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Chapter 1

Prologue

Verifying more examples of probabilistic algorithms will inevitably
necessitate more formalization; in particular we already can see
that a theory of expectation will be required to prove the cor-
rectness of probabilistic quicksort. If we can continue our policy
of formalizing standard theorems of mathematics to aid verifica-
tions, then this will provide long-term benefits to many users of
the HOL theorem prover.

This quote from the Future Work section of Joe Hurd’s PhD thesis “Formal
Verification of Probabilistic Algorithms” ([6] p. 131) served as a starting
point for the following work. A theory of expectation is nothing but a theory
of integration in its probability theoretic underpinnings. And though the
proof of correctness for probabilistic quicksort might not need integration,
an average runtime analysis certainly will.
As indicated in the very beginning, integration is needed in some way to
talk about expectation in probability. The notion that is addressed here is
a kind of average value of a random variable with respect to a (probability)
measure. The concept of a measure lies at the heart of Lebesgue integration.
A measure is simply a function satisfying a few sanity properties that maps
sets to real numbers. Because the definition does not employ such concrete
entities as intervals, it generalizes easily to functions that do not have the
real numbers as their domain. In particular, the notion of measure is very
natural in the field of probability theory, where a probability measure —
nothing but a measure P with P (Ω) = 1 — gives the probability of an event
— a measurable subset of Ω.
This Ω might, for example, be the set of all infinite sequences of boolean
values, as in Hurd’s thesis[6]; our integral is then just a tool that extends
this work in the sense depicted at the very beginning of this introduction.
We begin by declaring some preliminary notions, including elementary mea-
sure theory and monotone convergence. This leads into measurable real-
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CHAPTER 1. PROLOGUE 3

valued functions, also known as random variables. A sufficient body of
functions is shown to belong to this class. The central chapter is about inte-
gration proper. We build the integral for increasingly complex functions and
prove essential properties, discovering the connection with measurability in
the end.



Chapter 2

Measurable Functions

In this chapter, the focus is on the kind of functions to be integrated. As we
will see later on, measurability is a good characterization for these functions.
Moreover, the language of measure theory as well as the notion of monotone
convergence is used frequently in the definition of the integral. So we begin
by formalizing these necessary tools.

2.1 Preliminaries

2.1.1 Sigma algebras
theory Sigma-Algebra imports Main begin

The theory command commences a formal document and enumerates the
theories it depends on. With the Main theory, a standard selection of useful
HOL theories excluding the real numbers is loaded. This theory includes
and builds upon a tiny theory of the same name by Markus Wenzel. This
theory as well as Measure in 2.1.3 is heavily influenced by Joe Hurd’s thesis
[6] and has been designed to keep the terminology as consistent as possible
with that work.
Sigma algebras are an elementary concept in measure theory. To measure
— that is to integrate — functions, we first have to measure sets. Un-
fortunately, when dealing with a large universe, it is often not possible to
consistently assign a measure to every subset. Therefore it is necessary to
define the set of measurable subsets of the universe. A sigma algebra is such
a set that has three very natural and desirable properties.
definition

sigma-algebra:: ′a set set ⇒ bool where
sigma-algebra A ←→
{} ∈ A ∧ (∀ a. a ∈ A −→ −a ∈ A) ∧
(∀ a. (∀ i::nat. a i ∈ A) −→ (

⋃
i. a i) ∈ A)
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CHAPTER 2. MEASURABLE FUNCTIONS 5

The definition command defines new constants, which are just named func-
tions in HOL. Mind that the third condition expresses the fact that the union
of countably many sets in A is again a set in A without explicitly defining
the notion of countability.
Sigma algebras can naturally be created as the closure of any set of sets with
regard to the properties just postulated. Markus Wenzel wrote the following
inductive definition of the sigma operator.
inductive-set

sigma :: ′a set set ⇒ ′a set set
for A :: ′a set set
where

basic: a ∈ A =⇒ a ∈ sigma A
| empty: {} ∈ sigma A
| complement: a ∈ sigma A =⇒ −a ∈ sigma A
| Union: (

∧
i::nat. a i ∈ sigma A) =⇒ (

⋃
i. a i) ∈ sigma A

He also proved the following basic facts. The easy proofs are omitted.
theorem sigma-UNIV : UNIV ∈ sigma A

theorem sigma-Inter :
(
∧

i::nat. a i ∈ sigma A) =⇒ (
⋂

i. a i) ∈ sigma A

It is trivial to show the connection between our first definitions. We use the
opportunity to introduce the proof syntax.
theorem assumes sa: sigma-algebra A

— Named premises are introduced like this.

shows sigma-sigma-algebra: sigma A = A
proof

The proof command alone invokes a single standard rule to simplify the goal. Here
the following two subgoals emerge.

show A ⊆ sigma A
— The show command starts the proof of a subgoal.

by (auto simp add: sigma.basic)

This is easy enough to be solved by an automatic step, indicated by the keyword
by. The method auto is stated in parentheses, with attributes to it following. In
this case, the first introduction rule for the sigma operator is given as an extra
simplification rule.

show sigma A ⊆ A
proof

Because this goal is not quite as trivial, another proof is invoked, delimiting a block
as in a programming language.

fix x
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— A new named variable is introduced.

assume x ∈ sigma A

An assumption is made that must be justified by the current proof context. In this
case the corresponding fact had been generated by a rule automatically invoked by
the inner proof command.

from this sa show x ∈ A

Named facts can explicitly be given to the proof methods using from. A special
name is this, which denotes current facts generated by the last command. Usually
from this sa — remember that sa is an assumption from above — is abbreviated
to with sa, but in this case the order of facts is relevant for the following method
and with would have put the current facts last.

by (induct rule: sigma.induct) (auto simp add: sigma-algebra-def )

Two methods may be carried out at by. The first one applies induction here via the
canonical rule generated by the inductive definition above, while the latter solves
the resulting subgoals by an automatic step involving simplification.

qed
qed

These two steps finish their respective proofs, checking that all subgoals
have been proven.

To end this theory we prove a special case of the sigma-Inter theorem above.
It seems trivial that the fact holds for two sets as well as for countably many.
We get a first taste of the cost of formal reasoning here, however. The idea
must be made precise by exhibiting a concrete sequence of sets.
primrec trivial-series:: ′a set ⇒ ′a set ⇒ (nat ⇒ ′a set)
where

trivial-series a b 0 = a
| trivial-series a b (Suc n) = b

Using primrec, primitive recursive functions over inductively defined data
types — the natural numbers in this case — may be constructed.
theorem assumes s: sigma-algebra A and a: a ∈ A and b: b ∈ A

shows sigma-algebra-inter : a ∩ b ∈ A
proof −

— This form of proof foregoes the application of a rule.

have a ∩ b = (
⋂

i::nat. trivial-series a b i)

Intermediate facts that do not solve any subgoals yet are established this way.

proof (rule set-eqI )

The proof command may also take one explicit method as an argument like the
single rule application in this instance.
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fix x

{
fix i
assume x ∈ a ∩ b
hence x ∈ trivial-series a b i by (cases i) auto

— This is just an abbreviation for "from this have".
}

Curly braces can be used to explicitly delimit blocks. In conjunction with fix,
universal quantification over the fixed variable i is achieved for the last statement
in the block, which is exported to the enclosing block.

hence x ∈ a ∩ b =⇒ ∀ i. x ∈ trivial-series a b i
by fast

also

The statement also introduces calculational reasoning. This basically amounts to
collecting facts. With also, the current fact is added to a special list of theorems
called the calculation and an automatically selected transitivity rule is additionally
applied from the second collected fact on.

{ assume
∧

i. x ∈ trivial-series a b i
hence x ∈ trivial-series a b 0 and x ∈ trivial-series a b 1

by this+
hence x ∈ a ∩ b

by simp
}
hence ∀ i. x ∈ trivial-series a b i =⇒ x ∈ a ∩ b

by blast

ultimately have x ∈ a ∩ b = (∀ i::nat. x ∈ trivial-series a b i) ..

The accumulated calculational facts including the current one are exposed to the
next statement by ultimately and the calculation list is then erased. The two dots
after the statement here indicate proof by a single automatically selected rule.

also have . . . = (x ∈ (
⋂

i::nat. trivial-series a b i))
by simp

finally show x ∈ a ∩ b = (x ∈ (
⋂

i::nat. trivial-series a b i)) .

The finally directive behaves like ultimately with the addition of a further tran-
sitivity rule application. A single dot stands for proof by assumption.

qed

moreover have (
⋂

i::nat. trivial-series a b i) ∈ A
proof −

{ fix i
from a b have trivial-series a b i ∈ A

by (cases i) auto
}
hence

∧
i. trivial-series a b i ∈ sigma A



CHAPTER 2. MEASURABLE FUNCTIONS 8

by (simp only: sigma.basic)
hence (

⋂
i::nat. trivial-series a b i) ∈ sigma A

by (simp only: sigma-Inter)
with s show ?thesis

by (simp only: sigma-sigma-algebra)
qed

ultimately show ?thesis by simp
qed

Of course, a like theorem holds for union instead of intersection. But as we
will not need it in what follows, the theory is finished with the following
easy properties instead. Note that the former is a kind of generalization of
the last result and could be used to shorten its proof. Unfortunately, this
one was needed — and therefore found — only late in the development.
theorem sigma-INTER:

assumes a:(
∧

i::nat. i ∈ S =⇒ a i ∈ sigma A)
shows (

⋂
i∈S . a i) ∈ sigma A

lemma assumes s: sigma-algebra a shows sigma-algebra-UNIV : UNIV ∈ a

end

2.1.2 Monotone Convergence
theory MonConv
imports Complex-Main
begin

A sensible requirement for an integral operator is that it be “well-behaved”
with respect to limit functions. To become just a little more precise, it is
expected that the limit operator may be interchanged with the integral op-
erator under conditions that are as weak as possible. To this end, the notion
of monotone convergence is introduced and later applied in the definition of
the integral.
In fact, we distinguish three types of monotone convergence here: There
are converging sequences of real numbers, real functions and sets. Mono-
tone convergence could even be defined more generally for any type in the
axiomatic type class1 ord of ordered types like this.
mon-conv u f ≡ (∀n. u n ≤ u (Suc n)) ∧ Sup (range u) = f
However, this employs the general concept of a least upper bound. For
the special types we have in mind, the more specific limit — respective
union — operators are available, combined with many theorems about their
properties. For the type of real- (or rather ordered-) valued functions, the
less-or-equal relation is defined pointwise.

1For the concept of axiomatic type classes, see [7, 9]
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(f ≤ g) = (∀ x. f x ≤ g x)

Now the foundations are laid for the definition of monotone convergence.
To express the similarity of the different types of convergence, a single over-
loaded operator is used.
consts

mon-conv:: (nat ⇒ ′a) ⇒ ′a::ord ⇒ bool (‹-↑-› [60 ,61 ] 60 )
overloading

mon-conv-real ≡ mon-conv :: - ⇒ real ⇒ bool
mon-conv-real-fun ≡ mon-conv :: - ⇒ ( ′a ⇒ real) ⇒ bool
mon-conv-set ≡ mon-conv :: - ⇒ ′a set ⇒ bool

begin

definition x↑(y::real) ≡ (∀n. x n ≤ x (Suc n)) ∧ x −−−−→ y
definition u↑(f :: ′a ⇒ real) ≡ (∀n. u n ≤ u (Suc n)) ∧ (∀w. (λn. u n w) −−−−→
f w)
definition A↑(B:: ′a set) ≡ (∀n. A n ≤ A (Suc n)) ∧ B = (

⋃
n. A n)

end

theorem realfun-mon-conv-iff : (u↑f ) = (∀w. (λn. u n w)↑((f w)::real))
by (auto simp add: mon-conv-real-def mon-conv-real-fun-def le-fun-def )

The long arrow signifies convergence of real sequences as defined in the
theory SEQ [5]. Monotone convergence for real functions is simply pointwise
monotone convergence.
Quite a few properties of these definitions will be necessary later, and they
are listed now, giving only few select proofs.
lemma assumes mon-conv: x↑(y::real)

shows mon-conv-mon: (x i) ≤ (x (m+i))

lemma limseq-shift-iff : (λm. x (m+i)) −−−−→ y = x −−−−→ y

theorem assumes mon-conv: x↑(y::real)
shows real-mon-conv-le: x i ≤ y

proof −
from mon-conv have (λm. x (m+i)) −−−−→ y

by (simp add: mon-conv-real-def limseq-shift-iff )
also from mon-conv have ∀m≥0 . x i ≤ x (m+i) by (simp add: mon-conv-mon)
ultimately show ?thesis by (rule LIMSEQ-le-const[OF - exI [where x=0 ]])

qed

theorem assumes mon-conv: x↑(y::( ′a ⇒ real))
shows realfun-mon-conv-le: x i ≤ y

proof −
{fix w

from mon-conv have (λi. x i w)↑(y w)
by (simp add: realfun-mon-conv-iff )
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hence x i w ≤ y w
by (rule real-mon-conv-le)

}
thus ?thesis by (simp add: le-fun-def )

qed

lemma assumes mon-conv: x↑(y::real)
and less: z < y
shows real-mon-conv-outgrow: ∃n. ∀m. n ≤ m −→ z < x m

proof −
from less have less ′: 0 < y−z

by simp
have ∃n.∀m. n ≤ m −→ |x m − y| < y − z
proof −

from mon-conv have aux:
∧

r . r > 0 =⇒ ∃n. ∀m. n ≤ m −→ |x m − y| < r
unfolding mon-conv-real-def lim-sequentially dist-real-def by auto
with less ′ show ∃n. ∀m. n ≤ m −→ |x m − y| < y − z by auto

qed
also
{ fix m

from mon-conv have x m ≤ y
by (rule real-mon-conv-le)

hence |x m − y| = y − x m
by arith

also assume |x m − y| < y − z
ultimately have z < x m

by arith
}
ultimately show ?thesis

by blast
qed

theorem real-mon-conv-times:
assumes xy: x↑(y::real) and nn: 0≤z
shows (λm. z∗x m)↑(z∗y)

theorem realfun-mon-conv-times:
assumes xy: x↑(y:: ′a⇒real) and nn: 0≤z
shows (λm w. z∗x m w)↑(λw. z∗y w)

theorem real-mon-conv-add:
assumes xy: x↑(y::real) and ab: a↑(b::real)
shows (λm. x m + a m)↑(y + b)

theorem realfun-mon-conv-add:
assumes xy: x↑(y:: ′a⇒real) and ab: a↑(b:: ′a ⇒ real)
shows (λm w. x m w + a m w)↑(λw. y w + b w)

theorem real-mon-conv-bound:
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assumes mon:
∧

n. c n ≤ c (Suc n)
and bound:

