Slicing Guarantees Information Flow
Noninterference

Daniel Wasserrab

March 17, 2025

Abstract

In this contribution, we show how correctness proofs for intra- [8]
and interprocedural slicing [9] can be used to prove that slicing is able
to guarantee information flow noninterference. Moreover, we also illus-
trate how to lift the control flow graphs of the respective frameworks
such that they fulfil the additional assumptions needed in the nonin-
terference proofs. A detailed description of the intraprocedural proof
and its interplay with the slicing framework can be found in [10].

1 Introduction

Information Flow Control (IFC) encompasses algorithms which determines
if a given program leaks secret information to public entities. The major
group are so called IFC type systems, where well-typed means that the
respective program is secure. Several IFC type systems have been verified
in proof assistants, e.g. see [1, 2, 5, 3, 7.

However, type systems have some drawbacks which can lead to false
alarms. To overcome this problem, an IFC approach basing on slicing has
been developed [4], which can significantly reduce the amount of false alarms.
This contribution presents the first machine-checked proof that slicing is able
to guarantee IFC noninterference. It bases on previously published machine-
checked correctness proofs for slicing [8, 9]. Details for the intraprocedural
case can be found in [10].

2 HRB Slicing guarantees IFC Noninterference
theory NonlInterferencelnter

imports HRB—Slicing. FundamentalProperty
begin

2.1 Assumptions of this Approach

Classical IFC noninterference, a special case of a noninterference definition
using partial equivalence relations (per) [6], partitions the variables (i.e.
locations) into security levels. Usually, only levels for secret or high, written
H, and public or low, written L, variables are used. Basically, a program that
is noninterferent has to fulfil one basic property: executing the program in
two different initial states that may differ in the values of their H-variables
yields two final states that again only differ in the values of their H-variables;
thus the values of the H-variables did not influence those of the L-variables.

Every per-based approach makes certain assumptions: (i) all H-variables
are defined at the beginning of the program, (ii) all L-variables are observed
(or used in our terms) at the end and (iii) every variable is either H or
L. This security label is fixed for a variable and can not be altered during
a program run. Thus, we have to extend the prerequisites of the slicing
framework in [9] accordingly in a new locale:

locale NonlInterferencelnterGraph =
SDG sourcenode targetnode kind valid-edge Entry
get-proc get-return-edges procs Main Exit Def Use ParamDefs ParamUses
for sourcenode :: 'edge = 'node and targetnode :: 'edge = 'node
and kind :: 'edge = ('var,’val,’ret,’pname) edge-kind
and wvalid-edge :: 'edge = bool
and Entry :: 'node (<'("-Entry’-")») and get-proc :: 'node = 'pname
and get-return-edges :: 'edge = ’'edge set
and procs :: (‘pname x 'var list x 'var list) list and Main :: ‘pname
and Ezit::'node (<'(’-Exit’-")»)
and Def :: 'node = 'var set and Use :: 'node = "var set
and ParamDefs :: 'node = 'var list and ParamUses :: 'node = 'var set list +
fixes H :: 'var set
fixes L :: 'var set
fixes High :: 'node (<'(’-High'-")»)
fixes Low :: 'node (¢'("-Low’-")»)
assumes Entry-edge-Exit-or-High:
[valid-edge a; sourcenode a = (-Entry-)]
= targetnode a = (-Exit-) V targetnode a = (-High-)
and High-target- Entry-edge:
Fa. valid-edge a A sourcenode a = (-Entry-) A targetnode a = (-High-) A
kind a = (As. True),/
and Entry-predecessor-of-High:
[valid-edge a; targetnode a = (-High-)] = sourcenode a = (-Entry-)
and FErit-edge- Entry-or-Low: [valid-edge a; targetnode a = (-Ewit-)]
= sourcenode a = (-Entry-) V sourcenode a = (-Low-)
and Low-source-FEzit-edge:
Ja. valid-edge a A sourcenode a = (-Low-) A targetnode a = (-Exit-) A
kind a = (Xs. True),,
and Ezit-successor-of-Low:
[valid-edge a; sourcenode a = (-Low-)] = targetnode a = (-Exit-)

and DefHigh: Def (-High-) = H
and UseHigh: Use (-High-) = H
and UseLow: Use (-Low-) = L

and HighLowDistinct: H N L = {}
and HighLowUNIV: H U L = UNIV

begin

lemma Low-neq-Ezxit: assumes L # {} shows (-Low-) # (-Exit-)
(proof)

lemma valid-node-High [simp)|:valid-node (-High-)
{proof)

lemma valid-node-Low [simp]:valid-node (-Low-)
(proof)

lemma get-proc-Low:
get-proc (-Low-) = Main
(proof)

lemma get-proc-High:
get-proc (-High-) = Main
(proof)

lemma Entry-path-High-path:
assumes (-Entry-) —as—+* n and inner-node n
obtains a’ as’ where as = a'#as’ and (-High-) —as’—* n
and kind a’ = (As. True),,

