Some classical results in inductive inference of recursive
functions

Frank J. Balbach

March 17, 2025

Abstract

This entry formalizes some classical concepts and results from inductive inference of
recursive functions. In the basic setting a partial recursive function (“strategy”) must
identify (“learn”) all functions from a set (“class”) of recursive functions. To that end
the strategy receives more and more values f(0), f(1), f(2),... of some function f from
the given class and in turn outputs descriptions of partial recursive functions, for ex-
ample, Godel numbers. The strategy is considered successful if the sequence of outputs
(“hypotheses”) converges to a description of f. A class of functions learnable in this
sense is called “learnable in the limit”. The set of all these classes is denoted by LIM.

Other types of inference considered are finite learning (FIN), behaviorally correct
learning in the limit (BC), and some variants of LIM with restrictions on the hypothe-
ses: total learning (TOTAL), consistent learning (CONS), and class-preserving learning
(CP). The main results formalized are the proper inclusions FIN ¢ CP ¢ TOTAL C
CONS C LIM C BC c 2%, where R is the set of all total recursive functions. Further
results show that for all these inference types except CONS, strategies can be assumed to
be total recursive functions; that all inference types but CP are closed under the subset
relation between classes; and that no inference type is closed under the union of classes.

The above is based on a formalization of recursive functions heavily inspired by the
Universal Turing Machine entry by Xu et al. [18], but different in that it models partial
functions with codomain nat option. The formalization contains a construction of a
universal partial recursive function, without resorting to Turing machines, introduces
decidability and recursive enumerability, and proves some standard results: existence
of a Kleene normal form, the s-m-n theorem, Rice’s theorem, and assorted fixed-point
theorems (recursion theorems) by Kleene, Rogers, and Smullyan.

Contents

1 Partial recursive functions 3
1.1 Basic definitions 3
1.1.1 Partial recursive functions 3

1.1.2 Extensional equality 8

1.1.3 Primitive recursive and total functions 10

1.2 Simple functions 11
1.2.1 Manipulating parameters 12

1.2.2 Arithmetic and logic oo 13

1.2.3 Comparison and conditions 15

1.3 The halting problem oo oL 17
1.4 Encoding tuples and lists L L L 17
1.4.1 Pairsand tuples oo 18

1.4.2 Lists . . . oo o 25

1.5 A universal partial recursive function L. 36
1.5.1 Astep function 36

1.5.2 Encoding partial recursive functions 50

1.5.3 The step function on encoded configurations 53
1.5.4 The step function as a partial recursive function 60

1.5.5 The universal function 64

1.6 Applications of the universal function 69
1.6.1 Lazy conditional evaluation 70

1.6.2 Enumerating the domains of partial recursive functions 70
1.6.3 Concurrent evaluation of functions 76

1.7 Kleene normal form and the number of p-operations 81
1.8 The s-m-n theorem 84
1.9 Fixed-point theoremso 91
1.9.1 Rogers’s fixed-point theorem 91
1.9.2 Kleene’s fixed-point theorem 93
1.9.3 Smullyan’s double fixed-point theorem 95

1.10 Decidable and recursively enumerable sets 95
1.11 Rice’s theorem L 100
1.12 Partial recursive functions as actual functions 101
1.12.1 The definitions oL 101
1.12.2 Some simple properties 104
1.12.3 The Goédel numbering ¢ 106
1.12.4 Fixed-point theorems 108

2 Inductive inference of recursive functions 109

2.1

2.2

2.3
24
2.5
2.6
2.7
2.8

2.9

2.10

2.11
2.12

Preliminaries 110
2.1.1 The prefixes of a function L. 110
2.1.2 NUM . .. 114
Types of inference Lo 120
2.2.1 LIM: Learning in the limit 120
2.2.2 BC: Behaviorally correct learning in the limit 122
2.2.3 CONS: Learning in the limit with consistent hypotheses 124
2.2.4 TOTAL: Learning in the limit with total hypotheses 126
2.2.5 CP: Learning in the limit with class-preserving hypotheses 127
2.2.6 FIN: Finite learning 128
FIN is a proper subset of CP oo 129
NUM and FIN are incomparable 137
NUM and CP are incomparable 140
NUM is a proper subset of TOTAL 142
CONS is a proper subset of LIM 147
Lemma R o 157
2.8.1 Strong Lemma R for LIM, FIN,and BC 157
2.8.2 Weaker Lemma R for CP and TOTAL 167
2.8.3 NoLemma R for CONS 168
LIM is a proper subset of BC 0oL 193
2.9.1 Enumerating enough total strategies 194
2.9.2 The diagonalization processo 195
2.9.3 Theseparating class 211
2.9.4 The separating classisin BC 214
TOTAL is a proper subset of CONS 216
2.10.1 TOTAL is a subset of CONS 216
2.10.2 The separating class 219
Risnotin BC 241
The union of classes 250

Chapter 1

Partial recursive functions

theory Partial-Recursive
imports Main HOL— Library. Nat-Bijection
begin

This chapter lays the foundation for Chapter 2. Essentially it develops recursion theory
up to the point of certain fixed-point theorems. This in turn requires standard results
such as the existence of a universal function and the s-m-n theorem. Besides these,
the chapter contains some results, mostly regarding decidability and the Kleene normal
form, that are not strictly needed later. They are included as relatively low-hanging
fruits to round off the chapter.

