Irrational Rapidly Convergent Series

Angeliki Koutsoukou-Argyraki and Wenda Li

September 13, 2023

Abstract

We formalize with Isabelle/HOL a proof of a theorem by J. Hančl asserting the irrationality of the sum of a series consisting of rational numbers, built up by sequences that fulfill certain properties. Even though the criterion is a number theoretic result, the proof makes use only of analytical arguments. We also formalize a corollary of the theorem for a specific series fulfilling the assumptions of the theorem.

Contents

1 Main Theorem and Sketch of the Proof 1
2 Corollary 2
3 Irrational Rapidly Convergent Series 3
3.1 Misc 3
3.2 Auxiliary lemmas and the main proof 4
4 Acknowledgements 6

1 Main Theorem and Sketch of the Proof

We formalize the proof of the following theorem by J. Hančl (Theorem 3 in [1]) :

Theorem 1. (Theorem 3 in [1]) Let $A \in \mathbb{R}$ with $A>1$. Let $\left\{d_{n}\right\}_{n=1}^{\infty} \in \mathbb{R}$ with $d_{n}>1$ for all $n \in \mathbb{N}$. Let $\left\{a_{n}\right\}_{n=1}^{\infty} \in \mathbb{Z}^{+},\left\{b_{n}\right\}_{n=1}^{\infty} \in \mathbb{Z}^{+}$such that :
(1) $\lim _{n \rightarrow \infty} a_{n}^{\frac{1}{2^{n}}}=A$,
for all sufficiently large $n \in \mathbb{N}$:
(2) $\frac{A}{a_{n}^{\frac{1}{2^{n}}}}>\prod_{j=n}^{\infty} d_{j}$
and

$$
\text { (3) } \lim _{n \rightarrow \infty} \frac{d_{n}^{2^{n}}}{b_{n}}=\infty
$$

Then the series $\alpha=\sum_{n=1}^{\infty} \frac{b_{n}}{a_{n}}$ is an irrational number.
The first step is to show that the series $\sum_{n=1}^{\infty} \frac{b_{n}}{a_{n}}$ converges to some $\alpha \in \mathbb{R}$. To show that $\alpha \in \mathbb{R} \backslash \mathbb{Q}$ we argue by proof by contradiction (to this end several auxiliary lemmas are firstly shown). In particular, assuming that $\alpha \in \mathbb{Q}$, i.e. that there exist $p, q \in \mathbb{Z}^{+}$such that $\alpha=\frac{p}{q}$, we show that a quantity $\mathcal{A}(n) \geq 1$ for all $n \in \mathbb{N}$. At the same time, we find $n \in \mathbb{N}$ for which $\mathcal{A}(n)<1$, yielding a contradiction from which we deduce the irrationality of the sum of the series.

For the proof see [1]. We note that the proof involves only elementary Analysis (criteria for convergence/divergence for sequences and series and several inequalities) and not any arithmetical/number theoretic arguments. Obviously for the formal proof we had to make many intermediate arguments explicit. Proofs of length of roughly 2 A4 pages in the original paper by J. Hančl were formalized in almost 1100 lines of code.

2 Corollary

We moreover formalize the following corollary that asserts the irrationality of the sum of an instance of a series that fulfills the assumptions of the theorem :

Corollary 1. (Corollary 2 in [1]) Let $A \in \mathbb{R}$ with $A>1$. Let $\left\{a_{n}\right\}_{n=1}^{\infty} \in \mathbb{Z}^{+}$, $\left\{b_{n}\right\}_{n=1}^{\infty} \in \mathbb{Z}^{+}$such that :

$$
\lim _{n \rightarrow \infty} a_{n}^{\frac{1}{2^{n}}}=A
$$

and for all sufficiently large $n \in \mathbb{N}$ (in particular: for $n \geq 6$)

$$
a_{n}^{\frac{1}{2^{n}}}\left(1+4(2 / 3)^{n}\right) \leq A
$$

and

$$
b_{n} \leq 2^{(4 / 3)^{n-1}}
$$

Then the series $\sum_{n=1}^{\infty} \frac{b_{n}}{a_{n}}$ is an irrational number.
The above corollary is an immediate consequence of the theorem by setting $d_{n}=1+(2 / 3)^{n}$. For the formalized proof of the corollary one more auxiliary lemma was required.