(proof)

lemma Ezit-path-Low-path:
assumes n —as—x* (-Ezit-) and inner-node n
obtains a’ as’ where as = as’Q[a’] and n —as'—x (-Low-)
and kind a’ = (As. True),,

(proof)

lemma not-Low-High: V ¢ L = V € H
{proof)

lemma not-High-Low: V ¢ H —= V € L
{proof)

2.2 Low Equivalence

In classical noninterference, an external observer can only see public values,
in our case the L-variables. If two states agree in the values of all L-variables,
these states are indistinguishable for him. Low equivalence groups those
states in an equivalence class using the relation =~ :

definition lowEquivalence :: ("var — 'val) list = (‘var — 'val) list = bool
(infixl «=~p» 50)
where s ~; s'=VV €L . hdsV =hds'V

The following lemmas connect low equivalent states with relevant vari-
ables as necessary in the correctness proof for slicing.

lemma relevant-vars-Entry:
assumes V € rv S (CFG-node (-Entry-)) and (-High-) ¢ | HRB-slice S| opq
shows V € L

(proof)

lemma lowFquivalence-relevant-nodes-Entry:
assumes s ~;, s’ and (-High-) ¢ | HRB-slice S| opg
shows VV € rv S (CFG-node (-Entry-)). hd s V.= hd s’ V

(proof)

2.3 The Correctness Proofs

In the following, we present two correctness proofs that slicing guarantees
IFC noninterference. In both theorems, CFG-node (-High-) ¢ HRB-slice S,
where CFG-node (-Low-) € S, makes sure that no high variable (which are
all defined in (-High-)) can influence a low variable (which are all used in
(-Low-)).

First, a theorem regarding (-Entry-) —as—x* (-Ezit-) paths in the control
flow graph (CFG), which agree to a complete program execution:

lemma slpa-rv-Low-Use-Low:
assumes CFG-node (-Low-) € S
shows [same-level-path-auz cs as; upd-cs cs as = [|; same-level-path-auz cs as'
V¢ € set cs. valid-edge ¢; m —as—* (-Low-); m —as’—* (-Low-);
Vi < length ¢s. YV € rv § (CFG-node (sourcenode (csli))).
fst (s'Suc i) V = fst (s"1Suc i) V; Vi < Suc (length cs). snd (sli) = snd (s'4);
V'V e rvS (CFG-node m). state-val s V = state-val s’ V;
preds (slice-kinds S as) s; preds (slice-kinds S as’) s’
length s = Suc (length cs); length s’ = Suc (length cs)]
= V V € Use (-Low-). state-val (transfers(slice-kinds S as) s) V =
state-val (transfers(slice-kinds S as’) s’) V

(proof)

lemma rv-Low-Use-Low:
assumes m —as— sx (-Low-) and m —as'— ,x (-Low-) and get-proc m = Main
and V'V € rv S (CFG-node m). ¢f V= cf' V
and preds (slice-kinds S as) [(cf,undefined)]
and preds (slice-kinds S as’) [(cf’,undefined)]
and CFG-node (-Low-) € S
shows V V € Use (-Low-).
state-val (transfers(slice-kinds S as) [(cf ,undefined)]) V =
state-val (transfers(slice-kinds S as’) [(cf’,undefined)]) V

{(proof)

lemma nonlnterference-path-to-Low:
assumes [cf] =1, [c¢f'] and (-High-) ¢ |HRB-slice S| opc
and CFG-node (-Low-) € S
and (-Entry-) —as— /* (-Low-) and preds (kinds as) [(cf,undefined)]
and (-Entry-) —as'— s* (-Low-) and preds (kinds as’) [(cf’,undefined)]
shows map fst (transfers (kinds as) [(cf,undefined)]) ~p,
map fst (transfers (kinds as’) [(cf’,undefined)))