The formalization of partial recursive functions is very much inspired by the Universal
Turing Machine AFP entry by Xu et al. [18]. It models partial recursive functions as
algorithms whose semantics is given by an evaluation function. This works well for
most of this chapter. For the next chapter, however, it is beneficial to regard partial
recursive functions as “proper” partial functions. To that end, Section 1.12 introduces
more conventional and convenient notation for the common special cases of unary and
binary partial recursive functions.

Especially for the nontrivial proofs I consulted the classical textbook by Rogers [12],
which also partially explains my preferring the traditional term “recursive” to the more
modern “computable”.

1.1 Basic definitions

1.1.1 Partial recursive functions

To represent partial recursive functions we start from the same datatype as Xu et al. [18],
more specifically from Urban’s version of the formalization. In fact the datatype recf
and the function arity below have been copied verbatim from it.

datatype recf =
Z
| S
| Id nat nat
| Cn nat recf recf list
| Pr nat recf recf
| Mn nat recf

fun arity :: recf = nat where

arity Z = 1
| arity S = 1
| arity (Id mn) = m
| arity (Cnn fgs) =n
| arity (Prn fg) = Sucn
| arity (Mnn f) =n

Already we deviate from Xu et al. in that we define a well-formedness predicate for partial
recursive functions. Well-formedness essentially means arity constraints are respected
when combining recfs.

fun wellf :: recf = bool where
wellf Z = True
| wellf S = True
| wellf (Id m n) = (n < m)
| wellf (Cnn fgs) =
(n> 0N (Vg € set gs. arity g = n A wellf g) A arity f = length gs A wellf f)
| wellf (Prnfg) —
(arity g = Suc (Suc n) A arity f = n A wellf f N wellf g)
| wellf (Mnn f) = (n> 0 A arity f = Suc n A wellf)

lemma wellf-arity-nonzero: wellf f = arity f > 0
by (induction f rule: arity.induct) simp-all

lemma wellf-Pr-arity-greater-1: wellf (Prn fg) = arity (Prn fg) > 1
using wellf-arity-nonzero by auto

For the most part of this chapter this is the meaning of “f is an n-ary partial recursive
function”:

abbreviation recfn :: nat = recf = bool where
recfnn f = wellf f N arity f = n

Some abbreviations for working with nat option:

abbreviation divergent :: nat option = bool (<- T» [50] 50) where
x T =1z = None

abbreviation convergent :: nat option = bool (<- |» [50] 50) where
z | =1z # None

abbreviation convergent-eq :: nat option = nat = bool (infix </=> 50) where
zl=y=x= Somey

abbreviation convergent-neq :: nat option = nat = bool (infix ¢]#» 50) where
zlFy=xl AN x# Somey

In prose the terms “halt”, “terminate”, “converge”, and “defined” will be used inter-
changeably; likewise for “not halt”, “diverge”, and “undefined”. In names of lemmas, the
abbreviations converg and diverg will be used consistently.

Our second major deviation from Xu et al. [18] is that we model the semantics of a recf by
combining the value and the termination of a function into one evaluation function with
codomain nat option, rather than separating both aspects into an evaluation function
with codomain nat and a termination predicate.

The value of a well-formed partial recursive function applied to a correctly-sized list of
arguments:

fun eval-wellf :: recf = nat list = nat option where
eval-wellf Z xs |= 0
| eval-wellf S s = Suc (zs! 0)
| eval-wellf (Id m n) xs = zs! n
| eval-wellf (Cn n fgs) zs =
(if Vg € set gs. eval-wellf g zs |
then eval-wellf f (map (Ag. the (eval-wellf g xs)) gs)
else None)
| eval-wellf (Prn fg) [= undefined
| eval-wellf (Prnfg) (0 # xs) = eval-wellf f xs
| eval-wellf (Prn fg) (Suc z # zs) =
Option.bind (eval-wellf (Prn fg) (x # xs)) (Av. eval-wellf g (x # v # zs))
| eval-wellf (Mn n f) zs =
(let E = Xz. eval-wellf f (z # zs)
inif 3z. Ezl=0AN Vy<z. Eyl)
then Some (LEAST z. Ez = 0 A Vy<z. Eyl))
else None)

We define a function value only if the recf is well-formed and its arity matches the
number of arguments.