3 Irrational Rapidly Convergent Series

theory Irrationality-J-Hancl
imports HOL-Analysis.Analysis HOL-Decision-Procs.Approximation begin

This is the formalisation of a proof by J. Hanl, in particular of the proof of his Theorem 3 in the paper: Irrational Rapidly Convergent Series, Rend. Sem. Mat. Univ. Padova, Vol 107 (2002).

The statement asserts the irrationality of the sum of a series consisting of rational numbers defined using sequences that fulfill certain properties. Even though the statement is number-theoretic, the proof uses only arguments from introductory Analysis.

We prove the central result (theorem Hancl3) by contradiction, by making use of some of the auxiliary lemmas. To this end, assuming that the sum is a rational number, for a quantity $\operatorname{ALPHA}(n)$ we show that $\operatorname{ALPHA}(n) \geq 1$ for all $n \in \mathbb{N}$. After that we show that we can find an $n \in \mathbb{N}$ for which $\operatorname{ALPHA}(n)<1$ which yields a contradiction and we thus conclude that the sum of the series is rational. We finally give an immediate application of theorem Hancl3 for a specific series (corollary Hancl3corollary, requiring lemma summable_ln_plus) which corresponds to Corollary 2 in the original paper by J. Hanl.
hide-const floatarith.Max

3.1 Misc

lemma filterlim-sequentially-iff:
filterlim f F1 sequentially \longleftrightarrow filterlim $(\lambda x . f(x+k))$ F1 sequentially $\langle p r o o f\rangle$
lemma filterlim-realpow-sequentially-at-top:
$(x::$ real $)>1 \Longrightarrow$ filterlim (power $x)$ at-top sequentially
$\langle p r o o f\rangle$
lemma filterlim-at-top-powr-real:
fixes $g::^{\prime} b \Rightarrow$ real
assumes filterlim f at-top $F\left(g \longrightarrow g^{\prime}\right) F g^{\prime}>1$
shows LIM x F.g x powr f x :> at-top
$\langle p r o o f\rangle$
lemma powrfinitesum:
fixes $a:$:real and $s:: n a t$ assumes $s \leq n$
shows $\left(\prod j=s . .(n:: n a t) .\left(a \operatorname{powr}\left(\mathcal{R}^{\wedge} j\right)\right)\right)=a \operatorname{powr}\left(\sum j=s . .(n:: n a t) .\left(\mathcal{Z}^{\wedge} j\right)\right)$
$\langle p r o o f\rangle$
lemma summable-ratio-test-tendsto:
fixes $f::$ nat $\Rightarrow{ }^{\prime} a:: b a n a c h$

```
    assumes c<1 and }\foralln.fn\not=0\mathrm{ and (\n. norm (f (Suc n))/ norm (fn)) }
c
    shows summable f
<proof\rangle
lemma summable-ln-plus:
    fixes f::nat => real
    assumes summable f \foralln.f n>0
    shows summable (\lambdan. ln (1+f n))
<proof\rangle
lemma suminf-real-offset-le:
    fixes f:: nat }=>\mathrm{ real
    assumes f: \bigwedgei. 0\leqfi and summable f
    shows}(\sumi.f(i+k))\leq\operatorname{suminf}
<proof\rangle
```

lemma factt:
fixes $s n$::nat assumes $s \leq n$

3.2 Auxiliary lemmas and the main proof

lemma showprer:
fixes $a b:: n a t \Rightarrow$ int and $q p:: i n t$
assumes $q>0$ and $p>0$ and $a: \forall n . a n>0$ and $\forall n . b n>0$ and
assumerational: $(\lambda n . b(n+1) / a(n+1))$ sums (p / q)
shows $q *\left(\left(\prod j=1\right.\right.$..n. of-int $\left.\left.(a j)\right)\right) *(\operatorname{suminf}(\lambda(j:: n a t) .(b(j+n+1) / a(j+n+1$
))))
$=\left(\left(\prod j=1 . . n\right.\right.$. of-int $\left.\left.(a j)\right)\right) *\left(p-q *\left(\sum j=1 . . n . b j / a j\right)\right)$
$\langle p r o o f\rangle$
lemma show7:
fixes $d:: n a t \Rightarrow$ real and $a b:: n a t \Rightarrow$ int and $q p::$ int
assumes $q \geq 1$ and $p \geq 1$ and $a: \forall n$. $a n \geq 1$ and $\forall n$. $b n \geq 1$
and assumerational: $(\lambda n . b(n+1) / a(n+1))$ sums (p / q)
shows $q *\left(\left(\prod j=1\right.\right.$..n. of-int $\left.\left.(a j)\right)\right) *(\operatorname{suminf}(\lambda(j:: n a t) .(b(j+n+1) / a(j+n+1$)))) ≥ 1
(is ? $L \geq-$)
$\langle p r o o f\rangle$

