
Some classical results in inductive inference of recursive
functions

Frank J. Balbach

March 17, 2025

Abstract

This entry formalizes some classical concepts and results from inductive inference of
recursive functions. In the basic setting a partial recursive function (“strategy”) must
identify (“learn”) all functions from a set (“class”) of recursive functions. To that end
the strategy receives more and more values f(0), f(1), f(2), . . . of some function f from
the given class and in turn outputs descriptions of partial recursive functions, for ex-
ample, Gödel numbers. The strategy is considered successful if the sequence of outputs
(“hypotheses”) converges to a description of f . A class of functions learnable in this
sense is called “learnable in the limit”. The set of all these classes is denoted by LIM.

Other types of inference considered are finite learning (FIN), behaviorally correct
learning in the limit (BC), and some variants of LIM with restrictions on the hypothe-
ses: total learning (TOTAL), consistent learning (CONS), and class-preserving learning
(CP). The main results formalized are the proper inclusions FIN ⊂ CP ⊂ TOTAL ⊂
CONS ⊂ LIM ⊂ BC ⊂ 2R, where R is the set of all total recursive functions. Further
results show that for all these inference types except CONS, strategies can be assumed to
be total recursive functions; that all inference types but CP are closed under the subset
relation between classes; and that no inference type is closed under the union of classes.

The above is based on a formalization of recursive functions heavily inspired by the
Universal Turing Machine entry by Xu et al. [18], but different in that it models partial
functions with codomain nat option. The formalization contains a construction of a
universal partial recursive function, without resorting to Turing machines, introduces
decidability and recursive enumerability, and proves some standard results: existence
of a Kleene normal form, the s-m-n theorem, Rice’s theorem, and assorted fixed-point
theorems (recursion theorems) by Kleene, Rogers, and Smullyan.

Contents

1 Partial recursive functions 3
1.1 Basic definitions . 3

1.1.1 Partial recursive functions . 3
1.1.2 Extensional equality . 8
1.1.3 Primitive recursive and total functions 10

1.2 Simple functions . 11
1.2.1 Manipulating parameters . 12
1.2.2 Arithmetic and logic . 13
1.2.3 Comparison and conditions . 15

1.3 The halting problem . 17
1.4 Encoding tuples and lists . 17

1.4.1 Pairs and tuples . 18
1.4.2 Lists . 25

1.5 A universal partial recursive function . 36
1.5.1 A step function . 36
1.5.2 Encoding partial recursive functions 50
1.5.3 The step function on encoded configurations 53
1.5.4 The step function as a partial recursive function 60
1.5.5 The universal function . 64

1.6 Applications of the universal function . 69
1.6.1 Lazy conditional evaluation . 70
1.6.2 Enumerating the domains of partial recursive functions 70
1.6.3 Concurrent evaluation of functions 76

1.7 Kleene normal form and the number of µ-operations 81
1.8 The s-m-n theorem . 84
1.9 Fixed-point theorems . 91

1.9.1 Rogers’s fixed-point theorem . 91
1.9.2 Kleene’s fixed-point theorem . 93
1.9.3 Smullyan’s double fixed-point theorem 95

1.10 Decidable and recursively enumerable sets 95
1.11 Rice’s theorem . 100
1.12 Partial recursive functions as actual functions 101

1.12.1 The definitions . 101
1.12.2 Some simple properties . 104
1.12.3 The Gödel numbering ϕ . 106
1.12.4 Fixed-point theorems . 108

1

2 Inductive inference of recursive functions 109
2.1 Preliminaries . 110

2.1.1 The prefixes of a function . 110
2.1.2 NUM . 114

2.2 Types of inference . 120
2.2.1 LIM: Learning in the limit . 120
2.2.2 BC: Behaviorally correct learning in the limit 122
2.2.3 CONS: Learning in the limit with consistent hypotheses 124
2.2.4 TOTAL: Learning in the limit with total hypotheses 126
2.2.5 CP: Learning in the limit with class-preserving hypotheses 127
2.2.6 FIN: Finite learning . 128

2.3 FIN is a proper subset of CP . 129
2.4 NUM and FIN are incomparable . 137
2.5 NUM and CP are incomparable . 140
2.6 NUM is a proper subset of TOTAL . 142
2.7 CONS is a proper subset of LIM . 147
2.8 Lemma R . 157

2.8.1 Strong Lemma R for LIM, FIN, and BC 157
2.8.2 Weaker Lemma R for CP and TOTAL 167
2.8.3 No Lemma R for CONS . 168

2.9 LIM is a proper subset of BC . 193
2.9.1 Enumerating enough total strategies 194
2.9.2 The diagonalization process . 195
2.9.3 The separating class . 211
2.9.4 The separating class is in BC . 214

2.10 TOTAL is a proper subset of CONS . 216
2.10.1 TOTAL is a subset of CONS . 216
2.10.2 The separating class . 219

2.11 R is not in BC . 241
2.12 The union of classes . 250

2

Chapter 1

Partial recursive functions

theory Partial-Recursive
imports Main HOL−Library.Nat-Bijection

begin

This chapter lays the foundation for Chapter 2. Essentially it develops recursion theory
up to the point of certain fixed-point theorems. This in turn requires standard results
such as the existence of a universal function and the s-m-n theorem. Besides these,
the chapter contains some results, mostly regarding decidability and the Kleene normal
form, that are not strictly needed later. They are included as relatively low-hanging
fruits to round off the chapter.
The formalization of partial recursive functions is very much inspired by the Universal
Turing Machine AFP entry by Xu et al. [18]. It models partial recursive functions as
algorithms whose semantics is given by an evaluation function. This works well for
most of this chapter. For the next chapter, however, it is beneficial to regard partial
recursive functions as “proper” partial functions. To that end, Section 1.12 introduces
more conventional and convenient notation for the common special cases of unary and
binary partial recursive functions.
Especially for the nontrivial proofs I consulted the classical textbook by Rogers [12],
which also partially explains my preferring the traditional term “recursive” to the more
modern “computable”.

1.1 Basic definitions
1.1.1 Partial recursive functions

To represent partial recursive functions we start from the same datatype as Xu et al. [18],
more specifically from Urban’s version of the formalization. In fact the datatype recf
and the function arity below have been copied verbatim from it.
datatype recf =

Z
| S
| Id nat nat
| Cn nat recf recf list
| Pr nat recf recf
| Mn nat recf

fun arity :: recf ⇒ nat where

3

arity Z = 1
| arity S = 1
| arity (Id m n) = m
| arity (Cn n f gs) = n
| arity (Pr n f g) = Suc n
| arity (Mn n f) = n

Already we deviate from Xu et al. in that we define a well-formedness predicate for partial
recursive functions. Well-formedness essentially means arity constraints are respected
when combining recf s.
fun wellf :: recf ⇒ bool where

wellf Z = True
| wellf S = True
| wellf (Id m n) = (n < m)
| wellf (Cn n f gs) =

(n > 0 ∧ (∀ g ∈ set gs. arity g = n ∧ wellf g) ∧ arity f = length gs ∧ wellf f)
| wellf (Pr n f g) =

(arity g = Suc (Suc n) ∧ arity f = n ∧ wellf f ∧ wellf g)
| wellf (Mn n f) = (n > 0 ∧ arity f = Suc n ∧ wellf f)

lemma wellf-arity-nonzero: wellf f =⇒ arity f > 0
by (induction f rule: arity.induct) simp-all

lemma wellf-Pr-arity-greater-1 : wellf (Pr n f g) =⇒ arity (Pr n f g) > 1
using wellf-arity-nonzero by auto

For the most part of this chapter this is the meaning of “f is an n-ary partial recursive
function”:
abbreviation recfn :: nat ⇒ recf ⇒ bool where

recfn n f ≡ wellf f ∧ arity f = n

Some abbreviations for working with nat option:
abbreviation divergent :: nat option ⇒ bool (‹- ↑› [50] 50) where

x ↑ ≡ x = None

abbreviation convergent :: nat option ⇒ bool (‹- ↓› [50] 50) where
x ↓ ≡ x 6= None

abbreviation convergent-eq :: nat option ⇒ nat ⇒ bool (infix ‹↓=› 50) where
x ↓= y ≡ x = Some y

abbreviation convergent-neq :: nat option ⇒ nat ⇒ bool (infix ‹↓6=› 50) where
x ↓6= y ≡ x ↓ ∧ x 6= Some y

In prose the terms “halt”, “terminate”, “converge”, and “defined” will be used inter-
changeably; likewise for “not halt”, “diverge”, and “undefined”. In names of lemmas, the
abbreviations converg and diverg will be used consistently.

Our second major deviation from Xu et al. [18] is that we model the semantics of a recf by
combining the value and the termination of a function into one evaluation function with
codomain nat option, rather than separating both aspects into an evaluation function
with codomain nat and a termination predicate.
The value of a well-formed partial recursive function applied to a correctly-sized list of
arguments:

4

fun eval-wellf :: recf ⇒ nat list ⇒ nat option where
eval-wellf Z xs ↓= 0
| eval-wellf S xs ↓= Suc (xs ! 0)
| eval-wellf (Id m n) xs ↓= xs ! n
| eval-wellf (Cn n f gs) xs =

(if ∀ g ∈ set gs. eval-wellf g xs ↓
then eval-wellf f (map (λg. the (eval-wellf g xs)) gs)
else None)

| eval-wellf (Pr n f g) [] = undefined
| eval-wellf (Pr n f g) (0 # xs) = eval-wellf f xs
| eval-wellf (Pr n f g) (Suc x # xs) =

Option.bind (eval-wellf (Pr n f g) (x # xs)) (λv. eval-wellf g (x # v # xs))
| eval-wellf (Mn n f) xs =

(let E = λz. eval-wellf f (z # xs)
in if ∃ z. E z ↓= 0 ∧ (∀ y<z. E y ↓)

then Some (LEAST z. E z ↓= 0 ∧ (∀ y<z. E y ↓))
else None)

We define a function value only if the recf is well-formed and its arity matches the
number of arguments.
definition eval :: recf ⇒ nat list ⇒ nat option where

recfn (length xs) f =⇒ eval f xs ≡ eval-wellf f xs

lemma eval-Z [simp]: eval Z [x] ↓= 0
by (simp add: eval-def)

lemma eval-Z ′ [simp]: length xs = 1 =⇒ eval Z xs ↓= 0
by (simp add: eval-def)

lemma eval-S [simp]: eval S [x] ↓= Suc x
by (simp add: eval-def)

lemma eval-S ′ [simp]: length xs = 1 =⇒ eval S xs ↓= Suc (hd xs)
using eval-def hd-conv-nth[of xs] by fastforce

lemma eval-Id [simp]:
assumes n < m and m = length xs
shows eval (Id m n) xs ↓= xs ! n
using assms by (simp add: eval-def)

lemma eval-Cn [simp]:
assumes recfn (length xs) (Cn n f gs)
shows eval (Cn n f gs) xs =
(if ∀ g∈set gs. eval g xs ↓
then eval f (map (λg. the (eval g xs)) gs)
else None)

proof −
have eval (Cn n f gs) xs = eval-wellf (Cn n f gs) xs

using assms eval-def by blast
moreover have

∧
g. g ∈ set gs =⇒ eval-wellf g xs = eval g xs

using assms eval-def by simp
ultimately have eval (Cn n f gs) xs =
(if ∀ g∈set gs. eval g xs ↓
then eval-wellf f (map (λg. the (eval g xs)) gs)
else None)

using map-eq-conv[of λg. the (eval-wellf g xs) gs λg. the (eval g xs)]

5

by (auto, metis)
moreover have

∧
ys. length ys = length gs =⇒ eval f ys = eval-wellf f ys

using assms eval-def by simp
ultimately show ?thesis by auto

qed

lemma eval-Pr-0 [simp]:
assumes recfn (Suc n) (Pr n f g) and n = length xs
shows eval (Pr n f g) (0 # xs) = eval f xs
using assms by (simp add: eval-def)

lemma eval-Pr-diverg-Suc [simp]:
assumes recfn (Suc n) (Pr n f g)

and n = length xs
and eval (Pr n f g) (x # xs) ↑

shows eval (Pr n f g) (Suc x # xs) ↑
using assms by (simp add: eval-def)

lemma eval-Pr-converg-Suc [simp]:
assumes recfn (Suc n) (Pr n f g)

and n = length xs
and eval (Pr n f g) (x # xs) ↓

shows eval (Pr n f g) (Suc x # xs) = eval g (x # the (eval (Pr n f g) (x # xs)) # xs)
using assms eval-def by auto

lemma eval-Pr-diverg-add:
assumes recfn (Suc n) (Pr n f g)

and n = length xs
and eval (Pr n f g) (x # xs) ↑

shows eval (Pr n f g) ((x + y) # xs) ↑
using assms by (induction y) auto

lemma eval-Pr-converg-le:
assumes recfn (Suc n) (Pr n f g)

and n = length xs
and eval (Pr n f g) (x # xs) ↓
and y ≤ x

shows eval (Pr n f g) (y # xs) ↓
using assms eval-Pr-diverg-add le-Suc-ex by metis

lemma eval-Pr-Suc-converg:
assumes recfn (Suc n) (Pr n f g)

and n = length xs
and eval (Pr n f g) (Suc x # xs) ↓

shows eval g (x # (the (eval (Pr n f g) (x # xs))) # xs) ↓
and eval (Pr n f g) (Suc x # xs) = eval g (x # the (eval (Pr n f g) (x # xs)) # xs)

using eval-Pr-converg-Suc[of n f g xs x, OF assms(1 ,2)]
eval-Pr-converg-le[of n f g xs Suc x x, OF assms] assms(3)

by simp-all

lemma eval-Mn [simp]:
assumes recfn (length xs) (Mn n f)
shows eval (Mn n f) xs =
(if (∃ z. eval f (z # xs) ↓= 0 ∧ (∀ y<z. eval f (y # xs) ↓))
then Some (LEAST z . eval f (z # xs) ↓= 0 ∧ (∀ y<z. eval f (y # xs) ↓))
else None)

6

using assms eval-def by auto

For µ-recursion, the condition ∀ y<z. eval-wellf f (y # xs) ↓ inside LEAST in the
definition of eval-wellf is redundant.
lemma eval-wellf-Mn:

eval-wellf (Mn n f) xs =
(if (∃ z. eval-wellf f (z # xs) ↓= 0 ∧ (∀ y<z. eval-wellf f (y # xs) ↓))
then Some (LEAST z . eval-wellf f (z # xs) ↓= 0)
else None)

proof −
let ?P = λz. eval-wellf f (z # xs) ↓= 0 ∧ (∀ y<z. eval-wellf f (y # xs) ↓)
{

assume ∃ z. ?P z
moreover define z where z = Least ?P
ultimately have ?P z

using LeastI [of ?P] by blast
have (LEAST z . eval-wellf f (z # xs) ↓= 0) = z
proof (rule Least-equality)

show eval-wellf f (z # xs) ↓= 0
using ‹?P z› by simp

show z ≤ y if eval-wellf f (y # xs) ↓= 0 for y
proof (rule ccontr)

assume ¬ z ≤ y
then have y < z by simp
moreover from this have ?P y

using that ‹?P z› by simp
ultimately show False

using that not-less-Least z-def by blast
qed

qed
}
then show ?thesis by simp

qed

lemma eval-Mn ′:
assumes recfn (length xs) (Mn n f)
shows eval (Mn n f) xs =
(if (∃ z. eval f (z # xs) ↓= 0 ∧ (∀ y<z. eval f (y # xs) ↓))
then Some (LEAST z . eval f (z # xs) ↓= 0)
else None)

using assms eval-def eval-wellf-Mn by auto

Proving that µ-recursion converges is easier if one does not have to deal with LEAST
directly.
lemma eval-Mn-convergI :

assumes recfn (length xs) (Mn n f)
and eval f (z # xs) ↓= 0
and

∧
y. y < z =⇒ eval f (y # xs) ↓6= 0

shows eval (Mn n f) xs ↓= z
proof −

let ?P = λz. eval f (z # xs) ↓= 0 ∧ (∀ y<z. eval f (y # xs) ↓)
have z = Least ?P

using Least-equality[of ?P z] assms(2 ,3) not-le-imp-less by blast
moreover have ?P z using assms(2 ,3) by simp
ultimately show eval (Mn n f) xs ↓= z

7

using eval-Mn[OF assms(1)] by meson
qed

Similarly, reasoning from a µ-recursive function is simplified somewhat by the next
lemma.
lemma eval-Mn-convergE :

assumes recfn (length xs) (Mn n f) and eval (Mn n f) xs ↓= z
shows z = (LEAST z. eval f (z # xs) ↓= 0 ∧ (∀ y<z. eval f (y # xs) ↓))

and eval f (z # xs) ↓= 0
and

∧
y. y < z =⇒ eval f (y # xs) ↓6= 0

proof −
let ?P = λz. eval f (z # xs) ↓= 0 ∧ (∀ y<z. eval f (y # xs) ↓)
show z = Least ?P

using assms eval-Mn[OF assms(1)]
by (metis (no-types, lifting) option.inject option.simps(3))

moreover have ∃ z. ?P z
using assms eval-Mn[OF assms(1)] by (metis option.distinct(1))

ultimately have ?P z
using LeastI [of ?P] by blast

then have eval f (z # xs) ↓= 0 ∧ (∀ y<z. eval f (y # xs) ↓)
by simp

then show eval f (z # xs) ↓= 0 by simp
show

∧
y. y < z =⇒ eval f (y # xs) ↓6= 0

using not-less-Least[of - ?P] ‹z = Least ?P› ‹?P z› less-trans by blast
qed

lemma eval-Mn-diverg:
assumes recfn (length xs) (Mn n f)
shows ¬ (∃ z. eval f (z # xs) ↓= 0 ∧ (∀ y<z. eval f (y # xs) ↓)) ←→ eval (Mn n f) xs ↑
using assms eval-Mn[OF assms(1)] by simp

1.1.2 Extensional equality
definition exteq :: recf ⇒ recf ⇒ bool (infix ‹'› 55) where

f ' g ≡ arity f = arity g ∧ (∀ xs. length xs = arity f −→ eval f xs = eval g xs)

lemma exteq-refl: f ' f
using exteq-def by simp

lemma exteq-sym: f ' g =⇒ g ' f
using exteq-def by simp

lemma exteq-trans: f ' g =⇒ g ' h =⇒ f ' h
using exteq-def by simp

lemma exteqI :
assumes arity f = arity g and

∧
xs. length xs = arity f =⇒ eval f xs = eval g xs

shows f ' g
using assms exteq-def by simp

lemma exteqI1 :
assumes arity f = 1 and arity g = 1 and

∧
x. eval f [x] = eval g [x]

shows f ' g
using assms exteqI by (metis One-nat-def Suc-length-conv length-0-conv)

For every partial recursive function f there are infinitely many extensionally equal ones,