definition eval :: recf = nat list = nat option where
recfn (length xs) f = eval f xs = eval-wellf f xs

lemma eval-Z [simp]: eval Z [z] = 0
by (simp add: eval-def)

lemma eval-Z' [simp]: length xs = 1 = eval Z zs = 0
by (simp add: eval-def)

lemma eval-S [simp]: eval S [z] |= Suc x
by (simp add: eval-def)

lemma eval-S’ [simp]: length 1s = 1 = eval S xs = Suc (hd xs)
using eval-def hd-conv-nth|of xs] by fastforce

lemma eval-1d [simp]:
assumes n < m and m = length zs
shows eval (Id m n) zs |= xs ! n
using assms by (simp add: eval-def)

lemma eval-Cn [simp]:
assumes recfn (length zs) (Cn n f gs)
shows eval (Cn n f gs) zs =
(if ¥V geset gs. eval g xs |
then eval f (map (Ag. the (eval g xs)) gs)
else None)
proof —
have eval (Cn n f gs) s = eval-wellf (Cn n f gs) xs
using assms eval-def by blast
moreover have Ag. g € set gs = eval-wellf g xs = eval g zs
using assms eval-def by simp
ultimately have eval (Cn n f gs) zs =
(if ¥V geset gs. eval g xs |
then eval-wellf f (map (Ag. the (eval g xs)) gs)
else None)
using map-eg-conv[of Ag. the (eval-wellf g zs) gs Ag. the (eval g xs)]

by (auto, metis)
moreover have Ays. length ys = length gs = eval f ys = eval-wellf f ys
using assms eval-def by simp
ultimately show ?thesis by auto
qed

lemma eval-Pr-0 [simp]:
assumes recfn (Suc n) (Prn fg) and n = length zs
shows eval (Prn fg) (0 # zs) = eval f zs
using assms by (simp add: eval-def)

lemma eval-Pr-diverg-Suc [simp]:
assumes recfn (Suc n) (Prn fg)
and n = length zs
and eval (Prnfg) (z # xs) 1
shows eval (Prn fg) (Suc x # xzs) 1
using assms by (simp add: eval-def)

lemma eval-Pr-converg-Suc [simp]:
assumes recfn (Suc n) (Prn fg)
and n = length s
and eval (Prn fg) (z # xs) |
shows eval (Prn fg) (Suc z # zs) = eval g (x # the (eval (Prn fg) (z # zs)) # xs)
using assms eval-def by auto

lemma eval-Pr-diverg-add:
assumes recfn (Suc n) (Prn fg)
and n = length zs
and eval (Prn fg) (z # xs) T
shows eval (Prn fg) ((z + y) # zs) T
using assms by (induction y) auto

lemma eval-Pr-converg-le:
assumes recfn (Suc n) (Prn fg)
and n = length zs
and eval (Prnfg) (z # xs) |
and y < z
shows eval (Prn fg) (y # xs) |

using assms eval-Pr-diverg-add le-Suc-ex by metis

lemma eval-Pr-Suc-converg:
assumes recfn (Suc n) (Prn fg)
and n = length s
and eval (Prn fg) (Suc z # zs) |
shows eval g (x # (the (eval (Prn fg) (z # xs))) # xs) |
and eval (Prn fg) (Suc x # zs) = eval g (v # the (eval (Prn fg) (z # xs)) # xs)
using eval-Pr-converg-Suclof n f g s x, OF assms(1,2)]
eval-Pr-converg-lelof n f g xs Suc z z, OF assms] assms(3)
by simp-all

lemma eval-Mn [simp]:
assumes recfn (length xs) (Mn n f)
shows eval (Mn n f) zs =
(if 3z eval f (z# xs) J= 0 N Vy<z. eval f (y # z5) |))
then Some (LEAST z. eval f (z # xs) 1= 0 N (Vy<z. eval f (y # xs) 1))
else None)

using assms eval-def by auto

For p-recursion, the condition Vy<z. eval-wellf f (y # wxs) | inside LEAST in the
definition of eval-wellf is redundant.

lemma eval-wellf-Mn:
eval-wellf (Mn n f) zs =

(if (Fz. eval-wellf f (z # xs) = 0 N Vy<z. eval-wellf f (y # xs)]))
then Some (LEAST z. eval-wellf f (z # zs) |= 0)

else None)
proof —
let 2P = A\z. eval-wellf f (z # xzs) 1= 0 N (Vy<z. eval-wellf f (y # zs) |)