(proof)

theorem nonlnterference-path:
assumes [cf] =1, [c¢f'] and (-High-) ¢ |HRB-slice S| opc
and CFG-node (-Low-) € S
and (-Entry-) —as— /x (-Exit-) and preds (kinds as) [(cf,undefined)]
and (-Entry-) —as'— sx (-Ezit-) and preds (kinds as’) [(cf',undefined)]
shows map fst (transfers (kinds as) [(cf,undefined)]) =,
map fst (transfers (kinds as’) [(cf’,undefined)))

{(proof)

end

The second theorem assumes that we have a operational semantics,
whose evaluations are written (c,s) = (c’,s’) and which conforms to the
CFG. The correctness theorem then states that if no high variable influ-
enced a low variable and the initial states were low equivalent, the reulting
states are again low equivalent:

locale NonlInterferencelnter =

Nonlnterferencelnter Graph sourcenode targetnode kind valid-edge Entry
get-proc get-return-edges procs Main Exit Def Use ParamDefs ParamUses
H L High Low +

SemanticsProperty sourcenode targetnode kind valid-edge Entry get-proc
get-return-edges procs Main FExit Def Use ParamDefs ParamUses sem identifies

for sourcenode :: 'edge = 'node and targetnode :: 'edge = 'node

and kind :: 'edge = ('var,’val,ret,’pname) edge-kind

and wvalid-edge :: 'edge = bool

and Entry :: 'node (<'("-Entry’-')y) and get-proc :: 'node = 'pname
and get-return-edges :: 'edge = 'edge set
and procs :: (‘pname x 'var list x 'var list) list and Main :: ‘pname
and FExit::'node (<'(’-Exit’-")»)
and Def :: 'node = 'var set and Use :: 'node = 'var set
and ParamDefs :: 'node = 'var list and ParamUses :: 'node = 'var set list
and sem :: ‘com = (‘var — 'val) list = 'com = ("var — "val) list = bool
(((1(~/) =/ (1{~/)) [0,0,0,0) 81)
and identifies :: 'node = 'com = bool («- = - [51,0] 80)
and H :: 'var set and L :: 'var set
and High :: 'node (<'(-High'’-")») and Low :: 'node (</(-Low’-")») +
fixes final :: 'com = bool
assumes final-edge-Low: [final c; n £ c]
= Ja. valid-edge a N sourcenode a = n A targetnode a = (-Low-) A kind a =
tvid
begin
The following theorem needs the explicit edge from (-High-) to n. An
approach using a init predicate for initial statements, being reachable from
(-High-) via a (As. True),, edge, does not work as the same statement could
be identified by several nodes, some initial, some not. E.g., in the pro-
gram while (True) Skip;;Skip two nodes identify this inital statement:
the initial node and the node within the loop (because of loop unrolling).

theorem nonlnterference:
assumes [cf1| =1 [cf2] and (-High-) ¢ | HRB-slice S| opq
and CFG-node (-Low-) € S
and valid-edge a and sourcenode a = (-High-) and targetnode a = n
and kind a = (As. True) , and n = ¢ and final ¢’
and (c,[cf1]) = (c¢/,51) and (¢,[cf2]) = (c¢/;s2)
shows s; ~ s

(proof)

end

end

3 Framework Graph Lifting for Noninterference

theory LiftingInter
imports NonlInterferencelnter
begin

In this section, we show how a valid CFG from the slicing framework
in [8] can be lifted to fulfil all properties of the NonlInterferencelntraGraph
locale. Basically, we redefine the hitherto existing Entry and FEzit nodes
as new High and Low nodes, and introduce two new nodes NewEntry and
NewFEzit. Then, we have to lift all functions to operate on this new graph.

3.1 Liftings
3.1.1 The datatypes

datatype 'node LDCFG-node = Node 'node
| NewEntry
| NewExit

type-synonym (‘edge,'node,’var,’val,’ret,"pname) LDCFG-edge =
'node LDCFG-node x (('var,'val,'ret,’pname) edge-kind) x 'node LDCFG-node

