Interpolation Polynomials (in HOL-Algebra)

Emin Karayel

March 17, 2025

Abstract

A well known result from algebra is that, on any field, there is
exactly one polynomial of degree less than n interpolating n points [1,
§7].

This entry contains a formalization of the above result, as well as
the following generalization in the case of finite fields F: There are
|F|™~™ polynomials of degree less than m > n interpolating the same
n points, where |F| denotes the size of the domain of the field. To
establish the result the entry also includes a formalization of Lagrange
interpolation, which might be of independent interest.

The formalized results are defined on the algebraic structures from
HOL-Algebra, which are distinct from the type-class based structures
defined in HOL. Note that there is an existing formalization for polyno-
mial interpolation and, in particular, Lagrange interpolation by Thie-
mann and Yamada [2] on the type-class based structures in HOL.

Contents

1 Bounded Degree Polynomials 1
2 Lagrange Interpolation 5
3 Cardinalities of Interpolation Polynomials 13

1 Bounded Degree Polynomials

This section contains a definition for the set of polynomials with a degree
bound and establishes its cardinality.
theory Bounded-Degree-Polynomials
imports HOL— Algebra. Polynomial-Divisibility
begin

lemma (in ring) coeff-in-carrier: p € carrier (poly-ring R) = coeff p i € carrier
R

using poly-coeff-in-carrier carrier-is-subring by (simp add: univ-poly-carrier)

definition bounded-degree-polynomials
where bounded-degree-polynomials F n = {x. x € carrier (poly-ring F) N (degree
z<nVz=][)}

Note: The definition for bounded-degree-polynomials includes the zero poly-
nomial in bounded-degree-polynomials F' . The reason for this adjustment
is that, contrary to definition in HOL Algebra, most authors set the degree
of the zero polynomial to —oo [1, §7.2.2]. That definition make some identi-
ties, such as deg(fg) = deg f+deg g for polynomials f and g unconditionally
true. In particular, it prevents an unnecessary corner case in the statement
of the results established in this entry.

lemma bounded-degree-polynomials-length:
bounded-degree-polynomials F n = {z. x € carrier (poly-ring F) A length z < n}
unfolding bounded-degree-polynomials-def using lel order-less-le-trans by fast-
force

lemma (in ring) fin-degree-bounded:
assumes finite (carrier R)
shows finite (bounded-degree-polynomials R n)
proof —
have bounded-degree-polynomials R n C {p. set p C carrier R A length p < n}
unfolding bounded-degree-polynomials-length
using assms polynomial-incl univ-poly-carrier by blast
thus ?thesis
using assms finite-lists-length-le finite-subset by fast
qed

lemma (in ring) non-empty-bounded-degree-polynomials:
bounded-degree-polynomials R k # {}

proof —
have 0,,y.ring R € bounded-degree-polynomials R k
by (simp add: bounded-degree-polynomials-def univ-poly-zero univ-poly-zero-closed)
thus ?thesis by auto

qed

lemma in-image-by-witness:
assumes A\z. 2 € A= gax € BAf(gx)=1
shows A C f ‘B
by (metis assms image-eql subsetl)

lemma card-mostly-constant-maps:

assumes y € B

shows card {f. range f C BA Vz. 2 >n — fz = y)} = card B " n (is card
A = ¢B)
proof —

define f where f = (Af k. if k < n then [k else y)

have a:?4 C (f * ({0..<n} —g B))
unfolding f-def
by (rule in-image-by-witness[where g=\f. restrict f {0..<n}|, auto)

have b:(f * ({0..<n} —g B)) C ?4
using f-def assms by auto

have c: inj-on f ({0..<n} =g B)
by (rule inj-onl, metis PiE-E atLeastLess Than-iff ext f-def)

have card ?A = card (f * ({0..<n} —g B))
using a b by auto

also have ... = card ({0..<n} —g B)
by (metis ¢ card-image)
also have ... = card B " n

by (simp add: card-PiE[OF finite-atLeastLessThan])
finally show ?thesis by simp
qed

definition (in ring) build-poly where
build-poly f n = normalize (rev (map f [0..<n]))

lemma (in ring) poly-degree-bound-from-coeff:
assumes z € carrier (poly-ring R)
assumes Ak. k > n = coeff t k=0
shows degree © < n V © = O0po1y ring R
proof (rule ccontr)
assume a:~(degree x < nV x =0
hence b:lead-coeff © # Op
by (metis assms(1) polynomial-def univ-poly-carrier univ-poly-zero)
hence coeff = (degree) # 0
by (metis a lead-coeff-simp univ-poly-zero)
moreover have degree x > n by (meson a not-le)
ultimately show False using assms(2) by blast
qed

poly-ring R)

lemma (in ring) poly-degree-bound-from-coeff-1:
assumes z € carrier (poly-ring R)
assumes Ak. k > n = coeff t k=0
shows z € bounded-degree-polynomials R n
using poly-degree-bound-from-coeff [OF assms]
by (simp add:bounded-degree-polynomials-def univ-poly-zero assms)