{

assume Jz. P 2
moreover define z where z = Least 7P
ultimately have 7P z
using LeastI[of ?P] by blast
have (LEAST z. eval-wellf f (z # zs) = 0) = 2
proof (rule Least-equality)
show eval-wellf f (z # zs) =0
using <?P 2> by simp
show z < y if eval-wellf f (y # zs) = 0 for y
proof (rule ccontr)
assume - 2z < ¥y
then have y < z by simp
moreover from this have 7P y
using that <?P 2> by simp
ultimately show Fulse
using that not-less-Least z-def by blast
qed
qed
}
then show ?thesis by simp
qed

lemma eval-Mn'":
assumes recfn (length xs) (Mn n f)
shows eval (Mn n f) zs =
(if 3z eval f (z# xs) J= 0 N Vy<z. eval f (y # z5) |))
then Some (LEAST z. eval f (z # xs) J= 0)
else None)
using assms eval-def eval-wellf-Mn by auto

Proving that p-recursion converges is easier if one does not have to deal with LEAST
directly.

lemma eval-Mn-convergl:
assumes recfn (length zs) (Mn n f)
and eval f (z # x8) =0
and A\y. y < z = eval f (y # xs) [#£ 0
shows eval (Mn n f) zs = 2
proof —
let 7P = Az. eval f (z # xs) {= 0 N (Vy<z. eval f (y # xs) |)
have z = Least 7P
using Least-equality[of 7P z] assms(2,3) not-le-imp-less by blast
moreover have ?P z using assms(2,3) by simp
ultimately show eval (Mn n f) zs = 2

using eval-Mn[OF assms(1)] by meson
qed

Similarly, reasoning from a p-recursive function is simplified somewhat by the next
lemma.

lemma eval-Mn-convergE:
assumes recfn (length zs) (Mn n f) and eval (Mn n f) zs |= z
shows z = (LEAST z. eval f (z # xs) }= 0 AN (Vy<z. eval f (y # xs) |))
and eval f (z # zs) =0
and A\y. y < z = eval f (y # xs) [#£ 0
proof —
let 9P = Az. eval f (z # zs) 1= 0 N (Vy<z. eval f (y # xs) |)
show z = Least ?P
using assms eval-Mn[OF assms(1)]
by (metis (no-types, lifting) option.inject option.simps(8))
moreover have 3z. 7P 2
using assms eval-Mn[OF assms(1)] by (metis option.distinct(1))
ultimately have 2P z
using Leastl[of ?P] by blast
then have eval f (z # xs) 1= 0 N (Vy<z. eval f (y # xs) |)
by simp
then show eval f (z # zs) L= 0 by simp
show Ay. y < 2 = eval f (y # xs) {# 0
using not-less-Least[of - ?P] <z = Least ?P) <?P 2z less-trans by blast
qed

lemma eval-Mn-diverg:
assumes recfn (length xs) (Mn n f)
shows = (Fz. eval f (z # xs) I= 0 N Vy<z. eval f (y # xs) |)) «— eval (Mn n f) xs 1
using assms eval-Mn[OF assms(1)] by simp

1.1.2 Extensional equality

definition exteq :: recf = recf = bool (infix <~ 55) where
f =~ g=arity f = arity g A (Vas. length xs = arity f — eval f xs = eval g xs)

lemma exteg-refi: f ~ f
using exteq-def by simp

lemma exteg-sym: f ~ g =— g ~ f
using exteq-def by simp

lemma exteq-trans: f ~ g=— g~ h=— f ~h
using exteq-def by simp

lemma exteql:
assumes arity [= arity g and Azs. length xs = arity f = eval f zs = eval g xs
shows f ~ ¢
using assms exteq-def by simp

lemma exteql!:
assumes arity f = 1 and arity g = 1 and Az. eval f [x] = eval g []
shows f ~ ¢
using assms exteql by (metis One-nat-def Suc-length-conv length-0-conv)

For every partial recursive function f there are infinitely many extensionally equal ones,

for example, those that wrap f arbitrarily often in the identity function.

fun wrap-Id :: recf = nat = recf where
wrap-1d f 0 = f
| wrap-Id f (Suc n) = Cn (arity f) (Id 1 0) [wrap-1d f n)

lemma recfn-wrap-I1d: recfn a f = recfn a (wrap-Id f n)
using wellf-arity-nonzero by (induction n) auto

lemma exteq-wrap-Id: recfn o f = f ~ wrap-Id f n
proof (induction n)
case (
then show %case by (simp add: exteg-refl)
next
case (Suc n)
have wrap-1d f n ~ wrap-Id f (Suc n)
proof (rule exteql)
show arity (wrap-Id f n) = arity (wrap-I1d f (Suc n))
using Suc by (simp add: recfn-wrap-Id)
show eval (wrap-Id f n) xs = eval (wrap-1d f (Suc n)) xs
if length zs = arity (wrap-1d f n) for xs
proof —
have recfn (length zs) (Cn (arity f) (Id 1 0) [wrap-Id f n])
using that Suc recfn-wrap-Id by (metis wrap-Id.simps(2))
then show eval (wrap-Id f n) xs = eval (wrap-I1d f (Suc n)) xs