8

for example, those that wrap f arbitrarily often in the identity function.
fun wrap-Id :: recf ⇒ nat ⇒ recf where

wrap-Id f 0 = f
| wrap-Id f (Suc n) = Cn (arity f) (Id 1 0) [wrap-Id f n]

lemma recfn-wrap-Id: recfn a f =⇒ recfn a (wrap-Id f n)
using wellf-arity-nonzero by (induction n) auto

lemma exteq-wrap-Id: recfn a f =⇒ f ' wrap-Id f n
proof (induction n)

case 0
then show ?case by (simp add: exteq-refl)

next
case (Suc n)
have wrap-Id f n ' wrap-Id f (Suc n)
proof (rule exteqI)

show arity (wrap-Id f n) = arity (wrap-Id f (Suc n))
using Suc by (simp add: recfn-wrap-Id)

show eval (wrap-Id f n) xs = eval (wrap-Id f (Suc n)) xs
if length xs = arity (wrap-Id f n) for xs

proof −
have recfn (length xs) (Cn (arity f) (Id 1 0) [wrap-Id f n])

using that Suc recfn-wrap-Id by (metis wrap-Id.simps(2))
then show eval (wrap-Id f n) xs = eval (wrap-Id f (Suc n)) xs

by auto
qed

qed
then show ?case using Suc exteq-trans by fast

qed

fun depth :: recf ⇒ nat where
depth Z = 0
| depth S = 0
| depth (Id m n) = 0
| depth (Cn n f gs) = Suc (max (depth f) (Max (set (map depth gs))))
| depth (Pr n f g) = Suc (max (depth f) (depth g))
| depth (Mn n f) = Suc (depth f)

lemma depth-wrap-Id: recfn a f =⇒ depth (wrap-Id f n) = depth f + n
by (induction n) simp-all

lemma wrap-Id-injective:
assumes recfn a f and wrap-Id f n1 = wrap-Id f n2

shows n1 = n2

using assms by (metis add-left-cancel depth-wrap-Id)

lemma exteq-infinite:
assumes recfn a f
shows infinite {g. recfn a g ∧ g ' f } (is infinite ?R)

proof −
have inj (wrap-Id f)

using wrap-Id-injective ‹recfn a f › by (meson inj-onI)
then have infinite (range (wrap-Id f))

using finite-imageD by blast
moreover have range (wrap-Id f) ⊆ ?R

9

using assms exteq-sym exteq-wrap-Id recfn-wrap-Id by blast
ultimately show ?thesis by (simp add: infinite-super)

qed

1.1.3 Primitive recursive and total functions
fun Mn-free :: recf ⇒ bool where

Mn-free Z = True
| Mn-free S = True
| Mn-free (Id m n) = True
| Mn-free (Cn n f gs) = ((∀ g ∈ set gs. Mn-free g) ∧ Mn-free f)
| Mn-free (Pr n f g) = (Mn-free f ∧ Mn-free g)
| Mn-free (Mn n f) = False

This is our notion of n-ary primitive recursive function:
abbreviation prim-recfn :: nat ⇒ recf ⇒ bool where

prim-recfn n f ≡ recfn n f ∧ Mn-free f

definition total :: recf ⇒ bool where
total f ≡ ∀ xs. length xs = arity f −→ eval f xs ↓

lemma totalI [intro]:
assumes

∧
xs. length xs = arity f =⇒ eval f xs ↓

shows total f
using assms total-def by simp

lemma totalE [simp]:
assumes total f and recfn n f and length xs = n
shows eval f xs ↓
using assms total-def by simp

lemma totalI1 :
assumes recfn 1 f and

∧
x. eval f [x] ↓

shows total f
using assms totalI [of f] by (metis One-nat-def length-0-conv length-Suc-conv)

lemma totalI2 :
assumes recfn 2 f and

∧
x y. eval f [x, y] ↓

shows total f
using assms totalI [of f] by (smt length-0-conv length-Suc-conv numeral-2-eq-2)

lemma totalI3 :
assumes recfn 3 f and

∧
x y z. eval f [x, y, z] ↓

shows total f
using assms totalI [of f] by (smt length-0-conv length-Suc-conv numeral-3-eq-3)

lemma totalI4 :
assumes recfn 4 f and

∧
w x y z. eval f [w, x, y, z] ↓

shows total f
proof (rule totalI [of f])

fix xs :: nat list
assume length xs = arity f
then have length xs = Suc (Suc (Suc (Suc 0)))

using assms(1) by simp
then obtain w x y z where xs = [w, x, y, z]

by (smt Suc-length-conv length-0-conv)

10

then show eval f xs ↓ using assms(2) by simp
qed

lemma Mn-free-imp-total [intro]:
assumes wellf f and Mn-free f
shows total f
using assms

proof (induction f rule: Mn-free.induct)
case (5 n f g)
have eval (Pr n f g) (x # xs) ↓ if length (x # xs) = arity (Pr n f g) for x xs

using 5 that by (induction x) auto
then show ?case by (metis arity.simps(5) length-Suc-conv totalI)

qed (auto simp add: total-def eval-def)

lemma prim-recfn-total: prim-recfn n f =⇒ total f
using Mn-free-imp-total by simp

lemma eval-Pr-prim-Suc:
assumes h = Pr n f g and prim-recfn (Suc n) h and length xs = n
shows eval h (Suc x # xs) = eval g (x # the (eval h (x # xs)) # xs)
using assms eval-Pr-converg-Suc prim-recfn-total by simp

lemma Cn-total:
assumes ∀ g∈set gs. total g and total f and recfn n (Cn n f gs)
shows total (Cn n f gs)
using assms by (simp add: totalI)

lemma Pr-total:
assumes total f and total g and recfn (Suc n) (Pr n f g)
shows total (Pr n f g)

proof −
have eval (Pr n f g) (x # xs) ↓ if length xs = n for x xs

using that assms by (induction x) auto
then show ?thesis

using assms(3) totalI by (metis Suc-length-conv arity.simps(5))
qed

lemma eval-Mn-total:
assumes recfn (length xs) (Mn n f) and total f
shows eval (Mn n f) xs =
(if (∃ z. eval f (z # xs) ↓= 0)
then Some (LEAST z . eval f (z # xs) ↓= 0)
else None)

using assms by auto

1.2 Simple functions

This section, too, bears some similarity to Urban’s formalization in Xu et al. [18], but
is more minimalistic in scope.
As a general naming rule, instances of recf and functions returning such instances get
names starting with r-. Typically, for an r-xyz there will be a lemma r-xyz-recfn or
r-xyz-prim establishing its (primitive) recursiveness, arity, and well-formedness. More-
over there will be a lemma r-xyz describing its semantics, for which we will sometimes
introduce an Isabelle function xyz.

11

1.2.1 Manipulating parameters

Appending dummy parameters:
definition r-dummy :: nat ⇒ recf ⇒ recf where

r-dummy n f ≡ Cn (arity f + n) f (map (λi. Id (arity f + n) i) [0 ..<arity f])

lemma r-dummy-prim [simp]:
prim-recfn a f =⇒ prim-recfn (a + n) (r-dummy n f)
using wellf-arity-nonzero by (auto simp add: r-dummy-def)

lemma r-dummy-recfn [simp]:
recfn a f =⇒ recfn (a + n) (r-dummy n f)
using wellf-arity-nonzero by (auto simp add: r-dummy-def)

lemma r-dummy [simp]:
r-dummy n f = Cn (arity f + n) f (map (λi. Id (arity f + n) i) [0 ..<arity f])
unfolding r-dummy-def by simp

lemma r-dummy-append:
assumes recfn (length xs) f and length ys = n
shows eval (r-dummy n f) (xs @ ys) = eval f xs

proof −
let ?r = r-dummy n f
let ?gs = map (λi. Id (arity f + n) i) [0 ..<arity f]
have length ?gs = arity f by simp
moreover have ?gs ! i = (Id (arity f + n) i) if i < arity f for i

by (simp add: that)
moreover have ∗: eval-wellf (?gs ! i) (xs @ ys) ↓= xs ! i if i < arity f for i

using that assms by (simp add: nth-append)
ultimately have map (λg. the (eval-wellf g (xs @ ys))) ?gs = xs

by (metis (no-types, lifting) assms(1) length-map nth-equalityI nth-map option.sel)
moreover have ∀ g ∈ set ?gs. eval-wellf g (xs @ ys) ↓

using ∗ by simp
moreover have recfn (length (xs @ ys)) ?r

using assms r-dummy-recfn by fastforce
ultimately show ?thesis

by (auto simp add: assms eval-def)
qed

Shrinking a binary function to a unary one is useful when we want to define a unary
function via the Pr operation, which can only construct recf s of arity two or higher.
definition r-shrink :: recf ⇒ recf where

r-shrink f ≡ Cn 1 f [Id 1 0 , Id 1 0]

lemma r-shrink-prim [simp]: prim-recfn 2 f =⇒ prim-recfn 1 (r-shrink f)
by (simp add: r-shrink-def)

lemma r-shrink-recfn [simp]: recfn 2 f =⇒ recfn 1 (r-shrink f)
by (simp add: r-shrink-def)

lemma r-shrink [simp]: recfn 2 f =⇒ eval (r-shrink f) [x] = eval f [x, x]
by (simp add: r-shrink-def)

definition r-swap :: recf ⇒ recf where
r-swap f ≡ Cn 2 f [Id 2 1 , Id 2 0]

12

lemma r-swap-recfn [simp]: recfn 2 f =⇒ recfn 2 (r-swap f)
by (simp add: r-swap-def)

lemma r-swap-prim [simp]: prim-recfn 2 f =⇒ prim-recfn 2 (r-swap f)
by (simp add: r-swap-def)

lemma r-swap [simp]: recfn 2 f =⇒ eval (r-swap f) [x, y] = eval f [y, x]
by (simp add: r-swap-def)

Prepending one dummy parameter:
definition r-shift :: recf ⇒ recf where

r-shift f ≡ Cn (Suc (arity f)) f (map (λi. Id (Suc (arity f)) (Suc i)) [0 ..<arity f])

lemma r-shift-prim [simp]: prim-recfn a f =⇒ prim-recfn (Suc a) (r-shift f)
by (simp add: r-shift-def)

lemma r-shift-recfn [simp]: recfn a f =⇒ recfn (Suc a) (r-shift f)
by (simp add: r-shift-def)

lemma r-shift [simp]:
assumes recfn (length xs) f
shows eval (r-shift f) (x # xs) = eval f xs

proof −
let ?r = r-shift f
let ?gs = map (λi. Id (Suc (arity f)) (Suc i)) [0 ..<arity f]
have length ?gs = arity f by simp
moreover have ?gs ! i = (Id (Suc (arity f)) (Suc i)) if i < arity f for i

by (simp add: that)
moreover have ∗: eval (?gs ! i) (x # xs) ↓= xs ! i if i < arity f for i

using assms nth-append that by simp
ultimately have map (λg. the (eval g (x # xs))) ?gs = xs

by (metis (no-types, lifting) assms length-map nth-equalityI nth-map option.sel)
moreover have ∀ g ∈ set ?gs. eval g (x # xs) 6= None

using ∗ by simp
ultimately show ?thesis using r-shift-def assms by simp

qed

1.2.2 Arithmetic and logic

The unary constants:
fun r-const :: nat ⇒ recf where

r-const 0 = Z
| r-const (Suc c) = Cn 1 S [r-const c]

lemma r-const-prim [simp]: prim-recfn 1 (r-const c)
by (induction c) (simp-all)

lemma r-const [simp]: eval (r-const c) [x] ↓= c
by (induction c) simp-all

Constants of higher arities:
definition r-constn n c ≡ if n = 0 then r-const c else r-dummy n (r-const c)

lemma r-constn-prim [simp]: prim-recfn (Suc n) (r-constn n c)

13

unfolding r-constn-def by simp

lemma r-constn [simp]: length xs = Suc n =⇒ eval (r-constn n c) xs ↓= c
unfolding r-constn-def
by simp (metis length-0-conv length-Suc-conv r-const)

We introduce addition, subtraction, and multiplication, but interestingly enough we can
make do without division.
definition r-add ≡ Pr 1 (Id 1 0) (Cn 3 S [Id 3 1])

lemma r-add-prim [simp]: prim-recfn 2 r-add
by (simp add: r-add-def)

lemma r-add [simp]: eval r-add [a, b] ↓= a + b
unfolding r-add-def by (induction a) simp-all

definition r-mul ≡ Pr 1 Z (Cn 3 r-add [Id 3 1 , Id 3 2])

lemma r-mul-prim [simp]: prim-recfn 2 r-mul
unfolding r-mul-def by simp

lemma r-mul [simp]: eval r-mul [a, b] ↓= a ∗ b
unfolding r-mul-def by (induction a) simp-all

definition r-dec ≡ Cn 1 (Pr 1 Z (Id 3 0)) [Id 1 0 , Id 1 0]

lemma r-dec-prim [simp]: prim-recfn 1 r-dec
by (simp add: r-dec-def)

lemma r-dec [simp]: eval r-dec [a] ↓= a − 1
proof −

have eval (Pr 1 Z (Id 3 0)) [x, y] ↓= x − 1 for x y
by (induction x) simp-all

then show ?thesis by (simp add: r-dec-def)
qed

definition r-sub ≡ r-swap (Pr 1 (Id 1 0) (Cn 3 r-dec [Id 3 1]))

lemma r-sub-prim [simp]: prim-recfn 2 r-sub
unfolding r-sub-def by simp

lemma r-sub [simp]: eval r-sub [a, b] ↓= a − b
proof −

have eval (Pr 1 (Id 1 0) (Cn 3 r-dec [Id 3 1])) [x, y] ↓= y − x for x y
by (induction x) simp-all

then show ?thesis unfolding r-sub-def by simp
qed

definition r-sign ≡ r-shrink (Pr 1 Z (r-constn 2 1))

lemma r-sign-prim [simp]: prim-recfn 1 r-sign
unfolding r-sign-def by simp

lemma r-sign [simp]: eval r-sign [x] ↓= (if x = 0 then 0 else 1)
proof −

have eval (Pr 1 Z (r-constn 2 1)) [x, y] ↓= (if x = 0 then 0 else 1) for x y

14

by (induction x) simp-all
then show ?thesis unfolding r-sign-def by simp

qed

In the logical functions, true will be represented by zero, and false will be represented
by non-zero as argument and by one as result.
definition r-not ≡ Cn 1 r-sub [r-const 1 , r-sign]

lemma r-not-prim [simp]: prim-recfn 1 r-not
unfolding r-not-def by simp

lemma r-not [simp]: eval r-not [x] ↓= (if x = 0 then 1 else 0)
unfolding r-not-def by simp

definition r-nand ≡ Cn 2 r-not [r-add]

lemma r-nand-prim [simp]: prim-recfn 2 r-nand
unfolding r-nand-def by simp

lemma r-nand [simp]: eval r-nand [x, y] ↓= (if x = 0 ∧ y = 0 then 1 else 0)
unfolding r-nand-def by simp

definition r-and ≡ Cn 2 r-not [r-nand]

lemma r-and-prim [simp]: prim-recfn 2 r-and
unfolding r-and-def by simp

lemma r-and [simp]: eval r-and [x, y] ↓= (if x = 0 ∧ y = 0 then 0 else 1)
unfolding r-and-def by simp

definition r-or ≡ Cn 2 r-sign [r-mul]

lemma r-or-prim [simp]: prim-recfn 2 r-or
unfolding r-or-def by simp

lemma r-or [simp]: eval r-or [x, y] ↓= (if x = 0 ∨ y = 0 then 0 else 1)
unfolding r-or-def by simp

1.2.3 Comparison and conditions
definition r-ifz ≡

let ifzero = (Cn 3 r-mul [r-dummy 2 r-not, Id 3 1]);
ifnzero = (Cn 3 r-mul [r-dummy 2 r-sign, Id 3 2])

in Cn 3 r-add [ifzero, ifnzero]

lemma r-ifz-prim [simp]: prim-recfn 3 r-ifz
unfolding r-ifz-def by simp

lemma r-ifz [simp]: eval r-ifz [cond, val0 , val1] ↓= (if cond = 0 then val0 else val1)
unfolding r-ifz-def by (simp add: Let-def)

definition r-eq ≡ Cn 2 r-sign [Cn 2 r-add [r-sub, r-swap r-sub]]

lemma r-eq-prim [simp]: prim-recfn 2 r-eq
unfolding r-eq-def by simp

15

lemma r-eq [simp]: eval r-eq [x, y] ↓= (if x = y then 0 else 1)
unfolding r-eq-def by simp

definition r-ifeq ≡ Cn 4 r-ifz [r-dummy 2 r-eq, Id 4 2 , Id 4 3]

lemma r-ifeq-prim [simp]: prim-recfn 4 r-ifeq
unfolding r-ifeq-def by simp

lemma r-ifeq [simp]: eval r-ifeq [a, b, v0, v1] ↓= (if a = b then v0 else v1)
unfolding r-ifeq-def using r-dummy-append[of r-eq [a, b] [v0, v1] 2]
by simp

definition r-neq ≡ Cn 2 r-not [r-eq]

lemma r-neq-prim [simp]: prim-recfn 2 r-neq
unfolding r-neq-def by simp

lemma r-neq [simp]: eval r-neq [x, y] ↓= (if x = y then 1 else 0)
unfolding r-neq-def by simp

definition r-ifle ≡ Cn 4 r-ifz [r-dummy 2 r-sub, Id 4 2 , Id 4 3]

lemma r-ifle-prim [simp]: prim-recfn 4 r-ifle
unfolding r-ifle-def by simp

lemma r-ifle [simp]: eval r-ifle [a, b, v0, v1] ↓= (if a ≤ b then v0 else v1)
unfolding r-ifle-def using r-dummy-append[of r-sub [a, b] [v0, v1] 2]
by simp

definition r-ifless ≡ Cn 4 r-ifle [Id 4 1 , Id 4 0 , Id 4 3 , Id 4 2]

lemma r-ifless-prim [simp]: prim-recfn 4 r-ifless
unfolding r-ifless-def by simp

lemma r-ifless [simp]: eval r-ifless [a, b, v0, v1] ↓= (if a < b then v0 else v1)
unfolding r-ifless-def by simp

definition r-less ≡ Cn 2 r-ifle [Id 2 1 , Id 2 0 , r-constn 1 1 , r-constn 1 0]

lemma r-less-prim [simp]: prim-recfn 2 r-less
unfolding r-less-def by simp

lemma r-less [simp]: eval r-less [x, y] ↓= (if x < y then 0 else 1)
unfolding r-less-def by simp

definition r-le ≡ Cn 2 r-ifle [Id 2 0 , Id 2 1 , r-constn 1 0 , r-constn 1 1]

lemma r-le-prim [simp]: prim-recfn 2 r-le
unfolding r-le-def by simp

lemma r-le [simp]: eval r-le [x, y] ↓= (if x ≤ y then 0 else 1)
unfolding r-le-def by simp

Arguments are evaluated eagerly. Therefore r-ifz, etc. cannot be combined with a
diverging function to implement a conditionally diverging function in the naive way.
The following function implements a special case needed in the next section. A general

16

lazy version of r-ifz will be introduced later with the help of a universal function.
definition r-ifeq-else-diverg ≡

Cn 3 r-add [Id 3 2 , Mn 3 (Cn 4 r-add [Id 4 0 , Cn 4 r-eq [Id 4 1 , Id 4 2]])]

lemma r-ifeq-else-diverg-recfn [simp]: recfn 3 r-ifeq-else-diverg
unfolding r-ifeq-else-diverg-def by simp

lemma r-ifeq-else-diverg [simp]:
eval r-ifeq-else-diverg [a, b, v] = (if a = b then Some v else None)
unfolding r-ifeq-else-diverg-def by simp

1.3 The halting problem

Decidability will be treated more thoroughly in Section 1.10. But the halting problem
is prominent enough to deserve an early mention.
definition decidable :: nat set ⇒ bool where

decidable X ≡ ∃ f . recfn 1 f ∧ (∀ x. eval f [x] ↓= (if x ∈ X then 1 else 0))

No matter how partial recursive functions are encoded as natural numbers, the set of all
codes of functions halting on their own code is undecidable.
theorem halting-problem-undecidable:

fixes code :: nat ⇒ recf
assumes

∧
f . recfn 1 f =⇒ ∃ i. code i = f

shows ¬ decidable {x. eval (code x) [x] ↓} (is ¬ decidable ?K)
proof

assume decidable ?K
then obtain f where recfn 1 f and f : ∀ x. eval f [x] ↓= (if x ∈ ?K then 1 else 0)

using decidable-def by auto
define g where g ≡ Cn 1 r-ifeq-else-diverg [f , Z , Z]
then have recfn 1 g

using ‹recfn 1 f › r-ifeq-else-diverg-recfn by simp
with assms obtain i where i: code i = g by auto
from g-def have eval g [x] = (if x /∈ ?K then Some 0 else None) for x

using r-ifeq-else-diverg-recfn ‹recfn 1 f › f by simp
then have eval g [i] ↓ ←→ i /∈ ?K by simp
also have ... ←→ eval (code i) [i] ↑ by simp
also have ... ←→ eval g [i] ↑

using i by simp
finally have eval g [i] ↓ ←→ eval g [i] ↑ .
then show False by auto

qed

1.4 Encoding tuples and lists

This section is based on the Cantor encoding for pairs. Tuples are encoded by repeated
application of the pairing function, lists by pairing their length with the code for a tuple.
Thus tuples have a fixed length that must be known when decoding, whereas lists are
dynamically sized and know their current length.

