
Infeasible Paths Elimination by Symbolic
Execution Techniques:

Proof of Correctness and Preservation of Paths

Romain Aissat and Frédéric Voisin and Burkhart Wolff

LRI, Univ Paris-Sud, CNRS, CentraleSupélec,
Université Paris-Saclay, France

aissat@lri.fr, wolff@lri.fr

September 13, 2023

Abstract

TRACER [1] is a tool for verifying safety properties of sequential C
programs. TRACER attempts at building a finite symbolic execution
graph which over-approximates the set of all concrete reachable states
and the set of feasible paths.

We present an abstract framework for TRACER and similar CE-
GAR-like systems [2, 3, 4, 5, 6]. The framework provides 1) a graph-
transformation based method for reducing the feasible paths in control-
flow graphs, 2) a model for symbolic execution, subsumption, predicate
abstraction and invariant generation. In this framework we formally
prove two key properties: correct construction of the symbolic states
and preservation of feasible paths. The framework focuses on core op-
erations, leaving to concrete prototypes to “fit in” heuristics for com-
bining them.

The accompanying paper (published in ITP 2016) can be found at
https://www.lri.fr/~wolff/papers/conf/2016-itp-InfPathsNSE.pdf, also
appeared in[7].

Keywords: TRACER, CEGAR, Symbolic Executions, Feasi-
ble Paths, Control-Flow Graphs, Graph Transformation

1

mailto:"Romain Aissat"<aissat@lri.fr>
mailto:"Burkhart Wolff"<wolff@lri.fr>
https://www.lri.fr/~wolff/papers/conf/2016-itp-InfPathsNSE.pdf

Contents
1 Introduction 5

2 Rooted Graphs 9
2.1 Basic Definitions and Properties 9

2.1.1 Edges . 9
2.1.2 Rooted graphs . 9
2.1.3 Vertices . 9
2.1.4 Basic properties of rooted graphs 10
2.1.5 Out-going edges . 10

2.2 Consistent Edge Sequences, Sub-paths and Paths 11
2.2.1 Consistency of a sequence of edges 11
2.2.2 Sub-paths and paths 11

2.3 Adding Edges . 14
2.4 Trees . 15

3 Arithmetic Expressions 15
3.1 Variables and their domain 15
3.2 Program and symbolic states 16
3.3 The aexp type-synonym . 16
3.4 Variables of an arithmetic expression 17
3.5 Fresh variables . 18

4 Boolean Expressions 18
4.1 Basic definitions . 19

4.1.1 The bexp type-synonym 19
4.1.2 Satisfiability of an expression 19
4.1.3 Entailment . 19
4.1.4 Conjunction . 19

4.2 Properties about the variables of an expression 20
4.2.1 Variables of a conjunction 20
4.2.2 Variables of an equality 21

5 Labels 22

6 Stores 23
6.1 Basic definitions . 23

6.1.1 The store type-synonym 23
6.1.2 Symbolic variables of a store 23
6.1.3 Fresh symbolic variables 24

2

6.2 Consistency . 24
6.3 Adaptation of an arithmetic expression to a store 25
6.4 Adaptation of a boolean expression to a store 28

7 Configurations, Subsumption and Symbolic Execution 31
7.1 Basic Definitions and Properties 31

7.1.1 Configurations . 31
7.1.2 Symbolic variables of a configuration. 32
7.1.3 Freshness. 32
7.1.4 Satisfiability . 32
7.1.5 States of a configuration 32
7.1.6 Subsumption . 33
7.1.7 Semantics of a configuration 34
7.1.8 Abstractions . 34
7.1.9 Entailment . 34

7.2 Symbolic Execution . 35
7.2.1 Definitions of se and se_star 35
7.2.2 Basic properties of se 36
7.2.3 Monotonicity of se . 41
7.2.4 Basic properties of se_star 42
7.2.5 Monotonicity of se_star 43
7.2.6 Existence of successors 43

7.3 Feasibility of a sequence of labels 48
7.4 Concrete execution . 50

8 Labelled Transition Systems 53
8.1 Basic definitions . 53
8.2 Feasible sub-paths and paths 54

9 Graphs equipped with a subsumption relation 55
9.1 Basic definitions and properties 56

9.1.1 Subsumptions and subsumption relations 56
9.2 Well-formed subsumption relation of a graph 57

9.2.1 Well-formed subsumption relations 57
9.2.2 Subsumption relation of a graph 58
9.2.3 Well-formed sub-relations 59

9.3 Consistent Edge Sequences, Sub-paths 59
9.3.1 Consistency in presence of a subsumption relation . . 59
9.3.2 Sub-paths . 62

3

10 Extending rooted graphs with edges 67
10.1 Definition and Basic properties 68
10.2 Extending trees . 69
10.3 Properties of sub-paths in an extension 72

11 Extending subsomption relations 74
11.1 Definition . 74
11.2 Properties of extensions . 75
11.3 Properties of sub-paths in an extension 77

12 Red-Black Graphs 82
12.1 Basic Definitions . 82

12.1.1 The type of Red-Black Graphs 82
12.1.2 Well-formed and finite red-black graphs 84

12.2 Extensions of Red-Black Graphs 84
12.2.1 Extension by symbolic execution 85
12.2.2 Extension by marking 86
12.2.3 Extension by subsumption 87
12.2.4 Extension by abstraction 87
12.2.5 Extension by strengthening 88

12.3 Building Red-Black Graphs using Extensions 88
12.4 Properties of Red-Black-Graphs 89

12.4.1 Invariants of the Red-Black Graphs 89
12.4.2 Simplification lemmas for sub-paths of the red part. . 98

12.5 Relation between red-vertices 98
12.6 Properties about marking. 110
12.7 Fringe of a red-black graph 115

12.7.1 Definition . 116
12.7.2 Fringe of an empty red-part 116
12.7.3 Evolution of the fringe after extension 116

12.8 Red-Black Sub-Paths and Paths 123
12.9 Preservation of feasible paths 127

13 Conclusion 177
13.1 Related Works . 177
13.2 Summary . 177
13.3 Future Work . 177

4

1 Introduction

In this document, we formalize a method for pruning infeasible paths from
control-flow graphs. The method formalized here is a graph-transformation
approach based on symbolic execution. Since we consider programs with
unbounded loops, symbolic execution is augmented by the detection of sub-
sumptions in order to stop unrolling loops eventually. The method follows
the abstract-check-refine paradigm. Abstractions are allowed in order to
force subsumptions. But, since abstraction consists of loosing part of infor-
mation at a given point, abstractions might introduce infeasible paths into
the result. A counterexample guided refinement is used to rule out such
abstractions.
This method takes a CFG G and a user given precondition and builds a
new CFG G′ that still over-approximates the set of feasible paths of G but
contains less infeasible paths. It proceeds basically as follows (see [8] for
more details). First, it starts by building a classical symbolic execution
tree (SET) of the program under analysis. As soon as a cyclic path is
detected, the algorithm searches for a subsumption of the point at the end
of the cycle by one of its ancestors. When doing this, the algorithm is
allowed to abstract the ancestor in order to force the subsumption. When a
subsumption is established, the current symbolic execution halts along that
path and a subsumption link is added to the SET, turning it into a symbolic
execution graph (SEG). When an occurrence of a final location of the original
CFG is reached, we check if abstractions that might have been performed
along the current path did not introduce certain infeasible paths in the new
representation. If no refinement is needed, symbolic execution resumes at
the next pending point. Otherwise, the analysis restarts at the point where
the “faulty” abstraction occurred, but now this point is strengthened with
a safeguard condition: future abstractions occurring at this point will have
to entail the safeguard condition, preventing the faulty abstraction to occur
again. These safeguard conditions could be user-provided but are typically
the result of a weakest precondition calculus. When the analysis is over, the
SEG is turned into a new CFG.
Our motivation is in random testing of imperative programs. There exist
efficient algorithms that draw in a statistically uniform way long paths from
very large graphs [9]. If the probability of drawing a feasible path from such
a transformed CFG was high, this would lead to an efficient statistical struc-
tural white-box testing method. With testing in mind, a crucial property
that our approach must have, besides being correct, is to preserve the set

5

of feasible paths of the original CFG. Our goal with this formalization is
to establish correctness of the approach and the fact that it preserves the
feasible paths of the original CFG, that is:

1. for every path in the new CFG, there exists a path with the same trace
in the original CFG,

2. for every feasible path of the original CFG, there exists a path with
the same trace in the new CFG.

We consider that our method is made of five graph-transformation operators
and a set of heuristics. These five operators consist in:

1. adding an arc to the SEG as the result of a symbolic execution step
in the original CFG,

2. adding a subsumption link to the SEG,

3. abstracting a node of the SEG,

4. marking a node as unsatisfiable,

5. labelling a node with a safeguard condition.

Heuristics control, for example, the order in which these operators are ap-
plied, which of the possible abstractions is selected, etc. These heuristics
cannot interfer with the correctness of the approach or the preservation of
feasible paths since they simply combine the five kernel transformations. In
the following, we model the different data structures that our method per-
forms on and formalize our five operators but completely skip the heuristics
aspects of the approach. Thus, our results extend to a large family of algo-
rithms that add specific heuristics in their goal to over-approximate the set
of feasible paths of a CFG.
Due to the nature of the problem, symbolic execution in presence of un-
bounded loops, such algorithms might not terminate. In practice, this is han-
dled using some kind of timeout condition. When such condition triggers,
the SEG is only a partial unfolding of the original CFG. Thus, the resulting
CFG cannot contains all feasible paths of the original one. In this situation,
the only way to preserve the set of feasible paths is to “connect” the SEG to
the original CFG. The SEG is the currently known over-approximating set
of prefixes of feasible paths and the original CFG represents the unknown
part of the set of feasible paths.

6

In the following, we use an adequate data structure that we call a red-black
graph. Its black part is the original CFG: it represents the unknown part
of the set of feasible paths and is never modified during the analysis. The
red part represents the SEG: its vertices are occurrences of the vertices of
the black part. Then, we define the five operators that will modify the
red part as described previously. We only consider red-black graphs built
using these five operators, starting from a red-black graph whose red part
is empty. Paths of such structures are called red-black paths. Such paths
start in the red part and might end in the black part: they are made of
a red feasible prefix and a black prefix on which nothing is known about
feasibility. Finally, we prove that, given any red-black graph built using our
five operators and modulo a renaming of vertices, the set of red-black paths
is a subset of the set of black paths and that the set of feasible black paths
is a subset of the set of red-black paths.
In the following, we proceed as follows (see Figure 1 for the detailed hier-
archy). First, we formalize all the aspects related to symbolic execution,
subsumption and abstraction (Aexp.thy, Bexp.thy, Store.thy, Conf.thy,
Labels.thy, SymExec.thy). Then, we formalize graphs and their paths
(Graph.thy). Using extensible records allows us to model Labeled Tran-
sition Systems from graphs (Lts.thy). Since we are interested in paths
going through subsumption links, we also define these notions for graphs
equipped with subsumption relations (SubRel.thy) and prove a number of
theorems describing how the set of paths of such graphs evolve when an arc
(ArcExt.thy) or a subsumption link (SubExt.thy) is added. Finally, we
formalize the notion of red-black graphs and prove the two properties we
are mainly interested in (RB.thy).

7

Main

Aexp

Bexp

Labels Store

Conf

SymExec

LTS

RB

ArcExt SubExt

SubRel

Graph

Figure 1: The hierarchy of theories.

8

theory Graph
imports Main
begin

2 Rooted Graphs

In this section, we model rooted graphs and their sub-paths and paths. We
give a number of lemmas that will help proofs in the following theories, but
that are very specific to our approach.

First, we will need the following simple lemma, which is not graph related,
but that will prove useful when we will want to exhibit the last element of
a non-empty sequence.
lemma neq-Nil-conv2 :

xs 6= [] = (∃ x xs ′. xs = xs ′ @ [x])
by (induct xs rule : rev-induct, auto)

2.1 Basic Definitions and Properties
2.1.1 Edges

We model edges by a record ′v edge which is parameterized by the type ′v of
vertices. This allows us to represent the red part of red-black graphs as well
as the black part (i.e. LTS) using extensible records (more on this later).
Edges have two components, src and tgt, which respectively give their source
and target.
record ′v edge =

src :: ′v
tgt :: ′v

2.1.2 Rooted graphs

We model rooted graphs by the record ′v rgraph. It consists of two compo-
nents: its root and its set of edges.
record ′v rgraph =

root :: ′v
edges :: ′v edge set

2.1.3 Vertices

The set of vertices of a rooted graph is made of its root and the endpoints
of its edges. Isabelle/HOL provides extensible records, i.e. it is possible to

9

define records using existing records by adding components. The following
definition suppose that g is of type (′v, ′x) rgraph-scheme, i.e. an object that
has at least all the components of a ′v rgraph. The second type parameter ′x
stands for the hypothetical type parameters that such an object could have
in addition of the type of vertices ′v. Using (′v, ′x) rgraph-scheme instead
of ′v rgraph allows to reuse the following definition(s) for all type of objects
that have at least the components of a rooted graph. For example, we will
reuse the following definition to characterize the set of locations of a LTS
(see LTS.thy).
definition vertices ::
(′v, ′x) rgraph-scheme ⇒ ′v set

where
vertices g = {root g} ∪ src ‘edges g ∪ tgt ‘ edges g

2.1.4 Basic properties of rooted graphs

In the following, we will be only interested in loop free rooted graphs and
in what we call well formed rooted graphs. A well formed rooted graph is
rooted graph that has an empty set of edges or, if this is not the case, has
at least one edge whose source is its root.
abbreviation loop-free ::
(′v, ′x) rgraph-scheme ⇒ bool

where
loop-free g ≡ ∀ e ∈ edges g. src e 6= tgt e

abbreviation wf-rgraph ::
(′v, ′x) rgraph-scheme ⇒ bool

where
wf-rgraph g ≡ root g ∈ src ‘ edges g = (edges g 6= {})

Even if we are only interested in this kind of rooted graphs, we will not
assume the graphs are loop free or well formed when this is not needed.

2.1.5 Out-going edges

This abbreviation will prove handy in the following.
abbreviation out-edges ::
(′v, ′x) rgraph-scheme ⇒ ′v ⇒ ′v edge set

where
out-edges g v ≡ {e ∈ edges g. src e = v}

10

2.2 Consistent Edge Sequences, Sub-paths and Paths
2.2.1 Consistency of a sequence of edges

A sequence of edges es is consistent from vertex v1 to another vertex v2 if
v1 = v2 if it is empty, or, if it is not empty:

• v1 is the source of its first element, and

• v2 is the target of its last element, and

• the target of each of its elements is the source of its follower.

fun ces ::
′v ⇒ ′v edge list ⇒ ′v ⇒ bool

where
ces v1 [] v2 = (v1 = v2)
| ces v1 (e#es) v2 = (src e = v1 ∧ ces (tgt e) es v2)

2.2.2 Sub-paths and paths

Let g be a rooted graph, es a sequence of edges and v1 and v2 two vertices.
es is a sub-path in g from v1 to v2 if:

• it is consistent from v1 to v2,

• v1 is a vertex of g,

• all of its elements are edges of g.

The second constraint is needed in the case of the empty sequence: without
it, the empty sequence would be a sub-path of g even when v1 is not one of
its vertices.
definition subpath ::
(′v, ′x) rgraph-scheme ⇒ ′v ⇒ ′v edge list ⇒ ′v ⇒ bool

where
subpath g v1 es v2 ≡ ces v1 es v2 ∧ v1 ∈ vertices g ∧ set es ⊆ edges g

Let es be a sub-path of g leading from v1 to v2. v1 and v2 are both vertices
of g.
lemma fst-of-sp-is-vert :

assumes subpath g v1 es v2
shows v1 ∈ vertices g

using assms by (simp add : subpath-def)

11

lemma lst-of-sp-is-vert :
assumes subpath g v1 es v2
shows v2 ∈ vertices g

using assms by (induction es arbitrary : v1 , auto simp add: subpath-def ver-
tices-def)

The empty sequence of edges is a sub-path from v1 to v2 if and only if they
are equal and belong to the graph.

The empty sequence is a sub-path from the root of any rooted graph.
lemma

subpath g (root g) [] (root g)
by (auto simp add : vertices-def subpath-def)

In the following, we will not always be interested in the final vertex of a
sub-path. We will use the abbreviation subpath-from whenever this final
vertex has no importance, and subpath otherwise.
abbreviation subpath-from ::
(′v, ′x) rgraph-scheme ⇒ ′v ⇒ ′v edge list ⇒ bool

where
subpath-from g v es ≡ ∃ v ′. subpath g v es v ′

abbreviation subpaths-from ::
(′v, ′x) rgraph-scheme ⇒ ′v ⇒ ′v edge list set

where
subpaths-from g v ≡ {es. subpath-from g v es}

A path is a sub-path starting at the root of the graph.
abbreviation path ::
(′v, ′x) rgraph-scheme ⇒ ′v edge list ⇒ ′v ⇒ bool

where
path g es v ≡ subpath g (root g) es v

abbreviation paths ::
(′a, ′b) rgraph-scheme ⇒ ′a edge list set

where
paths g ≡ {es. ∃ v. path g es v}

The empty sequence is a path of any rooted graph.
lemma
[] ∈ paths g

12

by (auto simp add : subpath-def vertices-def)

Some useful simplification lemmas for subpath.
lemma sp-one :

subpath g v1 [e] v2 = (src e = v1 ∧ e ∈ edges g ∧ tgt e = v2)
by (auto simp add : subpath-def vertices-def)

lemma sp-Cons :
subpath g v1 (e#es) v2 = (src e = v1 ∧ e ∈ edges g ∧ subpath g (tgt e) es v2)

by (auto simp add : subpath-def vertices-def)

lemma sp-append-one :
subpath g v1 (es@[e]) v2 = (subpath g v1 es (src e) ∧ e ∈ edges g ∧ tgt e = v2)

by (induct es arbitrary : v1 , auto simp add : subpath-def vertices-def)

lemma sp-append :
subpath g v1 (es1@es2) v2 = (∃ v. subpath g v1 es1 v ∧ subpath g v es2 v2)

by (induct es1 arbitrary : v1)
((simp add : subpath-def , fast),
(auto simp add : fst-of-sp-is-vert sp-Cons))

A sub-path leads to a unique vertex.
lemma sp-same-src-imp-same-tgt :

assumes subpath g v es v1
assumes subpath g v es v2
shows v1 = v2

using assms
by (induct es arbitrary : v)

(auto simp add : sp-Cons subpath-def vertices-def)

In the following, we are interested in the evolution of the set of sub-paths of
our symbolic execution graph after symbolic execution of a transition from
the LTS representation of the program under analysis. Symbolic execution
of a transition results in adding to the graph a new edge whose source is
already a vertex of this graph, but not its target. The following lemma
describes sub-paths ending in the target of such an edge.

Let e be an edge whose target has not out-going edges. A sub-path es
containing e ends by e and this occurrence of e is unique along es.
lemma sp-through-de-decomp :

assumes out-edges g (tgt e) = {}

13

assumes subpath g v1 es v2
assumes e ∈ set es
shows ∃ es ′. es = es ′ @ [e] ∧ e /∈ set es ′

using assms(2 ,3)
proof (induction es arbitrary : v1)

case Nil thus ?case by simp
next

case (Cons e ′ es)

hence e = e ′ ∨ (e 6= e ′ ∧ e ∈ set es) by auto

thus ?case
proof (elim disjE , goal-cases)

case 1 thus ?case
using assms(1) Cons
by (rule-tac ?x=[] in exI) (cases es, auto simp add: sp-Cons)

next
case 2 thus ?case
using assms(1) Cons(1)[of tgt e ′] Cons(2)
by (auto simp add : sp-Cons)

qed
qed

2.3 Adding Edges

This definition and the following lemma are here mainly to ease the defini-
tions and proofs in the next theories.
abbreviation add-edge ::
(′v, ′x) rgraph-scheme ⇒ ′v edge ⇒ (′v, ′x) rgraph-scheme

where
add-edge g e ≡ rgraph.edges-update (λ edges. edges ∪ {e}) g

Let es be a sub-path from a vertex other than the target of e in the graph
obtained from g by the addition of edge e. Moreover, assume that the target
of e is not a vertex of g. Then e is an element of es.
lemma sp-ends-in-tgt-imp-mem :

assumes tgt e /∈ vertices g
assumes v 6= tgt e
assumes subpath (add-edge g e) v es (tgt e)
shows e ∈ set es

proof −
have es 6= [] using assms(2 ,3) by (auto simp add : subpath-def)

then obtain e ′ es ′ where es = es ′ @ [e ′] by (simp add : neq-Nil-conv2) blast

14

thus ?thesis using assms(1 ,3) by (auto simp add : sp-append-one vertices-def
image-def)
qed

2.4 Trees

We define trees as rooted-graphs in which there exists a unique path leading
to each vertex.
definition is-tree ::
(′v, ′x) rgraph-scheme ⇒ bool

where
is-tree g ≡ ∀ l ∈ Graph.vertices g. ∃ ! p. Graph.path g p l

The empty graph is thus a tree.
lemma empty-graph-is-tree :

assumes edges g = {}
shows is-tree g

using assms by (auto simp add : is-tree-def subpath-def vertices-def)

end
theory Aexp
imports Main
begin

3 Arithmetic Expressions

In this section, we model arithmetic expressions as total functions from
valuations of program variables to values. This modeling does not take
into consideration the syntactic aspects of arithmetic expressions. Thus,
our modeling holds for any operator. However, some classical notions, like
the set of variables occurring in a given expression for example, must be
rethought and defined accordingly.

3.1 Variables and their domain

Note: in the following theories, we distinguish the set of program variables
and the set of symbolic variables. A number of types we define are parame-
terized by a type of variables. For example, we make a distinction between
expressions (arithmetic or boolean) over program variables and expressions

15

over symbolic variables. This distinction eases some parts of the following
formalization.

Symbolic variables. A symbolic variable is an indexed version of a pro-
gram variable. In the following type-synonym, we consider that the abstract
type ′v represent the set of program variables. By set of program variables,
we do not mean the set of variables of a given program, but the set of vari-
ables of all possible programs. This distinction justifies some of the modeling
choices done later. Within Isabelle/HOL, nothing is known about this set.
The set of program variables is infinite, though it is not needed to make
this assumption. On the other hand, the set of symbolic variables is infinite,
independently of the fact that the set of program variables is finite or not.
type-synonym ′v symvar = ′v × nat

lemma
¬ finite (UNIV :: ′v symvar set)

by (simp add : finite-prod)

The previous lemma has no name and thus cannot be referenced in the
following. Indeed, it is of no use for proving the properties we are interested
in. In the following, we will give other unnamed lemmas when we think they
might help the reader to understand the ideas behind our modeling choices.

Domain of variables. We call D the domain of program and symbolic
variables. In the following, we suppose that D is the set of integers.

3.2 Program and symbolic states

A state is a total function giving values in D to variables. The latter are
represented by elements of type ′v. Unlike in the ′v symvar type-synonym,
here the type ′v can stand for program variables as well as symbolic variables.
States over program variables are called program states, and states over
symbolic variables are called symbolic states.
type-synonym (′v, ′d) state = ′v ⇒ ′d

3.3 The aexp type-synonym

Arithmetic (and boolean, see Bexp.thy) expressions are represented by their
semantics, i.e. total functions giving values in D to states. This way of

16

representing expressions has the benefit that it is not necessary to define
the syntax of terms (and formulae) appearing in program statements and
path predicates.
type-synonym (′v, ′d) aexp = (′v, ′d) state ⇒ ′d

In order to represent expressions over program variables as well as sym-
bolic variables, the type synonym aexp is parameterized by the type of vari-
ables. Arithmetic and boolean expressions over program variables are used
to express program statements. Arithmetic and boolean expressions over
symbolic variables are used to represent the constraints occurring in path
predicates during symbolic execution.

3.4 Variables of an arithmetic expression

Expressions being represented by total functions, one can not say that a
given variable is occurring in a given expression. We define the set of vari-
ables of an expression as the set of variables that can actually have an
influence on the value associated by an expression to a state. For example,
the set of variables of the expression λσ. σ x − σ y is {x, y}, provided that
x and y are distinct variables, and the empty set otherwise. In the second
case, this expression would evaluate to 0 for any state σ. Similarly, an ex-
pression like λσ. σ x ∗ 0 is considered as having no variable as if a static
evaluation of the multiplication had occurred.
definition vars ::
(′v, ′d) aexp ⇒ ′v set

where
vars e = {v. ∃ σ val. e (σ(v := val)) 6= e σ}

lemma vars-example-1 :
fixes e::(′v,integer) aexp
assumes e = (λ σ. σ x − σ y)
assumes x 6= y
shows vars e = {x,y}

unfolding set-eq-iff
proof (intro allI iffI)

fix v assume v ∈ vars e

then obtain σ val
where e (σ(v := val)) 6= e σ
unfolding vars-def by blast

17

thus v ∈ {x, y}
using assms by (case-tac v = x, simp, (case-tac v = y, simp+))

next
fix v assume v ∈ {x,y}

thus v ∈ vars e
using assms
by (auto simp add : vars-def)

(rule-tac ?x=λ v. 0 in exI , rule-tac ?x=1 in exI , simp)+
qed

lemma vars-example-2 :
fixes e::(′v,integer) aexp
assumes e = (λ σ. σ x − σ y)
assumes x = y
shows vars e = {}

using assms by (auto simp add : vars-def)

3.5 Fresh variables

Our notion of symbolic execution suppose static single assignment form. In
order to symbolically execute an assignment, we require the existence of a
fresh symbolic variable for the configuration from which symbolic execution
is performed. We define here the notion of freshness of a variable for an
arithmetic expression.

A variable is fresh for an expression if does not belong to its set of variables.
abbreviation fresh ::

′v ⇒ (′v, ′d) aexp ⇒ bool
where

fresh v e ≡ v /∈ vars e

end
theory Bexp
imports Aexp
begin

4 Boolean Expressions

We proceed as in Aexp.thy.

18

4.1 Basic definitions
4.1.1 The bexp type-synonym

We represent boolean expressions, their set of variables and the notion of
freshness of a variable in the same way than for arithmetic expressions.
type-synonym (′v, ′d) bexp = (′v, ′d) state ⇒ bool

definition vars ::
(′v, ′d) bexp ⇒ ′v set

where
vars e = {v. ∃ σ val. e (σ(v := val)) 6= e σ}

abbreviation fresh ::
′v ⇒ (′v, ′d) bexp ⇒ bool

where
fresh v e ≡ v /∈ vars e

4.1.2 Satisfiability of an expression

A boolean expression e is satisfiable if there exists a state σ such that e σ
is true.
definition sat ::
(′v, ′d) bexp ⇒ bool

where
sat e = (∃ σ. e σ)

4.1.3 Entailment

A boolean expression ϕ entails another boolean expression ψ if all states
making ϕ true also make ψ true.
definition entails ::
(′v, ′d) bexp ⇒ (′v, ′d) bexp ⇒ bool (infixl |=B 55)

where
ϕ |=B ψ ≡ (∀ σ. ϕ σ −→ ψ σ)

4.1.4 Conjunction

In the following, path predicates are represented by sets of boolean expres-
sions. We define the conjunction of a set of boolean expressions E as the

19

expression that associates true to a state σ if, for all elements e of E, e
associates true to σ.
definition conjunct ::
(′v, ′d) bexp set ⇒ (′v, ′d) bexp

where
conjunct E ≡ (λ σ. ∀ e ∈ E . e σ)

4.2 Properties about the variables of an expression

As said earlier, our definition of symbolic execution requires the existence
of a fresh symbolic variable in the case of an assignment. In the follow-
ing, a number of proof relies on this fact. We will show the existence of
such variables assuming the set of symbolic variables already in use is finite
and show that symbolic execution preserves the finiteness of this set, under
certain conditions. This in turn requires a number of lemmas about the
finiteness of boolean expressions. More precisely, when symbolic execution
goes through a guard or an assignment, it conjuncts a new expression to
the path predicate. In the case of an assignment, this new expression is an
equality linking the new symbolic variable associated to the defined program
variable to its symbolic value. In the following, we prove that:

1. the conjunction of a finite set of expressions whose sets of variables
are finite has a finite set of variables,

2. the equality of two arithmetic expressions whose sets of variables are
finite has a finite set of variables.

4.2.1 Variables of a conjunction

The set of variables of the conjunction of two expressions is a subset of the
union of the sets of variables of the two sub-expressions. As a consequence,
the set of variables of the conjunction of a finite set of expressions whose
sets of variables are finite is also finite.
lemma vars-of-conj :

vars (λ σ. e1 σ ∧ e2 σ) ⊆ vars e1 ∪ vars e2
(is vars ?e ⊆ vars e1 ∪ vars e2)
unfolding subset-iff
proof (intro allI impI)

fix v assume v ∈ vars ?e

20

then obtain σ val
where ?e (σ (v := val)) 6= ?e σ
unfolding vars-def by blast

hence e1 (σ (v := val)) 6= e1 σ ∨ e2 (σ (v := val)) 6= e2 σ
by auto

thus v ∈ vars e1 ∪ vars e2 unfolding vars-def by blast
qed

lemma finite-conj :
assumes finite E
assumes ∀ e ∈ E . finite (vars e)
shows finite (vars (conjunct E))

using assms
proof (induct rule : finite-induct, goal-cases)

case 1 thus ?case by (simp add : vars-def conjunct-def)
next

case (2 e E)

thus ?case
using vars-of-conj[of e conjunct E]
by (rule-tac rev-finite-subset, auto simp add : conjunct-def)

qed

4.2.2 Variables of an equality

We proceed analogously for the equality of two arithmetic expressions.
lemma vars-of-eq-a :

shows vars (λ σ. e1 σ = e2 σ) ⊆ Aexp.vars e1 ∪ Aexp.vars e2
(is vars ?e ⊆ Aexp.vars e1 ∪ Aexp.vars e2)
unfolding subset-iff
proof (intro allI impI)

fix v assume v ∈ vars ?e

then obtain σ val where ?e (σ (v := val)) 6= ?e σ
unfolding vars-def by blast

hence e1 (σ (v := val)) 6= e1 σ ∨ e2 (σ (v := val)) 6= e2 σ
by auto

thus v ∈ Aexp.vars e1 ∪ Aexp.vars e2

21

unfolding Aexp.vars-def by blast
qed

lemma finite-vars-of-a-eq :
assumes finite (Aexp.vars e1)
assumes finite (Aexp.vars e2)
shows finite (vars (λ σ. e1 σ = e2 σ))

using assms vars-of-eq-a[of e1 e2] by (rule-tac rev-finite-subset, auto)

end
theory Labels
imports Aexp Bexp
begin

5 Labels

In the following, we model programs by control flow graphs where edges
(rather than vertices) are labelled with either assignments or with the con-
dition associated with a branch of a conditional statement. We put a label
on every edge : statements that do not modify the program state (like jump,
break, etc) are labelled by a Skip.
datatype (′v, ′d) label = Skip | Assume (′v, ′d) bexp | Assign ′v (′v, ′d) aexp

We say that a label is finite if the set of variables of its sub-expression is
finite (Skip labels are thus considered finite).
definition finite-label ::
(′v, ′d) label ⇒ bool

where
finite-label l ≡ case l of

Assume e ⇒ finite (Bexp.vars e)
| Assign - e ⇒ finite (Aexp.vars e)
| - ⇒ True

abbreviation finite-labels ::
(′v, ′d) label list ⇒ bool

where
finite-labels ls ≡ (∀ l ∈ set ls. finite-label l)

end
theory Store
imports Aexp Bexp
begin

22

6 Stores

In this section, we introduce the type of stores, which we use to link program
variables with their symbolic counterpart during symbolic execution. We
define the notion of consistency of a pair of program and symbolic states
w.r.t. a store. This notion will prove helpful when defining various con-
cepts and proving facts related to subsumption (see Conf.thy). Finally, we
model substitutions that will be performed during symbolic execution (see
SymExec.thy) by two operations: adapt-aexp and adapt-bexp.

6.1 Basic definitions
6.1.1 The store type-synonym

Symbolic execution performs over configurations (see Conf.thy), which are
pairs made of:

• a store mapping program variables to symbolic variables,

• a set of boolean expressions which records constraints over symbolic
variables and whose conjunction is the actual path predicate of the
configuration.

We define stores as total functions from program variables to indexes.
type-synonym ′a store = ′a ⇒ nat

6.1.2 Symbolic variables of a store

The symbolic variable associated to a program variable v by a store s is the
couple (v, s v).
definition symvar ::

′a ⇒ ′a store ⇒ ′a symvar
where

symvar v s ≡ (v,s v)

The function associating symbolic variables to program variables obtained
from s is injective.
lemma

inj (λ v. symvar v s)
by (auto simp add : inj-on-def symvar-def)

The sets of symbolic variables of a store is the image set of the function
symvar.

23

definition symvars ::
′a store ⇒ ′a symvar set

where
symvars s = (λ v. symvar v s) ‘ (UNIV :: ′a set)

6.1.3 Fresh symbolic variables

A symbolic variable is said to be fresh for a store if it is not a member of its
set of symbolic variables.
definition fresh-symvar ::

′v symvar ⇒ ′v store ⇒ bool
where
fresh-symvar sv s = (sv /∈ symvars s)

6.2 Consistency

We say that a program state σ and a symbolic state σsym are consistent with
respect to a store s if, for each variable v, the value associated by σ to v is
equal to the value associated by σsym to the symbolic variable associated to
v by s.
definition consistent ::
(′v, ′d) state ⇒ (′v symvar , ′d) state ⇒ ′v store ⇒ bool

where
consistent σ σsym s ≡ (∀ v. σsym (symvar v s) = σ v)

There always exists a couple of consistent states for a given store.
lemma
∃ σ σsym. consistent σ σsym s

by (auto simp add : consistent-def)

Moreover, given a store and a program (resp. symbolic) state, one can
always build a symbolic (resp. program) state such that the two states are
coherent wrt. the store. The four following lemmas show how to build the
second state given the first one.
lemma consistent-eq1 :

consistent σ σsym s = (∀ sv ∈ symvars s. σsym sv = σ (fst sv))
by (auto simp add : consistent-def symvars-def symvar-def)

lemma consistent-eq2 :
consistent σ σsym store = (σ = (λ v. σsym (symvar v store)))

by (auto simp add : consistent-def)

24

lemma consistentI1 :
consistent σ (λ sv. σ (fst sv)) store

using consistent-eq1 by fast

lemma consistentI2 :
consistent (λ v. σsym (symvar v store)) σsym store

using consistent-eq2 by fast

6.3 Adaptation of an arithmetic expression to a store

Suppose that e is a term representing an arithmetic expression over program
variables and let s be a store. We call adaptation of e to s the term obtained
by substituting occurrences of program variables in e by their symbolic
counterpart given by s. Since we model arithmetic expressions by total
functions and not terms, we define the adaptation of such expressions as
follows.
definition adapt-aexp ::
(′v, ′d) aexp ⇒ ′v store ⇒ (′v symvar , ′d) aexp

where
adapt-aexp e s = (λ σsym. e (λ v. σsym (symvar v s)))

Given an arithmetic expression e, a program state σ and a symbolic state
σsym coherent with a store s, the value associated to σsym by the adaptation
of e to s is the same than the value associated by e to σ. This confirms the
fact that adapt-aexp models the act of substituting occurrences of program
variables by their symbolic counterparts in a term over program variables.
lemma adapt-aexp-is-subst :

assumes consistent σ σsym s
shows (adapt-aexp e s) σsym = e σ

using assms by (simp add : consistent-eq2 adapt-aexp-def)

As said earlier, we will later need to prove that symbolic execution preserves
finiteness of the set of symbolic variables in use, which requires that the
adaptation of an arithmetic expression to a store preserves finiteness of the
set of variables of expressions. We proceed as follows.