lemma (in ring) length-build-poly:
length (build-poly fn) < n
by (metis length-map build-poly-def normalize-length-le length-rev length-upt
less-imp-diff-less linorder-not-less)

lemma (in ring) build-poly-degree:
degree (build-poly fn) < n—1
using length-build-poly diff-le-mono by presburger

lemma (in ring) build-poly-poly:
assumes Ai. i < n = fi € carrier R
shows build-poly f n € carrier (poly-ring R)
unfolding build-poly-def univ-poly-carrier[symmetric]
by (rule normalize-gives-polynomial, simp add:image-subset-iff Ball-def assms)

lemma (in ring) build-poly-coeff:
coeff (build-poly fn) i = (if i < n then f i else 0)
proof —
show coeff (build-poly fn) i = (if i < n then f i else 0)
unfolding build-poly-def normalize-coeff [symmetric]
by (cases i < n, (simp add:coeff-nth rev-nth coeff-length)+)
qed

lemma (in ring) build-poly-bounded:
assumes A\k. k < n = fk € carrier R
shows build-poly f n € bounded-degree-polynomials R n
unfolding bounded-degree-polynomials-length
using build-poly-poly[OF assms| length-build-poly by auto

The following establishes the total number of polynomials with a degree less
than n. Unlike the results in the following sections, it is already possible to
establish this property for polynomials with coefficients in a ring.

lemma (in ring) bounded-degree-polynomials-card:
card (bounded-degree-polynomials R n) = card (carrier R) " n

proof —
have a:coeff ¢ bounded-degree-polynomials R n C {f. range f C (carrier R) A (Vk
>n. fk=0)}

by (rule image-subsetl, auto simp add:bounded-degree-polynomials-def coeff-length
coeff-in-carrier)

have b:{f. range f C (carrier R) A (Vk > n. fk=0)} C coeff ‘ bounded-degree-polynomials
Rn
apply (rule in-image-by-witnessjwhere g=Az. build-poly x n])
by (auto simp add:build-poly-coeff intro:build-poly-bounded)

have inj-on coeff (carrier (poly-ring R))
by (rule inj-onl, simp add: coeff-iff-polynomial-cond univ-poly-carrier)

hence coeff-inj: inj-on coeff (bounded-degree-polynomials R n)
using inj-on-subset bounded-degree-polynomials-def by blast

have card (bounded-degree-polynomials R n) = card (coeff ¢ bounded-degree-polynomials
R n)

using coeff-inj card-image|[symmetric] by blast

also have ... = card {f. range f C (carrier R) A Vk > n. fk = 0)}
by (rule arg-conglwhere f=card|, rule order-antisym|[OF a b))
also have ... = card (carrier R) ™n
by (rule card-mostly-constant-maps, simp)
finally show ?thesis by simp
qed

end

2 Lagrange Interpolation

This section introduces the function interpolate, which constructs the La-
grange interpolation polynomials for a given set of points, followed by a
theorem of its correctness.

theory Lagrange-Interpolation
imports HOL— Algebra. Polynomial-Divisibility
begin

A finite product in a domain is 0 if and only if at least one factor is. This
could be added to HOL— Algebra. FiniteProduct or HOL— Algebra. Ring.

lemma (in domain) finprod-zero-iff:
assumes finite A
assumes Aa. o € A = fa € carrier R
shows finprod RfA=0+— (3z € A. fz =0)
using assms
proof (induct A rule: finite-induct)
case empty
then show ?case by simp
next
case (insert y F)
moreover have f € F' — carrier R using insert by blast
ultimately show ?case by (simp add:integral-iff)
qed

lemma (in ring) poly-of-const-in-carrier:
assumes s € carrier R
shows poly-of-const s € carrier (poly-ring R)
using poly-of-const-def assms
by (simp add:univ-poly-carrier[symmetric] polynomial-def)

lemma (in ring) eval-poly-of-const:
assumes z € carrier R
shows eval (poly-of-const z) y = x
using assms by (simp add:poly-of-const-def)

lemma (in ring) eval-in-carrier-2:
assumes z € carrier (poly-ring R)

assumes y € carrier R
shows eval x y € carrier R
using eval-in-carrier univ-poly-carrier polynomial-incl assms by blast

lemma (in domain) poly-mult-degree-le-1:
assumes z € carrier (poly-ring R)
assumes y € carrier (poly-ring R)
shows degree (x ®poly-ring R y) < degree x + degree y
proof —
have degree (z ®popy-ring R ¥) = (if =[] V y =[] then 0 else degree z + degree
v)
unfolding univ-poly-mult
by (metis univ-poly-carrier assms(1,2) carrier-is-subring poly-mult-degree-eq)
thus ?thesis by (metis nat-le-linear zero-le)
qed

lemma (in domain) poly-mult-degree-le:
assumes z € carrier (poly-ring R)
assumes y € carrier (poly-ring R)
assumes degree ¥ < n
assumes degree y < m
shows degree (z @poly-ring R ¥) < n + m
using poly-mult-degree-le-1 assms add-mono by force

