
Involutions2Squares

Maksym Bortin

March 17, 2025

Abstract

This theory contains the involution-based proof of the ‘two squares’
theorem from THE BOOK.

Contents
1 A few basic properties 1

2 The relevant properties of involutions 2
2.1 Unions of preimage/image sets, fixed points 3

3 Primes and the two squares theorem 5

theory Involutions2Squares
imports Main
begin

1 A few basic properties
lemma nat-sqr :

shows nat(n2) = (nat(abs n))2
by(rule int-int-eq[THEN iffD1], simp)

lemma nat-mod-int :
assumes n mod m = k
shows int n mod int m = int k
by (metis assms of-nat-mod)

lemma sqr-geq-nat :
shows (n::nat) ≤ n2

using power2-nat-le-imp-le by simp

1

https://dx.doi.org/10.1007/978-3-662-57265-8

lemma sqr-geq-abs :
shows abs(n::int) ≤ n2

proof(rule nat-le-eq-zle[THEN iffD1], simp)
show nat |n| ≤ nat (n2)

using nat-sqr sqr-geq-nat by presburger
qed

lemma sqr-fix-nat :
assumes (n::nat) = n2

shows n = 0 ∨ n = 1
using assms numeral-2-eq-2 by fastforce

lemma card1 :
shows (card{a, b} = Suc 0) = (a = b)
using singleton-insert-inj-eq ′ by fastforce

lemma card2 :
shows card{a, b} ≥ Suc 0 ∧ card{a, b} ≤ 2
by (simp add: card-insert-if)

2 The relevant properties of involutions
definition involution-on A ϕ = (ϕ ‘ A ⊆ A ∧ (∀ x∈A. ϕ(ϕ x) = x))

lemma involution-bij :
assumes involution-on A ϕ
shows bij-betw ϕ A A
using assms bij-betw-byWitness involution-on-def by fast

lemma involution-sub-bij :
assumes involution-on A ϕ

and S ⊆ A
and ∀ x∈A. (x ∈ S) = (ϕ x /∈ S)

shows bij-betw ϕ S (A − S)
proof(simp add: bij-betw-def , rule conjI)

show inj-on ϕ S
by (meson assms bij-betw-def inj-on-subset involution-bij)

next
show ϕ ‘ S = A − S
proof(rule set-eqI , clarsimp)

fix x show (x ∈ ϕ ‘ S) = (x ∈ A ∧ x /∈ S) (is ?L = ?R)
proof

assume ?L thus ?R
by(metis assms bij-betw-imp-surj-on f-inv-into-f image-eqI inv-into-into

involution-bij subset-iff)

2

next
assume ?R thus ?L

by (metis assms(1) assms(3) image-iff involution-on-def)
qed

qed
qed

lemma involution-sub-card :
assumes involution-on A ϕ

and finite A
and S ⊆ A
and ∀ x∈A. (x ∈ S) = (ϕ x /∈ S)

shows 2 ∗ card S = card A
proof −

have card S = card (A − S)
using assms bij-betw-same-card involution-sub-bij by blast

also have ... = card A − card S
by (meson assms card-Diff-subset rev-finite-subset)

finally show ?thesis by simp
qed

2.1 Unions of preimage/image sets, fixed points
definition preimg-img-on A ϕ = (

⋃
x∈A. {{x, ϕ x}})

definition fixpoints-on A ϕ = {x∈A. ϕ x = x}

lemma preimg-img-on-Union :
assumes ϕ ‘ A ⊆ A
shows A =

⋃
(preimg-img-on A ϕ)

using assms by(fastforce simp: preimg-img-on-def)

lemma preimg-img-on-finite :
assumes finite A
shows finite (preimg-img-on A ϕ)
by(simp add: assms preimg-img-on-def)

lemma fixpoints-on-finite :
assumes finite A
shows finite (fixpoints-on A ϕ)
by(simp add: assms fixpoints-on-def)

lemma preimg-img-on-card :
assumes x ∈ preimg-img-on A ϕ
shows 1 ≤ card x ∧ card x ≤ 2

3

using assms by(fastforce simp: preimg-img-on-def card2)

corollary preimg-img-on-eq :
shows preimg-img-on A ϕ = {x ∈ preimg-img-on A ϕ. card x = 1} ∪