∧
n. c n ≤ (x::real)

shows ∃ l. c↑l ∧ l≤x
proof −

from incseq-convergent[of c x] mon bound
obtain l where c −−−−→ l ∀ i. c i ≤ l

by (auto simp: incseq-Suc-iff )
moreover — This is like also but lacks the transitivity step.
with bound have l ≤ x

by (intro LIMSEQ-le-const2 ) auto
ultimately show ?thesis

by (auto simp: mon-conv-real-def mon)
qed

theorem real-mon-conv-dom:
assumes xy: x↑(y::real) and mon:

∧
n. c n ≤ c (Suc n)

and dom: c ≤ x
shows ∃ l. c↑l ∧ l≤y

proof −
from dom have

∧
n. c n ≤ x n by (simp add: le-fun-def )

also from xy have
∧

n. x n ≤ y by (simp add: real-mon-conv-le)
also note mon
ultimately show ?thesis by (simp add: real-mon-conv-bound)

qed
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theorem realfun-mon-conv-bound:
assumes mon:

∧
n. c n ≤ c (Suc n)

and bound:
∧

n. c n ≤ (x:: ′a ⇒ real)
shows ∃ l. c↑l ∧ l≤x

This brings the theory to an end. Notice how the definition of the limit of a
real sequence is visible in the proof to real-mon-conv-outgrow, a lemma that
will be used for a monotonicity proof of the integral of simple functions later
on.

end

2.1.3 Measure spaces
theory Measure
imports Sigma-Algebra MonConv
begin

Now we are already set for the central concept of measure. The following
definitions are translated as faithfully as possible from those in Joe Hurd’s
thesis [6].
definition

measurable:: ′a set set ⇒ ′b set set ⇒ ( ′a ⇒ ′b) set where
measurable F G = {f . ∀ g∈G. f −‘ g ∈ F}

So a function is called F -G-measurable if and only if the inverse image of
any set in G is in F . F and G are usually the sets of measurable sets, the
first component of a measure space2.
definition

measurable-sets:: ( ′a set set ∗ ( ′a set ⇒ real)) ⇒ ′a set set where
measurable-sets = fst

definition
measure:: ( ′a set set ∗ ( ′a set ⇒ real)) ⇒ ( ′a set ⇒ real) where
measure = snd

The other component is the measure itself. It is a function that assigns a
nonnegative real number to every measurable set and has the property of
being countably additive for disjoint sets.
definition

positive:: ( ′a set set ∗ ( ′a set ⇒ real)) ⇒ bool where
positive M ←→ measure M {} = 0 ∧
(∀A. A∈ measurable-sets M −→ 0 ≤ measure M A)

2In standard mathematical notation, the universe is first in a measure space triple, but
in our definitions, following Joe Hurd, it is always the whole type universe and therefore
omitted.
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definition
countably-additive:: ( ′a set set ∗ ( ′a set => real)) => bool where
countably-additive M ←→ (∀ f ::(nat => ′a set). range f ⊆ measurable-sets M
∧ (∀m n. m 6= n −→ f m ∩ f n = {}) ∧ (

⋃
i. f i) ∈ measurable-sets M

−→ (λn. measure M (f n)) sums measure M (
⋃

i. f i))

This last property deserves some comments. The conclusion is usually —
also in the aforementioned source — phrased as
measure M (

⋃
i. f i) = (

∑
n. measure M (f n)).

In our formal setting this is unsatisfactory, because the sum operator3, like
any HOL function, is total, although a series obviously need not converge.
It is defined using the ε operator, and its behavior is unspecified in the
diverging case. Hence, the above assertion would give no information about
the convergence of the series.
Furthermore, the definition contains redundancy. Assuming that the count-
able union of sets is measurable is unnecessary when the measurable sets
form a sigma algebra, which is postulated in the final definition4.
definition

measure-space:: ( ′a set set ∗ ( ′a set ⇒ real)) ⇒ bool where
measure-space M ←→ sigma-algebra (measurable-sets M ) ∧
positive M ∧ countably-additive M

Note that our definition is restricted to finite measure spaces — that is,
measure M UNIV < ∞— since the measure must be a real number for any
measurable set. In probability, this is naturally the case.
Two important theorems close this section. Both appear in Hurd’s work as
well, but are shown anyway, owing to their central role in measure theory.
The first one is a mighty tool for proving measurability. It states that for a
function mapping one sigma algebra into another, it is sufficient to be mea-
surable regarding only a generator of the target sigma algebra. Formalizing
the interesting proof out of Bauer’s textbook [1] is relatively straightforward
using rule induction.
theorem assumes sig: sigma-algebra a and meas: f ∈ measurable a b shows

measurable-lift: f ∈ measurable a (sigma b)
proof −

define Q where Q = {q. f −‘ q ∈ a}
with meas have 1 : b ⊆ Q by (auto simp add: measurable-def )

{ fix x assume x∈sigma b
hence x∈Q
proof (induct rule: sigma.induct)

3Which is merely syntactic sugar for the suminf functional from the Series theory [5].
4Joe Hurd inherited this practice from a very influential probability textbook [10]
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case basic
from 1 show

∧
a. a ∈ b =⇒ a ∈ Q ..

next
case empty
from sig have {}∈a

by (simp only: sigma-algebra-def )
thus {} ∈ Q

by (simp add: Q-def )
next

case complement
fix r assume r ∈ Q
then obtain r1 where im: r1 = f −‘ r and a: r1 ∈ a

by (simp add: Q-def )
with sig have −r1 ∈ a

by (simp only: sigma-algebra-def )
with im Q-def show −r ∈ Q

by (simp add: vimage-Compl)
next

case Union
fix r assume

∧
i::nat. r i ∈ Q

then obtain r1 where im:
∧

i. r1 i = f −‘ r i and a:
∧

i. r1 i ∈ a
by (simp add: Q-def )

from a sig have
⋃
(r1 ‘ UNIV ) ∈ a

by (auto simp only: sigma-algebra-def )
with im Q-def show

⋃
(r ‘ UNIV ) ∈ Q

by (auto simp add: vimage-UN )
qed }

hence (sigma b) ⊆ Q ..
thus f ∈ measurable a (sigma b)

by (auto simp add: measurable-def Q-def )
qed

The case is different for the second theorem. It is only five lines in the book
(ibid.), but almost 200 in formal text. Precision still pays here, gaining a
detailed view of a technique that is often employed in measure theory —
making a sequence of sets disjoint. Moreover, the necessity for the above-
mentioned change in the definition of countably additive was detected only
in the formalization of this proof.
To enable application of the additivity of measures, the following construc-
tion yields disjoint sets. We skip the justification of the lemmata for brevity.
primrec mkdisjoint:: (nat ⇒ ′a set) ⇒ (nat ⇒ ′a set)
where

mkdisjoint A 0 = A 0
| mkdisjoint A (Suc n) = A (Suc n) − A n

lemma mkdisjoint-un:
assumes up:

∧
n. A n ⊆ A (Suc n)
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shows A n = (
⋃

i∈{..n}. mkdisjoint A i)

lemma mkdisjoint-disj:
assumes up:

∧
n. A n ⊆ A (Suc n) and ne: m 6= n

shows mkdisjoint A m ∩ mkdisjoint A n = {}

lemma mkdisjoint-mon-conv:
assumes mc: A↑B
shows (

⋃
i. mkdisjoint A i) = B

Joe Hurd calls the following the Monotone Convergence Theorem, though in
mathematical literature this name is often reserved for a similar fact about
integrals that we will prove in 3.2.2, which depends on this one. The claim
made here is that the measures of monotonically convergent sets approach
the measure of their limit. A strengthened version would imply monotone
convergence of the measures, but is not needed in the development.
theorem measure-mon-conv:

assumes ms: measure-space M and
Ams:

∧
n. A n ∈ measurable-sets M and AB: A↑B

shows (λn. measure M (A n)) −−−−→ measure M B
proof −

from AB have up:
∧

n. A n ⊆ A (Suc n)
by (simp only: mon-conv-set-def )

{ fix i
have mkdisjoint A i ∈ measurable-sets M
proof (cases i)

case 0 with Ams show ?thesis by simp
next

case (Suc i)
have A (Suc i) − A i = A (Suc i) ∩ − A i by blast
with Suc ms Ams show ?thesis
by (auto simp add: measure-space-def sigma-algebra-def sigma-algebra-inter)

qed
}
hence i:

∧
i. mkdisjoint A i ∈ measurable-sets M .

with ms have un: (
⋃

i. mkdisjoint A i) ∈ measurable-sets M
by (simp add: measure-space-def sigma-algebra-def )

moreover
from i have range: range (mkdisjoint A) ⊆ measurable-sets M

by fast
moreover
from up have ∀ i j. i 6= j −→ mkdisjoint A i ∩ mkdisjoint A j = {}

by (simp add: mkdisjoint-disj)
moreover note ms
ultimately
have sums:
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(λi. measure M (mkdisjoint A i)) sums (measure M (
⋃

i. mkdisjoint A i))
by (simp add: measure-space-def countably-additive-def )

hence (
∑

i. measure M (mkdisjoint A i)) = (measure M (
⋃

i. mkdisjoint A i))
by (rule sums-unique[THEN sym])

also
from sums have summable (λi. measure M (mkdisjoint A i))

by (rule sums-summable)

hence (λn.
∑

i<n. measure M (mkdisjoint A i))
−−−−→ (

∑
i. measure M (mkdisjoint A i))

by (rule summable-LIMSEQ)

hence (λn.
∑

i<Suc n. measure M (mkdisjoint A i)) −−−−→ (
∑

i. measure M
(mkdisjoint A i))

by (rule LIMSEQ-Suc)

ultimately have (λn.
∑

i<Suc n. measure M (mkdisjoint A i))
−−−−→ (measure M (

⋃
i. mkdisjoint A i)) by simp

also
{ fix n

from up have A n = (
⋃

i∈{..n}. mkdisjoint A i)
by (rule mkdisjoint-un)

hence measure M (A n) = measure M (
⋃

i∈{..n}. mkdisjoint A i)
by simp

also have
(
⋃

i∈{..n}. mkdisjoint A i) = (
⋃

i. if i≤n then mkdisjoint A i else {})
proof −

have UNIV = {..n} ∪ {n<..} by auto
hence (

⋃
i. if i≤n then mkdisjoint A i else {}) =

(
⋃

i∈{..n}. if i≤n then mkdisjoint A i else {})
∪ (

⋃
i∈{n<..}. if i≤n then mkdisjoint A i else {})

by (auto split: if-splits)
moreover
{ have (

⋃
i∈{n<..}. if i≤n then mkdisjoint A i else {}) = {}

by force }
hence . . . = (

⋃
i∈{..n}. mkdisjoint A i)

by auto
ultimately show
(
⋃

i∈{..n}. mkdisjoint A i) = (
⋃

i. if i≤n then mkdisjoint A i else {}) by
simp

qed

ultimately have
measure M (A n) = measure M (

⋃
i. if i≤n then mkdisjoint A i else {})

by simp
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also
from i ms have

un: (
⋃

i. if i≤n then mkdisjoint A i else {}) ∈ measurable-sets M
by (simp add: measure-space-def sigma-algebra-def cong add: SUP-cong-simp)

moreover
from i ms have

range (λi. if i≤n then mkdisjoint A i else {}) ⊆ measurable-sets M
by (auto simp add: measure-space-def sigma-algebra-def )

moreover
from up have ∀ i j. i 6= j −→
(if i≤n then mkdisjoint A i else {}) ∩
(if j≤n then mkdisjoint A j else {}) = {}
by (simp add: mkdisjoint-disj)

moreover note ms
ultimately have

measure M (A n) = (
∑

i. measure M (if i ≤ n then mkdisjoint A i else {}))
by (simp add: measure-space-def countably-additive-def sums-unique cong add:

SUP-cong-simp)

also
from ms have
∀ i. (Suc n)≤i −→ measure M (if i ≤ n then mkdisjoint A i else {}) = 0
by (simp add: measure-space-def positive-def )

hence (λi. measure M (if i ≤ n then mkdisjoint A i else {})) sums
(
∑

i<Suc n. measure M (if i ≤ n then mkdisjoint A i else {}))
by (intro sums-finite) auto

hence (
∑

i. measure M (if i ≤ n then mkdisjoint A i else {})) =
(
∑

i<Suc n. measure M (if i ≤ n then mkdisjoint A i else {}))
by (rule sums-unique[THEN sym])

also
have . . . = (

∑
i<Suc n. measure M (mkdisjoint A i))

by simp
finally have

measure M (A n) = (
∑

i<Suc n. measure M (mkdisjoint A i)) .
}

ultimately have
(λn. measure M (A n)) −−−−→ (measure M (

⋃
i. mkdisjoint A i))

by simp

with AB show ?thesis
by (simp add: mkdisjoint-mon-conv)

qed
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2.2 Real-Valued random variables
theory RealRandVar
imports Measure HOL−Library.Countable
begin

While most of the above material was modeled after Hurd’s work (but still
proved independently), the original content basically starts here5. From
now on, we will specialize in functions that map into the real numbers and
are measurable with respect to the canonical sigma algebra on the reals,
the Borel sigma algebra. These functions will be called real-valued random
variables. The terminology is slightly imprecise, as random variables hint at
a probability space, which usually requires measure M UNIV = 1. Notwith-
standing, as we regard only finite measures (cf. 2.1.3), this condition can
easily be achieved by normalization. After all, the other standard name,
“measurable functions”, is even less precise.
A lot of the theory in this and the preceding section has also been formalized
within the Mizar project [3, 4]. The abstract of the second source hints that
it was also planned as a stepping stone for Lebesgue integration, though
further results in this line could not be found. The main difference lies in
the use of extended real numbers — the reals together with ±∞— in those
documents. It is established practice in measure theory to allow infinite
values, but “(. . .) we felt that the complications that this generated (. . .)
more than canceled out the gain in uniformity (. . .), and that a simpler
theory resulted from sticking to the standard real numbers.” [6, p. 32f].
Hurd also advocates going directly to the hyper-reals, should the need for
infinite measures arise. I agree, nevertheless sticking to his example for the
reasons mentioned in the prologue.
definition

Borelsets:: real set set (‹�›) where
� = sigma {S . ∃ u. S={..u}}

definition

rv:: ( ′a set set ∗ ( ′a set ⇒ real)) ⇒ ( ′a ⇒ real) set where
rv M = {f . measure-space M ∧ f ∈ measurable (measurable-sets M ) �}

As explained in the first paragraph, the preceding definitions6 determine
the rest of this section. There are many ways to define the Borel sets. For
example, taking into account only rationals for u would also have worked

5There are two main reasons why the above has not been imported using Sebastian
Skalberg’s import tool [8]. Firstly, there are inconveniences caused by different conventions
in HOL, meaning predicates instead of sets foremost, that make the consistent use of such
basic definitions impractical. What is more, the import tool simply was not available at
the time these theories were written.