lemma (in domain) poly-add-degree-le:
assumes z € carrier (poly-ring R) degree x
assumes y € carrier (poly-ring R) degree y
shows degree (z @ poly-ring R Y) < 1
using assms poly-add-degree
by (metis dual-order.trans maz.bounded-iff univ-poly-add)

lemma (in domain) poly-sub-degree-le:
assumes z € carrier (poly-ring R) degree x
assumes y € carrier (poly-ring R) degree y
shows degree (z Spoly-ring R Y) < 1
proof —
interpret z:cring poly-ring R
using carrier-is-subring domain.univ-poly-is-cring domain-axioms by auto

show ?thesis
unfolding a-minus-def
using assms univ-poly-a-inv-degree carrier-is-subring poly-add-degree-le x.a-inv-closed
by simp
qged

lemma (in domain) poly-sum-degree-le:
assumes finite A
assumes A\z. x € A = degree (fz) < n
assumes A\z. x € A = fz € carrier (poly-ring R)

shows degree (finsum (poly-ring R) f A) < n
using assms
proof (induct A rule:finite-induct)
case empty
interpret z:cring poly-ring R
using carrier-is-subring domain.univ-poly-is-cring domain-axioms by auto
show ?case using empty by (simp add:univ-poly-zero)
next
case (insert z F)
interpret z:cring poly-ring R
using carrier-is-subring domain.univ-poly-is-cring domain-axioms by auto
have a: degree (f Dpoly-ring R Jinsum (poly-ring R) f F) < n
using insert poly-add-degree-le x.finsum-closed by auto
show ?case using insert a by auto
qed

definition (in ring) lagrange-basis-polynomial-aux where
lagrange-basis-polynomial-aux S =
(® poly-ring R § € 5. X Spoly-ring R (poly-of-const s))

lemma (in domain) lagrange-auz-eval:

assumes finite S

assumes S C carrier R

assumes z € carrier R

shows (eval (lagrange-basis-polynomial-auz S)) = (Qs € S. z © s)
proof —

interpret z:ring-hom-cring poly-ring R R (Ap. eval p x)

by (rule eval-cring-hom[OF carrier-is-subring assms(3)])

have N\a. a € S = X Spoly-ring R poly-of-const a € carrier (poly-ring R)
by (meson poly-of-const-in-carrier carrier-is-subring assms(2) cring.cring-simprules(4)
domain-def subsetD univ-poly-is-domain var-closed(1))

moreover have \s. s € S = eval (X Spoy.ring R POly-of-const s) x =z © s
using assms var-closed carrier-is-subring poly-of-const-in-carrier subsetD[OF
assms(2)]
by (simp add:eval-var eval-poly-of-const)

moreover have a-minus R x € S — carrier R
using assms by blast

ultimately show ?thesis
by (simp add:lagrange-basis-polynomial-aux-def x.hom-finprod cong:finprod-cong’)
qed

lemma (in domain) lagrange-auz-poly:
assumes finite S
assumes S C carrier R
shows lagrange-basis-polynomial-auz S € carrier (poly-ring R)

proof —
have a:subring (carrier R) R
using carrier-is-subring assms by blast

have b: N\a. a € § = X So1y.ring R Poly-of-const a € carrier (poly-ring R)
by (meson poly-of-const-in-carrier a assms(2) cring.cring-simprules(4) do-
main-def subsetD
univ-poly-is-domain var-closed(1))

interpret z:cring poly-ring R
using carrier-is-subring domain.univ-poly-is-cring domain-axioms by auto

show ?thesis
using lagrange-basis-polynomial-auz-def b x.finprod-closed|OF Pi-I] by simp
qed

lemma (in domain) poly-prod-degree-le:
assumes finite A
assumes A\z. © € A = fx € carrier (poly-ring R)
shows degree (finprod (poly-ring R) fA) < (. xz € A. degree (f x))
using assms
proof (induct A rule:finite-induct)
case empty
interpret z:cring poly-ring R
using carrier-is-subring domain.univ-poly-is-cring domain-axioms by auto
show ?case by (simp add:univ-poly-one)
next
case (insert « F)
interpret z:cring poly-ring R
using carrier-is-subring domain.univ-poly-is-cring domain-axioms by auto
have a:f € F — carrier (poly-ring R)
using insert by blast
have b:f © € carrier (poly-ring R)
using insert by blast

have degree (finprod (poly-ring R) f (insert © F)) = degree (f x ®poly-ring R
finprod (poly-ring R) f F)
using a b insert by simp
also have ... < degree (f z) + degree (finprod (poly-ring R) f F)
using poly-mult-degree-le x.finprod-closed|OF a] b by auto
also have ... < degree (fz) + (. y € F. degree (f y))
using insert(3) a add-mono by auto
also have ... = (3 y € (insert © F). degree (f y)) using insert by simp
finally show ?Zcase by simp
qed

lemma (in domain) lagrange-auz-degree:
assumes finite S
assumes S C carrier R
shows degree (lagrange-basis-polynomial-auz S) < card S

