Involutions2Squares

Maksym Bortin
March 17, 2025

Abstract

)

This theory contains the involution-based proof of the ‘two squares
theorem from THE BOOK.

Contents
1 A few basic properties

2 The relevant properties of involutions
2.1 Unions of preimage/image sets, fixed points

3 Primes and the two squares theorem

theory Involutions2Squares
imports Main
begin

1 A few basic properties

lemma nat-sqr :
shows nat(n?) = (nat(abs n))?
by (rule int-int-eq| THEN iffD1], simp)

lemma nat-mod-int :
assumes n mod m = k
shows int n mod int m = int k
by (metis assms of-nat-mod)

lemma sqgr-geq-nat :
shows (n:nat) < n?
using power2-nat-le-imp-le by simp

https://dx.doi.org/10.1007/978-3-662-57265-8

lemma sqr-geg-abs :
shows abs(n::int) < n
proof(rule nat-le-eq-zle[THEN iffD1], simp)
show nat |n| < nat (n?)
using nat-sqr sqr-geg-nat by presburger
qed

2

lemma sqr-fix-nat :
assumes (n:nat) = n
shows n =0V n=1
using assms numeral-2-eq-2 by fastforce

2

lemma card! :
shows (card{a, b} = Suc 0) = (a = b)

using singleton-insert-inj-eq’ by fastforce

lemma card? :
shows card{a, b} > Suc 0 A card{a, b} < 2
by (simp add: card-insert-if)

2 The relevant properties of involutions

definition involution-on A ¢ = (p ‘A C AN (Vz€A. (¢ x) = 2))

lemma involution-bij :
assumes involution-on A ¢
shows bij-betw ¢ A A
using assms bij-betw-by Witness involution-on-def by fast

lemma involution-sub-bij :
assumes involution-on A ¢
and S C A
andVzed. (z € 5)=(px ¢ 9)
shows bij-betw ¢ S (A —)
proof(simp add: bij-betw-def, rule conjI)
show inj-on ¢ S
by (meson assms bij-betw-def inj-on-subset involution-bij)
next
show ¢ ‘S =A4-S
proof(rule set-eql, clarsimp)
fix xshow (z € p ‘S)=(x € ANz ¢ S) (is /L = ?R)
proof
assume ?L thus ?R
by(metis assms bij-betw-imp-surj-on f-inv-into-f image-eql inv-into-into
involution-bij subset-iff)

next
assume ?R thus 7L
by (metis assms(1) assms(3) image-iff involution-on-def)
qed
qed
qed

lemma involution-sub-card :
assumes involution-on A ¢
and finite A
and S C 4
and VzeAd. (z € S)=(pz ¢ 09)
shows 2 x card S = card A
proof —
have card S = card (A — S)
using assms bij-betw-same-card involution-sub-bij by blast

also have ... = card A — card S
by (meson assms card-Diff-subset rev-finite-subset)

finally show ?thesis by simp
qed

2.1 Unions of preimage/image sets, fixed points

definition preimg-img-on A ¢ = (Jz€A. {{z, ¢ z}})
definition fizpoints-on A ¢ = {z€A. p © = z}

lemma preimg-img-on-Union :
assumes ¢ ‘A C A
shows A = | (preimg-img-on A)
using assms by (fastforce simp: preimg-img-on-def)

lemma preimg-img-on-finite :
assumes finite A
shows finite (preimg-img-on A ¢)
by (simp add: assms preimg-img-on-def)

lemma fizpoints-on-finite :
assumes finite A
shows finite (fizpoints-on A @)
by (simp add: assms fixpoints-on-def)

lemma preimg-img-on-card :
assumes x € preimg-img-on A ¢
shows 1 < card z A card x < 2

using assms by (fastforce simp: preimg-img-on-def card2)

corollary preimg-img-on-eq :

shows preimg-img-on A ¢ = {x € preimg-img-on A ¢. card x = 1} U

{z € preimg-img-on A . card x = 2}

proof (rule equalityl[rotated 1], clarsimp+)

fix © assume card ¢ # 2 and z € preimg-img-on A ¢

thus card z = Suc 0

using preimg-img-on-card by fastforce

qed

lemma fixpoints-on-card-eq :

shows card(fizpoints-on A) = card {z € preimg-img-on A . card ¢ = 1}
proof —

have bij-betw (Az. {z}) (fizpoints-on A ©)

