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Abstract

We formalize with Isabelle/HOL a proof of a theorem by J. Hančl
asserting the irrationality of the sum of a series consisting of rational
numbers, built up by sequences that fulfill certain properties. Even
though the criterion is a number theoretic result, the proof makes use
only of analytical arguments. We also formalize a corollary of the
theorem for a specific series fulfilling the assumptions of the theorem.
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1 Main Theorem and Sketch of the Proof
We formalize the proof of the following theorem by J. Hančl (Theorem 3 in
[1]) :

Theorem 1. (Theorem 3 in [1]) Let A ∈ R with A > 1. Let {dn}∞n=1 ∈ R
with dn > 1 for all n ∈ N. Let {an}∞n=1 ∈ Z+, {bn}∞n=1 ∈ Z+ such that :

(1) lim
n→∞

a
1
2n
n = A,

for all sufficiently large n ∈ N :

(2)
A

a
1
2n
n

>

∞∏
j=n

dj
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and
(3) lim

n→∞

d2
n

n

bn
=∞.

Then the series α =
∑∞

n=1
bn
an

is an irrational number.

The first step is to show that the series
∑∞

n=1
bn
an

converges to some
α ∈ R. To show that α ∈ R \Q we argue by proof by contradiction (to this
end several auxiliary lemmas are firstly shown). In particular, assuming
that α ∈ Q, i.e. that there exist p, q ∈ Z+ such that α = p

q , we show that a
quantity A(n) ≥ 1 for all n ∈ N. At the same time, we find n ∈ N for which
A(n) < 1, yielding a contradiction from which we deduce the irrationality
of the sum of the series.

For the proof see [1]. We note that the proof involves only elementary
Analysis (criteria for convergence/divergence for sequences and series and
several inequalities) and not any arithmetical/number theoretic arguments.
Obviously for the formal proof we had to make many intermediate argu-
ments explicit. Proofs of length of roughly 2 A4 pages in the original paper
by J. Hančl were formalized in almost 1100 lines of code.

2 Corollary
We moreover formalize the following corollary that asserts the irrationality
of the sum of an instance of a series that fulfills the assumptions of the
theorem :

Corollary 1. (Corollary 2 in [1]) Let A ∈ R with A > 1. Let {an}∞n=1 ∈ Z+,
{bn}∞n=1 ∈ Z+ such that :

lim
n→∞

a
1
2n
n = A

and for all sufficiently large n ∈ N (in particular: for n ≥ 6)

a
1
2n
n (1 + 4(2/3)n) ≤ A

and
bn ≤ 2(4/3)

n−1
.

Then the series
∑∞

n=1
bn
an

is an irrational number.

The above corollary is an immediate consequence of the theorem by
setting dn = 1 + (2/3)n. For the formalized proof of the corollary one more
auxiliary lemma was required.
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3 Irrational Rapidly Convergent Series
theory Irrationality-J-Hancl

imports HOL−Analysis.Analysis HOL−Decision-Procs.Approximation
begin

This is the formalisation of a proof by J. Hanl, in particular of the proof
of his Theorem 3 in the paper: Irrational Rapidly Convergent Series, Rend.
Sem. Mat. Univ. Padova, Vol 107 (2002).

The statement asserts the irrationality of the sum of a series consisting of
rational numbers defined using sequences that fulfill certain properties. Even
though the statement is number-theoretic, the proof uses only arguments
from introductory Analysis.

We prove the central result (theorem Hancl3) by contradiction, by mak-
ing use of some of the auxiliary lemmas. To this end, assuming that the sum
is a rational number, for a quantity ALPHA(n) we show that ALPHA(n) ≥ 1
for all n ∈ N. After that we show that we can find an n ∈ N for which
ALPHA(n) < 1 which yields a contradiction and we thus conclude that
the sum of the series is rational. We finally give an immediate application
of theorem Hancl3 for a specific series (corollary Hancl3corollary, requiring
lemma summable_ln_plus) which corresponds to Corollary 2 in the original
paper by J. Hanl.
hide-const floatarith.Max

