[rrational numbers from THE BOOK

Lawrence C. Paulson

March 17, 2025

Abstract

An elementary proof is formalised: that exp r is irrational for every
nonzero rational number r. The mathematical development comes
from the well-known volume Proofs from THE BOOK |1, pp. 51-2], by
Aigner and Ziegler, who credit the idea to Hermite. The development
illustrates a number of basic Isabelle techniques: the manipulation of
summations, the calculation of quite complicated derivatives and the
estimation of integrals. We also see how to import another AFP entry
(Stirling’s formula) [2].

As for the theorem itself, note that a much stronger and more gen-
eral result (the Hermite-Lindemann—Weierstrafl transcendence theo-
rem) is already available in the AFP [3].

Contents

1 Some irrational numbers 3
1.1 Basic definitions and their consequences 3
1.2 Towards the mainresult 6

Acknowledgements The author was supported by the ERC Advanced
Grant ALEXANDRIA (Project 742178) funded by the European Research
Council.

1 Some irrational numbers

From Aigner and Ziegler, Proofs from THE BOOK (Springer, 2018), Chap-
ter 8, pp. 50-51.

theory Irrationals-From-THEBOOK imports Stirling-Formula.Stirling-Formula

begin

1.1 Basic definitions and their consequences

definition hf where hf = An. Azireal. (z™n x (1—z)"n) / fact n

definition ¢f where ¢f = An i. if i < n then 0 else (n choose (i—n)) x (—1) (i—n)
Mere knowledge that the coefficients are integers is not enough later on.

lemma hf-int-poly:
fixes z::real
shows hf n = (Az. (1 / fact n) x (> i=0..2%n. real-of-int (cf n i) * 7))
proof
fix z
have inj: inj-on ((+)n) {..n}
by (auto simp: inj-on-def)
have [simp]: ((+)n) ‘ {..n} = {n..2xn}
using nat-le-iff-add by fastforce
have (z7n x (—z + 1)™n) =z " n x (O k<n. real (n choose k) *x (— z) " k)
unfolding binomial-ring by simp

also have ... =z " n x (O] k<n. real-of-int ((n choose k) *x (—1)7k) x " k)
by (simp add: mult.assoc flip: power-minus)

also have ... = (3 k<n. real-of-int ((n choose k) * (—1)7k) * ~ (n+k))
by (simp add: sum-distrib-left mult-ac power-add)

also have ... = (3 i=n..2xn. real-of-int (¢f n i) * %)

by (simp add: sum.reindex [OF inj, simplified] cf-def)
finally have hf n z = (1 / fact n) x (3. i = n..2 = n. real-of-int (¢f n i) * z7%)
by (simp add: hf-def)
moreover have (> i = 0..<n. real-of-int (c¢fn i) x 27%) = 0
by (simp add: cf-def)
ultimately show Af nz = (1 / fact n) * (> i = 0..2 * n. real-of-int (cf n i) *
x %)
using sum.union-disjoint [of {0..<n} {n..2xn} Ai. real-of-int (c¢f n i) * z7%]
by (simp add: wl-disj-int-two(7) vl-disj-un-two(7) mult-2)
qed

Lemma (ii) in the text has strict inequalities, but that’s more work and
is less useful.

lemma
assumes (< zzx < 1
shows hf-nonneg: 0 < hf n z and hf-le-inverse-fact: hf n x < 1/fact n
using assms by (auto simp: hf-def divide-simps mult-le-one power-le-one)

lemma hf-differt [iff]: hf n differentiable at x
unfolding hf-int-poly differentiable-def
by (intro derivative-eg-intros exl | simp)+

lemma deriv-sum-int:
deriv (Az. Y i=0..n. real-of-int (¢ i) * %) =
= (if n=0 then 0 else (3 i=0..n—1. of-int((i+1) * c(Suc 7)) * 7))
(is deriv ?f x = (if n=0 then 0 else ?g))
proof —
have (?f has-real-derivative ?q) (at x) if n > 0
proof —
have (> i=0..n. i x z = (i — Suc 0) * (¢ 1))
=0O_i=1.n. (real (i—1) + 1) * of-int (c i) x z ~ (i—1))
using that by (auto simp: sum.atLeast-Suc-atMost introl: sum.cong)
also have ... = sum ((M\i. (real i + 1) % ¢ (Suc i) * £7%) o (An. n—1))
{1..85uc (n—1)}
using that by simp
also have ... = ?7¢
by (simp flip: sum.atLeast-atMost-pred-shift [where m=0])
finally have §: (D" a=0..n. ax z ~(a — Suc 0) * (c a)) = %g .
show ?thesis
by (rule derivative-eq-intros § | simp)+
qed
then show ?thesis
by (force intro: DERIV-imp-deriv)
qged