First, we show that if v is a variable of an expression e, then the symbolic
variable associated to v by a store is a variable of the adaptation of e to this
store.

25

lemma var-imp-symvar-var :
assumes v ∈ Aexp.vars e
shows symvar v s ∈ Aexp.vars (adapt-aexp e s) (is ?sv ∈ Aexp.vars ?e ′)

proof −
obtain σ val where e (σ (v := val)) 6= e σ
using assms unfolding Aexp.vars-def by blast

moreover
have (λva. ((λsv. σ (fst sv))(?sv := val)) (symvar va s)) = (σ(v := val))
by (auto simp add : symvar-def)

ultimately
show ?thesis
unfolding Aexp.vars-def mem-Collect-eq
using consistentI1 [of σ s]

consistentI2 [of (λsv. σ (fst sv))(?sv:= val) s]
by (rule-tac ?x=λsv. σ (fst sv) in exI , rule-tac ?x=val in exI)

(simp add : adapt-aexp-is-subst)
qed

On the other hand, if sv is a symbolic variable in the adaptation of an
expression to a store, then the program variable it represents is a variable
of this expression. This requires to prove that the set of variables of the
adaptation of an expression to a store is a subset of the symbolic variables
of this store.
lemma symvars-of-adapt-aexp :

Aexp.vars (adapt-aexp e s) ⊆ symvars s (is Aexp.vars ?e ′ ⊆ symvars s)
unfolding subset-iff
proof (intro allI impI)

fix sv

assume sv ∈ Aexp.vars ?e ′

then obtain σsym val
where ?e ′ (σsym (sv := val)) 6= ?e ′ σsym

by (simp add : Aexp.vars-def , blast)

hence (λ x. (σsym (sv := val)) (symvar x s)) 6= (λ x. σsym (symvar x s))
proof (intro notI)

assume (λx. (σsym(sv := val)) (symvar x s)) = (λx. σsym (symvar x s))

hence ?e ′ (σsym (sv := val)) = ?e ′ σsym

by (simp add : adapt-aexp-def)

26

thus False
using ‹?e ′ (σsym (sv := val)) 6= ?e ′ σsym›
by (elim notE)

qed

then obtain v
where (σsym (sv := val)) (symvar v s) 6= σsym (symvar v s)
by blast

hence sv = symvar v s by (case-tac sv = symvar v s, simp-all)

thus sv ∈ symvars s by (simp add : symvars-def)
qed

lemma symvar-var-imp-var :
assumes sv ∈ Aexp.vars (adapt-aexp e s) (is sv ∈ Aexp.vars ?e ′)
shows fst sv ∈ Aexp.vars e

proof −
obtain v where sv = (v, s v)
using assms(1) symvars-of-adapt-aexp
unfolding symvars-def symvar-def
by blast

obtain σsym val where ?e ′ (σsym (sv := val)) 6= ?e ′ σsym

using assms unfolding Aexp.vars-def by blast

moreover
have (λ v. (σsym (sv := val)) (symvar v s)) = (λ v. σsym (symvar v s)) (v :=

val)
using ‹sv = (v, s v)› by (auto simp add : symvar-def)

ultimately
show ?thesis
using ‹sv = (v, s v)›

consistentI2 [of σsym s]
consistentI2 [of σsym (sv := val) s]

unfolding Aexp.vars-def
by (simp add : adapt-aexp-is-subst) blast

qed

Thus, we have that the set of variables of the adaptation of an expression
to a store is the set of symbolic variables associated by this store to the
variables of this expression.

27

lemma adapt-aexp-vars :
Aexp.vars (adapt-aexp e s) = (λ v. symvar v s) ‘ Aexp.vars e

unfolding set-eq-iff image-def mem-Collect-eq Bex-def
proof (intro allI iffI , goal-cases)

case (1 sv)

moreover
have sv = symvar (fst sv) s
using 1 symvars-of-adapt-aexp
by (force simp add: symvar-def symvars-def)

ultimately
show ?case using symvar-var-imp-var by blast

next
case (2 sv) thus ?case using var-imp-symvar-var by fast

qed

The fact that the adaptation of an arithmetic expression to a store preserves
finiteness of the set of variables trivially follows the previous lemma.
lemma finite-vars-imp-finite-adapt-a :

assumes finite (Aexp.vars e)
shows finite (Aexp.vars (adapt-aexp e s))

unfolding adapt-aexp-vars using assms by auto

6.4 Adaptation of a boolean expression to a store

We proceed analogously for the adaptation of boolean expressions to a store.
definition adapt-bexp ::
(′v, ′d) bexp ⇒ ′v store ⇒ (′v symvar , ′d) bexp

where
adapt-bexp e s = (λ σ. e (λ x. σ (symvar x s)))

lemma adapt-bexp-is-subst :
assumes consistent σ σsym s
shows (adapt-bexp e s) σsym = e σ

using assms by (simp add : consistent-eq2 adapt-bexp-def)

lemma var-imp-symvar-var2 :
assumes v ∈ Bexp.vars e
shows symvar v s ∈ Bexp.vars (adapt-bexp e s) (is ?sv ∈ Bexp.vars ?e ′)

proof −
obtain σ val where A : e (σ (v := val)) 6= e σ

28

using assms unfolding Bexp.vars-def by blast

moreover
have (λva. ((λsv. σ (fst sv))(?sv := val)) (symvar va s)) = (σ(v := val))
by (auto simp add : symvar-def)

ultimately
show ?thesis
unfolding Bexp.vars-def mem-Collect-eq
using consistentI1 [of σ s]

consistentI2 [of (λsv. σ (fst sv))(?sv:= val) s]
by (rule-tac ?x=λsv. σ (fst sv) in exI , rule-tac ?x=val in exI)

(simp add : adapt-bexp-is-subst)
qed

lemma symvars-of-adapt-bexp :
Bexp.vars (adapt-bexp e s) ⊆ symvars s (is Bexp.vars ?e ′ ⊆ ?SV)

proof
fix sv
assume sv ∈ Bexp.vars ?e ′

then obtain σsym val
where ?e ′ (σsym (sv := val)) 6= ?e ′ σsym

by (simp add : Bexp.vars-def , blast)

hence (λ x. (σsym (sv := val)) (symvar x s)) 6= (λ x. σsym (symvar x s))
by (auto simp add : adapt-bexp-def)

hence ∃ v. (σsym (sv := val)) (symvar v s) 6= σsym (symvar v s) by force

then obtain v
where (σsym (sv := val)) (symvar v s) 6= σsym (symvar v s)
by blast

hence sv = symvar v s by (case-tac sv = symvar v s, simp-all)

thus sv ∈ symvars s by (simp add : symvars-def)
qed

lemma symvar-var-imp-var2 :
assumes sv ∈ Bexp.vars (adapt-bexp e s) (is sv ∈ Bexp.vars ?e ′)
shows fst sv ∈ Bexp.vars e

proof −

29

obtain v where sv = (v, s v)
using assms symvars-of-adapt-bexp
unfolding symvars-def symvar-def
by blast

obtain σsym val where ?e ′ (σsym (sv := val)) 6= ?e ′ σsym

using assms unfolding vars-def by blast

moreover
have (λ v. (σsym (sv := val)) (symvar v s)) = (λ v. σsym (symvar v s)) (v :=

val)
using ‹sv = (v, s v)› by (auto simp add : symvar-def)

ultimately
show ?thesis
using ‹sv = (v, s v)›

consistentI2 [of σsym s]
consistentI2 [of σsym (sv := val) s]

unfolding vars-def by (simp add : adapt-bexp-is-subst) blast
qed

lemma adapt-bexp-vars :
Bexp.vars (adapt-bexp e s) = (λ v. symvar v s) ‘ Bexp.vars e
(is Bexp.vars ?e ′ = ?R)

unfolding set-eq-iff image-def mem-Collect-eq Bex-def
proof (intro allI iffI , goal-cases)

case (1 sv)

hence fst sv ∈ vars e by (rule symvar-var-imp-var2)

moreover
have sv = symvar (fst sv) s
using 1 symvars-of-adapt-bexp
by (force simp add: symvar-def symvars-def)

ultimately
show ?case by blast

next
case (2 sv)

then obtain v where v ∈ vars e sv = symvar v s by blast

thus ?case using var-imp-symvar-var2 by simp
qed

30

lemma finite-vars-imp-finite-adapt-b :
assumes finite (Bexp.vars e)
shows finite (Bexp.vars (adapt-bexp e s))

unfolding adapt-bexp-vars using assms by auto

end
theory Conf
imports Store
begin

7 Configurations, Subsumption and Symbolic Ex-
ecution

In this section, we first introduce most elements related to our modeling
of program behaviors. We first define the type of configurations, on which
symbolic execution performs, and define the various concepts we will rely
upon in the following and state and prove properties about them. Then,
we introduce symbolic execution. After giving a number of basic properties
about symbolic execution, we prove that symbolic execution is monotonic
with respect to the subsumption relation, which is a crucial point in order
to prove the main theorems of RB.thy. Moreover, Isabelle/HOL requires
the actual formalization of a number of facts one would not worry when
implementing or writing a sketch proof. Here, we will need to prove that
there exist successors of the configurations on which symbolic execution is
performed. Although this seems quite obvious in practice, proofs of such
facts will be needed a number of times in the following theories. Finally, we
define the feasibility of a sequence of labels.

7.1 Basic Definitions and Properties
7.1.1 Configurations

Configurations are pairs (store, pred) where:

• store is a store mapping program variable to symbolic variables,

• pred is a set of boolean expressions over program variables whose con-
junction is the actual path predicate.

record (′v, ′d) conf =

31

store :: ′v store
pred :: (′v symvar , ′d) bexp set

7.1.2 Symbolic variables of a configuration.

The set of symbolic variables of a configuration is the union of the set of
symbolic variables of its store component with the set of variables of its path
predicate.
definition symvars ::
(′v, ′d) conf ⇒ ′v symvar set

where
symvars c = Store.symvars (store c) ∪ Bexp.vars (conjunct (pred c))

7.1.3 Freshness.

A symbolic variable is said to be fresh for a configuration if it is not an
element of its set of symbolic variables.
definition fresh-symvar ::

′v symvar ⇒ (′v, ′d) conf ⇒ bool
where

fresh-symvar sv c = (sv /∈ symvars c)

7.1.4 Satisfiability

A configuration is said to be satisfiable if its path predicate is satisfiable.
abbreviation sat ::
(′v, ′d) conf ⇒ bool

where
sat c ≡ Bexp.sat (conjunct (pred c))

7.1.5 States of a configuration

Configurations represent sets of program states. The set of program states
represented by a configuration, or simply its set of program states, is defined
as the set of program states such that consistent symbolic states wrt. the
store component of the configuration satisfies its path predicate.
definition states ::
(′v, ′d) conf ⇒ (′v, ′d) state set

where
states c = {σ. ∃ σsym. consistent σ σsym (store c) ∧ conjunct (pred c) σsym}

A configuration is satisfiable if and only if its set of states is not empty.

32

lemma sat-eq :
sat c = (states c 6= {})

using consistentI2 by (simp add : sat-def states-def) fast

7.1.6 Subsumption

A configuration c2 is subsumed by a configuration c1 if the set of states of
c2 is a subset of the set of states of c1.
definition subsums ::
(′v, ′d) conf ⇒ (′v, ′d) conf ⇒ bool (infixl v 55)

where
c2 v c1 ≡ (states c2 ⊆ states c1)

The subsumption relation is reflexive and transitive.
lemma subsums-refl :

c v c
by (simp only : subsums-def)

lemma subsums-trans :
c1 v c2 =⇒ c2 v c3 =⇒ c1 v c3

unfolding subsums-def by simp

However, it is not anti-symmetric. This is due to the fact that different con-
figurations can have the same sets of program states. However, the following
lemma trivially follows the definition of subsumption.
lemma

assumes c1 v c2
assumes c2 v c1
shows states c1 = states c2

using assms by (simp add : subsums-def)

A satisfiable configuration can only be subsumed by satisfiable configura-
tions.
lemma sat-sub-by-sat :

assumes sat c2
and c2 v c1
shows sat c1

using assms sat-eq[of c1] sat-eq[of c2]
by (simp add : subsums-def) fast

On the other hand, an unsatisfiable configuration can only subsume unsat-
isfiable configurations.

33

lemma unsat-subs-unsat :
assumes ¬ sat c1
assumes c2 v c1
shows ¬ sat c2

using assms sat-eq[of c1] sat-eq[of c2]
by (simp add : subsums-def)

7.1.7 Semantics of a configuration

The semantics of a configuration c is a boolean expression e over program
states associating true to a program state if it is a state of c. In practice,
given two configurations c1 and c2, it is not possible to enumerate their sets
of states to establish the inclusion in order to detect a subsumption. We
detect the subsumption of the former by the latter by asking a constraint
solver if sem c1 entails sem c2. The following theorem shows that the way
we detect subsumption in practice is correct.
definition sem ::
(′v, ′d) conf ⇒ (′v, ′d) bexp

where
sem c = (λ σ. σ ∈ states c)

theorem
c2 v c1 ←→ sem c2 |=B sem c1

unfolding subsums-def sem-def subset-iff entails-def by (rule refl)

7.1.8 Abstractions

Abstracting a configuration consists in removing a given expression from
its pred component, i.e. weakening its path predicate. This definition of
abstraction motivates the fact that the pred component of configurations has
been defined as a set of boolean expressions instead of a boolean expression.
definition abstract ::
(′v, ′d) conf ⇒ (′v, ′d) conf ⇒ bool

where
abstract c ca ≡ c v ca

7.1.9 Entailment

A configuration entails a boolean expression if its semantics entails this
expression. This is equivalent to say that this expression holds for any state
of this configuration.

34

abbreviation entails ::
(′v, ′d) conf ⇒ (′v, ′d) bexp ⇒ bool (infixl |=c 55)

where
c |=c ϕ ≡ sem c |=B ϕ

lemma
sem c |=B e ←→ (∀ σ ∈ states c. e σ)

by (auto simp add : states-def sem-def entails-def)

end
theory SymExec
imports Conf Labels
begin

7.2 Symbolic Execution

We model symbolic execution by an inductive predicate se which takes two
configurations c1 and c2 and a label l and evaluates to true if and only
if c2 is a possible result of the symbolic execution of l from c1. We say
that c2 is a possible result because, when l is of the form Assign v e, we
associate a fresh symbolic variable to the program variable v, but we do no
specify how this fresh variable is chosen (see the two assumptions in the
third case). We could have model se (and se-star) by a function producing
the new configuration, instead of using inductive predicates. However this
would require to provide the two said assumptions in each lemma involving
se, which is not necessary using a predicate. Modeling symbolic execution
in this way has the advantage that it simplifies the following proofs while
not requiring additional lemmas.

7.2.1 Definitions of se and se_star

Symbolic execution of Skip does not change the configuration from which it
is performed.

When the label is of the form Assume e, the adaptation of e to the store is
added to the pred component.

In the case of an assignment, the store component is updated such that
it now maps a fresh symbolic variable to the assigned program variable.
A constraint relating this program variable with its new symbolic value is
added to the pred component.

35

The second assumption in the third case requires that there exists at least
one fresh symbolic variable for c. In the following, a number of theorems
are needed to show that such variables exist for the configurations on which
symbolic execution is performed.
inductive se ::
(′v, ′d) conf ⇒ (′v, ′d) label ⇒ (′v, ′d) conf ⇒ bool

where
se c Skip c

| se c (Assume e) (| store = store c, pred = pred c ∪ {adapt-bexp e (store c)} |)

| fst sv = v =⇒
fresh-symvar sv c =⇒
se c (Assign v e) (| store = (store c)(v := snd sv),

pred = pred c ∪ {(λ σ. σ sv = (adapt-aexp e (store c)) σ)} |)

In the same spirit, we extend symbolic execution to sequence of labels.
inductive se-star :: (′v, ′d) conf ⇒ (′v, ′d) label list ⇒ (′v, ′d) conf ⇒ bool where

se-star c [] c
| se c1 l c2 =⇒ se-star c2 ls c3 =⇒ se-star c1 (l # ls) c3

7.2.2 Basic properties of se

If symbolic execution yields a satisfiable configuration, then it has been
performed from a satisfiable configuration.
lemma se-sat-imp-sat :

assumes se c l c ′

assumes sat c ′

shows sat c
using assms by cases (auto simp add : sat-def conjunct-def)

If symbolic execution is performed from an unsatisfiable configuration, then
it will yield an unsatisfiable configuration.
lemma unsat-imp-se-unsat :

assumes se c l c ′

assumes ¬ sat c
shows ¬ sat c ′

using assms by cases (simp add : sat-def conjunct-def)+

Given two configurations c and c ′ and a label l such that se c l c ′, the three
following lemmas express c ′ as a function of c.
lemma [simp] :

36

se c Skip c ′ = (c ′ = c)
by (simp add : se.simps)

lemma se-Assume-eq :
se c (Assume e) c ′ = (c ′ = (| store = store c, pred = pred c ∪ {adapt-bexp e

(store c)} |))
by (simp add : se.simps)

lemma se-Assign-eq :
se c (Assign v e) c ′ =
(∃ sv. fresh-symvar sv c
∧ fst sv = v
∧ c ′ = (| store = (store c)(v := snd sv),

pred = insert (λσ. σ sv = adapt-aexp e (store c) σ) (pred c)|))
by (simp only : se.simps, blast)

Given two configurations c and c ′ and a label l such that se c l c ′, the two
following lemmas express the path predicate of c ′ as a function of the path
predicate of c when l models a guard or an assignment.
lemma path-pred-of-se-Assume :

assumes se c (Assume e) c ′

shows conjunct (pred c ′) =
(λ σ. conjunct (pred c) σ ∧ adapt-bexp e (store c) σ)

using assms se-Assume-eq[of c e c ′]
by (auto simp add : conjunct-def)

lemma path-pred-of-se-Assign :
assumes se c (Assign v e) c ′

shows ∃ sv. conjunct (pred c ′) =
(λ σ. conjunct (pred c) σ ∧ σ sv = adapt-aexp e (store c) σ)

using assms se-Assign-eq[of c v e c ′]
by (fastforce simp add : conjunct-def)

Let c and c ′ be two configurations such that c ′ is obtained from c by symbolic
execution of a label of the form Assume e. The states of c ′ are the states
of c that satisfy e. This theorem will help prove that symbolic execution is
monotonic wrt. subsumption.
theorem states-of-se-assume :

assumes se c (Assume e) c ′

shows states c ′ = {σ ∈ states c. e σ}
using assms se-Assume-eq[of c e c ′]

37

by (auto simp add : adapt-bexp-is-subst states-def conjunct-def)

Let c and c ′ be two configurations such that c ′ is obtained from c by symbolic
execution of a label of the form Assign v e. We want to express the set of
states of c ′ as a function of the set of states of c. Since the proof requires a
number of details, we split into two sub lemmas.

First, we show that if σ ′ is a state of c ′, then it has been obtain from an
adequate update of a state σ of c.
lemma states-of-se-assign1 :

assumes se c (Assign v e) c ′

assumes σ ′ ∈ states c ′

shows ∃ σ ∈ states c. σ ′ = (σ (v := e σ))
proof −

obtain σsym

where 1 : consistent σ ′ σsym (store c ′)
and 2 : conjunct (pred c ′) σsym

using assms(2) unfolding states-def by blast

then obtain σ
where 3 : consistent σ σsym (store c)
using consistentI2 by blast

moreover
have conjunct (pred c) σsym

using assms(1) 2 by (auto simp add : se-Assign-eq conjunct-def)

ultimately
have σ ∈ states c by (simp add : states-def) blast

moreover
have σ ′ = σ (v := e σ)
proof −

have σ ′ v = e σ
proof −

have σ ′ v = σsym (symvar v (store c ′))
using 1 by (simp add : consistent-def)

moreover
have σsym (symvar v (store c ′)) = (adapt-aexp e (store c)) σsym

using assms(1) 2 se-Assign-eq[of c v e c ′]
by (force simp add : symvar-def conjunct-def)

moreover
have (adapt-aexp e (store c)) σsym = e σ

38

using 3 by (rule adapt-aexp-is-subst)

ultimately
show ?thesis by simp

qed

moreover
have ∀ x. x 6= v −→ σ ′ x = σ x
proof (intro allI impI)

fix x

assume x 6= v

moreover
hence σ ′ x = σsym (symvar x (store c))
using assms(1) 1 unfolding consistent-def symvar-def
by (drule-tac ?x=x in spec) (auto simp add : se-Assign-eq)

moreover
have σsym (symvar x (store c)) = σ x
using 3 by (auto simp add : consistent-def)

ultimately
show σ ′ x = σ x by simp

qed

ultimately
show ?thesis by auto

qed

ultimately
show ?thesis by (simp add : states-def) blast

qed

Then, we show that if there exists a state σ of c from which σ ′ is obtained
by an adequate update, then σ ′ is a state of c ′.
lemma states-of-se-assign2 :

assumes se c (Assign v e) c ′

assumes ∃ σ ∈ states c. σ ′ = σ (v := e σ)
shows σ ′ ∈ states c ′

proof −
obtain σ
where σ ∈ states c
and σ ′ = σ (v := e σ)
using assms(2) by blast

39

then obtain σsym

where 1 : consistent σ σsym (store c)
and 2 : conjunct (pred c) σsym

unfolding states-def by blast

obtain sv
where 3 : fresh-symvar sv c
and 4 : fst sv = v
and 5 : c ′ = (| store = (store c)(v := snd sv),

pred = insert (λσ. σ sv = adapt-aexp e (store c) σ) (pred c) |)
using assms(1) se-Assign-eq[of c v e c ′] by blast

define σsym
′ where σsym

′ = σsym (sv := e σ)

have consistent σ ′ σsym
′ (store c ′)

using ‹σ ′ = σ (v := e σ)› 1 4 5
by (auto simp add : symvar-def consistent-def σsym

′-def)

moreover
have conjunct (pred c ′) σsym

′

proof −
have conjunct (pred c) σsym

′

using 2 3 by (simp add : fresh-symvar-def symvars-def Bexp.vars-def σsym
′-def)

moreover
have σsym

′ sv = (adapt-aexp e (store c)) σsym
′

proof −
have Aexp.fresh sv (adapt-aexp e (store c))
using 3 symvars-of-adapt-aexp[of e store c]
by (auto simp add : fresh-symvar-def symvars-def)

thus ?thesis
using adapt-aexp-is-subst[OF 1 , of e]
by (simp add : Aexp.vars-def σsym

′-def)
qed

ultimately
show ?thesis using 5 by (simp add: conjunct-def)

qed

ultimately
show ?thesis unfolding states-def by blast

qed

40

The following theorem expressing the set of states of c ′ as a function of the
set of states of c trivially follows the two preceding lemmas.
theorem states-of-se-assign :

assumes se c (Assign v e) c ′

shows states c ′ = {σ (v := e σ) | σ. σ ∈ states c}
using assms states-of-se-assign1 states-of-se-assign2 by fast

7.2.3 Monotonicity of se

We are now ready to prove that symbolic execution is monotonic with respect
to subsumption.
theorem se-mono-for-sub :

assumes se c1 l c1 ′

assumes se c2 l c2 ′

assumes c2 v c1
shows c2 ′ v c1 ′

using assms
by ((cases l),

(simp add :),
(simp add : states-of-se-assume subsums-def , blast),
(simp add : states-of-se-assign subsums-def , blast))

A stronger version of the previous theorem: symbolic execution is monotonic
with respect to states equality.
theorem se-mono-for-states-eq :

assumes states c1 = states c2
assumes se c1 l c1 ′

assumes se c2 l c2 ′

shows states c2 ′ = states c1 ′

using assms(1)
se-mono-for-sub[OF assms(2 ,3)]
se-mono-for-sub[OF assms(3 ,2)]

by (simp add : subsums-def)

The previous theorem confirms the fact that the way the fresh symbolic
variable is chosen in the case of symbolic execution of an assignment does
not matter as long as the new symbolic variable is indeed fresh, which is
more precisely expressed by the following lemma.
lemma se-succs-states :

assumes se c l c1
assumes se c l c2
shows states c1 = states c2

using assms se-mono-for-states-eq by fast

41

7.2.4 Basic properties of se_star

Some simplification lemmas for se-star.
lemma [simp] :

se-star c [] c ′ = (c ′ = c)
by (subst se-star .simps) auto

lemma se-star-Cons :
se-star c1 (l # ls) c2 = (∃ c. se c1 l c ∧ se-star c ls c2)

by (subst (1) se-star .simps) blast

lemma se-star-one :
se-star c1 [l] c2 = se c1 l c2

using se-star-Cons by force

lemma se-star-append :
se-star c1 (ls1 @ ls2) c2 = (∃ c. se-star c1 ls1 c ∧ se-star c ls2 c2)

by (induct ls1 arbitrary : c1 , simp-all add : se-star-Cons) blast

lemma se-star-append-one :
se-star c1 (ls @ [l]) c2 = (∃ c. se-star c1 ls c ∧ se c l c2)

unfolding se-star-append se-star-one by (rule refl)

Symbolic execution of a sequence of labels from an unsatisfiable configura-
tion yields an unsatisfiable configuration.
lemma unsat-imp-se-star-unsat :

assumes se-star c ls c ′

assumes ¬ sat c
shows ¬ sat c ′

using assms
by (induct ls arbitrary : c)

(simp, force simp add : se-star-Cons unsat-imp-se-unsat)

If symbolic execution yields a satisfiable configuration, then it has been
performed from a satisfiable configuration.
lemma se-star-sat-imp-sat :

assumes se-star c ls c ′

assumes sat c ′

shows sat c
using assms

42

by (induct ls arbitrary : c)
(simp, force simp add : se-star-Cons se-sat-imp-sat)

7.2.5 Monotonicity of se_star

Monotonicity of se extends to se-star.
theorem se-star-mono-for-sub :

assumes se-star c1 ls c1 ′

assumes se-star c2 ls c2 ′

assumes c2 v c1
shows c2 ′ v c1 ′

using assms
by (induct ls arbitrary : c1 c2)

(auto simp add : se-star-Cons se-mono-for-sub)

lemma se-star-mono-for-states-eq :
assumes states c1 = states c2
assumes se-star c1 ls c1 ′

assumes se-star c2 ls c2 ′

shows states c2 ′ = states c1 ′

using assms(1)
se-star-mono-for-sub[OF assms(2 ,3)]
se-star-mono-for-sub[OF assms(3 ,2)]

by (simp add : subsums-def)

lemma se-star-succs-states :
assumes se-star c ls c1
assumes se-star c ls c2
shows states c1 = states c2

using assms se-star-mono-for-states-eq by fast

7.2.6 Existence of successors

Here, we are interested in proving that, under certain assumptions, there will
always exist fresh symbolic variables for configurations on which symbolic
execution is performed. Thus symbolic execution cannot “block” when an
assignment is met. For symbolic execution not to block in this case, the
configuration from which it is performed must be such that there exist fresh
symbolic variables for each program variable. Such configurations are said
to be updatable.
definition updatable ::

43

(′v, ′d) conf ⇒ bool
where

updatable c ≡ ∀ v. ∃ sv. fst sv = v ∧ fresh-symvar sv c

The following lemma shows that being updatable is a sufficient condition
for a configuration in order for se not to block.
lemma updatable-imp-ex-se-suc :

assumes updatable c
shows ∃ c ′. se c l c ′

using assms
by (cases l, simp-all add : se-Assume-eq se-Assign-eq updatable-def)

A sufficient condition for a configuration to be updatable is that its path
predicate has a finite number of variables. The store component has no
influence here, since its set of symbolic variables is always a strict subset of
the set of symbolic variables (i.e. there always exist fresh symbolic variables
for a store). To establish this proof, we need the following intermediate
lemma.

We want to prove that if the set of symbolic variables of the path predicate
of a configuration is finite, then we can find a fresh symbolic variable for it.
However, we express this with a more general lemma. We show that given
a finite set of symbolic variables SV and a program variable v such that
there exist symbolic variables in SV that are indexed versions of v, then
there exists a symbolic variable for v whose index is greater or equal than
the index of any other symbolic variable for v in SV.
lemma finite-symvars-imp-ex-greatest-symvar :

fixes SV :: ′a symvar set
assumes finite SV
assumes ∃ sv ∈ SV . fst sv = v
shows ∃ sv ∈ {sv ∈ SV . fst sv = v}.

