ′ D0 B A ′

using segment-construction by blast
have Cong A0 C ′′ D0 F ′′

proof −
have L1 : A ′′ B A0 C ′′ OFSC D ′′ E D0 F ′′

proof −
have L2 : Bet A ′′ B A0
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proof −
have M1 : Bet A ′′ A B

using Bet-perm P1 by blast
have M2 : Bet A B A0

using P2 assms(2 ) assms(3 ) outer-transitivity-between by blast
have A 6= B

using CongA-def assms(1 ) by blast
thus ?thesis

using M1 M2 outer-transitivity-between2 by blast
qed
have L3 : Bet D ′′ E D0 using Bet-perm P1 P2 outer-transitivity-between CongA-def

by (metis P3 assms(1 ) assms(4 ) assms(5 ))
have L4 : Cong A ′′ B D ′′ E

by (meson P1 between-symmetry cong-3421 cong-left-commutativity l2-11-b)
have L5 : Cong B A0 E D0

by (meson P2 P3 between-symmetry cong-3421 cong-right-commutativity l2-11-b)
have Cong B C ′′ E F ′′

by (meson P1 between-symmetry cong-3421 cong-right-commutativity l2-11-b)
thus ?thesis using P1 L2 L3 L4 L5

by (simp add: OFSC-def )
qed
have A ′′ 6= B

using CongA-def P1 assms(1 ) bet-neq12--neq by fastforce
thus ?thesis

using L1 five-segment-with-def by auto
qed
thus ?thesis

using CongA-def P1 P2 P3 assms(1 ) assms(3 ) assms(5 ) by auto
qed

lemma conga-right-comm:
assumes A B C CongA D E F
shows A B C CongA F E D
by (metis Tarski-neutral-dimensionless.conga-diff45 Tarski-neutral-dimensionless.conga-sym Tarski-neutral-dimensionless.conga-trans

Tarski-neutral-dimensionless-axioms assms conga-diff56 conga-pseudo-refl)

lemma conga-left-comm:
assumes A B C CongA D E F
shows C B A CongA D E F
by (meson assms conga-right-comm conga-sym)

lemma conga-comm:
assumes A B C CongA D E F
shows C B A CongA F E D
by (meson Tarski-neutral-dimensionless.conga-left-comm Tarski-neutral-dimensionless.conga-right-comm Tarski-neutral-dimensionless-axioms

assms)

lemma conga-line:
assumes A 6= B and

B 6= C and
A ′ 6= B ′ and
B ′ 6= C ′

and Bet A B C and
Bet A ′ B ′ C ′

shows A B C CongA A ′ B ′ C ′

by (metis Bet-cases assms(1 ) assms(2 ) assms(3 ) assms(4 ) assms(5 ) assms(6 ) conga-trivial-1 l11-13 )

lemma l11-14 :
assumes Bet A B A ′ and

A 6= B and
A ′ 6= B and
Bet C B C ′ and
B 6= C and
B 6= C ′

shows A B C CongA A ′ B C ′

by (metis Bet-perm assms(1 ) assms(2 ) assms(3 ) assms(4 ) assms(5 ) assms(6 ) conga-pseudo-refl conga-right-comm
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l11-13 )

lemma l11-16 :
assumes Per A B C and

A 6= B and
C 6= B and
Per A ′ B ′ C ′ and
A ′6= B ′ and
C ′6= B ′

shows A B C CongA A ′ B ′ C ′

proof −
obtain C0 where P1 : Bet B C C0 ∧ Cong C C0 B ′ C ′

using segment-construction by blast
obtain C1 where P2 : Bet B ′ C ′ C1 ∧ Cong C ′ C1 B C

using segment-construction by blast
obtain A0 where P3 : Bet B A A0 ∧ Cong A A0 B ′ A ′

using segment-construction by blast
obtain A1 where P4 : Bet B ′ A ′ A1 ∧ Cong A ′ A1 B A

using segment-construction by blast
have Cong A0 C0 A1 C1
proof −

have Q1 : Per A0 B C0
by (metis P1 P3 Tarski-neutral-dimensionless.l8-3 Tarski-neutral-dimensionless-axioms assms(1 ) assms(2 ) assms(3 )

bet-col per-col)
have Q2 : Per A1 B ′ C1
by (metis P2 P4 Tarski-neutral-dimensionless.l8-3 Tarski-neutral-dimensionless-axioms assms(4 ) assms(5 ) assms(6 )

bet-col per-col)
have Q3 : Cong A0 B A1 B ′

by (meson P3 P4 between-symmetry cong-3421 cong-left-commutativity l2-11-b)
have Cong B C0 B ′ C1

using P1 P2 between-symmetry cong-3421 l2-11-b not-cong-1243 by blast
thus ?thesis

using Q1 Q2 Q3 l10-12 by blast
qed
thus ?thesis

using CongA-def P1 P2 P3 P4 assms(2 ) assms(3 ) assms(5 ) assms(6 ) by auto
qed

lemma l11-17 :
assumes Per A B C and

A B C CongA A ′ B ′ C ′

shows Per A ′ B ′ C ′

proof −
obtain A0 C0 A1 C1 where P1 : Bet B A A0 ∧ Cong A A0 B ′ A ′ ∧ Bet B C C0 ∧ Cong C C0 B ′ C ′ ∧ Bet B ′ A ′

A1 ∧ Cong A ′ A1 B A ∧ Bet B ′ C ′ C1 ∧ Cong C ′ C1 B C ∧ Cong A0 C0 A1 C1
using CongA-def assms(2 ) by auto

have P2 : Per A0 B C0
proof −

have Q1 : B 6= C
using assms(2 ) conga-diff2 by blast

have Q2 : Per A0 B C
by (metis P1 Tarski-neutral-dimensionless.l8-2 Tarski-neutral-dimensionless-axioms assms(1 ) assms(2 ) bet-col

conga-diff1 per-col)
have Col B C C0

using P1 bet-col by blast
thus ?thesis

using Q1 Q2 per-col by blast
qed
have P3 : Per A1 B ′ C1
proof −

have A0 B C0 Cong3 A1 B ′ C1
by (meson Bet-cases Cong3-def P1 l2-11-b not-cong-2134 not-cong-3421 )

thus ?thesis
using P2 l8-10 by blast

qed
have P4 : B ′ 6= C1
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using P1 assms(2 ) between-identity conga-diff56 by blast
have P5 : Per A ′ B ′ C1
proof −

have P6 : B ′ 6= A1
using P1 assms(2 ) between-identity conga-diff45 by blast

have P7 : Per C1 B ′ A1
by (simp add: P3 l8-2 )

have Col B ′ A1 A ′

using P1 NCol-cases bet-col by blast
thus ?thesis

using P3 P6 Tarski-neutral-dimensionless.l8-3 Tarski-neutral-dimensionless-axioms by fastforce
qed
have Col B ′ C1 C ′

using P1 bet-col col-permutation-5 by blast
thus ?thesis

using P4 P5 per-col by blast
qed

lemma l11-18-1 :
assumes Bet C B D and

B 6= C and
B 6= D and
A 6= B and
Per A B C

shows A B C CongA A B D
by (smt Tarski-neutral-dimensionless.l8-2 Tarski-neutral-dimensionless.l8-5 Tarski-neutral-dimensionless-axioms assms(1 )

assms(2 ) assms(3 ) assms(4 ) assms(5 ) bet-col col-per2--per l11-16 )

lemma l11-18-2 :
assumes Bet C B D and

A B C CongA A B D
shows Per A B C

proof −
obtain A0 C0 A1 D0 where P1 : Bet B A A0 ∧ Cong A A0 B A ∧ Bet B C C0 ∧

Cong C C0 B D ∧ Bet B A A1 ∧ Cong A A1 B A ∧
Bet B D D0 ∧ Cong D D0 B C ∧ Cong A0 C0 A1 D0

using CongA-def assms(2 ) by auto
have P2 : A0 = A1

by (metis P1 assms(2 ) conga-diff45 construction-uniqueness)
have P3 : Per A0 B C0
proof −

have Q1 : Bet C0 B D0
proof −

have R1 : Bet C0 C B
using P1 between-symmetry by blast

have R2 : Bet C B D0
proof −

have S1 : Bet C B D
by (simp add: assms(1 ))

have S2 : Bet B D D0
using P1 by blast

have B 6= D
using assms(2 ) conga-diff56 by blast

thus ?thesis
using S1 S2 outer-transitivity-between by blast

qed
have C 6= B

using assms(2 ) conga-diff2 by auto
thus ?thesis

using R1 R2 outer-transitivity-between2 by blast
qed
have Q2 : Cong C0 B B D0

by (meson P1 between-symmetry cong-3421 l2-11-b not-cong-1243 )
have Cong A0 C0 A0 D0

using P1 P2 by blast
thus ?thesis
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using Per-def Q1 Q2 midpoint-def by blast
qed
have P4 : B 6= C0

using P1 assms(2 ) bet-neq12--neq conga-diff2 by blast
have P5 : Per A B C0

by (metis P1 P3 Tarski-neutral-dimensionless.l8-3 Tarski-neutral-dimensionless-axioms assms(2 ) bet-col bet-col1
bet-neq21--neq col-transitivity-1 conga-diff45 )

have Col B C0 C using P1
using NCol-cases bet-col by blast

thus ?thesis
using P4 P5 per-col by blast

qed

lemma cong3-preserves-out:
assumes A Out B C and

A B C Cong3 A ′ B ′ C ′

shows A ′ Out B ′ C ′

by (meson assms(1 ) assms(2 ) col-permutation-4 cong3-symmetry cong-3-swap l4-13 l4-6 not-bet-and-out or-bet-out
out-col)

lemma l11-21-a:
assumes B Out A C and

A B C CongA A ′ B ′ C ′

shows B ′ Out A ′ C ′

proof −
obtain A0 C0 A1 C1 where P1 : Bet B A A0 ∧

Cong A A0 B ′ A ′ ∧ Bet B C C0 ∧
Cong C C0 B ′ C ′ ∧ Bet B ′ A ′ A1 ∧
Cong A ′ A1 B A ∧ Bet B ′ C ′ C1 ∧
Cong C ′ C1 B C ∧ Cong A0 C0 A1 C1

using CongA-def assms(2 ) by auto
have P2 : B Out A0 C0

by (metis P1 assms(1 ) bet-out l6-6 l6-7 out-diff1 )
have P3 : B ′ Out A1 C1
proof −

have B A0 C0 Cong3 B ′ A1 C1
by (meson Cong3-def P1 between-symmetry cong-right-commutativity l2-11-b not-cong-4312 )

thus ?thesis
using P2 cong3-preserves-out by blast

qed
thus ?thesis

by (metis P1 assms(2 ) bet-out conga-diff45 conga-diff56 l6-6 l6-7 )
qed

lemma l11-21-b:
assumes B Out A C and

B ′ Out A ′ C ′

shows A B C CongA A ′ B ′ C ′

by (smt assms(1 ) assms(2 ) between-trivial2 conga-trivial-1 l11-10 out2-bet-out out-distinct)

lemma conga-cop--or-out-ts:
assumes Coplanar A B C C ′ and

A B C CongA A B C ′

shows B Out C C ′ ∨ A B TS C C ′

proof −
obtain A0 C0 A1 C1 where P1 : Bet B A A0 ∧

Cong A A0 B A ∧Bet B C C0 ∧
Cong C C0 B C ′ ∧Bet B A A1 ∧
Cong A A1 B A ∧Bet B C ′ C1 ∧
Cong C ′ C1 B C ∧ Cong A0 C0 A1 C1

using CongA-def assms(2 ) by auto
have P2 : A0 = A1 using P1

by (metis assms(2 ) conga-diff1 construction-uniqueness)
have B Out C C ′ ∨ A B TS C C ′

proof cases
assume C0 = C1

147



thus ?thesis
by (metis P1 assms(2 ) bet2--out conga-diff2 conga-diff56 )

next
assume R1 : C0 6= C1
obtain M where R2 : M Midpoint C0 C1

using midpoint-existence by blast
have R3 : Cong B C0 B C1

by (meson Bet-cases P1 l2-11-b not-cong-2134 not-cong-3421 )
have R3A: Cong A0 C0 A0 C1

using P1 P2 by blast
then have R4 : Per A0 M C0 using R2

using Per-def by blast
have R5 : Per B M C0

using Per-def R2 R3 by auto
then have R6 : Per B M C1

using R2 l8-4 by blast
have R7 : B 6= A0

using P1 assms(2 ) bet-neq12--neq conga-diff45 by blast
then have Cong A C0 A C1

by (meson Col-perm P1 R3 R3A bet-col l4-17 )
then have R9 : Per A M C0

using Per-def R2 by blast
then have R10 : Per A M C1

by (meson R2 Tarski-neutral-dimensionless.l8-4 Tarski-neutral-dimensionless-axioms)
have R11 : Col B A M
proof −

have S1 : Coplanar C0 B A M
proof −

have Coplanar B A C0 M
proof −

have T1 : Coplanar B A C0 C1
proof −

have Coplanar A C0 B C ′

proof −
have Coplanar A C ′ B C0
proof −

have U1 : Coplanar A C ′ B C
by (simp add: assms(1 ) coplanar-perm-4 )

have U2 : B 6= C
using assms(2 ) conga-diff2 by blast

have Col B C C0
by (simp add: P1 bet-col)

thus ?thesis
by (meson Tarski-neutral-dimensionless.col-cop--cop Tarski-neutral-dimensionless-axioms U1 U2 )

qed
thus ?thesis

using ncoplanar-perm-5 by blast
qed

thus ?thesis
by (metis P1 Tarski-neutral-dimensionless.col-cop--cop Tarski-neutral-dimensionless-axioms assms(2 ) bet-col

conga-diff56 coplanar-perm-12 )
qed
have Col C0 C1 M

using Col-perm R2 midpoint-col by blast
thus ?thesis

using T1 R1 col-cop--cop by blast
qed
thus ?thesis

using ncoplanar-perm-8 by blast
qed
have C0 6= M

using R1 R2 midpoint-distinct-1 by blast
thus ?thesis

using R5 R9 S1 cop-per2--col by blast
qed
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have B Out C C ′ ∨ A B TS C C ′

proof cases
assume Q1 : B = M
have Q2 : ¬ Col A B C

by (metis Col-def P1 Q1 R9 assms(2 ) conga-diff1 conga-diff2 l6-16-1 l8-9 not-bet-and-out out-trivial)
have Q3 : ¬ Col A B C ′

by (metis Col-def P1 Q1 R10 assms(2 ) conga-diff1 conga-diff56 l6-16-1 l8-9 not-bet-and-out out-trivial)
have Q4 : Col B A B

by (simp add: col-trivial-3 )
have Bet C B C ′

proof −
have S1 : Bet C1 C ′ B

using Bet-cases P1 by blast
have Bet C1 B C
proof −

have T1 : Bet C0 C B
using Bet-cases P1 by blast

have Bet C0 B C1
by (simp add: Q1 R2 midpoint-bet)

thus ?thesis
using T1 between-exchange3 between-symmetry by blast

qed
thus ?thesis

using S1 between-exchange3 between-symmetry by blast
qed
thus ?thesis

by (metis Q2 Q3 Q4 bet--ts col-permutation-4 invert-two-sides)
next

assume L1 : B 6= M
have L2 : B M TS C0 C1
proof −

have M1 : ¬ Col C0 B M
by (metis (no-types) Col-perm L1 R1 R2 R5 is-midpoint-id l8-9 )

have M2 : ¬ Col C1 B M
using Col-perm L1 R1 R2 R6 l8-9 midpoint-not-midpoint by blast

have M3 : Col M B M
using col-trivial-3 by auto

have Bet C0 M C1
by (simp add: R2 midpoint-bet)

thus ?thesis
using M1 M2 M3 TS-def by blast

qed
have A B TS C C ′

proof −
have W2 : A B TS C C1
proof −

have V1 : A B TS C0 C1
using L2 P1 R11 R7 col-two-sides cong-diff invert-two-sides not-col-permutation-5 by blast

have B Out C0 C
using L2 Out-def P1 TS-def assms(2 ) col-trivial-1 conga-diff2 by auto

thus ?thesis
using V1 col-trivial-3 l9-5 by blast

qed
then have W1 : A B TS C ′ C
proof −

have Z1 : A B TS C1 C
by (simp add: W2 l9-2 )

have Z2 : Col B A B
using not-col-distincts by blast

have B Out C1 C ′

using L2 Out-def P1 TS-def assms(2 ) col-trivial-1 conga-diff56 by auto
thus ?thesis

using Z1 Z2 l9-5 by blast
qed
thus ?thesis

by (simp add: l9-2 )
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qed
thus ?thesis by blast

qed
thus ?thesis by blast

qed
thus ?thesis by blast

qed

lemma conga-os--out:
assumes A B C CongA A B C ′ and

A B OS C C ′

shows B Out C C ′

using assms(1 ) assms(2 ) conga-cop--or-out-ts l9-9 os--coplanar by blast

lemma cong2-conga-cong:
assumes A B C CongA A ′ B ′ C ′ and

Cong A B A ′ B ′ and
Cong B C B ′ C ′

shows Cong A C A ′ C ′

by (smt assms(1 ) assms(2 ) assms(3 ) cong-4321 l11-3 l11-4-1 not-cong-3412 out-distinct out-trivial)

lemma angle-construction-1 :
assumes ¬ Col A B C and
¬ Col A ′ B ′ P

shows ∃ C ′. (A B C CongA A ′ B ′ C ′ ∧ A ′ B ′ OS C ′ P)
proof −

obtain C0 where P1 : Col B A C0 ∧ B A Perp C C0
using assms(1 ) col-permutation-4 l8-18-existence by blast

have ∃ C ′. (A B C CongA A ′ B ′ C ′ ∧ A ′ B ′ OS C ′ P)
proof cases

assume P1A: B = C0
obtain C ′ where P2 : Per C ′ B ′ A ′ ∧ Cong C ′ B ′ C B ∧ A ′ B ′ OS C ′ P

by (metis assms(1 ) assms(2 ) col-trivial-1 col-trivial-2 ex-per-cong)
have P3 : A B C CongA A ′ B ′ C ′

by (metis P1 P2 Tarski-neutral-dimensionless.l8-2 Tarski-neutral-dimensionless.os-distincts Tarski-neutral-dimensionless-axioms
P1A assms(1 ) l11-16 not-col-distincts perp-per-1 )

thus ?thesis using P2 by blast
next

assume P4 : B 6= C0
have ∃ C ′. (A B C CongA A ′ B ′ C ′ ∧ A ′ B ′ OS C ′ P)
proof cases

assume R1 : B Out A C0
obtain C0 ′ where R2 : B ′ Out A ′ C0 ′ ∧ Cong B ′ C0 ′ B C0

by (metis P4 assms(2 ) col-trivial-1 segment-construction-3 )
have ∃ C ′. Per C ′ C0 ′ B ′ ∧ Cong C ′ C0 ′ C C0 ∧ B ′ C0 ′ OS C ′ P
proof −

have R4 : B ′ 6= C0 ′

using Out-def R2 by auto
have R5 : C 6= C0

using P1 perp-distinct by blast
have R6 : Col B ′ C0 ′ C0 ′

by (simp add: col-trivial-2 )
have ¬ Col B ′ C0 ′ P

using NCol-cases R2 R4 assms(2 ) col-transitivity-1 out-col by blast
then have ∃ C ′. Per C ′ C0 ′ B ′ ∧

Cong C ′ C0 ′ C C0 ∧ B ′ C0 ′ OS C ′ P using R4 R5 R6 ex-per-cong by blast
thus ?thesis by auto

qed
then obtain C ′ where R7 : Per C ′ C0 ′ B ′ ∧

Cong C ′ C0 ′ C C0 ∧ B ′ C0 ′ OS C ′ P by auto
then have R8 : C0 B C Cong3 C0 ′ B ′ C ′

by (meson Cong3-def P1 R2 col-trivial-2 l10-12 l8-16-1 not-col-permutation-2 not-cong-2143 not-cong-4321 )
have R9 : A B C CongA A ′ B ′ C ′

proof −
have S1 : C0 B C CongA C0 ′ B ′ C ′

by (metis P4 R8 assms(1 ) cong3-conga not-col-distincts)
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have S3 : B Out C C
using assms(1 ) not-col-distincts out-trivial by force

have B ′ 6= C ′

using R8 assms(1 ) cong3-diff2 not-col-distincts by blast
then have B ′ Out C ′ C ′

using out-trivial by auto
thus ?thesis

using S1 R1 S3 R2 l11-10 by blast
qed
have B ′ A ′ OS C ′ P
proof −

have T1 : Col B ′ C0 ′ A ′

by (meson NCol-cases R2 Tarski-neutral-dimensionless.out-col Tarski-neutral-dimensionless-axioms)
have B ′ 6= A ′

using assms(2 ) col-trivial-1 by auto
thus ?thesis

using T1 R7 col-one-side by blast
qed
then have A ′ B ′ OS C ′ P

by (simp add: invert-one-side)
thus ?thesis

using R9 by blast
next

assume U1 : ¬ B Out A C0
then have U2 : Bet A B C0

using NCol-perm P1 or-bet-out by blast
obtain C0 ′ where U3 : Bet A ′ B ′ C0 ′ ∧ Cong B ′ C0 ′ B C0

using segment-construction by blast
have U4 : ∃ C ′. Per C ′ C0 ′ B ′ ∧ Cong C ′ C0 ′ C C0 ∧ B ′ C0 ′ OS C ′ P
proof −

have V2 : C 6= C0
using Col-cases P1 assms(1 ) by blast

have B ′ 6= C0 ′

using P4 U3 cong-diff-3 by blast
then have ¬ Col B ′ C0 ′ P

using Col-def U3 assms(2 ) col-transitivity-1 by blast
thus ?thesis using ex-per-cong

using V2 not-col-distincts by blast
qed
then obtain C ′ where U5 : Per C ′ C0 ′ B ′ ∧ Cong C ′ C0 ′ C C0 ∧ B ′ C0 ′ OS C ′ P

by blast
have U98 : A B C CongA A ′ B ′ C ′

proof −
have X1 : C0 B C Cong3 C0 ′ B ′ C ′

proof −
have X2 : Cong C0 B C0 ′ B ′

using Cong-cases U3 by blast
have X3 : Cong C0 C C0 ′ C ′

using U5 not-cong-4321 by blast
have Cong B C B ′ C ′

proof −
have Y1 : Per C C0 B

using P1 col-trivial-3 l8-16-1 by blast
have Cong C C0 C ′ C0 ′

using U5 not-cong-3412 by blast
thus ?thesis

using Cong-perm Y1 U5 X2 l10-12 by blast
qed
thus ?thesis

by (simp add: Cong3-def X2 X3 )
qed
have X22 : Bet C0 B A

using U2 between-symmetry by blast
have X24 : Bet C0 ′ B ′ A ′

using Bet-cases U3 by blast
have A ′ 6= B ′
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using assms(2 ) not-col-distincts by blast
thus ?thesis

by (metis P4 X1 X22 X24 assms(1 ) cong3-conga l11-13 not-col-distincts)
qed
have A ′ B ′ OS C ′ P
proof −

have B ′ A ′ OS C ′ P
proof −

have W1 : Col B ′ C0 ′ A ′

by (simp add: Col-def U3 )
have B ′ 6= A ′

using assms(2 ) not-col-distincts by blast
thus ?thesis

using W1 U5 col-one-side by blast
qed
thus ?thesis

by (simp add: invert-one-side)
qed
thus ?thesis

using U98 by blast
qed
thus ?thesis by auto

qed
thus ?thesis by auto

qed

lemma angle-construction-2 :
assumes A 6= B and

B 6= C and
¬ Col A ′ B ′ P

shows ∃ C ′. (A B C CongA A ′ B ′ C ′ ∧ (A ′ B ′ OS C ′ P ∨ Col A ′ B ′ C ′))
by (metis Col-def angle-construction-1 assms(1 ) assms(2 ) assms(3 ) col-trivial-3 conga-line l11-21-b or-bet-out out-trivial

point-construction-different)

lemma ex-conga-ts:
assumes ¬ Col A B C and
¬ Col A ′ B ′ P

shows ∃ C ′. A B C CongA A ′ B ′ C ′ ∧ A ′ B ′ TS C ′ P
proof −

obtain P ′ where P1 : A ′ Midpoint P P ′

using symmetric-point-construction by blast
have P2 : ¬ Col A ′ B ′ P ′

by (metis P1 assms(2 ) col-transitivity-1 midpoint-col midpoint-distinct-2 not-col-distincts)
obtain C ′ where P3 :

A B C CongA A ′ B ′ C ′ ∧ A ′ B ′ OS C ′ P ′

using P2 angle-construction-1 assms(1 ) by blast
have A ′ B ′ TS P ′ P

using P1 P2 assms(2 ) bet--ts l9-2 midpoint-bet not-col-distincts by auto
thus ?thesis

using P3 l9-8-2 one-side-symmetry by blast
qed

lemma l11-15 :
assumes ¬ Col A B C and
¬ Col D E P

shows
∃ F . (A B C CongA D E F ∧ E D OS F P) ∧

(∀ F1 F2 . ((A B C CongA D E F1 ∧ E D OS F1 P) ∧
(A B C CongA D E F2 ∧ E D OS F2 P))

−→ E Out F1 F2 )
proof −

obtain F where P1 : A B C CongA D E F ∧ D E OS F P
using angle-construction-1 assms(1 ) assms(2 ) by blast

then have P2 : A B C CongA D E F ∧ E D OS F P
using invert-one-side by blast

have (∀ F1 F2 . ((A B C CongA D E F1 ∧ E D OS F1 P) ∧
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(A B C CongA D E F2 ∧ E D OS F2 P)) −→ E Out F1 F2 )
proof −

{
fix F1 F2
assume P3 : ((A B C CongA D E F1 ∧ E D OS F1 P) ∧

(A B C CongA D E F2 ∧ E D OS F2 P))
then have P4 : A B C CongA D E F1 by simp
have P5 : E D OS F1 P using P3 by simp
have P6 : A B C CongA D E F2 using P3 by simp
have P7 : E D OS F2 P using P3 by simp
have P8 : D E F1 CongA D E F2

using P4 conga-sym P6 conga-trans by blast
have D E OS F1 F2

using P5 P7 invert-one-side one-side-symmetry one-side-transitivity by blast
then have E Out F1 F2 using P8 conga-os--out

by (meson P3 conga-sym conga-trans)
}
thus ?thesis by auto

qed
thus ?thesis

using P2 by blast
qed

lemma l11-19 :
assumes Per A B P1 and

Per A B P2 and
A B OS P1 P2

shows B Out P1 P2
proof cases

assume Col A B P1
thus ?thesis

using assms(3 ) col123--nos by blast
next

assume P1 : ¬ Col A B P1
have B Out P1 P2
proof cases

assume Col A B P2
thus ?thesis

using assms(3 ) one-side-not-col124 by blast
next

assume P2 : ¬ Col A B P2
obtain x where A B P1 CongA A B x ∧ B A OS x P2 ∧

(∀ F1 F2 . ((A B P1 CongA A B F1 ∧ B A OS F1 P2 ) ∧
(A B P1 CongA A B F2 ∧ B A OS F2 P2 ))−→ B Out F1 F2 )

using P1 P2 l11-15 by blast
thus ?thesis

by (metis P1 P2 assms(1 ) assms(2 ) assms(3 ) conga-os--out l11-16 not-col-distincts)
qed
thus ?thesis

by simp
qed

lemma l11-22-bet:
assumes Bet A B C and

P ′ B ′ TS A ′ C ′ and
A B P CongA A ′ B ′ P ′ and
P B C CongA P ′ B ′ C ′

shows Bet A ′ B ′ C ′

proof −
obtain C ′′ where P1 : Bet A ′ B ′ C ′′ ∧ Cong B ′ C ′′ B C

using segment-construction by blast
have P2 : C B P CongA C ′′ B ′ P ′

by (metis P1 assms(1 ) assms(3 ) assms(4 ) cong-diff-3 conga-diff2 l11-13 )
have P3 : C ′′ B ′ P ′ CongA C ′ B ′ P ′

by (meson P2 Tarski-neutral-dimensionless.conga-sym Tarski-neutral-dimensionless-axioms assms(4 ) conga-comm
conga-trans)
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have P4 : B ′ Out C ′ C ′′ ∨ P ′ B ′ TS C ′ C ′′

proof −
have P5 : Coplanar P ′ B ′ C ′ C ′′

by (meson P1 TS-def assms(2 ) bet--coplanar coplanar-trans-1 ncoplanar-perm-1 ncoplanar-perm-8 ts--coplanar)
have P ′ B ′ C ′ CongA P ′ B ′ C ′′

using P3 conga-comm conga-sym by blast
thus ?thesis

by (simp add: P5 conga-cop--or-out-ts)
qed
have P6 : B ′ Out C ′ C ′′ −→ Bet A ′ B ′ C ′

proof −
{

assume B ′ Out C ′ C ′′

then have Bet A ′ B ′ C ′

using P1 bet-out-out-bet between-exchange4 between-trivial2 col-trivial-3 l6-6 not-bet-out by blast
}
thus ?thesis by simp

qed
have P ′ B ′ TS C ′ C ′′ −→ Bet A ′ B ′ C ′

proof −
{

assume P7 : P ′ B ′ TS C ′ C ′′

then have Bet A ′ B ′ C ′

proof cases
assume Col C ′ B ′ P ′

thus ?thesis
using Col-perm TS-def assms(2 ) by blast

next
assume Q1 : ¬ Col C ′ B ′ P ′

then have Q2 : B ′ 6= P ′

using not-col-distincts by blast
have Q3 : B ′ P ′ TS A ′ C ′′

by (metis Col-perm P1 TS-def P7 assms(2 ) col-trivial-3 )
have Q4 : B ′ P ′ OS C ′ C ′′

using P7 Q3 assms(2 ) invert-two-sides l9-8-1 l9-9 by blast
thus ?thesis

using P7 invert-one-side l9-9 by blast
qed

}
thus ?thesis by simp

qed
thus ?thesis using P6 P4 by blast

qed

lemma l11-22a:
assumes B P TS A C and

B ′ P ′ TS A ′ C ′ and
A B P CongA A ′ B ′ P ′ and
P B C CongA P ′ B ′ C ′

shows A B C CongA A ′ B ′ C ′

proof −
have P1 : A 6= B ∧ A ′ 6= B ′ ∧ P 6= B ∧ P ′ 6= B ′ ∧ C 6= B ∧ C ′ 6= B ′

using assms(3 ) assms(4 ) conga-diff1 conga-diff2 conga-diff45 conga-diff56 by auto
have P2 : A 6= C ∧ A ′ 6= C ′

using assms(1 ) assms(2 ) not-two-sides-id by blast
obtain A ′′ where P3 : B ′ Out A ′ A ′′ ∧ Cong B ′ A ′′ B A

using P1 segment-construction-3 by force
have P4 : ¬ Col A B P

using TS-def assms(1 ) by blast
obtain T where P5 : Col T B P ∧ Bet A T C

using TS-def assms(1 ) by blast
have A B C CongA A ′ B ′ C ′

proof cases
assume B = T
thus ?thesis

by (metis P1 P5 assms(2 ) assms(3 ) assms(4 ) conga-line invert-two-sides l11-22-bet)
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next
assume P6 : B 6= T
have A B C CongA A ′ B ′ C ′

proof cases
assume P7A: Bet P B T
obtain T ′′ where T1 : Bet P ′ B ′ T ′′ ∧ Cong B ′ T ′′ B T

using segment-construction by blast
have ∃ T ′′.

Col B ′ P ′ T ′′ ∧ (B ′ Out P ′ T ′′ ←→ B Out P T) ∧ Cong B ′ T ′′ B T
proof −

have T2 : Col B ′ P ′ T ′′ using T1
by (simp add: bet-col col-permutation-4 )

have (B ′ Out P ′ T ′′ ←→ B Out P T) ∧ Cong B ′ T ′′ B T
using P7A T1 not-bet-and-out by blast

thus ?thesis using T2 by blast
qed
then obtain T ′′ where T3 :

Col B ′ P ′ T ′′ ∧ (B ′ Out P ′ T ′′ ←→ B Out P T) ∧ Cong B ′ T ′′ B T by blast
then have T4 : B ′ 6= T ′′

using P6 cong-diff-3 by blast
obtain C ′′ where T5 : Bet A ′′ T ′′ C ′′ ∧ Cong T ′′ C ′′ T C

using segment-construction by blast
have T6 : A B T CongA A ′ B ′ T ′′

by (smt Out-cases P5 P6 T3 T4 P7A assms(3 ) between-symmetry col-permutation-4 conga-comm l11-13 l6-4-1
or-bet-out)

then have T7 : A B T CongA A ′′ B ′ T ′′

by (smt P3 P4 P6 T3 Tarski-neutral-dimensionless.l11-10 Tarski-neutral-dimensionless-axioms bet-out col-trivial-3
cong-diff-3 l5-2 l6-6 not-col-permutation-1 or-bet-out)

then have T8 : Cong A T A ′′ T ′′

using P3 T3 cong2-conga-cong cong-4321 not-cong-3412 by blast
have T9 : Cong A C A ′′ C ′′

using P5 T5 T8 cong-symmetry l2-11-b by blast
have T10 : Cong C B C ′′ B ′

by (smt P3 P4 P5 T3 T5 T8 cong-commutativity cong-symmetry five-segment)
have A B C Cong3 A ′′ B ′ C ′′

using Cong3-def P3 T10 T9 not-cong-2143 not-cong-4321 by blast
then have T11 : A B C CongA A ′′ B ′ C ′′

by (simp add: Tarski-neutral-dimensionless.cong3-conga Tarski-neutral-dimensionless-axioms P1 )
have C B T Cong3 C ′′ B ′ T ′′

by (simp add: Cong3-def T10 T3 T5 cong-4321 cong-symmetry)
then have T12 : C B T CongA C ′′ B ′ T ′′

using P1 P6 cong3-conga by auto
have T13 : P B C CongA P ′ B ′ C ′′

proof −
have K4 : Bet T B P

using Bet-perm P7A by blast
have Bet T ′′ B ′ P ′

using Col-perm P7A T3 l6-6 not-bet-and-out or-bet-out by blast
thus ?thesis

using K4 P1 T12 conga-comm l11-13 by blast
qed
have T14 : P ′ B ′ C ′ CongA P ′ B ′ C ′′

proof −
have P ′ B ′ C ′ CongA P B C

by (simp add: assms(4 ) conga-sym)
thus ?thesis

using T13 conga-trans by blast
qed
have T15 : B ′ Out C ′ C ′′ ∨ P ′ B ′ TS C ′ C ′′

proof −
have K7 : Coplanar P ′ B ′ C ′ C ′′

proof −
have K8 : Coplanar A ′ P ′ B ′ C ′

using assms(2 ) coplanar-perm-14 ts--coplanar by blast
have K8A: Coplanar P ′ C ′′ B ′ A ′′

proof −
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have Col P ′ B ′ T ′′ ∧ Col C ′′ A ′′ T ′′

using Col-def Col-perm T3 T5 by blast
then have Col P ′ C ′′ T ′′ ∧ Col B ′ A ′′ T ′′ ∨

Col P ′ B ′ T ′′ ∧ Col C ′′ A ′′ T ′′ ∨ Col P ′ A ′′ T ′′ ∧ Col C ′′ B ′ T ′′ by simp
thus ?thesis

using Coplanar-def by auto
qed
then have Coplanar A ′ P ′ B ′ C ′′

proof −
have K9 : B ′ 6= A ′′

using P3 out-distinct by blast
have Col B ′ A ′′ A ′

using Col-perm P3 out-col by blast
thus ?thesis

using K8A K9 col-cop--cop coplanar-perm-19 by blast
qed
thus ?thesis

by (meson K8 TS-def assms(2 ) coplanar-perm-7 coplanar-trans-1 ncoplanar-perm-2 )
qed
thus ?thesis

by (simp add: T14 K7 conga-cop--or-out-ts)
qed
have A B C CongA A ′ B ′ C ′

proof cases
assume B ′ Out C ′ C ′′

thus ?thesis
using P1 P3 T11 l11-10 out-trivial by blast

next
assume W1 : ¬ B ′ Out C ′ C ′′

then have W1A: P ′ B ′ TS C ′ C ′′ using T15 by simp
have W2 : B ′ P ′ TS A ′′ C ′

using P3 assms(2 ) col-trivial-1 l9-5 by blast
then have W3 : B ′ P ′ OS A ′′ C ′′

using T15 W1 invert-two-sides l9-2 l9-8-1 by blast
have W4 : B ′ P ′ TS A ′′ C ′′

proof −
have ¬ Col A ′ B ′ P ′

using TS-def assms(2 ) by auto
thus ?thesis

using Col-perm T3 T5 W3 one-side-chara by blast
qed
thus ?thesis

using W1A W2 invert-two-sides l9-8-1 l9-9 by blast
qed
thus ?thesis by simp

next
assume R1 : ¬ Bet P B T
then have R2 : B Out P T

using Col-cases P5 l6-4-2 by blast
have R2A: ∃ T ′′. Col B ′ P ′ T ′′ ∧ (B ′ Out P ′ T ′′ ←→ B Out P T) ∧ Cong B ′ T ′′ B T
proof −

obtain T ′′ where R3 : B ′ Out P ′ T ′′ ∧ Cong B ′ T ′′ B T
using P1 P6 segment-construction-3 by fastforce

thus ?thesis
using R2 out-col by blast

qed
then obtain T ′′ where R4 : Col B ′ P ′ T ′′ ∧ (B ′ Out P ′ T ′′ ←→ B Out P T) ∧ Cong B ′ T ′′ B T by auto
have R5 : B ′ 6= T ′′

using P6 R4 cong-diff-3 by blast
obtain C ′′ where R6 : Bet A ′′ T ′′ C ′′ ∧ Cong T ′′ C ′′ T C

using segment-construction by blast
have R7 : A B T CongA A ′ B ′ T ′′

using P1 R2 R4 assms(3 ) l11-10 l6-6 out-trivial by auto
have R8 : A B T CongA A ′′ B ′ T ′′

using P3 P4 R2 R4 assms(3 ) l11-10 l6-6 not-col-distincts out-trivial by blast
have R9 : Cong A T A ′′ T ′′
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using Cong-cases P3 R4 R8 cong2-conga-cong by blast
have R10 : Cong A C A ′′ C ′′

using P5 R6 R9 l2-11-b not-cong-3412 by blast
have R11 : Cong C B C ′′ B ′

by (smt P3 P4 P5 R4 R6 R9 cong-commutativity cong-symmetry five-segment)
have A B C Cong3 A ′′ B ′ C ′′

by (simp add: Cong3-def P3 R10 R11 cong-4321 cong-commutativity)
then have R12 : A B C CongA A ′′ B ′ C ′′

using P1 by (simp add: cong3-conga)
have C B T Cong3 C ′′ B ′ T ′′

using Cong3-def R11 R4 R6 not-cong-3412 not-cong-4321 by blast
then have R13 : C B T CongA C ′′ B ′ T ′′

using P1 P6 Tarski-neutral-dimensionless.cong3-conga Tarski-neutral-dimensionless-axioms by fastforce
have R13A: ¬ Col A ′ B ′ P ′

using TS-def assms(2 ) by blast
have R14 : B ′ Out C ′ C ′′ ∨ P ′ B ′ TS C ′ C ′′

proof −
have S1 : Coplanar P ′ B ′ C ′ C ′′

proof −
have T1 : Coplanar A ′ P ′ B ′ C ′

using assms(2 ) ncoplanar-perm-14 ts--coplanar by blast
have Coplanar A ′ P ′ B ′ C ′′

proof −
have U6 : B ′ 6= A ′′

using P3 out-diff2 by blast
have Coplanar P ′ C ′′ B ′ A ′′

proof −
have Col P ′ B ′ T ′′ ∧ Col C ′′ A ′′ T ′′

using Col-def Col-perm R4 R6 by blast
thus ?thesis using Coplanar-def by auto

qed
thus ?thesis

by (meson Col-cases P3 U6 col-cop--cop ncoplanar-perm-21 ncoplanar-perm-6 out-col)
qed
thus ?thesis

using NCol-cases R13A T1 coplanar-trans-1 by blast
qed
have P ′ B ′ C ′ CongA P ′ B ′ C ′′

proof −
have C B P CongA C ′′ B ′ P ′

using P1 R12 R13 R2 R4 conga-diff56 l11-10 out-trivial by presburger
then have C ′ B ′ P ′ CongA C ′′ B ′ P ′

by (meson Tarski-neutral-dimensionless.conga-trans Tarski-neutral-dimensionless-axioms assms(4 ) conga-comm
conga-sym)

thus ?thesis
by (simp add: conga-comm)

qed
thus ?thesis

by (simp add: S1 conga-cop--or-out-ts)
qed
have S1 : B Out A A

using P4 not-col-distincts out-trivial by blast
have S2 : B Out C C

using TS-def assms(1 ) not-col-distincts out-trivial by auto
have S3 : B ′ Out A ′ A ′′ using P3 by simp
have A B C CongA A ′ B ′ C ′

proof cases
assume B ′ Out C ′ C ′′

thus ?thesis using S1 S2 S3
using R12 l11-10 by blast

next
assume ¬ B ′ Out C ′ C ′′

then have Z3 : P ′ B ′ TS C ′ C ′′ using R14 by simp
have Q1 : B ′ P ′ TS A ′′ C ′

using S3 assms(2 ) l9-5 not-col-distincts by blast
have Q2 : B ′ P ′ OS A ′′ C ′′
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proof −
have B ′ P ′ TS C ′′ C ′

proof −
have B ′ P ′ TS C ′ C ′′ using Z3

using invert-two-sides by blast
thus ?thesis

by (simp add: l9-2 )
qed
thus ?thesis

using Q1 l9-8-1 by blast
qed
have B ′ P ′ TS A ′′ C ′′

using Col-perm Q2 R4 R6 one-side-chara by blast
thus ?thesis

using Q2 l9-9 by blast
qed
thus ?thesis using S1 S2 S3

using R12 l11-10 by blast
qed
thus ?thesis by simp

qed
thus ?thesis by simp

qed

lemma l11-22b:
assumes B P OS A C and

B ′ P ′ OS A ′ C ′ and
A B P CongA A ′ B ′ P ′ and
P B C CongA P ′ B ′ C ′

shows A B C CongA A ′ B ′ C ′

proof −
obtain D where P1 : Bet A B D ∧ Cong B D A B

using segment-construction by blast
obtain D ′ where P2 : Bet A ′ B ′ D ′ ∧ Cong B ′ D ′ A ′ B ′

using segment-construction by blast
have P3 : D B P CongA D ′ B ′ P ′

proof −
have Q3 : D 6= B

by (metis P1 assms(1 ) col-trivial-3 cong-diff-3 one-side-not-col124 one-side-symmetry)
have Q5 : D ′ 6= B ′

by (metis P2 assms(2 ) col-trivial-3 cong-diff-3 one-side-not-col124 one-side-symmetry)
thus ?thesis

using assms(3 ) P1 Q3 P2 l11-13 by blast
qed
have P5 : D B C CongA D ′ B ′ C ′

proof −
have Q1 : B P TS D C

by (metis P1 assms(1 ) bet--ts col-trivial-3 cong-diff-3 l9-2 l9-8-2 one-side-not-col124 one-side-symmetry)
have B ′ P ′ TS D ′ C ′ by (metis Cong-perm P2 assms(2 ) bet--ts between-cong between-trivial2 l9-2 l9-8-2 one-side-not-col123

point-construction-different ts-distincts)
thus ?thesis

using assms(4 ) Q1 P3 l11-22a by blast
qed
have P6 : Bet D B A

using Bet-perm P1 by blast
have P7 : A 6= B

using assms(3 ) conga-diff1 by auto
have P8 : Bet D ′ B ′ A ′

using Bet-cases P2 by blast
have A ′ 6= B ′

using assms(3 ) conga-diff45 by blast
thus ?thesis

using P5 P6 P7 P8 l11-13 by blast
qed

lemma l11-22 :
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assumes ((B P TS A C ∧ B ′ P ′ TS A ′ C ′)∨(B P OS A C ∧ B ′ P ′ OS A ′ C ′)) and
A B P CongA A ′ B ′ P ′ and
P B C CongA P ′ B ′ C ′

shows A B C CongA A ′ B ′ C ′

by (meson assms(1 ) assms(2 ) assms(3 ) l11-22a l11-22b)

lemma l11-24 :
assumes P InAngle A B C
shows P InAngle C B A
using Bet-cases InAngle-def assms by auto

lemma col-in-angle:
assumes A 6= B and

C 6= B and
P 6= B and
B Out A P ∨ B Out C P

shows P InAngle A B C
by (meson InAngle-def assms(1 ) assms(2 ) assms(3 ) assms(4 ) between-trivial between-trivial2 )

lemma out321--inangle:
assumes C 6= B and

B Out A P
shows P InAngle A B C
using assms(1 ) assms(2 ) col-in-angle out-distinct by auto

lemma inangle1123 :
assumes A 6= B and

C 6= B
shows A InAngle A B C
by (simp add: assms(1 ) assms(2 ) out321--inangle out-trivial)

lemma out341--inangle:
assumes A 6= B and

B Out C P
shows P InAngle A B C
using assms(1 ) assms(2 ) col-in-angle out-distinct by auto

lemma inangle3123 :
assumes A 6= B and

C 6= B
shows C InAngle A B C
by (simp add: assms(1 ) assms(2 ) inangle1123 l11-24 )

lemma in-angle-two-sides:
assumes ¬ Col B A P and
¬ Col B C P and
P InAngle A B C

shows P B TS A C
by (metis InAngle-def TS-def assms(1 ) assms(2 ) assms(3 ) not-col-distincts not-col-permutation-1 out-col)

lemma in-angle-out:
assumes B Out A C and

P InAngle A B C
shows B Out A P
by (metis InAngle-def assms(1 ) assms(2 ) not-bet-and-out out2-bet-out)

lemma col-in-angle-out:
assumes Col B A P and
¬ Bet A B C and
P InAngle A B C

shows B Out A P
proof −

obtain X where P1 : Bet A X C ∧ (X = B ∨ B Out X P)
using InAngle-def assms(3 ) by auto

have B Out A P
proof cases
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assume X = B
thus ?thesis

using P1 assms(2 ) by blast
next

assume P2 : X 6= B
thus ?thesis
proof −

have f1 : Bet B A P ∨ A Out B P
by (meson assms(1 ) l6-4-2 )

have f2 : B Out X P
using P1 P2 by blast

have f3 : (Bet B P A ∨Bet B A P) ∨Bet P B A
using f1 by (meson Bet-perm Out-def )

have f4 : Bet B P X ∨Bet P X B
using f2 by (meson Bet-perm Out-def )

then have f5 : ((Bet B P X ∨Bet X B A) ∨Bet B P A) ∨Bet B A P
using f3 by (meson between-exchange3 )

have ∀ p. Bet p X C ∨ ¬Bet A p X
using P1 between-exchange3 by blast

then have f6 : (P = B ∨Bet B A P) ∨Bet B P A
using f5 f3 by (meson Bet-perm P2 assms(2 ) outer-transitivity-between2 )

have f7 : Bet C X A
using Bet-perm P1 by blast

have P 6= B
using f2 by (simp add: Out-def )

moreover
{ assume Bet B B C

then have A 6= B
using assms(2 ) by blast }

ultimately have A 6= B
using f7 f4 f1 by (meson Bet-perm Out-def P2 between-exchange3 outer-transitivity-between2 )

thus ?thesis
using f6 f2 by (simp add: Out-def )

qed
qed
thus ?thesis by blast

qed

lemma l11-25-aux:
assumes P InAngle A B C and
¬ Bet A B C and
B Out A ′ A

shows P InAngle A ′ B C
proof −

have P1 : Bet B A ′ A ∨ Bet B A A ′

using Out-def assms(3 ) by auto
{

assume P2 : Bet B A ′ A
obtain X where P3 : Bet A X C ∧ (X = B ∨ B Out X P)

using InAngle-def assms(1 ) by auto
obtain T where P4 : Bet A ′ T C ∧ Bet X T B

using Bet-perm P2 P3 inner-pasch by blast
{

assume X = B
then have P InAngle A ′ B C

using P3 assms(2 ) by blast
}
{

assume B Out X P
then have P InAngle A ′ B C

by (metis InAngle-def P4 assms(1 ) assms(3 ) bet-out-1 l6-7 out-diff1 )
}
then have P InAngle A ′ B C

using P3 ‹X = B =⇒ P InAngle A ′ B C › by blast
}
{
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assume Q0 : Bet B A A ′

obtain X where Q1 : Bet A X C ∧ (X = B ∨ B Out X P)
using InAngle-def assms(1 ) by auto

{
assume X = B
then have P InAngle A ′ B C

using Q1 assms(2 ) by blast
}
{

assume Q2 : B Out X P
obtain T where Q3 : Bet A ′ T C ∧ Bet B X T

using Bet-perm Q1 Q0 outer-pasch by blast
then have P InAngle A ′ B C

by (metis InAngle-def Q0 Q2 assms(1 ) bet-out l6-6 l6-7 out-diff1 )
}
then have P InAngle A ′ B C

using ‹X = B =⇒ P InAngle A ′ B C › Q1 by blast
}
thus ?thesis

using P1 ‹Bet B A ′ A =⇒ P InAngle A ′ B C › by blast
qed

lemma l11-25 :
assumes P InAngle A B C and

B Out A ′ A and
B Out C ′ C and
B Out P ′ P

shows P ′ InAngle A ′ B C ′

proof cases
assume Bet A B C
thus ?thesis

by (metis Bet-perm InAngle-def assms(2 ) assms(3 ) assms(4 ) bet-out--bet l6-6 out-distinct)
next

assume P1 : ¬ Bet A B C
have P2 : P InAngle A ′ B C

using P1 assms(1 ) assms(2 ) l11-25-aux by blast
have P3 : P InAngle A ′ B C ′

proof −
have P InAngle C ′ B A ′ using l11-25-aux

using Bet-perm P1 P2 assms(2 ) assms(3 ) bet-out--bet l11-24 by blast
thus ?thesis using l11-24 by blast

qed
obtain X where P4 : Bet A ′ X C ′ ∧ (X = B ∨ B Out X P)

using InAngle-def P3 by auto
{

assume X = B
then have P ′ InAngle A ′ B C ′

using InAngle-def P3 P4 assms(4 ) out-diff1 by auto
}
{

assume B Out X P
then have P ′ InAngle A ′ B C ′

proof −
have ∀ p. B Out p P ′ ∨ ¬ B Out p P

by (meson Out-cases assms(4 ) l6-7 )
thus ?thesis

by (metis (no-types) InAngle-def P3 assms(4 ) out-diff1 )
qed

}
thus ?thesis

using InAngle-def P4 assms(2 ) assms(3 ) assms(4 ) out-distinct by auto
qed

lemma inangle-distincts:
assumes P InAngle A B C
shows A 6= B ∧ C 6= B ∧ P 6= B
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using InAngle-def assms by auto

lemma segment-construction-0 :
shows ∃ B ′. Cong A ′ B ′ A B
using segment-construction by blast

lemma angle-construction-3 :
assumes A 6= B and

C 6= B and
A ′ 6= B ′

shows ∃ C ′. A B C CongA A ′ B ′ C ′

by (metis angle-construction-2 assms(1 ) assms(2 ) assms(3 ) not-col-exists)

lemma l11-28 :
assumes A B C Cong3 A ′ B ′ C ′ and

Col A C D
shows ∃ D ′. (Cong A D A ′ D ′ ∧ Cong B D B ′ D ′ ∧ Cong C D C ′ D ′)

proof cases
assume P1 : A = C
have ∃ D ′. (Cong A D A ′ D ′ ∧ Cong B D B ′ D ′ ∧ Cong C D C ′ D ′)
proof cases

assume A = B
thus ?thesis

by (metis P1 assms(1 ) cong3-diff cong3-symmetry cong-3-swap-2 not-cong-3421 segment-construction-0 )
next

assume A 6= B
have ∃ D ′. (Cong A D A ′ D ′ ∧ Cong B D B ′ D ′ ∧ Cong C D C ′ D ′)
proof cases

assume A = D
thus ?thesis

using Cong3-def P1 assms(1 ) cong-trivial-identity by blast
next

assume A 6= D
have ∃ D ′. (Cong A D A ′ D ′ ∧ Cong B D B ′ D ′ ∧ Cong C D C ′ D ′)
proof cases

assume B = D
thus ?thesis

using Cong3-def assms(1 ) cong-3-swap-2 cong-trivial-identity by blast
next

assume Q1 : B 6= D
obtain D ′′ where Q2 : B A D CongA B ′ A ′ D ′′

by (metis ‹A 6= B› ‹A 6= D› angle-construction-3 assms(1 ) cong3-diff )
obtain D ′ where Q3 : A ′ Out D ′′ D ′ ∧ Cong A ′ D ′ A D

by (metis Q2 ‹A 6= D› conga-diff56 segment-construction-3 )
have Q5 : Cong A D A ′ D ′

using Q3 not-cong-3412 by blast
have B A D CongA B ′ A ′ D ′

using Q2 Q3 ‹A 6= B› ‹A 6= D› conga-diff45 l11-10 l6-6 out-trivial by auto
then have Cong B D B ′ D ′

using Cong3-def Cong-perm Q5 assms(1 ) cong2-conga-cong by blast
thus ?thesis

using Cong3-def P1 Q5 assms(1 ) cong-reverse-identity by blast
qed
thus ?thesis by simp

qed
thus ?thesis by simp

qed
thus ?thesis by simp

next
assume Z1 : A 6= C
have ∃ D ′. (Cong A D A ′ D ′ ∧ Cong B D B ′ D ′ ∧ Cong C D C ′ D ′)
proof cases

assume A = D
thus ?thesis

using Cong3-def Cong-perm assms(1 ) cong-trivial-identity by blast
next
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assume A 6= D
{

assume Bet A C D
obtain D ′ where W1 : Bet A ′ C ′ D ′ ∧ Cong C ′ D ′ C D

using segment-construction by blast
have W2 : Cong A D A ′ D ′

by (meson Cong3-def W1 ‹Bet A C D› assms(1 ) cong-symmetry l2-11-b)
have W3 : Cong B D B ′ D ′

proof −
have X1 : Cong C D C ′ D ′

using W1 not-cong-3412 by blast
have Cong C B C ′ B ′

using Cong3-def assms(1 ) cong-commutativity by presburger
then have W4 : A C D B OFSC A ′ C ′ D ′ B ′

using Cong3-def OFSC-def W1 X1 ‹Bet A C D› assms(1 ) by blast
have Cong D B D ′ B ′

using W4 ‹A 6= C › five-segment-with-def by blast
thus ?thesis

using Z1 not-cong-2143 by blast
qed
have Cong C D C ′ D ′

by (simp add: W1 cong-symmetry)
then have ∃ D ′. (Cong A D A ′ D ′ ∧ Cong B D B ′ D ′ ∧ Cong C D C ′ D ′)

using W2 W3 by blast
}
{

assume W3B: Bet C D A
then obtain D ′ where W4A: Bet A ′ D ′ C ′ ∧ A D C Cong3 A ′ D ′ C ′

using Bet-perm Cong3-def assms(1 ) l4-5 by blast
have W5 : Cong A D A ′ D ′

using Cong3-def W4A by blast
have A D C B IFSC A ′ D ′ C ′ B ′

by (meson Bet-perm Cong3-def Cong-perm IFSC-def W4A W3B assms(1 ))
then have Cong D B D ′ B ′

using l4-2 by blast
then have W6 : Cong B D B ′ D ′

using Cong-perm by blast
then have Cong C D C ′ D ′

using Cong3-def W4A not-cong-2143 by blast
then have ∃ D ′. (Cong A D A ′ D ′ ∧ Cong B D B ′ D ′ ∧ Cong C D C ′ D ′)

using W5 W6 by blast
}
{

assume W7 : Bet D A C
obtain D ′ where W7A: Bet C ′ A ′ D ′ ∧ Cong A ′ D ′ A D

using segment-construction by blast
then have W8 : Cong A D A ′ D ′

using Cong-cases by blast
have C A D B OFSC C ′ A ′ D ′ B ′

by (meson Bet-perm Cong3-def Cong-perm OFSC-def W7 W7A assms(1 ))
then have Cong D B D ′ B ′

using Z1 five-segment-with-def by auto
then have w9 : Cong B D B ′ D ′

using Cong-perm by blast
have Cong C D C ′ D ′

proof −
have L1 : Bet C A D

using Bet-perm W7 by blast
have L2 : Bet C ′ A ′ D ′

using Bet-perm W7
using W7A by blast

have Cong C A C ′ A ′ using assms(1 )
using Cong3-def assms(1 ) not-cong-2143 by blast

thus ?thesis using l2-11
using L1 L2 W8 l2-11 by blast

qed
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then have ∃ D ′. (Cong A D A ′ D ′ ∧ Cong B D B ′ D ′ ∧ Cong C D C ′ D ′)
using W8 w9 by blast

}
thus ?thesis

using Bet-cases ‹Bet A C D =⇒ ∃D ′. Cong A D A ′ D ′ ∧ Cong B D B ′ D ′ ∧ Cong C D C ′ D ′› ‹Bet C D A =⇒
∃D ′. Cong A D A ′ D ′ ∧ Cong B D B ′ D ′ ∧ Cong C D C ′ D ′› assms(2 ) third-point by blast

qed
thus ?thesis

by blast
qed

lemma bet-conga--bet:
assumes Bet A B C and

A B C CongA A ′ B ′ C ′

shows Bet A ′ B ′ C ′

proof −
obtain A0 C0 A1 C1 where P1 :

Bet B A A0 ∧Cong A A0 B ′ A ′ ∧
Bet B C C0 ∧Cong C C0 B ′ C ′ ∧
Bet B ′ A ′ A1 ∧Cong A ′ A1 B A ∧
Bet B ′ C ′ C1 ∧Cong C ′ C1 B C ∧
Cong A0 C0 A1 C1 using CongA-def assms(2 )

by auto
have Bet C B A0 using P1 outer-transitivity-between

by (metis assms(1 ) assms(2 ) between-symmetry conga-diff1 )
then have Bet A0 B C

using Bet-cases by blast
then have P2 : Bet A0 B C0

using P1 assms(2 ) conga-diff2 outer-transitivity-between by blast
have P3 : A0 B C0 Cong3 A1 B ′ C1
proof −

have Q1 : Cong A0 B A1 B ′

by (meson Bet-cases P1 l2-11-b not-cong-1243 not-cong-4312 )
have Q3 : Cong B C0 B ′ C1

using P1 between-symmetry cong-3421 l2-11-b not-cong-1243 by blast
thus ?thesis

by (simp add: Cong3-def Q1 P1 )
qed
then have P4 : Bet A1 B ′ C1 using P2 l4-6 by blast
then have Bet A ′ B ′ C1

using P1 Bet-cases between-exchange3 by blast
thus ?thesis using between-inner-transitivity P1 by blast

qed

lemma in-angle-one-side:
assumes ¬ Col A B C and
¬ Col B A P and
P InAngle A B C

shows A B OS P C
proof −

obtain X where P1 : Bet A X C ∧ (X = B ∨ B Out X P)
using InAngle-def assms(3 ) by auto

{
assume X = B
then have A B OS P C

using P1 assms(1 ) bet-col by blast
}
{

assume P2 : B Out X P
obtain C ′ where P2A: Bet C A C ′ ∧ Cong A C ′ C A

using segment-construction by blast
have A B TS X C ′

proof −
have Q1 : ¬ Col X A B

by (metis Col-def P1 assms(1 ) assms(2 ) col-transitivity-2 out-col)
have Q2 :¬ Col C ′ A B
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by (metis Col-def Cong-perm P2A assms(1 ) cong-diff l6-16-1 )
have ∃ T . Col T A B ∧ Bet X T C ′

using Bet-cases P1 P2A between-exchange3 col-trivial-1 by blast
thus ?thesis

by (simp add: Q1 Q2 TS-def )
qed
then have P3 : A B TS P C ′

using P2 col-trivial-3 l9-5 by blast
then have A B TS C C ′

by (smt P1 P2 bet-out bet-ts--os between-trivial col123--nos col-trivial-3 invert-two-sides l6-6 l9-2 l9-5 )
then have A B OS P C

using OS-def P3 by blast
}
thus ?thesis

using P1 ‹X = B =⇒ A B OS P C › by blast
qed

lemma inangle-one-side:
assumes ¬ Col A B C and
¬ Col A B P and
¬ Col A B Q and
P InAngle A B C and
Q InAngle A B C

shows A B OS P Q
by (meson assms(1 ) assms(2 ) assms(3 ) assms(4 ) assms(5 ) in-angle-one-side not-col-permutation-4 one-side-symmetry

one-side-transitivity)

lemma inangle-one-side2 :
assumes ¬ Col A B C and
¬ Col A B P and
¬ Col A B Q and
¬ Col C B P and
¬ Col C B Q and
P InAngle A B C and
Q InAngle A B C

shows A B OS P Q ∧ C B OS P Q
by (meson assms(1 ) assms(2 ) assms(3 ) assms(4 ) assms(5 ) assms(6 ) assms(7 ) inangle-one-side l11-24 not-col-permutation-3 )

lemma col-conga-col:
assumes Col A B C and

A B C CongA D E F
shows Col D E F

proof −
{

assume Bet A B C
then have Col D E F

using Col-def assms(2 ) bet-conga--bet by blast
}
{

assume Bet B C A
then have Col D E F

by (meson Col-perm Tarski-neutral-dimensionless.l11-21-a Tarski-neutral-dimensionless-axioms ‹Bet A B C =⇒
Col D E F› assms(1 ) assms(2 ) or-bet-out out-col)

}
{

assume Bet C A B
then have Col D E F

by (meson Col-perm Tarski-neutral-dimensionless.l11-21-a Tarski-neutral-dimensionless-axioms ‹Bet A B C =⇒
Col D E F› assms(1 ) assms(2 ) or-bet-out out-col)

}
thus ?thesis

using Col-def ‹Bet A B C =⇒ Col D E F› ‹Bet B C A =⇒ Col D E F› assms(1 ) by blast
qed

lemma ncol-conga-ncol:
assumes ¬ Col A B C and
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A B C CongA D E F
shows ¬ Col D E F
using assms(1 ) assms(2 ) col-conga-col conga-sym by blast

lemma angle-construction-4 :
assumes A 6= B and

C 6= B and
A ′ 6= B ′

shows ∃C ′. (A B C CongA A ′ B ′ C ′ ∧ Coplanar A ′ B ′ C ′ P)
proof cases

assume Col A ′ B ′ P
thus ?thesis

using angle-construction-3 assms(1 ) assms(2 ) assms(3 ) ncop--ncols by blast
next

assume ¬ Col A ′ B ′ P
{

assume Col A B C
then have ∃C ′. (A B C CongA A ′ B ′ C ′ ∧ Coplanar A ′ B ′ C ′ P)

by (meson angle-construction-3 assms(1 ) assms(2 ) assms(3 ) col--coplanar col-conga-col)
}
{

assume ¬ Col A B C
then obtain C ′ where A B C CongA A ′ B ′ C ′ ∧ A ′ B ′ OS C ′ P

using ‹¬ Col A ′ B ′ P› angle-construction-1 by blast
then have ∃C ′. (A B C CongA A ′ B ′ C ′ ∧ Coplanar A ′ B ′ C ′ P)

using os--coplanar by blast
}
thus ?thesis

using ‹Col A B C =⇒ ∃C ′. A B C CongA A ′ B ′ C ′ ∧ Coplanar A ′ B ′ C ′ P› by blast
qed

lemma lea-distincts:
assumes A B C LeA D E F
shows A6=B ∧ C 6=B ∧ D 6=E ∧ F 6=E
by (metis (no-types) LeA-def Tarski-neutral-dimensionless.conga-diff1 Tarski-neutral-dimensionless.conga-diff2 Tarski-neutral-dimensionless-axioms

assms inangle-distincts)

lemma l11-29-a:
assumes A B C LeA D E F
shows ∃ Q. (C InAngle A B Q ∧ A B Q CongA D E F)

proof −
obtain P where P1 : P InAngle D E F ∧ A B C CongA D E P

using LeA-def assms by blast
then have P2 : E 6= D ∧ B 6= A ∧ E 6= F ∧ E 6= P ∧ B 6= C

using conga-diff1 conga-diff2 inangle-distincts by blast
then have P3 : A 6= B ∧ C 6= B by blast
{

assume Q1 : Bet A B C
then have Q2 : Bet D E P

by (meson P1 Tarski-neutral-dimensionless.bet-conga--bet Tarski-neutral-dimensionless-axioms)
have Q3 : C InAngle A B C

by (simp add: P3 inangle3123 )
obtain X where Q4 : Bet D X F ∧ (X = E ∨ E Out X P)

using InAngle-def P1 by auto
have A B C CongA D E F
proof −

{
assume R1 : X = E
have R2 : Bet E F P ∨ Bet E P F
proof −

have R3 : D 6= E using P2 by blast
have Bet D E F

using Col-def Col-perm P1 Q2 col-in-angle-out not-bet-and-out by blast
have Bet D E P using Q2 by blast
thus ?thesis using l5-2

using R3 ‹Bet D E F› by blast
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qed
then have A B C CongA D E F

by (smt P1 P2 bet-out l11-10 l6-6 out-trivial)
}
{

assume S1 : E Out X P

have S2 : E Out P F
proof −

{
assume Bet E X P
then have E Out P F
proof −

have Bet E X F
by (meson Bet-perm Q2 Q4 ‹Bet E X P› between-exchange3 )

thus ?thesis
by (metis Bet-perm S1 bet2--out between-equality-2 between-trivial2 out2-bet-out out-diff1 )

qed
}
{

assume Bet E P X
then have E Out P F

by (smt Bet-perm Q2 Q4 S1 bet-out-1 between-exchange3 not-bet-and-out outer-transitivity-between2 )
}
thus ?thesis

using Out-def S1 ‹Bet E X P =⇒ E Out P F› by blast
qed

then have A B C CongA D E F
by (metis Bet-perm P2 Q1 Q2 bet-out--bet conga-line)

}
thus ?thesis

using Q4 ‹X = E =⇒ A B C CongA D E F› by blast
qed
then have ∃ Q. (C InAngle A B Q ∧ A B Q CongA D E F)

using conga-diff1 conga-diff2 inangle3123 by blast
}
{

assume B Out A C
obtain Q where D E F CongA A B Q

by (metis P2 angle-construction-3 )

then have ∃ Q. (C InAngle A B Q ∧ A B Q CongA D E F)
by (metis Tarski-neutral-dimensionless.conga-comm Tarski-neutral-dimensionless-axioms ‹B Out A C › conga-diff1

conga-sym out321--inangle)
}
{

assume ZZ : ¬ Col A B C
have Z1 : D 6= E

using P2 by blast
have Z2 : F 6= E

using P2 by blast
have Z3 : Bet D E F ∨ E Out D F ∨ ¬ Col D E F

using not-bet-out by blast
{

assume Bet D E F
obtain Q where Z4 : Bet A B Q ∧ Cong B Q E F

using segment-construction by blast

then have ∃ Q. (C InAngle A B Q ∧ A B Q CongA D E F)
by (metis InAngle-def P3 Z1 Z2 ‹Bet D E F› conga-line point-construction-different)

}
{

assume E Out D F
then have Z5 : E Out D P

using P1 in-angle-out by blast
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have D E P CongA A B C
by (simp add: P1 conga-sym)

then have Z6 : B Out A C using l11-21-a Z5
by blast

then have ∃ Q. (C InAngle A B Q ∧ A B Q CongA D E F)
using ‹B Out A C =⇒ ∃Q. C InAngle A B Q ∧ A B Q CongA D E F› by blast

}
{

assume W1 : ¬ Col D E F
obtain Q where W2 : D E F CongA A B Q ∧ A B OS Q C

using W1 ZZ angle-construction-1 by blast
obtain DD where W3 : E Out D DD ∧ Cong E DD B A

using P3 Z1 segment-construction-3 by force
obtain FF where W4 : E Out F FF ∧ Cong E FF B Q

by (metis P2 W2 conga-diff56 segment-construction-3 )
then have W5 : P InAngle DD E FF

by (smt Out-cases P1 P2 W3 l11-25 out-trivial)
obtain X where W6 : Bet DD X FF ∧ (X = E ∨ E Out X P)

using InAngle-def W5 by presburger
{

assume W7 : X = E
have W8 : Bet D E F
proof −

have W10 : E Out DD D
by (simp add: W3 l6-6 )

have E Out FF F
by (simp add: W4 l6-6 )

thus ?thesis using W6 W7 W10 bet-out-out-bet by blast
qed
then have ∃ Q. (C InAngle A B Q ∧ A B Q CongA D E F)

using ‹Bet D E F =⇒ ∃Q. C InAngle A B Q ∧ A B Q CongA D E F› by blast
}
{

assume V1 : E Out X P
have B 6= C ∧ E 6= X

using P3 V1 out-diff1 by blast
then obtain CC where V2 : B Out C CC ∧ Cong B CC E X

using segment-construction-3 by blast
then have V3 : A B CC CongA DD E X

by (smt P1 P2 V1 W3 l11-10 l6-6 out-trivial)
have V4 : Cong A CC DD X
proof −

have Cong A B DD E
using W3 not-cong-4321 by blast

thus ?thesis
using V2 V3 cong2-conga-cong by blast

qed

have V5 : A B Q CongA DD E FF
proof −

have U1 : D E F CongA A B Q
by (simp add: W2 )

then have U1A: A B Q CongA D E F
by (simp add: conga-sym)

have U2 : B Out A A
by (simp add: P3 out-trivial)

have U3 : B Out Q Q
using W2 conga-diff56 out-trivial by blast

have U4 : E Out DD D
using W3 l6-6 by blast

have E Out FF F
by (simp add: W4 l6-6 )

thus ?thesis using l11-10
using U1A U2 U3 U4 by blast
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qed
then have V6 : Cong A Q DD FF

using Cong-perm W3 W4 cong2-conga-cong by blast
have CC B Q CongA X E FF
proof −

have U1 : B A OS CC Q
by (metis (no-types) V2 W2 col124--nos invert-one-side one-side-symmetry one-side-transitivity out-one-side)

have U2 : E DD OS X FF
proof −

have ¬ Col DD E FF
by (metis Col-perm OS-def TS-def U1 V5 ncol-conga-ncol)

then have ¬ Col E DD X
by (metis Col-def V2 V4 W6 ZZ cong-identity l6-16-1 os-distincts out-one-side)

then have DD E OS X FF
by (metis Col-perm W6 bet-out not-col-distincts one-side-reflexivity out-out-one-side)

thus ?thesis
by (simp add: invert-one-side)

qed
have CC B A CongA X E DD

by (simp add: V3 conga-comm)
thus ?thesis

using U1 U2 V5 l11-22b by blast
qed
then have V8 : Cong CC Q X FF

using V2 W4 cong2-conga-cong cong-commutativity not-cong-3412 by blast
have V9 : CC InAngle A B Q
proof −

have T2 : Q 6= B
using W2 conga-diff56 by blast

have T3 : CC 6= B
using V2 out-distinct by blast

have Bet A CC Q
proof −

have T4 : DD X FF Cong3 A CC Q
using Cong3-def V4 V6 V8 not-cong-3412 by blast

thus ?thesis
using W6 l4-6 by blast

qed
then have ∃ X0 . Bet A X0 Q ∧ (X0 = B ∨ B Out X0 CC )

using out-trivial by blast
thus ?thesis

by (simp add: InAngle-def P3 T2 T3 )
qed
then have C InAngle A B Q

using V2 inangle-distincts l11-25 out-trivial by blast
then have ∃ Q. (C InAngle A B Q ∧ A B Q CongA D E F)

using W2 conga-sym by blast
}
then have ∃ Q. (C InAngle A B Q ∧ A B Q CongA D E F)

using W6 ‹X = E =⇒ ∃Q. C InAngle A B Q ∧ A B Q CongA D E F› by blast
}
then have ∃ Q. (C InAngle A B Q ∧ A B Q CongA D E F)

using Z3 ‹E Out D F =⇒ ∃Q. C InAngle A B Q ∧ A B Q CongA D E F› ‹Bet D E F =⇒ ∃Q. C InAngle A B
Q ∧ A B Q CongA D E F› by blast

}
thus ?thesis

using ‹B Out A C =⇒ ∃Q. C InAngle A B Q ∧ A B Q CongA D E F› ‹Bet A B C =⇒ ∃Q. C InAngle A B Q ∧
A B Q CongA D E F› not-bet-out by blast
qed

lemma in-angle-line:
assumes P 6= B and

A 6= B and
C 6= B and
Bet A B C

shows P InAngle A B C
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using InAngle-def assms(1 ) assms(2 ) assms(3 ) assms(4 ) by auto

lemma l11-29-b:
assumes ∃ Q. (C InAngle A B Q ∧ A B Q CongA D E F)
shows A B C LeA D E F

proof −
obtain Q where P1 : C InAngle A B Q ∧ A B Q CongA D E F

using assms by blast
obtain X where P2 : Bet A X Q ∧ (X = B ∨ B Out X C )

using InAngle-def P1 by auto
{

assume P2A: X = B
obtain P where P3 : A B C CongA D E P

using angle-construction-3 assms conga-diff45 inangle-distincts by fastforce
have P InAngle D E F
proof −

have O1 : Bet D E F
by (metis (no-types) P1 P2 Tarski-neutral-dimensionless.bet-conga--bet Tarski-neutral-dimensionless-axioms P2A)

have O2 : P 6= E
using P3 conga-diff56 by auto

have O3 : D 6= E
using P3 conga-diff45 by auto

have F 6= E
using P1 conga-diff56 by blast

thus ?thesis using in-angle-line
by (simp add: O1 O2 O3 )

qed
then have A B C LeA D E F

using LeA-def P3 by blast
}
{

assume G1 : B Out X C
obtain DD where G2 : E Out D DD ∧ Cong E DD B A

by (metis assms conga-diff1 conga-diff45 segment-construction-3 )
have G3 : D 6= E ∧ DD 6= E

using G2 out-diff1 out-diff2 by blast
obtain FF where G3G: E Out F FF ∧ Cong E FF B Q

by (metis P1 conga-diff56 inangle-distincts segment-construction-3 )
then have G3A: F 6= E

using out-diff1 by blast
have G3B: FF 6= E

using G3G out-distinct by blast
have G4 : Bet A B C ∨ B Out A C ∨ ¬ Col A B C

using not-bet-out by blast
{

assume G5 : Bet A B C
have G6 : F InAngle D E F

by (simp add: G3 G3A inangle3123 )
have A B C CongA D E F

by (smt Bet-perm G3 G3A G5 Out-def P1 P2 bet-conga--bet between-exchange3 conga-line inangle-distincts
outer-transitivity-between2 )

then have A B C LeA D E F
using G6 LeA-def by blast

}
{

assume G8 : B Out A C
have G9 : D InAngle D E F

by (simp add: G3 G3A inangle1123 )
have A B C CongA D E D

by (simp add: G3 G8 l11-21-b out-trivial)
then have A B C LeA D E F using G9 LeA-def by blast

}
{

assume R1 : ¬ Col A B C
have R2 : Bet A B Q ∨ B Out A Q ∨ ¬ Col A B Q

using not-bet-out by blast
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{
assume R3 : Bet A B Q
obtain P where R4 : A B C CongA D E P

by (metis G3 LeA-def ‹Bet A B C =⇒ A B C LeA D E F› angle-construction-3 not-bet-distincts)
have R5 : P InAngle D E F
proof −

have R6 : P 6= E
using R4 conga-diff56 by auto

have Bet D E F
by (metis (no-types) P1 R3 Tarski-neutral-dimensionless.bet-conga--bet Tarski-neutral-dimensionless-axioms)

thus ?thesis
by (simp add: R6 G3 G3A in-angle-line)

qed
then have A B C LeA D E F using R4 R5 LeA-def by blast

}
{

assume S1 : B Out A Q
have S2 : B Out A C

using G1 P2 S1 l6-7 out-bet-out-1 by blast
have S3 : Col A B C

by (simp add: Col-perm S2 out-col)
then have A B C LeA D E F

using R1 by blast
}
{

assume S3B: ¬ Col A B Q
obtain P where S4 : A B C CongA D E P ∧ D E OS P F

by (meson P1 R1 Tarski-neutral-dimensionless.ncol-conga-ncol Tarski-neutral-dimensionless-axioms S3B an-
gle-construction-1 )

obtain PP where S4A: E Out P PP ∧ Cong E PP B X
by (metis G1 S4 os-distincts out-diff1 segment-construction-3 )

have S5 : P InAngle D E F
proof −

have PP InAngle DD E FF
proof −

have Z3 : PP 6= E
using S4A l6-3-1 by blast

have Z4 : Bet DD PP FF
proof −

have L1 : C B Q CongA P E F
proof −

have K1 : B A OS C Q
using Col-perm P1 R1 S3B in-angle-one-side invert-one-side by blast

have K2 : E D OS P F
by (simp add: S4 invert-one-side)

have C B A CongA P E D
by (simp add: S4 conga-comm)

thus ?thesis
using K1 K2 P1 l11-22b by auto

qed
have L2 : Cong DD FF A Q
proof −

have DD E FF CongA A B Q
proof −

have L3 : A B Q CongA D E F
by (simp add: P1 )

then have L3A: D E F CongA A B Q
using conga-sym by blast

have L4 : E Out DD D
using G2 Out-cases by auto

have L5 : E Out FF F
using G3G Out-cases by blast

have L6 : B Out A A
using S3B not-col-distincts out-trivial by auto

have B Out Q Q
by (metis S3B not-col-distincts out-trivial)
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thus ?thesis using L3A L4 L5 L6 l11-10
by blast

qed
have L2B: Cong DD E A B

using Cong-perm G2 by blast
have Cong E FF B Q

by (simp add: G3G)
thus ?thesis

using L2B ‹DD E FF CongA A B Q› cong2-conga-cong by auto
qed
have L8 : Cong A X DD PP
proof −

have L9 : A B X CongA DD E PP
proof −

have L9B: B Out A A
using S3B not-col-distincts out-trivial by blast

have L9D: E Out D D
using G3 out-trivial by auto

have E Out PP P
using Out-cases S4A by blast

thus ?thesis using l11-10 S4 L9B G1 L9D
using G2 Out-cases by blast

qed
have L10 : Cong A B DD E

using G2 not-cong-4321 by blast
have Cong B X E PP

using Cong-perm S4A by blast
thus ?thesis

using L10 L9 cong2-conga-cong by blast
qed
have A X Q Cong3 DD PP FF
proof −

have L12B: Cong A Q DD FF
using L2 not-cong-3412 by blast

have Cong X Q PP FF
proof −

have L13A: X B Q CongA PP E FF
proof −

have L13AC : B Out Q Q
by (metis S3B col-trivial-2 out-trivial)

have L13AD: E Out PP P
by (simp add: S4A l6-6 )

have E Out FF F
by (simp add: G3G l6-6 )

thus ?thesis
using L1 G1 L13AC L13AD l11-10 by blast

qed
have L13B: Cong X B PP E

using S4A not-cong-4321 by blast
have Cong B Q E FF

using G3G not-cong-3412 by blast
thus ?thesis

using L13A L13B cong2-conga-cong by auto
qed
thus ?thesis

by (simp add: Cong3-def L12B L8 )
qed
thus ?thesis using P2 l4-6 by blast

qed
have PP = E ∨ E Out PP PP

using out-trivial by auto
thus ?thesis

using InAngle-def G3 G3B Z3 Z4 by auto
qed
thus ?thesis

using G2 G3G S4A l11-25 by blast
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qed
then have A B C LeA D E F

using S4 LeA-def by blast
}
then have A B C LeA D E F

using R2 ‹B Out A Q =⇒ A B C LeA D E F› ‹Bet A B Q =⇒ A B C LeA D E F› by blast
}
then have A B C LeA D E F

using G4 ‹B Out A C =⇒ A B C LeA D E F› ‹Bet A B C =⇒ A B C LeA D E F› by blast
}
thus ?thesis

using P2 ‹X = B =⇒ A B C LeA D E F› by blast
qed

lemma bet-in-angle-bet:
assumes Bet A B P and

P InAngle A B C
shows Bet A B C
by (metis (no-types) Col-def Col-perm assms(1 ) assms(2 ) col-in-angle-out not-bet-and-out)

lemma lea-line:
assumes Bet A B P and

A B P LeA A B C
shows Bet A B C
by (metis Tarski-neutral-dimensionless.bet-conga--bet Tarski-neutral-dimensionless.l11-29-a Tarski-neutral-dimensionless-axioms

assms(1 ) assms(2 ) bet-in-angle-bet)

lemma eq-conga-out:
assumes A B A CongA D E F
shows E Out D F
by (metis CongA-def assms l11-21-a out-trivial)

lemma out-conga-out:
assumes B Out A C and

A B C CongA D E F
shows E Out D F
using assms(1 ) assms(2 ) l11-21-a by blast

lemma conga-ex-cong3 :
assumes A B C CongA A ′ B ′ C ′

shows ∃ AA CC . ((B Out A AA ∧ B Out C CC ) −→ AA B CC Cong3 A ′ B ′ C ′)
using out-diff2 by blast

lemma conga-preserves-in-angle:
assumes A B C CongA A ′ B ′ C ′ and

A B I CongA A ′ B ′ I ′ and
I InAngle A B C and A ′ B ′ OS I ′ C ′

shows I ′ InAngle A ′ B ′ C ′

proof −
have P1 : A 6= B

using assms(1 ) conga-diff1 by auto
have P2 : B 6= C

using assms(1 ) conga-diff2 by blast
have P3 : A ′ 6= B ′

using assms(1 ) conga-diff45 by auto
have P4 : B ′ 6= C ′

using assms(1 ) conga-diff56 by blast
have P5 : I 6= B

using assms(2 ) conga-diff2 by auto
have P6 : I ′ 6= B ′

using assms(2 ) conga-diff56 by blast
have P7 : Bet A B C ∨ B Out A C ∨ ¬ Col A B C

using l6-4-2 by blast
{

assume Bet A B C
have Q1 : Bet A ′ B ′ C ′
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using ‹Bet A B C › assms(1 ) assms(4 ) bet-col col124--nos col-conga-col by blast
then have I ′ InAngle A ′ B ′ C ′

using assms(4 ) bet-col col124--nos by auto
}
{

assume B Out A C
then have I ′ InAngle A ′ B ′ C ′

by (metis P4 assms(2 ) assms(3 ) in-angle-out l11-21-a out321--inangle)
}
{

assume Z1 : ¬ Col A B C
have Q2 : Bet A B I ∨ B Out A I ∨ ¬ Col A B I

by (simp add: or-bet-out)
{

assume Bet A B I
then have I ′ InAngle A ′ B ′ C ′

using ‹Bet A B C =⇒ I ′ InAngle A ′ B ′ C ′› assms(3 ) bet-in-angle-bet by blast
}
{

assume B Out A I
then have I ′ InAngle A ′ B ′ C ′

using P4 assms(2 ) l11-21-a out321--inangle by auto
}
{

assume ¬ Col A B I
obtain AA ′ where Q3 : B ′ Out A ′ AA ′ ∧ Cong B ′ AA ′ B A

using P1 P3 segment-construction-3 by presburger
obtain CC ′ where Q4 : B ′ Out C ′ CC ′ ∧ Cong B ′ CC ′ B C

using P2 P4 segment-construction-3 by presburger
obtain J where Q5 : Bet A J C ∧ (J = B ∨ B Out J I )

using InAngle-def assms(3 ) by auto
have Q6 : B 6= J

using Q5 Z1 bet-col by auto
have Q7 : ¬ Col A B J

using Q5 Q6 ‹¬ Col A B I › col-permutation-2 col-transitivity-1 out-col by blast
have ¬ Col A ′ B ′ I ′

by (metis assms(4 ) col123--nos)
then have ∃ C ′. (A B J CongA A ′ B ′ C ′ ∧ A ′ B ′ OS C ′ I ′)

using Q7 angle-construction-1 by blast
then obtain J ′ where Q8 : A B J CongA A ′ B ′ J ′ ∧ A ′ B ′ OS J ′ I ′ by blast
have Q9 : B ′ 6= J ′

using Q8 conga-diff56 by blast
obtain JJ ′ where Q10 : B ′ Out J ′ JJ ′ ∧ Cong B ′ JJ ′ B J

using segment-construction-3 Q6 Q9 by blast
have Q11 : ¬ Col A ′ B ′ J ′

using Q8 col123--nos by blast
have Q12 : A ′ 6= JJ ′

by (metis Col-perm Q10 Q11 out-col)
have Q13 : B ′ 6= JJ ′

using Q10 out-distinct by blast
have Q14 : ¬ Col A ′ B ′ JJ ′

using Col-perm Q10 Q11 Q13 l6-16-1 out-col by blast
have Q15 : A B C CongA AA ′ B ′ CC ′

proof −
have T2 : C 6= B using P2 by auto
have T3 : AA ′ 6= B ′

using Out-def Q3 by blast
have T4 : CC ′ 6= B ′

using Q4 out-distinct by blast
have T5 : ∀ A ′ C ′ D ′ F ′. (B Out A ′ A ∧ B Out C ′ C ∧ B ′ Out D ′ AA ′ ∧

B ′ Out F ′ CC ′ ∧Cong B A ′ B ′ D ′ ∧ Cong B C ′ B ′ F ′ −→ Cong A ′ C ′ D ′ F ′)
by (smt Q3 Q4 Tarski-neutral-dimensionless.l11-4-1 Tarski-neutral-dimensionless-axioms assms(1 ) l6-6 l6-7 )

thus ?thesis using P1 T2 T3 T4 l11-4-2 by blast
qed
have Q16 : A ′ B ′ J ′ CongA A ′ B ′ JJ ′

proof −
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have P9 : B ′ Out A ′ A ′

by (simp add: P3 out-trivial)
have B ′ Out JJ ′ J ′

using Out-cases Q10 by auto
thus ?thesis

using l11-10
by (simp add: P9 out2--conga)

qed
have Q17 : B ′ Out I ′ JJ ′ ∨ A ′ B ′ TS I ′ JJ ′

proof −
have Coplanar A ′ I ′ B ′ J ′

by (metis (full-types) Q8 ncoplanar-perm-3 os--coplanar)
then have Coplanar A ′ I ′ B ′ JJ ′

using Q10 Q9 col-cop--cop out-col by blast
then have R1 : Coplanar A ′ B ′ I ′ JJ ′ using coplanar-perm-2

by blast
have A ′ B ′ I ′ CongA A ′ B ′ JJ ′

proof −
have R2 : A ′ B ′ I ′ CongA A B I

by (simp add: assms(2 ) conga-sym)
have A B I CongA A ′ B ′ JJ ′

proof −
have f1 : ∀ p pa pb. ¬ p Out pa pb ∧ ¬ p Out pb pa ∨ p Out pa pb

using Out-cases by blast
then have f2 : B ′ Out JJ ′ J ′

using Q10 by blast
have B Out J I

by (metis Q5 Q6 )
thus ?thesis

using f2 f1 by (meson P3 Q8 Tarski-neutral-dimensionless.l11-10 Tarski-neutral-dimensionless-axioms ‹¬
Col A B I › col-one-side-out col-trivial-2 one-side-reflexivity out-trivial)

qed
thus ?thesis

using R2 conga-trans by blast
qed
thus ?thesis using R1 conga-cop--or-out-ts by blast

qed
{

assume Z2 : B ′ Out I ′ JJ ′

have Z3 : J B C CongA J ′ B ′ C ′

proof −
have R1 : B A OS J C

by (metis Q5 Q7 Z1 bet-out invert-one-side not-col-distincts out-one-side)
have R2 : B ′ A ′ OS J ′ C ′

by (meson Q10 Z2 assms(4 ) invert-one-side l6-6 one-side-symmetry out-out-one-side)
have J B A CongA J ′ B ′ A ′

using Q8 conga-comm by blast
thus ?thesis using assms(1 ) R1 R2 l11-22b by blast

qed
then have I ′ InAngle A ′ B ′ C ′

proof −
have A J C Cong3 AA ′ JJ ′ CC ′

proof −
have R8 : Cong A J AA ′ JJ ′

proof −
have R8A: A B J CongA AA ′ B ′ JJ ′

proof −
have R8AB: B Out A A

by (simp add: P1 out-trivial)
have R8AC : B Out J I

using Q5 Q6 by auto
have R8AD: B ′ Out AA ′ A ′

using Out-cases Q3 by auto
have B ′ Out JJ ′ I ′

using Out-cases Z2 by blast
thus ?thesis
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using assms(2 ) R8AB R8AC R8AD l11-10 by blast
qed
have R8B: Cong A B AA ′ B ′

using Q3 not-cong-4321 by blast
have R8C : Cong B J B ′ JJ ′

using Q10 not-cong-3412 by blast
thus ?thesis

using R8A R8B cong2-conga-cong by blast
qed
have LR8A: Cong A C AA ′ CC ′

using Q15 Q3 Q4 cong2-conga-cong cong-4321 cong-symmetry by blast
have Cong J C JJ ′ CC ′

proof −
have K1 :B ′ Out JJ ′ J ′

using Out-cases Q10 by auto
have B ′ Out CC ′ C ′

using Out-cases Q4 by auto
then have J ′ B ′ C ′ CongA JJ ′ B ′ CC ′ using K1

by (simp add: out2--conga)
then have LR9A: J B C CongA JJ ′ B ′ CC ′

using Z3 conga-trans by blast have LR9B: Cong J B JJ ′ B ′

using Q10 not-cong-4321 by blast
have Cong B C B ′ CC ′

using Q4 not-cong-3412 by blast
thus ?thesis

using LR9A LR9B cong2-conga-cong by blast
qed
thus ?thesis using R8 LR8A

by (simp add: Cong3-def )
qed
then have R10 : Bet AA ′ JJ ′ CC ′ using Q5 l4-6 by blast
have JJ ′ InAngle AA ′ B ′ CC ′

proof −
have R11 : AA ′ 6= B ′

using Out-def Q3 by auto
have R12 : CC ′ 6= B ′

using Out-def Q4 by blast
have Bet AA ′ JJ ′ CC ′ ∧ (JJ ′ = B ′ ∨ B ′ Out JJ ′ JJ ′)

using R10 out-trivial by auto
thus ?thesis

using InAngle-def Q13 R11 R12 by auto
qed
thus ?thesis

using Z2 Q3 Q4 l11-25 by blast
qed

}
{

assume X1 : A ′ B ′ TS I ′ JJ ′

have A ′ B ′ OS I ′ J ′

by (simp add: Q8 one-side-symmetry)
then have X2 : B ′ A ′ OS I ′ JJ ′

using Q10 invert-one-side out-out-one-side by blast
then have I ′ InAngle A ′ B ′ C ′

using X1 invert-one-side l9-9 by blast
}
then have I ′ InAngle A ′ B ′ C ′

using Q17 ‹B ′ Out I ′ JJ ′ =⇒ I ′ InAngle A ′ B ′ C ′› by blast
}
then have I ′ InAngle A ′ B ′ C ′

using Q2 ‹B Out A I =⇒ I ′ InAngle A ′ B ′ C ′› ‹Bet A B I =⇒ I ′ InAngle A ′ B ′ C ′› by blast
}
thus ?thesis

using P7 ‹B Out A C =⇒ I ′ InAngle A ′ B ′ C ′› ‹Bet A B C =⇒ I ′ InAngle A ′ B ′ C ′› by blast
qed

lemma l11-30 :
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assumes A B C LeA D E F and
A B C CongA A ′ B ′ C ′ and
D E F CongA D ′ E ′ F ′

shows A ′ B ′ C ′ LeA D ′ E ′ F ′

proof −
obtain Q where P1 : C InAngle A B Q ∧ A B Q CongA D E F

using assms(1 ) l11-29-a by blast
have P1A: C InAngle A B Q using P1 by simp
have P1B: A B Q CongA D E F using P1 by simp
have P2 : A 6= B

using P1A inangle-distincts by auto
have P3 : C 6= B

using P1A inangle-distincts by blast
have P4 : A ′ 6= B ′

using CongA-def assms(2 ) by blast
have P5 : C ′ 6= B ′

using CongA-def assms(2 ) by auto
have P6 : D 6= E

using CongA-def P1B by blast
have P7 : F 6= E

using CongA-def P1B by blast
have P8 : D ′ 6= E ′

using CongA-def assms(3 ) by blast
have P9 : F ′ 6= E ′

using CongA-def assms(3 ) by blast
have P10 : Bet A ′ B ′ C ′ ∨ B ′ Out A ′ C ′ ∨ ¬ Col A ′ B ′ C ′

using or-bet-out by blast
{

assume Bet A ′ B ′ C ′

then have ∃ Q ′. (C ′ InAngle A ′ B ′ Q ′ ∧ A ′ B ′ Q ′ CongA D ′ E ′ F ′)
by (metis P1 P4 P5 P8 P9 assms(2 ) assms(3 ) bet-conga--bet bet-in-angle-bet conga-line conga-sym inangle3123 )