17

1.4.1 Pairs and tuples
The Cantor pairing function
definition r-triangle ≡ r-shrink (Pr 1 Z (r-dummy 1 (Cn 2 S [r-add])))

lemma r-triangle-prim: prim-recfn 1 r-triangle
unfolding r-triangle-def by simp

lemma r-triangle: eval r-triangle [n] ↓= Sum {0 ..n}
proof −

let ?r = r-dummy 1 (Cn 2 S [r-add])
have eval ?r [x, y, z] ↓= Suc (x + y) for x y z

using r-dummy-append[of Cn 2 S [r-add] [x, y] [z] 1] by simp
then have eval (Pr 1 Z ?r) [x, y] ↓= Sum {0 ..x} for x y

by (induction x) simp-all
then show ?thesis unfolding r-triangle-def by simp

qed

lemma r-triangle-eq-triangle [simp]: eval r-triangle [n] ↓= triangle n
using r-triangle gauss-sum-nat triangle-def by simp

definition r-prod-encode ≡ Cn 2 r-add [Cn 2 r-triangle [r-add], Id 2 0]

lemma r-prod-encode-prim [simp]: prim-recfn 2 r-prod-encode
unfolding r-prod-encode-def using r-triangle-prim by simp

lemma r-prod-encode [simp]: eval r-prod-encode [m, n] ↓= prod-encode (m, n)
unfolding r-prod-encode-def prod-encode-def using r-triangle-prim by simp

These abbreviations are just two more things borrowed from Xu et al. [18].
abbreviation pdec1 z ≡ fst (prod-decode z)

abbreviation pdec2 z ≡ snd (prod-decode z)

lemma pdec1-le: pdec1 i ≤ i
by (metis le-prod-encode-1 prod.collapse prod-decode-inverse)

lemma pdec2-le: pdec2 i ≤ i
by (metis le-prod-encode-2 prod.collapse prod-decode-inverse)

lemma pdec-less: pdec2 i < Suc i
using pdec2-le by (simp add: le-imp-less-Suc)

lemma pdec1-zero: pdec1 0 = 0
using pdec1-le by auto

definition r-maxletr ≡
Pr 1 Z (Cn 3 r-ifle [r-dummy 2 (Cn 1 r-triangle [S]), Id 3 2 , Cn 3 S [Id 3 0], Id 3 1])

lemma r-maxletr-prim: prim-recfn 2 r-maxletr
unfolding r-maxletr-def using r-triangle-prim by simp

lemma not-Suc-Greatest-not-Suc:
assumes ¬ P (Suc x) and ∃ x. P x
shows (GREATEST y. y ≤ x ∧ P y) = (GREATEST y. y ≤ Suc x ∧ P y)
using assms by (metis le-SucI le-Suc-eq)

18

lemma r-maxletr : eval r-maxletr [x0, x1] ↓= (GREATEST y. y ≤ x0 ∧ triangle y ≤ x1)
proof −

let ?g = Cn 3 r-ifle [r-dummy 2 (Cn 1 r-triangle [S]), Id 3 2 , Cn 3 S [Id 3 0], Id 3 1]
have greatest:
(if triangle (Suc x0) ≤ x1 then Suc x0 else (GREATEST y. y ≤ x0 ∧ triangle y ≤ x1)) =
(GREATEST y. y ≤ Suc x0 ∧ triangle y ≤ x1)

for x0 x1

proof (cases triangle (Suc x0) ≤ x1)
case True
then show ?thesis

using Greatest-equality[of λy. y ≤ Suc x0 ∧ triangle y ≤ x1] by fastforce
next

case False
then show ?thesis

using not-Suc-Greatest-not-Suc[of λy. triangle y ≤ x1 x0] by fastforce
qed
show ?thesis

unfolding r-maxletr-def using r-triangle-prim
proof (induction x0)

case 0
then show ?case

using Greatest-equality[of λy. y ≤ 0 ∧ triangle y ≤ x1 0] by simp
next

case (Suc x0)
then show ?case using greatest by simp

qed
qed

definition r-maxlt ≡ r-shrink r-maxletr

lemma r-maxlt-prim: prim-recfn 1 r-maxlt
unfolding r-maxlt-def using r-maxletr-prim by simp

lemma r-maxlt: eval r-maxlt [e] ↓= (GREATEST y. triangle y ≤ e)
proof −

have y ≤ triangle y for y
by (induction y) auto

then have triangle y ≤ e =⇒ y ≤ e for y e
using order-trans by blast

then have (GREATEST y. y ≤ e ∧ triangle y ≤ e) = (GREATEST y. triangle y ≤ e)
by metis

moreover have eval r-maxlt [e] ↓= (GREATEST y. y ≤ e ∧ triangle y ≤ e)
using r-maxletr r-shrink r-maxlt-def r-maxletr-prim by fastforce

ultimately show ?thesis by simp
qed

definition pdec1 ′ e ≡ e − triangle (GREATEST y. triangle y ≤ e)

definition pdec2 ′ e ≡ (GREATEST y. triangle y ≤ e) − pdec1 ′ e

lemma max-triangle-bound: triangle z ≤ e =⇒ z ≤ e
by (metis Suc-pred add-leD2 less-Suc-eq triangle-Suc zero-le zero-less-Suc)

lemma triangle-greatest-le: triangle (GREATEST y. triangle y ≤ e) ≤ e
using max-triangle-bound GreatestI-nat[of λy. triangle y ≤ e 0 e] by simp

19

lemma prod-encode-pdec ′: prod-encode (pdec1 ′ e, pdec2 ′ e) = e
proof −

let ?P = λy. triangle y ≤ e
let ?y = GREATEST y. ?P y
have pdec1 ′ e ≤ ?y
proof (rule ccontr)

assume ¬ pdec1 ′ e ≤ ?y
then have e − triangle ?y > ?y

using pdec1 ′-def by simp
then have ?P (Suc ?y) by simp
moreover have ∀ z. ?P z −→ z ≤ e

using max-triangle-bound by simp
ultimately have Suc ?y ≤ ?y

using Greatest-le-nat[of ?P Suc ?y e] by blast
then show False by simp

qed
then have pdec1 ′ e + pdec2 ′ e = ?y

using pdec1 ′-def pdec2 ′-def by simp
then have prod-encode (pdec1 ′ e, pdec2 ′ e) = triangle ?y + pdec1 ′ e

by (simp add: prod-encode-def)
then show ?thesis using pdec1 ′-def triangle-greatest-le by simp

qed

lemma pdec ′:
pdec1 ′ e = pdec1 e
pdec2 ′ e = pdec2 e
using prod-encode-pdec ′ prod-encode-inverse by (metis fst-conv, metis snd-conv)

definition r-pdec1 ≡ Cn 1 r-sub [Id 1 0 , Cn 1 r-triangle [r-maxlt]]

lemma r-pdec1-prim [simp]: prim-recfn 1 r-pdec1
unfolding r-pdec1-def using r-triangle-prim r-maxlt-prim by simp

lemma r-pdec1 [simp]: eval r-pdec1 [e] ↓= pdec1 e
unfolding r-pdec1-def using r-triangle-prim r-maxlt-prim pdec ′ pdec1 ′-def
by (simp add: r-maxlt)

definition r-pdec2 ≡ Cn 1 r-sub [r-maxlt, r-pdec1]

lemma r-pdec2-prim [simp]: prim-recfn 1 r-pdec2
unfolding r-pdec2-def using r-maxlt-prim by simp

lemma r-pdec2 [simp]: eval r-pdec2 [e] ↓= pdec2 e
unfolding r-pdec2-def using r-maxlt-prim r-maxlt pdec ′ pdec2 ′-def by simp

abbreviation pdec12 i ≡ pdec1 (pdec2 i)
abbreviation pdec22 i ≡ pdec2 (pdec2 i)
abbreviation pdec122 i ≡ pdec1 (pdec22 i)
abbreviation pdec222 i ≡ pdec2 (pdec22 i)

definition r-pdec12 ≡ Cn 1 r-pdec1 [r-pdec2]

lemma r-pdec12-prim [simp]: prim-recfn 1 r-pdec12
unfolding r-pdec12-def by simp

20

lemma r-pdec12 [simp]: eval r-pdec12 [e] ↓= pdec12 e
unfolding r-pdec12-def by simp

definition r-pdec22 ≡ Cn 1 r-pdec2 [r-pdec2]

lemma r-pdec22-prim [simp]: prim-recfn 1 r-pdec22
unfolding r-pdec22-def by simp

lemma r-pdec22 [simp]: eval r-pdec22 [e] ↓= pdec22 e
unfolding r-pdec22-def by simp

definition r-pdec122 ≡ Cn 1 r-pdec1 [r-pdec22]

lemma r-pdec122-prim [simp]: prim-recfn 1 r-pdec122
unfolding r-pdec122-def by simp

lemma r-pdec122 [simp]: eval r-pdec122 [e] ↓= pdec122 e
unfolding r-pdec122-def by simp

definition r-pdec222 ≡ Cn 1 r-pdec2 [r-pdec22]

lemma r-pdec222-prim [simp]: prim-recfn 1 r-pdec222
unfolding r-pdec222-def by simp

lemma r-pdec222 [simp]: eval r-pdec222 [e] ↓= pdec222 e
unfolding r-pdec222-def by simp

The Cantor tuple function

The empty tuple gets no code, whereas singletons are encoded by their only element and
other tuples by recursively applying the pairing function. This yields, for every n, the
function tuple-encode n, which is a bijection between the natural numbers and the lists
of length (n+ 1).
fun tuple-encode :: nat ⇒ nat list ⇒ nat where

tuple-encode n [] = undefined
| tuple-encode 0 (x # xs) = x
| tuple-encode (Suc n) (x # xs) = prod-encode (x, tuple-encode n xs)

lemma tuple-encode-prod-encode: tuple-encode 1 [x, y] = prod-encode (x, y)
by simp

fun tuple-decode where
tuple-decode 0 i = [i]
| tuple-decode (Suc n) i = pdec1 i # tuple-decode n (pdec2 i)

lemma tuple-encode-decode [simp]:
tuple-encode (length xs − 1) (tuple-decode (length xs − 1) i) = i

proof (induction length xs − 1 arbitrary: xs i)
case 0
then show ?case by simp

next
case (Suc n)
then have length xs − 1 > 0 by simp
with Suc have ∗: tuple-encode n (tuple-decode n j) = j for j

by (metis diff-Suc-1 length-tl)

21

from Suc have tuple-decode (Suc n) i = pdec1 i # tuple-decode n (pdec2 i)
using tuple-decode.simps(2) by blast

then have tuple-encode (Suc n) (tuple-decode (Suc n) i) =
tuple-encode (Suc n) (pdec1 i # tuple-decode n (pdec2 i))

using Suc by simp
also have ... = prod-encode (pdec1 i, tuple-encode n (tuple-decode n (pdec2 i)))

by simp
also have ... = prod-encode (pdec1 i, pdec2 i)

using Suc ∗ by simp
also have ... = i by simp
finally have tuple-encode (Suc n) (tuple-decode (Suc n) i) = i .
then show ?case by (simp add: Suc.hyps(2))

qed

lemma tuple-encode-decode ′ [simp]: tuple-encode n (tuple-decode n i) = i
using tuple-encode-decode by (metis Ex-list-of-length diff-Suc-1 length-Cons)

lemma tuple-decode-encode:
assumes length xs > 0
shows tuple-decode (length xs − 1) (tuple-encode (length xs − 1) xs) = xs
using assms

proof (induction length xs − 1 arbitrary: xs)
case 0
moreover from this have length xs = 1 by linarith
ultimately show ?case

by (metis One-nat-def length-0-conv length-Suc-conv tuple-decode.simps(1)
tuple-encode.simps(2))

next
case (Suc n)
let ?t = tl xs
let ?i = tuple-encode (Suc n) xs
have length ?t > 0 and length ?t − 1 = n

using Suc by simp-all
then have tuple-decode n (tuple-encode n ?t) = ?t

using Suc by blast
moreover have ?i = prod-encode (hd xs, tuple-encode n ?t)

using Suc by (metis hd-Cons-tl length-greater-0-conv tuple-encode.simps(3))
moreover have tuple-decode (Suc n) ?i = pdec1 ?i # tuple-decode n (pdec2 ?i)

using tuple-decode.simps(2) by blast
ultimately have tuple-decode (Suc n) ?i = xs

using Suc.prems by simp
then show ?case by (simp add: Suc.hyps(2))

qed

lemma tuple-decode-encode ′ [simp]:
assumes length xs = Suc n
shows tuple-decode n (tuple-encode n xs) = xs
using assms tuple-decode-encode by (metis diff-Suc-1 zero-less-Suc)

lemma tuple-decode-length [simp]: length (tuple-decode n i) = Suc n
by (induction n arbitrary: i) simp-all

lemma tuple-decode-nonzero:
assumes n > 0
shows tuple-decode n i = pdec1 i # tuple-decode (n − 1) (pdec2 i)
using assms by (metis One-nat-def Suc-pred tuple-decode.simps(2))

22

The tuple encoding functions are primitive recursive.
fun r-tuple-encode :: nat ⇒ recf where

r-tuple-encode 0 = Id 1 0
| r-tuple-encode (Suc n) =

Cn (Suc (Suc n)) r-prod-encode [Id (Suc (Suc n)) 0 , r-shift (r-tuple-encode n)]

lemma r-tuple-encode-prim [simp]: prim-recfn (Suc n) (r-tuple-encode n)
by (induction n) simp-all

lemma r-tuple-encode:
assumes length xs = Suc n
shows eval (r-tuple-encode n) xs ↓= tuple-encode n xs
using assms

proof (induction n arbitrary: xs)
case 0
then show ?case

by (metis One-nat-def eval-Id length-Suc-conv nth-Cons-0
r-tuple-encode.simps(1) tuple-encode.simps(2) zero-less-one)

next
case (Suc n)
then obtain y ys where y-ys: y # ys = xs

by (metis length-Suc-conv)
with Suc have eval (r-tuple-encode n) ys ↓= tuple-encode n ys

by auto
with y-ys have eval (r-shift (r-tuple-encode n)) xs ↓= tuple-encode n ys

using Suc.prems r-shift-prim r-tuple-encode-prim by auto
moreover have eval (Id (Suc (Suc n)) 0) xs ↓= y

using y-ys Suc.prems by auto
ultimately have eval (r-tuple-encode (Suc n)) xs ↓= prod-encode (y, tuple-encode n ys)

using Suc.prems by simp
then show ?case using y-ys by auto

qed

Functions on encoded tuples

The function for accessing the n-th element of a tuple returns 0 for out-of-bounds access.
definition e-tuple-nth :: nat ⇒ nat ⇒ nat ⇒ nat where

e-tuple-nth a i n ≡ if n ≤ a then (tuple-decode a i) ! n else 0

lemma e-tuple-nth-le [simp]: n ≤ a =⇒ e-tuple-nth a i n = (tuple-decode a i) ! n
using e-tuple-nth-def by simp

lemma e-tuple-nth-gr [simp]: n > a =⇒ e-tuple-nth a i n = 0
using e-tuple-nth-def by simp

lemma tuple-decode-pdec2 : tuple-decode a (pdec2 es) = tl (tuple-decode (Suc a) es)
by simp

fun iterate :: nat ⇒ (′a ⇒ ′a) ⇒ (′a ⇒ ′a) where
iterate 0 f = id
| iterate (Suc n) f = f ◦ (iterate n f)

lemma iterate-additive:
assumes iterate t1 f x = y and iterate t2 f y = z
shows iterate (t1 + t2) f x = z

23

using assms by (induction t2 arbitrary: z) auto

lemma iterate-additive ′: iterate (t1 + t2) f x = iterate t2 f (iterate t1 f x)
using iterate-additive by metis

lemma e-tuple-nth-elementary:
assumes k ≤ a
shows e-tuple-nth a i k = (if a = k then (iterate k pdec2 i) else (pdec1 (iterate k pdec2 i)))

proof −
have ∗: tuple-decode (a − k) (iterate k pdec2 i) = drop k (tuple-decode a i)

using assms
by (induction k) (simp, simp add: Suc-diff-Suc tuple-decode-pdec2 drop-Suc tl-drop)

show ?thesis
proof (cases a = k)

case True
then have tuple-decode 0 (iterate k pdec2 i) = drop k (tuple-decode a i)

using assms ∗ by simp
moreover from this have drop k (tuple-decode a i) = [tuple-decode a i ! k]

using assms True by (metis nth-via-drop tuple-decode.simps(1))
ultimately show ?thesis using True by simp

next
case False
with assms have a − k > 0 by simp
with ∗ have tuple-decode (a − k) (iterate k pdec2 i) = drop k (tuple-decode a i)

by simp
then have pdec1 (iterate k pdec2 i) = hd (drop k (tuple-decode a i))

using tuple-decode-nonzero ‹a − k > 0 › by (metis list.sel(1))
with ‹a − k > 0 › have pdec1 (iterate k pdec2 i) = (tuple-decode a i) ! k

by (simp add: hd-drop-conv-nth)
with False assms show ?thesis by simp

qed
qed

definition r-nth-inbounds ≡
let r = Pr 1 (Id 1 0) (Cn 3 r-pdec2 [Id 3 1])
in Cn 3 r-ifeq