∀ sv ′ ∈ {sv ∈ SV . fst sv = v}. snd sv ′ ≤ snd sv
proof −

have finite (snd ‘ {sv ∈ SV . fst sv = v})
and snd ‘ {sv ∈ SV . fst sv = v} 6= {}
using assms by auto

moreover
have ∀ (E ::nat set). finite E ∧ E 6= {} −→ (∃ n ∈ E . ∀ m ∈ E . m ≤ n)
by (intro allI impI , induct-tac rule : finite-ne-induct)

(simp+, force)

ultimately

44

obtain n
where n ∈ snd ‘ {sv ∈ SV . fst sv = v}
and ∀ m ∈ snd ‘ {sv ∈ SV . fst sv = v}. m ≤ n
by blast

moreover
then obtain sv
where sv ∈ {sv ∈ SV . fst sv = v} and snd sv = n
by blast

ultimately
show ?thesis by blast

qed

Thus, a configuration whose path predicate has a finite set of variables is
updatable. For example, for any program variable v, the symbolic variable
(v,i+1) is fresh for this configuration, where i is the greater index associated
to v among the symbolic variables of this configuration. In practice, this is
how we choose the fresh symbolic variable.
lemma finite-pred-imp-se-updatable :

assumes finite (Bexp.vars (conjunct (pred c))) (is finite ?V)
shows updatable c

unfolding updatable-def
proof (intro allI)

fix v

show ∃ sv. fst sv = v ∧ fresh-symvar sv c
proof (case-tac ∃ sv ∈ ?V . fst sv = v, goal-cases)

case 1

then obtain max-sv
where max-sv ∈ ?V
and fst max-sv = v
and max : ∀ sv ′∈{sv ∈ ?V . fst sv = v}. snd sv ′ ≤ snd max-sv
using assms finite-symvars-imp-ex-greatest-symvar [of ?V v]
by blast

show ?thesis
using max
unfolding fresh-symvar-def symvars-def Store.symvars-def symvar-def
proof (case-tac snd max-sv ≤ store c v, goal-cases)

case 1 thus ?case by (rule-tac ?x=(v,Suc (store c v)) in exI) auto
next

case 2 thus ?case by (rule-tac ?x=(v,Suc (snd max-sv)) in exI) auto

45

qed
next

case 2 thus ?thesis
by (rule-tac ?x=(v, Suc (store c v)) in exI)
(auto simp add : fresh-symvar-def symvars-def Store.symvars-def symvar-def)

qed
qed

The path predicate of a configuration whose pred component is finite and
whose elements all have finite sets of variables has a finite set of variables.
Thus, this configuration is updatable, and it has a successor by symbolic
execution of any label. The following lemma starts from these two assump-
tions and use the previous ones in order to directly get to the conclusion
(this will ease some of the following proofs).
lemma finite-imp-ex-se-succ :

assumes finite (pred c)
assumes ∀ e ∈ pred c. finite (Bexp.vars e)
shows ∃ c ′. se c l c ′

using finite-pred-imp-se-updatable[OF finite-conj[OF assms(1 ,2)]]
by (rule updatable-imp-ex-se-suc)

For symbolic execution not to block along a sequence of labels, it is not
sufficient for the first configuration to be updatable. It must also be such
that (all) its successors are updatable. A sufficient condition for this is
that the set of variables of its path predicate is finite and that the sub-
expression of the label that is executed also has a finite set of variables.
Under these assumptions, symbolic execution preserves finiteness of the pred
component and of the sets of variables of its elements. Thus, successors se
are also updatable because they also have a path predicate with a finite
set of variables. In the following, to prove this we need two intermediate
lemmas:

• one stating that symbolic execution perserves the finiteness of the set
of variables of the elements of the pred component, provided that the
sub expression of the label that is executed has a finite set of variables,

• one stating that symbolic execution preserves the finiteness of the pred
component.

lemma se-preserves-finiteness1 :
assumes finite-label l
assumes se c l c ′

assumes ∀ e ∈ pred c. finite (Bexp.vars e)

46

shows ∀ e ∈ pred c ′. finite (Bexp.vars e)
proof (cases l)

case Skip thus ?thesis using assms by (simp add :)
next

case (Assume e) thus ?thesis
using assms finite-vars-imp-finite-adapt-b
by (auto simp add : se-Assume-eq finite-label-def)

next
case (Assign v e)

then obtain sv
where fresh-symvar sv c
and fst sv = v
and c ′ = (| store = (store c)(v := snd sv),

pred = insert (λσ. σ sv = adapt-aexp e (store c) σ) (pred c)|)
using assms(2) se-Assign-eq[of c v e c ′] by blast

moreover
have finite (Bexp.vars (λσ. σ sv = adapt-aexp e (store c) σ))
proof −

have finite (Aexp.vars (λσ. σ sv))
by (auto simp add : Aexp.vars-def)

moreover
have finite (Aexp.vars (adapt-aexp e (store c)))
using assms(1) Assign finite-vars-imp-finite-adapt-a
by (auto simp add : finite-label-def)

ultimately
show ?thesis using finite-vars-of-a-eq by auto

qed

ultimately
show ?thesis using assms by auto

qed

lemma se-preserves-finiteness2 :
assumes se c l c ′

assumes finite (pred c)
shows finite (pred c ′)

using assms
by (cases l)

(auto simp add : se-Assume-eq se-Assign-eq)

47

We are now ready to prove that a sufficient condition for symbolic execution
not to block along a sequence of labels is that the pred component of the
“initial configuration” is finite, as well as the set of variables of its elements,
and that the sub-expression of the label that is executed also has a finite set
of variables.
lemma finite-imp-ex-se-star-succ :

assumes finite (pred c)
assumes ∀ e ∈ pred c. finite (Bexp.vars e)
assumes finite-labels ls
shows ∃ c ′. se-star c ls c ′

using assms
proof (induct ls arbitrary : c, goal-cases)

case 1 show ?case using se-star .simps by blast
next

case (2 l ls c)

then obtain c1 where se c l c1 using finite-imp-ex-se-succ by blast

hence finite (pred c1)
and ∀ e ∈ pred c1 . finite (Bexp.vars e)
using 2 se-preserves-finiteness1 se-preserves-finiteness2 by fastforce+

moreover
have finite-labels ls using 2 by simp

ultimately
obtain c2 where se-star c1 ls c2 using 2 by blast

thus ?case using ‹se c l c1 › using se-star-Cons by blast
qed

7.3 Feasibility of a sequence of labels

A sequence of labels ls is said to be feasible from a configuration c if there
exists a satisfiable configuration c ′ obtained by symbolic execution of ls from
c.
definition feasible :: (′v, ′d) conf ⇒ (′v, ′d) label list ⇒ bool where

feasible c ls ≡ (∃ c ′. se-star c ls c ′ ∧ sat c ′)

A simplification lemma for the case where ls is not empty.
lemma feasible-Cons :

feasible c (l#ls) = (∃ c ′. se c l c ′ ∧ sat c ′ ∧ feasible c ′ ls)
proof (intro iffI , goal-cases)

48

case 1 thus ?case
using se-star-sat-imp-sat by (simp add : feasible-def se-star-Cons) blast

next
case 2 thus ?case
unfolding feasible-def se-star-Cons by blast

qed

The following theorem is very important for the rest of this formalization.
It states that, given two configurations c1 and c2 such that c1 subsums c2,
then any feasible sequence of labels from c2 is also feasible from c1. This is a
crucial point in order to prove that our approach preserves the set of feasible
paths of the original LTS. This proof requires a number of assumptions
about the finiteness of the sequence of labels, of the path predicates of the
two configurations and of their states of variables. Those assumptions are
needed in order to show that there exist successors of both configurations
by symbolic execution of the sequence of labels.
lemma subsums-imp-feasible :

assumes finite-labels ls
assumes finite (pred c1)
assumes finite (pred c2)
assumes ∀ e ∈ pred c1 . finite (Bexp.vars e)
assumes ∀ e ∈ pred c2 . finite (Bexp.vars e)
assumes c2 v c1
assumes feasible c2 ls
shows feasible c1 ls

using assms
proof (induct ls arbitrary : c1 c2)

case Nil thus ?case by (simp add : feasible-def sat-sub-by-sat)
next

case (Cons l ls c1 c2)

then obtain c2 ′ where se c2 l c2 ′

and sat c2 ′

and feasible c2 ′ ls
using feasible-Cons by blast

obtain c1 ′ where se c1 l c1 ′

using finite-conj[OF Cons(3 ,5)]
finite-pred-imp-se-updatable
updatable-imp-ex-se-suc

by blast

moreover
hence sat c1 ′

49

using se-mono-for-sub[OF - ‹se c2 l c2 ′› Cons(7)]
sat-sub-by-sat[OF ‹sat c2 ′›]

by fast

moreover
have feasible c1 ′ ls
proof −

have finite-label l
and finite-labels ls using Cons(2) by simp-all

have finite (pred c1 ′)
by (rule se-preserves-finiteness2 [OF ‹se c1 l c1 ′› Cons(3)])

moreover
have finite (pred c2 ′)
by (rule se-preserves-finiteness2 [OF ‹se c2 l c2 ′› Cons(4)])

moreover
have ∀ e∈pred c1 ′. finite (Bexp.vars e)
by (rule se-preserves-finiteness1 [OF ‹finite-label l› ‹se c1 l c1 ′› Cons(5)])

moreover
have ∀ e∈pred c2 ′. finite (Bexp.vars e)
by (rule se-preserves-finiteness1 [OF ‹finite-label l› ‹se c2 l c2 ′› Cons(6)])

moreover
have c2 ′ v c1 ′

by (rule se-mono-for-sub[OF ‹se c1 l c1 ′› ‹se c2 l c2 ′› Cons(7)])

ultimately
show ?thesis using Cons(1) ‹feasible c2 ′ ls› ‹finite-labels ls› by fast

qed

ultimately
show ?case by (auto simp add : feasible-Cons)

qed

7.4 Concrete execution

We illustrate our notion of symbolic execution by relating it with ce, an
inductive predicate describing concrete execution. Unlike symbolic execu-
tion, concrete execution describes program behavior given program states,
i.e. concrete valuations for program variables. The goal of this section is

50

to show that our notion of symbolic execution is correct, that is: given two
configurations such that one results from the symbolic execution of a se-
quence of labels from the other, then the resulting configuration represents
the set of states that are reachable by concrete execution from the states of
the original configuration.
inductive ce ::
(′v, ′d) state ⇒ (′v, ′d) label ⇒ (′v, ′d) state ⇒ bool

where
ce σ Skip σ
| e σ =⇒ ce σ (Assume e) σ
| ce σ (Assign v e) (σ(v := e σ))

inductive ce-star :: (′v, ′d) state ⇒ (′v, ′d) label list ⇒ (′v, ′d) state ⇒ bool where
ce-star c [] c
| ce c1 l c2 =⇒ ce-star c2 ls c3 =⇒ ce-star c1 (l # ls) c3

lemma [simp] :
ce σ Skip σ ′ = (σ ′ = σ)

by (auto simp add : ce.simps)

lemma [simp] :
ce σ (Assume e) σ ′ = (σ ′ = σ ∧ e σ)

by (auto simp add : ce.simps)

lemma [simp] :
ce σ (Assign v e) σ ′ = (σ ′ = σ(v := e σ))

by (auto simp add : ce.simps)

lemma se-as-ce :
assumes se c l c ′

shows states c ′ = {σ ′. ∃ σ ∈ states c. ce σ l σ ′}
using assms
by (cases l)

(auto simp add: states-of-se-assume states-of-se-assign)

lemma [simp] :
ce-star σ [] σ ′ = (σ ′ = σ)

by (subst ce-star .simps) simp

lemma ce-star-Cons :
ce-star σ1 (l # ls) σ2 = (∃ σ. ce σ1 l σ ∧ ce-star σ ls σ2)

by (subst (1) ce-star .simps) blast

51

lemma se-star-as-ce-star :
assumes se-star c ls c ′

shows states c ′ = {σ ′. ∃ σ ∈ states c. ce-star σ ls σ ′}
using assms
proof (induct ls arbitrary : c)

case Nil thus ?case by simp
next

case (Cons l ls c)

then obtain c ′′ where se c l c ′′

and se-star c ′′ ls c ′

using se-star-Cons by blast

show ?case
unfolding set-eq-iff Bex-def mem-Collect-eq
proof (intro allI iffI , goal-cases)

case (1 σ ′)

then obtain σ ′′ where σ ′′ ∈ states c ′′

and ce-star σ ′′ ls σ ′

using Cons(1) ‹se-star c ′′ ls c ′› by blast

moreover
then obtain σ where σ ∈ states c

and ce σ l σ ′′

using ‹se c l c ′′› se-as-ce by blast

ultimately
show ?case by (simp add: ce-star-Cons) blast

next
case (2 σ ′)

then obtain σ where σ ∈ states c
and ce-star σ (l#ls) σ ′

by blast

moreover
then obtain σ ′′ where ce σ l σ ′′

and ce-star σ ′′ ls σ ′

using ce-star-Cons by blast

ultimately
show ?case
using Cons(1) ‹se-star c ′′ ls c ′› ‹se c l c ′′› by (auto simp add : se-as-ce)

qed

52

qed

end
theory LTS
imports Graph Labels SymExec
begin

8 Labelled Transition Systems

This theory is motivated by the need of an abstract representation of control-
flow graphs (CFG). It is a refinement of the prior theory of (unlabelled)
graphs and proceeds by decorating their edges with labels expressing as-
sumptions and effects (assignments) on an underlying state. In this theory,
we define LTSs and introduce a number of abbreviations that will ease stat-
ing and proving lemmas in the following theories.

8.1 Basic definitions

The labelled transition systems (LTS) we are heading for are constructed
by extending rgraph’s by a labelling function of the edges, using Isabelle
extensible records.
record (′vert, ′var , ′d) lts = ′vert rgraph +

labelling :: ′vert edge ⇒ (′var , ′d) label

We call initial location the root of the underlying graph.
abbreviation init ::
(′vert, ′var , ′d, ′x) lts-scheme ⇒ ′vert
where

init lts ≡ root lts

The set of labels of a LTS is the image set of its labelling function over its
set of edges.
abbreviation labels ::
(′vert, ′var , ′d, ′x) lts-scheme ⇒ (′var , ′d) label set

where
labels lts ≡ labelling lts ‘ edges lts

In the following, we will sometimes need to use the notion of trace of a given
sequence of edges with respect to the transition relation of an LTS.
abbreviation trace ::

′vert edge list ⇒ (′vert edge ⇒ (′var , ′d) label) ⇒ (′var , ′d) label list

53

where
trace as L ≡ map L as

We are interested in a special form of Labelled Transition Systems; the prior
record definition is too liberal. We will constrain it to well-formed labelled
transition systems.

We first define an application that, given an LTS, returns its underlying
graph.
abbreviation graph ::
(′vert, ′var , ′d, ′x) lts-scheme ⇒ ′vert rgraph

where
graph lts ≡ rgraph.truncate lts

An LTS is well-formed if its underlying rgraph is well-formed.
abbreviation wf-lts ::
(′vert, ′var , ′d, ′x) lts-scheme ⇒ bool

where
wf-lts lts ≡ wf-rgraph (graph lts)

In the following theories, we will sometimes need to account for the fact that
we consider LTSs with a finite number of edges.
abbreviation finite-lts ::
(′vert, ′var , ′d, ′x) lts-scheme ⇒ bool

where
finite-lts lts ≡ ∀ l ∈ range (labelling lts). finite-label l

8.2 Feasible sub-paths and paths

A sequence of edges is a feasible sub-path of an LTS lts from a configuration
c if it is a sub-path of the underlying graph of lts and if it is feasible from
the configuration c.
abbreviation feasible-subpath ::
(′vert, ′var , ′d, ′x) lts-scheme ⇒ (′var , ′d) conf ⇒ ′vert ⇒ ′vert edge list ⇒ ′vert
⇒ bool
where

feasible-subpath lts pc l1 as l2 ≡ Graph.subpath lts l1 as l2
∧ feasible pc (trace as (labelling lts))

Similarly to sub-paths in rooted-graphs, we will not be always interested in
the final vertex of a feasible sub-path. We use the following notion when we
are not interested in this vertex.
abbreviation feasible-subpath-from ::

54

(′vert, ′var , ′d, ′x) lts-scheme ⇒ (′var , ′d) conf ⇒ ′vert ⇒ ′vert edge list ⇒ bool
where

feasible-subpath-from lts pc l as ≡ ∃ l ′. feasible-subpath lts pc l as l ′

abbreviation feasible-subpaths-from ::
(′vert, ′var , ′d, ′x) lts-scheme ⇒ (′var , ′d) conf ⇒ ′vert ⇒ ′vert edge list set

where
feasible-subpaths-from lts pc l ≡ {ts. feasible-subpath-from lts pc l ts}

As earlier, feasible paths are defined as feasible sub-paths starting at the
initial location of the LTS.
abbreviation feasible-path ::
(′vert, ′var , ′d, ′x) lts-scheme ⇒ (′var , ′d) conf ⇒ ′vert edge list ⇒ ′vert ⇒ bool

where
feasible-path lts pc as l ≡ feasible-subpath lts pc (init lts) as l

abbreviation feasible-paths ::
(′vert, ′var , ′d, ′x) lts-scheme ⇒ (′var , ′d) conf ⇒ ′vert edge list set

where
feasible-paths lts pc ≡ {as. ∃ l. feasible-path lts pc as l}

end
theory SubRel
imports Graph
begin

9 Graphs equipped with a subsumption relation

In this section, we define subsumption relations and the notion of sub-paths
in rooted graphs equipped with such relations. Sub-paths are defined in the
same way than in Graph.thy: first we define the consistency of a sequence of
edges in presence of a subsumption relation, then sub-paths. We are inter-
ested in subsumptions taking places between red vertices of red-black graphs
(see RB.thy), i.e. occurrences of locations of LTSs. Here subsumptions are
defined as pairs of indexed vertices of a LTS, and subsumption relations as
sets of subsumptions. The type of vertices of such LTSs is represented by
the abstract type ′v in the following.

55

9.1 Basic definitions and properties
9.1.1 Subsumptions and subsumption relations

Subsumptions take place between occurrences of the vertices of a graph. We
represent such occurrences by indexed versions of vertices. A subsumption
is defined as pair of indexed vertices.
type-synonym ′v sub-t = ((′v × nat) × (′v × nat))

A subsumption relation is a set of subsumptions.
type-synonym ′v sub-rel-t = ′v sub-t set

We consider the left member to be subsumed by the right one. The left
member of a subsumption is called its subsumee, the right member its sub-
sumer.
abbreviation subsumee ::

′v sub-t ⇒ (′v × nat)
where

subsumee sub ≡ fst sub

abbreviation subsumer ::
′v sub-t ⇒ (′v × nat)

where
subsumer sub ≡ snd sub

We will need to talk about the sets of subsumees and subsumers of a sub-
sumption relation.
abbreviation subsumees ::

′v sub-rel-t ⇒ (′v × nat) set
where

subsumees subs ≡ subsumee ‘ subs

abbreviation subsumers ::
′v sub-rel-t ⇒ (′v × nat) set

where
subsumers subs ≡ subsumer ‘ subs

The two following lemmas will prove useful in the following.
lemma subsumees-conv :

subsumees subs = {v. ∃ v ′. (v,v ′) ∈ subs}
by force

56

lemma subsumers-conv :
subsumers subs = {v ′. ∃ v. (v,v ′) ∈ subs}

by force

We call set of vertices of the relation the union of its sets of subsumees and
subsumers.
abbreviation vertices ::

′v sub-rel-t ⇒ (′v × nat) set
where

vertices subs ≡ subsumers subs ∪ subsumees subs

9.2 Well-formed subsumption relation of a graph
9.2.1 Well-formed subsumption relations

In the following, we make an intensive use of locales. We use them as a
convenient way to add assumptions to the following lemmas, in order to ease
their reading. Locales can be built from locales, allowing some modularity
in the formalization. The following locale simply states that we suppose
there exists a subsumption relation called subs. It will be used later in order
to constrain subsumption relations.
locale sub-rel =

fixes subs :: ′v sub-rel-t (structure)

We are only interested in subsumptions involving two different occurrences of
the same LTS location. Moreover, once a vertex has been subsumed, there is
no point in trying to subsume it again by another subsumer: subsumees must
have a unique subsumer. Finally, we do not allow chains of subsumptions,
thus the intersection of the sets of subsumers and subsumees must be empty.
Such subsumption relations are said to be well-formed.
locale wf-sub-rel = sub-rel +

assumes sub-imp-same-verts :
sub ∈ subs =⇒ fst (subsumee sub) = fst (subsumer sub)

assumes subsumed-by-one :
∀ v ∈ subsumees subs. ∃ ! v ′. (v,v ′) ∈ subs

assumes inter-empty :
subsumers subs ∩ subsumees subs = {}

begin

57

lemmas wf-sub-rel = sub-imp-same-verts subsumed-by-one inter-empty

A rephrasing of the assumption subsumed-by-one.
lemma (in wf-sub-rel) subsumed-by-two-imp :

assumes (v,v1) ∈ subs
assumes (v,v2) ∈ subs
shows v1 = v2

using assms wf-sub-rel unfolding subsumees-conv by blast

A well-formed subsumption relation is equal to its transitive closure. We will
see in the following one has to handle transitive closures of such relations.

lemma in-trancl-imp :
assumes (v,v ′) ∈ subs+
shows (v,v ′) ∈ subs

using tranclD[OF assms] tranclD[of - v ′ subs]
rtranclD[of - v ′ subs]
inter-empty

by force

lemma trancl-eq :
subs+ = subs

using in-trancl-imp r-into-trancl[of - - subs] by fast
end

The empty subsumption relation is well-formed.
lemma

wf-sub-rel {}
by (auto simp add : wf-sub-rel-def)

9.2.2 Subsumption relation of a graph

We consider subsumption relations to equip rooted graphs. However, noth-
ing in the previous definitions relates these relations to graphs: subsumptions
relations involve objects that are of the type of indexed vertices, but that
might to not be vertices of an actual graph. We equip graphs with subsump-
tion relations using the notion of sub-relation of a graph. Such a relation
must only involve vertices of the graph it equips.
locale rgraph =

fixes g :: (′v, ′x) rgraph-scheme (structure)

locale sub-rel-of = rgraph + sub-rel +
assumes related-are-verts : vertices subs ⊆ Graph.vertices g

58

begin
lemmas sub-rel-of = related-are-verts

The transitive closure of a sub-relation of a graph g is also a sub-relation of
g.

lemma trancl-sub-rel-of :
sub-rel-of g (subs+)

using tranclD[of - - subs] tranclD2 [of - - subs] sub-rel-of
unfolding sub-rel-of-def subsumers-conv subsumees-conv by blast

end

The empty relation is a sub-relation of any graph.
lemma

sub-rel-of g {}
by (auto simp add : sub-rel-of-def)

9.2.3 Well-formed sub-relations

We pack both previous locales into a third one. We speak about well-formed
sub-relations.
locale wf-sub-rel-of = rgraph + sub-rel +

assumes sub-rel-of : sub-rel-of g subs
assumes wf-sub-rel : wf-sub-rel subs

begin
lemmas wf-sub-rel-of = sub-rel-of wf-sub-rel

end

The empty relation is a well-formed sub-relation of any graph.
lemma

wf-sub-rel-of g {}
by (auto simp add : sub-rel-of-def wf-sub-rel-def wf-sub-rel-of-def)

As previously, even if, in the end, we are only interested by well-formed
sub-relations, we assume the relation is such only when needed.

9.3 Consistent Edge Sequences, Sub-paths
9.3.1 Consistency in presence of a subsumption relation

We model sub-paths in the same spirit than in Graph.thy, by starting with
defining the consistency of a sequence of edges wrt. a subsumption relation.
The idea is that subsumption links can “fill the gaps” between subsequent
edges that would have made the sequence inconsistent otherwise. For now,

59

we define consistency of a sequence wrt. any subsumption relation. Thus, we
cannot account yet for the fact that we only consider relations without chains
of subsumptions. The empty sequence is consistent wrt. to a subsumption
relation from v1 to v2 if these two vertices are equal or if they belong to the
transitive closure of the relation. A non-empty sequence is consistent if it is
made of consistent sequences whose extremities are linked in the transitive
closure of the subsumption relation.
fun ces :: (′v × nat) ⇒ (′v × nat) edge list ⇒ (′v × nat) ⇒ ′v sub-rel-t ⇒ bool
where

ces v1 [] v2 subs = (v1 = v2 ∨ (v1 ,v2) ∈ subs+)
| ces v1 (e#es) v2 subs = ((v1 = src e ∨ (v1 ,src e) ∈ subs+) ∧ ces (tgt e) es v2
subs)

A consistent sequence from v1 to v2 without a subsumption relation is
consistent between these two vertices in presence of any relation.
lemma

assumes Graph.ces v1 es v2
shows ces v1 es v2 subs

using assms by (induct es arbitrary : v1 , auto)

Consistency in presence of the empty subsumption relation reduces to con-
sistency as defined in Graph.thy.
lemma

assumes ces v1 es v2 {}
shows Graph.ces v1 es v2

using assms by (induct es arbitrary : v1 , auto)

Let (v1 , v2) be an element of a subsumption relation, and es a sequence of
edges consistent wrt. this relation from vertex v2. Then es is also consistent
from v1. Even if this lemma will not be used much in the following, this is
the base fact for saying that paths feasible from a subsumee are also feasible
from its subsumer.
lemma acas-imp-dcas :

assumes (v1 ,v2) ∈ subs
assumes ces v2 es v subs
shows ces v1 es v subs

using assms by (cases es, simp-all) (intro disjI2 , force)+

Let es be a sequence of edges consistent wrt. a subsumption relation. Ex-
tending this relation preserves the consistency of es.
lemma ces-Un :

assumes ces v1 es v2 subs1

60

shows ces v1 es v2 (subs1 ∪ subs2)
using assms by (induct es arbitrary : v1 , auto simp add : trancl-mono)

A rephrasing of the previous lemma.
lemma cas-subset :

assumes ces v1 es v2 subs1
assumes subs1 ⊆ subs2
shows ces v1 es v2 subs2

using assms by (induct es arbitrary : v1 , auto simp add : trancl-mono)

Simplification lemmas for SubRel.ces.
lemma ces-append-one :

ces v1 (es @ [e]) v2 subs = (ces v1 es (src e) subs ∧ ces (src e) [e] v2 subs)
by (induct es arbitrary : v1 , auto)

lemma ces-append :
ces v1 (es1 @ es2) v2 subs = (∃ v. ces v1 es1 v subs ∧ ces v es2 v2 subs)

proof (intro iffI , goal-cases)
case 1 thus ?case
by (induct es1 arbitrary : v1)

(simp-all del : split-paired-Ex, blast)
next

case 2 thus ?case
proof (induct es1 arbitrary : v1)

case (Nil v1)

then obtain v where ces v1 [] v subs
and ces v es2 v2 subs

by blast

thus ?case
unfolding ces.simps
proof (elim disjE , goal-cases)

case 1 thus ?case by simp
next

case 2 thus ?case by (cases es2) (simp, intro disjI2 , fastforce)+
qed

next
case Cons thus ?case by auto

qed
qed

Let es be a sequence of edges consistent from v1 to v2 wrt. a sub-relation
subs of a graph g. Suppose elements of this sequence are edges of g. If v1 is

61

a vertex of g then v2 is also a vertex of g.
lemma (in sub-rel-of) ces-imp-ends-vertices :

assumes ces v1 es v2 subs
assumes set es ⊆ edges g
assumes v1 ∈ Graph.vertices g
shows v2 ∈ Graph.vertices g

using assms trancl-sub-rel-of
unfolding sub-rel-of-def subsumers-conv vertices-def
by (induct es arbitrary : v1) (force, (simp del : split-paired-Ex, fast))

9.3.2 Sub-paths

A sub-path leading from v1 to v2, two vertices of a graph g equipped with a
subsumption relation subs, is a sequence of edges consistent wrt. subs from
v1 to v2 whose elements are edges of g. Moreover, we must assume that
subs is a sub-relation of g, otherwise es could “exit” g through subsumption
links.
definition subpath ::
((′v × nat), ′x) rgraph-scheme ⇒ (′v × nat) ⇒ (′v × nat) edge list ⇒ (′v × nat)
⇒ ((′v × nat) × (′v × nat)) set ⇒ bool
where

subpath g v1 es v2 subs ≡ sub-rel-of g subs
∧ v1 ∈ Graph.vertices g
∧ ces v1 es v2 subs
∧ set es ⊆ edges g

Once again, in some cases, we will not be interested in the ending vertex of
a sub-path.
abbreviation subpath-from ::
((′v × nat), ′x) rgraph-scheme ⇒ (′v × nat) ⇒ (′v × nat) edge list ⇒ ′v sub-rel-t
⇒ bool
where

subpath-from g v es subs ≡ ∃ v ′. subpath g v es v ′ subs

Simplification lemmas for SubRel.subpath.
lemma Nil-sp :

subpath g v1 [] v2 subs ←→ sub-rel-of g subs
∧ v1 ∈ Graph.vertices g
∧ (v1 = v2 ∨ (v1 ,v2) ∈ subs+)

by (auto simp add : subpath-def)

When the subsumption relation is well-formed (denoted by (in wf-sub-rel)),
there is no need to account for the transitive closure of the relation.

62

lemma (in wf-sub-rel) Nil-sp :
subpath g v1 [] v2 subs ←→ sub-rel-of g subs

∧ v1 ∈ Graph.vertices g
∧ (v1 = v2 ∨ (v1 ,v2) ∈ subs)

using trancl-eq by (simp add : Nil-sp)

Simplification lemma for the one-element sequence.
lemma sp-one :

shows subpath g v1 [e] v2 subs ←→ sub-rel-of g subs
∧ (v1 = src e ∨ (v1 ,src e) ∈ subs+)
∧ e ∈ edges g
∧ (tgt e = v2 ∨ (tgt e,v2) ∈ subs+)

using sub-rel-of .trancl-sub-rel-of [of g subs]
by (intro iffI , auto simp add : vertices-def sub-rel-of-def subpath-def)

Once again, when the subsumption relation is well-formed, the previous
lemma can be simplified since, in this case, the transitive closure of the
relation is the relation itself.
lemma (in wf-sub-rel-of) sp-one :

shows subpath g v1 [e] v2 subs ←→ sub-rel-of g subs
∧ (v1 = src e ∨ (v1 ,src e) ∈ subs)
∧ e ∈ edges g
∧ (tgt e = v2 ∨ (tgt e,v2) ∈ subs)

using sp-one wf-sub-rel.trancl-eq[OF wf-sub-rel] by fast

Simplification lemma for the non-empty sequence (which might contain more
than one element).
lemma sp-Cons :

shows subpath g v1 (e # es) v2 subs ←→ sub-rel-of g subs
∧ (v1 = src e ∨ (v1 ,src e) ∈ subs+)
∧ e ∈ edges g
∧ subpath g (tgt e) es v2 subs

using sub-rel-of .trancl-sub-rel-of [of g subs]
by (intro iffI , auto simp add : subpath-def vertices-def sub-rel-of-def)

The same lemma when the subsumption relation is well-formed.
lemma (in wf-sub-rel-of) sp-Cons :

subpath g v1 (e # es) v2 subs ←→ sub-rel-of g subs
∧ (v1 = src e ∨ (v1 ,src e) ∈ subs)
∧ e ∈ edges g
∧ subpath g (tgt e) es v2 subs

using sp-Cons wf-sub-rel.trancl-eq[OF wf-sub-rel] by fast

Simplification lemma for SubRel.subpath when the sequence is known to end
by a given edge.

63

lemma sp-append-one :
subpath g v1 (es @ [e]) v2 subs ←→ subpath g v1 es (src e) subs

∧ e ∈ edges g
∧ (tgt e = v2 ∨ (tgt e, v2) ∈ subs+)

unfolding subpath-def by (auto simp add : ces-append-one)

Simpler version in the case of a well-formed subsumption relation.
lemma (in wf-sub-rel) sp-append-one :

subpath g v1 (es @ [e]) v2 subs ←→ subpath g v1 es (src e) subs
∧ e ∈ edges g
∧ (tgt e = v2 ∨ (tgt e, v2) ∈ subs)

using sp-append-one in-trancl-imp by fast

Simplification lemma when the sequence is known to be the concatenation
of two sub-sequences.
lemma sp-append :

subpath g v1 (es1 @ es2) v2 subs ←→
(∃ v. subpath g v1 es1 v subs ∧ subpath g v es2 v2 subs)

proof (intro iffI , goal-cases)
case 1 thus ?case
using sub-rel-of .ces-imp-ends-vertices
by (simp add : subpath-def ces-append) blast

next
case 2 thus ?case
unfolding subpath-def
by (simp only : ces-append) fastforce

qed

Let es be a sub-path of a graph g starting at vertex v1. By definition of
SubRel.subpath, v1 is a vertex of g. Even if this is a direct consequence of
the definition of SubRel.subpath, this lemma will ease the proofs of some
goals in the following.
lemma fst-of-sp-is-vert :

assumes subpath g v1 es v2 subs
shows v1 ∈ Graph.vertices g

using assms by (simp add : subpath-def)

The same property (which also follows the definition of SubRel.subpath, but
not as trivially as the previous lemma) can be established for the final vertex
v2.
lemma lst-of-sp-is-vert :

assumes subpath g v1 es v2 subs
shows v2 ∈ Graph.vertices g

64

using assms sub-rel-of .trancl-sub-rel-of [of g subs]
by (induction es arbitrary : v1)

(force simp add : subpath-def sub-rel-of-def , (simp add : sp-Cons, fast))

A sub-path ending in a subsumed vertex can be extended to the subsumer
of this vertex, provided that the subsumption relation is a sub-relation of
the graph it equips.
lemma sp-append-sub :

assumes subpath g v1 es v2 subs
assumes (v2 ,v3) ∈ subs
shows subpath g v1 es v3 subs

proof (cases es)
case Nil

moreover
hence v1 ∈ Graph.vertices g
and v1 = v2 ∨ (v1 ,v2) ∈ subs+
using assms(1) by (simp-all add : Nil-sp)

ultimately
show ?thesis
using assms(1 ,2)

Nil-sp[of g v1 v2 subs]
trancl-into-trancl[of v1 v2 subs v3]

by (auto simp add : subpath-def)
next

case Cons

then obtain es ′ e where es = es ′ @ [e] using neq-Nil-conv2 [of es] by blast

thus ?thesis using assms trancl-into-trancl by (simp add : sp-append-one) fast
qed

Let g be a graph equipped with a well-formed sub-relation. A sub-path
starting at a subsumed vertex v1 whose set of out-edges is empty is either:

1. empty,

2. a sub-path starting at the subsumer v2 of v1.

The third assumption represent the fact that, when building red-black graphs,
we do not allow to build the successor of a subsumed vertex.
lemma (in wf-sub-rel-of) sp-from-subsumee :

assumes (v1 ,v2) ∈ subs

65

assumes subpath g v1 es v subs
assumes out-edges g v1 = {}
shows es = [] ∨ subpath g v2 es v subs

using assms
wf-sub-rel.subsumed-by-two-imp[OF wf-sub-rel assms(1)]

by (cases es)
(fast, (intro disjI2 , fastforce simp add : sp-Cons))

Note that it is not possible to split this lemma into two lemmas (one for
each member of the disjunctive conclusion). Suppose v is v1, then es could
be empty or it could also be a non-empty sub-path leading from v2 to v1.
If v is not v1, it could be v2 and es could be empty or not.

A sub-path starting at a non-subsumed vertex whose set of out-edges is
empty is also empty.
lemma sp-from-de-empty :

assumes v1 /∈ subsumees subs
assumes out-edges g v1 = {}
assumes subpath g v1 es v2 subs
shows es = []

using assms tranclD by (cases es) (auto simp add : sp-Cons, force)

Let e be an edge whose target is not subsumed and has not out-going edges.
A sub-path es containing e ends by e and this occurrence of e is unique
along es.
lemma sp-through-de-decomp :

assumes tgt e /∈ subsumees subs
assumes out-edges g (tgt e) = {}
assumes subpath g v1 es v2 subs
assumes e ∈ set es
shows ∃ es ′. es = es ′ @ [e] ∧ e /∈ set es ′

using assms(3 ,4)
proof (induction es arbitrary : v1)

case (Nil v1) thus ?case by simp
next

case (Cons e ′ es v1)

hence subpath g (tgt e ′) es v2 subs
and e = e ′ ∨ (e 6= e ′ ∧ e ∈ set es) by (auto simp add : sp-Cons)

thus ?case
proof (elim disjE , goal-cases)

case 1 thus ?case
using sp-from-de-empty[OF assms(1 ,2)] by fastforce

66

next
case 2 thus ?case using Cons(1)[of tgt e ′] by force

qed
qed

Consider a sub-path ending at the target of a recently added edge e, whose
target did not belong to the graph prior to its addition. If es starts in
another vertex than the target of e, then it contains e.
lemma (in sub-rel-of) sp-ends-in-tgt-imp-mem :

assumes tgt e /∈ Graph.vertices g
assumes v 6= tgt e
assumes subpath (add-edge g e) v es (tgt e) subs
shows e ∈ set es

proof −
have tgt e /∈ subsumers subs using assms(1) sub-rel-of by auto

hence (v,tgt e) /∈ subs+ using tranclD2 by force

hence es 6= [] using assms(2 ,3) by (auto simp add : Nil-sp)

then obtain es ′ e ′ where es = es ′ @ [e ′] by (simp add : neq-Nil-conv2) blast

moreover
hence e ′ ∈ edges (add-edge g e) using assms(3) by (auto simp add: subpath-def)

moreover
have tgt e ′ = tgt e
using tranclD2 assms(3) ‹tgt e /∈ subsumers subs› ‹es = es ′ @ [e ′]›
by (force simp add : sp-append-one)

ultimately
show ?thesis using assms(1) unfolding vertices-def image-def by force

qed

end
theory ArcExt
imports SubRel
begin

10 Extending rooted graphs with edges

In this section, we formalize the operation of adding to a rooted graph
an edge whose source is already a vertex of the given graph but not its

67

target. We call this operation an extension of the given graph by adding
an edge. This corresponds to an abstraction of the act of adding an edge
to the red part of a red-black graph as a result of symbolic execution of the
corresponding transition in the LTS under analysis, where all details about
symbolic execution would have been abstracted. We then state and prove
a number of facts describing the evolution of the set of paths of the given
graph, first without considering subsumption links then in the case of rooted
graph equipped with a subsumption relation.