}
{

assume R1 : B ′ Out A ′ C ′

obtain Q ′ where R2 : D ′ E ′ F ′ CongA A ′ B ′ Q ′

using P4 P8 P9 angle-construction-3 by blast
then have C ′ InAngle A ′ B ′ Q ′

using col-in-angle P1 R1 conga-diff56 out321--inangle by auto
then have ∃ Q ′. (C ′ InAngle A ′ B ′ Q ′ ∧ A ′ B ′ Q ′ CongA D ′ E ′ F ′)

using R2 conga-sym by blast
}
{

assume R3 : ¬ Col A ′ B ′ C ′

have R3A: Bet D ′ E ′ F ′ ∨ E ′ Out D ′ F ′ ∨ ¬ Col D ′ E ′ F ′

using or-bet-out by blast
{

assume Bet D ′ E ′ F ′

have ∃ Q ′. (C ′ InAngle A ′ B ′ Q ′ ∧ A ′ B ′ Q ′ CongA D ′ E ′ F ′)
by (metis P4 P5 P8 P9 ‹Bet D ′ E ′ F ′› conga-line in-angle-line point-construction-different)

}
{

assume R4A: E ′ Out D ′ F ′

obtain Q ′ where R4 : D ′ E ′ F ′ CongA A ′ B ′ Q ′

using P4 P8 P9 angle-construction-3 by blast
then have R5 : B ′ Out A ′ Q ′ using out-conga-out R4A by blast
have R6 : A B Q CongA D ′ E ′ F ′

using P1 assms(3 ) conga-trans by blast
then have R7 : B Out A Q using out-conga-out R4A R4

using conga-sym by blast
have R8 : B Out A C

using P1A R7 in-angle-out by blast
then have R9 : B ′ Out A ′ C ′ using out-conga-out assms(2 )

by blast
have ∃ Q ′. (C ′ InAngle A ′ B ′ Q ′ ∧ A ′ B ′ Q ′ CongA D ′ E ′ F ′)

by (simp add: R9 ‹B ′ Out A ′ C ′ =⇒ ∃Q ′. C ′ InAngle A ′ B ′ Q ′ ∧ A ′ B ′ Q ′ CongA D ′ E ′ F ′›)
}
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{
assume ¬ Col D ′ E ′ F ′

obtain QQ where S1 : D ′ E ′ F ′ CongA A ′ B ′ QQ ∧ A ′ B ′ OS QQ C ′

using R3 ‹¬ Col D ′ E ′ F ′› angle-construction-1 by blast
have S1A: A B Q CongA A ′ B ′ QQ using S1

using P1 assms(3 ) conga-trans by blast
have A ′ B ′ OS C ′ QQ using S1

by (simp add: S1 one-side-symmetry)
then have S2 : C ′ InAngle A ′ B ′ QQ using conga-preserves-in-angle S1A

using P1A assms(2 ) by blast
have S3 : A ′ B ′ QQ CongA D ′ E ′ F ′

by (simp add: S1 conga-sym)
then have ∃ Q ′. (C ′ InAngle A ′ B ′ Q ′ ∧ A ′ B ′ Q ′ CongA D ′ E ′ F ′)

using S2 by auto
}
then have ∃ Q ′. (C ′ InAngle A ′ B ′ Q ′ ∧ A ′ B ′ Q ′ CongA D ′ E ′ F ′)

using R3A ‹E ′ Out D ′ F ′ =⇒ ∃Q ′. C ′ InAngle A ′ B ′ Q ′ ∧ A ′ B ′ Q ′ CongA D ′ E ′ F ′› ‹Bet D ′ E ′ F ′ =⇒ ∃Q ′.
C ′ InAngle A ′ B ′ Q ′ ∧ A ′ B ′ Q ′ CongA D ′ E ′ F ′› by blast

}
thus ?thesis using l11-29-b

using P10 ‹B ′ Out A ′ C ′ =⇒ ∃Q ′. C ′ InAngle A ′ B ′ Q ′ ∧ A ′ B ′ Q ′ CongA D ′ E ′ F ′› ‹Bet A ′ B ′ C ′ =⇒ ∃Q ′. C ′

InAngle A ′ B ′ Q ′ ∧ A ′ B ′ Q ′ CongA D ′ E ′ F ′› by blast
qed

lemma l11-31-1 :
assumes B Out A C and

D 6= E and
F 6= E

shows A B C LeA D E F
by (metis (full-types) LeA-def assms(1 ) assms(2 ) assms(3 ) l11-21-b out321--inangle segment-construction-3 )

lemma l11-31-2 :
assumes A 6= B and

C 6= B and
D 6= E and
F 6= E and
Bet D E F

shows A B C LeA D E F
by (metis LeA-def angle-construction-3 assms(1 ) assms(2 ) assms(3 ) assms(4 ) assms(5 ) conga-diff56 in-angle-line)

lemma lea-refl:
assumes A 6= B and

C 6= B
shows A B C LeA A B C
by (meson assms(1 ) assms(2 ) conga-refl l11-29-b out341--inangle out-trivial)

lemma conga--lea:
assumes A B C CongA D E F
shows A B C LeA D E F
by (metis Tarski-neutral-dimensionless.conga-diff1 Tarski-neutral-dimensionless.conga-diff2 Tarski-neutral-dimensionless.l11-30

Tarski-neutral-dimensionless-axioms assms conga-refl lea-refl)

lemma conga--lea456123 :
assumes A B C CongA D E F
shows D E F LeA A B C
by (simp add: Tarski-neutral-dimensionless.conga--lea Tarski-neutral-dimensionless-axioms assms conga-sym)

lemma lea-left-comm:
assumes A B C LeA D E F
shows C B A LeA D E F
by (metis assms conga-pseudo-refl conga-refl l11-30 lea-distincts)

lemma lea-right-comm:
assumes A B C LeA D E F
shows A B C LeA F E D
by (meson assms conga-right-comm l11-29-a l11-29-b)
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lemma lea-comm:
assumesA B C LeA D E F
shows C B A LeA F E D
using assms lea-left-comm lea-right-comm by blast

lemma lta-left-comm:
assumes A B C LtA D E F
shows C B A LtA D E F
by (meson LtA-def Tarski-neutral-dimensionless.conga-left-comm Tarski-neutral-dimensionless.lea-left-comm Tarski-neutral-dimensionless-axioms

assms)

lemma lta-right-comm:
assumes A B C LtA D E F
shows A B C LtA F E D
by (meson Tarski-neutral-dimensionless.LtA-def Tarski-neutral-dimensionless.conga-comm Tarski-neutral-dimensionless.lea-comm

Tarski-neutral-dimensionless.lta-left-comm Tarski-neutral-dimensionless-axioms assms)

lemma lta-comm:
assumes A B C LtA D E F
shows C B A LtA F E D
using assms lta-left-comm lta-right-comm by blast

lemma lea-out4--lea:
assumes A B C LeA D E F and

B Out A A ′ and
B Out C C ′ and
E Out D D ′ and
E Out F F ′

shows A ′ B C ′ LeA D ′ E F ′

using assms(1 ) assms(2 ) assms(3 ) assms(4 ) assms(5 ) l11-30 l6-6 out2--conga by auto

lemma lea121345 :
assumes A 6= B and

C 6= D and
D 6= E

shows A B A LeA C D E
using assms(1 ) assms(2 ) assms(3 ) l11-31-1 out-trivial by auto

lemma inangle--lea:
assumes P InAngle A B C
shows A B P LeA A B C
by (metis Tarski-neutral-dimensionless.l11-29-b Tarski-neutral-dimensionless-axioms assms conga-refl inangle-distincts)

lemma inangle--lea-1 :
assumes P InAngle A B C
shows P B C LeA A B C
by (simp add: Tarski-neutral-dimensionless.inangle--lea Tarski-neutral-dimensionless.lea-comm Tarski-neutral-dimensionless-axioms

assms l11-24 )

lemma inangle--lta:
assumes ¬ Col P B C and

P InAngle A B C
shows A B P LtA A B C
by (metis LtA-def TS-def Tarski-neutral-dimensionless.conga-cop--or-out-ts Tarski-neutral-dimensionless.conga-os--out

Tarski-neutral-dimensionless.inangle--lea Tarski-neutral-dimensionless.ncol-conga-ncol Tarski-neutral-dimensionless-axioms
assms(1 ) assms(2 ) col-one-side-out col-trivial-3 in-angle-one-side inangle--coplanar invert-two-sides l11-21-b ncopla-
nar-perm-12 not-col-permutation-3 one-side-reflexivity)

lemma in-angle-trans:
assumes C InAngle A B D and

D InAngle A B E
shows C InAngle A B E

proof −
obtain CC where P1 : Bet A CC D ∧ (CC = B ∨ B Out CC C )
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using InAngle-def assms(1 ) by auto
obtain DD where P2 : Bet A DD E ∧ (DD = B ∨ B Out DD D)

using InAngle-def assms(2 ) by auto
then have P3 : Bet A DD E by simp
have P4 : DD = B ∨ B Out DD D using P2 by simp
{

assume CC = B ∧ DD = B
then have C InAngle A B E

using InAngle-def P2 assms(1 ) assms(2 ) by auto
}
{

assume CC = B ∧ B Out DD D
then have C InAngle A B E

by (metis InAngle-def P1 assms(1 ) assms(2 ) bet-in-angle-bet)
}
{

assume B Out CC C ∧ DD = B
then have C InAngle A B E

by (metis Out-def P2 assms(2 ) in-angle-line inangle-distincts)
}
{

assume P3 : B Out CC C ∧ B Out DD D
then have P3A: B Out CC C by simp
have P3B: B Out DD D using P3 by simp
have C InAngle A B DD

using P3 assms(1 ) inangle-distincts l11-25 out-trivial by blast
then obtain CC ′ where T1 : Bet A CC ′ DD ∧ (CC ′ = B ∨ B Out CC ′ C )

using InAngle-def by auto
{

assume CC ′ = B
then have C InAngle A B E

by (metis P2 P3 T1 assms(2 ) between-exchange4 in-angle-line inangle-distincts out-diff2 )
}
{

assume B Out CC ′ C
then have C InAngle A B E

by (metis InAngle-def P2 T1 assms(1 ) assms(2 ) between-exchange4 )
}

then have C InAngle A B E
using T1 ‹CC ′ = B =⇒ C InAngle A B E› by blast

}
thus ?thesis

using P1 P2 ‹B Out CC C ∧ DD = B =⇒ C InAngle A B E› ‹CC = B ∧ B Out DD D =⇒ C InAngle A B E›
‹CC = B ∧ DD = B =⇒ C InAngle A B E› by blast
qed

lemma lea-trans:
assumes A B C LeA A1 B1 C1 and

A1 B1 C1 LeA A2 B2 C2
shows A B C LeA A2 B2 C2

proof −
obtain P1 where T1 : P1 InAngle A1 B1 C1 ∧ A B C CongA A1 B1 P1

using LeA-def assms(1 ) by auto
obtain P2 where T2 : P2 InAngle A2 B2 C2 ∧ A1 B1 C1 CongA A2 B2 P2

using LeA-def assms(2 ) by blast
have T3 : A 6= B

using CongA-def T1 by auto
have T4 : C 6= B

using CongA-def T1 by blast
have T5 : A1 6= B1

using T1 inangle-distincts by blast
have T6 : C1 6= B1

using T1 inangle-distincts by blast
have T7 : A2 6= B2

using T2 inangle-distincts by blast
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have T8 : C2 6= B2
using T2 inangle-distincts by blast

have T9 : Bet A B C ∨ B Out A C ∨ ¬ Col A B C
using not-out-bet by auto

{
assume Bet A B C
then have A B C LeA A2 B2 C2

by (metis T1 T2 T3 T4 T7 T8 bet-conga--bet bet-in-angle-bet l11-31-2 )
}
{

assume B Out A C
then have A B C LeA A2 B2 C2

by (simp add: T7 T8 l11-31-1 )
}
{

assume H1 : ¬ Col A B C
have T10 : Bet A2 B2 C2 ∨ B2 Out A2 C2 ∨ ¬ Col A2 B2 C2

using not-out-bet by auto
{

assume Bet A2 B2 C2
then have A B C LeA A2 B2 C2

by (simp add: T3 T4 T7 T8 l11-31-2 )
}
{

assume T10A: B2 Out A2 C2
have B Out A C
proof −

have B1 Out A1 P1
proof −

have B1 Out A1 C1 using T2 conga-sym T2 T10A in-angle-out out-conga-out by blast
thus ?thesis using T1 in-angle-out by blast

qed
thus ?thesis using T1 conga-sym l11-21-a by blast

qed
then have A B C LeA A2 B2 C2

using ‹B Out A C =⇒ A B C LeA A2 B2 C2 › by blast
}
{

assume T12 : ¬ Col A2 B2 C2
obtain P where T13 : A B C CongA A2 B2 P ∧ A2 B2 OS P C2

using T12 H1 angle-construction-1 by blast
have T14 : A2 B2 OS P2 C2
proof −

have ¬ Col B2 A2 P2
proof −

have B2 6= A2
using T7 by auto

{
assume H2 : P2 = A2
have A2 B2 A2 CongA A1 B1 C1

using T2 H2 conga-sym by blast
then have B1 Out A1 C1

using eq-conga-out by blast
then have B1 Out A1 P1

using T1 in-angle-out by blast
then have B Out A C

using T1 conga-sym out-conga-out by blast
then have False

using Col-cases H1 out-col by blast
}
then have P2 6= A2 by blast
have Bet A2 B2 P2 ∨ B2 Out A2 P2 ∨ ¬ Col A2 B2 P2

using not-out-bet by auto
{

assume H4 : Bet A2 B2 P2
then have Bet A2 B2 C2
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using T2 bet-in-angle-bet by blast
then have Col B2 A2 P2 −→ False

using Col-def T12 by blast
then have ¬ Col B2 A2 P2

using H4 bet-col not-col-permutation-4 by blast
}
{

assume H5 : B2 Out A2 P2
then have B1 Out A1 C1

using T2 conga-sym out-conga-out by blast
then have B1 Out A1 P1

using T1 in-angle-out by blast
then have B Out A C

using H1 T1 ncol-conga-ncol not-col-permutation-4 out-col by blast
then have ¬ Col B2 A2 P2

using Col-perm H1 out-col by blast
}
{

assume ¬ Col A2 B2 P2
then have ¬ Col B2 A2 P2

using Col-perm by blast
}
thus ?thesis
using ‹B2 Out A2 P2 =⇒ ¬ Col B2 A2 P2 › ‹Bet A2 B2 P2 =⇒ ¬ Col B2 A2 P2 › ‹Bet A2 B2 P2 ∨ B2 Out

A2 P2 ∨ ¬ Col A2 B2 P2 › by blast
qed
thus ?thesis

by (simp add: T2 T12 in-angle-one-side)
qed
have S1 : A2 B2 OS P P2

using T13 T14 one-side-symmetry one-side-transitivity by blast
have A1 B1 P1 CongA A2 B2 P

using conga-trans conga-sym T1 T13 by blast
then have P InAngle A2 B2 P2

using conga-preserves-in-angle T2 T1 S1 by blast
then have P InAngle A2 B2 C2

using T2 in-angle-trans by blast
then have A B C LeA A2 B2 C2

using T13 LeA-def by blast
}
then have A B C LeA A2 B2 C2

using T10 ‹B2 Out A2 C2 =⇒ A B C LeA A2 B2 C2 › ‹Bet A2 B2 C2 =⇒ A B C LeA A2 B2 C2 › by blast
}
thus ?thesis

using T9 ‹B Out A C =⇒ A B C LeA A2 B2 C2 › ‹Bet A B C =⇒ A B C LeA A2 B2 C2 › by blast
qed

lemma in-angle-asym:
assumes D InAngle A B C and

C InAngle A B D
shows A B C CongA A B D

proof −
obtain CC where P1 : Bet A CC D ∧ (CC = B ∨ B Out CC C )

using InAngle-def assms(2 ) by auto
obtain DD where P2 : Bet A DD C ∧ (DD = B ∨ B Out DD D)

using InAngle-def assms(1 ) by auto
{

assume (CC = B) ∧ (DD = B)
then have A B C CongA A B D

by (metis P1 P2 assms(2 ) conga-line inangle-distincts)
}
{

assume (CC = B) ∧ (B Out DD D)
then have A B C CongA A B D

by (metis P1 assms(1 ) bet-in-angle-bet conga-line inangle-distincts)
}
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{
assume (B Out CC C ) ∧ (DD = B)
then have A B C CongA A B D

by (metis P2 assms(2 ) bet-in-angle-bet conga-line inangle-distincts)
}
{

assume V1 : (B Out CC C ) ∧ (B Out DD D)
obtain X where P3 : Bet CC X C ∧ Bet DD X D

using P1 P2 between-symmetry inner-pasch by blast
then have B Out X D

using V1 out-bet-out-2 by blast
then have B Out C D

using P3 V1 out2-bet-out by blast
then have A B C CongA A B D

using assms(2 ) inangle-distincts l6-6 out2--conga out-trivial by blast
}
thus ?thesis using P1 P2

using ‹B Out CC C ∧ DD = B =⇒ A B C CongA A B D› ‹CC = B ∧ B Out DD D =⇒ A B C CongA A B D›
‹CC = B ∧ DD = B =⇒ A B C CongA A B D› by blast
qed

lemma lea-asym:
assumes A B C LeA D E F and

D E F LeA A B C
shows A B C CongA D E F

proof cases
assume P1 : Col A B C
{

assume P1A: Bet A B C
have P2 : D 6= E

using assms(1 ) lea-distincts by blast
have P3 : F 6= E

using assms(2 ) lea-distincts by auto
have P4 : A 6= B

using assms(1 ) lea-distincts by auto
have P5 : C 6= B

using assms(2 ) lea-distincts by blast
obtain P where P6 : P InAngle D E F ∧ A B C CongA D E P

using LeA-def assms(1 ) by blast
then have A B C CongA D E P by simp
then have Bet D E P using P1 P1A bet-conga--bet

by blast
then have Bet D E F

using P6 bet-in-angle-bet by blast
then have A B C CongA D E F
by (metis Tarski-neutral-dimensionless.bet-conga--bet Tarski-neutral-dimensionless.conga-line Tarski-neutral-dimensionless.l11-29-a

Tarski-neutral-dimensionless-axioms P2 P3 P4 P5 assms(2 ) bet-in-angle-bet)
}
{

assume T1 : ¬ Bet A B C
then have T2 : B Out A C

using P1 not-out-bet by auto
obtain P where T3 : P InAngle A B C ∧ D E F CongA A B P

using LeA-def assms(2 ) by blast
then have T3A: P InAngle A B C by simp
have T3B: D E F CongA A B P using T3 by simp
have T4 : E Out D F
proof −

have T4A: B Out A P
using T2 T3 in-angle-out by blast

have A B P CongA D E F
by (simp add: T3 conga-sym)

thus ?thesis
using T4A l11-21-a by blast

qed
then have A B C CongA D E F
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by (simp add: T2 l11-21-b)
}
thus ?thesis

using ‹Bet A B C =⇒ A B C CongA D E F› by blast
next

assume T5 : ¬ Col A B C
obtain Q where T6 : C InAngle A B Q ∧ A B Q CongA D E F

using assms(1 ) l11-29-a by blast
then have T6A: C InAngle A B Q by simp
have T6B: A B Q CongA D E F by (simp add: T6 )
obtain P where T7 : P InAngle A B C ∧ D E F CongA A B P

using LeA-def assms(2 ) by blast
then have T7A: P InAngle A B C by simp
have T7B: D E F CongA A B P by (simp add: T7 )
have T13 : A B Q CongA A B P

using T6 T7 conga-trans by blast
have T14 : Bet A B Q ∨ B Out A Q ∨ ¬ Col A B Q

using not-out-bet by auto
{

assume R1 : Bet A B Q
then have A B C CongA D E F

using T13 T5 T7 bet-col bet-conga--bet bet-in-angle-bet by blast
}
{

assume R2 : B Out A Q
then have A B C CongA D E F

using T6 in-angle-out l11-21-a l11-21-b by blast
}
{

assume R3 : ¬ Col A B Q
have R3A: Bet A B P ∨ B Out A P ∨ ¬ Col A B P

using not-out-bet by blast
{

assume R3AA: Bet A B P
then have A B C CongA D E F

using T5 T7 bet-col bet-in-angle-bet by blast
}
{

assume R3AB: B Out A P
then have A B C CongA D E F

by (meson Col-cases R3 T13 ncol-conga-ncol out-col)
}
{

assume R3AC : ¬ Col A B P
have R3AD: B Out P Q ∨ A B TS P Q
proof −

have Coplanar A B P Q
using T6A T7A coplanar-perm-8 in-angle-trans inangle--coplanar by blast

thus ?thesis
by (simp add: T13 conga-sym conga-cop--or-out-ts)

qed
{

assume B Out P Q
then have C InAngle A B P

by (meson R3 T6A bet-col between-symmetry l11-24 l11-25-aux)
then have A B C CongA A B P

by (simp add: T7A in-angle-asym)
then have A B C CongA D E F

by (meson T7B Tarski-neutral-dimensionless.conga-sym Tarski-neutral-dimensionless.conga-trans Tarski-neutral-dimensionless-axioms)
}
{

assume W1 : A B TS P Q
have A B OS P Q

using Col-perm R3 R3AC T6A T7A in-angle-one-side in-angle-trans by blast
then have A B C CongA D E F

using W1 l9-9 by blast
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}
then have A B C CongA D E F

using R3AD ‹B Out P Q =⇒ A B C CongA D E F› by blast
}
then have A B C CongA D E F

using R3A ‹B Out A P =⇒ A B C CongA D E F› ‹Bet A B P =⇒ A B C CongA D E F› by blast
}
thus ?thesis

using T14 ‹B Out A Q =⇒ A B C CongA D E F› ‹Bet A B Q =⇒ A B C CongA D E F› by blast
qed

lemma col-lta--bet:
assumes Col X Y Z and

A B C LtA X Y Z
shows Bet X Y Z

proof −
have A B C LeA X Y Z ∧ ¬ A B C CongA X Y Z

using LtA-def assms(2 ) by auto
then have Y Out X Z −→ False
using Tarski-neutral-dimensionless.lea-asym Tarski-neutral-dimensionless.lea-distincts Tarski-neutral-dimensionless-axioms

l11-31-1
by fastforce

thus ?thesis using not-out-bet assms(1 )
by blast

qed

lemma col-lta--out:
assumes Col A B C and

A B C LtA X Y Z
shows B Out A C

proof −
have A B C LeA X Y Z ∧ ¬ A B C CongA X Y Z

using LtA-def assms(2 ) by auto
thus ?thesis

by (metis assms(1 ) l11-31-2 lea-asym lea-distincts or-bet-out)
qed

lemma lta-distincts:
assumes A B C LtA D E F
shows A6=B ∧ C 6=B ∧ D 6=E ∧ F 6=E ∧ D 6= F
by (metis LtA-def assms bet-neq12--neq col-lta--bet lea-distincts not-col-distincts)

lemma gta-distincts:
assumes A B C GtA D E F
shows A6=B ∧ C 6=B ∧ D 6=E ∧ F 6=E ∧ A 6= C
using GtA-def assms lta-distincts by presburger

lemma acute-distincts:
assumes Acute A B C
shows A6=B ∧ C 6=B
using Acute-def assms lta-distincts by blast

lemma obtuse-distincts:
assumes Obtuse A B C
shows A6=B ∧ C 6=B ∧ A 6= C
using Obtuse-def assms lta-distincts by blast

lemma two-sides-in-angle:
assumes B 6= P ′ and

B P TS A C and
Bet P B P ′

shows P InAngle A B C ∨ P ′ InAngle A B C
proof −

obtain T where P1 : Col T B P ∧ Bet A T C
using TS-def assms(2 ) by auto

have P2 : A 6= B
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using assms(2 ) ts-distincts by blast
have P3 : C 6= B

using assms(2 ) ts-distincts by blast
show ?thesis
proof cases

assume B = T
thus ?thesis

using P1 P2 P3 assms(1 ) in-angle-line by auto
next

assume B 6= T
thus ?thesis

by (metis InAngle-def P1 assms(1 ) assms(2 ) assms(3 ) between-symmetry l6-3-2 or-bet-out ts-distincts)
qed

qed

lemma in-angle-reverse:
assumes A ′ 6= B and

Bet A B A ′ and
C InAngle A B D

shows D InAngle A ′ B C
proof −

have P1 : A 6= B
using assms(3 ) inangle-distincts by auto

have P2 : D 6= B
using assms(3 ) inangle-distincts by blast

have P3 : C 6= B
using assms(3 ) inangle-distincts by auto

show ?thesis
proof cases

assume Col B A C
thus ?thesis

by (smt P1 P2 P3 assms(1 ) assms(2 ) assms(3 ) bet-in-angle-bet between-inner-transitivity between-symmetry
in-angle-line l6-3-2 out321--inangle outer-transitivity-between third-point)

next
assume P4 : ¬ Col B A C
thus ?thesis
proof cases

assume Col B D C
thus ?thesis

by (smt P2 P4 assms(1 ) assms(2 ) assms(3 ) bet-col1 col2--eq col-permutation-2 in-angle-one-side l9-19-R1
out341--inangle)

next
assume P5 : ¬ Col B D C
have P6 : C B TS A D

using P4 P5 assms(3 ) in-angle-two-sides by auto
obtain X where P7 : Bet A X D ∧ (X = B ∨ B Out X C )

using InAngle-def assms(3 ) by auto
have P8 : X = B =⇒ D InAngle A ′ B C

using Out-def P1 P2 P3 P7 assms(1 ) assms(2 ) l5-2 out321--inangle by auto
{

assume P9 : B Out X C
have P10 : C 6= B

by (simp add: P3 )
have P10A: ¬ Col B A C

by (simp add: P4 )
have P10B: ¬ Col B D C

by (simp add: P5 )
have P10C : C InAngle D B A

by (simp add: assms(3 ) l11-24 )
{

assume Col D B A
have Col B A C
proof −

have B 6= X
using P9 out-distinct by blast

have Col B X A
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by (meson Bet-perm P10C P5 P7 ‹Col D B A› bet-col1 col-permutation-3 in-angle-out or-bet-out out-col)
have Col B X C

by (simp add: P9 out-col)
thus ?thesis

using ‹B 6= X› ‹Col B X A› col-transitivity-1 by blast
qed
then have False

by (simp add: P4 )
}
then have P10E : ¬ Col D B A by auto
have P11 : D B OS C A

by (simp add: P10C P10E P5 in-angle-one-side)
have P12 : ¬ Col A D B

using Col-cases P10E by auto
have P13 : ¬ Col A ′ D B

by (metis Col-def ‹Col D B A =⇒ False› assms(1 ) assms(2 ) col-transitivity-1 )
have P14 : D B TS A A ′

using P12 P13 TS-def assms(2 ) col-trivial-3 by blast
have P15 : D B TS C A ′

using P11 P14 l9-8-2 one-side-symmetry by blast
have P16 : ¬ Col C D B

by (simp add: P5 not-col-permutation-3 )
obtain Y where P17 : Col Y D B ∧ Bet C Y A ′

using P15 TS-def by auto
have P18 : Bet A ′ Y C

using Bet-perm P17 by blast
{

assume S1 : Y 6= B
have S2 : Col D B Y

using P17 not-col-permutation-2 by blast
then have S3 : Bet D B Y ∨ Bet B Y D ∨ Bet Y D B

using Col-def S2 by auto
{

assume S4 : Bet D B Y
have S5 : C B OS A ′ Y

by (metis P17 P18 P5 S1 bet-out-1 col-transitivity-2 l6-6 not-col-permutation-3 not-col-permutation-5
out-one-side)

have S6 : C B TS Y D
by (metis Bet-perm P16 P17 S1 S4 bet--ts col3 col-trivial-3 invert-two-sides not-col-permutation-1 )

have C B TS A A ′

by (metis (full-types) P4 assms(1 ) assms(2 ) bet--ts invert-two-sides not-col-permutation-5 )
then have C B TS Y A

using S5 l9-2 l9-8-2 by blast
then have S9 : C B OS A D

using P6 S6 l9-8-1 l9-9 by blast
then have B Out Y D

using P6 S9 l9-9 by auto
}
{

assume Bet B Y D
then have B Out Y D

by (simp add: S1 bet-out)
}
{

assume Bet Y D B
then have B Out Y D

by (simp add: P2 bet-out-1 l6-6 )
}
have B Out Y D

using S3 ‹Bet B Y D =⇒ B Out Y D› ‹Bet D B Y =⇒ B Out Y D› ‹Bet Y D B =⇒ B Out Y D› by blast
}
then have P19 : (Y = B ∨ B Out Y D) by auto
have D InAngle A ′ B C

using InAngle-def P18 P19 P2 P3 assms(1 ) by auto
}
thus ?thesis using P7 P8 by blast
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qed
qed

qed

lemma in-angle-trans2 :
assumes C InAngle A B D and

D InAngle A B E
shows D InAngle C B E

proof −
obtain pp :: ′p ⇒ ′p ⇒ ′p where

f1 : ∀ p pa. Bet p pa (pp p pa) ∧ pa 6= (pp p pa)
using point-construction-different by moura

then have f2 : ∀ p. C InAngle D B (pp p B) ∨ ¬ D InAngle p B A
by (metis assms(1 ) in-angle-reverse in-angle-trans l11-24 )

have f3 : D InAngle E B A
using assms(2 ) l11-24 by blast

then have E 6= B
by (simp add: inangle-distincts)

thus ?thesis
using f3 f2 f1 by (meson Bet-perm in-angle-reverse l11-24 )

qed

lemma l11-36-aux1 :
assumes A 6= B and

A ′ 6= B and
D 6= E and
D ′ 6= E and
Bet A B A ′ and
Bet D E D ′ and
A B C LeA D E F

shows D ′ E F LeA A ′ B C
proof −

obtain P where P1 : C InAngle A B P ∧
A B P CongA D E F

using assms(7 ) l11-29-a by blast
thus ?thesis
by (metis LeA-def Tarski-neutral-dimensionless.l11-13 Tarski-neutral-dimensionless-axioms assms(2 ) assms(4 ) assms(5 )

assms(6 ) conga-sym in-angle-reverse)
qed

lemma l11-36-aux2 :
assumes A 6= B and

A ′ 6= B and
D 6= E and
D ′ 6= E and
Bet A B A ′ and
Bet D E D ′ and
D ′ E F LeA A ′ B C

shows A B C LeA D E F
by (metis Bet-cases assms(1 ) assms(3 ) assms(5 ) assms(6 ) assms(7 ) l11-36-aux1 lea-distincts)

lemma l11-36 :
assumes A 6= B and

A ′ 6= B and
D 6= E and
D ′ 6= E and
Bet A B A ′ and
Bet D E D ′

shows A B C LeA D E F ←→ D ′ E F LeA A ′ B C
using assms(1 ) assms(2 ) assms(3 ) assms(4 ) assms(5 ) assms(6 ) l11-36-aux1 l11-36-aux2 by auto

lemma l11-41-aux:
assumes ¬ Col A B C and

Bet B A D and
A 6= D

shows A C B LtA C A D
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proof −
obtain M where P1 : M Midpoint A C

using midpoint-existence by auto
obtain P where P2 : M Midpoint B P

using symmetric-point-construction by auto
have P3 : A C B Cong3 C A P

by (smt Cong3-def P1 P2 assms(1 ) l7-13-R1 l7-2 midpoint-distinct-1 not-col-distincts)
have P4 : A 6= C

using assms(1 ) col-trivial-3 by blast
have P5 : B 6= C

using assms(1 ) col-trivial-2 by blast
have P7 : A 6= M

using P1 P4 is-midpoint-id by blast
have P8 : A C B CongA C A P

by (simp add: P3 P4 P5 cong3-conga)
have P8A: Bet D A B

using Bet-perm assms(2 ) by blast
have P8B: Bet P M B

by (simp add: P2 between-symmetry midpoint-bet)
then obtain X where P9 : Bet A X P ∧ Bet M X D using P8A inner-pasch by blast
have P9A: Bet A X P by (simp add: P9 )
have P9B: Bet M X D by (simp add: P9 )
have P10A: P InAngle C A D
proof −

have K1 : P InAngle M A D
by (metis InAngle-def P3 P5 P7 P9 assms(3 ) bet-out cong3-diff2 )

have K2 : A Out C M
using Out-def P1 P4 P7 midpoint-bet by auto

have K3 : A Out D D
using assms(3 ) out-trivial by auto

have A Out P P
using K1 inangle-distincts out-trivial by auto

thus ?thesis
using K1 K2 K3 l11-25 by blast

qed
then have P10 : A C B LeA C A D

using LeA-def P8 by auto
{

assume K5 : A C B CongA C A D
then have K6 : C A D CongA C A P

using P8 conga-sym conga-trans by blast
have K7 : Coplanar C A D P

using P10A inangle--coplanar ncoplanar-perm-18 by blast
then have K8 : A Out D P ∨ C A TS D P

by (simp add: K6 conga-cop--or-out-ts)
{

assume A Out D P

then have Col M B A
by (meson P8A P8B bet-col1 bet-out--bet between-symmetry not-col-permutation-4 )

then have K8F : Col A M B
using not-col-permutation-1 by blast

have Col A M C
by (simp add: P1 bet-col midpoint-bet)

then have False
using K8F P7 assms(1 ) col-transitivity-1 by blast

}
then have K9 : ¬ A Out D P by auto
{

assume V1 : C A TS D P
then have V3 : A C TS B P
by (metis P10A P8A assms(1 ) col-trivial-1 col-trivial-2 in-angle-reverse in-angle-two-sides invert-two-sides l11-24

l9-18 not-col-permutation-5 )
have A C TS B D

by (simp add: assms(1 ) assms(2 ) assms(3 ) bet--ts not-col-permutation-5 )
then have A C OS D P
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using V1 V3 invert-two-sides l9-8-1 l9-9 by blast
then have False

using V1 invert-one-side l9-9 by blast
}
then have ¬ C A TS D P by auto
then have False using K8 K9 by auto

}
then have ¬ A C B CongA C A D by auto
thus ?thesis

by (simp add: LtA-def P10 )
qed

lemma l11-41 :
assumes ¬ Col A B C and

Bet B A D and
A 6= D

shows A C B LtA C A D ∧ A B C LtA C A D
proof −

have P1 : A C B LtA C A D
using assms(1 ) assms(2 ) assms(3 ) l11-41-aux by auto

have A B C LtA C A D
proof −

obtain E where T1 : Bet C A E ∧ Cong A E C A
using segment-construction by blast

have T1A: Bet C A E using T1 by simp
have T1B: Cong A E C A using T1 by simp
have T2 : A B C LtA B A E

using T1 assms(1 ) cong-reverse-identity l11-41-aux not-col-distincts not-col-permutation-5 by blast
have T3 : B A C CongA C A B

by (metis assms(1 ) conga-pseudo-refl not-col-distincts)
have T3A: D A C CongA E A B

by (metis CongA-def T1 T3 assms(2 ) assms(3 ) cong-reverse-identity l11-13 )
then have T4 : B A E CongA C A D

using conga-comm conga-sym by blast
have A B C CongA A B C
using T2 Tarski-neutral-dimensionless.conga-refl Tarski-neutral-dimensionless.lta-distincts Tarski-neutral-dimensionless-axioms

by fastforce
then have T5 : A B C LeA C A D
by (meson T2 T4 Tarski-neutral-dimensionless.LtA-def Tarski-neutral-dimensionless.l11-30 Tarski-neutral-dimensionless-axioms)
have ¬ A B C CongA C A D
by (meson T2 Tarski-neutral-dimensionless.LtA-def Tarski-neutral-dimensionless.conga-right-comm Tarski-neutral-dimensionless.conga-trans

Tarski-neutral-dimensionless-axioms T3A)
thus ?thesis

by (simp add: LtA-def T5 )
qed
thus ?thesis by (simp add: P1 )

qed

lemma not-conga:
assumes A B C CongA A ′ B ′ C ′ and
¬ A B C CongA D E F

shows ¬ A ′ B ′ C ′ CongA D E F
by (meson assms(1 ) assms(2 ) conga-trans)

lemma not-conga-sym:
assumes ¬ A B C CongA D E F
shows ¬ D E F CongA A B C
using assms conga-sym by blast

lemma not-and-lta:
shows ¬ (A B C LtA D E F ∧ D E F LtA A B C )

proof −
{

assume P1 : A B C LtA D E F ∧ D E F LtA A B C
then have A B C CongA D E F

using LtA-def lea-asym by blast
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then have False
using LtA-def P1 by blast

}
thus ?thesis by auto

qed

lemma conga-preserves-lta:
assumes A B C CongA A ′ B ′ C ′ and

D E F CongA D ′ E ′ F ′ and
A B C LtA D E F

shows A ′ B ′ C ′ LtA D ′ E ′ F ′

by (meson Tarski-neutral-dimensionless.LtA-def Tarski-neutral-dimensionless.conga-trans Tarski-neutral-dimensionless.l11-30
Tarski-neutral-dimensionless.not-conga-sym Tarski-neutral-dimensionless-axioms assms(1 ) assms(2 ) assms(3 ))

lemma lta-trans:
assumes A B C LtA A1 B1 C1 and

A1 B1 C1 LtA A2 B2 C2
shows A B C LtA A2 B2 C2

proof −
have P1 : A B C LeA A2 B2 C2

by (meson LtA-def assms(1 ) assms(2 ) lea-trans)
{

assume A B C CongA A2 B2 C2
then have False
by (meson Tarski-neutral-dimensionless.LtA-def Tarski-neutral-dimensionless.lea-asym Tarski-neutral-dimensionless.lea-trans

Tarski-neutral-dimensionless-axioms assms(1 ) assms(2 ) conga--lea456123 )
}
thus ?thesis

using LtA-def P1 by blast
qed

lemma obtuse-sym:
assumes Obtuse A B C
shows Obtuse C B A
by (meson Obtuse-def Tarski-neutral-dimensionless.lta-right-comm Tarski-neutral-dimensionless-axioms assms)

lemma acute-sym:
assumes Acute A B C
shows Acute C B A
by (meson Acute-def Tarski-neutral-dimensionless.lta-left-comm Tarski-neutral-dimensionless-axioms assms)

lemma acute-col--out:
assumes Col A B C and

Acute A B C
shows B Out A C
by (meson Tarski-neutral-dimensionless.Acute-def Tarski-neutral-dimensionless-axioms assms(1 ) assms(2 ) col-lta--out)

lemma col-obtuse--bet:
assumes Col A B C and

Obtuse A B C
shows Bet A B C
using Obtuse-def assms(1 ) assms(2 ) col-lta--bet by blast

lemma out--acute:
assumes B Out A C
shows Acute A B C

proof −
have P1 : A 6= B

using assms out-diff1 by auto
then obtain D where P3 : B D Perp A B

using perp-exists by blast
then have P4 : B 6= D

using perp-distinct by auto
have P5 : Per A B D

by (simp add: P3 l8-2 perp-per-1 )
have P6 : A B C LeA A B D

191



using P1 P4 assms l11-31-1 by auto
{

assume A B C CongA A B D
then have False

by (metis Col-cases P1 P4 P5 assms col-conga-col l8-9 out-col)
}
then have A B C LtA A B D

using LtA-def P6 by auto
thus ?thesis

using P5 Acute-def by auto
qed

lemma bet--obtuse:
assumes Bet A B C and

A 6= B and B 6= C
shows Obtuse A B C

proof −
obtain D where P1 : B D Perp A B

using assms(2 ) perp-exists by blast
have P5 : B 6= D

using P1 perp-not-eq-1 by auto
have P6 : Per A B D

using P1 Perp-cases perp-per-1 by blast
have P7 : A B D LeA A B C

using assms(2 ) assms(3 ) P5 assms(1 ) l11-31-2 by auto
{

assume A B D CongA A B C
then have False

using assms(2 ) P5 P6 assms(1 ) bet-col ncol-conga-ncol per-not-col by blast
}
then have A B D LtA A B C

using LtA-def P7 by blast
thus ?thesis

using Obtuse-def P6 by blast
qed

lemma l11-43-aux:
assumes A 6= B and

A 6= C and
Per B A C ∨ Obtuse B A C

shows Acute A B C
proof cases

assume P1 : Col A B C
{

assume Per B A C
then have Acute A B C

using Col-cases P1 assms(1 ) assms(2 ) per-col-eq by blast
}
{

assume Obtuse B A C
then have Bet B A C

using P1 col-obtuse--bet col-permutation-4 by blast
then have Acute A B C

by (simp add: assms(1 ) bet-out out--acute)
}
thus ?thesis

using ‹Per B A C =⇒ Acute A B C › assms(3 ) by blast
next

assume P2 : ¬ Col A B C
then have P3 : B 6= C

using col-trivial-2 by auto
obtain B ′ where P4 : Bet B A B ′ ∧ Cong A B ′ B A

using segment-construction by blast
have P5 : ¬ Col B ′ A C

by (metis Col-def P2 P4 col-transitivity-2 cong-reverse-identity)
then have P6 : B ′ 6= A ∧ B ′ 6= C
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using not-col-distincts by blast
then have P7 : A C B LtA C A B ′ ∧ A B C LtA C A B ′

using P2 P4 l11-41 by auto
then have P7A: A C B LtA C A B ′ by simp
have P7B: A B C LtA C A B ′ by (simp add: P7 )
{

assume Per B A C
have Acute A B C

by (metis Acute-def P4 P7B ‹Per B A C › assms(1 ) bet-col col-per2--per col-trivial-3 l8-3 lta-right-comm)
}
{

assume T1 : Obtuse B A C
then obtain a b c where T2 : Per a b c ∧ a b c LtA B A C

using Obtuse-def by blast
then have T2A: Per a b c by simp
have T2B: a b c LtA B A C by (simp add: T2 )
then have T3 : a b c LeA B A C ∧ ¬ a b c CongA B A C

by (simp add: LtA-def )
then have T3A: a b c LeA B A C by simp
have T3B: ¬ a b c CongA B A C by (simp add: T3 )
obtain P where T4 : P InAngle B A C ∧ a b c CongA B A P

using LeA-def T3 by blast
then have T5 : Per B A P using T4 T2 l11-17 by blast
then have T6 : Per P A B

using l8-2 by blast
have Col A B B ′

by (simp add: P4 bet-col col-permutation-4 )
then have Per P A B ′

using T6 assms(1 ) per-col by blast
then have S3 : B A P CongA B ′ A P

using l8-2 P6 T5 T4 CongA-def assms(1 ) l11-16 by auto
have C A B ′ LtA P A B
proof −

have S4 : B A P LeA B A C ←→ B ′ A C LeA B ′ A P
using P4 P6 assms(1 ) l11-36 by auto

have S5 : C A B ′ LeA P A B
proof −

have S6 : B A P LeA B A C
using T4 inangle--lea by auto

have B ′ A P CongA P A B
using S3 conga-left-comm not-conga-sym by blast

thus ?thesis
using P6 S4 S6 assms(2 ) conga-pseudo-refl l11-30 by auto

qed
{

assume T10 : C A B ′ CongA P A B
have Per B ′ A C
proof −

have B A P CongA B ′ A C
using T10 conga-comm conga-sym by blast

thus ?thesis
using T5 l11-17 by blast

qed
then have Per C A B

using Col-cases P6 ‹Col A B B ′› l8-2 l8-3 by blast
have a b c CongA B A C
proof −

have a 6= b
using T3A lea-distincts by auto

have c 6= b
using T2B lta-distincts by blast

have Per B A C
using Per-cases ‹Per C A B› by blast

thus ?thesis
using T2 ‹a 6= b› ‹c 6= b› assms(1 ) assms(2 ) l11-16 by auto

qed
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then have False
using T3B by blast

}
then have ¬ C A B ′ CongA P A B by blast
thus ?thesis

by (simp add: LtA-def S5 )
qed
then have A B C LtA B A P

by (meson P7 lta-right-comm lta-trans)
then have Acute A B C using T5

using Acute-def by blast
}
thus ?thesis

using ‹Per B A C =⇒ Acute A B C › assms(3 ) by blast
qed

lemma l11-43 :
assumes A 6= B and

A 6= C and
Per B A C ∨ Obtuse B A C

shows Acute A B C ∧ Acute A C B
using Per-perm assms(1 ) assms(2 ) assms(3 ) l11-43-aux obtuse-sym by blast

lemma acute-lea-acute:
assumes Acute D E F and

A B C LeA D E F
shows Acute A B C

proof −
obtain A ′ B ′ C ′ where P1 : Per A ′ B ′ C ′ ∧ D E F LtA A ′ B ′ C ′

using Acute-def assms(1 ) by auto
have P2 : A B C LeA A ′ B ′ C ′

using LtA-def P1 assms(2 ) lea-trans by blast
have ¬ A B C CongA A ′ B ′ C ′

by (meson LtA-def P1 assms(2 ) conga--lea456123 lea-asym lea-trans)
then have A B C LtA A ′ B ′ C ′

by (simp add: LtA-def P2 )
thus ?thesis

using Acute-def P1 by auto
qed

lemma lea-obtuse-obtuse:
assumes Obtuse D E F and

D E F LeA A B C
shows Obtuse A B C

proof −
obtain A ′ B ′ C ′ where P1 : Per A ′ B ′ C ′ ∧ A ′ B ′ C ′ LtA D E F

using Obtuse-def assms(1 ) by auto
then have P2 : A ′ B ′ C ′ LeA A B C

using LtA-def assms(2 ) lea-trans by blast
have ¬ A ′ B ′ C ′ CongA A B C

by (meson LtA-def P1 assms(2 ) conga--lea456123 lea-asym lea-trans)
then have A ′ B ′ C ′ LtA A B C

by (simp add: LtA-def P2 )
thus ?thesis

using Obtuse-def P1 by auto
qed

lemma l11-44-1-a:
assumes A 6= B and

A 6= C and
Cong B A B C

shows B A C CongA B C A
by (metis (no-types, opaque-lifting) Cong3-def assms(1 ) assms(2 ) assms(3 ) cong3-conga cong-inner-transitivity cong-pseudo-reflexivity)

lemma l11-44-2-a:
assumes ¬ Col A B C and
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B A Lt B C
shows B C A LtA B A C

proof −
have T1 : A 6= B

using assms(1 ) col-trivial-1 by auto
have T3 : A 6= C

using assms(1 ) col-trivial-3 by auto
have B A Le B C

by (simp add: assms(2 ) lt--le)
then obtain C ′ where P1 : Bet B C ′ C ∧ Cong B A B C ′

using assms(2 ) Le-def by blast
have T5 : C 6= C ′

using P1 assms(2 ) cong--nlt by blast
have T5A: C ′ 6= A

using Col-def Col-perm P1 assms(1 ) by blast
then have T6 : C ′ InAngle B A C

using InAngle-def P1 T1 T3 out-trivial by auto
have T7 : C ′ A C LtA A C ′ B ∧ C ′ C A LtA A C ′ B
proof −

have W1 : ¬ Col C ′ C A
by (metis Col-def P1 T5 assms(1 ) col-transitivity-2 )

have W2 : Bet C C ′ B
using Bet-perm P1 by blast

have C ′ 6= B
using P1 T1 cong-identity by blast

thus ?thesis
using l11-41 W1 W2 by simp

qed
have T90 : B A C ′ LtA B A C
proof −

have T90A: B A C ′ LeA B A C
by (simp add: T6 inangle--lea)

have B A C ′ CongA B A C ′

using T1 T5A conga-refl by auto
{

assume B A C ′ CongA B A C
then have R1 : A Out C ′ C

by (metis P1 T7 assms(1 ) bet-out conga-os--out lta-distincts not-col-permutation-4 out-one-side)
have B A OS C ′ C

by (metis Col-perm P1 T1 assms(1 ) bet-out cong-diff-2 out-one-side)
then have False

using Col-perm P1 T5 R1 bet-col col2--eq one-side-not-col123 out-col by blast
}
then have ¬ B A C ′ CongA B A C by blast
thus ?thesis

by (simp add: LtA-def T90A)
qed
have B A C ′ CongA B C ′ A

using P1 T1 T5A l11-44-1-a by auto
then have K2 : A C ′ B CongA B A C ′

using conga-left-comm not-conga-sym by blast
have B C A LtA B A C ′

proof −
have K1 : B C A CongA B C A

using assms(1 ) conga-refl not-col-distincts by blast
have B C A LtA A C ′ B
proof −

have C ′ C A CongA B C A
proof −

have K2 : C Out B C ′

using P1 T5 bet-out-1 l6-6 by auto
have C Out A A

by (simp add: T3 out-trivial)
thus ?thesis

by (simp add: K2 out2--conga)
qed
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have A C ′ B CongA A C ′ B
using CongA-def K2 conga-refl by auto

thus ?thesis
using T7 ‹C ′ C A CongA B C A› conga-preserves-lta by auto

qed
thus ?thesis

using K1 K2 conga-preserves-lta by auto
qed
thus ?thesis

using T90 lta-trans by blast
qed

lemma not-lta-and-conga:
¬ ( A B C LtA D E F ∧ A B C CongA D E F)
by (simp add: LtA-def )

lemma conga-sym-equiv:
A B C CongA A ′ B ′ C ′ ←→ A ′ B ′ C ′ CongA A B C
using not-conga-sym by blast

lemma conga-dec:
A B C CongA D E F ∨ ¬ A B C CongA D E F
by auto

lemma lta-not-conga:
assumes A B C LtA D E F
shows ¬ A B C CongA D E F
using assms not-lta-and-conga by auto

lemma lta--lea:
assumes A B C LtA D E F
shows A B C LeA D E F
using LtA-def assms by auto

lemma nlta:
¬ A B C LtA A B C
using not-and-lta by blast

lemma lea--nlta:
assumes A B C LeA D E F
shows ¬ D E F LtA A B C
by (meson Tarski-neutral-dimensionless.lea-asym Tarski-neutral-dimensionless.not-lta-and-conga Tarski-neutral-dimensionless-axioms

assms lta--lea)

lemma lta--nlea:
assumes A B C LtA D E F
shows ¬ D E F LeA A B C
using assms lea--nlta by blast

lemma l11-44-1-b:
assumes ¬ Col A B C and

B A C CongA B C A
shows Cong B A B C

proof −
have B A Lt B C ∨ B A Gt B C ∨ Cong B A B C

by (simp add: or-lt-cong-gt)
thus ?thesis

by (meson Gt-def assms(1 ) assms(2 ) conga-sym l11-44-2-a not-col-permutation-3 not-lta-and-conga)
qed

lemma l11-44-2-b:
assumes B A C LtA B C A
shows B C Lt B A

proof cases
assume Col A B C
thus ?thesis
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using Col-perm assms bet--lt1213 col-lta--bet lta-distincts by blast
next

assume P1 : ¬ Col A B C
then have P2 : A 6= B

using col-trivial-1 by blast
have P3 : A 6= C

using P1 col-trivial-3 by auto
have B A Lt B C ∨ B A Gt B C ∨ Cong B A B C

by (simp add: or-lt-cong-gt)
{

assume B A Lt B C
then have B C Lt B A

using P1 assms l11-44-2-a not-and-lta by blast
}
{

assume B A Gt B C
then have B C Lt B A

using Gt-def P1 assms l11-44-2-a not-and-lta by blast
}
{

assume Cong B A B C
then have B A C CongA B C A

by (simp add: P2 P3 l11-44-1-a)
then have B C Lt B A

using assms not-lta-and-conga by blast
}
thus ?thesis

by (meson P1 Tarski-neutral-dimensionless.not-and-lta Tarski-neutral-dimensionless-axioms ‹B A Gt B C =⇒ B C
Lt B A› ‹B A Lt B C ∨ B A Gt B C ∨ Cong B A B C › assms l11-44-2-a)
qed

lemma l11-44-1 :
assumes ¬ Col A B C
shows B A C CongA B C A ←→ Cong B A B C
using assms l11-44-1-a l11-44-1-b not-col-distincts by blast

lemma l11-44-2 :
assumes ¬ Col A B C
shows B A C LtA B C A ←→ B C Lt B A
using assms l11-44-2-a l11-44-2-b not-col-permutation-3 by blast

lemma l11-44-2bis:
assumes ¬ Col A B C
shows B A C LeA B C A ←→ B C Le B A

proof −
{

assume P1 : B A C LeA B C A
{

assume B A Lt B C
then have B C A LtA B A C

by (simp add: assms l11-44-2-a)
then have False

using P1 lta--nlea by auto
}
then have ¬ B A Lt B C by blast
have B C Le B A

using ‹¬ B A Lt B C › nle--lt by blast
}
{

assume P2 : B C Le B A
have B A C LeA B C A
proof cases

assume Cong B C B A
then have B A C CongA B C A

by (metis assms conga-sym l11-44-1-a not-col-distincts)
thus ?thesis
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by (simp add: conga--lea)
next

assume ¬ Cong B C B A
then have B A C LtA B C A

by (simp add: l11-44-2 assms Lt-def P2 )
thus ?thesis

by (simp add: lta--lea)
qed

}
thus ?thesis

using ‹B A C LeA B C A =⇒ B C Le B A› by blast
qed

lemma l11-46 :
assumes A 6= B and

B 6= C and
Per A B C ∨ Obtuse A B C

shows B A Lt A C ∧ B C Lt A C
proof cases

assume Col A B C
thus ?thesis

by (meson assms(1 ) assms(2 ) assms(3 ) bet--lt1213 bet--lt2313 col-obtuse--bet lt-left-comm per-not-col)
next

assume P1 : ¬ Col A B C
have P2 : A 6= C

using P1 col-trivial-3 by auto
have P3 : Acute B A C ∧ Acute B C A

using assms(1 ) assms(2 ) assms(3 ) l11-43 by auto
then obtain A ′ B ′ C ′ where P4 : Per A ′ B ′ C ′ ∧ B C A LtA A ′ B ′ C ′

using Acute-def P3 by auto
{

assume P5 : Per A B C
have P5A: A C B CongA A C B

by (simp add: P2 assms(2 ) conga-refl)
have S1 : A 6= B

by (simp add: assms(1 ))
have S2 : B 6= C

by (simp add: assms(2 ))
have S3 : A ′ 6= B ′

using P4 lta-distincts by blast
have S4 : B ′ 6= C ′

using P4 lta-distincts by blast
then have A ′ B ′ C ′ CongA A B C using l11-16

using S1 S2 S3 S4 P4 P5 by blast
then have A C B LtA A B C

using P5A P4 conga-preserves-lta lta-left-comm by blast
}
{

assume Obtuse A B C
obtain A ′′ B ′′ C ′′ where P6 : Per A ′′ B ′′ C ′′ ∧ A ′′ B ′′ C ′′ LtA A B C

using Obtuse-def ‹Obtuse A B C › by auto
have B C A LtA A ′ B ′ C ′

by (simp add: P4 )
then have P7 : A C B LtA A ′ B ′ C ′

by (simp add: lta-left-comm)
have A ′ B ′ C ′ LtA A B C
proof −

have U1 : A ′′ B ′′ C ′′ CongA A ′ B ′ C ′

proof −
have V2 : A ′′ 6= B ′′

using P6 lta-distincts by blast
have V3 : C ′′ 6= B ′′

using P6 lta-distincts by blast
have V5 : A ′ 6= B ′

using P7 lta-distincts by blast
have C ′ 6= B ′
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using P4 lta-distincts by blast
thus ?thesis using P6 V2 V3 P4 V5

by (simp add: l11-16 )
qed
have U2 : A B C CongA A B C

using assms(1 ) assms(2 ) conga-refl by auto
have U3 : A ′′ B ′′ C ′′ LtA A B C

by (simp add: P6 )
thus ?thesis

using U1 U2 conga-preserves-lta by auto
qed
then have A C B LtA A B C

using P7 lta-trans by blast
}
then have A C B LtA A B C

using ‹Per A B C =⇒ A C B LtA A B C › assms(3 ) by blast
then have A B Lt A C

by (simp add: l11-44-2-b)
then have B A Lt A C

using Lt-cases by blast
have C A B LtA C B A
proof −

obtain A ′ B ′ C ′ where U4 : Per A ′ B ′ C ′ ∧ B A C LtA A ′ B ′ C ′

using Acute-def P3 by blast
{

assume Per A B C
then have W3 : A ′ B ′ C ′ CongA C B A

using U4 assms(2 ) l11-16 l8-2 lta-distincts by blast
have W2 : C A B CongA C A B

using P2 assms(1 ) conga-refl by auto
have C A B LtA A ′ B ′ C ′

by (simp add: U4 lta-left-comm)
then have C A B LtA C B A

using W2 W3 conga-preserves-lta by blast
}
{

assume Obtuse A B C
then obtain A ′′ B ′′ C ′′ where W4 : Per A ′′ B ′′ C ′′ ∧ A ′′ B ′′ C ′′ LtA A B C

using Obtuse-def by auto
have W5 : C A B LtA A ′ B ′ C ′

by (simp add: U4 lta-left-comm)
have A ′ B ′ C ′ LtA C B A
proof −

have W6 : A ′′ B ′′ C ′′ CongA A ′ B ′ C ′ using l11-16 W4 U4
using lta-distincts by blast

have C B A CongA C B A
using assms(1 ) assms(2 ) conga-refl by auto

thus ?thesis
using W4 W6 conga-left-comm conga-preserves-lta by blast

qed
then have C A B LtA C B A

using W5 lta-trans by blast
}
thus ?thesis

using ‹Per A B C =⇒ C A B LtA C B A› assms(3 ) by blast
qed
then have C B Lt C A

by (simp add: l11-44-2-b)
then have C B Lt A C

using Lt-cases by auto
then have B C Lt A C

using Lt-cases by blast
thus ?thesis

by (simp add: ‹B A Lt A C ›)
qed
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lemma l11-47 :
assumes Per A C B and

H PerpAt C H A B
shows Bet A H B ∧ A 6= H ∧ B 6= H

proof −
have P1 : Per C H A

using assms(2 ) perp-in-per-1 by auto
have P2 : C H Perp A B

using assms(2 ) perp-in-perp by auto
thus ?thesis
proof cases

assume Col A C B
thus ?thesis

by (metis P1 assms(1 ) assms(2 ) per-distinct-1 per-not-col perp-in-distinct perp-in-id)
next

assume P3 : ¬ Col A C B
have P4 : A 6= H

by (metis P2 Per-perm Tarski-neutral-dimensionless.l8-7 Tarski-neutral-dimensionless-axioms assms(1 ) assms(2 )
col-trivial-1 perp-in-per-2 perp-not-col2 )

have P5 : Per C H B
using assms(2 ) perp-in-per-2 by auto

have P6 : B 6= H
using P1 P2 assms(1 ) l8-2 l8-7 perp-not-eq-1 by blast

have P7 : H A Lt A C ∧ H C Lt A C
by (metis P1 P2 P4 l11-46 l8-2 perp-distinct)

have P8 : C A Lt A B ∧ C B Lt A B
using P3 assms(1 ) l11-46 not-col-distincts by blast

have P9 : H B Lt B C ∧ H C Lt B C
by (metis P2 P5 P6 Per-cases l11-46 perp-not-eq-1 )

have P10 : Bet A H B
proof −

have T1 : Col A H B
using assms(2 ) col-permutation-5 perp-in-col by blast

have T2 : A H Le A B using P7 P8
by (meson lt-comm lt-transitivity nlt--le not-and-lt)

have H B Le A B
by (meson Lt-cases P8 P9 le-transitivity local.le-cases lt--nle)

thus ?thesis
using T1 T2 l5-12-b by blast

qed
thus ?thesis

by (simp add: P4 P6 )
qed

qed

lemma l11-49 :
assumes A B C CongA A ′ B ′ C ′ and

Cong B A B ′ A ′ and
Cong B C B ′ C ′

shows Cong A C A ′ C ′ ∧ (A 6= C −→ (B A C CongA B ′ A ′ C ′ ∧ B C A CongA B ′ C ′ A ′))
proof −

have T1 : Cong A C A ′ C ′

using assms(1 ) assms(2 ) assms(3 ) cong2-conga-cong not-cong-2143 by blast
{

assume P1 : A 6= C
have P2 : A 6= B

using CongA-def assms(1 ) by blast
have P3 : C 6= B

using CongA-def assms(1 ) by blast
have B A C Cong3 B ′ A ′ C ′

by (simp add: Cong3-def T1 assms(2 ) assms(3 ))
then have T2 : B A C CongA B ′ A ′ C ′

using P1 P2 cong3-conga by auto
have B C A Cong3 B ′ C ′ A ′

using Cong3-def T1 assms(2 ) assms(3 ) cong-3-swap-2 by blast
then have B C A CongA B ′ C ′ A ′
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using P1 P3 cong3-conga by auto
then have B A C CongA B ′ A ′ C ′ ∧ B C A CongA B ′ C ′ A ′ using T2 by blast

}
thus ?thesis

by (simp add: T1 )
qed

lemma l11-50-1 :
assumes ¬ Col A B C and

B A C CongA B ′ A ′ C ′ and
A B C CongA A ′ B ′ C ′ and
Cong A B A ′ B ′

shows Cong A C A ′ C ′ ∧ Cong B C B ′ C ′ ∧ A C B CongA A ′ C ′ B ′

proof −
obtain C ′′ where P1 : B ′ Out C ′′ C ′ ∧ Cong B ′ C ′′ B C

by (metis Col-perm assms(1 ) assms(3 ) col-trivial-3 conga-diff56 l6-11-existence)
have P2 : B ′ 6= C ′′

using P1 out-diff1 by auto
have P3 : ¬ Col A ′ B ′ C ′

using assms(1 ) assms(3 ) ncol-conga-ncol by blast
have P4 : ¬ Col A ′ B ′ C ′′

by (meson P1 P2 P3 col-transitivity-1 not-col-permutation-2 out-col)
have P5 : Cong A C A ′ C ′′

proof −
have Q1 : B Out A A

using assms(1 ) not-col-distincts out-trivial by auto
have Q2 : B Out C C

using assms(1 ) col-trivial-2 out-trivial by force
have Q3 : B ′ Out A ′ A ′

using P3 not-col-distincts out-trivial by auto
have Q5 : Cong B A B ′ A ′

using assms(4 ) not-cong-2143 by blast
have Cong B C B ′ C ′′

using P1 not-cong-3412 by blast
thus ?thesis

using l11-4-1 P1 Q1 Q2 Q3 Q5 assms(3 ) by blast
qed
have P6 : B A C Cong3 B ′ A ′ C ′′

using Cong3-def Cong-perm P1 P5 assms(4 ) by blast
have P7 : B A C CongA B ′ A ′ C ′′

by (metis P6 assms(1 ) cong3-conga not-col-distincts)
have P8 : B ′ A ′ C ′ CongA B ′ A ′ C ′′

by (meson P7 assms(2 ) conga-sym conga-trans)
have B ′ A ′ OS C ′ C ′′

using Col-perm Out-cases P1 P3 out-one-side by blast
then have A ′ Out C ′ C ′′

using P8 conga-os--out by auto
then have Col A ′ C ′ C ′′

using out-col by auto
then have P9 : C ′ = C ′′

using Col-perm P1 out-col P3 col-transitivity-1 by blast
have T1 : Cong A C A ′ C ′

by (simp add: P5 P9 )
have T2 : Cong B C B ′ C ′

using Cong-perm P1 P9 by blast
then have A C B CongA A ′ C ′ B ′

using T1 assms(1 ) assms(2 ) assms(4 ) col-trivial-2 l11-49 by blast
thus ?thesis using T1 T2 by blast

qed

lemma l11-50-2 :
assumes ¬ Col A B C and

B C A CongA B ′ C ′ A ′ and
A B C CongA A ′ B ′ C ′ and
Cong A B A ′ B ′

shows Cong A C A ′ C ′ ∧ Cong B C B ′ C ′ ∧ C A B CongA C ′ A ′ B ′
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proof −
have P1 : A 6= B

using assms(1 ) col-trivial-1 by auto
have P2 : B 6= C

using assms(1 ) col-trivial-2 by auto
have P3 : A ′ 6= B ′

using P1 assms(4 ) cong-diff by blast
have P4 : B ′ 6= C ′

using assms(2 ) conga-diff45 by auto
then obtain C ′′ where P5 : B ′ Out C ′′ C ′ ∧ Cong B ′ C ′′ B C

using P2 l6-11-existence by presburger
have P5BIS : B ′ 6= C ′′

using P5 out-diff1 by auto
have P5A: Col B ′ C ′′ C ′

using P5 out-col by auto
have P6 : ¬ Col A ′ B ′ C ′

using assms(1 ) assms(3 ) ncol-conga-ncol by blast
{

assume Col A ′ B ′ C ′′

then have Col B ′ C ′′ A ′

using not-col-permutation-2 by blast
then have Col B ′ C ′ A ′ using col-transitivity-1 P5BIS P5A by blast
then have Col A ′ B ′ C ′

using Col-perm by blast
then have False

using P6 by auto
}
then have P7 : ¬ Col A ′ B ′ C ′′ by blast
have P8 : Cong A C A ′ C ′′

proof −
have B Out A A

by (simp add: P1 out-trivial)
have K1 : B Out C C

using P2 out-trivial by auto
have K2 : B ′ Out A ′ A ′

using P3 out-trivial by auto
have Cong B A B ′ A ′

by (simp add: Cong-perm assms(4 ))
have Cong B C B ′ C ′′

using Cong-perm P5 by blast
thus ?thesis

using P5 ‹Cong B A B ′ A ′› P1 out-trivial K1 K2 assms(3 ) l11-4-1 by blast
qed
have P9 : B C A Cong3 B ′ C ′′ A ′

using Cong3-def Cong-perm P5 P8 assms(4 ) by blast
then have P10 : B C A CongA B ′ C ′′ A ′

using assms(1 ) cong3-conga not-col-distincts by auto
have P11 : B ′ C ′ A ′ CongA B ′ C ′′ A ′

using P9 assms(2 ) cong3-conga2 conga-sym by blast
show ?thesis
proof cases

assume L1 : C ′ = C ′′

then have L2 : Cong A C A ′ C ′

by (simp add: P8 )
have L3 : Cong B C B ′ C ′

using Cong-perm L1 P5 by blast
have C A B Cong3 C ′ A ′ B ′

by (simp add: L1 P9 cong-3-swap cong-3-swap-2 )
then have C A B CongA C ′ A ′ B ′

by (metis CongA-def P1 assms(2 ) cong3-conga)
thus ?thesis using L2 L3 by auto

next
assume R1 : C ′ 6= C ′′

have R1A: ¬ Col C ′′ C ′ A ′

by (metis P5A P7 R1 col-permutation-2 col-trivial-2 colx)
have R1B: Bet B ′ C ′′ C ′ ∨ Bet B ′ C ′ C ′′

202



using Out-def P5 by auto
{

assume S1 : Bet B ′ C ′′ C ′

then have S2 : C ′′ A ′ C ′ LtA A ′ C ′′ B ′ ∧ C ′′ C ′ A ′ LtA A ′ C ′′ B ′

using P5BIS R1A between-symmetry l11-41 by blast
have B ′ C ′ A ′ CongA C ′′ C ′ A ′

by (metis P11 R1 Tarski-neutral-dimensionless.conga-comm Tarski-neutral-dimensionless-axioms S1 bet-out-1
conga-diff45 not-conga-sym out2--conga out-trivial)

then have B ′ C ′ A ′ LtA A ′ C ′′ B ′

by (meson P11 Tarski-neutral-dimensionless.conga-right-comm Tarski-neutral-dimensionless.not-conga Tarski-neutral-dimensionless.not-conga-sym
Tarski-neutral-dimensionless-axioms S2 not-lta-and-conga)

then have Cong A C A ′ C ′ ∧ Cong B C B ′ C ′

by (meson P11 Tarski-neutral-dimensionless.conga-right-comm Tarski-neutral-dimensionless-axioms not-lta-and-conga)
}
{

assume Z1 : Bet B ′ C ′ C ′′

have Z2 : ¬ Col C ′ C ′′ A ′

by (simp add: R1A not-col-permutation-4 )
have Z3 : C ′′ Out C ′ B ′

by (simp add: R1 Z1 bet-out-1 )
have Z4 : C ′′ Out A ′ A ′

using P7 not-col-distincts out-trivial by blast
then have Z4A: B ′ C ′′ A ′ CongA C ′ C ′′ A ′

by (simp add: Z3 out2--conga)
have Z4B: B ′ C ′′ A ′ LtA A ′ C ′ B ′

proof −
have Z5 : C ′ C ′′ A ′ CongA B ′ C ′′ A ′

using Z4A not-conga-sym by blast
have Z6 : A ′ C ′ B ′ CongA A ′ C ′ B ′

using P11 P4 conga-diff2 conga-refl by blast
have C ′ C ′′ A ′ LtA A ′ C ′ B ′

using P4 Z1 Z2 between-symmetry l11-41 by blast
thus ?thesis

using Z5 Z6 conga-preserves-lta by auto
qed
have B ′ C ′′ A ′ CongA B ′ C ′ A ′

using P11 not-conga-sym by blast
then have Cong A C A ′ C ′ ∧ Cong B C B ′ C ′

by (meson Tarski-neutral-dimensionless.conga-right-comm Tarski-neutral-dimensionless-axioms Z4B not-lta-and-conga)
}
then have R2 : Cong A C A ′ C ′ ∧ Cong B C B ′ C ′

using R1B ‹Bet B ′ C ′′ C ′ =⇒ Cong A C A ′ C ′ ∧ Cong B C B ′ C ′› by blast
then have C A B CongA C ′ A ′ B ′

using P1 assms(2 ) l11-49 not-cong-2143 by blast
thus ?thesis using R2 by auto

qed
qed

lemma l11-51 :
assumes A 6= B and

A 6= C and
B 6= C and
Cong A B A ′ B ′ and
Cong A C A ′ C ′ and
Cong B C B ′ C ′

shows
B A C CongA B ′ A ′ C ′ ∧ A B C CongA A ′ B ′ C ′ ∧ B C A CongA B ′ C ′ A ′

proof −
have B A C Cong3 B ′ A ′ C ′ ∧ A B C Cong3 A ′ B ′ C ′ ∧ B C A Cong3 B ′ C ′ A ′

using Cong3-def Cong-perm assms(4 ) assms(5 ) assms(6 ) by blast
thus ?thesis

using assms(1 ) assms(2 ) assms(3 ) cong3-conga by auto
qed

lemma conga-distinct:
assumes A B C CongA D E F
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shows A 6= B ∧ C 6= B ∧ D 6= E ∧ F 6= E
using CongA-def assms by auto

lemma l11-52 :
assumes A B C CongA A ′ B ′ C ′ and

Cong A C A ′ C ′ and
Cong B C B ′ C ′ and
B C Le A C

shows Cong B A B ′ A ′ ∧ B A C CongA B ′ A ′ C ′ ∧ B C A CongA B ′ C ′ A ′

proof −
have P1 : A 6= B

using CongA-def assms(1 ) by blast
have P2 : C 6= B

using CongA-def assms(1 ) by blast
have P3 : A ′ 6= B ′

using CongA-def assms(1 ) by blast
have P4 : C ′ 6= B ′

using assms(1 ) conga-diff56 by auto
have P5 : Cong B A B ′ A ′

proof cases
assume P6 : Col A B C
then have P7 : Bet A B C ∨ Bet B C A ∨ Bet C A B

using Col-def by blast
{

assume P8 : Bet A B C
then have Bet A ′ B ′ C ′

using assms(1 ) bet-conga--bet by blast
then have Cong B A B ′ A ′

using P8 assms(2 ) assms(3 ) l4-3 not-cong-2143 by blast
}
{

assume P9 : Bet B C A
then have P10 : B ′ Out A ′ C ′

using Out-cases P2 assms(1 ) bet-out l11-21-a by blast
then have P11 : Bet B ′ A ′ C ′ ∨ Bet B ′ C ′ A ′

by (simp add: Out-def )
{

assume Bet B ′ A ′ C ′

then have Cong B A B ′ A ′

using P3 assms(2 ) assms(3 ) assms(4 ) bet-le-eq l5-6 by blast
}
{

assume Bet B ′ C ′ A ′

then have Cong B A B ′ A ′

using Cong-perm P9 assms(2 ) assms(3 ) l2-11-b by blast
}
then have Cong B A B ′ A ′

using P11 ‹Bet B ′ A ′ C ′ =⇒ Cong B A B ′ A ′› by blast
}
{

assume Bet C A B
then have Cong B A B ′ A ′

using P1 assms(4 ) bet-le-eq between-symmetry by blast
}
thus ?thesis

using P7 ‹Bet A B C =⇒ Cong B A B ′ A ′› ‹Bet B C A =⇒ Cong B A B ′ A ′› by blast
next

assume Z1 : ¬ Col A B C
obtain A ′′ where Z2 : B ′ Out A ′′ A ′ ∧ Cong B ′ A ′′ B A

using P1 P3 l6-11-existence by force
then have Z3 : A ′ B ′ C ′ CongA A ′′ B ′ C ′

by (simp add: P4 out2--conga out-trivial)
have Z4 : A B C CongA A ′′ B ′ C ′

using Z3 assms(1 ) not-conga by blast
have Z5 : Cong A ′′ C ′ A C

using Z2 Z4 assms(3 ) cong2-conga-cong cong-4321 cong-symmetry by blast
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have Z6 : A ′′ B ′ C ′ Cong3 A B C
using Cong3-def Cong-perm Z2 Z5 assms(3 ) by blast

have Z7 : Cong A ′′ C ′ A ′ C ′

using Z5 assms(2 ) cong-transitivity by blast
have Z8 : ¬ Col A ′ B ′ C ′

by (metis Z1 assms(1 ) ncol-conga-ncol)
then have Z9 : ¬ Col A ′′ B ′ C ′

by (metis Z2 col-transitivity-1 not-col-permutation-4 out-col out-diff1 )
{

assume Z9A: A ′′ 6= A ′

have Z10 : Bet B ′ A ′′ A ′ ∨ Bet B ′ A ′ A ′′

using Out-def Z2 by auto
{

assume Z11 : Bet B ′ A ′′ A ′

have Z12 : A ′′ C ′ B ′ LtA C ′ A ′′ A ′ ∧ A ′′ B ′ C ′ LtA C ′ A ′′ A ′

by (simp add: Z11 Z9 Z9A l11-41 )
have Z13 : Cong A ′ C ′ A ′′ C ′

using Cong-perm Z7 by blast
have Z14 : ¬ Col A ′′ C ′ A ′

by (metis Col-def Z11 Z9 Z9A col-transitivity-1 )
have Z15 : C ′ A ′′ A ′ CongA C ′ A ′ A ′′ ←→ Cong C ′ A ′′ C ′ A ′

by (simp add: Z14 l11-44-1 )
have Z16 : Cong C ′ A ′ C ′ A ′′

using Cong-perm Z7 by blast
then have Z17 : Cong C ′ A ′′ C ′ A ′

using Cong-perm by blast
then have Z18 : C ′ A ′′ A ′ CongA C ′ A ′ A ′′

by (simp add: Z15 )
have Z19 : ¬ Col B ′ C ′ A ′′

using Col-perm Z9 by blast
have Z20 : B ′ A ′ C ′ CongA A ′′ A ′ C ′

by (metis Tarski-neutral-dimensionless.col-conga-col Tarski-neutral-dimensionless-axioms Z11 Z3 Z9 Z9A
bet-out-1 col-trivial-3 out2--conga out-trivial)

have Z21 : ¬ Col B ′ C ′ A ′

using Col-perm Z8 by blast
then have Z22 : C ′ B ′ A ′ LtA C ′ A ′ B ′ ←→ C ′ A ′ Lt C ′ B ′

by (simp add: l11-44-2 )
have A ′′ B ′ C ′ CongA C ′ B ′ A ′

using Z3 conga-right-comm not-conga-sym by blast
then have U1 : C ′ B ′ A ′ LtA C ′ A ′ B ′

proof −
have f1 : ∀ p pa pb pc pd pe pf pg ph pi pj pk pl pm. ¬ Tarski-neutral-dimensionless p pa ∨ ¬ Tarski-neutral-dimensionless.CongA

p pa (pb:: ′p) pc pd pe pf pg ∨ ¬ Tarski-neutral-dimensionless.CongA p pa ph pi pj pk pl pm ∨ ¬ Tarski-neutral-dimensionless.LtA
p pa pb pc pd ph pi pj ∨ Tarski-neutral-dimensionless.LtA p pa pe pf pg pk pl pm

by (simp add: Tarski-neutral-dimensionless.conga-preserves-lta)
have f2 : C ′ A ′′ A ′ CongA C ′ A ′ A ′′

by (metis Z15 Z17 )
have f3 : ∀ p pa pb pc pd pe pf pg. ¬ Tarski-neutral-dimensionless p pa ∨ ¬ Tarski-neutral-dimensionless.CongA

p pa (pb:: ′p) pc pd pe pf pg ∨ Tarski-neutral-dimensionless.CongA p pa pe pf pg pb pc pd
by (metis (no-types) Tarski-neutral-dimensionless.conga-sym)

then have ¬ C ′ B ′ A ′ LtA C ′ A ′′ A ′ ∨ A ′′ B ′ C ′ LtA C ′ A ′ A ′′

using f2 f1 by (meson Tarski-neutral-dimensionless-axioms ‹A ′′ B ′ C ′ CongA C ′ B ′ A ′›)
then have C ′ B ′ A ′ LtA C ′ A ′ B ′ ∨ A ′′ B ′ C ′ LtA A ′′ A ′ C ′ ∨ A ′′ = B ′

using f2 f1 by (metis (no-types) Tarski-neutral-dimensionless.conga-refl Tarski-neutral-dimensionless-axioms
Z12 ‹A ′′ B ′ C ′ CongA C ′ B ′ A ′› lta-right-comm)

thus ?thesis
using f3 f2 f1 by (metis (no-types) Tarski-neutral-dimensionless-axioms Z12 Z20 ‹A ′′ B ′ C ′ CongA C ′ B ′

A ′› lta-right-comm)
qed
then have Z23 : C ′ A ′ Lt C ′ B ′

using Z22 by auto
have Z24 : C ′ A ′′ Lt C ′ B ′

using Z16 Z23 cong2-lt--lt cong-reflexivity by blast
have Z25 : C A Le C B
proof −

have Z26 : Cong C ′ A ′′ C A
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using Z5 not-cong-2143 by blast
have Cong C ′ B ′ C B

using assms(3 ) not-cong-4321 by blast
thus ?thesis

using l5-6 Z24 Z26 lt--le by blast
qed
then have Z27 : Cong C A C B

by (simp add: assms(4 ) le-anti-symmetry le-comm)
have Cong C ′ A ′′ C ′ B ′

by (metis Cong-perm Z13 Z27 assms(2 ) assms(3 ) cong-transitivity)
then have False

using Z24 cong--nlt by blast
then have Cong B A B ′ A ′ by simp

}
{

assume W1 : Bet B ′ A ′ A ′′

have W2 : A ′ 6= A ′′

using Z9A by auto
have W3 : A ′ C ′ B ′ LtA C ′ A ′ A ′′ ∧ A ′ B ′ C ′ LtA C ′ A ′ A ′′

using W1 Z8 Z9A l11-41 by blast
have W4 : Cong A ′ C ′ A ′′ C ′

using Z7 not-cong-3412 by blast
have ¬ Col A ′′ C ′ A ′

by (metis Col-def W1 Z8 Z9A col-transitivity-1 )
then have W6 : C ′ A ′′ A ′ CongA C ′ A ′ A ′′ ←→ Cong C ′ A ′′ C ′ A ′

using l11-44-1 by auto
have W7 : Cong C ′ A ′ C ′ A ′′

using Z7 not-cong-4321 by blast
then have W8 : Cong C ′ A ′′ C ′ A ′

using W4 not-cong-4321 by blast
have W9 : ¬ Col B ′ C ′ A ′′

by (simp add: Z9 not-col-permutation-1 )
have W10 : B ′ A ′′ C ′ CongA A ′ A ′′ C ′

by (metis Tarski-neutral-dimensionless.Out-def Tarski-neutral-dimensionless-axioms W1 Z9 Z9A bet-out-1
between-trivial not-col-distincts out2--conga)

have W12 : C ′ B ′ A ′′ LtA C ′ A ′′ B ′ ←→ C ′ A ′′ Lt C ′ B ′

by (simp add: W9 l11-44-2 )
have W12A: C ′ B ′ A ′′ LtA C ′ A ′′ B ′

proof −
have V1 : A ′ B ′ C ′ CongA C ′ B ′ A ′′

by (simp add: Z3 conga-right-comm)
have A ′ A ′′ C ′ CongA B ′ A ′′ C ′

by (metis Tarski-neutral-dimensionless.Out-def Tarski-neutral-dimensionless-axioms W1 ‹¬ Col A ′′ C ′ A ′›
between-equality-2 not-col-distincts or-bet-out out2--conga out-col)

then have C ′ A ′ A ′′ CongA C ′ A ′′ B ′

by (meson W6 W8 conga-left-comm not-conga not-conga-sym)
thus ?thesis

using W3 V1 conga-preserves-lta by auto
qed
then have C ′ A ′′ Lt C ′ B ′ using W12 by auto
then have W14 : C ′ A ′ Lt C ′ B ′

using W8 cong2-lt--lt cong-reflexivity by blast
have W15 : C A Le C B
proof −

have Q1 : C ′ A ′′ Le C ′ B ′

using W12 W12A lt--le by blast
have Q2 : Cong C ′ A ′′ C A

using Z5 not-cong-2143 by blast
have Cong C ′ B ′ C B

using assms(3 ) not-cong-4321 by blast
thus ?thesis using Q1 Q2 l5-6 by blast

qed
have C B Le C A

by (simp add: assms(4 ) le-comm)
then have Cong C A C B

by (simp add: W15 le-anti-symmetry)
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then have Cong C ′ A ′ C ′ B ′

by (metis Cong-perm assms(2 ) assms(3 ) cong-inner-transitivity)
then have False

using W14 cong--nlt by blast
then have Cong B A B ′ A ′ by simp

}
then have Cong B A B ′ A ′

using Z10 ‹Bet B ′ A ′′ A ′ =⇒ Cong B A B ′ A ′› by blast
}
{

assume A ′′ = A ′

then have Cong B A B ′ A ′

using Z2 not-cong-3412 by blast
}
thus ?thesis

using ‹A ′′ 6= A ′ =⇒ Cong B A B ′ A ′› by blast
qed
have P6 : A B C Cong3 A ′ B ′ C ′

using Cong3-def Cong-perm P5 assms(2 ) assms(3 ) by blast
thus ?thesis

using P2 P5 assms(1 ) assms(3 ) assms(4 ) l11-49 le-zero by blast
qed

lemma l11-53 :
assumes Per D C B and

C 6= D and
A 6= B and
B 6= C and
Bet A B C

shows C A D LtA C B D ∧ B D Lt A D
proof −

have P1 : C 6= A
using assms(3 ) assms(5 ) between-identity by blast

have P2 : ¬ Col B A D
by (smt assms(1 ) assms(2 ) assms(3 ) assms(4 ) assms(5 ) bet-col bet-col1 col3 col-permutation-4 l8-9 )

have P3 : A 6= D
using P2 col-trivial-2 by blast

have P4 : C A D LtA C B D
proof −

have P4A: B D A LtA D B C ∧ B A D LtA D B C
by (simp add: P2 assms(4 ) assms(5 ) l11-41 )

have P4AA:A Out B C
using assms(3 ) assms(5 ) bet-out by auto

have A Out D D
using P3 out-trivial by auto

then have P4B: C A D CongA B A D using P4AA
by (simp add: out2--conga)

then have P4C : B A D CongA C A D
by (simp add: P4B conga-sym)

have D B C CongA C B D
using assms(1 ) assms(4 ) conga-pseudo-refl per-distinct-1 by auto

thus ?thesis
using P4A P4C conga-preserves-lta by blast

qed
obtain B ′ where P5 : C Midpoint B B ′ ∧ Cong D B D B ′

using Per-def assms(1 ) by auto
have K2 : A 6= B ′

using Bet-cases P5 assms(4 ) assms(5 ) between-equality-2 midpoint-bet by blast
{

assume Col B D B ′

then have Col B A D
by (metis Col-cases P5 assms(1 ) assms(2 ) assms(4 ) col2--eq midpoint-col midpoint-distinct-2 per-not-col)

then have False
by (simp add: P2 )