by auto
qed

qged

then show ?case using Suc exteq-trans by fast
qed
fun depth :: recf = nat where

depth Z = 0
| depth S = 0

| depth (Id m n) = 0

| depth (Cn n fgs) = Suc (mazx (depth f) (Maxz (set (map depth gs))))
| depth (Prn f g) = Suc (maz (depth f) (depth g))

| depth (Mn n f) = Suc (depth f)

lemma depth-wrap-I1d: recfn a f = depth (wrap-Id f n) = depth f + n
by (induction n) simp-all

lemma wrap-Id-injective:
assumes recfn a f and wrap-Id f n; = wrap-1d f ne
shows n; = no
using assms by (metis add-left-cancel depth-wrap-Id)

lemma exteq-infinite:
assumes recfn a f
shows infinite {g. recfn a g A g ~ [} (is infinite ?R)
proof —
have inj (wrap-Id f)
using wrap-Id-injective <recfn a f> by (meson inj-onI)
then have infinite (range (wrap-1d f))
using finite-imageD by blast
moreover have range (wrap-I1d f) C 7R

using assms exteq-sym exteq-wrap-1d recfn-wrap-Id by blast
ultimately show ?thesis by (simp add: infinite-super)
qed

1.1.3 Primitive recursive and total functions

fun Mn-free :: recf = bool where
Mn-free Z = True
| Mn-free S = True
| Mn-free (Id m n) = True
| Mn-free (Cnn fgs) = (Vg € set gs. Mn-free g) N\ Mn-free f)
| Mn-free (Pr n f g) = (Mn-free f A Mn-free g)
| Mn-free (Mn n f) = False

This is our notion of n-ary primitive recursive function:

abbreviation prim-recfn :: nat = recf = bool where
prim-recfn n f = recfn n f A Mn-free f

definition total :: recf = bool where
total f = V xs. length s = arity f — eval fzs |

lemma totall [intro]:
assumes Azs. length xs = arity f = eval fxs |
shows total f
using assms total-def by simp

lemma totalE [simp]:
assumes total f and recfn n f and length xs = n
shows eval f zs |
using assms total-def by simp

lemma totalll :
assumes recfn 1 f and Az. eval f [z] |
shows total f
using assms totall[of f] by (metis One-nat-def length-0-conv length-Suc-conv)

lemma totall2:
assumes recfn 2 f and Az y. eval f [z, y] |
shows total f
using assms totall[of f] by (smt length-0-conv length-Suc-conv numeral-2-eq-2)

lemma totall3:
assumes recfn 3 f and Az y z. eval f [z, y, 2] |
shows total f
using assms totall[of f] by (smt length-0-conv length-Suc-conv numeral-3-eq-8)

lemma totall4:
assumes recfn 4 f and Aw z y z. eval f [w, z, y, 2] |
shows total f
proof (rule totall|of f])
fix zs :: nat list
assume length xs = arity f
then have length s = Suc (Suc (Suc (Suc 0)))
using assms(1) by simp
then obtain w z y z where zs = [w, z, y, 2]
by (smt Suc-length-conv length-0-conv)

10

then show eval f xs | using assms(2) by simp
qed

lemma Mn-free-imp-total [intro]:
assumes wellf f and Mn-free f
shows total f
using assms
proof (induction f rule: Mn-free.induct)
case (O n fg)
have eval (Prn fg) (z # xs) | if length (z # xzs) = arity (Prn f g) for z zs
using 5 that by (induction x) auto
then show ?Zcase by (metis arity.simps(5) length-Suc-conv totall)
qged (auto simp add: total-def eval-def)

lemma prim-recfn-total: prim-recfn n f = total f
using Mn-free-imp-total by simp

lemma eval-Pr-prim-Suc:
assumes h = Prn f g and prim-recfn (Suc n) h and length zs = n
shows eval h (Suc © # xs) = eval g (x # the (eval h (x # x5)) # xs)
using assms eval-Pr-converg-Suc prim-recfn-total by simp

lemma Cn-total:
assumes V g€set gs. total g and total f and recfn n (Cn n f gs)
shows total (Cn n f gs)
using assms by (simp add: totall)

lemma Pr-total:
assumes total f and total g and recfn (Suc n) (Prn fg)
shows total (Prn f g)
proof —
have eval (Prn fg) (z # xs) | if length xs = n for z zs
using that assms by (induction) auto
then show ?thesis
using assms(3) totall by (metis Suc-length-conv arity.simps(5))
qed

lemma eval-Mn-total:
assumes recfn (length zs) (Mn n f) and total f
shows eval (Mn n f) zs =

(if 3z eval f (z # zs) L= 0)
then Some (LEAST z. eval f (z # zs) 1= 0)
else None)

using assms by auto

1.2 Simple functions

This section, too, bears some similarity to Urban’s formalization in Xu et al. [18], but
is more minimalistic in scope.

