
IDE: Introduction, Destruction, Elimination

Mihails Milehins

March 17, 2025

1

Abstract

The document presents a reference manual for the command mk ide developed for
the object logic Isabelle/HOL (e.g., see [2]) of the formal proof assistant Isabelle [3]. The
command provides means for the automated synthesis of the introduction, destruction and
elimination rules from the definitions of predicates stated in Isabelle/HOL.

2

Acknowledgements

The author would like to acknowledge the assistance that he received from the users of
the mailing list of Isabelle in the form of answers given to his general queries.

Furthermore, the author would like to acknowledge the positive impact of [4] and [7]
on his ability to code in Isabelle/ML. Moreover, the author would like to acknowledge the
positive role that numerous Q&A posted on the Stack Exchange network (especially Stack
Overflow and TeX Stack Exchange) played in the development of this work.

The author would also like to express gratitude to all members of his family and friends
for their continuous support.

3

https://lists.cam.ac.uk/mailman/listinfo/cl-isabelle-users

Contents
1 Introduction 5

1.1 Background . 5
1.2 Related and previous work . 5

2 Syntax 6

3 Examples 8

References 9

4

1 Introduction
1.1 Background

This document presents a reference manual for the framework IDE. The framework IDE can be
used for the automated synthesis of the introduction, destruction and elimination rules from the
definitions of predicates stated in the object logic Isabelle/HOL of the proof assistant Isabelle.
The primary functionality of the framework is available via the Isabelle/Isar [5, 6] command
mk-ide. Given a definition of a predicate in Isabelle/HOL, the command can synthesize intro-
duction, destruction and elimination rules for this definition. The rules are stated in a certain
predetermined format that is meant to be both natural and convenient for the end user and the
tools for classical reasoning available in Isabelle/HOL.

1.2 Related and previous work

The standard distribution of Isabelle provides the attribute elim-format [8] that can be used for
the conversion of the destruction rules to the elimination rules. The primary functionality of
this attribute is reused in the implementation of the command mk-ide.
Furthermore, Isabelle offers several definitional packages that provide similar rules automatically
for the constants created by these definitional packages [8]. However, to the best knowledge of
the author, none of these packages can generate such rules for arbitrary predicates. Perhaps,
in the future, the approaches can be unified or integrated in some manner.

5

2 Syntax

This subsection presents the syntactic categories that are associated with the command mk-ide.
It is important to note that the presentation is only approximate.

mk-ide ∶ local-theory → local-theory

mk ide
�� �
�

� rf

�

thm �
� intro�

� elim

�dest

�

�

intro

|intro
�� �
thmdef |

���

dest

|dest
�� �
thmdef |

���

elim

|elim
�� �
thmdef |

���

mk-ide (rf) def-thm ∣intro name[attrbs]∣ converts the definition def-thm into an introduction

rule, followed by the application of the functionality associated with the optional keyword
rf and the attributes attrbs to this rule. The result of the application of the attributes
attrbs is stored in the local context under the name name. def-thm is meant to be a fact
that consists of exactly one theorem of the form

A a1 . . . an ≃ f 1 a1 . . . an ∧ . . . ∧ f m a1 . . . an,

where n and m are natural numbers, A is a constant predicate in n arguments, ≃ is either
the meta-logic equality or the object logic equality, a1 . . . an are schematic variables
and f 1 . . . f m are suitable predicates in n arguments (however, there are further implicit
restrictions). The resulting introduction rule is expected to be stated in the format

f 1 a1 . . . an Ô⇒ . . . Ô⇒ f m a1 . . . an Ô⇒ A a1 . . . an

prior to the application of the functionality associated with the keyword rf and the at-
tributes attrbs. If the optional keyword rf is passed as an argument to the command, then
the output of the command (prior to the application of the attributes) is formatted using
an algorithm associated with the attribute rule-format [8].

mk-ide (rf) def-thm ∣dest name[attrbs]∣ converts the definition def-thm into one or more
destruction rules, followed by the application of the functionality associated with the
optional keyword rf and the attributes attrbs to each destruction rule. Given the theorem
def-thm in the format described above, the command provides m destruction rules of the
form

A a1 . . . an Ô⇒ f i a1 . . . an

6

for each 1≤i≤m prior to the application of the functionality associated with the keyword
rf and the attributes attrbs.

mk-ide (rf) def-thm ∣elim name[attrbs]∣ converts the definition def-thm into an elimination
rule, followed by the application of the functionality associated with the optional keyword
rf and the attributes attrbs to each destruction rule. Given the theorem def-thm in the
format described above, the elimination rule has the format

A a1 . . . an Ô⇒ (f 1 a1 . . . an Ô⇒ . . . Ô⇒ f m a1 . . . an Ô⇒ P) Ô⇒ P

prior to the application of the functionality associated with the keyword rf and the at-
tributes attrbs.

It is possible to combine the keywords ∣intro, ∣dest and ∣elim in a single invocation of the
command.

7

3 Examples

In this section, some of the capabilities of the framework IDE are demonstrated by example.
The example is based on the definition of the constant monoid from the standard library of
Isabelle/HOL [1] and given by

monoid f z ≡ semigroup f ∧ (∀a. f z a = a) ∧ (∀a. f a z = a)

mk-ide rf monoid-def [unfolded monoid-axioms-def]
∣intro monoidI ∣
∣dest monoidD∣
∣elim monoidE ∣

The invocation of the command mk-ide provides the theorem monoidI given by

[[semigroup f ; ⋀a. f z a = a; ⋀a. f a z = a]] Ô⇒ monoid f z,

the fact monoidD given by

monoid f z Ô⇒ semigroup f
monoid f z Ô⇒ f z a = a
monoid f z Ô⇒ f a z = a

and the theorem monoidE given by

[[monoid f z; [[semigroup f ; ⋀a. f z a = a; ⋀a. f a z = a]] Ô⇒ W]] Ô⇒ W.

8

References

[1] Isabelle/HOL Standard Library, 2020. URL https://isabelle.in.tum.de/website-Isabelle2020/
dist/library/HOL/HOL/index.html.

[2] O. Kunčar and A. Popescu. Comprehending Isabelle/HOL’s Consistency. In H. Yang, editor,
Programming Languages and Systems, volume 10201, pages 724–749. Springer, Heidelberg,
2017. ISBN 978-3-662-54433-4.

[3] L. C. Paulson. Natural Deduction as Higher-Order Resolution. The Journal of Logic Pro-
gramming, 3(3):237–258, 1986.

[4] C. Urban. The Isabelle Cookbook: A Gentle Tutorial for Programming Isabelle/ML. 2019.

[5] M. Wenzel. Isar — A Generic Interpretative Approach to Readable Formal Proof Documents.
In Y. Bertot, G. Dowek, L. Théry, A. Hirschowitz, and C. Paulin-Mohring, editors, Theorem
Proving in Higher Order Logics, volume 1690, pages 167–183. Springer, Heidelberg, 1999.
ISBN 978-3-540-66463-5.

[6] M. Wenzel. Isabelle/Isar — a Generic Framework for Human-Readable Proof Documents.
Studies in Logic, Grammar and Rhetoric, 10(23):277–297, 2007.

[7] M. Wenzel. The Isabelle/Isar Implementation. 2019.

[8] M. Wenzel. The Isabelle/Isar Reference Manual. 2019.

9

https://isabelle.in.tum.de/website-Isabelle2020/dist/library/HOL/HOL/index.html
https://isabelle.in.tum.de/website-Isabelle2020/dist/library/HOL/HOL/index.html

	Introduction
	Background
	Related and previous work

	Syntax
	Examples
	References