}
then have P6 : ¬ Col B D B ′ by blast
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then have D B B ′ CongA D B ′ B ←→ Cong D B D B ′

by (simp add: l11-44-1 )
then have D B B ′ CongA D B ′ B using P5 by simp
{

assume K1 : Col A D B ′

have Col B ′ A B
using Col-def P5 assms(4 ) assms(5 ) midpoint-bet outer-transitivity-between by blast

then have Col B ′ B D
using K1 K2 Col-perm col-transitivity-2 by blast

then have Col B D B ′

using Col-perm by blast
then have False

by (simp add: P6 )
}
then have K3B: ¬ Col A D B ′ by blast
then have K4 : D A B ′ LtA D B ′ A ←→ D B ′ Lt D A

by (simp add: l11-44-2 )
have K4A: C A D LtA C B ′ D

by (metis Midpoint-def P1 P3 P4 P5 P5 P6 assms(2 ) assms(4 ) col-trivial-1 cong-reflexivity conga-preserves-lta
conga-refl l11-51 not-cong-2134 )

have D B ′ Lt D A
proof −

have D A B ′ LtA D B ′ A
proof −

have K5A: A Out D D
using P3 out-trivial by auto

have K5AA: A Out B ′ C
by (smt K2 Out-def P1 P5 assms(4 ) assms(5 ) midpoint-bet outer-transitivity-between2 )

then have K5 : D A C CongA D A B ′

by (simp add: K5A out2--conga)
have K6A: B ′ Out D D

using K3B not-col-distincts out-trivial by blast
have B ′ Out A C
by (smt P5 K5AA assms(4 ) assms(5 ) between-equality-2 l6-4-2 midpoint-bet midpoint-distinct-2 out-col outer-transitivity-between2 )
then have K6 : D B ′ C CongA D B ′ A

by (simp add: K6A out2--conga)
have D A C LtA D B ′ C

by (simp add: K4A lta-comm)
thus ?thesis

using K5 K6 conga-preserves-lta by auto
qed
thus ?thesis

by (simp add: K4 )
qed
thus ?thesis

using P4 P5 cong2-lt--lt cong-pseudo-reflexivity not-cong-4312 by blast
qed

lemma cong2-conga-obtuse--cong-conga2 :
assumes Obtuse A B C and

A B C CongA A ′ B ′ C ′ and
Cong A C A ′ C ′ and
Cong B C B ′ C ′

shows Cong B A B ′ A ′ ∧ B A C CongA B ′ A ′ C ′ ∧
B C A CongA B ′ C ′ A ′

proof −
have B C Le A C
proof cases

assume Col A B C
thus ?thesis

by (simp add: assms(1 ) col-obtuse--bet l5-12-a)
next

assume ¬ Col A B C
thus ?thesis

using l11-46 assms(1 ) lt--le not-col-distincts by auto
qed
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thus ?thesis
using l11-52 assms(2 ) assms(3 ) assms(4 ) by blast

qed

lemma cong2-per2--cong-conga2 :
assumes A 6= B and

B 6= C and
Per A B C and
Per A ′ B ′ C ′ and
Cong A C A ′ C ′ and
Cong B C B ′ C ′

shows Cong B A B ′ A ′ ∧ B A C CongA B ′ A ′ C ′ ∧
B C A CongA B ′ C ′ A ′

proof −
have P1 : B C Le A C ∧ ¬ Cong B C A C

using assms(1 ) assms(2 ) assms(3 ) cong--nlt l11-46 lt--le by blast
then have A B C CongA A ′ B ′ C ′

using assms(2 ) assms(3 ) assms(4 ) assms(5 ) assms(6 ) cong-diff cong-inner-transitivity cong-symmetry l11-16 by
blast

thus ?thesis
using P1 assms(5 ) assms(6 ) l11-52 by blast

qed

lemma cong2-per2--cong:
assumes Per A B C and

Per A ′ B ′ C ′ and
Cong A C A ′ C ′ and
Cong B C B ′ C ′

shows Cong B A B ′ A ′

proof cases
assume B = C
thus ?thesis

using assms(3 ) assms(4 ) cong-reverse-identity not-cong-2143 by blast
next

assume B 6= C
show ?thesis
proof cases

assume A = B
thus ?thesis
proof −

have Cong A C B ′ C ′

using ‹A = B› assms(4 ) by blast
then have B ′ = A ′

by (meson Cong3-def Per-perm assms(2 ) assms(3 ) cong-inner-transitivity cong-pseudo-reflexivity l8-10 l8-7 )
thus ?thesis

using ‹A = B› cong-trivial-identity by blast
qed

next
assume A 6= B
show ?thesis
proof cases

assume A ′ = B ′

thus ?thesis
by (metis Cong3-def Per-perm ‹A 6= B› assms(1 ) assms(3 ) assms(4 ) cong-inner-transitivity cong-pseudo-reflexivity

l8-10 l8-7 )
next

assume A ′ 6= B ′

thus ?thesis
using cong2-per2--cong-conga2 ‹A 6= B› ‹B 6= C › assms(1 ) assms(2 ) assms(3 ) assms(4 ) by blast

qed
qed

qed

lemma cong2-per2--cong-3 :
assumes Per A B C

Per A ′ B ′ C ′ and
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Cong A C A ′ C ′ and
Cong B C B ′ C ′

shows A B C Cong3 A ′ B ′ C ′

by (metis Tarski-neutral-dimensionless.Cong3-def Tarski-neutral-dimensionless-axioms assms(1 ) assms(2 ) assms(3 )
assms(4 ) cong2-per2--cong cong-3-swap)

lemma cong-lt-per2--lt:
assumes Per A B C and

Per A ′ B ′ C ′ and
Cong A B A ′ B ′ and
B C Lt B ′ C ′

shows A C Lt A ′ C ′

proof cases
assume A = B
thus ?thesis

using assms(3 ) assms(4 ) cong-reverse-identity by blast
next

assume A 6= B
show ?thesis
proof cases

assume B = C
thus ?thesis

by (smt assms(2 ) assms(3 ) assms(4 ) cong2-lt--lt cong-4312 cong-diff cong-reflexivity l11-46 lt-diff )
next

assume P0 : B 6= C
have B C Lt B ′ C ′

by (simp add: assms(4 ))
then have R1 : B C Le B ′ C ′ ∧ ¬ Cong B C B ′ C ′

by (simp add: Lt-def )
then obtain C0 where P1 : Bet B ′ C0 C ′ ∧ Cong B C B ′ C0

using Le-def by auto
then have P2 : Per A ′ B ′ C0

by (metis Col-def Per-cases assms(2 ) bet-out-1 col-col-per-per col-trivial-1 l8-5 out-diff2 )
have C0 A ′ Lt C ′ A ′ using l11-53

by (metis P1 P2 R1 P0 bet--lt2313 between-symmetry cong-diff )
then have P3 : A ′ C0 Lt A ′ C ′

using Lt-cases by blast
have P4 : Cong A ′ C0 A C

using P1 P2 assms(1 ) assms(3 ) l10-12 not-cong-3412 by blast
have Cong A ′ C ′ A ′ C ′

by (simp add: cong-reflexivity)
thus ?thesis

using cong2-lt--lt P3 P4 by blast
qed

qed

lemma cong-le-per2--le:
assumes Per A B C and

Per A ′ B ′ C ′ and
Cong A B A ′ B ′ and
B C Le B ′ C ′

shows A C Le A ′ C ′

proof cases
assume Cong B C B ′ C ′

thus ?thesis
using assms(1 ) assms(2 ) assms(3 ) cong--le l10-12 by blast

next
assume ¬ Cong B C B ′ C ′

then have B C Lt B ′ C ′

using Lt-def assms(4 ) by blast
thus ?thesis

using assms(1 ) assms(2 ) assms(3 ) cong-lt-per2--lt lt--le by auto
qed

lemma lt2-per2--lt:
assumes Per A B C and
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Per A ′ B ′ C ′ and
A B Lt A ′ B ′ and
B C Lt B ′ C ′

shows A C Lt A ′ C ′

proof −
have P2 : B A Lt B ′ A ′

by (simp add: assms(3 ) lt-comm)
have P3 : B C Le B ′ C ′ ∧ ¬ Cong B C B ′ C ′

using assms(4 ) cong--nlt lt--le by auto
then obtain C0 where P4 : Bet B ′ C0 C ′ ∧ Cong B C B ′ C0

using Le-def by auto
have P4A: B ′ 6= C ′

using assms(4 ) lt-diff by auto
have Col B ′ C ′ C0

using P4 bet-col not-col-permutation-5 by blast
then have P5 : Per A ′ B ′ C0

using assms(2 ) P4A per-col by blast
have P6 : A C Lt A ′ C0

by (meson P2 P4 P5 assms(1 ) cong-lt-per2--lt l8-2 lt-comm not-cong-2143 )
have B ′ C0 Lt B ′ C ′

by (metis P4 assms(4 ) bet--lt1213 cong--nlt)
then have A ′ C0 Lt A ′ C ′

using P5 assms(2 ) cong-lt-per2--lt cong-reflexivity by blast
thus ?thesis

using P6 lt-transitivity by blast
qed

lemma le-lt-per2--lt:
assumes Per A B C and

Per A ′ B ′ C ′ and
A B Le A ′ B ′ and
B C Lt B ′ C ′

shows A C Lt A ′ C ′

using Lt-def assms(1 ) assms(2 ) assms(3 ) assms(4 ) cong-lt-per2--lt lt2-per2--lt by blast

lemma le2-per2--le:
assumes Per A B C and

Per A ′ B ′ C ′ and
A B Le A ′ B ′ and
B C Le B ′ C ′

shows A C Le A ′ C ′

proof cases
assume Cong B C B ′ C ′

thus ?thesis
by (meson Per-cases Tarski-neutral-dimensionless.cong-le-per2--le Tarski-neutral-dimensionless-axioms assms(1 )

assms(2 ) assms(3 ) le-comm not-cong-2143 )
next

assume ¬ Cong B C B ′ C ′

then have B C Lt B ′ C ′

by (simp add: Lt-def assms(4 ))
thus ?thesis

using assms(1 ) assms(2 ) assms(3 ) le-lt-per2--lt lt--le by blast
qed

lemma cong-lt-per2--lt-1 :
assumes Per A B C and

Per A ′ B ′ C ′ and
A B Lt A ′ B ′ and
Cong A C A ′ C ′

shows B ′ C ′ Lt B C
by (meson Gt-def assms(1 ) assms(2 ) assms(3 ) assms(4 ) cong2-per2--cong cong-4321 cong--nlt cong-symmetry lt2-per2--lt

or-lt-cong-gt)

lemma symmetry-preserves-conga:
assumes A 6= B and C 6= B and

M Midpoint A A ′ and
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M Midpoint B B ′ and
M Midpoint C C ′

shows A B C CongA A ′ B ′ C ′

by (metis Mid-perm assms(1 ) assms(2 ) assms(3 ) assms(4 ) assms(5 ) conga-trivial-1 l11-51 l7-13 symmetric-point-uniqueness)

lemma l11-57 :
assumes A A ′ OS B B ′ and

Per B A A ′ and
Per B ′ A ′ A and
A A ′ OS C C ′ and
Per C A A ′ and
Per C ′ A ′ A

shows B A C CongA B ′ A ′ C ′

proof −
obtain M where P1 : M Midpoint A A ′

using midpoint-existence by auto
obtain B ′′ where P2 : M Midpoint B B ′′

using symmetric-point-construction by auto
obtain C ′′ where P3 : M Midpoint C C ′′

using symmetric-point-construction by auto
have P4 : ¬ Col A A ′ B

using assms(1 ) col123--nos by auto
have P5 : ¬ Col A A ′ C

using assms(4 ) col123--nos by auto
have P6 : B A C CongA B ′′ A ′ C ′′

by (metis P1 P2 P3 assms(1 ) assms(4 ) os-distincts symmetry-preserves-conga)
have B ′′ A ′ C ′′ CongA B ′ A ′ C ′

proof −
have B 6= M

using P1 P4 midpoint-col not-col-permutation-2 by blast
then have P7 : ¬ Col B ′′ A A ′

using Mid-cases P1 P2 P4 mid-preserves-col not-col-permutation-3 by blast
have K3 : Bet B ′′ A ′ B ′

proof −
have Per B ′′ A ′ A

using P1 P2 assms(2 ) per-mid-per by blast
have Col B B ′′ M ∧ Col A A ′ M

using P1 P2 midpoint-col not-col-permutation-2 by blast
then have Coplanar B A A ′ B ′′

using Coplanar-def by auto
then have Coplanar A B ′ B ′′ A ′

by (meson assms(1 ) between-trivial2 coplanar-trans-1 ncoplanar-perm-4 ncoplanar-perm-8 one-side-chara os--coplanar)
then have P8 : Col B ′ B ′′ A ′

using cop-per2--col P1 P2 P7 assms(2 ) assms(3 ) not-col-distincts per-mid-per by blast
have A A ′ TS B B ′′

using P1 P2 P4 mid-two-sides by auto
then have A ′ A TS B ′′ B ′

using assms(1 ) invert-two-sides l9-2 l9-8-2 by blast
thus ?thesis

using Col-cases P8 col-two-sides-bet by blast
qed
have ¬ Col C ′′ A A ′

by (smt Col-def P1 P3 P5 l7-15 l7-2 not-col-permutation-5 )
have Bet C ′′ A ′ C ′

proof −
have Z2 : Col C ′ C ′′ A ′

proof −
have Col C C ′′ M ∧ Col A A ′ M

using P1 P3 col-permutation-1 midpoint-col by blast
then have Coplanar C A A ′ C ′′

using Coplanar-def by blast
then have Z1 : Coplanar A C ′ C ′′ A ′

by (meson assms(4 ) between-trivial2 coplanar-trans-1 ncoplanar-perm-4 ncoplanar-perm-8 one-side-chara
os--coplanar)

have Per C ′′ A ′ A
using P1 P3 assms(5 ) per-mid-per by blast
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thus ?thesis
using Z1 P5 assms(6 ) col-trivial-1 cop-per2--col by blast

qed
have A A ′ TS C C ′′

using P1 P3 P5 mid-two-sides by auto
then have A ′ A TS C ′′ C ′

using assms(4 ) invert-two-sides l9-2 l9-8-2 by blast
thus ?thesis

using Col-cases Z2 col-two-sides-bet by blast
qed
thus ?thesis

by (metis P6 K3 assms(1 ) assms(4 ) conga-diff45 conga-diff56 l11-14 os-distincts)
qed
thus ?thesis

using P6 conga-trans by blast
qed

lemma cop3-orth-at--orth-at:
assumes ¬ Col D E F and

Coplanar A B C D and
Coplanar A B C E and
Coplanar A B C F and
X OrthAt A B C U V

shows X OrthAt D E F U V
proof −

have P1 : ¬ Col A B C ∧ Coplanar A B C X
using OrthAt-def assms(5 ) by blast

then have P2 : Coplanar D E F X
using assms(2 ) assms(3 ) assms(4 ) coplanar-pseudo-trans by blast

{
fix M
assume Coplanar A B C M
then have Coplanar D E F M

using P1 assms(2 ) assms(3 ) assms(4 ) coplanar-pseudo-trans by blast
}
have T1 : U 6= V

using OrthAt-def assms(5 ) by blast
have T2 : Col U V X

using OrthAt-def assms(5 ) by auto
{

fix P Q
assume P7 : Coplanar D E F P ∧ Col U V Q
then have Coplanar A B C P

by (meson ‹
∧

M . Coplanar A B C M =⇒ Coplanar D E F M › assms(1 ) assms(2 ) assms(3 ) assms(4 ) l9-30 )
then have Per P X Q using P7 OrthAt-def assms(5 ) by blast

}
thus ?thesis using assms(1 )

by (simp add: OrthAt-def P2 T1 T2 )
qed

lemma col2-orth-at--orth-at:
assumes U 6= V and

Col P Q U and
Col P Q V and
X OrthAt A B C P Q

shows X OrthAt A B C U V
proof −

have Col P Q X
using OrthAt-def assms(4 ) by auto

then have Col U V X
by (metis OrthAt-def assms(2 ) assms(3 ) assms(4 ) col3 )

thus ?thesis
using OrthAt-def assms(1 ) assms(2 ) assms(3 ) assms(4 ) colx by presburger

qed

lemma col-orth-at--orth-at:
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assumes U 6= W and
Col U V W and
X OrthAt A B C U V

shows X OrthAt A B C U W
using assms(1 ) assms(2 ) assms(3 ) col2-orth-at--orth-at col-trivial-3 by blast

lemma orth-at-symmetry:
assumes X OrthAt A B C U V
shows X OrthAt A B C V U
by (metis assms col2-orth-at--orth-at col-trivial-2 col-trivial-3 )

lemma orth-at-distincts:
assumes X OrthAt A B C U V
shows A 6= B ∧ B 6= C ∧ A 6= C ∧ U 6= V
using OrthAt-def assms not-col-distincts by fastforce

lemma orth-at-chara:
X OrthAt A B C X P ←→
(¬ Col A B C ∧ X 6= P ∧ Coplanar A B C X ∧ (∀ D.(Coplanar A B C D −→ Per D X P)))

proof −
{

assume X OrthAt A B C X P
then have ¬ Col A B C ∧ X 6= P ∧ Coplanar A B C X ∧ (∀ D.(Coplanar A B C D −→ Per D X P))

using OrthAt-def col-trivial-2 by auto
}
{

assume T1 : ¬ Col A B C ∧ X 6= P ∧ Coplanar A B C X ∧ (∀ D.(Coplanar A B C D −→ Per D X P))
{

fix P0 Q
assume Coplanar A B C P0 ∧ Col X P Q
then have Per P0 X Q using T1 OrthAt-def per-col by auto

}
then have X OrthAt A B C X P
by (simp add: T1 ‹

∧
Q P0 . Coplanar A B C P0 ∧ Col X P Q =⇒ Per P0 X Q› Tarski-neutral-dimensionless.OrthAt-def

Tarski-neutral-dimensionless-axioms col-trivial-3 )
}
thus ?thesis

using ‹X OrthAt A B C X P =⇒ ¬ Col A B C ∧ X 6= P ∧ Coplanar A B C X ∧ (∀D. Coplanar A B C D −→ Per
D X P)› by blast
qed

lemma cop3-orth--orth:
assumes ¬ Col D E F and

Coplanar A B C D and
Coplanar A B C E and
Coplanar A B C F and
A B C Orth U V

shows D E F Orth U V
using Orth-def assms(1 ) assms(2 ) assms(3 ) assms(4 ) assms(5 ) cop3-orth-at--orth-at by blast

lemma col2-orth--orth:
assumes U 6= V and

Col P Q U and
Col P Q V and
A B C Orth P Q

shows A B C Orth U V
by (meson Orth-def Tarski-neutral-dimensionless.col2-orth-at--orth-at Tarski-neutral-dimensionless-axioms assms(1 )

assms(2 ) assms(3 ) assms(4 ))

lemma col-orth--orth:
assumes U 6= W and

Col U V W and
A B C Orth U V

shows A B C Orth U W
by (meson assms(1 ) assms(2 ) assms(3 ) col2-orth--orth col-trivial-3 )
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lemma orth-symmetry:
assumes A B C Orth U V
shows A B C Orth V U
by (meson Orth-def assms orth-at-symmetry)

lemma orth-distincts:
assumes A B C Orth U V
shows A 6= B ∧ B 6= C ∧ A 6= C ∧ U 6= V
using Orth-def assms orth-at-distincts by blast

lemma col-cop-orth--orth-at:
assumes A B C Orth U V and

Coplanar A B C X and
Col U V X

shows X OrthAt A B C U V
proof −

obtain Y where P1 :
¬ Col A B C ∧ U 6= V ∧ Coplanar A B C Y ∧ Col U V Y ∧

(∀ P Q. (Coplanar A B C P ∧ Col U V Q) −→ Per P Y Q)
by (metis OrthAt-def Tarski-neutral-dimensionless.Orth-def Tarski-neutral-dimensionless-axioms assms(1 ))

then have P2 : X = Y
using assms(2 ) assms(3 ) per-distinct-1 by blast

{
fix P Q
assume Coplanar A B C P ∧ Col U V Q
then have Per P X Q using P1 P2 by auto

}
thus ?thesis

using OrthAt-def Orth-def assms(1 ) assms(2 ) assms(3 ) by auto
qed

lemma l11-60-aux:
assumes ¬ Col A B C and

Cong A P A Q and
Cong B P B Q and
Cong C P C Q and
Coplanar A B C D

shows Cong D P D Q
proof −

obtain M where P1 : Bet P M Q ∧ Cong P M M Q
by (meson Midpoint-def Tarski-neutral-dimensionless.midpoint-existence Tarski-neutral-dimensionless-axioms)

obtain X where P2 : (Col A B X ∧ Col C D X) ∨
(Col A C X ∧ Col B D X) ∨
(Col A D X ∧ Col B C X)

using assms(5 ) Coplanar-def by auto
{

assume Col A B X ∧ Col C D X
then have Cong D P D Q

by (metis (no-types, lifting) assms(1 ) assms(2 ) assms(3 ) assms(4 ) l4-17 not-col-distincts not-col-permutation-5 )
}
{

assume Col A C X ∧ Col B D X
then have Cong D P D Q

by (metis (no-types, lifting) assms(1 ) assms(2 ) assms(3 ) assms(4 ) l4-17 not-col-distincts not-col-permutation-5 )
}
{

assume Col A D X ∧ Col B C X
then have Cong D P D Q

by (smt assms(1 ) assms(2 ) assms(3 ) assms(4 ) l4-17 not-col-distincts not-col-permutation-1 )
}
thus ?thesis

using P2 ‹Col A B X ∧ Col C D X =⇒ Cong D P D Q› ‹Col A C X ∧ Col B D X =⇒ Cong D P D Q› by blast
qed

lemma l11-60 :
assumes ¬ Col A B C and
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Per A D P and
Per B D P and
Per C D P and
Coplanar A B C E

shows Per E D P
by (meson Per-def assms(1 ) assms(2 ) assms(3 ) assms(4 ) assms(5 ) l11-60-aux per-double-cong)

lemma l11-60-bis:
assumes ¬ Col A B C and

D 6= P and
Coplanar A B C D and
Per A D P and
Per B D P and
Per C D P

shows D OrthAt A B C D P
using assms(1 ) assms(2 ) assms(3 ) assms(4 ) assms(5 ) assms(6 ) l11-60 orth-at-chara by auto

lemma l11-61 :
assumes A 6= A ′ and

A 6= B and
A 6= C and
Coplanar A A ′ B B ′ and
Per B A A ′ and
Per B ′ A ′ A and
Coplanar A A ′ C C ′ and
Per C A A ′ and
Per B A C

shows Per B ′ A ′ C ′

proof −
have P1 : ¬ Col C A A ′

using assms(1 ) assms(3 ) assms(8 ) per-col-eq by blast
obtain C ′′ where P2 : A A ′ Perp C ′′ A ′ ∧ A A ′ OS C C ′′ using l10-15

using Col-perm P1 col-trivial-2 by blast
have P6 : B ′ 6= A

using assms(1 ) assms(6 ) per-distinct by blast
have P8 : ¬ Col A ′ A C ′′

using P2 not-col-permutation-4 one-side-not-col124 by blast
have P9 : Per A ′ A ′ B ′

by (simp add: l8-2 l8-5 )
have P10 : Per A A ′ B ′

by (simp add: assms(6 ) l8-2 )
{

fix B ′

assume A A ′ OS B B ′ ∧ Per B ′ A ′ A
then have B A C CongA B ′ A ′ C ′′ using l11-17
by (meson P2 Perp-cases Tarski-neutral-dimensionless.l11-57 Tarski-neutral-dimensionless-axioms assms(5 ) assms(8 )

perp-per-1 )
then have Per B ′ A ′ C ′′

using assms(9 ) l11-17 by blast
}
then have Q1 : ∀ B ′. (A A ′ OS B B ′ ∧ Per B ′ A ′ A) −→ Per B ′ A ′ C ′′ by simp
{

fix B ′

assume P12 : Coplanar A A ′ B B ′ ∧ Per B ′ A ′ A ∧ B ′ 6= A
have Per B ′ A ′ C ′′

proof cases
assume B ′ = A ′

thus ?thesis
by (simp add: Per-perm l8-5 )

next
assume P13 : B ′ 6= A ′

have P14 : ¬ Col B ′ A ′ A
using P12 P13 assms(1 ) l8-9 by auto

have P15 : ¬ Col B A A ′

using assms(1 ) assms(2 ) assms(5 ) per-not-col by auto
then have Z1 : A A ′ TS B B ′ ∨ A A ′ OS B B ′
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using P12 P14 cop--one-or-two-sides not-col-permutation-5 by blast
{

assume A A ′ OS B B ′

then have Per B ′ A ′ C ′′

by (simp add: P12 ‹
∧

B ′a. A A ′ OS B B ′a ∧ Per B ′a A ′ A =⇒ Per B ′a A ′ C ′′›)
}
{

assume Q2 : A A ′ TS B B ′

obtain B ′′ where Z2 : Bet B ′ A ′ B ′′ ∧ Cong A ′ B ′′ A ′ B ′

using segment-construction by blast
have B ′ 6= B ′′

using P13 Z2 bet-neq12--neq by blast
then have Z4 : A ′ 6= B ′′

using Z2 cong-diff-4 by blast
then have A A ′ TS B ′′ B ′

by (meson TS-def Z2 Q2 bet--ts invert-two-sides l9-2 not-col-permutation-1 )
then have Z5 : A A ′ OS B B ′′

using Q2 l9-8-1 by auto
have Per B ′′ A ′ A

using P12 P13 Z2 bet-col col-per2--per l8-2 l8-5 by blast
then have Per C ′′ A ′ B ′′

using l8-2 Q1 Z5 by blast
then have Per B ′ A ′ C ′′

by (metis Col-def Per-perm Tarski-neutral-dimensionless.l8-3 Tarski-neutral-dimensionless-axioms Z2 Z4 )
}
thus ?thesis using Z1

using ‹A A ′ OS B B ′ =⇒ Per B ′ A ′ C ′′› by blast
qed

}
then have ∀ B ′. (Coplanar A A ′ B B ′ ∧ Per B ′ A ′ A ∧ B ′ 6= A) −→ Per B ′ A ′ C ′′

by simp
then have Per B ′ A ′ C ′′

using P6 assms(4 ) assms(6 ) by blast
then have P11 : Per C ′′ A ′ B ′

using Per-cases by auto
have Coplanar A ′ A C ′′ C ′

by (meson P1 P2 assms(7 ) coplanar-trans-1 ncoplanar-perm-6 ncoplanar-perm-8 os--coplanar)
thus ?thesis

using P8 P9 P10 P11 l8-2 l11-60 by blast
qed

lemma l11-61-bis:
assumes D OrthAt A B C D P and

D E Perp E Q and
Coplanar A B C E and
Coplanar D E P Q

shows E OrthAt A B C E Q
proof −

have P4 : D 6= E
using assms(2 ) perp-not-eq-1 by auto

have P5 : E 6= Q
using assms(2 ) perp-not-eq-2 by auto

have ∃ D ′. (D E Perp D ′ D ∧ Coplanar A B C D ′)
proof −

obtain F where T1 : Coplanar A B C F ∧ ¬ Col D E F
using P4 ex-ncol-cop by blast

obtain D ′ where T2 : D E Perp D ′ D ∧ Coplanar D E F D ′

using P4 ex-perp-cop by blast
have Coplanar A B C D ′

proof −
have T3A: ¬ Col A B C

using OrthAt-def assms(1 ) by auto
have T3B: Coplanar A B C D

using OrthAt-def assms(1 ) by blast
then have T4 : Coplanar D E F A

by (meson T1 T3A assms(3 ) coplanar-pseudo-trans ncop-distincts)
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have T5 : Coplanar D E F B
using T1 T3A T3B assms(3 ) coplanar-pseudo-trans ncop-distincts by blast

have Coplanar D E F C
using T1 T3A T3B assms(3 ) coplanar-pseudo-trans ncop-distincts by blast

thus ?thesis
using T1 T2 T4 T5 coplanar-pseudo-trans by blast

qed
thus ?thesis

using T2 by auto
qed
then obtain D ′ where R1 : D E Perp D ′ D ∧ Coplanar A B C D ′ by auto
then have R2 : D 6= D ′

using perp-not-eq-2 by blast
{

fix M
assume R3 : Coplanar A B C M
have Col D P P

by (simp add: col-trivial-2 )
then have Per E D P

using assms(1 ) assms(3 ) orth-at-chara by auto
then have R4 : Per P D E using l8-2 by auto
have R5 : Per Q E D

using Perp-cases assms(2 ) perp-per-2 by blast
have R6 : Coplanar D E D ′ M
proof −

have S1 : ¬ Col A B C
using OrthAt-def assms(1 ) by auto

have Coplanar A B C D
using OrthAt-def assms(1 ) by auto

thus ?thesis
using S1 assms(3 ) R1 R3 coplanar-pseudo-trans by blast

qed
have R7 : Per D ′ D E

using Perp-cases R1 perp-per-1 by blast
have Per D ′ D P

using R1 assms(1 ) orth-at-chara by blast
then have Per P D D ′

using Per-cases by blast
then have Per Q E M

using l11-61 R4 R5 R6 R7 OrthAt-def P4 R2 assms(1 ) assms(4 ) by blast
then have Per M E Q using l8-2 by auto

}
{

fix P0 Q0
assume Coplanar A B C P0 ∧ Col E Q Q0
then have Per P0 E Q0

using P5 ‹
∧

M . Coplanar A B C M =⇒ Per M E Q› per-col by blast
}
thus ?thesis

using OrthAt-def P5 assms(1 ) assms(3 ) col-trivial-3 by auto
qed

lemma l11-62-unicity:
assumes Coplanar A B C D and

Coplanar A B C D ′ and
∀ E . Coplanar A B C E −→ Per E D P and
∀ E . Coplanar A B C E −→ Per E D ′ P

shows D = D ′

by (metis assms(1 ) assms(2 ) assms(3 ) assms(4 ) l8-8 not-col-distincts per-not-colp)

lemma l11-62-unicity-bis:
assumes X OrthAt A B C X U and

Y OrthAt A B C Y U
shows X = Y

proof −
have P1 : Coplanar A B C X
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using assms(1 ) orth-at-chara by blast
have P2 : Coplanar A B C Y

using assms(2 ) orth-at-chara by blast
{

fix E
assume Coplanar A B C E
then have Per E X U

using OrthAt-def assms(1 ) col-trivial-2 by auto
}
{

fix E
assume Coplanar A B C E
then have Per E Y U

using assms(2 ) orth-at-chara by auto
}
thus ?thesis

by (meson P1 P2 ‹
∧

E . Coplanar A B C E =⇒ Per E X U › l8-2 l8-7 )
qed

lemma orth-at2--eq:
assumes X OrthAt A B C U V and

Y OrthAt A B C U V
shows X = Y

proof −
have P1 : Coplanar A B C X

using assms(1 )
by (simp add: OrthAt-def )

have P2 : Coplanar A B C Y
using OrthAt-def assms(2 ) by auto

{
fix E
assume Coplanar A B C E
then have Per E X U

using OrthAt-def assms(1 ) col-trivial-3 by auto
}
{

fix E
assume Coplanar A B C E
then have Per E Y U

using OrthAt-def assms(2 ) col-trivial-3 by auto
}
thus ?thesis

by (meson P1 P2 Per-perm ‹
∧

E . Coplanar A B C E =⇒ Per E X U › l8-7 )
qed

lemma col-cop-orth-at--eq:
assumes X OrthAt A B C U V and

Coplanar A B C Y and
Col U V Y

shows X = Y
proof −

have Y OrthAt A B C U V
using Orth-def assms(1 ) assms(2 ) assms(3 ) col-cop-orth--orth-at by blast

thus ?thesis
using assms(1 ) orth-at2--eq by auto

qed

lemma orth-at--ncop1 :
assumes U 6= X and

X OrthAt A B C U V
shows ¬ Coplanar A B C U
using assms(1 ) assms(2 ) col-cop-orth-at--eq not-col-distincts by blast

lemma orth-at--ncop2 :
assumes V 6= X and

X OrthAt A B C U V
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shows ¬ Coplanar A B C V
using assms(1 ) assms(2 ) col-cop-orth-at--eq not-col-distincts by blast

lemma orth-at--ncop:
assumes X OrthAt A B C X P
shows ¬ Coplanar A B C P
by (metis assms orth-at--ncop2 orth-at-distincts)

lemma l11-62-existence:
∃ D. (Coplanar A B C D ∧ (∀ E . (Coplanar A B C E −→ Per E D P)))

proof cases
assume Coplanar A B C P
thus ?thesis

using l8-5 by auto
next

assume P1 : ¬ Coplanar A B C P
then have P2 : ¬ Col A B C

using ncop--ncol by auto
have ¬ Col A B P

using P1 ncop--ncols by auto
then obtain D0 where P4 : Col A B D0 ∧ A B Perp P D0 using l8-18-existence by blast
have P5 : Coplanar A B C D0

using P4 ncop--ncols by auto
have A 6= B

using P2 not-col-distincts by auto
then obtain D1 where P10 : A B Perp D1 D0 ∧ Coplanar A B C D1

using ex-perp-cop by blast
have P11 : ¬ Col A B D1

using P10 P4 perp-not-col2 by blast
{

fix D
assume Col D0 D1 D
then have Coplanar A B C D

by (metis P10 P5 col-cop2--cop perp-not-eq-2 )
}
obtain A0 where P11 : A 6= A0 ∧ B 6= A0 ∧ D0 6= A0 ∧ Col A B A0

using P4 diff-col-ex3 by blast
have P12 : Coplanar A B C A0

using P11 ncop--ncols by blast
have P13 : Per P D0 A0

using l8-16-1 P11 P4 by blast
show ?thesis
proof cases

assume Z1 : Per P D0 D1
{

fix E
assume R1 : Coplanar A B C E
have R2 : ¬ Col A0 D1 D0

by (metis P10 P11 P4 col-permutation-5 colx perp-not-col2 )
have R3 : Per A0 D0 P

by (simp add: P13 l8-2 )
have R4 : Per D1 D0 P

by (simp add: Z1 l8-2 )
have R5 : Per D0 D0 P

by (simp add: l8-2 l8-5 )
have Coplanar A0 D1 D0 E

using R1 P2 P12 P10 P5 coplanar-pseudo-trans by blast
then have Per E D0 P

using l11-60 R2 R3 R4 R5 by blast
}
thus ?thesis using P5 by auto

next
assume S1 : ¬ Per P D0 D1
{

assume S2 : Col D0 D1 P
have ∀ D. Col D0 D1 D −→ Coplanar A B C D
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by (simp add: ‹
∧

Da. Col D0 D1 Da =⇒ Coplanar A B C Da›)
then have False

using P1 S2 by blast
}
then have S2A: ¬ Col D0 D1 P by blast
then obtain D where S3 : Col D0 D1 D ∧ D0 D1 Perp P D

using l8-18-existence by blast
have S4 : Coplanar A B C D

by (simp add: S3 ‹
∧

Da. Col D0 D1 Da =⇒ Coplanar A B C Da›)
{

fix E
assume S5 : Coplanar A B C E
have S6 : D 6= D0

using S1 S3 l8-2 perp-per-1 by blast
have S7 : Per D0 D P

by (metis Perp-cases S3 S6 perp-col perp-per-1 )
have S8 : Per D D0 A0
proof −

have V4 : D0 6= D1
using P10 perp-not-eq-2 by blast

have V6 : Per A0 D0 D1
using P10 P11 P4 l8-16-1 l8-2 by blast

thus ?thesis
using S3 V4 V6 l8-2 per-col by blast

qed
have S9 : Per A0 D P
proof −

obtain A0 ′ where W1 : D Midpoint A0 A0 ′

using symmetric-point-construction by auto
obtain D0 ′ where W2 : D Midpoint D0 D0 ′

using symmetric-point-construction by auto
have Cong P A0 P A0 ′

proof −
have V3 : Cong P D0 P D0 ′

using S7 W2 l8-2 per-double-cong by blast
have V4 : Cong D0 A0 D0 ′ A0 ′

using W1 W2 cong-4321 l7-13 by blast
have Per P D0 ′ A0 ′

proof −
obtain P ′ where V5 : D Midpoint P P ′

using symmetric-point-construction by blast
have Per P ′ D0 A0
proof −

have ¬ Col P D D0
by (metis S2A S3 S6 col2--eq col-permutation-1 )

thus ?thesis
by (metis (full-types) P13 S3 S8 V5 S2A col-per2--per midpoint-col)

qed
thus ?thesis

using midpoint-preserves-per V5 Mid-cases W1 W2 by blast
qed
thus ?thesis using l10-12 P13 V3 V4 by blast

qed
thus ?thesis

using Per-def Per-perm W1 by blast
qed
have S13 : Per D D P

using Per-perm l8-5 by blast
have S14 : ¬ Col D0 A0 D using P11 S7 S9 per-not-col Col-perm S6 S8 by blast
have Coplanar A B C D using S4 by auto
then have Coplanar D0 A0 D E

using P12 P2 P5 S5 coplanar-pseudo-trans by blast
then have Per E D P

using S13 S14 S7 S9 l11-60 by blast
}
thus ?thesis using S4 by blast
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qed
qed

lemma l11-62-existence-bis:
assumes ¬ Coplanar A B C P
shows ∃ X . X OrthAt A B C X P

proof −
obtain X where P1 : Coplanar A B C X ∧ (∀ E . Coplanar A B C E −→ Per E X P)

using l11-62-existence by blast
then have P2 : X 6= P

using assms by auto
have P3 : ¬ Col A B C

using assms ncop--ncol by auto
thus ?thesis

using P1 P2 P3 orth-at-chara by auto
qed

lemma l11-63-aux:
assumes Coplanar A B C D and

D 6= E and
E OrthAt A B C E P

shows ∃ Q. (D E OS P Q ∧ A B C Orth D Q)
proof −

have P1 : ¬ Col A B C
using OrthAt-def assms(3 ) by blast

have P2 : E 6= P
using OrthAt-def assms(3 ) by blast

have P3 : Coplanar A B C E
using OrthAt-def assms(3 ) by blast

have P4 : ∀ P0 Q. (Coplanar A B C P0 ∧ Col E P Q) −→ Per P0 E Q
using OrthAt-def assms(3 ) by blast

have P5 : ¬ Coplanar A B C P
using assms(3 ) orth-at--ncop by auto

have P6 : Col D E D
by (simp add: col-trivial-3 )

have ¬ Col D E P
using P3 P5 assms(1 ) assms(2 ) col-cop2--cop by blast

then obtain Q where P6 : D E Perp Q D ∧ D E OS P Q
using P6 l10-15 by blast

have A B C Orth D Q
proof −

obtain F where P7 : Coplanar A B C F ∧ ¬ Col D E F
using assms(2 ) ex-ncol-cop by blast

obtain D ′ where P8 : D E Perp D ′ D ∧ Coplanar D E F D ′

using assms(2 ) ex-perp-cop by presburger
have P9 : ¬ Col D ′ D E

using P8 col-permutation-1 perp-not-col by blast
have P10 : Coplanar D E F A

by (meson P1 P3 P7 assms(1 ) coplanar-pseudo-trans ncop-distincts)
have P11 : Coplanar D E F B

by (meson P1 P3 P7 assms(1 ) coplanar-pseudo-trans ncop-distincts)
have P12 : Coplanar D E F C

by (meson P1 P3 P7 assms(1 ) coplanar-pseudo-trans ncop-distincts)
then have D OrthAt A B C D Q
proof −

have Per D ′ D Q
proof −

obtain E ′ where Y1 : D E Perp E ′ E ∧ Coplanar D E F E ′

using assms(2 ) ex-perp-cop by blast
have Y2 : E 6= E ′

using Y1 perp-distinct by auto
have Y5 : Coplanar E D E ′ D ′

by (meson P7 P8 Y1 coplanar-perm-12 coplanar-perm-7 coplanar-trans-1 not-col-permutation-2 )
have Y6 : Per E ′ E D

by (simp add: Perp-perm Tarski-neutral-dimensionless.perp-per-2 Tarski-neutral-dimensionless-axioms Y1 )
have Y7 : Per D ′ D E

222



using P8 col-trivial-2 col-trivial-3 l8-16-1 by blast
have Y8 : Coplanar E D P Q

using P6 ncoplanar-perm-6 os--coplanar by blast
have Y9 : Per P E D using P4

using assms(1 ) assms(3 ) l8-2 orth-at-chara by blast
have Y10 : Coplanar A B C E ′

using P10 P11 P12 P7 Y1 coplanar-pseudo-trans by blast
then have Y11 : Per E ′ E P

using P4 Y10 col-trivial-2 by auto
have E 6= D using assms(2 ) by blast
thus ?thesis

using l11-61 Y2 assms(2 ) P2 Y5 Y6 Y7 Y8 Y9 Y10 Y11 by blast
qed
then have X1 : D OrthAt D ′ D E D Q using l11-60-bis

by (metis OS-def P6 P9 Per-perm TS-def Tarski-neutral-dimensionless.l8-5 Tarski-neutral-dimensionless-axioms
col-trivial-3 invert-one-side ncop-distincts perp-per-1 )

have X3 : Coplanar D ′ D E A
using P10 P7 P8 coplanar-perm-14 coplanar-trans-1 not-col-permutation-3 by blast

have X4 : Coplanar D ′ D E B
using P11 P7 P8 coplanar-perm-14 coplanar-trans-1 not-col-permutation-3 by blast

have Coplanar D ′ D E C
using P12 P7 P8 coplanar-perm-14 coplanar-trans-1 not-col-permutation-3 by blast

thus ?thesis
using X1 P1 X3 X4 cop3-orth-at--orth-at by blast

qed
thus ?thesis

using Orth-def by blast
qed
thus ?thesis using P6 by blast

qed

lemma l11-63-existence:
assumes Coplanar A B C D and
¬ Coplanar A B C P

shows ∃ Q. A B C Orth D Q
using Orth-def assms(1 ) assms(2 ) l11-62-existence-bis l11-63-aux by fastforce

lemma l8-21-3 :
assumes Coplanar A B C D and
¬ Coplanar A B C X

shows
∃ P T . (A B C Orth D P ∧ Coplanar A B C T ∧ Bet X T P)

proof −
obtain E where P1 : E OrthAt A B C E X

using assms(2 ) l11-62-existence-bis by blast
thus ?thesis
proof cases

assume P2 : D = E
obtain Y where P3 : Bet X D Y ∧ Cong D Y D X

using segment-construction by blast
have P4 : D 6= X

using assms(1 ) assms(2 ) by auto
have P5 : A B C Orth D X

using Orth-def P1 P2 by auto
have P6 : D 6= Y

using P3 P4 cong-reverse-identity by blast
have Col D X Y

using Col-def Col-perm P3 by blast
then have A B C Orth D Y

using P5 P6 col-orth--orth by auto
thus ?thesis

using P3 assms(1 ) by blast
next

assume K1 : D 6= E
then obtain P ′ where P7 : D E OS X P ′ ∧ A B C Orth D P ′

using P1 assms(1 ) l11-63-aux by blast
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have P8 : ¬ Col A B C
using assms(2 ) ncop--ncol by auto

have P9 : E 6= X
using P7 os-distincts by auto

have P10 : ∀ P Q. (Coplanar A B C P ∧ Col E X Q) −→ Per P E Q
using OrthAt-def P1 by auto

have P11 : D OrthAt A B C D P ′

by (simp add: P7 assms(1 ) col-cop-orth--orth-at col-trivial-3 )
have P12 : D 6= P ′

using P7 os-distincts by auto
have P13 : ¬ Coplanar A B C P ′

using P11 orth-at--ncop by auto
have P14 : ∀ P Q. (Coplanar A B C P ∧ Col D P ′ Q) −→ Per P D Q

using OrthAt-def P11 by auto
obtain P where P15 : Bet P ′ D P ∧ Cong D P D P ′

using segment-construction by blast
have P16 : D E TS X P
proof −

have P16A: D E OS P ′ X using P7 one-side-symmetry by blast
then have D E TS P ′ P
by (metis P12 P15 Tarski-neutral-dimensionless.bet--ts Tarski-neutral-dimensionless-axioms cong-diff-3 one-side-not-col123 )
thus ?thesis using l9-8-2 P16A by blast

qed
obtain T where P17 : Col T D E ∧ Bet X T P

using P16 TS-def by blast
have P18 : D 6= P

using P16 ts-distincts by blast
have Col D P ′ P

using Col-def Col-perm P15 by blast
then have A B C Orth D P

using P18 P7 col-orth--orth by blast
thus ?thesis using col-cop2--cop

by (meson P1 P17 Tarski-neutral-dimensionless.orth-at-chara Tarski-neutral-dimensionless-axioms K1 assms(1 )
col-permutation-1 )

qed
qed

lemma mid2-orth-at2--cong:
assumes X OrthAt A B C X P and

Y OrthAt A B C Y Q and
X Midpoint P P ′ and
Y Midpoint Q Q ′

shows Cong P Q P ′ Q ′

proof −
have Q1 : ¬ Col A B C

using assms(1 ) col--coplanar orth-at--ncop by blast
have Q2 : X 6= P

using assms(1 ) orth-at-distincts by auto
have Q3 : Coplanar A B C X

using OrthAt-def assms(1 ) by auto
have Q4 : ∀ P0 Q. (Coplanar A B C P0 ∧ Col X P Q) −→ Per P0 X Q

using OrthAt-def assms(1 ) by blast
have Q5 : Y 6= P

by (metis assms(1 ) assms(2 ) orth-at--ncop2 orth-at-chara)
have Q6 : Coplanar A B C Y

using OrthAt-def assms(2 ) by blast
have Q7 : ∀ P Q0 . (Coplanar A B C P ∧ Col Y Q Q0 ) −→ Per P Y Q0

using OrthAt-def assms(2 ) by blast
obtain Z where P1 : Z Midpoint X Y

using midpoint-existence by auto
obtain R where P2 : Z Midpoint P R

using symmetric-point-construction by auto
obtain R ′ where P3 : Z Midpoint P ′ R ′

using symmetric-point-construction by auto
have T1 : Coplanar A B C Z

using P1 Q3 Q6 bet-cop2--cop midpoint-bet by blast
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then have Per Z X P
using Q4 assms(1 ) orth-at-chara by auto

then have T2 : Cong Z P Z P ′

using assms(3 ) per-double-cong by blast
have T3 : Cong R Z R ′ Z

by (metis Cong-perm Midpoint-def P2 P3 T2 cong-transitivity)
have T4 : Cong R Q R ′ Q ′

by (meson P1 P2 P3 assms(3 ) assms(4 ) l7-13 not-cong-4321 symmetry-preserves-midpoint)
have Per Z Y Q

using Q7 T1 assms(2 ) orth-at-chara by auto
then have T5 : Cong Z Q Z Q ′

using assms(4 ) per-double-cong by auto
have R 6= Z

by (metis P2 P3 Q2 T3 assms(3 ) cong-diff-3 l7-17-bis midpoint-not-midpoint)
thus ?thesis

using P2 P3 T2 T3 T4 T5 five-segment l7-2 midpoint-bet by blast
qed

lemma orth-at2-tsp--ts:
assumes P 6= Q and

P OrthAt A B C P X and
Q OrthAt A B C Q Y and
A B C TSP X Y

shows P Q TS X Y
proof −

obtain T where P0 : Coplanar A B C T ∧ Bet X T Y
using TSP-def assms(4 ) by auto

have P1 : ¬ Col A B C
using assms(4 ) ncop--ncol tsp--ncop1 by blast

have P2 : P 6= X
using assms(2 ) orth-at-distincts by auto

have P3 : Coplanar A B C P
using OrthAt-def assms(2 ) by blast

have P4 : ∀ D. Coplanar A B C D −→ Per D P X
using assms(2 ) orth-at-chara by blast

have P5 : Q 6= Y
using assms(3 ) orth-at-distincts by auto

have P6 : Coplanar A B C Q
using OrthAt-def assms(3 ) by blast

have P7 : ∀ D. Coplanar A B C D −→ Per D Q Y
using assms(3 ) orth-at-chara by blast

have P8 : ¬ Col X P Q
using P3 P6 assms(1 ) assms(4 ) col-cop2--cop not-col-permutation-2 tsp--ncop1 by blast

have P9 : ¬ Col Y P Q
using P3 P6 assms(1 ) assms(4 ) col-cop2--cop not-col-permutation-2 tsp--ncop2 by blast

have Col T P Q
proof −

obtain X ′ where Q1 : P Midpoint X X ′

using symmetric-point-construction by auto
obtain Y ′ where Q2 : Q Midpoint Y Y ′

using symmetric-point-construction by auto
have Per T P X

using P0 P4 by auto
then have Q3 : Cong T X T X ′

using Q1 per-double-cong by auto
have Per T Q Y

using P0 P7 by auto
then have Q4 : Cong T Y T Y ′ using Q2 per-double-cong by auto
have Cong X Y X ′ Y ′

using P1 Q1 Q2 assms(2 ) assms(3 ) mid2-orth-at2--cong by blast
then have X T Y Cong3 X ′ T Y ′

using Cong3-def Q3 Q4 not-cong-2143 by blast
then have Bet X ′ T Y ′

using l4-6 P0 by blast
thus ?thesis

using Q1 Q2 Q3 Q4 Col-def P0 between-symmetry l7-22 by blast

225



qed
thus ?thesis

using P0 P8 P9 TS-def by blast
qed

lemma orth-dec:
shows A B C Orth U V ∨ ¬ A B C Orth U V by auto

lemma orth-at-dec:
shows X OrthAt A B C U V ∨ ¬ X OrthAt A B C U V by auto

lemma tsp-dec:
shows A B C TSP X Y ∨ ¬ A B C TSP X Y by auto

lemma osp-dec:
shows A B C OSP X Y ∨ ¬ A B C OSP X Y by auto

lemma ts2--inangle:
assumes A C TS B P and

B P TS A C
shows P InAngle A B C
by (metis InAngle-def assms(1 ) assms(2 ) bet-out ts2--ex-bet2 ts-distincts)

lemma os-ts--inangle:
assumes B P TS A C and

B A OS C P
shows P InAngle A B C

proof −
have P1 : ¬ Col A B P

using TS-def assms(1 ) by auto
have P2 : ¬ Col B A C

using assms(2 ) col123--nos by blast
obtain P ′ where P3 : B Midpoint P P ′

using symmetric-point-construction by blast
then have P4 : ¬ Col B A P ′

by (metis assms(2 ) col-one-side col-permutation-5 midpoint-col midpoint-distinct-2 one-side-not-col124 )
have P5 : (B 6= P ′ ∧ B P TS A C ∧ Bet P B P ′) −→ (P InAngle A B C ∨ P ′ InAngle A B C )

using two-sides-in-angle by auto
then have P6 : P InAngle A B C ∨ P ′ InAngle A B C

using P3 P4 assms(1 ) midpoint-bet not-col-distincts by blast
{

assume P ′ InAngle A B C
then have P7 : A B OS P ′ C

using Col-cases P2 P4 in-angle-one-side by blast
then have P8 : ¬ A B TS P ′ C

using l9-9 by auto
have B A TS P P ′

using P1 P3 P4 bet--ts midpoint-bet not-col-distincts not-col-permutation-4 by auto
then have B A TS C P ′

using P7 assms(2 ) invert-one-side l9-2 l9-8-2 l9-9 by blast
then have B A TS P ′ C

using l9-2 by blast
then have A B TS P ′ C

by (simp add: invert-two-sides)
then have P InAngle A B C

using P8 by auto
}
thus ?thesis

using P6 by blast
qed

lemma os2--inangle:
assumes B A OS C P and

B C OS A P
shows P InAngle A B C
using assms(1 ) assms(2 ) col124--nos l9-9-bis os-ts--inangle two-sides-cases by blast
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lemma acute-conga--acute:
assumes Acute A B C and

A B C CongA D E F
shows Acute D E F

proof −
have D E F LeA A B C

by (simp add: assms(2 ) conga--lea456123 )
thus ?thesis

using acute-lea-acute assms(1 ) by blast
qed

lemma acute-out2--acute:
assumes B Out A ′ A and

B Out C ′ C and
Acute A B C

shows Acute A ′ B C ′

by (meson Tarski-neutral-dimensionless.out2--conga Tarski-neutral-dimensionless-axioms acute-conga--acute assms(1 )
assms(2 ) assms(3 ))

lemma conga-obtuse--obtuse:
assumes Obtuse A B C and

A B C CongA D E F
shows Obtuse D E F
using assms(1 ) assms(2 ) conga--lea lea-obtuse-obtuse by blast

lemma obtuse-out2--obtuse:
assumes B Out A ′ A and

B Out C ′ C and
Obtuse A B C

shows Obtuse A ′ B C ′

by (meson Tarski-neutral-dimensionless.out2--conga Tarski-neutral-dimensionless-axioms assms(1 ) assms(2 ) assms(3 )
conga-obtuse--obtuse)

lemma bet-lea--bet:
assumes Bet A B C and

A B C LeA D E F
shows Bet D E F

proof −
have A B C CongA D E F

by (metis assms(1 ) assms(2 ) l11-31-2 lea-asym lea-distincts)
thus ?thesis

using assms(1 ) bet-conga--bet by blast
qed

lemma out-lea--out:
assumes E Out D F and

A B C LeA D E F
shows B Out A C

proof −
have D E F CongA A B C
using Tarski-neutral-dimensionless.l11-31-1 Tarski-neutral-dimensionless.lea-asym Tarski-neutral-dimensionless.lea-distincts

Tarski-neutral-dimensionless-axioms assms(1 ) assms(2 ) by fastforce
thus ?thesis

using assms(1 ) out-conga-out by blast
qed

lemma bet2-lta--lta:
assumes A B C LtA D E F and

Bet A B A ′ and
A ′ 6= B and
Bet D E D ′ and
D ′ 6= E

shows D ′ E F LtA A ′ B C
proof −

have P1 : D ′ E F LeA A ′ B C
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by (metis Bet-cases assms(1 ) assms(2 ) assms(3 ) assms(4 ) assms(5 ) l11-36-aux2 lea-distincts lta--lea)
have ¬ D ′ E F CongA A ′ B C

by (metis assms(1 ) assms(2 ) assms(4 ) between-symmetry conga-sym l11-13 lta-distincts not-lta-and-conga)
thus ?thesis

by (simp add: LtA-def P1 )
qed

lemma lea123456-lta--lta:
assumes A B C LeA D E F and

D E F LtA G H I
shows A B C LtA G H I

proof −
have ¬ G H I LeA F E D
by (metis (no-types) Tarski-neutral-dimensionless.lea--nlta Tarski-neutral-dimensionless.lta-left-comm Tarski-neutral-dimensionless-axioms

assms(2 ))
then have ¬ A B C CongA G H I
by (metis Tarski-neutral-dimensionless.lta-distincts Tarski-neutral-dimensionless-axioms assms(1 ) assms(2 ) conga-pseudo-refl

l11-30 )
thus ?thesis

by (meson LtA-def Tarski-neutral-dimensionless.lea-trans Tarski-neutral-dimensionless-axioms assms(1 ) assms(2 ))
qed

lemma lea456789-lta--lta:
assumes A B C LtA D E F and

D E F LeA G H I
shows A B C LtA G H I
by (meson LtA-def assms(1 ) assms(2 ) conga--lea456123 lea-trans lta--nlea)

lemma acute-per--lta:
assumes Acute A B C and

D 6= E and
E 6= F and
Per D E F

shows A B C LtA D E F
proof −

obtain G H I where P1 : Per G H I ∧ A B C LtA G H I
using Acute-def assms(1 ) by auto

then have G H I CongA D E F
using assms(2 ) assms(3 ) assms(4 ) l11-16 lta-distincts by blast

thus ?thesis
by (metis P1 conga-preserves-lta conga-refl lta-distincts)

qed

lemma obtuse-per--lta:
assumes Obtuse A B C and

D 6= E and
E 6= F and
Per D E F

shows D E F LtA A B C
proof −

obtain G H I where P1 : Per G H I ∧ G H I LtA A B C
using Obtuse-def assms(1 ) by auto

then have G H I CongA D E F
using assms(2 ) assms(3 ) assms(4 ) l11-16 lta-distincts by blast

thus ?thesis
by (metis P1 Tarski-neutral-dimensionless.l11-51 Tarski-neutral-dimensionless-axioms assms(1 ) cong-reflexivity

conga-preserves-lta obtuse-distincts)
qed

lemma acute-obtuse--lta:
assumes Acute A B C and

Obtuse D E F
shows A B C LtA D E F
by (metis Acute-def assms(1 ) assms(2 ) lta-distincts lta-trans obtuse-per--lta)

lemma lea-in-angle:
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assumes A B P LeA A B C and
A B OS C P

shows P InAngle A B C
proof −

obtain T where P3 : T InAngle A B C ∧ A B P CongA A B T
using LeA-def assms(1 ) by blast

thus ?thesis
by (metis assms(2 ) conga-preserves-in-angle conga-refl not-conga-sym one-side-symmetry os-distincts)

qed

lemma acute-bet--obtuse:
assumes Bet A B A ′ and

A ′ 6= B and
Acute A B C

shows Obtuse A ′ B C
proof cases

assume P1 : Col A B C
show ?thesis
proof cases

assume Bet A B C
thus ?thesis

using P1 acute-col--out assms(3 ) not-bet-and-out by blast
next

assume ¬ Bet A B C
thus ?thesis

by (smt P1 assms(1 ) assms(2 ) bet--obtuse between-inner-transitivity between-symmetry outer-transitivity-between
third-point)

qed
next

assume P2 : ¬ Col A B C
then obtain D where P3 : A B Perp D B ∧ A B OS C D

using col-trivial-2 l10-15 by blast
{

assume P4 : Col C B D
then have Per A B C
proof −

have P5 : B 6= D
using P3 perp-not-eq-2 by auto

have Per A B D
using P3 Perp-perm perp-per-2 by blast

thus ?thesis
using P4 P5 not-col-permutation-2 per-col by blast

qed
then have A B C LtA A B C

by (metis Acute-def acute-per--lta assms(3 ) lta-distincts)
then have False

by (simp add: nlta)
}
then have P6 : ¬ Col C B D by auto
have P7 : B A ′ OS C D

by (metis P3 assms(1 ) assms(2 ) bet-col col2-os--os l5-3 )
have T1 : Per A B D

by (simp add: P3 perp-left-comm perp-per-1 )
have Q1 : B C TS A ′ A

using P2 assms(1 ) assms(2 ) bet--ts l9-2 not-col-permutation-1 by auto
have A B C LtA A B D

using P2 P6 T1 acute-per--lta assms(3 ) not-col-distincts by auto
then have A B C LeA A B D

by (simp add: lta--lea)
then have C InAngle A B D

by (simp add: P3 lea-in-angle one-side-symmetry)
then have C InAngle D B A

using l11-24 by blast
then have C B TS D A

by (simp add: P2 P6 in-angle-two-sides not-col-permutation-1 not-col-permutation-4 )
then have B C TS D A
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using invert-two-sides by blast
then have B C OS A ′ D

using Q1 l9-8-1 by auto
then have T1A: D InAngle A ′ B C

by (simp add: P7 os2--inangle)
then have A B D CongA A ′ B D
by (metis Per-cases T1 Tarski-neutral-dimensionless.conga-comm Tarski-neutral-dimensionless.l11-18-1 Tarski-neutral-dimensionless-axioms

acute-distincts assms(1 ) assms(3 ) inangle-distincts)
then have T2 : A B D LeA A ′ B C

using LeA-def T1A by auto
{

assume A B D CongA A ′ B C
then have False

by (metis OS-def P7 T1 TS-def Tarski-neutral-dimensionless.out2--conga Tarski-neutral-dimensionless-axioms ‹A
B C LtA A B D› ‹A B D CongA A ′ B D› ‹

∧
thesis. (

∧
D. A B Perp D B ∧ A B OS C D =⇒ thesis) =⇒ thesis›

col-trivial-2 invert-one-side l11-17 l11-19 not-lta-and-conga out-trivial)
}
then have ¬ A B D CongA A ′ B C by auto
then have A B D LtA A ′ B C

using T2 LtA-def by auto
thus ?thesis

using T1 Obtuse-def by blast
qed

lemma bet-obtuse--acute:
assumes Bet A B A ′ and

A ′ 6= B and
Obtuse A B C

shows Acute A ′ B C
proof cases

assume P1 : Col A B C
thus ?thesis
proof cases

assume Bet A B C
then have B Out A ′ C

by (smt Out-def assms(1 ) assms(2 ) assms(3 ) l5-2 obtuse-distincts)
thus ?thesis

by (simp add: out--acute)
next

assume ¬ Bet A B C
thus ?thesis

using P1 assms(3 ) col-obtuse--bet by blast
qed

next
assume P2 : ¬ Col A B C
then obtain D where P3 : A B Perp D B ∧ A B OS C D

using col-trivial-2 l10-15 by blast
{

assume P3A: Col C B D
have P3B: B 6= D

using P3 perp-not-eq-2 by blast
have P3C : Per A B D

using P3 Perp-perm perp-per-2 by blast
then have Per A B C

using P3A P3B not-col-permutation-2 per-col by blast
then have A B C LtA A B C

using P2 assms(3 ) not-col-distincts obtuse-per--lta by auto
then have False

by (simp add: nlta)
}
then have P4 : ¬ Col C B D by auto
have Col B A A ′

using Col-def Col-perm assms(1 ) by blast
then have P5 : B A ′ OS C D

using P3 assms(2 ) invert-one-side col2-os--os col-trivial-3 by blast
have P7 : Per A ′ B D
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by (meson Col-def P3 Tarski-neutral-dimensionless.Per-perm Tarski-neutral-dimensionless-axioms assms(1 ) col-trivial-2
l8-16-1 )

have A ′ B C LtA A ′ B D
proof −

have P8 : A ′ B C LeA A ′ B D
proof −

have P9 : C InAngle A ′ B D
proof −

have P10 : B A ′ OS D C
by (simp add: P5 one-side-symmetry)

have B D OS A ′ C
proof −

have P6 : ¬ Col A B D
using P3 col124--nos by auto

then have P11 : B D TS A ′ A
using Col-perm P5 assms(1 ) bet--ts l9-2 os-distincts by blast

have A B D LtA A B C
proof −

have P11A: A 6= B
using P2 col-trivial-1 by auto

have P11B: B 6= D
using P4 col-trivial-2 by blast

have Per A B D
using P3 Perp-cases perp-per-2 by blast

thus ?thesis
by (simp add: P11A P11B Tarski-neutral-dimensionless.obtuse-per--lta Tarski-neutral-dimensionless-axioms

assms(3 ))
qed
then have A B D LeA A B C

by (simp add: lta--lea)
then have D InAngle A B C

by (simp add: P3 lea-in-angle)
then have D InAngle C B A

using l11-24 by blast
then have D B TS C A

by (simp add: P4 P6 in-angle-two-sides not-col-permutation-4 )
then have B D TS C A

by (simp add: invert-two-sides)
thus ?thesis

using OS-def P11 by blast
qed
thus ?thesis

by (simp add: P10 os2--inangle)
qed
have A ′ B C CongA A ′ B C

using assms(2 ) assms(3 ) conga-refl obtuse-distincts by blast
thus ?thesis

by (simp add: P9 inangle--lea)
qed
{

assume A ′ B C CongA A ′ B D
then have B Out C D

using P5 conga-os--out invert-one-side by blast
then have False

using P4 not-col-permutation-4 out-col by blast
}
then have ¬ A ′ B C CongA A ′ B D by auto
thus ?thesis

by (simp add: LtA-def P8 )
qed
thus ?thesis

using Acute-def P7 by blast
qed

lemma inangle-dec:
P InAngle A B C ∨ ¬ P InAngle A B C by blast
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lemma lea-dec:
A B C LeA D E F ∨ ¬ A B C LeA D E F by blast

lemma lta-dec:
A B C LtA D E F ∨ ¬ A B C LtA D E F by blast

lemma lea-total:
assumes A 6= B and

B 6= C and
D 6= E and
E 6= F

shows A B C LeA D E F ∨ D E F LeA A B C
proof cases

assume P1 : Col A B C
show ?thesis
proof cases

assume B Out A C
thus ?thesis

using assms(3 ) assms(4 ) l11-31-1 by auto
next

assume ¬ B Out A C
thus ?thesis

by (metis P1 assms(1 ) assms(2 ) assms(3 ) assms(4 ) l11-31-2 or-bet-out)
qed

next
assume P2 : ¬ Col A B C
show ?thesis
proof cases

assume P3 : Col D E F
show ?thesis
proof cases

assume E Out D F
thus ?thesis

using assms(1 ) assms(2 ) l11-31-1 by auto
next

assume ¬ E Out D F
thus ?thesis

by (metis P3 assms(1 ) assms(2 ) assms(3 ) assms(4 ) l11-31-2 l6-4-2 )
qed

next
assume P4 : ¬ Col D E F
show ?thesis
proof cases

assume A B C LeA D E F
thus ?thesis

by simp
next

assume P5 : ¬ A B C LeA D E F
obtain P where P6 : D E F CongA A B P ∧ A B OS P C

using P2 P4 angle-construction-1 by blast
then have P7 : B A OS C P

using invert-one-side one-side-symmetry by blast
have B C OS A P
proof −

{
assume Col P B C
then have P7B: B Out C P

using Col-cases P7 col-one-side-out by blast
have A B C CongA D E F
proof −

have P7C : A B P CongA D E F
by (simp add: P6 conga-sym)

have P7D: B Out A A
by (simp add: assms(1 ) out-trivial)

have P7E : E Out D D
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by (simp add: assms(3 ) out-trivial)
have E Out F F

using assms(4 ) out-trivial by auto
thus ?thesis

using P7B P7C P7D P7E l11-10 by blast
qed
then have A B C LeA D E F

by (simp add: conga--lea)
then have False

by (simp add: P5 )
}
then have P8 : ¬ Col P B C by auto
{

assume T0 : B C TS A P
have A B C CongA D E F
proof −

have T1 : A B C LeA A B P
proof −

have T1A: C InAngle A B P
by (simp add: P7 T0 one-side-symmetry os-ts--inangle)

have A B C CongA A B C
using assms(1 ) assms(2 ) conga-refl by auto

thus ?thesis
by (simp add: T1A inangle--lea)

qed
have T2 : A B C CongA A B C

using assms(1 ) assms(2 ) conga-refl by auto
have A B P CongA D E F

by (simp add: P6 conga-sym)
thus ?thesis

using P5 T1 T2 l11-30 by blast
qed
then have A B C LeA D E F

by (simp add: conga--lea)
then have False

by (simp add: P5 )
}
then have ¬ B C TS A P by auto
thus ?thesis

using Col-perm P7 P8 one-side-symmetry os-ts1324--os two-sides-cases by blast
qed
then have P InAngle A B C

using P7 os2--inangle by blast
then have D E F LeA A B C

using P6 LeA-def by blast
thus ?thesis

by simp
qed

qed
qed

lemma or-lta2-conga:
assumes A 6= B and

C 6= B and
D 6= E and
F 6= E

shows A B C LtA D E F ∨ D E F LtA A B C ∨ A B C CongA D E F
proof −

have P1 : A B C LeA D E F ∨ D E F LeA A B C
using assms(1 ) assms(2 ) assms(3 ) assms(4 ) lea-total by auto

{
assume A B C LeA D E F
then have A B C LtA D E F ∨ D E F LtA A B C ∨ A B C CongA D E F

using LtA-def by blast
}
{

233



assume D E F LeA A B C
then have A B C LtA D E F ∨ D E F LtA A B C ∨ A B C CongA D E F

using LtA-def conga-sym by blast
}
thus ?thesis

using P1 ‹A B C LeA D E F =⇒ A B C LtA D E F ∨ D E F LtA A B C ∨ A B C CongA D E F› by blast
qed

lemma angle-partition:
assumes A 6= B and

B 6= C
shows Acute A B C ∨ Per A B C ∨ Obtuse A B C

proof −
obtain A ′ B ′ D ′ where P1 : ¬ (Bet A ′ B ′ D ′ ∨ Bet B ′ D ′ A ′ ∨ Bet D ′ A ′ B ′)

using lower-dim by auto
then have ¬ Col A ′ B ′ D ′

by (simp add: Col-def )
obtain C ′ where P3 : A ′ B ′ Perp C ′ B ′

by (metis P1 Perp-perm between-trivial2 perp-exists)
then have P4 : A B C LtA A ′ B ′ C ′ ∨ A ′ B ′ C ′ LtA A B C ∨ A B C CongA A ′ B ′ C ′

by (metis P1 assms(1 ) assms(2 ) between-trivial2 or-lta2-conga perp-not-eq-2 )
{

assume A B C LtA A ′ B ′ C ′

then have Acute A B C ∨ Per A B C ∨ Obtuse A B C
using Acute-def P3 Perp-cases perp-per-2 by blast

}
{

assume A ′ B ′ C ′ LtA A B C
then have Acute A B C ∨ Per A B C ∨ Obtuse A B C

using Obtuse-def P3 Perp-cases perp-per-2 by blast
}
{

assume A B C CongA A ′ B ′ C ′

then have Acute A B C ∨ Per A B C ∨ Obtuse A B C
by (metis P3 Perp-cases Tarski-neutral-dimensionless.conga-sym Tarski-neutral-dimensionless.l11-17 Tarski-neutral-dimensionless-axioms

perp-per-2 )
}
thus ?thesis

using P4 ‹A B C LtA A ′ B ′ C ′ =⇒ Acute A B C ∨ Per A B C ∨ Obtuse A B C › ‹A ′ B ′ C ′ LtA A B C =⇒ Acute
A B C ∨ Per A B C ∨ Obtuse A B C › by auto
qed

lemma acute-chara-1 :
assumes Bet A B A ′ and

B 6= A ′ and
Acute A B C

shows A B C LtA A ′ B C
proof −

have Obtuse A ′ B C
using acute-bet--obtuse assms(1 ) assms(2 ) assms(3 ) by blast

thus ?thesis
by (simp add: acute-obtuse--lta assms(3 ))

qed

lemma acute-chara-2 :
assumes Bet A B A ′ and

A B C LtA A ′ B C
shows Acute A B C
by (metis Tarski-neutral-dimensionless.Acute-def Tarski-neutral-dimensionless-axioms acute-chara-1 angle-partition

assms(1 ) assms(2 ) bet-obtuse--acute between-symmetry lta-distincts not-and-lta)

lemma acute-chara:
assumes Bet A B A ′ and

B 6= A ′

shows Acute A B C ←→ A B C LtA A ′ B C
using acute-chara-1 acute-chara-2 assms(1 ) assms(2 ) by blast
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lemma obtuse-chara:
assumes Bet A B A ′ and

B 6= A ′

shows Obtuse A B C ←→ A ′ B C LtA A B C
by (metis Tarski-neutral-dimensionless.Obtuse-def Tarski-neutral-dimensionless-axioms acute-bet--obtuse acute-chara

assms(1 ) assms(2 ) bet-obtuse--acute between-symmetry lta-distincts)

lemma conga--acute:
assumes A B C CongA A C B
shows Acute A B C
by (metis acute-sym angle-partition assms conga-distinct conga-obtuse--obtuse l11-17 l11-43 )

lemma cong--acute:
assumes A 6= B and

B 6= C and
Cong A B A C

shows Acute A B C
using angle-partition assms(1 ) assms(2 ) assms(3 ) cong--nlt l11-46 lt-left-comm by blast

lemma nlta--lea:
assumes ¬ A B C LtA D E F and

A 6= B and
B 6= C and
D 6= E and
E 6= F

shows D E F LeA A B C
by (metis LtA-def assms(1 ) assms(2 ) assms(3 ) assms(4 ) assms(5 ) conga--lea456123 or-lta2-conga)

lemma nlea--lta:
assumes ¬ A B C LeA D E F and

A 6= B and
B 6= C and
D 6= E and
E 6= F

shows D E F LtA A B C
using assms(1 ) assms(2 ) assms(3 ) assms(4 ) assms(5 ) nlta--lea by blast

lemma triangle-strict-inequality:
assumes Bet A B D and

Cong B C B D and
¬ Bet A B C

shows A C Lt A D
proof cases

assume P1 : Col A B C
then have P2 : B Out A C

using assms(3 ) not-out-bet by auto
{

assume Bet B A C
then have P3 : A C Le A D

by (meson assms(1 ) assms(2 ) cong--le l5-12-a le-transitivity)
have ¬ Cong A C A D

by (metis Out-def P1 P2 assms(1 ) assms(2 ) assms(3 ) l4-18 )
then have A C Lt A D

by (simp add: Lt-def P3 )
}
{

assume Bet A C B
then have P5 : Bet A C D

using assms(1 ) between-exchange4 by blast
then have P6 : A C Le A D

by (simp add: bet--le1213 )
have ¬ Cong A C A D

using P5 assms(1 ) assms(3 ) between-cong by blast
then have A C Lt A D

by (simp add: Lt-def P6 )
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}
thus ?thesis

using P1 ‹Bet B A C =⇒ A C Lt A D› assms(3 ) between-symmetry third-point by blast
next

assume T1 : ¬ Col A B C
have T2 : A 6= D

using T1 assms(1 ) between-identity col-trivial-1 by auto
have T3 : ¬ Col A C D

by (metis Col-def T1 T2 assms(1 ) col-transitivity-2 )
have T4 : Bet D B A

using Bet-perm assms(1 ) by blast
have T5 : C D A CongA D C B
proof −

have T6 : C D B CongA D C B
by (metis assms(1 ) assms(2 ) assms(3 ) between-trivial conga-comm l11-44-1-a not-conga-sym)

have T7 : D Out C C
using T3 not-col-distincts out-trivial by blast

have T8 : D Out A B
by (metis assms(1 ) assms(2 ) assms(3 ) bet-out-1 cong-diff l6-6 )

have T9 : C Out D D
using T7 out-trivial by force

have C Out B B
using T1 not-col-distincts out-trivial by auto

thus ?thesis
using T6 T7 T8 T9 l11-10 by blast

qed
have A D C LtA A C D
proof −

have B InAngle D C A
by (metis InAngle-def T1 T3 T4 not-col-distincts out-trivial)

then have C D A LeA D C A
using T5 LeA-def by auto

then have T10 : A D C LeA A C D
by (simp add: lea-comm)

have ¬ A D C CongA A C D
by (metis Col-perm T3 assms(1 ) assms(2 ) assms(3 ) bet-col l11-44-1-b l4-18 not-bet-distincts not-cong-3412 )

thus ?thesis
using LtA-def T10 by blast

qed
thus ?thesis

by (simp add: l11-44-2-b)
qed

lemma triangle-inequality:
assumes Bet A B D and

Cong B C B D
shows A C Le A D

proof cases
assume Bet A B C
thus ?thesis

by (metis assms(1 ) assms(2 ) between-cong-3 cong--le le-reflexivity)
next

assume ¬ Bet A B C
then have A C Lt A D

using assms(1 ) assms(2 ) triangle-strict-inequality by auto
thus ?thesis

by (simp add: Lt-def )
qed

lemma triangle-strict-inequality-2 :
assumes Bet A ′ B ′ C ′ and

Cong A B A ′ B ′ and
Cong B C B ′ C ′ and
¬ Bet A B C

shows A C Lt A ′ C ′

proof −
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obtain D where P1 : Bet A B D ∧ Cong B D B C
using segment-construction by blast

then have P2 : A C Lt A D
using P1 assms(4 ) cong-symmetry triangle-strict-inequality by blast

have Cong A D A ′ C ′

using P1 assms(1 ) assms(2 ) assms(3 ) cong-transitivity l2-11-b by blast
thus ?thesis

using P2 cong2-lt--lt cong-reflexivity by blast
qed

lemma triangle-inequality-2 :
assumes Bet A ′ B ′ C ′ and

Cong A B A ′ B ′ and
Cong B C B ′ C ′

shows A C Le A ′ C ′

proof −
obtain D where P1 : Bet A B D ∧ Cong B D B C

using segment-construction by blast
have P2 : A C Le A D

by (meson P1 Tarski-neutral-dimensionless.triangle-inequality Tarski-neutral-dimensionless-axioms not-cong-3412 )
have Cong A D A ′ C ′

using P1 assms(1 ) assms(2 ) assms(3 ) cong-transitivity l2-11-b by blast
thus ?thesis

using P2 cong--le le-transitivity by blast
qed

lemma triangle-strict-reverse-inequality:
assumes A Out B D and

Cong A C A D and
¬ A Out B C

shows B D Lt B C
proof cases

assume Col A B C
thus ?thesis
using assms(1 ) assms(2 ) assms(3 ) col-permutation-4 cong-symmetry not-bet-and-out or-bet-out triangle-strict-inequality

by blast
next

assume P1 : ¬ Col A B C
show ?thesis
proof cases

assume B = D
thus ?thesis

using P1 lt1123 not-col-distincts by auto
next

assume P2 : B 6= D
then have P3 : ¬ Col B C D

using P1 assms(1 ) col-trivial-2 colx not-col-permutation-5 out-col by blast
have P4 : ¬ Col A C D

using P1 assms(1 ) col2--eq col-permutation-4 out-col out-distinct by blast
have P5 : C 6= D

using assms(1 ) assms(3 ) by auto
then have P6 : A C D CongA A D C

by (metis P1 assms(2 ) col-trivial-3 l11-44-1-a)
{

assume T1 : Bet A B D
then have T2 : Bet D B A

using Bet-perm by blast
have B C D LtA B D C
proof −

have T3 : D C B CongA B C D
by (metis P3 conga-pseudo-refl not-col-distincts)

have T3A: D Out B A
by (simp add: P2 T1 bet-out-1 )

have T3B: C Out D D
using P5 out-trivial by auto

have T3C : C Out A A
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using P1 not-col-distincts out-trivial by blast
have D Out C C

by (simp add: P5 out-trivial)
then have T4 : D C A CongA B D C using T3A T3B T3C

by (meson Tarski-neutral-dimensionless.conga-comm Tarski-neutral-dimensionless.conga-right-comm Tarski-neutral-dimensionless.l11-10
Tarski-neutral-dimensionless-axioms P6 )

have D C B LtA D C A
proof −

have T4A: D C B LeA D C A
proof −

have T4AA: B InAngle D C A
using InAngle-def P1 P5 T2 not-col-distincts out-trivial by auto

have D C B CongA D C B
using T3 conga-right-comm by blast

thus ?thesis
by (simp add: T4AA inangle--lea)

qed
{

assume T5 : D C B CongA D C A
have D C OS B A

using Col-perm P3 T3A out-one-side by blast
then have C Out B A

using T5 conga-os--out by blast
then have False

using Col-cases P1 out-col by blast
}
then have ¬ D C B CongA D C A by auto
thus ?thesis

using LtA-def T4A by blast
qed
thus ?thesis

using T3 T4 conga-preserves-lta by auto
qed

}
{

assume Q1 : Bet B D A
obtain E where Q2 : Bet B C E ∧ Cong B C C E

using Cong-perm segment-construction by blast
have A D C LtA E C D
proof −

have Q3 : D C OS A E
proof −

have Q4 : D C TS A B
by (metis Col-perm P2 Q1 P4 bet--ts between-symmetry)

then have D C TS E B
by (metis Col-def Q1 Q2 TS-def bet--ts cong-identity invert-two-sides l9-2 )

thus ?thesis
using OS-def Q4 by blast

qed
have Q5 : A C D LtA E C D
proof −

have D C A LeA D C E
proof −

have B Out D A
using P2 Q1 bet-out by auto

then have B C OS D A
by (simp add: P3 out-one-side)

then have C B OS D A
using invert-one-side by blast

then have C E OS D A
by (metis Col-def Q2 Q3 col124--nos col-one-side diff-col-ex not-col-permutation-5 )

then have Q5A: A InAngle D C E
by (simp add: ‹C E OS D A› Q3 invert-one-side one-side-symmetry os2--inangle)

have D C A CongA D C A
using CongA-def P6 conga-refl by auto

thus ?thesis
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by (simp add: Q5A inangle--lea)
qed
then have Q6 : A C D LeA E C D

using lea-comm by blast
{

assume A C D CongA E C D
then have D C A CongA D C E

by (simp add: conga-comm)
then have C Out A E

using Q3 conga-os--out by auto
then have False

by (meson Col-def Out-cases P1 Q2 not-col-permutation-3 one-side-not-col123 out-one-side)
}
then have ¬ A C D CongA E C D by auto
thus ?thesis

by (simp add: LtA-def Q6 )
qed
have E C D CongA E C D

by (metis P1 P5 Q2 cong-diff conga-refl not-col-distincts)
thus ?thesis

using Q5 P6 conga-preserves-lta by auto
qed
then have B C D LtA B D C

using Bet-cases P1 P2 Q1 Q2 bet2-lta--lta not-col-distincts by blast
}
then have B C D LtA B D C

by (meson Out-def ‹Bet A B D =⇒ B C D LtA B D C › assms(1 ) between-symmetry)
thus ?thesis

by (simp add: l11-44-2-b)
qed

qed

lemma triangle-reverse-inequality:
assumes A Out B D and

Cong A C A D
shows B D Le B C

proof cases
assume A Out B C
thus ?thesis
by (metis assms(1 ) assms(2 ) bet--le1213 cong-pseudo-reflexivity l6-11-uniqueness l6-6 not-bet-distincts not-cong-4312 )

next
assume ¬ A Out B C
thus ?thesis

using triangle-strict-reverse-inequality assms(1 ) assms(2 ) lt--le by auto
qed

lemma os3--lta:
assumes A B OS C D and

B C OS A D and
A C OS B D

shows B A C LtA B D C
proof −

have P1 : D InAngle A B C
by (simp add: assms(1 ) assms(2 ) invert-one-side os2--inangle)

then obtain E where P2 : Bet A E C ∧ (E = B ∨ B Out E D)
using InAngle-def by auto

have P3 : ¬ Col A B C
using assms(1 ) one-side-not-col123 by auto

have P4 : ¬ Col A C D
using assms(3 ) col124--nos by auto

have P5 : ¬ Col B C D
using assms(2 ) one-side-not-col124 by auto

have P6 : ¬ Col A B D
using assms(1 ) one-side-not-col124 by auto

{
assume E = B
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then have B A C LtA B D C
using P2 P3 bet-col by blast

}
{

assume P7 : B Out E D
have P8 : A 6= E

using P6 P7 not-col-permutation-4 out-col by blast
have P9 : C 6= E

using P5 P7 out-col by blast
have P10 : B A C LtA B E C
proof −

have P10A: ¬ Col E A B
by (metis Col-def P2 P3 P8 col-transitivity-1 )

then have P10B: E B A LtA B E C
using P2 P9 Tarski-neutral-dimensionless.l11-41-aux Tarski-neutral-dimensionless-axioms by fastforce

have P10C : E A B LtA B E C
using P2 P9 P10A l11-41 by auto

have P11 : E A B CongA B A C
proof −

have P11A: A Out B B
using assms(2 ) os-distincts out-trivial by auto

have A Out C E
using P2 P8 bet-out l6-6 by auto

thus ?thesis
using P11A conga-right-comm out2--conga by blast

qed
have P12 : B E C CongA B E C

by (metis Col-def P2 P3 P9 conga-refl)
thus ?thesis

using P11 P10C conga-preserves-lta by auto
qed
have B E C LtA B D C
proof −

have U1 : E Out D B
proof −

obtain pp :: ′p ⇒ ′p ⇒ ′p where
f1 : ∀ p pa. p 6= (pp p pa) ∧ pa 6= (pp p pa) ∧ Col p pa (pp p pa)
using diff-col-ex by moura

then have ∀ p pa pb. Col pb pa p ∨ ¬ Col pb pa (pp p pa)
by (meson l6-16-1 )

then have f2 : ∀ p pa. Col pa p pa
using f1 by metis

have f3 : (E = B ∨ D = E) ∨ Col D E B
using f1 by (metis Col-def P2 col-out2-col l6-16-1 out-trivial)

have ∀ p. (A = E ∨ Col p A C ) ∨ ¬ Col p A E
using Col-def P2 l6-16-1 by blast

thus ?thesis
using f3 f2 by (metis (no-types) Col-def assms(3 ) not-out-bet one-side-chara one-side-symmetry)

qed
have U2 : D 6= E

using P2 P4 bet-col not-col-permutation-5 by blast
have U3 : ¬ Col D E C

by (metis Col-def P2 P4 P9 col-transitivity-1 )
have U4 : Bet E D B

by (simp add: P7 U1 out2--bet)
have D C E LtA C D B

using P5 U3 U4 l11-41-aux not-col-distincts by blast
have U5 : D E C LtA C D B

using P7 U4 U3 l11-41 out-diff2 by auto
have D E C CongA B E C

by (simp add: P9 U1 l6-6 out2--conga out-trivial)
thus ?thesis

by (metis U5 conga-preserves-lta conga-pseudo-refl lta-distincts)
qed
then have B A C LtA B D C

using P10 lta-trans by blast
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}
thus ?thesis

using P2 ‹E = B =⇒ B A C LtA B D C › by blast
qed

lemma bet-le--lt:
assumes Bet A D B and

A 6= D and
D 6= B and
A C Le B C

shows D C Lt B C
proof −

have P1 : A 6= B
using assms(1 ) assms(2 ) between-identity by blast

have C D Lt C B
proof cases

assume P3 : Col A B C
thus ?thesis
proof cases

assume Bet C D B
thus ?thesis

by (simp add: assms(3 ) bet--lt1213 )
next

assume ¬ Bet C D B
then have D Out C B

by (metis Out-def P1 P3 assms(1 ) col-transitivity-2 not-col-permutation-3 not-out-bet out-col)
thus ?thesis
by (smt Le-cases P3 assms(1 ) assms(2 ) assms(4 ) bet2-le2--le bet-le-eq bet-out-1 l6-6 l6-7 nle--lt or-bet-out out2--bet

out-bet--out)
qed

next
assume Q0A: ¬ Col A B C
then have Q0B: ¬ Col B C D

by (meson Col-def assms(1 ) assms(3 ) col-transitivity-2 )
have C B D LtA C D B
proof −

have Q1 : B Out C C
using Q0A not-col-distincts out-trivial by force

have Q2 : B Out A D
using Out-cases assms(1 ) assms(3 ) bet-out-1 by blast

have Q3 : A Out C C
by (metis Q0A col-trivial-3 out-trivial)

have Q4 : A Out B B
using P1 out-trivial by auto

have C B A LeA C A B
using Col-perm Le-cases Q0A assms(4 ) l11-44-2bis by blast

then have T9 : C B D LeA C A B
using Q1 Q2 Q3 Q4 lea-out4--lea by blast

have C A B LtA C D B
proof −

have U2 : ¬ Col D A C
using Q0B assms(1 ) assms(2 ) bet-col col-transitivity-2 not-col-permutation-3 not-col-permutation-4 by blast

have U3 : D 6= C
using Q0B col-trivial-2 by blast

have U4 : D C A LtA C D B
using U2 assms(1 ) assms(3 ) l11-41-aux by auto

have U5 : D A C LtA C D B
by (simp add: U2 assms(1 ) assms(3 ) l11-41 )

have A Out B D
using Out-def P1 assms(1 ) assms(2 ) by auto

then have D A C CongA C A B
using Q3 conga-right-comm out2--conga by blast

thus ?thesis
by (metis U5 U3 assms(3 ) conga-preserves-lta conga-refl)

qed
thus ?thesis
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using T9 lea123456-lta--lta by blast
qed
thus ?thesis

by (simp add: l11-44-2-b)
qed
thus ?thesis

using Lt-cases by auto
qed

lemma cong2--ncol:
assumes A 6= B and

B 6= C and
A 6= C and
Cong A P B P and
Cong A P C P

shows ¬ Col A B C
proof −

have Cong B P C P
using assms(4 ) assms(5 ) cong-inner-transitivity by blast

thus ?thesis using bet-le--lt
by (metis assms(1 ) assms(2 ) assms(3 ) assms(4 ) assms(5 ) cong--le cong--nlt lt--nle not-col-permutation-5 third-point)

qed

lemma cong4-cop2--eq:
assumes A 6= B and

B 6= C and
A 6= C and
Cong A P B P and
Cong A P C P and
Coplanar A B C P and
Cong A Q B Q and
Cong A Q C Q and
Coplanar A B C Q

shows P = Q
proof −

have P1 : ¬ Col A B C
using assms(1 ) assms(2 ) assms(3 ) assms(4 ) assms(5 ) cong2--ncol by auto

{
assume P2 : P 6= Q
have P3 : ∀ R. Col P Q R −→ (Cong A R B R ∧ Cong A R C R)

using P2 assms(4 ) assms(5 ) assms(7 ) assms(8 ) l4-17 not-cong-4321 by blast
obtain D where P4 : D Midpoint A B

using midpoint-existence by auto
have P5 : Coplanar A B C D

using P4 coplanar-perm-9 midpoint--coplanar by blast
have P6 : Col P Q D
proof −

have P6A: Coplanar P Q D A
using P1 P5 assms(6 ) assms(9 ) coplanar-pseudo-trans ncop-distincts by blast

then have P6B: Coplanar P Q D B
by (metis P4 col-cop--cop midpoint-col midpoint-distinct-1 )

have P6D: Cong P A P B
using assms(4 ) not-cong-2143 by blast

have P6E : Cong Q A Q B
using assms(7 ) not-cong-2143 by blast

have Cong D A D B
using Midpoint-def P4 not-cong-2134 by blast

thus ?thesis using cong3-cop2--col P6A P6B assms(1 ) P6D P6E by blast
qed
obtain R1 where P7 : P 6= R1 ∧ Q 6= R1 ∧ D 6= R1 ∧ Col P Q R1

using P6 diff-col-ex3 by blast
obtain R2 where P8 : Bet R1 D R2 ∧ Cong D R2 R1 D

using segment-construction by blast
have P9 : Col P Q R2

by (metis P6 P7 P8 bet-col colx)
have P9A: Cong R1 A R1 B
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using P3 P7 not-cong-2143 by blast
then have Per R1 D A

using P4 Per-def by auto
then have Per A D R1 using l8-2 by blast
have P10 : Cong A R1 A R2
proof −

have f1 : Bet R2 D R1 ∨Bet R1 R2 D
by (metis (full-types) Col-def P7 P8 between-equality not-col-permutation-5 )

have f2 : Cong B R1 A R1
using Cong-perm ‹Cong R1 A R1 B› by blast

have Cong B R1 A R2 ∨ Bet R1 R2 D
using f1 Cong-perm Midpoint-def P4 P8 l7-13 by blast

thus ?thesis
using f2 P8 bet-cong-eq cong-inner-transitivity by blast

qed
have Col A B C
proof −

have P11 : Cong B R1 B R2
by (metis Cong-perm P10 P3 P9 P9A cong-inner-transitivity)

have P12 : Cong C R1 C R2
using P10 P3 P7 P9 cong-inner-transitivity by blast

have P12A: Coplanar A B C R1
using P2 P7 assms(6 ) assms(9 ) col-cop2--cop by blast

have P12B: Coplanar A B C R2
using P2 P9 assms(6 ) assms(9 ) col-cop2--cop by blast

have R1 6= R2
using P7 P8 between-identity by blast

thus ?thesis
using P10 P11 P12A P12B P12 cong3-cop2--col by blast

qed
then have False

by (simp add: P1 )
}
thus ?thesis by auto

qed

lemma t18-18-aux:
assumes Cong A B D E and

Cong A C D F and
F D E LtA C A B and
¬ Col A B C and
¬ Col D E F and
D F Le D E

shows E F Lt B C
proof −

obtain G0 where P1 : C A B CongA F D G0 ∧ F D OS G0 E
using angle-construction-1 assms(4 ) assms(5 ) not-col-permutation-2 by blast

then have P2 : ¬ Col F D G0
using col123--nos by auto

then obtain G where P3 : D Out G0 G ∧ Cong D G A B
by (metis assms(4 ) bet-col between-trivial2 col-trivial-2 segment-construction-3 )

have P4 : C A B CongA F D G
proof −

have P4B: A Out C C
by (metis assms(4 ) col-trivial-3 out-trivial)

have P4C : A Out B B
by (metis assms(4 ) col-trivial-1 out-trivial)

have P4D: D Out F F
using P2 not-col-distincts out-trivial by blast

have D Out G G0
by (simp add: P3 l6-6 )

thus ?thesis using P1 P4B P4C P4D
using l11-10 by blast

qed
have D Out G G0

by (simp add: P3 l6-6 )
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then have D F OS G G0
using P2 not-col-permutation-4 out-one-side by blast

then have F D OS G G0
by (simp add: invert-one-side)

then have P5 : F D OS G E
using P1 one-side-transitivity by blast

have P6 : ¬ Col F D G
by (meson P5 one-side-not-col123 )

have P7 : Cong C B F G
using P3 P4 assms(2 ) cong2-conga-cong cong-commutativity cong-symmetry by blast

have P8 : F E Lt F G
proof −

have P9 : F D E LtA F D G
by (metis P4 assms(3 ) assms(5 ) col-trivial-1 col-trivial-3 conga-preserves-lta conga-refl)

have P10 : Cong D G D E
using P3 assms(1 ) cong-transitivity by blast

{
assume P11 : Col E F G
have P12 : F D E LeA F D G

by (simp add: P9 lta--lea)
have P13 : ¬ F D E CongA F D G

using P9 not-lta-and-conga by blast
have F D E CongA F D G
proof −

have F Out E G
using Col-cases P11 P5 col-one-side-out l6-6 by blast

then have E F D CongA G F D
by (metis assms(5 ) conga-os--out conga-refl l6-6 not-col-distincts one-side-reflexivity out2--conga)

thus ?thesis
by (meson P10 assms(2 ) assms(6 ) cong-4321 cong-inner-transitivity l11-52 le-comm)

qed
then have False

using P13 by blast
}
then have P15 : ¬ Col E F G by auto
{

assume P20 : Col D E G
have P21 : F D E LeA F D G

by (simp add: P9 lta--lea)
have P22 : ¬ F D E CongA F D G

using P9 not-lta-and-conga by blast
have F D E CongA F D G
proof −

have D Out E G
by (meson Out-cases P5 P20 col-one-side-out invert-one-side not-col-permutation-5 )

thus ?thesis
using P10 P15 ‹D Out G G0 › cong-inner-transitivity l6-11-uniqueness l6-7 not-col-distincts by blast

qed
then have False

by (simp add: P22 )
}
then have P16 : ¬ Col D E G by auto
have P17 : E InAngle F D G

using lea-in-angle by (simp add: P5 P9 lta--lea)
then obtain H where P18 : Bet F H G ∧ (H = D ∨ D Out H E)

using InAngle-def by auto
{

assume H = D
then have F G E LtA F E G

using P18 P6 bet-col by blast
}
{

assume P19 : D Out H E
have P20 : H 6= F

using Out-cases P19 assms(5 ) out-col by blast
have P21 : H 6= G
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using P19 P16 l6-6 out-col by blast
have F D Le G D

using P10 assms(6 ) cong-pseudo-reflexivity l5-6 not-cong-4312 by blast
then have H D Lt G D

using P18 P20 P21 bet-le--lt by blast
then have P22 : D H Lt D E

using Lt-cases P10 cong2-lt--lt cong-reflexivity by blast
then have P23 : D H Le D E ∧ ¬ Cong D H D E

using Lt-def by blast
have P24 : H 6= E

using P23 cong-reflexivity by blast
have P25 : Bet D H E

by (simp add: P19 P23 l6-13-1 )
have P26 : E G OS F D
by (metis InAngle-def P15 P16 P18 P25 bet-out-1 between-symmetry in-angle-one-side not-col-distincts not-col-permutation-1 )
have F G E LtA F E G
proof −

have P27 : F G E LtA D E G
proof −

have P28 : D G E CongA D E G
by (metis P10 P16 l11-44-1-a not-col-distincts)

have F G E LtA D G E
proof −

have P29 : F G E LeA D G E
by (metis OS-def P17 P26 P5 TS-def in-angle-one-side inangle--lea-1 invert-one-side l11-24 os2--inangle)