10.1 Definition and Basic properties

Extending a rooted graph with an edge consists in adding to its set of edges
an edge whose source is a vertex of this graph but whose target is not.
abbreviation extends ::
(′v, ′x) rgraph-scheme ⇒ ′v edge ⇒ (′v, ′x) rgraph-scheme ⇒ bool

where
extends g e g ′ ≡ src e ∈ Graph.vertices g

∧ tgt e /∈ Graph.vertices g
∧ g ′ = (add-edge g e)

After such an extension, the set of out-edges of the target of the new edge
is empty.
lemma extends-tgt-out-edges :

assumes extends g e g ′

shows out-edges g ′ (tgt e) = {}
using assms unfolding vertices-def image-def by force

Consider a graph equipped with a sub-relation. This relation is also a sub-
relation of any extension of this graph.
lemma (in sub-rel-of)

assumes extends g e g ′

shows sub-rel-of g ′ subs
using assms sub-rel-of by (auto simp add : sub-rel-of-def vertices-def)

Extending a graph with an edge preserves the existing sub-paths.
lemma sp-in-extends :

assumes extends g e g ′

assumes Graph.subpath g v1 es v2
shows Graph.subpath g ′ v1 es v2

using assms by (auto simp add : Graph.subpath-def vertices-def)

68

10.2 Extending trees

We show that extending a rooted graph that is already a tree yields a new
tree. Since the empty rooted graph is a tree, all graphs produced using only
the extension by edge are trees.
lemma extends-is-tree :

assumes is-tree g
assumes extends g e g ′

shows is-tree g ′

unfolding is-tree-def Ball-def
proof (intro allI impI)

fix v

have root g ′ = root g using assms(2) by simp

assume v ∈ Graph.vertices g ′

hence v ∈ Graph.vertices g ∨ v = tgt e
using assms(2) by (auto simp add : vertices-def)

thus ∃ !es. path g ′ es v
proof (elim disjE , goal-cases)

case 1

then obtain es
where Graph.path g es v
and ∀ es ′. Graph.path g es ′ v −→ es ′ = es
using assms(1) unfolding Ex1-def is-tree-def by blast

hence Graph.path g ′ es v
using assms(2) sp-in-extends[OF assms(2)]
by (subst ‹root g ′ = root g›)

moreover
have ∀ es ′. Graph.path g ′ es ′ v −→ es ′ = es
proof (intro allI impI)

fix es ′

assume Graph.path g ′ es ′ v

thus es ′ = es
proof (case-tac e ∈ set es ′, goal-cases)

case 1

69

then obtain es ′′

where es ′ = es ′′ @ [e]
and e /∈ set es ′′

using ‹Graph.path g ′ es ′ v›
Graph.sp-through-de-decomp[OF extends-tgt-out-edges[OF assms(2)]]

by blast

hence v = tgt e
using ‹Graph.path g ′ es ′ v›
by (simp add : Graph.sp-append-one)

thus ?thesis
using assms(2)

Graph.lst-of-sp-is-vert[OF ‹Graph.path g es v›]
by simp

next
case 2 thus ?thesis
using assms

‹∀ es ′. Graph.path g es ′ v −→ es ′ = es› ‹Graph.path g ′ es ′ v›
by (auto simp add : Graph.subpath-def vertices-def)

qed
qed

ultimately
show ?thesis by auto

next
case 2

then obtain es
where Graph.path g es (src e)
and ∀ es ′. Graph.path g es ′ (src e) −→ es ′ = es
using assms(1 ,2) unfolding is-tree-def by blast

hence Graph.path g ′ es (src e)
using sp-in-extends[OF assms(2)]
by (subst ‹root g ′ = root g›)

hence Graph.path g ′ (es @ [e]) (tgt e)
using assms(2) by (auto simp add : Graph.sp-append-one)

moreover
have ∀ es ′. Graph.path g ′ es ′ (tgt e) −→ es ′ = es @ [e]
proof (intro allI impI)

fix es ′

70

assume Graph.path g ′ es ′ (tgt e)

moreover
hence e ∈ set es ′

using assms
sp-ends-in-tgt-imp-mem[of e g root g es ′]

by (auto simp add : Graph.subpath-def vertices-def)

moreover
have out-edges g ′ (tgt e) = {}
using assms
by (intro extends-tgt-out-edges)

ultimately
have ∃ es ′′. es ′ = es ′′ @ [e] ∧ e /∈ set es ′′

by (elim Graph.sp-through-de-decomp)

then obtain es ′′

where es ′ = es ′′ @ [e]
and e /∈ set es ′′

by blast

hence Graph.path g ′ es ′′ (src e)
using ‹Graph.path g ′ es ′ (tgt e)›
by (auto simp add : Graph.sp-append-one)

hence Graph.path g es ′′ (src e)
using assms(2) ‹e /∈ set es ′′›
by (auto simp add : Graph.subpath-def vertices-def)

hence es ′′ = es
using ‹∀ as ′. Graph.path g as ′ (src e) −→ as ′ = es›
by simp

thus es ′ = es @ [e] using ‹es ′ = es ′′ @ [e]› by simp
qed

ultimately
show ?thesis using 2 by auto

qed
qed

71

10.3 Properties of sub-paths in an extension

Extending a graph by an edge preserves the existing sub-paths.
lemma sp-in-extends-w-subs :

assumes extends g a g ′

assumes subpath g v1 es v2 subs
shows subpath g ′ v1 es v2 subs

using assms by (auto simp add : subpath-def sub-rel-of-def vertices-def)

In an extension, the target of the new edge has no out-edges. Thus sub-
paths of the extension starting and ending in old vertices are sub-paths of
the graph prior to its extension.
lemma (in sub-rel-of) sp-from-old-verts-imp-sp-in-old :

assumes extends g e g ′

assumes v1 ∈ Graph.vertices g
assumes v2 ∈ Graph.vertices g
assumes subpath g ′ v1 es v2 subs
shows subpath g v1 es v2 subs

proof −
have e /∈ set es
proof (intro notI)

assume e ∈ set es

have v2 = tgt e
proof −

have tgt e /∈ subsumees subs using sub-rel-of assms(1) by fast

moreover
have out-edges g ′ (tgt e) = {} using assms(1) by (rule extends-tgt-out-edges)

ultimately
have ∃ es ′. es = es ′ @ [e] ∧ e /∈ set es ′

using assms(4) ‹e ∈ set es›
by (intro sp-through-de-decomp)

then obtain es ′ where es = es ′ @ [e] e /∈ set es ′ by blast

hence tgt e = v2 ∨ (tgt e,v2) ∈ subs+
using assms(4) by (simp add : sp-append-one)

thus ?thesis using ‹tgt e /∈ subsumees subs› tranclD[of tgt e v2 subs] by force
qed

thus False using assms(1 ,3) by simp

72

qed

thus ?thesis
using sub-rel-of assms
unfolding subpath-def sub-rel-of-def by auto

qed

For the same reason, sub-paths starting at the target of the new edge are
empty.
lemma (in sub-rel-of) sp-from-tgt-in-extends-is-Nil :

assumes extends g e g ′

assumes subpath g ′ (tgt e) es v subs
shows es = []

using sub-rel-of assms
extends-tgt-out-edges
sp-from-de-empty[of tgt e subs g ′ es v]

by fast

Moreover, a sub-path es starting in another vertex than the target of the
new edge e but ending in this target has e as last element. This occurrence
of e is unique among es. The prefix of es preceding e is a sub-path leading
at the source of e in the original graph.
lemma (in sub-rel-of) sp-to-new-edge-tgt-imp :

assumes extends g e g ′

assumes subpath g ′ v es (tgt e) subs
assumes v 6= tgt e
shows ∃ es ′. es = es ′ @ [e] ∧ e /∈ set es ′ ∧ subpath g v es ′ (src e) subs

proof −
obtain es ′ where es = es ′ @ [e] and e /∈ set es ′

using sub-rel-of assms(1 ,2 ,3)
extends-tgt-out-edges[OF assms(1)]
sp-through-de-decomp[of e subs g ′ v es tgt e]
sp-ends-in-tgt-imp-mem[of e v es]

by blast

moreover
have subpath g v es ′ (src e) subs
proof −

have v ∈ Graph.vertices g
using assms(1 ,3) fst-of-sp-is-vert[OF assms(2)]
by (auto simp add : vertices-def)

moreover
have SubRel.subpath g ′ v es ′ (src e) subs

73

using assms(2) ‹es = es ′ @ [e]› by (simp add : sp-append-one)

ultimately
show ?thesis
using assms(1) sub-rel-of ‹e /∈ set es ′›
unfolding subpath-def by (auto simp add : sub-rel-of-def)

qed

ultimately
show ?thesis by blast

qed

end
theory SubExt
imports SubRel
begin

11 Extending subsomption relations

In this section, we are interested in the evolution of the set of sub-paths
of a rooted graph equipped with a subsumption relation after adding a
subsumption to this relation. We are only interested in adding subsumptions
such that the resulting relation is a well-formed sub-relation of the graph
(provided the original relation was such). As for the extension by edges,
a number of side conditions must be met for the new subsumption to be
added.

11.1 Definition

Extending a subsumption relation subs consists in adding a subsumption
sub such that:

• the two vertices involved are distinct,

• they are occurrences of the same vertex,

• they are both vertices of the graph,

• the subsumee must not already be a subsumer or a subsumee,

• the subsumer must not be a subsumee (but it can already be a sub-
sumer),

74

• the subsumee must have no out-edges.

Once again, in order to ease proofs, we use a predicate stating when a
subsumpion relation is the extension of another instead of using a function
that would produce the extension.
abbreviation extends ::
((′v × nat), ′x) rgraph-scheme ⇒ ′v sub-rel-t ⇒ ′v sub-t ⇒ ′v sub-rel-t ⇒ bool

where
extends g subs sub subs ′ ≡ (

subsumee sub 6= subsumer sub
∧ fst (subsumee sub) = fst (subsumer sub)
∧ subsumee sub ∈ Graph.vertices g
∧ subsumee sub /∈ subsumers subs
∧ subsumee sub /∈ subsumees subs
∧ subsumer sub ∈ Graph.vertices g
∧ subsumer sub /∈ subsumees subs
∧ out-edges g (subsumee sub) = {}
∧ subs ′ = subs ∪ {sub})

11.2 Properties of extensions

First, we show that such extensions yield sub-relations (resp. well-formed
relations), provided the original relation is a sub-relation (resp. well-formed
relation).

Extending the sub-relation of a graph yields a new sub-relation for this
graph.
lemma (in sub-rel-of)

assumes extends g subs sub subs ′

shows sub-rel-of g subs ′

using assms sub-rel-of unfolding sub-rel-of-def by force

Extending a well-formed relation yields a well-formed relation.
lemma (in wf-sub-rel) extends-imp-wf-sub-rel :

assumes extends g subs sub subs ′

shows wf-sub-rel subs ′

unfolding wf-sub-rel-def
proof (intro conjI , goal-cases)

case 1 show ?case using wf-sub-rel assms by auto
next

case 2 show ?case
unfolding Ball-def
proof (intro allI impI)

75

fix v

assume v ∈ subsumees subs ′

hence v = subsumee sub ∨ v ∈ subsumees subs using assms by auto

thus ∃ ! v ′. (v,v ′) ∈ subs ′

proof (elim disjE , goal-cases)
case 1 show ?thesis
unfolding Ex1-def
proof (rule-tac ?x=subsumer sub in exI , intro conjI)

show (v, subsumer sub) ∈ subs ′ using 1 assms by simp
next

have v /∈ subsumees subs using assms 1 by auto

thus ∀ v ′. (v, v ′) ∈ subs ′ −→ v ′ = subsumer sub
using assms by auto force

qed
next

case 2

then obtain v ′ where (v,v ′) ∈ subs by auto

hence v 6= subsumee sub
using assms unfolding subsumees-conv by (force simp del : split-paired-All

split-paired-Ex)

show ?thesis
using assms

‹v 6= subsumee sub›
‹(v,v ′) ∈ subs› subsumed-by-one

unfolding subsumees-conv Ex1-def
by (rule-tac ?x=v ′ in exI)

(auto simp del : split-paired-All split-paired-Ex)
qed

qed
next

case 3 show ?case using wf-sub-rel assms by auto
qed

Thus, extending a well-formed sub-relation yields a well-formed sub-relation.
lemma (in wf-sub-rel-of) extends-imp-wf-sub-rel-of :

assumes extends g subs sub subs ′

shows wf-sub-rel-of g subs ′

using sub-rel-of assms

76

wf-sub-rel.extends-imp-wf-sub-rel[OF wf-sub-rel assms]
by (simp add : wf-sub-rel-of-def sub-rel-of-def)

11.3 Properties of sub-paths in an extension

Extending a sub-relation of a graph preserves the existing sub-paths.
lemma sp-in-extends :

assumes extends g subs sub subs ′

assumes subpath g v1 es v2 subs
shows subpath g v1 es v2 subs ′

using assms ces-Un[of v1 es v2 subs {sub}]
by (simp add : subpath-def sub-rel-of-def)

We want to describe how the addition of a subsumption modifies the set of
sub-paths in the graph. As in the previous theories, we will focus on a small
number of theorems expressing sub-paths in extensions as functions of sub-
paths in the graphs before extending them (their subsumption relations). We
first express sub-paths starting at the subsumee of the new subsumption,
then the sub-paths starting at any other vertex.

First, we are interested in sub-paths starting at the subsumee of the new
subsumption. Since such vertices have no out-edges, these sub-paths must be
either empty or must be sub-paths from the subsumer of this subsumption.
lemma (in wf-sub-rel-of) sp-in-extends-imp1 :

assumes extends g subs (v1 ,v2) subs ′

assumes subpath g v1 es v subs ′

shows es = [] ∨ subpath g v2 es v subs ′

using assms
extends-imp-wf-sub-rel-of [OF assms(1)]
wf-sub-rel-of .sp-from-subsumee[of g subs ′ v1 v2 es v]

by simp

After an extension, sub-paths starting at any other vertex than the new
subsumee are either:

• sub-paths of the graph before the extension if they do not “use” the
new subsumption,

• made of a finite number of sub-paths of the graph before the extension
if they use the new subsumption.

In order to state the lemmas expressing these facts, we first need to introduce
the concept of usage of a subsumption by a sub-path.

77

The idea is that, if a sequence of edges that uses a subsumption sub is
consistent wrt. a subsumption relation subs, then sub must occur in the
transitive closure of subs i.e. the consistency of the sequence directly (and
partially) depends on sub. In the case of well-formed subsumption relations,
whose transitive closures equal the relations themselves, the dependency of
the consistency reduces to the fact that sub is a member of subs.
fun uses-sub ::
(′v × nat) ⇒ (′v × nat) edge list ⇒ (′v × nat) ⇒ ((′v × nat) × (′v × nat)) ⇒

bool
where

uses-sub v1 [] v2 sub = (v1 6= v2 ∧ sub = (v1 ,v2))
| uses-sub v1 (e#es) v2 sub = (v1 6= src e ∧ sub = (v1 ,src e) ∨ uses-sub (tgt e)
es v2 sub)

In order for a sequence es using the subsumption sub to be consistent wrt.
to a subsumption relation subs, the subsumption sub must occur in the
transitive closure of subs.
lemma

assumes uses-sub v1 es v2 sub
assumes ces v1 es v2 subs
shows sub ∈ subs+

using assms by (induction es arbitrary : v1) fastforce+

This reduces to the membership of sub to subs when the latter is well-formed.
lemma (in wf-sub-rel)

assumes uses-sub v1 es v2 sub
assumes ces v1 es v2 subs
shows sub ∈ subs

using assms trancl-eq by (induction es arbitrary : v1) fastforce+

Sub-paths prior to the extension do not use the new subsumption.
lemma extends-and-sp-imp-not-using-sub :

assumes extends g subs (v,v ′) subs ′

assumes subpath g v1 es v2 subs
shows ¬ uses-sub v1 es v2 (v,v ′)

proof (intro notI)
assume uses-sub v1 es v2 (v,v ′)

moreover
have ces v1 es v2 subs using assms(2) by (simp add : subpath-def)

ultimately
have (v,v ′) ∈ subs+ by (induction es arbitrary : v1) fastforce+

78

thus False
using assms(1) unfolding subsumees-conv
by (elim conjE) (frule tranclD, force)

qed

Suppose that the empty sequence is a sub-path leading from v1 to v2 after
the extension. Then, the empty sequence is a sub-path leading from v1 to
v2 in the graph before the extension if and only if (v1 , v2) is not the new
subsumption.
lemma (in wf-sub-rel-of) sp-Nil-in-extends-imp :

assumes extends g subs (v,v ′) subs ′

assumes subpath g v1 [] v2 subs ′

shows subpath g v1 [] v2 subs ←→ (v1 6= v ∨ v2 6= v ′)
proof (intro iffI , goal-cases)

case 1 thus ?case
using assms(1)

extends-and-sp-imp-not-using-sub[OF assms(1), of v1 [] v2]
by auto

next
case 2

have v1 = v2 ∨ (v1 ,v2) ∈ subs ′

and v1 ∈ Graph.vertices g
using assms(2)

wf-sub-rel.extends-imp-wf-sub-rel[OF wf-sub-rel assms(1)]
by (simp-all add : wf-sub-rel.Nil-sp)

moreover
hence v1 = v2 ∨ (v1 ,v2) ∈ subs
using assms(1) 2 by auto

moreover
have v2 ∈ Graph.vertices g
using assms(2) by (intro lst-of-sp-is-vert)

ultimately
show subpath g v1 [] v2 subs
using sub-rel-of by (auto simp add : subpath-def)

qed

Thus, sub-paths after the extension that do not use the new subsumption
are also sub-paths before the extension.
lemma (in wf-sub-rel-of) sp-in-extends-not-using-sub :

79

assumes extends g subs (v,v ′) subs ′

assumes subpath g v1 es v2 subs ′

assumes ¬ uses-sub v1 es v2 (v,v ′)
shows subpath g v1 es v2 subs

using sub-rel-of assms extends-imp-wf-sub-rel-of
by (induction es arbitrary : v1)

(auto simp add : sp-Nil-in-extends-imp wf-sub-rel-of .sp-Cons sp-Cons)

We are finally able to describe sub-paths starting at any other vertex than
the new subsumee after the extension. Such sub-paths are made of a finite
number of sub-paths before the extension: the usage of the new subsumption
between such (sub-)sub-paths makes them sub-paths after the extension. We
express this idea as follows. Sub-paths starting at any other vertex than the
new subsumee are either:

• sub-paths of the graph before the extension,

• made of a non-empty prefix that is a sub-path leading to the new
subsumee in the original graph and a (potentially empty) suffix that
is a sub-path starting at the new subsumer after the extension.

For the second case, the lemma sp_in_extends_imp1 as well as the following
lemma could be applied to the suffix in order to decompose it into sub-paths
of the graph before extension (combined with the fact that we only consider
finite sub-paths, we indirectly obtain that sub-paths after the extension are
made of a finite number of sub-paths before the extension, that are made
consistent with the new relation by using the new subsumption).
lemma (in wf-sub-rel-of) sp-in-extends-imp2 :

assumes extends g subs (v,v ′) subs ′

assumes subpath g v1 es v2 subs ′

assumes v1 6= v

shows subpath g v1 es v2 subs ∨ (∃ es1 es2 . es = es1 @ es2
∧ es1 6= []
∧ subpath g v1 es1 v subs
∧ subpath g v es2 v2 subs ′)

(is ?P es v1)
proof (case-tac uses-sub v1 es v2 (v,v ′), goal-cases)

case 1

thus ?thesis
using assms(2 ,3)
proof (induction es arbitrary : v1)

80

case (Nil v1) thus ?case by auto
next

case (Cons edge es v1)

hence v1 = src edge ∨ (v1 , src edge) ∈ subs ′

and edge ∈ edges g
and subpath g (tgt edge) es v2 subs ′

using assms(1) extends-imp-wf-sub-rel-of
by (simp-all add : wf-sub-rel-of .sp-Cons)

hence subpath g v1 [edge] (tgt edge) subs ′

using wf-sub-rel-of .sp-one[OF extends-imp-wf-sub-rel-of [OF assms(1)]]
by (simp add : subpath-def) fast

have subpath g v1 [edge] (tgt edge) subs
proof −

have ¬ uses-sub v1 [edge] (tgt edge) (v,v ′)
using assms(1) Cons(2 ,4) by auto

thus ?thesis
using assms(1) ‹subpath g v1 [edge] (tgt edge) subs ′›
by (elim sp-in-extends-not-using-sub)

qed

thus ?case
proof (case-tac tgt edge = v, goal-cases)

case 1 thus ?thesis
using ‹subpath g v1 [edge] (tgt edge) subs›

‹subpath g (tgt edge) es v2 subs ′›
by (intro disjI2 , rule-tac ?x=[edge] in exI) auto

next
case 2

moreover
have uses-sub (tgt edge) es v2 (v,v ′) using Cons(2 ,4) by simp

ultimately
have ?P es (tgt edge)
using ‹subpath g (tgt edge) es v2 subs ′›
by (intro Cons.IH)

thus ?thesis
proof (elim disjE exE conjE , goal-cases)

case 1 thus ?thesis
using ‹subpath g (tgt edge) es v2 subs ′›

81

‹uses-sub (tgt edge) es v2 (v,v ′)›
extends-and-sp-imp-not-using-sub[OF assms(1)]

by fast
next

case (2 es1 es2) thus ?thesis
using ‹es = es1 @ es2 ›

‹subpath g v1 [edge] (tgt edge) subs›
‹subpath g v es2 v2 subs ′›

by (intro disjI2 , rule-tac ?x=edge # es1 in exI) (auto simp add : sp-Cons)
qed

qed
qed

next
case 2 thus ?thesis
using assms(1 ,2) by (simp add : sp-in-extends-not-using-sub)

qed

end
theory RB
imports LTS ArcExt SubExt
begin

12 Red-Black Graphs

In this section we define red-black graphs and the five operators that perform
over them. Then, we state and prove a number of intermediate lemmas
about red-black graphs built using only these five operators, in other words:
invariants about our method of transformation of red-black graphs.
Then, we define the notion of red-black paths and state and prove the main
properties of our method, namely its correctness and the fact that it pre-
serves the set of feasible paths of the program under analysis.

12.1 Basic Definitions
12.1.1 The type of Red-Black Graphs

We represent red-black graph with the following record. We detail its fields:

• red is the red graph, called red part, which represents the unfolding of
the black part. Its vertices are indexed black vertices,

• black is the original LTS, the black part,

82

• subs is the subsumption relation over the vertices of red,

• init-conf is the initial configuration,

• confs is a function associating configurations to the vertices of red,

• marked is a function associating truth values to the vertices of red. We
use it to represent the fact that a particular configuration (associated
to a red location) is known to be unsatisfiable,

• strengthenings is a function associating boolean expressions over pro-
gram variables to vertices of the red graph. Those boolean expres-
sions can be seen as invariants that the configuration associated to the
“strengthened” red vertex has to model.

We are only interested by red-black graphs obtained by the inductive rela-
tion RedBlack. From now on, we call “red-black graphs" the pre-RedBlack’s
obtained by RedBlack and “pre-red-black graphs" all other ones.
record (′vert, ′var , ′d) pre-RedBlack =

red :: (′vert × nat) rgraph
black :: (′vert, ′var , ′d) lts
subs :: ′vert sub-rel-t
init-conf :: (′var , ′d) conf
confs :: (′vert × nat) ⇒ (′var , ′d) conf
marked :: (′vert × nat) ⇒ bool
strengthenings :: (′vert × nat) ⇒ (′var , ′d) bexp

We call red vertices the set of vertices of the red graph.
abbreviation red-vertices ::
(′vert, ′var , ′d, ′x) pre-RedBlack-scheme ⇒ (′vert × nat) set

where
red-vertices lts ≡ Graph.vertices (red lts)

ui-edge is the operation of “unindexing” the ends of a red edge, thus giving
the corresponding black edge.
abbreviation ui-edge ::
(′vert × nat) edge ⇒ ′vert edge

where
ui-edge e ≡ (| src = fst (src e), tgt = fst (tgt e) |)

We extend this idea to sequences of edges.
abbreviation ui-es ::
(′vert × nat) edge list ⇒ ′vert edge list

where
ui-es es ≡ map ui-edge es

83

12.1.2 Well-formed and finite red-black graphs
locale pre-RedBlack =

fixes prb :: (′vert, ′var , ′d) pre-RedBlack (structure)

A pre-red-black graph is well-formed if :

• its red and black parts are well-formed,

• the root of its red part is an indexed version of the root of its black
part,

• all red edges are indexed versions of black edges.

locale wf-pre-RedBlack = pre-RedBlack +
assumes red-wf : wf-rgraph (red prb)
assumes black-wf : wf-lts (black prb)
assumes consistent-roots : fst (root (red prb)) = root (black prb)
assumes ui-re-are-be : e ∈ edges (red prb) =⇒ ui-edge e ∈ edges (black prb)

begin
lemmas wf-pre-RedBlack = red-wf black-wf consistent-roots ui-re-are-be

end

We say that a pre-red-black graph is finite if :

• the path predicate of its initial configuration contains a finite number
of constraints,

• each of these constraints contains a finite number of variables,

• its black part is finite (cf. definition of finite-lts.).

locale finite-RedBlack = pre-RedBlack +
assumes finite-init-pred : finite (pred (init-conf prb))
assumes finite-init-pred-symvars : ∀ e ∈ pred (init-conf prb). finite (Bexp.vars

e)
assumes finite-lts : finite-lts (black prb)

begin
lemmas finite-RedBlack = finite-init-pred finite-init-pred-symvars finite-lts

end

12.2 Extensions of Red-Black Graphs

We now define the five basic operations that can be performed over red-black
graphs. Since we do not want to model the heuristics part of our prototype, a

84

number of conditions must be met for each operator to apply. For example,
in our prototype abstractions are performed at nodes that actually have
successors, and these abstractions must be propagated to these successors
in order to keep the symbolic execution graph consistent. Propagation is a
complex task, and it is hard to model in Isabelle/HOL. This is partially due
to the fact that we model the red part as a graph, in which propagation might
not terminate. Instead, we suppose that abstraction must be performed only
at leaves of the red part. This is equivalent to implicitly assume the existence
of an oracle that would tell that we will need to abstract some red vertex
and how to abstract it, as soon as this red vertex is added to the red part.

As in the previous theories, we use predicates instead of functions to model
these transformations to ease writing and reading definitions, proofs, etc.

12.2.1 Extension by symbolic execution

The core abstract operation of symbolic execution: take a black edge and
turn it red, by symbolic execution of its label. In the following abbreviation,
re is the red edge obtained from the (hypothetical) black edge e that we
want to symbolically execute and c the configuration obtained by symbolic
execution of the label of e. Note that this extension could have been defined
as a predicate that takes only two pre-RedBlacks and evaluates to true if
and only if the second has been obtained by adding a red edge as a result
of symbolic execution. However, making the red edge and the configuration
explicit allows for lighter definitions, lemmas and proofs in the following.
abbreviation se-extends ::
(′vert, ′var , ′d) pre-RedBlack
⇒ (′vert × nat) edge
⇒ (′var , ′d) conf
⇒ (′vert, ′var , ′d) pre-RedBlack ⇒ bool

where
se-extends prb re c prb ′ ≡

ui-edge re ∈ edges (black prb)
∧ ArcExt.extends (red prb) re (red prb ′)
∧ src re /∈ subsumees (subs prb)
∧ se (confs prb (src re)) (labelling (black prb) (ui-edge re)) c
∧ prb ′ = (| red = red prb ′,

black = black prb,
subs = subs prb,
init-conf = init-conf prb,
confs = (confs prb) (tgt re := c),
marked = (marked prb)(tgt re := marked prb (src re)),

85

strengthenings = strengthenings prb |)

Hiding the new red edge (using an existential quantifier) and the new con-
figuration makes the following abbreviation more intuitive. However, this
would require using obtain or let ... = ... in ... constructs in the
following lemmas and proofs, making them harder to read and write.
abbreviation se-extends2 ::
(′vert, ′var , ′d) pre-RedBlack ⇒ (′vert, ′var , ′d) pre-RedBlack ⇒ bool

where
se-extends2 prb prb ′ ≡
∃ re ∈ edges (red prb ′).

ui-edge re ∈ edges (black prb)
∧ ArcExt.extends (red prb) re (red prb ′)
∧ src re /∈ subsumees (subs prb)
∧ se (confs prb (src re)) (labelling (black prb) (ui-edge re)) (confs prb ′ (tgt re))
∧ black prb ′ = black prb
∧ subs prb ′ = subs prb
∧ init-conf prb ′ = init-conf prb
∧ confs prb ′ = (confs prb) (tgt re := confs prb ′ (tgt re))
∧ marked prb ′ = (marked prb)(tgt re := marked prb (src re))
∧ strengthenings prb ′ = strengthenings prb

12.2.2 Extension by marking

The abstract operation of mark-as-unsat. It manages the information - pro-
vided, for example, by an external automated prover -, that the configuration
of the red vertex rv has been proved unsatisfiable.
abbreviation mark-extends ::
(′vert, ′var , ′d) pre-RedBlack ⇒ (′vert × nat) ⇒ (′vert, ′var , ′d) pre-RedBlack ⇒

bool
where

mark-extends prb rv prb ′ ≡
rv ∈ red-vertices prb
∧ out-edges (red prb) rv = {}
∧ rv /∈ subsumees (subs prb)
∧ rv /∈ subsumers (subs prb)
∧ ¬ sat (confs prb rv)
∧ prb ′ = (| red = red prb,

black = black prb,
subs = subs prb,
init-conf = init-conf prb,
confs = confs prb,
marked = (λ rv ′. if rv ′ = rv then True else marked prb rv ′),

86

strengthenings = strengthenings prb,
. . . = more prb |)

12.2.3 Extension by subsumption

The abstract operation of introducing a subsumption link.
abbreviation subsum-extends ::
(′vert, ′var , ′d) pre-RedBlack ⇒ ′vert sub-t ⇒ (′vert, ′var , ′d) pre-RedBlack ⇒ bool

where
subsum-extends prb sub prb ′ ≡

SubExt.extends (red prb) (subs prb) sub (subs prb ′)
∧ ¬ marked prb (subsumer sub)
∧ ¬ marked prb (subsumee sub)
∧ confs prb (subsumee sub) v confs prb (subsumer sub)
∧ prb ′ = (| red = red prb,

black = black prb,
subs = insert sub (subs prb),
init-conf = init-conf prb,
confs = confs prb,
marked = marked prb,
strengthenings = strengthenings prb,
. . . = more prb |)

12.2.4 Extension by abstraction

This operation replaces the configuration of a red vertex rv by an abstraction
of this configuration. The way the abstraction is computed is not specified.
However, besides a number of side conditions, it must subsume the former
configuration of rv and must entail its safeguard condition, if any.
abbreviation abstract-extends ::
(′vert, ′var , ′d) pre-RedBlack
⇒ (′vert × nat)
⇒ (′var , ′d) conf
⇒ (′vert, ′var , ′d) pre-RedBlack
⇒ bool

where
abstract-extends prb rv ca prb ′ ≡

rv ∈ red-vertices prb
∧ ¬ marked prb rv
∧ out-edges (red prb) rv = {}
∧ rv /∈ subsumees (subs prb)
∧ abstract (confs prb rv) ca
∧ ca |=c (strengthenings prb rv)

87

∧ finite (pred ca)
∧ (∀ e ∈ pred ca. finite (vars e))
∧ prb ′ = (| red = red prb,

black = black prb,
subs = subs prb,
init-conf = init-conf prb,
confs = (confs prb)(rv := ca),
marked = marked prb,
strengthenings = strengthenings prb,
. . . = more prb |)

12.2.5 Extension by strengthening

This operation consists in labeling a red vertex with a safeguard condition.
It does not actually change the red part, but model the mechanism of pre-
venting too crude abstractions.
abbreviation strengthen-extends ::
(′vert, ′var , ′d) pre-RedBlack
⇒ (′vert × nat)
⇒ (′var , ′d) bexp
⇒ (′vert, ′var , ′d) pre-RedBlack
⇒ bool

where
strengthen-extends prb rv e prb ′ ≡

rv ∈ red-vertices prb
∧ rv /∈ subsumees (subs prb)
∧ confs prb rv |=c e
∧ prb ′ = (| red = red prb,

black = black prb,
subs = subs prb,
init-conf = init-conf prb,
confs = confs prb,
marked = marked prb,
strengthenings = (strengthenings prb)(rv := (λ σ. (strengthenings prb

rv) σ ∧ e σ)),
. . . = more prb |)

12.3 Building Red-Black Graphs using Extensions

Red-black graphs are pre-red-black graphs built with the following inductive
relation, i.e. using only the five previous pre-red-black graphs transformation
operators, starting from an empty red part.
inductive RedBlack ::

88

(′vert, ′var , ′d) pre-RedBlack ⇒ bool
where

base :
fst (root (red prb)) = init (black prb) =⇒
edges (red prb) = {} =⇒
subs prb = {} =⇒
(confs prb) (root (red prb)) = init-conf prb =⇒
marked prb = (λ rv. False) =⇒
strengthenings prb = (λ rv. (λ σ. True)) =⇒ RedBlack prb

| se-step :
RedBlack prb =⇒
se-extends prb re p ′ prb ′ =⇒ RedBlack prb ′

| mark-step :
RedBlack prb =⇒
mark-extends prb rv prb ′ =⇒ RedBlack prb ′

| subsum-step :
RedBlack prb =⇒
subsum-extends prb sub prb ′ =⇒ RedBlack prb ′

| abstract-step :
RedBlack prb =⇒
abstract-extends prb rv ca prb ′ =⇒ RedBlack prb ′

| strengthen-step :
RedBlack prb =⇒
strengthen-extends prb rv e prb ′ =⇒ RedBlack prb ′

12.4 Properties of Red-Black-Graphs
12.4.1 Invariants of the Red-Black Graphs

The red part of a red-black graph is loop free.
lemma

assumes RedBlack prb
shows loop-free (red prb)

using assms by (induct prb) auto

A red edge can not lead to the (red) root.
lemma

assumes RedBlack prb
assumes re ∈ edges (red prb)

89

shows tgt re 6= root (red prb)
using assms by (induct prb) (auto simp add : vertices-def)