lemma show8:

fixes $d:: n a t \Rightarrow$ real and $a::$ nat \Rightarrow int and $s k:: n a t$
assumes $A>1$ and $d: \forall n . d n>1$ and $a: \forall n . a n>0$ and $s>0$
and convergent-prod d
and assu2: $\forall n \geq s . A /$ of-int (an) powr (1 / of-int (2`n)) $>\left(\prod j . d(n+\right.$ j))
shows $\forall n \geq s$ ．$\left(\prod j . d(j+n)\right)<A /(M A X j \in\{s . . n\}$ ．of－int $(a j)$ powr（1／of－int （2 $\left.{ }^{\wedge} j\right)$ ）〈proof〉
lemma auxiliary1－9：
fixes $d:: n a t \Rightarrow$ real and $a:: n a t \Rightarrow$ int and $s m:: n a t$
assumes $d: \forall n . d n>1$ and $a: \forall n . a n>0$ and $s>0$ and $n \geq m$ and $m \geq s$ and auxifalse－assu：$\forall n \geq m$ ．（of－int $(a(n+1)))$ powr $\left(1 /\right.$ of－int $\left.\left(\mathcal{D}^{\wedge}(n+1)\right)\right)<$ $(d(n+1)) *(\operatorname{Max}((\lambda(j:: n a t) .(o f-i n t(a j)) \operatorname{powr}(1 /$ of－int（2＾j$))) \cdot$ \｛s．．n\}))
shows（of－int $(a(n+1)))$ powr $\left(1 /\right.$ of－int $\left.\left(\mathfrak{2 ヘ}^{\wedge}(n+1)\right)\right)<$
$\left(\prod j=(m+1) . .(n+1) . d j\right) *(\operatorname{Max}((\lambda(j:: n a t) .(o f-i n t(a j)) \operatorname{powr}(1 / o f-i n t$ $(2 \widehat{j}))$ ）＇$\{s . . m\}))$
\langle proof〉
lemma show9：
fixes $d:: n a t \Rightarrow$ real and $a::$ nat \Rightarrow int and $s::$ nat and $A::$ real
assumes $A>1$ and $d: \forall n . d n>1$ and $a: \forall n . a n>0$ and $s>0$
and assu1：$((\lambda n$ ．（of－int $(a n))$ powr（1／of－int $(2 \widehat{2}))) \longrightarrow A)$ sequentially
and convergent－prod d
and $8: \forall n \geq s$ ．prodinf $(\lambda j . d(n+j))$
$<A /(\operatorname{Max}((\lambda(j:: n a t) .($ of－int $(a j)) \operatorname{powr}(1 /$ of－int（2ヘj）））＇\｛s．．n\}))
shows $\forall m \geq s . \exists n \geq m$ ．$\left((\operatorname{of-int}(a(n+1))) \operatorname{powr}\left(1 / \operatorname{of-int}\left(\mathcal{R}^{\wedge}(n+1)\right)\right) \geq\right.$

$$
(d(n+1)) *\left(\operatorname { M a x } \left(\left(\lambda(j:: \text { nat }) \cdot(\text { of-int }(a j)) \operatorname{powr}\left(1 / \text { of-int }\left(\mathcal{R}^{\bar{j}}\right)\right)\right) \cdot\right.\right.
$$