{
assume F G E CongA D G E
then have E G F CongA E G D

by (simp add: conga-comm)
then have G Out F D

using P26 conga-os--out by auto
then have False

using P6 not-col-permutation-2 out-col by blast
}
then have ¬ F G E CongA D G E by auto
thus ?thesis

by (simp add: LtA-def P29 )
qed
thus ?thesis

by (metis P28 P6 col-trivial-3 conga-preserves-lta conga-refl)
qed
have G E D LtA G E F
proof −

have P30 : G E D LeA G E F
proof −

have P31 : D InAngle G E F
by (simp add: P16 P17 P26 assms(5 ) in-angle-two-sides l11-24 not-col-permutation-5 os-ts--inangle)

have G E D CongA G E D
by (metis P16 col-trivial-1 col-trivial-2 conga-refl)

thus ?thesis
using P31 inangle--lea by auto

qed
have ¬ G E D CongA G E F

by (metis OS-def P26 P5 TS-def conga-os--out invert-one-side out-col)
thus ?thesis

by (simp add: LtA-def P30 )
qed
then have D E G LtA F E G

using lta-comm by blast
thus ?thesis

using P27 lta-trans by blast
qed

}
then have F G E LtA F E G

using P18 ‹H = D =⇒ F G E LtA F E G› by blast
thus ?thesis
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by (simp add: l11-44-2-b)
qed
then have E F Lt F G

using lt-left-comm by blast
thus ?thesis

using P7 cong2-lt--lt cong-pseudo-reflexivity not-cong-4312 by blast
qed

lemma t18-18 :
assumes Cong A B D E and

Cong A C D F and
F D E LtA C A B

shows E F Lt B C
proof −

have P1 : F 6= D
using assms(3 ) lta-distincts by blast

have P2 : E 6= D
using assms(3 ) lta-distincts by blast

have P3 : C 6= A
using assms(3 ) lta-distincts by auto

have P4 : B 6= A
using assms(3 ) lta-distincts by blast

{
assume P6 : Col A B C
{

assume P7 : Bet B A C
obtain C ′ where P8 :Bet E D C ′ ∧ Cong D C ′ A C

using segment-construction by blast
have P9 : Cong E F E F

by (simp add: cong-reflexivity)
have P10 : Cong E C ′ B C

using P7 P8 assms(1 ) l2-11-b not-cong-4321 by blast
have E F Lt E C ′

proof −
have P11 : Cong D F D C ′

using P8 assms(2 ) cong-transitivity not-cong-3412 by blast
have ¬ Bet E D F

using Bet-perm Col-def assms(3 ) col-lta--out not-bet-and-out by blast
thus ?thesis

using P11 P8 triangle-strict-inequality by blast
qed
then have E F Lt B C

using P9 P10 cong2-lt--lt by blast
}
{

assume ¬ Bet B A C
then have E F Lt B C

using P6 assms(3 ) between-symmetry col-lta--bet col-permutation-2 by blast
}
then have E F Lt B C

using ‹Bet B A C =⇒ E F Lt B C › by auto
}
{

assume P12 : ¬ Col A B C
{

assume P13 : Col D E F
{

assume P14 : Bet F D E
then have C A B LeA F D E

by (simp add: P1 P2 P3 P4 l11-31-2 )
then have F D E LtA F D E

using assms(3 ) lea--nlta by auto
then have False

by (simp add: nlta)
then have E F Lt B C by auto

}
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{
assume ¬ Bet F D E
then have P16 : D Out F E

using P13 not-col-permutation-1 not-out-bet by blast
obtain F ′ where P17 : A Out B F ′ ∧ Cong A F ′ A C

using P3 P4 segment-construction-3 by fastforce
then have P18 : B F ′ Lt B C
by (meson P12 Tarski-neutral-dimensionless.triangle-strict-reverse-inequality Tarski-neutral-dimensionless-axioms

not-cong-3412 out-col)
have Cong B F ′ E F

by (meson Out-cases P16 P17 assms(1 ) assms(2 ) cong-transitivity out-cong-cong)
then have E F Lt B C

using P18 cong2-lt--lt cong-reflexivity by blast
}
then have E F Lt B C

using ‹Bet F D E =⇒ E F Lt B C › by blast
}
{

assume P20 : ¬ Col D E F
{

assume D F Le D E
then have E F Lt B C

by (meson P12 Tarski-neutral-dimensionless.t18-18-aux Tarski-neutral-dimensionless-axioms P20 assms(1 )
assms(2 ) assms(3 ))

}
{

assume D E Le D F
then have E F Lt B C

by (meson P12 P20 Tarski-neutral-dimensionless.lta-comm Tarski-neutral-dimensionless.t18-18-aux Tarski-neutral-dimensionless-axioms
assms(1 ) assms(2 ) assms(3 ) lt-comm not-col-permutation-5 )

}
then have E F Lt B C

using ‹D F Le D E =⇒ E F Lt B C › local.le-cases by blast
}
then have E F Lt B C

using ‹Col D E F =⇒ E F Lt B C › by blast
}
thus ?thesis

using ‹Col A B C =⇒ E F Lt B C › by auto
qed

lemma t18-19 :
assumes A 6= B and

A 6= C and
Cong A B D E and
Cong A C D F and
E F Lt B C

shows F D E LtA C A B
proof −

{
assume P1 : C A B LeA F D E
{

assume C A B CongA F D E
then have False

using Cong-perm assms(3 ) assms(4 ) assms(5 ) cong--nlt l11-49 by blast
}
{

assume P2 : ¬ C A B CongA F D E
then have C A B LtA F E D

by (metis P1 assms(3 ) assms(4 ) assms(5 ) cong-symmetry lea-distincts lta--nlea not-and-lt or-lta2-conga t18-18 )
then have B C Lt E F

by (metis P1 P2 assms(3 ) assms(4 ) cong-symmetry lta--nlea lta-distincts or-lta2-conga t18-18 )
then have False

using assms(5 ) not-and-lt by auto
}
then have False
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using ‹C A B CongA F D E =⇒ False› by auto
}
then have ¬ C A B LeA F D E by auto
thus ?thesis

using assms(1 ) assms(2 ) assms(3 ) assms(4 ) cong-identity nlea--lta by blast
qed

lemma acute-trivial:
assumes A 6= B
shows Acute A B A
by (metis Tarski-neutral-dimensionless.acute-distincts Tarski-neutral-dimensionless-axioms angle-partition assms l11-43 )

lemma acute-not-per :
assumes Acute A B C
shows ¬ Per A B C

proof −
obtain A ′ B ′ C ′ where P1 : Per A ′ B ′ C ′ ∧ A B C LtA A ′ B ′ C ′

using Acute-def assms by auto
thus ?thesis

using acute-distincts acute-per--lta assms nlta by fastforce
qed

lemma angle-bisector :
assumes A 6= B and

C 6= B
shows ∃ P. (P InAngle A B C ∧ P B A CongA P B C )

proof cases
assume P1 : Col A B C
thus ?thesis
proof cases

assume P2 : Bet A B C
then obtain Q where P3 : ¬ Col A B Q

using assms(1 ) not-col-exists by auto
then obtain P where P4 : A B Perp P B ∧ A B OS Q P

using P1 l10-15 os-distincts by blast
then have P5 : P InAngle A B C

by (metis P2 assms(2 ) in-angle-line os-distincts)
have P B A CongA P B C
proof −

have P9 : P 6= B
using P4 os-distincts by blast

have Per P B A
by (simp add: P4 Perp-perm Tarski-neutral-dimensionless.perp-per-2 Tarski-neutral-dimensionless-axioms)

thus ?thesis
using P2 assms(1 ) assms(2 ) P9 l11-18-1 by auto

qed
thus ?thesis

using P5 by auto
next

assume T1 : ¬ Bet A B C
then have T2 : B Out A C

by (simp add: P1 l6-4-2 )
have T3 : C InAngle A B C

by (simp add: assms(1 ) assms(2 ) inangle3123 )
have C B A CongA C B C

using T2 between-trivial2 l6-6 out2--conga out2-bet-out by blast
thus ?thesis

using T3 by auto
qed

next
assume T4 : ¬ Col A B C
obtain C0 where T5 : B Out C0 C ∧ Cong B C0 B A

using assms(1 ) assms(2 ) l6-11-existence by fastforce
obtain P where T6 : P Midpoint A C0

using midpoint-existence by auto
have T6A: ¬ Col A B C0
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by (metis T4 T5 col3 l6-3-1 not-col-distincts out-col)
have T6B: P 6= B

using Col-def Midpoint-def T6 T6A by auto
have T6D: P 6= A

using T6 T6A is-midpoint-id not-col-distincts by blast
have P InAngle A B C0

using InAngle-def T5 T6 T6B assms(1 ) l6-3-1 midpoint-bet out-trivial by fastforce
then have T7 : P InAngle A B C

using T5 T6B in-angle-trans2 l11-24 out341--inangle by blast
have T8 : (P = B) ∨ B Out P P

using out-trivial by auto
have T9 : B Out A A

by (simp add: assms(1 ) out-trivial)
{

assume T9A: B Out P P
have P B A CongA P B C0 ∧ B P A CongA B P C0 ∧ P A B CongA P C0 B
proof −

have T9B: Cong B P B P
by (simp add: cong-reflexivity)

have T9C : Cong B A B C0
using Cong-perm T5 by blast

have Cong P A P C0
using Midpoint-def T6 not-cong-2134 by blast

thus ?thesis using l11-51 T6B assms(1 ) T9B T9C T6D by presburger
qed
then have P B A CongA P B C0 by auto
then have P B A CongA P B C using l11-10 T9A T9

by (meson T5 l6-6 )
then have ∃ P. (P InAngle A B C ∧ P B A CongA P B C )

using T7 by auto
}
thus ?thesis

using T6B T8 by blast
qed

lemma reflectl--conga:
assumes A 6= B and

B 6= P and
P P ′ ReflectL A B

shows A B P CongA A B P ′

proof −
obtain A ′ where P1 : A ′ Midpoint P ′ P ∧ Col A B A ′ ∧ (A B Perp P ′ P ∨ P = P ′)

using ReflectL-def assms(3 ) by auto
{

assume P2 : A B Perp P ′ P
then have P3 : P 6= P ′

using perp-not-eq-2 by blast
then have P4 : A ′ 6= P ′

using P1 is-midpoint-id by blast
have P5 : A ′ 6= P

using P1 P3 is-midpoint-id-2 by auto
have A B P CongA A B P ′

proof cases
assume P6 : A ′ = B
then have P8 : B 6= P ′

using P4 by auto
have P9 : Per A B P
by (smt P1 P3 P6 Perp-cases col-transitivity-2 midpoint-col midpoint-distinct-1 not-col-permutation-2 perp-col2-bis

perp-per-2 )
have Per A B P ′

by (smt Mid-cases P1 P2 P6 P8 assms(1 ) col-trivial-3 midpoint-col not-col-permutation-3 perp-col4 perp-per-2 )
thus ?thesis

using l11-16 P4 P5 P6 P9 assms(1 ) by auto
next

assume T1 : A ′ 6= B
have T2 : B A ′ P CongA B A ′ P ′
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proof −
have T2A: Cong B P B P ′

using assms(3 ) col-trivial-2 is-image-spec-col-cong l10-4-spec not-cong-4321 by blast
then have T2B: A ′ B P CongA A ′ B P ′

by (metis Cong-perm Midpoint-def P1 P5 T1 Tarski-neutral-dimensionless.l11-51 Tarski-neutral-dimensionless-axioms
assms(2 ) cong-reflexivity)

have A ′ P B CongA A ′ P ′ B
by (simp add: P5 T2A T2B cong-reflexivity conga-comm l11-49 )

thus ?thesis
using P5 T2A T2B cong-reflexivity l11-49 by blast

qed
have T3 : Cong A ′ B A ′ B

by (simp add: cong-reflexivity)
have Cong A ′ P A ′ P ′

using Midpoint-def P1 not-cong-4312 by blast
then have T4 : A ′ B P CongA A ′ B P ′ ∧ A ′ P B CongA A ′ P ′ B using l11-49

using assms(2 ) T2 T3 by blast
show ?thesis
proof cases

assume Bet A ′ B A
thus ?thesis

using T4 assms(1 ) l11-13 by blast
next

assume ¬ Bet A ′ B A
then have T5 : B Out A ′ A

using P1 not-col-permutation-3 or-bet-out by blast
have T6 : B 6= P ′

using T4 conga-distinct by blast
have T8 : B Out A A ′

by (simp add: T5 l6-6 )
have T9 : B Out P P

using assms(2 ) out-trivial by auto
have B Out P ′ P ′

using T6 out-trivial by auto
thus ?thesis

using l11-10 T4 T8 T9 by blast
qed

qed
}
{

assume P = P ′

then have A B P CongA A B P ′

using assms(1 ) assms(2 ) conga-refl by auto
}
thus ?thesis

using P1 ‹A B Perp P ′ P =⇒ A B P CongA A B P ′› by blast
qed

lemma conga-cop-out-reflectl--out:
assumes ¬ B Out A C and

Coplanar A B C P and
P B A CongA P B C and
B Out A T and
T T ′ ReflectL B P

shows B Out C T ′

proof −
have P1 : P B T CongA P B T ′

by (metis assms(3 ) assms(4 ) assms(5 ) conga-distinct is-image-spec-rev out-distinct reflectl--conga)
have P2 : T T ′ Reflect B P

by (metis P1 assms(5 ) conga-distinct is-image-is-image-spec)
have P3 : B 6= T ′

using CongA-def P1 by blast
have P4 : P B C CongA P B T ′

proof −
have P5 : P B C CongA P B A

by (simp add: assms(3 ) conga-sym)
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have P B A CongA P B T ′

proof −
have P7 : B Out P P

using assms(3 ) conga-diff45 out-trivial by blast
have P8 : B Out A T

by (simp add: assms(4 ))
have B Out T ′ T ′

using P3 out-trivial by auto
thus ?thesis

using P1 P7 P8 l11-10 by blast
qed
thus ?thesis

using P5 not-conga by blast
qed
have P B OS C T ′

proof −
have P9 : P B TS A C

using assms(1 ) assms(2 ) assms(3 ) conga-cop--or-out-ts coplanar-perm-20 by blast
then have T 6= T ′

by (metis Col-perm P2 P3 TS-def assms(4 ) col-transitivity-2 l10-8 out-col)
then have P B TS T T ′

by (metis P2 P4 conga-diff45 invert-two-sides l10-14 )
then have P B TS A T ′

using assms(4 ) col-trivial-2 out-two-sides-two-sides by blast
thus ?thesis

using OS-def P9 l9-2 by blast
qed
thus ?thesis

using P4 conga-os--out by auto
qed

lemma col-conga-cop-reflectl--col:
assumes ¬ B Out A C and

Coplanar A B C P and
P B A CongA P B C and
Col B A T and
T T ′ ReflectL B P

shows Col B C T ′

proof cases
assume B = T
thus ?thesis

using assms(5 ) col-image-spec--eq not-col-distincts by blast
next

assume P1 : B 6= T
thus ?thesis
proof cases

assume B Out A T
thus ?thesis

using out-col conga-cop-out-reflectl--out assms(1 ) assms(2 ) assms(3 ) assms(5 ) by blast
next

assume P2 : ¬ B Out A T
obtain A ′ where P3 : Bet A B A ′ ∧ Cong B A ′ A B

using segment-construction by blast
obtain C ′ where P4 : Bet C B C ′ ∧ Cong B C ′ C B

using segment-construction by blast
have P5 : B Out C ′ T ′

proof −
have P6 : ¬ B Out A ′ C ′

by (metis P3 P4 assms(1 ) between-symmetry cong-diff-2 l6-2 out-diff1 out-diff2 )
have P7 : Coplanar A ′ B C ′ P
proof cases

assume Col A B C
thus ?thesis
by (smt P3 P4 assms(1 ) assms(2 ) assms(3 ) bet-col bet-neq32--neq col2-cop--cop col-transitivity-1 colx conga-diff2

conga-diff56 l6-4-2 ncoplanar-perm-15 not-col-permutation-5 )
next
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assume P7B: ¬ Col A B C
have P7C : Coplanar A B C A ′

using P3 bet-col ncop--ncols by blast
have P7D: Coplanar A B C B

using ncop-distincts by blast
have Coplanar A B C C ′

using P4 bet--coplanar coplanar-perm-20 by blast
thus ?thesis

using P7B P7C P7D assms(2 ) coplanar-pseudo-trans by blast
qed
have P8 : P B A ′ CongA P B C ′

by (metis CongA-def P3 P4 assms(3 ) cong-reverse-identity conga-left-comm l11-13 not-conga-sym)
have P9 : B Out A ′ T

by (smt Out-def P1 P2 P3 P8 assms(3 ) assms(4 ) conga-distinct l5-2 l6-4-2 not-col-permutation-4 )
thus ?thesis

using P6 P7 P8 P9 assms(5 ) conga-cop-out-reflectl--out by blast
qed
thus ?thesis

by (metis Col-def P4 col-transitivity-1 out-col out-diff1 )
qed

qed

lemma conga2-cop2--col:
assumes ¬ B Out A C and

P B A CongA P B C and
P ′ B A CongA P ′ B C and
Coplanar A B P P ′ and
Coplanar B C P P ′

shows Col B P P ′

proof −
obtain C ′ where P1 : B Out C ′ C ∧ Cong B C ′ B A

by (metis assms(2 ) conga-distinct l6-11-existence)
have P1A: Cong P A P C ′ ∧ (P 6= A −→ (B P A CongA B P C ′ ∧ B A P CongA B C ′ P))
proof −

have P2 : P B A CongA P B C ′

proof −
have P2A: B Out P P

using assms(2 ) conga-diff45 out-trivial by auto
have B Out A A

using assms(2 ) conga-distinct out-trivial by auto
thus ?thesis

using P1 P2A assms(2 ) l11-10 by blast
qed
have P3 : Cong B P B P

by (simp add: cong-reflexivity)
have Cong B A B C ′

using Cong-perm P1 by blast
thus ?thesis using l11-49 P2 cong-reflexivity by blast

qed
have P4 : P ′ B A CongA P ′ B C ′

proof −
have P4A: B Out P ′ P ′

using assms(3 ) conga-diff1 out-trivial by auto
have B Out A A

using assms(2 ) conga-distinct out-trivial by auto
thus ?thesis

using P1 P4A assms(3 ) l11-10 by blast
qed
have P5 : Cong B P ′ B P ′

by (simp add: cong-reflexivity)
have P5A: Cong B A B C ′

using Cong-perm P1 by blast
then have P6 : P ′ 6= A −→ (B P ′ A CongA B P ′ C ′ ∧ B A P ′ CongA B C ′ P ′)

using P4 P5 l11-49 by blast
have P7 : Coplanar B P P ′ A

using assms(4 ) ncoplanar-perm-18 by blast
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have P8 : Coplanar B P P ′ C ′

by (smt Col-cases P1 assms(5 ) col-cop--cop ncoplanar-perm-16 ncoplanar-perm-8 out-col out-diff2 )
have A 6= C ′

using P1 assms(1 ) by auto
thus ?thesis

using P4 P5 P7 P8 P5A P1A cong3-cop2--col l11-49 by blast
qed

lemma conga2-cop2--col-1 :
assumes ¬ Col A B C and

P B A CongA P B C and
P ′ B A CongA P ′ B C and
Coplanar A B C P and
Coplanar A B C P ′

shows Col B P P ′

proof −
have P1 : ¬ B Out A C

using Col-cases assms(1 ) out-col by blast
have P2 : Coplanar A B P P ′

by (meson assms(1 ) assms(4 ) assms(5 ) coplanar-perm-12 coplanar-trans-1 not-col-permutation-2 )
have Coplanar B C P P ′

using assms(1 ) assms(4 ) assms(5 ) coplanar-trans-1 by auto
thus ?thesis using P1 P2 conga2-cop2--col assms(2 ) assms(3 ) conga2-cop2--col by auto

qed

lemma col-conga--conga:
assumes P B A CongA P B C and

Col B P P ′ and
B 6= P ′

shows P ′ B A CongA P ′ B C
proof cases

assume Bet P B P ′

thus ?thesis
using assms(1 ) assms(3 ) l11-13 by blast

next
assume ¬ Bet P B P ′

then have P1 : B Out P P ′

using Col-cases assms(2 ) or-bet-out by blast
then have P2 : B Out P ′ P

by (simp add: l6-6 )
have P3 : B Out A A

using CongA-def assms(1 ) out-trivial by auto
have B Out C C

using assms(1 ) conga-diff56 out-trivial by blast
thus ?thesis

using P2 P3 assms(1 ) l11-10 by blast
qed

lemma cop-inangle--ex-col-inangle:
assumes ¬ B Out A C and

P InAngle A B C and
Coplanar A B C Q

shows ∃ R. (R InAngle A B C ∧ P 6= R ∧ Col P Q R)
proof −

have P1 : A 6= B
using assms(2 ) inangle-distincts by blast

then have P4 : A 6= C
using assms(1 ) out-trivial by blast

have P2 : C 6= B
using assms(2 ) inangle-distincts by auto

have P3 : P 6= B
using InAngle-def assms(2 ) by auto

thus ?thesis
proof cases

assume P = Q
thus ?thesis
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using P1 P2 P4 col-trivial-1 inangle1123 inangle3123 by blast
next

assume P5 : P 6= Q
thus ?thesis
proof cases

assume P6 : Col B P Q
obtain R where P7 : Bet B P R ∧ Cong P R B P

using segment-construction by blast
have P8 : R InAngle A B C

using Out-cases P1 P2 P3 P7 assms(2 ) bet-out l11-25 out-trivial by blast
have P 6= R

using P3 P7 cong-reverse-identity by blast
thus ?thesis

by (metis P3 P6 P7 P8 bet-col col-transitivity-2 )
next

assume T1 : ¬ Col B P Q
thus ?thesis
proof cases

assume T2 : Col A B C
have T3 : Q InAngle A B C

by (metis P1 P2 T1 T2 assms(1 ) in-angle-line l6-4-2 not-col-distincts)
thus ?thesis

using P5 col-trivial-2 by blast
next

assume Q1 : ¬ Col A B C
thus ?thesis
proof cases

assume Q2 : Col B C P
have Q3 : ¬ Col B A P

using Col-perm P3 Q1 Q2 col-transitivity-2 by blast
have Q4 : Coplanar B P Q A

using P2 Q2 assms(3 ) col2-cop--cop col-trivial-3 ncoplanar-perm-22 ncoplanar-perm-3 by blast
have Q5 : Q 6= P

using P5 by auto
have Q6 : Col B P P

using not-col-distincts by blast
have Q7 : Col Q P P

using not-col-distincts by auto
have ¬ Col B P A

using Col-cases Q3 by auto
then obtain Q0 where P10 : Col Q P Q0 ∧ B P OS A Q0

using cop-not-par-same-side Q4 Q5 Q6 Q7 T1 by blast
have P13 : P 6= Q0

using P10 os-distincts by auto
{

assume B A OS P Q0
then have ?thesis

using P10 P13 assms(2 ) in-angle-trans not-col-permutation-4 os2--inangle by blast
}
{

assume V1 : ¬ B A OS P Q0
have ∃ R. Bet P R Q0 ∧ Col P Q R ∧ Col B A R
proof cases

assume V3 : Col B A Q0
have Col P Q Q0

using Col-cases P10 by auto
thus ?thesis

using V3 between-trivial by auto
next

assume V4 : ¬ Col B A Q0
then have V5 : ¬ Col Q0 B A

using Col-perm by blast
have ¬ Col P B A

using Col-cases Q3 by blast
then obtain R where V8 : Col R B A ∧ Bet P R Q0

using cop-nos--ts V1 V5
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by (meson P10 TS-def ncoplanar-perm-2 os--coplanar)
thus ?thesis

by (metis Col-def P10 P13 col-transitivity-2 )
qed
then obtain R where V9 : Bet P R Q0 ∧ Col P Q R ∧ Col B A R by auto
have V10 : P 6= R

using Q3 V9 by blast
have R InAngle A B C
proof −

have W1 : ¬ Col B P Q0
using P10 P13 T1 col2--eq by blast

have P Out Q0 R
using V10 V9 bet-out l6-6 by auto

then have B P OS Q0 R
using Q6 W1 out-one-side-1 by blast

then have B P OS A R
using P10 one-side-transitivity by blast

then have B Out A R
using V9 col-one-side-out by auto

thus ?thesis
by (simp add: P2 out321--inangle)

qed
then have ?thesis

using V10 V9 by blast
}
thus ?thesis

using ‹B A OS P Q0 =⇒ ∃R. R InAngle A B C ∧ P 6= R ∧ Col P Q R› by blast
next

assume Z1 : ¬ Col B C P
then have Z6 : ¬ Col B P C

by (simp add: not-col-permutation-5 )
have Z3 : Col B P P

by (simp add: col-trivial-2 )
have Z4 : Col Q P P

by (simp add: col-trivial-2 )
have Coplanar A B C P

using Q1 assms(2 ) inangle--coplanar ncoplanar-perm-18 by blast
then have Coplanar B P Q C

using Q1 assms(3 ) coplanar-trans-1 ncoplanar-perm-5 by blast
then obtain Q0 where Z5 : Col Q P Q0 ∧ B P OS C Q0

using cop-not-par-same-side by (metis Z3 Z4 T1 Z6 )
thus ?thesis
proof cases

assume B C OS P Q0
thus ?thesis
proof −

have ∀ p. p InAngle C B A ∨ ¬ p InAngle C B P
using assms(2 ) in-angle-trans l11-24 by blast

then show ?thesis
by (metis Col-perm Z5 ‹B C OS P Q0 › l11-24 os2--inangle os-distincts)

qed
next

assume Z6 : ¬ B C OS P Q0
have Z7 : ∃ R. Bet P R Q0 ∧ Col P Q R ∧ Col B C R
proof cases

assume Col B C Q0
thus ?thesis

using Col-def Col-perm Z5 between-trivial by blast
next

assume Z8 : ¬ Col B C Q0
have ∃ R. Col R B C ∧ Bet P R Q0
proof −

have Z10 : Coplanar B C P Q0
using Z5 ncoplanar-perm-2 os--coplanar by blast

have Z11 : ¬ Col P B C
using Col-cases Z1 by blast
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have ¬ Col Q0 B C
using Col-perm Z8 by blast

thus ?thesis
using cop-nos--ts Z6 Z10 Z11 by (simp add: TS-def )

qed
then obtain R where Col R B C ∧ Bet P R Q0 by blast
thus ?thesis

by (smt Z5 bet-col col2--eq col-permutation-1 os-distincts)
qed
then obtain R where Z12 : Bet P R Q0 ∧ Col P Q R ∧ Col B C R by blast
have Z13 : P 6= R

using Z1 Z12 by auto
have Z14 : ¬ Col B P Q0

using Z5 one-side-not-col124 by blast
have P Out Q0 R

using Z12 Z13 bet-out l6-6 by auto
then have B P OS Q0 R

using Z14 Z3 out-one-side-1 by blast
then have B P OS C R

using Z5 one-side-transitivity by blast
then have B Out C R

using Z12 col-one-side-out by blast
then have R InAngle A B C

using P1 out341--inangle by auto
thus ?thesis

using Z12 Z13 by auto
qed

qed
qed

qed
qed

qed

lemma col-inangle2--out:
assumes ¬ Bet A B C and

P InAngle A B C and
Q InAngle A B C and
Col B P Q

shows B Out P Q
proof cases

assume Col A B C
thus ?thesis
by (meson assms(1 ) assms(2 ) assms(3 ) assms(4 ) bet-in-angle-bet bet-out--bet in-angle-out l6-6 not-col-permutation-4

or-bet-out)
next

assume P1 : ¬ Col A B C
thus ?thesis
proof cases

assume Col B A P
thus ?thesis
by (meson assms(1 ) assms(2 ) assms(3 ) assms(4 ) bet-in-angle-bet bet-out--bet l6-6 not-col-permutation-4 or-bet-out)

next
assume P2 : ¬ Col B A P
have ¬ Col B A Q

using P2 assms(3 ) assms(4 ) col2--eq col-permutation-4 inangle-distincts by blast
then have B A OS P Q

using P1 P2 assms(2 ) assms(3 ) inangle-one-side invert-one-side not-col-permutation-4 by auto
thus ?thesis

using assms(4 ) col-one-side-out by auto
qed

qed

lemma inangle2--lea:
assumes P InAngle A B C and

Q InAngle A B C
shows P B Q LeA A B C
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proof −
have P1 : P InAngle C B A

by (simp add: assms(1 ) l11-24 )
have P2 : Q InAngle C B A

by (simp add: assms(2 ) l11-24 )
have P3 : A 6= B

using assms(1 ) inangle-distincts by auto
have P4 : C 6= B

using assms(1 ) inangle-distincts by blast
have P5 : P 6= B

using assms(1 ) inangle-distincts by auto
have P6 : Q 6= B

using assms(2 ) inangle-distincts by auto
thus ?thesis
proof cases

assume P7 : Col A B C
thus ?thesis
proof cases

assume Bet A B C
thus ?thesis

by (simp add: P3 P4 P5 P6 l11-31-2 )
next

assume ¬ Bet A B C
then have B Out A C

using P7 not-out-bet by blast
then have B Out P Q

using Out-cases assms(1 ) assms(2 ) in-angle-out l6-7 by blast
thus ?thesis

by (simp add: P3 P4 l11-31-1 )
qed

next
assume T1 : ¬ Col A B C
thus ?thesis
proof cases

assume T2 : Col B P Q
have ¬ Bet A B C

using T1 bet-col by auto
then have B Out P Q

using T2 assms(1 ) assms(2 ) col-inangle2--out by auto
thus ?thesis

by (simp add: P3 P4 l11-31-1 )
next

assume T3 : ¬ Col B P Q
thus ?thesis
proof cases

assume Col B A P
then have B Out A P

using Col-def T1 assms(1 ) col-in-angle-out by blast
then have P B Q CongA A B Q

using P6 out2--conga out-trivial by auto
thus ?thesis

using LeA-def assms(2 ) by blast
next

assume W0 : ¬ Col B A P
show ?thesis
proof cases

assume Col B C P
then have B Out C P

by (metis P1 P3 T1 bet-out-1 col-in-angle-out out-col)
thus ?thesis

by (smt P3 P4 P6 Tarski-neutral-dimensionless.lea-left-comm Tarski-neutral-dimensionless.lea-out4--lea
Tarski-neutral-dimensionless-axioms assms(2 ) inangle--lea-1 out-trivial)

next
assume W0A: ¬ Col B C P
show ?thesis
proof cases
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assume Col B A Q
then have B Out A Q

using Col-def T1 assms(2 ) col-in-angle-out by blast
thus ?thesis

by (smt P3 P4 P5 Tarski-neutral-dimensionless.lea-left-comm Tarski-neutral-dimensionless.lea-out4--lea
Tarski-neutral-dimensionless-axioms assms(1 ) inangle--lea out-trivial)

next
assume W0AA: ¬ Col B A Q
thus ?thesis
proof cases

assume Col B C Q
then have B Out C Q

using Bet-cases P2 T1 bet-col col-in-angle-out by blast
thus ?thesis

by (smt P1 P3 P4 P5 Tarski-neutral-dimensionless.lea-comm Tarski-neutral-dimensionless.lea-out4--lea
Tarski-neutral-dimensionless-axioms inangle--lea out-trivial)

next
assume W0B: ¬ Col B C Q
have W1 : Coplanar B P A Q
by (metis Col-perm T1 assms(1 ) assms(2 ) col--coplanar inangle-one-side ncoplanar-perm-13 os--coplanar)

have W2 : ¬ Col A B P
by (simp add: W0 not-col-permutation-4 )

have W3 : ¬ Col Q B P
using Col-perm T3 by blast

then have W4 : B P TS A Q ∨ B P OS A Q
using cop--one-or-two-sides
by (simp add: W1 W2 )

{
assume W4A: B P TS A Q
have Q InAngle P B C
proof −

have W5 : P B OS C Q
using OS-def P1 W0 W0A W4A in-angle-two-sides invert-two-sides l9-2 by blast

have C B OS P Q
by (meson P1 P2 T1 W0A W0B inangle-one-side not-col-permutation-3 not-col-permutation-4 )

thus ?thesis
by (simp add: W5 invert-one-side os2--inangle)

qed
then have P B Q LeA A B C

by (meson assms(1 ) inangle--lea inangle--lea-1 lea-trans)
}
{

assume W6 : B P OS A Q
have B A OS P Q

using Col-perm T1 W2 W0AA assms(1 ) assms(2 ) inangle-one-side invert-one-side by blast
then have Q InAngle P B A

by (simp add: W6 os2--inangle)
then have P B Q LeA A B C

by (meson P1 inangle--lea inangle--lea-1 lea-right-comm lea-trans)
}
thus ?thesis

using W4 ‹B P TS A Q =⇒ P B Q LeA A B C › by blast
qed

qed
qed

qed
qed

qed
qed

lemma conga-inangle-per--acute:
assumes Per A B C and

P InAngle A B C and
P B A CongA P B C

shows Acute A B P
proof −
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have P1 : ¬ Col A B C
using assms(1 ) assms(3 ) conga-diff2 conga-diff56 l8-9 by blast

have P2 : A B P LeA A B C
by (simp add: assms(2 ) inangle--lea)

{
assume A B P CongA A B C
then have P3 : Per A B P
by (meson Tarski-neutral-dimensionless.l11-17 Tarski-neutral-dimensionless.not-conga-sym Tarski-neutral-dimensionless-axioms

assms(1 ))
have P4 : Coplanar P C A B

using assms(2 ) inangle--coplanar ncoplanar-perm-3 by blast
have P5 : P 6= B

using assms(2 ) inangle-distincts by blast
have Per C B P

using P3 Per-cases assms(3 ) l11-17 by blast
then have False

using P1 P3 P4 P5 col-permutation-1 cop-per2--col by blast
}
then have ¬ A B P CongA A B C by auto
then have A B P LtA A B C

by (simp add: LtA-def P2 )
thus ?thesis

using Acute-def assms(1 ) by blast
qed

lemma conga-inangle2-per--acute:
assumes Per A B C and

P InAngle A B C and
P B A CongA P B C and
Q InAngle A B C

shows Acute P B Q
proof −

have P1 : P InAngle C B A
using assms(2 ) l11-24 by auto

have P2 : Q InAngle C B A
using assms(4 ) l11-24 by blast

have P3 : A 6= B
using assms(3 ) conga-diff2 by auto

have P5 : P 6= B
using assms(2 ) inangle-distincts by blast

have P7 : ¬ Col A B C
using assms(1 ) assms(3 ) conga-distinct l8-9 by blast

have P8 : Acute A B P
using assms(1 ) assms(2 ) assms(3 ) conga-inangle-per--acute by auto

{
assume Col P B A
then have Col P B C

using assms(3 ) col-conga-col by blast
then have False

using Col-perm P5 P7 ‹Col P B A› col-transitivity-2 by blast
}
then have P9 : ¬ Col P B A by auto
have P10 : ¬ Col P B C

using ‹Col P B A =⇒ False› assms(3 ) ncol-conga-ncol by blast
have P11 : ¬ Bet A B C

using P7 bet-col by blast
show ?thesis
proof cases

assume Col B A Q
then have B Out A Q

using P11 assms(4 ) col-in-angle-out by auto
thus ?thesis

using Out-cases P5 P8 acute-out2--acute acute-sym out-trivial by blast
next

assume S0 : ¬ Col B A Q
show ?thesis

259



proof cases
assume S1 : Col B C Q
then have B Out C Q

using P11 P2 between-symmetry col-in-angle-out by blast
then have S2 : B Out Q C

using l6-6 by blast
have S3 : B Out P P

by (simp add: P5 out-trivial)
have B Out A A

by (simp add: P3 out-trivial)
then have A B P CongA P B Q

using S2 conga-left-comm l11-10 S3 assms(3 ) by blast
thus ?thesis

using P8 acute-conga--acute by blast
next

assume S4 : ¬ Col B C Q
show ?thesis
proof cases

assume Col B P Q
thus ?thesis

using out--acute col-inangle2--out P11 assms(2 ) assms(4 ) by blast
next

assume S5 : ¬ Col B P Q
have S6 : Coplanar B P A Q

by (metis Col-perm P7 assms(2 ) assms(4 ) coplanar-trans-1 inangle--coplanar ncoplanar-perm-12 ncopla-
nar-perm-21 )

have S7 : ¬ Col A B P
using Col-cases P9 by auto

have ¬ Col Q B P
using Col-perm S5 by blast

then have S8 : B P TS A Q ∨ B P OS A Q
using cop--one-or-two-sides S6 S7 by blast

{
assume S9 : B P TS A Q
have S10 : Acute P B C

using P8 acute-conga--acute acute-sym assms(3 ) by blast
have Q InAngle P B C
proof −

have S11 : P B OS C Q
by (metis Col-perm OS-def P1 P10 P9 S9 in-angle-two-sides invert-two-sides l9-2 )

have C B OS P Q
by (meson P1 P10 P2 P7 S4 inangle-one-side not-col-permutation-3 not-col-permutation-4 )

thus ?thesis
by (simp add: S11 invert-one-side os2--inangle)

qed
then have P B Q LeA P B C

by (simp add: inangle--lea)
then have Acute P B Q

using S10 acute-lea-acute by blast
}
{

assume S12 : B P OS A Q
have B A OS P Q

using Col-perm P7 S7 S0 assms(2 ) assms(4 ) inangle-one-side invert-one-side by blast
then have Q InAngle P B A

by (simp add: S12 os2--inangle)
then have Q B P LeA P B A

by (simp add: P3 P5 inangle1123 inangle2--lea)
then have P B Q LeA A B P

by (simp add: lea-comm)
then have Acute P B Q

using P8 acute-lea-acute by blast
}
thus ?thesis

using ‹B P TS A Q =⇒ Acute P B Q› S8 by blast
qed
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qed
qed

qed

lemma lta-os--ts:
assumes

A O1 P LtA A O1 B and
O1 A OS B P

shows O1 P TS A B
proof −

have A O1 P LeA A O1 B
by (simp add: assms(1 ) lta--lea)

then have ∃ P0 . P0 InAngle A O1 B ∧ A O1 P CongA A O1 P0
by (simp add: LeA-def )

then obtain P ′ where P1 : P ′ InAngle A O1 B ∧ A O1 P CongA A O1 P ′ by blast
have P2 : ¬ Col A O1 B

using assms(2 ) col123--nos not-col-permutation-4 by blast
obtain R where P3 : O1 A TS B R ∧ O1 A TS P R

using OS-def assms(2 ) by blast
{

assume Col B O1 P
then have Bet B O1 P

by (metis Tarski-neutral-dimensionless.out2--conga Tarski-neutral-dimensionless-axioms assms(1 ) assms(2 ) be-
tween-trivial col-trivial-2 lta-not-conga one-side-chara or-bet-out out-trivial)

then have O1 A TS B P
using assms(2 ) col-trivial-1 one-side-chara by blast

then have P6 : ¬ O1 A OS B P
using l9-9-bis by auto

then have False
using P6 assms(2 ) by auto

}
then have P4 : ¬ Col B O1 P by auto
thus ?thesis

by (meson P3 assms(1 ) inangle--lta l9-8-1 not-and-lta not-col-permutation-4 os-ts--inangle two-sides-cases)
qed

lemma bet--suppa:
assumes A 6= B and

B 6= C and
B 6= A ′ and
Bet A B A ′

shows A B C SuppA C B A ′

proof −
have C B A ′ CongA C B A ′

using assms(2 ) assms(3 ) conga-refl by auto
thus ?thesis using assms(4 ) assms(1 ) SuppA-def by auto

qed

lemma ex-suppa:
assumes A 6= B and

B 6= C
shows ∃ D E F . A B C SuppA D E F

proof −
obtain A ′ where Bet A B A ′ ∧ Cong B A ′ A B

using segment-construction by blast
thus ?thesis

by (meson assms(1 ) assms(2 ) bet--suppa point-construction-different)
qed

lemma suppa-distincts:
assumes A B C SuppA D E F
shows A 6= B ∧ B 6= C ∧ D 6= E ∧ E 6= F
using CongA-def SuppA-def assms by auto

lemma suppa-right-comm:
assumes A B C SuppA D E F
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shows A B C SuppA F E D
using SuppA-def assms conga-left-comm by auto

lemma suppa-left-comm:
assumes A B C SuppA D E F
shows C B A SuppA D E F

proof −
obtain A ′ where P1 : Bet A B A ′ ∧ D E F CongA C B A ′

using SuppA-def assms by auto
obtain C ′ where P2 : Bet C B C ′ ∧ Cong B C ′ C B

using segment-construction by blast
then have C B A ′ CongA A B C ′

by (metis Bet-cases P1 SuppA-def assms cong-diff-3 conga-diff45 conga-diff56 conga-left-comm l11-14 )
then have D E F CongA A B C ′

using P1 conga-trans by blast
thus ?thesis

by (metis CongA-def P1 P2 SuppA-def )
qed

lemma suppa-comm:
assumes A B C SuppA D E F
shows C B A SuppA F E D
using assms suppa-left-comm suppa-right-comm by blast

lemma suppa-sym:
assumes A B C SuppA D E F
shows D E F SuppA A B C

proof −
obtain A ′ where P1 : Bet A B A ′ ∧ D E F CongA C B A ′

using SuppA-def assms by auto
obtain D ′ where P2 : Bet D E D ′ ∧ Cong E D ′ D E

using segment-construction by blast
have A ′ B C CongA D E F

using P1 conga-right-comm not-conga-sym by blast
then have A B C CongA F E D ′

by (metis P1 P2 Tarski-neutral-dimensionless.conga-right-comm Tarski-neutral-dimensionless.l11-13 Tarski-neutral-dimensionless.suppa-distincts
Tarski-neutral-dimensionless-axioms assms between-symmetry cong-diff-3 )

thus ?thesis
by (metis CongA-def P1 P2 SuppA-def )

qed

lemma conga2-suppa--suppa:
assumes A B C CongA A ′ B ′ C ′ and

D E F CongA D ′ E ′ F ′ and
A B C SuppA D E F

shows A ′ B ′ C ′ SuppA D ′ E ′ F ′

proof −
obtain A0 where P1 : Bet A B A0 ∧ D E F CongA C B A0

using SuppA-def assms(3 ) by auto
then have A B C SuppA D ′ E ′ F ′

by (metis Tarski-neutral-dimensionless.SuppA-def Tarski-neutral-dimensionless-axioms assms(2 ) assms(3 ) conga-sym
conga-trans)

then have P2 : D ′ E ′ F ′ SuppA A B C
by (simp add: suppa-sym)

then obtain D0 where P3 : Bet D ′ E ′ D0 ∧ A B C CongA F ′ E ′ D0
using P2 SuppA-def by auto

have P5 : A ′ B ′ C ′ CongA F ′ E ′ D0
using P3 assms(1 ) not-conga not-conga-sym by blast

then have D ′ E ′ F ′ SuppA A ′ B ′ C ′

using P2 P3 SuppA-def by auto
thus ?thesis

by (simp add: suppa-sym)
qed

lemma suppa2--conga456 :
assumes A B C SuppA D E F and

262



A B C SuppA D ′ E ′ F ′

shows D E F CongA D ′ E ′ F ′

proof −
obtain A ′ where P1 : Bet A B A ′ ∧ D E F CongA C B A ′

using SuppA-def assms(1 ) by auto
obtain A ′′ where P2 : Bet A B A ′′ ∧ D ′ E ′ F ′ CongA C B A ′′

using SuppA-def assms(2 ) by auto
have C B A ′ CongA C B A ′′

proof −
have P3 : B Out C C using P1

by (simp add: CongA-def out-trivial)
have B Out A ′′ A ′ using P1 P2 l6-2

by (metis assms(1 ) between-symmetry conga-distinct suppa-distincts)
thus ?thesis

by (simp add: P3 out2--conga)
qed
then have C B A ′ CongA D ′ E ′ F ′

using P2 not-conga not-conga-sym by blast
thus ?thesis

using P1 not-conga by blast
qed

lemma suppa2--conga123 :
assumes A B C SuppA D E F and

A ′ B ′ C ′ SuppA D E F
shows A B C CongA A ′ B ′ C ′

using assms(1 ) assms(2 ) suppa2--conga456 suppa-sym by blast

lemma bet-out--suppa:
assumes A 6= B and

B 6= C and
Bet A B C and
E Out D F

shows A B C SuppA D E F
proof −

have D E F CongA C B C
using assms(2 ) assms(4 ) l11-21-b out-trivial by auto

thus ?thesis
using SuppA-def assms(1 ) assms(3 ) by blast

qed

lemma bet-suppa--out:
assumes Bet A B C and

A B C SuppA D E F
shows E Out D F

proof −
have A B C SuppA C B C

using assms(1 ) assms(2 ) bet--suppa suppa-distincts by auto
then have C B C CongA D E F

using assms(2 ) suppa2--conga456 by auto
thus ?thesis

using eq-conga-out by auto
qed

lemma out-suppa--bet:
assumes B Out A C and

A B C SuppA D E F
shows Bet D E F

proof −
obtain B ′ where P1 : Bet A B B ′ ∧ Cong B B ′ A B

using segment-construction by blast
have A B C SuppA A B B ′

by (metis P1 assms(1 ) assms(2 ) bet--suppa bet-cong-eq bet-out--bet suppa-distincts suppa-left-comm)
then have A B B ′ CongA D E F

using assms(2 ) suppa2--conga456 by auto
thus ?thesis
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using P1 bet-conga--bet by blast
qed

lemma per-suppa--per :
assumes Per A B C and

A B C SuppA D E F
shows Per D E F

proof −
obtain A ′ where P1 : Bet A B A ′ ∧ D E F CongA C B A ′

using SuppA-def assms(2 ) by auto
have Per C B A ′

proof −
have P2 : A 6= B

using assms(2 ) suppa-distincts by auto
have P3 : Per C B A

by (simp add: assms(1 ) l8-2 )
have Col B A A ′

using P1 Col-cases Col-def by blast
thus ?thesis

by (metis P2 P3 per-col)
qed
thus ?thesis

using P1 l11-17 not-conga-sym by blast
qed

lemma per2--suppa:
assumes A 6= B and

B 6= C and
D 6= E and
E 6= F and
Per A B C and
Per D E F

shows A B C SuppA D E F
proof −

obtain D ′ E ′ F ′ where P1 : A B C SuppA D ′ E ′ F ′

using assms(1 ) assms(2 ) ex-suppa by blast
have D ′ E ′ F ′ CongA D E F

using P1 assms(3 ) assms(4 ) assms(5 ) assms(6 ) l11-16 per-suppa--per suppa-distincts by blast
thus ?thesis

by (meson P1 conga2-suppa--suppa suppa2--conga123 )
qed

lemma suppa--per :
assumes A B C SuppA A B C
shows Per A B C

proof −
obtain A ′ where P1 : Bet A B A ′ ∧ A B C CongA C B A ′

using SuppA-def assms by auto
then have C B A CongA C B A ′

by (simp add: conga-left-comm)
thus ?thesis

using P1 Per-perm l11-18-2 by blast
qed

lemma acute-suppa--obtuse:
assumes Acute A B C and

A B C SuppA D E F
shows Obtuse D E F

proof −
obtain A ′ where P1 : Bet A B A ′ ∧ D E F CongA C B A ′

using SuppA-def assms(2 ) by auto
then have Obtuse C B A ′

by (metis Tarski-neutral-dimensionless.obtuse-sym Tarski-neutral-dimensionless-axioms acute-bet--obtuse assms(1 )
conga-distinct)

thus ?thesis
by (meson P1 Tarski-neutral-dimensionless.conga-obtuse--obtuse Tarski-neutral-dimensionless.not-conga-sym Tarski-neutral-dimensionless-axioms)
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qed

lemma obtuse-suppa--acute:
assumes Obtuse A B C and

A B C SuppA D E F
shows Acute D E F

proof −
obtain A ′ where P1 : Bet A B A ′ ∧ D E F CongA C B A ′

using SuppA-def assms(2 ) by auto
then have Acute C B A ′

using acute-sym assms(1 ) bet-obtuse--acute conga-distinct by blast
thus ?thesis

using P1 acute-conga--acute not-conga-sym by blast
qed

lemma lea-suppa2--lea:
assumes A B C SuppA A ′ B ′ C ′ and

D E F SuppA D ′ E ′ F ′

A B C LeA D E F
shows D ′ E ′ F ′ LeA A ′ B ′ C ′

proof −
obtain A0 where P1 : Bet A B A0 ∧ A ′ B ′ C ′ CongA C B A0

using SuppA-def assms(1 ) by auto
obtain D0 where P2 : Bet D E D0 ∧ D ′ E ′ F ′ CongA F E D0

using SuppA-def assms(2 ) by auto
have F E D0 LeA C B A0
proof −

have P3 : D0 6= E
using CongA-def P2 by auto

have P4 : A0 6= B
using CongA-def P1 by blast

have P6 : Bet D0 E D
by (simp add: P2 between-symmetry)

have Bet A0 B A
by (simp add: P1 between-symmetry)

thus ?thesis
by (metis P3 P4 P6 assms(3 ) l11-36-aux2 lea-comm lea-distincts)

qed
thus ?thesis
by (meson P1 P2 Tarski-neutral-dimensionless.l11-30 Tarski-neutral-dimensionless.not-conga-sym Tarski-neutral-dimensionless-axioms)

qed

lemma lta-suppa2--lta:
assumes A B C SuppA A ′ B ′ C ′

and D E F SuppA D ′ E ′ F ′

and A B C LtA D E F
shows D ′ E ′ F ′ LtA A ′ B ′ C ′

proof −
obtain A0 where P1 : Bet A B A0 ∧ A ′ B ′ C ′ CongA C B A0

using SuppA-def assms(1 ) by auto
obtain D0 where P2 : Bet D E D0 ∧ D ′ E ′ F ′ CongA F E D0

using SuppA-def assms(2 ) by auto
have F E D0 LtA C B A0
proof −

have P5 : A0 6= B
using CongA-def P1 by blast

have D0 6= E
using CongA-def P2 by auto

thus ?thesis
using assms(3 ) P1 P5 P2 bet2-lta--lta lta-comm by blast

qed
thus ?thesis

using P1 P2 conga-preserves-lta not-conga-sym by blast
qed

lemma suppa-dec:
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A B C SuppA D E F ∨ ¬ A B C SuppA D E F
by simp

lemma acute-one-side-aux:
assumes C A OS P B and

Acute A C P and
C A Perp B C

shows C B OS A P
proof −

obtain R where T1 : C A TS P R ∧ C A TS B R
using OS-def assms(1 ) by blast

obtain A ′ B ′ C ′ where P1 : Per A ′ B ′ C ′ ∧ A C P LtA A ′ B ′ C ′

using Acute-def assms(2 ) by auto
have P2 : Per A C B

by (simp add: assms(3 ) perp-per-1 )
then have P3 : A ′ B ′ C ′ CongA A C B

using P1 assms(1 ) l11-16 lta-distincts os-distincts by blast
have P4 : A C P LtA A C B

by (metis P2 acute-per--lta assms(1 ) assms(2 ) os-distincts)
{

assume P4A: Col P C B
have Per A C P
proof −

have P4B: C 6= B
using assms(1 ) os-distincts by blast

have P4C : Per A C B
by (simp add: P2 )

have Col C B P
using P4A Col-cases by auto

thus ?thesis using per-col P4B P4C by blast
qed
then have False

using acute-not-per assms(2 ) by auto
}
then have P5 : ¬ Col P C B by auto
have P6 : ¬ Col A C P

using assms(1 ) col123--nos not-col-permutation-4 by blast
have P7 : C B TS A P ∨ C B OS A P

using P5 assms(1 ) not-col-permutation-4 os-ts1324--os two-sides-cases by blast
{

assume P8 : C B TS A P
then obtain T where P9 : Col T C B ∧ Bet A T P

using TS-def by blast
then have P10 : C 6= T

using Col-def P6 P9 by auto
have T InAngle A C P

by (meson P4 P5 P8 Tarski-neutral-dimensionless.inangle--lta Tarski-neutral-dimensionless-axioms assms(1 )
not-and-lta not-col-permutation-3 os-ts--inangle)

then have C A OS T P
by (metis P10 P9 T1 TS-def col123--nos in-angle-one-side invert-one-side l6-16-1 one-side-reflexivity)

then have P13 : C A OS T B
using assms(1 ) one-side-transitivity by blast

have C B OS A P
by (meson P4 Tarski-neutral-dimensionless.lta-os--ts Tarski-neutral-dimensionless-axioms assms(1 ) one-side-symmetry

os-ts1324--os)
}
thus ?thesis

using P7 by blast
qed

lemma acute-one-side-aux0 :
assumes Col A C P and

Acute A C P and
C A Perp B C

shows C B OS A P
proof −
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have Per A C B
by (simp add: assms(3 ) perp-per-1 )

then have P1 : A C P LtA A C B
using Tarski-neutral-dimensionless.acute-per--lta Tarski-neutral-dimensionless-axioms acute-distincts assms(2 ) assms(3 )

perp-not-eq-2 by fastforce
have P2 : C Out A P

using acute-col--out assms(1 ) assms(2 ) by auto
thus ?thesis

using Perp-cases assms(3 ) out-one-side perp-not-col by blast
qed

lemma acute-cop-perp--one-side:
assumes Acute A C P and

C A Perp B C and
Coplanar A B C P

shows C B OS A P
proof cases

assume Col A C P
thus ?thesis

by (simp add: acute-one-side-aux0 assms(1 ) assms(2 ))
next

assume P1 : ¬ Col A C P
have P2 : C A TS P B ∨ C A OS P B

using Col-cases P1 assms(2 ) assms(3 ) cop-nos--ts coplanar-perm-13 perp-not-col by blast
{

assume P3 : C A TS P B
obtain Bs where P4 : C Midpoint B Bs

using symmetric-point-construction by auto
have C A TS Bs B

by (metis P3 P4 assms(2 ) bet--ts l9-2 midpoint-bet midpoint-distinct-2 perp-not-col ts-distincts)
then have P6 : C A OS P Bs

using P3 l9-8-1 by auto
have C Bs Perp A C
proof −

have P6A: C 6= Bs
using P6 os-distincts by blast

have Col C B Bs
using Bet-cases Col-def P4 midpoint-bet by blast

thus ?thesis
using Perp-cases P6A assms(2 ) perp-col by blast

qed
then have Bs C Perp C A

using Perp-perm by blast
then have C A Perp Bs C

using Perp-perm by blast
then have C B OS A P using acute-one-side-aux

by (metis P4 P6 assms(1 ) assms(2 ) col-one-side midpoint-col not-col-permutation-5 perp-distinct)
}
{

assume C A OS P B
then have C B OS A P using acute-one-side-aux

using assms(1 ) assms(2 ) by blast
}
thus ?thesis

using P2 ‹C A TS P B =⇒ C B OS A P› by auto
qed

lemma acute--not-obtuse:
assumes Acute A B C
shows ¬ Obtuse A B C
using acute-obtuse--lta assms nlta by blast

3.10.2 Sum of angles
lemma suma-distincts:

assumes A B C D E F SumA G H I
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shows A 6= B ∧ B 6=C ∧ D 6= E ∧ E 6= F ∧ G 6= H ∧ H 6= I
proof −

obtain J where C B J CongA D E F ∧ ¬ B C OS A J ∧ Coplanar A B C J ∧ A B J CongA G H I
using SumA-def assms by auto

thus ?thesis
using CongA-def by blast

qed

lemma trisuma-distincts:
assumes A B C TriSumA D E F
shows A 6= B ∧ B 6= C ∧ A 6= C ∧ D 6= E ∧ E 6= F

proof −
obtain G H I where A B C B C A SumA G H I ∧ G H I C A B SumA D E F

using TriSumA-def assms by auto
thus ?thesis

using suma-distincts by blast
qed

lemma ex-suma:
assumes A 6= B and

B 6= C and
D 6= E and
E 6= F

shows ∃ G H I . A B C D E F SumA G H I
proof −

have ∃ I . A B C D E F SumA A B I
proof cases

assume P1 : Col A B C
obtain J where P2 : D E F CongA C B J ∧ Coplanar C B J A using angle-construction-4

using assms(2 ) assms(3 ) assms(4 ) by presburger
have P3 : J 6= B

using CongA-def P2 by blast
have ¬ B C OS A J

by (metis P1 between-trivial2 one-side-chara)
then have A B C D E F SumA A B J

by (meson P2 P3 SumA-def assms(1 ) conga-refl ncoplanar-perm-15 not-conga-sym)
thus ?thesis by blast

next
assume T1 : ¬ Col A B C
show ?thesis
proof cases

assume T2 : Col D E F
show ?thesis
proof cases

assume T3 : Bet D E F
obtain J where T4 : B Midpoint C J

using symmetric-point-construction by blast
have A B C D E F SumA A B J
proof −

have C B J CongA D E F
by (metis T3 T4 assms(2 ) assms(3 ) assms(4 ) conga-line midpoint-bet midpoint-distinct-2 )

moreover have ¬ B C OS A J
by (simp add: T4 col124--nos midpoint-col)

moreover have Coplanar A B C J
using T3 bet--coplanar bet-conga--bet calculation(1 ) conga-sym ncoplanar-perm-15 by blast

moreover have A B J CongA A B J
using CongA-def assms(1 ) calculation(1 ) conga-refl by auto

ultimately show ?thesis
using SumA-def by blast

qed
then show ?thesis

by auto
next

assume T5 : ¬ Bet D E F
have A B C D E F SumA A B C
proof −
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have E Out D F
using T2 T5 l6-4-2 by auto

then have C B C CongA D E F
using assms(2 ) l11-21-b out-trivial by auto

moreover have ¬ B C OS A C
using os-distincts by blast

moreover have Coplanar A B C C
using ncop-distincts by auto

moreover have A B C CongA A B C
using assms(1 ) assms(2 ) conga-refl by auto

ultimately show ?thesis
using SumA-def by blast

qed
then show ?thesis

by auto
qed

next
assume T6 : ¬ Col D E F
then obtain J where T7 : D E F CongA C B J ∧ C B TS J A

using T1 ex-conga-ts not-col-permutation-4 not-col-permutation-5 by presburger
then show ?thesis
proof −

have C B J CongA D E F
using T7 not-conga-sym by blast

moreover have ¬ B C OS A J
by (simp add: T7 invert-two-sides l9-2 l9-9 )

moreover have Coplanar A B C J
using T7 ncoplanar-perm-15 ts--coplanar by blast

moreover have A B J CongA A B J
using T7 assms(1 ) conga-diff56 conga-refl by blast

ultimately show ?thesis
using SumA-def by blast

qed
qed

qed
then show ?thesis

by auto
qed

lemma suma2--conga:
assumes A B C D E F SumA G H I and

A B C D E F SumA G ′ H ′ I ′

shows G H I CongA G ′ H ′ I ′

proof −
obtain J where P1 : C B J CongA D E F ∧ ¬ B C OS A J ∧ Coplanar A B C J ∧ A B J CongA G H I

using SumA-def assms(1 ) by blast
obtain J ′ where P2 : C B J ′ CongA D E F ∧ ¬ B C OS A J ′ ∧ Coplanar A B C J ′ ∧ A B J ′ CongA G ′ H ′ I ′

using SumA-def assms(2 ) by blast
have P3 : C B J CongA C B J ′

proof −
have C B J CongA D E F

by (simp add: P1 )
moreover have D E F CongA C B J ′

by (simp add: P2 conga-sym)
ultimately show ?thesis

using not-conga by blast
qed
have P4 : A B J CongA A B J ′

proof cases
assume P5 : Col A B C
then show ?thesis
proof cases

assume P6 : Bet A B C
show ?thesis
proof −

have C B J CongA C B J ′
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by (simp add: P3 )
moreover have Bet C B A

by (simp add: P6 between-symmetry)
moreover have A 6= B

using assms(1 ) suma-distincts by blast
ultimately show ?thesis

using l11-13 by blast
qed

next
assume P7 : ¬ Bet A B C
moreover have B Out A C

by (simp add: P5 calculation l6-4-2 )
moreover have B 6= J

using CongA-def P3 by blast
then moreover have B Out J J

using out-trivial by auto
moreover have B 6= J ′

using CongA-def P3 by blast
then moreover have B Out J ′ J ′

using out-trivial by auto
ultimately show ?thesis

using P3 l11-10 by blast
qed

next
assume P8 : ¬ Col A B C
show ?thesis
proof cases

assume P9 : Col D E F
have B Out J ′ J
proof cases

assume P10 : Bet D E F
show ?thesis
proof −

have D E F CongA J ′ B C
using P2 conga-right-comm not-conga-sym by blast

then have Bet J ′ B C
using P10 bet-conga--bet by blast

moreover have D E F CongA J B C
by (simp add: P1 conga-right-comm conga-sym)

then moreover have Bet J B C
using P10 bet-conga--bet by blast

ultimately show ?thesis
by (metis CongA-def P3 l6-2 )

qed
next

assume P11 : ¬ Bet D E F
have P12 : E Out D F

by (simp add: P11 P9 l6-4-2 )
show ?thesis
proof −

have B Out J ′ C
proof −

have D E F CongA J ′ B C
using P2 conga-right-comm conga-sym by blast

then show ?thesis
using l11-21-a P12 by blast

qed
moreover have B Out C J
by (metis P3 P8 bet-conga--bet calculation col-conga-col col-out2-col l6-4-2 l6-6 not-col-distincts not-conga-sym

out-bet-out-1 out-trivial)
ultimately show ?thesis

using l6-7 by blast
qed

qed
then show ?thesis

using P8 not-col-distincts out2--conga out-trivial by blast
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next
assume P13 : ¬ Col D E F
show ?thesis
proof −

have B C TS A J
proof −

have Coplanar B C A J
using P1 coplanar-perm-8 by blast

moreover have ¬ Col A B C
by (simp add: P8 )

moreover have ¬ B C OS A J
using P1 by simp

moreover have ¬ Col J B C
proof −

have D E F CongA J B C
using P1 conga-right-comm not-conga-sym by blast

then show ?thesis
using P13 ncol-conga-ncol by blast

qed
ultimately show ?thesis

using cop--one-or-two-sides by blast
qed
moreover have B C TS A J ′

proof −
have Coplanar B C A J ′

using P2 coplanar-perm-8 by blast
moreover have ¬ Col A B C

by (simp add: P8 )
moreover have ¬ B C OS A J ′

using P2 by simp
moreover have ¬ Col J ′ B C
proof −

have D E F CongA J ′ B C
using P2 conga-right-comm not-conga-sym by blast

then show ?thesis
using P13 ncol-conga-ncol by blast

qed
ultimately show ?thesis

using cop-nos--ts by blast
qed
moreover have A B C CongA A B C

by (metis P8 conga-pseudo-refl conga-right-comm not-col-distincts)
moreover have C B J CongA C B J ′

by (simp add: P3 )
ultimately show ?thesis

using l11-22a by blast
qed

qed
qed
then show ?thesis

by (meson P1 P2 not-conga not-conga-sym)
qed

lemma suma-sym:
assumes A B C D E F SumA G H I
shows D E F A B C SumA G H I

proof −
obtain J where P1 : C B J CongA D E F ∧ ¬ B C OS A J ∧ Coplanar A B C J ∧ A B J CongA G H I

using SumA-def assms(1 ) by blast
show ?thesis
proof cases

assume P2 : Col A B C
then show ?thesis
proof cases

assume P3 : Bet A B C
obtain K where P4 : Bet F E K ∧ Cong F E E K
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using Cong-perm segment-construction by blast
show ?thesis
proof −

have P5 : F E K CongA A B C
by (metis CongA-def P1 P3 P4 cong-diff conga-line)

moreover have ¬ E F OS D K
using P4 bet-col col124--nos invert-one-side by blast

moreover have Coplanar D E F K
using P4 bet--coplanar ncoplanar-perm-15 by blast

moreover have D E K CongA G H I
proof −

have D E K CongA A B J
proof −

have F E D CongA C B J
by (simp add: P1 conga-left-comm conga-sym)

moreover have Bet F E K
by (simp add: P4 )

moreover have K 6= E
using P4 calculation(1 ) cong-identity conga-diff1 by blast

moreover have Bet C B A
by (simp add: Bet-perm P3 )

moreover have A 6= B
using CongA-def P5 by blast

ultimately show ?thesis
using conga-right-comm l11-13 not-conga-sym by blast

qed
then show ?thesis

using P1 not-conga by blast
qed
ultimately show ?thesis

using SumA-def by blast
qed

next
assume T1 : ¬ Bet A B C
then have T2 : B Out A C

by (simp add: P2 l6-4-2 )
show ?thesis
proof −

have F E F CongA A B C
by (metis T2 assms l11-21-b out-trivial suma-distincts)

moreover have ¬ E F OS D F
using os-distincts by auto

moreover have Coplanar D E F F
using ncop-distincts by auto

moreover have D E F CongA G H I
proof −

have A B J CongA D E F
proof −

have C B J CongA D E F
by (simp add: P1 )

moreover have B Out A C
by (simp add: T2 )

moreover have J 6= B
using calculation(1 ) conga-distinct by auto

moreover have D 6= E
using calculation(1 ) conga-distinct by blast

moreover have F 6= E
using calculation(1 ) conga-distinct by blast

ultimately show ?thesis
by (meson Out-cases not-conga out2--conga out-trivial)

qed
then have D E F CongA A B J

using not-conga-sym by blast
then show ?thesis

using P1 not-conga by blast
qed
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ultimately show ?thesis
using SumA-def by blast

qed
qed

next
assume Q1 : ¬ Col A B C
show ?thesis
proof cases

assume Q2 : Col D E F
obtain K where Q3 : A B C CongA F E K

using P1 angle-construction-3 conga-diff1 conga-diff56 by fastforce
show ?thesis
proof −

have F E K CongA A B C
by (simp add: Q3 conga-sym)

moreover have ¬ E F OS D K
using Col-cases Q2 one-side-not-col123 by blast

moreover have Coplanar D E F K
by (simp add: Q2 col--coplanar)

moreover have D E K CongA G H I
proof −

have D E K CongA A B J
proof cases

assume Bet D E F
then have J B A CongA D E K

by (metis P1 bet-conga--bet calculation(1 ) conga-diff45 conga-right-comm l11-13 not-conga-sym)
then show ?thesis

using conga-right-comm not-conga-sym by blast
next

assume ¬ Bet D E F
then have W2 : E Out D F

using Q2 or-bet-out by blast
have A B J CongA D E K
proof −

have A B C CongA F E K
by (simp add: Q3 )

moreover have A 6= B
using Q1 col-trivial-1 by auto

moreover have E Out D F
by (simp add: W2 )

moreover have B Out J C
proof −

have D E F CongA J B C
by (simp add: P1 conga-left-comm conga-sym)

then show ?thesis
using W2 out-conga-out by blast

qed
moreover have K 6= E

using CongA-def Q3 by blast
ultimately show ?thesis

using l11-10 out-trivial by blast
qed
then show ?thesis

using not-conga-sym by blast
qed
then show ?thesis

using P1 not-conga by blast
qed
ultimately show ?thesis

using SumA-def by blast
qed

next
assume W3 : ¬ Col D E F
then obtain K where W4 : A B C CongA F E K ∧ F E TS K D

using Q1 ex-conga-ts not-col-permutation-3 by blast
show ?thesis
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proof −
have F E K CongA A B C

using W4 not-conga-sym by blast
moreover have ¬ E F OS D K
proof −

have E F TS D K
using W4 invert-two-sides l9-2 by blast

then show ?thesis
using l9-9 by auto

qed
moreover have Coplanar D E F K
proof −

have E F TS D K
using W4 invert-two-sides l9-2 by blast

then show ?thesis
using ncoplanar-perm-8 ts--coplanar by blast

qed
moreover have D E K CongA G H I
proof −

have A B J CongA K E D
proof −

have B C TS A J
proof −

have Coplanar B C A J
using P1 ncoplanar-perm-12 by blast

moreover have ¬ Col A B C
by (simp add: Q1 )

moreover have ¬ B C OS A J
using P1 by simp

moreover have ¬ Col J B C
proof −

{
assume Col J B C
have Col D E F
proof −

have Col C B J
using Col-perm ‹Col J B C › by blast

moreover have C B J CongA D E F
by (simp add: P1 )

ultimately show ?thesis
using col-conga-col by blast

qed
then have False

by (simp add: W3 )
}
then show ?thesis by blast

qed
ultimately show ?thesis

using cop-nos--ts by blast
qed
moreover have E F TS K D

using W4 invert-two-sides by blast
moreover have A B C CongA K E F

by (simp add: W4 conga-right-comm)
moreover have C B J CongA F E D

by (simp add: P1 conga-right-comm)
ultimately show ?thesis

using l11-22a by auto
qed
then have D E K CongA A B J

using conga-left-comm not-conga-sym by blast
then show ?thesis

using P1 not-conga by blast
qed
ultimately show ?thesis

using SumA-def by blast
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qed
qed

qed
qed

lemma conga3-suma--suma:
assumes A B C D E F SumA G H I and

A B C CongA A ′ B ′ C ′ and
D E F CongA D ′ E ′ F ′ and
G H I CongA G ′ H ′ I ′

shows A ′ B ′ C ′ D ′ E ′ F ′ SumA G ′ H ′ I ′

proof −
have D ′ E ′ F ′ A B C SumA G ′ H ′ I ′

proof −
obtain J where P1 : C B J CongA D E F ∧ ¬ B C OS A J ∧ Coplanar A B C J ∧ A B J CongA G H I

using SumA-def assms(1 ) by blast
have A B C D ′ E ′ F ′ SumA G ′ H ′ I ′

proof −
have C B J CongA D ′ E ′ F ′

using P1 assms(3 ) not-conga by blast
moreover have ¬ B C OS A J

using P1 by simp
moreover have Coplanar A B C J

using P1 by simp
moreover have A B J CongA G ′ H ′ I ′

using P1 assms(4 ) not-conga by blast
ultimately show ?thesis

using SumA-def by blast
qed
then show ?thesis

by (simp add: suma-sym)
qed
then obtain J where P2 : F ′ E ′ J CongA A B C ∧ ¬ E ′ F ′ OS D ′ J ∧ Coplanar D ′ E ′ F ′ J ∧ D ′ E ′ J CongA G ′

H ′ I ′

using SumA-def by blast
have D ′ E ′ F ′ A ′ B ′ C ′ SumA G ′ H ′ I ′

proof −
have F ′ E ′ J CongA A ′ B ′ C ′

proof −
have F ′ E ′ J CongA A B C

by (simp add: P2 )
moreover have A B C CongA A ′ B ′ C ′

by (simp add: assms(2 ))
ultimately show ?thesis

using not-conga by blast
qed
moreover have ¬ E ′ F ′ OS D ′ J

using P2 by simp
moreover have Coplanar D ′ E ′ F ′ J

using P2 by simp
moreover have D ′ E ′ J CongA G ′ H ′ I ′

by (simp add: P2 )
ultimately show ?thesis

using SumA-def by blast
qed
then show ?thesis

by (simp add: suma-sym)
qed

lemma out6-suma--suma:
assumes A B C D E F SumA G H I and

B Out A A ′ and
B Out C C ′ and
E Out D D ′ and
E Out F F ′ and
H Out G G ′ and
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H Out I I ′

shows A ′ B C ′ D ′ E F ′ SumA G ′ H I ′

proof −
have A B C CongA A ′ B C ′

using Out-cases assms(2 ) assms(3 ) out2--conga by blast
moreover have D E F CongA D ′ E F ′

using Out-cases assms(4 ) assms(5 ) out2--conga by blast
moreover have G H I CongA G ′ H I ′

by (simp add: assms(6 ) assms(7 ) l6-6 out2--conga)
ultimately show ?thesis

using assms(1 ) conga3-suma--suma by blast
qed

lemma out546-suma--conga:
assumes A B C D E F SumA G H I and

E Out D F
shows A B C CongA G H I

proof −
have A B C D E F SumA A B C
proof −

have C B C CongA D E F
by (metis assms(1 ) assms(2 ) l11-21-b out-trivial suma-distincts)

moreover have ¬ B C OS A C
using os-distincts by auto

moreover have Coplanar A B C C
using ncop-distincts by auto

moreover have A B C CongA A B C
by (metis Tarski-neutral-dimensionless.suma-distincts Tarski-neutral-dimensionless-axioms assms(1 ) conga-pseudo-refl

conga-right-comm)
ultimately show ?thesis

using SumA-def by blast
qed
then show ?thesis using suma2--conga assms(1 ) by blast

qed

lemma out546--suma:
assumes A 6= B and

B 6= C and
E Out D F

shows A B C D E F SumA A B C
proof −

have P1 : D 6= E
using assms(3 ) out-diff1 by auto

have P2 : F 6= E
using Out-def assms(3 ) by auto

then obtain G H I where P3 : A B C D E F SumA G H I
using P1 assms(1 ) assms(2 ) ex-suma by presburger

then have G H I CongA A B C
by (meson Tarski-neutral-dimensionless.conga-sym Tarski-neutral-dimensionless.out546-suma--conga Tarski-neutral-dimensionless-axioms

assms(3 ))
then show ?thesis

using P1 P2 P3 assms(1 ) assms(2 ) assms(3 ) conga3-suma--suma conga-refl out-diff1 by auto
qed

lemma out213-suma--conga:
assumes A B C D E F SumA G H I and

B Out A C
shows D E F CongA G H I
using assms(1 ) assms(2 ) out546-suma--conga suma-sym by blast

lemma out213--suma:
assumes D 6= E and

E 6= F and
B Out A C

shows A B C D E F SumA D E F
by (simp add: assms(1 ) assms(2 ) assms(3 ) out546--suma suma-sym)
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lemma suma-left-comm:
assumes A B C D E F SumA G H I
shows C B A D E F SumA G H I

proof −
have A B C CongA C B A

using assms conga-pseudo-refl suma-distincts by fastforce
moreover have D E F CongA D E F

by (metis assms conga-refl suma-distincts)
moreover have G H I CongA G H I

by (metis assms conga-refl suma-distincts)
ultimately show ?thesis

using assms conga3-suma--suma by blast
qed

lemma suma-middle-comm:
assumes A B C D E F SumA G H I
shows A B C F E D SumA G H I
using assms suma-left-comm suma-sym by blast

lemma suma-right-comm:
assumes A B C D E F SumA G H I
shows A B C D E F SumA I H G

proof −
have A B C CongA A B C

using assms conga-refl suma-distincts by fastforce
moreover have D E F CongA D E F

by (metis assms conga-refl suma-distincts)
moreover have G H I CongA I H G
by (meson Tarski-neutral-dimensionless.conga-right-comm Tarski-neutral-dimensionless.suma2--conga Tarski-neutral-dimensionless-axioms

assms)
ultimately show ?thesis

using assms conga3-suma--suma by blast
qed

lemma suma-comm:
assumes A B C D E F SumA G H I
shows C B A F E D SumA I H G
by (simp add: assms suma-left-comm suma-middle-comm suma-right-comm)

lemma ts--suma:
assumes A B TS C D
shows C B A A B D SumA C B D

proof −
have A B D CongA A B D
by (metis Tarski-neutral-dimensionless.conga-right-comm Tarski-neutral-dimensionless-axioms assms conga-pseudo-refl

ts-distincts)
moreover have ¬ B A OS C D

using assms invert-one-side l9-9 by blast
moreover have Coplanar C B A D

using assms ncoplanar-perm-14 ts--coplanar by blast
moreover have C B D CongA C B D

by (metis assms conga-refl ts-distincts)
ultimately show ?thesis

using SumA-def by blast
qed

lemma ts--suma-1 :
assumes A B TS C D
shows C A B B A D SumA C A D
by (simp add: assms invert-two-sides ts--suma)

lemma inangle--suma:
assumes P InAngle A B C
shows A B P P B C SumA A B C

proof −
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have Coplanar A B P C
by (simp add: assms coplanar-perm-8 inangle--coplanar)

moreover have ¬ B P OS A C
by (meson assms col123--nos col124--nos in-angle-two-sides invert-two-sides l9-9-bis not-col-permutation-5 )

ultimately show ?thesis
using SumA-def assms conga-refl inangle-distincts by blast

qed

lemma bet--suma:
assumes A 6= B and

B 6= C and
P 6= B and Bet A B C

shows A B P P B C SumA A B C
proof −

have P InAngle A B C
using assms(1 ) assms(2 ) assms(3 ) assms(4 ) in-angle-line by auto

then show ?thesis
by (simp add: inangle--suma)

qed

lemma sams-chara:
assumes A 6= B and

A ′ 6= B and
Bet A B A ′

shows SAMS A B C D E F ←→ D E F LeA C B A ′

proof −
{

assume T1 : SAMS A B C D E F
obtain J where T2 : C B J CongA D E F ∧ ¬ B C OS A J ∧ ¬ A B TS C J ∧ Coplanar A B C J

using SAMS-def T1 by auto
have T3 : A 6= A ′

using assms(2 ) assms(3 ) between-identity by blast
have T4 : C 6= B

using T2 conga-distinct by blast
have T5 : J 6= B

using T2 conga-diff2 by blast
have T6 : D 6= E

using CongA-def T2 by auto
have T7 : F 6= E

using CongA-def T2 by blast
{

assume E Out D F
then have D E F LeA C B A ′

by (simp add: T4 assms(2 ) l11-31-1 )
}
{

assume T8 : ¬ Bet A B C
have D E F LeA C B A ′

proof cases
assume Col A B C
then have Bet C B A ′

using T8 assms(1 ) assms(3 ) between-exchange3 outer-transitivity-between2 third-point by blast
then show ?thesis

by (simp add: T4 T6 T7 assms(2 ) l11-31-2 )
next

assume T9 : ¬ Col A B C
show ?thesis
proof cases

assume T10 : Col D E F
show ?thesis
proof cases

assume T11 : Bet D E F
have D E F CongA C B J

by (simp add: T2 conga-sym)
then have T12 : Bet C B J

using T11 bet-conga--bet by blast
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have A B TS C J
proof −

have ¬ Col J A B
using T5 T9 T12 bet-col col2--eq col-permutation-1 by blast

moreover have ∃ T . Col T A B ∧ Bet C T J
using T12 col-trivial-3 by blast

ultimately show ?thesis
using T9 TS-def col-permutation-1 by blast

qed
then have False

using T2 by simp
then show ?thesis by simp

next
assume ¬ Bet D E F
then show ?thesis

using T10 ‹E Out D F =⇒ D E F LeA C B A ′› or-bet-out by auto
qed

next
assume T13 : ¬ Col D E F
show ?thesis
proof −

have C B J LeA C B A ′

proof −
have J InAngle C B A ′

proof −
have A ′ 6= B

by (simp add: assms(2 ))
moreover have Bet A B A ′

by (simp add: assms(3 ))
moreover have C InAngle A B J
proof −

have ¬ Col J B C
proof −

have ¬ Col D E F
by (simp add: T13 )

moreover have D E F CongA J B C
using T2 conga-left-comm not-conga-sym by blast

ultimately show ?thesis
using ncol-conga-ncol by blast

qed
then have B C TS A J

by (simp add: T2 T9 cop-nos--ts coplanar-perm-8 )
then obtain X where T14 : Col X B C ∧ Bet A X J

using TS-def by blast
{

assume T15 : X 6= B
have B Out X C
proof −

have Col B X C
by (simp add: Col-perm T14 )

moreover have B A OS X C
proof −

have A B OS X C
proof −

have A B OS X J
by (smt T14 T9 T15 bet-out calculation col-transitivity-2 col-trivial-2 l6-21 out-one-side)

moreover have A B OS J C
by (metis T14 T2 T9 calculation cop-nts--os l5-2 not-col-permutation-2 one-side-chara

one-side-symmetry)
ultimately show ?thesis

using one-side-transitivity by blast
qed
then show ?thesis

by (simp add: invert-one-side)
qed
ultimately show ?thesis
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using col-one-side-out by auto
qed

}
then have Bet A X J ∧ (X = B ∨ B Out X C )

using T14 by blast
then show ?thesis

using InAngle-def T4 T5 assms(1 ) by auto
qed
ultimately show ?thesis

using in-angle-reverse l11-24 by blast
qed
moreover have C B J CongA C B J

by (simp add: T4 T5 conga-refl)
ultimately show ?thesis

by (simp add: inangle--lea)
qed
moreover have D E F LeA C B J

by (simp add: T2 conga--lea456123 )
ultimately show ?thesis

using lea-trans by blast
qed

qed
qed

}
then have D E F LeA C B A ′

using SAMS-def T1 ‹E Out D F =⇒ D E F LeA C B A ′› by blast
}
{

assume P1 : D E F LeA C B A ′

have P2 : A 6= A ′

using assms(2 ) assms(3 ) between-identity by blast
have P3 : C 6= B

using P1 lea-distincts by auto
have P4 : D 6= E

using P1 lea-distincts by auto
have P5 : F 6= E

using P1 lea-distincts by auto
have SAMS A B C D E F
proof cases

assume P6 : Col A B C
show ?thesis
proof cases

assume P7 : Bet A B C
have E Out D F
proof −

have B Out C A ′

by (meson Bet-perm P3 P7 assms(1 ) assms(2 ) assms(3 ) l6-2 )
moreover have C B A ′ CongA D E F

using P1 calculation l11-21-b out-lea--out by blast
ultimately show ?thesis

using out-conga-out by blast
qed
moreover have C B C CongA D E F

using P3 calculation l11-21-b out-trivial by auto
moreover have ¬ B C OS A C

using os-distincts by auto
moreover have ¬ A B TS C C

by (simp add: not-two-sides-id)
moreover have Coplanar A B C C

using ncop-distincts by auto
ultimately show ?thesis

using SAMS-def assms(1 ) by blast
next

assume P8 : ¬ Bet A B C
have P9 : B Out A C

by (simp add: P6 P8 l6-4-2 )
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obtain J where P10 : D E F CongA C B J
using P3 P4 P5 angle-construction-3 by blast

show ?thesis
proof −

have C B J CongA D E F
using P10 not-conga-sym by blast

moreover have ¬ B C OS A J
using Col-cases P6 one-side-not-col123 by blast

moreover have ¬ A B TS C J
using Col-cases P6 TS-def by blast

moreover have Coplanar A B C J
using P6 col--coplanar by auto

ultimately show ?thesis
using P8 SAMS-def assms(1 ) by blast

qed
qed

next
assume P11 : ¬ Col A B C
have P12 : ¬ Col A ′ B C

using P11 assms(2 ) assms(3 ) bet-col bet-col1 colx by blast
show ?thesis
proof cases

assume P13 : Col D E F
have P14 : E Out D F
proof −

{
assume P14 : Bet D E F
have D E F LeA C B A ′

by (simp add: P1 )
then have Bet C B A ′

using P14 bet-lea--bet by blast
then have Col A ′ B C

using Col-def Col-perm by blast
then have False

by (simp add: P12 )
}
then have ¬ Bet D E F by auto
then show ?thesis

by (simp add: P13 l6-4-2 )
qed
show ?thesis
proof −

have C B C CongA D E F
by (simp add: P3 P14 l11-21-b out-trivial)

moreover have ¬ B C OS A C
using os-distincts by auto

moreover have ¬ A B TS C C
by (simp add: not-two-sides-id)

moreover have Coplanar A B C C
using ncop-distincts by auto

ultimately show ?thesis
using P14 SAMS-def assms(1 ) by blast

qed
next

assume P15 : ¬ Col D E F
obtain J where P16 : D E F CongA C B J ∧ C B TS J A

using P11 P15 ex-conga-ts not-col-permutation-3 by presburger
show ?thesis
proof −

have C B J CongA D E F
by (simp add: P16 conga-sym)

moreover have ¬ B C OS A J
proof −

have C B TS A J
using P16 by (simp add: l9-2 )

then show ?thesis
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using invert-one-side l9-9 by blast
qed
moreover have ¬ A B TS C J ∧ Coplanar A B C J
proof cases

assume Col A B J
then show ?thesis

using TS-def ncop--ncols not-col-permutation-1 by blast
next

assume P17 : ¬ Col A B J
have ¬ A B TS C J
proof −

have A ′ B OS J C
proof −

have ¬ Col A ′ B C
by (simp add: P12 )

moreover have ¬ Col B A ′ J
proof −

{
assume Col B A ′ J
then have False

by (metis P17 assms(2 ) assms(3 ) bet-col col-trivial-2 colx)
}
then show ?thesis by auto

qed
moreover have J InAngle A ′ B C
proof −

obtain K where P20 : K InAngle C B A ′ ∧ D E F CongA C B K
using LeA-def P1 by blast

have J InAngle C B A ′

proof −
have C B A ′ CongA C B A ′

by (simp add: P3 assms(2 ) conga-pseudo-refl conga-right-comm)
moreover have C B K CongA C B J
proof −

have C B K CongA D E F
using P20 not-conga-sym by blast

moreover have D E F CongA C B J
by (simp add: P16 )

ultimately show ?thesis
using not-conga by blast

qed
moreover have K InAngle C B A ′

using P20 by simp
moreover have C B OS J A ′

proof −
have C B TS J A using P16

by simp
moreover have C B TS A ′ A

using Col-perm P12 assms(3 ) bet--ts between-symmetry calculation invert-two-sides ts-distincts by
blast

ultimately show ?thesis
using OS-def by auto

qed
ultimately show ?thesis

using conga-preserves-in-angle by blast
qed
then show ?thesis

by (simp add: l11-24 )
qed
ultimately show ?thesis

by (simp add: in-angle-one-side)
qed
then have A ′ B OS C J

by (simp add: one-side-symmetry)
then have ¬ A ′ B TS C J

by (simp add: l9-9-bis)
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then show ?thesis
using assms(2 ) assms(3 ) bet-col bet-col1 col-preserves-two-sides by blast

qed
moreover have Coplanar A B C J
proof −

have C B TS J A
using P16 by simp

then show ?thesis
by (simp add: coplanar-perm-20 ts--coplanar)

qed
ultimately show ?thesis by auto

qed
ultimately show ?thesis

using P11 SAMS-def assms(1 ) bet-col by auto
qed

qed
qed

}
then show ?thesis

using ‹SAMS A B C D E F =⇒ D E F LeA C B A ′› by blast
qed

lemma sams-distincts:
assumes SAMS A B C D E F
shows A 6= B ∧ B 6= C ∧ D 6= E ∧ E 6= F

proof −
obtain J where P1 : C B J CongA D E F ∧ ¬ B C OS A J ∧ ¬ A B TS C J ∧ Coplanar A B C J

using SAMS-def assms by auto
then show ?thesis

by (metis SAMS-def assms conga-distinct)
qed

lemma sams-sym:
assumes SAMS A B C D E F
shows SAMS D E F A B C

proof −
have P1 : A 6= B

using assms sams-distincts by blast
have P3 : D 6= E

using assms sams-distincts by blast
obtain D ′ where P5 : E Midpoint D D ′

using symmetric-point-construction by blast
obtain A ′ where P6 : B Midpoint A A ′

using symmetric-point-construction by blast
have P8 : E 6= D ′

using P3 P5 is-midpoint-id-2 by blast
have P9 : A 6= A ′

using P1 P6 l7-3 by auto
then have P10 : B 6= A ′

using P6 P9 midpoint-not-midpoint by auto
then have D E F LeA C B A ′

using P1 P6 assms midpoint-bet sams-chara by fastforce
then have D E F LeA A ′ B C

by (simp add: lea-right-comm)
then have A B C LeA D ′ E F

by (metis Mid-cases P1 P10 P3 P5 P6 P8 l11-36 midpoint-bet)
then have A B C LeA F E D ′

by (simp add: lea-right-comm)
moreover have D 6= E

by (simp add: P3 )
moreover have D ′ 6= E

using P8 by auto
moreover have Bet D E D ′

by (simp add: P5 midpoint-bet)
then show ?thesis

using P3 P8 calculation(1 ) sams-chara by fastforce
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qed

lemma sams-right-comm:
assumes SAMS A B C D E F
shows SAMS A B C F E D

proof −
have P1 : E Out D F ∨ ¬ Bet A B C

using SAMS-def assms by blast
obtain J where P2 : C B J CongA D E F ∧ ¬ B C OS A J ∧ ¬ A B TS C J ∧ Coplanar A B C J

using SAMS-def assms by auto
{

assume E Out D F
then have E Out F D ∨ ¬ Bet A B C

by (simp add: l6-6 )
}
{

assume ¬ Bet A B C
then have E Out F D ∨ ¬ Bet A B C by auto

}
then have E Out F D ∨ ¬ Bet A B C

using ‹E Out D F =⇒ E Out F D ∨ ¬ Bet A B C › P1 by auto
moreover have C B J CongA F E D
proof −

have C B J CongA D E F
by (simp add: P2 )

then show ?thesis
by (simp add: conga-right-comm)

qed
ultimately show ?thesis

using P2 SAMS-def assms by auto
qed

lemma sams-left-comm:
assumes SAMS A B C D E F
shows SAMS C B A D E F

proof −
have SAMS D E F A B C

by (simp add: assms sams-sym)
then have SAMS D E F C B A

using sams-right-comm by blast
then show ?thesis

using sams-sym by blast
qed

lemma sams-comm:
assumes SAMS A B C D E F
shows SAMS C B A F E D
using assms sams-left-comm sams-right-comm by blast

lemma conga2-sams--sams:
assumes A B C CongA A ′ B ′ C ′ and

D E F CongA D ′ E ′ F ′ and
SAMS A B C D E F

shows SAMS A ′ B ′ C ′ D ′ E ′ F ′

proof −
obtain A0 where B Midpoint A A0

using symmetric-point-construction by auto
obtain A ′0 where B ′ Midpoint A ′ A ′0

using symmetric-point-construction by blast
have D ′ E ′ F ′ LeA C ′ B ′ A ′0
proof −

have D E F LeA C B A0
by (metis ‹B Midpoint A A0 › assms(1 ) assms(3 ) conga-distinct midpoint-bet midpoint-distinct-2 sams-chara)

moreover have D E F CongA D ′ E ′ F ′

by (simp add: assms(2 ))
moreover have C B A0 CongA C ′ B ′ A ′0
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proof −
have A0 B C CongA A ′0 B ′ C ′

by (metis ‹B Midpoint A A0 › ‹B ′ Midpoint A ′ A ′0 › assms(1 ) calculation(1 ) conga-diff45 l11-13 lea-distincts
midpoint-bet midpoint-not-midpoint)

then show ?thesis
using conga-comm by blast

qed
ultimately show ?thesis

using l11-30 by blast
qed
then show ?thesis

by (metis ‹B ′ Midpoint A ′ A ′0 › assms(1 ) conga-distinct lea-distincts midpoint-bet sams-chara)
qed

lemma out546--sams:
assumes A 6= B and

B 6= C and
E Out D F

shows SAMS A B C D E F
proof −

obtain A ′ where Bet A B A ′ ∧ Cong B A ′ A B
using segment-construction by blast

then have D E F LeA C B A ′

using assms(1 ) assms(2 ) assms(3 ) cong-diff-3 l11-31-1 by fastforce
then show ?thesis

using ‹Bet A B A ′ ∧ Cong B A ′ A B› assms(1 ) lea-distincts sams-chara by blast
qed

lemma out213--sams:
assumes D 6= E and

E 6= F and
B Out A C

shows SAMS A B C D E F
by (simp add: Tarski-neutral-dimensionless.sams-sym Tarski-neutral-dimensionless-axioms assms(1 ) assms(2 ) assms(3 )

out546--sams)

lemma bet-suma--sams:
assumes A B C D E F SumA G H I and

Bet G H I
shows SAMS A B C D E F

proof −
obtain A ′ where P1 : C B A ′ CongA D E F ∧ ¬ B C OS A A ′ ∧ Coplanar A B C A ′ ∧ A B A ′ CongA G H I

using SumA-def assms(1 ) by auto
then have G H I CongA A B A ′

using not-conga-sym by blast
then have Bet A B A ′

using assms(2 ) bet-conga--bet by blast
show ?thesis
proof −

have E Out D F ∨ ¬ Bet A B C
proof −

{
assume Bet A B C
then have E Out D F
proof −

have B Out C A ′

proof −
have C 6= B

using assms(1 ) suma-distincts by blast
moreover have A ′ 6= B

using CongA-def ‹G H I CongA A B A ′› by blast
moreover have A 6= B

using CongA-def ‹G H I CongA A B A ′› by blast
moreover have Bet C B A

by (simp add: Bet-perm ‹Bet A B C ›)
ultimately show ?thesis
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using Out-def ‹Bet A B A ′› ‹Bet A B C › l5-2 by auto
qed
moreover have C B A ′ CongA D E F

using P1 by simp
ultimately show ?thesis

using l11-21-a by blast
qed

}
then show ?thesis

by blast
qed
moreover have ∃ J . (C B J CongA D E F ∧ ¬ B C OS A J ∧ ¬ A B TS C J ∧ Coplanar A B C J )
proof −

have C B A ′ CongA D E F
by (simp add: P1 )

moreover have ¬ B C OS A A ′

by (simp add: P1 )
moreover have ¬ A B TS C A ′

using Col-def TS-def ‹Bet A B A ′› by blast
moreover have Coplanar A B C A ′

by (simp add: P1 )
ultimately show ?thesis

by blast
qed
ultimately show ?thesis

using CongA-def SAMS-def ‹C B A ′ CongA D E F ∧ ¬ B C OS A A ′ ∧ Coplanar A B C A ′ ∧ A B A ′ CongA G
H I › by auto

qed
qed

lemma bet--sams:
assumes A 6= B and

B 6= C and
P 6= B and
Bet A B C

shows SAMS A B P P B C
by (meson assms(1 ) assms(2 ) assms(3 ) assms(4 ) bet--suma bet-suma--sams)

lemma suppa--sams:
assumes A B C SuppA D E F
shows SAMS A B C D E F

proof −
obtain A ′ where P1 : Bet A B A ′ ∧ D E F CongA C B A ′

using SuppA-def assms by auto
then have SAMS A B C C B A ′

by (metis assms bet--sams conga-diff45 conga-diff56 suppa2--conga123 )
thus ?thesis

by (meson P1 assms conga2-sams--sams not-conga-sym suppa2--conga123 )
qed

lemma os-ts--sams:
assumes B P TS A C and

A B OS P C
shows SAMS A B P P B C

proof −
have B Out P C ∨ ¬ Bet A B P

using assms(2 ) bet-col col123--nos by blast
moreover have ∃ J . (P B J CongA P B C ∧ ¬ B P OS A J ∧ ¬ A B TS P J ∧ Coplanar A B P J )

by (metis assms(1 ) assms(2 ) conga-refl l9-9 os--coplanar os-distincts)
ultimately show ?thesis

using SAMS-def assms(2 ) os-distincts by auto
qed

lemma os2--sams:
assumes A B OS P C and

C B OS P A
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shows SAMS A B P P B C
by (simp add: Tarski-neutral-dimensionless.os-ts--sams Tarski-neutral-dimensionless-axioms assms(1 ) assms(2 ) in-

vert-one-side l9-31 )

lemma inangle--sams:
assumes P InAngle A B C
shows SAMS A B P P B C

proof −
have Bet A B C ∨ B Out A C ∨ ¬ Col A B C

using l6-4-2 by blast
{

assume Bet A B C
then have SAMS A B P P B C

using assms bet--sams inangle-distincts by fastforce
}
{

assume B Out A C
then have SAMS A B P P B C

by (metis assms in-angle-out inangle-distincts out213--sams)
}
{

assume ¬ Col A B C
then have ¬ Bet A B C

using Col-def by auto
{

assume Col B A P
have SAMS A B P P B C

by (metis ‹Col B A P› ‹¬ Bet A B C › assms col-in-angle-out inangle-distincts out213--sams)
}
{

assume ¬ Col B A P
{

assume Col B C P
have SAMS A B P P B C

by (metis Tarski-neutral-dimensionless.sams-comm Tarski-neutral-dimensionless-axioms ‹Col B C P› ‹¬ Bet A
B C › assms between-symmetry col-in-angle-out inangle-distincts l11-24 out546--sams)