[Id 3 0 ,
Id 3 2 ,
Cn 3 r [Id 3 2 , Id 3 1],
Cn 3 r-pdec1 [Cn 3 r [Id 3 2 , Id 3 1]]]

lemma r-nth-inbounds-prim: prim-recfn 3 r-nth-inbounds
unfolding r-nth-inbounds-def by (simp add: Let-def)

lemma r-nth-inbounds:
k ≤ a =⇒ eval r-nth-inbounds [a, i, k] ↓= e-tuple-nth a i k
eval r-nth-inbounds [a, i, k] ↓

proof −
let ?r = Pr 1 (Id 1 0) (Cn 3 r-pdec2 [Id 3 1])
let ?h = Cn 3 ?r [Id 3 2 , Id 3 1]
have eval ?r [k, i] ↓= iterate k pdec2 i for k i

using r-pdec2-prim by (induction k) (simp-all)
then have eval ?h [a, i, k] ↓= iterate k pdec2 i

using r-pdec2-prim by simp
then have eval r-nth-inbounds [a, i, k] ↓=

(if a = k then iterate k pdec2 i else pdec1 (iterate k pdec2 i))

24

unfolding r-nth-inbounds-def by (simp add: Let-def)
then show k ≤ a =⇒ eval r-nth-inbounds [a, i, k] ↓= e-tuple-nth a i k

and eval r-nth-inbounds [a, i, k] ↓
using e-tuple-nth-elementary by simp-all

qed

definition r-tuple-nth ≡
Cn 3 r-ifle [Id 3 2 , Id 3 0 , r-nth-inbounds, r-constn 2 0]

lemma r-tuple-nth-prim: prim-recfn 3 r-tuple-nth
unfolding r-tuple-nth-def using r-nth-inbounds-prim by simp

lemma r-tuple-nth [simp]: eval r-tuple-nth [a, i, k] ↓= e-tuple-nth a i k
unfolding r-tuple-nth-def using r-nth-inbounds-prim r-nth-inbounds by simp

1.4.2 Lists
Encoding and decoding

Lists are encoded by pairing the length of the list with the code for the tuple made up
of the list’s elements. Then all these codes are incremented in order to make room for
the empty list (cf. Rogers [12, p. 71]).
fun list-encode :: nat list ⇒ nat where

list-encode [] = 0
| list-encode (x # xs) = Suc (prod-encode (length xs, tuple-encode (length xs) (x # xs)))

lemma list-encode-0 [simp]: list-encode xs = 0 ←→ xs = []
using list-encode.elims Partial-Recursive.list-encode.simps(1) by blast

lemma list-encode-1 : list-encode [0] = 1
by (simp add: prod-encode-def)

fun list-decode :: nat ⇒ nat list where
list-decode 0 = []
| list-decode (Suc n) = tuple-decode (pdec1 n) (pdec2 n)

lemma list-encode-decode [simp]: list-encode (list-decode n) = n
proof (cases n)

case 0
then show ?thesis by simp

next
case (Suc k)
then have ∗: list-decode n = tuple-decode (pdec1 k) (pdec2 k) (is - = ?t)

by simp
then obtain x xs where xxs: x # xs = ?t

by (metis tuple-decode.elims)
then have list-encode ?t = list-encode (x # xs) by simp
then have 1 : list-encode ?t = Suc (prod-encode (length xs, tuple-encode (length xs) (x # xs)))

by simp
have 2 : length xs = length ?t − 1

using xxs by (metis length-tl list.sel(3))
then have 3 : length xs = pdec1 k

using ∗ by simp
then have tuple-encode (length ?t − 1) ?t = pdec2 k

using 2 tuple-encode-decode by metis

25

then have list-encode ?t = Suc (prod-encode (pdec1 k, pdec2 k))
using 1 2 3 xxs by simp

with ∗ Suc show ?thesis by simp
qed

lemma list-decode-encode [simp]: list-decode (list-encode xs) = xs
proof (cases xs)

case Nil
then show ?thesis by simp

next
case (Cons y ys)
then have list-encode xs =

Suc (prod-encode (length ys, tuple-encode (length ys) xs))
(is - = Suc ?i)

by simp
then have list-decode (Suc ?i) = tuple-decode (pdec1 ?i) (pdec2 ?i) by simp
moreover have pdec1 ?i = length ys by simp
moreover have pdec2 ?i = tuple-encode (length ys) xs by simp
ultimately have list-decode (Suc ?i) =

tuple-decode (length ys) (tuple-encode (length ys) xs)
by simp

moreover have length ys = length xs − 1
using Cons by simp

ultimately have list-decode (Suc ?i) =
tuple-decode (length xs − 1) (tuple-encode (length xs − 1) xs)

by simp
then show ?thesis using Cons by simp

qed

abbreviation singleton-encode :: nat ⇒ nat where
singleton-encode x ≡ list-encode [x]

lemma list-decode-singleton: list-decode (singleton-encode x) = [x]
by simp

definition r-singleton-encode ≡ Cn 1 S [Cn 1 r-prod-encode [Z , Id 1 0]]

lemma r-singleton-encode-prim [simp]: prim-recfn 1 r-singleton-encode
unfolding r-singleton-encode-def by simp

lemma r-singleton-encode [simp]: eval r-singleton-encode [x] ↓= singleton-encode x
unfolding r-singleton-encode-def by simp

definition r-list-encode :: nat ⇒ recf where
r-list-encode n ≡ Cn (Suc n) S [Cn (Suc n) r-prod-encode [r-constn n n, r-tuple-encode n]]

lemma r-list-encode-prim [simp]: prim-recfn (Suc n) (r-list-encode n)
unfolding r-list-encode-def by simp

lemma r-list-encode:
assumes length xs = Suc n
shows eval (r-list-encode n) xs ↓= list-encode xs

proof −
have eval (r-tuple-encode n) xs ↓

by (simp add: assms r-tuple-encode)
then have eval (Cn (Suc n) r-prod-encode [r-constn n n, r-tuple-encode n]) xs ↓

26

using assms by simp
then have eval (r-list-encode n) xs =

eval S [the (eval (Cn (Suc n) r-prod-encode [r-constn n n, r-tuple-encode n]) xs)]
unfolding r-list-encode-def using assms r-tuple-encode by simp

moreover from assms obtain y ys where xs = y # ys
by (meson length-Suc-conv)

ultimately show ?thesis
unfolding r-list-encode-def using assms r-tuple-encode by simp

qed

Functions on encoded lists

The functions in this section mimic those on type nat list. Their names are prefixed by
e- and the names of the corresponding recf s by r-.
abbreviation e-tl :: nat ⇒ nat where

e-tl e ≡ list-encode (tl (list-decode e))

In order to turn e-tl into a partial recursive function we first represent it in a more
elementary way.
lemma e-tl-elementary:

e-tl e =
(if e = 0 then 0
else if pdec1 (e − 1) = 0 then 0
else Suc (prod-encode (pdec1 (e − 1) − 1 , pdec22 (e − 1))))

proof (cases e)
case 0
then show ?thesis by simp

next
case Suc-d: (Suc d)
then show ?thesis
proof (cases pdec1 d)

case 0
then show ?thesis using Suc-d by simp

next
case (Suc a)
have ∗: list-decode e = tuple-decode (pdec1 d) (pdec2 d)

using Suc-d by simp
with Suc obtain x xs where xxs: list-decode e = x # xs by simp
then have ∗∗: e-tl e = list-encode xs by simp
have list-decode (Suc (prod-encode (pdec1 (e − 1) − 1 , pdec22 (e − 1)))) =

tuple-decode (pdec1 (e − 1) − 1) (pdec22 (e − 1))
(is ?lhs = -)

by simp
also have ... = tuple-decode a (pdec22 (e − 1))

using Suc Suc-d by simp
also have ... = tl (tuple-decode (Suc a) (pdec2 (e − 1)))

using tuple-decode-pdec2 Suc by presburger
also have ... = tl (tuple-decode (pdec1 (e − 1)) (pdec2 (e − 1)))

using Suc Suc-d by auto
also have ... = tl (list-decode e)

using ∗ Suc-d by simp
also have ... = xs

using xxs by simp
finally have ?lhs = xs .
then have list-encode ?lhs = list-encode xs by simp

27

then have Suc (prod-encode (pdec1 (e − 1) − 1 , pdec22 (e − 1))) = list-encode xs
using list-encode-decode by metis

then show ?thesis using ∗∗ Suc-d Suc by simp
qed

qed

definition r-tl ≡
let r = Cn 1 r-pdec1 [r-dec]
in Cn 1 r-ifz

[Id 1 0 ,
Z ,
Cn 1 r-ifz
[r , Z , Cn 1 S [Cn 1 r-prod-encode [Cn 1 r-dec [r], Cn 1 r-pdec22 [r-dec]]]]]

lemma r-tl-prim [simp]: prim-recfn 1 r-tl
unfolding r-tl-def by (simp add: Let-def)

lemma r-tl [simp]: eval r-tl [e] ↓= e-tl e
unfolding r-tl-def using e-tl-elementary by (simp add: Let-def)

We define the head of the empty encoded list to be zero.
definition e-hd :: nat ⇒ nat where

e-hd e ≡ if e = 0 then 0 else hd (list-decode e)

lemma e-hd [simp]:
assumes list-decode e = x # xs
shows e-hd e = x
using e-hd-def assms by auto

lemma e-hd-0 [simp]: e-hd 0 = 0
using e-hd-def by simp

lemma e-hd-neq-0 [simp]:
assumes e 6= 0
shows e-hd e = hd (list-decode e)
using e-hd-def assms by simp

definition r-hd ≡
Cn 1 r-ifz [Cn 1 r-pdec1 [r-dec], Cn 1 r-pdec2 [r-dec], Cn 1 r-pdec12 [r-dec]]

lemma r-hd-prim [simp]: prim-recfn 1 r-hd
unfolding r-hd-def by simp

lemma r-hd [simp]: eval r-hd [e] ↓= e-hd e
proof −

have e-hd e = (if pdec1 (e − 1) = 0 then pdec2 (e − 1) else pdec12 (e − 1))
proof (cases e)

case 0
then show ?thesis using pdec1-zero pdec2-le by auto

next
case (Suc d)
then show ?thesis by (cases pdec1 d) (simp-all add: pdec1-zero)

qed
then show ?thesis unfolding r-hd-def by simp

qed

28

abbreviation e-length :: nat ⇒ nat where
e-length e ≡ length (list-decode e)

lemma e-length-0 : e-length e = 0 =⇒ e = 0
by (metis list-encode.simps(1) length-0-conv list-encode-decode)

definition r-length ≡ Cn 1 r-ifz [Id 1 0 , Z , Cn 1 S [Cn 1 r-pdec1 [r-dec]]]

lemma r-length-prim [simp]: prim-recfn 1 r-length
unfolding r-length-def by simp

lemma r-length [simp]: eval r-length [e] ↓= e-length e
unfolding r-length-def by (cases e) simp-all

Accessing an encoded list out of bounds yields zero.
definition e-nth :: nat ⇒ nat ⇒ nat where

e-nth e n ≡ if e = 0 then 0 else e-tuple-nth (pdec1 (e − 1)) (pdec2 (e − 1)) n

lemma e-nth [simp]:
e-nth e n = (if n < e-length e then (list-decode e) ! n else 0)
by (cases e) (simp-all add: e-nth-def e-tuple-nth-def)

lemma e-hd-nth0 : e-hd e = e-nth e 0
by (simp add: e-hd-def e-length-0 hd-conv-nth)

definition r-nth ≡
Cn 2 r-ifz
[Id 2 0 ,
r-constn 1 0 ,
Cn 2 r-tuple-nth
[Cn 2 r-pdec1 [r-dummy 1 r-dec], Cn 2 r-pdec2 [r-dummy 1 r-dec], Id 2 1]]

lemma r-nth-prim [simp]: prim-recfn 2 r-nth
unfolding r-nth-def using r-tuple-nth-prim by simp

lemma r-nth [simp]: eval r-nth [e, n] ↓= e-nth e n
unfolding r-nth-def e-nth-def using r-tuple-nth-prim by simp

definition r-rev-aux ≡
Pr 1 r-hd (Cn 3 r-prod-encode [Cn 3 r-nth [Id 3 2 , Cn 3 S [Id 3 0]], Id 3 1])

lemma r-rev-aux-prim: prim-recfn 2 r-rev-aux
unfolding r-rev-aux-def by simp

lemma r-rev-aux:
assumes list-decode e = xs and length xs > 0 and i < length xs
shows eval r-rev-aux [i, e] ↓= tuple-encode i (rev (take (Suc i) xs))
using assms(3)

proof (induction i)
case 0
then show ?case

unfolding r-rev-aux-def using assms e-hd-def r-hd by (auto simp add: take-Suc)
next

case (Suc i)
let ?g = Cn 3 r-prod-encode [Cn 3 r-nth [Id 3 2 , Cn 3 S [Id 3 0]], Id 3 1]
from Suc have eval r-rev-aux [Suc i, e] = eval ?g [i, the (eval r-rev-aux [i, e]), e]

29

unfolding r-rev-aux-def by simp
also have ... ↓= prod-encode (xs ! (Suc i), tuple-encode i (rev (take (Suc i) xs)))

using Suc by (simp add: assms(1))
finally show ?case by (simp add: Suc.prems take-Suc-conv-app-nth)

qed

corollary r-rev-aux-full:
assumes list-decode e = xs and length xs > 0
shows eval r-rev-aux [length xs − 1 , e] ↓= tuple-encode (length xs − 1) (rev xs)
using r-rev-aux assms by simp

lemma r-rev-aux-total: eval r-rev-aux [i, e] ↓
using r-rev-aux-prim totalE by fastforce

definition r-rev ≡
Cn 1 r-ifz
[Id 1 0 ,
Z ,
Cn 1 S
[Cn 1 r-prod-encode
[Cn 1 r-dec [r-length], Cn 1 r-rev-aux [Cn 1 r-dec [r-length], Id 1 0]]]]

lemma r-rev-prim [simp]: prim-recfn 1 r-rev
unfolding r-rev-def using r-rev-aux-prim by simp

lemma r-rev [simp]: eval r-rev [e] ↓= list-encode (rev (list-decode e))
proof −

let ?d = Cn 1 r-dec [r-length]
let ?a = Cn 1 r-rev-aux [?d, Id 1 0]
let ?p = Cn 1 r-prod-encode [?d, ?a]
let ?s = Cn 1 S [?p]
have eval-a: eval ?a [e] = eval r-rev-aux [e-length e − 1 , e]

using r-rev-aux-prim by simp
then have eval ?s [e] ↓

using r-rev-aux-prim by (simp add: r-rev-aux-total)
then have ∗: eval r-rev [e] ↓= (if e = 0 then 0 else the (eval ?s [e]))

using r-rev-aux-prim by (simp add: r-rev-def)
show ?thesis
proof (cases e = 0)

case True
then show ?thesis using ∗ by simp

next
case False
then obtain xs where xs: xs = list-decode e length xs > 0

using e-length-0 by auto
then have len: length xs = e-length e by simp
with eval-a have eval ?a [e] = eval r-rev-aux [length xs − 1 , e]

by simp
then have eval ?a [e] ↓= tuple-encode (length xs − 1) (rev xs)

using xs r-rev-aux-full by simp
then have eval ?s [e] ↓=

Suc (prod-encode (length xs − 1 , tuple-encode (length xs − 1) (rev xs)))
using len r-rev-aux-prim by simp

then have eval ?s [e] ↓=
Suc (prod-encode

(length (rev xs) − 1 , tuple-encode (length (rev xs) − 1) (rev xs)))

30

by simp
moreover have length (rev xs) > 0

using xs by simp
ultimately have eval ?s [e] ↓= list-encode (rev xs)

by (metis list-encode.elims diff-Suc-1 length-Cons length-greater-0-conv)
then show ?thesis using xs ∗ by simp

qed
qed

abbreviation e-cons :: nat ⇒ nat ⇒ nat where
e-cons e es ≡ list-encode (e # list-decode es)

lemma e-cons-elementary:
e-cons e es =
(if es = 0 then Suc (prod-encode (0 , e))
else Suc (prod-encode (e-length es, prod-encode (e, pdec2 (es − 1)))))

proof (cases es = 0)
case True
then show ?thesis by simp

next
case False
then have e-length es = Suc (pdec1 (es − 1))

by (metis list-decode.elims diff-Suc-1 tuple-decode-length)
moreover have es = e-tl (list-encode (e # list-decode es))

by (metis list.sel(3) list-decode-encode list-encode-decode)
ultimately show ?thesis

using False e-tl-elementary
by (metis list-decode.simps(2) diff-Suc-1 list-encode-decode prod.sel(1)

prod-encode-inverse snd-conv tuple-decode.simps(2))
qed

definition r-cons-else ≡
Cn 2 S
[Cn 2 r-prod-encode
[Cn 2 r-length
[Id 2 1], Cn 2 r-prod-encode [Id 2 0 , Cn 2 r-pdec2 [Cn 2 r-dec [Id 2 1]]]]]

lemma r-cons-else-prim: prim-recfn 2 r-cons-else
unfolding r-cons-else-def by simp

lemma r-cons-else:
eval r-cons-else [e, es] ↓=

Suc (prod-encode (e-length es, prod-encode (e, pdec2 (es − 1))))
unfolding r-cons-else-def by simp

definition r-cons ≡
Cn 2 r-ifz
[Id 2 1 , Cn 2 S [Cn 2 r-prod-encode [r-constn 1 0 , Id 2 0]], r-cons-else]

lemma r-cons-prim [simp]: prim-recfn 2 r-cons
unfolding r-cons-def using r-cons-else-prim by simp

lemma r-cons [simp]: eval r-cons [e, es] ↓= e-cons e es
unfolding r-cons-def using r-cons-else-prim r-cons-else e-cons-elementary by simp

abbreviation e-snoc :: nat ⇒ nat ⇒ nat where

31

e-snoc es e ≡ list-encode (list-decode es @ [e])

lemma e-nth-snoc-small [simp]:
assumes n < e-length b
shows e-nth (e-snoc b z) n = e-nth b n
using assms by (simp add: nth-append)

lemma e-hd-snoc [simp]:
assumes e-length b > 0
shows e-hd (e-snoc b x) = e-hd b

proof −
from assms have b 6= 0

using less-imp-neq by force
then have hd: e-hd b = hd (list-decode b) by simp
have e-length (e-snoc b x) > 0 by simp
then have e-snoc b x 6= 0

using not-gr-zero by fastforce
then have e-hd (e-snoc b x) = hd (list-decode (e-snoc b x)) by simp
with assms hd show ?thesis by simp

qed

definition r-snoc ≡ Cn 2 r-rev [Cn 2 r-cons [Id 2 1 , Cn 2 r-rev [Id 2 0]]]

lemma r-snoc-prim [simp]: prim-recfn 2 r-snoc
unfolding r-snoc-def by simp

lemma r-snoc [simp]: eval r-snoc [es, e] ↓= e-snoc es e
unfolding r-snoc-def by simp

abbreviation e-butlast :: nat ⇒ nat where
e-butlast e ≡ list-encode (butlast (list-decode e))

abbreviation e-take :: nat ⇒ nat ⇒ nat where
e-take n x ≡ list-encode (take n (list-decode x))

definition r-take ≡
Cn 2 r-ifle
[Id 2 0 , Cn 2 r-length [Id 2 1],
Pr 1 Z (Cn 3 r-snoc [Id 3 1 , Cn 3 r-nth [Id 3 2 , Id 3 0]]),
Id 2 1]

lemma r-take-prim [simp]: prim-recfn 2 r-take
unfolding r-take-def by simp-all

lemma r-take:
assumes x = list-encode es
shows eval r-take [n, x] ↓= list-encode (take n es)

proof −
let ?g = Cn 3 r-snoc [Id 3 1 , Cn 3 r-nth [Id 3 2 , Id 3 0]]
let ?h = Pr 1 Z ?g
have total ?h using Mn-free-imp-total by simp
have m ≤ length es =⇒ eval ?h [m, x] ↓= list-encode (take m es) for m
proof (induction m)

case 0
then show ?case using assms r-take-def by (simp add: r-take-def)

next

32

case (Suc m)
then have m < length es by simp
then have eval ?h [Suc m, x] = eval ?g [m, the (eval ?h [m, x]), x]

using Suc r-take-def by simp
also have ... = eval ?g [m, list-encode (take m es), x]

using Suc by simp
also have ... ↓= e-snoc (list-encode (take m es)) (es ! m)

by (simp add: ‹m < length es› assms)
also have ... ↓= list-encode ((take m es) @ [es ! m])

using list-decode-encode by simp
also have ... ↓= list-encode (take (Suc m) es)

by (simp add: ‹m < length es› take-Suc-conv-app-nth)
finally show ?case .