proof —
interpret z:cring poly-ring R
using carrier-is-subring domain.univ-poly-is-cring domain-axioms by auto

have degree X < 1 by (simp add:var-def)
moreover have A\y. y€ S = degree (poly-of-const y) < 1 by (simp add:poly-of-const-def)
ultimately have a: Ay. y€¢ S = degree (X Opoly-ring R Poly-of-const y) < 1
by (meson assms(2) in-mono poly-of-const-in-carrier poly-sub-degree-le var-closed| OF
carrier-is-subring))

have b:A\y. y € S = (X Spoly-ring R Poly-of-const y) € carrier (poly-ring R)
by (meson subsetD x.minus-closed var-closed(1)[OF carrier-is-subring| poly-of-const-in-carrier
assms(2))

have degree (lagrange-basis-polynomial-auz S) < (D y € S. degree (X Opoly-ring R
poly-of-const y))
using lagrange-basis-polynomial-auz-def b poly-prod-degree-le]OF assms(1)] by
auto
also have ... < D"y e S. 1)
using sum-mono a by force

also have ... = card S by simp
finally show ?thesis by simp
qed

definition (in ring) lagrange-basis-polynomial where
lagrange-basis-polynomial S © = lagrange-basis-polynomial-auz S
®poly-ring R (Poly-of-const (invg (Q)s € S. z © 3)))

lemma (in field)
assumes finite S
assumes S C carrier R
assumes z € carrier R — §
shows
lagrange-one: eval (lagrange-basis-polynomial S z) x = 1 and
lagrange-degree: degree (lagrange-basis-polynomial S x) < card S and
lagrange-zero: N\s. s € S = eval (lagrange-basis-polynomial S z) s = 0 and
lagrange-poly: lagrange-basis-polynomial S x € carrier (poly-ring R)
proof —
interpret z:ring-hom-cring poly-ring R R (Ap. eval p z)
using assms carrier-is-subring eval-cring-hom by blast

define p where p = lagrange-basis-polynomial-aux S
have a:eval pz = (Qs € S. 2 6 s)

using assms by (simp add:p-def lagrange-auz-eval)

have b:p € carrier (poly-ring R) using assms
by (simp add:p-def lagrange-auz-poly)

have A\y. y € S = a-minus R z y € carrier R

using assms by blast

hence c:finprod R (a-minus R x) S € Units R
using finprod-closed|OF Pi-I| assms
by (auto simp add:field-Units finprod-zero-iff)

have eval (lagrange-basis-polynomial S z) = =
(Q®se S 20O s) @ eval (poly-of-const (inv finprod R (a-minus R z) S)) x
using poly-of-const-in-carrier Units-inv-closed ¢ p-def [symmetric]
by (simp add: lagrange-basis-polynomial-def z.hom-mult[OF b] a)
also have ... = 1
using poly-of-const-in-carrier Units-inv-closed ¢ eval-poly-of-const by simp
finally show eval (lagrange-basis-polynomial S) © = 1 by simp

have degree (lagrange-basis-polynomial S x) < degree p + degree (poly-of-const
(inv finprod R (a-minus R z) S))
unfolding lagrange-basis-polynomial-def p-def|symmetric]
using poly-mult-degree-le[OF b] poly-of-const-in-carrier Units-inv-closed ¢ by
auto
also have ... < card S + 0
using add-mono lagrange-auz-degree| OF assms(1) assms(2)] p-def poly-of-const-def
by auto
finally show degree (lagrange-basis-polynomial S z) < card S by simp

show As. s € S = eval (lagrange-basis-polynomial S) s = 0
proof —

fix s

assume d:s € S

interpret s:ring-hom-cring poly-ring R R (Ap. eval p s)
using eval-cring-hom carrier-is-subring assms d by blast

have eval p s = finprod R (a-minus R s) S

using subsetD[OF assms(2) d] assms

by (simp add:p-def lagrange-auz-eval)
also have ... =0

using subsetD[OF assms(2)] d assms by (simp add: finprod-zero-iff)
finally have eval p s = Op by simp

moreover have eval (poly-of-const (inv finprod R (a-minus R) S)) s € carrier
R
using s.hom-closed poly-of-const-in-carrier Units-inv-closed ¢ by blast

ultimately show eval (lagrange-basis-polynomial S z) s = 0
using poly-of-const-in-carrier Units-inv-closed ¢
by (simp add:lagrange-basis-polynomial-def Let-def p-def[symmetric] s.hom-mult[OF
b])
qged

10

interpret r:cring poly-ring R
using carrier-is-subring domain.univ-poly-is-cring domain-axioms by auto

show lagrange-basis-polynomial S x € carrier (poly-ring R)
using lagrange-basis-polynomial-def p-def[symmetric] poly-of-const-in-carrier
Units-inv-closed
a b c by simp
qed

definition (in ring) interpolate where

interpolate S f =

(D poly-ring RS € S- lagrange-basis-polynomial (S — {s}) s @poly-ring R (Poly-of-const
(f9))