6The notation {..u} signifies the interval from negative infinity to u included.
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out above, but we can take the reals to simplify things. The smallest sigma
algebra containing all the open (or closed) sets is another alternative; the
multitude of possibilities testifies to the relevance of the concept.
The latter path leads the way to the fact that any continuous function is
measurable. Generalization for �n brings another unified way to prove all
the measurability theorems in this theory plus, for instance, measurability
of the trigonometric and exponential functions. This approach is detailed
in another influential textbook by Billingsley [2]. It requires some concepts
of topologic spaces, which made the following elementary course, based on
Bauer’s excellent book [1], seem more feasible.
Two more definitions go next. The image measure, law, or distribution —
the last term being specific to probability — of a measure with respect to
a measurable function is calculated as the measure of the inverse image of
a set. Characteristic functions will be frequently needed in the rest of the
development.
definition

distribution::
( ′a set set ∗ ( ′a set ⇒ real)) ⇒ ( ′a ⇒ real) ⇒ (real set ⇒ real) (‹law›) where
f ∈ rv M =⇒ law M f ≡ (measure M ) ◦ (vimage f )

definition
characteristic-function:: ′a set ⇒ ( ′a ⇒ real) (‹χ -›) where
χ A x ≡ if x ∈ A then 1 else 0

lemma char-empty: χ {} = (λt. 0 )
proof (rule ext)

fix t
show χ {} t = 0 by (simp add: characteristic-function-def )

qed

Now that random variables are defined, we aim to show that a broad class
of functions belongs to them. For a constant function this is easy, as there
are only two possible preimages.
lemma assumes sigma: sigma-algebra S

shows const-measurable: (λx. (c::real)) ∈ measurable S X
proof (unfold measurable-def , rule, rule)

fix g
show (λx. c) −‘ g ∈ S
proof (cases c ∈ g)

case True
hence (λx:: ′a. c) −‘ g = UNIV

by blast
moreover from sigma have UNIV ∈ S

by (rule sigma-algebra-UNIV )
ultimately show ?thesis by simp

next
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case False
hence (λx:: ′a. c) −‘ g = {}

by blast
moreover from sigma have {} ∈ S

by (simp only: sigma-algebra-def )
ultimately show ?thesis by simp

qed
qed

theorem assumes ms: measure-space M
shows const-rv: (λx. c) ∈ rv M using ms
by (auto simp only: measure-space-def const-measurable rv-def )

Characteristic functions produce four cases already, so the details are glossed
over.
lemma assumes a: a ∈ S and sigma: sigma-algebra S shows
char-measurable : χ a ∈ measurable S x

theorem assumes ms: measure-space M and A: A ∈ measurable-sets M
shows char-rv: χ A ∈ rv M using ms A
by (auto simp only: measure-space-def char-measurable rv-def )

For more intricate functions, the following application of the measurability
lifting theorem from 2.1.3 gives a useful characterization.
theorem assumes ms: measure-space M shows

rv-le-iff : (f ∈ rv M ) = (∀ a. {w. f w ≤ a} ∈ measurable-sets M )
proof −

have f ∈ rv M =⇒ ∀ a. {w. f w ≤ a} ∈ measurable-sets M
proof

{ fix a
assume f ∈ measurable (measurable-sets M ) �
hence ∀ b∈�. f −‘ b ∈ measurable-sets M

by (unfold measurable-def ) blast
also have {..a} ∈ �

by (simp only: Borelsets-def ) (rule sigma.basic, blast)
ultimately have {w. f w ≤ a} ∈ measurable-sets M

by (auto simp add: vimage-def )
}
thus

∧
a. f ∈ rv M =⇒ {w. f w ≤ a} ∈ measurable-sets M

by (simp add: rv-def )
qed

also have ∀ a. {w. f w ≤ a} ∈ measurable-sets M =⇒ f ∈ rv M
proof −

assume ∀ a. {w. f w ≤ a} ∈ measurable-sets M
hence f ∈ measurable (measurable-sets M ){S . ∃ u. S={..u}}

by (auto simp add: measurable-def vimage-def )
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with ms have f ∈ measurable (measurable-sets M ) �
by (simp only: Borelsets-def measure-space-def measurable-lift)

with ms show ?thesis
by (auto simp add: rv-def )

qed
ultimately show ?thesis by rule

qed

The next four lemmata allow for a ring deduction that helps establish this
fact for all of the signs <, > and ≥ as well.
lemma assumes sigma: sigma-algebra A and le: ∀ a. {w. f w ≤ a} ∈ A

shows le-less: ∀ a. {w. f w < (a::real)} ∈ A
proof

fix a::real
from le sigma have (

⋃
n::nat. {w. f w ≤ a − inverse (real (Suc n))}) ∈ A

by (simp add: sigma-algebra-def )
also
have (

⋃
n::nat. {w. f w ≤ a − inverse (real (Suc n))}) = {w. f w < a}

proof −
{

fix w n
have 0 < inverse (real (Suc (n::nat)))

by simp
hence f w ≤ a − inverse (real (Suc n)) =⇒ f w < a

by arith
}
also
{ fix w

have (λn. inverse (real (Suc n))) −−−−→ 0
by (rule LIMSEQ-inverse-real-of-nat)

also assume f w < a
hence 0 < a − f w by simp

ultimately have
∃n0 . ∀n. n0 ≤ n −→ abs (inverse (real (Suc n))) < a − f w
by (auto simp add: lim-sequentially dist-real-def )

then obtain n where abs (inverse (real (Suc n))) < a − f w
by blast

hence f w ≤ a − inverse (real (Suc n))
by arith

hence ∃n. f w ≤ a − inverse (real (Suc n)) ..
}
ultimately show ?thesis by auto

qed
finally show {w. f w < a} ∈ A .

qed
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lemma assumes sigma: sigma-algebra A and less: ∀ a. {w. f w < a} ∈ A
shows less-ge: ∀ a. {w. (a::real) ≤ f w} ∈ A

proof
fix a::real
from less sigma have −{w. f w < a} ∈ A

by (simp add: sigma-algebra-def )
also
have −{w. f w < a} = {w. a ≤ f w}

by auto

finally show {w. a ≤ f w} ∈ A .
qed

lemma assumes sigma: sigma-algebra A and ge: ∀ a. {w. a ≤ f w} ∈ A
shows ge-gr : ∀ a. {w. (a::real) < f w} ∈ A

lemma assumes sigma: sigma-algebra A and gr : ∀ a. {w. a < f w} ∈ A
shows gr-le: ∀ a. {w. f w ≤ (a::real)} ∈ A

theorem assumes ms: measure-space M shows
rv-ge-iff : (f ∈ rv M ) = (∀ a. {w. a ≤ f w} ∈ measurable-sets M )

proof −
from ms have (f ∈ rv M ) = (∀ a. {w. f w ≤ a} ∈ measurable-sets M )

by (rule rv-le-iff )
also have . . . = (∀ a. {w. a ≤ f w} ∈ measurable-sets M ) (is ?lhs = ?rhs)
proof −

from ms have sigma: sigma-algebra (measurable-sets M )
by (simp only: measure-space-def )

also note less-ge le-less
ultimately have ?lhs =⇒ ?rhs by blast
also
from sigma gr-le ge-gr have ?rhs =⇒ ?lhs by blast
ultimately
show ?thesis ..

qed
finally show ?thesis .

qed

theorem assumes ms: measure-space M shows
rv-gr-iff : (f ∈ rv M ) = (∀ a. {w. a < f w} ∈ measurable-sets M )

theorem assumes ms: measure-space M shows
rv-less-iff : (f ∈ rv M ) = (∀ a. {w. f w < a} ∈ measurable-sets M )

As a first application we show that addition and multiplication with con-
stants preserve measurability. This is a precursor to the more general ad-
dition and multiplication theorems later on. You can see that quite a few
properties of the real numbers are employed.
lemma assumes g: g ∈ rv M

shows affine-rv: (λx. (a::real) + (g x) ∗ b) ∈ rv M
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proof (cases b=0 )
from g have ms: measure-space M

by (simp add: rv-def )
case True
hence (λx. a + (g x) ∗ b) = (λx. a)

by simp
also
from g have (λx. a) ∈ rv M

by (simp add: const-measurable rv-def measure-space-def )
ultimately show ?thesis by simp

next
from g have ms: measure-space M

by (simp add: rv-def )
case False
have calc:

∧
x c. (a + g x ∗ b ≤ c) = (g x ∗ b ≤ c − a)

by arith
have ∀ c. {w. a + g w ∗ b ≤ c} ∈ measurable-sets M
proof (cases b<0 )

case False
with ‹b 6= 0 › have 0<b by arith
hence

∧
x c. (g x ∗ b ≤ c − a) = (g x ≤ (c − a) / b)

by (rule pos-le-divide-eq [THEN sym])
with calc have

∧
c. {w. a + g w ∗ b ≤ c} = {w. g w ≤ (c − a) / b}

by simp

also from ms g have ∀ a. {w. g w ≤ a} ∈ measurable-sets M
by (simp add: rv-le-iff )

ultimately show ?thesis by simp

next
case True
hence

∧
x c. (g x ∗ b ≤ c−a) = ((c−a)/b ≤ g x)

by (rule neg-divide-le-eq [THEN sym])
with calc have

∧
c. {w. a + g w ∗ b ≤ c} = {w. (c−a)/b ≤ g w}

by simp

also from ms g have ∀ a. {w. a ≤ g w } ∈ measurable-sets M
by (simp add: rv-ge-iff )

ultimately show ?thesis by simp
qed

with ms show ?thesis
by (simp only: rv-le-iff [THEN sym])

qed

For the general case of addition, we need one more set to be measurable,
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namely {w. f w ≤ g w}. This follows from a like statement for <. A dense
and countable subset of the reals is needed to establish it.
Of course, the rationals come to mind. They were not available in Isabelle/HOL7,
so I built a theory with the necessary properties on my own. [Meanwhile
Isabelle has proper rationals and SR’s development of the rationals has been
moved to and merged with Isabelle’s rationals.
lemma assumes f : f ∈ rv M and g: g ∈ rv M

shows rv-less-rv-measurable: {w. f w < g w} ∈ measurable-sets M
proof −

let ?I i = let s::real = of-rat(nat-to-rat-surj i) in {w. f w < s} ∩ {w. s < g w}
from g have ms: measure-space M by (simp add: rv-def )
have {w. f w < g w} = (

⋃
i. ?I i)

proof
{ fix w assume w ∈ {w. f w < g w}

hence f w < g w ..
hence ∃ s∈�. f w < s ∧ s < g w by (rule Rats-dense-in-real)
hence ∃ s∈�. w ∈ {w. f w < s} ∩ {w. s < g w} by simp
hence ∃ i. w ∈ ?I i

by(simp add:Let-def )(metis surj-of-rat-nat-to-rat-surj)
hence w ∈ (

⋃
i. ?I i) by simp

}
thus {w. f w < g w} ⊆ (

⋃
i. ?I i) ..

show (
⋃

i. ?I i) ⊆ {w. f w < g w} by (force simp add: Let-def )
qed
moreover have (

⋃
i. ?I i) ∈ measurable-sets M

proof −
from ms have sig: sigma-algebra (measurable-sets M )

by (simp only: measure-space-def )
{ fix s

note sig
also from ms f have {w. f w < s} ∈ measurable-sets M (is ?a∈?M )

by (simp add: rv-less-iff )
moreover from ms g have {w. s < g w} ∈ ?M (is ?b ∈ ?M )

by (simp add: rv-gr-iff )
ultimately have ?a ∩ ?b ∈ ?M by (rule sigma-algebra-inter)

}
hence ∀ i. ?I i ∈ measurable-sets M by (simp add: Let-def )
with sig show ?thesis by (auto simp only: sigma-algebra-def Let-def )

qed
ultimately show ?thesis by simp

qed

lemma assumes f : f ∈ rv M and g: g ∈ rv M
shows rv-le-rv-measurable: {w. f w ≤ g w} ∈ measurable-sets M (is ?a ∈ ?M )

7At least not as a subset of the reals, to the definition of which a type of positive
rational numbers contributed [5].