qed
moreover have eval (Id 2 1) [m, x] ↓= list-encode (take m es) if m > length es for m

using that assms by simp
moreover have eval r-take [m, x] ↓=

(if m ≤ e-length x then the (eval ?h [m, x]) else the (eval (Id 2 1) [m, x]))
for m

unfolding r-take-def using ‹total ?h› by simp
ultimately show ?thesis unfolding r-take-def by fastforce

qed

corollary r-take ′ [simp]: eval r-take [n, x] ↓= e-take n x
by (simp add: r-take)

definition r-last ≡ Cn 1 r-hd [r-rev]

lemma r-last-prim [simp]: prim-recfn 1 r-last
unfolding r-last-def by simp

lemma r-last [simp]:
assumes e = list-encode xs and length xs > 0
shows eval r-last [e] ↓= last xs

proof −
from assms(2) have length (rev xs) > 0 by simp
then have list-encode (rev xs) > 0

by (metis gr0I list.size(3) list-encode-0)
moreover have eval r-last [e] = eval r-hd [the (eval r-rev [e])]

unfolding r-last-def by simp
ultimately show ?thesis using assms hd-rev by auto

qed

definition r-update-aux ≡
let

f = r-constn 2 0 ;
g = Cn 5 r-snoc

[Id 5 1 , Cn 5 r-ifeq [Id 5 0 , Id 5 3 , Id 5 4 , Cn 5 r-nth [Id 5 2 , Id 5 0]]]
in Pr 3 f g

lemma r-update-aux-recfn: recfn 4 r-update-aux
unfolding r-update-aux-def by simp

lemma r-update-aux:
assumes n ≤ e-length b
shows eval r-update-aux [n, b, j, v] ↓= list-encode ((take n (list-decode b))[j:=v])

33

using assms
proof (induction n)

case 0
then show ?case unfolding r-update-aux-def by simp

next
case (Suc n)
then have n: n < e-length b

by simp
let ?a = Cn 5 r-nth [Id 5 2 , Id 5 0]
let ?b = Cn 5 r-ifeq [Id 5 0 , Id 5 3 , Id 5 4 , ?a]
define g where g ≡ Cn 5 r-snoc [Id 5 1 , ?b]
then have g: eval g [n, r , b, j, v] ↓= e-snoc r (if n = j then v else e-nth b n) for r

by simp

have Pr 3 (r-constn 2 0) g = r-update-aux
using r-update-aux-def g-def by simp

then have eval r-update-aux [Suc n, b, j, v] =
eval g [n, the (eval r-update-aux [n, b, j, v]), b, j, v]

using r-update-aux-recfn Suc n eval-Pr-converg-Suc
by (metis arity.simps(5) length-Cons list.size(3) nat-less-le

numeral-3-eq-3 option.simps(3))
then have ∗: eval r-update-aux [Suc n, b, j, v] ↓= e-snoc

(list-encode ((take n (list-decode b))[j:=v]))
(if n = j then v else e-nth b n)

using g Suc by simp

consider (j-eq-n) j = n | (j-less-n) j < n | (j-gt-n) j > n
by linarith

then show ?case
proof (cases)

case j-eq-n
moreover from this have (take (Suc n) (list-decode b))[j:=v] =

(take n (list-decode b))[j:=v] @ [v]
using n
by (metis length-list-update nth-list-update-eq take-Suc-conv-app-nth take-update-swap)

ultimately show ?thesis using ∗ by simp
next

case j-less-n
moreover from this have (take (Suc n) (list-decode b))[j:=v] =

(take n (list-decode b))[j:=v] @ [(list-decode b) ! n]
using n
by (simp add: le-eq-less-or-eq list-update-append min-absorb2 take-Suc-conv-app-nth)

ultimately show ?thesis using ∗ by auto
next

case j-gt-n
moreover from this have (take (Suc n) (list-decode b))[j:=v] =

(take n (list-decode b))[j:=v] @ [(list-decode b) ! n]
using n take-Suc-conv-app-nth by auto

ultimately show ?thesis using ∗ by auto
qed

qed

abbreviation e-update :: nat ⇒ nat ⇒ nat ⇒ nat where
e-update b j v ≡ list-encode ((list-decode b)[j:=v])

definition r-update ≡

34

Cn 3 r-update-aux [Cn 3 r-length [Id 3 0], Id 3 0 , Id 3 1 , Id 3 2]

lemma r-update-recfn [simp]: recfn 3 r-update
unfolding r-update-def using r-update-aux-recfn by simp

lemma r-update [simp]: eval r-update [b, j, v] ↓= e-update b j v
unfolding r-update-def using r-update-aux r-update-aux-recfn by simp

lemma e-length-update [simp]: e-length (e-update b k v) = e-length b
by simp

definition e-append :: nat ⇒ nat ⇒ nat where
e-append xs ys ≡ list-encode (list-decode xs @ list-decode ys)

lemma e-length-append: e-length (e-append xs ys) = e-length xs + e-length ys
using e-append-def by simp

lemma e-nth-append-small:
assumes n < e-length xs
shows e-nth (e-append xs ys) n = e-nth xs n
using e-append-def assms by (simp add: nth-append)

lemma e-nth-append-big:
assumes n ≥ e-length xs
shows e-nth (e-append xs ys) n = e-nth ys (n − e-length xs)
using e-append-def assms e-nth by (simp add: less-diff-conv2 nth-append)

definition r-append ≡
let

f = Id 2 0 ;
g = Cn 4 r-snoc [Id 4 1 , Cn 4 r-nth [Id 4 3 , Id 4 0]]

in Cn 2 (Pr 2 f g) [Cn 2 r-length [Id 2 1], Id 2 0 , Id 2 1]

lemma r-append-prim [simp]: prim-recfn 2 r-append
unfolding r-append-def by simp

lemma r-append [simp]: eval r-append [a, b] ↓= e-append a b
proof −

define g where g = Cn 4 r-snoc [Id 4 1 , Cn 4 r-nth [Id 4 3 , Id 4 0]]
then have g: eval g [j, r , a, b] ↓= e-snoc r (e-nth b j) for j r

by simp
let ?h = Pr 2 (Id 2 0) g
have eval ?h [n, a, b] ↓= list-encode (list-decode a @ (take n (list-decode b)))

if n ≤ e-length b for n
using that g g-def by (induction n) (simp-all add: take-Suc-conv-app-nth)

then show ?thesis
unfolding r-append-def g-def e-append-def by simp

qed

definition e-append-zeros :: nat ⇒ nat ⇒ nat where
e-append-zeros b z ≡ e-append b (list-encode (replicate z 0))

lemma e-append-zeros-length: e-length (e-append-zeros b z) = e-length b + z
using e-append-def e-append-zeros-def by simp

lemma e-nth-append-zeros: e-nth (e-append-zeros b z) i = e-nth b i

35

using e-append-zeros-def e-nth-append-small e-nth-append-big by auto

lemma e-nth-append-zeros-big:
assumes i ≥ e-length b
shows e-nth (e-append-zeros b z) i = 0
unfolding e-append-zeros-def
using e-nth-append-big[of b i list-encode (replicate z 0), OF assms(1)]
by simp

definition r-append-zeros ≡
r-swap (Pr 1 (Id 1 0) (Cn 3 r-snoc [Id 3 1 , r-constn 2 0]))

lemma r-append-zeros-prim [simp]: prim-recfn 2 r-append-zeros
unfolding r-append-zeros-def by simp

lemma r-append-zeros: eval r-append-zeros [b, z] ↓= e-append-zeros b z
proof −

let ?r = Pr 1 (Id 1 0) (Cn 3 r-snoc [Id 3 1 , r-constn 2 0])
have eval ?r [z, b] ↓= e-append-zeros b z

using e-append-zeros-def e-append-def
by (induction z) (simp-all add: replicate-append-same)

then show ?thesis by (simp add: r-append-zeros-def)
qed

end

1.5 A universal partial recursive function
theory Universal

imports Partial-Recursive
begin

The main product of this section is a universal partial recursive function, which given a
code i of an n-ary partial recursive function f and an encoded list xs of n arguments,
computes eval f xs. From this we can derive fixed-arity universal functions satisfying
the usual results such as the s-m-n theorem. To represent the code i, we need a way to
encode recf s as natural numbers (Section 1.5.2). To construct the universal function, we
devise a ternary function taking i, xs, and a step bound t and simulating the execution
of f on input xs for t steps. This function is useful in its own right, enabling techniques
like dovetailing or “concurrent” evaluation of partial recursive functions.
The notion of a “step” is not part of the definition of (the evaluation of) partial recursive
functions, but one can simulate the evaluation on an abstract machine (Section 1.5.1).
This machine’s configurations can be encoded as natural numbers, and this leads us
to a step function nat ⇒ nat on encoded configurations (Section 1.5.3). This function
in turn can be computed by a primitive recursive function, from which we develop the
aforementioned ternary function of i, xs, and t (Section 1.5.4). From this we can finally
derive a universal function (Section 1.5.5).

1.5.1 A step function

We simulate the stepwise execution of a partial recursive function in a fairly straightfor-
ward way reminiscent of the execution of function calls in an imperative programming
language. A configuration of the abstract machine is a pair consisting of:

36

1. A stack of frames. A frame represents the execution of a function and is a triple
(f , xs, locals) of

(a) a recf f being executed,
(b) a nat list of arguments of f,
(c) a nat list of local variables, which holds intermediate values when f is of the

form Cn, Pr, or Mn.

2. A register of type nat option representing the return value of the last function call:
None signals that in the previous step the stack was not popped and hence no
value was returned, whereas Some v means that in the previous step a function
returned v.

For computing h on input xs, the initial configuration is ([(h, xs, [])], None). When the
computation for a frame ends, it is popped off the stack, and its return value is put
in the register. The entire computation ends when the stack is empty. In such a final
configuration the register contains the value of h at xs. If no final configuration is ever
reached, h diverges at xs.
The execution of one step depends on the topmost (that is, active) frame. In the step
when a frame (h, xs, locals) is pushed onto the stack, the local variables are locals = [].
The following happens until the frame is popped off the stack again (if it ever is):

• For the base functions h = Z, h = S, h = Id m n, the frame is popped off the stack
right away, and the return value is placed in the register.

• For h = Cn n f gs, for each function g in gs:

1. A new frame of the form (g, xs, []) is pushed onto the stack.
2. When (and if) this frame is eventually popped, the value in the register is

eval g xs. This value is appended to the list locals of local variables.

When all g in gs have been evaluated in this manner, f is evaluated on the local
variables by pushing (f , locals, []). The resulting register value is kept and the
active frame for h is popped off the stack.

• For h = Pr n f g, let xs = y # ys. First (f , ys, []) is pushed and the return value
stored in the locals. Then (g, x # v # ys, []) is pushed, where x is the length of
locals and v the most recently appended value. The return value is appended to
locals. This is repeated until the length of locals reaches y. Then the most recently
appended local is placed in the register, and the stack is popped.

• For h = Mn n f, frames (f , x # xs, []) are pushed for x = 0, 1, 2, . . . until one
of them returns 0. Then this x is placed in the register and the stack is popped.
Until then x is stored in locals. If none of these evaluations return 0, the stack
never shrinks, and thus the machine never reaches a final state.

type-synonym frame = recf × nat list × nat list

type-synonym configuration = frame list × nat option

37

Definition of the step function
fun step :: configuration ⇒ configuration where

step ([], rv) = ([], rv)
| step (((Z , -, -) # fs), rv) = (fs, Some 0)
| step (((S , xs, -) # fs), rv) = (fs, Some (Suc (hd xs)))
| step (((Id m n, xs, -) # fs), rv) = (fs, Some (xs ! n))
| step (((Cn n f gs, xs, ls) # fs), rv) =

(if length ls = length gs
then if rv = None

then ((f , ls, []) # (Cn n f gs, xs, ls) # fs, None)
else (fs, rv)

else if rv = None
then if length ls < length gs

then ((gs ! (length ls), xs, []) # (Cn n f gs, xs, ls) # fs, None)
else (fs, rv) — cannot occur, so don’t-care term

else ((Cn n f gs, xs, ls @ [the rv]) # fs, None))
| step (((Pr n f g, xs, ls) # fs), rv) =

(if ls = []
then if rv = None

then ((f , tl xs, []) # (Pr n f g, xs, ls) # fs, None)
else ((Pr n f g, xs, [the rv]) # fs, None)

else if length ls = Suc (hd xs)
then (fs, Some (hd ls))
else if rv = None

then ((g, (length ls − 1) # hd ls # tl xs, []) # (Pr n f g, xs, ls) # fs, None)
else ((Pr n f g, xs, (the rv) # ls) # fs, None))

| step (((Mn n f , xs, ls) # fs), rv) =
(if ls = []
then ((f , 0 # xs, []) # (Mn n f , xs, [0]) # fs, None)
else if rv = Some 0

then (fs, Some (hd ls))
else ((f , (Suc (hd ls)) # xs, []) # (Mn n f , xs, [Suc (hd ls)]) # fs, None))

definition reachable :: configuration ⇒ configuration ⇒ bool where
reachable x y ≡ ∃ t. iterate t step x = y

lemma step-reachable [intro]:
assumes step x = y
shows reachable x y
unfolding reachable-def using assms by (metis iterate.simps(1 ,2) comp-id)

lemma reachable-transitive [trans]:
assumes reachable x y and reachable y z
shows reachable x z
using assms iterate-additive[where ?f=step] reachable-def by metis

lemma reachable-refl: reachable x x
unfolding reachable-def by (metis iterate.simps(1) eq-id-iff)

From a final configuration, that is, when the stack is empty, only final configurations are
reachable.
lemma step-empty-stack:

assumes fst x = []
shows fst (step x) = []
using assms by (metis prod.collapse step.simps(1))

38

lemma reachable-empty-stack:
assumes fst x = [] and reachable x y
shows fst y = []

proof −
have fst (iterate t step x) = [] for t

using assms step-empty-stack by (induction t) simp-all
then show ?thesis

using reachable-def assms(2) by auto
qed

abbreviation nonterminating :: configuration ⇒ bool where
nonterminating x ≡ ∀ t. fst (iterate t step x) 6= []

lemma reachable-nonterminating:
assumes reachable x y and nonterminating y
shows nonterminating x

proof −
from assms(1) obtain t1 where t1 : iterate t1 step x = y

using reachable-def by auto
have fst (iterate t step x) 6= [] for t
proof (cases t ≤ t1)

case True
then show ?thesis

using t1 assms(2) reachable-def reachable-empty-stack iterate-additive ′

by (metis le-Suc-ex)
next

case False
then have iterate t step x = iterate (t1 + (t − t1)) step x

by simp
then have iterate t step x = iterate (t − t1) step (iterate t1 step x)

by (simp add: iterate-additive ′)
then have iterate t step x = iterate (t − t1) step y

using t1 by simp
then show fst (iterate t step x) 6= []

using assms(2) by simp
qed
then show ?thesis ..

qed

The function step is underdefined, for example, when the top frame contains a non-
well-formed recf or too few arguments. All is well, though, if every frame contains a
well-formed recf whose arity matches the number of arguments. Such stacks will be
called valid.
definition valid :: frame list ⇒ bool where

valid stack ≡ ∀ s∈set stack. recfn (length (fst (snd s))) (fst s)

lemma valid-frame: valid (s # ss) =⇒ valid ss ∧ recfn (length (fst (snd s))) (fst s)
using valid-def by simp

lemma valid-ConsE : valid ((f , xs, locs) # rest) =⇒ valid rest ∧ recfn (length xs) f
using valid-def by simp

lemma valid-ConsI : valid rest =⇒ recfn (length xs) f =⇒ valid ((f , xs, locs) # rest)
using valid-def by simp