3.1.2 Lifting basic definitions using 'edge and 'node

inductive lift-valid-edge :: (‘edge = bool) = ('edge = 'node) = ('edge = 'node)
=
("edge = ('var,’val,'ret,’pname) edge-kind) = 'node = 'node =
("edge,’'node, var, val, 'ret,'pname) LDCFG-edge =
bool
for wvalid-edge::'edge = bool and src::’edge = 'node and trg::'edge = 'node
and knd::'edge = ('var,’val,’ret,’pname) edge-kind and E::'node and X::'node

where [ve-edge:
[valid-edge a; src a # E V trg a # X;
e = (Node (src a),knd a,Node (trg a))]
= lift-valid-edge valid-edge src trg knd E X e

| le-Entry-edge:
e = (NewEntry,(\s. True),/,Node E)
= lift-valid-edge valid-edge src trg knd E X e

| lve-Exit-edge:
e = (Node X,(As. True) /,NewEzit)
= lift-valid-edge valid-edge src trg knd E X e

| lve-Entry-Exit-edge:
e = (NewEntry,(\s. False) ;,NewEit)
= lift-valid-edge valid-edge src trg knd E X e

lemma [simp]:— lift-valid-edge valid-edge src trg knd E X (Node E,et,Node X)
(proof)

fun lift-get-proc :: ('node = 'pname) = "pname = 'node LDCFG-node = "pname
where lift-get-proc get-proc Main (Node n) = get-proc n
| lift-get-proc get-proc Main NewEntry = Main
| lift-get-proc get-proc Main NewEzxit = Main

inductive-set lift-get-return-edges :: ('edge = 'edge set) = (‘edge = bool) =
("edge = 'node) = ('edge = 'node) = (‘edge = ('var,’val,’ret,’'pname) edge-kind)

= (‘edge,’node, var,"val,’ret,"'pname) LDCFG-edge
= (‘edge,’node, var, val,'ret,"pname) LDCFG-edge set
for get-return-edges :: 'edge = 'edge set and valid-edge :: 'edge = bool
and src::'edge = 'node and trg::'edge = 'node
and knd::'edge = ('var,’val,'ret,’'pname) edge-kind
and e::('edge,'node, var, val, 'ret,’pname) LDCFG-edge
where [ift-get-return-edgesI:
[e = (Node (src a),knd a,Node (trg a)); valid-edge a; o' € get-return-edges a;
e’ = (Node (src a’),knd a’,Node (trg a'))]
= ¢’ € lift-get-return-edges get-return-edges valid-edge src trg knd e

3.1.3 Lifting the Def and Use sets

inductive-set lift-Def-set :: ('node = "var set) = 'node = 'node =
"var set = 'var set = ('node LDCFG-node x 'var) set
for Def::('node = 'var set) and E::'node and X::'node
and H:'var set and L::’var set

where [ift-Def-node:
V € Def n = (Node n,V) € lift-Def-set Def E X H L

| lift-Def-High:
V € H = (Node E,V) € lift-Def-set Def E X H L

abbreviation lift-Def :: ('node = "var set) = 'node = 'node =
"var set = 'var set = 'node LDCFG-node = 'var set
where lift-Def Def EX HL n ={V. (n,V) € lift-Def-set Def E X H L}

inductive-set lift-Use-set :: ('node = 'var set) = 'node = 'node =
"var set = 'var set = ('node LDCFG-node x 'var) set
for Use::'node = 'var set and E::'node and X::'node
and H:'var set and L::’var set

where
lift-Use-node:
V € Use n = (Node n,V) € lift-Use-set Use E X H L

| lift-Use-High:
V € H = (Node E,V) € lift-Use-set Use E X H L

| lift- Use-Low:
V € L = (Node X,V) € lift-Use-set Use E X H L

abbreviation lift-Use :: ('node = "var set) = 'node = 'node =
"var set = 'var set = 'node LDCFG-node = 'var set
where lift-Use Use EX HLn={V. (n,V) € lift-Use-set Use E X H L}

fun lift-ParamUses :: ('node = "var set list) = 'node LDCFG-node = 'var set list
where lift-ParamUses ParamUses (Node n) ParamUses n
| lift-ParamUses ParamUses NewEntry = [|
| lift- ParamUses ParamUses NewFEzit = ||

fun lift-ParamDefs :: ('node = "var list) = 'node LDCFG-node = "var list
where lift-ParamDefs ParamDefs (Node n) = ParamDefs n
| lift- ParamDefs ParamDefs NewEntry = []
| lift- ParamDefs ParamDefs NewExzit = [|