{z. z € preimg-img-on A o N card z = 1}
by (fastforce simp: bij-betw-def fizrpoints-on-def preimg-img-on-def cardl)

thus ?thesis by(rule bij-betw-same-card)

qged

lemma preimg-img-on-disjoint :
assumes involution-on A ¢
shows pairwise disjnt (preimg-img-on A @)
proof (clarsimp simp: pairwise-def disjnt-def preimg-img-on-def)
fix u v assume b: u € Aand ¢: v € A and d: {u, p u} # {v, p v}
hence e: u # v by clarsimp
with b and ¢ have f: ¢ u # ¢ v by (metis assms involution-on-def)
have (¢ v = u) = (v = ¢ u) by (metis assms b ¢ involution-on-def)
with d have ¢ v # u A v # ¢ u by fastforce
with eand fshow v Zu A v# pu A v#uApv#puby simp
qed

theorem involution-dom-card-sum :
assumes involution-on A ¢
and finite A
shows card A = card (fizpoints-on A @) +
2 x card {z € preimg-img-on A ¢. card x = 2}
proof —
have eq: {z € preimg-img-on A @. card x = Suc 0} N
{z € preimg-img-on A ¢. card z = 2} = {}
by fastforce

have f1 : finite {x € preimg-img-on A . card x = 1}

by (simp add: assms preimg-img-on-finite)
have f2 : finite {z € preimg-img-on A . card x = 2}
by (simp add: assms preimg-img-on-finite)

have card A = card (| (preimg-img-on A ¢))
by (metis assms(1) involution-on-def preimg-img-on-Union)

also have ... = sum card (preimg-img-on A)
by (metis assms(1) card-Union-disjoint card-eq-0-iff not-one-le-zero preimg-img-on-card

preimg-img-on-disjoint)

also have ... = sum card ({z € preimg-img-on A ¢. card x = 1} U
{z € preimg-img-on A . card x = 2})
by (metis preimg-img-on-eq)

also have ... = sum card {x € preimg-img-on A ¢. card z = 1} +
sum card {x € preimg-img-on A ¢. card z = 2}
by (metis (no-types, lifting) Collect-cong One-nat-def eq f1 f2 sum.union-disjoint)

also have ... = card (fizxpoints-on A) +
2 x card {z € preimg-img-on A ¢. card r = 2}
by (simp add: fixpoints-on-card-eq)

finally show ?thesis .
qged

corollary involution-dom-fixpoints-parity :
assumes involution-on A ¢
and finite A
shows odd(card A) = odd(card(fizpoints-on A ¢))

using assms involution-dom-card-sum by fastforce

3 Primes and the two squares theorem
definition is-prime (n :: nat) = (n > 1 AN (Vd. ddvdn — d =1V d = n))

lemma prime-factors :
assumes is-prime p
and p=nxm
shows (n=1Am=p)V(n=pAm=1)
using assms proof (clarsimp simp: is-prime-def)
assume Vd. ddvdnxm — d=Suc0Vd=nxm
hence a: n=SucO0Vn=nxmAm=Suc0V m=mnx%xm
by (meson dvd-triv-left dvd-triv-right)
assume 0 < n A Suc 0 # m V m # Suc 0 and Suc 0 < nxm
with a show n = Suc 0 A (m = 0 V Suc 0 = n) by fastforce
qed

lemma prime-not-sqr :
assumes is-prime p
shows p # n?
by (metis assms is-prime-def order-less-irrefl power2-eg-square prime-factors)

lemma int-prime-not-sqr :
assumes s-prime p
shows int p # n?
by (metis assms nat-int nat-sqr prime-not-sqr)