{x ∈ preimg-img-on A ϕ. card x = 2}
proof(rule equalityI [rotated 1], clarsimp+)

fix x assume card x 6= 2 and x ∈ preimg-img-on A ϕ
thus card x = Suc 0

using preimg-img-on-card by fastforce
qed

lemma fixpoints-on-card-eq :
shows card(fixpoints-on A ϕ) = card {x ∈ preimg-img-on A ϕ. card x = 1}

proof −
have bij-betw (λx. {x}) (fixpoints-on A ϕ)

{x. x ∈ preimg-img-on A ϕ ∧ card x = 1}
by(fastforce simp: bij-betw-def fixpoints-on-def preimg-img-on-def card1)

thus ?thesis by(rule bij-betw-same-card)
qed

lemma preimg-img-on-disjoint :
assumes involution-on A ϕ
shows pairwise disjnt (preimg-img-on A ϕ)

proof(clarsimp simp: pairwise-def disjnt-def preimg-img-on-def)
fix u v assume b: u ∈ A and c: v ∈ A and d: {u, ϕ u} 6= {v, ϕ v}
hence e: u 6= v by clarsimp
with b and c have f : ϕ u 6= ϕ v by (metis assms involution-on-def)
have (ϕ v = u) = (v = ϕ u) by (metis assms b c involution-on-def)
with d have ϕ v 6= u ∧ v 6= ϕ u by fastforce
with e and f show v 6= u ∧ v 6= ϕ u ∧ ϕ v 6= u ∧ ϕ v 6= ϕ u by simp

qed

theorem involution-dom-card-sum :
assumes involution-on A ϕ

and finite A
shows card A = card (fixpoints-on A ϕ) +

2 ∗ card {x ∈ preimg-img-on A ϕ. card x = 2}
proof −

have eq: {x ∈ preimg-img-on A ϕ. card x = Suc 0} ∩
{x ∈ preimg-img-on A ϕ. card x = 2} = {}

by fastforce

have f1 : finite {x ∈ preimg-img-on A ϕ. card x = 1}

4

by (simp add: assms preimg-img-on-finite)
have f2 : finite {x ∈ preimg-img-on A ϕ. card x = 2}

by (simp add: assms preimg-img-on-finite)

have card A = card (
⋃
(preimg-img-on A ϕ))

by (metis assms(1) involution-on-def preimg-img-on-Union)

also have ... = sum card (preimg-img-on A ϕ)
by (metis assms(1) card-Union-disjoint card-eq-0-iff not-one-le-zero preimg-img-on-card

preimg-img-on-disjoint)

also have ... = sum card ({x ∈ preimg-img-on A ϕ. card x = 1} ∪
{x ∈ preimg-img-on A ϕ. card x = 2})

by (metis preimg-img-on-eq)

also have ... = sum card {x ∈ preimg-img-on A ϕ. card x = 1} +
sum card {x ∈ preimg-img-on A ϕ. card x = 2}

by (metis (no-types, lifting) Collect-cong One-nat-def eq f1 f2 sum.union-disjoint)

also have ... = card (fixpoints-on A ϕ) +
2 ∗ card {x ∈ preimg-img-on A ϕ. card x = 2}

by(simp add: fixpoints-on-card-eq)

finally show ?thesis .
qed

corollary involution-dom-fixpoints-parity :
assumes involution-on A ϕ

and finite A
shows odd(card A) = odd(card(fixpoints-on A ϕ))
using assms involution-dom-card-sum by fastforce

3 Primes and the two squares theorem
definition is-prime (n :: nat) = (n > 1 ∧ (∀ d. d dvd n −→ d = 1 ∨ d = n))

lemma prime-factors :
assumes is-prime p

and p = n ∗ m
shows (n = 1 ∧ m = p) ∨ (n = p ∧ m = 1)

using assms proof(clarsimp simp: is-prime-def)
assume ∀ d. d dvd n ∗ m −→ d = Suc 0 ∨ d = n ∗ m
hence a: n = Suc 0 ∨ n = n ∗ m ∧ m = Suc 0 ∨ m = n ∗ m

by (meson dvd-triv-left dvd-triv-right)
assume 0 < n ∧ Suc 0 6= m ∨ m 6= Suc 0 and Suc 0 < n∗m
with a show n = Suc 0 ∧ (m = 0 ∨ Suc 0 = n) by fastforce

qed

5

lemma prime-not-sqr :
assumes is-prime p
shows p 6= n2

by (metis assms is-prime-def order-less-irrefl power2-eq-square prime-factors)

lemma int-prime-not-sqr :
assumes is-prime p
shows int p 6= n2

by (metis assms nat-int nat-sqr prime-not-sqr)