39

Stacks in initial configurations are valid, and performing a step maintains the validity
of the stack.
lemma step-valid: valid stack =⇒ valid (fst (step (stack, rv)))
proof (cases stack)

case Nil
then show ?thesis using valid-def by simp

next
case (Cons s ss)
assume valid: valid stack
then have ∗: valid ss ∧ recfn (length (fst (snd s))) (fst s)

using valid-frame Cons by simp
show ?thesis
proof (cases fst s)

case Z
then show ?thesis using Cons valid ∗ by (metis fstI prod.collapse step.simps(2))

next
case S
then show ?thesis using Cons valid ∗ by (metis fst-conv prod.collapse step.simps(3))

next
case Id
then show ?thesis using Cons valid ∗ by (metis fstI prod.collapse step.simps(4))

next
case (Cn n f gs)
then obtain xs ls where s = (Cn n f gs, xs, ls)

using Cons by (metis prod.collapse)
moreover consider

length ls = length gs ∧ rv ↑
| length ls = length gs ∧ rv ↓
| length ls < length gs ∧ rv ↑
| length ls 6= length gs ∧ rv ↓
| length ls > length gs ∧ rv ↑
by linarith

ultimately show ?thesis using valid Cons valid-def by (cases) auto
next

case (Pr n f g)
then obtain xs ls where s: s = (Pr n f g, xs, ls)

using Cons by (metis prod.collapse)
consider

length ls = 0 ∧ rv ↑
| length ls = 0 ∧ rv ↓
| length ls 6= 0 ∧ length ls = Suc (hd xs)
| length ls 6= 0 ∧ length ls 6= Suc (hd xs) ∧ rv ↑
| length ls 6= 0 ∧ length ls 6= Suc (hd xs) ∧ rv ↓
by linarith

then show ?thesis using Cons ∗ valid-def s by (cases) auto
next

case (Mn n f)
then obtain xs ls where s: s = (Mn n f , xs, ls)

using Cons by (metis prod.collapse)
consider

length ls = 0
| length ls 6= 0 ∧ rv ↑
| length ls 6= 0 ∧ rv ↓
by linarith

then show ?thesis using Cons ∗ valid-def s by (cases) auto

40

qed
qed

corollary iterate-step-valid:
assumes valid stack
shows valid (fst (iterate t step (stack, rv)))
using assms

proof (induction t)
case 0
then show ?case by simp

next
case (Suc t)
moreover have iterate (Suc t) step (stack, rv) = step (iterate t step (stack, rv))

by simp
ultimately show ?case using step-valid valid-def by (metis prod.collapse)

qed

Correctness of the step function

The function step works correctly for a recf f on arguments xs in some configuration
if (1) in case f converges, step reaches a configuration with the topmost frame popped
and eval f xs in the register, and (2) in case f diverges, step does not reach a final
configuration.
fun correct :: configuration ⇒ bool where

correct ([], r) = True
| correct ((f , xs, ls) # rest, r) =

(if eval f xs ↓ then reachable ((f , xs, ls) # rest, r) (rest, eval f xs)
else nonterminating ((f , xs, ls) # rest, None))

lemma correct-convergI :
assumes eval f xs ↓ and reachable ((f , xs, ls) # rest, None) (rest, eval f xs)
shows correct ((f , xs, ls) # rest, None)
using assms by auto

lemma correct-convergE :
assumes correct ((f , xs, ls) # rest, None) and eval f xs ↓
shows reachable ((f , xs, ls) # rest, None) (rest, eval f xs)
using assms by simp

The correctness proof for step is by structural induction on the recf in the top frame.
The base cases Z, S, and Id are simple. For X = Cn, Pr , Mn, the lemmas named
reachable-X show which configurations are reachable for recf s of shape X. Building on
those, the lemmas named step-X-correct show step’s correctness for X.
lemma reachable-Cn:

assumes valid (((Cn n f gs), xs, []) # rest) (is valid ?stack)
and

∧
xs rest. valid ((f , xs, []) # rest) =⇒ correct ((f , xs, []) # rest, None)

and
∧

g xs rest.
g ∈ set gs =⇒ valid ((g, xs, []) # rest) =⇒ correct ((g, xs, []) # rest, None)

and ∀ i<k. eval (gs ! i) xs ↓
and k ≤ length gs

shows reachable
(?stack, None)
((Cn n f gs, xs, take k (map (λg. the (eval g xs)) gs)) # rest, None)

using assms(4 ,5)

41

proof (induction k)
case 0
then show ?case using reachable-refl by simp

next
case (Suc k)
let ?ys = map (λg. the (eval g xs)) gs
from Suc have k < length gs by simp
have valid: recfn (length xs) (Cn n f gs) valid rest

using assms(1) valid-ConsE [of (Cn n f gs)] by simp-all
from Suc have reachable (?stack, None) ((Cn n f gs, xs, take k ?ys) # rest, None)

(is - (?stack1 , None))
by simp

also have reachable ... ((gs ! k, xs, []) # ?stack1 , None)
using step-reachable ‹k < length gs›
by (auto simp: min-absorb2)

also have reachable ... (?stack1 , eval (gs ! k) xs)
(is - (-, ?rv))

using Suc.prems(1) ‹k < length gs› assms(3) valid valid-ConsI by auto
also have reachable ... ((Cn n f gs, xs, (take (Suc k) ?ys)) # rest, None)

(is - (?stack2 , None))
proof −

have step (?stack1 , ?rv) = ((Cn n f gs, xs, (take k ?ys) @ [the ?rv]) # rest, None)
using Suc by auto

also have ... = ((Cn n f gs, xs, (take (Suc k) ?ys)) # rest, None)
by (simp add: ‹k < length gs› take-Suc-conv-app-nth)

finally show ?thesis
using step-reachable by auto

qed
finally show reachable (?stack, None) (?stack2 , None) .

qed

lemma step-Cn-correct:
assumes valid (((Cn n f gs), xs, []) # rest) (is valid ?stack)

and
∧

xs rest. valid ((f , xs, []) # rest) =⇒ correct ((f , xs, []) # rest, None)
and

∧
g xs rest.

g ∈ set gs =⇒ valid ((g, xs, []) # rest) =⇒ correct ((g, xs, []) # rest, None)
shows correct (?stack, None)

proof −
have valid: recfn (length xs) (Cn n f gs) valid rest

using valid-ConsE [OF assms(1)] by auto
let ?ys = map (λg. the (eval g xs)) gs
consider

(diverg-f) ∀ g∈set gs. eval g xs ↓ and eval f ?ys ↑
| (diverg-gs) ∃ g∈set gs. eval g xs ↑
| (converg) eval (Cn n f gs) xs ↓
using valid-ConsE [OF assms(1)] by fastforce

then show ?thesis
proof (cases)

case diverg-f
then have ∀ i<length gs. eval (gs ! i) xs ↓ by simp
then have reachable (?stack, None) ((Cn n f gs, xs, ?ys) # rest, None)

(is - (?stack1 , None))
using reachable-Cn[OF assms, where ?k=length gs] by simp

also have reachable ... ((f , ?ys, []) # ?stack1 , None) (is - (?stack2 , None))
by (simp add: step-reachable)

finally have reachable (?stack, None) (?stack2 , None) .

42

moreover have nonterminating (?stack2 , None)
using diverg-f (2) assms(2)[of ?ys ?stack1] valid-ConsE [OF assms(1)] valid-ConsI
by auto

ultimately have nonterminating (?stack, None)
using reachable-nonterminating by simp

moreover have eval (Cn n f gs) xs ↑
using diverg-f (2) assms(1) eval-Cn valid-ConsE by presburger

ultimately show ?thesis by simp
next

case diverg-gs
then have ex-i: ∃ i<length gs. eval (gs ! i) xs ↑

using in-set-conv-nth[of - gs] by auto
define k where k = (LEAST i. i < length gs ∧ eval (gs ! i) xs ↑) (is - = Least ?P)
then have gs-k: eval (gs ! k) xs ↑

using LeastI-ex[OF ex-i] by simp
have ∀ i<k. eval (gs ! i) xs ↓

using k-def not-less-Least[of - ?P] LeastI-ex[OF ex-i] by simp
moreover from this have k < length gs

using ex-i less-le-trans not-le by blast
ultimately have reachable (?stack, None) ((Cn n f gs, xs, take k ?ys) # rest, None)

using reachable-Cn[OF assms] by simp
also have reachable ...
((gs ! (length (take k ?ys)), xs, []) # (Cn n f gs, xs, take k ?ys) # rest, None)
(is - (?stack1 , None))

proof −
have length (take k ?ys) < length gs

by (simp add: ‹k < length gs› less-imp-le-nat min-less-iff-disj)
then show ?thesis using step-reachable ‹k < length gs›

by auto
qed
finally have reachable (?stack, None) (?stack1 , None) .
moreover have nonterminating (?stack1 , None)
proof −

have recfn (length xs) (gs ! k)
using ‹k < length gs› valid(1) by simp

then have correct (?stack1 , None)
using ‹k < length gs› nth-mem valid valid-ConsI

assms(3)[of gs ! (length (take k ?ys)) xs]
by auto

moreover have length (take k ?ys) = k
by (simp add: ‹k < length gs› less-imp-le-nat min-absorb2)

ultimately show ?thesis using gs-k by simp
qed
ultimately have nonterminating (?stack, None)

using reachable-nonterminating by simp
moreover have eval (Cn n f gs) xs ↑

using diverg-gs valid by fastforce
ultimately show ?thesis by simp

next
case converg
then have f : eval f ?ys ↓ and g:

∧
g. g ∈ set gs =⇒ eval g xs ↓

using valid(1) by (metis eval-Cn)+
then have ∀ i<length gs. eval (gs ! i) xs ↓

by simp
then have reachable (?stack, None) ((Cn n f gs, xs, take (length gs) ?ys) # rest, None)

using reachable-Cn assms by blast

43

also have reachable ... ((Cn n f gs, xs, ?ys) # rest, None) (is - (?stack1 , None))
by (simp add: reachable-refl)

also have reachable ... ((f , ?ys, []) # ?stack1 , None)
using step-reachable by auto

also have reachable ... (?stack1 , eval f ?ys)
using assms(2)[of ?ys] correct-convergE valid f valid-ConsI by auto

also have reachable (?stack1 , eval f ?ys) (rest, eval f ?ys)
using f by auto

finally have reachable (?stack, None) (rest, eval f ?ys) .
moreover have eval (Cn n f gs) xs = eval f ?ys

using g valid(1) by auto
ultimately show ?thesis

using converg correct-convergI by auto
qed

qed

During the execution of a frame with a partial recursive function of shape Pr n f g and
arguments x # xs, the list of local variables collects all the function values up to x in
reversed order. We call such a list a trace for short.
definition trace :: nat ⇒ recf ⇒ recf ⇒ nat list ⇒ nat ⇒ nat list where

trace n f g xs x ≡ map (λy. the (eval (Pr n f g) (y # xs))) (rev [0 ..<Suc x])

lemma trace-length: length (trace n f g xs x) = Suc x
using trace-def by simp

lemma trace-hd: hd (trace n f g xs x) = the (eval (Pr n f g) (x # xs))
using trace-def by simp

lemma trace-Suc:
trace n f g xs (Suc x) = (the (eval (Pr n f g) (Suc x # xs))) # (trace n f g xs x)
using trace-def by simp

lemma reachable-Pr :
assumes valid (((Pr n f g), x # xs, []) # rest) (is valid ?stack)

and
∧

xs rest. valid ((f , xs, []) # rest) =⇒ correct ((f , xs, []) # rest, None)
and

∧
xs rest. valid ((g, xs, []) # rest) =⇒ correct ((g, xs, []) # rest, None)

and y ≤ x
and eval (Pr n f g) (y # xs) ↓

shows reachable (?stack, None) ((Pr n f g, x # xs, trace n f g xs y) # rest, None)
using assms(4 ,5)

proof (induction y)
case 0
have valid: recfn (length (x # xs)) (Pr n f g) valid rest

using valid-ConsE [OF assms(1)] by simp-all
then have f : eval f xs ↓ using 0 by simp
let ?as = x # xs
have reachable (?stack, None) ((f , xs, []) # ((Pr n f g), ?as, []) # rest, None)

using step-reachable by auto
also have reachable ... (?stack, eval f xs)

using assms(2)[of xs ((Pr n f g), ?as, []) # rest]
correct-convergE [OF - f] f valid valid-ConsI

by simp
also have reachable ... ((Pr n f g, ?as, [the (eval f xs)]) # rest, None)

using step-reachable valid(1) f by auto
finally have reachable (?stack, None) ((Pr n f g, ?as, [the (eval f xs)]) # rest, None) .
then show ?case using trace-def valid(1) by simp

44

next
case (Suc y)
have valid: recfn (length (x # xs)) (Pr n f g) valid rest

using valid-ConsE [OF assms(1)] by simp-all
let ?ls = trace n f g xs y
have lenls: length ?ls = Suc y

using trace-length by auto
moreover have hdls: hd ?ls = the (eval (Pr n f g) (y # xs))

using Suc trace-hd by auto
ultimately have g:

eval g (y # hd ?ls # xs) ↓
eval (Pr n f g) (Suc y # xs) = eval g (y # hd ?ls # xs)
using eval-Pr-Suc-converg hdls valid(1) Suc by simp-all

then have reachable (?stack, None) ((Pr n f g, x # xs, ?ls) # rest, None)
(is - (?stack1 , None))

using Suc valid(1) by fastforce
also have reachable ... ((g, y # hd ?ls # xs, []) # (Pr n f g, x # xs, ?ls) # rest, None)

using Suc.prems lenls by fastforce
also have reachable ... (?stack1 , eval g (y # hd ?ls # xs))

(is - (-, ?rv))
using assms(3) g(1) valid valid-ConsI by auto

also have reachable ... ((Pr n f g, x # xs, (the ?rv) # ?ls) # rest, None)
using Suc.prems(1) g(1) lenls by auto

finally have reachable (?stack, None) ((Pr n f g, x # xs, (the ?rv) # ?ls) # rest, None) .
moreover have trace n f g xs (Suc y) = (the ?rv) # ?ls

using g(2) trace-Suc by simp
ultimately show ?case by simp

qed

lemma step-Pr-correct:
assumes valid (((Pr n f g), xs, []) # rest) (is valid ?stack)

and
∧

xs rest. valid ((f , xs, []) # rest) =⇒ correct ((f , xs, []) # rest, None)
and

∧
xs rest. valid ((g, xs, []) # rest) =⇒ correct ((g, xs, []) # rest, None)

shows correct (?stack, None)
proof −

have valid: valid rest recfn (length xs) (Pr n f g)
using valid-ConsE [OF assms(1)] by simp-all

then have length xs > 0
by auto

then obtain y ys where y-ys: xs = y # ys
using list.exhaust-sel by auto

let ?t = trace n f g ys
consider

(converg) eval (Pr n f g) xs ↓
| (diverg-f) eval (Pr n f g) xs ↑ and eval f ys ↑
| (diverg) eval (Pr n f g) xs ↑ and eval f ys ↓
by auto

then show ?thesis
proof (cases)

case converg
then have

∧
z. z ≤ y =⇒ reachable (?stack, None) (((Pr n f g), xs, ?t z) # rest, None)

using assms valid by (simp add: eval-Pr-converg-le reachable-Pr y-ys)
then have reachable (?stack, None) (((Pr n f g), xs, ?t y) # rest, None)

by simp
moreover have reachable (((Pr n f g), xs, ?t y) # rest, None) (rest, Some (hd (?t y)))

using trace-length step-reachable y-ys by fastforce

45

ultimately have reachable (?stack, None) (rest, Some (hd (?t y)))
using reachable-transitive by blast

then show ?thesis
using assms(1) trace-hd converg y-ys by simp

next
case diverg-f
have ∗: step (?stack, None) = ((f , ys, []) # ((Pr n f g), xs, []) # tl ?stack, None)

(is - = (?stack1 , None))
using assms(1 ,2) y-ys by simp

then have reachable (?stack, None) (?stack1 , None)
using step-reachable by force

moreover have nonterminating (?stack1 , None)
using assms diverg-f valid valid-ConsI ∗ by auto

ultimately have nonterminating (?stack, None)
using reachable-nonterminating by blast

then show ?thesis using diverg-f (1) assms(1) by simp
next

case diverg
let ?h = λz. the (eval (Pr n f g) (z # ys))
let ?Q = λz. z < y ∧ eval (Pr n f g) (z # ys) ↓
have ?Q 0

using assms diverg neq0-conv y-ys valid by fastforce
define zmax where zmax = Greatest ?Q
then have ?Q zmax

using ‹?Q 0 › GreatestI-nat[of ?Q 0 y] by simp
have le-zmax:

∧
z. ?Q z =⇒ z ≤ zmax

using Greatest-le-nat[of ?Q - y] zmax-def by simp
have len: length (?t zmax) < Suc y

by (simp add: ‹?Q zmax› trace-length)
have eval (Pr n f g) (y # ys) ↓ if y ≤ zmax for y

using that zmax-def ‹?Q zmax› assms eval-Pr-converg-le[of n f g ys zmax y] valid y-ys
by simp

then have reachable (?stack, None) (((Pr n f g), xs, ?t y) # rest, None)
if y ≤ zmax for y

using that ‹?Q zmax› diverg y-ys assms reachable-Pr by simp
then have reachable (?stack, None) (((Pr n f g), xs, ?t zmax) # rest, None)

(is reachable - (?stack1 , None))
by simp

also have reachable ...
((g, zmax # ?h zmax # tl xs, []) # (Pr n f g, xs, ?t zmax) # rest, None)
(is - (?stack2 , None))

proof (rule step-reachable)
have length (?t zmax) 6= Suc (hd xs)

using len y-ys by simp
moreover have hd (?t zmax) = ?h zmax

using trace-hd by auto
moreover have length (?t zmax) = Suc zmax

using trace-length by simp
ultimately show step (?stack1 , None) = (?stack2 , None)

by auto
qed
finally have reachable (?stack, None) (?stack2 , None) .
moreover have nonterminating (?stack2 , None)
proof −

have correct (?stack2 , None)
using y-ys assms valid-ConsI valid by simp

46

moreover have eval g (zmax # ?h zmax # ys) ↑
using ‹?Q zmax› diverg le-zmax len less-Suc-eq trace-length y-ys valid
by fastforce

ultimately show ?thesis using y-ys by simp
qed
ultimately have nonterminating (?stack, None)

using reachable-nonterminating by simp
then show ?thesis using diverg assms(1) by simp

qed
qed

lemma reachable-Mn:
assumes valid ((Mn n f , xs, []) # rest) (is valid ?stack)

and
∧

xs rest. valid ((f , xs, []) # rest) =⇒ correct ((f , xs, []) # rest, None)
and ∀ y<z. eval f (y # xs) /∈ {None, Some 0}

shows reachable (?stack, None) ((f , z # xs, []) # (Mn n f , xs, [z]) # rest, None)
using assms(3)

proof (induction z)
case 0
then have step (?stack, None) = ((f , 0 # xs, []) # (Mn n f , xs, [0]) # rest, None)

using assms by simp
then show ?case

using step-reachable assms(1) by force
next

case (Suc z)
have valid: valid rest recfn (length xs) (Mn n f)

using valid-ConsE [OF assms(1)] by auto
have f : eval f (z # xs) /∈ {None, Some 0}

using Suc by simp
have reachable (?stack, None) ((f , z # xs, []) # (Mn n f , xs, [z]) # rest, None)

using Suc by simp
also have reachable ... ((Mn n f , xs, [z]) # rest, eval f (z # xs))

using f assms(2)[of z # xs] valid correct-convergE valid-ConsI by auto
also have reachable ... ((f , (Suc z) # xs, []) # (Mn n f , xs, [Suc z]) # rest, None)