Let f be a function and S be a finite subset of the domain of the field.
Then interpolate S f will return a polynomial with degree less than card S
interpolating f on S.

theorem (in field)
assumes finite S
assumes S C carrier R
assumes f ‘S C carrier R
shows
interpolate-poly: interpolate S f € carrier (poly-ring R) and
interpolate-degree: degree (interpolate S f) < card S — 1 and
interpolate-eval: N\s. s € S = eval (interpolate S f) s = fs
proof —
interpret r:cring poly-ring R
using carrier-is-subring domain.univ-poly-is-cring domain-axioms by auto

have a:A\z. © € S = lagrange-basis-polynomial (S — {z}) x € carrier (poly-ring
R)

by (meson lagrange-poly assms Diff-iff finite-Diff in-mono insertll subset-insertI2
subset-insert-iff)

have b:A\z. x € S = fx € carrier R using assms by blast

have c:\z. x € S = degree (lagrange-basis-polynomial (S — {z}) z) < card S
— 1
by (metis (full-types) lagrange-degree DiffI Diff-insert-absorb assms(1) assms(2)
card-Diff-singleton finite-insert insert-subset mk-disjoint-insert)

have d: A\z. 1 € § =
degree (lagrange-basis-polynomial (S — {z}) z ®poly-ring R Poly-of-const (f z))
<(card S — 1)+ 0
using poly-of-const-in-carrier| OF b] poly-mult-degree-le[OF a] ¢ poly-of-const-def
by fastforce

show interpolate S f € carrier (poly-ring R)
using interpolate-def poly-of-const-in-carrier a b by simp

11

show degree (interpolate S f) < card S — 1
using poly-sum-degree-le[OF assms(1) d] poly-of-const-in-carrier|OF b] inter-
polate-def a by simp

have e:subring (carrier R) R
using carrier-is-subring assms by blast

show As. s € S = eval (interpolate S f) s = fs
proof —

fix s

assume f:s € S

interpret s:ring-hom-cring poly-ring R R (Ap. eval p s)

using eval-cring-hom[OF e] assms f by blast
have g:\i. i € § =
eval (lagrange-basis-polynomial (S — {i}) @ @popy-ring g Poly-of-const (f i))

(if s = i then [s else 0)
proof —
fix ¢
assume 4-in-S: ¢ € S
have eval (lagrange-basis-polynomial (S — {i}) @ @popy-ring R Poly-of-const (f
i) s =
eval (lagrange-basis-polynomial (S — {i}) i) s ® fi
using b i-in-S poly-of-const-in-carrier
by (simp add: s.hom-mult|OF a] eval-poly-of-const)
also have ... = (if s = i then [s else 0)
using b i-in-S poly-of-const-in-carrier assms f
apply (cases s=i, simp, subst lagrange-one, auto)
by (subst lagrange-zero, auto)
finally show
eval (lagrange-basis-polynomial (S — {i}) i ®popy.ring R POly-of-const (f 7))
S =
(if s = i then f s else 0) by simp
qed

have eval (interpolate S f) s =
(D z€S. eval (lagrange-basis-polynomial (S — {z}) T @ poly-ring R POly-of-const
(F2)))
using poly-of-const-in-carrier[OF b] a e
by (simp add: interpolate-def s.hom-finsum|[OF Pi-I] comp-def)

also have ... = (@ z€S. if s = z then f s else 0)
using b g by (simp cong: finsum-cong)
also have ... = f s

using finsum-singleton|OF f assms(1)] f assms by auto
finally show eval (interpolate S f) s = f s by simp
qed
qed

12

end

3 Cardinalities of Interpolation Polynomials

This section establishes the cardinalities of the set of polynomials with a
degree bound interpolating a given set of points.

theory Interpolation-Polynomial-Cardinalities
imports Bounded-Degree-Polynomials Lagrange-Interpolation
begin

lemma (in ring) poly-add-coeff:
assumes z € carrier (poly-ring R)
assumes y € carrier (poly-ring R)
shows coeff (2 @pory-ring g Y) k = coeff z k & coeff y k
by (metis assms univ-poly-carrier polynomial-incl univ-poly-add poly-add-coeff)

lemma (in domain) poly-neg-coeff:

assumes z € carrier (poly-ring R)

shows coeff (Spopy-ring R ©) k = Scoeff x k
proof —

interpret z:cring poly-ring R

using assms cring-def carrier-is-subring domain.univ-poly-is-cring domain-azxioms
by auto

have @:0po1y-ring R = * Spoly-ring R ©
by (metis z.r-right-minus-eq assms(1))

have 0 = coeff (0,01y-ring R) k Y (simp add:univ-poly-zero)
also have ... = coeff v k & coeff (Spopy-ring g ©) k using a assms
by (simp add:a-minus-def poly-add-coeff)
finally have 0 = coeff z k & coeff (@poly-ring R z) k by simp
thus ?thesis
by (metis local.minus-minus z.a-inv-closed sum-zero-eg-neg coeff-in-carrier

assms)
qed

lemma (in domain) poly-substract-coeff:

assumes z € carrier (poly-ring R)

assumes y € carrier (poly-ring R)

shows coeff (z Spoly-ring R y) k = coeff x k © coeff y k
proof —

interpret z:cring poly-ring R

using assms cring-def carrier-is-subring domain.univ-poly-is-cring domain-axioms
by auto

show ?thesis

using assms by (simp add:a-minus-def poly-add-coeff poly-neg-coeff)

qed

13

A polynomial with more zeros than its degree is the zero polynomial.