CHAPTER 2. MEASURABLE FUNCTIONS 25

proof −
from g have ms: measure-space M

by (simp add: rv-def )
from g f have {w. g w < f w} ∈ ?M

by (rule rv-less-rv-measurable)
also from ms have sigma-algebra ?M

by (simp only: measure-space-def )

ultimately have −{w. g w < f w} ∈ ?M
by (simp only: sigma-algebra-def )

also have −{w. g w < f w} = ?a
by auto

finally show ?thesis .
qed

lemma assumes f : f ∈ rv M and g: g ∈ rv M
shows f-eq-g-measurable: {w. f w = g w} ∈ measurable-sets M

lemma assumes f : f ∈ rv M and g: g ∈ rv M
shows f-noteq-g-measurable: {w. f w 6= g w} ∈ measurable-sets M

With these tools, a short proof for the addition theorem is possible.
theorem assumes f : f ∈ rv M and g: g ∈ rv M

shows rv-plus-rv: (λw. f w + g w) ∈ rv M
proof −

from g have ms: measure-space M by (simp add: rv-def )
{ fix a

have {w. a ≤ f w + g w} = {w. a + (g w)∗(−1 ) ≤ f w}
by auto

moreover from g have (λw. a + (g w)∗(−1 )) ∈ rv M
by (rule affine-rv)

with f have {w. a + (g w)∗(−1 ) ≤ f w} ∈ measurable-sets M
by (simp add: rv-le-rv-measurable)

ultimately have {w. a ≤ f w + g w} ∈ measurable-sets M by simp
}
with ms show ?thesis

by (simp add: rv-ge-iff )
thm rv-ge-iff

qed

To show preservation of measurability by multiplication, it is expressed by
addition and squaring. This requires a few technical lemmata including the
one stating measurability for squares, the proof of which is skipped.
lemma pow2-le-abs: (a2 ≤ b2) = (|a| ≤ |b::real|)
lemma assumes f : f ∈ rv M

shows rv-square: (λw. (f w)2) ∈ rv M
lemma realpow-two-binomial-iff : (f+g::real)2 = f 2 + 2∗(f ∗g) + g2
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lemma times-iff-sum-squares: f ∗g = (f+g)2/4 − (f−g)2/(4 ::real)
by (simp add: power2-eq-square field-simps)

theorem assumes f : f ∈ rv M and g: g ∈ rv M
shows rv-times-rv: (λw. f w ∗ g w) ∈ rv M

proof −
have (λw. f w ∗ g w) = (λw. (f w + g w)2/4 − (f w − g w)2/4 )

by (simp only: times-iff-sum-squares)
also have . . . = (λw. (f w + g w)2∗inverse 4 − (f w + − g w)2∗inverse 4 )

by simp
also from f g have . . . ∈ rv M
proof −

from f g have (λw. (f w + g w)2) ∈ rv M
by (simp add: rv-plus-rv rv-square)

hence (λw. 0+(f w + g w)2∗inverse 4 ) ∈ rv M
by (rule affine-rv)

also from g have (λw. 0 + (g w)∗−1 ) ∈ rv M
by (rule affine-rv)

with f have (λw. (f w − g w)2) ∈ rv M
by (simp add: rv-plus-rv rv-square diff-conv-add-uminus del: add-uminus-conv-diff )
hence (λw. 0+(f w − g w)2∗−inverse 4 ) ∈ rv M

by (rule affine-rv)
ultimately show ?thesis

by (simp add: rv-plus-rv diff-conv-add-uminus del: add-uminus-conv-diff )
qed

ultimately show ?thesis by simp
qed

The case of substraction is an easy consequence of rv-plus-rv and rv-times-rv.
theorem rv-minus-rv:

assumes f : f ∈ rv M and g: g ∈ rv M
shows (λt. f t − g t) ∈ rv M

Measurability for limit functions of monotone convergent series is also sur-
prisingly straightforward.
theorem assumes u:

∧
n. u n ∈ rv M and mon-conv: u↑f

shows mon-conv-rv: f ∈ rv M
proof −

from u have ms: measure-space M
by (simp add: rv-def )

{
fix a
{

fix w
from mon-conv have up: (λn. u n w)↑f w

by (simp only: realfun-mon-conv-iff )
{
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fix i
from up have u i w ≤ f w

by (rule real-mon-conv-le)
also assume f w ≤ a
finally have u i w ≤ a .

}

also
{ assume

∧
i. u i w ≤ a

also from up have (λn. u n w) −−−−→ f w
by (simp only: mon-conv-real-def )

ultimately have f w ≤ a
by (simp add: LIMSEQ-le-const2 )

}
ultimately have (f w ≤ a) = (∀ i. u i w ≤ a) by fast

}
hence {w. f w ≤ a} = (

⋂
i. {w. u i w ≤ a}) by fast

moreover
from ms u have

∧
i. {w. u i w ≤ a} ∈ sigma(measurable-sets M )

by (simp add: rv-le-iff sigma.intros)
hence (

⋂
i. {w. u i w ≤ a}) ∈ sigma(measurable-sets M )

by (rule sigma-Inter)
with ms have (

⋂
i. {w. u i w ≤ a}) ∈ measurable-sets M

by (simp only: measure-space-def sigma-sigma-algebra)
ultimately have {w. f w ≤ a} ∈ measurable-sets M by simp

}
with ms show ?thesis

by (simp add: rv-le-iff )
qed

Before we end this chapter to start the formalization of the integral proper,
there is one more concept missing: The positive and negative part of a func-
tion. Their definition is quite intuitive, and some useful properties are given
right away, including the fact that they are random variables, provided that
their argument functions are measurable.
definition

nonnegative:: ( ′a ⇒ ( ′b::{ord,zero})) ⇒ bool where
nonnegative f ←→ (∀ x. 0 ≤ f x)

definition
positive-part:: ( ′a ⇒ ( ′b::{ord,zero})) ⇒ ( ′a ⇒ ′b) (‹pp›) where
pp f x = (if 0≤f (x) then f x else 0 )

definition
negative-part:: ( ′a ⇒ ( ′b::{ord,zero,uminus,minus})) ⇒ ( ′a ⇒ ′b) (‹np›) where
np f x = (if 0≤f (x) then 0 else −f (x))

lemma f-plus-minus: ((f x)::real) = pp f x − np f x
by (simp add:positive-part-def negative-part-def )
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lemma f-plus-minus2 : (f :: ′a ⇒ real) = (λt. pp f t − np f t)
using f-plus-minus
by (rule ext)

lemma f-abs-plus-minus: (|f x|::real) = pp f x + np f x
by (auto simp add:positive-part-def negative-part-def )

lemma nn-pp-np: assumes nonnegative f
shows pp f = f and np f = (λt. 0 ) using assms
by (auto simp add: positive-part-def negative-part-def nonnegative-def ext)

lemma pos-pp-np-help:
∧

x. 0≤f x =⇒ pp f x = f x ∧ np f x = 0
by (simp add: positive-part-def negative-part-def )

lemma real-neg-pp-np-help:
∧

x. f x ≤ (0 ::real) =⇒ np f x = −f x ∧ pp f x = 0
lemma real-neg-pp-np: assumes f ≤ (λt. (0 ::real))
shows np f = (λt. −f t) and pp f = (λt. 0 ) using assms
by (auto simp add: real-neg-pp-np-help ext le-fun-def )

lemma assumes a: 0≤(a::real)
shows real-pp-np-pos-times:
pp (λt. a∗f t) = (λt. a∗pp f t) ∧ np (λt. a∗f t) = (λt. a∗np f t)

lemma assumes a: (a::real)≤0
shows real-pp-np-neg-times:
pp (λt. a∗f t) = (λt. −a∗np f t) ∧ np (λt. a∗f t) = (λt. −a∗pp f t)

lemma pp-np-rv:
assumes f : f ∈ rv M
shows pp f ∈ rv M and np f ∈ rv M

proof −
from f have ms: measure-space M by (simp add: rv-def )

{ fix a
from ms f have fm: {w. f w ≤ a} ∈ measurable-sets M

by (simp add: rv-le-iff )
have
{w. pp f w ≤ a} ∈ measurable-sets M ∧
{w. np f w ≤ a} ∈ measurable-sets M

proof (cases 0≤a)
case True
hence {w. pp f w ≤ a} = {w. f w ≤ a}

by (auto simp add: positive-part-def )
moreover note fm moreover
from True have {w. np f w ≤ a} = {w. −a ≤ f w}

by (auto simp add: negative-part-def )
moreover from ms f have . . . ∈ measurable-sets M

by (simp add: rv-ge-iff )
ultimately show ?thesis by simp
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next
case False
hence {w. pp f w ≤ a} = {}

by (auto simp add: positive-part-def )
also from False have {w. np f w ≤ a} = {}

by (auto simp add: negative-part-def )
moreover from ms have {} ∈ measurable-sets M

by (simp add: measure-space-def sigma-algebra-def )
ultimately show ?thesis by simp

qed
} with ms show pp f ∈ rv M and np f ∈ rv M

by (auto simp add: rv-le-iff )
qed

theorem pp-np-rv-iff : (f :: ′a ⇒ real) ∈ rv M = (pp f ∈ rv M ∧ np f ∈ rv M )

This completes the chapter about measurable functions. As we will see in
the next one, measurability is the prime condition on Lebesgue integrable
functions; and the theorems and lemmata established here suffice — at least
in principle — to show it holds for any function that is to be integrated
there.
end



Chapter 3

Integration

The chapter at hand assumes a central position in the present paper. The
Lebesgue integral is defined and its characteristics are shown in 3.2. To
illustrate the problems arising in doing so, we first look at implementation
alternatives that did not work out.

3.1 Two approaches that failed

Defining Lebesgue integration can be quite involved, judging by the process
in 3.2 that imitates Bauer’s way [1]. So it is quite tempting to try cutting
a corner. The following two alternative approaches back up my experience
that this almost never pays in formalization. The theory that seems most
complex at first sight is often the one that is closest to formal reasoning and
deliberately avoids “hand-waving”.

3.1.1 A closed expression

In contrast, Billingsley’s definition [2, p. 172] is strikingly short. For non-
negative measurable functions f :∫

fdµ = sup
∑

i

[
inf ω∈Ai

f(w)
]
µ(Ai).

The supremum here extends over all finite decompositions {Ai}
of Ω into F-sets.1

Like the definition, the proofs of the essential properties are also rather
short, about three pages in the textbook for almost all the theorems in
3.2; and a proof of uniqueness is obsolete for a closed expression like this.
Therefore, I found this approach quite tempting. It turns out, however,

1The F-sets are just the measurable sets of a measure space.

30
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that it is unfortunately not well suited for formalization, at least with the
background we use.
A complication shared by all possible styles of definition is the lack of infinite
values in our theory, combined with the lack of partial functions in HOL.
Like the sum operator in 2.1.3, the integral has to be defined indirectly. The
classical way to do this employs predicates, invoking ε to choose the value
that satisfies the condition:∫

f dM ≡ (ε i. is-integral M f i)
To sensibly apply this principle, the predicate has to be ε-free to supply
the information if the integral is defined or not. Now the above definition
contains up to three additional ε when formalized naively in HOL, namely
in the supremum, infimum and sum operators. The sum is over a finite set,
so it can be replaced by a total function. For nonnegative functions, the
infimum can also be shown to exist everywhere, but, like the supremum,
must itself be replaced by a predicate.
Also note that predicates require a proof of uniqueness, thus losing the
prime advantage of a closed formula anyway. In this case, uniqueness can
be reduced to uniqueness of the supremum/infimum. The problem is that
neither suprema nor infima come predefined in Isabelle/Isar as of yet. It is
an easy task to make up for this — and I did — but a much harder one to
establish all the properties needed for reasoning with the defined entities.
A lot of such reasoning is necessary to deduce from the above definition (or
a formal version of it, as just outlined) the basic behavior of integration,
which includes additivity, monotonicity and especially the integral of simple
functions. It turns out that the brevity of the proofs in the textbook stems
from a severely informal style that assumes ample background knowledge.
Formalizing all this knowledge started to become overwhelming when the
idea of a contrarian approach emerged.

3.1.2 A one-step inductive definition

This idea was sparked by the following note: “(. . . ) the integral is uniquely
determined by certain simple properties it is natural to require of it” [2,
p. 175]. Billingsley goes on discussing exactly those properties that are
so hard to derive from his definition. So why not simply define integration
using these properties? That is the gist of an inductive set definition, like the
one we have seen in 2.1.1. This time a functional operator is to be defined,
but it can be represented as a set of pairs, where the first component is the
function and the second its integral. To cut a long story short, here is the
definition.
inductive-set

integral-set:: ( ′a set set ∗ ( ′a set ⇒ real)) ⇒ (( ′a ⇒ real) ∗ real) set
for M :: ′a set set ∗ ( ′a set ⇒ real)
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where
char : [[f = χ A; A ∈ measurable-sets M ]] =⇒ (f ,measure M A) ∈ integral-set M
| add: [[f = (λw. g w + h w); (g,x) ∈ integral-set M ; (h,y) ∈ integral-set M ]]
=⇒ (f ,(x + y)) ∈ integral-set M
| times: [[f = (λw. a∗g w); (g,x) ∈ integral-set M ]] =⇒ (f ,a∗x) ∈ integral-set M
| mon-conv: [[u↑f ;

∧
n. (u n, x n) ∈ integral-set M ; x↑y]]

=⇒ (f ,y) ∈ integral-set M

The technique is also encountered in the Finite-Set theory from the Isabelle
library. It is used there to define the sum function, which calculates a sum
indexed over a finite set and is employed in 3.2. The definition here is much
more intricate though.
An obvious advantage of this approach is that almost all important proper-
ties are gained without effort. The introduction rule mon-conv corresponds
to what is known as the Monotone Convergence Theorem in scientific lit-
erature; negative functions are also provided for via the times rule. To be
precise, there is exactly one important theorem missing — uniqueness. That
is, every function appears in at most one pair.
From uniqueness together with the introduction rules, all the other state-
ments about integration, monotonicity for example, could be derived. On
the other hand, monotonicity implies uniqueness. Much to my regret, none
of these two could be proven. The proof would basically amount to a double
induction to show that an integral gained via one rule is the same when
derived by another. A lot of effort was spent trying to strengthen the induc-
tion hypothesis or reduce the goal to a simpler case. All of this was in vain
though, and it seems that the hypothesis would have to be strengthened as
far as to include the concept of integration in the first place, which in a way
defeats the advantages of the approach.

3.2 The three-step approach
theory Integral
imports RealRandVar
begin

Having learnt from my failures, we take the safe and clean way of Heinz
Bauer [1]. It proceeds as outlined in the introduction. In three steps, we fix
the integral for elementary (“step-”)functions, for limits of these, and finally
for differences between such limits.

3.2.1 Simple functions

A simple function is a finite sum of characteristic functions, each multiplied
with a nonnegative constant. These functions must be parametrized by
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measurable sets. Note that to check this condition, a tuple consisting of a
set of measurable sets and a measure is required as the integral operator’s
second argument, whereas the measure only is given in informal notation.
Usually the tuple will be a measure space, though it is not required so by
the definition at this point.
It is most natural to declare the value of the integral in this elementary case
by simply replacing the characteristic functions with the measures of their
respective sets. Uniqueness remains to be shown, for a function may have
infinitely many decompositions and these might give rise to more than one
integral value. This is why we construct a simple function integral set for
any function and measurable sets/measure pair by means of an inductive
set definition containing but one introduction rule.
inductive-set

sfis:: ( ′a ⇒ real) ⇒ ( ′a set set ∗ ( ′a set ⇒ real)) ⇒ real set
for f :: ′a ⇒ real and M :: ′a set set ∗ ( ′a set ⇒ real)
where
base: [[f = (λt.