3.2 The lifting lemmas
3.2.1 Lifting the CFG locales

abbreviation src :: (‘edge,’node, var,'val,’ret,'pname) LDCFG-edge = 'node LD-
CFG-node
where src a = fst a

abbreviation trg :: ('edge,’node, var,’val,'ret,’pname) LDCFG-edge = 'node LD-
CFG-node
where trg a = snd(snd a)

abbreviation knd :: (‘edge,’node, var,'val,'ret, pname) LDCFG-edge =
("var,’val,'ret,’pname) edge-kind
where knd a = fst(snd a)

lemma lift-CFG:
assumes wf: CFGEzxit-wf sourcenode targetnode kind valid-edge Entry get-proc
get-return-edges procs Main Exit Def Use ParamDefs ParamUses
and pd: Postdomination sourcenode targetnode kind valid-edge Entry get-proc
get-return-edges procs Main Exit
shows CFG src trg knd
(lift-valid-edge valid-edge sourcenode targetnode kind Entry Exit) NewEntry
(lift-get-proc get-proc Main)
(lift-get-return-edges get-return-edges valid-edge sourcenode targetnode kind)
procs Main

(proof)

lemma lift-CFG-wf:
assumes wf: CFGExit-wf sourcenode targetnode kind valid-edge Entry get-proc
get-return-edges procs Main Ezit Def Use ParamDefs ParamUses
and pd: Postdomination sourcenode targetnode kind valid-edge Entry get-proc

get-return-edges procs Main Exit
shows CFG-wf src trg knd
(lift-valid-edge valid-edge sourcenode targetnode kind Entry Exit) NewEntry
(lift-get-proc get-proc Main)
(lift-get-return-edges get-return-edges valid-edge sourcenode targetnode kind)
procs Main (lift-Def Def Entry Exit H L) (lift-Use Use Entry Exit H L)
(lift-ParamDefs ParamDefs) (lift-ParamUses ParamUses)

(proof)

lemma lift-CFGExit:
assumes wf: CFGExit-wf sourcenode targetnode kind valid-edge Entry get-proc
get-return-edges procs Main Exit Def Use ParamDefs ParamUses
and pd: Postdomination sourcenode targetnode kind valid-edge Entry get-proc
get-return-edges procs Main Exit
shows CFGExit src trg knd
(lift-valid-edge valid-edge sourcenode targetnode kind Entry Exit) NewEntry
(lift-get-proc get-proc Main)
(lift-get-return-edges get-return-edges valid-edge sourcenode targetnode kind)
procs Main NewExit

(proof)

lemma lift-CFGEzxit-wf:
assumes wf: CFGExit-wf sourcenode targetnode kind valid-edge Entry get-proc
get-return-edges procs Main Ezit Def Use ParamDefs ParamUses
and pd: Postdomination sourcenode targetnode kind valid-edge Entry get-proc
get-return-edges procs Main Exit
shows CFGEzit-wf src trg knd
(lift-valid-edge valid-edge sourcenode targetnode kind Entry Exit) NewEntry
(lift-get-proc get-proc Main)
(lift-get-return-edges get-return-edges valid-edge sourcenode targetnode kind)
procs Main NewExit (lift-Def Def Entry Exit H L) (lift-Use Use Entry Exit H L)
(lift-ParamDefs ParamDefs) (lift-ParamUses ParamUses)

(proof)

3.2.2 Lifting the SDG

lemma [ift-Postdomination:
assumes wf: CFGEzit-wf sourcenode targetnode kind valid-edge Entry get-proc
get-return-edges procs Main Exit Def Use ParamDefs ParamUses
and pd: Postdomination sourcenode targetnode kind valid-edge Entry get-proc
get-return-edges procs Main Exit
and inner: CFGEzit.inner-node sourcenode targetnode valid-edge Entry Ezit nx
shows Postdomination src trg knd
(lift-valid-edge valid-edge sourcenode targetnode kind Entry Exit) NewEntry
(lift-get-proc get-proc Main)
(lift-get-return-edges get-return-edges valid-edge sourcenode targetnode kind)
procs Main NewFEzit

10

(proof)

lemma lift-SDG:
assumes SDG:SDG sourcenode targetnode kind valid-edge Entry get-proc
get-return-edges procs Main Ezit Def Use ParamDefs ParamUses
and inner: CFGEzit.inner-node sourcenode targetnode valid-edge Entry Ezit nx
shows SDG src trg knd
(lift-valid-edge valid-edge sourcenode targetnode kind Entry Exit) NewEntry
(lift-get-proc get-proc Main)
(lift-get-return-edges get-return-edges valid-edge sourcenode targetnode kind)
procs Main NewExit (lift-Def Def Entry Exit H L) (lift-Use Use Entry Exit H L)
(lift-ParamDefs ParamDefs) (lift-ParamUses ParamUses)

(proof)