}
{

assume ¬ Col B C P
have SAMS A B P P B C
proof −

have B P TS A C
by (simp add: ‹¬ Col B A P› ‹¬ Col B C P› assms in-angle-two-sides invert-two-sides)

moreover have A B OS P C
by (simp add: ‹¬ Col A B C › ‹¬ Col B A P› assms in-angle-one-side)

ultimately show ?thesis
by (simp add: os-ts--sams)

qed
}
then have SAMS A B P P B C

using ‹Col B C P =⇒ SAMS A B P P B C › by blast
}
then have SAMS A B P P B C

using ‹Col B A P =⇒ SAMS A B P P B C › by blast
}
thus ?thesis

using ‹B Out A C =⇒ SAMS A B P P B C › ‹Bet A B C =⇒ SAMS A B P P B C › ‹Bet A B C ∨ B Out A C ∨
¬ Col A B C › by blast
qed

lemma sams-suma--lea123789 :
assumes A B C D E F SumA G H I and

SAMS A B C D E F
shows A B C LeA G H I

proof cases
assume Col A B C

287



show ?thesis
proof cases

assume Bet A B C
have P1 : (A 6= B ∧ (E Out D F ∨ ¬ Bet A B C )) ∧ (∃ J . (C B J CongA D E F ∧ ¬ (B C OS A J ) ∧ ¬ (A B TS

C J ) ∧ Coplanar A B C J))
using SAMS-def assms(2 ) by auto

{
assume E Out D F
then have A B C CongA G H I

using assms(1 ) out546-suma--conga by auto
then have A B C LeA G H I

by (simp add: conga--lea)
}
thus ?thesis

using P1 ‹Bet A B C › by blast
next

assume ¬ Bet A B C
then have B Out A C

using ‹Col A B C › or-bet-out by auto
thus ?thesis

by (metis assms(1 ) l11-31-1 suma-distincts)
qed

next
assume ¬ Col A B C
show ?thesis
proof cases

assume Col D E F
show ?thesis
proof cases

assume Bet D E F
have SAMS D E F A B C

using assms(2 ) sams-sym by auto
then have B Out A C

using SAMS-def ‹Bet D E F› by blast
thus ?thesis using l11-31-1

by (metis assms(1 ) suma-distincts)
next

assume ¬ Bet D E F
have A B C CongA G H I
proof −

have A B C D E F SumA G H I
by (simp add: assms(1 ))

moreover have E Out D F
using ‹Col D E F› ‹¬ Bet D E F› l6-4-2 by auto

ultimately show ?thesis
using out546-suma--conga by auto

qed
show ?thesis

by (simp add: ‹A B C CongA G H I › conga--lea)
qed

next
assume ¬ Col D E F
show ?thesis
proof cases

assume Col G H I
show ?thesis
proof cases

assume Bet G H I
thus ?thesis

by (metis assms(1 ) l11-31-2 suma-distincts)
next

assume ¬ Bet G H I
then have H Out G I

by (simp add: ‹Col G H I › l6-4-2 )
have E Out D F ∨ ¬ Bet A B C

using ‹¬ Col A B C › bet-col by auto
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{
assume ¬ Bet A B C
then obtain J where P2 : C B J CongA D E F ∧ ¬ B C OS A J ∧ Coplanar A B C J ∧ A B J CongA G H I

using SumA-def assms(1 ) by blast
have G H I CongA A B J

using P2 not-conga-sym by blast
then have B Out A J

using ‹H Out G I › out-conga-out by blast
then have B C OS A J

using Col-perm ‹¬ Col A B C › out-one-side by blast
then have False

using ‹C B J CongA D E F ∧ ¬ B C OS A J ∧ Coplanar A B C J ∧ A B J CongA G H I › by linarith
}
then have False

using Col-def ‹¬ Col A B C › by blast
thus ?thesis by blast

qed
next

assume ¬ Col G H I
obtain J where P4 : C B J CongA D E F ∧ ¬ B C OS A J ∧ ¬ A B TS C J ∧ Coplanar A B C J

using SAMS-def assms(2 ) by auto
{

assume Col J B C
have J B C CongA D E F

by (simp add: P4 conga-left-comm)
then have Col D E F

using col-conga-col ‹Col J B C › by blast
then have False

using ‹¬ Col D E F› by blast
}
then have ¬ Col J B C by blast
have A B J CongA G H I
proof −

have A B C D E F SumA A B J
proof −

have C B J CongA D E F
using P4 by simp

moreover have ¬ B C OS A J
by (simp add: P4 )

moreover have Coplanar A B C J
by (simp add: P4 )

moreover have A B J CongA A B J
by (metis ‹¬ Col A B C › ‹¬ Col J B C › col-trivial-1 conga-refl)

ultimately show ?thesis
using SumA-def by blast

qed
then show ?thesis

using assms(1 ) suma2--conga by auto
qed
have ¬ Col J B A

using ‹A B J CongA G H I › ‹¬ Col G H I › col-conga-col not-col-permutation-3 by blast
have A B C LeA A B J
proof −

have C InAngle A B J
by (metis Col-perm P4 ‹¬ Col A B C › ‹¬ Col J B A› ‹¬ Col J B C › cop-nos--ts coplanar-perm-7 coplanar-perm-8

invert-two-sides l9-2 os-ts--inangle)
moreover have A B C CongA A B C

using calculation in-angle-asym inangle3123 inangle-distincts by auto
ultimately show ?thesis

using inangle--lea by blast
qed
thus ?thesis

using ‹A B J CongA G H I › conga--lea lea-trans by blast
qed

qed
qed
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lemma sams-suma--lea456789 :
assumes A B C D E F SumA G H I and

SAMS A B C D E F
shows D E F LeA G H I

proof −
have D E F A B C SumA G H I

by (simp add: assms(1 ) suma-sym)
moreover have SAMS D E F A B C

using assms(2 ) sams-sym by blast
ultimately show ?thesis

using sams-suma--lea123789 by auto
qed

lemma sams-lea2--sams:
assumes SAMS A ′ B ′ C ′ D ′ E ′ F ′ and

A B C LeA A ′ B ′ C ′ and
D E F LeA D ′ E ′ F ′

shows SAMS A B C D E F
proof −

obtain A0 where B Midpoint A A0
using symmetric-point-construction by auto

obtain A ′0 where B ′ Midpoint A ′ A ′0
using symmetric-point-construction by auto

have D E F LeA C B A0
proof −

have D ′ E ′ F ′ LeA C B A0
proof −

have D ′ E ′ F ′ LeA C ′ B ′ A ′0
by (metis ‹B ′ Midpoint A ′ A ′0 › assms(1 ) assms(2 ) lea-distincts midpoint-bet midpoint-distinct-2 sams-chara)

moreover have C ′ B ′ A ′0 LeA C B A0
by (metis Mid-cases ‹B Midpoint A A0 › ‹B ′ Midpoint A ′ A ′0 › assms(2 ) l11-36-aux2 l7-3-2 lea-comm lea-distincts

midpoint-bet sym-preserve-diff )
ultimately show ?thesis

using lea-trans by blast
qed
moreover have D E F LeA D ′ E ′ F ′

using assms(3 ) by auto
ultimately show ?thesis

using ‹D ′ E ′ F ′ LeA C B A0 › assms(3 ) lea-trans by blast
qed
then show ?thesis

by (metis ‹B Midpoint A A0 › assms(2 ) lea-distincts midpoint-bet sams-chara)
qed

lemma sams-lea456-suma2--lea:
assumes D E F LeA D ′ E ′ F ′ and

SAMS A B C D ′ E ′ F ′ and
A B C D E F SumA G H I and
A B C D ′ E ′ F ′ SumA G ′ H ′ I ′

shows G H I LeA G ′ H ′ I ′

proof cases
assume E ′ Out D ′ F ′

have G H I CongA G ′ H ′ I ′

proof −
have G H I CongA A B C
proof −

have A B C D E F SumA G H I
by (simp add: assms(3 ))

moreover have E Out D F
using ‹E ′ Out D ′ F ′› assms(1 ) out-lea--out by blast

ultimately show ?thesis
using conga-sym out546-suma--conga by blast

qed
moreover have A B C CongA G ′ H ′ I ′

using ‹E ′ Out D ′ F ′› assms(4 ) out546-suma--conga by blast
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ultimately show ?thesis
using conga-trans by blast

qed
thus ?thesis

by (simp add: conga--lea)
next

assume T1 : ¬ E ′ Out D ′ F ′

show ?thesis
proof cases

assume T2 : Col A B C
have E ′ Out D ′ F ′ ∨ ¬ Bet A B C

using assms(2 ) SAMS-def by simp
{

assume ¬ Bet A B C
then have B Out A C

by (simp add: T2 l6-4-2 )
have G H I LeA G ′ H ′ I ′

proof −
have D E F LeA D ′ E ′ F ′

by (simp add: assms(1 ))
moreover have D E F CongA G H I

using ‹B Out A C › assms(3 ) out213-suma--conga by auto
moreover have D ′ E ′ F ′ CongA G ′ H ′ I ′

using ‹B Out A C › assms(4 ) out213-suma--conga by auto
ultimately show ?thesis

using l11-30 by blast
qed

}
thus ?thesis

using T1 ‹E ′ Out D ′ F ′ ∨ ¬ Bet A B C › by auto
next

assume ¬ Col A B C
show ?thesis
proof cases

assume Col D ′ E ′ F ′

have SAMS D ′ E ′ F ′ A B C
by (simp add: assms(2 ) sams-sym)

{
assume ¬ Bet D ′ E ′ F ′

then have G H I LeA G ′ H ′ I ′

using not-bet-out T1 ‹Col D ′ E ′ F ′› by auto
}
thus ?thesis

by (metis assms(2 ) assms(3 ) assms(4 ) bet-lea--bet l11-31-2 sams-suma--lea456789 suma-distincts)
next

assume ¬ Col D ′ E ′ F ′

show ?thesis
proof cases

assume Col D E F
have ¬ Bet D E F

using bet-lea--bet Col-def ‹¬ Col D ′ E ′ F ′› assms(1 ) by blast
thus ?thesis
proof −

have A B C LeA G ′ H ′ I ′

using assms(2 ) assms(4 ) sams-suma--lea123789 by auto
moreover have A B C CongA G H I

by (meson ‹Col D E F› ‹¬ Bet D E F› assms(3 ) or-bet-out out213-suma--conga suma-sym)
moreover have G ′ H ′ I ′ CongA G ′ H ′ I ′

proof −
have G ′ 6= H ′

using calculation(1 ) lea-distincts by blast
moreover have H ′ 6= I ′

using ‹A B C LeA G ′ H ′ I ′› lea-distincts by blast
ultimately show ?thesis

using conga-refl by auto
qed
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ultimately show ?thesis
using l11-30 by blast

qed
next

assume ¬ Col D E F
show ?thesis
proof cases

assume Col G ′ H ′ I ′

show ?thesis
proof cases

assume Bet G ′ H ′ I ′

show ?thesis
proof −

have G 6= H
using assms(3 ) suma-distincts by auto

moreover have I 6= H
using assms(3 ) suma-distincts by blast

moreover have G ′ 6= H ′

using assms(4 ) suma-distincts by auto
moreover have I ′ 6= H ′

using assms(4 ) suma-distincts by blast
ultimately show ?thesis

by (simp add: ‹Bet G ′ H ′ I ′› l11-31-2 )
qed

next
assume ¬ Bet G ′ H ′ I ′

have B Out A C
proof −

have H ′ Out G ′ I ′

using ‹Col G ′ H ′ I ′› l6-4-2 by (simp add: ‹¬ Bet G ′ H ′ I ′›)
moreover have A B C LeA G ′ H ′ I ′ using sams-suma--lea123789

using assms(2 ) assms(4 ) by auto
ultimately show ?thesis

using out-lea--out by blast
qed
then have Col A B C

using Col-perm out-col by blast
then have False

using ‹¬ Col A B C › by auto
thus ?thesis by blast

qed
next

assume ¬ Col G ′ H ′ I ′

obtain F ′1 where P5 : C B F ′1 CongA D ′ E ′ F ′ ∧ ¬ B C OS A F ′1 ∧ ¬ A B TS C F ′1 ∧ Coplanar A B C
F ′1

using SAMS-def assms(2 ) by auto
have P6 : D E F LeA C B F ′1
proof −

have D E F CongA D E F
using ‹¬ Col D E F› conga-refl not-col-distincts by fastforce

moreover have D ′ E ′ F ′ CongA C B F ′1
by (simp add: P5 conga-sym)

ultimately show ?thesis
using assms(1 ) l11-30 by blast

qed
then obtain F1 where P6 : F1 InAngle C B F ′1 ∧ D E F CongA C B F1

using LeA-def by auto
have A B F ′1 CongA G ′ H ′ I ′

proof −
have A B C D ′ E ′ F ′ SumA A B F ′1
proof −

have C B F ′1 CongA D ′ E ′ F ′

using P5 by blast
moreover have ¬ B C OS A F ′1

using P5 by auto
moreover have Coplanar A B C F ′1
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by (simp add: P5 )
moreover have A B F ′1 CongA A B F ′1
proof −

have A 6= B
using ‹¬ Col A B C › col-trivial-1 by blast

moreover have B 6= F ′1
using P6 inangle-distincts by auto

ultimately show ?thesis
using conga-refl by auto

qed
ultimately show ?thesis

using SumA-def by blast
qed
moreover have A B C D ′ E ′ F ′ SumA G ′ H ′ I ′

by (simp add: assms(4 ))
ultimately show ?thesis

using suma2--conga by auto
qed
have ¬ Col A B F ′1

using ‹A B F ′1 CongA G ′ H ′ I ′› ‹¬ Col G ′ H ′ I ′› col-conga-col by blast
have ¬ Col C B F ′1
proof −

have ¬ Col D ′ E ′ F ′

by (simp add: ‹¬ Col D ′ E ′ F ′›)
moreover have D ′ E ′ F ′ CongA C B F ′1

using P5 not-conga-sym by blast
ultimately show ?thesis

using ncol-conga-ncol by blast
qed
show ?thesis
proof −

have A B F1 LeA A B F ′1
proof −

have F1 InAngle A B F ′1
proof −

have F1 InAngle F ′1 B A
proof −

have F1 InAngle F ′1 B C
by (simp add: P6 l11-24 )

moreover have C InAngle F ′1 B A
proof −

have B C TS A F ′1
using Col-perm P5 ‹¬ Col A B C › ‹¬ Col C B F ′1 › cop-nos--ts ncoplanar-perm-12 by blast

obtain X where Col X B C ∧ Bet A X F ′1
using TS-def ‹B C TS A F ′1 › by auto

have Bet F ′1 X A
using Bet-perm ‹Col X B C ∧ Bet A X F ′1 › by blast

moreover have (X = B) ∨ (B Out X C )
proof −

have B A OS X C
proof −

have A B OS X F ′1
by (metis ‹Col X B C ∧ Bet A X F ′1 › ‹¬ Col A B C › ‹¬ Col A B F ′1 › bet-out-1 calculation

out-one-side)
moreover have A B OS F ′1 C

using Col-perm P5 ‹¬ Col A B C › ‹¬ Col A B F ′1 › cop-nos--ts one-side-symmetry by blast
ultimately show ?thesis

using invert-one-side one-side-transitivity by blast
qed
thus ?thesis

using Col-cases ‹Col X B C ∧ Bet A X F ′1 › col-one-side-out by blast
qed
ultimately show ?thesis

by (metis InAngle-def ‹¬ Col A B C › ‹¬ Col A B F ′1 › not-col-distincts)
qed
ultimately show ?thesis
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using in-angle-trans by blast
qed
then show ?thesis

using l11-24 by blast
qed
moreover have A B F1 CongA A B F1
proof −

have A 6= B
using ‹¬ Col A B C › col-trivial-1 by blast

moreover have B 6= F1
using P6 conga-diff56 by blast

ultimately show ?thesis
using conga-refl by auto

qed
ultimately show ?thesis

by (simp add: inangle--lea)
qed
moreover have A B F1 CongA G H I
proof −

have A B C D E F SumA A B F1
proof −

have B C TS F1 A
proof −

have B C TS F ′1 A
proof −

have B C TS A F ′1
using Col-perm P5 ‹¬ Col A B C › ‹¬ Col C B F ′1 › cop-nos--ts ncoplanar-perm-12 by blast

thus ?thesis
using l9-2 by blast

qed
moreover have B C OS F ′1 F1
proof −

have ¬ Col C B F ′1
by (simp add: ‹¬ Col C B F ′1 ›)

moreover have ¬ Col B C F1
proof −

have ¬ Col D E F
using ‹¬ Col D E F› by auto

moreover have D E F CongA C B F1
by (simp add: P6 )

ultimately show ?thesis
using ncol-conga-ncol not-col-permutation-4 by blast

qed
moreover have F1 InAngle C B F ′1 using P6 by blast
ultimately show ?thesis

using in-angle-one-side invert-one-side one-side-symmetry by blast
qed
ultimately show ?thesis

using l9-8-2 by blast
qed
thus ?thesis
proof −

have C B F1 CongA D E F
using P6 not-conga-sym by blast

moreover have ¬ B C OS A F1
using ‹B C TS F1 A› l9-9 one-side-symmetry by blast

moreover have Coplanar A B C F1
using ‹B C TS F1 A› ncoplanar-perm-9 ts--coplanar by blast

moreover have A B F1 CongA A B F1
proof −

have A 6= B
using ‹¬ Col A B C › col-trivial-1 by blast

moreover have B 6= F1
using P6 conga-diff56 by blast

ultimately show ?thesis
using conga-refl by auto
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qed
ultimately show ?thesis

using SumA-def by blast
qed

qed
moreover have A B C D E F SumA G H I

by (simp add: assms(3 ))
ultimately show ?thesis

using suma2--conga by auto
qed
ultimately show ?thesis

using ‹A B F ′1 CongA G ′ H ′ I ′› l11-30 by blast
qed

qed
qed

qed
qed

qed

lemma sams-lea123-suma2--lea:
assumes A B C LeA A ′ B ′ C ′ and

SAMS A ′ B ′ C ′ D E F and
A B C D E F SumA G H I and
A ′ B ′ C ′ D E F SumA G ′ H ′ I ′

shows G H I LeA G ′ H ′ I ′

by (meson assms(1 ) assms(2 ) assms(3 ) assms(4 ) sams-lea456-suma2--lea sams-sym suma-sym)

lemma sams-lea2-suma2--lea:
assumes A B C LeA A ′ B ′ C ′ and

D E F LeA D ′ E ′ F ′ and
SAMS A ′ B ′ C ′ D ′ E ′ F ′ and
A B C D E F SumA G H I and
A ′ B ′ C ′ D ′ E ′ F ′ SumA G ′ H ′ I ′

shows G H I LeA G ′ H ′ I ′

proof −
obtain G ′′ H ′′ I ′′ where A B C D ′ E ′ F ′ SumA G ′′ H ′′ I ′′

using assms(4 ) assms(5 ) ex-suma suma-distincts by presburger
have G H I LeA G ′′ H ′′ I ′′

proof −
have D E F LeA D ′ E ′ F ′

by (simp add: assms(2 ))
moreover have SAMS A B C D ′ E ′ F ′

proof −
have SAMS A ′ B ′ C ′ D ′ E ′ F ′

by (simp add: assms(3 ))
moreover have A B C LeA A ′ B ′ C ′

using assms(1 ) by auto
moreover have D ′ E ′ F ′ LeA D ′ E ′ F ′

using assms(2 ) lea-distincts lea-refl by blast
ultimately show ?thesis

using sams-lea2--sams by blast
qed
moreover have A B C D E F SumA G H I

by (simp add: assms(4 ))
moreover have A B C D ′ E ′ F ′ SumA G ′′ H ′′ I ′′

by (simp add: ‹A B C D ′ E ′ F ′ SumA G ′′ H ′′ I ′′›)
ultimately show ?thesis

using sams-lea456-suma2--lea by blast
qed
moreover have G ′′ H ′′ I ′′ LeA G ′ H ′ I ′

using sams-lea123-suma2--lea assms(3 ) assms(5 ) ‹A B C D ′ E ′ F ′ SumA G ′′ H ′′ I ′′› assms(1 ) by blast
ultimately show ?thesis

using lea-trans by blast
qed

lemma sams2-suma2--conga456 :
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assumes SAMS A B C D E F and
SAMS A B C D ′ E ′ F ′ and
A B C D E F SumA G H I and
A B C D ′ E ′ F ′ SumA G H I

shows D E F CongA D ′ E ′ F ′

proof cases
assume Col A B C
show ?thesis
proof cases

assume P2 : Bet A B C
then have E Out D F

using assms(1 ) SAMS-def by blast
moreover have E ′ Out D ′ F ′

using P2 assms(2 ) SAMS-def by blast
ultimately show ?thesis

by (simp add: l11-21-b)
next

assume ¬ Bet A B C
then have B Out A C

using ‹Col A B C › or-bet-out by blast
show ?thesis
proof −

have D E F CongA G H I
proof −

have A B C D E F SumA G H I
by (simp add: assms(3 ))

thus ?thesis
using ‹B Out A C › out213-suma--conga by auto

qed
moreover have G H I CongA D ′ E ′ F ′

proof −
have A B C D ′ E ′ F ′ SumA G H I

by (simp add: assms(4 ))
then have D ′ E ′ F ′ CongA G H I

using ‹B Out A C › out213-suma--conga by auto
thus ?thesis

using not-conga-sym by blast
qed
ultimately show ?thesis

using not-conga by blast
qed

qed
next

assume ¬ Col A B C
obtain J where T1 : C B J CongA D E F ∧ ¬ B C OS A J ∧ ¬ A B TS C J ∧ Coplanar A B C J

using assms(1 ) SAMS-def by blast
have T1A: C B J CongA D E F

using T1 by simp
have T1B: ¬ B C OS A J

using T1 by simp
have T1C : ¬ A B TS C J

using T1 by simp
have T1D: Coplanar A B C J

using T1 by simp
obtain J ′ where T2 : C B J ′ CongA D ′ E ′ F ′ ∧ ¬ B C OS A J ′ ∧ ¬ A B TS C J ′ ∧ Coplanar A B C J ′

using assms(2 ) SAMS-def by blast
have T2A: C B J ′ CongA D ′ E ′ F ′

using T2 by simp
have T2B: ¬ B C OS A J ′

using T2 by simp
have T2C : ¬ A B TS C J ′

using T2 by simp
have T2D: Coplanar A B C J ′

using T2 by simp
have T3 : C B J CongA C B J ′

proof −

296



have A B J CongA A B J ′

proof −
have A B J CongA G H I
proof −

have A B C D E F SumA A B J
using SumA-def T1A T1B T1D ‹¬ Col A B C › conga-distinct conga-refl not-col-distincts by auto

thus ?thesis
using assms(3 ) suma2--conga by blast

qed
moreover have G H I CongA A B J ′

proof −
have A B C D ′ E ′ F ′ SumA G H I

by (simp add: assms(4 ))
moreover have A B C D ′ E ′ F ′ SumA A B J ′

using SumA-def T2A T2B T2D ‹¬ Col A B C › conga-distinct conga-refl not-col-distincts by auto
ultimately show ?thesis

using suma2--conga by auto
qed
ultimately show ?thesis

using conga-trans by blast
qed
have B Out J J ′ ∨ A B TS J J ′

proof −
have Coplanar A B J J ′

using T1D T2D ‹¬ Col A B C › coplanar-trans-1 ncoplanar-perm-8 not-col-permutation-2 by blast
moreover have A B J CongA A B J ′

by (simp add: ‹A B J CongA A B J ′›)
ultimately show ?thesis

by (simp add: conga-cop--or-out-ts)
qed
{

assume B Out J J ′

then have C B J CongA C B J ′

by (metis Out-cases ‹¬ Col A B C › bet-out between-trivial not-col-distincts out2--conga)
}
{

assume A B TS J J ′

then have A B OS J C
by (meson T1C T1D TS-def ‹¬ Col A B C › cop-nts--os not-col-permutation-2 one-side-symmetry)

then have A B TS C J ′

using ‹A B TS J J ′› l9-8-2 by blast
then have False

by (simp add: T2C )
then have C B J CongA C B J ′

by blast
}
thus ?thesis

using ‹B Out J J ′ =⇒ C B J CongA C B J ′› ‹B Out J J ′ ∨ A B TS J J ′› by blast
qed
then have C B J CongA D ′ E ′ F ′

using T2A not-conga by blast
thus ?thesis

using T1A not-conga not-conga-sym by blast
qed

lemma sams2-suma2--conga123 :
assumes SAMS A B C D E F and

SAMS A ′ B ′ C ′ D E F and
A B C D E F SumA G H I and
A ′ B ′ C ′ D E F SumA G H I

shows A B C CongA A ′ B ′ C ′

proof −
have SAMS D E F A B C

by (simp add: assms(1 ) sams-sym)
moreover have SAMS D E F A ′ B ′ C ′

by (simp add: assms(2 ) sams-sym)
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moreover have D E F A B C SumA G H I
by (simp add: assms(3 ) suma-sym)

moreover have D E F A ′ B ′ C ′ SumA G H I
using assms(4 ) suma-sym by blast

ultimately show ?thesis
using sams2-suma2--conga456 by auto

qed

lemma suma-assoc-1 :
assumes SAMS A B C D E F and

SAMS D E F G H I and
A B C D E F SumA A ′ B ′ C ′ and
D E F G H I SumA D ′ E ′ F ′ and
A ′ B ′ C ′ G H I SumA K L M

shows A B C D ′ E ′ F ′ SumA K L M
proof −

obtain A0 where P1 : Bet A B A0 ∧ Cong A B B A0
using Cong-perm segment-construction by blast

obtain D0 where P2 : Bet D E D0 ∧ Cong D E E D0
using Cong-perm segment-construction by blast

show ?thesis
proof cases

assume Col A B C
show ?thesis
proof cases

assume Bet A B C
then have E Out D F

using SAMS-def assms(1 ) by simp
show ?thesis
proof −

have A ′ B ′ C ′ CongA A B C
using assms(3 ) ‹E Out D F› conga-sym out546-suma--conga by blast

moreover have G H I CongA D ′ E ′ F ′

using assms(4 ) ‹E Out D F› out213-suma--conga by auto
ultimately show ?thesis

by (meson Tarski-neutral-dimensionless.conga3-suma--suma Tarski-neutral-dimensionless.suma2--conga Tarski-neutral-dimensionless-axioms
assms(5 ))

qed
next

assume ¬ Bet A B C
then have B Out A C

using ‹Col A B C › l6-4-2 by auto
have A 6= B

using ‹B Out A C › out-distinct by auto
have B 6= C

using ‹¬ Bet A B C › between-trivial by auto
have D ′ 6= E ′

using assms(4 ) suma-distincts by blast
have E ′ 6= F ′

using assms(4 ) suma-distincts by auto
show ?thesis
proof −

obtain K0 L0 M0 where P3 :A B C D ′ E ′ F ′ SumA K0 L0 M0
using ex-suma ‹A 6= B› ‹B 6= C › ‹D ′ 6= E ′› ‹E ′ 6= F ′› by presburger

moreover have A B C CongA A B C
using ‹A 6= B› ‹B 6= C › conga-refl by auto

moreover have D ′ E ′ F ′ CongA D ′ E ′ F ′

using ‹D ′ 6= E ′› ‹E ′ 6= F ′› conga-refl by auto
moreover have K0 L0 M0 CongA K L M
proof −

have K0 L0 M0 CongA D ′ E ′ F ′

using P3 ‹B Out A C › conga-sym out213-suma--conga by blast
moreover have D ′ E ′ F ′ CongA K L M
proof −

have D E F G H I SumA D ′ E ′ F ′

by (simp add: assms(4 ))
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moreover have D E F G H I SumA K L M
by (meson Tarski-neutral-dimensionless.conga3-suma--suma Tarski-neutral-dimensionless.out213-suma--conga

Tarski-neutral-dimensionless.sams2-suma2--conga456 Tarski-neutral-dimensionless.suma2--conga Tarski-neutral-dimensionless-axioms
‹B Out A C › assms(2 ) assms(3 ) assms(5 ) calculation not-conga-sym)

ultimately show ?thesis
using suma2--conga by auto

qed
ultimately show ?thesis

using not-conga by blast
qed
ultimately show ?thesis

using conga3-suma--suma by blast
qed

qed
next

assume T1 : ¬ Col A B C
have ¬ Col C B A0

by (metis Col-def P1 ‹¬ Col A B C › cong-diff l6-16-1 )
show ?thesis
proof cases

assume Col D E F
show ?thesis
proof cases

assume Bet D E F
have H Out G I using SAMS-def assms(2 ) ‹Bet D E F› by blast
have A B C D E F SumA A ′ B ′ C ′

by (simp add: assms(3 ))
moreover have A B C CongA A B C

by (metis ‹¬ Col A B C › conga-pseudo-refl conga-right-comm not-col-distincts)
moreover have D E F CongA D ′ E ′ F ′

using ‹H Out G I › assms(4 ) out546-suma--conga by auto
moreover have A ′ B ′ C ′ CongA K L M

using ‹H Out G I › assms(5 ) out546-suma--conga by auto
ultimately show ?thesis

using conga3-suma--suma by blast
next

assume ¬ Bet D E F
then have E Out D F

using not-bet-out by (simp add: ‹Col D E F›)
show ?thesis
proof −

have A ′ B ′ C ′ CongA A B C
using assms(3 ) ‹E Out D F› conga-sym out546-suma--conga by blast

moreover have G H I CongA D ′ E ′ F ′

using out546-suma--conga ‹E Out D F› assms(4 ) out213-suma--conga by auto
moreover have K L M CongA K L M
proof −

have K 6= L ∧ L 6= M
using assms(5 ) suma-distincts by blast

thus ?thesis
using conga-refl by auto

qed
ultimately show ?thesis

using assms(5 ) conga3-suma--suma by blast
qed

qed
next

assume ¬ Col D E F
then have ¬ Col F E D0

by (metis Col-def P2 cong-diff l6-16-1 not-col-distincts)
show ?thesis
proof cases

assume Col G H I
show ?thesis
proof cases

assume Bet G H I
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have SAMS G H I D E F
by (simp add: assms(2 ) sams-sym)

then have E Out D F
using SAMS-def ‹Bet G H I › by blast

then have Col D E F
using Col-perm out-col by blast

then have False
using ‹¬ Col D E F› by auto

thus ?thesis by simp
next

assume ¬ Bet G H I
then have H Out G I

using SAMS-def by (simp add: ‹Col G H I › l6-4-2 )
show ?thesis
proof −

have A B C CongA A B C
by (metis ‹¬ Col A B C › conga-refl not-col-distincts)

moreover have D E F CongA D ′ E ′ F ′

using assms(4 ) out546-suma--conga ‹H Out G I › by auto
moreover have A ′ B ′ C ′ CongA K L M

using ‹H Out G I › assms(5 ) out546-suma--conga by auto
ultimately show ?thesis

using assms(3 ) conga3-suma--suma by blast
qed

qed
next

assume ¬ Col G H I
have ¬ B C OS A A0

using P1 col-trivial-1 one-side-chara by blast
have E F TS D D0

by (metis P2 ‹¬ Col D E F› ‹¬ Col F E D0 › bet--ts bet-col between-trivial not-col-permutation-1 )
show ?thesis
proof cases

assume Col A ′ B ′ C ′

show ?thesis
proof cases

assume Bet A ′ B ′ C ′

show ?thesis
proof cases

assume Col D ′ E ′ F ′

show ?thesis
proof cases

assume Bet D ′ E ′ F ′

have A B C CongA G H I
proof −

have A B C CongA D0 E F
proof −

have SAMS A B C D E F
by (simp add: assms(1 ))

moreover have SAMS D0 E F D E F
by (metis P2 ‹¬ Col D E F› ‹¬ Col F E D0 › bet--sams between-symmetry not-col-distincts

sams-right-comm)
moreover have A B C D E F SumA A ′ B ′ C ′

by (simp add: assms(3 ))
moreover have D0 E F D E F SumA A ′ B ′ C ′

proof −
have D E F D0 E F SumA A ′ B ′ C ′

proof −
have F E D0 CongA D0 E F

by (metis ‹¬ Col F E D0 › col-trivial-1 col-trivial-2 conga-pseudo-refl)
moreover have ¬ E F OS D D0

using P2 col-trivial-1 one-side-chara by blast
moreover have Coplanar D E F D0

by (meson P2 bet--coplanar ncoplanar-perm-1 )
moreover have D E D0 CongA A ′ B ′ C ′

using assms(3 ) P2 ‹Bet A ′ B ′ C ′› ‹¬ Col F E D0 › conga-line not-col-distincts suma-distincts by
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auto
ultimately show ?thesis

using SumA-def by blast
qed
thus ?thesis

by (simp add: ‹D E F D0 E F SumA A ′ B ′ C ′› suma-sym)
qed
ultimately show ?thesis

using sams2-suma2--conga123 by blast
qed
moreover have D0 E F CongA G H I
proof −

have SAMS D E F D0 E F
using P2 ‹¬ Col D E F› ‹¬ Col F E D0 › bet--sams not-col-distincts sams-right-comm by auto

moreover have D E F D0 E F SumA D ′ E ′ F ′

proof −
have F E D0 CongA D0 E F

by (metis (no-types) ‹¬ Col F E D0 › col-trivial-1 col-trivial-2 conga-pseudo-refl)
moreover have ¬ E F OS D D0

using P2 col-trivial-1 one-side-chara by blast
moreover have Coplanar D E F D0

using P2 bet--coplanar ncoplanar-perm-1 by blast
moreover have D E D0 CongA D ′ E ′ F ′

using assms(3 ) P2 ‹Bet D ′ E ′ F ′› ‹¬ Col F E D0 › assms(4 ) conga-line not-col-distincts suma-distincts
by auto

ultimately show ?thesis
using SumA-def by blast

qed
ultimately show ?thesis

using assms(2 ) assms(4 ) sams2-suma2--conga456 by auto
qed
ultimately show ?thesis

using conga-trans by blast
qed
then have G H I CongA A B C

using not-conga-sym by blast
have D ′ E ′ F ′ A B C SumA K L M
proof −

have A ′ B ′ C ′ CongA D ′ E ′ F ′

by (metis Tarski-neutral-dimensionless.suma-distincts Tarski-neutral-dimensionless-axioms ‹Bet A ′ B ′

C ′› ‹Bet D ′ E ′ F ′› assms(4 ) assms(5 ) conga-line)
then show ?thesis
by (meson Tarski-neutral-dimensionless.conga3-suma--suma Tarski-neutral-dimensionless.suma2--conga

Tarski-neutral-dimensionless-axioms ‹G H I CongA A B C › assms(5 ))
qed
thus ?thesis

by (simp add: suma-sym)
next

assume ¬ Bet D ′ E ′ F ′

then have E ′ Out D ′ F ′

by (simp add: ‹Col D ′ E ′ F ′› l6-4-2 )
have D E F LeA D ′ E ′ F ′

using assms(2 ) assms(4 ) sams-suma--lea123789 by blast
then have E Out D F

using ‹E ′ Out D ′ F ′› out-lea--out by blast
then have Col D E F

using Col-perm out-col by blast
then have False

using ‹¬ Col D E F› by auto
thus ?thesis by simp

qed
next

assume ¬ Col D ′ E ′ F ′

have D E F CongA C B A0
proof −

have SAMS A B C D E F
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by (simp add: assms(1 ))
moreover have SAMS A B C C B A0

using P1 ‹¬ Col A B C › ‹¬ Col C B A0 › bet--sams not-col-distincts by auto
moreover have A B C D E F SumA A ′ B ′ C ′

by (simp add: assms(3 ))
moreover have A B C C B A0 SumA A ′ B ′ C ′

proof −
have A B C C B A0 SumA A B A0

by (metis P1 ‹¬ Col A B C › ‹¬ Col C B A0 › bet--suma col-trivial-1 col-trivial-2 )
moreover have A B C CongA A B C

using ‹SAMS A B C C B A0 › calculation sams2-suma2--conga123 by auto
moreover have C B A0 CongA C B A0

using ‹SAMS A B C C B A0 › calculation(1 ) sams2-suma2--conga456 by auto
moreover have A B A0 CongA A ′ B ′ C ′

using P1 ‹Bet A ′ B ′ C ′› ‹¬ Col C B A0 › assms(3 ) conga-line not-col-distincts suma-distincts by auto
ultimately show ?thesis

using conga3-suma--suma by blast
qed
ultimately show ?thesis

using sams2-suma2--conga456 by blast
qed
have SAMS C B A0 G H I
proof −

have D E F CongA C B A0
by (simp add: ‹D E F CongA C B A0 ›)

moreover have G H I CongA G H I
using ‹¬ Col G H I › conga-refl not-col-distincts by fastforce

moreover have SAMS D E F G H I
by (simp add: assms(2 ))

ultimately show ?thesis
using conga2-sams--sams by blast

qed
then obtain J where P3 : A0 B J CongA G H I ∧ ¬ B A0 OS C J ∧ ¬ C B TS A0 J ∧ Coplanar C B

A0 J
using SAMS-def by blast

obtain F1 where P4 : F E F1 CongA G H I ∧ ¬ E F OS D F1 ∧ ¬ D E TS F F1 ∧ Coplanar D E F F1
using SAMS-def assms(2 ) by auto

have C B J CongA D ′ E ′ F ′

proof −
have C B J CongA D E F1
proof −

have (B A0 TS C J ∧ E F TS D F1 ) ∨ (B A0 OS C J ∧ E F OS D F1 )
proof −

have B A0 TS C J
proof −

have Coplanar B A0 C J
using P3 ncoplanar-perm-12 by blast

moreover have ¬ Col C B A0
by (simp add: ‹¬ Col C B A0 ›)

moreover have ¬ Col J B A0
using P3 ‹¬ Col G H I › col-conga-col not-col-permutation-3 by blast

moreover have ¬ B A0 OS C J
using P3 by simp

ultimately show ?thesis
by (simp add: cop-nos--ts)

qed
moreover have E F TS D F1
proof −

have Coplanar E F D F1
using P4 ncoplanar-perm-12 by blast

moreover have ¬ Col D E F
by (simp add: ‹¬ Col D E F›)

moreover have ¬ Col F1 E F
using P4 ‹¬ Col G H I › col-conga-col col-permutation-3 by blast

moreover have ¬ E F OS D F1
using P4 by auto
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ultimately show ?thesis
by (simp add: cop-nos--ts)

qed
ultimately show ?thesis

by simp
qed
moreover have C B A0 CongA D E F

using ‹D E F CongA C B A0 › not-conga-sym by blast
moreover have A0 B J CongA F E F1
proof −

have A0 B J CongA G H I
by (simp add: P3 )

moreover have G H I CongA F E F1
using P4 not-conga-sym by blast

ultimately show ?thesis
using conga-trans by blast

qed
ultimately show ?thesis

using l11-22 by auto
qed
moreover have D E F1 CongA D ′ E ′ F ′

proof −
have D E F G H I SumA D E F1

using P4 SumA-def ‹¬ Col D E F› conga-distinct conga-refl not-col-distincts by auto
moreover have D E F G H I SumA D ′ E ′ F ′

by (simp add: assms(4 ))
ultimately show ?thesis

using suma2--conga by auto
qed
ultimately show ?thesis

using conga-trans by blast
qed
show ?thesis
proof −

have A B C D ′ E ′ F ′ SumA A B J
proof −

have C B TS J A
proof −

have C B TS A0 A
proof −

have B 6= A0
using ‹¬ Col C B A0 › not-col-distincts by blast

moreover have ¬ Col B C A
using Col-cases ‹¬ Col A B C › by auto

moreover have Bet A B A0
by (simp add: P1 )

ultimately show ?thesis
by (metis Bet-cases Col-cases ‹¬ Col C B A0 › bet--ts invert-two-sides not-col-distincts)

qed
moreover have C B OS A0 J
proof −

have ¬ Col J C B
using ‹C B J CongA D ′ E ′ F ′› ‹¬ Col D ′ E ′ F ′› col-conga-col not-col-permutation-2 by blast

moreover have ¬ Col A0 C B
using Col-cases ‹¬ Col C B A0 › by blast

ultimately show ?thesis
using P3 cop-nos--ts by blast

qed
ultimately show ?thesis

using l9-8-2 by blast
qed
moreover have C B J CongA D ′ E ′ F ′

by (simp add: ‹C B J CongA D ′ E ′ F ′›)
moreover have ¬ B C OS A J

using calculation(1 ) invert-one-side l9-9-bis one-side-symmetry by blast
moreover have Coplanar A B C J

303



using calculation(1 ) ncoplanar-perm-15 ts--coplanar by blast
moreover have A B J CongA A B J
proof −

have A 6= B
using ‹¬ Col A B C › col-trivial-1 by auto

moreover have B 6= J
using ‹C B TS J A› ts-distincts by blast

ultimately show ?thesis
using conga-refl by auto

qed
ultimately show ?thesis

using SumA-def by blast
qed
moreover have A B J CongA K L M
proof −

have A ′ B ′ C ′ G H I SumA A B J
proof −

have A B A0 CongA A ′ B ′ C ′

using P1 ‹Bet A ′ B ′ C ′› ‹¬ Col A B C › ‹¬ Col C B A0 › assms(5 ) conga-line not-col-distincts
suma-distincts by auto

moreover have A0 B J CongA G H I
by (simp add: P3 )

moreover have A B A0 A0 B J SumA A B J
proof −

have A0 B J CongA A0 B J
proof −

have A0 6= B
using ‹¬ Col C B A0 › col-trivial-2 by auto

moreover have B 6= J
using CongA-def ‹A0 B J CongA G H I › by blast

ultimately show ?thesis
using conga-refl by auto

qed
moreover have ¬ B A0 OS A J

by (simp add: Col-def P1 col123--nos)
moreover have Coplanar A B A0 J

using P1 bet--coplanar by auto
moreover have A B J CongA A B J

using P1 ‹¬ Col A B C › between-symmetry calculation(1 ) l11-13 not-col-distincts by blast
ultimately show ?thesis

using SumA-def by blast
qed
ultimately show ?thesis

by (meson conga3-suma--suma suma2--conga)
qed
moreover have A ′ B ′ C ′ G H I SumA K L M

by (simp add: assms(5 ))
ultimately show ?thesis

using suma2--conga by auto
qed
ultimately show ?thesis
proof −

have A B C CongA A B C ∧ D ′ E ′ F ′ CongA D ′ E ′ F ′

using CongA-def ‹A B J CongA K L M › ‹C B J CongA D ′ E ′ F ′› conga-refl by presburger
then show ?thesis

using ‹A B C D ′ E ′ F ′ SumA A B J › ‹A B J CongA K L M › conga3-suma--suma by blast
qed

qed
qed

next
assume ¬ Bet A ′ B ′ C ′

have B Out A C
proof −

have A B C LeA A ′ B ′ C ′ using assms(1 ) assms(3 ) sams-suma--lea123789 by auto
moreover have B ′ Out A ′ C ′

using ‹Col A ′ B ′ C ′› ‹¬ Bet A ′ B ′ C ′› or-bet-out by blast
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ultimately show ?thesis
using out-lea--out by blast

qed
then have Col A B C

using Col-perm out-col by blast
then have False

using ‹¬ Col A B C › by auto
thus ?thesis by simp

qed
next

assume ¬ Col A ′ B ′ C ′

obtain C1 where P6 : C B C1 CongA D E F ∧ ¬ B C OS A C1 ∧ ¬ A B TS C C1 ∧ Coplanar A B C C1
using SAMS-def assms(1 ) by auto

have P6A: C B C1 CongA D E F
using P6 by simp

have P6B: ¬ B C OS A C1
using P6 by simp

have P6C : ¬ A B TS C C1
using P6 by simp

have P6D: Coplanar A B C C1
using P6 by simp

have A ′ B ′ C ′ CongA A B C1
proof −

have A B C D E F SumA A B C1
using P6A P6B P6D SumA-def ‹¬ Col A B C › conga-distinct conga-refl not-col-distincts by auto

moreover have A B C D E F SumA A ′ B ′ C ′

by (simp add: assms(3 ))
ultimately show ?thesis

using suma2--conga by auto
qed
have B C1 OS C A
proof −

have B A OS C C1
proof −

have A B OS C C1
proof −

have ¬ Col C A B
using Col-perm ‹¬ Col A B C › by blast

moreover have ¬ Col C1 A B
using ‹¬ Col A ′ B ′ C ′› ‹A ′ B ′ C ′ CongA A B C1 › col-permutation-1 ncol-conga-ncol by blast

ultimately show ?thesis
using P6C P6D cop-nos--ts by blast

qed
thus ?thesis

by (simp add: invert-one-side)
qed
moreover have B C TS A C1
proof −

have Coplanar B C A C1
using P6D ncoplanar-perm-12 by blast

moreover have ¬ Col C1 B C
proof −

have D E F CongA C1 B C
using P6A conga-left-comm not-conga-sym by blast

thus ?thesis
using ‹¬ Col D E F› ncol-conga-ncol by blast

qed
ultimately show ?thesis

using T1 P6B cop-nos--ts by blast
qed
ultimately show ?thesis

using os-ts1324--os one-side-symmetry by blast
qed
show ?thesis
proof cases

assume Col D ′ E ′ F ′
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show ?thesis
proof cases

assume Bet D ′ E ′ F ′

obtain C0 where P7 : Bet C B C0 ∧ Cong C B B C0
using Cong-perm segment-construction by blast

have B C1 TS C C0
by (metis P7 ‹B C1 OS C A› bet--ts cong-diff-2 not-col-distincts one-side-not-col123 )

show ?thesis
proof −

have A B C C B C0 SumA A B C0
proof −

have C B C0 CongA C B C0
by (metis P7 T1 cong-diff conga-line not-col-distincts)

moreover have ¬ B C OS A C0
using P7 bet-col col124--nos invert-one-side by blast

moreover have Coplanar A B C C0
using P7 bet--coplanar ncoplanar-perm-15 by blast

moreover have A B C0 CongA A B C0
by (metis P7 T1 cong-diff conga-refl not-col-distincts)

ultimately show ?thesis
using SumA-def by blast

qed
moreover have A B C0 CongA K L M
proof −

have A ′ B ′ C ′ G H I SumA A B C0
proof −

have A B C1 C1 B C0 SumA A B C0
using ‹B C1 TS C C0 › ‹B C1 OS C A› l9-8-2 ts--suma-1 by blast

moreover have A B C1 CongA A ′ B ′ C ′

by (simp add: P6 ‹A ′ B ′ C ′ CongA A B C1 › conga-sym)
moreover have C1 B C0 CongA G H I
proof −

have SAMS C B C1 C1 B C0
by (metis P7 ‹B C1 TS C C0 › bet--sams ts-distincts)

moreover have SAMS C B C1 G H I
proof −

have D E F CongA C B C1
using P6A not-conga-sym by blast

moreover have G H I CongA G H I
using ‹¬ Col G H I › conga-refl not-col-distincts by fastforce

moreover have SAMS D E F G H I
by (simp add: assms(2 ))

ultimately show ?thesis
using conga2-sams--sams by blast

qed
moreover have C B C1 C1 B C0 SumA C B C0

by (simp add: ‹B C1 TS C C0 › ts--suma-1 )
moreover have C B C1 G H I SumA C B C0
proof −

have D E F G H I SumA D ′ E ′ F ′

by (simp add: assms(4 ))
moreover have D E F CongA C B C1

using P6A not-conga-sym by blast
moreover have G H I CongA G H I

using ‹¬ Col G H I › conga-refl not-col-distincts by fastforce
moreover have D ′ E ′ F ′ CongA C B C0 using P7 assms(4 )

by (metis P6A Tarski-neutral-dimensionless.suma-distincts Tarski-neutral-dimensionless-axioms
‹Bet D ′ E ′ F ′› cong-diff conga-diff1 conga-line)

ultimately show ?thesis
using conga3-suma--suma by blast

qed
ultimately show ?thesis

using sams2-suma2--conga456 by auto
qed
moreover have A B C0 CongA A B C0

by (metis P7 T1 cong-diff conga-refl not-col-distincts)
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ultimately show ?thesis
using conga3-suma--suma by blast

qed
thus ?thesis

using assms(5 ) suma2--conga by auto
qed
moreover have A B C CongA A B C
proof −

have A 6= B ∧ B 6= C
using T1 col-trivial-1 col-trivial-2 by auto

thus ?thesis
using conga-refl by auto

qed
moreover have C B C0 CongA D ′ E ′ F ′

proof −
have C 6= B

using T1 col-trivial-2 by blast
moreover have B 6= C0

using ‹B C1 TS C C0 › ts-distincts by blast
moreover have D ′ 6= E ′

using assms(4 ) suma-distincts by blast
moreover have E ′ 6= F ′

using assms(4 ) suma-distincts by auto
ultimately show ?thesis

by (simp add: P7 ‹Bet D ′ E ′ F ′› conga-line)
qed
ultimately show ?thesis

using conga3-suma--suma by blast
qed

next
assume ¬ Bet D ′ E ′ F ′

then have E ′ Out D ′ F ′

by (simp add: ‹Col D ′ E ′ F ′› l6-4-2 )
have D E F LeA D ′ E ′ F ′

using sams-suma--lea123789 assms(2 ) assms(4 ) by auto
then have E Out D F

using ‹E ′ Out D ′ F ′› out-lea--out by blast
then have False

using Col-cases ‹¬ Col D E F› out-col by blast
thus ?thesis by simp

qed
next

assume ¬ Col D ′ E ′ F ′

have SAMS C B C1 G H I
proof −

have D E F CongA C B C1
using P6A not-conga-sym by blast

moreover have G H I CongA G H I
using ‹¬ Col G H I › conga-refl not-col-distincts by fastforce

ultimately show ?thesis
using assms(2 ) conga2-sams--sams by blast

qed
then obtain J where P7 : C1 B J CongA G H I ∧ ¬ B C1 OS C J ∧ ¬ C B TS C1 J ∧ Coplanar C B C1 J

using SAMS-def by blast
have P7A: C1 B J CongA G H I

using P7 by simp
have P7B: ¬ B C1 OS C J

using P7 by simp
have P7C : ¬ C B TS C1 J

using P7 by simp
have P7D: Coplanar C B C1 J

using P7 by simp
obtain F1 where P8 : F E F1 CongA G H I ∧ ¬ E F OS D F1 ∧ ¬ D E TS F F1 ∧ Coplanar D E F F1

using SAMS-def assms(2 ) by auto
have P8A: F E F1 CongA G H I

using P8 by simp
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have P8B: ¬ E F OS D F1
using P8 by simp

have P8C : ¬ D E TS F F1
using P8 by simp

have P8D: Coplanar D E F F1
using P8 by simp

have C B J CongA D ′ E ′ F ′

proof −
have C B J CongA D E F1
proof −

have B C1 TS C J
proof −

have Coplanar B C1 C J
using P7D ncoplanar-perm-12 by blast

moreover have ¬ Col C B C1
using ‹B C1 OS C A› not-col-permutation-2 one-side-not-col123 by blast

moreover have ¬ Col J B C1
using P7 ‹¬ Col G H I › col-conga-col not-col-permutation-3 by blast

moreover have ¬ B C1 OS C J
by (simp add: P7B)

ultimately show ?thesis
by (simp add: cop-nos--ts)

qed
moreover have E F TS D F1
proof −

have Coplanar E F D F1
using P8D ncoplanar-perm-12 by blast

moreover have ¬ Col F1 E F
using P8 ‹¬ Col G H I › col-conga-col not-col-permutation-3 by blast

ultimately show ?thesis
using P8B ‹¬ Col D E F› cop-nos--ts by blast

qed
moreover have C B C1 CongA D E F

using P6A by blast
moreover have C1 B J CongA F E F1

using P8 by (meson P7A not-conga not-conga-sym)
ultimately show ?thesis

using l11-22a by blast
qed
moreover have D E F1 CongA D ′ E ′ F ′

proof −
have D E F G H I SumA D E F1

using P8A P8B P8D SumA-def ‹¬ Col D E F› conga-distinct conga-refl not-col-distincts by auto
moreover have D E F G H I SumA D ′ E ′ F ′

by (simp add: assms(4 ))
ultimately show ?thesis

using suma2--conga by auto
qed
ultimately show ?thesis

using conga-trans by blast
qed
have ¬ Col C B C1

using ‹B C1 OS C A› col123--nos col-permutation-1 by blast
show ?thesis
proof −

have A B C C B J SumA A B J
proof −

have B C TS J A
proof −

have B C TS C1 A using cop-nos--ts
using P6B P6D T1 ‹¬ Col C B C1 › l9-2 ncoplanar-perm-12 not-col-permutation-3 by blast

moreover have B C OS C1 J
proof −

have ¬ Col C1 C B
using Col-perm ‹¬ Col C B C1 › by blast

moreover have ¬ Col J C B
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using ‹C B J CongA D ′ E ′ F ′› ‹¬ Col D ′ E ′ F ′› col-conga-col col-permutation-1 by blast
ultimately show ?thesis

using P7C P7D cop-nos--ts invert-one-side by blast
qed
ultimately show ?thesis

using l9-8-2 by blast
qed
thus ?thesis

by (simp add: l9-2 ts--suma-1 )
qed
moreover have A B C CongA A B C

using T1 conga-refl not-col-distincts by fastforce
moreover have A B J CongA K L M
proof −

have A ′ B ′ C ′ G H I SumA A B J
proof −

have A B C1 C1 B J SumA A B J
proof −

have B C1 TS A J
proof −

have B C1 TS C J
proof −

have Coplanar B C1 C J
using P7D ncoplanar-perm-12 by blast

moreover have ¬ Col J B C1
using P7 ‹¬ Col G H I › col-conga-col not-col-permutation-3 by blast

ultimately show ?thesis
by (simp add: ‹¬ Col C B C1 › P7B cop-nos--ts)

qed
moreover have B C1 OS C A

by (simp add: ‹B C1 OS C A›)
ultimately show ?thesis

using l9-8-2 by blast
qed
thus ?thesis

by (simp add: ts--suma-1 )
qed
moreover have A B C1 CongA A ′ B ′ C ′

using ‹A ′ B ′ C ′ CongA A B C1 › not-conga-sym by blast
moreover have C1 B J CongA G H I

by (simp add: P7A)
moreover have A B J CongA A B J

using ‹A B C C B J SumA A B J › suma2--conga by auto
ultimately show ?thesis

using conga3-suma--suma by blast
qed
moreover have A ′ B ′ C ′ G H I SumA K L M

using assms(5 ) by simp
ultimately show ?thesis

using suma2--conga by auto
qed
ultimately show ?thesis

using ‹C B J CongA D ′ E ′ F ′› conga3-suma--suma by blast
qed

qed
qed

qed
qed

qed
qed

lemma suma-assoc-2 :
assumes SAMS A B C D E F and

SAMS D E F G H I and
A B C D E F SumA A ′ B ′ C ′ and
D E F G H I SumA D ′ E ′ F ′ and
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A B C D ′ E ′ F ′ SumA K L M
shows A ′ B ′ C ′ G H I SumA K L M
by (meson assms(1 ) assms(2 ) assms(3 ) assms(4 ) assms(5 ) sams-sym suma-assoc-1 suma-sym)

lemma suma-assoc:
assumes SAMS A B C D E F and

SAMS D E F G H I and
A B C D E F SumA A ′ B ′ C ′ and
D E F G H I SumA D ′ E ′ F ′

shows
A ′ B ′ C ′ G H I SumA K L M ←→ A B C D ′ E ′ F ′ SumA K L M

by (meson assms(1 ) assms(2 ) assms(3 ) assms(4 ) suma-assoc-1 suma-assoc-2 )

lemma sams-assoc-1 :
assumes SAMS A B C D E F and

SAMS D E F G H I and
A B C D E F SumA A ′ B ′ C ′ and
D E F G H I SumA D ′ E ′ F ′ and
SAMS A ′ B ′ C ′ G H I

shows SAMS A B C D ′ E ′ F ′

proof cases
assume Col A B C
{

assume E Out D F
have SAMS A B C D ′ E ′ F ′

proof −
have A ′ B ′ C ′ CongA A B C

using assms(3 ) ‹E Out D F› conga-sym out546-suma--conga by blast
moreover have G H I CongA D ′ E ′ F ′

using ‹E Out D F› assms(4 ) out213-suma--conga by blast
ultimately show ?thesis

using assms(5 ) conga2-sams--sams by blast
qed

}
{

assume ¬ Bet A B C
then have P1 : B Out A C

using ‹Col A B C › or-bet-out by blast
have SAMS D ′ E ′ F ′ A B C
proof −

have D ′ 6= E ′

using assms(4 ) suma-distincts by auto
moreover have F ′ E ′ F ′ CongA A B C
proof −

have E ′ 6= F ′

using assms(4 ) suma-distincts by blast
then have E ′ Out F ′ F ′

using out-trivial by auto
thus ?thesis

using P1 l11-21-b by blast
qed
moreover have ¬ E ′ F ′ OS D ′ F ′

using os-distincts by blast
moreover have ¬ D ′ E ′ TS F ′ F ′

by (simp add: not-two-sides-id)
moreover have Coplanar D ′ E ′ F ′ F ′

using ncop-distincts by blast
ultimately show ?thesis using SAMS-def P1 by blast

qed
then have SAMS A B C D ′ E ′ F ′

using sams-sym by blast
}
thus ?thesis

using SAMS-def assms(1 ) ‹E Out D F =⇒ SAMS A B C D ′ E ′ F ′› by blast
next

assume ¬ Col A B C
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show ?thesis
proof cases

assume Col D E F
have H Out G I ∨ ¬ Bet D E F

using SAMS-def assms(2 ) by blast
{

assume H Out G I
have SAMS A B C D ′ E ′ F ′

proof −
have A B C CongA A B C

using ‹¬ Col A B C › conga-refl not-col-distincts by fastforce
moreover have D E F CongA D ′ E ′ F ′

using ‹H Out G I › assms(4 ) out546-suma--conga by blast
ultimately show ?thesis

using assms(1 ) conga2-sams--sams by blast
qed

}
{

assume ¬ Bet D E F
then have E Out D F

using ‹Col D E F› l6-4-2 by blast
have SAMS A B C D ′ E ′ F ′

proof −
have A ′ B ′ C ′ CongA A B C

using out546-suma--conga ‹E Out D F› assms(3 ) not-conga-sym by blast
moreover have G H I CongA D ′ E ′ F ′

using out213-suma--conga ‹E Out D F› assms(4 ) by auto
ultimately show ?thesis

using assms(5 ) conga2-sams--sams by auto
qed

}
thus ?thesis

using ‹H Out G I =⇒ SAMS A B C D ′ E ′ F ′› ‹H Out G I ∨ ¬ Bet D E F› by blast
next

assume ¬ Col D E F
show ?thesis
proof cases

assume Col G H I
have SAMS G H I D E F

by (simp add: assms(2 ) sams-sym)
then have E Out D F ∨ ¬ Bet G H I

using SAMS-def by blast
{

assume E Out D F
then have False

using Col-cases ‹¬ Col D E F› out-col by blast
then have SAMS A B C D ′ E ′ F ′

by simp
}
{

assume ¬ Bet G H I
then have H Out G I

by (simp add: ‹Col G H I › l6-4-2 )
have SAMS A B C D ′ E ′ F ′

proof −
have A B C CongA A B C

by (metis ‹¬ Col A B C › col-trivial-1 col-trivial-2 conga-refl)
moreover have D E F CongA D ′ E ′ F ′

using out546-suma--conga ‹H Out G I › assms(4 ) by blast
moreover have SAMS A B C D E F

using assms(1 ) by auto
ultimately show ?thesis

using conga2-sams--sams by auto
qed

}
thus ?thesis
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using ‹E Out D F ∨ ¬ Bet G H I › ‹E Out D F =⇒ SAMS A B C D ′ E ′ F ′› by blast
next

assume ¬ Col G H I
show ?thesis
proof −

have ¬ Bet A B C
using Col-def ‹¬ Col A B C › by auto

moreover have ∃ J . (C B J CongA D ′ E ′ F ′ ∧ ¬ B C OS A J ∧ ¬ A B TS C J ∧ Coplanar A B C J )
proof −

have ¬ Col A ′ B ′ C ′

proof −
{

assume Col A ′ B ′ C ′

have H Out G I ∨ ¬ Bet A ′ B ′ C ′

using SAMS-def assms(5 ) by blast
{

assume H Out G I
then have False

using Col-cases ‹¬ Col G H I › out-col by blast
}
{

assume ¬ Bet A ′ B ′ C ′

then have B ′ Out A ′ C ′

using not-bet-out ‹Col A ′ B ′ C ′› by blast
have A B C LeA A ′ B ′ C ′

using assms(1 ) assms(3 ) sams-suma--lea123789 by auto
then have B Out A C

using ‹B ′ Out A ′ C ′› out-lea--out by blast
then have Col A B C

using Col-perm out-col by blast
then have False

using ‹¬ Col A B C › by auto
}
then have False

using ‹H Out G I =⇒ False› ‹H Out G I ∨ ¬ Bet A ′ B ′ C ′› by blast
}
thus ?thesis by blast

qed
obtain C1 where P1 : C B C1 CongA D E F ∧ ¬ B C OS A C1 ∧ ¬ A B TS C C1 ∧ Coplanar A B C C1

using SAMS-def assms(1 ) by auto
have P1A: C B C1 CongA D E F

using P1 by simp
have P1B: ¬ B C OS A C1

using P1 by simp
have P1C : ¬ A B TS C C1

using P1 by simp
have P1D: Coplanar A B C C1

using P1 by simp
have A B C1 CongA A ′ B ′ C ′

proof −
have A B C D E F SumA A B C1

using P1A P1B P1D SumA-def ‹¬ Col A B C › conga-distinct conga-refl not-col-distincts by auto
thus ?thesis

using assms(3 ) suma2--conga by auto
qed
have SAMS C B C1 G H I
proof −

have D E F CongA C B C1
using P1A not-conga-sym by blast

moreover have G H I CongA G H I
using ‹¬ Col G H I › conga-refl not-col-distincts by fastforce

ultimately show ?thesis using conga2-sams--sams
using assms(2 ) by blast

qed
then obtain J where T1 : C1 B J CongA G H I ∧ ¬ B C1 OS C J ∧ ¬ C B TS C1 J ∧ Coplanar C B C1 J

using SAMS-def by auto
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have T1A: C1 B J CongA G H I
using T1 by simp

have T1B: ¬ B C1 OS C J
using T1 by simp

have T1C : ¬ C B TS C1 J
using T1 by simp

have T1D: Coplanar C B C1 J
using T1 by simp

have SAMS A B C1 C1 B J
proof −

have A ′ B ′ C ′ CongA A B C1
using ‹A B C1 CongA A ′ B ′ C ′› not-conga-sym by blast

moreover have G H I CongA C1 B J
using T1A not-conga-sym by blast

ultimately show ?thesis
using assms(5 ) conga2-sams--sams by auto

qed
then obtain J ′ where T2 : C1 B J ′ CongA C1 B J ∧ ¬ B C1 OS A J ′ ∧ ¬ A B TS C1 J ′ ∧ Coplanar A B

C1 J ′

using SAMS-def by auto
have T2A: C1 B J ′ CongA C1 B J

using T2 by simp
have T2B: ¬ B C1 OS A J ′

using T2 by simp
have T2C : ¬ A B TS C1 J ′

using T2 by simp
have T2D: Coplanar A B C1 J ′

using T2 by simp
have A ′ B ′ C ′ CongA A B C1

using ‹A B C1 CongA A ′ B ′ C ′› not-conga-sym by blast
then have ¬ Col A B C1

using ncol-conga-ncol ‹¬ Col A ′ B ′ C ′› by blast
have D E F CongA C B C1

using P1A not-conga-sym by blast
then have ¬ Col C B C1

using ncol-conga-ncol ‹¬ Col D E F› by blast
then have Coplanar C1 B A J

using coplanar-trans-1 P1D T1D coplanar-perm-15 coplanar-perm-6 by blast
have Coplanar C1 B J ′ J

using T2D ‹Coplanar C1 B A J › ‹¬ Col A B C1 › coplanar-perm-14 coplanar-perm-6 coplanar-trans-1 by
blast

have B Out J ′ J ∨ C1 B TS J ′ J
by (meson T2 ‹Coplanar C1 B A J › ‹¬ Col A B C1 › conga-cop--or-out-ts coplanar-trans-1 ncoplanar-perm-14

ncoplanar-perm-6 )
{

assume B Out J ′ J
have ∃ J . (C B J CongA D ′ E ′ F ′ ∧ ¬ B C OS A J ∧ ¬ A B TS C J ∧ Coplanar A B C J )
proof −

have C B C1 C1 B J SumA C B J
proof −

have C1 B J CongA C1 B J
using CongA-def T2A conga-refl by auto

moreover have C B J CongA C B J
using ‹¬ Col C B C1 › calculation conga-diff56 conga-pseudo-refl conga-right-comm not-col-distincts by

blast
ultimately show ?thesis

using T1D T1B SumA-def by blast
qed
then have D E F G H I SumA C B J

using conga3-suma--suma by (meson P1A T1A suma2--conga)
then have C B J CongA D ′ E ′ F ′

using assms(4 ) suma2--conga by auto
moreover have ¬ B C OS A J

by (metis (no-types, lifting) Col-perm P1B P1D T1C ‹¬ Col A B C › ‹¬ Col C B C1 › cop-nos--ts
coplanar-perm-8 invert-two-sides l9-2 l9-8-2 )

moreover have ¬ A B TS C J
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proof cases
assume Col A B J
thus ?thesis

using TS-def invert-two-sides not-col-permutation-3 by blast
next

assume ¬ Col A B J
have A B OS C J
proof −

have A B OS C C1
by (simp add: P1C P1D ‹¬ Col A B C1 › ‹¬ Col A B C › cop-nts--os not-col-permutation-2 )

moreover have A B OS C1 J
proof −

have A B OS C1 J ′

by (metis T2C T2D ‹B Out J ′ J › ‹¬ Col A B C1 › ‹¬ Col A B J › col-trivial-2 colx cop-nts--os
not-col-permutation-2 out-col out-distinct)

thus ?thesis
using ‹B Out J ′ J› invert-one-side out-out-one-side by blast

qed
ultimately show ?thesis

using one-side-transitivity by blast
qed
thus ?thesis

using l9-9 by blast
qed
moreover have Coplanar A B C J
by (meson P1D ‹Coplanar C1 B A J › ‹¬ Col A B C1 › coplanar-perm-18 coplanar-perm-2 coplanar-trans-1

not-col-permutation-2 )
ultimately show ?thesis

by blast
qed

}
{

assume C1 B TS J ′ J
have B C1 OS C J
proof −

have B C1 TS C J ′

proof −
have B C1 TS A J ′

by (meson T2B T2D TS-def ‹C1 B TS J ′ J› ‹¬ Col A B C1 › cop-nts--os invert-two-sides ncoplanar-perm-12 )
moreover have B C1 OS A C

by (meson P1B P1C P1D ‹¬ Col A B C1 › ‹¬ Col A B C › ‹¬ Col C B C1 › cop-nts--os invert-one-side
ncoplanar-perm-12 not-col-permutation-2 not-col-permutation-3 os-ts1324--os)

ultimately show ?thesis
using l9-8-2 by blast

qed
moreover have B C1 TS J J ′

using ‹C1 B TS J ′ J› invert-two-sides l9-2 by blast
ultimately show ?thesis

using OS-def by blast
qed
then have False

by (simp add: T1B)
then have ∃ J . (C B J CongA D ′ E ′ F ′ ∧ ¬ B C OS A J ∧ ¬ A B TS C J ∧ Coplanar A B C J )

by auto
}
thus ?thesis

using ‹B Out J ′ J =⇒ ∃ J . C B J CongA D ′ E ′ F ′ ∧ ¬ B C OS A J ∧ ¬ A B TS C J ∧ Coplanar A B C
J› ‹B Out J ′ J ∨ C1 B TS J ′ J› by blast

qed
ultimately show ?thesis

using SAMS-def not-bet-distincts by auto
qed

qed
qed

qed
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lemma sams-assoc-2 :
assumes SAMS A B C D E F and

SAMS D E F G H I and
A B C D E F SumA A ′ B ′ C ′ and
D E F G H I SumA D ′ E ′ F ′ and
SAMS A B C D ′ E ′ F ′

shows SAMS A ′ B ′ C ′ G H I
proof −

have SAMS G H I A ′ B ′ C ′

proof −
have SAMS G H I D E F

by (simp add: assms(2 ) sams-sym)
moreover have SAMS D E F A B C

by (simp add: assms(1 ) sams-sym)
moreover have G H I D E F SumA D ′ E ′ F ′

by (simp add: assms(4 ) suma-sym)
moreover have D E F A B C SumA A ′ B ′ C ′

by (simp add: assms(3 ) suma-sym)
moreover have SAMS D ′ E ′ F ′ A B C

by (simp add: assms(5 ) sams-sym)
ultimately show ?thesis

using sams-assoc-1 by blast
qed
thus ?thesis

using sams-sym by blast
qed

lemma sams-assoc:
assumes SAMS A B C D E F and

SAMS D E F G H I and
A B C D E F SumA A ′ B ′ C ′ and
D E F G H I SumA D ′ E ′ F ′

shows (SAMS A ′ B ′ C ′ G H I ) ←→ (SAMS A B C D ′ E ′ F ′)
using sams-assoc-1 sams-assoc-2
by (meson assms(1 ) assms(2 ) assms(3 ) assms(4 ))

lemma sams-nos--nts:
assumes SAMS A B C C B J and
¬ B C OS A J

shows ¬ A B TS C J
proof −

obtain J ′ where P1 : C B J ′ CongA C B J ∧ ¬ B C OS A J ′ ∧ ¬ A B TS C J ′ ∧ Coplanar A B C J ′

using SAMS-def assms(1 ) by blast
have P1A: C B J ′ CongA C B J

using P1 by simp
have P1B: ¬ B C OS A J ′

using P1 by simp
have P1C : ¬ A B TS C J ′

using P1 by simp
have P1D: Coplanar A B C J ′

using P1 by simp
have P2 : B Out C J ∨ ¬ Bet A B C

using SAMS-def assms(1 ) by blast
{

assume A B TS C J
have Coplanar C B J J ′

proof −
have ¬ Col A C B

using TS-def ‹A B TS C J› not-col-permutation-4 by blast
moreover have Coplanar A C B J

using ‹A B TS C J› ncoplanar-perm-2 ts--coplanar by blast
moreover have Coplanar A C B J ′

using P1D ncoplanar-perm-2 by blast
ultimately show ?thesis

using coplanar-trans-1 by blast
qed
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have B Out J J ′ ∨ C B TS J J ′

by (metis P1 ‹A B TS C J › ‹Coplanar C B J J ′› bet-conga--bet bet-out col-conga-col col-two-sides-bet conga-distinct
conga-os--out conga-sym cop-nts--os invert-two-sides l5-2 l6-6 not-col-permutation-3 not-col-permutation-4 )

{
assume B Out J J ′

have ¬ Col B A J ∨ ¬ Col B A J ′

using TS-def ‹A B TS C J› not-col-permutation-3 by blast
then have A B OS C J ′

by (metis (full-types) ‹B Out J J ′› Col-cases P1C P1D TS-def ‹A B TS C J › col2--eq cop-nts--os l6-3-1 out-col)
then have A B TS C J ′

by (meson ‹A B TS C J› ‹B Out J J ′› l6-6 l9-2 not-col-distincts out-two-sides-two-sides)
then have False

by (simp add: P1C )
}
{

assume C B TS J J ′

then have ¬ Col C A B ∧ ¬ Col J A B
using TS-def ‹A B TS C J› by blast

then have False
by (metis P1B P1D TS-def ‹C B TS J J ′› assms(2 ) cop-nts--os invert-two-sides l9-8-1 ncoplanar-perm-12

not-col-permutation-1 )
}
then have False

using ‹B Out J J ′ =⇒ False› ‹B Out J J ′ ∨ C B TS J J ′› by blast
}
thus ?thesis by auto

qed

lemma conga-sams-nos--nts:
assumes SAMS A B C D E F and

C B J CongA D E F and
¬ B C OS A J

shows ¬ A B TS C J
proof −

have SAMS A B C C B J
proof −

have A B C CongA A B C
using assms(1 ) conga-refl sams-distincts by fastforce

moreover have D E F CongA C B J
using assms(2 ) not-conga-sym by blast

ultimately show ?thesis
using assms(1 ) conga2-sams--sams by auto

qed
thus ?thesis

by (simp add: assms(3 ) sams-nos--nts)
qed

lemma sams-lea2-suma2--conga123 :
assumes A B C LeA A ′ B ′ C ′ and

D E F LeA D ′ E ′ F ′ and
SAMS A ′ B ′ C ′ D ′ E ′ F ′ and
A B C D E F SumA G H I and
A ′ B ′ C ′ D ′ E ′ F ′ SumA G H I

shows A B C CongA A ′ B ′ C ′

proof −
have SAMS A B C D E F

using assms(1 ) assms(2 ) assms(3 ) sams-lea2--sams by blast
moreover have SAMS A ′ B ′ C ′ D E F

by (metis assms(2 ) assms(3 ) lea-refl sams-distincts sams-lea2--sams)
moreover have A ′ B ′ C ′ D E F SumA G H I
proof −

obtain G ′ H ′ I ′ where P1 : A ′ B ′ C ′ D E F SumA G ′ H ′ I ′

using calculation(2 ) ex-suma sams-distincts by blast
show ?thesis
proof −

have A ′ 6= B ′ ∧ B ′ 6= C ′
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using assms(1 ) lea-distincts by blast
then have A ′ B ′ C ′ CongA A ′ B ′ C ′

using conga-refl by auto
moreover
have D 6= E ∧ E 6= F

using ‹SAMS A B C D E F› sams-distincts by blast
then have D E F CongA D E F

using conga-refl by auto
moreover have G ′ H ′ I ′ CongA G H I
proof −

have G ′ H ′ I ′ LeA G H I
using P1 assms(2 ) assms(3 ) assms(5 ) sams-lea456-suma2--lea by blast

moreover have G H I LeA G ′ H ′ I ′

proof −
have SAMS A ′ B ′ C ′ D E F

using ‹SAMS A ′ B ′ C ′ D E F› by auto
thus ?thesis

using P1 assms(1 ) assms(4 ) sams-lea123-suma2--lea by blast
qed
ultimately show ?thesis

by (simp add: lea-asym)
qed
ultimately show ?thesis

using P1 conga3-suma--suma by blast
qed

qed
ultimately show ?thesis

using assms(4 ) sams2-suma2--conga123 by blast
qed

lemma sams-lea2-suma2--conga456 :
assumes A B C LeA A ′ B ′ C ′ and

D E F LeA D ′ E ′ F ′ and
SAMS A ′ B ′ C ′ D ′ E ′ F ′ and
A B C D E F SumA G H I and
A ′ B ′ C ′ D ′ E ′ F ′ SumA G H I

shows D E F CongA D ′ E ′ F ′

proof −
have SAMS D ′ E ′ F ′ A ′ B ′ C ′

by (simp add: assms(3 ) sams-sym)
moreover have D E F A B C SumA G H I

by (simp add: assms(4 ) suma-sym)
moreover have D ′ E ′ F ′ A ′ B ′ C ′ SumA G H I

by (simp add: assms(5 ) suma-sym)
ultimately show ?thesis

using assms(1 ) assms(2 ) sams-lea2-suma2--conga123 by auto
qed

lemma sams-suma--out213 :
assumes A B C D E F SumA D E F and

SAMS A B C D E F
shows B Out A C

proof −
have E 6= D

using assms(2 ) sams-distincts by blast
then have E Out D D

using out-trivial by auto
moreover have D E D CongA A B C
proof −

have D E D LeA A B C
using assms(1 ) lea121345 suma-distincts by auto

moreover
have E 6= D ∧ E 6= F

using assms(2 ) sams-distincts by blast
then have D E F LeA D E F

using lea-refl by auto
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moreover have D E D D E F SumA D E F
proof −

have ¬ E D OS D F
using os-distincts by auto

moreover have Coplanar D E D F
using ncop-distincts by auto

ultimately show ?thesis
using SumA-def ‹D E F LeA D E F› lea-asym by blast

qed
ultimately show ?thesis

using assms(1 ) assms(2 ) sams-lea2-suma2--conga123 by auto
qed
ultimately show ?thesis

using eq-conga-out by blast
qed

lemma sams-suma--out546 :
assumes A B C D E F SumA A B C and

SAMS A B C D E F
shows E Out D F

proof −
have D E F A B C SumA A B C

using assms(1 ) suma-sym by blast
moreover have SAMS D E F A B C

using assms(2 ) sams-sym by blast
ultimately show ?thesis

using sams-suma--out213 by blast
qed

lemma sams-lea-lta123-suma2--lta:
assumes A B C LtA A ′ B ′ C ′ and

D E F LeA D ′ E ′ F ′ and
SAMS A ′ B ′ C ′ D ′ E ′ F ′ and
A B C D E F SumA G H I and
A ′ B ′ C ′ D ′ E ′ F ′ SumA G ′ H ′ I ′

shows G H I LtA G ′ H ′ I ′

proof −
have G H I LeA G ′ H ′ I ′

proof −
have A B C LeA A ′ B ′ C ′

by (simp add: assms(1 ) lta--lea)
thus ?thesis

using assms(2 ) assms(3 ) assms(4 ) assms(5 ) sams-lea2-suma2--lea by blast
qed
moreover have ¬ G H I CongA G ′ H ′ I ′

proof −
{

assume G H I CongA G ′ H ′ I ′

have A B C CongA A ′ B ′ C ′

proof −
have A B C LeA A ′ B ′ C ′

by (simp add: assms(1 ) lta--lea)
moreover have A ′ B ′ C ′ D ′ E ′ F ′ SumA G H I
by (meson ‹G H I CongA G ′ H ′ I ′› assms(3 ) assms(5 ) conga3-suma--suma conga-sym sams2-suma2--conga123

sams2-suma2--conga456 )
ultimately show ?thesis

using assms(2 ) assms(3 ) assms(4 ) sams-lea2-suma2--conga123 by blast
qed
then have False

using assms(1 ) lta-not-conga by auto
}
thus ?thesis

by auto
qed
ultimately show ?thesis

using LtA-def by blast

318



qed

lemma sams-lea-lta456-suma2--lta:
assumes A B C LeA A ′ B ′ C ′ and

D E F LtA D ′ E ′ F ′ and
SAMS A ′ B ′ C ′ D ′ E ′ F ′ and
A B C D E F SumA G H I and
A ′ B ′ C ′ D ′ E ′ F ′ SumA G ′ H ′ I ′

shows G H I LtA G ′ H ′ I ′

using sams-lea-lta123-suma2--lta
by (meson assms(1 ) assms(2 ) assms(3 ) assms(4 ) assms(5 ) sams-sym suma-sym)

lemma sams-lta2-suma2--lta:
assumes A B C LtA A ′ B ′ C ′ and

D E F LtA D ′ E ′ F ′ and
SAMS A ′ B ′ C ′ D ′ E ′ F ′ and
A B C D E F SumA G H I and
A ′ B ′ C ′ D ′ E ′ F ′ SumA G ′ H ′ I ′

shows G H I LtA G ′ H ′ I ′

using sams-lea-lta123-suma2--lta
by (meson LtA-def assms(1 ) assms(2 ) assms(3 ) assms(4 ) assms(5 ))

lemma sams-lea2-suma2--lea123 :
assumes D ′ E ′ F ′ LeA D E F and

G H I LeA G ′ H ′ I ′ and
SAMS A B C D E F and
A B C D E F SumA G H I and
A ′ B ′ C ′ D ′ E ′ F ′ SumA G ′ H ′ I ′

shows A B C LeA A ′ B ′ C ′

proof cases
assume A ′ B ′ C ′ LtA A B C
then have G ′ H ′ I ′ LtA G H I using sams-lea-lta123-suma2--lta

using assms(1 ) assms(3 ) assms(4 ) assms(5 ) by blast
then have ¬ G H I LeA G ′ H ′ I ′

using lea--nlta by blast
then have False

using assms(2 ) by auto
thus ?thesis by auto

next
assume ¬ A ′ B ′ C ′ LtA A B C
have A ′ 6= B ′ ∧ B ′ 6= C ′ ∧ A 6= B ∧ B 6= C

using assms(4 ) assms(5 ) suma-distincts by auto
thus ?thesis

by (simp add: ‹¬ A ′ B ′ C ′ LtA A B C › nlta--lea)
qed

lemma sams-lea2-suma2--lea456 :
assumes A ′ B ′ C ′ LeA A B C and

G H I LeA G ′ H ′ I ′ and
SAMS A B C D E F and
A B C D E F SumA G H I and
A ′ B ′ C ′ D ′ E ′ F ′ SumA G ′ H ′ I ′

shows D E F LeA D ′ E ′ F ′

proof −
have SAMS D E F A B C

by (simp add: assms(3 ) sams-sym)
moreover have D E F A B C SumA G H I

by (simp add: assms(4 ) suma-sym)
moreover have D ′ E ′ F ′ A ′ B ′ C ′ SumA G ′ H ′ I ′

by (simp add: assms(5 ) suma-sym)
ultimately show ?thesis

using assms(1 ) assms(2 ) sams-lea2-suma2--lea123 by blast
qed

lemma sams-lea-lta456-suma2--lta123 :
assumes D ′ E ′ F ′ LtA D E F and
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G H I LeA G ′ H ′ I ′ and
SAMS A B C D E F and
A B C D E F SumA G H I and
A ′ B ′ C ′ D ′ E ′ F ′ SumA G ′ H ′ I ′

shows A B C LtA A ′ B ′ C ′

proof cases
assume A ′ B ′ C ′ LeA A B C
then have G ′ H ′ I ′ LtA G H I

using sams-lea-lta456-suma2--lta assms(1 ) assms(3 ) assms(4 ) assms(5 ) by blast
then have ¬ G H I LeA G ′ H ′ I ′

using lea--nlta by blast
then have False

using assms(2 ) by blast
thus ?thesis by blast

next
assume ¬ A ′ B ′ C ′ LeA A B C
have A ′ 6= B ′ ∧ B ′ 6= C ′ ∧ A 6= B ∧ B 6= C

using assms(4 ) assms(5 ) suma-distincts by auto
thus ?thesis using nlea--lta

by (simp add: ‹¬ A ′ B ′ C ′ LeA A B C ›)
qed

lemma sams-lea-lta123-suma2--lta456 :
assumes A ′ B ′ C ′ LtA A B C and

G H I LeA G ′ H ′ I ′ and
SAMS A B C D E F and
A B C D E F SumA G H I and
A ′ B ′ C ′ D ′ E ′ F ′ SumA G ′ H ′ I ′

shows D E F LtA D ′ E ′ F ′

proof −
have SAMS D E F A B C

by (simp add: assms(3 ) sams-sym)
moreover have D E F A B C SumA G H I

by (simp add: assms(4 ) suma-sym)
moreover have D ′ E ′ F ′ A ′ B ′ C ′ SumA G ′ H ′ I ′

by (simp add: assms(5 ) suma-sym)
ultimately show ?thesis

using assms(1 ) assms(2 ) sams-lea-lta456-suma2--lta123 by blast
qed

lemma sams-lea-lta789-suma2--lta123 :
assumes D ′ E ′ F ′ LeA D E F and

G H I LtA G ′ H ′ I ′ and
SAMS A B C D E F and
A B C D E F SumA G H I and
A ′ B ′ C ′ D ′ E ′ F ′ SumA G ′ H ′ I ′

shows A B C LtA A ′ B ′ C ′

proof cases
assume A ′ B ′ C ′ LeA A B C
then have G ′ H ′ I ′ LeA G H I

using assms(1 ) assms(3 ) assms(4 ) assms(5 ) sams-lea2-suma2--lea by blast
then have ¬ G H I LtA G ′ H ′ I ′

by (simp add: lea--nlta)
then have False

using assms(2 ) by blast
thus ?thesis by auto

next
assume ¬ A ′ B ′ C ′ LeA A B C
have A ′ 6= B ′ ∧ B ′ 6= C ′ ∧ A 6= B ∧ B 6= C

using assms(4 ) assms(5 ) suma-distincts by auto
thus ?thesis

using nlea--lta by (simp add: ‹¬ A ′ B ′ C ′ LeA A B C ›)
qed

lemma sams-lea-lta789-suma2--lta456 :
assumes A ′ B ′ C ′ LeA A B C and
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G H I LtA G ′ H ′ I ′ and
SAMS A B C D E F and
A B C D E F SumA G H I and
A ′ B ′ C ′ D ′ E ′ F ′ SumA G ′ H ′ I ′

shows D E F LtA D ′ E ′ F ′

proof −
have SAMS D E F A B C

by (simp add: assms(3 ) sams-sym)
moreover have D E F A B C SumA G H I

by (simp add: assms(4 ) suma-sym)
moreover have D ′ E ′ F ′ A ′ B ′ C ′ SumA G ′ H ′ I ′

using assms(5 ) suma-sym by blast
ultimately show ?thesis

using assms(1 ) assms(2 ) sams-lea-lta789-suma2--lta123 by blast
qed

lemma sams-lta2-suma2--lta123 :
assumes D ′ E ′ F ′ LtA D E F and

G H I LtA G ′ H ′ I ′ and
SAMS A B C D E F and
A B C D E F SumA G H I and
A ′ B ′ C ′ D ′ E ′ F ′ SumA G ′ H ′ I ′

shows A B C LtA A ′ B ′ C ′

proof −
have D ′ E ′ F ′ LeA D E F

by (simp add: assms(1 ) lta--lea)
thus ?thesis

using assms(2 ) assms(3 ) assms(4 ) assms(5 ) sams-lea-lta789-suma2--lta123 by blast
qed

lemma sams-lta2-suma2--lta456 :
assumes A ′ B ′ C ′ LtA A B C and

G H I LtA G ′ H ′ I ′ and
SAMS A B C D E F and
A B C D E F SumA G H I and
A ′ B ′ C ′ D ′ E ′ F ′ SumA G ′ H ′ I ′

shows D E F LtA D ′ E ′ F ′

proof −
have A ′ B ′ C ′ LeA A B C

by (simp add: assms(1 ) lta--lea)
thus ?thesis

using assms(2 ) assms(3 ) assms(4 ) assms(5 ) sams-lea-lta789-suma2--lta456 by blast
qed

lemma sams123231 :
assumes A 6= B and

A 6= C and
B 6= C

shows SAMS A B C B C A
proof −

obtain A ′ where B Midpoint A A ′

using symmetric-point-construction by auto
then have A ′ 6= B

using assms(1 ) midpoint-not-midpoint by blast
moreover have Bet A B A ′

by (simp add: ‹B Midpoint A A ′› midpoint-bet)
moreover have B C A LeA C B A ′

proof cases
assume Col A B C
show ?thesis
proof cases

assume Bet A C B
thus ?thesis

by (metis assms(2 ) assms(3 ) between-exchange3 calculation(1 ) calculation(2 ) l11-31-2 )
next

assume ¬ Bet A C B
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then have C Out B A
using Col-cases ‹Col A B C › l6-6 or-bet-out by blast

thus ?thesis
using assms(3 ) calculation(1 ) l11-31-1 by auto

qed
next

assume ¬ Col A B C
thus ?thesis

using l11-41-aux ‹B Midpoint A A ′› calculation(1 ) lta--lea midpoint-bet not-col-permutation-4 by blast
qed
ultimately show ?thesis

using assms(1 ) sams-chara by blast
qed

lemma col-suma--col:
assumes Col D E F and

A B C B C A SumA D E F
shows Col A B C

proof −
{

assume ¬ Col A B C
have False
proof cases

assume Bet D E F
obtain P where P1 : Bet A B P ∧ Cong A B B P

using Cong-perm segment-construction by blast
have D E F LtA A B P
proof −

have A B C LeA A B C
using ‹¬ Col A B C › lea-total not-col-distincts by blast

moreover
have B C TS A P
by (metis Cong-perm P1 ‹¬ Col A B C › bet--ts bet-col between-trivial2 cong-reverse-identity not-col-permutation-1 )
then have B C A LtA C B P

using Col-perm P1 ‹¬ Col A B C › calculation l11-41-aux ts-distincts by blast
moreover have A B C C B P SumA A B P

by (simp add: ‹B C TS A P› ts--suma-1 )
ultimately show ?thesis

by (meson P1 Tarski-neutral-dimensionless.sams-lea-lta456-suma2--lta Tarski-neutral-dimensionless-axioms
assms(2 ) bet-suma--sams)

qed
thus ?thesis

using P1 ‹Bet D E F› bet2-lta--lta lta-distincts by blast
next

assume ¬ Bet D E F
have C Out B A
proof −

have E Out D F
by (simp add: ‹¬ Bet D E F› assms(1 ) l6-4-2 )

moreover have B C A LeA D E F
using sams-suma--lea456789
by (metis assms(2 ) sams123231 suma-distincts)

ultimately show ?thesis
using out-lea--out by blast

qed
thus ?thesis

using Col-cases ‹¬ Col A B C › out-col by blast
qed

}
thus ?thesis by auto

qed

lemma ncol-suma--ncol:
assumes ¬ Col A B C and

A B C B C A SumA D E F
shows ¬ Col D E F
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using col-suma--col assms(1 ) assms(2 ) by blast

lemma per2-suma--bet:
assumes Per A B C and

Per D E F and
A B C D E F SumA G H I

shows Bet G H I
proof −

obtain A1 where P1 : C B A1 CongA D E F ∧ ¬ B C OS A A1 ∧ Coplanar A B C A1 ∧ A B A1 CongA G H I
using SumA-def assms(3 ) by blast

then have D E F CongA A1 B C
using conga-right-comm conga-sym by blast

then have Per A1 B C
using assms(2 ) l11-17 by blast

have Bet A B A1
proof −

have Col B A A1
proof −

have Coplanar C A A1 B
using P1 ncoplanar-perm-10 by blast

moreover have C 6= B
using ‹D E F CongA A1 B C › conga-distinct by auto

ultimately show ?thesis
using assms(1 ) ‹Per A1 B C › col-permutation-2 cop-per2--col by blast

qed
moreover have B C TS A A1
proof −

have Coplanar B C A A1
using calculation ncop--ncols by blast

moreover
have A 6= B ∧ B 6= C

using CongA-def P1 by blast
then have ¬ Col A B C

by (simp add: assms(1 ) per-not-col)
moreover
have A1 6= B ∧ B 6= C

using ‹D E F CongA A1 B C › conga-distinct by blast
then have ¬ Col A1 B C

using ‹Per A1 B C › by (simp add: per-not-col)
ultimately show ?thesis

by (simp add: P1 cop-nos--ts)
qed
ultimately show ?thesis

using col-two-sides-bet by blast
qed
thus ?thesis

using P1 bet-conga--bet by blast
qed

lemma bet-per2--suma:
assumes A 6= B and

B 6= C and
D 6= E and
E 6= F and
G 6= H and
H 6= I and
Per A B C and
Per D E F and
Bet G H I

shows A B C D E F SumA G H I
proof −

obtain G ′ H ′ I ′ where A B C D E F SumA G ′ H ′ I ′

using assms(1 ) assms(2 ) assms(3 ) assms(4 ) ex-suma by blast
moreover have A B C CongA A B C

using assms(1 ) assms(2 ) conga-refl by auto
moreover have D E F CongA D E F
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using assms(3 ) assms(4 ) conga-refl by auto
moreover have G ′ H ′ I ′ CongA G H I
proof −

have G ′ 6= H ′

using calculation(1 ) suma-distincts by auto
moreover have H ′ 6= I ′

using ‹A B C D E F SumA G ′ H ′ I ′› suma-distincts by blast
moreover have Bet G ′ H ′ I ′

using ‹A B C D E F SumA G ′ H ′ I ′› assms(7 ) assms(8 ) per2-suma--bet by auto
ultimately show ?thesis

using conga-line by (simp add: assms(5 ) assms(6 ) assms(9 ))
qed
ultimately show ?thesis

using conga3-suma--suma by blast
qed

lemma per2--sams:
assumes A 6= B and

B 6= C and
D 6= E and
E 6= F and
Per A B C and
Per D E F

shows SAMS A B C D E F
proof −

obtain G H I where A B C D E F SumA G H I
using assms(1 ) assms(2 ) assms(3 ) assms(4 ) ex-suma by blast

moreover then have Bet G H I
using assms(5 ) assms(6 ) per2-suma--bet by auto

ultimately show ?thesis
using bet-suma--sams by blast

qed

lemma bet-per-suma--per456 :
assumes Per A B C and

Bet G H I and
A B C D E F SumA G H I

shows Per D E F
proof −

obtain A1 where B Midpoint A A1
using symmetric-point-construction by auto

have ¬ Col A B C
using assms(1 ) assms(3 ) per-col-eq suma-distincts by blast

have A B C CongA D E F
proof −

have SAMS A B C A B C
using ‹¬ Col A B C › assms(1 ) not-col-distincts per2--sams by auto

moreover have SAMS A B C D E F
using assms(2 ) assms(3 ) bet-suma--sams by blast

moreover have A B C A B C SumA G H I
using assms(1 ) assms(2 ) assms(3 ) bet-per2--suma suma-distincts by blast

ultimately show ?thesis
using assms(3 ) sams2-suma2--conga456 by auto

qed
thus ?thesis

using assms(1 ) l11-17 by blast
qed

lemma bet-per-suma--per123 :
assumes Per D E F and

Bet G H I and
A B C D E F SumA G H I

shows Per A B C
using bet-per-suma--per456
by (meson assms(1 ) assms(2 ) assms(3 ) suma-sym)
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lemma bet-suma--per :
assumes Bet D E F and