∑
i∈(S ::nat set). x i ∗ χ (A i) t);

∀ i ∈ S . A i ∈ measurable-sets M ; nonnegative x; finite S ;
∀ i∈S . ∀ j∈S . i 6= j −→ A i ∩ A j = {}; (

⋃
i∈S . A i) = UNIV ]]

=⇒ (
∑

i∈S . x i ∗ measure M (A i)) ∈ sfis f M

As you can see we require two extra conditions, and they amount to the sets
being a partition of the universe. We say that a function is in normal form if
it is represented this way. Normal forms are only needed to show additivity
and monotonicity of simple function integral sets. These theorems can then
be used in turn to get rid of the normality condition.
More precisely, normal forms play a central role in the sfis-present lemma.
For two simple functions with different underlying partitions it states the
existence of a common finer-grained partition that can be used to represent
the functions uniformly. The proof is remarkably lengthy, another case
where informal reasoning is more intricate than it seems. The reason it is
included anyway, with the exception of the two following lemmata, is that
it gives insight into the arising complication and its formal solution.
The problem is in the use of informal sum notation, which easily permits
for a change in index sets, allowing for a pair of indices. This change has to
be rectified in formal reasoning. Luckily, the task is eased by an injective
function from N2 into N, which was developed for the rationals mentioned
in 2.2. It might have been still easier if index sets were polymorphic in our
integral definition, permitting pairs to be formed when necessary, but the
logic doesn’t allow for this.
lemma assumes un: (

⋃
i∈R. B i) = UNIV and fin: finite R

and dis: ∀ j1∈R. ∀ j2∈R. j1 6= j2 −→ (B j1 ) ∩ (B j2 ) = {}
shows char-split: χ A t = (

∑
j∈R. χ (A ∩ B j) t)lemma assumes mea-

sure-space M and a ∈ sfis f M and b ∈ sfis g M
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shows sfis-present: ∃ z1 z2 C K .
f = (λt.

∑
i∈(K ::nat set). z1 i ∗ χ (C i) t) ∧ g = (λt.

∑
i∈K . z2 i ∗ χ (C i) t)

∧ a = (
∑

i∈K . z1 i ∗ measure M (C i)) ∧ b = (
∑

i∈K . z2 i ∗ measure M (C
i))
∧ finite K ∧ (∀ i∈K . ∀ j∈K . i 6= j −→ C i ∩ C j = {})
∧ (∀ i ∈ K . C i ∈ measurable-sets M ) ∧ (

⋃
i∈K . C i) = UNIV

∧ nonnegative z1 ∧ nonnegative z2
using a

proof cases
case (base x A R)
note base-x = this
show ?thesis using b
proof cases

case (base y B S)

with assms base-x have ms: measure-space M
and f : f = (λt.

∑
i∈(R::nat set). x i ∗ χ (A i) t)

and a: a = (
∑

i∈R. x i ∗ measure M (A i))
and Ams: ∀ i ∈ R. A i ∈ measurable-sets M
and R: finite R and Adis: ∀ i∈R. ∀ j∈R. i 6= j −→ A i ∩ A j = {}
and Aun: (

⋃
i∈R. A i) = UNIV

and g: g = (λt.
∑

i∈(S ::nat set). y i ∗ χ (B i) t)
and b: b = (

∑
j∈S . y j ∗ measure M (B j))

and Bms: ∀ i ∈ S . B i ∈ measurable-sets M
and S : finite S
and Bdis: ∀ i∈S . ∀ j∈S . i 6= j −→ B i ∩ B j = {}
and Bun: (

⋃
i∈S . B i) = UNIV

and x: nonnegative x and y: nonnegative y
by simp-all

define C where C = (λ(i,j). A i ∩ B j) ◦ prod-decode
define z1 where z1 k = x (fst (prod-decode k)) for k
define z2 where z2 k = y (snd (prod-decode k)) for k
define K where K = {k. ∃ i∈R. ∃ j∈S . k = prod-encode (i,j)}

define G where G i = (λj. prod-encode (i,j)) ‘ S for i
define H where H j = (λi. prod-encode (i,j)) ‘ R for j

{ fix t
{ fix i

from Bun S Bdis have χ (A i) t = (
∑

j∈S . χ (A i ∩ B j) t)
by (rule char-split)

hence x i ∗ χ (A i) t = (
∑

j∈S . x i ∗ χ (A i ∩ B j) t)
by (simp add: sum-distrib-left)

also
{ fix j

have S=S and
x i ∗ χ (A i ∩ B j) t = (let k=prod-encode(i,j) in z1 k ∗ χ (C k) t)
by (auto simp add: C-def z1-def Let-def )

}
hence . . . = (

∑
j∈S . let k=prod-encode (i,j) in z1 k ∗ χ (C k) t)
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by (rule sum.cong)

also from S have . . . = (
∑

k∈(G i). z1 k ∗ χ (C k) t)
by (simp add: G-def Let-def o-def

sum.reindex[OF subset-inj-on[OF prod-encode-snd-inj]])

finally have eq: x i ∗ χ (A i) t = (
∑

k∈ G i. z1 k ∗ χ (C k) t) .

from S have G: finite (G i)
by (simp add: G-def )

{ fix k assume k ∈ G i
then obtain j where kij: k=prod-encode (i,j)

by (auto simp only: G-def )
{

fix i2 assume i2 : i2 6= i

{ fix k2 assume k2 ∈ G i2
then obtain j2 where kij2 : k2=prod-encode (i2 ,j2 )

by (auto simp only: G-def )

from i2 have (i2 ,j2 ) 6= (i,j) and (i2 ,j2 ) ∈ UNIV
and (i,j) ∈ UNIV by auto

with inj-prod-encode have prod-encode (i2 ,j2 ) 6= prod-encode (i,j)
by (rule inj-on-contraD)

with kij kij2 have k2 6= k
by fast

}
hence k /∈ G i2

by fast
}

}
hence

∧
j. i 6= j =⇒ G i ∩ G j = {}

by fast
note eq G this

}
hence eq:

∧
i. x i ∗ χ (A i) t = (

∑
k∈G i. z1 k ∗ χ (C k) t)

and G:
∧

i. finite (G i)
and Gdis:

∧
i j. i 6= j =⇒ G i ∩ G j = {} .

{ fix i
assume i∈R
with ms Bun S Bdis Bms Ams have

measure M (A i) = (
∑

j∈S . measure M (A i ∩ B j))
by (simp add: measure-split)

hence x i ∗ measure M (A i) = (
∑

j∈S . x i ∗ measure M (A i ∩ B j))
by (simp add: sum-distrib-left)
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also
{ fix j

have S=S and x i ∗ measure M (A i ∩ B j) =
(let k=prod-encode(i,j) in z1 k ∗ measure M (C k))
by (auto simp add: C-def z1-def Let-def )

}

hence . . . = (
∑

j∈S . let k=prod-encode (i,j) in z1 k ∗ measure M (C k))
by (rule sum.cong)

also from S have . . . = (
∑

k∈(G i). z1 k ∗ measure M (C k))
by (simp add: G-def Let-def o-def

sum.reindex[OF subset-inj-on[OF prod-encode-snd-inj]])

finally have
x i ∗ measure M (A i) = (

∑
k∈(G i). z1 k ∗ measure M (C k)) .

}
with refl[of R] have
(
∑

i∈R. x i ∗ measure M (A i))
= (

∑
i∈R. (

∑
k∈(G i). z1 k ∗ measure M (C k)))

by (rule sum.cong)
with eq f a have f t = (

∑
i∈R. (

∑
k∈G i. z1 k ∗ χ (C k) t))

and a = (
∑

i∈R. (
∑

k∈(G i). z1 k ∗ measure M (C k)))
by auto

also have KG: K = (
⋃

i∈R. G i)
by (auto simp add: K-def G-def )

moreover note G Gdis R
ultimately have f : f t = (

∑
k∈K . z1 k ∗ χ (C k) t)

and a: a = (
∑

k∈K . z1 k ∗ measure M (C k))
by (auto simp add: sum.UNION-disjoint)

{ fix j
from Aun R Adis have χ (B j) t = (

∑
i∈R. χ (B j ∩ A i) t)

by (rule char-split)
hence y j ∗ χ (B j) t = (

∑
i∈R. y j ∗ χ (A i ∩ B j) t)

by (simp add: sum-distrib-left Int-commute)
also
{ fix i

have R=R and
y j ∗ χ (A i ∩ B j) t = (let k=prod-encode(i,j) in z2 k ∗ χ (C k) t)
by (auto simp add: C-def z2-def Let-def )

}
hence . . . = (

∑
i∈R. let k=prod-encode (i,j) in z2 k ∗ χ (C k) t)

by (rule sum.cong)
also from R have . . . = (

∑
k∈(H j). z2 k ∗ χ (C k) t)

by (simp add: H-def Let-def o-def
sum.reindex[OF subset-inj-on[OF prod-encode-fst-inj]])

finally have eq: y j ∗ χ (B j) t = (
∑

k∈ H j. z2 k ∗ χ (C k) t) .
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from R have H : finite (H j) by (simp add: H-def )

{ fix k assume k ∈ H j
then obtain i where kij: k=prod-encode (i,j)

by (auto simp only: H-def )
{ fix j2 assume j2 : j2 6= j

{ fix k2 assume k2 ∈ H j2
then obtain i2 where kij2 : k2=prod-encode (i2 ,j2 )

by (auto simp only: H-def )

from j2 have (i2 ,j2 ) 6= (i,j) and (i2 ,j2 ) ∈ UNIV and (i,j) ∈ UNIV
by auto

with inj-prod-encode have prod-encode (i2 ,j2 ) 6= prod-encode (i,j)
by (rule inj-on-contraD)

with kij kij2 have k2 6= k
by fast

}
hence k /∈ H j2

by fast
}

}
hence

∧
i. i 6= j =⇒ H i ∩ H j = {}

by fast
note eq H this

}
hence eq:

∧
j. y j ∗ χ (B j) t = (

∑
k∈H j. z2 k ∗ χ (C k) t)

and H :
∧

i. finite (H i)
and Hdis:

∧
i j. i 6= j =⇒ H i ∩ H j = {} .

from eq g have g t = (
∑

j∈S . (
∑

k∈H j. z2 k ∗ χ (C k) t))
by simp

also
{ fix j assume jS : j∈S

from ms Aun R Adis Ams Bms jS have measure M (B j) =
(
∑

i∈R. measure M (B j ∩ A i))
by (simp add: measure-split)

hence y j ∗ measure M (B j) = (
∑

i∈R. y j ∗ measure M (A i ∩ B j))
by (simp add: sum-distrib-left Int-commute)

also
{ fix i

have R=R and y j ∗ measure M (A i ∩ B j) =
(let k=prod-encode(i,j) in z2 k ∗ measure M (C k))
by (auto simp add: C-def z2-def Let-def )

}
hence . . . = (

∑
i∈R. let k=prod-encode(i,j) in z2 k ∗ measure M (C k))

by (rule sum.cong)
also from R have . . . = (

∑
k∈(H j). z2 k ∗ measure M (C k))

by (simp add: H-def Let-def o-def
sum.reindex[OF subset-inj-on[OF prod-encode-fst-inj]])

finally have eq2 :
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y j ∗ measure M (B j) = (
∑

k∈(H j). z2 k ∗ measure M (C k)) .
}
with refl have (

∑
j∈S . y j ∗ measure M (B j)) = (

∑
j∈S . (

∑
k∈(H j). z2

k ∗ measure M (C k)))
by (rule sum.cong)

with b have b = (
∑

j∈S . (
∑

k∈(H j). z2 k ∗ measure M (C k)))
by simp

moreover have K = (
⋃

j∈S . H j)
by (auto simp add: K-def H-def )

moreover note H Hdis S
ultimately have g: g t = (

∑
k∈K . z2 k ∗ χ (C k) t) and K : finite K

and b: b = (
∑

k∈K . z2 k ∗ measure M (C k))
by (auto simp add: sum.UNION-disjoint)

{ fix i
from Bun have (

⋃
k∈G i. C k) = A i

by (simp add: G-def C-def )
}
with Aun have (

⋃
i∈R. (

⋃
k∈G i. C k)) = UNIV

by simp
hence (

⋃
k∈(

⋃
i∈R. G i). C k) = UNIV

by simp
with KG have Kun: (

⋃
k∈K . C k) = UNIV

by simp

note f g a b Kun K
}

hence f : f = (λt. (
∑

k∈K . z1 k ∗ χ (C k) t))
and g: g = (λt. (

∑
k∈K . z2 k ∗ χ (C k) t))

and a: a = (
∑

k∈K . z1 k ∗ measure M (C k))
and b: b = (

∑
k∈K . z2 k ∗ measure M (C k))

and Kun:
⋃

(C ‘ K ) = UNIV and K : finite K
by (auto simp add: ext)

note f g a b K
moreover
{ fix k1 k2 assume k1∈K and k2∈K and diff : k1 6= k2

with K-def obtain i1 j1 i2 j2 where
RS : i1 ∈ R ∧ i2 ∈ R ∧ j1 ∈ S ∧ j2 ∈ S
and k1 : k1 = prod-encode (i1 ,j1 ) and k2 : k2 = prod-encode (i2 ,j2 )
by auto

with diff have (i1 ,j1 ) 6= (i2 ,j2 )
by auto

with RS Adis Bdis k1 k2 have C k1 ∩ C k2 = {}
by (simp add: C-def ) fast

}
moreover
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{ fix k assume k ∈ K
with K-def obtain i j where R: i ∈ R and S : j ∈ S

and k: k = prod-encode (i,j)
by auto

with Ams Bms have A i ∈ measurable-sets M and B j ∈ measurable-sets M
by auto

with ms have A i ∩ B j ∈ measurable-sets M
by (simp add: measure-space-def sigma-algebra-inter)

with k have C k ∈ measurable-sets M
by (simp add: C-def )

}
moreover note Kun

moreover from x have nonnegative z1
by (simp add: z1-def nonnegative-def )

moreover from y have nonnegative z2
by (simp add: z2-def nonnegative-def )

ultimately show ?thesis by blast
qed

qed

Additivity and monotonicity are now almost obvious, the latter trivially
implying uniqueness.
lemma assumes ms: measure-space M and a: a ∈ sfis f M and b: b ∈ sfis g M

shows sfis-add: a+b ∈ sfis (λw. f w + g w) M
proof −

from assms have
∃ z1 z2 C K . f = (λt.