We calculate the coefficients of the kth derivative precisely.

lemma hf-deriv-int-poly:
(deriv™k) (hf n) = (Az. (1/fact n) = (3 i=0..2xn—k. of-int (int(]] {i<..i+k})
x cf n (i+k)) * 7))
proof (induction k)
case (
show Zcase
by (simp add: hf-int-poly)
next
case (Suc k)
define F where F = \z. (> i = 0..2x«n — k. real-of-int (int([[{i<..i+k}) x ¢f
n (i+k)) * 27%)
have Fd: F field-differentiable at x for x
unfolding field-differentiable-def F-def
by (rule derivative-eq-intros exl | force)+
have [simp]: prod int {i<..Suc (i + k)} = (1 + int i) * prod int {Suc i<..Suc (i
+ k)} for ¢
by (metis Suc-le-mono atLeastSucAtMost-greater ThanAtMost le-add1 of-nat-Suc
prod.head)
have deriv (Az. F z / fact n) z
="i=10.2%n— Suck. of-int (int(]] {i<..i4+ Suc k}) * cf n (Suc (i+k)))
x 1) / fact n for z

unfolding deriv-cdivide-right [OF Fd]
by (fastforce simp add: F-def deriv-sum-int cf-def simp flip: of-int-mult intro:
sum.cong)
then show ?case
by (simp add: Suc F-def)
qed

lemma hf-deriv-0: (deriv™ k) (hf n) 0 € Z
proof (cases n < k)
case True
then obtain j where (fact k::real) = real-of-int j * fact n
by (metis fact-dvd dvd-def mult.commute of-int-fact of-int-mult)
moreover have prod real {0<..k} = fact k
by (simp add: fact-prod atLeastSucAtMost-greater ThanAtMost)
ultimately show “thesis
by (simp add: hf-deriv-int-poly dvd-def)
next
case Fulse
then show ?thesis
by (simp add: hf-deriv-int-poly cf-def)
qed

lemma deriv-hf-minus: deriv (hf n) = (Az. — deriv (hf n) (1 —1x))
proof
fix z
have hf n = hf n o (Az. (1—1))
by (simp add: fun-eq-iff hf-def mult.commute)
then have deriv (hf n) z = deriv (hf n o (Az. (1—2))) z
by fastforce
also have ... = deriv (hf n) (1—z) * deriv ((—) 1) =
by (intro real-derivative-chain) auto
finally show deriv (hf n) x = — deriv (hf n) (1—1x)
by simp
qed

lemma deriv-n-hf-diffr [iff]: (deriv™"k) (hf n) field-differentiable at x
unfolding field-differentiable-def hf-deriv-int-poly
by (rule derivative-eq-intros exl | force)+

lemma deriv-n-hf-minus: (deriv™ k) (hf n) = (Az. (—=1)7k * (deriv™"k) (hf n)
(1-2))
proof (induction k)
case (
then show ?case
by (simp add: fun-eq-iff hf-def)
next
case (Suc k)
have o: (Az. (deriv " k) (hf n) (1—2)) = (deriv " k) (hf n) o (=) 1
by auto

show ?Zcase
proof
fix z
have [simp]: ((deriv™"k) (hf n) o (=) 1) field-differentiable at x
by (force intro: field-differentiable-compose)
have (deriv =~ Suc k) (hf n) ¢ = deriv (Az. (—=1) "k * (deriv =" k) (hf n)
(1-1)) =

by simp (metis Suc)

also have ... = (—1) Tk * deriv (Az. (deriv " k) (hf n) (1—x)) z
using o by fastforce
also have ... = (—1) 7 Suc k * (deriv =~ Suc k) (hf n) (1—2x)

by (subst o, subst deriv-chain, auto)
finally show (deriv =~ Suc k) (hf n) © = (—1) ~ Suc k = (deriv = Suc k) (hf
n) (1-z) .
qed
qed