3.1 Misc
lemma filterlim-sequentially-iff :

filterlim f F1 sequentially ←→ filterlim (λx. f (x+k)) F1 sequentially
〈proof 〉

lemma filterlim-realpow-sequentially-at-top:
(x::real) > 1 =⇒ filterlim (power x) at-top sequentially
〈proof 〉

lemma filterlim-at-top-powr-real:
fixes g:: ′b ⇒ real
assumes filterlim f at-top F and g ′: (g −−−→ g ′) F g ′>1
shows LIM x F . g x powr f x :> at-top
〈proof 〉

lemma powrfinitesum:
fixes a::real and s::nat assumes s ≤ n
shows (

∏
j=s..(n::nat).(a powr (2^j))) = a powr (

∑
j=s..(n::nat).(2^j))

〈proof 〉

lemma summable-ratio-test-tendsto:
fixes f :: nat ⇒ ′a::banach
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assumes c < 1 and ∀n. f n 6=0 and (λn. norm (f (Suc n)) / norm (f n)) −−−−→
c

shows summable f
〈proof 〉

lemma summable-ln-plus:
fixes f ::nat ⇒ real
assumes summable f ∀n. f n>0
shows summable (λn. ln (1+f n))
〈proof 〉

lemma suminf-real-offset-le:
fixes f :: nat ⇒ real
assumes f :

∧
i. 0 ≤ f i and summable f

shows (
∑

i. f (i + k)) ≤ suminf f
〈proof 〉

lemma factt:
fixes s n ::nat assumes s ≤ n
shows (

∑
i=s..n. 2^i) < (2^(n+1 ) :: real) 〈proof 〉

3.2 Auxiliary lemmas and the main proof
lemma showpre7 :

fixes a b ::nat⇒int and q p::int
assumes q>0 and p>0and a: ∀n. a n>0 and ∀n. b n>0 and

assumerational:(λ n. b (n+1 ) / a (n+1 ) ) sums (p/q)
shows q∗((

∏
j=1 ..n. of-int( a j)))∗(suminf (λ(j::nat). (b (j+n+1 )/ a (j+n+1

))))
= ((

∏
j=1 ..n. of-int( a j)))∗(p −q∗ (

∑
j=1 ..n. b j / a j))

〈proof 〉

lemma show7 :
fixes d::nat⇒real and a b::nat⇒int and q p::int
assumes q ≥1 and p ≥ 1 and a: ∀n. a n ≥ 1 and ∀n. b n ≥ 1

and assumerational:(λ n. b (n+1 ) / a (n+1 ) ) sums (p/q)
shows q∗((

∏
j=1 ..n. of-int( a j)))∗( suminf (λ (j::nat). (b (j+n+1 )/ a (j+n+1

)))) ≥ 1
(is ?L ≥ -)

〈proof 〉

lemma show8 :
fixes d ::nat⇒real and a :: nat⇒int and s k::nat
assumes A > 1 and d: ∀n. d n> 1 and a:∀n. a n>0 and s>0

and convergent-prod d
and assu2 : ∀n ≥ s. A / of-int (a n) powr (1 / of-int (2^n)) > (

∏
j. d (n +

j))
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shows ∀n≥s. (
∏

j. d (j+n)) < A / (MAX j∈{s..n}. of-int (a j) powr (1 / of-int
(2 ^ j)))
〈proof 〉

lemma auxiliary1-9 :
fixes d ::nat⇒real and a::nat⇒int and s m::nat
assumes d: ∀n. d n> 1 and a: ∀n. a n>0 and s>0 and n ≥ m and m ≥ s

and auxifalse-assu: ∀n≥m. (of-int (a (n+1 ))) powr(1 /of-int (2^(n+1 ))) <
(d (n+1 ))∗ (Max ((λ (j::nat). (of-int (a j)) powr(1 /of-int (2^j))) ‘

{s..n} ))
shows (of-int (a (n+1 ))) powr(1 /of-int (2^(n+1 ))) <

(
∏

j=(m+1 )..(n+1 ). d j) ∗ (Max ((λ (j::nat). (of-int (a j)) powr(1 /of-int
(2^j))) ‘ {s..m}))
〈proof 〉

lemma show9 :
fixes d ::nat⇒real and a :: nat⇒int and s ::nat and A::real
assumes A > 1 and d: ∀n. d n> 1 and a: ∀n. a n>0 and s>0

and assu1 : (( λ n. (of-int (a n)) powr(1 /of-int (2^n)))−−−→ A) sequentially
and convergent-prod d
and 8 : ∀n≥s. prodinf (λj. d( n+j))