∑
i∈(K ::nat set). z1 i ∗ χ (C i) t) ∧

g = (λt.
∑

i∈K . z2 i ∗ χ (C i) t) ∧ a = (
∑

i∈K . z1 i ∗ measure M (C i))
∧ b = (

∑
i∈K . z2 i ∗ measure M (C i))

∧ finite K ∧ (∀ i∈K . ∀ j∈K . i 6= j −→ C i ∩ C j = {})
∧ (∀ i ∈ K . C i ∈ measurable-sets M ) ∧ (

⋃
i∈K . C i) = UNIV

∧ nonnegative z1 ∧ nonnegative z2
by (rule sfis-present)

then obtain z1 z2 C K where f : f = (λt.
∑

i∈(K ::nat set). z1 i ∗ χ (C i) t)
and g: g = (λt.

∑
i∈K . z2 i ∗ χ (C i) t)

and a2 : a = (
∑

i∈K . z1 i ∗ measure M (C i))
and b2 : b = (

∑
i∈K . z2 i ∗ measure M (C i))

and CK : finite K ∧ (∀ i∈K . ∀ j∈K . i 6= j −→ C i ∩ C j = {}) ∧
(∀ i∈K . C i ∈ measurable-sets M ) ∧

⋃
(C ‘ K ) = UNIV

and z1 : nonnegative z1 and z2 : nonnegative z2
by auto

{ fix t
from f g have

f t + g t = (
∑

i∈K . z1 i ∗ χ (C i) t) + (
∑

i∈K . z2 i ∗ χ (C i) t)
by simp

also have . . . = (
∑

i∈K . z1 i ∗ χ (C i) t + z2 i ∗ χ (C i) t)
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by (rule sum.distrib[THEN sym])
also have . . . = (

∑
i∈K . (z1 i + z2 i) ∗ χ (C i) t)

by (simp add: distrib-right)
finally have f t + g t = (

∑
i∈K . (z1 i + z2 i) ∗ χ (C i) t) .

}

also
{ fix t

from z1 have 0 ≤ z1 t
by (simp add: nonnegative-def )

also from z2 have 0 ≤ z2 t
by (simp add: nonnegative-def )

ultimately have 0 ≤ z1 t + z2 t
by (rule add-nonneg-nonneg)

}

hence nonnegative (λw. z1 w + z2 w)
by (simp add: nonnegative-def ext)

moreover note CK
ultimately have
(
∑

i∈K . (z1 i + z2 i) ∗ measure M (C i)) ∈ sfis (λw. f w + g w) M
by (auto simp add: sfis.base)

also
from a2 b2 have a+b = (

∑
i∈K . (z1 i + z2 i) ∗ measure M (C i))

by (simp add: sum.distrib[THEN sym] distrib-right)
ultimately show ?thesis by simp

qed

lemma assumes ms: measure-space M and a: a ∈ sfis f M
and b: b ∈ sfis g M and fg: f≤g
shows sfis-mono: a ≤ b

proof −

from ms a b have
∃ z1 z2 C K . f = (λt.

∑
i∈(K ::nat set). z1 i ∗ χ (C i) t) ∧

g = (λt.
∑

i∈K . z2 i ∗ χ (C i) t) ∧ a = (
∑

i∈K . z1 i ∗ measure M (C i))
∧ b = (

∑
i∈K . z2 i ∗ measure M (C i))

∧ finite K ∧ (∀ i∈K . ∀ j∈K . i 6= j −→ C i ∩ C j = {})
∧ (∀ i ∈ K . C i ∈ measurable-sets M ) ∧ (

⋃
i∈K . C i) = UNIV

∧ nonnegative z1 ∧ nonnegative z2
by (rule sfis-present)

then obtain z1 z2 C K where f : f = (λt.
∑

i∈(K ::nat set). z1 i ∗ χ (C i) t)
and g: g = (λt.

∑
i∈K . z2 i ∗ χ (C i) t)

and a2 : a = (
∑

i∈K . z1 i ∗ measure M (C i))
and b2 : b = (

∑
i∈K . z2 i ∗ measure M (C i))

and K : finite K and dis: (∀ i∈K . ∀ j∈K . i 6= j −→ C i ∩ C j = {})
and Cms: (∀ i∈K . C i ∈ measurable-sets M ) and Cun:

⋃
(C ‘ K ) = UNIV

by auto
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{ fix i assume iK : i ∈ K
{ assume C i 6= {}

then obtain t where ti: t ∈ C i
by auto

hence z1 i = z1 i ∗ χ (C i) t
by (simp add: characteristic-function-def )

also
from dis iK ti have K−{i} = K−{i}

and
∧

x. x ∈ K−{i} =⇒ z1 x ∗ χ (C x) t = 0
by (auto simp add: characteristic-function-def )

hence 0 = (
∑

k∈K−{i}. z1 k ∗ χ (C k) t)
by (simp only: sum.neutral-const sum.cong)

with K iK have z1 i ∗ χ (C i) t = (
∑

k∈K . z1 k ∗ χ (C k) t)
by (simp add: sum-diff1 )

also
from fg f g have (

∑
i∈K . z1 i ∗ χ (C i) t) ≤ (

∑
i∈K . z2 i ∗ χ (C i) t)

by (simp add: le-fun-def )
also
from dis iK ti have K−{i} = K−{i}

and
∧

x. x ∈ K−{i} =⇒ z2 x ∗ χ (C x) t = 0
by (auto simp add: characteristic-function-def )

hence 0 = (
∑

k∈K−{i}. z2 k ∗ χ (C k) t)
by (simp only: sum.neutral-const sum.cong)

with K iK have (
∑

k∈K . z2 k ∗ χ (C k) t) = z2 i ∗ χ (C i) t
by (simp add: sum-diff1 )

also
from ti have . . . = z2 i

by (simp add: characteristic-function-def )
finally
have z1 i ≤ z2 i .

}
hence h: C i 6= {} =⇒ z1 i ≤ z2 i .

have z1 i ∗ measure M (C i) ≤ z2 i ∗ measure M (C i)
proof (cases C i 6= {})

case False
with ms show ?thesis

by (auto simp add: measure-space-def positive-def )

next
case True
with h have z1 i ≤ z2 i

by fast
also from iK ms Cms have 0 ≤ measure M (C i)

by (auto simp add: measure-space-def positive-def )
ultimately show ?thesis

by (simp add: mult-right-mono)
qed

}
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with a2 b2 show ?thesis by (simp add: sum-mono)
qed

lemma sfis-unique:
assumes ms: measure-space M and a: a ∈ sfis f M and b: b ∈ sfis f M
shows a=b

proof −
have f≤f by (simp add: le-fun-def )
with assms have a≤b and b≤a

by (auto simp add: sfis-mono)
thus ?thesis by simp

qed

The integral of characteristic functions, as well as the effect of multiplication
with a constant, follows directly from the definition. Together with a gener-
alization of the addition theorem to sums, a less restrictive introduction rule
emerges, making normal forms obsolete. It is only valid in measure spaces
though.
lemma sfis-char :

assumes ms: measure-space M and mA: A ∈ measurable-sets M
shows measure M A ∈ sfis χ A M

lemma sfis-times:
assumes a: a ∈ sfis f M and z: 0≤z
shows z∗a ∈ sfis (λw. z∗f w) M

lemma assumes ms: measure-space M
and a: ∀ i∈S . a i ∈ sfis (f i) M and S : finite S
shows sfis-sum: (

∑
i∈S . a i) ∈ sfis (λt.

∑
i∈S . f i t) M

lemma sfis-intro:
assumes ms: measure-space M and Ams: ∀ i ∈ S . A i ∈ measurable-sets M
and nn: nonnegative x and S : finite S
shows (

∑
i∈S . x i ∗ measure M (A i)) ∈

sfis (λt.
∑

i∈(S ::nat set). x i ∗ χ (A i) t) M
proof −

{ fix i assume iS : i ∈ S
with ms Ams have measure M (A i) ∈ sfis χ (A i) M

by (simp add: sfis-char)
with nn have x i ∗ measure M (A i) ∈ sfis (λt. x i ∗ χ (A i) t) M

by (simp add: nonnegative-def sfis-times)
}
with ms S show ?thesis

by (simp add: sfis-sum)
qed

That is nearly all there is to know about simple function integral sets. It
will be useful anyway to have the next two facts available.
lemma sfis-nn:
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assumes f : a ∈ sfis f M
shows nonnegative f

lemma sum-rv:
assumes rvs: ∀ k∈K . (f k) ∈ rv M and ms: measure-space M
shows (λt.

∑
k∈K . f k t) ∈ rv M

lemma sfis-rv:
assumes ms: measure-space M and f : a ∈ sfis f M
shows f ∈ rv M using f

proof (cases)
case (base x A S)
hence f = (λt.

∑
i∈S . x i ∗ χ (A i) t)

by simp
also
{ fix i

assume i ∈ S
with base have A i ∈ measurable-sets M
by simp

with ms have (λt. x i ∗ χ (A i) t) ∈ rv M
by (simp add: char-rv const-rv rv-times-rv)

} with ms
have . . . ∈ rv M

by (simp add: sum-rv)
ultimately show ?thesis

by simp
qed

3.2.2 Nonnegative Functions

There is one more important fact about sfis, easily the hardest one to see.
It is about the relationship with monotone convergence and paves the way
for a sensible definition of nnfis, the nonnegative function integral sets, en-
abling monotonicity and thus uniqueness. A reasonably concise formal proof
could fortunately be achieved in spite of the nontrivial ideas involved — com-
pared for instance to the intuitive but hard-to-formalize sfis-present. A small
lemma is needed to ensure that the inequation, which depends on an arbi-
trary z strictly between 0 and 1, carries over to z = 1, thereby eliminating
z in the end.
lemma real-le-mult-sustain:

assumes zr :
∧

z. [[0<z; z<1 ]] =⇒ z ∗ r ≤ y
shows r ≤ (y::real)

lemma sfis-mon-conv-mono:
assumes uf : u↑f and xu:

∧
n. x n ∈ sfis (u n) M and xy: x↑y

and sr : r ∈ sfis s M and sf : s ≤ f and ms: measure-space M
shows r ≤ y using sr

proof cases
case (base a A S)
note base-a = this
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{ fix z assume znn: 0<(z::real) and z1 : z<1
define B where B n = {w. z∗s w ≤ u n w} for n

{ fix n
note ms also
from xu have xu: x n ∈ sfis (u n) M .
hence nnu: nonnegative (u n)

by (rule sfis-nn)
from ms xu have u n ∈ rv M

by (rule sfis-rv)
moreover from ms sr have s ∈ rv M

by (rule sfis-rv)
with ms have (λw. z∗s w) ∈ rv M

by (simp add: const-rv rv-times-rv)
ultimately have B n ∈ measurable-sets M

by (simp add: B-def rv-le-rv-measurable)
with ms base have ABms: ∀ i∈S . (A i ∩ B n) ∈ measurable-sets M

by (auto simp add: measure-space-def sigma-algebra-inter)

from xu have z∗(
∑

i∈S . a i ∗ measure M (A i ∩ B n)) ≤ x n
proof (cases)

case (base c C R)
{ fix t

{ fix i
have S=S and a i ∗ χ (A i ∩ B n) t = χ (B n) t ∗ (a i ∗ χ (A i) t)

by (auto simp add: characteristic-function-def ) }
hence (

∑
i∈S . a i ∗ χ (A i ∩ B n) t) =

(
∑

i∈S . χ (B n) t ∗ (a i ∗ χ (A i) t))
by (rule sum.cong)

hence z∗(
∑

i∈S . a i ∗ χ (A i ∩ B n) t) =
z∗(

∑
i∈S . χ (B n) t ∗ (a i ∗ χ (A i) t))

by simp
also have . . . = z ∗ χ (B n) t ∗ (

∑
i∈S . a i ∗ χ (A i) t)

by (simp add: sum-distrib-left[THEN sym])
also
from sr have nonnegative s by (simp add: sfis-nn)
with nnu B-def base-a
have z ∗ χ (B n) t ∗ (

∑
i∈S . a i ∗ χ (A i) t) ≤ u n t

by (auto simp add: characteristic-function-def nonnegative-def )
finally have z∗(

∑
i∈S . a i ∗ χ (A i ∩ B n) t) ≤ u n t .

}

also
from ms base-a znn ABms have

z∗(
∑

i∈S . a i ∗ measure M (A i ∩ B n)) ∈
sfis (λt. z∗(

∑
i∈S . a i ∗ χ (A i ∩ B n) t)) M

by (simp add: sfis-intro sfis-times)
moreover note xu ms
ultimately show ?thesis
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by (simp add: sfis-mono le-fun-def )
qed
note this ABms

}
hence 1 :

∧
n. z ∗ (

∑
i∈S . a i ∗ measure M (A i ∩ B n)) ≤ x n

and ABms:
∧

n. ∀ i∈S . A i ∩ B n ∈ measurable-sets M .

have Bun: (λn. B n)↑UNIV
proof (unfold mon-conv-set-def , rule)

{ fix n
from uf have um: u n ≤ u (Suc n)

by (simp add: mon-conv-real-fun-def )
{

fix w
assume z∗s w ≤ u n w
also from um have u n w ≤ u (Suc n) w

by (simp add: le-fun-def )
finally have z∗s w ≤ u (Suc n) w .

