
Irrational numbers from THE BOOK

Lawrence C. Paulson

March 17, 2025

Abstract

An elementary proof is formalised: that exp r is irrational for every
nonzero rational number r. The mathematical development comes
from the well-known volume Proofs from THE BOOK [1, pp. 51–2], by
Aigner and Ziegler, who credit the idea to Hermite. The development
illustrates a number of basic Isabelle techniques: the manipulation of
summations, the calculation of quite complicated derivatives and the
estimation of integrals. We also see how to import another AFP entry
(Stirling’s formula) [2].

As for the theorem itself, note that a much stronger and more gen-
eral result (the Hermite–Lindemann–Weierstraß transcendence theo-
rem) is already available in the AFP [3].

1

Contents
1 Some irrational numbers 3

1.1 Basic definitions and their consequences 3
1.2 Towards the main result . 6

Acknowledgements The author was supported by the ERC Advanced
Grant ALEXANDRIA (Project 742178) funded by the European Research
Council.

2

1 Some irrational numbers
From Aigner and Ziegler, Proofs from THE BOOK (Springer, 2018), Chap-
ter 8, pp. 50–51.
theory Irrationals-From-THEBOOK imports Stirling-Formula.Stirling-Formula

begin

1.1 Basic definitions and their consequences
definition hf where hf ≡ λn. λx::real. (x^n ∗ (1−x)^n) / fact n

definition cf where cf ≡ λn i. if i < n then 0 else (n choose (i−n)) ∗ (−1)^(i−n)

Mere knowledge that the coefficients are integers is not enough later on.
lemma hf-int-poly:

fixes x::real
shows hf n = (λx. (1 / fact n) ∗ (

∑
i=0 ..2∗n. real-of-int (cf n i) ∗ x^i))

proof
fix x
have inj: inj-on ((+)n) {..n}

by (auto simp: inj-on-def)
have [simp]: ((+)n) ‘ {..n} = {n..2∗n}

using nat-le-iff-add by fastforce
have (x^n ∗ (−x + 1)^n) = x ^ n ∗ (

∑
k≤n. real (n choose k) ∗ (− x) ^ k)

unfolding binomial-ring by simp
also have . . . = x ^ n ∗ (

∑
k≤n. real-of-int ((n choose k) ∗ (−1)^k) ∗ x ^ k)

by (simp add: mult.assoc flip: power-minus)
also have . . . = (

∑
k≤n. real-of-int ((n choose k) ∗ (−1)^k) ∗ x ^ (n+k))

by (simp add: sum-distrib-left mult-ac power-add)
also have . . . = (

∑
i=n..2∗n. real-of-int (cf n i) ∗ x^i)

by (simp add: sum.reindex [OF inj, simplified] cf-def)
finally have hf n x = (1 / fact n) ∗ (

∑
i = n..2 ∗ n. real-of-int (cf n i) ∗ x^i)

by (simp add: hf-def)
moreover have (

∑
i = 0 ..<n. real-of-int (cf n i) ∗ x^i) = 0

by (simp add: cf-def)
ultimately show hf n x = (1 / fact n) ∗ (

∑
i = 0 ..2 ∗ n. real-of-int (cf n i) ∗

x^i)
using sum.union-disjoint [of {0 ..<n} {n..2∗n} λi. real-of-int (cf n i) ∗ x^i]
by (simp add: ivl-disj-int-two(7) ivl-disj-un-two(7) mult-2)

qed

Lemma (ii) in the text has strict inequalities, but that’s more work and
is less useful.
lemma

assumes 0 ≤ x x ≤ 1
shows hf-nonneg: 0 ≤ hf n x and hf-le-inverse-fact: hf n x ≤ 1/fact n
using assms by (auto simp: hf-def divide-simps mult-le-one power-le-one)

3

lemma hf-differt [iff]: hf n differentiable at x
unfolding hf-int-poly differentiable-def
by (intro derivative-eq-intros exI | simp)+

lemma deriv-sum-int:
deriv (λx.