lemma (in field) max-roots:
assumes p € carrier (poly-ring R)
assumes K C carrier R
assumes finite K
assumes degree p < card K
assumes A\z. 2 € K = evalpz =0
shows p = Opoly-m'ng R
proof (rule ccontr)
assume p # Opop_ring R
hence a:p # || by (simp add: univ-poly-zero)
have Az. count (mset-set K) © < count (roots p) «
proof —
fix z
show count (mset-set K) x < count (roots p)
proof (cases z € K)
case True
hence is-root p x
by (meson a assms(2,5) is-ring is-root-def subsetD)
hence z € set-mset (roots p)
using assms(1) roots-mem-iff-is-root field-def by force
hence 1 < count (roots p) x by simp
moreover have count (mset-set K) © = 1 using True assms(3) by simp
ultimately show ?thesis by presburger
next
case Fulse
hence count (mset-set K) x = 0 by simp
then show ?thesis by presburger
qed
qed
hence mset-set K C# roots p
by (simp add: subseteq-mset-def)
hence card K < size (roots p)
by (metis size-mset-mono size-mset-set)
moreover have size (roots p) < degree p
using a size-roots-le-degree assms by auto
ultimately show False using assms(4)
by (meson leD less-le-trans)
qed

definition (in ring) split-poly
where split-poly K p = (restrict (eval p) K, \k. coeff p (k+card K))

To establish the count of the number of polynomials of degree less than n
interpolating a function f on K where |K| < n, the function split-poly K
establishes a bijection between the polynomials of degree less than n and

the values of the polynomials on K in combination with the coefficients of

order |K| and greater.

14

For the injectivity: Note that the difference of two polynomials whose coef-
ficients of order |K| and larger agree must have a degree less than |K| and
because their values agree on k points, it must have |K| zeros and hence is
the zero polynomial.

For the surjectivty: Let p be a polynomial whose coefficients larger than
| K| are chosen, and all other coefficients be 0. Now it is possible to find a
polynomial ¢ interpolating f — p on K using Lagrange interpolation. Then
p + g will interpolate f on K and because the degree of ¢ is less than | K|
its coefficients of order |K| will be the same as those of p.

A tempting question is whether it would be easier to instead establish a
bijection between the polynomials of degree less than n and its values on
K U K’ where K' are arbitrarily chosen n — |K| points in the field. This
approach is indeed easier, however, it fails for the case where the size of the
field is less than n.

lemma (in field) split-poly-ing:

assumes finite K

assumes K C carrier R

shows inj-on (split-poly K) (carrier (poly-ring R))
proof

fix z

fix y

assume al:x € carrier (poly-ring R)

assume a2:y € carrier (poly-ring R)

assume a3:split-poly K © = split-poly K y

interpret z:cring poly-ring R
using carrier-is-subring domain.univ-poly-is-cring domain-axioms by auto

have z-y-carrier: z Spoly-ring R Y € carrier (poly-ring R) using al a2 by simp
have Ak. coeff x (k+card K) = coeff y (k+card K)
using a3 by (simp add:split-poly-def, meson)
hence \k. coeff (z ©popy-ring R ¥) (k+card K) = 0
using coeff-in-carrier al a2 by (simp add:poly-substract-coeff)
hence degree (z Spoly-ring R y) < card K V (z Spoly-ring R y) = 0p0ly-ring R
by (metis poly-degree-bound-from-coeff add.commute le-iff-add z-y-carrier)
moreover have \k. k € K = eval z k = eval y k
using a3 by (simp add:split-poly-def restrict-def, meson)
hence \k. k € K = evalz k © eval yk =0
by (metis eval-in-carrier univ-poly-carrier polynomial-incl al assms(2) in-mono
r-right-minus-eq)
hence \k. k € K = eval (z Spoly-ring R ¥) k=0
using al a2 subsetD[OF assms(2)] carrier-is-subring
by (simp add: ring-hom-cring.hom-sub|OF eval-cring-hom))
ultimately have z S, ring R ¥ = Opoly-ring R
using mazx-roots z-y-carrier assms by blast
then show z = y

