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Abstract

We formalize with Isabelle/HOL a proof of a theorem by J. Han¢l
asserting the irrationality of the sum of a series consisting of rational
numbers, built up by sequences that fulfill certain properties. Even
though the criterion is a number theoretic result, the proof makes use
only of analytical arguments. We also formalize a corollary of the
theorem for a specific series fulfilling the assumptions of the theorem.
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1 Main Theorem and Sketch of the Proof

We formalize the proof of the following theorem by J. Han¢l (Theorem 3 in
[]) :

Theorem 1. (Theorem 3 in [1]) Let A € R with A > 1. Let {d,}2>, € R
with d,, > 1 for alln € N. Let {a,}5°, € Zt, {b,}°, € Z" such that :

1

(1) lim a?" = A,

n—oo

for all sufficiently large n € N :




and

Then the series o= oo | 2 is an irrational number.
- n

The first step is to show that the series > -7, Z—: converges to some
a € R. To show that a € R\ Q we argue by proof by contradiction (to this
end several auxiliary lemmas are firstly shown). In particular, assuming
that o € Q, i.e. that there exist p,q € Z* such that o = g, we show that a
quantity A(n) > 1 for all n € N. At the same time, we find n € N for which
A(n) < 1, yielding a contradiction from which we deduce the irrationality

of the sum of the series.

For the proof see [1]. We note that the proof involves only elementary
Analysis (criteria for convergence/divergence for sequences and series and
several inequalities) and not any arithmetical/number theoretic arguments.
Obviously for the formal proof we had to make many intermediate argu-
ments explicit. Proofs of length of roughly 2 A4 pages in the original paper
by J. Hancl were formalized in almost 1100 lines of code.

2 Corollary

We moreover formalize the following corollary that asserts the irrationality
of the sum of an instance of a series that fulfills the assumptions of the
theorem :

Corollary 1. (Corollary 2in [1]) Let A € R with A > 1. Let {a,}>2, € ZT,
{bp}2, € ZF such that :

1

lim a2 = A
n—o0

and for all sufficiently large n € N (in particular: for n > 6)

1
n

a2 (1+4(2/3)") < A

and
by, < o(4/3)" 1

Then the series > -, Z—" is an irrational number.
- n

The above corollary is an immediate consequence of the theorem by
setting d,, = 1 + (2/3)"™. For the formalized proof of the corollary one more
auxiliary lemma was required.



3 Irrational Rapidly Convergent Series

theory Irrationality-J-Hancl
imports HOL— Analysis. Analysis HOL— Decision-Procs. Approximation
begin

This is the formalisation of a proof by J. Hanl, in particular of the proof
of his Theorem 3 in the paper: Irrational Rapidly Convergent Series, Rend.
Sem. Mat. Univ. Padova, Vol 107 (2002).

The statement asserts the irrationality of the sum of a series consisting of
rational numbers defined using sequences that fulfill certain properties. Even
though the statement is number-theoretic, the proof uses only arguments
from introductory Analysis.

We prove the central result (theorem Hancl3) by contradiction, by mak-
ing use of some of the auxiliary lemmas. To this end, assuming that the sum
is a rational number, for a quantity ALPHA (n) we show that ALPHA(n) > 1
for all n € N. After that we show that we can find an n € N for which
ALPHA(n) < 1 which yields a contradiction and we thus conclude that
the sum of the series is rational. We finally give an immediate application
of theorem Hancl3 for a specific series (corollary Hancl3corollary, requiring
lemma summable_In_ plus) which corresponds to Corollary 2 in the original
paper by J. Hanl.

hide-const floatarith. Maz

3.1 Misc

lemma filterlim-sequentially-iff:
filterlim f F1 sequentially +— filterlim (A\z. f (z+k)) F1 sequentially
(proof )

lemma filterlim-realpow-sequentially-at-top:
(z::real) > 1 = filterlim (power ) at-top sequentially
(proof)

lemma filterlim-at-top-powr-real:
fixes ¢::'b = real
assumes filterlim f at-top F and ¢": (¢ —— ¢') F g¢'>1
shows LIM z F. g x powr fz :> at-top

(proof)

lemma powrfinitesum:
fixes a::real and s::nat assumes s < n
shows ([]j=s..(n:nat).(a powr (275))) = a powr (D j=s..(n:nat).(277))
(proof)

lemma summable-ratio-test-tendsto:
fixes f :: nat = 'a::banach



assumes ¢ < I and Vn. fn#0 and (An. norm (f (Suc n)) / norm (fn)) ——
c
shows summable f

(proof)

lemma summable-In-plus:
fixes f::inat = real
assumes summable f Vn. fn>0
shows summable (An. In (1+fn))

{(proof)

lemma suminf-real-offset-le:
fixes f :: nat = real
assumes f: A\i. 0 < fi and summable f
shows (3" i. f (i + k)) < suminf f
(proof )

lemma factt:
fixes s n ::nat assumes s < n
shows (> i=s.n. 27%) < (27(n+1) :: real) (proof)

3.2 Auxiliary lemmas and the main proof

lemma showpre7:
fixes a b ::nat=-int and q p::int
assumes ¢>0 and p>0and a: Vn. a n>0 and Vn. b n>0 and
assumerational:(A n. b (n+1) / a (n+1) ) sums (p/q)
shows ¢x(([[j=1..n. of-int( a 7)))x(suminf (A(j:nat). (b (j+n+1)/ a (j+n+1