lemma prime-gry :
assumes s-prime p
and p mod 4 = 1
shows p > J
proof(rule ccontr, drule lel)
assume p < /
thus Fulse
by (metis assms dvd-imp-mod-0 dvd-triv-left is-prime-def mod-less mult.right-neutral

order-less-le zero-neg-one)
qged

theorem two-squares :
assumes a: is-prime p
and b: p mod 4 = 1
shows 3n m. p = n2 + m?
proof —
let 25 = {(u, v, w).intp=4*u*xv+w>Au>0A0v>0}
let 2T = 25N {(u, v, w). w> 0}
let 2U = 25N {(u, v, w). u — v+ w> 0}
let 2f = A(u, v, w). (v, u, —w)
let 29 = Au, v, w). (u — v+ w, v, 2 x v — w)
let ?h = A u, v, w). (v, u, w)

have w-neq0 : Vu v w. (u, v, w) € 95 — w # 0
proof clarsimp

fix u vassume int p = 4 *x u*x v

hence 4 dvd int p by simp

hence 4 dvd p by presburger

with b show Fulse by simp
qed

have fin-S : finite 25
proof —
have wv-comm : Vu v w. (u, v, w) € 25 — (v, u, w) € 25 by simp

have bound! : Vu v w. (u, v, w) € 25 — u < (int p — 1) div 4
proof clarsimp
fix u v w assume 1: int p = 4 * u * v + w? and 2: (0::int) < v and 3:
(0::int) < u
with 2 and 3 have 4: / * u < / x u * v by simp
have w # (0::int) using 1 2 8 w-neq0 by simp
hence 1 < w?
by (metis add-0 linorder-not-le power2-less-eq-zero-iff zless-imp-add1-zle)
with 4 have 5: 4 * u < 4 *x u * v + w? — 1 by simp
note zdiv-monol[OF 5, where b=/ ::int, simplified]
thus u < (4 xu* v+ w? — 1) div 4 .
qed

have bound2 : Vu v w. (u, v, w) € 25 — v < (int p — 1) div 4
using boundl uv-comm by blast

have bound3 : Vu v w. (u, v, w) € 25 — |w| < int p
proof clarsimp

fix u v wint

have 1: |w| < w? by(rule sqr-geg-abs)

assume (0::int) < u and (0::int) < v

hence 0 < u x v by(rule mult-pos-pos)

hence 0 < u x v by simp

hence w? < 4 * u * v + w? by simp

with 1 show |w| < / * u x v + w? by simp
qed

let ?prod = {1..(int p — 1) div 4} x {1..(int p — 1) div 4} x {— int p..int p}

have prod: Vu v w. (u, v, w) € 25 — (u, v, w) € ?prod
proof (intro alll)
fix u v w show (u, v, w) € 25 — (u, v, w) € prod
proof (rule impI)
assume 1: (u, v, w) € ¢S
note bound1[rule-format, OF 1] and
bound2[rule-format, OF 1]
with 7 show (u, v, w) € ?prod
proof simp
have |w| < int p by(rule bound3|[rule-format, OF 1))
hence w < int p A —w < int p by(rule abs-le-iff[THEN iffD1])
with 7 show — (4 * uxv) — w? <w A w< 4 xux v+ w? by simp
qged
qed
qed

show ?thesis
proof (rule-tac B=?%prod in finite-subset)
show 25 C ?prod using prod by fast

next
show finite ?prod by simp
qed
qed

have invl : involution-on %S 2f
by (clarsimp simp: involution-on-def)

have inv2 : involution-on ?U %g
by (fastforce simp: involution-on-def int-distrib power2-diff power2-eq-square)

have inv3 : involution-on ¢T ?h
by (fastforce simp: involution-on-def)

have part! : Vze?S. (x € ?T) = (?fx ¢ ?T)
proof clarsimp
fix u v w assume 1: int p = 4 * u x v + w? and 2: (0::int) < v and 3:
(0::int) < u
have w # 0
proof (rule w-neq0[rule-format))
from 1 2 3 show (u, v, w) € 25 by simp
qed
thus (0 < w) = (= w < 0) by fastforce
qed