lemma prime-gr4 :
assumes is-prime p

and p mod 4 = 1
shows p > 4

proof(rule ccontr , drule leI)
assume p ≤ 4
thus False
by (metis assms dvd-imp-mod-0 dvd-triv-left is-prime-def mod-less mult.right-neutral

order-less-le zero-neq-one)
qed

theorem two-squares :
assumes a: is-prime p

and b: p mod 4 = 1
shows ∃n m. p = n2 + m2

proof −
let ?S = {(u, v, w). int p = 4 ∗ u ∗ v + w2 ∧ u > 0 ∧ v > 0}
let ?T = ?S ∩ {(u, v, w). w > 0}
let ?U = ?S ∩ {(u, v, w). u − v + w > 0}
let ?f = λ(u, v, w). (v, u, −w)
let ?g = λ(u, v, w). (u − v + w, v, 2 ∗ v − w)
let ?h = λ(u, v, w). (v, u, w)

have w-neq0 : ∀ u v w. (u, v, w) ∈ ?S −→ w 6= 0
proof clarsimp

fix u v assume int p = 4 ∗ u ∗ v
hence 4 dvd int p by simp
hence 4 dvd p by presburger
with b show False by simp

qed

have fin-S : finite ?S
proof −

have uv-comm : ∀ u v w. (u, v, w) ∈ ?S −→ (v, u, w) ∈ ?S by simp

6

have bound1 : ∀ u v w. (u, v, w) ∈ ?S −→ u ≤ (int p − 1) div 4
proof clarsimp

fix u v w assume 1 : int p = 4 ∗ u ∗ v + w2 and 2 : (0 ::int) < v and 3 :
(0 ::int) < u

with 2 and 3 have 4 : 4 ∗ u ≤ 4 ∗ u ∗ v by simp
have w 6= (0 ::int) using 1 2 3 w-neq0 by simp
hence 1 ≤ w2

by (metis add-0 linorder-not-le power2-less-eq-zero-iff zless-imp-add1-zle)
with 4 have 5 : 4 ∗ u ≤ 4 ∗ u ∗ v + w2 − 1 by simp
note zdiv-mono1 [OF 5 , where b=4 ::int, simplified]
thus u ≤ (4 ∗ u ∗ v + w2 − 1) div 4 .

qed

have bound2 : ∀ u v w. (u, v, w) ∈ ?S −→ v ≤ (int p − 1) div 4
using bound1 uv-comm by blast

have bound3 : ∀ u v w. (u, v, w) ∈ ?S −→ |w| ≤ int p
proof clarsimp

fix u v w::int
have 1 : |w| ≤ w2 by(rule sqr-geq-abs)
assume (0 ::int) < u and (0 ::int) < v
hence 0 < u ∗ v by(rule mult-pos-pos)
hence 0 ≤ u ∗ v by simp
hence w2 ≤ 4 ∗ u ∗ v + w2 by simp
with 1 show |w| ≤ 4 ∗ u ∗ v + w2 by simp

qed

let ?prod = {1 ..(int p − 1) div 4} × {1 ..(int p − 1) div 4} × {− int p..int p}

have prod: ∀ u v w. (u, v, w) ∈ ?S −→ (u, v, w) ∈ ?prod
proof(intro allI)

fix u v w show (u, v, w) ∈ ?S −→ (u, v, w) ∈ ?prod
proof(rule impI)

assume 1 : (u, v, w) ∈ ?S
note bound1 [rule-format, OF 1] and

bound2 [rule-format, OF 1]
with 1 show (u, v, w) ∈ ?prod
proof simp

have |w| ≤ int p by(rule bound3 [rule-format, OF 1])
hence w ≤ int p ∧ −w ≤ int p by(rule abs-le-iff [THEN iffD1])
with 1 show − (4 ∗ u ∗ v) − w2 ≤ w ∧ w ≤ 4 ∗ u ∗ v + w2 by simp

qed
qed

qed

show ?thesis
proof(rule-tac B=?prod in finite-subset)

show ?S ⊆ ?prod using prod by fast

7

next
show finite ?prod by simp

qed
qed

have inv1 : involution-on ?S ?f
by(clarsimp simp: involution-on-def)

have inv2 : involution-on ?U ?g
by(fastforce simp: involution-on-def int-distrib power2-diff power2-eq-square)

have inv3 : involution-on ?T ?h
by(fastforce simp: involution-on-def)

have part1 : ∀ x∈?S . (x ∈ ?T) = (?f x /∈ ?T)
proof clarsimp

fix u v w assume 1 : int p = 4 ∗ u ∗ v + w2 and 2 : (0 ::int) < v and 3 :
(0 ::int) < u