15

using z.r-right-minus-eq[OF al a2] by simp
qed

lemma (in field) split-poly-image:
assumes finite K
assumes K C carrier R
shows split-poly K ¢ carrier (poly-ring R) 2
(K —g carrier R) x {f. range f C carrier R A (3n. Yk > n. fk=0g)}
proof (rule subsetl)
fix z
assume a:z € (K —g carrier R) x {f. range f C carrier R A (3 (n::nat). Vk >
n. fk=0)}
have al: fst v € (K —g carrier R)
using a by (simp add:mem-Times-iff)
obtain n where a2: snd z € {f. range f C carrier RN\ (Vk > n. fk = 0)}
using a mem-Times-iff by force
have a3: A\y. snd z y € carrier R using a2 by blast

define w where w = build-poly (Ai. if ¢ > card K then (snd z (i — card K))
else 0) (card K + n)

have w-carr: w € carrier (poly-ring R)
unfolding w-def by (rule build-poly-poly, simp add:a3)

have w-eval-range: N\z. x € carrier R = local.eval w x € carrier R
proof —
fix z
assume w-eval-range-1:x € carrier R
interpret x:ring-hom-cring poly-ring R R (Ap. eval p z)
using eval-cring-hom|[OF carrier-is-subring] assms w-eval-range-1 by blast
show eval w x € carrier R
by (rule z.hom-closed|OF w-carr])
qed

interpret r:cring poly-ring R
using carrier-is-subring domain.univ-poly-is-cring domain-axioms by auto

define y where y = interpolate K (Ak. fst x k © eval w k)
define r where r = y Bpoly-ring R W
have z-minus-w-in-carrier: Nz. 2 € K = fst © z © eval w z € carrier R
using al PiE-def Pi-def minus-closed subsetD][OF assms(2)] w-eval-range by
auto

have y-poly: y € carrier (poly-ring R) unfolding y-def
using z-minus-w-in-carrier interpolate-poly| OF assms(1) assms(2)] image-subset]

by force

have y-degree: degree y < card K — 1

16

unfolding y-def
using z-minus-w-in-carrier interpolate-degree] OF assms(1) assms(2)] image-subset]
by force

have y-len: length y < card K
proof (cases K={})

case True

then show ?thesis

by (simp add:y-def interpolate-def univ-poly-zero)

next

case Fulse

then show ?thesis

by (metis y-degree Suc-le-D assms(1) card-gt-0-iff diff-Suc-1 not-less-eq-eq
order.strict-iff-not)

qed

have r-poly: r € carrier (poly-ring R)
using r-def y-poly w-carr by simp

have coeff-r: A\k. coeff r (k + card K) = snd z k
proof —
fix k :: nat
have y-len’: length y < k + card K using y-len trans-le-add2 by blast
have coeff r (k + card K) = coeff y (k + card K) @ coeff w (k+card K)
by (simp add:r-def poly-add-coeff| OF y-poly w-carr])
also have ... = 0 & coeff w (k+card K)
using coeff-length[OF y-len’] by simp
also have ... = coeff w (k+card K)
using coeff-in-carrier|OF w-carr| by simp
also have ... = snd z k
using a2 by (simp add:w-def build-poly-coeff not-less)
finally show coeff r (k + card K) = snd z k by simp
qed

have eval-r: A\k. k € K = evalr k = fst z k
proof —
fix k
assume bk € K
interpret s:ring-hom-cring poly-ring R R (Ap. eval p k)
using eval-cring-hom|[OF carrier-is-subring] assms b by blast

have k-carr: k € carrier R using assms(2) b by blast
have fst-z-k-carr: N\k. k € K = fst ¢ k € carrier R
using al PiE-def Pi-def by blast
have eval r k = eval y k & eval w k
using y-poly w-carr by (simp add:r-def)
also have ... = fst x k © local.eval w k & local.eval w k
using assms b x-minus-w-in-carrier
by (simp add:y-def interpolate-eval|OF - - image-subsetI])

17

also have ... = fst x k ® (© local.eval w k & local.eval w k)
using fst-z-k-carr|OF b] w-eval-range] OF k-carr]
by (simp add:a-minus-def a-assoc)

also have ... = fst x k
using fst-z-k-carr|OF b] w-eval-range] OF k-carr]
by (simp add:a-comm r-neg)

finally show ewval r k = fst x k by simp

qed

have r € (carrier (poly-ring R))
by (metis r-poly)
moreover have Ay. (if y € K then eval v y else undefined) = fst x y
using al eval-r PiE-E by auto
hence split-poly K r = x
by (simp add:split-poly-def prod-eq-iff coeff-r restrict-def)
ultimately show z € split-poly K ‘ (carrier (poly-ring R))
by blast
qed

This is like card-vimage-inj but supports inj-on instead.

lemma card-vimage-inj-on:
assumes inj-on f B
assumes A C f ‘B
shows card (f —“ AN B) = card A
proof —
have A = (f —¢ A N B) using assms(2) by auto
thus ?thesis using assms card-image
by (metis inf-le2 inj-on-subset)
qed

lemma inv-subsetl:
assumes A\z. 2 € A = fr e B=z¢€ C
shows f —“BNACC
using assms by force

The following establishes the main result of this section: There are |F|"~%

polynomials of degree less than n interpolating k < n points.