As a general naming rule, instances of recf and functions returning such instances get
names starting with r-. Typically, for an r-zyz there will be a lemma r-zyz-recfn or
r-zyz-prim establishing its (primitive) recursiveness, arity, and well-formedness. More-
over there will be a lemma r-zyz describing its semantics, for which we will sometimes
introduce an Isabelle function zyz.

11

1.2.1 Manipulating parameters

Appending dummy parameters:

definition r-dummy :: nat = recf = recf where
r-dummy n f = Cn (arity f + n) f (map (N\i. Id (arity f + n) i) [0..<arity f])

lemma r-dummy-prim [simp]:
prim-recfn a f = prim-recfn (a + n) (r-dummy n f)
using wellf-arity-nonzero by (auto simp add: r-dummy-def)

lemma r-dummy-recfn [simp]:
recfn o f = recfn (a + n) (r-dummy n f)
using wellf-arity-nonzero by (auto simp add: r-dummy-def)

lemma r-dummy [simp]:
r-dummy n f = Cn (arity f + n) f (map (\i. Id (arity f + n) i) [0..<arity f])
unfolding r-dummy-def by simp

lemma r-dummy-append:
assumes recfn (length zs) f and length ys = n
shows eval (r-dummy n f) (zs Q ys) = eval f xs
proof —
let ?r = r-dummy n f
let 2gs = map (N\i. Id (arity f + n) i) [0..<arity f]
have length ?gs = arity f by simp
moreover have %gs ! i = (Id (arity f + n) 7) if i < arity f for i
by (simp add: that)
moreover have x: eval-wellf (?gs! i) (xs Q ys) = xs ! i if ¢ < arity f for ¢
using that assms by (simp add: nth-append)
ultimately have map (Ag. the (eval-wellf g (zs @Q ys))) ?gs = xs
by (metis (no-types, lifting) assms(1) length-map nth-equalityl nth-map option.sel)
moreover have Vg € set ?gs. eval-wellf g (zs Q ys) |
using *x by simp
moreover have recfn (length (zs Q ys)) 2r
using assms r-dummy-recfn by fastforce
ultimately show ?thesis
by (auto simp add: assms eval-def)
qed

Shrinking a binary function to a unary one is useful when we want to define a unary
function via the Pr operation, which can only construct recfs of arity two or higher.
definition r-shrink :: recf = recf where

r-shrink f = Cn 1 f [Id 1 0, Id 1 0]

lemma r-shrink-prim [simp]: prim-recfn 2 f = prim-recfn 1 (r-shrink f)
by (simp add: r-shrink-def)

lemma r-shrink-recfn [simp|: recfn 2 f = recfn 1 (r-shrink f)
by (simp add: r-shrink-def)

lemma r-shrink [simpl: recfn 2 f = eval (r-shrink f) [z] = eval f [z, z]
by (simp add: r-shrink-def)

definition r-swap :: recf = recf where
r-swap f = Cn 2 f [Id 2 1, Id 2 0]

12

lemma r-swap-recfn [simpl: recfn 2 f = recfn 2 (r-swap f)
by (simp add: r-swap-def)

lemma r-swap-prim [simp: prim-recfn 2 f = prim-recfn 2 (r-swap f)
by (simp add: r-swap-def)

lemma r-swap [simp]: recfn 2 f = eval (r-swap f) [z, y] = eval [[y,]
by (simp add: r-swap-def)

Prepending one dummy parameter:

definition r-shift :: recf = recf where
r-shift f = Cn (Suc (arity f)) f (map (Ai. Id (Suc (arity f)) (Suc ©)) [0..<arity f])

lemma r-shift-prim [simp]: prim-recfn o f = prim-recfn (Suc a) (r-shift f)
by (simp add: r-shift-def)

lemma r-shift-recfn [simp|: recfn a f = recfn (Suc a) (r-shift f)
by (simp add: r-shift-def)

lemma r-shift [simp]:
assumes recfn (length zs) f
shows eval (r-shift f) (x # xs) = eval f xs
proof —
let ?r = r-shift f
let 2gs = map (M\i. Id (Suc (arity f)) (Suc 7)) [0..<arity f]
have length ?gs = arity f by simp
moreover have ?gs ! i = (Id (Suc (arity f)) (Suc 7)) if i < arity f for ¢
by (simp add: that)
moreover have x: eval (?gs | 7) (z # xs) |= xs ! ¢ if i < arity f for i
using assms nth-append that by simp
ultimately have map (Ag. the (eval g (z # xs))) %g9s = xs
by (metis (no-types, lifting) assms length-map nth-equalityl nth-map option.sel)
moreover have Vg € set ?gs. eval g (x # xs) # None
using *x by simp
ultimately show ?thesis using r-shift-def assms by simp
qed