)
= ((I17=1..n. of-int( a )))*(p —gx Q_j=1.n. bj / aj))
(proof)

lemma show?7:
fixes d::nat=-real and a b:nat=-int and q p::int
assumes ¢ >/ and p> 1 and a: Vn.an > 1and Vn. bn > 1
and assumerational:(A n. b (n+1) / a (n+1) ) sums (p/q)
shows ¢x(([[j=1..n. of-int( a j)))*( suminf (X (j::nat). (b (j+n+1)/ a (j+n+1
D) > 1
(is 2L > -)
(proof)

lemma showS§:
fixes d ::nat=real and a :: nat=int and s k::nat
assumes A > 1 and d: Vn. dn> 1 and a:Vn. a n>0 and s>0
and convergent-prod d
and assu2: ¥n > s. A/ of-int (a n) powr (1 / of-int (27n)) > ([[j. d (n +
7))



shows Vn>s. ([[j. d (j+n)) < A / (MAX je{s..n}. of-int (a j) powr (1 / of-int
(279))
(proof)

lemma auziliary1-9:
fixes d ::nat=real and a::nat=int and s m:nat
assumes d: Vn. dn> 1 and a: Vn. a n>0 and s>0 and n > mand m > s
and auzifalse-assu: ¥ n>m. (of-int (a (n+1))) powr(1 /of-int (2 (n+1))) <
(d (n+1))x (Maz (X (j::inat). (of-int (a 7)) powr(1 [of-int (277)))
{s.n}))
shows (of-int (a (n+1))) powr(1 /of-int (27(n+1))) <
(I1j=(m+1)..(n+1). d j) * (Maz (A (j::nat). (of-int (a j)) powr(1 /of-int
(29) " {s..m})
(proof)

lemma show9:
fixes d ::nat=real and a :: nat=-int and s ::nat and A::real
assumes A > 1 and d:Vn. dn>1 and a:Vn. a n>0 and s>0
and assul: (( A n. (of-int (a n)) powr(1 /of-int (27n)))—— A) sequentially
and convergent-prod d
and 8: Vn>s. prodinf (Aj. d( n+j))
< A/(Maz ((A(j::nat). (of-int (a j)) powr(1 /of-int (275))) ‘{s..n}))

shows Vm >s. 3n>m. ( (of-int (a (n+1))) powr(1l /of-int (2 (n+1))) >
(d (n+1))x (Maz ( ( A (ji:nat). (of-int (a 7)) powr(1 /of-int (277)))
{s-n})))
(proof)

lemma showl10:
fixes d ::nat=real and a ::nat=-int and s::nat
assumes d [rule-format]: Vn. d n> 1
and a [rule-format]: Vn. a n>0 and s>0
and 9: Vm >s. I3n>m. a (n+1) powr(1 / of-int (27 (n+1))) >
d (n+1) * (Maz ((Nj. (of-int (a j)) powr(1 [of-int (275))) ‘{s.n}))
shows Vm>s. 3n>m. d (n+1) powr(2(n+1)) * ([[j=1..n. of-int( a 7))
(1 /(lj=1..s—1. of-int( aj)) < a (n+1)
(proof)

lemma lasttoshow:
fixes d ::nat=real and a b ::nat=int and q::int and s:nat
assumes d: Vn. d n> 1
and a:Vn. a n>0 and s>0 and ¢>0
and A > 1 and b:Yn. b n>0 and 9:
VYm>s. In>m. ((of-int (a (n+1))) powr(l /of-int (2 (n+1))) >
(d (n+1))* (Maz ((M(j:nat). (of-int (a 7)) powr(1 Jof-int (275))) ‘{s..n}

and assu3: filterlim( X n. (d n)(27n)/ b n) at-top sequentially
and 5: Vg nin sequentially. (37. (b (n+3)/ (a(n+j))<2xbn/an
shows 3n. gx(([[j=1..n. real-of-int(a 7))) * suminf (A(j::nat). (b (j+n+1)/ a



(j+n+1)))<1
(proof)

lemma
fixes d ::nat=real and a b ::nat=int and A:real
assumes A > 1 and d: Vn. dn> 1 and a: Vn. a n>0 and b:Yn. b n>0
and assul: (( A n. (of-int (a n)) powr(1 /of-int (27n)))—— A) sequentially
and assu3: filterlim ( A n. (d n) (27n)/ b n) at-top sequentially
and convergent-prod d
shows issummable: summable (\j. bj / a j)
and show5: V g n in sequentially. (3.j. (b(n+ 7))/ (a(n+j))<2xbn/
an

(proof)

theorem Hancl3:
fixes d ::nat=real and a b :: nat=-int
assumes A > 1 and d: Vn. dn > 1 and a: Vn. a n>0 and b: Vn. bn > 0
and s>0
and assul: (An. (@ n) powr(1 / of-int(27°n))) —— A
and assu2: Vn > s. A/ (an) powr (1 / of-int(27n)) > (I[4. d (n+)))
and assu3: LIM n sequentially. dn ~ 2 “n / bn > at-top
and convergent-prod d
shows (3" n.bn/an)é¢Q
(proof)

corollary Hancl3corollary:
fixes A::real and a b :: nat=-int
assumes A > 1 and a: Vn. a n>0 and b: Vn. b n>0
and assul: (An. (a n) powr(1 / of-int(27°n))) —— A
and asscor2: ¥ n > 6. a n powr(1 / of-int (27n)) x (I + 4%(2/3)™n) < A
ANbn < 2powr (4/8) (n—1)
shows (3.n.bn/an)¢Q
(proof)

end
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