1.2 Towards the main result

lemma hf-deriv-1: (deriv™" k) (hfn) 1 € Z
by (smt (verit, best) Ints-1 Ints-minus Ints-mult Ints-power deriv-n-hf-minus
hf-deriv-0)

lemma hf-deriv-eq-0: k > 2x«n = (deriv" k) (hf n) = (Az. 0)
by (force simp add: cf-def hf-deriv-int-poly)

The case for positive integers

lemma exp-nat-irrational:
assumes s > 0 shows exp (real-of-int s) ¢ Q
proof
assume exp (real-of-int s) € Q
then obtain a b where ab: a > 0 b > 0 coprime a b and ezp-s: exp s = of-int
a / of-int b
by (smt (verit) Rats-cases’ divide-nonpos-pos exp-gt-zero of-int-0-less-iff)
define n where n = nat (maz (a72) (8 x s73))
then have ns3: s78 < realn / 3
by linarith
have n > 0
using <a > 0) by (simp add: n-def max.strict-coboundedI1)
then have s = (2«n+1) < s ~ (3%n)
using <a > 0» assms by (intro power-increasing) auto
also have ... = real-of-int(s"3) " n
by (simp add: power-mult)
alsohave ... < (n/ 8) "n
using assms ns3 by (simp add: power-mono)
also have ... < (n /ep 1) "n
using exp-le <n > 0) by (auto simp: divide-simps)
finally have s-le: s = (2+«n+1) < (n/exp 1) ~n
by presburger
have a-less: a < sqrt (2xpixn)

proof —
have 2xpi > 1
using pi-ge-two by linarith
have a < sqrt n
using <0 < n» n-def of-nat-nat real-le-rsqrt by fastforce
also have ... < sqrt (2xpixn)
by (simp add: <0 < ny <1 < 2 x piy)
finally show ?thesis .
qed
have sqrt (2xpixn) * (n / exp 1) "n > ax s~ (2xn+1)
using mult-strict-right-mono [OF a-less| mult-left-mono [OF s-le]
by (smt (verit, best) s-le ab(1) assms of-int-1 of-int-le-iff of-int-mult zero-less-power)
then have n: fact n > a x s ~ (2%n+1)
using fact-bounds(1) by (smt (verit, best) <0 < n» of-int-fact of-int-less-iff)
define F where F = Ax. > i<2xn. (—1)7i % s (2xn—i) * (deriv" %) (hf n) z
have Fder: (F has-real-derivative —s * F x + s (2%n+1) * hf n z) (at z) for x
proof —
have x: sum f {.n+n} = sum f {..<n+n} if f (n+n) = 0 for f::nat = real
by (smt (verit, best) lessThan-Suc-atMost sum.lessThan-Suc that)
have [simp]: (deriv ((deriv 7~ (n+n)) (hfn))) = 0
using hf-deriv-eq-0 [where k= Suc(n+n)] by simp
have §: " k<n+n. (—1) "k * ((deriv =~ Suc k) (hf n) z x of-int s ~ (n+n —

+ s* (O j=0.n+n. (—1) " j * ((deriv "~ j) (hf n) = % of-int s ~ (n+n

= sx (hf n z * of-int s ~ (n+n))
using «n>0>
apply (subst sum-Suc-reindezr)
apply (simp add: algebra-simps atLeast0AtMost)
apply (force simp add: x mult.left-commute [of of-int s] minus-nat.diff-Suc
sum-distrib-left
simp flip: sum.distrib intro: comm-monoid-add-class.sum.neutral split:
nat.split-asm)
done
show ?thesis
unfolding F-def
apply (rule derivative-eq-intros field-differentiable-derivl | simp)+
using § by (simp add: algebra-simps atLeast0AtMost eval-nat-numeral)
qed
have FO1-Ints: F0 € Z F1 €Z
by (simp-all add: F-def hf-deriv-0 hf-deriv-1 Ints-sum)
define sF' where sF = A\z. exp (of-int s x x) x F x
define sF'’ where sF’ = Az. of-int s = Suc(2xn) * (exp (of-int s x z) * hf n)
have sF-der: (sF has-real-derivative sF') (at x) for x
unfolding sF-def sF'-def
by (rule refl Fder derivative-eq-intros | force simp: algebra-simps)+
let ?N = b * integral {0..1} sF’
have sF'-integral: (sF'' has-integral sF 1 — sF 0) {0..1}
by (smt (verit) fundamental-theorem-of-calculus has-real-derivative-iff-has-vector-derivative