A B C A B C SumA D E F
shows Per A B C

proof −
obtain A ′ where C B A ′ CongA A B C ∧ A B A ′ CongA D E F

using SumA-def assms(2 ) by blast
have Per C B A
proof −

have Bet A B A ′

proof −
have D E F CongA A B A ′

using ‹C B A ′ CongA A B C ∧ A B A ′ CongA D E F› not-conga-sym by blast
thus ?thesis

using assms(1 ) bet-conga--bet by blast
qed
moreover have C B A CongA C B A ′

using conga-left-comm not-conga-sym ‹C B A ′ CongA A B C ∧ A B A ′ CongA D E F› by blast
ultimately show ?thesis

using l11-18-2 by auto
qed
thus ?thesis

using Per-cases by auto
qed

lemma acute--sams:
assumes Acute A B C
shows SAMS A B C A B C

proof −
obtain A ′ where B Midpoint A A ′

using symmetric-point-construction by auto
show ?thesis
proof −

have A 6= B ∧ A ′ 6= B
using ‹B Midpoint A A ′› acute-distincts assms is-midpoint-id-2 by blast

moreover have Bet A B A ′

by (simp add: ‹B Midpoint A A ′› midpoint-bet)
moreover
have Obtuse C B A ′

using acute-bet--obtuse assms calculation(1 ) calculation(2 ) obtuse-sym by blast
then have A B C LeA C B A ′

by (metis acute--not-obtuse assms calculation(1 ) lea-obtuse-obtuse lea-total obtuse-distincts)
ultimately show ?thesis

using sams-chara by blast
qed

qed

lemma acute-suma--nbet:
assumes Acute A B C and

A B C A B C SumA D E F
shows ¬ Bet D E F

proof −
{

assume Bet D E F
then have Per A B C

using assms(2 ) bet-suma--per by auto
then have A B C LtA A B C

using acute-not-per assms(1 ) by auto
then have False

by (simp add: nlta)
}
thus ?thesis by blast

qed

lemma acute2--sams:
assumes Acute A B C and
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Acute D E F
shows SAMS A B C D E F
by (metis acute--sams acute-distincts assms(1 ) assms(2 ) lea-total sams-lea2--sams)

lemma acute2-suma--nbet-a:
assumes Acute A B C and

D E F LeA A B C and
A B C D E F SumA G H I

shows ¬ Bet G H I
proof −

{
assume Bet G H I
obtain A ′ B ′ C ′ where A B C A B C SumA A ′ B ′ C ′

using acute-distincts assms(1 ) ex-suma by moura
have G H I LeA A ′ B ′ C ′

proof −
have A B C LeA A B C

using acute-distincts assms(1 ) lea-refl by blast
moreover have SAMS A B C A B C

by (simp add: acute--sams assms(1 ))
ultimately show ?thesis

using ‹A B C A B C SumA A ′ B ′ C ′› assms(1 ) assms(2 ) assms(3 ) sams-lea456-suma2--lea by blast
qed
then have Bet A ′ B ′ C ′

using ‹Bet G H I › bet-lea--bet by blast
then have False

using acute-suma--nbet assms(1 ) assms(3 ) ‹A B C A B C SumA A ′ B ′ C ′› by blast
}
thus ?thesis by blast

qed

lemma acute2-suma--nbet:
assumes Acute A B C and

Acute D E F and
A B C D E F SumA G H I

shows ¬ Bet G H I
proof −

have A 6= B ∧ B 6= C ∧ D 6= E ∧ E 6= F
using assms(3 ) suma-distincts by auto

then have A B C LeA D E F ∨ D E F LeA A B C
by (simp add: lea-total)

moreover
{

assume P3 : A B C LeA D E F
have D E F A B C SumA G H I

by (simp add: assms(3 ) suma-sym)
then have ¬ Bet G H I

using P3 assms(2 ) acute2-suma--nbet-a by auto
}
{

assume D E F LeA A B C
then have ¬ Bet G H I

using acute2-suma--nbet-a assms(1 ) assms(3 ) by auto
}
thus ?thesis

using ‹A B C LeA D E F =⇒ ¬ Bet G H I › calculation by blast
qed

lemma acute-per--sams:
assumes A 6= B and

B 6= C and
Per A B C and
Acute D E F

shows SAMS A B C D E F
proof −

have SAMS A B C A B C
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by (simp add: assms(1 ) assms(2 ) assms(3 ) per2--sams)
moreover have A B C LeA A B C

using assms(1 ) assms(2 ) lea-refl by auto
moreover have D E F LeA A B C

by (metis acute-distincts acute-lea-acute acute-not-per assms(1 ) assms(2 ) assms(3 ) assms(4 ) lea-total)
ultimately show ?thesis

using sams-lea2--sams by blast
qed

lemma acute-per-suma--nbet:
assumes A 6= B and

B 6= C and
Per A B C and
Acute D E F and
A B C D E F SumA G H I

shows ¬ Bet G H I
proof −

{
assume Bet G H I
have G H I LtA G H I
proof −

have A B C LeA A B C
using assms(1 ) assms(2 ) lea-refl by auto

moreover have D E F LtA A B C
by (simp add: acute-per--lta assms(1 ) assms(2 ) assms(3 ) assms(4 ))

moreover have SAMS A B C A B C
by (simp add: assms(1 ) assms(2 ) assms(3 ) per2--sams)

moreover have A B C D E F SumA G H I
by (simp add: assms(5 ))

moreover have A B C A B C SumA G H I
by (meson Tarski-neutral-dimensionless.bet-per-suma--per456 Tarski-neutral-dimensionless-axioms ‹Bet G H I ›

acute-not-per assms(3 ) assms(4 ) calculation(4 ))
ultimately show ?thesis

using sams-lea-lta456-suma2--lta by blast
qed
then have False

by (simp add: nlta)
}
thus ?thesis by blast

qed

lemma obtuse--nsams:
assumes Obtuse A B C
shows ¬ SAMS A B C A B C

proof −
{

assume SAMS A B C A B C
obtain A ′ where B Midpoint A A ′

using symmetric-point-construction by auto
have A B C LtA A B C
proof −

have A B C LeA A ′ B C
by (metis ‹B Midpoint A A ′› ‹SAMS A B C A B C › lea-right-comm midpoint-bet midpoint-distinct-2 sams-chara

sams-distincts)
moreover have A ′ B C LtA A B C

using ‹B Midpoint A A ′› assms calculation lea-distincts midpoint-bet obtuse-chara by blast
ultimately show ?thesis

using lea--nlta by blast
qed
then have False

by (simp add: nlta)
}
thus ?thesis by blast

qed

lemma nbet-sams-suma--acute:
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assumes ¬ Bet D E F and
SAMS A B C A B C and
A B C A B C SumA D E F

shows Acute A B C
proof −

have Acute A B C ∨ Per A B C ∨ Obtuse A B C
by (metis angle-partition l8-20-1-R1 l8-5 )

{
assume Per A B C
then have Bet D E F

using assms(3 ) per2-suma--bet by auto
then have False

using assms(1 ) by auto
}
{

assume Obtuse A B C
then have ¬ SAMS A B C A B C

by (simp add: obtuse--nsams)
then have False

using assms(2 ) by auto
}
thus ?thesis

using ‹Acute A B C ∨ Per A B C ∨ Obtuse A B C › ‹Per A B C =⇒ False› by auto
qed

lemma nsams--obtuse:
assumes A 6= B and

B 6= C and
¬ SAMS A B C A B C

shows Obtuse A B C
proof −

{
assume Per A B C
obtain A ′ where B Midpoint A A ′

using symmetric-point-construction by blast
have ¬ Col A B C

using ‹Per A B C › assms(1 ) assms(2 ) per-col-eq by blast
have SAMS A B C A B C
proof −

have C B A ′ CongA A B C
using ‹Per A B C › assms(1 ) assms(2 ) assms(3 ) per2--sams by blast

moreover have ¬ B C OS A A ′

by (meson Col-cases ‹B Midpoint A A ′› col-one-side-out l6-4-1 midpoint-bet midpoint-col)
moreover have ¬ A B TS C A ′

using Col-def Midpoint-def TS-def ‹B Midpoint A A ′› by blast
moreover have Coplanar A B C A ′

using ‹Per A B C › assms(1 ) assms(2 ) assms(3 ) per2--sams by blast
ultimately show ?thesis

using SAMS-def ‹¬ Col A B C › assms(1 ) bet-col by auto
qed
then have False

using assms(3 ) by auto
}
{

assume Acute A B C
then have SAMS A B C A B C

by (simp add: acute--sams)
then have False

using assms(3 ) by auto
}
thus ?thesis

using ‹Per A B C =⇒ False› angle-partition assms(1 ) assms(2 ) by auto
qed

lemma sams2-suma2--conga:
assumes SAMS A B C A B C and
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A B C A B C SumA D E F and
SAMS A ′ B ′ C ′ A ′ B ′ C ′ and
A ′ B ′ C ′ A ′ B ′ C ′ SumA D E F

shows A B C CongA A ′ B ′ C ′

proof −
have A B C LeA A ′ B ′ C ′ ∨ A ′ B ′ C ′ LeA A B C

using assms(1 ) assms(3 ) lea-total sams-distincts by auto
moreover
have A B C LeA A ′ B ′ C ′ −→ A B C CongA A ′ B ′ C ′

using assms(2 ) assms(3 ) assms(4 ) sams-lea2-suma2--conga123 by auto
ultimately show ?thesis
by (meson Tarski-neutral-dimensionless.conga-sym Tarski-neutral-dimensionless.sams-lea2-suma2--conga123 Tarski-neutral-dimensionless-axioms

assms(1 ) assms(2 ) assms(4 ))
qed

lemma acute2-suma2--conga:
assumes Acute A B C and

A B C A B C SumA D E F and
Acute A ′ B ′ C ′ and
A ′ B ′ C ′ A ′ B ′ C ′ SumA D E F

shows A B C CongA A ′ B ′ C ′

proof −
have SAMS A B C A B C

by (simp add: acute--sams assms(1 ))
moreover have SAMS A ′ B ′ C ′ A ′ B ′ C ′

by (simp add: acute--sams assms(3 ))
ultimately show ?thesis

using assms(2 ) assms(4 ) sams2-suma2--conga by auto
qed

lemma bet2-suma--out:
assumes Bet A B C and

Bet D E F and
A B C D E F SumA G H I

shows H Out G I
proof −

have A B C D E F SumA A B A
proof −

have C B A CongA D E F
by (metis Bet-cases assms(1 ) assms(2 ) assms(3 ) conga-line suma-distincts)

moreover have ¬ B C OS A A
by (simp add: Col-def assms(1 ) col124--nos)

moreover have Coplanar A B C A
using ncop-distincts by blast

moreover have A B A CongA A B A
using calculation(1 ) conga-diff2 conga-trivial-1 by auto

ultimately show ?thesis
using SumA-def by blast

qed
then have A B A CongA G H I

using assms(3 ) suma2--conga by auto
thus ?thesis

using eq-conga-out by auto
qed

lemma col2-suma--col:
assumes Col A B C and

Col D E F and
A B C D E F SumA G H I

shows Col G H I
proof cases

assume Bet A B C
show ?thesis
proof cases

assume Bet D E F
thus ?thesis using bet2-suma--out
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by (meson ‹Bet A B C › assms(3 ) not-col-permutation-4 out-col)
next

assume ¬ Bet D E F
show ?thesis
proof −

have E Out D F
using ‹¬ Bet D E F› assms(2 ) or-bet-out by auto

then have A B C CongA G H I
using assms(3 ) out546-suma--conga by auto

thus ?thesis
using assms(1 ) col-conga-col by blast

qed
qed

next
assume ¬ Bet A B C
have D E F CongA G H I
proof −

have B Out A C
by (simp add: ‹¬ Bet A B C › assms(1 ) l6-4-2 )

thus ?thesis
using assms(3 ) out213-suma--conga by auto

qed
thus ?thesis

using assms(2 ) col-conga-col by blast
qed

lemma suma-suppa--bet:
assumes A B C SuppA D E F and

A B C D E F SumA G H I
shows Bet G H I

proof −
obtain A ′ where P1 : Bet A B A ′ ∧ D E F CongA C B A ′

using SuppA-def assms(1 ) by auto
obtain A ′′ where P2 : C B A ′′ CongA D E F ∧ ¬ B C OS A A ′′ ∧ Coplanar A B C A ′′ ∧ A B A ′′ CongA G H I

using SumA-def assms(2 ) by auto
have B Out A ′ A ′′ ∨ C B TS A ′ A ′′

proof −
have Coplanar C B A ′ A ′′

proof −
have Coplanar C A ′′ B A

using P2 coplanar-perm-17 by blast
moreover have B 6= A

using SuppA-def assms(1 ) by auto
moreover have Col B A A ′ using P1

by (simp add: bet-col col-permutation-4 )
ultimately show ?thesis

using col-cop--cop coplanar-perm-3 by blast
qed
moreover have C B A ′ CongA C B A ′′

proof −
have C B A ′ CongA D E F

using P1 not-conga-sym by blast
moreover have D E F CongA C B A ′′

using P2 not-conga-sym by blast
ultimately show ?thesis

using not-conga by blast
qed
ultimately show ?thesis

using conga-cop--or-out-ts by simp
qed
have Bet A B A ′′

proof −
have ¬ C B TS A ′ A ′′

proof −
{

assume C B TS A ′ A ′′

330



have B C TS A A ′

proof −
{

assume Col A B C
then have Col A ′ C B

using P1 assms(1 ) bet-col bet-col1 col3 suppa-distincts by blast
then have False

using TS-def ‹C B TS A ′ A ′′› by auto
}
then have ¬ Col A B C by auto
moreover have ¬ Col A ′ B C

using TS-def ‹C B TS A ′ A ′′› not-col-permutation-5 by blast
moreover
have ∃ T . (Col T B C ∧ Bet A T A ′)

using P1 not-col-distincts by blast
ultimately show ?thesis

by (simp add: TS-def )
qed
then have B C OS A A ′′

using OS-def ‹C B TS A ′ A ′′› invert-two-sides l9-2 by blast
then have False

using P2 by simp
}
thus ?thesis by blast

qed
then have B Out A ′ A ′′

using ‹B Out A ′ A ′′ ∨ C B TS A ′ A ′′› by auto
moreover have A ′ 6= B ∧ A ′′ 6= B ∧ A 6= B

using P2 calculation conga-diff1 out-diff1 out-diff2 by blast
moreover have Bet A ′ B A

using P1 Bet-perm by blast
ultimately show ?thesis

using bet-out--bet between-symmetry by blast
qed
moreover have A B A ′′ CongA G H I

using P2 by blast
ultimately show ?thesis

using bet-conga--bet by blast
qed

lemma bet-suppa--suma:
assumes G 6= H and

H 6= I and
A B C SuppA D E F and
Bet G H I

shows A B C D E F SumA G H I
proof −

obtain G ′ H ′ I ′ where A B C D E F SumA G ′ H ′ I ′

using assms(3 ) ex-suma suppa-distincts by blast
moreover have A B C CongA A B C

using calculation conga-refl suma-distincts by fastforce
moreover
have D 6= E ∧ E 6= F

using assms(3 ) suppa-distincts by auto
then have D E F CongA D E F

using conga-refl by auto
moreover
have G ′ H ′ I ′ CongA G H I
proof −

have G ′ 6= H ′ ∧ H ′ 6= I ′

using calculation(1 ) suma-distincts by auto
moreover have Bet G ′ H ′ I ′

using ‹A B C D E F SumA G ′ H ′ I ′› assms(3 ) suma-suppa--bet by blast
ultimately show ?thesis

using assms(1 ) assms(2 ) assms(4 ) conga-line by auto
qed
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ultimately show ?thesis
using conga3-suma--suma by blast

qed

lemma bet-suma--suppa:
assumes A B C D E F SumA G H I and

Bet G H I
shows A B C SuppA D E F

proof −
obtain A ′ where C B A ′ CongA D E F ∧ A B A ′ CongA G H I

using SumA-def assms(1 ) by blast
moreover
have G H I CongA A B A ′

using calculation not-conga-sym by blast
then have Bet A B A ′

using assms(2 ) bet-conga--bet by blast
moreover have D E F CongA C B A ′

using calculation(1 ) not-conga-sym by blast
ultimately show ?thesis

by (metis SuppA-def conga-diff1 )
qed

lemma bet2-suma--suma:
assumes A ′ 6= B and

D ′ 6= E and
Bet A B A ′ and
Bet D E D ′ and
A B C D E F SumA G H I

shows A ′ B C D ′ E F SumA G H I
proof −

obtain J where P1 : C B J CongA D E F ∧ ¬ B C OS A J ∧ Coplanar A B C J ∧ A B J CongA G H I
using SumA-def assms(5 ) by auto

moreover
obtain C ′ where P2 : Bet C B C ′ ∧ Cong B C ′ B C

using segment-construction by blast
moreover
have A B C ′ D ′ E F SumA G H I
proof −

have C ′ B J CongA D ′ E F
by (metis assms(2 ) assms(4 ) calculation(1 ) calculation(2 ) cong-diff-3 conga-diff1 l11-13 )

moreover have ¬ B C ′ OS A J
by (metis Col-cases P1 P2 bet-col col-one-side cong-diff )

moreover have Coplanar A B C ′ J
by (smt P1 P2 bet-col bet-col1 col2-cop--cop cong-diff ncoplanar-perm-5 )

ultimately show ?thesis
using P1 SumA-def by blast

qed
moreover have A B C ′ CongA A ′ B C

using assms(1 ) assms(3 ) assms(5 ) between-symmetry calculation(2 ) calculation(3 ) l11-14 suma-distincts by auto
moreover
have D ′ 6= E ∧ E 6= F

using assms(2 ) calculation(1 ) conga-distinct by blast
then have D ′ E F CongA D ′ E F

using conga-refl by auto
moreover
have G 6= H ∧ H 6= I

using assms(5 ) suma-distincts by blast
then have G H I CongA G H I

using conga-refl by auto
ultimately show ?thesis

using conga3-suma--suma by blast
qed

lemma suma-suppa2--suma:
assumes A B C SuppA A ′ B ′ C ′ and

D E F SuppA D ′ E ′ F ′ and
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A B C D E F SumA G H I
shows A ′ B ′ C ′ D ′ E ′ F ′ SumA G H I

proof −
obtain A0 where P1 : Bet A B A0 ∧ A ′ B ′ C ′ CongA C B A0

using SuppA-def assms(1 ) by auto
obtain D0 where P2 : Bet D E D0 ∧ D ′ E ′ F ′ CongA F E D0

using SuppA-def assms(2 ) by auto
show ?thesis
proof −

have A0 B C D0 E F SumA G H I
proof −

have A0 6= B
using CongA-def P1 by auto

moreover have D0 6= E
using CongA-def P2 by blast

ultimately show ?thesis
using P1 P2 assms(3 ) bet2-suma--suma by auto

qed
moreover have A0 B C CongA A ′ B ′ C ′

using P1 conga-left-comm not-conga-sym by blast
moreover have D0 E F CongA D ′ E ′ F ′

using P2 conga-left-comm not-conga-sym by blast
moreover
have G 6= H ∧ H 6= I

using assms(3 ) suma-distincts by blast
then have G H I CongA G H I

using conga-refl by auto
ultimately show ?thesis

using conga3-suma--suma by blast
qed

qed

lemma suma2-obtuse2--conga:
assumes Obtuse A B C and

A B C A B C SumA D E F and
Obtuse A ′ B ′ C ′ and
A ′ B ′ C ′ A ′ B ′ C ′ SumA D E F

shows A B C CongA A ′ B ′ C ′

proof −
obtain A0 where P1 : Bet A B A0 ∧ Cong B A0 A B

using segment-construction by blast
moreover
obtain A0 ′ where P2 : Bet A ′ B ′ A0 ′ ∧ Cong B ′ A0 ′ A ′ B ′

using segment-construction by blast
moreover
have A0 B C CongA A0 ′ B ′ C ′

proof −
have Acute A0 B C

using assms(1 ) bet-obtuse--acute P1 cong-diff-3 obtuse-distincts by blast
moreover have A0 B C A0 B C SumA D E F

using P1 acute-distincts assms(2 ) bet2-suma--suma calculation by blast
moreover have Acute A0 ′ B ′ C ′

using P2 assms(3 ) bet-obtuse--acute cong-diff-3 obtuse-distincts by blast
moreover have A0 ′ B ′ C ′ A0 ′ B ′ C ′ SumA D E F

by (metis P2 assms(4 ) bet2-suma--suma cong-diff-3 )
ultimately show ?thesis

using acute2-suma2--conga by blast
qed
moreover have Bet A0 B A

using Bet-perm calculation(1 ) by blast
moreover have Bet A0 ′ B ′ A ′

using Bet-perm calculation(2 ) by blast
moreover have A 6= B

using assms(1 ) obtuse-distincts by blast
moreover have A ′ 6= B ′

using assms(3 ) obtuse-distincts by blast
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ultimately show ?thesis
using l11-13 by blast

qed

lemma bet-suma2--or-conga:
assumes A0 6= B and

Bet A B A0 and
A B C A B C SumA D E F and
A ′ B ′ C ′ A ′ B ′ C ′ SumA D E F

shows A B C CongA A ′ B ′ C ′ ∨ A0 B C CongA A ′ B ′ C ′

proof −
{

fix A ′ B ′ C ′

assumeAcute A ′ B ′ C ′ ∧ A ′ B ′ C ′ A ′ B ′ C ′ SumA D E F
have Per A B C ∨ Acute A B C ∨ Obtuse A B C

by (metis angle-partition l8-20-1-R1 l8-5 )
{

assume Per A B C
then have Bet D E F

using per2-suma--bet assms(3 ) by auto
then have False

using ‹Acute A ′ B ′ C ′ ∧ A ′ B ′ C ′ A ′ B ′ C ′ SumA D E F› acute-suma--nbet by blast
then have A B C CongA A ′ B ′ C ′ ∨ A0 B C CongA A ′ B ′ C ′ by blast

}
{

assume Acute A B C
have Acute A ′ B ′ C ′

by (simp add: ‹Acute A ′ B ′ C ′ ∧ A ′ B ′ C ′ A ′ B ′ C ′ SumA D E F›)
moreover have A ′ B ′ C ′ A ′ B ′ C ′ SumA D E F

by (simp add: ‹Acute A ′ B ′ C ′ ∧ A ′ B ′ C ′ A ′ B ′ C ′ SumA D E F›)
ultimately
have A B C CongA A ′ B ′ C ′ ∨ A0 B C CongA A ′ B ′ C ′

using assms(3 ) ‹Acute A B C › acute2-suma2--conga by auto
}
{

assume Obtuse A B C
have Acute A0 B C

using ‹Obtuse A B C › assms(1 ) assms(2 ) bet-obtuse--acute by auto
moreover have A0 B C A0 B C SumA D E F

using assms(1 ) assms(2 ) assms(3 ) bet2-suma--suma by auto
ultimately have A0 B C CongA A ′ B ′ C ′

using ‹Acute A ′ B ′ C ′ ∧ A ′ B ′ C ′ A ′ B ′ C ′ SumA D E F› acute2-suma2--conga by auto
then have A B C CongA A ′ B ′ C ′ ∨ A0 B C CongA A ′ B ′ C ′ by blast

}
then have A B C CongA A ′ B ′ C ′ ∨ A0 B C CongA A ′ B ′ C ′

using ‹Acute A B C =⇒ A B C CongA A ′ B ′ C ′ ∨ A0 B C CongA A ′ B ′ C ′› ‹Per A B C =⇒ A B C CongA A ′

B ′ C ′ ∨ A0 B C CongA A ′ B ′ C ′› ‹Per A B C ∨ Acute A B C ∨ Obtuse A B C › by blast
}
then have P1 : ∀ A ′ B ′ C ′. (Acute A ′ B ′ C ′ ∧ A ′ B ′ C ′ A ′ B ′ C ′ SumA D E F) −→ (A B C CongA A ′ B ′ C ′ ∨ A0

B C CongA A ′ B ′ C ′) by blast
have Per A ′ B ′ C ′ ∨ Acute A ′ B ′ C ′ ∨ Obtuse A ′ B ′ C ′

by (metis angle-partition l8-20-1-R1 l8-5 )
{

assume P2 : Per A ′ B ′ C ′

have A B C CongA A ′ B ′ C ′

proof −
have A 6= B ∧ B 6= C

using assms(3 ) suma-distincts by blast
moreover have A ′ 6= B ′ ∧ B ′ 6= C ′

using assms(4 ) suma-distincts by auto
moreover have Per A B C
proof −

have Bet D E F
using P2 assms(4 ) per2-suma--bet by blast

moreover have A B C A B C SumA D E F
by (simp add: assms(3 ))
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ultimately show ?thesis
using assms(3 ) bet-suma--per by blast

qed
ultimately show ?thesis

using P2 l11-16 by blast
qed
then have A B C CongA A ′ B ′ C ′ ∨ A0 B C CongA A ′ B ′ C ′ by blast

}
{

assume Acute A ′ B ′ C ′

then have A B C CongA A ′ B ′ C ′ ∨ A0 B C CongA A ′ B ′ C ′

using P1 assms(4 ) by blast
}
{

assume Obtuse A ′ B ′ C ′

obtain A0 ′ where Bet A ′ B ′ A0 ′ ∧ Cong B ′ A0 ′ A ′ B ′

using segment-construction by blast
moreover
have Acute A0 ′ B ′ C ′

using ‹Obtuse A ′ B ′ C ′› bet-obtuse--acute calculation cong-diff-3 obtuse-distincts by blast
moreover have A0 ′ B ′ C ′ A0 ′ B ′ C ′ SumA D E F

using acute-distincts assms(4 ) bet2-suma--suma calculation(1 ) calculation(2 ) by blast
ultimately
have A B C CongA A ′ B ′ C ′ ∨ A0 B C CongA A ′ B ′ C ′

using P1 by (metis assms(1 ) assms(2 ) assms(3 ) assms(4 ) between-symmetry l11-13 suma-distincts)
}
thus ?thesis

using ‹Acute A ′ B ′ C ′ =⇒ A B C CongA A ′ B ′ C ′ ∨ A0 B C CongA A ′ B ′ C ′› ‹Per A ′ B ′ C ′ =⇒ A B C CongA
A ′ B ′ C ′ ∨ A0 B C CongA A ′ B ′ C ′› ‹Per A ′ B ′ C ′ ∨ Acute A ′ B ′ C ′ ∨ Obtuse A ′ B ′ C ′› by blast
qed

lemma suma2--or-conga-suppa:
assumes A B C A B C SumA D E F and

A ′ B ′ C ′ A ′ B ′ C ′ SumA D E F
shows A B C CongA A ′ B ′ C ′ ∨ A B C SuppA A ′ B ′ C ′

proof −
obtain A0 where P1 : Bet A B A0 ∧ Cong B A0 A B

using segment-construction by blast
then have A0 6= B

using assms(1 ) bet-cong-eq suma-distincts by blast
then have A B C CongA A ′ B ′ C ′ ∨ A0 B C CongA A ′ B ′ C ′

using assms(1 ) assms(2 ) P1 bet-suma2--or-conga by blast
thus ?thesis

by (metis P1 SuppA-def cong-diff conga-right-comm conga-sym)
qed

lemma ex-trisuma:
assumes A 6= B and

B 6= C and
A 6= C

shows ∃ D E F . A B C TriSumA D E F
proof −

obtain G H I where A B C B C A SumA G H I
using assms(1 ) assms(2 ) assms(3 ) ex-suma by presburger

moreover
then obtain D E F where G H I C A B SumA D E F

using ex-suma suma-distincts by presburger
ultimately show ?thesis

using TriSumA-def by blast
qed

lemma trisuma-perm-231 :
assumes A B C TriSumA D E F
shows B C A TriSumA D E F

proof −
obtain A1 B1 C1 where P1 : A B C B C A SumA A1 B1 C1 ∧ A1 B1 C1 C A B SumA D E F
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using TriSumA-def assms(1 ) by auto
obtain A2 B2 C2 where P2 : B C A C A B SumA B2 C2 A2

using P1 ex-suma suma-distincts by fastforce
have A B C B2 C2 A2 SumA D E F
proof −

have SAMS A B C B C A
using assms sams123231 trisuma-distincts by auto

moreover have SAMS B C A C A B
using P2 sams123231 suma-distincts by fastforce

ultimately show ?thesis
using P1 P2 suma-assoc by blast

qed
thus ?thesis

using P2 TriSumA-def suma-sym by blast
qed

lemma trisuma-perm-312 :
assumes A B C TriSumA D E F
shows C A B TriSumA D E F
by (simp add: assms trisuma-perm-231 )

lemma trisuma-perm-321 :
assumes A B C TriSumA D E F
shows C B A TriSumA D E F

proof −
obtain G H I where A B C B C A SumA G H I ∧ G H I C A B SumA D E F

using TriSumA-def assms(1 ) by auto
thus ?thesis

by (meson TriSumA-def suma-comm suma-right-comm suma-sym trisuma-perm-231 )
qed

lemma trisuma-perm-213 :
assumes A B C TriSumA D E F
shows B A C TriSumA D E F
using assms trisuma-perm-231 trisuma-perm-321 by blast

lemma trisuma-perm-132 :
assumes A B C TriSumA D E F
shows A C B TriSumA D E F
using assms trisuma-perm-312 trisuma-perm-321 by blast

lemma conga-trisuma--trisuma:
assumes A B C TriSumA D E F and

D E F CongA D ′ E ′ F ′

shows A B C TriSumA D ′ E ′ F ′

proof −
obtain G H I where P1 : A B C B C A SumA G H I ∧ G H I C A B SumA D E F

using TriSumA-def assms(1 ) by auto
have G H I C A B SumA D ′ E ′ F ′

proof −
have f1 : B 6= A

by (metis P1 suma-distincts)
have f2 : C 6= A

using P1 suma-distincts by blast
have G H I CongA G H I

by (metis (full-types) P1 conga-refl suma-distincts)
then show ?thesis

using f2 f1 by (meson P1 assms(2 ) conga3-suma--suma conga-refl)
qed
thus ?thesis using P1 TriSumA-def by blast

qed

lemma trisuma2--conga:
assumes A B C TriSumA D E F and

A B C TriSumA D ′ E ′ F ′

shows D E F CongA D ′ E ′ F ′
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proof −
obtain G H I where P1 : A B C B C A SumA G H I ∧ G H I C A B SumA D E F

using TriSumA-def assms(1 ) by auto
then have P1A: G H I C A B SumA D E F by simp
obtain G ′ H ′ I ′ where P2 : A B C B C A SumA G ′ H ′ I ′ ∧ G ′ H ′ I ′ C A B SumA D ′ E ′ F ′

using TriSumA-def assms(2 ) by auto
have G ′ H ′ I ′ C A B SumA D E F
proof −

have G H I CongA G ′ H ′ I ′ using P1 P2 suma2--conga by blast
moreover have D E F CongA D E F ∧ C A B CongA C A B

by (metis assms(1 ) conga-refl trisuma-distincts)
ultimately show ?thesis

by (meson P1 conga3-suma--suma)
qed
thus ?thesis

using P2 suma2--conga by auto
qed

lemma conga3-trisuma--trisuma:
assumes A B C TriSumA D E F and

A B C CongA A ′ B ′ C ′ and
B C A CongA B ′ C ′ A ′ and
C A B CongA C ′ A ′ B ′

shows A ′ B ′ C ′ TriSumA D E F
proof −

obtain G H I where P1 : A B C B C A SumA G H I ∧ G H I C A B SumA D E F
using TriSumA-def assms(1 ) by auto

thus ?thesis
proof −

have A ′ B ′ C ′ B ′ C ′ A ′ SumA G H I
using conga3-suma--suma P1 by (meson assms(2 ) assms(3 ) suma2--conga)

moreover have G H I C ′ A ′ B ′ SumA D E F
using conga3-suma--suma P1 by (meson P1 assms(4 ) suma2--conga)

ultimately show ?thesis
using TriSumA-def by blast

qed
qed

lemma col-trisuma--bet:
assumes Col A B C and

A B C TriSumA P Q R
shows Bet P Q R

proof −
obtain D E F where P1 : A B C B C A SumA D E F ∧ D E F C A B SumA P Q R

using TriSumA-def assms(2 ) by auto
{

assume Bet A B C
have A B C CongA P Q R
proof −

have A B C CongA D E F
proof −

have C 6= A ∧ C 6= B
using assms(2 ) trisuma-distincts by blast

then have C Out B A
using ‹ Bet A B C › bet-out-1 by fastforce

thus ?thesis
using P1 out546-suma--conga by auto

qed
moreover have D E F CongA P Q R
proof −

have A 6= C ∧ A 6= B
using assms(2 ) trisuma-distincts by blast

then have A Out C B
using Out-def ‹Bet A B C › by auto

thus ?thesis
using P1 out546-suma--conga by auto
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qed
ultimately show ?thesis

using conga-trans by blast
qed
then have Bet P Q R

using ‹Bet A B C › bet-conga--bet by blast
}
{

assume Bet B C A
have B C A CongA P Q R
proof −

have B C A CongA D E F
proof −

have B 6= A ∧ B 6= C
using assms(2 ) trisuma-distincts by blast

then have B Out A C
using Out-def ‹Bet B C A› by auto

thus ?thesis
using P1 out213-suma--conga by blast

qed
moreover have D E F CongA P Q R
proof −

have A 6= C ∧ A 6= B
using assms(2 ) trisuma-distincts by auto

then have A Out C B
using ‹Bet B C A› bet-out-1 by auto

thus ?thesis
using P1 out546-suma--conga by blast

qed
ultimately show ?thesis

using not-conga by blast
qed
then have Bet P Q R

using ‹Bet B C A› bet-conga--bet by blast
}
{

assume Bet C A B
have E Out D F
proof −

have C Out B A
using ‹Bet C A B› assms(2 ) bet-out l6-6 trisuma-distincts by blast

moreover have B C A CongA D E F
proof −

have B 6= A ∧ B 6= C
using P1 suma-distincts by blast

then have B Out A C
using ‹Bet C A B› bet-out-1 by auto

thus ?thesis using out213-suma--conga P1 by blast
qed
ultimately show ?thesis

using l11-21-a by blast
qed

then have C A B CongA P Q R
using P1 out213-suma--conga by blast

then have Bet P Q R
using ‹Bet C A B› bet-conga--bet by blast

}
thus ?thesis

using Col-def ‹Bet A B C =⇒ Bet P Q R› ‹Bet B C A =⇒ Bet P Q R› assms(1 ) by blast
qed

lemma suma-dec:
A B C D E F SumA G H I ∨ ¬ A B C D E F SumA G H I by simp

lemma sams-dec:
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SAMS A B C D E F ∨ ¬ SAMS A B C D E F by simp

lemma trisuma-dec:
A B C TriSumA P Q R ∨ ¬ A B C TriSumA P Q R
by simp

3.11 Parallelism
lemma par-reflexivity:

assumes A 6= B
shows A B Par A B
using Par-def assms not-col-distincts by blast

lemma par-strict-irreflexivity:
¬ A B ParStrict A B
using ParStrict-def col-trivial-3 by blast

lemma not-par-strict-id:
¬ A B ParStrict A C
using ParStrict-def col-trivial-1 by blast

lemma par-id:
assumes A B Par A C
shows Col A B C
using Col-cases Par-def assms not-par-strict-id by auto

lemma par-strict-not-col-1 :
assumes A B ParStrict C D
shows ¬ Col A B C
using Col-perm ParStrict-def assms col-trivial-1 by blast

lemma par-strict-not-col-2 :
assumes A B ParStrict C D
shows ¬ Col B C D
using ParStrict-def assms col-trivial-3 by auto

lemma par-strict-not-col-3 :
assumes A B ParStrict C D
shows ¬ Col C D A
using Col-perm ParStrict-def assms col-trivial-1 by blast

lemma par-strict-not-col-4 :
assumes A B ParStrict C D
shows ¬ Col A B D
using Col-perm ParStrict-def assms col-trivial-3 by blast

lemma par-id-1 :
assumes A B Par A C
shows Col B A C
using Par-def assms not-par-strict-id by auto

lemma par-id-2 :
assumes A B Par A C
shows Col B C A
using Col-perm assms par-id-1 by blast

lemma par-id-3 :
assumes A B Par A C
shows Col A C B
using Col-perm assms par-id-2 by blast

lemma par-id-4 :
assumes A B Par A C
shows Col C B A
using Col-perm assms par-id-2 by blast
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lemma par-id-5 :
assumes A B Par A C
shows Col C A B
using assms col-permutation-2 par-id by blast

lemma par-strict-symmetry:
assumes A B ParStrict C D
shows C D ParStrict A B
using ParStrict-def assms coplanar-perm-16 by blast

lemma par-symmetry:
assumes A B Par C D
shows C D Par A B
by (smt NCol-perm Par-def assms l6-16-1 par-strict-symmetry)

lemma par-left-comm:
assumes A B Par C D
shows B A Par C D
by (metis (mono-tags, lifting) ParStrict-def Par-def assms ncoplanar-perm-6 not-col-permutation-5 )

lemma par-right-comm:
assumes A B Par C D
shows A B Par D C
using assms par-left-comm par-symmetry by blast

lemma par-comm:
assumes A B Par C D
shows B A Par D C
using assms par-left-comm par-right-comm by blast

lemma par-strict-left-comm:
assumes A B ParStrict C D
shows B A ParStrict C D
using ParStrict-def assms ncoplanar-perm-6 not-col-permutation-5 by blast

lemma par-strict-right-comm:
assumes A B ParStrict C D
shows A B ParStrict D C
using assms par-strict-left-comm par-strict-symmetry by blast

lemma par-strict-comm:
assumes A B ParStrict C D
shows B A ParStrict D C
by (simp add: assms par-strict-left-comm par-strict-right-comm)

lemma par-strict-neq1 :
assumes A B ParStrict C D
shows A 6= B
using assms col-trivial-1 par-strict-not-col-4 by blast

lemma par-strict-neq2 :
assumes A B ParStrict C D
shows C 6= D
using assms col-trivial-2 par-strict-not-col-2 by blast

lemma par-neq1 :
assumes A B Par C D
shows A 6= B
using Par-def assms par-strict-neq1 by blast

lemma par-neq2 :
assumes A B Par C D
shows C 6= D
using assms par-neq1 par-symmetry by blast

lemma Par-cases:
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assumes A B Par C D ∨ B A Par C D ∨ A B Par D C ∨ B A Par D C ∨ C D Par A B ∨ C D Par B A ∨ D C
Par A B ∨ D C Par B A

shows A B Par C D
using assms par-right-comm par-symmetry by blast

lemma Par-perm:
assumes A B Par C D
shows A B Par C D ∧ B A Par C D ∧ A B Par D C ∧ B A Par D C ∧ C D Par A B ∧ C D Par B A ∧ D C Par

A B ∧ D C Par B A
using Par-cases assms by blast

lemma Par-strict-cases:
assumes A B ParStrict C D ∨ B A ParStrict C D ∨ A B ParStrict D C ∨ B A ParStrict D C ∨ C D ParStrict A B
∨ C D ParStrict B A ∨ D C ParStrict A B ∨ D C ParStrict B A

shows A B ParStrict C D
using assms par-strict-right-comm par-strict-symmetry by blast

lemma Par-strict-perm:
assumes A B ParStrict C D
shows A B ParStrict C D ∧ B A ParStrict C D ∧ A B ParStrict D C ∧ B A ParStrict D C ∧ C D ParStrict A B ∧

C D ParStrict B A ∧ D C ParStrict A B ∧ D C ParStrict B A
using Par-strict-cases assms by blast

lemma l12-6 :
assumes A B ParStrict C D
shows A B OS C D
by (metis Col-def ParStrict-def Par-strict-perm TS-def assms cop-nts--os par-strict-not-col-2 )

lemma pars--os3412 :
assumes A B ParStrict C D
shows C D OS A B
by (simp add: assms l12-6 par-strict-symmetry)

lemma perp-dec:
A B Perp C D ∨ ¬ A B Perp C D
by simp

lemma col-cop2-perp2--col:
assumes X1 X2 Perp A B and

Y1 Y2 Perp A B and
Col X1 Y1 Y2 and
Coplanar A B X2 Y1 and
Coplanar A B X2 Y2

shows Col X2 Y1 Y2
proof cases

assume X1 = Y2
thus ?thesis

using assms(1 ) assms(2 ) assms(4 ) cop-perp2--col not-col-permutation-2 perp-left-comm by blast
next

assume X1 6= Y2
then have Y2 X1 Perp A B

by (metis Col-cases assms(2 ) assms(3 ) perp-col perp-comm perp-right-comm)
then have P1 : X1 Y2 Perp A B

using Perp-perm by blast
thus ?thesis
proof cases

assume X1 = Y1
thus ?thesis

using assms(1 ) assms(2 ) assms(5 ) cop-perp2--col not-col-permutation-4 by blast
next

assume X1 6= Y1
then have X1 Y1 Perp A B

using Col-cases P1 assms(3 ) perp-col by blast
thus ?thesis

using P1 assms(1 ) assms(4 ) assms(5 ) col-transitivity-2 cop-perp2--col perp-not-eq-1 by blast
qed
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qed

lemma col-perp2-ncol-col:
assumes X1 X2 Perp A B and

Y1 Y2 Perp A B and
Col X1 Y1 Y2 and
¬ Col X1 A B

shows Col X2 Y1 Y2
proof −

have Coplanar A B X2 Y1
proof cases

assume X1 = Y1
thus ?thesis

using assms(1 ) ncoplanar-perm-22 perp--coplanar by blast
next

assume X1 6= Y1
then have Y1 X1 Perp A B

by (metis Col-cases assms(2 ) assms(3 ) perp-col)
thus ?thesis

by (meson assms(1 ) assms(4 ) coplanar-trans-1 ncoplanar-perm-18 ncoplanar-perm-4 perp--coplanar)
qed
then moreover have Coplanar A B X2 Y2

by (smt assms(1 ) assms(2 ) assms(3 ) assms(4 ) col-cop2--cop coplanar-perm-17 coplanar-perm-18 coplanar-trans-1
perp--coplanar)

ultimately show ?thesis
using assms(1 ) assms(2 ) assms(3 ) col-cop2-perp2--col by blast

qed

lemma l12-9 :
assumes

Coplanar C1 C2 A1 B1 and
Coplanar C1 C2 A1 B2 and
Coplanar C1 C2 A2 B1 and
Coplanar C1 C2 A2 B2 and
A1 A2 Perp C1 C2 and
B1 B2 Perp C1 C2

shows A1 A2 Par B1 B2
proof −

have P1 : A1 6= A2 ∧ C1 6= C2
using assms(5 ) perp-distinct by auto

have P2 : B1 6= B2
using assms(6 ) perp-distinct by auto

show ?thesis
proof cases

assume Col A1 B1 B2
then show ?thesis

using P1 P2 Par-def assms(3 ) assms(4 ) assms(5 ) assms(6 ) col-cop2-perp2--col by blast
next

assume P3 : ¬ Col A1 B1 B2
{

assume ¬ Col C1 C2 A1
then have Coplanar A1 A2 B1 B2

by (smt assms(1 ) assms(2 ) assms(5 ) coplanar-perm-22 coplanar-perm-8 coplanar-pseudo-trans ncop-distincts
perp--coplanar)

}
have C1 C2 Perp A1 A2

using Perp-cases assms(5 ) by blast
then have Coplanar A1 A2 B1 B2
by (smt ‹¬ Col C1 C2 A1 =⇒ Coplanar A1 A2 B1 B2 › assms(3 ) assms(4 ) coplanar-perm-1 coplanar-pseudo-trans

ncop-distincts perp--coplanar perp-not-col2 )
{

assume ∃ X . Col X A1 A2 ∧ Col X B1 B2
then obtain AB where P4 : Col AB A1 A2 ∧ Col AB B1 B2 by auto
then have False
proof cases

assume AB = A1
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thus ?thesis
using P3 P4 by blast

next
assume AB 6= A1
then have A1 AB Perp C1 C2

by (metis P4 assms(5 ) not-col-permutation-2 perp-col)
then have AB A1 Perp C1 C2

by (simp add: perp-left-comm)
thus ?thesis

using P3 P4 assms(1 ) assms(2 ) assms(6 ) col-cop2-perp2--col by blast
qed

}
then show ?thesis

using ParStrict-def Par-def ‹Coplanar A1 A2 B1 B2 › by blast
qed

qed

lemma parallel-existence:
assumes A 6= B
shows ∃ C D. C 6= D ∧ A B Par C D ∧ Col P C D

proof cases
assume Col A B P
then show ?thesis

using Col-perm assms par-reflexivity by blast
next

assume P1 : ¬ Col A B P
then obtain P ′ where P2 : Col A B P ′ ∧ A B Perp P P ′

using l8-18-existence by blast
then have P3 : P 6= P ′

using P1 by blast
show ?thesis
proof cases

assume P4 : P ′ = A
have ∃ Q. Per Q P A ∧ Cong Q P A B ∧ A P OS Q B
proof −

have Col A P P
using not-col-distincts by auto

moreover have ¬ Col A P B
by (simp add: P1 not-col-permutation-5 )

ultimately show ?thesis
using P3 P4 assms ex-per-cong by simp

qed
then obtain Q where T1 : Per Q P A ∧ Cong Q P A B ∧ A P OS Q B by auto
then have T2 : P 6= Q

using os-distincts by auto
have T3 : A B Par P Q
proof −

have P Q Perp P A
proof −

have P 6= A
using P3 P4 by auto

moreover have Col P P Q
by (simp add: col-trivial-1 )

ultimately show ?thesis
by (metis T1 T2 Tarski-neutral-dimensionless.Perp-perm Tarski-neutral-dimensionless-axioms per-perp)

qed
moreover have Coplanar P A A P

using ncop-distincts by auto
moreover have Coplanar P A B P

using ncop-distincts by auto
moreover have Coplanar P A B Q

by (metis (no-types) T1 ncoplanar-perm-7 os--coplanar)
moreover have A B Perp P A

using P2 P4 by auto
ultimately show ?thesis using l12-9 ncop-distincts by blast

qed
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thus ?thesis
using T2 col-trivial-1 by auto

next
assume T4 : P ′ 6= A
have ∃ Q. Per Q P P ′ ∧ Cong Q P A B ∧ P ′ P OS Q A
proof −

have P ′ 6= P
using P3 by auto

moreover have A 6= B
by (simp add: assms)

moreover have Col P ′ P P
using not-col-distincts by blast

moreover have ¬ Col P ′ P A
by (metis P1 P2 T4 col2--eq col-permutation-1 )

ultimately show ?thesis
using ex-per-cong by blast

qed
then obtain Q where T5 : Per Q P P ′ ∧ Cong Q P A B ∧ P ′ P OS Q A by blast
then have T6 : P 6= Q

using os-distincts by blast
moreover have A B Par P Q
proof −

have Coplanar P P ′ A P
using ncop-distincts by auto

moreover have Coplanar P P ′ A Q
by (meson T5 ncoplanar-perm-7 os--coplanar)

then moreover have Coplanar P P ′ B Q
by (smt P2 T4 col2-cop--cop col-permutation-5 col-transitivity-1 coplanar-perm-5 )

moreover have Coplanar P P ′ B P
using ncop-distincts by auto

moreover have A B Perp P P ′

by (simp add: P2 )
moreover have P Q Perp P P ′

by (metis P3 T5 T6 Tarski-neutral-dimensionless.Perp-perm Tarski-neutral-dimensionless-axioms per-perp)
ultimately show ?thesis

using l12-9 by blast
qed
moreover have Col P P Q

by (simp add: col-trivial-1 )
ultimately show ?thesis

by blast
qed

qed

lemma par-col-par :
assumes C 6= D ′ and

A B Par C D and
Col C D D ′

shows A B Par C D ′

proof −
{

assume P1 : A B ParStrict C D
have Coplanar A B C D ′

using assms(2 ) assms(3 ) col2--eq col2-cop--cop par--coplanar par-neq2 by blast
then have A B Par C D ′

by (smt ParStrict-def Par-def P1 assms(1 ) assms(3 ) colx not-col-distincts not-col-permutation-5 )
}
{

assume A 6= B ∧ C 6= D ∧ Col A C D ∧ Col B C D
then have A B Par C D ′

using Par-def assms(1 ) assms(3 ) col2--eq col-permutation-2 by blast
}
thus ?thesis

using Par-def ‹A B ParStrict C D =⇒ A B Par C D ′› assms(2 ) by auto
qed
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lemma parallel-existence1 :
assumes A 6= B
shows ∃ Q. A B Par P Q

proof −
obtain C D where C 6= D ∧ A B Par C D ∧ Col P C D

using assms parallel-existence by blast
then show ?thesis

by (metis Col-cases Par-cases par-col-par)
qed

lemma par-not-col:
assumes A B ParStrict C D and

Col X A B
shows ¬ Col X C D
using ParStrict-def assms(1 ) assms(2 ) by blast

lemma not-strict-par1 :
assumes A B Par C D and

Col A B X and
Col C D X

shows Col A B C
by (smt Par-def assms(1 ) assms(2 ) assms(3 ) col2--eq col-permutation-2 par-not-col)

lemma not-strict-par2 :
assumes A B Par C D and

Col A B X and
Col C D X

shows Col A B D
using Par-cases assms(1 ) assms(2 ) assms(3 ) not-col-permutation-4 not-strict-par1 by blast

lemma not-strict-par :
assumes A B Par C D and

Col A B X and
Col C D X

shows Col A B C ∧ Col A B D
using assms(1 ) assms(2 ) assms(3 ) not-strict-par1 not-strict-par2 by blast

lemma not-par-not-col:
assumes A 6= B and

A 6= C and
¬ A B Par A C

shows ¬ Col A B C
using Par-def assms(1 ) assms(2 ) assms(3 ) not-col-distincts not-col-permutation-4 by blast

lemma not-par-inter-uniqueness:
assumes A 6= B and

C 6= D and
¬ A B Par C D and
Col A B X and
Col C D X and
Col A B Y and
Col C D Y

shows X = Y
proof cases

assume P1 : C = Y
thus ?thesis
proof cases

assume P2 : C = X
thus ?thesis

using P1 by auto
next

assume C 6= X
thus ?thesis
by (smt Par-def assms(1 ) assms(2 ) assms(3 ) assms(4 ) assms(5 ) assms(6 ) assms(7 ) col3 col-permutation-5 l6-21 )

qed
next

345



assume C 6= Y
thus ?thesis
by (smt Par-def assms(1 ) assms(2 ) assms(3 ) assms(4 ) assms(5 ) assms(6 ) assms(7 ) col-permutation-2 col-permutation-4

l6-21 )
qed

lemma inter-uniqueness-not-par :
assumes ¬ Col A B C and

Col A B P and
Col C D P

shows ¬ A B Par C D
using assms(1 ) assms(2 ) assms(3 ) not-strict-par1 by blast

lemma col-not-col-not-par :
assumes ∃ P. Col A B P ∧ Col C D P and
∃ Q. Col C D Q ∧ ¬Col A B Q

shows ¬ A B Par C D
using assms(1 ) assms(2 ) colx not-strict-par par-neq2 by blast

lemma par-distincts:
assumes A B Par C D
shows A B Par C D ∧ A 6= B ∧ C 6= D
using assms par-neq1 par-neq2 by blast

lemma par-not-col-strict:
assumes A B Par C D and

Col C D P and
¬ Col A B P

shows A B ParStrict C D
using Col-cases Par-def assms(1 ) assms(2 ) assms(3 ) col3 by blast

lemma col-cop-perp2-pars:
assumes ¬ Col A B P and

Col C D P and
Coplanar A B C D and
A B Perp P Q and
C D Perp P Q

shows A B ParStrict C D
proof −

have P1 : C 6= D
using assms(5 ) perp-not-eq-1 by auto

then have P2 : Coplanar A B C P
using col-cop--cop assms(2 ) assms(3 ) by blast

moreover have P3 : Coplanar A B D P using col-cop--cop
using P1 assms(2 ) assms(3 ) col2-cop--cop col-trivial-2 by blast

have A B Par C D
proof −

have Coplanar P A Q C
proof −

have ¬ Col B P A
by (simp add: assms(1 ) not-col-permutation-1 )

moreover have Coplanar B P A Q
by (meson assms(4 ) ncoplanar-perm-12 perp--coplanar)

moreover have Coplanar B P A C
using P2 ncoplanar-perm-13 by blast

ultimately show ?thesis
using coplanar-trans-1 by auto

qed
then have P4 : Coplanar P Q A C

using ncoplanar-perm-2 by blast
have Coplanar P A Q D
proof −

have ¬ Col B P A
by (simp add: assms(1 ) not-col-permutation-1 )

moreover have Coplanar B P A Q
by (meson assms(4 ) ncoplanar-perm-12 perp--coplanar)
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moreover have Coplanar B P A D
using P3 ncoplanar-perm-13 by blast

ultimately show ?thesis
using coplanar-trans-1 by blast

qed
then moreover have Coplanar P Q A D

using ncoplanar-perm-2 by blast
moreover have Coplanar P Q B C

using P2 assms(1 ) assms(4 ) coplanar-perm-1 coplanar-perm-10 coplanar-trans-1 perp--coplanar by blast
moreover have Coplanar P Q B D

by (meson P3 assms(1 ) assms(4 ) coplanar-trans-1 ncoplanar-perm-1 ncoplanar-perm-13 perp--coplanar)
ultimately show ?thesis

using assms(4 ) assms(5 ) l12-9 P4 by auto
qed
thus ?thesis

using assms(1 ) assms(2 ) par-not-col-strict by auto
qed

lemma all-one-side-par-strict:
assumes C 6= D and
∀ P. Col C D P −→ A B OS C P

shows A B ParStrict C D
proof −

have P1 : Coplanar A B C D
by (simp add: assms(2 ) col-trivial-2 os--coplanar)

{
assume ∃ X . Col X A B ∧ Col X C D
then obtain X where P2 : Col X A B ∧ Col X C D by blast
have A B OS C X

by (simp add: P2 Col-perm assms(2 ))
then obtain M where A B TS C M ∧ A B TS X M

by (meson Col-cases P2 col124--nos)
then have False

using P2 TS-def by blast
}
thus ?thesis

using P1 ParStrict-def by auto
qed

lemma par-col-par-2 :
assumes A 6= P and

Col A B P and
A B Par C D

shows A P Par C D
using assms(1 ) assms(2 ) assms(3 ) par-col-par par-symmetry by blast

lemma par-col2-par :
assumes E 6= F and

A B Par C D and
Col C D E and
Col C D F

shows A B Par E F
by (metis assms(1 ) assms(2 ) assms(3 ) assms(4 ) col-transitivity-2 not-col-permutation-4 par-col-par par-distincts

par-right-comm)

lemma par-col2-par-bis:
assumes E 6= F and

A B Par C D and
Col E F C and
Col E F D

shows A B Par E F
by (metis assms(1 ) assms(2 ) assms(3 ) assms(4 ) col-transitivity-1 not-col-permutation-2 par-col2-par)

lemma par-strict-col-par-strict:
assumes C 6= E and

A B ParStrict C D and
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Col C D E
shows A B ParStrict C E

proof −
have P1 : C E Par A B

using Par-def Par-perm assms(1 ) assms(2 ) assms(3 ) par-col-par-2 by blast
{

assume C E ParStrict A B
then have A B ParStrict C E

by (metis par-strict-symmetry)
}
thus ?thesis

using Col-cases Par-def P1 assms(2 ) par-strict-not-col-1 by blast
qed

lemma par-strict-col2-par-strict:
assumes E 6= F and

A B ParStrict C D and
Col C D E and
Col C D F

shows A B ParStrict E F
by (smt ParStrict-def assms(1 ) assms(2 ) assms(3 ) assms(4 ) col2-cop--cop colx not-col-permutation-1 par-strict-neq1

par-strict-symmetry)

lemma line-dec:
(Col C1 B1 B2 ∧ Col C2 B1 B2 ) ∨ ¬ (Col C1 B1 B2 ∧ Col C2 B1 B2 )
by simp

lemma par-distinct:
assumes A B Par C D
shows A 6= B ∧ C 6= D
using assms par-neq1 par-neq2 by auto

lemma par-col4--par :
assumes E 6= F and

G 6= H and
A B Par C D and
Col A B E and
Col A B F and
Col C D G and
Col C D H

shows E F Par G H
proof −

have C D Par E F
using Par-cases assms(1 ) assms(3 ) assms(4 ) assms(5 ) par-col2-par by blast

then have E F Par C D
by (simp add: ‹C D Par E F› par-symmetry)

thus ?thesis
using assms(2 ) assms(6 ) assms(7 ) par-col2-par by blast

qed

lemma par-strict-col4--par-strict:
assumes E 6= F and

G 6= H and
A B ParStrict C D and
Col A B E and
Col A B F and
Col C D G and
Col C D H

shows E F ParStrict G H
proof −

have C D ParStrict E F
using Par-strict-cases assms(1 ) assms(3 ) assms(4 ) assms(5 ) par-strict-col2-par-strict by blast

then have E F ParStrict C D
by (simp add: ‹C D ParStrict E F› par-strict-symmetry)

thus ?thesis
using assms(2 ) assms(6 ) assms(7 ) par-strict-col2-par-strict by blast
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qed

lemma par-strict-one-side:
assumes A B ParStrict C D and

Col C D P
shows A B OS C P

proof cases
assume C = P
thus ?thesis

using assms(1 ) assms(2 ) not-col-permutation-5 one-side-reflexivity par-not-col by blast
next

assume C 6= P
thus ?thesis

using assms(1 ) assms(2 ) l12-6 par-strict-col-par-strict by blast
qed

lemma par-strict-all-one-side:
assumes A B ParStrict C D
shows ∀ P. Col C D P −→ A B OS C P
using assms par-strict-one-side by blast

lemma inter-trivial:
assumes ¬ Col A B X
shows X Inter A X B X
by (metis Col-perm Inter-def assms col-trivial-1 )

lemma inter-sym:
assumes X Inter A B C D
shows X Inter C D A B

proof −
obtain P where P1 : Col P C D ∧ ¬ Col P A B

using Inter-def assms by auto
have P2 : A 6= B

using P1 col-trivial-2 by blast
then show ?thesis
proof cases

assume A = X
have Col B A B

by (simp add: col-trivial-3 )
{

assume P3 : Col B C D
have Col P A B
proof −

have C 6= D
using Inter-def assms by blast

moreover have Col C D P
using P1 not-col-permutation-2 by blast

moreover have Col C D A
using Inter-def ‹A = X› assms by auto

moreover have Col C D B
using P3 not-col-permutation-2 by blast

ultimately show ?thesis
using col3 by blast

qed
then have False

by (simp add: P1 )
}
then have ¬ Col B C D by auto
then show ?thesis

using Inter-def P2 assms by (meson col-trivial-3 )
next

assume P5 : A 6= X
have P6 : Col A A B

using not-col-distincts by blast
{

assume P7 : Col A C D
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have Col A P X
proof −

have C 6= D
using Inter-def assms by auto

moreover have Col C D A
using Col-cases P7 by blast

moreover have Col C D P
using Col-cases P1 by auto

moreover have Col C D X
using Inter-def assms by auto

ultimately show ?thesis
using col3 by blast

qed
then have Col P A B

by (metis (full-types) Col-perm Inter-def P5 assms col-transitivity-2 )
then have False

by (simp add: P1 )
}
then have ¬ Col A C D by auto
then show ?thesis

by (meson Inter-def P2 assms col-trivial-1 )
qed

qed

lemma inter-left-comm:
assumes X Inter A B C D
shows X Inter B A C D
using Col-cases Inter-def assms by auto

lemma inter-right-comm:
assumes X Inter A B C D
shows X Inter A B D C
by (metis assms inter-left-comm inter-sym)

lemma inter-comm:
assumes X Inter A B C D
shows X Inter B A D C
using assms inter-left-comm inter-right-comm by blast

lemma l12-17 :
assumes A 6= B and

P Midpoint A C and
P Midpoint B D

shows A B Par C D
proof cases

assume P1 : Col A B P
thus ?thesis
proof cases

assume A = P
thus ?thesis

using assms(1 ) assms(2 ) assms(3 ) cong-diff-2 is-midpoint-id midpoint-col midpoint-cong not-par-not-col by blast
next

assume P2 : A 6= P
thus ?thesis
proof cases

assume B = P
thus ?thesis

by (metis assms(1 ) assms(2 ) assms(3 ) midpoint-col midpoint-distinct-2 midpoint-distinct-3 not-par-not-col
par-comm)

next
assume P3 : B 6= P
have P4 : Col B P D

using assms(3 ) midpoint-col not-col-permutation-4 by blast
have P5 : Col A P C

using assms(2 ) midpoint-col not-col-permutation-4 by blast
then have P6 : Col B C P
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using P1 P2 col-transitivity-2 not-col-permutation-3 not-col-permutation-5 by blast
have C 6= D

using assms(1 ) assms(2 ) assms(3 ) l7-9 by blast
moreover have Col A C D

using P1 P3 P4 P6 col3 not-col-permutation-3 not-col-permutation-5 by blast
moreover have Col B C D

using P3 P4 P6 col-trivial-3 colx by blast
ultimately show ?thesis

by (simp add: Par-def assms(1 ))
qed

qed
next

assume T1 : ¬ Col A B P
then obtain E where T2 : Col A B E ∧ A B Perp P E

using l8-18-existence by blast
have T3 : A 6= P

using T1 col-trivial-3 by blast
then show ?thesis
proof cases

assume T4 : A = E
then have T5 : Per P A B

using T2 l8-2 perp-per-1 by blast
obtain B ′ where T6 : Bet B A B ′ ∧ Cong A B ′ B A

using segment-construction by blast
obtain D ′ where T7 : Bet B ′ P D ′ ∧ Cong P D ′ B ′ P

using segment-construction by blast
have T8 : C Midpoint D D ′

using T6 T7 assms(2 ) assms(3 ) midpoint-def not-cong-3412 symmetry-preserves-midpoint by blast
have Col A B B ′

using Col-cases Col-def T6 by blast
then have T9 : Per P A B ′

using per-col T5 assms(1 ) by blast
obtain B ′′ where T10 : A Midpoint B B ′′ ∧ Cong P B P B ′′

using Per-def T5 by auto
then have B ′ = B ′′

using T6 cong-symmetry midpoint-def symmetric-point-uniqueness by blast
then have Cong P D P D ′

by (metis Cong-perm Midpoint-def T10 T7 assms(3 ) cong-inner-transitivity)
then have T12 : Per P C D

using Per-def T8 by auto
then have T13 : C PerpAt P C C D

by (metis T3 assms(1 ) assms(2 ) assms(3 ) l7-3-2 per-perp-in sym-preserve-diff )
have T14 : P 6= C

using T3 assms(2 ) is-midpoint-id-2 by auto
have T15 : C 6= D

using assms(1 ) assms(2 ) assms(3 ) l7-9 by auto
have T15A: C C Perp C D ∨ P C Perp C D

using T12 T14 T15 per-perp by auto
{

assume C C Perp C D
then have A B Par C D

using perp-distinct by auto
}
{

assume P C Perp C D
have A B Par C D
proof −

have Coplanar P A A C
using ncop-distincts by blast

moreover have Coplanar P A A D
using ncop-distincts by blast

moreover have Coplanar P A B C
by (simp add: assms(2 ) coplanar-perm-1 midpoint--coplanar)

moreover have Coplanar P A B D
using assms(3 ) midpoint-col ncop--ncols by blast

moreover have A B Perp P A
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using T2 T4 by auto
moreover have C D Perp P A
proof −

have P A Perp C D
proof −

have P 6= A
using T3 by auto

moreover have P C Perp C D
using T14 T15 T12 per-perp by blast

moreover have Col P C A
by (simp add: assms(2 ) l7-2 midpoint-col)

ultimately show ?thesis
using perp-col by blast

qed
then show ?thesis

using Perp-perm by blast
qed
ultimately show ?thesis using l12-9 by blast

qed
}
then show ?thesis using T15A

using ‹C C Perp C D =⇒ A B Par C D› by blast
next

assume S1B: A 6= E
obtain F where S2 : Bet E P F ∧ Cong P F E P

using segment-construction by blast
then have S2A: P Midpoint E F

using midpoint-def not-cong-3412 by blast
then have S3 : Col C D F

using T2 assms(2 ) assms(3 ) mid-preserves-col by blast
obtain A ′ where S4 : Bet A E A ′ ∧ Cong E A ′ A E

using segment-construction by blast
obtain C ′ where S5 : Bet A ′ P C ′ ∧ Cong P C ′ A ′ P

using segment-construction by blast
have S6 : F Midpoint C C ′

using S4 S5 S2A assms(2 ) midpoint-def not-cong-3412 symmetry-preserves-midpoint by blast
have S7 : Per P E A

using T2 col-trivial-3 l8-16-1 by blast
have S8 : Cong P C P C ′

proof −
have Cong P C P A

using Cong-perm Midpoint-def assms(2 ) by blast
moreover have Cong P A P C ′

proof −
obtain A ′′ where S9 : E Midpoint A A ′′ ∧ Cong P A P A ′′

using Per-def S7 by blast
have S10 : A ′ = A ′′

using Cong-perm Midpoint-def S4 S9 symmetric-point-uniqueness by blast
then have Cong P A P A ′ using S9 by auto
moreover have Cong P A ′ P C ′

using Cong-perm S5 by blast
ultimately show ?thesis

using cong-transitivity by blast
qed
ultimately show ?thesis

using cong-transitivity by blast
qed
then have S9 : Per P F C

using S6 Per-def by blast
then have F PerpAt P F F C

by (metis S2 S2A T1 T2 S1B assms(2 ) cong-diff-3 l7-9 per-perp-in)
then have F PerpAt F P C F

using Perp-in-perm by blast
then have S10 : F P Perp C F ∨ F F Perp C F

using l8-15-2 perp-in-col by blast
{
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assume S11 : F P Perp C F
have Coplanar P E A C
proof −

have Col P E P ∧ Col A C P
using assms(2 ) col-trivial-3 midpoint-col not-col-permutation-2 by blast

then show ?thesis
using Coplanar-def by blast

qed
moreover have Coplanar P E A D
proof −

have Col P D B ∧ Col E A B
using Mid-cases T2 assms(3 ) midpoint-col not-col-permutation-1 by blast

then show ?thesis
using Coplanar-def by blast

qed
moreover have Coplanar P E B C

by (metis S1B T2 calculation(1 ) col2-cop--cop col-transitivity-1 ncoplanar-perm-5 not-col-permutation-5 )
moreover have Coplanar P E B D

by (metis S1B T2 calculation(2 ) col2-cop--cop col-transitivity-1 ncoplanar-perm-5 not-col-permutation-5 )
moreover have C D Perp P E
proof −

have C 6= D
using assms(1 ) assms(2 ) assms(3 ) sym-preserve-diff by blast

moreover have P F Perp C F
using Perp-perm S11 by blast

moreover have Col P F E
by (simp add: Col-def S2 )

moreover have Col C F D
using Col-perm S3 by blast

ultimately show ?thesis using per-col
by (smt Perp-cases S2 col-trivial-3 cong-diff perp-col4 perp-not-eq-1 )

qed
ultimately have A B Par C D

using T2 l12-9 by blast
}
{

assume F F Perp C F
then have A B Par C D

using perp-distinct by blast
}
thus ?thesis

using S10 ‹F P Perp C F =⇒ A B Par C D› by blast
qed

qed

lemma l12-18-a:
assumes Cong A B C D and

Cong B C D A and
¬ Col A B C and
B 6= D and
Col A P C and
Col B P D

shows A B Par C D
proof −

have P Midpoint A C ∧ P Midpoint B D
using assms(1 ) assms(2 ) assms(3 ) assms(4 ) assms(5 ) assms(6 ) l7-21 by blast

then show ?thesis
using assms(3 ) l12-17 not-col-distincts by blast

qed

lemma l12-18-b:
assumes Cong A B C D and

Cong B C D A and
¬ Col A B C and
B 6= D and
Col A P C and
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Col B P D
shows B C Par D A
by (smt assms(1 ) assms(2 ) assms(3 ) assms(4 ) assms(5 ) assms(6 ) cong-symmetry inter-uniqueness-not-par l12-18-a

l6-21 not-col-distincts)

lemma l12-18-c:
assumes Cong A B C D and

Cong B C D A and
¬ Col A B C and
B 6= D and
Col A P C and
Col B P D

shows B D TS A C
proof −

have P Midpoint A C ∧ P Midpoint B D
using assms(1 ) assms(2 ) assms(3 ) assms(4 ) assms(5 ) assms(6 ) l7-21 by blast

then show ?thesis
proof −

have A C TS B D
by (metis Col-cases Tarski-neutral-dimensionless.mid-two-sides Tarski-neutral-dimensionless-axioms ‹P Midpoint

A C ∧ P Midpoint B D› assms(3 ))
then have ¬ Col B D A
by (meson Col-cases Tarski-neutral-dimensionless.mid-preserves-col Tarski-neutral-dimensionless.ts--ncol Tarski-neutral-dimensionless-axioms

‹P Midpoint A C ∧ P Midpoint B D› l7-2 )
then show ?thesis

by (meson Tarski-neutral-dimensionless.mid-two-sides Tarski-neutral-dimensionless-axioms ‹P Midpoint A C ∧ P
Midpoint B D›)

qed
qed

lemma l12-18-d:
assumes Cong A B C D and

Cong B C D A and
¬ Col A B C and
B 6= D and
Col A P C and
Col B P D

shows A C TS B D
by (metis (no-types, lifting) Col-cases TS-def assms(1 ) assms(2 ) assms(3 ) assms(4 ) assms(5 ) assms(6 ) l12-18-c

not-col-distincts not-cong-2143 not-cong-4321 )

lemma l12-18 :
assumes Cong A B C D and

Cong B C D A and
¬ Col A B C and
B 6= D and
Col A P C and
Col B P D

shows A B Par C D ∧ B C Par D A ∧ B D TS A C ∧ A C TS B D
using assms(1 ) assms(2 ) assms(3 ) assms(4 ) assms(5 ) assms(6 ) l12-18-a l12-18-b l12-18-c l12-18-d by auto

lemma par-two-sides-two-sides:
assumes A B Par C D and

B D TS A C
shows A C TS B D
by (metis Par-def TS-def assms(1 ) assms(2 ) invert-one-side invert-two-sides l12-6 l9-31 not-col-permutation-4 one-side-symmetry

os-ts1324--os pars--os3412 )

lemma par-one-or-two-sides:
assumes A B ParStrict C D
shows (A C TS B D ∧ B D TS A C ) ∨ (A C OS B D ∧ B D OS A C )
by (smt Par-def assms invert-one-side l12-6 l9-31 not-col-permutation-3 os-ts1324--os par-strict-not-col-1 par-strict-not-col-2

par-two-sides-two-sides pars--os3412 two-sides-cases)

lemma l12-21-b:
assumes A C TS B D and
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B A C CongA D C A
shows A B Par C D

proof −
have P1 : ¬ Col A B C

using TS-def assms(1 ) not-col-permutation-4 by blast
then have P2 : A 6= B

using col-trivial-1 by auto
have P3 : C 6= D

using assms(1 ) ts-distincts by blast
then obtain D ′ where P4 : C Out D D ′ ∧ Cong C D ′ A B

using P2 segment-construction-3 by blast
have P5 : B A C CongA D ′ C A
proof −

have A Out B B
using P2 out-trivial by auto

moreover have A Out C C
using P1 col-trivial-3 out-trivial by force

moreover have C Out D ′ D
by (simp add: P4 l6-6 )

moreover have C Out A A
using P1 not-col-distincts out-trivial by auto

ultimately show ?thesis
using assms(2 ) l11-10 by blast

qed
then have P6 : Cong D ′ A B C

using Cong-perm P4 cong-pseudo-reflexivity l11-49 by blast
have P7 : A C TS D ′ B
proof −

have A C TS D B
by (simp add: assms(1 ) l9-2 )

moreover have Col C A C
using col-trivial-3 by auto

ultimately show ?thesis
using P4 l9-5 by blast

qed
then obtain M where P8 : Col M A C ∧ Bet D ′ M B

using TS-def by blast
have B 6= D ′

using P7 not-two-sides-id by blast
then have M Midpoint A C ∧ M Midpoint B D ′

by (metis Col-cases P1 P4 P6 P8 bet-col l7-21 not-cong-3412 )
then have A B Par C D ′

using P2 l12-17 by blast
thus ?thesis

by (meson P3 P4 Tarski-neutral-dimensionless.par-col-par Tarski-neutral-dimensionless-axioms l6-6 out-col)
qed

lemma l12-22-aux:
assumes P 6= A and

A 6= C and
Bet P A C and
P A OS B D and
B A P CongA D C P

shows A B Par C D
proof −

have P1 : P 6= C
using CongA-def assms(5 ) by blast

obtain B ′ where P2 : Bet B A B ′ ∧ Cong A B ′ B A
using segment-construction by blast

have P3 : P A B CongA C A B ′

by (metis CongA-def P2 assms(2 ) assms(3 ) assms(5 ) cong-reverse-identity l11-14 )
have P4 : D C A CongA D C P

by (metis Col-def assms(2 ) assms(3 ) assms(4 ) bet-out-1 col124--nos l6-6 out2--conga out-trivial)
have P5 : A B ′ Par C D
proof −

have ¬ Col B P A
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using assms(4 ) col123--nos not-col-permutation-2 by blast
then have P A TS B B ′

by (metis P2 assms(4 ) bet--ts cong-reverse-identity invert-two-sides not-col-permutation-3 os-distincts)
then have A C TS B ′ D

by (meson assms(2 ) assms(3 ) assms(4 ) bet-col bet-col1 col-preserves-two-sides l9-2 l9-8-2 )
moreover have B ′ A C CongA D C A
proof −

have B ′ A C CongA B A P
by (simp add: P3 conga-comm conga-sym)

moreover have B A P CongA D C A
using P4 assms(5 ) not-conga not-conga-sym by blast

ultimately show ?thesis
using not-conga by blast

qed
ultimately show ?thesis

using l12-21-b by blast
qed
have C D Par A B
proof −

have A 6= B
using assms(4 ) os-distincts by blast

moreover have C D Par A B ′

using P5 par-symmetry by blast
moreover have Col A B ′ B

by (simp add: Col-def P2 )
ultimately show ?thesis

using par-col-par by blast
qed
thus ?thesis

using Par-cases by blast
qed

lemma l12-22-b:
assumes P Out A C and

P A OS B D and
B A P CongA D C P

shows A B Par C D
proof cases

assume A = C
then show ?thesis

using assms(2 ) assms(3 ) conga-comm conga-os--out not-par-not-col os-distincts out-col by blast
next

assume P1 : A 6= C
{

assume Bet P A C
then have A B Par C D

using P1 assms(2 ) assms(3 ) conga-diff2 l12-22-aux by blast
}
{

assume P2 : Bet P C A
have C D Par A B
proof −

have P C OS D B
using assms(1 ) assms(2 ) col-one-side one-side-symmetry out-col out-diff2 by blast

moreover have D C P CongA B A P
using assms(3 ) not-conga-sym by blast

then show ?thesis
by (metis P1 P2 assms(1 ) calculation l12-22-aux out-distinct)

qed
then have A B Par C D

using Par-cases by auto
}
then show ?thesis

using Out-def ‹Bet P A C =⇒ A B Par C D› assms(1 ) by blast
qed
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lemma par-strict-par :
assumes A B ParStrict C D
shows A B Par C D
using Par-def assms by auto

lemma par-strict-distinct:
assumes A B ParStrict C D
shows A 6= B ∧ C 6= D
using assms par-strict-neq1 par-strict-neq2 by auto

lemma col-par :
assumes A 6= B and

B 6= C and
Col A B C

shows A B Par B C
by (simp add: Par-def assms(1 ) assms(2 ) assms(3 ) col-trivial-1 )

lemma acute-col-perp--out:
assumes Acute A B C and

Col B C A ′ and
B C Perp A A ′

shows B Out A ′ C
proof −

{
assume P1 : ¬ Col B C A
then obtain B ′ where P2 : B C Perp B ′ B ∧ B C OS A B ′

using assms(2 ) l10-15 os-distincts by blast
have P3 : ¬ Col B ′ B C

using P2 col124--nos col-permutation-1 by blast
{

assume Col B B ′ A
then have A B C LtA A B C

using P2 acute-one-side-aux acute-sym assms(1 ) one-side-not-col124 by blast
then have False

by (simp add: nlta)
}
then have P4 : ¬ Col B B ′ A by auto
have P5 : B B ′ ParStrict A A ′

proof −
have B B ′ Par A A ′

proof −
have Coplanar B C B A

using ncop-distincts by blast
moreover have Coplanar B C B A ′

using ncop-distincts by blast
moreover have Coplanar B C B ′ A

using P2 coplanar-perm-1 os--coplanar by blast
moreover have Coplanar B C B ′ A ′

using assms(2 ) ncop--ncols by auto
moreover have B B ′ Perp B C

using P2 Perp-perm by blast
moreover have A A ′ Perp B C

using Perp-perm assms(3 ) by blast
ultimately show ?thesis

using l12-9 by auto
qed
moreover have Col A A ′ A

by (simp add: col-trivial-3 )
moreover have ¬ Col B B ′ A

by (simp add: P4 )
ultimately show ?thesis

using par-not-col-strict by auto
qed
then have P6 : ¬ Col B B ′ A ′

using P5 par-strict-not-col-4 by auto
then have B B ′ OS A ′ C
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proof −
have B B ′ OS A ′ A

using P5 l12-6 one-side-symmetry by blast
moreover have B B ′ OS A C

using P2 acute-one-side-aux acute-sym assms(1 ) one-side-symmetry by blast
ultimately show ?thesis

using one-side-transitivity by blast
qed
then have B Out A ′ C

using Col-cases assms(2 ) col-one-side-out by blast
}
then show ?thesis

using assms(2 ) assms(3 ) perp-not-col2 by blast
qed

lemma acute-col-perp--out-1 :
assumes Acute A B C and

Col B C A ′ and
B A Perp A A ′

shows B Out A ′ C
proof −

obtain A0 where P1 : Bet A B A0 ∧ Cong B A0 A B
using segment-construction by blast

obtain C0 where P2 : Bet C B C0 ∧ Cong B C0 C B
using segment-construction by blast

have P3 : ¬ Col B A A ′

using assms(3 ) col-trivial-2 perp-not-col2 by blast
have Bet A ′ B C0
proof −

have P4 : Col A ′ B C0
using P2 acute-distincts assms(1 ) assms(2 ) bet-col col-transitivity-2 not-col-permutation-4 by blast

{
assume P5 : B Out A ′ C0
have B Out A A0
proof −

have Bet C B A ′

by (smt Bet-perm Col-def P2 P5 assms(2 ) between-exchange3 not-bet-and-out outer-transitivity-between2 )
then have A B C CongA A0 B A ′

using P1 P3 acute-distincts assms(1 ) cong-diff-4 l11-14 not-col-distincts by blast
then have Acute A ′ B A0

using acute-conga--acute acute-sym assms(1 ) by blast
moreover have B A0 Perp A ′ A
proof −

have B 6= A0
using P1 P3 col-trivial-1 cong-reverse-identity by blast

moreover have B A Perp A ′ A
using Perp-perm assms(3 ) by blast

moreover have Col B A A0
using P1 bet-col not-col-permutation-4 by blast

ultimately show ?thesis
using perp-col by blast

qed
ultimately show ?thesis

using Col-cases P1 acute-col-perp--out bet-col by blast
qed
then have False

using P1 not-bet-and-out by blast
}
moreover then have ¬ B Out A ′ C0 by auto
ultimately show ?thesis

using l6-4-2 P4 by blast
qed
then show ?thesis

by (metis P2 P3 acute-distincts assms(1 ) cong-diff-3 l6-2 not-col-distincts)
qed
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lemma conga-inangle-per2--inangle:
assumes Per A B C and

