Irrational numbers from THE BOOK

Lawrence C. Paulson

March 17, 2025

Abstract

An elementary proof is formalised: that $\exp r$ is irrational for every nonzero rational number r. The mathematical development comes from the well-known volume *Proofs from THE BOOK* [1, pp. 51–2], by Aigner and Ziegler, who credit the idea to Hermite. The development illustrates a number of basic Isabelle techniques: the manipulation of summations, the calculation of quite complicated derivatives and the estimation of integrals. We also see how to import another AFP entry (Stirling's formula) [2].

As for the theorem itself, note that a much stronger and more general result (the Hermite–Lindemann–Weierstraß transcendence theorem) is already available in the AFP [3].

Contents

1	Some irrational numbers		3
	1.1	Basic definitions and their consequences	3
	1.2	Towards the main result	4

Acknowledgements The author was supported by the ERC Advanced Grant ALEXANDRIA (Project 742178) funded by the European Research Council.

1 Some irrational numbers

From Aigner and Ziegler, *Proofs from THE BOOK* (Springer, 2018), Chapter 8, pp. 50–51.

theory Irrationals-From-THEBOOK imports Stirling-Formula. Stirling-Formula

begin

1.1 Basic definitions and their consequences

definition hf where $hf \equiv \lambda n$. λx ::real. $(x \hat{n} * (1-x) \hat{n}) / fact n$

definition *cf* where $cf \equiv \lambda n \ i$. *if* i < n *then* 0 *else* $(n \ choose \ (i-n)) * (-1) \ (i-n)$

Mere knowledge that the coefficients are integers is not enough later on.

lemma *hf-int-poly*:

fixes x::real shows hf $n = (\lambda x. (1 / fact n) * (\sum i=0...2*n. real-of-int (cf n i) * x^i))$ $\langle proof \rangle$

Lemma (ii) in the text has strict inequalities, but that's more work and is less useful.

lemma

assumes $0 \le x \ x \le 1$ shows hf-nonneg: $0 \le hf \ n \ x$ and hf-le-inverse-fact: $hf \ n \ x \le 1/fact \ n \ \langle proof \rangle$

lemma hf-differt [iff]: hf n differentiable at x $\langle proof \rangle$

lemma deriv-sum-int: deriv $(\lambda x. \sum i=0..n. \text{ real-of-int } (c \ i) * x^{i}) x$ $= (if \ n=0 \text{ then } 0 \text{ else } (\sum i=0..n-1. \text{ of-int}((i+1) * c(Suc \ i)) * x^{i}))$ (is deriv ?f $x = (if \ n=0 \text{ then } 0 \text{ else } ?g))$ $\langle proof \rangle$

We calculate the coefficients of the kth derivative precisely.

lemma hf-deriv-int-poly:

 $(deriv\widehat{k}) (hf n) = (\lambda x. (1/fact n) * (\sum i=0..2*n-k. of-int (int(\prod \{i<..i+k\}) * cf n (i+k)) * x^i)) \langle proof \rangle$

lemma hf-deriv-0: $(deriv \ k)$ $(hf n) \ 0 \in \mathbb{Z}$ $\langle proof \rangle$

lemma deriv-hf-minus: deriv (hf n) = $(\lambda x. - deriv (hf n) (1-x))$ $\langle proof \rangle$

lemma deriv-n-hf-diffr [iff]: $(deriv \hat{k})$ (hf n) field-differentiable at x

 $\langle proof \rangle$

lemma deriv-n-hf-minus: (deriv \hat{k}) (hf n) = (λx . (-1) \hat{k} * (deriv \hat{k}) (hf n) (1-x)) (proof)

1.2 Towards the main result

lemma hf-deriv-1: $(deriv \ k)$ $(hf n) 1 \in \mathbb{Z}$ $\langle proof \rangle$ **lemma** hf-deriv-eq-0: $k > 2*n \implies (deriv \ k)$ $(hf n) = (\lambda x. 0)$ $\langle proof \rangle$ The case for positive integers **lemma** exp-nat-irrational: assumes s > 0 shows exp $(real-of-int s) \notin \mathbb{Q}$ $\langle proof \rangle$ **theorem** exp-irrational: fixes q::real assumes $q \in \mathbb{Q}$ $q \neq 0$ shows $exp \ q \notin \mathbb{Q}$ $\langle proof \rangle$ **corollary** ln-irrational: fixes q::real assumes $q \in \mathbb{Q}$ q > 0 $q \neq 1$ shows $ln \ q \notin \mathbb{Q}$ $\langle proof \rangle$

 \mathbf{end}

References

- M. Aigner and G. M. Ziegler. *Proofs from THE BOOK*. Springer, 6th edition, 2018.
- [2] M. Eberl. Stirling's formula. Archive of Formal Proofs, Sept. 2016. https://isa-afp.org/entries/Stirling_Formula.html, Formal proof development.
- [3] M. Eberl. The Hermite-Lindemann-Weierstraß transcendence theorem. Archive of Formal Proofs, Mar. 2021. https://isa-afp.org/entries/ Hermite_Lindemann.html, Formal proof development.