has-vector-derivative-at-within sF-der)
then have N =ax F1 —bx F 0
using 0 by (simp add: integral-unique exp-s sF-def algebra-simps)
also have ... € Z
using hf-deriv-1 by (simp add: F01-Ints)
finally have N-Ints: ?N € Z .
have sF' (1/2) > 0 and ge0: A\z. z € {0..1} = 0 < sF'z
using assms by (auto simp: sF’-def hf-def)
moreover have continuous-on {0..1} sF’
unfolding sF'-def hf-def by (intro continuous-intros) auto
ultimately have Fualse if (sF' has-integral 0) {0..1}
using has-integral-0-cboz-imp-0 [of 0 1 sF' 1/2] that by auto
then have integral {0..1} sF' > 0
by (metis ge0 has-integral-nonneg integral-unique order-le-less sF'-integral)
then have 0 < ?N
by (simp add: 0»)
have integral {0..1} sF' = of-int s = Suc(2xn) * integral {0..1} (Az. exp (s*x)
* hf n)
unfolding sF’-def by force
also have ... < of-int s ~ Suc(2+n) * (exp s x (1 / fact n))
proof (rule mult-left-mono)
have integral {0..1} (Az. exp (sxz) * hf n x) < integral {0..1} (Az::real. exp s
x (1/fact n))
proof (intro mult-mono integral-le)
show (Az. exp (sxx) x hf n x) integrable-on {0..1}
using <0 < 2N not-integrable-integral sF'-def by fastforce
qed (use assms hf-nonneg hf-le-inverse-fact in auto)
also have ... = ezp s * (1 / fact n)
by simp
finally show integral {0..1} (Az. exp (sxxz) * hf nx) < exp s x (1 / fact n) .
qged (use assms in auto)
finally have ?N < b x of-int s = Suc(2%n) x exp s * (1 / fact n)
using 0> by (simp add: sF''-def mult-ac divide-simps)
also have ... < I
using n apply (simp add: field-simps exp-s)
by (metis of-int-fact of-int-less-iff of-int-mult of-int-power)
finally show Fulse
using <0 < ?N» Ints-cases N-Ints by force
qed

theorem ezp-irrational:
fixes g::real assumes ¢ € Q g # 0 shows exp ¢ ¢ Q
proof
assume ¢: exp q € Q
obtain s t where s # 0t > (0 q = of-int s / of-int t
by (metis Rats-cases’ assms div-0 of-int-0)
then have (exp q) ~ (nat t) = exp s
by (smt (verit, best) exp-divide-power-eq of-nat-nat zero-less-nat-eq)

moreover have exp ¢ " (nat t) € Q
by (simp add: q)
ultimately show Fulse
by (smt (verit, del-insts) Rats-inverse <s # 0) exp-minus exp-nat-irrational
of-int-of-nat)
qed

corollary In-irrational:
fixes ¢::real assumes ¢ € Q ¢ > 0 ¢ # 1 shows In ¢ ¢ Q
using assms exp-irrational [of In q] exp-In-iff [of q] by force

end

References

[1] M. Aigner and G. M. Ziegler. Proofs from THE BOOK. Springer, 6th
edition, 2018.

[2] M. Eberl. Stirling’s formula. Archive of Formal Proofs, Sept. 2016.
https://isa-afp.org/entries/Stirling Formula.html, Formal proof devel-
opment.

[3] M. Eberl. The Hermite-Lindemann—Weierstral transcendence theo-
rem. Archive of Formal Proofs, Mar. 2021. https://isa-afp.org/entries/
Hermite_ Lindemann.html, Formal proof development.

https://isa-afp.org/entries/Stirling_Formula.html
https://isa-afp.org/entries/Hermite_Lindemann.html
https://isa-afp.org/entries/Hermite_Lindemann.html

	Some irrational numbers
	Basic definitions and their consequences
	Towards the main result