∑
i=0 ..n. real-of-int (c i) ∗ x^i) x

= (if n=0 then 0 else (
∑

i=0 ..n−1 . of-int((i+1) ∗ c(Suc i)) ∗ x^i))
(is deriv ?f x = (if n=0 then 0 else ?g))

proof −
have (?f has-real-derivative ?g) (at x) if n > 0
proof −

have (
∑

i = 0 ..n. i ∗ x ^ (i − Suc 0) ∗ (c i))
= (

∑
i = 1 ..n. (real (i−1) + 1) ∗ of-int (c i) ∗ x ^ (i−1))

using that by (auto simp: sum.atLeast-Suc-atMost intro!: sum.cong)
also have . . . = sum ((λi. (real i + 1) ∗ c (Suc i) ∗ x^i) ◦ (λn. n−1))

{1 ..Suc (n−1)}
using that by simp

also have . . . = ?g
by (simp flip: sum.atLeast-atMost-pred-shift [where m=0])

finally have §: (
∑

a = 0 ..n. a ∗ x ^ (a − Suc 0) ∗ (c a)) = ?g .
show ?thesis

by (rule derivative-eq-intros § | simp)+
qed
then show ?thesis

by (force intro: DERIV-imp-deriv)
qed

We calculate the coefficients of the kth derivative precisely.
lemma hf-deriv-int-poly:
(deriv^^k) (hf n) = (λx. (1/fact n) ∗ (

∑
i=0 ..2∗n−k. of-int (int(

∏
{i<..i+k})

∗ cf n (i+k)) ∗ x^i))
proof (induction k)

case 0
show ?case

by (simp add: hf-int-poly)
next

case (Suc k)
define F where F ≡ λx. (

∑
i = 0 ..2∗n − k. real-of-int (int(

∏
{i<..i+k}) ∗ cf

n (i+k)) ∗ x^i)
have Fd: F field-differentiable at x for x

unfolding field-differentiable-def F-def
by (rule derivative-eq-intros exI | force)+

have [simp]: prod int {i<..Suc (i + k)} = (1 + int i) ∗ prod int {Suc i<..Suc (i
+ k)} for i

by (metis Suc-le-mono atLeastSucAtMost-greaterThanAtMost le-add1 of-nat-Suc
prod.head)

have deriv (λx. F x / fact n) x
= (

∑
i = 0 ..2 ∗ n − Suc k. of-int (int(

∏
{i<..i+ Suc k}) ∗ cf n (Suc (i+k)))

∗ x^i) / fact n for x

4

unfolding deriv-cdivide-right [OF Fd]
by (fastforce simp add: F-def deriv-sum-int cf-def simp flip: of-int-mult intro:

sum.cong)
then show ?case

by (simp add: Suc F-def)
qed

lemma hf-deriv-0 : (deriv^^k) (hf n) 0 ∈ �
proof (cases n ≤ k)

case True
then obtain j where (fact k::real) = real-of-int j ∗ fact n

by (metis fact-dvd dvd-def mult.commute of-int-fact of-int-mult)
moreover have prod real {0<..k} = fact k

by (simp add: fact-prod atLeastSucAtMost-greaterThanAtMost)
ultimately show ?thesis

by (simp add: hf-deriv-int-poly dvd-def)
next

case False
then show ?thesis

by (simp add: hf-deriv-int-poly cf-def)
qed

lemma deriv-hf-minus: deriv (hf n) = (λx. − deriv (hf n) (1−x))
proof

fix x
have hf n = hf n ◦ (λx. (1−x))

by (simp add: fun-eq-iff hf-def mult.commute)
then have deriv (hf n) x = deriv (hf n ◦ (λx. (1−x))) x

by fastforce
also have . . . = deriv (hf n) (1−x) ∗ deriv ((−) 1) x

by (intro real-derivative-chain) auto
finally show deriv (hf n) x = − deriv (hf n) (1−x)

by simp
qed

lemma deriv-n-hf-diffr [iff]: (deriv^^k) (hf n) field-differentiable at x
unfolding field-differentiable-def hf-deriv-int-poly
by (rule derivative-eq-intros exI | force)+

lemma deriv-n-hf-minus: (deriv^^k) (hf n) = (λx. (−1)^k ∗ (deriv^^k) (hf n)
(1−x))
proof (induction k)

case 0
then show ?case

by (simp add: fun-eq-iff hf-def)
next

case (Suc k)
have o: (λx. (deriv ^^ k) (hf n) (1−x)) = (deriv ^^ k) (hf n) ◦ (−) 1

by auto

5

show ?case
proof

fix x
have [simp]: ((deriv^^k) (hf n) ◦ (−) 1) field-differentiable at x

by (force intro: field-differentiable-compose)
have (deriv ^^ Suc k) (hf n) x = deriv (λx. (−1) ^ k ∗ (deriv ^^ k) (hf n)

(1−x)) x
by simp (metis Suc)

also have . . . = (−1) ^ k ∗ deriv (λx. (deriv ^^ k) (hf n) (1−x)) x
using o by fastforce

also have . . . = (−1) ^ Suc k ∗ (deriv ^^ Suc k) (hf n) (1−x)
by (subst o, subst deriv-chain, auto)

finally show (deriv ^^ Suc k) (hf n) x = (−1) ^ Suc k ∗ (deriv ^^ Suc k) (hf
n) (1−x) .