3.2.3 Low-deterministic security via the lifted graph

lemma Lift-NonlInterferenceGraph:
fixes valid-edge and sourcenode and targetnode and kind and Entry and Ezit
and get-proc and get-return-edges and procs and Main
and Def and Use and ParamDefs and ParamUses and H and L
defines lve:lve = lift-valid-edge valid-edge sourcenode targetnode kind Entry Fxit
and lget-proc:lget-proc = lift-get-proc get-proc Main
and lget-return-edges:lget-return-edges =
lift-get-return-edges get-return-edges valid-edge sourcenode targetnode kind
and [Def:lDef = lift-Def Def Entry Exit H L
and [Use:lUse = lift-Use Use Entry Fxit H L
and [ParamDefs:IParamDefs = lift-ParamDefs ParamDefs
and [ParamUses:IParamUses = lift-ParamUses ParamUses
assumes SDG:SDG sourcenode targetnode kind valid-edge Entry get-proc
get-return-edges procs Main Ezit Def Use ParamDefs ParamUses
and inner: CFGEzit.inner-node sourcenode targetnode valid-edge Entry Ezit nx
and HN L= {}and HU L = UNIV
shows NonlInterferencelnterGraph src trg knd lve NewEntry lget-proc
lget-return-edges procs Main NewFExit [Def [Use [ParamDefs [ParamUses H L
(Node Entry) (Node Exit)

(proof)

end

References

[1] G.Barthe and L. P. Nieto. Secure information flow for a concurrent lan-
guage with scheduling. Journal of Computer Security, 15(6):647-689,
2007.

[2] G. Barthe, D. Pichardie, and T. Rezk. A certified lightweight non-
interference Java bytecode verifier. In ESOP 2007, volume 4421 of

11

[10]

LNCS, pages 125-140. Springer, 2007.

L. Beringer and M. Hofmann. Secure information flow and program
logics. In Archive of Formal Proofs. http://isa-afp.org/entries/SIFPL.
shtml, November 2008. Formal proof development.

C. Hammer and G. Snelting. Flow-sensitive, context-sensitive, and
object-sensitive information flow control based on program dependence
graphs. International Journal of Information Security, 8(6):399-422,
20009.

F. Kammiiller. Formalizing non-interference for a simple bytecode lan-
guage in Coq. Formal Aspects of Computing, 20(3):259-275, 2008.

A. Sabelfeld and D. Sands. A per model of secure information flow in
sequential programs. Higher Order Symbolic Computation, 14(1):59-91,
2001.

G. Snelting and D. Wasserrab. A correctness proof for the Vol-
pano/Smith security typing system. In G. Klein, T. Nipkow, and
L. Paulson, editors, Archive of Formal Proofs. http://isa-afp.org/
entries/VolpanoSmith.shtml, September 2008. Formal proof develop-
ment.

D. Wasserrab. Towards certified slicing. In G. Klein, T. Nipkow,
and L. Paulson, editors, Archive of Formal Proofs. http://isa-afp.org/
entries/Slicing.shtml, September 2008. Formal proof development.

D. Wasserrab. Backing up slicing: Verifying the interprocedural two-
phase Horwitz-Reps-Binkley slicer. In Archive of Formal Proofs. http://
isa-afp.org/entries/HRB-Slicing.shtml, September 2009. Formal proof
development.

D. Wasserrab, D. Lohner, and G. Snelting. On PDG-based noninterfer-
ence and its modular proof. In Proc. of PLAS ’09, pages 31-44. ACM,
June 2009.

12

http://isa-afp.org/entries/SIFPL.shtml
http://isa-afp.org/entries/SIFPL.shtml
http://isa-afp.org/entries/VolpanoSmith.shtml
http://isa-afp.org/entries/VolpanoSmith.shtml
http://isa-afp.org/entries/Slicing.shtml
http://isa-afp.org/entries/Slicing.shtml
http://isa-afp.org/entries/HRB-Slicing.shtml
http://isa-afp.org/entries/HRB-Slicing.shtml

	Introduction
	HRB Slicing guarantees IFC Noninterference
	Assumptions of this Approach
	Low Equivalence
	The Correctness Proofs

	Framework Graph Lifting for Noninterference
	Liftings
	The datatypes
	Lifting basic definitions using 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 2mu'-2muedge and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 2mu'-2munode
	Lifting the Def and Use sets

	The lifting lemmas
	Lifting the CFG locales
	Lifting the SDG
	Low-deterministic security via the lifted graph