< A/(Max ((λ(j::nat). (of-int (a j)) powr(1 /of-int (2^j))) ‘ {s..n}))

shows ∀m ≥s. ∃n≥m. ( (of-int (a (n+1 ))) powr(1 /of-int (2^(n+1 ))) ≥
(d (n+1 ))∗ (Max ( ( λ (j::nat). (of-int (a j)) powr(1 /of-int (2^j))) ‘

{s..n} )))
〈proof 〉

lemma show10 :
fixes d ::nat⇒real and a ::nat⇒int and s::nat
assumes d [rule-format]: ∀n. d n> 1

and a [rule-format]: ∀n. a n>0 and s>0
and 9 : ∀m ≥s. ∃n≥m. a (n+1 ) powr(1 / of-int (2^(n+1 ))) ≥

d (n+1 ) ∗ (Max ((λj. (of-int (a j)) powr(1 /of-int (2^j))) ‘ {s..n} ))
shows ∀m≥s. ∃n≥m. d (n+1 ) powr(2^(n+1 )) ∗ (

∏
j=1 ..n. of-int( a j)) ∗

(1 / (
∏

j=1 ..s−1 . of-int( a j))) ≤ a (n+1 )
〈proof 〉

lemma lasttoshow:
fixes d ::nat⇒real and a b ::nat⇒int and q::int and s::nat
assumes d: ∀n. d n> 1

and a:∀n. a n>0 and s>0 and q>0
and A > 1 and b:∀n. b n>0 and 9 :
∀m≥s. ∃n≥m. ((of-int (a (n+1 ))) powr(1 /of-int (2^(n+1 ))) ≥

(d (n+1 ))∗ (Max ((λ(j::nat). (of-int (a j)) powr(1 /of-int (2^j))) ‘ {s..n}
)))

and assu3 : filterlim( λ n. (d n)^(2^n)/ b n) at-top sequentially
and 5 : ∀ F n in sequentially. (

∑
j. (b (n + j)) / (a (n + j))) ≤ 2 ∗ b n / a n

shows ∃n. q∗((
∏

j=1 ..n. real-of-int(a j))) ∗ suminf (λ(j::nat). (b (j+n+1 )/ a
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(j+n+1 )))<1
〈proof 〉

lemma
fixes d ::nat⇒real and a b ::nat⇒int and A::real
assumes A > 1 and d: ∀n. d n> 1 and a: ∀n. a n>0 and b:∀n. b n>0

and assu1 : (( λ n. (of-int (a n)) powr(1 /of-int (2^n)))−−−→ A) sequentially
and assu3 : filterlim ( λ n. (d n)^(2^n)/ b n) at-top sequentially
and convergent-prod d

shows issummable: summable (λj. b j / a j)
and show5 : ∀ F n in sequentially. (

∑
j. (b (n + j)) / (a (n + j))) ≤ 2 ∗ b n /

a n
〈proof 〉

theorem Hancl3 :
fixes d ::nat⇒real and a b :: nat⇒int
assumes A > 1 and d: ∀n. d n > 1 and a: ∀n. a n>0 and b: ∀n. b n > 0

and s>0
and assu1 : (λn. (a n) powr(1 / of-int(2^n))) −−−−→ A
and assu2 : ∀n ≥ s. A / (a n) powr (1 / of-int(2^n)) > (

∏
j. d (n+j))

and assu3 : LIM n sequentially. d n ^ 2 ^ n / b n :> at-top
and convergent-prod d

shows (
∑

n. b n / a n) /∈ �
〈proof 〉

corollary Hancl3corollary:
fixes A::real and a b :: nat⇒int
assumes A > 1 and a: ∀n. a n>0 and b: ∀n. b n>0

and assu1 : (λn. (a n) powr(1 / of-int(2^n))) −−−−→ A
and asscor2 : ∀n ≥ 6 . a n powr(1 / of-int (2^n)) ∗ (1 + 4∗(2/3 )^n) ≤ A

∧ b n ≤ 2 powr (4/3 )^(n−1 )
shows (

∑
n. b n / a n) /∈ �

〈proof 〉

end
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