qed
qed

1.2 Towards the main result
lemma hf-deriv-1 : (deriv^^k) (hf n) 1 ∈ �

by (smt (verit, best) Ints-1 Ints-minus Ints-mult Ints-power deriv-n-hf-minus
hf-deriv-0)

lemma hf-deriv-eq-0 : k > 2∗n =⇒ (deriv^^k) (hf n) = (λx. 0)
by (force simp add: cf-def hf-deriv-int-poly)

The case for positive integers
lemma exp-nat-irrational:

assumes s > 0 shows exp (real-of-int s) /∈ �
proof

assume exp (real-of-int s) ∈ �
then obtain a b where ab: a > 0 b > 0 coprime a b and exp-s: exp s = of-int

a / of-int b
by (smt (verit) Rats-cases ′ divide-nonpos-pos exp-gt-zero of-int-0-less-iff)

define n where n ≡ nat (max (a^2) (3 ∗ s^3))
then have ns3 : s^3 ≤ real n / 3

by linarith
have n > 0

using ‹a > 0 › by (simp add: n-def max.strict-coboundedI1)
then have s ^ (2∗n+1) ≤ s ^ (3∗n)

using ‹a > 0 › assms by (intro power-increasing) auto
also have . . . = real-of-int(s^3) ^ n

by (simp add: power-mult)
also have . . . ≤ (n / 3) ^ n

using assms ns3 by (simp add: power-mono)
also have . . . ≤ (n / exp 1) ^ n

using exp-le ‹n > 0 › by (auto simp: divide-simps)
finally have s-le: s ^ (2∗n+1) ≤ (n / exp 1) ^ n

by presburger
have a-less: a < sqrt (2∗pi∗n)

6

proof −
have 2∗pi > 1

using pi-ge-two by linarith
have a ≤ sqrt n

using ‹0 < n› n-def of-nat-nat real-le-rsqrt by fastforce
also have . . . < sqrt (2∗pi∗n)

by (simp add: ‹0 < n› ‹1 < 2 ∗ pi›)
finally show ?thesis .

qed
have sqrt (2∗pi∗n) ∗ (n / exp 1) ^ n > a ∗ s ^ (2∗n+1)

using mult-strict-right-mono [OF a-less] mult-left-mono [OF s-le]
by (smt (verit, best) s-le ab(1) assms of-int-1 of-int-le-iff of-int-mult zero-less-power)

then have n: fact n > a ∗ s ^ (2∗n+1)
using fact-bounds(1) by (smt (verit, best) ‹0 < n› of-int-fact of-int-less-iff)

define F where F ≡ λx.
∑

i≤2∗n. (−1)^i ∗ s^(2∗n−i) ∗ (deriv^^i) (hf n) x
have Fder : (F has-real-derivative −s ∗ F x + s^(2∗n+1) ∗ hf n x) (at x) for x
proof −

have ∗: sum f {..n+n} = sum f {..<n+n} if f (n+n) = 0 for f ::nat ⇒ real
by (smt (verit, best) lessThan-Suc-atMost sum.lessThan-Suc that)

have [simp]: (deriv ((deriv ^^ (n+n)) (hf n)) x) = 0
using hf-deriv-eq-0 [where k= Suc(n+n)] by simp

have §: (
∑

k≤n+n. (−1) ^ k ∗ ((deriv ^^ Suc k) (hf n) x ∗ of-int s ^ (n+n −
k)))

+ s ∗ (
∑

j=0 ..n+n. (−1) ^ j ∗ ((deriv ^^ j) (hf n) x ∗ of-int s ^ (n+n
− j)))

= s ∗ (hf n x ∗ of-int s ^ (n+n))
using ‹n>0 ›
apply (subst sum-Suc-reindex)
apply (simp add: algebra-simps atLeast0AtMost)
apply (force simp add: ∗ mult.left-commute [of of-int s] minus-nat.diff-Suc

sum-distrib-left
simp flip: sum.distrib intro: comm-monoid-add-class.sum.neutral split:

nat.split-asm)
done

show ?thesis
unfolding F-def
apply (rule derivative-eq-intros field-differentiable-derivI | simp)+
using § by (simp add: algebra-simps atLeast0AtMost eval-nat-numeral)

qed
have F01-Ints: F 0 ∈ � F 1 ∈ �

by (simp-all add: F-def hf-deriv-0 hf-deriv-1 Ints-sum)
define sF where sF ≡ λx. exp (of-int s ∗ x) ∗ F x
define sF ′ where sF ′ ≡ λx. of-int s ^ Suc(2∗n) ∗ (exp (of-int s ∗ x) ∗ hf n x)
have sF-der : (sF has-real-derivative sF ′ x) (at x) for x

unfolding sF-def sF ′-def
by (rule refl Fder derivative-eq-intros | force simp: algebra-simps)+

let ?N = b ∗ integral {0 ..1} sF ′

have sF ′-integral: (sF ′ has-integral sF 1 − sF 0) {0 ..1}
by (smt (verit) fundamental-theorem-of-calculus has-real-derivative-iff-has-vector-derivative