}
hence B n ≤ B (Suc n)

by (auto simp add: B-def )
}
thus ∀n. B n ⊆ B (Suc n)

by fast

{ fix t
have ∃n. z∗s t ≤ u n t
proof (cases s t = 0 )

case True
fix n
from True have z∗s t = 0

by simp
also from xu have nonnegative (u n)

by (rule sfis-nn)
hence 0 ≤ u n t

by (simp add: nonnegative-def )
finally show ?thesis

by rule

next
case False
from sr have nonnegative s

by(rule sfis-nn)
hence 0 ≤ s t

by (simp add: nonnegative-def )
with False have 0 < s t

by arith
with z1 have z∗s t < 1∗s t

by (simp only: mult-strict-right-mono)
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also from sf have . . . ≤ f t
by (simp add: le-fun-def )

finally have z ∗ s t < f t .

also from uf have (λm. u m t)↑f t
by (simp add: realfun-mon-conv-iff )

ultimately have ∃n.∀m. n≤m −→ z∗s t < u m t
by (simp add: real-mon-conv-outgrow)

hence ∃n. z∗s t < u n t
by fast

thus ?thesis
by (auto simp add: order-less-le)

qed

hence ∃n. t ∈ B n
by (simp add: B-def )

hence t ∈ (
⋃

n. B n)
by fast

}
thus UNIV=(

⋃
n. B n)

by fast
qed

{ fix j assume jS : j ∈ S
note ms
also
from jS ABms have

∧
n. A j ∩ B n ∈ measurable-sets M

by auto
moreover
from Bun have (λn. A j ∩ B n)↑(A j)

by (auto simp add: mon-conv-set-def )
ultimately have (λn. measure M (A j ∩ B n)) −−−−→ measure M (A j)

by (rule measure-mon-conv)

hence (λn. a j ∗ measure M (A j ∩ B n)) −−−−→ a j ∗ measure M (A j)
by (simp add: tendsto-const tendsto-mult)

}
hence (λn.

∑
j∈S . a j ∗ measure M (A j ∩ B n))

−−−−→ (
∑

j∈S . a j ∗ measure M (A j))
by (rule tendsto-sum)

hence (λn. z∗ (
∑

j∈S . a j ∗ measure M (A j ∩ B n)))
−−−−→ z∗(

∑
j∈S . a j ∗ measure M (A j))

by (simp add: tendsto-const tendsto-mult)

with 1 xy base have z∗r ≤ y
by (auto simp add: LIMSEQ-le mon-conv-real-def )

}
hence zr :

∧
z. 0 < z =⇒ z < 1 =⇒ z ∗ r ≤ y .

thus ?thesis by (rule real-le-mult-sustain)
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qed

Now we are ready for the second step. The integral of a monotone limit
of functions is the limit of their integrals. Note that this last limit has to
exist in the first place, since we decided not to use infinite values. Backed
by the last theorem and the preexisting knowledge about limits, the usual
basic properties are straightforward.
inductive-set

nnfis:: ( ′a ⇒ real) ⇒ ( ′a set set ∗ ( ′a set ⇒ real)) ⇒ real set
for f :: ′a ⇒ real and M :: ′a set set ∗ ( ′a set ⇒ real)
where
base: [[u↑f ;

∧
n. x n ∈ sfis (u n) M ; x↑y]] =⇒ y ∈ nnfis f M

lemma sfis-nnfis:
assumes s: a ∈ sfis f M
shows a ∈ nnfis f M

lemma nnfis-times:
assumes ms: measure-space M and a: a ∈ nnfis f M and nn: 0≤z
shows z∗a ∈ nnfis (λw. z∗f w) M

lemma nnfis-add:
assumes ms: measure-space M and a: a ∈ nnfis f M and b: b ∈ nnfis g M
shows a+b ∈ nnfis (λw. f w + g w) M

lemma assumes ms: measure-space M and a: a ∈ nnfis f M
and b: b ∈ nnfis g M and fg: f≤g
shows nnfis-mono: a ≤ b using a

proof (cases)
case (base u x)
note base-u = this
from b show ?thesis
proof (cases)

case (base v r)
{ fix m

from base-u base have u m ≤ f
by (simp add: realfun-mon-conv-le)

also note fg finally have u m ≤ g .
with ms base-u base have v↑g and

∧
n. r n ∈ sfis (v n) M and r↑b

and x m ∈ sfis (u m) M and u m ≤ g and measure-space M
by simp-all

hence x m ≤ b
by (rule sfis-mon-conv-mono)

}
with ms base-u base show a ≤ b

by (auto simp add: mon-conv-real-def LIMSEQ-le-const2 )
qed

qed
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corollary nnfis-unique:
assumes ms: measure-space M and a: a ∈ nnfis f M and b: b ∈ nnfis f M
shows a=b

There is much more to prove about nonnegative integration. Next up is
a classic theorem by Beppo Levi, the monotone convergence theorem. In
essence, it says that the introduction rule for nnfis holds not only for se-
quences of simple functions, but for any sequence of nonnegative integrable
functions. It should be mentioned that this theorem cannot be formulated
for the Riemann integral. We prove it by exhibiting a sequence of sim-
ple functions that converges to the same limit as the original one and then
applying the introduction rule.
The construction and properties of the sequence are slightly intricate. By
definition, for any fn in the original sequence, there is a sequence (umn)m∈N
of simple functions converging to it. The nth element of the new sequence
is the upper closure of the nth elements of the first n sequences.
definition

upclose:: ( ′a ⇒ real) ⇒ ( ′a ⇒ real) ⇒ ( ′a ⇒ real) where
upclose f g = (λt. max (f t) (g t))

primrec
mon-upclose-help :: nat ⇒ (nat ⇒ nat ⇒ ′a ⇒ real) ⇒ nat ⇒ ( ′a ⇒ real)

(‹muh›) where
muh 0 u m = u m 0
| muh (Suc n) u m = upclose (u m (Suc n)) (muh n u m)

definition
mon-upclose :: (nat ⇒ nat ⇒ ′a ⇒ real) ⇒ nat ⇒ ( ′a ⇒ real) (‹mu›) where
mu u m = muh m u m

lemma sf-norm-help:
assumes fin: finite K and jK : j ∈ K and tj: t ∈ C j and iK : ∀ i∈K−{j}. t /∈

C i
shows (

∑
i∈K . (z i) ∗ χ (C i) t) = z j

lemma upclose-sfis:
assumes ms: measure-space M and f : a ∈ sfis f M and g: b ∈ sfis g M
shows ∃ c. c ∈ sfis (upclose f g) M

lemma mu-sfis:
assumes u:

∧
m n. ∃ a. a ∈ sfis (u m n) M and ms: measure-space M

shows ∃ c. ∀m. c m ∈ sfis (mu u m) M

lemma mu-help:
assumes uf :

∧
n. (λm. u m n)↑(f n) and fh: f ↑h

shows (mu u)↑h and
∧

n. mu u n ≤ f n
proof −

show mu-le:
∧

n. mu u n ≤ f n
proof (unfold mon-upclose-def )

fix n
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show
∧

m. muh n u m ≤ f n
proof (induct n)

case (0 m)
from uf have u m 0 ≤ f 0

by (rule realfun-mon-conv-le)
thus ?case by simp

next
case (Suc n m)
{ fix t

from Suc have muh n u m t ≤ f n t
by (simp add: le-fun-def )

also from fh have f n t ≤ f (Suc n) t
by (simp add: realfun-mon-conv-iff mon-conv-real-def )

also from uf have (λm. u m (Suc n) t)↑(f (Suc n) t)
by (simp add: realfun-mon-conv-iff )

hence u m (Suc n) t ≤ f (Suc n) t
by (rule real-mon-conv-le)

ultimately have muh (Suc n) u m t ≤ f (Suc n) t
by (simp add: upclose-def )

}
thus ?case by (simp add: le-fun-def )

qed
qed

{ fix t
{ fix m n

have muh n u m t ≤ muh (Suc n) u m t
by (simp add: upclose-def )

}
hence pos1 :

∧
m n. muh n u m t ≤ muh (Suc n) u m t .

from uf have uiso:
∧

m n. u m n t ≤ u (Suc m) n t
by (simp add: realfun-mon-conv-iff mon-conv-real-def )

have iso:
∧

n. mu u n t ≤ mu u (Suc n) t
proof (unfold mon-upclose-def )

fix n
have

∧
m. muh n u m t ≤ muh n u (Suc m) t

proof (induct n)
case 0 from uiso show ?case

by (simp add: upclose-def le-max-iff-disj)
next

case (Suc n m)

from Suc have muh n u m t ≤ muh n u (Suc m) t .
also from uiso have u m (Suc n) t ≤ u (Suc m) (Suc n) t .

ultimately show ?case
by (auto simp add: upclose-def le-max-iff-disj)
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qed
note this [of n] also note pos1 [of n Suc n]
finally show muh n u n t ≤ muh (Suc n) u (Suc n) t .

qed

also

{ fix n
from mu-le [of n]
have mu u n t ≤ f n t

by (simp add: le-fun-def )
also
from fh have (λn. f n t)↑h t

by (simp add: realfun-mon-conv-iff )
hence f n t ≤ h t

by (rule real-mon-conv-le)
finally have mu u n t ≤ h t .

}

ultimately have ∃ l. (λn. mu u n t)↑l ∧ l ≤ h t
by (rule real-mon-conv-bound)

then obtain l where
conv: (λn. mu u n t)↑l and lh: l ≤ h t
by (force simp add: real-mon-conv-bound)

{ fix n::nat
{ fix m assume le: n ≤ m

hence u m n t ≤ mu u m t
proof (unfold mon-upclose-def )

have u m n t ≤ muh n u m t
by (induct n) (auto simp add: upclose-def le-max-iff-disj)

also
from pos1 have incseq (λn. muh n u m t)

by (simp add: incseq-Suc-iff )
hence muh n u m t ≤ muh (n+(m−n)) u m t

unfolding incseq-def by simp
with le have muh n u m t ≤ muh m u m t

by simp
finally show u m n t ≤ muh m u m t .

qed
}
hence ∃N . ∀m. N ≤ m −→ u m n t ≤ mu u m t

by blast
also from uf have (λm. u m n t) −−−−→ f n t

by (simp add: realfun-mon-conv-iff mon-conv-real-def )
moreover
from conv have (λn. mu u n t) −−−−→ l

by (simp add: mon-conv-real-def )
ultimately have f n t ≤ l
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by (simp add: LIMSEQ-le)
}
also from fh have (λn. f n t) −−−−→ h t

by (simp add: realfun-mon-conv-iff mon-conv-real-def )
ultimately have h t ≤ l

by (simp add: LIMSEQ-le-const2 )

with lh have l = h t
by simp

with conv have (λn. mu u n t)↑(h t)
by simp

}
with mon-upclose-def show mu u↑h

by (simp add: realfun-mon-conv-iff )
qed

theorem nnfis-mon-conv:
assumes fh: f ↑h and xf :

∧
n. x n ∈ nnfis (f n) M and xy: x↑y

and ms: measure-space M
shows y ∈ nnfis h M

proof −
define u where u n = (SOME u. u↑(f n) ∧ (∀m. ∃ a. a ∈ sfis (u m) M )) for n
{ fix n

from xf [of n] have ∃ u. u↑(f n) ∧ (∀m. ∃ a. a ∈ sfis (u m) M ) (is ∃ x. ?P x)
proof (cases)

case (base r a)
hence r↑(f n) and

∧
m. ∃ a. a ∈ sfis (r m) M by auto

thus ?thesis by fast
qed
hence ?P (SOME x. ?P x)

by (rule someI-ex)
with u-def have ?P (u n)

by simp
} also
define urev where urev m n = u n m for m n
ultimately have uf :

∧
n. (λm. urev m n)↑(f n)

and sf :
∧

n m. ∃ a. a ∈ sfis (urev m n) M
by auto

from uf fh have up: mu urev↑h
by (rule mu-help)

from uf fh have le:
∧

n. mu urev n ≤ f n
by (rule mu-help)

from sf ms obtain c where sf2 :
∧

m. c m ∈ sfis (mu urev m) M
by (force simp add: mu-sfis)

{ fix m
from sf2 have c m ∈ nnfis (mu urev m) M

by (rule sfis-nnfis)
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with ms le[of m] xf [of m] have c m ≤ x m
by (simp add: nnfis-mono)

} hence c ≤ x by (simp add: le-fun-def )
also
{ fix m note ms also

from up have mu urev m ≤ mu urev (Suc m)
by (simp add: mon-conv-real-fun-def )

moreover from sf2 have c m ∈ sfis (mu urev m) M
and c (Suc m) ∈ sfis (mu urev (Suc m)) M
by fast+

ultimately have c m ≤ c (Suc m)
by (simp add: sfis-mono)

}
moreover note xy
ultimately have ∃ l. c↑l ∧ l ≤ y

by (simp add: real-mon-conv-dom)
then obtain l where cl: c↑l and ly: l ≤ y

by fast

from up sf2 cl have int: l ∈ nnfis h M
by (rule nnfis.base)

{ fix n
from fh have f n ≤ h

by (rule realfun-mon-conv-le)
with ms xf [of n] int have x n ≤ l

by (rule nnfis-mono)
} with xy have y ≤ l

by (auto simp add: mon-conv-real-def LIMSEQ-le-const2 )

with ly have l=y
by simp

with int show ?thesis
by simp

qed

Establishing that only nonnegative functions may arise this way is a trivi-
ality.
lemma nnfis-nn: assumes a ∈ nnfis f M

shows nonnegative f

3.2.3 Integrable Functions

Before we take the final step of defining integrability and the integral oper-
ator, we should first clarify what kind of functions we are able to integrate
up to now. It is easy to see that all nonnegative integrable functions are
random variables.
lemma assumes measure-space M and a ∈ nnfis f M
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shows nnfis-rv: f ∈ rv M

The converse does not hold of course, since there are measurable functions
whose integral is infinite. Regardless, it is possible to approximate any
measurable function using simple step-functions. This means that all non-
negative random variables are quasi integrable, as the property is sometimes
called, and brings forth the fundamental insight that a nonnegative function
is integrable if and only if it is measurable and the integrals of the sim-
ple functions that approximate it converge monotonically. Technically, the
proof is rather complex, involving many properties of real numbers.
lemma assumes measure-space M and : f ∈ rv M and nonnegative f

shows rv-mon-conv-sfis: ∃ u x. u↑f ∧ (∀n. x n ∈ sfis (u n) M )

The following dominated convergence theorem is an easy corollary. It can
be effectively applied to show integrability.
corollary assumes ms: measure-space M and f : f ∈ rv M

and b: b ∈ nnfis g M and fg: f≤g and nn: nonnegative f
shows nnfis-dom-conv: ∃ a. a ∈ nnfis f M ∧ a ≤ b using b

proof (cases)
case (base v r)
from ms f nn have ∃ u x. u↑f ∧ (∀n. x n ∈ sfis (u n) M )

by (rule rv-mon-conv-sfis)
then obtain u x where uf : u↑f and xu:

∧
n. x n ∈ sfis (u n) M

by fast

{ fix n
from uf have u n ≤ f

by (rule realfun-mon-conv-le)
also note fg
also
from xu have x n ∈ nnfis (u n) M

by (rule sfis-nnfis)
moreover note b ms
ultimately have le: x n ≤ b

by (simp add: nnfis-mono)

from uf have u n ≤ u (Suc n)
by (simp only: mon-conv-real-fun-def )

with ms xu[of n] xu[of Suc n] have x n ≤ x (Suc n)
by (simp add: sfis-mono)

note this le
}
hence ∃ a. x↑a ∧ a ≤ b

by (rule real-mon-conv-bound)
then obtain a where xa: x↑a and ab: a ≤ b

by auto

from uf xu xa have a ∈ nnfis f M
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by (rule nnfis.base)
with ab show ?thesis

by fast
qed

Speaking all the time about integrability, it is time to define it at last.
definition

integrable:: ( ′a ⇒ real) ⇒ ( ′a set set ∗ ( ′a set ⇒ real)) ⇒ bool where

integrable f M ←→ measure-space M ∧
(∃ x. x ∈ nnfis (pp f ) M ) ∧ (∃ y. y ∈ nnfis (np f ) M )

definition
integral:: ( ′a ⇒ real) ⇒ ( ′a set set ∗ ( ′a set ⇒ real)) ⇒ real (‹

∫
- ∂-›) where

integrable f M =⇒
∫

f ∂M = (THE i. i ∈ nnfis (pp f ) M ) −
(THE j. j ∈ nnfis (np f ) M )

So the final step is done, the integral defined. The theorems we are already
used to prove from the earlier stages are still missing. Only now there are
always two properties to be shown: integrability and the value of the integral.
Isabelle makes it possible two have both goals in a single theorem, so that the
user may derive the statement he desires. Two useful lemmata follow. They
help lifting nonnegative function integral sets to integrals proper. Notice
how the dominated convergence theorem from above is employed in the
latter.
lemma nnfis-integral:

assumes nn: a ∈ nnfis f M and ms: measure-space M
shows integrable f M and

∫
f ∂ M = a

proof −
from nn have nonnegative f

by (rule nnfis-nn)
hence pp f = f and 0 : np f = (λt. 0 )

by (auto simp add: nn-pp-np)
with nn have a: a ∈ nnfis (pp f ) M

by simp
have 0≤(0 ::real)

by (rule order-refl)
with ms nn have 0∗a ∈ nnfis (λt. 0∗f t) M

by (rule nnfis-times)
with 0 have 02 : 0 ∈ nnfis (np f ) M

by simp
with ms a show integrable f M

by (auto simp add: integrable-def )
also
from a ms have (THE i. i ∈ nnfis (pp f ) M ) = a

by (auto simp add: nnfis-unique)
moreover
from 02 ms have (THE i. i ∈ nnfis (np f ) M ) = 0
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by (auto simp add: nnfis-unique)
ultimately show

∫
f ∂ M = a

by (simp add: integral-def )
qed

lemma nnfis-minus-nnfis-integral:
assumes a: a ∈ nnfis f M and b: b ∈ nnfis g M
and ms: measure-space M
shows integrable (λt. f t − g t) M and

∫
(λt. f t − g t) ∂ M = a − b

proof −
from ms a b have (λt. f t − g t) ∈ rv M

by (auto simp only: nnfis-rv rv-minus-rv)
hence prv: pp (λt. f t − g t) ∈ rv M and nrv: np (λt. f t − g t) ∈ rv M

by (auto simp only: pp-np-rv)

have nnp: nonnegative (pp (λt. f t − g t))
and nnn: nonnegative (np (λt. f t − g t))
by (simp-all add: nonnegative-def positive-part-def negative-part-def )

from ms a b have fg: a+b ∈ nnfis (λt. f t + g t) M
by (rule nnfis-add)

from a b have nnf : nonnegative f and nng: nonnegative g
by (simp-all only: nnfis-nn)

{ fix t
from nnf nng have 0 ≤ f t and 0 ≤ g t

by (simp-all add: nonnegative-def )
hence (pp (λt. f t − g t)) t ≤ f t + g t and (np (λt. f t − g t)) t ≤ f t + g t

by (simp-all add: positive-part-def negative-part-def )
}
hence (pp (λt. f t − g t)) ≤ (λt. f t + g t)

and (np (λt. f t − g t)) ≤ (λt. f t + g t)
by (simp-all add: le-fun-def )

with fg nnf nng prv nrv nnp nnn ms
have ∃ l. l ∈ nnfis (pp (λt. f t − g t)) M ∧ l ≤ a+b

and ∃ k. k ∈ nnfis (np (λt. f t − g t)) M ∧ k ≤ a+b
by (auto simp only: nnfis-dom-conv)

then obtain l k where l: l ∈ nnfis (pp (λt. f t − g t)) M
and k: k ∈ nnfis (np (λt. f t − g t)) M
by auto

with ms show i: integrable (λt. f t − g t) M
by (auto simp add: integrable-def )

{ fix t
have f t − g t = (pp (λt. f t − g t)) t − (np (λt. f t − g t)) t

by (rule f-plus-minus)

hence f t + (np (λt. f t − g t)) t = g t + (pp (λt. f t − g t)) t
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by arith
}
hence (λt. f t + (np (λt. f t − g t)) t) =
(λt. g t + (pp (λt. f t − g t)) t)
by (rule ext)

also
from ms a k b l have a+k ∈ nnfis (λt. f t + (np (λt. f t − g t)) t) M

and b+l ∈ nnfis (λt. g t + (pp (λt. f t − g t)) t) M
by (auto simp add: nnfis-add)

moreover note ms
ultimately have a+k = b+l

by (simp add: nnfis-unique)
hence l−k=a−b by arith
also
from k l ms have (THE i. i ∈ nnfis (pp (λt. f t − g t)) M ) = l

and (THE i. i ∈ nnfis (np (λt. f t − g t)) M ) = k
by (auto simp add: nnfis-unique)

moreover note i
ultimately show

∫
(λt. f t − g t) ∂ M = a − b

by (simp add: integral-def )
qed

Armed with these, the standard integral behavior should not be hard to
derive. Mind that integrability always implies a measure space, just like
random variables did in 2.2.
theorem assumes integrable f M

shows integrable-rv: f ∈ rv M
theorem integral-char :

assumes ms: measure-space M and mA: A ∈ measurable-sets M
shows

∫
χ A ∂ M = measure M A and integrable χ A M

theorem integral-add:
assumes f : integrable f M and g: integrable g M
shows integrable (λt. f t + g t) M
and

∫
(λt. f t + g t) ∂M =

∫
f ∂M +

∫
g ∂M

proof −
define u where u = (λt. pp f t + pp g t)
define v where v = (λt. np f t + np g t)

from f obtain pf nf where pf : pf ∈ nnfis (pp f ) M
and nf : nf ∈ nnfis (np f ) M and ms: measure-space M
by (auto simp add: integrable-def )

from g obtain pg ng where pg: pg ∈ nnfis (pp g) M
and ng: ng ∈ nnfis (np g) M
by (auto simp add: integrable-def )

from ms pf pg u-def have
u: pf+pg ∈ nnfis u M
by (simp add: nnfis-add)
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from ms nf ng v-def have
v: nf+ng ∈ nnfis v M
by (simp add: nnfis-add)

{ fix t
from u-def v-def have f t + g t = u t − v t

by (simp add: positive-part-def negative-part-def )
}
hence uvf : (λt. u t − v t) = (λt. f t + g t)

by (simp add: ext)

from u v ms have integrable (λt. u t − v t) M
by (rule nnfis-minus-nnfis-integral)

with u-def v-def uvf show integrable (λt. f t + g t) M
by simp

from pf nf ms have
∫

(λt. pp f t − np f t) ∂M = pf−nf
by (rule nnfis-minus-nnfis-integral)

hence
∫

f ∂M = pf−nf
by (simp add: f-plus-minus[THEN sym])

also
from pg ng ms have

∫
(λt. pp g t − np g t) ∂M = pg−ng

by (rule nnfis-minus-nnfis-integral)
hence

∫
g ∂M = pg−ng

by (simp add: f-plus-minus[THEN sym])
moreover
from u v ms have

∫
(λt. u t − v t) ∂M = pf + pg − (nf + ng)

by (rule nnfis-minus-nnfis-integral)
with uvf have

∫
(λt. f t + g t) ∂M = pf−nf + pg−ng

by simp
ultimately
show

∫
(λt. f t + g t) ∂M =

∫
f ∂M +

∫
g ∂M

by simp
qed

theorem integral-mono:
assumes f : integrable f M
and g: integrable g M and fg: f≤g
shows

∫
f ∂M ≤

∫
g ∂M

proof −
from f obtain pf nf where pf : pf ∈ nnfis (pp f ) M

and nf : nf ∈ nnfis (np f ) M and ms: measure-space M
by (auto simp add: integrable-def )

from g obtain pg ng where pg: pg ∈ nnfis (pp g) M
and ng: ng ∈ nnfis (np g) M
by (auto simp add: integrable-def )
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{ fix t
from fg have f t ≤ g t

by (simp add: le-fun-def )
hence pp f t ≤ pp g t and np g t ≤ np f t

by (auto simp add: positive-part-def negative-part-def )
}
hence pp f ≤ pp g and np g ≤ np f

by (simp-all add: le-fun-def )
with ms pf pg ng nf have pf ≤ pg and ng ≤ nf

by (simp-all add: nnfis-mono)

also
from ms pf pg ng nf have (THE i. i ∈ nnfis (pp f ) M ) = pf

and (THE i. i ∈ nnfis (np f ) M ) = nf
and (THE i. i ∈ nnfis (pp g) M ) = pg
and (THE i. i ∈ nnfis (np g) M ) = ng
by (auto simp add: nnfis-unique)

with f g have
∫

f ∂M = pf − nf
and

∫
g ∂M = pg − ng

by (auto simp add: integral-def )

ultimately show ?thesis
by simp

qed

theorem integral-times:
assumes int: integrable f M
shows integrable (λt. a∗f t) M and

∫
(λt. a∗f t) ∂M = a∗

∫
f ∂M

To try out our definitions in an application, only one more theorem is miss-
ing. The famous Markov–Chebyshev inequation is not difficult to arrive at
using the basic integral properties.
theorem assumes int: integrable f M and a: 0<a and intp: integrable (λx. |f x|
^ n) M

shows markov-ineq: law M f {a..} ≤
∫

(λx. |f x| ^ n) ∂M / (a^n)
proof −

from int have rv: f ∈ rv M
by (rule integrable-rv)

hence ms: measure-space M
by (simp add: rv-def )

from ms rv have ams: {w. a ≤ f w} ∈ measurable-sets M
by (simp add: rv-ge-iff )

from rv have (a^n)∗law M f {a..} = (a^n)∗measure M {w. a ≤ f w}
by (simp add: distribution-def vimage-def )

also
from ms ams have int2 : integrable χ {w. a ≤ f w} M

and eq2 : . . . = (a^n)∗
∫

χ {w. a ≤ f w} ∂ M
by (auto simp add: integral-char)
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note eq2 also
from int2 have int3 : integrable (λt. (a^n)∗χ {w. a ≤ f w} t) M

and eq3 : . . . =
∫

(λt. (a^n)∗χ {w. a ≤ f w} t) ∂ M
by (auto simp add: integral-times)

note eq3 also
{ fix t

from a have (a^n)∗χ {w. a ≤ f w} t ≤ |f t| ^ n
proof (cases a ≤ f t)

case False
thus ?thesis

by (simp add: characteristic-function-def )
next

case True
with a have a ^ n ≤ (f t)^ n

by (simp add: power-mono)
also
have (f t)^ n ≤ |(f t) ^ n|

by arith
hence (f t)^ n ≤ |f t| ^ n

by (simp add: power-abs)
finally
show ?thesis

by (simp add: characteristic-function-def )
qed

}
with int3 intp have . . . ≤

∫
(λx. |f x| ^ n) ∂M

by (simp add: le-fun-def integral-mono)

also
from a have 0 < a^n

by (rule zero-less-power)
ultimately show ?thesis

by (simp add: pos-le-divide-eq mult.commute)
qed

end
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Epilogue

To come to a conclusion, a few words shall subsume the work done and point
out opportunities for future research at the same time.
What has been achieved? After opening with some introductory notes, we
began translating the language of measure theory into machine checkable
text. For the material in section 2.1, this had been done before. Besides
laying the foundation for the development, the style of presentation should
make it noteworthy.
It is a particularity of the present work that its theories are written in the Isar
language, a declarative proof language that aims to be “intelligible”. This
is not a novelty, nor is it the author’s merit. Still, giving full formal proofs
in a text intended to be read by people is in a way experimental. Clearly,
it is bound to put some strain on the reader. Nevertheless, I hope that we
have made a little step towards formalizing mathematical knowledge in a
way that is equally suitable for computation and understanding. One aim
of the research done has been to demonstrate the viability of this approach.
Unquestionably, there is plenty room for improvement regarding the quality
of presentation. The language itself has, in my opinion, proven to be fit for
a wide range of applications, including the classical mathematics we used it
for.
Returning to a more content-centered viewpoint, we discussed the measura-
bility of real-valued functions in section 2.2. As explained there, earlier schol-
arship has resulted in related theories for the MIZAR environment though
the development seems to have stopped. Anyway, the mathematics covered
should be new to HOL-based systems.
More functions could obviously be demonstrated to be random variables. We
shortly commented on an alternative approach in the section just mentioned.
It is applicable to continuous functions, proving these measurable all at
once. Efforts on topological spaces would be required, but they constitute
an interesting field themselves, so it is probably worth the while.

60
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In the third chapter, integration in the Lebesgue style has been looked at
in depth. To my knowledge, no similar theory had been developed in a
theorem prover up to this point. We managed to systematically establish the
integral of increasingly complex functions. Simple or nonnegative functions
ought to be treated in sufficient detail by now. Of course, the repository
of potential supplementary facts is vast. Convergence theorems, as well as
the interrelationship with differentiation or concurrent integral concepts, are
but a few examples. They leave ample space for subsequent work.
A shortcoming of the present development lies in the lack of user assistance.
Greater care could be taken to ensure automatic application of appropriate
simplification rules — or to design such rules in the first place. Likewise,
the principal requirement of integrability might hinder easy usage of the
integral. Fixing a default value for undefined integrals could possibly make
some case distinctions obsolete. Facets like these have not been addressed
in their due extent.
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