T InAngle A B C and
P B A CongA P B C and
Per B P T and
Coplanar A B C P

shows P InAngle A B C
proof cases

assume P = T
then show ?thesis

by (simp add: assms(2 ))
next

assume P1 : P 6= T
obtain P ′ where P2 : P ′ InAngle A B C ∧ P ′ B A CongA P ′ B C

using CongA-def angle-bisector assms(3 ) by presburger
have P3 : Acute P ′ B A

using P2 acute-sym assms(1 ) conga-inangle-per--acute by blast
have P4 : ¬ Col A B C

using assms(1 ) assms(3 ) conga-diff2 conga-diff56 l8-9 by blast
have P5 : Col B P P ′

proof −
have ¬ B Out A C

using Col-cases P4 out-col by blast
moreover have Coplanar A B P P ′

proof −
have T1 : ¬ Col C A B

using Col-perm P4 by blast
moreover have Coplanar C A B P

using assms(5 ) ncoplanar-perm-8 by blast
moreover have Coplanar C A B P ′

using P2 inangle--coplanar ncoplanar-perm-21 by blast
ultimately show ?thesis

using coplanar-trans-1 by blast
qed
moreover have Coplanar B C P P ′

proof −
have Coplanar A B C P

by (meson P2 bet--coplanar calculation(1 ) calculation(2 ) col-in-angle-out coplanar-perm-18 coplanar-trans-1
inangle--coplanar l11-21-a l6-6 l6-7 not-col-permutation-4 not-col-permutation-5 )

have Coplanar A B C P ′

using P2 inangle--coplanar ncoplanar-perm-18 by blast
then show ?thesis

using P4 ‹Coplanar A B C P› coplanar-trans-1 by blast
qed
ultimately show ?thesis using conga2-cop2--col P2 assms(3 ) by blast

qed
have B Out P P ′

proof −
have Acute T B P ′

using P2 acute-sym assms(1 ) assms(2 ) conga-inangle2-per--acute by blast
moreover have B P ′ Perp T P
by (metis P1 P5 acute-distincts assms(3 ) assms(4 ) calculation col-per-perp conga-distinct l8-2 not-col-permutation-4 )
ultimately show ?thesis

using Col-cases P5 acute-col-perp--out by blast
qed
then show ?thesis

using Out-cases P2 in-angle-trans inangle-distincts out341--inangle by blast
qed

lemma perp-not-par :
assumes A B Perp X Y
shows ¬ A B Par X Y

proof −
obtain P where P1 : P PerpAt A B X Y

using Perp-def assms by blast
{
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assume P2 : A B Par X Y
{

assume P3 : A B ParStrict X Y
then have False
proof −

have Col P A B
using Col-perm P1 perp-in-col by blast

moreover have Col P X Y
using P1 col-permutation-2 perp-in-col by blast

ultimately show ?thesis
using P3 par-not-col by blast

qed
}
{

assume P4 : A 6= B ∧ X 6= Y ∧ Col A X Y ∧ Col B X Y
then have False
proof cases

assume A = Y
thus ?thesis

using P4 assms not-col-permutation-1 perp-not-col by blast
next

assume A 6= Y
thus ?thesis

using Col-perm P4 Perp-perm assms perp-not-col2 by blast
qed

}
then have False

using Par-def P2 ‹A B ParStrict X Y =⇒ False› by auto
}
thus ?thesis by auto

qed

lemma cong-conga-perp:
assumes B P TS A C and

Cong A B C B and
A B P CongA C B P

shows A C Perp B P
proof −

have P1 : ¬ Col A B P
using TS-def assms(1 ) by blast

then have P2 : B 6= P
using col-trivial-2 by blast

have P3 : A 6= B
using assms(1 ) ts-distincts by blast

have P4 : C 6= B
using assms(1 ) ts-distincts by auto

have P5 : A 6= C
using assms(1 ) not-two-sides-id by auto

show ?thesis
proof cases

assume P6 : Bet A B C
then have Per P B A

by (meson Tarski-neutral-dimensionless.conga-comm Tarski-neutral-dimensionless-axioms assms(3 ) l11-18-2 )
then show ?thesis

using P2 P3 P5 Per-perm P6 bet-col per-perp perp-col by blast
next

assume P7 : ¬ Bet A B C
obtain T where P7A: Col T B P ∧ Bet A T C

using TS-def assms(1 ) by auto
then have P8 : B 6= T

using P7 by blast
then have P9 : T B A CongA T B C

by (meson Col-cases P7A Tarski-neutral-dimensionless.col-conga--conga Tarski-neutral-dimensionless.conga-comm
Tarski-neutral-dimensionless-axioms assms(3 ))

then have P10 : Cong T A T C
using assms(2 ) cong2-conga-cong cong-reflexivity not-cong-2143 by blast
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then have P11 : T Midpoint A C
using P7A midpoint-def not-cong-2134 by blast

have P12 : Per B T A
using P11 Per-def assms(2 ) not-cong-2143 by blast

then show ?thesis
proof −

have A C Perp B T
by (metis P11 P12 P5 P8 col-per-perp midpoint-col midpoint-distinct-1 )

moreover have B 6= T
by (simp add: P8 )

moreover have T 6= A
using P1 P7A by blast

moreover have C 6= T
using P10 P5 cong-identity by blast

moreover have C 6= A
using P5 by auto

moreover have Col T A C
by (meson P7A bet-col not-col-permutation-4 )

ultimately show ?thesis
using P2 P7A not-col-permutation-4 perp-col1 by blast

qed
qed

qed

lemma perp-inter-exists:
assumes A B Perp C D
shows ∃ P. Col A B P ∧ Col C D P

proof −
obtain P where P PerpAt A B C D

using Perp-def assms by auto
then show ?thesis

using perp-in-col by blast
qed

lemma perp-inter-perp-in:
assumes A B Perp C D
shows ∃ P. Col A B P ∧ Col C D P ∧ P PerpAt A B C D
by (meson Perp-def Tarski-neutral-dimensionless.perp-in-col Tarski-neutral-dimensionless-axioms assms)

end

context Tarski-2D

begin

lemma l12-9-2D:
assumes A1 A2 Perp C1 C2 and

B1 B2 Perp C1 C2
shows A1 A2 Par B1 B2
using l12-9 all-coplanar assms(1 ) assms(2 ) by auto

end

context Tarski-neutral-dimensionless

begin

3.12 Tarski: Chapter 13
3.12.1 Introduction
lemma per2-col-eq:

assumes A 6= P and
A 6= P ′ and
Per A P B and
Per A P ′ B and
Col P A P ′
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shows P = P ′

by (metis assms(1 ) assms(2 ) assms(3 ) assms(4 ) assms(5 ) col-per2-cases l6-16-1 l8-2 not-col-permutation-3 )

lemma per2-preserves-diff :
assumes PO 6= A ′ and

PO 6= B ′ and
Col PO A ′ B ′ and
Per PO A ′ A and
Per PO B ′ B and
A ′ 6= B ′

shows A 6= B
using assms(1 ) assms(2 ) assms(3 ) assms(4 ) assms(5 ) assms(6 ) not-col-permutation-4 per2-col-eq by blast

lemma per23-preserves-bet:
assumes Bet A B C and

A 6= B ′ and A 6= C ′ and
Col A B ′ C ′ and
Per A B ′ B and
Per A C ′ C

shows Bet A B ′ C ′

proof −
have P1 : Col A B C

by (simp add: assms(1 ) bet-col)
show ?thesis
proof cases

assume P2 : B = B ′

then have Col A C ′ C
using P1 assms(2 ) assms(4 ) col-transitivity-1 by blast

then have P4 : A = C ′ ∨ C = C ′

by (simp add: assms(6 ) l8-9 )
{

assume A = C ′

then have Bet A B ′ C ′

using assms(3 ) by auto
}
{

assume C = C ′

then have Bet A B ′ C ′

using P2 assms(1 ) by auto
}
then show ?thesis

using P4 assms(3 ) by auto
next

assume T1 : B 6= B ′

have T2 : A 6= C
using assms(3 ) assms(6 ) l8-8 by auto

have T3 : C 6= C ′

using P1 T1 assms(2 ) assms(3 ) assms(4 ) assms(5 ) col-trivial-3 colx l8-9 not-col-permutation-5 by blast
have T3A: A B ′ Perp B ′ B

using T1 assms(2 ) assms(5 ) per-perp by auto
have T3B: A C ′ Perp C ′ C

using T3 assms(3 ) assms(6 ) per-perp by auto
have T4 : B B ′ Par C C ′

proof −
have Coplanar A B ′ B C

using P1 ncop--ncols by blast
moreover have Coplanar A B ′ B C ′

using assms(4 ) ncop--ncols by blast
moreover have Coplanar A B ′ B ′ C

using ncop-distincts by blast
moreover have B B ′ Perp A B ′

using Perp-perm ‹A B ′ Perp B ′ B› by blast
moreover have C C ′ Perp A B ′

using Col-cases Perp-cases T3B assms(2 ) assms(4 ) perp-col1 by blast
ultimately show ?thesis

using l12-9 bet--coplanar between-trivial by auto
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qed
moreover have Bet A B ′ C ′

proof cases
assume B = C
then show ?thesis

by (metis T1 Tarski-neutral-dimensionless.per-col-eq Tarski-neutral-dimensionless-axioms assms(4 ) assms(5 )
calculation l6-16-1 l6-6 or-bet-out out-diff1 par-id)

next
assume T6 : B 6= C
have T7 : ¬ Col A B ′ B

using T1 assms(2 ) assms(5 ) l8-9 by blast
have T8 : ¬ Col A C ′ C

using T3 assms(3 ) assms(6 ) l8-9 by blast
have T9 : B ′ 6= C ′

using P1 T6 assms(2 ) assms(5 ) assms(6 ) col-per2--per col-permutation-1 l8-2 l8-8 by blast
have T10 : B B ′ ParStrict C C ′ ∨ (B 6= B ′ ∧ C 6= C ′ ∧ Col B C C ′ ∧ Col B ′ C C ′)

using Par-def calculation by blast
{

assume T11 : B B ′ ParStrict C C ′

then have T12 : B B ′ OS C ′ C
using l12-6 one-side-symmetry by blast

have B B ′ TS A C
using Col-cases T6 T7 assms(1 ) bet--ts by blast

then have Bet A B ′ C ′

using T12 assms(4 ) l9-5 l9-9 not-col-distincts or-bet-out by blast
}
{

assume B 6= B ′ ∧ C 6= C ′ ∧ Col B C C ′ ∧ Col B ′ C C ′

then have Bet A B ′ C ′

using Col-def T6 T8 assms(1 ) col-transitivity-2 by blast
}
then show ?thesis

using T10 ‹B B ′ ParStrict C C ′ =⇒ Bet A B ′ C ′› by blast
qed
ultimately show ?thesis

by (smt P1 Par-def T1 T2 assms(4 ) col-transitivity-2 not-col-permutation-1 par-strict-not-col-2 )
qed

qed

lemma per23-preserves-bet-inv:
assumes Bet A B ′ C ′ and

A 6= B ′ and
Col A B C and
Per A B ′ B and
Per A C ′ C

shows Bet A B C
proof cases

assume T1 : B = B ′

then have Col A C ′ C
using Col-def assms(1 ) assms(2 ) assms(3 ) col-transitivity-1 by blast

then have T2 : A = C ′ ∨ C = C ′

by (simp add: assms(5 ) l8-9 )
{

assume A = C ′

then have Bet A B C
using assms(1 ) assms(2 ) between-identity by blast

}
{

assume C = C ′

then have Bet A B C
by (simp add: T1 assms(1 ))

}
then show ?thesis

using T2 ‹A = C ′ =⇒ Bet A B C › by auto
next

assume P1 : B 6= B ′
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then have P2 : A B ′ Perp B ′ B
using assms(2 ) assms(4 ) per-perp by auto

have Per A C ′ C
by (simp add: assms(5 ))

then have P2 : C ′ PerpAt A C ′ C ′ C
by (metis (mono-tags, lifting) Col-cases P1 assms(1 ) assms(2 ) assms(3 ) assms(4 ) bet-col bet-neq12--neq col-transitivity-1

l8-9 per-perp-in)
then have P3 : A C ′ Perp C ′ C

using perp-in-perp by auto
then have C ′ 6= C

using ‹A C ′ Perp C ′ C › perp-not-eq-2 by auto
have C ′ PerpAt C ′ A C C ′

by (simp add: Perp-in-perm P2 )
then have (C ′ A Perp C C ′) ∨ (C ′ C ′ Perp C C ′)

using Perp-def by blast
have A 6= C ′

using assms(1 ) assms(2 ) between-identity by blast
{

assume C ′ A Perp C C ′

have Col A B ′ C ′ using assms(1 )
by (simp add: Col-def )

have A B ′ Perp C ′ C
using Col-cases ‹A C ′ Perp C ′ C › ‹Col A B ′ C ′› assms(2 ) perp-col by blast

have P7 : B ′ B Par C ′ C
proof −

have Coplanar A B ′ B ′ C ′

using ncop-distincts by blast
moreover have Coplanar A B ′ B ′ C

using ncop-distincts by auto
moreover have Coplanar A B ′ B C ′

using Bet-perm assms(1 ) bet--coplanar ncoplanar-perm-20 by blast
moreover have Coplanar A B ′ B C

using assms(3 ) ncop--ncols by auto
moreover have B ′ B Perp A B ′

by (metis P1 Perp-perm assms(2 ) assms(4 ) per-perp)
moreover have C ′ C Perp A B ′

using Perp-cases ‹A B ′ Perp C ′ C › by auto
ultimately show ?thesis using l12-9 by blast

qed
have Bet A B C
proof cases

assume B = C
then show ?thesis

by (simp add: between-trivial)
next

assume T1 : B 6= C
have T2 : B ′ B ParStrict C ′ C ∨ (B ′ 6= B ∧ C ′ 6= C ∧ Col B ′ C ′ C ∧ Col B C ′ C )

using P7 Par-def by auto
{

assume T3 : B ′ B ParStrict C ′ C
then have B ′ 6= C ′

using not-par-strict-id by auto
have ∃ X . Col X B ′ B ∧ Col X B ′ C

using col-trivial-1 by blast
have B ′ B OS C ′ C

by (simp add: T3 l12-6 )
have B ′ B TS A C ′

by (metis Bet-cases T3 assms(1 ) assms(2 ) bet--ts l9-2 par-strict-not-col-1 )
then have T8 : B ′ B TS C A

using ‹B ′ B OS C ′ C › l9-2 l9-8-2 by blast
then obtain T where T9 : Col T B ′ B ∧ Bet C T A

using TS-def by auto
have ¬ Col A C B ′

using T8 assms(3 ) not-col-permutation-2 not-col-permutation-3 ts--ncol by blast
then have T = B

by (metis Col-def Col-perm T9 assms(3 ) colx)
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then have Bet A B C
using Bet-cases T9 by auto

}
{

assume B ′ 6= B ∧ C ′ 6= C ∧ Col B ′ C ′ C ∧ Col B C ′ C
then have Col A B ′ B

by (metis Col-perm T1 assms(3 ) l6-16-1 )
then have A = B ′ ∨ B = B ′

using assms(4 ) l8-9 by auto
then have Bet A B C

by (simp add: P1 assms(2 ))
}
then show ?thesis

using T2 ‹B ′ B ParStrict C ′ C =⇒ Bet A B C › by auto
qed

}
then show ?thesis

by (simp add: P3 perp-comm)
qed

lemma per13-preserves-bet:
assumes Bet A B C and

B 6= A ′ and
B 6= C ′ and
Col A ′ B C ′ and
Per B A ′ A and
Per B C ′ C

shows Bet A ′ B C ′

by (smt Col-cases Tarski-neutral-dimensionless.per23-preserves-bet-inv Tarski-neutral-dimensionless-axioms assms(1 )
assms(4 ) assms(5 ) assms(6 ) bet-col between-equality between-symmetry per-distinct third-point)

lemma per13-preserves-bet-inv:
assumes Bet A ′ B C ′ and

B 6= A ′ and
B 6= C ′ and
Col A B C and
Per B A ′ A and
Per B C ′ C

shows Bet A B C
proof −

have P1 : Col A ′ B C ′

by (simp add: Col-def assms(1 ))
show ?thesis
proof cases

assume A = A ′

then show ?thesis
using P1 assms(1 ) assms(3 ) assms(4 ) assms(6 ) col-transitivity-2 l8-9 not-bet-distincts by blast

next
assume A 6= A ′

show ?thesis
by (metis Col-cases P1 Tarski-neutral-dimensionless.per23-preserves-bet Tarski-neutral-dimensionless-axioms assms(1 )

assms(2 ) assms(3 ) assms(4 ) assms(5 ) assms(6 ) between-equality between-symmetry third-point)
qed

qed

lemma per3-preserves-bet1 :
assumes Col PO A B and

Bet A B C and
PO 6= A ′ and
PO 6= B ′ and
PO 6= C ′ and
Per PO A ′ A and
Per PO B ′ B and
Per PO C ′ C and
Col A ′ B ′ C ′ and
Col PO A ′ B ′
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shows Bet A ′ B ′ C ′

proof cases
assume A = B
then show ?thesis

using assms(10 ) assms(3 ) assms(4 ) assms(6 ) assms(7 ) between-trivial2 per2-preserves-diff by blast
next

assume P1 : A 6= B
show ?thesis
proof cases

assume P2 : A = A ′

show ?thesis
proof cases

assume P3 : B = B ′

then have Col PO C C ′

by (metis (no-types, opaque-lifting) Col-def P1 P2 assms(1 ) assms(2 ) assms(9 ) col-transitivity-1 )
then have C = C ′

using assms(5 ) assms(8 ) l8-9 not-col-permutation-5 by blast
then show ?thesis

using P2 P3 assms(2 ) by blast
next

assume P4 : B 6= B ′

show ?thesis
proof cases

assume A = B ′

then show ?thesis
using P2 between-trivial2 by auto

next
assume A 6= B ′

have A 6= C
using P1 assms(2 ) between-identity by blast

have P7 : ¬ Col PO B ′ B
using P4 assms(4 ) assms(7 ) l8-9 by blast

show ?thesis
using P2 P7 assms(1 ) assms(10 ) assms(3 ) col-transitivity-1 by blast

qed
qed

next
assume R1 : A 6= A ′

show ?thesis
proof cases

assume R2 : A ′ = B ′

then show ?thesis
by (simp add: between-trivial2 )

next
assume R3 : A ′ 6= B ′

show ?thesis
proof cases

assume B = C
have B ′ = C ′

by (metis Tarski-neutral-dimensionless.per2-col-eq Tarski-neutral-dimensionless-axioms ‹A ′ 6= B ′› ‹B = C ›
assms(10 ) assms(4 ) assms(5 ) assms(7 ) assms(8 ) assms(9 ) col-transitivity-2 not-col-permutation-2 )

then show ?thesis
by (simp add: between-trivial)

next
assume R4 : B 6= C
show ?thesis
proof cases

assume B = B ′

then show ?thesis
by (metis R1 assms(1 ) assms(10 ) assms(3 ) assms(4 ) assms(6 ) l6-16-1 l8-9 not-col-permutation-2 )

next
assume R5 : B 6= B ′

show ?thesis
proof cases

assume A ′ = B
then show ?thesis
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using R5 assms(10 ) assms(4 ) assms(7 ) col-permutation-5 l8-9 by blast
next

assume R5A: A ′ 6= B
have R6 : C 6= C ′

by (metis P1 R1 R3 assms(1 ) assms(10 ) assms(2 ) assms(3 ) assms(5 ) assms(6 ) assms(9 ) bet-col
col-permutation-1 col-trivial-2 l6-21 l8-9 )

have R7 : A A ′ Perp PO A ′

by (metis Perp-cases R1 assms(3 ) assms(6 ) per-perp)
have R8 : C C ′ Perp PO A ′

by (smt Perp-cases R3 R6 assms(10 ) assms(3 ) assms(5 ) assms(8 ) assms(9 ) col2--eq col3 col-per-perp
col-trivial-2 l8-2 per-perp)

have A A ′ Par C C ′

proof −
have Coplanar PO A ′ A C

using P1 assms(1 ) assms(2 ) bet-col col-trivial-2 colx ncop--ncols by blast
moreover have Coplanar PO A ′ A C ′

using R3 assms(10 ) assms(9 ) col-trivial-2 colx ncop--ncols by blast
moreover have Coplanar PO A ′ A ′ C

using ncop-distincts by blast
moreover have Coplanar PO A ′ A ′ C ′

using ncop-distincts by blast
ultimately show ?thesis using l12-9 R7 R8 by blast

qed
have S1 : B B ′ Perp PO A ′

by (metis Col-cases Per-cases Perp-perm R5 assms(10 ) assms(3 ) assms(4 ) assms(7 ) col-per-perp)
have A A ′ Par B B ′

proof −
have Coplanar PO A ′ A B

using assms(1 ) ncop--ncols by auto
moreover have Coplanar PO A ′ A B ′

using assms(10 ) ncop--ncols by auto
moreover have Coplanar PO A ′ A ′ B

using ncop-distincts by auto
moreover have Coplanar PO A ′ A ′ B ′

using ncop-distincts by auto
moreover have A A ′ Perp PO A ′

by (simp add: R7 )
moreover have B B ′ Perp PO A ′

by (simp add: S1 )
ultimately show ?thesis

using l12-9 by blast
qed
{

assume A A ′ ParStrict B B ′

then have A A ′ OS B B ′

by (simp add: l12-6 )
have B B ′ TS A C

using R4 ‹A A ′ ParStrict B B ′› assms(2 ) bet--ts par-strict-not-col-3 by auto
have B B ′ OS A A ′

using ‹A A ′ ParStrict B B ′› pars--os3412 by auto
have B B ′ TS A ′ C

using ‹B B ′ OS A A ′› ‹B B ′ TS A C › l9-8-2 by blast
have Bet A ′ B ′ C ′

proof cases
assume C = C ′

then show ?thesis
using R6 by auto

next
assume C 6= C ′

have C C ′ Perp PO A ′

by (simp add: R8 )
have Q2 : B B ′ Par C C ′

proof −
have Coplanar PO A ′ B C

by (metis P1 assms(1 ) assms(2 ) bet-col col-transitivity-1 colx ncop--ncols not-col-permutation-5 )
moreover have Coplanar PO A ′ B C ′
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using R3 assms(10 ) assms(9 ) col-trivial-2 colx ncop--ncols by blast
moreover have Coplanar PO A ′ B ′ C

by (simp add: assms(10 ) col--coplanar)
moreover have Coplanar PO A ′ B ′ C ′

using assms(10 ) col--coplanar by auto
moreover have B B ′ Perp PO A ′

by (simp add: S1 )
moreover have C C ′ Perp PO A ′

by (simp add: R8 )
ultimately show ?thesis

using l12-9 by auto
qed
then have Q3 : (B B ′ ParStrict C C ′) ∨ (B 6= B ′ ∧ C 6= C ′ ∧ Col B C C ′ ∧ Col B ′ C C ′)

by (simp add: Par-def )
{

assume B B ′ ParStrict C C ′

then have B B ′ OS C C ′

using l12-6 by auto
then have B B ′ TS C ′ A ′

using ‹B B ′ TS A ′ C › l9-2 l9-8-2 by blast
then obtain T where Q4 : Col T B B ′ ∧ Bet C ′ T A ′

using TS-def by blast
have T = B ′

proof −
have ¬ Col B B ′ A ′

using ‹B B ′ OS A A ′› col124--nos by auto
moreover have A ′ 6= C ′

using ‹B B ′ TS C ′ A ′› not-two-sides-id by auto
moreover have Col B B ′ T

using Col-cases Q4 by auto
moreover have Col B B ′ B ′

using not-col-distincts by blast
moreover have Col A ′ C ′ T

by (simp add: Col-def Q4 )
ultimately show ?thesis

by (meson assms(9 ) col-permutation-5 l6-21 )
qed
then have Bet A ′ B ′ C ′

using Q4 between-symmetry by blast
}
{

assume B 6= B ′ ∧ C 6= C ′ ∧ Col B C C ′ ∧ Col B ′ C C ′

then have Bet A ′ B ′ C ′

using TS-def ‹B B ′ TS A C › l6-16-1 not-col-permutation-2 by blast
}
then show ?thesis

using Q3 ‹B B ′ ParStrict C C ′ =⇒ Bet A ′ B ′ C ′› by blast
qed

}
{

assume R8 : A 6= A ′ ∧ B 6= B ′ ∧ Col A B B ′ ∧ Col A ′ B B ′

have A ′ A Perp PO A ′

by (simp add: R7 perp-left-comm)
have ¬ Col A ′ A PO

using Col-cases R8 assms(3 ) assms(6 ) l8-9 by blast
then have Bet A ′ B ′ C ′

using Col-perm P1 R8 assms(1 ) l6-16-1 by blast
}
then show ?thesis

using Par-def ‹A A ′ Par B B ′› ‹A A ′ ParStrict B B ′ =⇒ Bet A ′ B ′ C ′› by auto
qed

qed
qed

qed
qed

qed
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lemma per3-preserves-bet2-aux:
assumes Col PO A C and

A 6= C ′ and
Bet A B ′ C ′ and
PO 6= A and
PO 6= B ′ and
PO 6= C ′ and
Per PO B ′ B and
Per PO C ′ C and
Col A B C and
Col PO A C ′

shows Bet A B C
proof cases

assume A = B
then show ?thesis

by (simp add: between-trivial2 )
next

assume P1 : A 6= B
show ?thesis
proof cases

assume B = C
then show ?thesis

by (simp add: between-trivial)
next

assume P2 : B 6= C
have P3 : Col PO A B ′

by (metis Col-def assms(10 ) assms(2 ) assms(3 ) l6-16-1 )
then have P4 : Col PO B ′ C ′

using assms(10 ) assms(4 ) col-transitivity-1 by blast
show ?thesis
proof cases

assume B = B ′

thus ?thesis
by (metis Tarski-neutral-dimensionless.per-col-eq Tarski-neutral-dimensionless-axioms assms(1 ) assms(10 )

assms(3 ) assms(4 ) assms(6 ) assms(8 ) col-transitivity-1 )
next

assume P5 : B 6= B ′

have P6 : C = C ′

using assms(1 ) assms(10 ) assms(4 ) assms(6 ) assms(8 ) col-transitivity-1 l8-9 by blast
then have False
by (metis P3 P5 P6 Tarski-neutral-dimensionless.per-col-eq Tarski-neutral-dimensionless-axioms assms(1 ) assms(2 )

assms(4 ) assms(5 ) assms(7 ) assms(9 ) col-transitivity-1 l6-16-1 not-col-permutation-4 )
then show ?thesis by blast

qed
qed

qed

lemma per3-preserves-bet2 :
assumes Col PO A C and

A ′ 6= C ′ and
Bet A ′ B ′ C ′ and
PO 6= A ′ and
PO 6= B ′ and
PO 6= C ′ and
Per PO A ′ A and
Per PO B ′ B and
Per PO C ′ C and
Col A B C and
Col PO A ′ C ′

shows Bet A B C
proof cases

assume A = A ′

then show ?thesis
using assms(1 ) assms(10 ) assms(11 ) assms(2 ) assms(3 ) assms(4 ) assms(5 ) assms(6 ) assms(8 ) assms(9 ) per3-preserves-bet2-aux

by blast
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next
assume P1 : A 6= A ′

show ?thesis
proof cases

assume C = C ′

thus ?thesis
by (metis P1 assms(1 ) assms(11 ) assms(4 ) assms(6 ) assms(7 ) col-trivial-3 l6-21 l8-9 not-col-permutation-2 )

next
assume P2 : C 6= C ′

then have P3 : PO A ′ Perp C C ′

by (metis assms(11 ) assms(4 ) assms(6 ) assms(9 ) col-per-perp l8-2 not-col-permutation-1 )
have P4 : PO A ′ Perp A A ′

using P1 assms(4 ) assms(7 ) per-perp perp-right-comm by auto
have A A ′ Par C C ′

proof −
have Coplanar PO A ′ A C

using assms(1 ) ncop--ncols by blast
moreover have Coplanar PO A ′ A C ′

by (meson assms(11 ) ncop--ncols)
moreover have Coplanar PO A ′ A ′ C

using ncop-distincts by blast
moreover have Coplanar PO A ′ A ′ C ′

using ncop-distincts by blast
moreover have A A ′ Perp PO A ′

using P4 Perp-cases by blast
moreover have C C ′ Perp PO A ′

using P3 Perp-cases by auto
ultimately show ?thesis

using l12-9 by blast
qed
{

assume P5 : A A ′ ParStrict C C ′

then have P6 : A A ′ OS C C ′

by (simp add: l12-6 )
have P7 : C C ′ OS A A ′

by (simp add: P5 pars--os3412 )

have Bet A B C
proof cases

assume P8 : B = B ′

then have A ′ A OS B C ′

by (metis P6 assms(10 ) assms(3 ) bet-out col123--nos col124--nos invert-one-side out-one-side)
then have A A ′ OS B C ′

by (simp add: invert-one-side)
then have A A ′ OS B C

using P6 one-side-symmetry one-side-transitivity by blast
then have P12 : A Out B C

using assms(10 ) col-one-side-out by blast
have C ′ C OS B A ′

by (metis Col-perm P5 P7 P8 assms(10 ) assms(3 ) bet-out-1 col123--nos out-one-side par-strict-not-col-2 )
then have C C ′ OS B A

by (meson P7 invert-one-side one-side-symmetry one-side-transitivity)
then have C C ′ OS A B

using one-side-symmetry by blast
then have C Out A B

using assms(10 ) col-one-side-out col-permutation-2 by blast
then show ?thesis

by (simp add: P12 out2--bet)
next

assume T1 : B 6= B ′

have T2 : PO A ′ Perp B B ′

proof −
have Per PO B ′ B

by (simp add: assms(8 ))
then have B ′ PerpAt PO B ′ B ′ B

using T1 assms(5 ) per-perp-in by auto
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then have B ′ PerpAt B ′ PO B B ′

by (simp add: perp-in-comm)
then have T4 : B ′ PO Perp B B ′ ∨ B ′ B ′ Perp B B ′

using Perp-def by auto
{

assume T5 : B ′ PO Perp B B ′

have Col A ′ B ′ C ′

by (simp add: assms(3 ) bet-col)
then have Col PO B ′ A ′

using assms(11 ) assms(2 ) col2--eq col-permutation-4 col-permutation-5 by blast
then have PO A ′ Perp B B ′

by (metis T5 assms(4 ) col-trivial-3 perp-col2 perp-comm)
}
{

assume B ′ B ′ Perp B B ′

then have PO A ′ Perp B B ′

using perp-distinct by auto
}
then show ?thesis

using T4 ‹B ′ PO Perp B B ′ =⇒ PO A ′ Perp B B ′› by linarith
qed
have T6 : B B ′ Par A A ′

proof −
have Coplanar PO A ′ B A

by (metis Col-cases P7 assms(1 ) assms(10 ) col-transitivity-2 ncop--ncols os-distincts)
moreover have Coplanar PO A ′ B A ′

using ncop-distincts by blast
moreover have Coplanar PO A ′ B ′ A
proof −

have (Bet PO A ′ C ′ ∨ Bet PO C ′ A ′) ∨ Bet C ′ PO A ′

by (meson assms(11 ) third-point)
then show ?thesis

by (meson Bet-perm assms(3 ) bet--coplanar between-exchange2 l5-3 ncoplanar-perm-8 )
qed
moreover have Coplanar PO A ′ B ′ A ′

using ncop-distincts by auto
moreover have B B ′ Perp PO A ′

using Perp-cases T2 by blast
moreover have A A ′ Perp PO A ′

using P4 Perp-cases by blast
ultimately show ?thesis

using l12-9 by blast
qed
{

assume B B ′ ParStrict A A ′

then have B B ′ OS A A ′

by (simp add: l12-6 )
have B B ′ Par C C ′

proof −
have Coplanar PO A ′ B C

by (metis Col-cases P7 assms(1 ) assms(10 ) col2--eq ncop--ncols os-distincts)
moreover have Coplanar PO A ′ B C ′

using assms(11 ) ncop--ncols by auto
moreover have Coplanar PO A ′ B ′ C

by (metis Out-def assms(11 ) assms(2 ) assms(3 ) col-trivial-2 l6-16-1 ncop--ncols not-col-permutation-1
out-col)

moreover have Coplanar PO A ′ B ′ C ′

using assms(11 ) ncop--ncols by blast
moreover have B B ′ Perp PO A ′

using Perp-cases T2 by blast
moreover have C C ′ Perp PO A ′

using P3 Perp-cases by auto
ultimately show ?thesis

using l12-9 by blast
qed
{
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assume T9 : B B ′ ParStrict C C ′

then have T10 : B B ′ OS C C ′

by (simp add: l12-6 )
have T11 : B B ′ TS A ′ C ′

by (metis Col-cases T10 ‹B B ′ ParStrict A A ′› assms(3 ) bet--ts invert-two-sides os-distincts par-strict-not-col-4 )
have T12 : B B ′ TS A C ′

using ‹B B ′ OS A A ′› ‹B B ′ TS A ′ C ′› l9-8-2 one-side-symmetry by blast
then have T12A: B B ′ TS C A

using T10 l9-2 l9-8-2 one-side-symmetry by blast
then obtain T where T13 : Col T B B ′ ∧ Bet C T A

using TS-def by auto
then have B = T

by (metis Col-perm TS-def T12A assms(10 ) bet-col1 col-transitivity-2 col-two-sides-bet)
then have Bet A B C

using Bet-perm T13 by blast
}
{

assume B 6= B ′ ∧ C 6= C ′ ∧ Col B C C ′ ∧ Col B ′ C C ′

then have Bet A B C
by (metis Col-cases P5 assms(10 ) col3 col-trivial-2 not-bet-distincts par-strict-not-col-3 )

}
then have Bet A B C

using Par-def ‹B B ′ Par C C ′› ‹B B ′ ParStrict C C ′ =⇒ Bet A B C › by auto
}
{

assume B 6= B ′ ∧ A 6= A ′ ∧ Col B A A ′ ∧ Col B ′ A A ′

then have Bet A B C
by (smt P6 assms(10 ) col123--nos l6-16-1 not-bet-distincts not-col-permutation-1 )

}
then show ?thesis

using Par-def T6 ‹B B ′ ParStrict A A ′ =⇒ Bet A B C › by auto
qed

}
{

assume A 6= A ′ ∧ C 6= C ′ ∧ Col A C C ′ ∧ Col A ′ C C ′

then have Bet A B C
by (metis Col-perm P3 Par-def assms(11 ) assms(2 ) assms(4 ) col-transitivity-1 perp-not-par)

}
thus ?thesis

using Par-def ‹A A ′ Par C C ′› ‹A A ′ ParStrict C C ′ =⇒ Bet A B C › by auto
qed

qed

lemma symmetry-preserves-per :
assumes Per B P A and

B Midpoint A A ′ and
B Midpoint P P ′

shows Per B P ′ A ′

proof −
obtain C where P1 : P Midpoint A C

using symmetric-point-construction by blast
obtain C ′ where P2 : B Midpoint C C ′

using symmetric-point-construction by blast
have P3 : P ′ Midpoint A ′ C ′

using P1 P2 assms(2 ) assms(3 ) symmetry-preserves-midpoint by blast
have Cong B A ′ B C ′

by (meson P1 P2 assms(1 ) assms(2 ) l7-16 l7-3-2 per-double-cong)
then show ?thesis

using P3 Per-def by blast
qed

lemma l13-1-aux:
assumes ¬ Col A B C and

P Midpoint B C and
Q Midpoint A C and
R Midpoint A B
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shows
∃ X Y . (R PerpAt X Y A B ∧ X Y Perp P Q ∧ Coplanar A B C X ∧ Coplanar A B C Y )

proof −
have P1 : Q 6= C

using assms(1 ) assms(3 ) midpoint-not-midpoint not-col-distincts by blast
have P2 : P 6= C

using assms(1 ) assms(2 ) is-midpoint-id-2 not-col-distincts by blast
then have Q 6= R

using assms(2 ) assms(3 ) assms(4 ) l7-3 symmetric-point-uniqueness by blast
have R 6= B

using assms(1 ) assms(4 ) midpoint-not-midpoint not-col-distincts by blast
{

assume V1 : Col P Q C
have V2 : Col B P C

by (simp add: assms(2 ) bet-col midpoint-bet)
have V3 : Col A Q C

by (simp add: assms(3 ) bet-col midpoint-bet)
have Col A R B

using assms(4 ) midpoint-col not-col-permutation-4 by blast
then have Col A B C using V1 V2 V3

by (metis P1 P2 col2--eq col-permutation-5 )
then have False

using assms(1 ) by auto
}
then have P2A: ¬ Col P Q C by auto
then obtain C ′ where P3 : Col P Q C ′ ∧ P Q Perp C C ′

using l8-18-existence by blast
obtain A ′ where P4 : Q Midpoint C ′ A ′

using symmetric-point-construction by auto
obtain B ′ where P5 : P Midpoint C ′ B ′

using symmetric-point-construction by auto
have P6 : Cong C C ′ B B ′

using Mid-cases P5 assms(2 ) l7-13 by blast
have P7 : Cong C C ′ A A ′

using P4 assms(3 ) l7-13 l7-2 by blast
have P8 : Per P B ′ B
proof cases

assume P = C ′

then show ?thesis
using P5 Per-cases is-midpoint-id l8-5 by blast

next
assume P 6= C ′

then have P C ′ Perp C C ′

using P3 perp-col by blast
then have Per P C ′ C

using Perp-perm perp-per-2 by blast
then show ?thesis

using symmetry-preserves-per Mid-perm P5 assms(2 ) by blast
qed
have P8A: Per Q A ′ A
proof cases

assume Q = C ′

then show ?thesis
using P4 Per-cases is-midpoint-id l8-5 by blast

next
assume Q 6= C ′

then have C ′ Q Perp C C ′

using P3 col-trivial-2 perp-col2 by auto
then have Per Q C ′ C

by (simp add: perp-per-1 )
then show ?thesis

by (meson Mid-cases P4 assms(3 ) l7-3-2 midpoint-preserves-per)
qed
have P9 : Col A ′ C ′ Q

using P4 midpoint-col not-col-permutation-3 by blast
have P10 : Col B ′ C ′ P
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using P5 midpoint-col not-col-permutation-3 by blast
have P11 : P 6= Q

using P2A col-trivial-1 by auto
then have P12 : A ′ 6= B ′

using P4 P5 l7-17 by blast
have P13 : Col A ′ B ′ P

by (metis P10 P3 P4 P5 P9 col2--eq col-permutation-5 midpoint-distinct-1 not-col-distincts)
have P14 : Col A ′ B ′ Q

by (smt P10 P3 P4 P5 P9 col3 col-permutation-1 midpoint-distinct-1 not-col-distincts)
have P15 : Col A ′ B ′ C ′

using P11 P13 P14 P3 colx by blast
have P16 : C 6= C ′

using P2A P3 by blast
then have P17 : A 6= A ′

using P7 cong-diff by blast
have P18 : B 6= B ′

using P16 P6 cong-diff by blast
have P19 : Per P A ′ A
proof cases

assume P20 : A ′ = Q
then have A ′ P Perp C A ′

by (metis P3 P4 Perp-cases midpoint-not-midpoint)
then have Per P A ′ C

by (simp add: perp-per-1 )
then show ?thesis

using P20 assms(3 ) l7-2 l8-4 by blast
next

assume A ′ 6= Q
then show ?thesis

by (meson P12 P13 P14 P8A col-transitivity-1 l8-2 per-col)
qed
have Per Q B ′ B
proof cases

assume P21 : P = B ′

then have P22 : C ′ = B ′

using P5 is-midpoint-id-2 by auto
then have Per Q B ′ C

using P3 P21 perp-per-1 by auto
thus ?thesis

by (metis Col-perm P16 P21 P22 assms(2 ) midpoint-col per-col)
next

assume P23 : P 6= B ′

have Col B ′ P Q
using P12 P13 P14 col-transitivity-2 by blast

then have Per B B ′ Q
using P8 P23 l8-2 l8-3 by blast

thus ?thesis
using Per-perm by blast

qed
then have P24 : Per A ′ B ′ B

using P11 P13 P14 P8 l8-3 not-col-permutation-2 by blast
have P25 : Per A A ′ B ′

using P11 P13 P14 P19 P8A l8-2 l8-3 not-col-permutation-5 by blast
then have Per B ′ A ′ A

using Per-perm by blast
then have ¬ Col B ′ A ′ A

using P12 P17 P25 per-not-col by auto
then have P26 : ¬ Col A ′ B ′ A

using Col-cases by auto
have ¬ Col A ′ B ′ B

using P12 P18 P24 l8-9 by auto
obtain X where P28 : X Midpoint A ′ B ′

using midpoint-existence by blast
then have P28A: Col A ′ B ′ X

using midpoint-col not-col-permutation-2 by blast
then have ∃ Q. A ′ B ′ Perp Q X ∧ A ′ B ′ OS A Q
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by (simp add: P26 l10-15 )
then obtain y where P29 : A ′ B ′ Perp y X ∧ A ′ B ′ OS A y by blast
then obtain B ′′ where P30 : (X y Perp A B ′′ ∨ A = B ′′) ∧ (∃ M . (Col X y M ∧ M Midpoint A B ′′))

using ex-sym by blast
then have P31 : B ′′ A ReflectL X y

using P30 ReflectL-def by blast
have P32 : X 6= y

using P29 P28A col124--nos by blast
then have X 6= y ∧ B ′′ A ReflectL X y ∨ X = y ∧ X Midpoint A B ′′

using P31 by auto
then have P33 : B ′′ A Reflect X y

by (simp add: Reflect-def )
have P33A: X 6= y ∧ A ′ B ′ ReflectL X y

using P28 P29 Perp-cases ReflectL-def P32 col-trivial-3 l10-4-spec by blast
then have P34 : A ′ B ′ Reflect X y

using Reflect-def by blast
have P34A: A B ′′ Reflect X y

using P33 l10-4 by blast
then have P35 : Cong B ′′ B ′ A A ′

using P34 l10-10 by auto
have Per A ′ B ′ B ′′

proof −
have R1 : X 6= y ∧ A B ′′ ReflectL X y ∨ X = y ∧ X Midpoint B ′′ A

by (simp add: P31 P32 l10-4-spec)
have R2 : X 6= y ∧ A ′ B ′ ReflectL X y ∨ X = y ∧ X Midpoint B ′ A ′

using P33A by linarith
{

assume X 6= y ∧ A B ′′ ReflectL X y ∧ X 6= y ∧ A ′ B ′ ReflectL X y
then have Per A ′ B ′ B ′′

using ‹Per B ′ A ′ A› image-spec-preserves-per l10-4-spec by blast
}
{

assume X 6= y ∧ A B ′′ ReflectL X y ∧ X = y ∧ X Midpoint B ′ A ′

then have Per A ′ B ′ B ′′ by blast
}
{

assume X = y ∧ X Midpoint B ′′ A ∧ X 6= y ∧ A ′ B ′ ReflectL X y
then have Per A ′ B ′ B ′′ by blast

}
{

assume X = y ∧ X Midpoint B ′′ A ∧ X = y ∧ X Midpoint B ′ A ′

then have Per A ′ B ′ B ′′

using P32 by blast
}
then show ?thesis using R1 R2

using ‹X 6= y ∧ A B ′′ ReflectL X y ∧ X 6= y ∧ A ′ B ′ ReflectL X y =⇒ Per A ′ B ′ B ′′› by auto
qed
have A ′ B ′ OS A B ′′

proof −
{

assume S1 : X y Perp A B ′′

have Coplanar A y A ′ X
by (metis P28A P29 col-one-side coplanar-perm-16 ncop-distincts os--coplanar)

have Coplanar A y B ′ X
by (smt P12 P28A P29 col2-cop--cop col-transitivity-1 ncoplanar-perm-22 not-col-permutation-5 os--coplanar)

have S2 : ¬ Col A X y
using Col-perm P34A S1 local.image-id perp-distinct by blast

have A ′ B ′ Par A B ′′

proof −
have Coplanar X y A ′ A

using ‹Coplanar A y A ′ X› ncoplanar-perm-21 by blast
moreover have Coplanar X y A ′ B ′′

proof −
have Coplanar A X y A ′

using ‹Coplanar X y A ′ A› ncoplanar-perm-9 by blast
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moreover have Coplanar A X y B ′′

using Coplanar-def S1 perp-inter-exists by blast
ultimately show ?thesis

using S2 coplanar-trans-1 by auto
qed
moreover have Coplanar X y B ′ A
proof −

have ¬ Col A X y
by (simp add: S2 )

moreover have Coplanar A X y B ′

using ‹Coplanar A y B ′ X› ncoplanar-perm-3 by blast
moreover have Coplanar A X y B ′′

using Coplanar-def S1 perp-inter-exists by blast
ultimately show ?thesis

using ncoplanar-perm-18 by blast
qed
moreover have Coplanar X y B ′ B ′′

proof −
have ¬ Col A X y

by (simp add: S2 )
moreover have Coplanar A X y B ′

using ‹Coplanar X y B ′ A› ncoplanar-perm-9 by blast
moreover have Coplanar A X y B ′′

using Coplanar-def S1 perp-inter-exists by blast
ultimately show ?thesis

using coplanar-trans-1 by blast
qed
ultimately show ?thesis using l12-9

using P29 Perp-cases S1 by blast
qed
have A ′ B ′ OS A B ′′

proof −
{

assume A ′ B ′ ParStrict A B ′′

have A ′ B ′ OS A B ′′ using l12-6
using ‹A ′ B ′ ParStrict A B ′′› by blast

}
{

assume A ′ 6= B ′ ∧ A 6= B ′′ ∧ Col A ′ A B ′′ ∧ Col B ′ A B ′′

have A ′ B ′ OS A B ′′

using P26 ‹A ′ B ′ Par A B ′′› ‹A ′ B ′ ParStrict A B ′′ =⇒ A ′ B ′ OS A B ′′› col-trivial-3 par-not-col-strict by
blast

}
then show ?thesis

using Par-def ‹A ′ B ′ Par A B ′′› ‹A ′ B ′ ParStrict A B ′′ =⇒ A ′ B ′ OS A B ′′› by auto
qed

}
{

assume A = B ′′

then have A ′ B ′ OS A B ′′

using P12 P25 ‹Per A ′ B ′ B ′′› l8-2 l8-7 by blast
}
then show ?thesis

using P30 ‹X y Perp A B ′′ =⇒ A ′ B ′ OS A B ′′› by blast
qed
have A ′ B ′ OS A B
proof −

have A ′ B ′ TS A C
proof −

have ¬ Col A A ′ B ′

using Col-perm ‹¬ Col B ′ A ′ A› by blast
moreover have ¬ Col C A ′ B ′

by (metis P13 P14 P2A ‹¬ Col B ′ A ′ A› col3 not-col-distincts not-col-permutation-3 not-col-permutation-4 )
moreover have ∃ T . Col T A ′ B ′ ∧ Bet A T C

using P14 assms(3 ) midpoint-bet not-col-permutation-1 by blast
ultimately show ?thesis
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by (simp add: TS-def )
qed
moreover have A ′ B ′ TS B C

by (metis Col-cases P13 TS-def ‹¬ Col A ′ B ′ B› assms(2 ) calculation midpoint-bet)
ultimately show ?thesis

using OS-def by blast
qed
have Col B B ′′ B ′

proof −
have Coplanar A ′ B B ′′ B ′

proof −
have Coplanar A ′ B ′ B B ′′

proof −
have ¬ Col A A ′ B ′

using Col-perm ‹¬ Col B ′ A ′ A› by blast
moreover have Coplanar A A ′ B ′ B

using ‹A ′ B ′ OS A B› ncoplanar-perm-8 os--coplanar by blast
moreover have Coplanar A A ′ B ′ B ′′

using ‹A ′ B ′ OS A B ′′› ncoplanar-perm-8 os--coplanar by blast
ultimately show ?thesis

using coplanar-trans-1 by blast
qed
then show ?thesis

using ncoplanar-perm-4 by blast
qed
moreover have A ′ 6= B ′

by (simp add: P12 )
moreover have Per B B ′ A ′

by (simp add: P24 l8-2 )
moreover have Per B ′′ B ′ A ′

using Per-cases ‹Per A ′ B ′ B ′′› by auto
ultimately show ?thesis

using cop-per2--col by blast
qed
have Cong B B ′ A A ′

using P6 P7 cong-inner-transitivity by blast
have B = B ′′ ∨ B ′ Midpoint B B ′′

proof −
have Col B B ′ B ′′

using ‹Col B B ′′ B ′› not-col-permutation-5 by blast
moreover have Cong B ′ B B ′ B ′′

by (metis Cong-perm P35 P6 P7 cong-inner-transitivity)
ultimately show ?thesis

using l7-20 by simp
qed
{

assume B = B ′′

then obtain M where S1 : Col X y M ∧ M Midpoint A B
using P30 by blast

then have R = M
using assms(4 ) l7-17 by auto

have A 6= B
using assms(1 ) col-trivial-1 by auto

have Col R A B
by (simp add: assms(4 ) midpoint-col)

have X 6= R
using Midpoint-def P28 ‹A ′ B ′ OS A B ′′› ‹B = B ′′› assms(4 ) midpoint-col one-side-chara by auto

then have ∃ X Y . (R PerpAt X Y A B ∧ X Y Perp P Q ∧ Coplanar A B C X ∧ Coplanar A B C Y )
proof −

have R PerpAt R X A B
proof −

have R X Perp A B
using P30 S1 ‹A 6= B› ‹B = B ′′› ‹R = M › ‹X 6= R› perp-col perp-left-comm by blast

then show ?thesis
using ‹Col R A B› l8-14-2-1b-bis not-col-distincts by blast

qed
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moreover have R X Perp P Q
proof −

have X R Perp P Q
proof −

have X y Perp P Q
proof −

have P Q Perp X y
using P11 P13 P14 P29 P33A col-trivial-2 col-trivial-3 perp-col4 by blast

then show ?thesis
using Perp-perm by blast

qed
moreover have Col X y R

by (simp add: S1 ‹R = M ›)
ultimately show ?thesis

using ‹X 6= R› perp-col by blast
qed
then show ?thesis

using Perp-perm by blast
qed
moreover have Coplanar A B C R

using ‹Col R A B› ncop--ncols not-col-permutation-2 by blast
moreover have Coplanar A B C X
proof −

have Col P Q X
using P12 P13 P14 P28A col3 by blast

moreover have ¬ Col P Q C
by (simp add: P2A)

moreover have Coplanar P Q C A
using assms(3 ) coplanar-perm-19 midpoint--coplanar by blast

moreover have Coplanar P Q C B
using assms(2 ) midpoint-col ncop--ncols not-col-permutation-5 by blast

moreover have Coplanar P Q C C
using ncop-distincts by auto

moreover have Coplanar P Q C X
using calculation(1 ) ncop--ncols by blast

ultimately show ?thesis
using coplanar-pseudo-trans by blast

qed
ultimately show ?thesis by blast

qed
}
{

assume B ′ Midpoint B B ′′

have A ′ B ′ TS B B ′′

proof −
have ¬ Col B A ′ B ′

using Col-perm ‹¬ Col A ′ B ′ B› by blast
moreover have ¬ Col B ′′ A ′ B ′

using ‹A ′ B ′ OS A B ′′› col124--nos not-col-permutation-2 by blast
moreover have ∃ T . Col T A ′ B ′ ∧ Bet B T B ′′

using ‹B ′ Midpoint B B ′′› col-trivial-3 midpoint-bet by blast
ultimately show ?thesis

by (simp add: TS-def )
qed
have A ′ B ′ OS B B ′′

using ‹A ′ B ′ OS A B ′′› ‹A ′ B ′ OS A B› one-side-symmetry one-side-transitivity by blast
have ¬ A ′ B ′ OS B B ′′

using ‹A ′ B ′ TS B B ′′› l9-9-bis by blast
then have False

by (simp add: ‹A ′ B ′ OS B B ′′›)
then have ∃ X Y . (R PerpAt X Y A B ∧ X Y Perp P Q ∧ Coplanar A B C X ∧ Coplanar A B C Y )

by auto
}
then show ?thesis

using ‹B = B ′′ =⇒ ∃X Y . R PerpAt X Y A B ∧ X Y Perp P Q ∧ Coplanar A B C X ∧ Coplanar A B C Y › ‹B
= B ′′ ∨ B ′ Midpoint B B ′′› by blast
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qed

lemma l13-1 :
assumes ¬ Col A B C and

P Midpoint B C and
Q Midpoint A C and
R Midpoint A B

shows
∃ X Y .(R PerpAt X Y A B ∧ X Y Perp P Q)

proof −
obtain X Y where R PerpAt X Y A B ∧ X Y Perp P Q ∧ Coplanar A B C X ∧ Coplanar A B C Y

using l13-1-aux assms(1 ) assms(2 ) assms(3 ) assms(4 ) by blast
then show ?thesis by blast

qed

lemma per-lt:
assumes A 6= B and

C 6= B and
Per A B C

shows A B Lt A C ∧ C B Lt A C
proof −

have B A Lt A C ∧ B C Lt A C
using assms(1 ) assms(2 ) assms(3 ) l11-46 by auto

then show ?thesis
using lt-left-comm by blast

qed

lemma cong-perp-conga:
assumes Cong A B C B and

A C Perp B P
shows A B P CongA C B P ∧ B P TS A C

proof −
have P1 : A 6= C

using assms(2 ) perp-distinct by auto
have P2 : B 6= P

using assms(2 ) perp-distinct by auto
have P3 : A 6= B

by (metis P1 assms(1 ) cong-diff-3 )
have P4 : C 6= B

using P3 assms(1 ) cong-diff by blast
show ?thesis
proof cases

assume P5 : Col A B C
have P6 : ¬ Col B A P

using P3 P5 assms(2 ) col-transitivity-1 not-col-permutation-4 not-col-permutation-5 perp-not-col2 by blast
have Per P B A

using P3 P5 Perp-perm assms(2 ) not-col-permutation-5 perp-col1 perp-per-1 by blast
then have P8 : Per A B P

using Per-cases by blast
have Per P B C

using P3 P5 P8 col-per2--per l8-2 l8-5 by blast
then have P10 : Per C B P

using Per-perm by blast
show ?thesis
proof −

have A B P CongA C B P
using P2 P3 P4 P8 P10 l11-16 by auto

moreover have B P TS A C
by (metis Col-cases P1 P5 P6 assms(1 ) bet--ts between-cong not-cong-2143 not-cong-4321 third-point)

ultimately show ?thesis
by simp

qed
next

assume T1 : ¬ Col A B C
obtain T where T2 : T PerpAt A C B P

using assms(2 ) perp-inter-perp-in by blast
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then have T3 : Col A C T ∧ Col B P T
using perp-in-col by auto

have T4 : B 6= T
using Col-perm T1 T3 by blast

have T5 : B T Perp A C
using Perp-cases T3 T4 assms(2 ) perp-col1 by blast

{
assume T5-1 : A = T
have B A Lt B C ∧ C A Lt B C
proof −

have B 6= A
using P3 by auto

moreover have C 6= A
using P1 by auto

moreover have Per B A C
using T5 T5-1 perp-comm perp-per-1 by blast

ultimately show ?thesis
by (simp add: per-lt)

qed
then have False

using Cong-perm assms(1 ) cong--nlt by blast
}
then have T6 : A 6= T by auto
{

assume T6-1 : C = T
have B C Lt B A ∧ A C Lt B A
proof −

have B 6= C
using P4 by auto

moreover have A 6= C
by (simp add: P1 )

moreover have Per B C A
using T5 T6-1 perp-left-comm perp-per-1 by blast

ultimately show ?thesis
by (simp add: per-lt)

qed
then have False

using Cong-perm assms(1 ) cong--nlt by blast
}
then have T7 : C 6= T by auto
have T8 : T PerpAt B T T A

by (metis Perp-in-cases T2 T3 T4 T6 perp-in-col-perp-in)
have T9 : T PerpAt B T T C

by (metis Col-cases T3 T7 T8 perp-in-col-perp-in)
have T10 : Cong T A T C ∧ T A B CongA T C B ∧ T B A CongA T B C
proof −

have A T B CongA C T B
proof −

have Per A T B
using T2 perp-in-per-1 by auto

moreover have Per C T B
using T2 perp-in-per-3 by auto

ultimately show ?thesis
by (simp add: T4 T6 T7 l11-16 )

qed
moreover have Cong A B C B

by (simp add: assms(1 ))
moreover have Cong T B T B

by (simp add: cong-reflexivity)
moreover have T B Le A B
proof −

have Per B T A
using T8 perp-in-per by auto

then have B T Lt B A ∧ A T Lt B A
using T4 T6 per-lt by blast

then show ?thesis
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using Le-cases Lt-def by blast
qed
ultimately show ?thesis

using l11-52 by blast
qed
show ?thesis
proof −

have T11 : A B P CongA C B P
proof −

have P B A CongA P B C
using Col-cases P2 T10 T3 col-conga--conga by blast

thus ?thesis
using conga-comm by blast

qed
moreover have B P TS A C
proof −

have T12 : A = C ∨ T Midpoint A C
using T10 T3 l7-20-bis not-col-permutation-5 by blast

{
assume T Midpoint A C
then have B P TS A C

by (smt Col-perm P2 T1 T3 ‹A = T =⇒ False› ‹C = T =⇒ False› col2--eq l9-18 midpoint-bet)
}
then show ?thesis

using P1 T12 by auto
qed
ultimately show ?thesis

by simp
qed

qed
qed

lemma perp-per-bet:
assumes ¬ Col A B C and

Per A B C and
P PerpAt P B A C

shows Bet A P C
proof −

have A 6= C
using assms(1 ) col-trivial-3 by auto

then show ?thesis
using assms(2 ) assms(3 ) l11-47 perp-in-left-comm by blast

qed

lemma ts-per-per-ts:
assumes A B TS C D and

Per B C A and
Per B D A

shows C D TS A B
proof −

have P1 : ¬ Col C A B
using TS-def assms(1 ) by blast

have P2 : A 6= B
using P1 col-trivial-2 by auto

obtain P where P3 : Col P A B ∧ Bet C P D
using TS-def assms(1 ) by blast

have P4 : C 6= D
using assms(1 ) not-two-sides-id by auto

show ?thesis
proof −

{
assume Col A C D
then have C = D

by (metis assms(1 ) assms(2 ) assms(3 ) col-per2-cases col-permutation-2 not-col-distincts ts-distincts)
then have False
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using P4 by auto
}
then have ¬ Col A C D by auto
moreover have ¬ Col B C D

using assms(1 ) assms(2 ) assms(3 ) per2-preserves-diff ts-distincts by blast
moreover have ∃ T . Col T C D ∧ Bet A T B
proof −

have Col P C D
using Col-def Col-perm P3 by blast

moreover have Bet A P B
proof −

have ∃ X . Col A B X ∧ A B Perp C X
using Col-perm P1 l8-18-existence by blast

then obtain C ′ where P5 : Col A B C ′ ∧ A B Perp C C ′ by blast
have ∃ X . Col A B X ∧ A B Perp D X

by (metis (no-types) Col-perm TS-def assms(1 ) l8-18-existence)
then obtain D ′ where P6 : Col A B D ′ ∧ A B Perp D D ′ by blast
have P7 : A 6= C ′

using P5 assms(2 ) l8-7 perp-not-eq-2 perp-per-1 by blast
have P8 : A 6= D ′

using P6 assms(3 ) l8-7 perp-not-eq-2 perp-per-1 by blast
have P9 : Bet A C ′ B
proof −

have ¬ Col A C B
using Col-cases P1 by blast

moreover have Per A C B
by (simp add: assms(2 ) l8-2 )

moreover have C ′ PerpAt C ′ C A B
using P5 Perp-in-perm l8-15-1 by blast

ultimately show ?thesis
using perp-per-bet by blast

qed
have P10 : Bet A D ′ B
proof −

have ¬ Col A D B
using P6 col-permutation-5 perp-not-col2 by blast

moreover have Per A D B
by (simp add: assms(3 ) l8-2 )

moreover have D ′ PerpAt D ′ D A B
using P6 Perp-in-perm l8-15-1 by blast

ultimately show ?thesis
using perp-per-bet by blast

qed
show ?thesis
proof cases

assume P = C ′

then show ?thesis
by (simp add: P9 )

next
assume P 6= C ′

show ?thesis
proof cases

assume P = D ′

then show ?thesis
by (simp add: P10 )

next
assume P 6= D ′

show ?thesis
proof cases

assume A = P
then show ?thesis

by (simp add: between-trivial2 )
next

assume A 6= P
show ?thesis
proof cases
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assume B = P
then show ?thesis

using between-trivial by auto
next

assume B 6= P
have Bet C ′ P D ′

proof −
have Bet C P D

by (simp add: P3 )
moreover have P 6= C ′

by (simp add: ‹P 6= C ′›)
moreover have P 6= D ′

by (simp add: ‹P 6= D ′›)
moreover have Col C ′ P D ′

by (meson P2 P3 P5 P6 col3 col-permutation-2 )
moreover have Per P C ′ C

using P3 P5 l8-16-1 l8-2 not-col-permutation-3 not-col-permutation-4 by blast
moreover have Per P D ′ D

by (metis P3 P6 calculation(3 ) not-col-permutation-2 perp-col2 perp-per-1 )
ultimately show ?thesis

using per13-preserves-bet by blast
qed
then show ?thesis

using P10 P9 bet3--bet by blast
qed

qed
qed

qed
qed
ultimately show ?thesis

by auto
qed
ultimately show ?thesis

by (simp add: TS-def )
qed

qed

lemma l13-2-1 :
assumes A B TS C D and

Per B C A and
Per B D A and
Col C D E and
A E Perp C D and
C A B CongA D A B

shows B A C CongA D A E ∧ B A D CongA C A E ∧ Bet C E D
proof −

have P1 : ¬ Col C A B
using TS-def assms(1 ) by auto

have P2 : A 6= C
using P1 col-trivial-1 by blast

have P3 : A 6= B
using P1 col-trivial-2 by auto

have P4 : A 6= D
using assms(1 ) ts-distincts by auto

have P5 : Cong B C B D ∧ Cong A C A D ∧ C B A CongA D B A
proof −

have ¬ Col B A C
by (simp add: P1 not-col-permutation-3 )

moreover have A C B CongA A D B
using assms(1 ) assms(2 ) assms(3 ) l11-16 l8-2 ts-distincts by blast

moreover have B A C CongA B A D
by (simp add: assms(6 ) conga-comm)

moreover have Cong B A B A
by (simp add: cong-reflexivity)

ultimately show ?thesis
using l11-50-2 by blast
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qed
then have P6 : C D Perp A B

using assms(1 ) assms(6 ) cong-conga-perp not-cong-2143 by blast
then have P7 : C D TS A B

by (simp add: assms(1 ) assms(2 ) assms(3 ) ts-per-per-ts)
obtain T1 where P8 : Col T1 C D ∧ Bet A T1 B

using P7 TS-def by auto
obtain T where P9 : Col T A B ∧ Bet C T D

using TS-def assms(1 ) by blast
have P10 : T1 = T

by (metis (no-types) Col-def P1 P3 P8 P9 between-equality-2 between-trivial2 l6-16-1 )
have P11 : T = E
proof −

have ¬ Col A B C
using Col-perm P1 by blast

moreover have C 6= D
using assms(1 ) ts-distincts by blast

moreover have Col A B T
using Col-cases P9 by auto

moreover have Col A B E
by (metis P7 Perp-cases P6 assms(1 ) assms(5 ) col-perp2-ncol-col col-trivial-3 not-col-permutation-3 one-side-not-col123

os-ts1324--os ts-ts-os)
moreover have Col C D T

using NCol-cases P9 bet-col by blast
moreover have Col C D E

by (simp add: assms(4 ))
ultimately show ?thesis

using l6-21 by blast
qed
show ?thesis
proof −

have B A C CongA D A E
proof −

have A Out C C
using P2 out-trivial by auto

moreover have A Out B B
using P3 out-trivial by auto

moreover have A Out D D
using P4 out-trivial by auto

moreover have A Out E B
by (metis P10 P11 P7 P8 TS-def bet-out)

ultimately show ?thesis
by (meson assms(6 ) conga-comm conga-right-comm l11-10 )

qed
moreover have B A D CongA C A E
proof −

have C A E CongA D A B
by (meson Perp-cases P5 assms(5 ) assms(6 ) calculation cong-perp-conga conga-right-comm conga-trans not-cong-2143

not-conga-sym)
then have C A E CongA B A D

by (simp add: conga-right-comm)
then show ?thesis

by (simp add: conga-sym)
qed
moreover have Bet C E D

using P11 P9 by auto
ultimately show ?thesis by simp

qed
qed

lemma triangle-mid-par :
assumes ¬ Col A B C and

P Midpoint B C and
Q Midpoint A C

shows A B ParStrict Q P
proof −
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obtain R where P1 : R Midpoint A B
using midpoint-existence by auto

then obtain X Y where P2 : R PerpAt X Y A B ∧ X Y Perp P Q ∧ Coplanar A B C X ∧ Coplanar A B C Y
using l13-1-aux assms(1 ) assms(2 ) assms(3 ) by blast

have P3 : Coplanar X Y A P ∧ Coplanar X Y A Q ∧ Coplanar X Y B P ∧ Coplanar X Y B Q
proof −

have Coplanar A B C A
using ncop-distincts by auto

moreover have Coplanar A B C B
using ncop-distincts by auto

moreover have Coplanar A B C P
using assms(2 ) coplanar-perm-21 midpoint--coplanar by blast

moreover have Coplanar A B C Q
using assms(3 ) coplanar-perm-11 midpoint--coplanar by blast

ultimately show ?thesis
using P2 assms(1 ) coplanar-pseudo-trans by blast

qed
have P4 : Col X Y R ∧ Col A B R

using P2 perp-in-col by blast
have P5 : R Y Perp A B ∨ X R Perp A B

using P2 perp-in-perp-bis by auto
have P6 : Col A R B

using Col-perm P4 by blast
have P7 : X 6= Y

using P2 perp-not-eq-1 by auto
{

assume P8 : R Y Perp A B
have Col Y R X

using P4 not-col-permutation-2 by blast
then have Y X Perp A B

using P2 Perp-cases perp-in-perp by blast
then have P10 : X Y Perp A B

using Perp-cases by blast
have A B Par P Q
proof −

have Coplanar X Y A P
by (simp add: P3 )

moreover have Coplanar X Y A Q
by (simp add: P3 )

moreover have Coplanar X Y B P
by (simp add: P3 )

moreover have Coplanar X Y B Q
by (simp add: P3 )

moreover have A B Perp X Y
using P10 Perp-cases by auto

moreover have P Q Perp X Y
using P2 Perp-cases by auto

ultimately show ?thesis
using l12-9 by blast

qed
{

assume A B ParStrict P Q
then have A B ParStrict Q P

using Par-strict-perm by blast
}
{

assume A 6= B ∧ P 6= Q ∧ Col A P Q ∧ Col B P Q
then have Col A B P

using l6-16-1 not-col-permutation-1 by blast
then have P = B

by (metis Col-perm assms(1 ) assms(2 ) l6-16-1 midpoint-col)
then have A B ParStrict Q P

using assms(1 ) assms(2 ) col-trivial-2 is-midpoint-id by blast
}
then have A B ParStrict Q P

using Par-def ‹A B Par P Q› ‹A B ParStrict P Q =⇒ A B ParStrict Q P› by auto
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}
{

assume P10 : X R Perp A B
have Col X R Y

by (simp add: Col-perm P4 )
then have P11 : X Y Perp A B

using P7 P10 perp-col by blast
have A B Par P Q
proof −

have A B Perp X Y
using P11 Perp-perm by blast

moreover have P Q Perp X Y
using P2 Perp-perm by blast

ultimately show ?thesis
using P3 l12-9 by blast

qed
{

assume A B ParStrict P Q
then have A B ParStrict Q P

by (simp add: par-strict-right-comm)
}
{

assume A 6= B ∧ P 6= Q ∧ Col A P Q ∧ Col B P Q
then have Col A B P

using Col-perm l6-16-1 by blast
then have P = B

by (metis Col-perm assms(1 ) assms(2 ) l6-16-1 midpoint-col)
then have A B ParStrict Q P

using assms(1 ) assms(2 ) col-trivial-2 is-midpoint-id by blast
}
then have A B ParStrict Q P

using Par-def ‹A B Par P Q› ‹A B ParStrict P Q =⇒ A B ParStrict Q P› by auto
}
then show ?thesis

using P5 ‹R Y Perp A B =⇒ A B ParStrict Q P› by blast
qed

lemma cop4-perp-in2--col:
assumes Coplanar X Y A A ′ and

Coplanar X Y A B ′ and
Coplanar X Y B A ′ and
Coplanar X Y B B ′ and
P PerpAt A B X Y and
P PerpAt A ′ B ′ X Y

shows Col A B A ′

proof −
have P1 : Col A B P ∧ Col X Y P

using assms(5 ) perp-in-col by auto
show ?thesis
proof cases

assume P2 : A = P
show ?thesis
proof cases

assume P3 : P = X
have Col B A ′ P
proof −

have Coplanar Y B A ′ P
using P3 assms(3 ) ncoplanar-perm-18 by blast

moreover have Y 6= P
using P3 assms(6 ) perp-in-distinct by blast

moreover have Per B P Y
using assms(5 ) perp-in-per-4 by auto

moreover have Per A ′ P Y
using assms(6 ) perp-in-per-2 by auto

ultimately show ?thesis
using cop-per2--col by auto
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qed
then show ?thesis

using Col-perm P2 by blast
next

assume P4 : P 6= X
have Col B A ′ P
proof −

have Coplanar X B A ′ P
by (metis P1 assms(3 ) assms(6 ) col2-cop--cop col-trivial-3 ncoplanar-perm-9 perp-in-distinct)

moreover have Per B P X
using assms(5 ) perp-in-per-3 by auto

moreover have Per A ′ P X
using assms(6 ) perp-in-per-1 by auto

ultimately show ?thesis
using cop-per2--col P4 by auto

qed
then show ?thesis

using Col-perm P2 by blast
qed

next
assume P5 : A 6= P
have P6 : Per A P Y

using assms(5 ) perp-in-per-2 by auto
show ?thesis
proof cases

assume P7 : P = A ′

have P8 : Per B ′ P Y
using assms(6 ) perp-in-per-4 by auto

have Col A B ′ P
proof −

have Coplanar Y A B ′ P
using assms(2 ) by (metis P1 assms(6 ) col-transitivity-2 coplanar-trans-1 ncop--ncols perp-in-distinct)

then show ?thesis using P6 P8 cop-per2--col
by (metis assms(2 ) assms(5 ) assms(6 ) col-permutation-4 coplanar-perm-5 perp-in-distinct perp-in-per-1

perp-in-per-3 )
qed
then show ?thesis

using P1 P7 by auto
next

assume T1 : P 6= A ′

show ?thesis
proof cases

assume T2 : Y = P
{

assume R1 : Coplanar X P A A ′ ∧ P PerpAt A B X P ∧ P PerpAt A ′ B ′ X P ∧ A 6= P
then have R2 : Per A P X

using perp-in-per-1 by auto
have Per A ′ P X

using R1 perp-in-per-1 by auto
then have Col A B A ′

by (metis R1 R2 PerpAt-def col-permutation-3 col-transitivity-2 cop-per2--col ncoplanar-perm-5 )
}
then show ?thesis

using P5 T1 T2 assms(1 ) assms(2 ) assms(3 ) assms(4 ) assms(5 ) assms(6 ) by blast
next

assume P10 : Y 6= P
have Col A A ′ P
proof −

have Coplanar Y A A ′ P
by (metis P1 assms(1 ) assms(6 ) col2-cop--cop col-trivial-2 ncoplanar-perm-9 perp-in-distinct)

moreover have Per A P Y
by (simp add: P6 )

moreover have Per A ′ P Y
using assms(6 ) perp-in-per-2 by auto

ultimately show ?thesis
using cop-per2--col P10 by auto
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qed
then show ?thesis

using P1 P5 col2--eq col-permutation-4 by blast
qed

qed
qed

qed

lemma l13-2 :
assumes A B TS C D and

Per B C A and
Per B D A and
Col C D E and
A E Perp C D

shows B A C CongA D A E ∧ B A D CongA C A E ∧ Bet C E D
proof −

have P2 : ¬ Col C A B
using TS-def assms(1 ) by auto

have P3 : C 6= D
using assms(1 ) not-two-sides-id by blast

have P4 : ∃ C ′. B A C CongA D A C ′ ∧ D A OS C ′ B
proof −

have ¬ Col B A C
using Col-cases P2 by auto

moreover have ¬ Col D A B
using TS-def assms(1 ) by blast

ultimately show ?thesis
by (simp add: angle-construction-1 )

qed
then obtain E ′ where P5 : B A C CongA D A E ′ ∧ D A OS E ′ B by blast
have P6 : A 6= B

using P2 not-col-distincts by blast
have P7 : A 6= C

using P2 not-col-distincts by blast
have P8 : A 6= D

using P5 os-distincts by blast
have P9 : ((A B TS C E ′ ∧ A E ′ TS D B) ∨ (A B OS C E ′ ∧ A E ′ OS D B ∧ C A B CongA D A E ′ ∧ B A E ′

CongA E ′ A B)) −→ C A E ′ CongA D A B
by (metis P5 P6 conga-diff56 conga-left-comm conga-pseudo-refl l11-22 )

have P10 : C D TS A B
by (simp add: assms(1 ) assms(2 ) assms(3 ) ts-per-per-ts)

have P11 : ¬ Col A C D
using P10 TS-def by auto

obtain T where P12 : Col T A B ∧ Bet C T D
using TS-def assms(1 ) by blast

obtain T2 where P13 : Col T2 C D ∧ Bet A T2 B
using P10 TS-def by auto

then have P14 : T = T2
by (metis Col-def Col-perm P12 P2 P3 P6 l6-16-1 )

have P15 : B InAngle D A C
using P10 assms(1 ) l11-24 ts2--inangle by blast

have P16 : C A B LeA C A D
by (simp add: P10 assms(1 ) inangle--lea ts2--inangle)

have P17 : E ′ InAngle D A C
proof −

have D A E ′ LeA D A C
using P16 P5 P7 P8 conga-left-comm conga-pseudo-refl l11-30 by presburger

moreover have D A OS C E ′

by (meson P11 P15 P5 col124--nos in-angle-one-side invert-one-side not-col-permutation-2 one-side-symmetry
one-side-transitivity)

ultimately show ?thesis
by (simp add: lea-in-angle)

qed
obtain E ′′ where P18 : Bet D E ′′ C ∧ (E ′′ = A ∨ A Out E ′′ E ′)

using InAngle-def P17 by auto
{
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assume E ′′ = A
then have B A C CongA D A E ∧ B A D CongA C A E ∧ Bet C E D

using Col-def P11 P18 by auto
}
{

assume P19 : A Out E ′′ E ′

then have P20 : B A C CongA D A E ′′

by (meson OS-def P5 Tarski-neutral-dimensionless.out2--conga Tarski-neutral-dimensionless-axioms col-one-side-out
col-trivial-2 l9-18-R1 not-conga one-side-reflexivity)

have P21 : A 6= T
using P11 P13 P14 by auto

have B A C CongA D A E ∧ B A D CongA C A E ∧ Bet C E D
proof cases

assume P22 : E ′′ = T
have P23 : C A B CongA D A B
proof −

have C A B CongA D A T
using P22 P20 conga-left-comm by blast

moreover have A Out C C
using P7 out-trivial by presburger

moreover have A Out B B
using P6 out-trivial by auto

moreover have A Out D D
using P8 out-trivial by auto

moreover have A Out B T
using Out-def P13 P14 P6 P21 by blast

ultimately show ?thesis
using l11-10 by blast

qed
then show ?thesis

using assms(1 ) assms(2 ) assms(3 ) assms(4 ) assms(5 ) l13-2-1 by blast
next

assume P23A: E ′′ 6= T
have P24 : D 6= E ′′

using P2 P20 col-trivial-3 ncol-conga-ncol not-col-permutation-3 by blast
{

assume P24A: C = E ′′

have P24B: C A OS B D
by (meson P10 assms(1 ) invert-one-side ts-ts-os)

have P24C : A Out B D
proof −

have C A B CongA C A D
using P20 P24A conga-comm by blast

moreover have C A OS B D
by (simp add: P24B)

ultimately show ?thesis
using conga-os--out by blast

qed
then have False

using Col-def P5 one-side-not-col124 out-col by blast
}
then have P25 : C 6= E ′′ by auto
have P26 : A 6= E ′′

using P19 out-diff1 by auto
{

assume Col E ′′ A B
then have E ′′ = T

by (smt P13 P14 P18 P2 P3 bet-col l6-21 not-col-permutation-2 not-col-permutation-3 )
then have False

using P23A by auto
}
then have P27 : ¬ Col E ′′ A B by auto
have (A B TS C E ′′ ∧ A E ′′ TS D B) ∨ (A B OS C E ′′ ∧ A E ′′ OS D B ∧ C A B CongA D A E ′′ ∧ B A E ′′

CongA E ′′ A B)
proof cases

assume P27-0 : A B OS C E ′′
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have A E ′′ OS D B
proof −

have P27-1 : A E ′′ TS D C
by (metis Col-def P10 P18 P24 TS-def P25 bet--ts invert-two-sides l6-16-1 )

moreover have A E ′′ TS B C
proof −

have A E ′′ TS T C
proof −

have ¬ Col T A E ′′

by (metis NCol-cases P13 P14 P21 P27 bet-col col3 col-trivial-2 )
moreover have ¬ Col C A E ′′

using P27-1 TS-def by auto
moreover have ∃ T0 . (Col T0 A E ′′ ∧ Bet T T0 C )

by (meson P12 P18 P27-0 between-symmetry col-trivial-3 l5-3 one-side-chara)
ultimately show ?thesis

by (simp add: TS-def )
qed
moreover have A Out T B

using Out-def P13 P14 P21 P6 by auto
ultimately show ?thesis

using col-trivial-1 l9-5 by blast
qed
ultimately show ?thesis

using OS-def by auto
qed
thus ?thesis

using P20 P27-0 conga-distinct conga-left-comm conga-pseudo-refl by blast
next

assume P27-2 : ¬ A B OS C E ′′

show ?thesis
proof −

have P27-3 : A B TS C E ′′

using P18 P2 P27-2 P27 assms(1 ) bet-cop--cop between-symmetry cop-nos--ts ts--coplanar by blast
moreover have A E ′′ TS D B
proof −

have P27-3 : A B OS D E ′′

using P18 bet-ts--os between-symmetry calculation one-side-symmetry by blast
have P27-4 : A E ′′ TS T D
proof −

have ¬ Col T A E ′′

by (metis NCol-cases P13 P14 P21 P27 bet-col col3 col-trivial-2 )
moreover have ¬ Col D A E ′′

by (smt Col-def P11 P18 P24 P27-3 bet3--bet bet-col1 col3 col-permutation-5 col-two-sides-bet l5-1 )
moreover have ∃ T0 . (Col T0 A E ′′ ∧ Bet T T0 D)

by (meson Bet-perm P12 P18 P27-3 bet-col1 bet-out--bet between-exchange3 col-trivial-3 not-bet-out
one-side-chara)

ultimately show ?thesis
by (simp add: TS-def )

qed
have A E ′′ TS B D
proof −

have A E ′′ TS T D
using P27-4 by simp

moreover have Col A A E ′′

using col-trivial-1 by auto
moreover have A Out T B

using P13 P14 P21 bet-out by auto
ultimately show ?thesis

using l9-5 by blast
qed
thus ?thesis

by (simp add: l9-2 )
qed
ultimately show ?thesis

by simp
qed
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qed
then have P28 : C A E ′′ CongA D A B using l11-22

by (metis P20 P26 P6 conga-left-comm conga-pseudo-refl)
obtain C ′ where P29 : Bet B C C ′ ∧ Cong C C ′ B C

using segment-construction by blast
obtain D ′ where P30 : Bet B D D ′ ∧ Cong D D ′ B D

using segment-construction by blast
have P31 : B A D Cong3 D ′ A D
proof −

have Per A D B
by (simp add: assms(3 ) l8-2 )

then obtain D ′′ where P31-2 : D Midpoint B D ′′ ∧ Cong A B A D ′′

using Per-def by auto
have D Midpoint B D ′

using Cong-perm Midpoint-def P30 by blast
then have D ′ = D ′′

using P31-2 symmetric-point-uniqueness by auto
thus ?thesis

using Cong3-def Cong-perm P30 P31-2 cong-reflexivity by blast
qed
then have P32 : B A D CongA D ′ A D

using P6 P8 cong3-conga by auto
have B A C Cong3 C ′ A C
proof −

obtain C ′′ where P33-1 : C Midpoint B C ′′ ∧ Cong A B A C ′′

using Per-def assms(2 ) l8-2 by blast
have C Midpoint B C ′

using Cong-perm Midpoint-def P29 by blast
then have C ′ = C ′′

using P33-1 symmetric-point-uniqueness by auto
thus ?thesis

using Cong3-def Cong-perm P29 P33-1 cong-reflexivity by blast
qed
then have P34 : B A C CongA C ′ A C

using P6 P7 cong3-conga by auto
have P35 : E ′′ A C ′ CongA D ′ A E ′′

proof −
have (A C TS E ′′ C ′ ∧ A D TS D ′ E ′′) ∨ (A C OS E ′′ C ′ ∧ A D OS D ′ E ′′)
proof −

have P35-1 : C A OS D E ′′

by (metis Col-perm P11 P18 P25 bet-out between-symmetry one-side-symmetry out-one-side)
have P35-2 : C A OS B D

using P10 assms(1 ) one-side-symmetry ts-ts-os by blast
have P35-3 : C A TS B C ′

by (metis P2 P29 bet--ts cong-diff-4 not-col-distincts)
have P35-4 : C A OS B E ′′

using P35-1 P35-2 one-side-transitivity by blast
have P35-5 : D A OS C E ′′

by (metis Col-perm P18 P24 P35-1 bet2--out l5-1 one-side-not-col123 out-one-side)
have P35-6 : D A OS B C

by (simp add: P10 assms(1 ) invert-two-sides l9-2 one-side-symmetry ts-ts-os)
have P35-7 : D A TS B D ′

by (metis P30 TS-def assms(1 ) bet--ts cong-diff-3 ts-distincts)
have P35-8 : D A OS B E ′′

using P35-5 P35-6 one-side-transitivity by blast
have P35-9 : A C TS E ′′ C ′

using P35-3 P35-4 invert-two-sides l9-8-2 by blast
have A D TS D ′ E ′′

using P35-7 P35-8 invert-two-sides l9-2 l9-8-2 by blast
thus ?thesis

using P35-9 by simp
qed
moreover have E ′′ A C CongA D ′ A D
proof −

have E ′′ A C CongA B A D
by (simp add: P28 conga-comm)
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moreover have B A D CongA D ′ A D
by (simp add: P32 )

ultimately show ?thesis
using conga-trans by blast

qed
moreover have C A C ′ CongA D A E ′′

proof −
have D A E ′′ CongA C A C ′

proof −
have D A E ′′ CongA B A C

by (simp add: P20 conga-sym)
moreover have B A C CongA C A C ′

by (simp add: P34 conga-right-comm)
ultimately show ?thesis

using conga-trans by blast
qed
thus ?thesis

using not-conga-sym by blast
qed
ultimately show ?thesis

using l11-22 by auto
qed
have P36 : D ′ 6= B

using P30 assms(1 ) bet-neq32--neq ts-distincts by blast
have P37 : C ′ 6= B

using P29 assms(1 ) bet-neq32--neq ts-distincts by blast
then have P38 : ¬ Col C ′ D ′ B

by (metis Col-def P10 P29 P30 P36 TS-def col-transitivity-2 )
have P39 : C ′ D ′ ParStrict C D
proof −

have ¬ Col C ′ D ′ B
by (simp add: P38 )

moreover have D Midpoint D ′ B
using P30 l7-2 midpoint-def not-cong-3412 by blast

moreover have C Midpoint C ′ B
using P29 l7-2 midpoint-def not-cong-3412 by blast

ultimately show ?thesis
using triangle-mid-par by auto

qed
have P40 : A E ′′ TS C D

by (metis Bet-perm Col-def P10 P18 P24 TS-def ‹C = E ′′ =⇒ False› bet--ts col-transitivity-2 invert-two-sides)
have P41 : B A TS C D

by (simp add: assms(1 ) invert-two-sides)
have P42 : A B OS C C ′

proof −
have ¬ Col A B C

by (simp add: P2 not-col-permutation-1 )
moreover have Col A B B

by (simp add: col-trivial-2 )
moreover have B Out C C ′

by (metis P29 P37 bet-out cong-identity)
ultimately show ?thesis

using out-one-side-1 by blast
qed
have P43 : A B OS D D ′ using out-one-side-1

by (metis Col-perm P30 TS-def assms(1 ) bet-out col-trivial-1 )
then have P44 : A B OS D D ′ using invert-two-sides by blast
have P45 : A B TS C ′ D

using P42 assms(1 ) l9-8-2 by blast
then have P46 : A B TS C ′ D ′

using P44 l9-2 l9-8-2 by blast
have P47 : C ′ D ′ Perp A E ′′

proof −
have A E ′′ TS C ′ D ′

proof −
have A Out C ′ D ′ ∨ E ′′ A TS C ′ D ′
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proof −
have E ′′ A C ′ CongA E ′′ A D ′

by (simp add: P35 conga-right-comm)
moreover have Coplanar E ′′ A C ′ D ′

proof −
have f1 : B A OS C C ′

by (metis P42 invert-one-side)
have f2 : Coplanar B A C ′ C

by (meson P42 ncoplanar-perm-7 os--coplanar)
have f3 : Coplanar D ′ A C ′ D
by (meson P44 P46 col124--nos coplanar-trans-1 invert-one-side ncoplanar-perm-7 os--coplanar ts--coplanar)
have Coplanar D ′ A C ′ C
using f2 f1 by (meson P46 col124--nos coplanar-trans-1 ncoplanar-perm-6 ncoplanar-perm-8 ts--coplanar)

then show ?thesis
using f3 by (meson P18 bet-cop2--cop ncoplanar-perm-6 ncoplanar-perm-7 ncoplanar-perm-8 )

qed
ultimately show ?thesis using conga-cop--or-out-ts

by simp
qed
then show ?thesis

using P46 col-two-sides-bet invert-two-sides not-bet-and-out out-col by blast
qed
moreover have Cong C ′ A D ′ A

using Cong3-def P31 ‹B A C Cong3 C ′ A C › cong-inner-transitivity by blast
moreover have C ′ A E ′′ CongA D ′ A E ′′

by (simp add: P35 conga-left-comm)
ultimately show ?thesis

by (simp add: cong-conga-perp)
qed
have T1 : Cong A C ′ A D ′

proof −
have Cong A C ′ A B

using Cong3-def Cong-perm ‹B A C Cong3 C ′ A C › by blast
moreover have Cong A D ′ A B

using Cong3-def P31 not-cong-4321 by blast
ultimately show ?thesis

using Cong-perm ‹Cong A C ′ A B› ‹Cong A D ′ A B› cong-inner-transitivity by blast
qed
obtain R where T2 : R Midpoint C ′ D ′

using midpoint-existence by auto
have ∃ X Y . (R PerpAt X Y C ′ D ′ ∧ X Y Perp D C ∧ Coplanar C ′ D ′ B X ∧ Coplanar C ′ D ′ B Y )
proof −

have ¬ Col C ′ D ′ B
by (simp add: P38 )

moreover have D Midpoint D ′ B
using P30 l7-2 midpoint-def not-cong-3412 by blast

moreover have C Midpoint C ′ B
using Cong-perm Mid-perm Midpoint-def P29 by blast

moreover have R Midpoint C ′ D ′

by (simp add: T2 )
ultimately show ?thesis using l13-1-aux by blast

qed
then obtain X Y where T3 : R PerpAt X Y C ′ D ′ ∧ X Y Perp D C ∧ Coplanar C ′ D ′ B X ∧ Coplanar C ′ D ′