lemma restrict-eq-imp:
assumes restrict f A = restrict g A
assumes z € A
shows fz =gz
by (metis restrict-def assms)

theorem (in field) interpolating-polynomials-card:

assumes finite K

assumes K C carrier R

assumes f ‘ K C carrier R

shows card {w € bounded-degree-polynomials R (card K + n). (Vk € K. eval w
k=fk)} = card (carrier R) ™n

18

(is card ?A = ?B)
proof —
define z where z = restrict f K
define M where M = {f. range f C carrier RA (Vk > n. fk =0)}

hence inj-on-bounded: inj-on (split-poly K) (carrier (poly-ring R))
using split-poly-inj|OF assms(1) assms(2)] by blast

have ?A C split-poly K —* ({z} x M)
unfolding split-poly-def z-def M-def bounded-degree-polynomials-length
by (rule subsetl, auto introl:coeff-in-carrier coeff-length)
moreover have ?A C carrier (poly-ring R)
unfolding bounded-degree-polynomials-length by blast
ultimately have a:?4 C split-poly K —* ({z} x M) N carrier (poly-ring R)
by blast

have Az k . (Ak. coeff x (k + card K)) € M = k > n + card K = coeff z k
=0
by (simp add:M-def, metis Nat.le-diff-conv2 Nat.le-imp-diff-is-add add-leD2)
hence split-poly K —* ({z} x M) N carrier (poly-ring R) C bounded-degree-polynomials
R (card K + n)
unfolding split-poly-def z-def using poly-degree-bound-from-coeff-1 inv-subsetl
by force
moreover have Aw k. w € split-poly K —* ({z} x M) N carrier (poly-ring R)
— ke K= evalwk=fk
unfolding split-poly-def z-def using restrict-eq-imp by fastforce
ultimately have b:split-poly K —* ({2} x M) N carrier (poly-ring R) C ?A
by blast

have z € K —g carrier R
unfolding z-def using assms(3) by auto

moreover have M C {f. range f C carrier R A (3n. (Vk > n. fk = 0))}
unfolding M-def by blast

ultimately have c¢:{z} x M C split-poly K ‘ carrier (poly-ring R)
using split-poly-image[OF assms(1) assms(2)] by fast

have card ?A = card (split-poly K —* ({z} x M) N carrier (poly-ring R))
using order-antisym|[OF a b] by simp

also have ... = card ({z} x M)
using card-vimage-inj-on|OF inj-on-bounded] ¢ by blast
also have ... = card (carrier R) ™n

by (simp add:card-cartesian-product M-def card-mostly-constant-maps)
finally show ?thesis by simp
qed

A corollary is the classic result [1, Theorem 7.15] that there is exactly one
polynomial of degree less than n interpolating n points:

corollary (in field) interpolating-polynomial-one:
assumes finite K

19

assumes K C carrier R

assumes f ‘ K C carrier R

shows card {w € bounded-degree-polynomials R (card K). (Vk € K. eval w k =
PR} =1

using interpolating-polynomials-card[OF assms(1) assms(2) assms(3), where
n=0]

by simp

In the case of fields with infinite carriers, it is possible to conclude that there
are infinitely many polynomials of degree less than n interpolating k < n
points.

corollary (in field) interpolating-polynomial-inf:
assumes infinite (carrier R)
assumes finite K K C carrier R f * K C carrier R
assumes n > 0
shows infinite {w € bounded-degree-polynomials R (card K + n). (Vk € K. eval
wk=fk)}
(is infinite ?A)
proof —
have {} C {w € bounded-degree-polynomials R (card K). (Vk € K. eval w k = f
)
using interpolating-polynomial-one[OF assms(2) assms(3) assms(4)] by fast-
force
also have ... C 24
unfolding bounded-degree-polynomials-def by auto
finally have a:?4 # {} by auto

have card ?A = card (carrier R) ™n
using interpolating-polynomials-card[OF assms(2) assms(3) assms(4), where
n=n] by simp
also have ... = 0
using assms(1) assms(5) by simp
finally have b:card YA = 0 by simp

show ?thesis using a b card-0-eq by blast
qed

The following is an additional independent result: The evaluation homomor-
phism is injective for degree one polynomials.

lemma (in field) eval-inj-if-degree-1:
assumes p € carrier (poly-ring R) degree p = 1
shows inj-on (eval p) (carrier R)
proof —
obtain u v where p-def: p = [u,v] using assms
by (cases p, cases (tl p), auto)

have u € carrier R — {0} using p-def assms by blast

moreover have v € carrier R using p-def assms by blast
ultimately show ?thesis by (simp add:p-def field-Units inj-on-def)

20

qed

end

References

[1] V. Shoup. A Computational Introduction to Number theory and Algebra.
Cambridge university press, 2009.

[2] R. Thiemann and A. Yamada. Polynomial interpolation. Archive
of Formal Proofs, Jan. 2016. https://isa-afp.org/entries/Polynomial
Interpolation.html, Formal proof development.

21

https://isa-afp.org/entries/Polynomial_Interpolation.html
https://isa-afp.org/entries/Polynomial_Interpolation.html

	Bounded Degree Polynomials
	Lagrange Interpolation
	Cardinalities of Interpolation Polynomials