$\langle p r o o f\rangle$

```
lemma show10:
    fixes d ::nat }=>\mathrm{ real and a ::nat }=>\mathrm{ int and s::nat
    assumes d [rule-format]: }\foralln.dn>
        and a [rule-format]: }\foralln.a n>0 and s>
        and 9: }\forallm\geqs.\existsn\geqm.a(n+1) powr(1 / of-int (2`(n+1)))
            d (n+1)* (Max ((\lambdaj. (of-int (a j)) powr(1 /of-int (2`j)))'{s..n} ))
    shows }\forallm\geqs.\existsn\geqm.d(n+1) powr(\mathcal{R`}(n+1))*(\prodj=1..n.of-int(aj))
            (1/ / \j=1..s-1.of-int( aj)))\leqa(n+1)
<proof>
lemma lasttoshow:
    fixes d ::nat=> real and a b ::nat=>int and q::int and s::nat
    assumes d:\foralln.d n> 1
        and a:\foralln.a n>0 and s>0 and q>0
        and }A>1\mathrm{ and b:}\foralln.bn>0 and 9
        \forallm\geqs.\existsn\geqm. ((of-int (a (n+1))) powr(1/of-int (2`}(n+1)))
            (d (n+1))* (Max ((\lambda(j::nat).(of-int (a j)) powr(1 /of-int (2`j)))'{s..n}
)))
    and assu3: filterlim( }\lambdan.(dn)`(2`n)/b n) at-top sequentially
    and 5: \forallF n in sequentially. (\sumj.(b (n+j))/ (a (n+j))) \leq2*bn/an
    shows \existsn. q*((\prodj=1..n. real-of-int(a j)))* suminf ( }\lambda(j::nat).(b (j+n+1)/a a
```

```
(j+n+1)))<1
<proof\rangle
lemma
    fixes d ::nat }=>\mathrm{ real and a b ::nat }=>\mathrm{ int and A::real
    assumes }A>1\mathrm{ and }d:\foralln.dn>1 and a:\foralln.a n>0 and b:\foralln.b n>
        and assu1:(( \lambdan.(of-int (a n)) powr(1/of-int (\mathcal{N n )))\longrightarrow }\longrightarrowA) sequentially
        and assu3: filterlim ( \lambdan.(dn)^(\mathscr{2`n})/bn) at-top sequentially
        and convergent-prod d
    shows issummable: summable ( }\lambdaj.bj/aj
        and show5:}\mp@subsup{\forall}{F}{}n\mathrm{ in sequentially. ( }\sumj.(b(n+j))/(a(n+j)))\leq2*bn
a n
\langleproof\rangle
```

theorem Hancl3:
fixes $d:: n a t \Rightarrow$ real and $a b::$ nat \Rightarrow int
assumes $A>1$ and $d: \forall n . d n>1$ and $a: \forall n . a n>0$ and $b: \forall n . b n>0$
and $s>0$
and assu1: $(\lambda n .(a n) \operatorname{powr}(1 / \operatorname{of-int(2へn)))\longrightarrow A}$
and assu2: $\forall n \geq s . A /(a n) \operatorname{powr}(1 / \operatorname{of-int}(2 \widehat{n}))>\left(\prod j . d(n+j)\right)$
and assu3: LIM n sequentially. $d n n^{\wedge}{ }^{2} n / b n:>a t-t o p$
and convergent-prod d
shows $\left(\sum n . b n / a n\right) \notin \mathbb{Q}$
\langle proof \rangle
corollary Hancl3corollary:
fixes $A::$ real and $a b::$ nat \Rightarrow int
assumes $A>1$ and $a: \forall n . a n>0$ and $b: \forall n . b n>0$
and assu1: $\left(\lambda n .(a n) \operatorname{powr}\left(1 / \operatorname{of-int}\left(\mathfrak{D}^{2} n\right)\right)\right) \longrightarrow A$
and asscor2: $\forall n \geq 6$. a $n \operatorname{powr}(1 / \operatorname{of-int}(2 \wedge n)) *(1+4 *(2 / 3)$ 〔 $n) \leq A$
$\wedge b n \leq 2 \operatorname{powr}(4 / 3) \uparrow(n-1)$
shows $\left(\sum n . b n / a n\right) \notin \mathbb{Q}$
$\langle p r o o f\rangle$
end

4 Acknowledgements

A. K.-A. and W.L. were supported by the ERC Advanced Grant ALEXANDRIA (Project 742178) funded by the European Research Council and led by Professor Lawrence Paulson at the University of Cambridge, UK.

References

[1] J. Hančl. Irrational rapidly convergent series. Rendiconti del Seminario Matematico della Università di Padova, 107:225-231, 2002.