Red edges are specific versions of black edges.
lemma ui-re-is-be :

assumes RedBlack prb
assumes re ∈ edges (red prb)
shows ui-edge re ∈ edges (black prb)

using assms by (induct rule : RedBlack.induct) auto

The set of out-going edges from a red vertex is a subset of the set of out-going
edges from the black location it represents.
lemma red-OA-subset-black-OA :

assumes RedBlack prb
shows ui-edge ‘ out-edges (red prb) rv ⊆ out-edges (black prb) (fst rv)

using assms by (induct prb) (fastforce simp add : vertices-def)+

The red root is an indexed version of the black initial location.
lemma consistent-roots :

assumes RedBlack prb
shows fst (root (red prb)) = init (black prb)

using assms by (induct prb) auto

The red part of a red-black graph is a tree.
lemma

assumes RedBlack prb
shows is-tree (red prb)

using assms
by (induct prb) (auto simp add : empty-graph-is-tree ArcExt.extends-is-tree)

A red-black graph whose black part is well-formed is also well-formed.
lemma

assumes RedBlack prb
assumes wf-lts (black prb)
shows wf-pre-RedBlack prb

proof −
have wf-rgraph (red prb)

using assms by (induct prb) (force simp add : vertices-def)+

thus ?thesis
using assms consistent-roots ui-re-is-be
by (auto simp add : wf-pre-RedBlack-def)

qed

90

Red locations of a red-black graph are indexed versions of its black locations.
lemma ui-rv-is-bv :

assumes RedBlack prb
assumes rv ∈ red-vertices prb
shows fst rv ∈ Graph.vertices (black prb)

using assms consistent-roots ui-re-is-be
by (auto simp add : vertices-def image-def Bex-def) fastforce+

The subsumption of a red-black graph is a sub-relation of its red part.
lemma subs-sub-rel-of :

assumes RedBlack prb
shows sub-rel-of (red prb) (subs prb)

using assms unfolding sub-rel-of-def
proof (induct prb)

case base thus ?case by simp
next

case se-step thus ?case by (elim conjE) (auto simp add : vertices-def)
next

case mark-step thus ?case by auto
next

case subsum-step thus ?case by auto
next

case abstract-step thus ?case by simp
next

case strengthen-step thus ?case by simp
qed

The subsumption relation of red-black graph is well-formed.
lemma subs-wf-sub-rel :

assumes RedBlack prb
shows wf-sub-rel (subs prb)

using assms
proof (induct prb)

case base thus ?case by (simp add : wf-sub-rel-def)
next

case se-step thus ?case by force
next

case mark-step thus ?case by (auto simp add : wf-sub-rel-def)
next
case subsum-step thus ?case by (auto simp add : wf-sub-rel.extends-imp-wf-sub-rel)

next
case abstract-step thus ?case by simp

next
case strengthen-step thus ?case by simp

91

qed

Using the two previous lemmas, we have that the subsumption relation of a
red-black graph is a well-formed sub-relation of its red-part.
lemma subs-wf-sub-rel-of :

assumes RedBlack prb
shows wf-sub-rel-of (red prb) (subs prb)

using assms subs-sub-rel-of subs-wf-sub-rel by (simp add : wf-sub-rel-of-def) fast

Subsumptions only involve red locations representing the same black loca-
tion.
lemma subs-to-same-BL :

assumes RedBlack prb
assumes sub ∈ subs prb
shows fst (subsumee sub) = fst (subsumer sub)

using assms subs-wf-sub-rel unfolding wf-sub-rel-def by fast

If a red edge sequence res is consistent between red locations rv1 and rv2
with respect to the subsumption relation of a red-black graph, then its unin-
dexed version is consistent between the black locations represented by rv1
and rv2.
lemma rces-imp-bces :

assumes RedBlack prb
assumes SubRel.ces rv1 res rv2 (subs prb)
shows Graph.ces (fst rv1) (ui-es res) (fst rv2)

using assms
proof (induct res arbitrary : rv1)

case (Nil rv1) thus ?case
using wf-sub-rel.in-trancl-imp[OF subs-wf-sub-rel] subs-to-same-BL
by fastforce

next
case (Cons re res rv1)

hence 1 : rv1 = src re ∨ (rv1 , src re) ∈ (subs prb)+
and 2 : ces (tgt re) res rv2 (subs prb) by simp-all

have src (ui-edge re) = fst rv1
using 1 wf-sub-rel.in-trancl-imp[OF subs-wf-sub-rel[OF assms(1)], of rv1

src re]
subs-to-same-BL[OF assms(1), of (rv1 ,src re)]

by auto

moreover
have Graph.ces (tgt (ui-edge re)) (ui-es res) (fst rv2)

92

using assms(1) Cons(1) 2 by simp

ultimately
show ?case by simp

qed

The unindexed version of a subpath in the red part of a red-black graph is
a subpath in its black part. This is an important fact: in the end, it helps
proving that set of paths we consider in red-black graphs are paths of the
original LTS. Thus, the same states are computed along these paths.
theorem red-sp-imp-black-sp :

assumes RedBlack prb
assumes subpath (red prb) rv1 res rv2 (subs prb)
shows Graph.subpath (black prb) (fst rv1) (ui-es res) (fst rv2)

using assms rces-imp-bces ui-rv-is-bv ui-re-is-be
unfolding subpath-def Graph.subpath-def by (intro conjI) (fast, fast, fastforce)

Any constraint in the path predicate of a configuration associated to a red
location of a red-black graph contains a finite number of variables.
lemma finite-pred-constr-symvars :

assumes RedBlack prb
assumes finite-RedBlack prb
assumes rv ∈ red-vertices prb
shows ∀ e ∈ pred (confs prb rv). finite (Bexp.vars e)

using assms
proof (induct prb arbitrary : rv)

case base thus ?case by (simp add : vertices-def finite-RedBlack-def)
next

case (se-step prb re c ′ prb ′)

hence rv ∈ red-vertices prb ∨ rv = tgt re by (auto simp add : vertices-def)

thus ?case
proof (elim disjE)

assume rv ∈ red-vertices prb

moreover
have finite-RedBlack prb

using se-step(3 ,4) by (auto simp add : finite-RedBlack-def)

ultimately
show ?thesis

using se-step(2 ,3) by (elim conjE) (auto simp add : vertices-def)
next

93

assume rv = tgt re

moreover
have finite-label (labelling (black prb) (ui-edge re))

using se-step by (auto simp add : finite-RedBlack-def)

moreover
have ∀ e ∈ pred (confs prb (src re)). finite (Bexp.vars e)

using se-step se-step(2)[of src re] unfolding finite-RedBlack-def
by (elim conjE) auto

moreover
have se (confs prb (src re)) (labelling (black prb) (ui-edge re)) c ′

using se-step by auto

ultimately
show ?thesis using se-step se-preserves-finiteness1 by fastforce

qed
next

case mark-step thus ?case by (simp add : finite-RedBlack-def)
next

case subsum-step thus ?case by (simp add : finite-RedBlack-def)
next

case abstract-step thus ?case by (auto simp add : finite-RedBlack-def)
next

case strengthen-step thus ?case by (simp add : finite-RedBlack-def)
qed

The path predicate of a configuration associated to a red location of a red-
black graph contains a finite number of constraints.
lemma finite-pred :

assumes RedBlack prb
assumes finite-RedBlack prb
assumes rv ∈ red-vertices prb
shows finite (pred (confs prb rv))

using assms
proof (induct prb arbitrary : rv)

case base thus ?case by (simp add : vertices-def finite-RedBlack-def)
next

case (se-step prb re c ′ prb ′)

hence rv ∈ red-vertices prb ∨ rv = tgt re
by (auto simp add : vertices-def)

thus ?case

94

proof (elim disjE , goal-cases)
case 1 thus ?thesis

using se-step(2)[of rv] se-step(3 ,4)
by (auto simp add : finite-RedBlack-def)

next
case 2
moreover
hence src re ∈ red-vertices prb
and finite (pred (confs prb (src re)))

using se-step(2)[of src re] se-step(3 ,4)
by (auto simp add : finite-RedBlack-def)

ultimately
show ?thesis

using se-step(3) se-preserves-finiteness2 by auto
qed

next
case mark-step thus ?case by (simp add : finite-RedBlack-def)

next
case subsum-step thus ?case by (simp add : finite-RedBlack-def)

next
case abstract-step thus ?case by (simp add : finite-RedBlack-def)

next
case strengthen-step thus ?case by (simp add : finite-RedBlack-def)

qed

Hence, for a red location rv of a red-black graph and any label l, there exists
a configuration that can be obtained by symbolic execution of l from the
configuration associated to rv.
lemma (in finite-RedBlack) ex-se-succ :

assumes RedBlack prb
assumes rv ∈ red-vertices prb
shows ∃ c ′. se (confs prb rv) l c ′

using finite-RedBlack assms
finite-imp-ex-se-succ[of confs prb rv]
finite-pred[of prb rv]
finite-pred-constr-symvars[of prb rv]

unfolding finite-RedBlack-def by fast

Generalization of the previous lemma to a list of labels.
lemma (in finite-RedBlack) ex-se-star-succ :

assumes RedBlack prb
assumes rv ∈ red-vertices prb
assumes finite-labels ls

95

shows ∃ c ′. se-star (confs prb rv) ls c ′

using finite-RedBlack assms
finite-imp-ex-se-star-succ[of confs prb rv ls]
finite-pred[OF assms(1), of rv]
finite-pred-constr-symvars[OF assms(1), of rv]

unfolding finite-RedBlack-def by simp

Hence, for any red sub-path, there exists a configuration that can be obtained
by symbolic execution of its trace from the configuration associated to its
source.
lemma (in finite-RedBlack) sp-imp-ex-se-star-succ :

assumes RedBlack prb
assumes subpath (red prb) rv1 res rv2 (subs prb)
shows ∃ c. se-star

(confs prb rv1)
(trace (ui-es res) (labelling (black prb)))
c

using finite-RedBlack assms ex-se-star-succ
by (simp add : subpath-def finite-RedBlack-def)

The configuration associated to a red location rl is update-able.
lemma (in finite-RedBlack)

assumes RedBlack prb
assumes rv ∈ red-vertices prb
shows updatable (confs prb rv)

using finite-RedBlack assms
finite-conj[OF finite-pred[OF assms(1)]

finite-pred-constr-symvars[OF assms(1)]]
finite-pred-imp-se-updatable

unfolding finite-RedBlack-def by fast

The configuration associated to the first member of a subsumption is sub-
sumed by the configuration at its second member.
lemma sub-subsumed :

assumes RedBlack prb
assumes sub ∈ subs prb
shows confs prb (subsumee sub) v confs prb (subsumer sub)

using assms
proof (induct prb)

case base thus ?case by simp
next

case (se-step prb re c ′ prb ′)

moreover

96

hence sub ∈ subs prb by auto

hence subsumee sub ∈ red-vertices prb
and subsumer sub ∈ red-vertices prb

using se-step(1) subs-sub-rel-of
unfolding sub-rel-of-def by fast+

moreover
have tgt re /∈ red-vertices prb using se-step by auto

ultimately
show ?case by auto

next
case mark-step thus ?case by simp

next
case (subsum-step prb sub prb ′) thus ?case by auto

next
case (abstract-step prb rv ca prb ′)

hence rv 6= subsumee sub by auto

show ?case
proof (case-tac rv = subsumer sub)

assume rv = subsumer sub

moreover
hence confs prb (subsumer sub) v confs prb ′ (subsumer sub)

using abstract-step abstract-def by auto

ultimately
show ?thesis

using abstract-step
subsums-trans[of confs prb (subsumee sub)

confs prb (subsumer sub)
confs prb ′ (subsumer sub)]

by (simp add : subsums-refl)
next

assume rv 6= subsumer sub thus ?thesis using abstract-step ‹rv 6= subsumee
sub› by simp

qed
next

case strengthen-step thus ?case by simp
qed

97

12.4.2 Simplification lemmas for sub-paths of the red part.
lemma rb-Nil-sp :

assumes RedBlack prb
shows subpath (red prb) rv1 [] rv2 (subs prb) =

(rv1 ∈ red-vertices prb ∧ (rv1 = rv2 ∨ (rv1 ,rv2) ∈ (subs prb)))
using assms subs-wf-sub-rel subs-sub-rel-of wf-sub-rel.Nil-sp by fast

lemma rb-sp-one :
assumes RedBlack prb
shows subpath (red prb) rv1 [re] rv2 (subs prb) =

(sub-rel-of (red prb) (subs prb)
∧ (rv1 = src re ∨ (rv1 , src re) ∈ (subs prb))
∧ re ∈ edges (red prb) ∧ (tgt re = rv2 ∨ (tgt re, rv2) ∈ (subs prb)))

using assms subs-wf-sub-rel-of wf-sub-rel-of .sp-one by fast

lemma rb-sp-Cons :
assumes RedBlack prb
shows subpath (red prb) rv1 (re # res) rv2 (subs prb) =

(sub-rel-of (red prb) (subs prb)
∧ (rv1 = src re ∨ (rv1 , src re) ∈ subs prb)
∧ re ∈ edges (red prb)
∧ subpath (red prb) (tgt re) res rv2 (subs prb))

using assms subs-wf-sub-rel-of wf-sub-rel-of .sp-Cons by fast

lemma rb-sp-append-one :
assumes RedBlack prb
shows subpath (red prb) rv1 (res @ [re]) rv2 (subs prb) =

(subpath (red prb) rv1 res (src re) (subs prb)
∧ re ∈ edges (red prb)
∧ (tgt re = rv2 ∨ (tgt re, rv2) ∈ subs prb))

using assms subs-wf-sub-rel wf-sub-rel.sp-append-one sp-append-one by fast

12.5 Relation between red-vertices

The following key-theorem describes the relation between two red locations
that are linked by a red sub-path. In a classical symbolic execution tree,
the configuration at the end should be the result of symbolic execution of
the trace of the sub-path from the configuration at its source. Here, due
to the facts that abstractions might have occurred and that we consider
sub-paths going through subsumption links, the configuration at the end

98

subsumes the configuration one would obtain by symbolic execution of the
trace. Note however that this is only true for configurations computed dur-
ing the analysis: concrete execution of the sub-paths would yield the same
program states than their counterparts in the original LTS.
thm RedBlack.induct[of x P]

theorem (in finite-RedBlack) SE-rel :
assumes RedBlack prb
assumes subpath (red prb) rv1 res rv2 (subs prb)
assumes se-star (confs prb rv1) (trace (ui-es res) (labelling (black prb))) c
shows c v (confs prb rv2)

using assms finite-RedBlack
proof (induct arbitrary : rv1 res rv2 c rule : RedBlack.induct)

case (base prb rv1 res rv2 c) thus ?case
by (force simp add : subpath-def Nil-sp subsums-refl)

next

case (se-step prb re c ′ prb ′ rv1 res rv2 c)

have rv1 ∈ red-vertices prb ′

and rv2 ∈ red-vertices prb ′

using fst-of-sp-is-vert[OF se-step(4)]
lst-of-sp-is-vert[OF se-step(4)]

by simp-all

hence rv1 ∈ red-vertices prb ∧ rv1 6= tgt re ∨ rv1 = tgt re
and rv2 ∈ red-vertices prb ∧ rv2 6= tgt re ∨ rv2 = tgt re

using se-step by (auto simp add : vertices-def)

thus ?case
proof (elim disjE conjE , goal-cases)

case 1

moreover
hence subpath (red prb) rv1 res rv2 (subs prb)

using se-step(1 ,3 ,4)
sub-rel-of .sp-from-old-verts-imp-sp-in-old
[OF subs-sub-rel-of , of prb re red prb ′ rv1 rv2 res]

by auto

99

ultimately
show ?thesis using se-step

by (fastforce simp add : finite-RedBlack-def)

next

case 2

hence ∃ res ′. res = res ′ @ [re]
∧ re /∈ set res ′

∧ subpath (red prb) rv1 res ′ (src re) (subs prb)
using se-step

sub-rel-of .sp-to-new-edge-tgt-imp[OF subs-sub-rel-of , of prb re red
prb ′ rv1 res]

by auto

thus ?thesis
proof (elim exE conjE)

fix res ′

assume res = res ′ @ [re]
and re /∈ set res ′

and subpath (red prb) rv1 res ′ (src re) (subs prb)

moreover
then obtain c ′

where se-star (confs prb rv1) (trace (ui-es res ′) (labelling (black prb))) c ′

and se c ′ (labelling (black prb) (ui-edge re)) c
using se-step 2 se-star-append-one by auto blast

ultimately
have c ′ v (confs prb (src re)) using se-step by fastforce

thus ?thesis
using se-step ‹rv1 6= tgt re› 2

‹se c ′ (labelling (black prb) (ui-edge re)) c›
by (auto simp add : se-mono-for-sub)

qed
next

case 3

100

moreover
have rv1 = rv2
proof −

have (rv1 ,rv2) ∈ (subs prb ′)
using se-step 3

sub-rel-of .sp-from-tgt-in-extends-is-Nil
[OF subs-sub-rel-of [OF se-step(1)], of re red prb ′ res rv2]

rb-Nil-sp[OF RedBlack.se-step[OF se-step(1 ,3)], of rv1 rv2]
by auto

hence rv1 ∈ subsumees (subs prb) using se-step(3) by force

thus ?thesis
using se-step ‹rv1 = tgt re› subs-sub-rel-of [OF se-step(1)]
by (auto simp add : sub-rel-of-def)

qed

ultimately
show ?thesis by simp

next

case 4

moreover
hence res = []

using se-step
sub-rel-of .sp-from-tgt-in-extends-is-Nil

[OF subs-sub-rel-of [OF se-step(1)], of re red prb ′ res rv2]
by auto

ultimately
show ?thesis using se-step by (simp add : subsums-refl)

qed

next

case (mark-step prb rv prb ′) thus ?case by simp

next
case (subsum-step prb sub prb ′ rv1 res rv2 c)

have RB ′ : RedBlack prb ′ by (rule RedBlack.subsum-step[OF subsum-step(1 ,3)])

101

show ?case
proof (case-tac rv1 = subsumee sub)

assume rv1 = subsumee sub

hence res = [] ∨ subpath (red prb ′) (subsumer sub) res rv2 (subs prb ′)
using subsum-step(3 ,4)

wf-sub-rel-of .sp-in-extends-imp1 [OF subs-wf-sub-rel-of [OF sub-
sum-step(1)],

of subsumee sub subsumer sub]
by simp

thus ?thesis
proof (elim disjE)

assume res = []

hence rv1 = rv2 ∨ (rv1 ,rv2) ∈ (subs prb ′)
using subsum-step rb-Nil-sp[OF RB ′] by fast

thus ?thesis
proof (elim disjE)

assume rv1 = rv2
thus ?thesis

using subsum-step(5) ‹res = []›
by (simp add : subsums-refl)

next

assume (rv1 , rv2) ∈ (subs prb ′)
thus ?thesis

using subsum-step(5) ‹res = []›
sub-subsumed[OF RB ′, of (rv1 ,rv2)]

by simp
qed

next

assume subpath (red prb ′) (subsumer sub) res rv2 (subs prb ′)

thus ?thesis
using subsum-step(5)
proof (induct res arbitrary : rv2 c rule : rev-induct, goal-cases)

102

case (1 rv2 c)

have rv2 = subsumer sub
proof −

have (subsumer sub,rv2) /∈ subs prb ′

proof (intro notI)
assume (subsumer sub,rv2) ∈ subs prb ′

hence subsumer sub ∈ subsumees (subs prb ′) by force

moreover
have subsumer sub ∈ subsumers (subs prb ′)

using subsum-step(3) by force

ultimately
show False

using subs-wf-sub-rel[OF RB ′]
unfolding wf-sub-rel-def
by auto

qed

thus ?thesis using 1 (1) rb-Nil-sp[OF RB ′] by auto
qed

thus ?case
using subsum-step(3) 1 (2) ‹rv1 = subsumee sub› by simp

next

case (2 re res rv2 c)

hence A : subpath (red prb ′) (subsumer sub) res (src re) (subs prb ′)
and B : subpath (red prb ′) (src re) [re] (tgt re) (subs prb ′)
using subs-sub-rel-of [OF RB ′] by (auto simp add : sp-append-one sp-one)

obtain c ′

where C : se-star (confs prb ′ rv1) (trace (ui-es res) (labelling (black prb ′)))
c ′

and D : se c ′ (labelling (black prb ′) (ui-edge re)) c
using 2 by (simp add : se-star-append-one) blast

obtain c ′′

103

where E : se (confs prb ′ (src re)) (labelling (black prb ′) (ui-edge re)) c ′′

using subsum-step(6−8)
‹subpath (red prb ′) (src re) [re] (tgt re) (subs prb ′)›
RB ′ finite-RedBlack.ex-se-succ[of prb ′ src re]

unfolding finite-RedBlack-def
by (simp add : se-star-one fst-of-sp-is-vert) blast

have c v c ′′

proof −
have c ′ v confs prb ′ (src re) using 2 (1) A B C D by fast
thus ?thesis using D E se-mono-for-sub by fast

qed

moreover
have c ′′ v confs prb ′ (tgt re)
proof −

have subpath (red prb) (src re) [re] (tgt re) (subs prb)
proof −

have src re ∈ red-vertices prb ′

and tgt re ∈ red-vertices prb ′

and re ∈ edges (red prb ′)
using B by (auto simp add : vertices-def sp-one)

hence src re ∈ red-vertices prb
and tgt re ∈ red-vertices prb
and re ∈ edges (red prb)

using subsum-step(3) by auto

thus ?thesis
using subs-sub-rel-of [OF subsum-step(1)]
by (simp add : sp-one)

qed

thus ?thesis
using subsum-step(2 ,3 ,6−8) E
by (simp add : se-star-one)

qed

moreover
have confs prb ′ (tgt re) v confs prb ′ rv2
proof −

have tgt re = rv2 ∨ (tgt re,rv2) ∈ subs prb ′

using 2 (2) rb-sp-append-one[OF RB ′] by auto

thus ?thesis

104

proof (elim disjE)
assume tgt re = rv2
thus ?thesis by (simp add : subsums-refl)

next
assume (tgt re, rv2) ∈ (subs prb ′)
thus ?thesis using sub-subsumed RB ′ by fastforce

qed
qed

ultimately
show ?case using subsums-trans subsums-trans by fast

qed
qed

next

assume rv1 6= subsumee sub

hence subpath (red prb) rv1 res rv2 (subs prb) ∨
(∃ res1 res2 . res = res1 @ res2

∧ res1 6= []
∧ subpath (red prb) rv1 res1 (subsumee sub) (subs prb)
∧ subpath (red prb ′) (subsumee sub) res2 rv2 (subs prb ′))

using subsum-step(3 ,4)
wf-sub-rel-of .sp-in-extends-imp2 [OF subs-wf-sub-rel-of [OF sub-

sum-step(1)],
of subsumee sub subsumer sub]

by auto

thus ?thesis
proof (elim disjE exE conjE)

assume subpath (red prb) rv1 res rv2 (subs prb)
thus ?thesis using subsum-step by simp

next

fix res1 res2

define t-res1 where t-res1 = trace (ui-es res1) (labelling (black prb ′))
define t-res2 where t-res2 = trace (ui-es res2) (labelling (black prb ′))

assume res = res1 @ res2

105

and res1 6= []
and subpath (red prb) rv1 res1 (subsumee sub) (subs prb)
and subpath (red prb ′) (subsumee sub) res2 rv2 (subs prb ′)

then obtain c1 c2
where se-star (confs prb ′ rv1) t-res1 c1
and se-star c1 t-res2 c
and se-star (confs prb ′ (subsumee sub)) t-res2 c2

using subsum-step(1 ,3 ,5 ,6−8) RB ′

finite-RedBlack.ex-se-star-succ[of prb rv1 t-res1]
finite-RedBlack.ex-se-star-succ[of prb ′ subsumee sub t-res2]

unfolding finite-RedBlack-def t-res1-def t-res2-def
by (simp add : fst-of-sp-is-vert se-star-append) blast

then have c v c2
proof −

have c1 v confs prb ′ (subsumee sub)
using subsum-step(2 ,3 ,6−8)

‹subpath (red prb) rv1 res1 (subsumee sub) (subs prb)›
‹se-star (confs prb ′ rv1) t-res1 c1 ›

by (auto simp add : t-res1-def t-res2-def)

thus ?thesis
using ‹se-star c1 t-res2 c›

‹se-star (confs prb ′ (subsumee sub)) t-res2 c2 ›
se-star-mono-for-sub

by fast
qed

moreover

have c2 v confs prb ′ rv2
using ‹subpath (red prb ′) (subsumee sub) res2 rv2 (subs prb ′)›

‹se-star (confs prb ′ (subsumee sub)) t-res2 c2 ›
unfolding t-res2-def
proof (induct res2 arbitrary : rv2 c2 rule : rev-induct, goal-cases)

case (1 rv2 c2)

hence subsumee sub = rv2 ∨ (subsumee sub, rv2)∈subs prb ′

using rb-Nil-sp[OF RB ′] by simp

thus ?case
proof (elim disjE)

106

assume subsumee sub = rv2
thus ?thesis

using 1 (2) by (simp add : subsums-refl)
next

assume (subsumee sub, rv2) ∈ subs prb ′

thus ?thesis
using 1 (2)
sub-subsumed[OF RB ′, of (subsumee sub, rv2)]
by simp

qed

next

case (2 re res2 rv2 c2)

have A : subpath (red prb ′) (subsumee sub) res2 (src re) (subs prb ′)
and B : subpath (red prb ′) (src re) [re] rv2 (subs prb ′)

using 2 (2) subs-wf-sub-rel[OF RB ′] subs-wf-sub-rel-of [OF RB ′]
by (simp-all only: wf-sub-rel.sp-append-one)

(simp add : wf-sub-rel-of .sp-one wf-sub-rel-of-def)

obtain c3
where C : se-star (confs prb ′ (subsumee sub))

(trace (ui-es res2) (labelling (black prb ′)))
(c3)

and D : se c3 (labelling (black prb ′) (ui-edge re)) c2
using 2 (3) subsum-step(6−8) RB ′

finite-RedBlack.ex-se-succ[of prb ′ src re]
by (simp add : se-star-append-one) blast

obtain c4
where E : se (confs prb ′ (src re)) (labelling (black prb ′) (ui-edge re)) c4

using subsum-step(6−8) RB ′ B
finite-RedBlack.ex-se-succ[of prb ′ src re]

unfolding finite-RedBlack-def
by (simp add : fst-of-sp-is-vert se-star-append) blast

have c2 v c4
proof −

have c3 v confs prb ′ (src re) using 2 (1) A C by fast

thus ?thesis using D E se-mono-for-sub by fast

107

qed

moreover
have c4 v confs prb ′ (tgt re)
proof −

have subpath (red prb) (src re) [re] (tgt re) (subs prb)
proof −

have src re ∈ red-vertices prb ′

and tgt re ∈ red-vertices prb ′

and re ∈ edges (red prb ′)
using B by (auto simp add : vertices-def sp-one)

hence src re ∈ red-vertices prb
and tgt re ∈ red-vertices prb
and re ∈ edges (red prb)
using subsum-step(3) by auto

thus ?thesis
using subs-sub-rel-of [OF subsum-step(1)]
by (simp add : sp-one)

qed

thus ?thesis
using subsum-step(2 ,3 ,6−8) E
by (simp add : se-star-one)

qed

moreover
have confs prb ′ (tgt re) v confs prb ′ rv2
proof −

have tgt re = rv2 ∨ (tgt re, rv2) ∈ (subs prb ′)
using subsum-step 2 rb-sp-append-one[OF RB ′, of subsumee sub res2

re]
by (auto simp add : vertices-def subpath-def)

thus ?thesis
proof (elim disjE)

assume tgt re = rv2
thus ?thesis by (simp add : subsums-refl)

next
assume (tgt re, rv2) ∈ (subs prb ′)
thus ?thesis

using sub-subsumed RB ′

by fastforce
qed

108

qed

ultimately
show ?case using subsums-trans subsums-trans by fast

qed

ultimately
show ?thesis by (rule subsums-trans)

qed
qed

next
case (abstract-step prb rv ca prb ′ rv1 res rv2 c)

show ?case
proof (case-tac rv1 = rv, goal-cases)

case 1

moreover
hence res = []

using abstract-step
sp-from-de-empty[of rv1 subs prb red prb res rv2]

by simp

moreover
have rv2 = rv
proof −

have rv1 = rv2 ∨ (rv1 , rv2) ∈ (subs prb)
using abstract-step ‹res = []›

rb-Nil-sp[OF RedBlack.abstract-step[OF abstract-step(1 ,3)]]
by simp

moreover
have (rv1 , rv2) /∈ (subs prb)

using abstract-step 1
unfolding Ball-def subsumees-conv
by (intro notI) blast

ultimately
show ?thesis using 1 by simp

qed

ultimately
show ?thesis using abstract-step(5) by (simp add : subsums-refl)

109

next

case 2

show ?thesis
proof (case-tac rv2 = rv)

assume rv2 = rv

hence confs prb rv2 v confs prb ′ rv2
using abstract-step by (simp add : abstract-def)

moreover
have c v confs prb rv2

using abstract-step 2 by auto

ultimately
show ?thesis using subsums-trans by fast

next
assume rv2 6= rv thus ?thesis using abstract-step 2 by simp

qed
qed

next

case strengthen-step thus ?case by simp
qed

12.6 Properties about marking.

A configuration which is indeed satisfiable can not be marked.
lemma sat-not-marked :

assumes RedBlack prb
assumes rv ∈ red-vertices prb
assumes sat (confs prb rv)
shows ¬ marked prb rv

using assms
proof (induct prb arbitrary : rv)

case base thus ?case by simp
next

case (se-step prb re c prb ′)

hence rv ∈ red-vertices prb ∨ rv = tgt re by (auto simp add : vertices-def)

110

thus ?case
proof (elim disjE , goal-cases)

case 1
moreover
hence rv 6= tgt re using se-step(3) by (auto simp add : vertices-def)
ultimately
show ?thesis using se-step by (elim conjE) auto

next
case 2

moreover
hence sat (confs prb (src re)) using se-step(3 ,5) se-sat-imp-sat by auto

ultimately
show ?thesis using se-step(2 ,3) by (elim conjE) auto

qed
next

case (mark-step prb rv ′ prb ′)

moreover
hence rv 6= rv ′ and (rv,rv ′) /∈ subs prb

using sub-subsumed[OF mark-step(1), of (rv,rv ′)] unsat-subs-unsat by auto

ultimately
show ?case by auto

next
case subsum-step thus ?case by auto

next
case (abstract-step prb rv ′ ca prb ′) thus ?case by (case-tac rv ′ = rv) simp+

next
case strengthen-step thus ?case by simp

qed

On the other hand, a red-location which is marked unsat is indeed logically
unsatisfiable.
lemma

assumes RedBlack prb
assumes rv ∈ red-vertices prb
assumes marked prb rv
shows ¬ sat (confs prb rv)

using assms
proof (induct prb arbitrary : rv)

case base thus ?case by simp

111

next
case (se-step prb re c prb ′)

hence rv ∈ red-vertices prb ∨ rv = tgt re by (auto simp add : vertices-def)

thus ?case
proof (elim disjE , goal-cases)

case 1

moreover
hence rv 6= tgt re using se-step(3) by auto
hence marked prb rv using se-step by auto

ultimately
have ¬ sat (confs prb rv) by (rule se-step(2))

thus ?thesis using se-step(3) ‹rv 6= tgt re› by auto
next

case 2

moreover
hence marked prb (src re) using se-step(3 ,5) by auto

ultimately
have ¬ sat (confs prb (src re)) using se-step(2 ,3) by auto

thus ?thesis using se-step(3) ‹rv = tgt re› unsat-imp-se-unsat by (elim conjE)
auto

qed
next

case (mark-step prb rv ′ prb ′) thus ?case by (case-tac rv ′ = rv) auto
next

case subsum-step thus ?case by simp

next
case (abstract-step - rv ′ -) thus ?case by (case-tac rv ′ = rv) simp+

next
case strengthen-step thus ?case by simp

qed

Red vertices involved in subsumptions are not marked.
lemma subsumee-not-marked :

assumes RedBlack prb
assumes sub ∈ subs prb

112

shows ¬ marked prb (subsumee sub)
using assms
proof (induct prb)

case base thus ?case by simp
next

case (se-step prb re c prb ′)

moreover
hence subsumee sub 6= tgt re
using subs-wf-sub-rel-of [OF se-step(1)]
by (elim conjE , auto simp add : wf-sub-rel-of-def sub-rel-of-def)

ultimately
show ?case by auto

next
case mark-step thus ?case by auto

next
case subsum-step thus ?case by auto

next
case abstract-step thus ?case by auto

next
case strengthen-step thus ?case by simp

qed

lemma subsumer-not-marked :
assumes RedBlack prb
assumes sub ∈ subs prb
shows ¬ marked prb (subsumer sub)

using assms
proof (induct prb)

case base thus ?case by simp
next

case (se-step prb re c prb ′)

moreover
hence subsumer sub 6= tgt re
using subs-wf-sub-rel-of [OF se-step(1)]
by (elim conjE , auto simp add : wf-sub-rel-of-def sub-rel-of-def)

ultimately
show ?case by auto

next

113

case (mark-step prb rv prb ′) thus ?case by auto
next

case (subsum-step prb sub ′ prb ′) thus ?case by auto

next
case abstract-step thus ?case by simp

next
case strengthen-step thus ?case by simp

qed

If the target of a red edge is not marked, then its source is also not marked.
lemma tgt-not-marked-imp :

assumes RedBlack prb
assumes re ∈ edges (red prb)
assumes ¬ marked prb (tgt re)
shows ¬ marked prb (src re)

using assms
proof (induct prb arbitrary : re)

case base thus ?case by simp
next

case se-step thus ?case by (force simp add : vertices-def image-def)
next

case (mark-step prb rv prb ′ re) thus ?case by (case-tac tgt re = rv) auto
next

case subsum-step thus ?case by simp

next
case abstract-step thus ?case by simp

next
case strengthen-step thus ?case by simp

qed

Given a red subpath leading from red location rv1 to red location rv2, if rv2
is not marked, then rv1 is also not marked (this lemma is not used).
lemma

assumes RedBlack prb
assumes subpath (red prb) rv1 res rv2 (subs prb)
assumes ¬ marked prb rv2
shows ¬ marked prb rv1

using assms
proof (induct res arbitrary : rv1)

case Nil

114

hence rv1 = rv2 ∨ (rv1 ,rv2) ∈ subs prb by (simp add : rb-Nil-sp)

thus ?case
proof (elim disjE , goal-cases)

case 1 thus ?case using Nil by simp
next

case 2 show ?case using Nil subsumee-not-marked[OF Nil(1) 2] by simp
qed

next
case (Cons re res)

thus ?case
unfolding rb-sp-Cons[OF Cons(2), of rv1 re res rv2]
proof (elim conjE disjE , goal-cases)

case 1

moreover
hence ¬ marked prb (tgt re) by simp

moreover
have re ∈ edges (red prb) using Cons(3) rb-sp-Cons[OF Cons(2), of rv1 re res

rv2] by fast

ultimately
show ?thesis using tgt-not-marked-imp[OF Cons(2)] by fast

next
case 2 thus ?thesis using subsumee-not-marked[OF Cons(2)] by fastforce

qed
qed

12.7 Fringe of a red-black graph

We have stated and proved a number of properties of red-black graphs. In
the end, we are mainly interested in proving that the set of paths of such
red-black graphs are subsets of the set of feasible paths of their black part.
Before defining the set of paths of red-black graphs, we first introduce the
intermediate concept of fringe of the red part. Intuitively, the fringe is the
set of red vertices from which we can approximate more precisely the set
of feasible paths of the black part. This includes red vertices that have not
been subsumed yet, that are not marked and from which some black edges
have not been yet symbolically executed (i.e. that have no red counterpart
from these red vertices).