7

has-vector-derivative-at-within sF-der)
then have ?N = a ∗ F 1 − b ∗ F 0

using ‹b > 0 › by (simp add: integral-unique exp-s sF-def algebra-simps)
also have . . . ∈ �

using hf-deriv-1 by (simp add: F01-Ints)
finally have N-Ints: ?N ∈ � .
have sF ′ (1/2) > 0 and ge0 :

∧
x. x ∈ {0 ..1} =⇒ 0 ≤ sF ′ x

using assms by (auto simp: sF ′-def hf-def)
moreover have continuous-on {0 ..1} sF ′

unfolding sF ′-def hf-def by (intro continuous-intros) auto
ultimately have False if (sF ′ has-integral 0) {0 ..1}

using has-integral-0-cbox-imp-0 [of 0 1 sF ′ 1/2] that by auto
then have integral {0 ..1} sF ′ > 0

by (metis ge0 has-integral-nonneg integral-unique order-le-less sF ′-integral)
then have 0 < ?N

by (simp add: ‹b > 0 ›)
have integral {0 ..1} sF ′ = of-int s ^ Suc(2∗n) ∗ integral {0 ..1} (λx. exp (s∗x)

∗ hf n x)
unfolding sF ′-def by force

also have . . . ≤ of-int s ^ Suc(2∗n) ∗ (exp s ∗ (1 / fact n))
proof (rule mult-left-mono)

have integral {0 ..1} (λx. exp (s∗x) ∗ hf n x) ≤ integral {0 ..1} (λx::real. exp s
∗ (1/fact n))

proof (intro mult-mono integral-le)
show (λx. exp (s∗x) ∗ hf n x) integrable-on {0 ..1}

using ‹0 < ?N › not-integrable-integral sF ′-def by fastforce
qed (use assms hf-nonneg hf-le-inverse-fact in auto)
also have . . . = exp s ∗ (1 / fact n)

by simp
finally show integral {0 ..1} (λx. exp (s∗x) ∗ hf n x) ≤ exp s ∗ (1 / fact n) .

qed (use assms in auto)
finally have ?N ≤ b ∗ of-int s ^ Suc(2∗n) ∗ exp s ∗ (1 / fact n)

using ‹b > 0 › by (simp add: sF ′-def mult-ac divide-simps)
also have . . . < 1

using n apply (simp add: field-simps exp-s)
by (metis of-int-fact of-int-less-iff of-int-mult of-int-power)

finally show False
using ‹0 < ?N › Ints-cases N-Ints by force

qed

theorem exp-irrational:
fixes q::real assumes q ∈ � q 6= 0 shows exp q /∈ �

proof
assume q: exp q ∈ �
obtain s t where s 6= 0 t > 0 q = of-int s / of-int t

by (metis Rats-cases ′ assms div-0 of-int-0)
then have (exp q) ^ (nat t) = exp s

by (smt (verit, best) exp-divide-power-eq of-nat-nat zero-less-nat-eq)

8

moreover have exp q ^ (nat t) ∈ �
by (simp add: q)

ultimately show False
by (smt (verit, del-insts) Rats-inverse ‹s 6= 0 › exp-minus exp-nat-irrational

of-int-of-nat)
qed

corollary ln-irrational:
fixes q::real assumes q ∈ � q > 0 q 6= 1 shows ln q /∈ �
using assms exp-irrational [of ln q] exp-ln-iff [of q] by force

end

References
[1] M. Aigner and G. M. Ziegler. Proofs from THE BOOK. Springer, 6th

edition, 2018.

[2] M. Eberl. Stirling’s formula. Archive of Formal Proofs, Sept. 2016.
https://isa-afp.org/entries/Stirling_Formula.html, Formal proof devel-
opment.

[3] M. Eberl. The Hermite–Lindemann–Weierstraß transcendence theo-
rem. Archive of Formal Proofs, Mar. 2021. https://isa-afp.org/entries/
Hermite_Lindemann.html, Formal proof development.

9

https://isa-afp.org/entries/Stirling_Formula.html
https://isa-afp.org/entries/Hermite_Lindemann.html
https://isa-afp.org/entries/Hermite_Lindemann.html

	Some irrational numbers
	Basic definitions and their consequences
	Towards the main result