1.2.2 Arithmetic and logic

The unary constants:

fun r-const :: nat = recf where
r-const 0 = Z
| -const (Suc ¢) = Cn 1§ [r-const |

lemma r-const-prim [simp]: prim-recfn 1 (r-const c)
by (induction c) (simp-all)

lemma 7-const [simp]: eval (r-const c) [z] = ¢
by (induction c) simp-all

Constants of higher arities:

definition r-constn n ¢ = if n = 0 then r-const ¢ else r-dummy n (r-const c)

lemma r-constn-prim [simpl: prim-recfn (Suc n) (r-constn n c)

13

unfolding r-constn-def by simp

lemma r-constn [simp]: length xs = Suc n = eval (r-constn n ¢) xs = c
unfolding r-constn-def
by simp (metis length-0-conv length-Suc-conv r-const)

We introduce addition, subtraction, and multiplication, but interestingly enough we can
make do without division.

definition r-add = Pr 1 (Id 1 0) (Cn 3 S [Id 3 1])

lemma r-add-prim [simp]: prim-recfn 2 r-add
by (simp add: r-add-def)

lemma r-add [simp]: eval r-add [a,] {= a + b
unfolding r-add-def by (induction a) simp-all

definition r-mul = Pr 1 Z (Cn 3 r-add [Id 3 1, Id 3 2])

lemma r-mul-prim [simp]: prim-recfn 2 r-mul
unfolding r-mul-def by simp

lemma r-mul [simp]: eval r-mul [a, b] {= a x b
unfolding r-mul-def by (induction a) simp-all

definition r-dec = Cn 1 (Pr1Z (Id 30)) [Id 1 0, Id 1 0]

lemma r-dec-prim [simp]: prim-recfn 1 r-dec

by (simp add: r-dec-def)

lemma r-dec [simp]: eval r-dec [a] |= a — 1
proof —
have eval (Pr1Z (Id 30)) [z, yJ =2 — 1 for z y
by (induction z) simp-all
then show %thesis by (simp add: r-dec-def)
qed

definition r-sub = r-swap (Pr 1 (Id 1 0) (Cn 3 r-dec [Id 3 1]))

lemma r-sub-prim [simp|: prim-recfn 2 r-sub
unfolding r-sub-def by simp

lemma r-sub [simp]: eval r-sub [a, b] = a — b
proof —
have eval (Pr 1 (Id 1 0) (Cn 3 r-dec [Id 3 1])) [z, y| =y — z for z y
by (induction z) simp-all
then show ?thesis unfolding r-sub-def by simp
qed

definition r-sign = r-shrink (Pr 1 Z (r-constn 2 1))

lemma r-sign-prim [simp]: prim-recfn 1 r-sign
unfolding r-sign-def by simp

lemma r-sign [simp]: eval r-sign [z] = (if x = 0 then 0 else 1)

proof —
have eval (Pr 1 Z (r-constn 2 1)) [z, y] }= (if z = 0 then 0 else 1) for z y

14

by (induction x) simp-all
then show ?thesis unfolding r-sign-def by simp
qed

In the logical functions, true will be represented by zero, and false will be represented
by non-zero as argument and by one as result.

definition r-not = Cn 1 r-sub [r-const 1, r-sign|

lemma r-not-prim [simp]: prim-recfn 1 r-not
unfolding r-not-def by simp

lemma r-not [simp]: eval r-not [z] 1= (if x = 0 then I else 0)
unfolding r-not-def by simp

definition r-nand = Cn 2 r-not [r-add]

lemma r-nand-prim [simp]: prim-recfn 2 r-nand
unfolding r-nand-def by simp

lemma r-nand [simp]: eval r-nand [z, y] }= (if z = 0 A y = 0 then 1 else 0)
unfolding r-nand-def by simp

definition r-and = Cn 2 r-not [r-nand]

lemma r-and-prim [simp: prim-recfn 2 r-and
unfolding r-and-def by simp

lemma r-and [simp]: eval m-and [z, y] |= (if v = 0 A y = 0 then 0 else 1)
unfolding r-and-def by simp

definition r-or = Cn 2 r-sign [r-mul)

lemma r-or-prim [simp|: prim-recfn 2 r-or
unfolding r-or-def by simp

lemma r-or [simp]: eval r-or [z, y] = (if x = 0 V y = 0 then 0 else 1)
unfolding r-or-def by simp
1.2.3 Comparison and conditions

definition r-ifz =
let ifzero = (Cn 3 r-mul [r-dummy 2 r-not, Id 3 1]);
ifnzero = (Cn 8 r-mul [r-dummy 2 r-sign, Id 3 2])
in Cn 3 r-add [ifzero, ifnzero)

lemma r-ifz-prim [simp]: prim-recfn 3 r-ifz
unfolding r-ifz-def by simp

lemma r-ifz [simp]: eval r-ifz [cond, val0, vall] = (if cond = 0 then val0 else vall)
unfolding r-ifz-def by (simp add: Let-def)