115

12.7.1 Definition

The fringe is the set of red locations from which there exist black edges that
have not been followed yet.
definition fringe ::
(′vert, ′var , ′d, ′x) pre-RedBlack-scheme ⇒ (′vert × nat) set

where
fringe prb ≡ {rv ∈ red-vertices prb.

rv /∈ subsumees (subs prb) ∧
¬ marked prb rv ∧
ui-edge ‘ out-edges (red prb) rv ⊂ out-edges (black prb) (fst rv)}

12.7.2 Fringe of an empty red-part

At the beginning of the analysis, i.e. when the red part is empty, the fringe
consists of the red root.
lemma fringe-of-empty-red1 :

assumes edges (red prb) = {}
assumes subs prb = {}
assumes marked prb = (λ rv. False)
assumes out-edges (black prb) (fst (root (red prb))) 6= {}
shows fringe prb = {root (red prb)}

using assms by (auto simp add : fringe-def vertices-def)

12.7.3 Evolution of the fringe after extension

Simplification lemmas for the fringe of the new red-black graph after adding
an edge by symbolic execution. If the configuration from which symbolic
execution is performed is not marked yet, and if there exists black edges
going out of the target of the executed edge, the target of the new red edge
enters the fringe. Moreover, if there still exist black edges that have no red
counterpart yet at the source of the new edge, then its source was and stays
in the fringe.
lemma seE-fringe1 :

assumes sub-rel-of (red prb) (subs prb)
assumes se-extends prb re c ′ prb ′

assumes ¬ marked prb (src re)
assumes ui-edge ‘ (out-edges (red prb ′) (src re)) ⊂ out-edges (black prb) (fst (src

re))
assumes out-edges (black prb) (fst (tgt re)) 6= {}
shows fringe prb ′ = fringe prb ∪ {tgt re}

unfolding set-eq-iff Un-iff singleton-iff

116

proof (intro allI iffI , goal-cases)
case (1 rv)

moreover
hence rv ∈ red-vertices prb ∨ rv = tgt re
using assms(2) by (auto simp add : fringe-def vertices-def)

ultimately
show ?case using assms(2) by (auto simp add : fringe-def)

next
case (2 rv)

hence rv ∈ red-vertices prb ′ using assms(2) by (auto simp add : fringe-def
vertices-def)

moreover
have rv /∈ subsumees (subs prb ′)
using 2
proof (elim disjE)

assume rv ∈ fringe prb thus ?thesis using assms(2) by (auto simp add :
fringe-def)

next
assume rv = tgt re thus ?thesis
using assms(1 ,2) unfolding sub-rel-of-def by force

qed

moreover
have ui-edge ‘ (out-edges (red prb ′) rv) ⊂ out-edges (black prb ′) (fst rv)
using 2
proof (elim disjE)

assume rv ∈ fringe prb

thus ?thesis
proof (case-tac rv = src re)

assume rv = src re thus ?thesis using assms(2 ,4) by auto
next

assume rv 6= src re thus ?thesis
using assms(2) ‹rv ∈ fringe prb›
by (auto simp add : fringe-def)

qed
next

assume rv = tgt re thus ?thesis
using assms(2 ,5) extends-tgt-out-edges[of re red prb red prb ′] by (elim conjE)

auto
qed

117

moreover
have ¬ marked prb ′ rv
using 2
proof (elim disjE , goal-cases)

case 1

moreover
hence rv 6= tgt re using assms(2) by (auto simp add : fringe-def)

ultimately
show ?thesis using assms(2) by (auto simp add : fringe-def)

next
case 2 thus ?thesis using assms(2 ,3) by auto

qed

ultimately
show ?case by (simp add : fringe-def)

qed

On the other hand, if all possible black edges have been executed from the
source of the new edge after the extension, then the source is removed from
the fringe.
lemma seE-fringe4 :

assumes sub-rel-of (red prb) (subs prb)
assumes se-extends prb re c ′ prb ′

assumes ¬ marked prb (src re)
assumes ¬ (ui-edge ‘ (out-edges (red prb ′) (src re)) ⊂ out-edges (black prb) (fst

(src re)))
assumes out-edges (black prb) (fst (tgt re)) 6= {}
shows fringe prb ′ = fringe prb − {src re} ∪ {tgt re}

unfolding set-eq-iff Un-iff singleton-iff Diff-iff
proof (intro allI iffI , goal-cases)

case (1 rv)

hence rv ∈ red-vertices prb ∨ rv = tgt re
and rv 6= src re
using assms(2 ,3 ,4 ,5) by (auto simp add : fringe-def vertices-def)

with 1 show ?case using assms(2) by (auto simp add : fringe-def)

next
case (2 rv)

118

hence rv ∈ red-vertices prb ′ using assms(2) by (auto simp add : fringe-def
vertices-def)

moreover
have rv /∈ subsumees (subs prb ′)
using 2
proof (elim disjE)

assume rv ∈ fringe prb ∧ rv 6= src re
thus ?thesis using assms(2) by (auto simp add : fringe-def)

next
assume rv = tgt re thus ?thesis
using assms(1 ,2) unfolding sub-rel-of-def by fastforce

qed

moreover
have ui-edge ‘ (out-edges (red prb ′) rv) ⊂ out-edges (black prb ′) (fst rv)
using 2
proof (elim disjE)

assume rv ∈ fringe prb ∧ rv 6= src re thus ?thesis
using assms(2) by (auto simp add : fringe-def)

next
assume rv = tgt re thus ?thesis
using assms(2 ,5) extends-tgt-out-edges[of re red prb red prb ′] by (elim conjE)

auto
qed

moreover
have ¬ marked prb ′ rv
using 2
proof (elim disjE , goal-cases)

case 1

moreover
hence rv 6= tgt re using assms by (auto simp add : fringe-def)

ultimately
show ?thesis
using assms 1 by (auto simp add : fringe-def)

next
case 2 thus ?thesis using assms by auto

qed

ultimately
show ?case by (simp add : fringe-def)

qed

119

If the source of the new edge is marked, then its target does not enter the
fringe (and the source was not part of it in the first place).
lemma seE-fringe2 :

assumes se-extends prb re c prb ′

assumes marked prb (src re)
shows fringe prb ′ = fringe prb

unfolding set-eq-iff Un-iff singleton-iff
proof (intro allI iffI , goal-cases)

case (1 rv)

thus ?case
unfolding fringe-def mem-Collect-eq
using assms
proof (intro conjI , goal-cases)

case 1 thus ?case by (auto simp add : fringe-def vertices-def)
next

case 2 thus ?case by auto
next

case 3

moreover
hence rv 6= tgt re by auto

ultimately
show ?case by auto

next
case 4 thus ?case by auto

qed
next

case (2 rv)

thus ?case unfolding fringe-def mem-Collect-eq
using assms
proof (intro conjI , goal-cases)

case 1 thus ?case by (auto simp add : vertices-def)
next

case 2 thus ?case by auto
next

case 3
moreover
hence rv 6= tgt re by auto
ultimately
show ?case by auto

next

120

case 4 thus ?case by auto
qed

qed

If there exists no black edges going out of the target of the new edge, then
this target does not enter the fringe.
lemma seE-fringe3 :

assumes se-extends prb re c ′ prb ′

assumes ui-edge ‘ (out-edges (red prb ′) (src re)) ⊂ out-edges (black prb) (fst (src
re))

assumes out-edges (black prb) (fst (tgt re)) = {}
shows fringe prb ′ = fringe prb

unfolding set-eq-iff Un-iff singleton-iff
proof (intro allI iffI , goal-cases)

case (1 rv)

thus ?case using assms(1 ,3)
unfolding fringe-def mem-Collect-eq
proof (intro conjI , goal-cases)

case 1 thus ?case by (auto simp add : fringe-def vertices-def)
next

case 2 thus ?case by (auto simp add : fringe-def)
next

case 3 thus ?case by (case-tac rv = tgt re) (auto simp add : fringe-def)
next

case 4 thus ?case by (auto simp add : fringe-def)
qed

next
case (2 rv)

moreover
hence rv ∈ red-vertices prb ′

and rv 6= tgt re
using assms(1) by (auto simp add : fringe-def vertices-def)

moreover
have ui-edge ‘ (out-edges (red prb ′) rv) ⊂ out-edges (black prb) (fst rv)
proof (case-tac rv = src re)

assume rv = src re thus ?thesis using assms(2) by simp
next

assume rv 6= src re
thus ?thesis using assms(1) 2
by (auto simp add : fringe-def)

qed

121

ultimately
show ?case using assms(1) by (auto simp add : fringe-def)

qed

Moreover, if all possible black edges have been executed from the source
of the new edge after the extension, then this source is removed from the
fringe.
lemma seE-fringe5 :

assumes se-extends prb re c ′ prb ′

assumes ¬ (ui-edge ‘ (out-edges (red prb ′) (src re)) ⊂ out-edges (black prb) (fst
(src re)))

assumes out-edges (black prb) (fst (tgt re)) = {}
shows fringe prb ′ = fringe prb − {src re}

unfolding set-eq-iff Un-iff singleton-iff Diff-iff
proof (intro allI iffI , goal-cases)

case (1 rv)

moreover
have rv ∈ red-vertices prb and rv 6= src re
using 1 assms by (auto simp add : fringe-def vertices-def)

moreover
have ¬ marked prb rv
proof (intro notI)

assume marked prb rv

have marked prb ′ rv
proof −

have rv 6= tgt re using assms(1) ‹rv ∈ red-vertices prb› by auto

thus ?thesis using assms(1) ‹marked prb rv› by auto
qed

thus False using 1 by (auto simp add : fringe-def)
qed

ultimately
show ?case using assms(1) by (auto simp add : fringe-def)

next
case (2 rv)

hence rv ∈ red-vertices prb ′ using assms(1) by (auto simp add : fringe-def

122

vertices-def)

moreover
have rv /∈ subsumees (subs prb ′) using 2 assms(1) by (auto simp add : fringe-def)

moreover
have ui-edge ‘ (out-edges (red prb ′) rv) ⊂ out-edges (black prb ′) (fst rv)
using 2 assms(1) by (auto simp add : fringe-def)

moreover
have ¬ marked prb ′ rv
proof −

have rv 6= tgt re using assms(1) 2 by (auto simp add : fringe-def)

thus ?thesis using assms(1) 2 by (auto simp add : fringe-def)
qed

ultimately
show ?case by (simp add : fringe-def)

qed

Adding a subsumption to the subsumption relation removes the first member
of the subsumption from the fringe.
lemma subsumE-fringe :

assumes subsum-extends prb sub prb ′

shows fringe prb ′ = fringe prb − {subsumee sub}
using assms by (auto simp add : fringe-def)

12.8 Red-Black Sub-Paths and Paths

The set of red-black subpaths starting in red location rv is the union of :

• the set of black sub-paths that have a red counterpart starting at rv
and leading to a non-marked red location,

• the set of black sub-paths that have a prefix represented in the red
part starting at rv and leading to an element of the fringe. Moreover,
the remainings of these black sub-paths must have no non-empty coun-
terpart in the red part. Otherwise, the set of red-black paths would
simply be the set of paths of the black part.

definition RedBlack-subpaths-from ::
(′vert, ′var , ′d, ′x) pre-RedBlack-scheme ⇒ (′vert × nat) ⇒ ′vert edge list set

where

123

RedBlack-subpaths-from prb rv ≡
ui-es ‘ {res. ∃ rv ′. subpath (red prb) rv res rv ′ (subs prb) ∧ ¬ marked prb rv ′}
∪ {ui-es res1 @ bes2
| res1 bes2 . ∃ rv1 . rv1 ∈ fringe prb

∧ subpath (red prb) rv res1 rv1 (subs prb)
∧ ¬ (∃ res21 bes22 . bes2 = ui-es res21 @ bes22

∧ res21 6= []
∧ subpath-from (red prb) rv1 res21 (subs prb))

∧ Graph.subpath-from (black prb) (fst rv1) bes2}

Red-black paths are red-black subpaths starting at the root of the red part.
abbreviation RedBlack-paths ::
(′vert, ′var , ′d, ′x) pre-RedBlack-scheme ⇒ ′vert edge list set

where
RedBlack-paths prb ≡ RedBlack-subpaths-from prb (root (red prb))

When the red part is empty, the set of red-black subpaths starting at the
red root is the set of black paths.
lemma (in finite-RedBlack) base-RedBlack-paths :

assumes fst (root (red prb)) = init (black prb)
assumes edges (red prb) = {}
assumes subs prb = {}
assumes confs prb (root (red prb)) = init-conf prb
assumes marked prb = (λ rv. False)
assumes strengthenings prb = (λ rv. (λ σ. True))

shows RedBlack-paths prb = Graph.paths (black prb)

proof −
show ?thesis
unfolding set-eq-iff
proof (intro allI iffI)

fix bes
assume bes ∈ RedBlack-subpaths-from prb (root (red prb))
thus bes ∈ Graph.paths (black prb)
unfolding RedBlack-subpaths-from-def Un-iff
proof (elim disjE exE conjE , goal-cases)

case 1

hence bes = [] using assms by (auto simp add: subpath-def)

thus ?thesis
by (auto simp add : Graph.subpath-def vertices-def)

124

next
case 2

then obtain res1 bes2 rv where bes = ui-es res1 @ bes2
and rv ∈ fringe prb

and subpath (red prb) (root (red prb)) res1 rv (subs prb)
and Graph.subpath-from (black prb) (fst rv) bes2

by blast

moreover
hence res1 = [] using assms by (simp add : subpath-def)

ultimately
show ?thesis using assms ‹rv ∈ fringe prb› by (simp add : fringe-def

vertices-def)
qed

next
fix bes
assume bes ∈ Graph.paths (black prb)
show bes ∈ RedBlack-subpaths-from prb (root (red prb))
proof (case-tac out-edges (black prb) (init (black prb)) = {})

assume out-edges (black prb) (init (black prb)) = {}
show ?thesis

unfolding RedBlack-subpaths-from-def Un-iff image-def Bex-def mem-Collect-eq
apply (intro disjI1)
apply (rule-tac ?x=[] in exI)
apply (intro conjI)
apply (rule-tac ?x=root (red prb) in exI)
proof (intro conjI)

show subpath (red prb) (root (red prb)) [] (root (red prb)) (subs prb)
using assms(3) by (simp add : sub-rel-of-def subpath-def vertices-def)

next
show ¬ marked prb (root (red prb)) using assms(5) by simp

next
show bes = ui-es []
using ‹bes ∈ Graph.paths (black prb)›

‹out-edges (black prb) (init (black prb)) = {}›
by (cases bes) (auto simp add : Graph.sp-Cons)

qed
next

assume out-edges (black prb) (init (black prb)) 6= {}
show ?thesis

unfolding RedBlack-subpaths-from-def Un-iff mem-Collect-eq
proof (intro disjI2 , rule-tac ?x=[] in exI , rule-tac ?x=bes in exI ,

intro conjI , goal-cases)

125

case 1 show ?case by simp
next

case 2 show ?case
unfolding Bex-def

proof (rule-tac ?x=root (red prb) in exI , intro conjI , goal-cases)

show root (red prb) ∈ fringe prb
using assms(1−3 ,5) ‹out-edges (black prb) (init (black

prb)) 6= {}›
fringe-of-empty-red1
by fastforce

next
show subpath (red prb)(root (red prb))([])(root (red prb))(subs

prb)
using subs-sub-rel-of [OF RedBlack.base[OF assms(1−6)]]

by (simp add : subpath-def vertices-def sub-rel-of-def)
next

case 3 show ?case
proof (intro notI , elim exE conjE)

fix res21 bes22 rv
assume bes = ui-es res21 @ bes22
and res21 6= []

and subpath (red prb) (root (red prb)) res21 rv (subs
prb)

moreover
hence res21 = [] using assms by (simp add :

subpath-def)
ultimately show False by (elim notE)

qed
next

case 4 show ?case
using assms ‹bes ∈ Graph.paths (black prb)› by simp

qed
qed

qed
qed

qed

Red-black sub-paths and paths are sub-paths and paths of the black part.
lemma RedBlack-subpaths-are-black-subpaths :

assumes RedBlack prb
shows RedBlack-subpaths-from prb rv ⊆ Graph.subpaths-from (black prb) (fst

rv)
unfolding subset-iff mem-Collect-eq RedBlack-subpaths-from-def Un-iff image-def
Bex-def

126

proof (intro allI impI , elim disjE exE conjE , goal-cases)
case (1 bes res rv ′) thus ?case using assms red-sp-imp-black-sp by blast

next
case (2 bes res1 bes2 rv1 bv2) thus ?case
using red-sp-imp-black-sp[OF assms, of rv res1 rv1]
by (rule-tac ?x=bv2 in exI) (auto simp add : Graph.sp-append)

qed

lemma RedBlack-paths-are-black-paths :
assumes RedBlack prb
shows RedBlack-paths prb ⊆ Graph.paths (black prb)

using assms
RedBlack-subpaths-are-black-subpaths[of prb root (red prb)]
consistent-roots[of prb]

by simp

12.9 Preservation of feasible paths

The following theorem states that we do not loose feasible paths using our
five operators, and moreover, configurations c at the end of feasible red paths
in some graph prb will have corresponding feasible red paths in successors
that lead to configurations that subsume c. As a corollary, our calculus is
correct wrt. to execution.
theorem (in finite-RedBlack) feasible-subpaths-preserved :

assumes RedBlack prb
assumes rv ∈ red-vertices prb
shows feasible-subpaths-from (black prb) (confs prb rv) (fst rv)

⊆ RedBlack-subpaths-from prb rv
using assms finite-RedBlack
proof (induct prb arbitrary : rv)

case (base prb rv)

moreover
hence rv = root (red prb) by (simp add : vertices-def)

moreover
hence feasible-subpaths-from (black prb) (confs prb rv) (fst rv)

= feasible-paths (black prb) (confs prb (root (red prb)))
using base by simp

moreover

127

have out-edges (black prb) (fst (root (red prb))) = {} ∨
ui-edge ‘out-edges(red prb)(root (red prb)) ⊂ out-edges(black prb)(fst (root

(red prb)))
using base by auto

ultimately
show ?case

using finite-RedBlack.base-RedBlack-paths[of prb]
by (auto simp only : finite-RedBlack-def)

next

case (se-step prb re c prb ′ rv)

have RB ′ : RedBlack prb ′ by (rule RedBlack.se-step[OF se-step(1 ,3)])

show ?case
unfolding subset-iff
proof (intro allI impI)

fix bes

assume bes ∈ feasible-subpaths-from (black prb ′) (confs prb ′ rv) (fst rv)

have rv ∈ red-vertices prb ∨ rv = tgt re
using se-step(3 ,4) by (auto simp add : vertices-def)

thus bes ∈ RedBlack-subpaths-from prb ′ rv
proof (elim disjE)

assume rv ∈ red-vertices prb

moreover
hence rv 6= tgt re using se-step by auto

ultimately
have bes ∈ RedBlack-subpaths-from prb rv

using se-step ‹bes ∈ feasible-subpaths-from (black prb ′) (confs prb ′ rv)
(fst rv)›

by fastforce

thus ?thesis
apply (subst (asm) RedBlack-subpaths-from-def)

128

unfolding Un-iff image-def Bex-def mem-Collect-eq
proof (elim disjE exE conjE)

fix res rv ′

assume bes = ui-es res
and subpath (red prb) rv res rv ′ (subs prb)
and ¬ marked prb rv ′

moreover
hence ¬ marked prb ′ rv ′

using se-step(3) lst-of-sp-is-vert[of red prb rv res rv ′ subs prb]
by (elim conjE) auto

ultimately
show ?thesis
using se-step(3) sp-in-extends-w-subs[of re red prb red prb ′ rv res rv ′ subs

prb]
unfolding RedBlack-subpaths-from-def Un-iff image-def Bex-def mem-Collect-eq

by (intro disjI1 , rule-tac ?x=res in exI , intro conjI)
(rule-tac ?x=rv ′ in exI , auto)

next

fix res1 bes2 rv1 bl

assume A : bes = ui-es res1 @ bes2
and B : rv1 ∈ fringe prb
and C : subpath (red prb) rv res1 rv1 (subs prb)

and E : ¬ (∃ res21 bes22 . bes2 = ui-es res21 @ bes22
∧ res21 6= []
∧ subpath-from (red prb) rv1 res21 (subs prb))

and F : Graph.subpath (black prb) (fst rv1) bes2 bl

hence rv1 6= tgt re using se-step by (auto simp add : fringe-def)

show ?thesis
proof (case-tac rv1 = src re)

assume rv1 = src re

show ?thesis
proof (case-tac bes2 = [])

129

assume bes2 = []

show ?thesis
unfolding RedBlack-subpaths-from-def Un-iff image-def Bex-def

mem-Collect-eq
apply (intro disjI1)
apply (rule-tac ?x=res1 in exI)
apply (intro conjI)
apply (rule-tac ?x=rv1 in exI)
apply (intro conjI)
proof −

show subpath (red prb ′) rv res1 rv1 (subs prb ′)
using se-step(3) C by (auto simp add : sp-in-extends-w-subs)

next
have rv1 6= tgt re using se-step(3) ‹rv1 = src re› by auto
thus ¬ marked prb ′ rv1 using se-step(3) B by (auto simp add :

fringe-def)
next

show bes = ui-es res1 using A ‹bes2 = []› by simp
qed

next

assume bes2 6= []
then obtain be bes2 ′ where bes2 = be # bes2 ′ unfolding neq-Nil-conv

by blast
show ?thesis
proof (case-tac be = ui-edge re)

assume be = ui-edge re

show ?thesis
proof (case-tac out-edges (black prb) (fst (tgt re)) = {})

assume out-edges (black prb) (fst (tgt re)) = {}
show ?thesis

unfolding RedBlack-subpaths-from-def Un-iff image-def Bex-def
mem-Collect-eq

apply (intro disjI1)
apply (rule-tac ?x=res1@[re] in exI)
apply (intro conjI)
apply (rule-tac ?x=tgt re in exI)
proof (intro conjI)

show subpath (red prb ′) rv (res1 @ [re]) (tgt re) (subs prb ′)

130

using se-step(3) ‹rv1 = src re› C
sp-in-extends-w-subs[of re red prb red prb ′ rv res1 rv1 subs

prb]
rb-sp-append-one[OF RB ′, of rv res1 re tgt re]

by auto
next

show ¬ marked prb ′ (tgt re)
using se-step(3) ‹rv1 = src re› B
by (auto simp add : fringe-def)

next
have bes2 ′ = []
using F ‹bes2 = be # bes2 ′›

‹be = ui-edge re› ‹out-edges (black prb) (fst (tgt re)) = {}›
by (cases bes2 ′) (auto simp add: Graph.sp-Cons)

thus bes = ui-es (res1 @ [re])
using ‹bes = ui-es res1 @ bes2 › ‹bes2 = be # bes2 ′› ‹be =

ui-edge re› by simp
qed

next

assume out-edges (black prb) (fst (tgt re)) 6= {}
show ?thesis

unfolding RedBlack-subpaths-from-def Un-iff mem-Collect-eq
apply (intro disjI2)
apply (rule-tac ?x=res1@[re] in exI)
apply (rule-tac ?x=bes2 ′ in exI)
proof (intro conjI , goal-cases)

show bes = ui-es (res1 @ [re]) @ bes2 ′

using ‹bes = ui-es res1 @ bes2 › ‹bes2 = be # bes2 ′› ‹be = ui-edge
re›

by simp
next

case 2 show ?case
proof (rule-tac ?x=tgt re in exI , intro conjI)

have ¬ marked prb (src re)
using B ‹rv1 = src re› by (simp add : fringe-def)

thus tgt re ∈ fringe prb ′

using se-step(3) ‹out-edges (black prb) (fst (tgt re)) 6= {}›
seE-fringe1 [OF subs-sub-rel-of [OF se-step(1)] se-step(3)]
seE-fringe4 [OF subs-sub-rel-of [OF se-step(1)] se-step(3)]

by auto
next

131

show subpath (red prb ′) rv (res1 @ [re]) (tgt re) (subs prb ′)
using se-step(3) ‹rv1 = src re› C

sp-in-extends-w-subs[of re red prb red prb ′

rv res1 rv1 subs prb]
rb-sp-append-one[OF RB ′, of rv res1 re tgt re]

by auto
next

show ¬ (∃ res21 bes22 . bes2 ′ = ui-es res21 @ bes22
∧ res21 6= []
∧ subpath-from (red prb ′) (tgt re) res21 (subs

prb ′))
proof (intro notI , elim exE conjE)

fix res21 bes22 rv2
assume bes2 ′ = ui-es res21 @ bes22
and res21 6= []
and subpath (red prb ′) (tgt re) res21 rv2 (subs prb ′)
thus False

using se-step(3)
sub-rel-of .sp-from-tgt-in-extends-is-Nil

[OF subs-sub-rel-of [OF se-step(1)], of re red prb ′ res21
rv2]

by auto
qed

next
show Graph.subpath-from (black prb ′) (fst (tgt re)) bes2 ′

using se-step(3) F ‹bes2 = be # bes2 ′› ‹be = ui-edge re›
by (auto simp add : Graph.sp-Cons)

qed
qed

qed

next

assume be 6= ui-edge re

show ?thesis
unfolding RedBlack-subpaths-from-def Un-iff mem-Collect-eq
unfolding RedBlack-subpaths-from-def Un-iff mem-Collect-eq
apply (intro disjI2)
apply (rule-tac ?x=res1 in exI)
apply (rule-tac ?x=bes2 in exI)
apply (intro conjI)
apply (rule ‹bes = ui-es res1 @ bes2 ›)

apply (rule-tac ?x=rv1 in exI)
proof (intro conjI)

132

show rv1 ∈ fringe prb ′

unfolding fringe-def mem-Collect-eq
proof (intro conjI)

show rv1 ∈ red-vertices prb ′

using se-step(3) B by (auto simp add : fringe-def vertices-def)
next

show rv1 /∈ subsumees (subs prb ′)
using se-step(3) B by (auto simp add : fringe-def)

next
show ¬ marked prb ′ rv1
using B se-step(3) ‹rv1 6= tgt re› ‹rv1 = src re›
by (auto simp add : fringe-def)

next
have be /∈ ui-edge ‘ out-edges (red prb ′) rv1

proof (intro notI)
assume be ∈ ui-edge ‘ out-edges (red prb ′) rv1

then obtain re ′ where be = ui-edge re ′

and re ′ ∈ out-edges (red prb ′) rv1
by blast

show False
using E
apply (elim notE)
apply (rule-tac ?x=[re ′] in exI)
apply (rule-tac ?x=bes2 ′ in exI)
proof (intro conjI)

show bes2 = ui-es [re ′] @ bes2 ′

using ‹bes2 = be # bes2 ′› ‹be = ui-edge re ′› by simp
next

show [re ′] 6= [] by simp
next

have re ′ ∈ edges (red prb)
using se-step(3) ‹rv1 = src re› ‹re ′ ∈ out-edges (red

prb ′) rv1 ›
‹be 6= ui-edge re› ‹be = ui-edge re ′›

by (auto simp add : vertices-def)

thus subpath-from (red prb) rv1 [re ′] (subs prb)
using ‹re ′ ∈ out-edges (red prb ′) rv1 ›

subs-sub-rel-of [OF se-step(1)]
by (rule-tac ?x=tgt re ′ in exI)

(simp add : rb-sp-one[OF se-step(1)])
qed

133

qed

moreover
have be ∈ out-edges (black prb) (fst rv1)
using F ‹bes2 = be # bes2 ′› by (simp add : Graph.sp-Cons)

ultimately
show ui-edge ‘ out-edges (red prb ′) rv1 ⊂ out-edges (black

prb ′) (fst rv1)
using se-step(3) red-OA-subset-black-OA[OF RB ′, of rv1]

by auto
qed

next
show subpath (red prb ′) rv res1 rv1 (subs prb ′)

using se-step(3) C by (auto simp add : sp-in-extends-w-subs)

next
show ¬ (∃ res21 bes22 . bes2 = ui-es res21 @ bes22

∧ res21 6= []
∧ subpath-from (red prb ′) rv1 res21 (subs prb ′))

apply (intro notI)
apply (elim exE conjE)
proof −

fix res21 bes22 rv3
assume bes2 = ui-es res21 @ bes22
and res21 6= []
and subpath (red prb ′) rv1 res21 rv3 (subs prb ′)
moreover
then obtain re ′ res21 ′ where res21 = re ′ # res21 ′

and be = ui-edge re ′

using ‹bes2 = be # bes2 ′› unfolding neq-Nil-conv by (elim
exE) simp

ultimately
have re ′ ∈ edges (red prb ′) by (simp add : sp-Cons)
moreover
have re ′ /∈ edges (red prb)

using E
apply (intro notI)
apply (elim notE)
apply (rule-tac ?x=[re ′] in exI)
apply (rule-tac ?x=bes2 ′ in exI)
proof (intro conjI)

show bes2 = ui-es [re ′] @ bes2 ′

using ‹bes2 = be # bes2 ′› ‹be = ui-edge re ′› by simp
next

134

show [re ′] 6= [] by simp
next

assume re ′ ∈ edges (red prb)
thus subpath-from (red prb) rv1 [re ′] (subs prb)

using subs-sub-rel-of [OF se-step(1)]
‹subpath (red prb ′) rv1 res21 rv3 (subs prb ′)›
‹res21 = re ′ # res21 ′›

apply (rule-tac ?x=tgt re ′ in exI)
apply (simp add: rb-sp-Cons[OF RB ′])
apply (simp add : rb-sp-one[OF se-step(1)])
using se-step(3) by auto

qed

ultimately
show False

using se-step(3) ‹be 6= ui-edge re› ‹be = ui-edge re ′› by auto
qed

next
show Graph.subpath-from (black prb ′) (fst rv1) bes2

using se-step(3) F by auto
qed

qed
qed

next

assume rv1 6= src re

show ?thesis
unfolding RedBlack-subpaths-from-def Un-iff mem-Collect-eq
apply (intro disjI2)
apply (rule-tac ?x=res1 in exI)
apply (rule-tac ?x=bes2 in exI)
apply (intro conjI , goal-cases)
proof −

show bes = ui-es res1 @ bes2 by (rule ‹bes = ui-es res1 @ bes2 ›)
next

case 2 show ?case
apply (rule-tac ?x=rv1 in exI)
proof (intro conjI , goal-cases)

show rv1 ∈ fringe prb ′

using se-step(3) B ‹rv1 6= src re› ‹rv1 6= tgt re›
seE-fringe1 [OF subs-sub-rel-of [OF se-step(1)] se-step(3)]
seE-fringe2 [OF se-step(3)]
seE-fringe3 [OF se-step(3)]
seE-fringe4 [OF subs-sub-rel-of [OF se-step(1)] se-step(3)]

135

seE-fringe5 [OF se-step(3)]
apply (case-tac marked prb (src re))
apply simp

apply (case-tac ui-edge ‘ out-edges (red prb ′) (src re) ⊂
out-edges (black prb) (fst (src re)))

apply (case-tac out-edges (black prb) (fst (tgt re)) = {})
apply simp

apply simp
apply (case-tac out-edges (black prb) (fst (tgt re)) = {})
apply simp

apply simp
done

next
show subpath (red prb ′) rv res1 rv1 (subs prb ′)

using se-step(3) C by (auto simp add :sp-in-extends-w-subs)

next
show ¬ (∃ res21 bes22 . bes2 = ui-es res21 @ bes22

∧ res21 6= []
∧ subpath-from (red prb ′) rv1 res21 (subs prb ′))

proof (intro notI , elim exE conjE)
fix res21 bes22 rv2
assume bes2 = ui-es res21 @ bes22
and res21 6= []
and subpath (red prb ′) rv1 res21 rv2 (subs prb ′)
then obtain re ′ res21 ′ where res21 = re ′ # res21 ′

using ‹res21 6= []› unfolding neq-Nil-conv by blast

have rv1 = src re ′ ∨ (rv1 ,src re ′) ∈ subs prb
and re ′ ∈ edges (red prb ′)

using se-step(3) rb-sp-Cons[OF RB ′]
‹subpath (red prb ′) rv1 res21 rv2 (subs prb ′)› ‹res21 = re ′

res21 ′›
by auto

moreover
have re ′ ∈ edges (red prb)

proof −
have re ′ 6= re

using ‹rv1 = src re ′ ∨ (rv1 ,src re ′) ∈ subs prb›
proof (elim disjE , goal-cases)

case 1 thus ?thesis using ‹rv1 6= src re› by auto
next

case 2 thus ?case
using B unfolding fringe-def subsumees-conv

136

by fast
qed
thus ?thesis using se-step(3) ‹re ′ ∈ edges (red prb ′)› by

simp
qed

show False
using E
apply (elim notE)
apply (rule-tac ?x=[re ′] in exI)
apply (rule-tac ?x=ui-es res21 ′ @ bes22 in exI)
proof (intro conjI)

show bes2 = ui-es [re ′] @ ui-es res21 ′ @ bes22
using ‹bes2 = ui-es res21 @ bes22 › ‹res21 = re ′ #

res21 ′› by simp
next
show [re ′] 6= [] by simp

next
show subpath-from (red prb) rv1 [re ′] (subs prb)

using se-step(1)
‹rv1 = src re ′ ∨ (rv1 ,src re ′) ∈ subs prb›
‹re ′ ∈ edges (red prb)›
rb-sp-one subs-sub-rel-of

by fast
qed

qed
next

case 4 show ?case using se-step(3) F by auto
qed

qed
qed

qed

next

assume rv = tgt re

show ?thesis
proof (case-tac out-edges (black prb) (fst (tgt re)) = {})

assume out-edges (black prb) (fst (tgt re)) = {}
show ?thesis

unfolding RedBlack-subpaths-from-def Un-iff image-def Bex-def mem-Collect-eq

137

apply (intro disjI1)
apply (rule-tac ?x=[] in exI)
proof (intro conjI , rule-tac ?x=tgt re in exI , intro conjI)

show subpath (red prb ′) rv [] (tgt re) (subs prb ′)
using se-step(3) ‹rv = tgt re› rb-Nil-sp[OF RB ′] by (auto simp add