have part2 : Vxe?S. (x € 2U) = (¢fz ¢ ?U)
proof clarsimp
fix uvwassume I:intp=4*xuxv+w>and 2: v > 0 and 3: v > 0

show (0 <u—v+w)=(-w<v—u)(is /L = ?R)

proof

assume ?L with 2 and 3 show ?R by fastforce
next

assume ?R hence /: v — u < w by simp

show ?L

proof (rule ccontr)
assume - ?L with 4 have w = v — u by fastforce
with 7 have int p = 4 * u x v + (v — u)? by fast
then have sqr : int p = (v + u)? by(simp add: power2-diff power2-sum)
with int-prime-not-sqr|OF a] show Fualse ..

qed

qed
qed

have card-eq : card ?T = card ?U
proof —
have 1: 2xcard ?T = card 25
by (smt (verit, ccfo-SIG) Int-iff fin-S invl involution-sub-card partl subsetl)
have 2xcard ?U = card 25
by (smt (verit, ccfv-SIG) Int-iff fin-S invl involution-sub-card part2 subsetl)

with 1 show ?thesis by simp
qed

have fizp: fizpoints-on ?U 29 = {((int p — 1) div 4, 1, 1)} (is ?L = ?R)
proof
show ?L C 2R
proof (clarsimp simp: fizpoints-on-def)
fix uvassume I:intp=4 xu*xv+v>and 2: 0 <wvand 3: 0 < v
then have /: int p = v x (4 * v + v)
by (simp add: power2-eq-square int-distrib)
have 5: p = nat v * (4 * nat u + nat v)
proof (rule int-int-eq THEN iffD1])
show int p = int (nat v x (4 * nat u + nat v))
using 2 3 proof (simp add: /)
qed
qed
note prime-factors|OF a 5]
then show u = ({ x ux v +v> — 1) div{ Nv=1
proof
assume nat v =1 N 4 * nat u + nat v =1p
with 2 and 8 have v = 1 A / x u + v = int p by fastforce
thus ?thesis by simp
next
assume nat v = p A 4 * nat v + nat v = 1
with 2 have Fulse by fastforce
thus ?thesis ..
qed
qed
next
show 7R C ?L
proof (clarsimp simp: fixpoints-on-def, rule conjl)
show int p =4 * ((intp — 1) div 4) + 1
proof (subst dvd-mult-div-cancel)
show 4 dvd int p — 1
proof (subst mod-eq-dvd-iff [THEN sym])
show int p mod 4 = 1 mod 4 by(simp add: nat-mod-int[OF b, simplified])
qged
next
show int p =intp — 1 + 1 by simp
qed
next
show 0 < (intp — 1) div 4
using a b prime-gr by fastforce
qed
qed

have cardS1 : odd(card ?T)
proof (subst card-eq)
show odd(card ?U)

using add-diff-cancel-right’ fin-S fizp inv2 involution-dom-fizpoints-parity by
fastforce
qed

have fixp-ex : x. = € fixpoints-on ?T ?h
proof (rule ccontr)
assume — ?thesis hence 1: fixpoints-on ?T ?h = {} by fast
note involution-dom-card-sum|[OF inv3, simplified 1]
hence even(card ?T) by (simp add: fin-S)
with cardS1 show Fulse ..
qed

note fizp-ex then have Ju w. u > 0 A w > 0 Aint p = 4 * u * u + w?
by (clarsimp simp: fixpoints-on-def, fast)

then obtain v w where c: u > 0 A w > 0 Aintp = (2 x u)? + w?
by (fastforce simp: power2-eq-square)

hence p = (nat(2 * u))? + (nat w)?
by (smt (verit) int-nat-eq nat-int nat-int-add of-nat-power)

thus ?thesis by fast

qed

end

10

	A few basic properties
	The relevant properties of involutions
	Unions of preimage/image sets, fixed points

	Primes and the two squares theorem