(is - (?stack1 , None))
using step-reachable f by force

finally have reachable (?stack, None) (?stack1 , None) .
then show ?case by simp

qed

lemma iterate-step-empty-stack: iterate t step ([], rv) = ([], rv)
using step-empty-stack by (induction t) simp-all

lemma reachable-iterate-step-empty-stack:
assumes reachable cfg ([], rv)
shows ∃ t. iterate t step cfg = ([], rv) ∧ (∀ t ′<t. fst (iterate t ′ step cfg) 6= [])

proof −
let ?P = λt. iterate t step cfg = ([], rv)
from assms have ∃ t. ?P t

by (simp add: reachable-def)
moreover define tmin where tmin = Least ?P
ultimately have ?P tmin

using LeastI-ex[of ?P] by simp
have fst (iterate t ′ step cfg) 6= [] if t ′ < tmin for t ′

proof
assume fst (iterate t ′ step cfg) = []

47

then obtain v where v: iterate t ′ step cfg = ([], v)
by (metis prod.exhaust-sel)

then have iterate t ′′ step ([], v) = ([], v) for t ′′

using iterate-step-empty-stack by simp
then have iterate (t ′ + t ′′) step cfg = ([], v) for t ′′

using v iterate-additive by fast
moreover obtain t ′′ where t ′ + t ′′ = tmin

using ‹t ′ < tmin› less-imp-add-positive by auto
ultimately have iterate tmin step cfg = ([], v)

by auto
then have v = rv

using ‹?P tmin› by simp
then have iterate t ′ step cfg = ([], rv)

using v by simp
moreover have ∀ t ′<tmin. ¬ ?P t ′

unfolding tmin-def using not-less-Least[of - ?P] by simp
ultimately show False

using that by simp
qed
then show ?thesis using ‹?P tmin› by auto

qed

lemma step-Mn-correct:
assumes valid ((Mn n f , xs, []) # rest) (is valid ?stack)

and
∧

xs rest. valid ((f , xs, []) # rest) =⇒ correct ((f , xs, []) # rest, None)
shows correct (?stack, None)

proof −
have valid: valid rest recfn (length xs) (Mn n f)

using valid-ConsE [OF assms(1)] by auto
consider

(diverg) eval (Mn n f) xs ↑ and ∀ z. eval f (z # xs) ↓
| (diverg-f) eval (Mn n f) xs ↑ and ∃ z. eval f (z # xs) ↑
| (converg) eval (Mn n f) xs ↓
by fast

then show ?thesis
proof (cases)

case diverg
then have ∀ z. eval f (z # xs) 6= Some 0

using eval-Mn-diverg[OF valid(2)] by simp
then have ∀ y<z. eval f (y # xs) /∈ {None, Some 0} for z

using diverg by simp
then have reach-z:∧

z. reachable (?stack, None) ((f , z # xs, []) # (Mn n f , xs, [z]) # rest, None)
using reachable-Mn[OF assms] diverg by simp

define h :: nat ⇒ configuration where
h z ≡ ((f , z # xs, []) # (Mn n f , xs, [z]) # rest, None) for z

then have h-inj:
∧

x y. x 6= y =⇒ h x 6= h y and z-neq-Nil:
∧

z. fst (h z) 6= []
by simp-all

have z: ∃ z0. ∀ z>z0. ¬ (∃ t ′≤t. iterate t ′ step (?stack, None) = h z) for t
proof (induction t)

case 0
then show ?case by (metis h-inj le-zero-eq less-not-refl3)

next
case (Suc t)

48

then show ?case
using h-inj by (metis (no-types, opaque-lifting) le-Suc-eq less-not-refl3 less-trans)

qed

have nonterminating (?stack, None)
proof (rule ccontr)

assume ¬ nonterminating (?stack, None)
then obtain t where t: fst (iterate t step (?stack, None)) = []

by auto
then obtain z0 where ∀ z>z0. ¬ (∃ t ′≤t. iterate t ′ step (?stack, None) = h z)

using z by auto
then have not-h: ∀ t ′≤t. iterate t ′ step (?stack, None) 6= h (Suc z0)

by simp
have ∀ t ′≥t. fst (iterate t ′ step (?stack, None)) = []

using t iterate-step-empty-stack iterate-additive ′[of t]
by (metis le-Suc-ex prod.exhaust-sel)

then have ∀ t ′≥t. iterate t ′ step (?stack, None) 6= h (Suc z0)
using z-neq-Nil by auto

then have ∀ t ′. iterate t ′ step (?stack, None) 6= h (Suc z0)
using not-h nat-le-linear by auto

then have ¬ reachable (?stack, None) (h (Suc z0))
using reachable-def by simp

then show False
using reach-z[of Suc z0] h-def by simp

qed
then show ?thesis using diverg by simp

next
case diverg-f
let ?P = λz. eval f (z # xs) ↑
define zmin where zmin ≡ Least ?P
then have ∀ y<zmin. eval f (y # xs) /∈ {None, Some 0}

using diverg-f eval-Mn-diverg[OF valid(2)] less-trans not-less-Least[of - ?P]
by blast

moreover have f-zmin: eval f (zmin # xs) ↑
using diverg-f LeastI-ex[of ?P] zmin-def by simp

ultimately have
reachable (?stack, None) ((f , zmin # xs, []) # (Mn n f , xs, [zmin]) # rest, None)
(is reachable - (?stack1 , None))

using reachable-Mn[OF assms] by simp
moreover have nonterminating (?stack1 , None)

using f-zmin assms valid diverg-f valid-ConsI by auto
ultimately have nonterminating (?stack, None)

using reachable-nonterminating by simp
then show ?thesis using diverg-f by simp

next
case converg
then obtain z where z: eval (Mn n f) xs ↓= z by auto
have f-z: eval f (z # xs) ↓= 0

and f-less-z:
∧

y. y < z =⇒ eval f (y # xs) ↓6= 0
using eval-Mn-convergE(2 ,3)[OF valid(2) z] by simp-all

then have
reachable (?stack, None) ((f , z # xs, []) # (Mn n f , xs, [z]) # rest, None)
using reachable-Mn[OF assms] by simp

also have reachable ... ((Mn n f , xs, [z]) # rest, eval f (z # xs))
using assms(2)[of z # xs] valid f-z valid-ConsI correct-convergE
by auto

49

also have reachable ... (rest, Some z)
using f-z f-less-z step-reachable by auto

finally have reachable (?stack, None) (rest, Some z) .
then show ?thesis using z by simp

qed
qed

theorem step-correct:
assumes valid ((f , xs, []) # rest)
shows correct ((f , xs, []) # rest, None)
using assms

proof (induction f arbitrary: xs rest)
case Z
then show ?case using valid-ConsE [of Z] step-reachable by auto

next
case S
then show ?case using valid-ConsE [of S] step-reachable by auto

next
case (Id m n)
then show ?case using valid-ConsE [of Id m n] by auto

next
case Cn
then show ?case using step-Cn-correct by presburger

next
case Pr
then show ?case using step-Pr-correct by simp

next
case Mn
then show ?case using step-Mn-correct by presburger

qed

1.5.2 Encoding partial recursive functions

In this section we define an injective, but not surjective, mapping from recf s to natural
numbers.
abbreviation triple-encode :: nat ⇒ nat ⇒ nat ⇒ nat where

triple-encode x y z ≡ prod-encode (x, prod-encode (y, z))

abbreviation quad-encode :: nat ⇒ nat ⇒ nat ⇒ nat ⇒ nat where
quad-encode w x y z ≡ prod-encode (w, prod-encode (x, prod-encode (y, z)))

fun encode :: recf ⇒ nat where
encode Z = 0
| encode S = 1
| encode (Id m n) = triple-encode 2 m n
| encode (Cn n f gs) = quad-encode 3 n (encode f) (list-encode (map encode gs))
| encode (Pr n f g) = quad-encode 4 n (encode f) (encode g)
| encode (Mn n f) = triple-encode 5 n (encode f)

lemma prod-encode-gr1 : a > 1 =⇒ prod-encode (a, x) > 1
using le-prod-encode-1 less-le-trans by blast

lemma encode-not-Z-or-S : encode f = prod-encode (a, b) =⇒ a > 1 =⇒ f 6= Z ∧ f 6= S
by (metis encode.simps(1) encode.simps(2) less-numeral-extra(4) not-one-less-zero

prod-encode-gr1)

50

lemma encode-injective: encode f = encode g =⇒ f = g
proof (induction g arbitrary: f)

case Z
have

∧
a x. a > 1 =⇒ prod-encode (a, x) > 0

using prod-encode-gr1 by (meson less-one less-trans)
then have f 6= Z =⇒ encode f > 0

by (cases f) auto
then have encode f = 0 =⇒ f = Z by fastforce
then show ?case using Z by simp

next
case S
have

∧
a x. a > 1 =⇒ prod-encode (a, x) 6= Suc 0

using prod-encode-gr1 by (metis One-nat-def less-numeral-extra(4))
then have encode f = 1 =⇒ f = S

by (cases f) auto
then show ?case using S by simp

next
case Id
then obtain z where ∗: encode f = prod-encode (2 , z) by simp
show ?case

using Id by (cases f) (simp-all add: ∗ encode-not-Z-or-S prod-encode-eq)
next

case Cn
then obtain z where ∗: encode f = prod-encode (3 , z) by simp
show ?case
proof (cases f)

case Z
then show ?thesis using ∗ encode-not-Z-or-S by simp

next
case S
then show ?thesis using ∗ encode-not-Z-or-S by simp

next
case Id
then show ?thesis using ∗ by (simp add: prod-encode-eq)

next
case Cn
then show ?thesis

using ∗ Cn.IH Cn.prems list-decode-encode
by (smt encode.simps(4) fst-conv list.inj-map-strong prod-encode-eq snd-conv)

next
case Pr
then show ?thesis using ∗ by (simp add: prod-encode-eq)

next
case Mn
then show ?thesis using ∗ by (simp add: prod-encode-eq)

qed
next

case Pr
then obtain z where ∗: encode f = prod-encode (4 , z) by simp
show ?case

using Pr by (cases f) (simp-all add: ∗ encode-not-Z-or-S prod-encode-eq)
next

case Mn
then obtain z where ∗: encode f = prod-encode (5 , z) by simp
show ?case

51

using Mn by (cases f) (simp-all add: ∗ encode-not-Z-or-S prod-encode-eq)
qed

definition encode-kind :: nat ⇒ nat where
encode-kind e ≡ if e = 0 then 0 else if e = 1 then 1 else pdec1 e

lemma encode-kind-0 : encode-kind (encode Z) = 0
unfolding encode-kind-def by simp

lemma encode-kind-1 : encode-kind (encode S) = 1
unfolding encode-kind-def by simp

lemma encode-kind-2 : encode-kind (encode (Id m n)) = 2
unfolding encode-kind-def
by (metis encode.simps(1−3) encode-injective fst-conv prod-encode-inverse

recf .simps(16) recf .simps(8))

lemma encode-kind-3 : encode-kind (encode (Cn n f gs)) = 3
unfolding encode-kind-def
by (metis encode.simps(1 ,2 ,4) encode-injective fst-conv prod-encode-inverse

recf .simps(10) recf .simps(18))

lemma encode-kind-4 : encode-kind (encode (Pr n f g)) = 4
unfolding encode-kind-def
by (metis encode.simps(1 ,2 ,5) encode-injective fst-conv prod-encode-inverse

recf .simps(12) recf .simps(20))

lemma encode-kind-5 : encode-kind (encode (Mn n f)) = 5
unfolding encode-kind-def
by (metis encode.simps(1 ,2 ,6) encode-injective fst-conv prod-encode-inverse

recf .simps(14) recf .simps(22))

lemmas encode-kind-n =
encode-kind-0 encode-kind-1 encode-kind-2 encode-kind-3 encode-kind-4 encode-kind-5

lemma encode-kind-Cn:
assumes encode-kind (encode f) = 3
shows ∃n f ′ gs. f = Cn n f ′ gs
using assms encode-kind-n by (cases f) auto

lemma encode-kind-Pr :
assumes encode-kind (encode f) = 4
shows ∃n f ′ g. f = Pr n f ′ g
using assms encode-kind-n by (cases f) auto

lemma encode-kind-Mn:
assumes encode-kind (encode f) = 5
shows ∃n g. f = Mn n g
using assms encode-kind-n by (cases f) auto

lemma pdec2-encode-Id: pdec2 (encode (Id m n)) = prod-encode (m, n)
by simp

lemma pdec2-encode-Pr : pdec2 (encode (Pr n f g)) = triple-encode n (encode f) (encode g)
by simp

52

1.5.3 The step function on encoded configurations

In this section we construct a function estep :: nat ⇒ nat that is equivalent to the
function step :: configuration ⇒ configuration except that it applies to encoded config-
urations. We start by defining an encoding for configurations.
definition encode-frame :: frame ⇒ nat where

encode-frame s ≡
triple-encode (encode (fst s)) (list-encode (fst (snd s))) (list-encode (snd (snd s)))

lemma encode-frame:
encode-frame (f , xs, ls) = triple-encode (encode f) (list-encode xs) (list-encode ls)
unfolding encode-frame-def by simp

abbreviation encode-option :: nat option ⇒ nat where
encode-option x ≡ if x = None then 0 else Suc (the x)

definition encode-config :: configuration ⇒ nat where
encode-config cfg ≡

prod-encode (list-encode (map encode-frame (fst cfg)), encode-option (snd cfg))

lemma encode-config:
encode-config (ss, rv) = prod-encode (list-encode (map encode-frame ss), encode-option rv)
unfolding encode-config-def by simp

Various projections from encoded configurations:
definition e2stack where e2stack e ≡ pdec1 e
definition e2rv where e2rv e ≡ pdec2 e
definition e2tail where e2tail e ≡ e-tl (e2stack e)
definition e2frame where e2frame e ≡ e-hd (e2stack e)
definition e2i where e2i e ≡ pdec1 (e2frame e)
definition e2xs where e2xs e ≡ pdec12 (e2frame e)
definition e2ls where e2ls e ≡ pdec22 (e2frame e)
definition e2lenas where e2lenas e ≡ e-length (e2xs e)
definition e2lenls where e2lenls e ≡ e-length (e2ls e)

lemma e2rv-rv [simp]:
e2rv (encode-config (ss, rv)) = (if rv ↑ then 0 else Suc (the rv))
unfolding e2rv-def using encode-config by simp

lemma e2stack-stack [simp]:
e2stack (encode-config (ss, rv)) = list-encode (map encode-frame ss)
unfolding e2stack-def using encode-config by simp

lemma e2tail-tail [simp]:
e2tail (encode-config (s # ss, rv)) = list-encode (map encode-frame ss)
unfolding e2tail-def using encode-config by fastforce

lemma e2frame-frame [simp]:
e2frame (encode-config (s # ss, rv)) = encode-frame s
unfolding e2frame-def using encode-config by fastforce

lemma e2i-f [simp]:
e2i (encode-config ((f , xs, ls) # ss, rv)) = encode f
unfolding e2i-def using encode-config e2frame-frame encode-frame by force

53

lemma e2xs-xs [simp]:
e2xs (encode-config ((f , xs, ls) # ss, rv)) = list-encode xs
using e2xs-def e2frame-frame encode-frame by force

lemma e2ls-ls [simp]:
e2ls (encode-config ((f , xs, ls) # ss, rv)) = list-encode ls
using e2ls-def e2frame-frame encode-frame by force

lemma e2lenas-lenas [simp]:
e2lenas (encode-config ((f , xs, ls) # ss, rv)) = length xs
using e2lenas-def e2frame-frame encode-frame by simp

lemma e2lenls-lenls [simp]:
e2lenls (encode-config ((f , xs, ls) # ss, rv)) = length ls
using e2lenls-def e2frame-frame encode-frame by simp

lemma e2stack-0-iff-Nil:
assumes e = encode-config (ss, rv)
shows e2stack e = 0 ←→ ss = []
using assms
by (metis list-encode.simps(1) e2stack-stack list-encode-0 map-is-Nil-conv)

lemma e2ls-0-iff-Nil [simp]: list-decode (e2ls e) = [] ←→ e2ls e = 0
by (metis list-decode.simps(1) list-encode-decode)

We now define eterm piecemeal by considering the more complicated cases Cn, Pr, and
Mn separately.
definition estep-Cn e ≡

if e2lenls e = e-length (pdec222 (e2i e))
then if e2rv e = 0

then prod-encode (e-cons (triple-encode (pdec122 (e2i e)) (e2ls e) 0) (e2stack e), 0)
else prod-encode (e2tail e, e2rv e)

else if e2rv e = 0
then if e2lenls e < e-length (pdec222 (e2i e))

then prod-encode
(e-cons
(triple-encode (e-nth (pdec222 (e2i e)) (e2lenls e)) (e2xs e) 0)
(e2stack e),

0)
else prod-encode (e2tail e, e2rv e)

else prod-encode
(e-cons
(triple-encode (e2i e) (e2xs e) (e-snoc (e2ls e) (e2rv e − 1)))
(e2tail e),

0)

lemma estep-Cn:
assumes c = (((Cn n f gs, xs, ls) # fs), rv)
shows estep-Cn (encode-config c) = encode-config (step c)
using encode-frame by (simp add: assms estep-Cn-def , simp add: encode-config assms)

definition estep-Pr e ≡
if e2ls e = 0
then if e2rv e = 0

then prod-encode
(e-cons (triple-encode (pdec122 (e2i e)) (e-tl (e2xs e)) 0) (e2stack e),

54

0)
else prod-encode
(e-cons (triple-encode (e2i e) (e2xs e) (singleton-encode (e2rv e − 1))) (e2tail e),
0)

else if e2lenls e = Suc (e-hd (e2xs e))
then prod-encode (e2tail e, Suc (e-hd (e2ls e)))
else if e2rv e = 0

then prod-encode
(e-cons
(triple-encode
(pdec222 (e2i e))
(e-cons (e2lenls e − 1) (e-cons (e-hd (e2ls e)) (e-tl (e2xs e))))
0)

(e2stack e),
0)

else prod-encode
(e-cons
(triple-encode (e2i e) (e2xs e) (e-cons (e2rv e − 1) (e2ls e))) (e2tail e),
0)

lemma estep-Pr1 :
assumes c = (((Pr n f g, xs, ls) # fs), rv)

and ls 6= []
and length ls 6= Suc (hd xs)
and rv 6= None
and recfn (length xs) (Pr n f g)

shows estep-Pr (encode-config c) = encode-config (step c)
proof −

let ?e = encode-config c
from assms(5) have length xs > 0 by auto
then have eq: hd xs = e-hd (e2xs ?e)

using assms e-hd-def by auto
have step c = ((Pr n f g, xs, (the rv) # ls) # fs, None)