: vertices-def)
next

have sat (confs prb ′ (tgt re))
using ‹bes ∈ feasible-subpaths-from (black prb ′) (confs prb ′ rv) (fst

rv)›
‹rv = tgt re› se-star-sat-imp-sat

by (auto simp add : feasible-def)

thus ¬ marked prb ′ (tgt re)
using se-step(3) sat-not-marked[OF RB ′, of tgt re]
by (auto simp add : vertices-def)

next
show bes = ui-es []

using se-step(3) ‹rv = tgt re› ‹out-edges (black prb) (fst (tgt re)) =
{}›

‹bes ∈ feasible-subpaths-from (black prb ′) (confs prb ′ rv) (fst rv)›
by (cases bes) (auto simp add : Graph.sp-Cons)

qed

next
assume out-edges (black prb) (fst (tgt re)) 6= {}
show ?thesis
unfolding RedBlack-subpaths-from-def Un-iff mem-Collect-eq
apply (intro disjI2)
apply (rule-tac ?x=[] in exI)
apply (rule-tac ?x=bes in exI)
proof (intro conjI , goal-cases)

show bes = ui-es [] @ bes by simp
next

case 2
show ?case
apply (rule-tac ?x=rv in exI)
proof (intro conjI)

have ¬ marked prb (src re)
proof −

have sat (confs prb ′ (tgt re))
using ‹bes ∈ feasible-subpaths-from (black prb ′) (confs prb ′ rv) (fst

rv)›
‹rv = tgt re› se-star-sat-imp-sat

by (auto simp add : feasible-def)

138

hence sat (confs prb ′ (src re))
using se-step se-sat-imp-sat by auto

moreover
have src re 6= tgt re using se-step by auto

ultimately
have sat (confs prb (src re))

using se-step(3) by (auto simp add : vertices-def)

thus ?thesis
using se-step sat-not-marked[OF se-step(1), of src re] by fast

qed

thus rv ∈ fringe prb ′

using se-step(3) ‹rv = tgt re› ‹out-edges (black prb) (fst (tgt re)) 6=
{}›

seE-fringe1 [OF subs-sub-rel-of [OF se-step(1)] se-step(3)]
seE-fringe4 [OF subs-sub-rel-of [OF se-step(1)] se-step(3)]

by auto

next

show subpath (red prb ′) rv [] rv (subs prb ′)
using se-step(3) ‹rv = tgt re› subs-sub-rel-of [OF RB ′]
by (auto simp add : subpath-def vertices-def)

next

show ¬ (∃ res21 bes22 . bes = ui-es res21 @ bes22
∧ res21 6= []
∧ subpath-from (red prb ′) rv res21 (subs prb ′))

proof (intro notI , elim exE conjE)
fix res1 bes22 rv ′

assume bes = ui-es res1 @ bes22
and res1 6= []
and subpath (red prb ′) rv res1 rv ′ (subs prb ′)

have out-edges (red prb ′) (tgt re) 6= {} ∨ tgt re ∈ subsumees (subs prb ′)
proof −

obtain re ′ res2 where res1 = re ′#res2
using ‹res1 6= []› unfolding neq-Nil-conv by blast

139

hence rv = src re ′ ∨ (rv,src re ′) ∈ subs prb
using se-step(3) ‹subpath (red prb ′) rv res1 rv ′ (subs prb ′)›

rb-sp-Cons[OF RB ′, of rv re ′ res2 rv ′]
by auto

thus ?thesis
proof (elim disjE)

assume rv = src re ′

moreover
hence re ′ ∈ out-edges (red prb ′) (tgt re)

using ‹subpath (red prb ′) rv res1 rv ′ (subs prb ′)›
‹res1 = re ′#res2 › ‹rv = tgt re›

by (auto simp add : sp-Cons)

ultimately
show ?thesis using se-step(3) by auto

next
assume (rv,src re ′) ∈ subs prb

hence tgt re ∈ red-vertices prb
using se-step(3) ‹rv = tgt re› subs-sub-rel-of [OF se-step(1)]
unfolding sub-rel-of-def by force

thus ?thesis using se-step(3) by auto
qed

qed

thus False
proof (elim disjE)

assume out-edges (red prb ′) (tgt re) 6= {}
thus ?thesis using se-step(3)

by (auto simp add : vertices-def image-def)
next

assume tgt re ∈ subsumees (subs prb ′)

hence tgt re ∈ red-vertices prb
using se-step(3) subs-sub-rel-of [OF se-step(1)]
unfolding subsumees-conv sub-rel-of-def by fastforce

thus ?thesis using se-step(3) by (auto simp add : vertices-def)
qed

qed
next

140

show Graph.subpath-from (black prb ′) (fst rv) bes
using se-step(3)

‹bes ∈ feasible-subpaths-from (black prb ′) (confs prb ′ rv) (fst rv)›
by simp

qed
qed

qed
qed

qed

next

case (mark-step prb rv2 prb ′ rv1)
have finite-RedBlack prb using mark-step by (auto simp add : finite-RedBlack-def)

show ?case
unfolding subset-iff
proof (intro allI impI)

fix bes
assume bes ∈ feasible-subpaths-from (black prb ′) (confs prb ′ rv1) (fst rv1)
then obtain c where se-star (confs prb rv1) (trace bes (labelling (black prb)))

c
and sat c

using mark-step(3) ‹bes ∈ feasible-subpaths-from (black prb ′) (confs prb ′

rv1) (fst rv1)›
by (simp add : feasible-def) blast

have bes ∈ RedBlack-subpaths-from prb rv1
using mark-step(2)[of rv1] mark-step(3−7)

‹bes ∈ feasible-subpaths-from (black prb ′) (confs prb ′ rv1) (fst rv1)›
by auto

thus bes ∈ RedBlack-subpaths-from prb ′ rv1
apply (subst (asm) RedBlack-subpaths-from-def)
unfolding Un-iff image-def Bex-def mem-Collect-eq
proof (elim disjE exE conjE)

fix res rv3
assume bes = ui-es res
and subpath (red prb) rv1 res rv3 (subs prb)
and ¬ marked prb rv3
show ?thesis

unfolding RedBlack-subpaths-from-def Un-iff image-def Bex-def mem-Collect-eq
proof (intro disjI1 ,rule-tac ?x=res in exI ,intro conjI)

141

show ∃ rv ′. subpath (red prb ′) rv1 res rv ′ (subs prb ′) ∧ ¬ marked prb ′ rv ′

apply (rule-tac ?x=rv3 in exI)
proof (intro conjI)

show subpath (red prb ′) rv1 res rv3 (subs prb ′)
using mark-step(3) ‹subpath (red prb) rv1 res rv3 (subs prb)›
by auto

next

show ¬ marked prb ′ rv3
proof −

have sat (confs prb rv3)
proof −

have c v confs prb rv3
using mark-step(1)

‹subpath (red prb) rv1 res rv3 (subs prb)›
‹bes = ui-es res›

‹se-star (confs prb rv1) (trace bes (labelling (black prb)))
c›

‹finite-RedBlack prb›
finite-RedBlack.SE-rel

by simp

thus ?thesis
using ‹se-star (confs prb rv1) (trace bes (labelling (black prb)))

c›
‹sat c›
sat-sub-by-sat

by fast
qed

thus ?thesis
using mark-step(3) ‹subpath (red prb) rv1 res rv3 (subs prb)›

lst-of-sp-is-vert[of red prb rv1 res rv3 subs prb]
sat-not-marked[OF RedBlack.mark-step[OF mark-step(1 ,3)]]

by auto
qed

qed

next

show bes = ui-es res by (rule ‹bes = ui-es res›)
qed

next

142

fix res1 bes2 rv3 bl

assume A : bes = ui-es res1 @ bes2
and B : rv3 ∈ fringe prb
and C : subpath (red prb) rv1 res1 rv3 (subs prb)
and E : ¬ (∃ res21 bes22 . bes2 = ui-es res21 @ bes22

∧ res21 6= []
∧ subpath-from (red prb) rv3 res21 (subs prb))

and F : Graph.subpath (black prb) (fst rv3) bes2 bl

show ?thesis
unfolding RedBlack-subpaths-from-def Un-iff mem-Collect-eq
apply (intro disjI2)
apply (rule-tac ?x=res1 in exI)
apply (rule-tac ?x=bes2 in exI)
proof (intro conjI , goal-cases)

show bes = ui-es res1 @ bes2 by (rule ‹bes = ui-es res1 @ bes2 ›)
next

case 2 show ?case
apply (rule-tac ?x=rv3 in exI)
proof (intro conjI)

have sat (confs prb rv3)
proof −

obtain c ′

where se-star (confs prb rv1) (trace (ui-es res1) (labelling (black prb)))
c ′

and se-star c ′ (trace bes2 (labelling (black prb))) c
and sat c ′

using A ‹se-star (confs prb rv1) (trace bes (labelling (black prb)))
c› ‹sat c›

by (simp add : se-star-append se-star-sat-imp-sat) blast

moreover
hence c ′ v confs prb rv3

using ‹finite-RedBlack prb› mark-step(1) C finite-RedBlack.SE-rel
by fast

ultimately
show ?thesis by (simp add : sat-sub-by-sat)

qed

thus rv3 ∈ fringe prb ′ using mark-step(3) B by (auto simp add : fringe-def)

143

next
show subpath (red prb ′) rv1 res1 rv3 (subs prb ′)

using mark-step(3) ‹subpath (red prb) rv1 res1 rv3 (subs prb)›
by auto

next

show ¬ (∃ res21 bes22 . bes2 = ui-es res21 @ bes22
∧ res21 6= []
∧ subpath-from (red prb ′) rv3 res21 (subs prb ′))

proof (intro notI , elim exE conjE)

fix res21 bes22 rv4

assume bes2 = ui-es res21 @ bes22
and res21 6= []
and subpath (red prb ′) rv3 res21 rv4 (subs prb ′)

show False
using E
proof (elim notE ,rule-tac ?x=res21 in exI ,

rule-tac ?x=bes22 in exI ,intro conjI)
show bes2 = ui-es res21 @ bes22 by (rule ‹bes2 = ui-es res21

@ bes22 ›)
next

show res21 6= [] by (rule ‹res21 6= []›)
next

show subpath-from (red prb) rv3 res21 (subs prb)
using mark-step(3)

‹subpath (red prb ′) rv3 res21 rv4 (subs prb ′)›
by (simp del : split-paired-Ex) blast

qed
qed

next
show Graph.subpath-from (black prb ′) (fst rv3) bes2 using mark-step(3)

F by simp blast
qed

qed
qed

qed

next

case (subsum-step prb sub prb ′ rv)

144

hence finite-RedBlack prb by (auto simp add : finite-RedBlack-def)

have RB ′ : RedBlack prb ′ by (rule RedBlack.subsum-step[OF subsum-step(1 ,3)])

show ?case
unfolding subset-iff
proof (intro allI impI)

fix bes
assume bes ∈ feasible-subpaths-from (black prb ′) (confs prb ′ rv) (fst rv)

hence bes ∈ RedBlack-subpaths-from prb rv
using subsum-step(2)[of rv] subsum-step(3−7) by auto

thus bes ∈ RedBlack-subpaths-from prb ′ rv
apply (subst (asm) RedBlack-subpaths-from-def)
unfolding Un-iff image-def Bex-def mem-Collect-eq
proof (elim disjE exE conjE)

fix res rv ′

assume bes = ui-es res
and subpath (red prb) rv res rv ′ (subs prb)
and ¬ marked prb rv ′

thus bes ∈ RedBlack-subpaths-from prb ′ rv
using subsum-step(3) sp-in-extends[of sub red prb]
by (simp (no-asm) only : RedBlack-subpaths-from-def Un-iff image-def

Bex-def mem-Collect-eq,
intro disjI1 , rule-tac ?x=res in exI , intro conjI)
(rule-tac ?x=rv ′ in exI , auto)

next

fix res1 bes2 rv ′ bl
assume A : bes = ui-es res1 @ bes2
and B : rv ′ ∈ fringe prb
and C : subpath (red prb) rv res1 rv ′ (subs prb)

and E : ¬ (∃ res21 bes22 . bes2 = ui-es res21 @ bes22
∧ res21 6= []
∧ subpath-from (red prb) rv ′ res21 (subs prb))

and F : Graph.subpath (black prb) (fst rv ′) bes2 bl
show bes ∈ RedBlack-subpaths-from prb ′ rv
proof (case-tac rv ′ = subsumee sub)

145

assume rv ′ = subsumee sub

show ?thesis
using ‹bes ∈ feasible-subpaths-from (black prb ′) (confs prb ′ rv) (fst rv)›

A C F
proof (induct bes2 arbitrary : bes bl rule : rev-induct, goal-cases)

case (1 bes bl) thus ?case
using subsum-step(3) B sp-in-extends[of sub red prb]
by (simp (no-asm) only :

RedBlack-subpaths-from-def Un-iff image-def Bex-def
mem-Collect-eq,

intro disjI1 , rule-tac ?x=res1 in exI , intro conjI)
(rule-tac ?x=rv ′ in exI , auto simp add : fringe-def)

next

case (2 be bes2 bes bl)
then obtain c1 c2 c3

where se-star (confs prb ′ rv) (trace (ui-es res1) (labelling (black prb)))
c1

and se-star c1 (trace bes2 (labelling (black prb))) c2
and se c2 (labelling (black prb) be) c3
and sat c3
using subsum-step(3)

by (simp add : feasible-def se-star-append se-star-append-one se-star-one)
blast

have ui-es res1 @ bes2 ∈ RedBlack-subpaths-from prb ′ rv
proof −

have ui-es res1 @ bes2 ∈ feasible-subpaths-from (black prb ′) (confs prb ′

rv) (fst rv)
proof −

have Graph.subpath-from (black prb ′) (fst rv) (ui-es res1 @ bes2)
using subsum-step 2 (5) red-sp-imp-black-sp[OF subsum-step(1) C]
by (simp add : Graph.sp-append) blast

moreover
have feasible (confs prb ′ rv)

(trace (ui-es res1 @ bes2) (labelling (black prb ′)))
proof −

have se-star (confs prb ′ rv)
(trace (ui-es res1@bes2) (labelling (black prb ′)))
c2

146

using subsum-step
‹se-star (confs prb ′ rv) (trace (ui-es res1)

(labelling (black prb))) (c1)›
‹se-star c1 (trace bes2 (labelling (black prb))) c2 ›

by (simp add : se-star-append) blast

moreover
have sat c2

using ‹se c2 (labelling (black prb) be) c3 › ‹sat c3 ›
by (simp add : se-sat-imp-sat)

ultimately
show ?thesis by (simp add : feasible-def) blast

qed

ultimately
show ?thesis by simp

qed

moreover
have Graph.subpath-from (black prb) (fst rv ′) bes2

using 2 (5) by (auto simp add : Graph.sp-append-one)

ultimately
show ?thesis using 2 (1 ,4) by(auto simp add : Graph.sp-append-one)

qed

thus ?case
apply (subst (asm) RedBlack-subpaths-from-def)
unfolding Un-iff image-def Bex-def mem-Collect-eq
proof (elim disjE exE conjE , goal-cases)

case (1 res rv ′′)
show ?thesis
proof (case-tac be ∈ ui-edge ‘ out-edges (red prb ′) rv ′′)

assume be ∈ ui-edge ‘ out-edges (red prb ′) rv ′′

then obtain re where be = ui-edge re
and re ∈ out-edges (red prb ′) rv ′′

by blast

show ?thesis
unfolding RedBlack-subpaths-from-def Un-iff image-def Bex-def

mem-Collect-eq
apply (intro disjI1)

147

apply (rule-tac ?x=res@[re] in exI)
proof (intro conjI ,rule-tac ?x=tgt re in exI ,intro conjI)

show subpath (red prb ′) rv (res@[re]) (tgt re) (subs prb ′)
using 1 (2) ‹re ∈ out-edges (red prb ′) rv ′′›
by (simp add : sp-append-one)

next
show ¬ marked prb ′ (tgt re)
proof −

have sat (confs prb ′ (tgt re))
proof −

have subpath (red prb ′) rv (res@[re]) (tgt re) (subs prb ′)
using 1 (2) ‹re ∈ out-edges (red prb ′) rv ′′›
by (simp add : sp-append-one)

then obtain c
where se-star (confs prb ′ rv)

(trace (ui-es (res@[re])) (labelling (black prb)))
c

using subsum-step(3 ,5 ,6 ,7) RB ′

finite-RedBlack.sp-imp-ex-se-star-succ
[of prb ′ rv res@[re] tgt re]

unfolding finite-RedBlack-def
by simp blast

hence sat c
using 1 (1)

‹se-star (confs prb ′ rv) (trace (ui-es res1)
(labelling (black prb))) (c1)›

‹se-star c1 (trace bes2 (labelling (black prb))) c2 ›
‹se c2 (labelling (black prb) be) c3 ›
‹sat c3 › ‹be = ui-edge re›
se-star-succs-states

[of confs prb ′ rv
trace(ui-es(res@[re]))(labelling(black prb))

c3]
apply (subst (asm) eq-commute)

by (auto simp add : se-star-append-one se-star-append
se-star-one sat-eq)

moreover
have c v confs prb ′ (tgt re)

using subsum-step(3 ,5 ,6 ,7)
‹subpath (red prb ′) rv (res@[re]) (tgt re) (subs

prb ′)›
‹se-star (confs prb ′ rv)(trace (ui-es (res@[re]))

148

(labelling (black prb)))(c)›
finite-RedBlack.SE-rel[of prb ′] RB ′

by (simp add : finite-RedBlack-def)

ultimately
show ?thesis by (simp add: sat-sub-by-sat)

qed

thus ?thesis
using ‹re ∈ out-edges (red prb ′) rv ′′›

sat-not-marked[OF RB ′, of tgt re]
by (auto simp add : vertices-def)

qed
next

show bes = ui-es (res@[re]) using 1 (1) 2 (3) ‹be = ui-edge
re› by simp

qed

next

assume be /∈ ui-edge ‘ out-edges (red prb ′) rv ′′

show ?thesis
proof (case-tac rv ′′ ∈ subsumees (subs prb ′))

assume rv ′′ ∈ subsumees (subs prb ′)

then obtain arv ′′ where (rv ′′,arv ′′) ∈ (subs prb ′) by auto

hence subpath (red prb ′) rv res arv ′′ (subs prb ′)
using ‹subpath (red prb ′) rv res rv ′′ (subs prb ′)›
by (simp add : sp-append-sub)

show ?thesis
proof (case-tac be ∈ ui-edge ‘ out-edges (red prb ′) arv ′′)

assume be ∈ ui-edge ‘ out-edges (red prb ′) arv ′′

then obtain re where re ∈ out-edges (red prb ′) arv ′′

and be = ui-edge re
by blast

show ?thesis
unfolding RedBlack-subpaths-from-def Un-iff image-def

Bex-def mem-Collect-eq

149

apply (intro disjI1)
apply (rule-tac ?x=res@[re] in exI)
proof (intro conjI ,rule-tac ?x=tgt re in exI ,intro conjI)

show subpath (red prb ′) rv (res @ [re]) (tgt re) (subs prb ′)
using ‹subpath (red prb ′) rv res arv ′′ (subs prb ′)›

‹re ∈ out-edges (red prb ′) arv ′′›
by (simp add : sp-append-one)

next

have sat (confs prb ′ (tgt re))
proof −
have subpath (red prb ′) rv (res@[re]) (tgt re) (subs prb ′)

using ‹subpath (red prb ′) rv res arv ′′ (subs prb ′)›
‹re ∈ out-edges (red prb ′) arv ′′›

by (simp add : sp-append-one)

then obtain c
where se : se-star (confs prb ′ rv) (trace (ui-es (res@[re]))

(labelling (black prb))) (c)
using subsum-step(3 ,5 ,6 ,7) RB ′

finite-RedBlack.sp-imp-ex-se-star-succ
[of prb ′ rv res@[re] tgt re]

unfolding finite-RedBlack-def
by simp blast

hence sat c
using 1 (1)

‹se-star (confs prb ′ rv) (trace (ui-es res1)
(labelling (black prb))) (c1)›

‹se-star c1 (trace bes2 (labelling (black prb))) c2 ›
‹se c2 (labelling (black prb) be) c3 › ‹sat c3 ›
‹be = ui-edge re›
se-star-succs-states

[of confs prb ′ rv
trace (ui-es(res@[re]))

(labelling (black prb))
c3]

apply (subst (asm) eq-commute)
by (auto simp add : se-star-append-one se-star-append

se-star-one sat-eq)

moreover
have c v confs prb ′ (tgt re)

150

using subsum-step(3 ,5 ,6 ,7) se RB ′

finite-RedBlack.SE-rel[of prb ′]
‹subpath (red prb ′) rv (res@[re]) (tgt re) (subs

prb ′)›
by (simp add : finite-RedBlack-def)

ultimately
show ?thesis by (simp add: sat-sub-by-sat)

qed

thus ¬ marked prb ′ (tgt re)
using ‹re ∈ out-edges (red prb ′) arv ′′›

sat-not-marked[OF RB ′, of tgt re]
by (auto simp add : vertices-def)

next

show bes = ui-es (res @ [re])
using ‹bes = ui-es res1 @ bes2 @ [be]›

‹ui-es res1 @ bes2 = ui-es res›
‹be = ui-edge re›

by simp

qed

next

assume A : be /∈ ui-edge ‘ out-edges (red prb ′) arv ′′

have src be = fst arv ′′

proof −
have Graph.subpath (black prb ′) (fst rv) (ui-es res1 @ bes2)

(fst arv ′′)
using ‹ui-es res1 @ bes2 = ui-es res›

‹subpath (red prb ′) rv res arv ′′ (subs prb ′)›
red-sp-imp-black-sp[OF RB ′]

by auto

moreover
have Graph.subpath (black prb ′) (fst rv) (ui-es res1 @ bes2)

(src be)
using ‹bes ∈ feasible-subpaths-from (black prb ′) (confs prb ′ rv)

(fst rv)›
‹bes = ui-es res1 @ bes2 @ [be]›

by (auto simp add : Graph.sp-append Graph.sp-append-one

151

Graph.sp-one)

ultimately
show ?thesis
using sp-same-src-imp-same-tgt by fast

qed

show ?thesis
unfolding RedBlack-subpaths-from-def Un-iff mem-Collect-eq
apply (intro disjI2)
apply (rule-tac ?x=res in exI)
apply (rule-tac ?x=[be] in exI)
proof (intro conjI , goal-cases)

show bes = ui-es res @ [be]
using ‹bes = ui-es res1 @ bes2 @ [be]›

‹ui-es res1 @ bes2 = ui-es res›
by simp

next

case 2 show ?case
apply (rule-tac ?x=arv ′′ in exI)
proof (intro conjI)

show arv ′′ ∈ fringe prb ′

unfolding fringe-def mem-Collect-eq
proof (intro conjI)

show arv ′′ ∈ red-vertices prb ′

using ‹subpath (red prb ′) rv res arv ′′ (subs prb ′)›
by (simp add : lst-of-sp-is-vert)

next
show arv ′′ /∈ subsumees (subs prb ′)
using ‹(rv ′′,arv ′′) ∈ subs prb ′› subs-wf-sub-rel[OF RB ′]
unfolding wf-sub-rel-def Ball-def
by (force simp del : split-paired-All)

next
show ¬ marked prb ′ arv ′′

using ‹(rv ′′,arv ′′) ∈ (subs prb ′)› subsumer-not-marked[OF
RB ′]

by fastforce
next

have be ∈ edges (black prb ′)
using subsum-step(3)

‹Graph.subpath (black prb) (fst rv ′) (bes2 @ [be]) bl›

152

by (simp add : Graph.sp-append-one)

thus ui-edge ‘ out-edges (red prb ′) arv ′′ ⊂ out-edges (black
prb ′)

(fst arv ′′)
using ‹src be = fst arv ′′› A red-OA-subset-black-OA[OF

RB ′, of arv ′′]
by auto

qed

next

show subpath (red prb ′) rv res arv ′′ (subs prb ′)
by (rule ‹subpath (red prb ′) rv res arv ′′ (subs prb ′)›)

next

show ¬ (∃ res21 bes22 . [be] = ui-es res21 @ bes22
∧ res21 6= []
∧ subpath-from (red prb ′) arv ′′ res21 (subs

prb ′))
proof (intro notI , elim exE conjE , goal-cases)

case (1 res21 bes22 rv ′′′)

have be ∈ ui-edge ‘ out-edges (red prb ′) arv ′′

proof −
obtain re res21 ′ where res21 = re # res21 ′

using 1 (2) unfolding neq-Nil-conv by blast

have be = ui-edge re and re ∈ out-edges (red prb ′) arv ′′

proof −
show be = ui-edge re using 1 (1) ‹res21 = re # res21 ′›

by simp
next

have re ∈ edges (red prb ′)
using 1 (3) ‹res21 = re # res21 ′› by (simp add :

sp-Cons)

moreover
have src re = arv ′′

proof −
have (arv ′′,src re) /∈ subs prb ′

using ‹(rv ′′,arv ′′) ∈ subs prb ′› subs-wf-sub-rel[OF
RB ′]

unfolding wf-sub-rel-def Ball-def

153

by (force simp del : split-paired-All)

thus ?thesis
using 1 (3) ‹res21 = re # res21 ′›
by (simp add : rb-sp-Cons[OF RB ′])

qed

ultimately
show re ∈ out-edges (red prb ′) arv ′′ by simp

qed

thus ?thesis by auto
qed

thus False using A by (elim notE)
qed

next

show Graph.subpath-from (black prb ′) (fst arv ′′) [be]
using subsum-step(3)

‹Graph.subpath (black prb) (fst rv ′) (bes2 @ [be]) bl›
‹(rv ′′,arv ′′) ∈ subs prb ′›
‹subpath (red prb ′) rv res arv ′′ (subs prb ′)›
‹src be = fst arv ′′›
RB ′ red-sp-imp-black-sp subs-to-same-BL

by (simp add : Graph.sp-append-one Graph.sp-one)
qed

qed
qed

next

assume rv ′′ /∈ subsumees (subs prb ′)

show ?thesis
proof (case-tac be ∈ ui-edge ‘ out-edges (red prb ′) rv ′′)

assume be ∈ ui-edge ‘ out-edges (red prb ′) rv ′′

then obtain re where be = ui-edge re
and re ∈ out-edges (red prb ′) rv ′′

by blast

show ?thesis

154

unfolding RedBlack-subpaths-from-def Un-iff image-def
Bex-def mem-Collect-eq

apply (intro disjI1)
apply (rule-tac ?x=res @ [re] in exI)
apply (intro conjI)
proof (rule-tac ?x=tgt re in exI ,intro conjI)
show subpath (red prb ′) rv (res @ [re]) (tgt re) (subs prb ′)

using ‹subpath (red prb ′) rv res rv ′′ (subs prb ′)›
‹re ∈ out-edges (red prb ′) rv ′′›

by (simp add : sp-append-one)
next

show ¬ marked prb ′ (tgt re)
proof −

have sat (confs prb ′ (tgt re))
proof −

have subpath (red prb ′) rv (res@[re]) (tgt re) (subs prb ′)
using ‹subpath (red prb ′) rv res rv ′′ (subs prb ′)›

‹re ∈ out-edges (red prb ′) rv ′′›
by (simp add : sp-append-one)

then obtain c
where se : se-star (confs prb ′ rv)(trace (ui-es (res@[re]))

(labelling (black prb)))(c)
using subsum-step(3 ,5 ,6 ,7) RB ′

finite-RedBlack.sp-imp-ex-se-star-succ
[of prb ′ rv res@[re] tgt re]

unfolding finite-RedBlack-def
by simp blast

hence sat c
using 1 (1)
‹se-star (confs prb ′ rv) (trace (ui-es res1)

(labelling (black prb))) (c1)›
‹se-star c1 (trace bes2 (labelling (black prb))) c2 ›
‹se c2 (labelling (black prb) be) c3 › ‹sat c3 ›
‹be = ui-edge re›
se-star-succs-states

[of confs prb ′ rv
trace (ui-es (res@[re])) (labelling (black prb))

c3]
apply (subst (asm) eq-commute)

by (auto simp add : se-star-append-one se-star-append

se-star-one sat-eq)

155

moreover
have c v confs prb ′ (tgt re)

using subsum-step(3 ,5 ,6 ,7) se RB ′

finite-RedBlack.SE-rel[of prb ′]
‹subpath (red prb ′) rv (res@[re]) (tgt re) (subs

prb ′)›
by (simp add : finite-RedBlack-def)

ultimately
show ?thesis by (simp add: sat-sub-by-sat)

qed

thus ?thesis
using ‹re ∈ out-edges (red prb ′) rv ′′›

sat-not-marked[OF RB ′, of tgt re]
by (auto simp add : vertices-def)

qed
next

show bes = ui-es (res @ [re])
using ‹bes = ui-es res1 @ bes2 @ [be]›

‹ui-es res1 @ bes2 = ui-es res›
‹be = ui-edge re›

by simp
qed

next
assume A : be /∈ ui-edge ‘ out-edges (red prb ′) rv ′′

show ?thesis
unfolding RedBlack-subpaths-from-def Un-iff Bex-def

mem-Collect-eq
apply (intro disjI2)
apply (rule-tac ?x=res in exI)
apply (rule-tac ?x=[be] in exI)
proof (intro conjI , goal-cases)

show bes = ui-es res @ [be]
using ‹ui-es res1 @ bes2 = ui-es res›

‹bes = ui-es res1 @ bes2 @ [be]›
by simp

next

case 2

have src be = fst rv ′′

proof −

156

have Graph.subpath (black prb ′) (fst rv) (ui-es res) (src
be)

using ‹bes ∈ feasible-subpaths-from (black prb ′)
(confs prb ′ rv) (fst rv)›

‹bes = ui-es res1 @ bes2 @ [be]›
‹ui-es res1 @ bes2 = ui-es res›
red-sp-imp-black-sp

[OF RB ′ ‹subpath (red prb ′) rv res rv ′′ (subs
prb ′)›]

by (subst (asm)(2) eq-commute)
(auto simp add : Graph.sp-append Graph.sp-one)

thus ?thesis
using red-sp-imp-black-sp

[OF RB ′ ‹subpath (red prb ′) rv res rv ′′ (subs prb ′)›]
by (rule sp-same-src-imp-same-tgt)

qed

show ?case
apply (rule-tac ?x=rv ′′ in exI)
proof (intro conjI)

show rv ′′ ∈ fringe prb ′

unfolding fringe-def mem-Collect-eq
proof (intro conjI)

show rv ′′ ∈ red-vertices prb ′

using ‹subpath (red prb ′) rv res rv ′′ (subs prb ′)›
by (simp add : lst-of-sp-is-vert)

next
show rv ′′ /∈ subsumees (subs prb ′)
by (rule ‹rv ′′ /∈ subsumees (subs prb ′)›)

next
show ¬ marked prb ′ rv ′′ by (rule ‹¬ marked prb ′ rv ′′›)
next

have be ∈ edges (black prb ′)
using subsum-step(3)

‹Graph.subpath (black prb) (fst rv ′) (bes2 @
[be]) bl›

by (simp add : Graph.sp-append-one)

thus ui-edge ‘ out-edges (red prb ′) rv ′′ ⊂
out-edges (black prb ′) (fst rv ′′)

using ‹src be = fst rv ′′› A
red-OA-subset-black-OA[OF RB ′, of rv ′′]

by auto

157

qed

next

show subpath (red prb ′) rv res rv ′′ (subs prb ′)
by (rule ‹subpath (red prb ′) rv res rv ′′ (subs prb ′)›)

next

show ¬ (∃ res21 bes22 . [be] = ui-es res21 @ bes22
∧ res21 6= []

∧ SubRel.subpath-from (red prb ′) (rv ′′)
(res21) (subs prb ′))

proof (intro notI , elim exE conjE , goal-cases)
case (1 res21 bes22 rv ′′′)

have be ∈ ui-edge ‘ out-edges (red prb ′) rv ′′

proof −
obtain re res21 ′ where res21 = re # res21 ′

using 1 (2) unfolding neq-Nil-conv by blast

have be = ui-edge re
and re ∈ out-edges (red prb ′) rv ′′

proof −
show be = ui-edge re using 1 (1) ‹res21 = re#res21 ′›

by simp
next

have re ∈ edges (red prb ′)
using 1 (3) ‹res21 = re # res21 ′› by (simp add :

sp-Cons)

moreover
have src re = rv ′′

proof −
have (rv ′′,src re) /∈ subs prb ′

using ‹rv ′′ /∈ subsumees (subs prb ′)› by force

thus ?thesis
using 1 (3) ‹res21 = re # res21 ′›
by (simp add : rb-sp-Cons[OF RB ′])

qed

ultimately
show re ∈ out-edges (red prb ′) rv ′′ by simp

qed

158

thus ?thesis by auto
qed

thus False using A by (elim notE)
qed

next

show Graph.subpath-from (black prb ′) (fst rv ′′) [be]
using subsum-step(3)

‹Graph.subpath (black prb) (fst rv ′) (bes2 @ [be])
bl›

‹src be = fst rv ′′›
by (rule-tac ?x=tgt be in exI)

(simp add : Graph.sp-append-one Graph.sp-one)

qed
qed

qed
qed

qed

next

case (2 res1 ′ bes2 ′ rv ′′ bl ′)

show ?thesis
proof (case-tac bes2 ′ = [])

assume bes2 ′ = []

have Graph.subpath (black prb ′) (fst rv) (ui-es res1 ′ @ [be]) bl
proof −

have Graph.subpath (black prb ′) (fst rv) (ui-es res1 ′) (src be)
proof −

have Graph.subpath (black prb ′) (fst rv ′) bes2 (src be)
using subsum-step(3)