B Y
by blast

then have X 6= Y
using perp-not-eq-1 by blast

have C D Perp A E ′′

proof cases
assume A = R
then have W1 : A PerpAt C ′ D ′ A E ′′

using Col-def P47 T2 between-trivial2 l8-14-2-1b-bis midpoint-col by blast
have Coplanar B C ′ D ′ E ′′

proof −
have ¬ Col B C D

using P10 TS-def by auto
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moreover have Coplanar B C D B
using ncop-distincts by auto

moreover have Coplanar B C D C ′

using P29 bet-col ncop--ncols by blast
moreover have Coplanar B C D D ′

using P30 bet-col ncop--ncols by blast
moreover have Coplanar B C D E ′′

by (simp add: P18 bet--coplanar coplanar-perm-22 )
ultimately show ?thesis

using coplanar-pseudo-trans by blast
qed
have Coplanar C ′ D ′ X E ′′

proof −
have ¬ Col B C ′ D ′

by (simp add: P38 not-col-permutation-2 )
moreover have Coplanar B C ′ D ′ X

using T3 ncoplanar-perm-8 by blast
moreover have Coplanar B C ′ D ′ E ′′

by (simp add: ‹Coplanar B C ′ D ′ E ′′›)
ultimately show ?thesis

using coplanar-trans-1 by blast
qed
have Coplanar C ′ D ′ Y E ′′

proof −
have ¬ Col B C ′ D ′

by (simp add: P38 not-col-permutation-2 )
moreover have Coplanar B C ′ D ′ Y

by (simp add: T3 coplanar-perm-12 )
moreover have Coplanar B C ′ D ′ E ′′

by (simp add: ‹Coplanar B C ′ D ′ E ′′›)
ultimately show ?thesis

using coplanar-trans-1 by blast
qed
have Coplanar C ′ D ′ X A
proof −

have Col C ′ D ′ A
using T2 ‹A = R› midpoint-col not-col-permutation-2 by blast

moreover have Col X A A
by (simp add: col-trivial-2 )

ultimately show ?thesis
using ncop--ncols by blast

qed
have Coplanar C ′ D ′ Y A
proof −

have Col C ′ D ′ A
using T2 ‹A = R› midpoint-col not-col-permutation-2 by blast

moreover have Col Y A A
by (simp add: col-trivial-2 )

ultimately show ?thesis
using ncop--ncols by blast

qed
have Col X Y A
proof −

have Coplanar C ′ D ′ X A
by (simp add: ‹Coplanar C ′ D ′ X A›)

moreover have Coplanar C ′ D ′ X E ′′

by (simp add: ‹Coplanar C ′ D ′ X E ′′›)
moreover have Coplanar C ′ D ′ Y A

by (simp add: ‹Coplanar C ′ D ′ Y A›)
moreover have Coplanar C ′ D ′ Y E ′′

by (simp add: ‹Coplanar C ′ D ′ Y E ′′›)
moreover have A PerpAt X Y C ′ D ′

using T3 ‹A = R› Perp-in-cases by auto
moreover have A PerpAt A E ′′ C ′ D ′

using Perp-in-cases ‹A PerpAt C ′ D ′ A E ′′› by blast
ultimately show ?thesis
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using cop4-perp-in2--col by blast
qed
have Col X Y E ′′

proof −
have Coplanar C ′ D ′ X E ′′

using ‹Coplanar C ′ D ′ X E ′′› by auto
moreover have Coplanar C ′ D ′ X A

by (simp add: ‹Coplanar C ′ D ′ X A›)
moreover have Coplanar C ′ D ′ Y E ′′

by (simp add: ‹Coplanar C ′ D ′ Y E ′′›)
moreover have Coplanar C ′ D ′ Y A

using ‹Coplanar C ′ D ′ Y A› by auto
moreover have A PerpAt X Y C ′ D ′

using T3 ‹A = R› Perp-in-cases by auto
moreover have A PerpAt E ′′ A C ′ D ′

using Perp-in-perm W1 by blast
ultimately show ?thesis

using cop4-perp-in2--col by blast
qed
have A E ′′ Perp C D
proof cases

assume Y = A
show ?thesis
proof −

have A 6= E ′′

by (simp add: P26 )
moreover have A X Perp C D

using T3 Perp-cases ‹Y = A› by blast
moreover have Col A X E ′′

using Col-perm ‹Col X Y E ′′› ‹Y = A› by blast
ultimately show ?thesis

using perp-col by blast
qed

next
assume Y 6= A
show ?thesis
proof −

have A 6= E ′′

by (simp add: P26 )
moreover have A Y Perp C D
proof −

have Y X Perp C D
using T3 by (simp add: perp-comm)

then have Y A Perp C D
using ‹Col X Y A› ‹Y 6= A› col-trivial-2 perp-col2 perp-left-comm by blast

then show ?thesis
using Perp-cases by blast

qed
moreover have Col A Y E ′′

using Col-perm ‹Col X Y A› ‹Col X Y E ′′› ‹X 6= Y › col-transitivity-2 by blast
ultimately show ?thesis

using perp-col by blast
qed

qed
thus ?thesis

using Perp-perm by blast
next

assume A 6= R
have R 6= C ′

using P46 T2 is-midpoint-id ts-distincts by blast
have Per A R C ′ using T1 T2 Per-def by blast
then have R PerpAt A R R C ′

by (simp add: ‹A 6= R› ‹R 6= C ′› per-perp-in)
then have R PerpAt R C ′ A R

using Perp-in-perm by blast
then have R C ′ Perp A R ∨ R R Perp A R
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using perp-in-perp by auto
{

assume R C ′ Perp A R
then have C ′ R Perp A R

by (simp add: ‹R C ′ Perp A R› Perp-perm)
have C ′ D ′ Perp R A

by (metis P47 T2 ‹A 6= R› ‹Per A R C ′› ‹R 6= C ′› col-per-perp midpoint-col perp-distinct perp-right-comm)
then have R PerpAt C ′ D ′ R A

using T2 l8-14-2-1b-bis midpoint-col not-col-distincts by blast
have Col B D D ′

by (simp add: Col-def P30 )
have Col B C C ′

using Col-def P29 by auto
have Col D E ′′ C

using P18 bet-col by auto
have Col R C ′ D ′

using ‹R PerpAt C ′ D ′ R A› by (simp add: T2 midpoint-col)
have Col A E ′′ E ′

by (simp add: P19 out-col)
have Coplanar C ′ D ′ X A
proof −

have ¬ Col B C ′ D ′

using Col-perm P38 by blast
moreover have Coplanar B C ′ D ′ X

using T3 ncoplanar-perm-8 by blast
moreover have Coplanar B C ′ D ′ A

using P46 ncoplanar-perm-18 ts--coplanar by blast
ultimately show ?thesis

using coplanar-trans-1 by auto
qed
have Coplanar C ′ D ′ Y A
proof −

have ¬ Col B C ′ D ′

using Col-perm P38 by blast
moreover have Coplanar B C ′ D ′ Y

using T3 ncoplanar-perm-8 by blast
moreover have Coplanar B C ′ D ′ A

using P46 ncoplanar-perm-18 ts--coplanar by blast
ultimately show ?thesis

using coplanar-trans-1 by auto
qed
have Coplanar C ′ D ′ X R
proof −

have Col C ′ D ′ R
using Col-perm ‹Col R C ′ D ′› by blast

moreover have Col X R R
by (simp add: col-trivial-2 )

ultimately show ?thesis
using ncop--ncols by blast

qed
have Coplanar C ′ D ′ Y R

using Col-perm T2 midpoint-col ncop--ncols by blast
have Col X Y A
proof −

have R PerpAt X Y C ′ D ′

using T3 by simp
moreover have R PerpAt A R C ′ D ′

using Perp-in-perm ‹R PerpAt C ′ D ′ R A› by blast
ultimately show ?thesis

using ‹Coplanar C ′ D ′ Y R› ‹Coplanar C ′ D ′ X R› cop4-perp-in2--col ‹Coplanar C ′ D ′ X A› ‹Coplanar
C ′ D ′ Y A› by blast

qed
have Z1 : Col X Y R

using T3 perp-in-col by blast
have Col A E ′′ R
proof −
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have Coplanar C ′ D ′ E ′′ R
using Col-cases ‹Col R C ′ D ′› ncop--ncols by blast

moreover have A E ′′ Perp C ′ D ′

using P47 Perp-perm by blast
moreover have A R Perp C ′ D ′

using Perp-perm ‹C ′ D ′ Perp R A› by blast
ultimately show ?thesis

using cop-perp2--col by blast
qed
then have Col X Y E ′′ using Z1

by (metis (full-types) ‹A 6= R› ‹Col X Y A› col-permutation-4 col-trivial-2 l6-21 )
have Col A E ′′ R
proof −

have Coplanar C ′ D ′ E ′′ R
using Col-cases ‹Col R C ′ D ′› ncop--ncols by blast

moreover have A E ′′ Perp C ′ D ′

using P47 Perp-perm by blast
moreover have A R Perp C ′ D ′

using Perp-perm ‹C ′ D ′ Perp R A› by blast
ultimately show ?thesis

using cop-perp2--col by blast
qed
have Col A R X

using ‹Col X Y A› ‹Col X Y R› ‹X 6= Y › col-transitivity-1 not-col-permutation-3 by blast
have Col A R Y

using ‹Col X Y A› ‹Col X Y R› ‹X 6= Y › col-transitivity-2 not-col-permutation-3 by blast
have A E ′′ Perp C D
proof cases

assume X = A
show ?thesis
proof −

have A 6= E ′′

by (simp add: P26 )
moreover have A Y Perp C D

using T3 ‹X = A› perp-right-comm by blast
moreover have Col A Y E ′′

using Col-perm ‹A 6= R› ‹Col A E ′′ R› ‹Col A R Y › col-transitivity-1 by blast
ultimately show ?thesis

using perp-col by auto
qed

next
assume X 6= A
show ?thesis
proof −

have A X Perp C D
by (smt P3 T3 ‹Col X Y A› ‹X 6= A› col-trivial-2 col-trivial-3 perp-col4 )

moreover have Col A X E ′′

using Col-perm ‹A 6= R› ‹Col A E ′′ R› ‹Col A R X› col-transitivity-1 by blast
ultimately show ?thesis

using P26 perp-col by blast
qed

qed
}
{

assume R R Perp A R
then have A E ′′ Perp C D

using perp-distinct by blast
}
then have A E ′′ Perp C D

using Perp-cases ‹R C ′ Perp A R =⇒ A E ′′ Perp C D› ‹R C ′ Perp A R ∨ R R Perp A R› by auto
then show ?thesis

using Perp-perm by blast
qed
show ?thesis
proof −

have Col A E E ′′
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proof −
have Coplanar C D E E ′

using assms(4 ) col--coplanar by auto
moreover have A E Perp C D

using assms(5 ) by auto
moreover have A E ′′ Perp C D

using Perp-perm ‹C D Perp A E ′′› by blast
ultimately show ?thesis

by (meson P11 col-perp2-ncol-col col-trivial-3 not-col-permutation-2 )
qed
moreover have E ′′ = E
proof −

have f1 : C = E ′′ ∨ Col C E ′′ D
by (metis P18 bet-out-1 out-col)

then have f2 : C = E ′′ ∨ Col C E ′′ E
using Col-perm P3 assms(4 ) col-transitivity-1 by blast

have ∀ p. (C = E ′′ ∨ Col C p D) ∨ ¬ Col C E ′′ p
using f1 by (meson col-transitivity-1 )

then have ∃ p. ¬ Col E ′′ p A ∧ Col E ′′ E p
using f2 by (metis (no-types) Col-perm P11 assms(4 ))

then show ?thesis
using Col-perm calculation col-transitivity-1 by blast

qed
ultimately show ?thesis

by (metis Bet-perm P18 P20 P28 Tarski-neutral-dimensionless.conga-left-comm Tarski-neutral-dimensionless-axioms
not-conga-sym)

qed
qed
then have B A C CongA D A E ∧ B A D CongA C A E ∧ Bet C E D

by blast
}
thus ?thesis

using P18 ‹E ′′ = A =⇒ B A C CongA D A E ∧ B A D CongA C A E ∧ Bet C E D› by blast
qed

lemma perp2-refl:
assumes A 6= B
shows P Perp2 A B A B

proof cases
assume Col A B P
obtain X where ¬ Col A B X

using assms not-col-exists by blast
then obtain Q where A B Perp Q P ∧ A B OS X Q

using ‹Col A B P› l10-15 by blast
thus ?thesis

using Perp2-def Perp-cases col-trivial-3 by blast
next

assume ¬ Col A B P
then obtain Q where Col A B Q ∧ A B Perp P Q

using l8-18-existence by blast
thus ?thesis

using Perp2-def Perp-cases col-trivial-3 by blast
qed

lemma perp2-sym:
assumes P Perp2 A B C D
shows P Perp2 C D A B

proof −
obtain X Y where Col P X Y ∧ X Y Perp A B ∧ X Y Perp C D

using Perp2-def assms by auto
thus ?thesis

using Perp2-def by blast
qed

lemma perp2-left-comm:
assumes P Perp2 A B C D
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shows P Perp2 B A C D
proof −

obtain X Y where Col P X Y ∧ X Y Perp A B ∧ X Y Perp C D
using Perp2-def assms by auto

thus ?thesis
using Perp2-def perp-right-comm by blast

qed

lemma perp2-right-comm:
assumes P Perp2 A B C D
shows P Perp2 A B D C

proof −
obtain X Y where Col P X Y ∧ X Y Perp A B ∧ X Y Perp C D

using Perp2-def assms by auto
thus ?thesis

using Perp2-def perp-right-comm by blast
qed

lemma perp2-comm:
assumes P Perp2 A B C D
shows P Perp2 B A D C

proof −
obtain X Y where Col P X Y ∧ X Y Perp A B ∧ X Y Perp C D

using Perp2-def assms by auto
thus ?thesis

using assms perp2-left-comm perp2-right-comm by blast
qed

lemma perp2-pseudo-trans:
assumes P Perp2 A B C D and

P Perp2 C D E F and
¬ Col C D P

shows P Perp2 A B E F
proof −

obtain X Y where P1 : Col P X Y ∧ X Y Perp A B ∧ X Y Perp C D
using Perp2-def assms(1 ) by auto

obtain X ′ Y ′ where P2 : Col P X ′ Y ′ ∧ X ′ Y ′ Perp C D ∧ X ′ Y ′ Perp E F
using Perp2-def assms(2 ) by auto

have X Y Par X ′ Y ′

proof −
have Coplanar P C D X
proof cases

assume X = P
thus ?thesis

using ncop-distincts by blast
next

assume X 6= P
then have X P Perp C D

using Col-cases P1 perp-col by blast
then have Coplanar X P C D

by (simp add: perp--coplanar)
thus ?thesis

using ncoplanar-perm-18 by blast
qed
have Coplanar P C D Y
proof cases

assume Y = P
thus ?thesis

using ncop-distincts by blast
next

assume Y 6= P
then have Y P Perp C D

by (metis (full-types) Col-cases P1 Perp-cases col-transitivity-2 perp-col2 )
then have Coplanar Y P C D

by (simp add: perp--coplanar)
thus ?thesis
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using ncoplanar-perm-18 by blast
qed
have Coplanar P C D X ′

proof cases
assume X ′ = P
thus ?thesis

using ncop-distincts by blast
next

assume X ′ 6= P
then have X ′ P Perp C D

using Col-cases P2 perp-col by blast
then have Coplanar X ′ P C D

by (simp add: perp--coplanar)
thus ?thesis

using ncoplanar-perm-18 by blast
qed
have Coplanar P C D Y ′

proof cases
assume Y ′ = P
thus ?thesis

using ncop-distincts by blast
next

assume Y ′ 6= P
then have Y ′ P Perp C D

by (metis (full-types) Col-cases P2 Perp-cases col-transitivity-2 perp-col2 )
then have Coplanar Y ′ P C D

by (simp add: perp--coplanar)
thus ?thesis

using ncoplanar-perm-18 by blast
qed
show ?thesis
proof −

have Coplanar C D X X ′

using Col-cases ‹Coplanar P C D X ′› ‹Coplanar P C D X› assms(3 ) coplanar-trans-1 by blast
moreover have Coplanar C D X Y ′

using Col-cases ‹Coplanar P C D X› ‹Coplanar P C D Y ′› assms(3 ) coplanar-trans-1 by blast
moreover have Coplanar C D Y X ′

using Col-cases ‹Coplanar P C D X ′› ‹Coplanar P C D Y › assms(3 ) coplanar-trans-1 by blast
moreover have Coplanar C D Y Y ′

using Col-cases ‹Coplanar P C D Y ′› ‹Coplanar P C D Y › assms(3 ) coplanar-trans-1 by blast
ultimately show ?thesis

using l12-9 P1 P2 by blast
qed

qed
thus ?thesis
proof −

{
assume X Y ParStrict X ′ Y ′

then have Col X X ′ Y ′

using P1 P2 ‹X Y ParStrict X ′ Y ′› par-not-col by blast
}
then have Col X X ′ Y ′

using Par-def ‹X Y Par X ′ Y ′› by blast
moreover have Col Y X ′ Y ′

proof −
{

assume X Y ParStrict X ′ Y ′

then have Col Y X ′ Y ′

using P1 P2 ‹X Y ParStrict X ′ Y ′› par-not-col by blast
}
thus ?thesis

using Par-def ‹X Y Par X ′ Y ′› by blast
qed
moreover have X 6= Y

using P1 perp-not-eq-1 by auto
ultimately show ?thesis
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by (meson Perp2-def P1 P2 col-permutation-1 perp-col2 )
qed

qed

lemma col-cop-perp2--pars-bis:
assumes ¬ Col A B P and

Col C D P and
Coplanar A B C D and
P Perp2 A B C D

shows A B ParStrict C D
proof −

obtain X Y where P1 : Col P X Y ∧ X Y Perp A B ∧ X Y Perp C D
using Perp2-def assms(4 ) by auto

then have Col X Y P
using Col-perm by blast

obtain Q where X 6= Q ∧ Y 6= Q ∧ P 6= Q ∧ Col X Y Q
using ‹Col X Y P› diff-col-ex3 by blast

thus ?thesis
by (smt P1 Perp-perm assms(1 ) assms(2 ) assms(3 ) col-cop-perp2-pars col-permutation-1 col-transitivity-2 not-col-distincts

perp-col4 perp-distinct)
qed

lemma perp2-preserves-bet23 :
assumes Bet PO A B and

Col PO A ′ B ′ and
¬ Col PO A A ′ and
PO Perp2 A A ′ B B ′

shows Bet PO A ′ B ′

proof −
have A 6= A ′

using assms(3 ) not-col-distincts by auto
show ?thesis
proof cases

assume A ′ = B ′

thus ?thesis
using between-trivial by auto

next
assume A ′ 6= B ′

{
assume A = B
then obtain X Y where P1 : Col PO X Y ∧ X Y Perp A A ′ ∧ X Y Perp A B ′

using Perp2-def assms(4 ) by blast
have Col A A ′ B ′

proof −
have Coplanar X Y A ′ B ′

using Col-cases Coplanar-def P1 assms(2 ) by auto
moreover have A A ′ Perp X Y

using P1 Perp-perm by blast
moreover have A B ′ Perp X Y

using P1 Perp-perm by blast
ultimately show ?thesis

using cop-perp2--col by blast
qed
then have False

using Col-perm ‹A ′ 6= B ′› assms(2 ) assms(3 ) l6-16-1 by blast
}
then have A 6= B by auto
have A A ′ Par B B ′

proof −
obtain X Y where P2 : Col PO X Y ∧ X Y Perp A A ′ ∧ X Y Perp B B ′

using Perp2-def assms(4 ) by auto
then have Coplanar X Y A B

using Coplanar-def assms(1 ) bet-col not-col-permutation-2 by blast
show ?thesis
proof −

have Coplanar X Y A B ′
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by (metis (full-types) Col-cases P2 assms(2 ) assms(3 ) col-cop2--cop col-trivial-3 ncop--ncols perp--coplanar)
moreover have Coplanar X Y A ′ B
proof cases

assume Col A X Y
then have Col Y X A

by (metis (no-types) Col-cases)
then show ?thesis

by (metis Col-cases P2 assms(1 ) assms(3 ) bet-col colx ncop--ncols not-col-distincts)
next

assume ¬ Col A X Y
moreover have Coplanar A X Y A ′

using Coplanar-def P2 perp-inter-exists by blast
moreover have Coplanar A X Y B

using ‹Coplanar X Y A B› ncoplanar-perm-8 by blast
ultimately show ?thesis

using coplanar-trans-1 by auto
qed
moreover have Coplanar X Y A ′ B ′

using Col-cases Coplanar-def P2 assms(2 ) by auto
moreover have A A ′ Perp X Y

using P2 Perp-perm by blast
moreover have B B ′ Perp X Y

using P2 Perp-perm by blast
ultimately show ?thesis

using ‹Coplanar X Y A B› l12-9 by auto
qed

qed
{

assume A A ′ ParStrict B B ′

then have A A ′ OS B B ′

by (simp add: l12-6 )
have A A ′ TS PO B

using Col-cases ‹A 6= B› assms(1 ) assms(3 ) bet--ts by blast
then have A A ′ TS B ′ PO

using ‹A A ′ OS B B ′› l9-2 l9-8-2 by blast
then have Bet PO A ′ B ′

using Col-cases assms(2 ) between-symmetry col-two-sides-bet invert-two-sides by blast
}
thus ?thesis

by (metis Col-cases Par-def ‹A A ′ Par B B ′› ‹A 6= B› assms(1 ) assms(3 ) bet-col col-trivial-3 l6-21 )
qed

qed

lemma perp2-preserves-bet13 :
assumes Bet B PO C and

Col PO B ′ C ′ and
¬ Col PO B B ′ and
PO Perp2 B C ′ C B ′

shows Bet B ′ PO C ′

proof cases
assume C ′ = PO
thus ?thesis

using not-bet-distincts by blast
next

assume C ′ 6= PO
show ?thesis
proof cases

assume B ′ = PO
thus ?thesis

using between-trivial2 by auto
next

assume B ′ 6= PO
have B 6= PO

using assms(3 ) col-trivial-1 by auto
have Col B PO C

by (simp add: Col-def assms(1 ))
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show ?thesis
proof cases

assume B = C
thus ?thesis

using ‹B = C › ‹B 6= PO› assms(1 ) between-identity by blast
next

assume B 6= C
have B C ′ Par C B ′

proof −
obtain X Y where P1 : Col PO X Y ∧ X Y Perp B C ′ ∧ X Y Perp C B ′

using Perp2-def assms(4 ) by auto
have Coplanar X Y B C

by (meson P1 ‹Col B PO C › assms(1 ) l9-18-R2 ncop--ncols not-col-permutation-2 not-col-permutation-5
ts--coplanar)

have Coplanar X Y C ′ B ′

using Col-cases Coplanar-def P1 assms(2 ) by auto
show ?thesis
proof −

have Coplanar X Y B C
by (simp add: ‹Coplanar X Y B C ›)

moreover have Coplanar X Y B B ′

by (metis P1 ‹C ′ 6= PO› assms(1 ) assms(2 ) bet-cop--cop calculation col-cop2--cop not-col-permutation-5
perp--coplanar)

moreover have Coplanar X Y C ′ C
by (smt P1 ‹B 6= PO› ‹Col B PO C › ‹Coplanar X Y C ′ B ′› assms(2 ) col2-cop--cop col-cop2--cop

col-permutation-1 col-transitivity-2 coplanar-perm-1 perp--coplanar)
moreover have Coplanar X Y C ′ B ′

by (simp add: ‹Coplanar X Y C ′ B ′›)
moreover have B C ′ Perp X Y

using P1 Perp-perm by blast
moreover have C B ′ Perp X Y

by (simp add: P1 Perp-perm)
ultimately show ?thesis

using l12-9 by blast
qed

qed
have B C ′ ParStrict C B ′

by (metis Out-def Par-def ‹B C ′ Par C B ′› ‹B 6= C › ‹B 6= PO› assms(1 ) assms(3 ) col-transitivity-1
not-col-permutation-4 out-col)

have B ′ 6= PO
by (simp add: ‹B ′ 6= PO›)

obtain X Y where P5 : Col PO X Y ∧ X Y Perp B C ′ ∧ X Y Perp C B ′

using Perp2-def assms(4 ) by auto
have X 6= Y

using P5 perp-not-eq-1 by auto
show ?thesis
proof cases

assume Col X Y B
have Col X Y C

using P5 ‹B 6= PO› ‹Col B PO C › ‹Col X Y B› col-permutation-1 colx by blast
show ?thesis
proof −

have Col B ′ PO C ′

using Col-cases assms(2 ) by auto
moreover have Per PO C B ′

by (metis P5 ‹B C ′ ParStrict C B ′› ‹Col X Y C › assms(2 ) col-permutation-2 par-strict-not-col-2 perp-col2
perp-per-2 )

moreover have Per PO B C ′

using P5 ‹B 6= PO› ‹Col X Y B› col-permutation-1 perp-col2 perp-per-2 by blast
ultimately show ?thesis

by (metis Tarski-neutral-dimensionless.per13-preserves-bet-inv Tarski-neutral-dimensionless-axioms ‹B C ′

ParStrict C B ′› assms(1 ) assms(3 ) between-symmetry not-col-distincts not-col-permutation-3 par-strict-not-col-2 )
qed

next
assume ¬ Col X Y B
then obtain B0 where U1 : Col X Y B0 ∧ X Y Perp B B0
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using l8-18-existence by blast
have ¬ Col X Y C

by (smt P5 ‹B C ′ ParStrict C B ′› ‹Col B PO C › ‹¬ Col X Y B› assms(2 ) col-permutation-2 colx
par-strict-not-col-2 )

then obtain C0 where U2 : Col X Y C0 ∧ X Y Perp C C0
using l8-18-existence by blast

have B0 6= PO
by (metis P5 Perp-perm ‹Col B PO C › ‹Col X Y B0 ∧ X Y Perp B B0 › ‹¬ Col X Y C › assms(3 ) col-permutation-2

col-permutation-3 col-perp2-ncol-col)
{

assume C0 = PO
then have C PO Par C B ′

by (metis P5 Par-def Perp-cases ‹Col X Y C0 ∧ X Y Perp C C0 › ‹¬ Col X Y C › col-perp2-ncol-col
not-col-distincts not-col-permutation-3 perp-distinct)

then have False
by (metis ‹B C ′ ParStrict C B ′› assms(2 ) assms(3 ) col3 not-col-distincts par-id-2 par-strict-not-col-2 )

}
then have C0 6= PO by auto
have Bet B0 PO C0
proof −

have Bet B PO C
by (simp add: assms(1 ))

moreover have PO 6= B0
using ‹B0 6= PO› by auto

moreover have PO 6= C0
using ‹C0 6= PO› by auto

moreover have Col B0 PO C0
using U1 U2 P5 ‹X 6= Y › col3 not-col-permutation-2 by blast

moreover have Per PO B0 B
proof −

have B0 PerpAt PO B0 B0 B
proof cases

assume X = B0
have B0 PO Perp B B0

by (metis P5 U1 calculation(2 ) col3 col-trivial-2 col-trivial-3 perp-col2 )
show ?thesis
proof −

have B0 6= PO
using calculation(2 ) by auto

moreover have B0 Y Perp B B0
using U1 ‹X = B0 › by auto

moreover have Col B0 Y PO
using Col-perm P5 ‹X = B0 › by blast

ultimately show ?thesis
using ‹B0 PO Perp B B0 › perp-in-comm perp-perp-in by blast

qed
next

assume X 6= B0
have X B0 Perp B B0

using U1 ‹X 6= B0 › perp-col by blast
have B0 PO Perp B B0

by (metis P5 U1 calculation(2 ) not-col-permutation-2 perp-col2 )
then have B0 PerpAt B0 PO B B0

by (simp add: perp-perp-in)
thus ?thesis

using Perp-in-perm by blast
qed
then show ?thesis

by (simp add: perp-in-per)
qed
moreover have Per PO C0 C
proof −

have C0 PO Perp C C0
by (metis P5 U2 calculation(3 ) col3 col-trivial-2 col-trivial-3 perp-col2 )

then have C0 PerpAt PO C0 C0 C
by (simp add: perp-in-comm perp-perp-in)
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thus ?thesis
using perp-in-per-2 by auto

qed
ultimately show ?thesis

using per13-preserves-bet by blast
qed
show ?thesis
proof cases

assume C ′ = B0
have B ′ = C0
proof −

have ¬ Col C ′ PO C
using P5 U1 ‹B0 6= PO› ‹C ′ = B0 › ‹¬ Col X Y C › colx not-col-permutation-3 not-col-permutation-4 by

blast
moreover have C 6= C0

using U2 ‹¬ Col X Y C › by auto
moreover have Col C C0 B ′

proof −
have Coplanar X Y C0 B ′

proof −
have Col X Y C0

by (simp add: U2 )
moreover have Col C0 B ′ C0

by (simp add: col-trivial-3 )
ultimately show ?thesis

using ncop--ncols by blast
qed
moreover have C C0 Perp X Y

using Perp-perm U2 by blast
moreover have C B ′ Perp X Y

using P5 Perp-perm by blast
ultimately show ?thesis

using cop-perp2--col by auto
qed
ultimately show ?thesis

by (metis Col-def ‹C ′ = B0 › ‹Bet B0 PO C0 › assms(2 ) colx)
qed
show ?thesis

using Bet-cases ‹B ′ = C0 › ‹C ′ = B0 › ‹Bet B0 PO C0 › by blast
next

assume C ′ 6= B0
then have B ′ 6= C0

by (metis P5 U1 U2 ‹C0 6= PO› assms(2 ) col-permutation-1 colx l8-18-uniqueness)
have B C ′ Par B B0
proof −

have Coplanar X Y B B
using ncop-distincts by auto

moreover have Coplanar X Y B B0
using U1 ncop--ncols by blast

moreover have Coplanar X Y C ′ B
using P5 ncoplanar-perm-1 perp--coplanar by blast

moreover have Coplanar X Y C ′ B0
using ‹¬ Col X Y B› calculation(2 ) calculation(3 ) col-permutation-1 coplanar-perm-12 coplanar-perm-18

coplanar-trans-1 by blast
moreover have B C ′ Perp X Y

using P5 Perp-perm by blast
moreover have B B0 Perp X Y

using Perp-perm U1 by blast
ultimately show ?thesis

using l12-9 by blast
qed
{

assume B C ′ ParStrict B B0
have Col B B0 C ′

by (simp add: ‹B C ′ Par B B0 › par-id-3 )
}
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then have Col B B0 C ′

using ‹B C ′ Par B B0 › par-id-3 by blast
have Col C C0 B ′

proof −
have Coplanar X Y C0 B ′

by (simp add: U2 col--coplanar)
moreover have C C0 Perp X Y

by (simp add: Perp-perm U2 )
moreover have C B ′ Perp X Y

using P5 Perp-perm by blast
ultimately show ?thesis

using cop-perp2--col by auto
qed
show ?thesis
proof −

have Col B ′ PO C ′

using assms(2 ) not-col-permutation-4 by blast
moreover have Per PO C0 B ′

proof −
have C0 PerpAt PO C0 C0 B ′

proof cases
assume X = C0
have C0 PO Perp C B ′

proof −
have C0 6= PO

by (simp add: ‹C0 6= PO›)
moreover have C0 Y Perp C B ′

using P5 ‹X = C0 › by auto
moreover have Col C0 Y PO

using Col-perm P5 ‹X = C0 › by blast
ultimately show ?thesis

using perp-col by blast
qed
then have B ′ C0 Perp C0 PO

using Perp-perm ‹B ′ 6= C0 › ‹Col C C0 B ′› not-col-permutation-1 perp-col1 by blast
then have C0 PerpAt C0 B ′ PO C0

using Perp-perm perp-perp-in by blast
thus ?thesis

using Perp-in-perm by blast
next

assume X 6= C0
then have X C0 Perp C B ′

using P5 U2 perp-col by blast
have C0 PO Perp C B ′

using Col-cases P5 U2 ‹C0 6= PO› perp-col2 by blast
then have B ′ C0 Perp C0 PO

using Perp-cases ‹B ′ 6= C0 › ‹Col C C0 B ′› col-permutation-2 perp-col by blast
thus ?thesis

using Perp-in-perm Perp-perm perp-perp-in by blast
qed
then show ?thesis

using perp-in-per-2 by auto
qed
moreover have Per PO B0 C ′

proof −
have B0 PerpAt PO B0 B0 C ′

proof −
have Col C ′ B B0

using Col-cases ‹Col B B0 C ′› by blast
then have C ′ B0 Perp X Y using perp-col P5 Perp-cases ‹C ′ 6= B0 › by blast
show ?thesis
proof −

have PO B0 Perp B0 C ′

by (smt P5 U1 ‹B0 6= PO› ‹C ′ 6= B0 › ‹Col B B0 C ′› col-trivial-2 not-col-permutation-2 perp-col4 )
then show ?thesis

using Perp-in-cases Perp-perm perp-perp-in by blast
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qed
qed
thus ?thesis

by (simp add: perp-in-per)
qed
ultimately show ?thesis

using ‹B0 6= PO› ‹C0 6= PO› ‹Bet B0 PO C0 › between-symmetry per13-preserves-bet-inv by blast
qed

qed
qed

qed
qed

qed

lemma is-image-perp-in:
assumes A 6= A ′ and

X 6= Y and
A A ′ Reflect X Y

shows ∃ P. P PerpAt A A ′ X Y
by (metis Perp-def Tarski-neutral-dimensionless.Perp-perm Tarski-neutral-dimensionless-axioms assms(1 ) assms(2 )

assms(3 ) ex-sym1 l10-6-uniqueness)

lemma perp-inter-perp-in-n:
assumes A B Perp C D
shows ∃ P. Col A B P ∧ Col C D P ∧ P PerpAt A B C D
by (simp add: assms perp-inter-perp-in)

lemma perp2-perp-in:
assumes PO Perp2 A B C D and
¬ Col PO A B and
¬ Col PO C D

shows ∃ P Q. Col A B P ∧ Col C D Q ∧ Col PO P Q ∧ P PerpAt PO P A B ∧ Q PerpAt PO Q C D
proof −

obtain X Y where P1 : Col PO X Y ∧ X Y Perp A B ∧ X Y Perp C D
using Perp2-def assms(1 ) by blast

have X 6= Y
using P1 perp-not-eq-1 by auto

obtain P where P2 : Col X Y P ∧ Col A B P ∧ P PerpAt X Y A B
using P1 perp-inter-perp-in-n by blast

obtain Q where P3 : Col X Y Q ∧ Col C D Q ∧ Q PerpAt X Y C D
using P1 perp-inter-perp-in-n by blast

have Col A B P
using P2 by simp

moreover have Col C D Q
using P3 by simp

moreover have Col PO P Q
using P2 P3 P1 ‹X 6= Y › col3 not-col-permutation-2 by blast

moreover have P PerpAt PO P A B
proof cases

assume X = PO
thus ?thesis

by (metis P2 assms(2 ) not-col-permutation-3 not-col-permutation-4 perp-in-col-perp-in perp-in-sym)
next

assume X 6= PO
then have P PerpAt A B X PO

by (meson Col-cases P1 P2 perp-in-col-perp-in perp-in-sym)
then have P PerpAt A B PO X

using Perp-in-perm by blast
then have P PerpAt A B PO P

by (metis Col-cases assms(2 ) perp-in-col perp-in-col-perp-in)
thus ?thesis

by (simp add: perp-in-sym)
qed
moreover have Q PerpAt PO Q C D

by (metis P1 P3 ‹X 6= Y › assms(3 ) col-trivial-2 colx not-col-permutation-3 not-col-permutation-4 perp-in-col-perp-in
perp-in-right-comm perp-in-sym)
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ultimately show ?thesis
by blast

qed

lemma l13-8 :
assumes U 6= PO and

V 6= PO and
Col PO P Q and
Col PO U V and
Per P U PO and
Per Q V PO

shows PO Out P Q ←→ PO Out U V
by (smt Out-def assms(1 ) assms(2 ) assms(3 ) assms(4 ) assms(5 ) assms(6 ) l8-2 not-col-permutation-5 per23-preserves-bet

per23-preserves-bet-inv per-distinct-1 )

lemma perp-in-rewrite:
assumes P PerpAt A B C D
shows P PerpAt A P P C ∨ P PerpAt A P P D ∨ P PerpAt B P P C ∨ P PerpAt B P P D
by (metis assms per-perp-in perp-in-distinct perp-in-per-1 perp-in-per-3 perp-in-per-4 )

lemma perp-out-acute:
assumes B Out A C ′ and

A B Perp C C ′

shows Acute A B C
proof −

have A 6= B
using assms(1 ) out-diff1 by auto

have C ′ 6= B
using Out-def assms(1 ) by auto

then have B C ′ Perp C C ′

by (metis assms(1 ) assms(2 ) out-col perp-col perp-comm perp-right-comm)
then have Per C C ′ B

using Perp-cases perp-per-2 by blast
then have Acute C ′ C B ∧ Acute C ′ B C

by (metis ‹C ′ 6= B› assms(2 ) l11-43 perp-not-eq-2 )
have C 6= B

using ‹B C ′ Perp C C ′› l8-14-1 by auto
show ?thesis
proof −

have B Out A C ′

by (simp add: assms(1 ))
moreover have B Out C C

by (simp add: ‹C 6= B› out-trivial)
moreover have Acute C ′ B C

by (simp add: ‹Acute C ′ C B ∧ Acute C ′ B C ›)
ultimately show ?thesis

using acute-out2--acute by auto
qed

qed

lemma perp-bet-obtuse:
assumes B 6= C ′ and

A B Perp C C ′ and
Bet A B C ′

shows Obtuse A B C
proof −

have Acute C ′ B C
proof −

have B Out C ′ C ′

using assms(1 ) out-trivial by auto
moreover have Col A B C ′

by (simp add: Col-def assms(3 ))
then have C ′ B Perp C C ′

using Out-def assms(2 ) assms(3 ) bet-col1 calculation perp-col2 by auto
ultimately show ?thesis

using perp-out-acute by blast
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qed
thus ?thesis

using acute-bet--obtuse assms(2 ) assms(3 ) between-symmetry perp-not-eq-1 by blast
qed

end

3.12.2 Part 1: 2D
context Tarski-2D
begin

lemma perp-in2--col:
assumes P PerpAt A B X Y and

P PerpAt A ′ B ′ X Y
shows Col A B A ′

using cop4-perp-in2--col all-coplanar assms by blast

lemma perp2-trans:
assumes P Perp2 A B C D and

P Perp2 C D E F
shows P Perp2 A B E F

proof −
obtain X Y where P1 : Col P X Y ∧ X Y Perp A B ∧ X Y Perp C D

using Perp2-def assms(1 ) by blast
obtain X ′ Y ′ where P2 : Col P X ′ Y ′ ∧ X ′ Y ′ Perp C D ∧ X ′ Y ′ Perp E F

using Perp2-def assms(2 ) by blast
{

assume X Y Par X ′ Y ′

then have P3 : X Y ParStrict X ′ Y ′ ∨ (X 6= Y ∧ X ′ 6= Y ′ ∧ Col X X ′ Y ′ ∧ Col Y X ′ Y ′)
using Par-def by blast

{
assume X Y ParStrict X ′ Y ′

then have P Perp2 A B E F
using P1 P2 par-not-col by auto

}
{

assume X 6= Y ∧ X ′ 6= Y ′ ∧ Col X X ′ Y ′ ∧ Col Y X ′ Y ′

then have P Perp2 A B E F
by (meson P1 P2 Perp2-def col-permutation-1 perp-col2 )

}
then have P Perp2 A B E F

using P3 ‹X Y ParStrict X ′ Y ′ =⇒ P Perp2 A B E F› by blast
}
{

assume ¬ X Y Par X ′ Y ′

then have P Perp2 A B E F
using P1 P2 l12-9-2D by blast

}
thus ?thesis

using ‹X Y Par X ′ Y ′ =⇒ P Perp2 A B E F› by blast
qed

lemma perp2-par :
assumes PO Perp2 A B C D
shows A B Par C D
using Perp2-def l12-9-2D Perp-perm assms by blast

end

3.12.3 Part 2: length
context Tarski-neutral-dimensionless

begin

lemma lg-exists:
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∃ l. (QCong l ∧ l A B)
using QCong-def cong-pseudo-reflexivity by blast

lemma lg-cong:
assumes QCong l and

l A B and
l C D

shows Cong A B C D
by (metis QCong-def assms(1 ) assms(2 ) assms(3 ) cong-inner-transitivity)

lemma lg-cong-lg:
assumes QCong l and

l A B and
Cong A B C D

shows l C D
by (metis QCong-def assms(1 ) assms(2 ) assms(3 ) cong-transitivity)

lemma lg-sym:
assumes QCong l

and l A B
shows l B A
using assms(1 ) assms(2 ) cong-pseudo-reflexivity lg-cong-lg by blast

lemma ex-points-lg:
assumes QCong l
shows ∃ A B. l A B
using QCong-def assms cong-pseudo-reflexivity by fastforce

lemma is-len-cong:
assumes TarskiLen A B l and

TarskiLen C D l
shows Cong A B C D
using TarskiLen-def assms(1 ) assms(2 ) lg-cong by auto

lemma is-len-cong-is-len:
assumes TarskiLen A B l and

Cong A B C D
shows TarskiLen C D l
using TarskiLen-def assms(1 ) assms(2 ) lg-cong-lg by fastforce

lemma not-cong-is-len:
assumes ¬ Cong A B C D and

TarskiLen A B l
shows ¬ l C D
using TarskiLen-def assms(1 ) assms(2 ) lg-cong by auto

lemma not-cong-is-len1 :
assumes ¬ Cong A B C D

and TarskiLen A B l
shows ¬ TarskiLen C D l
using assms(1 ) assms(2 ) is-len-cong by blast

lemma lg-null-instance:
assumes QCongNull l
shows l A A
by (metis QCongNull-def QCong-def assms cong-diff cong-trivial-identity)

lemma lg-null-trivial:
assumes QCong l

and l A A
shows QCongNull l
using QCongNull-def assms(1 ) assms(2 ) by auto

lemma lg-null-dec:

shows QCongNull l ∨ ¬ QCongNull l
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by simp

lemma ex-point-lg:
assumes QCong l
shows ∃ B. l A B
by (metis QCong-def assms not-cong-3412 segment-construction)

lemma ex-point-lg-out:
assumes A 6= P and

QCong l and
¬ QCongNull l

shows ∃ B. (l A B ∧ A Out B P)
proof −

obtain X Y where P1 : ∀ X0 Y0 . (Cong X Y X0 Y0 ←→ l X0 Y0 )
using QCong-def assms(2 ) by auto

then have l X Y
using cong-reflexivity by auto

then have X 6= Y
using assms(2 ) assms(3 ) lg-null-trivial by auto

then obtain B where A Out P B ∧ Cong A B X Y
using assms(1 ) segment-construction-3 by blast

thus ?thesis
using Cong-perm Out-cases P1 by blast

qed

lemma ex-point-lg-bet:
assumes QCong l
shows ∃ B. (l M B ∧ Bet A M B)

proof −
obtain X Y where P1 : ∀ X0 Y0 . (Cong X Y X0 Y0 ←→ l X0 Y0 )

using QCong-def assms by auto
then have l X Y

using cong-reflexivity by blast
obtain B where Bet A M B ∧ Cong M B X Y

using segment-construction by blast
thus ?thesis

using Cong-perm P1 by blast
qed

lemma ex-points-lg-not-col:
assumes QCong l

and ¬ QCongNull l
shows ∃ A B. (l A B ∧ ¬ Col A B P)

proof −
have ∃ B:: ′p. A 6= B

using another-point by blast
then obtain A:: ′p where P 6= A

by metis
then obtain Q where ¬ Col P A Q

using not-col-exists by auto
then have A 6= Q

using col-trivial-2 by auto
then obtain B where l A B ∧ A Out B Q

using assms(1 ) assms(2 ) ex-point-lg-out by blast
thus ?thesis

by (metis ‹¬ Col P A Q› col-transitivity-1 not-col-permutation-1 out-col out-diff1 )
qed

lemma ex-eql:
assumes ∃ A B. (TarskiLen A B l1 ∧ TarskiLen A B l2 )
shows l1 = l2

proof −
obtain A B where P1 : TarskiLen A B l1 ∧ TarskiLen A B l2

using assms by auto
have ∀ A0 B0 . (l1 A0 B0 −→ l2 A0 B0 )

by (metis TarskiLen-def ‹TarskiLen A B l1 ∧ TarskiLen A B l2 › lg-cong lg-cong-lg)
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have ∀ A0 B0 . (l1 A0 B0 ←→ l2 A0 B0 )
proof −

have ∀ A0 B0 . (l1 A0 B0 −→ l2 A0 B0 )
by (metis TarskiLen-def ‹TarskiLen A B l1 ∧ TarskiLen A B l2 › lg-cong lg-cong-lg)

moreover have ∀ A0 B0 . (l2 A0 B0 −→ l1 A0 B0 )
by (metis TarskiLen-def ‹TarskiLen A B l1 ∧ TarskiLen A B l2 › lg-cong lg-cong-lg)

ultimately show ?thesis by blast
qed
thus ?thesis by blast

qed

lemma all-eql:
assumes TarskiLen A B l1 and

TarskiLen A B l2
shows l1 = l2
using assms(1 ) assms(2 ) ex-eql by auto

lemma null-len:
assumes TarskiLen A A la and

TarskiLen B B lb
shows la = lb
by (metis TarskiLen-def all-eql assms(1 ) assms(2 ) lg-null-instance lg-null-trivial)

lemma eqL-equivalence:
assumes QCong la and

QCong lb and
QCong lc

shows la = la ∧ (la = lb −→ lb = la) ∧ (la = lb ∧ lb = lc −→ la = lc)
by simp

lemma ex-lg:
∃ l. (QCong l ∧ l A B)
by (simp add: lg-exists)

lemma lg-eql-lg:
assumes QCong l1 and

l1 = l2
shows QCong l2
using assms(1 ) assms(2 ) by auto

lemma ex-eqL:
assumes QCong l1 and

QCong l2 and
∃ A B. (l1 A B ∧ l2 A B)

shows l1 = l2
using TarskiLen-def all-eql assms(1 ) assms(2 ) assms(3 ) by auto

3.12.4 Part 3 : angles
lemma ang-exists:

assumes A 6= B and
C 6= B

shows ∃ a. (QCongA a ∧ a A B C )
proof −

have A B C CongA A B C
by (simp add: assms(1 ) assms(2 ) conga-refl)

thus ?thesis
using QCongA-def assms(1 ) assms(2 ) by auto

qed

lemma ex-points-eng:
assumes QCongA a
shows ∃ A B C . (a A B C )

proof −
obtain A B C where A 6= B ∧ C 6= B ∧ (∀ X Y Z . (A B C CongA X Y Z ←→ a X Y Z))

using QCongA-def assms by auto

412



thus ?thesis
using conga-pseudo-refl by blast

qed

lemma ang-conga:
assumes QCongA a and

a A B C and
a A ′ B ′ C ′

shows A B C CongA A ′ B ′ C ′

proof −
obtain A0 B0 C0 where A0 6= B0 ∧ C0 6= B0 ∧ (∀ X Y Z . (A0 B0 C0 CongA X Y Z ←→ a X Y Z))

using QCongA-def assms(1 ) by auto
thus ?thesis

by (meson assms(2 ) assms(3 ) not-conga not-conga-sym)
qed

lemma is-ang-conga:
assumes A B C Ang a and

A ′ B ′ C ′ Ang a
shows A B C CongA A ′ B ′ C ′

using Ang-def ang-conga assms(1 ) assms(2 ) by auto

lemma is-ang-conga-is-ang:
assumes A B C Ang a and

A B C CongA A ′ B ′ C ′

shows A ′ B ′ C ′ Ang a
proof −

have QCongA a
using Ang-def assms(1 ) by auto

then obtain A0 B0 C0 where A0 6= B0 ∧ C0 6= B0 ∧ (∀ X Y Z . (A0 B0 C0 CongA X Y Z ←→ a X Y Z))
using QCongA-def by auto

thus ?thesis
by (metis Ang-def assms(1 ) assms(2 ) not-conga)

qed

lemma not-conga-not-ang:
assumes QCongA a and
¬ A B C CongA A ′ B ′ C ′ and
a A B C

shows ¬ a A ′ B ′ C ′

using ang-conga assms(1 ) assms(2 ) assms(3 ) by auto

lemma not-conga-is-ang:
assumes ¬ A B C CongA A ′ B ′ C ′ and

A B C Ang a
shows ¬ a A ′ B ′ C ′

using Ang-def ang-conga assms(1 ) assms(2 ) by auto

lemma not-cong-is-ang1 :
assumes ¬ A B C CongA A ′ B ′ C ′ and

A B C Ang a
shows ¬ A ′ B ′ C ′ Ang a
using assms(1 ) assms(2 ) is-ang-conga by blast

lemma ex-eqa:
assumes ∃ A B C .(A B C Ang a1 ∧ A B C Ang a2 )
shows a1 = a2

proof −
obtain A B C where P1 : A B C Ang a1 ∧ A B C Ang a2

using assms by auto
{

fix x y z
assume a1 x y z
then have x y z Ang a1

using Ang-def assms by auto
then have x y z CongA A B C

413



using P1 not-cong-is-ang1 by blast
then have x y z Ang a2

using P1 is-ang-conga-is-ang not-conga-sym by blast
then have a2 x y z

using Ang-def assms by auto
}
{

fix x y z
assume a2 x y z
then have x y z Ang a2

using Ang-def assms by auto
then have x y z CongA A B C

using P1 not-cong-is-ang1 by blast
then have x y z Ang a1

using P1 is-ang-conga-is-ang not-conga-sym by blast
then have a1 x y z

using Ang-def assms by auto
}
then have ∀ x y z. (a1 x y z) ←→ (a2 x y z)

using ‹
∧

z y x. a1 x y z =⇒ a2 x y z› by blast
then have

∧
x y. (∀ z. (a1 x y) z = (a2 x y) z)

by simp
then have

∧
x y. (a1 x y) = (a2 x y) using fun-eq-iff by auto

thus ?thesis using fun-eq-iff by auto
qed

lemma all-eqa:
assumes A B C Ang a1 and

A B C Ang a2
shows a1 = a2
using assms(1 ) assms(2 ) ex-eqa by blast

lemma is-ang-distinct:
assumes A B C Ang a
shows A 6= B ∧ C 6= B
using assms conga-diff1 conga-diff2 is-ang-conga by blast

lemma null-ang:
assumes A B A Ang a1 and

C D C Ang a2
shows a1 = a2
using all-eqa assms(1 ) assms(2 ) conga-trivial-1 is-ang-conga-is-ang is-ang-distinct by auto

lemma flat-ang:
assumes Bet A B C and

Bet A ′ B ′ C ′ and
A B C Ang a1 and
A ′ B ′ C ′ Ang a2

shows a1 = a2
proof −

have A B C Ang a2
proof −

have A ′ B ′ C ′ Ang a2
by (simp add: assms(4 ))

moreover have A ′ B ′ C ′ CongA A B C
by (metis assms(1 ) assms(2 ) assms(3 ) calculation conga-line is-ang-distinct)

ultimately show ?thesis
using is-ang-conga-is-ang by blast

qed
then show ?thesis

using assms(3 ) all-eqa by auto
qed

lemma ang-distinct:
assumes QCongA a and

a A B C
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shows A 6= B ∧ C 6= B
proof −

have A B C Ang a
by (simp add: Ang-def assms(1 ) assms(2 ))

thus ?thesis
using is-ang-distinct by auto

qed

lemma ex-ang:
assumes B 6= A and

B 6= C
shows ∃ a. (QCongA a ∧ a A B C )
using ang-exists assms(1 ) assms(2 ) by auto

lemma anga-exists:
assumes A 6= B and

C 6= B and
Acute A B C

shows ∃ a. (QCongAAcute a ∧ a A B C )
proof −

have A B C CongA A B C
by (simp add: assms(1 ) assms(2 ) conga-refl)

thus ?thesis
using assms(1 ) QCongAAcute-def assms(3 ) by blast

qed

lemma anga-is-ang:
assumes QCongAAcute a
shows QCongA a

proof −
obtain A0 B0 C0 where P1 : Acute A0 B0 C0 ∧ (∀ X Y Z .(A0 B0 C0 CongA X Y Z ←→ a X Y Z))

using QCongAAcute-def assms by auto
thus ?thesis

using QCongA-def by (metis acute-distincts)
qed

lemma ex-points-anga:
assumes QCongAAcute a
shows ∃ A B C . a A B C
by (simp add: anga-is-ang assms ex-points-eng)

lemma anga-conga:
assumes QCongAAcute a and

a A B C and
a A ′ B ′ C ′

shows A B C CongA A ′ B ′ C ′

by (meson Tarski-neutral-dimensionless.ang-conga Tarski-neutral-dimensionless-axioms anga-is-ang assms(1 ) assms(2 )
assms(3 ))

lemma is-anga-to-is-ang:
assumes A B C AngAcute a
shows A B C Ang a
using AngAcute-def Ang-def anga-is-ang assms by auto

lemma is-anga-conga:
assumes A B C AngAcute a and

A ′ B ′ C ′ AngAcute a
shows A B C CongA A ′ B ′ C ′

using AngAcute-def anga-conga assms(1 ) assms(2 ) by auto

lemma is-anga-conga-is-anga:
assumes A B C AngAcute a and

A B C CongA A ′ B ′ C ′

shows A ′ B ′ C ′ AngAcute a
using Tarski-neutral-dimensionless.AngAcute-def Tarski-neutral-dimensionless.Ang-def Tarski-neutral-dimensionless.is-ang-conga-is-ang

Tarski-neutral-dimensionless-axioms assms(1 ) assms(2 ) is-anga-to-is-ang by fastforce
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lemma not-conga-is-anga:
assumes ¬ A B C CongA A ′ B ′ C ′ and

A B C AngAcute a
shows ¬ a A ′ B ′ C ′

using AngAcute-def anga-conga assms(1 ) assms(2 ) by auto

lemma not-cong-is-anga1 :
assumes ¬ A B C CongA A ′ B ′ C ′ and

A B C AngAcute a
shows ¬ A ′ B ′ C ′ AngAcute a
using assms(1 ) assms(2 ) is-anga-conga by auto

lemma ex-eqaa:
assumes ∃ A B C . (A B C AngAcute a1 ∧ A B C AngAcute a2 )
shows a1 = a2
using all-eqa assms is-anga-to-is-ang by blast

lemma all-eqaa:
assumes A B C AngAcute a1 and

A B C AngAcute a2
shows a1 = a2
using assms(1 ) assms(2 ) ex-eqaa by blast

lemma is-anga-distinct:
assumes A B C AngAcute a
shows A 6= B ∧ C 6= B
using assms is-ang-distinct is-anga-to-is-ang by blast

lemma null-anga:
assumes A B A AngAcute a1 and

C D C AngAcute a2
shows a1 = a2
using assms(1 ) assms(2 ) is-anga-to-is-ang null-ang by blast

lemma anga-distinct:
assumes QCongAAcute a and

a A B C
shows A 6= B ∧ C 6= B
using ang-distinct anga-is-ang assms(1 ) assms(2 ) by blast

lemma out-is-len-eq:
assumes A Out B C and

TarskiLen A B l and
TarskiLen A C l

shows B = C
using Out-def assms(1 ) assms(2 ) assms(3 ) between-cong not-cong-is-len1 by fastforce

lemma out-len-eq:
assumes QCong l and

A Out B C and
l A B and
l A C

shows B = C using out-is-len-eq
using TarskiLen-def assms(1 ) assms(2 ) assms(3 ) assms(4 ) by auto

lemma ex-anga:
assumes Acute A B C
shows ∃ a. (QCongAAcute a ∧ a A B C )
using acute-distincts anga-exists assms by blast

lemma not-null-ang-ang:
assumes QCongAnNull a
shows QCongA a
using QCongAnNull-def assms by blast
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lemma not-null-ang-def-equiv:
QCongAnNull a ←→ (QCongA a ∧ (∃ A B C . (a A B C ∧ ¬ B Out A C )))

proof −
{

assume QCongAnNull a
have QCongA a ∧ (∃ A B C . (a A B C ∧ ¬ B Out A C ))

using QCongAnNull-def ‹QCongAnNull a› ex-points-eng by fastforce
}
{

assume QCongA a ∧ (∃ A B C . (a A B C ∧ ¬ B Out A C ))
have QCongAnNull a

by (metis Ang-def QCongAnNull-def Tarski-neutral-dimensionless.l11-21-a Tarski-neutral-dimensionless-axioms
‹QCongA a ∧ (∃A B C . a A B C ∧ ¬ B Out A C )› not-conga-is-ang)

}
thus ?thesis

using ‹QCongAnNull a =⇒ QCongA a ∧ (∃A B C . a A B C ∧ ¬ B Out A C )› by blast
qed

lemma not-flat-ang-def-equiv:
QCongAnFlat a ←→ (QCongA a ∧ (∃ A B C . (a A B C ∧ ¬ Bet A B C )))

proof −
{

assume QCongAnFlat a
then have QCongA a ∧ (∃ A B C . (a A B C ∧ ¬ Bet A B C ))

using QCongAnFlat-def ex-points-eng by fastforce
}
{

assume QCongA a ∧ (∃ A B C . (a A B C ∧ ¬ Bet A B C ))
have QCongAnFlat a
proof −

obtain pp :: ′p and ppa :: ′p and ppb :: ′p where
f1 : QCongA a ∧ a pp ppa ppb ∧ ¬ Bet pp ppa ppb
using ‹QCongA a ∧ (∃A B C . a A B C ∧ ¬ Bet A B C )› by blast

then have f2 : ∀ p pa pb. pp ppa ppb CongA pb pa p ∨ ¬ a pb pa p
by (metis (no-types) Ang-def Tarski-neutral-dimensionless.not-cong-is-ang1 Tarski-neutral-dimensionless-axioms)

then have f3 : ∀ p pa pb. (Col pp ppa ppb ∨ ¬ a pb pa p) ∨ ¬ Bet pb pa p
by (metis (no-types) Col-def Tarski-neutral-dimensionless.ncol-conga-ncol Tarski-neutral-dimensionless-axioms)

have f4 : ∀ p pa pb. (¬ Bet ppa ppb pp ∨ ¬ Bet pb pa p) ∨ ¬ a pb pa p
using f2 f1 by (metis Col-def Tarski-neutral-dimensionless.l11-21-a Tarski-neutral-dimensionless-axioms not-bet-and-out

not-out-bet)
have f5 : ∀ p pa pb. (¬ Bet ppb pp ppa ∨ ¬ Bet pb pa p) ∨ ¬ a pb pa p
using f2 f1 by (metis Col-def Tarski-neutral-dimensionless.l11-21-a Tarski-neutral-dimensionless-axioms not-bet-and-out

not-out-bet)
{ assume Bet ppa ppb pp

then have ?thesis
using f4 f1 QCongAnFlat-def by blast }

moreover
{ assume Bet ppb pp ppa

then have ?thesis
using f5 f1 QCongAnFlat-def by blast }

ultimately show ?thesis
using f3 f1 Col-def QCongAnFlat-def by blast

qed
}
thus ?thesis

using ‹QCongAnFlat a =⇒ QCongA a ∧ (∃A B C . a A B C ∧ ¬ Bet A B C )› by blast
qed

lemma ang-const:
assumes QCongA a and

A 6= B
shows ∃ C . a A B C

proof −
obtain A0 B0 C0 where A0 6= B0 ∧ C0 6= B0 ∧ (∀ X Y Z . (A0 B0 C0 CongA X Y Z −→ a X Y Z))

by (metis QCongA-def assms(1 ))
then have (A0 B0 C0 CongA A0 B0 C0 ) ←→ a A0 B0 C0
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by (simp add: conga-refl)
then have a A0 B0 C0

using ‹A0 6= B0 ∧ C0 6= B0 ∧ (∀X Y Z . A0 B0 C0 CongA X Y Z −→ a X Y Z)› conga-refl by blast
then show ?thesis

using ‹A0 6= B0 ∧ C0 6= B0 ∧ (∀X Y Z . A0 B0 C0 CongA X Y Z −→ a X Y Z)› angle-construction-3 assms(2 )
by blast
qed

lemma ang-sym:
assumes QCongA a and

a A B C
shows a C B A

proof −
obtain A0 B0 C0 where A0 6= B0 ∧ C0 6= B0 ∧ (∀ X Y Z . (A0 B0 C0 CongA X Y Z −→ a X Y Z))

by (metis QCongA-def assms(1 ))
then show ?thesis
by (metis Tarski-neutral-dimensionless.ang-conga Tarski-neutral-dimensionless-axioms assms(1 ) assms(2 ) conga-left-comm

conga-refl not-conga-sym)
qed

lemma ang-not-null-lg:
assumes QCongA a and

QCong l and
a A B C and
l A B

shows ¬ QCongNull l
by (metis QCongNull-def TarskiLen-def ang-distinct assms(1 ) assms(3 ) assms(4 ) cong-reverse-identity not-cong-is-len)

lemma ang-distincts:
assumes QCongA a and

a A B C
shows A 6= B ∧ C 6= B
using ang-distinct assms(1 ) assms(2 ) by auto

lemma anga-sym:
assumes QCongAAcute a and

a A B C
shows a C B A
by (simp add: ang-sym anga-is-ang assms(1 ) assms(2 ))

lemma anga-not-null-lg:
assumes QCongAAcute a and

QCong l and
a A B C and
l A B

shows ¬ QCongNull l
using ang-not-null-lg anga-is-ang assms(1 ) assms(2 ) assms(3 ) assms(4 ) by blast

lemma anga-distincts:
assumes QCongAAcute a and

a A B C
shows A 6= B ∧ C 6= B
using anga-distinct assms(1 ) assms(2 ) by blast

lemma ang-const-o:
assumes ¬ Col A B P and

QCongA a and
QCongAnNull a and
QCongAnFlat a

shows ∃ C . a A B C ∧ A B OS C P
proof −

obtain A0 B0 C0 where P1 : A0 6= B0 ∧ C0 6= B0 ∧ (∀ X Y Z . (A0 B0 C0 CongA X Y Z −→ a X Y Z))
by (metis QCongA-def assms(2 ))

then have a A0 B0 C0
by (simp add: conga-refl)

then have T1 : A0 6= C0
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using P1 Tarski-neutral-dimensionless.QCongAnNull-def Tarski-neutral-dimensionless-axioms assms(3 ) out-trivial
by fastforce

have A 6= B
using assms(1 ) col-trivial-1 by blast

have A0 6= B0 ∧ B0 6= C0
using P1 by auto

then obtain C where P2 : A0 B0 C0 CongA A B C ∧ (A B OS C P ∨ Col A B C )
using angle-construction-2 assms(1 ) by blast

then have a A B C
by (simp add: P1 )

have P3 : A B OS C P ∨ Col A B C
using P2 by simp

have P4 : ∀ A B C . (a A B C −→ ¬ B Out A C )
using assms(3 ) by (simp add: QCongAnNull-def )

have P5 : ∀ A B C . (a A B C −→ ¬ Bet A B C )
using assms(4 ) QCongAnFlat-def by auto

{
assume Col A B C
have ¬ B Out A C

using P4 by (simp add: ‹a A B C ›)
have ¬ Bet A B C

using P5 by (simp add: ‹a A B C ›)
then have A B OS C P

using ‹Col A B C › ‹¬ B Out A C › l6-4-2 by blast
then have ∃ C1 . (a A B C1 ∧ A B OS C1 P)

using ‹a A B C › by blast
}
then have ∃ C1 . (a A B C1 ∧ A B OS C1 P)

using P3 ‹a A B C › by blast
then show ?thesis

by simp
qed

lemma anga-const:
assumes QCongAAcute a and

A 6= B
shows ∃ C . a A B C
using Tarski-neutral-dimensionless.ang-const Tarski-neutral-dimensionless-axioms anga-is-ang assms(1 ) assms(2 ) by

fastforce

lemma null-anga-null-angaP:
QCongANullAcute a ←→ IsNullAngaP a

proof −
have QCongANullAcute a −→ IsNullAngaP a

using IsNullAngaP-def QCongANullAcute-def ex-points-anga by fastforce
moreover have IsNullAngaP a −→ QCongANullAcute a
by (metis IsNullAngaP-def QCongAnNull-def Tarski-neutral-dimensionless.QCongANullAcute-def Tarski-neutral-dimensionless-axioms

anga-is-ang not-null-ang-def-equiv)
ultimately show ?thesis

by blast
qed

lemma is-null-anga-out:
assumes

a A B C and
QCongANullAcute a

shows B Out A C
using QCongANullAcute-def assms(1 ) assms(2 ) by auto

lemma acute-not-bet:
assumes Acute A B C
shows ¬ Bet A B C
using acute-col--out assms bet-col not-bet-and-out by blast

lemma anga-acute:
assumes QCongAAcute a and
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a A B C
shows Acute A B C
by (smt Tarski-neutral-dimensionless.QCongAAcute-def Tarski-neutral-dimensionless-axioms acute-conga--acute assms(1 )

assms(2 ))

lemma not-null-not-col:
assumes QCongAAcute a and
¬ QCongANullAcute a and
a A B C

shows ¬ Col A B C
proof −

have Acute A B C
using anga-acute assms(1 ) assms(3 ) by blast

then show ?thesis
using Tarski-neutral-dimensionless.IsNullAngaP-def Tarski-neutral-dimensionless-axioms acute-col--out assms(1 )

assms(2 ) assms(3 ) null-anga-null-angaP by blast
qed

lemma ang-cong-ang:
assumes QCongA a and

a A B C and
A B C CongA A ′ B ′ C ′

shows a A ′ B ′ C ′

by (metis QCongA-def assms(1 ) assms(2 ) assms(3 ) not-conga)

lemma is-null-ang-out:
assumes

a A B C and
QCongANull a

shows B Out A C
proof −

have a A B C −→ B Out A C
using QCongANull-def assms(2 ) by auto

then show ?thesis
by (simp add: assms(1 ))

qed

lemma out-null-ang:
assumes QCongA a and

a A B C and
B Out A C

shows QCongANull a
by (metis QCongANull-def QCongAnNull-def assms(1 ) assms(2 ) assms(3 ) not-null-ang-def-equiv)

lemma bet-flat-ang:
assumes QCongA a and

a A B C and
Bet A B C

shows AngFlat a
by (metis AngFlat-def QCongAnFlat-def assms(1 ) assms(2 ) assms(3 ) not-flat-ang-def-equiv)

lemma out-null-anga:
assumes QCongAAcute a and

a A B C and
B Out A C

shows QCongANullAcute a
using IsNullAngaP-def assms(1 ) assms(2 ) assms(3 ) null-anga-null-angaP by auto

lemma anga-not-flat:
assumes QCongAAcute a
shows QCongAnFlat a
by (metis (no-types, lifting) Tarski-neutral-dimensionless.QCongAnFlat-def Tarski-neutral-dimensionless.anga-is-ang

Tarski-neutral-dimensionless-axioms assms bet-col is-null-anga-out not-bet-and-out not-null-not-col)

lemma anga-const-o:
assumes ¬ Col A B P and

420



¬ QCongANullAcute a and
QCongAAcute a

shows ∃ C . (a A B C ∧ A B OS C P)
proof −

have QCongA a
by (simp add: anga-is-ang assms(3 ))

moreover have QCongAnNull a
using QCongANullAcute-def assms(2 ) assms(3 ) calculation not-null-ang-def-equiv by auto

moreover have QCongAnFlat a
by (simp add: anga-not-flat assms(3 ))

ultimately show ?thesis
by (simp add: ang-const-o assms(1 ))

qed

lemma anga-conga-anga:
assumes QCongAAcute a and

a A B C and
A B C CongA A ′ B ′ C ′

shows a A ′ B ′ C ′

using ang-cong-ang anga-is-ang assms(1 ) assms(2 ) assms(3 ) by blast

lemma anga-out-anga:
assumes QCongAAcute a and

a A B C and
B Out A A ′ and
B Out C C ′

shows a A ′ B C ′

proof −
have A B C CongA A ′ B C ′

by (simp add: assms(3 ) assms(4 ) l6-6 out2--conga)
thus ?thesis

using anga-conga-anga assms(1 ) assms(2 ) by blast
qed

lemma out-out-anga:
assumes QCongAAcute a and

B Out A C and
B ′ Out A ′ C ′ and
a A B C

shows a A ′ B ′ C ′

proof −
have A B C CongA A ′ B ′ C ′

by (simp add: assms(2 ) assms(3 ) l11-21-b)
thus ?thesis

using anga-conga-anga assms(1 ) assms(4 ) by blast
qed

lemma is-null-all:
assumes A 6= B and

QCongANullAcute a
shows a A B A

proof −
obtain A0 B0 C0 where Acute A0 B0 C0 ∧ (∀ X Y Z . (A0 B0 C0 CongA X Y Z ←→ a X Y Z))

using QCongAAcute-def QCongANullAcute-def assms(2 ) by auto
then have a A0 B0 C0

using acute-distincts conga-refl by blast
thus ?thesis

by (smt QCongANullAcute-def assms(1 ) assms(2 ) out-out-anga out-trivial)
qed

lemma anga-col-out:
assumes QCongAAcute a and

a A B C and
Col A B C

shows B Out A C
proof −
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have Acute A B C
using anga-acute assms(1 ) assms(2 ) by auto

then have P1 : Bet A B C −→ B Out A C
using acute-not-bet by auto

then have Bet C A B −→ B Out A C
using assms(3 ) l6-4-2 by auto

thus ?thesis
using P1 assms(3 ) l6-4-2 by blast

qed

lemma ang-not-lg-null:
assumes QCong la and

QCong lc and
QCongA a and
la A B and
lc C B and
a A B C

shows ¬ QCongNull la ∧ ¬ QCongNull lc
by (metis ang-not-null-lg ang-sym assms(1 ) assms(2 ) assms(3 ) assms(4 ) assms(5 ) assms(6 ))

lemma anga-not-lg-null:
assumes

QCongAAcute a and
la A B and
lc C B and
a A B C

shows ¬ QCongNull la ∧ ¬ QCongNull lc
by (metis QCongNull-def anga-not-null-lg anga-sym assms(1 ) assms(2 ) assms(3 ) assms(4 ))

lemma anga-col-null:
assumes QCongAAcute a and

a A B C and
Col A B C

shows B Out A C ∧ QCongANullAcute a
using anga-col-out assms(1 ) assms(2 ) assms(3 ) out-null-anga by blast

lemma eqA-preserves-ang:
assumes QCongA a and

a = b
shows QCongA b
using assms(1 ) assms(2 ) by auto

lemma eqA-preserves-anga:
assumes QCongAAcute a and

a = b
shows QCongAAcute b
using assms(1 ) assms(2 ) by auto

4 Some postulates of the parallels
lemma euclid-5--original-euclid:

assumes Euclid5
shows EuclidSParallelPostulate

proof −
{

fix A B C D P Q R
assume P1 : B C OS A D ∧ SAMS A B C B C D ∧ A B C B C D SumA P Q R ∧ ¬ Bet P Q R
obtain M where P2 : M Midpoint B C

using midpoint-existence by auto
obtain D ′ where P3 : C Midpoint D D ′

using symmetric-point-construction by auto
obtain E where P4 : M Midpoint D ′ E

using symmetric-point-construction by auto
have P5 : A 6= B
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using P1 os-distincts by blast
have P6 : B 6= C

using P1 os-distincts by blast
have P7 : C 6= D

using P1 os-distincts by blast
have P10 : M 6= B

using P2 P6 is-midpoint-id by auto
have P11 : M 6= C

using P2 P6 is-midpoint-id-2 by auto
have P13 : C 6= D ′

using P3 P7 is-midpoint-id-2 by blast
have P16 : ¬ Col B C A

using one-side-not-col123 P1 by blast
have B C OS D A

using P1 one-side-symmetry by blast
then have P17 : ¬ Col B C D

using one-side-not-col123 P1 by blast
then have P18 : ¬ Col M C D

using P2 Col-perm P11 col-transitivity-2 midpoint-col by blast
then have P19 : ¬ Col M C D ′

by (metis P13 P3 Col-perm col-transitivity-2 midpoint-col)
then have P20 : ¬ Col D ′ C B

by (metis Col-perm P13 P17 P3 col-transitivity-2 midpoint-col)
then have P21 : ¬ Col M C E

by (metis P19 P4 bet-col col2--eq col-permutation-4 midpoint-bet midpoint-distinct-2 )
have P22 : M C D ′ CongA M B E ∧ M D ′ C CongA M E B using P13 l11-49

by (metis Cong-cases P19 P2 P4 l11-51 l7-13-R1 l7-2 midpoint-cong not-col-distincts)
have P23 : Cong C D ′ B E

using P11 P2 P4 l7-13-R1 l7-2 by blast
have P27 : C B TS D D ′

by (simp add: P13 P17 P3 bet--ts midpoint-bet not-col-permutation-4 )
have P28 : A InAngle C B E
proof −

have C B A LeA C B E
proof −

have A B C LeA B C D ′

proof −
have Bet D C D ′

by (simp add: P3 midpoint-bet)
then show ?thesis using P1 P7 P13 sams-chara

by (metis sams-left-comm sams-sym)
qed
moreover have A B C CongA C B A

using P5 P6 conga-pseudo-refl by auto
moreover have B C D ′ CongA C B E

by (metis CongA-def Mid-cases P2 P22 P4 P6 symmetry-preserves-conga)
ultimately show ?thesis

using l11-30 by blast
qed
moreover have C B OS E A
proof −

have C B TS E D ′

using P2 P20 P4 l7-2 l9-2 mid-two-sides not-col-permutation-1 by blast
moreover have C B TS A D ′

using P27 ‹B C OS D A› invert-two-sides l9-8-2 by blast
ultimately show ?thesis

using OS-def by blast
qed
ultimately show ?thesis

using lea-in-angle by simp
qed
obtain A ′ where P30 : Bet C A ′ E ∧ (A ′ = B ∨ B Out A ′ A) using P28 InAngle-def by auto
{

assume A ′ = B
then have Col D ′ C B

by (metis Col-def P2 P21 P30 P6 col-transitivity-1 midpoint-col)
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then have False
by (simp add: P20 )

then have ∃ Y . B Out A Y ∧ C Out D Y by auto
}
{

assume P31 : B Out A ′ A
have ∃ I . BetS D ′ C I ∧ BetS B A ′ I
proof −

have P32 : BetS B M C
using BetS-def Midpoint-def P10 P11 P2 by auto

moreover have BetS E M D ′

using BetS-def Bet-cases P19 P21 P4 midpoint-bet not-col-distincts by fastforce
moreover have BetS C A ′ E
proof −

have P32A: C 6= A ′

using P16 P31 out-col by auto
{

assume A ′ = E
then have P33 : B Out A E

using P31 l6-6 by blast
then have A B C B C D SumA D ′ C D
proof −

have D ′ C B CongA A B C
proof −

have D ′ C M CongA E B M
by (simp add: P22 conga-comm)

moreover have C Out D ′ D ′

using P13 out-trivial by auto
moreover have C Out B M

using BetSEq Out-cases P32 bet-out-1 by blast
moreover have B Out A E

using P33 by auto
moreover have B Out C M

using BetSEq Out-def P32 by blast
ultimately show ?thesis

using l11-10 by blast
qed
moreover have D ′ C B B C D SumA D ′ C D

by (simp add: P27 l9-2 ts--suma-1 )
moreover have B C D CongA B C D

using P6 P7 conga-refl by auto
moreover have D ′ C D CongA D ′ C D

using P13 P7 conga-refl by presburger
ultimately show ?thesis

using conga3-suma--suma by blast
qed
then have D ′ C D CongA P Q R

using P1 suma2--conga by auto
then have Bet P Q R

using Bet-cases P3 bet-conga--bet midpoint-bet by blast
then have False using P1 by simp

}
then have A ′ 6= E by auto
then show ?thesis

by (simp add: BetS-def P30 P32A)
qed
moreover have ¬ Col B C D ′

by (simp add: P20 not-col-permutation-3 )
moreover have Cong B M C M

using Midpoint-def P2 not-cong-1243 by blast
moreover have Cong E M D ′ M

using Cong-perm Midpoint-def P4 by blast
ultimately show ?thesis

using euclid-5-def assms by blast
qed
then obtain Y where P34 : Bet D ′ C Y ∧ BetS B A ′ Y using BetSEq by blast
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then have ∃ Y . B Out A Y ∧ C Out D Y
proof −

have P35 : B Out A Y
by (metis BetSEq Out-def P31 P34 l6-7 )

moreover have C Out D Y
proof −

have D 6= C
using P7 by auto

moreover have Y 6= C
using P16 P35 l6-6 out-col by blast

moreover have D ′ 6= C
using P13 by auto

moreover have Bet D C D ′

by (simp add: P3 midpoint-bet)
moreover have Bet Y C D ′

by (simp add: Bet-perm P34 )
ultimately show ?thesis

using l6-2 by blast
qed
ultimately show ?thesis by auto

qed
}
then have ∃ Y . B Out A Y ∧ C Out D Y

using P30 ‹A ′ = B =⇒ ∃Y . B Out A Y ∧ C Out D Y › by blast
}
then show ?thesis using euclid-s-parallel-postulate-def by blast

qed

lemma tarski-s-euclid-implies-euclid-5 :
assumes TarskiSParallelPostulate
shows Euclid5

proof −
{

fix P Q R S T U
assume

P1 : BetS P T Q ∧ BetS R T S ∧ BetS Q U R ∧ ¬ Col P Q S ∧ Cong P T Q T ∧ Cong R T S T
have P1A: BetS P T Q using P1 by simp
have P1B: BetS R T S using P1 by simp
have P1C : BetS Q U R using P1 by simp
have P1D: ¬ Col P Q S using P1 by simp
have P1E : Cong P T Q T using P1 by simp
have P1F : Cong R T S T using P1 by simp
obtain V where P2 : P Midpoint R V

using symmetric-point-construction by auto
have P3 : Bet V P R

using Mid-cases P2 midpoint-bet by blast
then obtain W where P4 : Bet P W Q ∧ Bet U W V using inner-pasch

using BetSEq P1C by blast
{

assume P = W
have P 6= V

by (metis BetSEq Bet-perm Col-def Cong-perm Midpoint-def P1A P1B P1D P1E P1F P2 between-trivial
is-midpoint-id-2 l7-9 )

have Col P Q S
proof −

have f1 : Col V P R
by (meson Col-def P3 )

have f2 : Col U R Q
by (simp add: BetSEq Col-def P1 )

have f3 : Bet P T Q
using BetSEq P1 by fastforce

have f4 : R = P ∨ Col V P U
by (metis (no-types) Col-def P4 ‹P = W › ‹P 6= V › l6-16-1 )

have f5 : Col Q P T
using f3 by (meson Col-def )

have f6 : Col T Q P
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using f3 by (meson Col-def )
have f7 : Col P T Q

using f3 by (meson Col-def )
have f8 : Col P Q P

using Col-def P4 ‹P = W › by blast
have Col R T S

by (meson BetSEq Col-def P1 )
then have T = P ∨ Q = P

using f8 f7 f6 f5 f4 f2 f1 by (metis (no-types) BetSEq P1 ‹P 6= V › colx l6-16-1 )
then show ?thesis

by (metis BetSEq P1 )
qed
then have False

by (simp add: P1D)
}
then have P5 : P 6= W by auto
have Bet V W U

using Bet-cases P4 by auto
then obtain X Y where P7 : Bet P V X ∧ Bet P U Y ∧ Bet X Q Y

using assms(1 ) P1 P4 P5 tarski-s-parallel-postulate-def by blast
have Q S Par P R
proof −

have Q 6= S
using P1D col-trivial-2 by auto

moreover have T Midpoint Q P
using BetSEq P1A P1E l7-2 midpoint-def not-cong-1243 by blast

moreover have T Midpoint S R
using BetSEq P1B P1F l7-2 midpoint-def not-cong-1243 by blast

ultimately show ?thesis
using l12-17 by auto

qed
then have P9 : Q S ParStrict P R

using P1D Par-def par-strict-symmetry par-symmetry by blast
have P10 : Q S TS P Y
proof −

have P10A: P 6= R
using P9 par-strict-distinct by auto

then have P11 : P 6= X
by (metis P2 P7 bet-neq12--neq midpoint-not-midpoint)

have P12 : ¬ Col X Q S
proof −

have Q S ParStrict P R
by (simp add: P9 )

then have Col P R X
by (metis P2 P3 P7 bet-col between-symmetry midpoint-not-midpoint not-col-permutation-4 outer-transitivity-between)
then have P X ParStrict Q S

using P9 Par-strict-perm P11 par-strict-col-par-strict by blast
then show ?thesis

using par-strict-not-col-2 by auto
qed
{

assume W1 : Col Y Q S
have W2 : Q = Y

by (metis P12 P7 W1 bet-col bet-col1 colx)
then have ¬ Col Q P R

using P9 W1 par-not-col by auto
then have W3 : Q = U

by (smt BetS-def Col-def P1C P7 W2 col-transitivity-2 )
then have False

using BetS-def P1C by auto
}
then have ¬ Col Y Q S by auto
then have Q S TS X Y

by (metis P7 P12 bet--ts not-col-distincts not-col-permutation-1 )
moreover have Q S OS X P
proof −

426



have P 6= V
using P10A P2 is-midpoint-id-2 by blast

then have Q S ParStrict P X
by (meson Bet-perm P3 P7 P9 P11 bet-col not-col-permutation-4 par-strict-col-par-strict)

then have Q S ParStrict X P
by (simp add: par-strict-right-comm)

then show ?thesis
by (simp add: l12-6 )

qed
ultimately show ?thesis

using l9-8-2 by auto
qed
then obtain I where W4 : Col I Q S ∧ Bet P I Y

using TS-def by blast
have ∃ I . (BetS S Q I ∧ BetS P U I )
proof −

have BetS P U I
proof −

have P 6= Y
using P10 not-two-sides-id by auto

have W4A: Bet P U I
proof −

have W5 : Col P U I
using P7 W4 bet-col1 by auto

{
assume W6 : Bet U I P
have W7 : Q S OS P U
proof −

have Q S OS R U
proof −

have ¬ Col Q S R
using P9 par-strict-not-col-4 by auto

moreover have Q Out R U
using BetSEq Out-def P1C by blast

ultimately show ?thesis
by (simp add: out-one-side)

qed
moreover have Q S OS P R

by (simp add: P9 l12-6 )
ultimately show ?thesis

using one-side-transitivity by blast
qed
have W8 : I Out P U ∨ ¬ Col Q S P

by (simp add: P1D not-col-permutation-1 )
have False
proof −

have I Out U P
using W4 W6 W7 between-symmetry one-side-chara by blast

then show ?thesis
using W6 not-bet-and-out by blast

qed
}
{

assume V1 : Bet I P U
have P R OS I U
proof −

have P R OS I Q
proof −

{
assume Q = I
then have Col P Q S

by (metis BetSEq Col-def P1C P7 P9 V1 W4 between-equality outer-transitivity-between par-not-col)
then have False

using P1D by blast
}
then have Q 6= I by blast
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moreover have P R ParStrict Q S
using P9 par-strict-symmetry by blast

moreover have Col Q S I
using Col-cases W4 by blast

ultimately show ?thesis
using one-side-symmetry par-strict-all-one-side by blast

qed
moreover have P R OS Q U
proof −

have Q S ParStrict P R
using P9 by blast

have R Out Q U ∧ ¬ Col P R Q
by (metis BetSEq Bet-cases Out-def P1C calculation col124--nos)

then show ?thesis
by (metis P7 V1 W4 ‹Bet U I P =⇒ False› between-equality col-permutation-2 not-bet-distincts out-col

outer-transitivity-between)
qed
ultimately show ?thesis

using one-side-transitivity by blast
qed
then have V2 : P Out I U

using P7 W4 bet2--out os-distincts by blast
then have Col P I U

using V1 not-bet-and-out by blast
then have False

using V1 V2 not-bet-and-out by blast
}
then moreover have ¬ (Bet U I P ∨ Bet I P U )

using ‹Bet U I P =⇒ False› by auto
ultimately show ?thesis

using Col-def W5 by blast
qed
{

assume P = U
then have Col P R Q

using BetSEq Col-def P1C by blast
then have False

using P9 par-strict-not-col-3 by blast
}
then have V6 : P 6= U by auto
{

assume U = I
have Q = U
proof −

have f1 : BetS Q I R
using P1C ‹U = I › by blast

then have f2 : Col Q I R
using BetSEq Col-def by blast

have f3 : Col I R Q
using f1 by (simp add: BetSEq Col-def )

{ assume R 6= Q
moreover
{ assume (R 6= Q ∧ R 6= I ) ∧ ¬ Col I Q R

moreover
{ assume ∃ p. (R 6= Q ∧ ¬ Col I p I ) ∧ Col Q I p

then have I = Q
using f1 by (metis (no-types) BetSEq Col-def col-transitivity-2 ) }

ultimately have (∃ p pa. ((pa 6= I ∧ ¬ Col pa p R) ∧ Col Q I pa) ∧ Col I pa p) ∨ I = Q
using f3 f2 by (metis (no-types) col-transitivity-2 ) }

ultimately have (∃ p pa. ((pa 6= I ∧ ¬ Col pa p R) ∧ Col Q I pa) ∧ Col I pa p) ∨ I = Q
using f1 by (metis (no-types) BetSEq P9 W4 col-transitivity-2 par-strict-not-col-4 ) }

then show ?thesis
using f2 by (metis P9 W4 ‹U = I › col-transitivity-2 par-strict-not-col-4 )

qed
then have False

using BetSEq P1C by blast
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}
then have U 6= I by auto
then show ?thesis

by (simp add: W4A V6 BetS-def )
qed
moreover have BetS S Q I
proof −

have Q R TS S I
proof −

have Q R TS P I
proof −

have ¬ Col P Q R
using P9 col-permutation-5 par-strict-not-col-3 by blast

moreover have ¬ Col I Q R
proof −

{
assume Col I Q R
then have Col Q S R
proof −

have f1 : ∀ p pa pb. Col p pa pb ∨ ¬ BetS pb p pa
by (meson BetSEq Col-def )

then have f2 : Col U I P
using ‹BetS P U I › by blast

have f3 : Col I P U
by (simp add: BetSEq Col-def ‹BetS P U I ›)

have f4 : ∀ p. (U = Q ∨ Col Q p R) ∨ ¬ Col Q U p
by (metis BetSEq Col-def P1C col-transitivity-1 )

{ assume P 6= Q
moreover
{ assume (P 6= Q ∧ U 6= Q) ∧ Col Q P Q

then have (P 6= Q ∧ U 6= Q) ∧ ¬ Col Q P R
using Col-cases ‹¬ Col P Q R› by blast

moreover
{ assume ∃ p. ((U 6= Q ∧ P 6= Q) ∧ ¬ Col Q p P) ∧ Col Q P p

then have U 6= Q ∧ ¬ Col Q P P
by (metis col-transitivity-1 )

then have ¬ Col U Q P
using col-transitivity-2 by blast }

ultimately have ¬ Col U Q P ∨ I 6= Q
using f4 f3 by blast }

ultimately have I 6= Q
using f2 f1 by (metis BetSEq P1C col-transitivity-1 col-transitivity-2 ) }

then have I 6= Q
using BetSEq ‹BetS P U I › by blast

then show ?thesis
by (simp add: W4 ‹Col I Q R› col-transitivity-2 )

qed
then have False

using P9 par-strict-not-col-4 by blast
}
then show ?thesis by blast

qed
moreover have Col U Q R

using BetSEq Bet-cases Col-def P1C by blast
moreover have Bet P U I

by (simp add: BetSEq ‹BetS P U I ›)
ultimately show ?thesis

using TS-def by blast
qed
moreover have Q R OS P S
proof −

have Q R Par P S
proof −

have Q 6= R
using BetSEq P1 by blast

moreover have T Midpoint Q P
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using BetSEq Bet-cases P1A P1E cong-3421 midpoint-def by blast
moreover have T Midpoint R S

using BetSEq P1B P1F midpoint-def not-cong-1243 by blast
ultimately show ?thesis

using l12-17 by blast
qed
then have Q R ParStrict P S

by (simp add: P1D Par-def not-col-permutation-4 )
then show ?thesis

using l12-6 by blast
qed
ultimately show ?thesis

using l9-8-2 by blast
qed
then show ?thesis

by (metis BetS-def W4 col-two-sides-bet not-col-permutation-2 ts-distincts)
qed
ultimately show ?thesis

by auto
qed

}
then show ?thesis using euclid-5-def by blast

qed

lemma tarski-s-implies-euclid-s-parallel-postulate:
assumes TarskiSParallelPostulate
shows EuclidSParallelPostulate
by (simp add: assms euclid-5--original-euclid tarski-s-euclid-implies-euclid-5 )

theorem tarski-s-euclid-implies-playfair-s-postulate:
assumes TarskiSParallelPostulate
shows PlayfairSPostulate

proof −
{

fix A1 A2 B1 B2 P C1 C2
assume P1 : ¬ Col P A1 A2 ∧ A1 A2 Par B1 B2 ∧ Col P B1 B2 ∧ A1 A2 Par C1 C2 ∧ Col P C1 C2
have P1A: ¬ Col P A1 A2

by (simp add: P1 )
have P2 : A1 A2 Par B1 B2

by (simp add: P1 )
have P3 : Col P B1 B2

by (simp add: P1 )
have P4 : A1 A2 Par C1 C2

by (simp add: P1 )
have P5 : Col P C1 C2

by (simp add: P1 )
have P6 : A1 A2 ParStrict B1 B2
proof −

have A1 A2 Par B1 B2
by (simp add: P1 )

moreover have Col B1 B2 P
using P3 not-col-permutation-2 by blast

moreover have ¬ Col A1 A2 P
by (simp add: P1A not-col-permutation-1 )

ultimately show ?thesis
using par-not-col-strict by auto

qed
have P7 : A1 A2 ParStrict C1 C2
proof −

have A1 A2 Par C1 C2
by (simp add: P1 )

moreover have Col C1 C2 P
using Col-cases P1 by blast

moreover have ¬ Col A1 A2 P
by (simp add: P1A not-col-permutation-1 )

ultimately show ?thesis
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using par-not-col-strict by auto
qed
{

assume ¬ Col C1 B1 B2 ∨ ¬ Col C2 B1 B2
have ∃ C ′. Col C1 C2 C ′ ∧ B1 B2 TS A1 C ′

proof −
have T2 : Coplanar A1 A2 P A1

using ncop-distincts by auto
have T3 : Coplanar A1 A2 B1 B2

by (simp add: P1 par--coplanar)
have T4 : Coplanar A1 A2 C1 C2

by (simp add: P7 pars--coplanar)
have T5 : Coplanar A1 A2 P B1

using P1 col-trivial-2 ncop-distincts par--coplanar par-col2-par-bis by blast
then have T6 : Coplanar A1 A2 P B2

using P3 T3 col-cop--cop by blast
have T7 : Coplanar A1 A2 P C1

using P1 T4 col-cop--cop coplanar-perm-1 not-col-permutation-2 par-distincts by blast
then have T8 : Coplanar A1 A2 P C2

using P5 T4 col-cop--cop by blast
{

assume ¬ Col C1 B1 B2
moreover have C1 6= C2

using P1 par-neq2 by auto
moreover have Col B1 B2 P

using P1 not-col-permutation-2 by blast
moreover have Col C1 C2 P

using Col-cases P5 by auto
moreover have ¬ Col B1 B2 C1

using Col-cases calculation(1 ) by auto
moreover have ¬ Col B1 B2 A1

using P6 par-strict-not-col-3 by auto
moreover have Coplanar B1 B2 C1 A1

using Col-cases P1A T5 T2 T6 T7 coplanar-pseudo-trans by blast
ultimately have ∃ C ′. Col C1 C2 C ′ ∧ B1 B2 TS A1 C ′

using cop-not-par-other-side by blast
}
{

assume ¬ Col C2 B1 B2
moreover have C2 6= C1

using P1 par-neq2 by blast
moreover have Col B1 B2 P

using Col-cases P3 by auto
moreover have Col C2 C1 P

using Col-cases P5 by auto
moreover have ¬ Col B1 B2 C2

by (simp add: calculation(1 ) not-col-permutation-1 )
moreover have ¬ Col B1 B2 A1

using P6 par-strict-not-col-3 by auto
moreover have Coplanar B1 B2 C2 A1

using Col-cases P1A T2 T5 T6 T8 coplanar-pseudo-trans by blast
ultimately have ∃ C ′. Col C1 C2 C ′ ∧ B1 B2 TS A1 C ′ using cop-not-par-other-side

by (meson not-col-permutation-4 )
}
then show ?thesis

using ‹¬ Col C1 B1 B2 =⇒ ∃C ′. Col C1 C2 C ′ ∧ B1 B2 TS A1 C ′› ‹¬ Col C1 B1 B2 ∨ ¬ Col C2 B1 B2 ›
by blast

qed
then obtain C ′ where W1 : Col C1 C2 C ′ ∧ B1 B2 TS A1 C ′ by auto
then have W2 : ¬ Col A1 B1 B2

using TS-def by blast
obtain B where W3 : Col B B1 B2 ∧ Bet A1 B C ′

using TS-def W1 by blast
obtain C where W4 : P Midpoint C ′ C

using symmetric-point-construction by blast
then have W4A: Bet A1 B C ′ ∧ Bet C P C ′
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using Mid-cases W3 midpoint-bet by blast
then obtain D where W5 : Bet B D C ∧ Bet P D A1 using inner-pasch by blast
have W6 : C ′ 6= P

using P3 TS-def W1 by blast
then have A1 A2 Par C ′ P

by (meson P1 W1 not-col-permutation-2 par-col2-par)
have W9 : A1 A2 ParStrict C ′ P

using Col-cases P5 P7 W1 W6 par-strict-col2-par-strict by blast
then have W10 : B 6= P

by (metis W6 W4A bet-out-1 out-col par-strict-not-col-3 )
have W11 : P 6= C

using W6 W4 is-midpoint-id-2 by blast
{

assume P = D
then have False

by (metis Col-def P3 W1 W3 W4A W5 W10 W11 col-trivial-2 colx l9-18-R1 )
}
then have P 6= D by auto
then obtain X Y where W12 : Bet P B X ∧ Bet P C Y ∧ Bet X A1 Y

using W5 assms tarski-s-parallel-postulate-def by blast
then have P 6= X

using W10 bet-neq12--neq by auto
then have A1 A2 ParStrict P X

by (metis Col-cases P3 P6 W10 W12 W3 bet-col colx par-strict-col2-par-strict)
then have W15 : A1 A2 OS P X

by (simp add: l12-6 )
have P 6= Y

using W11 W12 between-identity by blast
then have A1 A2 ParStrict P Y

by (metis Col-def W11 W12 W4A W9 col-trivial-2 par-strict-col2-par-strict)
then have W16 : A1 A2 OS P Y

using l12-6 by auto
have Col A1 X Y

by (simp add: W12 bet-col col-permutation-4 )
then have A1 Out X Y using col-one-side-out W15 W16

using one-side-symmetry one-side-transitivity by blast
then have False

using W12 not-bet-and-out by blast
}
then have Col C1 B1 B2 ∧ Col C2 B1 B2

by auto
}
{

fix A1 A2 B1 B2 P C1 C2
assume P1 : Col P A1 A2 ∧ A1 A2 Par B1 B2 ∧ Col P B1 B2 ∧ A1 A2 Par C1 C2 ∧ Col P C1 C2
have Col C1 B1 B2

by (smt P1 l9-10 not-col-permutation-3 not-strict-par2 par-col2-par par-comm par-id-5 par-symmetry ts-distincts)
moreover have Col C2 B1 B2
by (smt P1 l9-10 not-col-permutation-3 not-strict-par2 par-col2-par par-id-5 par-left-comm par-symmetry ts-distincts)
ultimately have Col C1 B1 B2 ∧ Col C2 B1 B2 by auto

}
then show ?thesis

using playfair-s-postulate-def
by (metis ‹

∧
P C2 C1 B2 B1 A2 A1 . ¬ Col P A1 A2 ∧ A1 A2 Par B1 B2 ∧ Col P B1 B2 ∧ A1 A2 Par C1 C2 ∧

Col P C1 C2 =⇒ Col C1 B1 B2 ∧ Col C2 B1 B2 ›)
qed

end
end
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