definition r-eq = Cn 2 r-sign [Cn 2 r-add [r-sub, r-swap r-sub)

lemma r-eq-prim [simpl: prim-recfn 2 r-eq
unfolding r-eq-def by simp

15

lemma r-eq [simp]: eval r-eq [z, y] 1= (if x = y then 0 else 1)
unfolding r-eq-def by simp

definition r-ifeq = Cn 4 r-ifz [r-dummy 2 r-eq, Id 4 2, Id 4 3]

lemma r-ifeg-prim [simp|: prim-recfn 4 r-ifeq
unfolding r-ifeq-def by simp

lemma r-ifeq [simpl: eval r-ifeq [a, b, vo, v1] }= (if a = b then vy else vy)
unfolding r-ifeq-def using r-dummy-append|of m-eq [a, b] [vo, v1] 2]
by simp

definition r-neq = Cn 2 r-not [r-eq|

lemma r-neg-prim [simp]: prim-recfn 2 r-neq
unfolding r-neg-def by simp

lemma r-neq [simp|: eval r-neq [z, y] }= (if x = y then 1 else 0)
unfolding r-neg-def by simp

definition r-ifle = Cn 4 r-ifz [r-dummy 2 r-sub, Id 4 2, I1d 4 3]

lemma r-ifle-prim [simpl: prim-recfn 4 r-ifle
unfolding r-ifle-def by simp

lemma r-ifle [simp]: eval r-ifle [a, b, vy, vi] J= (if a < b then vy else vy)
unfolding r-ifle-def using r-dummy-append|of r-sub [a, b] [vo, v1] 2]
by simp

definition r-ifless = Cn 4 r-ifle [Id 4 1, Id 4 0, Id 4 3, Id 4 2]

lemma r-ifless-prim [simp]: prim-recfn 4 r-ifless
unfolding r-ifless-def by simp

lemma r-ifless [simp]: eval r-ifless [a, b, vo, v1] = (if a < b then vy else vq)
unfolding r-ifless-def by simp

definition r-less = Cn 2 r-ifle [Id 2 1, Id 2 0, r-constn 1 1, r-constn 1 0]

lemma r-less-prim [simp]: prim-recfn 2 r-less
unfolding r-less-def by simp

lemma r-less [simp]: eval r-less [z, y] = (if © < y then 0 else 1)
unfolding r-less-def by simp

definition r-le = Cn 2 r-ifle [Id 2 0, Id 2 1, r-constn 1 0, r-constn 1 1]

lemma r-le-prim [simp]: prim-recfn 2 r-le
unfolding r-le-def by simp

lemma r-le [simp]: eval r-le [z, y] J= (if © < y then 0 else 1)
unfolding r-le-def by simp

Arguments are evaluated eagerly. Therefore r-ifz, etc. cannot be combined with a
diverging function to implement a conditionally diverging function in the naive way.
The following function implements a special case needed in the next section. A general

16

lazy version of r-ifz will be introduced later with the help of a universal function.

definition r-ifeg-else-diverg =
Cn 3 r-add [Id 3 2, Mn 8 (Cn 4 r-add [Id 4 0, Cn 4 r-eq [Id 4 1, Id 4 2]])]

lemma r-ifeg-else-diverg-recfn [simpl: recfn 3 r-ifeq-else-diverg
unfolding r-ifeg-else-diverg-def by simp

lemma r-ifeg-else-diverg [simp):
eval r-ifeg-else-diverg [a, b, v] = (if a = b then Some v else None)
unfolding r-ifeq-else-diverg-def by simp

1.3 The halting problem

Decidability will be treated more thoroughly in Section 1.10. But the halting problem
is prominent enough to deserve an early mention.

definition decidable :: nat set = bool where
decidable X = 3f. recfn 1 f N (V. eval f [z] 4= (if x € X then 1 else 0))

No matter how partial recursive functions are encoded as natural numbers, the set of all
codes of functions halting on their own code is undecidable.

theorem halting-problem-undecidable:
fixes code :: nat = recf
assumes Af. recfn 1 f = Fi. code i = f
shows - decidable {z. eval (code z) [z] |} (is — decidable ?K)
proof
assume decidable 7K
then obtain f where recfn 1 f and f: Vz. eval f [z] |= (if € ?K then 1 else 0)
using decidable-def by auto
define g where g = Cn 1 r-ifeg-else-diverg |f, Z, Z]
then have recfn 1 g
using <recfn 1 f» r-ifeq-else-diverg-recfn by simp
with assms obtain ¢ where i: code i = g by auto
from g¢-def have eval g [z] = (if x ¢ ?K then Some 0 else None) for z
using r-ifeq-else-diverg-recfn <recfn 1 > f by simp
then have eval g [i] | +— i ¢ ?K by simp
also have ... +— eval (code i) [i] T by simp
also