‹Graph.subpath (black prb) (fst rv ′) (bes2@[be]) bl›
by (simp add : Graph.sp-append-one)

moreover
have subpath (red prb ′) rv res1 rv ′ (subs prb ′)

using subsum-step(3) ‹subpath (red prb) rv res1 rv ′ (subs
prb)›

159

by (auto simp add : sp-in-extends)

hence Graph.subpath (black prb ′) (fst rv) (ui-es res1) (fst rv ′)
using RB ′ by (simp add : red-sp-imp-black-sp)

ultimately
show ?thesis

using ‹ui-es res1 @ bes2 = ui-es res1 ′ @ bes2 ′› ‹bes2 ′ = []›
by (subst (asm) eq-commute) (auto simp add : Graph.sp-append)

qed

moreover
have Graph.subpath (black prb ′) (src be) [be] bl

using subsum-step(3) ‹Graph.subpath (black prb) (fst rv ′)
(bes2@[be]) bl›

by (simp add : Graph.sp-append-one Graph.sp-one)

ultimately
show ?thesis by (auto simp add : Graph.sp-append)

qed

hence Graph.subpath (black prb ′) (fst rv) (ui-es res1 ′) (src be)
and be ∈ edges (black prb ′)
and tgt be = bl

by (simp-all add : Graph.sp-append-one)

have fst rv ′′ = src be
proof −

have Graph.subpath (black prb ′) (fst rv) (ui-es res1 ′) (fst rv ′′)
using ‹subpath (red prb ′) rv res1 ′ rv ′′ (subs prb ′)›

red-sp-imp-black-sp[OF RB ′]
by fast

thus ?thesis
using ‹Graph.subpath (black prb ′) (fst rv) (ui-es res1 ′) (src

be)›
by (simp add : sp-same-src-imp-same-tgt)

qed

show ?thesis
proof (case-tac be ∈ ui-edge ‘ out-edges (red prb ′) rv ′′)

assume be ∈ ui-edge ‘ out-edges (red prb ′) rv ′′

then obtain re where be = ui-edge re

160

and re ∈ out-edges (red prb ′) rv ′′

by blast

show ?thesis
unfolding RedBlack-subpaths-from-def Un-iff

image-def Bex-def mem-Collect-eq
apply (intro disjI1)
apply (rule-tac ?x=res1 ′@[re] in exI)
apply (intro conjI)
apply (rule-tac ?x=tgt re in exI)
proof (intro conjI)
show subpath (red prb ′) rv (res1 ′ @ [re]) (tgt re) (subs prb ′)

using ‹subpath (red prb ′) rv res1 ′ rv ′′ (subs prb ′)›
‹re ∈ out-edges (red prb ′) rv ′′›

by (simp add : sp-append-one)
next

show ¬ marked prb ′ (tgt re)
proof −

have sat (confs prb ′ (tgt re))
proof −
have subpath (red prb ′) rv (res1 ′@[re]) (tgt re) (subs

prb ′)
using ‹subpath (red prb ′) rv res1 ′ rv ′′ (subs prb ′)›

‹re ∈ out-edges (red prb ′) rv ′′›
by (simp add : sp-append-one)

then obtain c
where se : se-star (confs prb ′ rv) (trace (ui-es

(res1 ′@[re]))
(labelling (black prb))) (c)

using subsum-step(3 ,5 ,6 ,7) RB ′

finite-RedBlack.sp-imp-ex-se-star-succ
[of prb ′ rv res1 ′@[re] tgt re]

unfolding finite-RedBlack-def
by simp blast

hence sat c
proof −

have bes = ui-es (res1 ′@[re])
using ‹bes = ui-es res1 @ bes2 @ [be]›

‹be = ui-edge re› ‹bes2 ′ = []›
‹ui-es res1 @ bes2 = ui-es res1 ′ @

bes2 ′›
by simp

161

thus ?thesis
using subsum-step(3) se-star-succs-states[OF

se]
‹bes ∈ feasible-subpaths-from (black

prb ′)
(confs prb ′ rv)

(fst rv)›
by (auto simp add : feasible-def sat-eq)

qed

moreover
have c v confs prb ′ (tgt re)

using subsum-step(3 ,5 ,6 ,7) se
finite-RedBlack.SE-rel[of prb ′] RB ′

‹subpath (red prb ′) (rv) (res1 ′@[re])
(tgt re) (subs prb ′)›

by (simp add : finite-RedBlack-def)

ultimately
show ?thesis by (simp add: sat-sub-by-sat)

qed

thus ?thesis
using ‹re ∈ out-edges (red prb ′) rv ′′›

sat-not-marked[OF RB ′, of tgt re]
by (auto simp add : vertices-def)

qed
next

show bes = ui-es (res1 ′ @ [re])
using ‹bes = ui-es res1 @ bes2 @ [be]›

‹ui-es res1 @ bes2 = ui-es res1 ′ @ bes2 ′›
‹bes2 ′ = []› ‹be = ui-edge re›

by simp
qed

next

assume A : be /∈ ui-edge ‘ out-edges (red prb ′) rv ′′

show ?thesis

unfolding RedBlack-subpaths-from-def Un-iff mem-Collect-eq
apply (intro disjI2)
apply (rule-tac ?x=res1 ′ in exI)
apply (rule-tac ?x=[be] in exI)
proof (intro conjI , goal-cases)

162

show bes = ui-es res1 ′ @ [be]
using ‹bes = ui-es res1 @ bes2 @ [be]›

‹ui-es res1 @ bes2 = ui-es res1 ′ @ bes2 ′›
‹bes2 ′ = []›

by simp

next

case 2 show ?case
apply (rule-tac ?x=rv ′′ in exI)
proof (intro conjI)

show rv ′′ ∈ fringe prb ′ by (rule ‹rv ′′ ∈ fringe prb ′›)

next

show subpath (red prb ′) rv res1 ′ rv ′′ (subs prb ′)
by (rule ‹subpath (red prb ′) rv res1 ′ rv ′′ (subs prb ′)›)

next

show ¬ (∃ res21 bes22 . [be] = ui-es res21 @ bes22
∧ res21 6= []
∧ subpath-from (red prb ′) (rv ′′)

(res21) (subs prb ′))
proof (intro notI , elim exE conjE , goal-cases)

case (1 res21 bes22 rv ′′′)

then obtain re res21 ′ where be = ui-edge re
and res21 = re # res21 ′

unfolding neq-Nil-conv by auto

moreover
hence re ∈ out-edges (red prb ′) rv ′′

using 1 (3) ‹rv ′′ ∈ fringe prb ′› RB ′

unfolding subsumees-conv by (force simp add :
fringe-def

rb-sp-Cons)

ultimately
show False using A by auto

qed

163

next

show Graph.subpath-from (black prb ′) (fst rv ′′) [be]
using ‹Graph.subpath (black prb ′) (fst rv)(ui-es

res1 ′@[be]) bl›
‹fst rv ′′ = src be›

by (auto simp add : Graph.sp-append-one Graph.sp-one)

qed
qed

qed

next

assume bes2 ′ 6= []

then obtain be ′ bes2 ′′ where bes2 ′ = be ′ # bes2 ′′

unfolding neq-Nil-conv by blast

show ?thesis
unfolding RedBlack-subpaths-from-def Un-iff mem-Collect-eq
apply (intro disjI2)
apply (rule-tac ?x=res1 ′ in exI)
apply (rule-tac ?x=bes2 ′@[be] in exI)
proof (intro conjI , goal-cases)

show bes = ui-es res1 ′ @ bes2 ′ @ [be]
using ‹bes = ui-es res1 @ bes2 @ [be]›

‹ui-es res1 @ bes2 = ui-es res1 ′ @ bes2 ′›
by simp

next

case 2 show ?case
apply (rule-tac ?x=rv ′′ in exI)
proof (intro conjI)

show rv ′′ ∈ fringe prb ′ by (rule ‹ rv ′′ ∈ fringe prb ′›)

next

show subpath (red prb ′) rv res1 ′ rv ′′ (subs prb ′)
by (rule ‹subpath (red prb ′) rv res1 ′ rv ′′ (subs prb ′)›)

164

next

show ¬ (∃ res21 bes22 . bes2 ′ @ [be] = ui-es res21 @
bes22

∧ res21 6= []
∧ subpath-from (red prb ′) (rv ′′)

(res21) (subs prb ′))
proof (intro notI , elim exE conjE , goal-cases)

case (1 res21 bes22 rv ′′′)

then obtain re res21 ′ where res21 = re # res21 ′

and be ′ = ui-edge re
using ‹bes2 ′ = be ′ # bes2 ′′› unfolding neq-Nil-conv

by auto

show False
using ‹¬ (∃ res21 bes22 . bes2 ′ = ui-es res21 @

bes22
∧ res21 6= []
∧ subpath-from (red prb ′) (rv ′′)

(res21) (subs prb ′))›
apply (elim notE)
apply (rule-tac ?x=[re] in exI)
apply (rule-tac ?x=bes2 ′′ in exI)
proof (intro conjI)

show bes2 ′ = ui-es [re] @ bes2 ′′

using ‹bes2 ′ @ [be] = ui-es res21 @ bes22 ›
‹bes2 ′ = be ′ # bes2 ′′›
‹be ′ = ui-edge re›

by simp
next

show [re] 6= [] by simp
next
show subpath-from (red prb ′) rv ′′ [re] (subs prb ′)

using ‹subpath (red prb ′) rv ′′ res21 rv ′′′(subs
prb ′)›

‹res21 = re # res21 ′›
by (fastforce simp add : sp-Cons Nil-sp

vertices-def)
qed

qed

next

show Graph.subpath-from (black prb ′) (fst rv ′′) (bes2 ′ @

165

[be])
proof −

have Graph.subpath (black prb ′) (fst rv)
(ui-es res1 ′ @ bes2 ′) (src be)

proof −
have Graph.subpath (black prb ′) (fst rv)

(ui-es res1 @ bes2) (src be)
using ‹bes ∈ feasible-subpaths-from (black prb ′)

(confs prb ′ rv)
(fst rv)›

‹bes = ui-es res1 @ bes2 @ [be]›
by (auto simp add : Graph.sp-append Graph.sp-one)

thus ?thesis using ‹ui-es res1 @ bes2 = ui-es
res1 ′@bes2 ′›

by simp
qed

moreover
have Graph.subpath (black prb ′)(fst rv)(ui-es res1 ′ @

bes2 ′) bl ′
using ‹Graph.subpath (black prb ′) (fst rv ′′) bes2 ′ bl ′›

red-sp-imp-black-sp[OF RB ′

‹subpath (red prb ′)(rv)(res1 ′)
(rv ′′) (subs prb ′)›]

by (auto simp add : Graph.sp-append)

ultimately
have src be = bl ′ by (rule sp-same-src-imp-same-tgt)

moreover
have Graph.subpath (black prb ′) (src be) [be] (tgt be)

using subsum-step(3)
‹Graph.subpath (black prb) (fst rv ′) (bes2@[be])

bl›
by (auto simp add : Graph.sp-append-one

Graph.sp-one)

ultimately
show ?thesis

using ‹Graph.subpath (black prb ′) (fst rv ′′) bes2 ′ bl ′›
by (simp add : Graph.sp-append-one Graph.sp-one)

qed
qed

qed

166

qed
qed

qed

next

assume rv ′ 6= subsumee sub

show ?thesis
unfolding RedBlack-subpaths-from-def Un-iff mem-Collect-eq
apply (intro disjI2)
apply (rule-tac ?x=res1 in exI)
apply (rule-tac ?x=bes2 in exI)
proof (intro conjI , goal-cases)

show bes = ui-es res1 @ bes2 by (rule ‹bes = ui-es res1 @ bes2 ›)
next

case 2 show ?case
apply (rule-tac ?x=rv ′ in exI)
proof (intro conjI)

show rv ′∈ fringe prb ′

using subsum-step(3) subsumE-fringe[OF subsum-step(3)] B ‹rv ′ 6=
subsumee sub›

by simp
next

show subpath (red prb ′) rv res1 rv ′ (subs prb ′)
using subsum-step(3) C by (auto simp add : sp-in-extends)

next
show ¬ (∃ res21 bes22 . bes2 = ui-es res21 @ bes22

∧ res21 6= []
∧ subpath-from (red prb ′) rv ′ res21 (subs prb ′))

proof (intro notI , elim exE conjE)
fix res21 bes22 rv ′′

assume bes2 = ui-es res21 @ bes22
and res21 6= []
and subpath (red prb ′) rv ′ res21 rv ′′ (subs prb ′)

then obtain re res21 ′ where res21 = re # res21 ′

unfolding neq-Nil-conv by blast

have subpath (red prb) rv ′ [re] (tgt re) (subs prb)
proof −

have ¬ uses-sub rv ′ [re] (tgt re) sub using ‹rv ′ 6= subsumee sub›

167

by auto

thus ?thesis
using subsum-step(3)

‹subpath (red prb ′) rv ′ res21 rv ′′ (subs prb ′)› ‹res21 = re #
res21 ′›

wf-sub-rel-of .sp-in-extends-not-using-sub
[OF subs-wf-sub-rel-of [OF subsum-step(1)],
of subsumee sub subsumer sub subs prb ′ rv ′ [re] tgt re]

rb-sp-Cons[OF RB ′, of rv ′ re res21 ′ rv ′′]
rb-sp-one[OF subsum-step(1), of rv ′ re tgt re]
subs-sub-rel-of [OF subsum-step(1)]

by auto
qed

show False
using E
apply (elim notE)
apply (rule-tac ?x=[re] in exI)
apply (rule-tac ?x=ui-es res21 ′@bes22 in exI)
proof (intro conjI)

show bes2 = ui-es [re] @ ui-es res21 ′ @ bes22
using ‹bes2 = ui-es res21 @ bes22 › ‹res21 = re # res21 ′› by

simp
next

show [re] 6= [] by simp
next

show subpath-from (red prb) rv ′ [re] (subs prb)
apply (rule-tac ?x=tgt re in exI)
using subsum-step(3)

‹rv ′ 6= subsumee sub› ‹subpath (red prb ′) rv ′ res21 rv ′′ (subs
prb ′)›

‹res21 = re # res21 ′›
rb-sp-Cons[OF RB ′, of rv ′ re res21 ′ rv ′′]
rb-sp-one[OF subsum-step(1), of rv ′ re tgt re]
subs-sub-rel-of [OF subsum-step(1)] subs-sub-rel-of [OF RB ′]

by fastforce
qed

qed
next

show Graph.subpath-from (black prb ′) (fst rv ′) bes2
using subsum-step(3) F by simp blast

qed
qed

qed

168

qed
qed

next

case (abstract-step prb rv2 ca prb ′ rv1)
have RB ′ : RedBlack prb ′ by (rule RedBlack.abstract-step[OF abstract-step(1 ,3)])
have finite-RedBlack prb using abstract-step by (auto simp add : finite-RedBlack-def)
show ?case
unfolding subset-iff
proof (intro allI impI)

fix bes

assume bes ∈ feasible-subpaths-from (black prb ′) (confs prb ′ rv1) (fst rv1)

show bes ∈ RedBlack-subpaths-from prb ′ rv1
proof (case-tac rv2 = rv1)

assume rv2 = rv1

show ?thesis
proof (case-tac out-edges (black prb ′) (fst rv1) = {})

assume out-edges (black prb ′) (fst rv1) = {}
show ?thesis

unfolding RedBlack-subpaths-from-def Un-iff image-def Bex-def
mem-Collect-eq

apply (intro disjI1)
apply (rule-tac ?x=[] in exI)
apply (intro conjI)
apply (rule-tac ?x=rv1 in exI)
proof (intro conjI)

show subpath (red prb ′) rv1 [] rv1 (subs prb ′)
using abstract-step(4) rb-Nil-sp[OF RB ′] by fast

next
show ¬ marked prb ′ rv1 using abstract-step(3) ‹rv2 = rv1 ›

by simp
next

show bes = ui-es []
using ‹bes ∈ feasible-subpaths-from (black prb ′) (confs prb ′ rv1)

(fst rv1)›
‹out-edges (black prb ′) (fst rv1) = {}›

by (cases bes) (auto simp add : Graph.sp-Cons)
qed

169

next
assume out-edges (black prb ′) (fst rv1) 6= {}

show ?thesis
unfolding RedBlack-subpaths-from-def Un-iff mem-Collect-eq
apply (intro disjI2)
apply (rule-tac ?x=[] in exI)
apply (rule-tac ?x=bes in exI)
proof (intro conjI , goal-cases)

show bes = ui-es [] @ bes by simp

next

case 2 show ?case
apply (rule-tac ?x=rv1 in exI)
proof (intro conjI)

show rv1 ∈ fringe prb ′

using abstract-step(1 ,3) ‹rv2 = rv1 › ‹out-edges (black prb ′) (fst
rv1) 6= {}›

by (auto simp add : fringe-def)

next

show subpath (red prb ′) rv1 [] rv1 (subs prb ′)
using abstract-step(3) ‹rv2 = rv1 ›

rb-Nil-sp[OF RedBlack.abstract-step[OF abstract-step(1 ,3)]]
by auto

next

show ¬ (∃ res21 bes22 . bes = ui-es res21 @ bes22
∧ res21 6= []
∧ subpath-from (red prb ′) rv1 res21 (subs prb ′))

proof (intro notI , elim exE conjE)
fix res21 rv3

assume res21 6= []
and subpath (red prb ′) rv1 res21 rv3 (subs prb ′)

moreover
then obtain re res21 ′ where res21 = re # res21 ′

170

unfolding neq-Nil-conv by blast

ultimately
have re ∈ out-edges (red prb ′) rv1
using abstract-step(3) ‹rv2 = rv1 ›

rb-sp-Cons[OF RedBlack.abstract-step[OF abstract-step(1 ,3)],
of rv1 re res21 ′ rv3]

unfolding subsumees-conv by fastforce

thus False using abstract-step(3) ‹rv2 = rv1 › by auto
qed

next

show Graph.subpath-from (black prb ′) (fst rv1) bes
using ‹bes ∈ feasible-subpaths-from (black prb ′) (confs prb ′ rv1)

(fst rv1)›
by simp

qed
qed

qed

next

assume rv2 6= rv1

moreover
hence feasible (confs prb rv1) (trace bes (labelling (black prb)))

using abstract-step(3)
‹bes ∈ feasible-subpaths-from (black prb ′) (confs prb ′ rv1) (fst rv1)›

by simp

ultimately
have bes ∈ RedBlack-subpaths-from prb rv1

using abstract-step(2)[of rv1] abstract-step(3−7)
‹bes ∈ feasible-subpaths-from (black prb ′) (confs prb ′ rv1) (fst rv1)›

by auto

thus ?thesis
apply (subst (asm) RedBlack-subpaths-from-def)
unfolding Un-iff image-def Bex-def mem-Collect-eq
proof (elim disjE exE conjE)

fix res rv3

171

assume bes = ui-es res
and subpath (red prb) rv1 res rv3 (subs prb)
and ¬ marked prb rv3

thus ?thesis
using abstract-step(3)

unfolding RedBlack-subpaths-from-def Un-iff image-def Bex-def
mem-Collect-eq

by (intro disjI1 , rule-tac ?x=res in exI , intro conjI)
(rule-tac ?x=rv3 in exI , simp-all)

next

fix res1 bes2 rv3 bl
assume A : bes = ui-es res1 @ bes2
and B : rv3 ∈ fringe prb
and C : subpath (red prb) rv1 res1 rv3 (subs prb)
and E : ¬ (∃ res21 bes22 . bes2 = ui-es res21 @ bes22

∧ res21 6= []
∧ subpath-from (red prb) rv3 res21 (subs prb))

and F : Graph.subpath (black prb) (fst rv3) bes2 bl

show ?thesis
unfolding RedBlack-subpaths-from-def Un-iff mem-Collect-eq
apply (intro disjI2)
apply (rule-tac ?x=res1 in exI)
apply (rule-tac ?x=bes2 in exI)
proof (intro conjI , goal-cases)
show bes = ui-es res1 @ bes2 by (rule ‹bes = ui-es res1 @ bes2 ›)
next

case 2 show ?case
using abstract-step(3) B C E F unfolding fringe-def
by (rule-tac ?x=rv3 in exI) auto

qed
qed

qed
qed

next

case (strengthen-step prb rv2 e prb ′ rv1)
show?case

unfolding subset-iff
proof (intro allI impI)

172

fix bes
assume bes ∈ feasible-subpaths-from (black prb ′) (confs prb ′ rv1) (fst rv1)
hence bes ∈ RedBlack-subpaths-from prb rv1

using strengthen-step(2)[of rv1] strengthen-step(3−7) by auto

thus bes ∈ RedBlack-subpaths-from prb ′ rv1
apply (subst (asm) RedBlack-subpaths-from-def)
unfolding Un-iff image-def Bex-def mem-Collect-eq
proof (elim disjE exE conjE)

fix res rv2
assume bes = ui-es res
and subpath (red prb) rv1 res rv2 (subs prb)
and ¬ marked prb rv2
thus ?thesis

using strengthen-step(3)
unfolding RedBlack-subpaths-from-def Un-iff image-def Bex-def

mem-Collect-eq
by (intro disjI1) fastforce

next

fix res1 bes2 rv3 bl

assume A : bes = ui-es res1 @ bes2
and B : rv3 ∈ fringe prb
and C : subpath (red prb) rv1 res1 rv3 (subs prb)

and E : ¬ (∃ res21 bes22 . bes2 = ui-es res21 @ bes22
∧ res21 6= []
∧ subpath-from (red prb) rv3 res21 (subs prb))

and F : Graph.subpath (black prb) (fst rv3) bes2 bl

show ?thesis
unfolding RedBlack-subpaths-from-def Un-iff mem-Collect-eq
apply (intro disjI2)
apply (rule-tac ?x=res1 in exI)
apply (rule-tac ?x=bes2 in exI)
proof (intro conjI , goal-cases)

show bes = ui-es res1 @ bes2 by (rule ‹bes = ui-es res1 @ bes2 ›)
next

case 2
show ?case

using strengthen-step(3) B C E F unfolding fringe-def
by (rule-tac ?x=rv3 in exI) auto

173

qed

qed
qed

qed

Red-black paths being red-black sub-path starting from the red root, and
feasible paths being feasible sub-paths starting at the black initial location,
it follows from the previous theorem that the set of feasible paths when
considering the configuration of the root is a subset of the set of red-black
paths.
theorem (in finite-RedBlack) feasible-path-inclusion :

assumes RedBlack prb
shows feasible-paths (black prb) (confs prb (root (red prb))) ⊆ RedBlack-paths

prb
using feasible-subpaths-preserved[OF assms, of root (red prb)] consistent-roots[OF
assms]
by (simp add : vertices-def)

The configuration at the red root might have been abstracted. In this case,
the initial configuration is subsumed by the current configuration at the root.
Thus the set of feasible paths when considering the initial configuration is
also a subset of the set of red-black paths.
lemma init-subsumed :

assumes RedBlack prb
shows init-conf prb v confs prb (root (red prb))

using assms
proof (induct prb)

case base thus ?case by (simp add: subsums-refl)
next

case se-step thus ?case by (force simp add : vertices-def)
next

case mark-step thus ?case by simp
next

case subsum-step thus ?case by simp
next

case (abstract-step prb rv ca prb ′)
thus ?case by (auto simp add : abstract-def subsums-trans)

next
case strengthen-step thus ?case by simp

qed

theorem (in finite-RedBlack) feasible-path-inclusion-from-init :

174

assumes RedBlack prb
shows feasible-paths (black prb) (init-conf prb) ⊆ RedBlack-paths prb

unfolding subset-iff mem-Collect-eq
proof (intro allI impI , elim exE conjE , goal-cases)

case (1 es bl)

hence es ∈ feasible-subpaths-from (black prb) (init-conf prb) (fst (root (red prb)))
using consistent-roots[OF assms] by simp blast

hence es ∈ feasible-subpaths-from (black prb) (confs prb (root (red prb))) (fst(root(red
prb)))

unfolding mem-Collect-eq
proof (elim exE conjE , goal-cases)

case (1 bl ′)

show ?case
proof (rule-tac ?x=bl ′ in exI , intro conjI)

show Graph.subpath (black prb) (fst (root (red prb))) es bl ′ by (rule
1 (1))

next
have finite-labels (trace es (labelling (black prb)))

using finite-RedBlack by auto

moreover
have finite (pred (confs prb (root (red prb))))

using finite-RedBlack finite-pred[OF assms]
by (auto simp add : vertices-def finite-RedBlack-def)

moreover
have finite (pred (init-conf prb))

using assms by (intro finite-init-pred)

moreover
have ∀ e∈pred (confs prb (root (red prb))). finite (Bexp.vars e)

using finite-RedBlack finite-pred-constr-symvars[OF assms]
by (fastforce simp add : finite-RedBlack-def vertices-def)

moreover
have ∀ e∈pred (init-conf prb). finite (Bexp.vars e)
using assms by (intro finite-init-pred-symvars)

moreover
have init-conf prb v confs prb (root (red prb))
using assms by (rule init-subsumed)

175

ultimately
show feasible (confs prb (root (red prb))) (trace es (labelling (black prb)))

using 1 (2) by (rule subsums-imp-feasible)
qed

qed

thus ?case
using feasible-subpaths-preserved[OF assms, of root (red prb)]
by (auto simp add : vertices-def)

qed

end

176

13 Conclusion

13.1 Related Works

Our work is inspired by Tracer [1] and the more wider class of CEGAR-
like systems [2, 3, 4, 5, 6] based on predicate abstraction. However, we
did not attempt any code-verification of these systems and rather opted
for their rational reconstruction allowing for a clean separation of heuristics
and fundamental parts. Moreover, our treatment of Assume and Assign-
labels is based on shallow encodings for reasons of flexibility and model
simplification, which these systems lack. There is a substantial amount of
formal developments of graph-theories in HOL, most closest is perhaps by
Lars Noschinski [10] in the Isabelle AFP. However, we do not use any deep
graph-theory in our work; graphs are just used as a kind of abstract syntax
allowing sharing and arbitrary cycles in the control-flow. And there are a
large number of works representing programming languages, be it by shallow
or deep embedding; on the Isabelle system alone, there is most notably the
works on NanoJava[11], Ninja[12], IMP[13], IMP++[14] etc. However, these
works represent the underlying abstract syntax by a free data-type and are
not concerned with the introduction of sharing in the program presentation;
to our knowledge, our work is the first approach that describes optimizations
by a series of graph transformations on CFGs in HOL.

13.2 Summary

We formally proved the correctness of a set of graph transformations used
by systems that compute approximations of sets of (feasible) paths by build-
ing symbolic evaluation graphs with unbounded loops. Formalizing all the
details needed for a machine-checked proof was a substantial work. To our
knowledge, such formalization was not done before.
The ATRACER model separates the fundamental aspects and the heuristic
parts of the algorithm. Additional graph transformations for restricting
abstractions or for computing interpolants or invariants can be added to
the current framework, reusing the existing machinery for graphs, paths,
configurations, etc.

13.3 Future Work

Currently, we are implementing in OCAML a prototype that must not only
preserve feasible paths but heuristically generate abstractions and subsump-

177

tions. It would be possible to generate the core operations on red-black
graphs by the Isabelle code-generator, by introducing un-interpreted func-
tion symbols for concrete heuristic functions mapped to implementations
written by hand. This represents a substantial albeit rewarding effort that
has not yet been undertaken.

References

[1] J. Jaffar, V. Murali, J. A. Navas, and A. E. Santosa, “TRACER: A
Symbolic Execution Tool for Verification,” in Proceedings of CAV ’12,
2012, pp. 758–766.

[2] D. Beyer, T. A. Henzinger, R. Jhala, and R. Majumdar, “The Software
Model Checker Blast,” STTT, vol. 9, no. 5-6, pp. 505–525, 2007.

[3] E. M. Clarke, D. Kroening, N. Sharygina, and K. Yorav, “SATABS:
SAT-Based Predicate Abstraction for ANSI-C,” in Proceedings of
TACAS ’05, 2005, pp. 570–574.

[4] F. Ivancic, Z. Yang, M. K. Ganai, A. Gupta, I. Shlyakhter, and
P. Ashar, “F-Soft: Software Verification Platform,” in Proceedings of
CAV ’05, 2005, pp. 301–306.

[5] S. Grebenshchikov, N. P. Lopes, C. Popeea, and A. Rybalchenko, “Syn-
thesizing Software Verifiers from Proof Rules,” in Proceedings of PLDI
’12, 2012, pp. 405–416.

[6] K. L. McMillan, Proceedings of CAV ’06. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2006, ch. Lazy Abstraction with Interpolants, pp.
123–136.

[7] R. Aissat, F. Voisin, and B. Wolff, “Infeasible paths elimination by
symbolic execution techniques: Proof of correctness and preservation
of paths,” in ITP’16, ser. LNCS, vol. 9807, 2016.

[8] R. Aissat, M.-C. Gaudel, F. Voisin, and B. Wolff, “Pruning infeasible
paths via graph transformations and symbolic execution: a method
and a tool,” L.R.I., Univ. Paris-Sud, Tech. Rep. 1588, 2016. [Online].
Available: https://www.lri.fr/srubrique.php?news=33

[9] A. Denise, M.-C. Gaudel, S.-D. Gouraud, R. Lassaigne, J. Oudinet, and
S. Peyronnet, “Coverage-biased Random Exploration of large Models

178

https://www.lri.fr/srubrique.php?news=33

and Application to Testing,” International Journal on Software Tools
for Technology Transfer, vol. 14, no. 1, pp. 73–93, 2011.

[10] L. Noschinski, “A Graph Library for Isabelle,” Mathematics in
Computer Science, vol. 9, no. 1, pp. 23–39, 2015. [Online]. Available:
https://doi.org/10.1007/s11786-014-0183-z

[11] D. v. Oheimb and T. Nipkow, “Hoare logic for nanojava:
Auxiliary variables, side effects, and virtual methods revisited,”
ser. LNCS. Springer-Verlag, 2002, pp. 89–105. [Online]. Available:
http://dl.acm.org/citation.cfm?id=647541.730154

[12] A. Lochbihler, “Java and the java memory model - A unified, machine-
checked formalisation,” in Programming Languages and Systems - 21st
European Symposium on Programming, ESOP 2012, Held as Part of
the European Joint Conferences on Theory and Practice of Software,
ETAPS 2012, Tallinn, Estonia, March 24 - April 1, 2012. Proceedings,
ser. LNCS. Springer-Verlag, 2012, pp. 497–517. [Online]. Available:
https://doi.org/10.1007/978-3-642-28869-2_25

[13] T. Nipkow, “Winskel is (almost) right: Towards a mechanized
semantics,” Formal Asp. Comput., vol. 10, no. 2, pp. 171–186, 1998.
[Online]. Available: https://doi.org/10.1007/s001650050009

[14] A. D. Brucker and B. Wolff, “An Extensible Encoding of Object-
oriented Data Models in HOL with an Application to IMP++,” Journal
of Automated Reasoning (JAR), vol. Selected Papers of the AVOCS-
VERIFY Workshop 2006, no. 3–4, pp. 219–249, 2008, serge Autexier,
Heiko Mantel, Stephan Merz, and Tobias Nipkow (eds).

179

https://doi.org/10.1007/s11786-014-0183-z
http://dl.acm.org/citation.cfm?id=647541.730154
https://doi.org/10.1007/978-3-642-28869-2_25
https://doi.org/10.1007/s001650050009

	Introduction
	Rooted Graphs
	Basic Definitions and Properties
	Edges
	Rooted graphs
	Vertices
	Basic properties of rooted graphs
	Out-going edges

	Consistent Edge Sequences, Sub-paths and Paths
	Consistency of a sequence of edges
	Sub-paths and paths

	Adding Edges
	Trees

	Arithmetic Expressions
	Variables and their domain
	Program and symbolic states
	The aexp type-synonym
	Variables of an arithmetic expression
	Fresh variables

	Boolean Expressions
	Basic definitions
	The bexp type-synonym
	Satisfiability of an expression
	Entailment
	Conjunction

	Properties about the variables of an expression
	Variables of a conjunction
	Variables of an equality

	Labels
	Stores
	Basic definitions
	The 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 store type-synonym
	Symbolic variables of a store
	Fresh symbolic variables

	Consistency
	Adaptation of an arithmetic expression to a store
	Adaptation of a boolean expression to a store

	Configurations, Subsumption and Symbolic Execution
	Basic Definitions and Properties
	Configurations
	Symbolic variables of a configuration.
	Freshness.
	Satisfiability
	States of a configuration
	Subsumption
	Semantics of a configuration
	Abstractions
	Entailment

	Symbolic Execution
	Definitions of se and se_star
	Basic properties of se
	Monotonicity of se
	Basic properties of se_star
	Monotonicity of se_star
	Existence of successors

	Feasibility of a sequence of labels
	Concrete execution

	Labelled Transition Systems
	Basic definitions
	Feasible sub-paths and paths

	Graphs equipped with a subsumption relation
	Basic definitions and properties
	Subsumptions and subsumption relations

	Well-formed subsumption relation of a graph
	Well-formed subsumption relations
	Subsumption relation of a graph
	Well-formed sub-relations

	Consistent Edge Sequences, Sub-paths
	Consistency in presence of a subsumption relation
	Sub-paths

	Extending rooted graphs with edges
	Definition and Basic properties
	Extending trees
	Properties of sub-paths in an extension

	Extending subsomption relations
	Definition
	Properties of extensions
	Properties of sub-paths in an extension

	Red-Black Graphs
	Basic Definitions
	The type of Red-Black Graphs
	Well-formed and finite red-black graphs

	Extensions of Red-Black Graphs
	Extension by symbolic execution
	Extension by marking
	Extension by subsumption
	Extension by abstraction
	Extension by strengthening

	Building Red-Black Graphs using Extensions
	Properties of Red-Black-Graphs
	Invariants of the Red-Black Graphs
	Simplification lemmas for sub-paths of the red part.

	Relation between red-vertices
	Properties about marking.
	Fringe of a red-black graph
	Definition
	Fringe of an empty red-part
	Evolution of the fringe after extension

	Red-Black Sub-Paths and Paths
	Preservation of feasible paths

	Conclusion
	Related Works
	Summary
	Future Work