have w 6= 0
proof(rule w-neq0 [rule-format])

from 1 2 3 show (u, v, w) ∈ ?S by simp
qed
thus (0 < w) = (¬ w < 0) by fastforce

qed

have part2 : ∀ x∈?S . (x ∈ ?U) = (?f x /∈ ?U)
proof clarsimp

fix u v w assume 1 : int p = 4 ∗ u ∗ v + w2 and 2 : u > 0 and 3 : v > 0
show (0 < u − v + w) = (¬ w < v − u) (is ?L = ?R)
proof

assume ?L with 2 and 3 show ?R by fastforce
next

assume ?R hence 4 : v − u ≤ w by simp
show ?L
proof(rule ccontr)

assume ¬ ?L with 4 have w = v − u by fastforce
with 1 have int p = 4 ∗ u ∗ v + (v − u)2 by fast
then have sqr : int p = (v + u)2 by(simp add: power2-diff power2-sum)
with int-prime-not-sqr [OF a] show False ..

qed
qed

qed

have card-eq : card ?T = card ?U
proof −

have 1 : 2∗card ?T = card ?S
by (smt (verit, ccfv-SIG) Int-iff fin-S inv1 involution-sub-card part1 subsetI)

have 2∗card ?U = card ?S
by (smt (verit, ccfv-SIG) Int-iff fin-S inv1 involution-sub-card part2 subsetI)

8

with 1 show ?thesis by simp
qed

have fixp: fixpoints-on ?U ?g = {((int p − 1) div 4 , 1 , 1)} (is ?L = ?R)
proof

show ?L ⊆ ?R
proof(clarsimp simp: fixpoints-on-def)

fix u v assume 1 : int p = 4 ∗ u ∗ v + v2 and 2 : 0 < u and 3 : 0 < v
then have 4 : int p = v ∗ (4 ∗ u + v)

by(simp add: power2-eq-square int-distrib)
have 5 : p = nat v ∗ (4 ∗ nat u + nat v)
proof(rule int-int-eq[THEN iffD1])

show int p = int (nat v ∗ (4 ∗ nat u + nat v))
using 2 3 proof(simp add: 4)

qed
qed
note prime-factors[OF a 5]
then show u = (4 ∗ u ∗ v + v2 − 1) div 4 ∧ v = 1
proof

assume nat v = 1 ∧ 4 ∗ nat u + nat v = p
with 2 and 3 have v = 1 ∧ 4 ∗ u + v = int p by fastforce
thus ?thesis by simp

next
assume nat v = p ∧ 4 ∗ nat u + nat v = 1
with 2 have False by fastforce
thus ?thesis ..

qed
qed

next
show ?R ⊆ ?L
proof(clarsimp simp: fixpoints-on-def , rule conjI)

show int p = 4 ∗ ((int p − 1) div 4) + 1
proof(subst dvd-mult-div-cancel)

show 4 dvd int p − 1
proof(subst mod-eq-dvd-iff [THEN sym])
show int p mod 4 = 1 mod 4 by(simp add: nat-mod-int[OF b, simplified])

qed
next

show int p = int p − 1 + 1 by simp
qed

next
show 0 < (int p − 1) div 4

using a b prime-gr4 by fastforce
qed

qed

have cardS1 : odd(card ?T)
proof(subst card-eq)

show odd(card ?U)

9

using add-diff-cancel-right ′ fin-S fixp inv2 involution-dom-fixpoints-parity by
fastforce

qed

have fixp-ex : ∃ x. x ∈ fixpoints-on ?T ?h
proof(rule ccontr)

assume ¬ ?thesis hence 1 : fixpoints-on ?T ?h = {} by fast
note involution-dom-card-sum[OF inv3 , simplified 1]
hence even(card ?T) by (simp add: fin-S)
with cardS1 show False ..

qed

note fixp-ex then have ∃ u w. u > 0 ∧ w > 0 ∧ int p = 4 ∗ u ∗ u + w2

by(clarsimp simp: fixpoints-on-def , fast)
then obtain u w where c: u > 0 ∧ w > 0 ∧ int p = (2 ∗ u)2 + w2

by(fastforce simp: power2-eq-square)
hence p = (nat(2 ∗ u))2 + (nat w)2

by (smt (verit) int-nat-eq nat-int nat-int-add of-nat-power)
thus ?thesis by fast

qed

end

10

	A few basic properties
	The relevant properties of involutions
	Unions of preimage/image sets, fixed points

	Primes and the two squares theorem