(is step c = (?t # ?ss, None))
using assms by simp

then have encode-config (step c) =
prod-encode (list-encode (map encode-frame (?t # ?ss)), 0)

using encode-config by simp
also have ... =

prod-encode (e-cons (encode-frame ?t) (list-encode (map encode-frame (?ss))), 0)
by simp

also have ... = prod-encode (e-cons (encode-frame ?t) (e2tail ?e), 0)
using assms(1) by simp

also have ... = prod-encode
(e-cons
(triple-encode (e2i ?e) (e2xs ?e) (e-cons (e2rv ?e − 1) (e2ls ?e)))
(e2tail ?e),

0)
by (simp add: assms encode-frame)

finally show ?thesis
using assms eq estep-Pr-def by auto

qed

lemma estep-Pr2 :
assumes c = (((Pr n f g, xs, ls) # fs), rv)

and ls 6= []

55

and length ls 6= Suc (hd xs)
and rv = None
and recfn (length xs) (Pr n f g)

shows estep-Pr (encode-config c) = encode-config (step c)
proof −

let ?e = encode-config c
from assms(5) have length xs > 0 by auto
then have eq: hd xs = e-hd (e2xs ?e)

using assms e-hd-def by auto
have step c = ((g, (length ls − 1) # hd ls # tl xs, []) # (Pr n f g, xs, ls) # fs, None)

(is step c = (?t # ?ss, None))
using assms by simp

then have encode-config (step c) =
prod-encode (list-encode (map encode-frame (?t # ?ss)), 0)

using encode-config by simp
also have ... =

prod-encode (e-cons (encode-frame ?t) (list-encode (map encode-frame (?ss))), 0)
by simp

also have ... = prod-encode (e-cons (encode-frame ?t) (e2stack ?e), 0)
using assms(1) by simp

also have ... = prod-encode
(e-cons
(triple-encode
(pdec222 (e2i ?e))
(e-cons (e2lenls ?e − 1) (e-cons (e-hd (e2ls ?e)) (e-tl (e2xs ?e))))
0)

(e2stack ?e),
0)

using assms(1 ,2) encode-frame[of g (length ls − 1) # hd ls # tl xs []]
pdec2-encode-Pr [of n f g] e2xs-xs e2i-f e2lenls-lenls e2ls-ls e-hd

by (metis list-encode.simps(1) list.collapse list-decode-encode
prod-encode-inverse snd-conv)

finally show ?thesis
using assms eq estep-Pr-def by auto

qed

lemma estep-Pr3 :
assumes c = (((Pr n f g, xs, ls) # fs), rv)

and ls 6= []
and length ls = Suc (hd xs)
and recfn (length xs) (Pr n f g)

shows estep-Pr (encode-config c) = encode-config (step c)
proof −

let ?e = encode-config c
from assms(4) have length xs > 0 by auto
then have hd xs = e-hd (e2xs ?e)

using assms e-hd-def by auto
then have (length ls = Suc (hd xs)) = (e2lenls ?e = Suc (e-hd (e2xs ?e)))

using assms by simp
then have ∗: estep-Pr ?e = prod-encode (e2tail ?e, Suc (e-hd (e2ls ?e)))

using assms estep-Pr-def by auto
have step c = (fs, Some (hd ls))

using assms(1 ,2 ,3) by simp
then have encode-config (step c) =

prod-encode (list-encode (map encode-frame fs), encode-option (Some (hd ls)))
using encode-config by simp

56

also have ... =
prod-encode (list-encode (map encode-frame fs), encode-option (Some (e-hd (e2ls ?e))))

using assms(1 ,2) e-hd-def by auto
also have ... = prod-encode (list-encode (map encode-frame fs), Suc (e-hd (e2ls ?e)))

by simp
also have ... = prod-encode (e2tail ?e, Suc (e-hd (e2ls ?e)))

using assms(1) by simp
finally have encode-config (step c) = prod-encode (e2tail ?e, Suc (e-hd (e2ls ?e))) .
then show ?thesis

using estep-Pr-def ∗ by presburger
qed

lemma estep-Pr4 :
assumes c = (((Pr n f g, xs, ls) # fs), rv) and ls = []
shows estep-Pr (encode-config c) = encode-config (step c)
using encode-frame
by (simp add: assms estep-Pr-def , simp add: encode-config assms)

lemma estep-Pr :
assumes c = (((Pr n f g, xs, ls) # fs), rv)

and recfn (length xs) (Pr n f g)
shows estep-Pr (encode-config c) = encode-config (step c)
using assms estep-Pr1 estep-Pr2 estep-Pr3 estep-Pr4 by auto

definition estep-Mn e ≡
if e2ls e = 0
then prod-encode
(e-cons
(triple-encode (pdec22 (e2i e)) (e-cons 0 (e2xs e)) 0)
(e-cons
(triple-encode (e2i e) (e2xs e) (singleton-encode 0))
(e2tail e)),

0)
else if e2rv e = 1

then prod-encode (e2tail e, Suc (e-hd (e2ls e)))
else prod-encode
(e-cons
(triple-encode (pdec22 (e2i e)) (e-cons (Suc (e-hd (e2ls e))) (e2xs e)) 0)
(e-cons
(triple-encode (e2i e) (e2xs e) (singleton-encode (Suc (e-hd (e2ls e)))))
(e2tail e)),

0)

lemma estep-Mn:
assumes c = (((Mn n f , xs, ls) # fs), rv)
shows estep-Mn (encode-config c) = encode-config (step c)

proof −
let ?e = encode-config c
consider ls 6= [] and rv 6= Some 0 | ls 6= [] and rv = Some 0 | ls = []

by auto
then show ?thesis
proof (cases)

case 1
then have step-c: step c =

((f , (Suc (hd ls)) # xs, []) # (Mn n f , xs, [Suc (hd ls)]) # fs, None)
(is step c = ?cfg)

57

using assms by simp
have estep-Mn ?e =

prod-encode
(e-cons
(triple-encode (encode f) (e-cons (Suc (hd ls)) (list-encode xs)) 0)
(e-cons
(triple-encode (encode (Mn n f)) (list-encode xs) (singleton-encode (Suc (hd ls))))
(list-encode (map encode-frame fs))),

0)
using 1 assms e-hd-def estep-Mn-def by auto

also have ... = encode-config ?cfg
using encode-config by (simp add: encode-frame)

finally show ?thesis
using step-c by simp

next
case 2
have estep-Mn ?e = prod-encode (e2tail ?e, Suc (e-hd (e2ls ?e)))

using 2 assms estep-Mn-def by auto
also have ... = prod-encode (e2tail ?e, Suc (hd ls))

using 2 assms e-hd-def by auto
also have ... = prod-encode (list-encode (map encode-frame fs), Suc (hd ls))

using assms by simp
also have ... = encode-config (fs, Some (hd ls))

using encode-config by simp
finally show ?thesis

using 2 assms by simp
next

case 3
then show ?thesis

using assms encode-frame by (simp add: estep-Mn-def , simp add: encode-config)
qed

qed

definition estep e ≡
if e2stack e = 0 then prod-encode (0 , e2rv e)
else if e2i e = 0 then prod-encode (e2tail e, 1)
else if e2i e = 1 then prod-encode (e2tail e, Suc (Suc (e-hd (e2xs e))))
else if encode-kind (e2i e) = 2 then

prod-encode (e2tail e, Suc (e-nth (e2xs e) (pdec22 (e2i e))))
else if encode-kind (e2i e) = 3 then estep-Cn e
else if encode-kind (e2i e) = 4 then estep-Pr e
else if encode-kind (e2i e) = 5 then estep-Mn e
else 0

lemma estep-Z :
assumes c = (((Z , xs, ls) # fs), rv)
shows estep (encode-config c) = encode-config (step c)
using encode-frame by (simp add: assms estep-def , simp add: encode-config assms)

lemma estep-S :
assumes c = (((S , xs, ls) # fs), rv)

and recfn (length xs) (fst (hd (fst c)))
shows estep (encode-config c) = encode-config (step c)

proof −
let ?e = encode-config c
from assms have length xs > 0 by auto

58

then have eq: hd xs = e-hd (e2xs ?e)
using assms(1) e-hd-def by auto

then have estep ?e = prod-encode (e2tail ?e, Suc (Suc (e-hd (e2xs ?e))))
using assms(1) estep-def by simp

moreover have step c = (fs, Some (Suc (hd xs)))
using assms(1) by simp

ultimately show ?thesis
using assms(1) eq estep-def encode-config[of fs Some (Suc (hd xs))] by simp

qed

lemma estep-Id:
assumes c = (((Id m n, xs, ls) # fs), rv)

and recfn (length xs) (fst (hd (fst c)))
shows estep (encode-config c) = encode-config (step c)

proof −
let ?e = encode-config c
from assms have length xs = m and m > 0 by auto
then have eq: xs ! n = e-nth (e2xs ?e) n

using assms e-hd-def by auto
moreover have encode-kind (e2i ?e) = 2

using assms(1) encode-kind-2 by auto
ultimately have estep ?e =

prod-encode (e2tail ?e, Suc (e-nth (e2xs ?e) (pdec22 (e2i ?e))))
using assms estep-def encode-kind-def by auto

moreover have step c = (fs, Some (xs ! n))
using assms(1) by simp

ultimately show ?thesis
using assms(1) eq encode-config[of fs Some (xs ! n)] by simp

qed

lemma estep:
assumes valid (fst c)
shows estep (encode-config c) = encode-config (step c)

proof (cases fst c)
case Nil
then show ?thesis

using estep-def
by (metis list-encode.simps(1) e2rv-def e2stack-stack encode-config-def

map-is-Nil-conv prod.collapse prod-encode-inverse snd-conv step.simps(1))
next

case (Cons s fs)
then obtain f xs ls rv where c: c = ((f , xs, ls) # fs, rv)

by (metis prod.exhaust-sel)
with assms valid-def have lenas: recfn (length xs) f by simp
show ?thesis
proof (cases f)

case Z
then show ?thesis using estep-Z c by simp

next
case S
then show ?thesis using estep-S c lenas by simp

next
case Id
then show ?thesis using estep-Id c lenas by simp

next
case Cn

59

then show ?thesis
using estep-Cn c
by (metis e2i-f e2stack-0-iff-Nil encode.simps(1) encode.simps(2) encode-kind-2

encode-kind-3 encode-kind-Cn estep-def list.distinct(1) recf .distinct(13)
recf .distinct(19) recf .distinct(5))

next
case Pr
then show ?thesis

using estep-Pr c lenas
by (metis e2i-f e2stack-0-iff-Nil encode.simps(1) encode.simps(2) encode-kind-2

encode-kind-4 encode-kind-Cn encode-kind-Pr estep-def list.distinct(1) recf .distinct(15)
recf .distinct(21) recf .distinct(25) recf .distinct(7))

next
case Mn
then show ?thesis

using estep-Pr c lenas
by (metis (no-types, lifting) e2i-f e2stack-0-iff-Nil encode.simps(1)
encode.simps(2) encode-kind-2 encode-kind-5 encode-kind-Cn encode-kind-Mn encode-kind-Pr

estep-Mn estep-def list.distinct(1) recf .distinct(17) recf .distinct(23)
recf .distinct(27) recf .distinct(9))

qed
qed

1.5.4 The step function as a partial recursive function

In this section we construct a primitive recursive function r-step computing estep. This
will entail defining recf s for many functions defined in the previous section.
definition r-e2stack ≡ r-pdec1

lemma r-e2stack-prim: prim-recfn 1 r-e2stack
unfolding r-e2stack-def using r-pdec1-prim by simp

lemma r-e2stack [simp]: eval r-e2stack [e] ↓= e2stack e
unfolding r-e2stack-def e2stack-def using r-pdec1-prim by simp

definition r-e2rv ≡ r-pdec2

lemma r-e2rv-prim: prim-recfn 1 r-e2rv
unfolding r-e2rv-def using r-pdec2-prim by simp

lemma r-e2rv [simp]: eval r-e2rv [e] ↓= e2rv e
unfolding r-e2rv-def e2rv-def using r-pdec2-prim by simp

definition r-e2tail ≡ Cn 1 r-tl [r-e2stack]

lemma r-e2tail-prim: prim-recfn 1 r-e2tail
unfolding r-e2tail-def using r-e2stack-prim r-tl-prim by simp

lemma r-e2tail [simp]: eval r-e2tail [e] ↓= e2tail e
unfolding r-e2tail-def e2tail-def using r-e2stack-prim r-tl-prim by simp

definition r-e2frame ≡ Cn 1 r-hd [r-e2stack]

lemma r-e2frame-prim: prim-recfn 1 r-e2frame
unfolding r-e2frame-def using r-hd-prim r-e2stack-prim by simp

60

lemma r-e2frame [simp]: eval r-e2frame [e] ↓= e2frame e
unfolding r-e2frame-def e2frame-def using r-hd-prim r-e2stack-prim by simp

definition r-e2i ≡ Cn 1 r-pdec1 [r-e2frame]

lemma r-e2i-prim: prim-recfn 1 r-e2i
unfolding r-e2i-def using r-pdec12-prim r-e2frame-prim by simp

lemma r-e2i [simp]: eval r-e2i [e] ↓= e2i e
unfolding r-e2i-def e2i-def using r-pdec12-prim r-e2frame-prim by simp

definition r-e2xs ≡ Cn 1 r-pdec12 [r-e2frame]

lemma r-e2xs-prim: prim-recfn 1 r-e2xs
unfolding r-e2xs-def using r-pdec122-prim r-e2frame-prim by simp

lemma r-e2xs [simp]: eval r-e2xs [e] ↓= e2xs e
unfolding r-e2xs-def e2xs-def using r-pdec122-prim r-e2frame-prim by simp

definition r-e2ls ≡ Cn 1 r-pdec22 [r-e2frame]

lemma r-e2ls-prim: prim-recfn 1 r-e2ls
unfolding r-e2ls-def using r-pdec222-prim r-e2frame-prim by simp

lemma r-e2ls [simp]: eval r-e2ls [e] ↓= e2ls e
unfolding r-e2ls-def e2ls-def using r-pdec222-prim r-e2frame-prim by simp

definition r-e2lenls ≡ Cn 1 r-length [r-e2ls]

lemma r-e2lenls-prim: prim-recfn 1 r-e2lenls
unfolding r-e2lenls-def using r-length-prim r-e2ls-prim by simp

lemma r-e2lenls [simp]: eval r-e2lenls [e] ↓= e2lenls e
unfolding r-e2lenls-def e2lenls-def using r-length-prim r-e2ls-prim by simp

definition r-kind ≡
Cn 1 r-ifz [Id 1 0 , Z , Cn 1 r-ifeq [Id 1 0 , r-const 1 , r-const 1 , r-pdec1]]

lemma r-kind-prim: prim-recfn 1 r-kind
unfolding r-kind-def by simp

lemma r-kind: eval r-kind [e] ↓= encode-kind e
unfolding r-kind-def encode-kind-def by simp

lemmas helpers-for-r-step-prim =
r-e2i-prim
r-e2lenls-prim
r-e2ls-prim
r-e2rv-prim
r-e2xs-prim
r-e2stack-prim
r-e2tail-prim
r-e2frame-prim

We define primitive recursive functions r-step-Id, r-step-Cn, r-step-Pr, and r-step-Mn.

61

The last three correspond to estep-Cn, estep-Pr, and estep-Mn from the previous section.
definition r-step-Id ≡

Cn 1 r-prod-encode [r-e2tail, Cn 1 S [Cn 1 r-nth [r-e2xs, Cn 1 r-pdec22 [r-e2i]]]]

lemma r-step-Id:
eval r-step-Id [e] ↓= prod-encode (e2tail e, Suc (e-nth (e2xs e) (pdec22 (e2i e))))
unfolding r-step-Id-def using helpers-for-r-step-prim by simp

abbreviation r-triple-encode :: recf ⇒ recf ⇒ recf ⇒ recf where
r-triple-encode x y z ≡ Cn 1 r-prod-encode [x, Cn 1 r-prod-encode [y, z]]

definition r-step-Cn ≡
Cn 1 r-ifeq
[r-e2lenls,
Cn 1 r-length [Cn 1 r-pdec222 [r-e2i]],
Cn 1 r-ifz
[r-e2rv,
Cn 1 r-prod-encode
[Cn 1 r-cons [r-triple-encode (Cn 1 r-pdec122 [r-e2i]) r-e2ls Z , r-e2stack],
Z],

Cn 1 r-prod-encode [r-e2tail, r-e2rv]],
Cn 1 r-ifz
[r-e2rv,
Cn 1 r-ifless
[r-e2lenls,
Cn 1 r-length [Cn 1 r-pdec222 [r-e2i]],
Cn 1 r-prod-encode
[Cn 1 r-cons
[r-triple-encode (Cn 1 r-nth [Cn 1 r-pdec222 [r-e2i], r-e2lenls]) r-e2xs Z ,
r-e2stack],

Z],
Cn 1 r-prod-encode [r-e2tail, r-e2rv]],

Cn 1 r-prod-encode
[Cn 1 r-cons
[r-triple-encode r-e2i r-e2xs (Cn 1 r-snoc [r-e2ls, Cn 1 r-dec [r-e2rv]]),
r-e2tail],

Z]]]

lemma r-step-Cn-prim: prim-recfn 1 r-step-Cn
unfolding r-step-Cn-def using helpers-for-r-step-prim by simp

lemma r-step-Cn: eval r-step-Cn [e] ↓= estep-Cn e
unfolding r-step-Cn-def estep-Cn-def using helpers-for-r-step-prim by simp

definition r-step-Pr ≡
Cn 1 r-ifz
[r-e2ls,
Cn 1 r-ifz
[r-e2rv,
Cn 1 r-prod-encode
[Cn 1 r-cons
[r-triple-encode (Cn 1 r-pdec122 [r-e2i]) (Cn 1 r-tl [r-e2xs]) Z ,
r-e2stack],

Z],
Cn 1 r-prod-encode

62

[Cn 1 r-cons
[r-triple-encode r-e2i r-e2xs (Cn 1 r-singleton-encode [Cn 1 r-dec [r-e2rv]]),
r-e2tail],

Z]],
Cn 1 r-ifeq
[r-e2lenls,
Cn 1 S [Cn 1 r-hd [r-e2xs]],
Cn 1 r-prod-encode [r-e2tail, Cn 1 S [Cn 1 r-hd [r-e2ls]]],
Cn 1 r-ifz
[r-e2rv,
Cn 1 r-prod-encode
[Cn 1 r-cons
[r-triple-encode
(Cn 1 r-pdec222 [r-e2i])
(Cn 1 r-cons
[Cn 1 r-dec [r-e2lenls],
Cn 1 r-cons [Cn 1 r-hd [r-e2ls],
Cn 1 r-tl [r-e2xs]]])

Z ,
r-e2stack],

Z],
Cn 1 r-prod-encode
[Cn 1 r-cons
[r-triple-encode r-e2i r-e2xs (Cn 1 r-cons [Cn 1 r-dec [r-e2rv], r-e2ls]),
r-e2tail],

Z]]]]

lemma r-step-Pr-prim: prim-recfn 1 r-step-Pr
unfolding r-step-Pr-def using helpers-for-r-step-prim by simp

lemma r-step-Pr : eval r-step-Pr [e] ↓= estep-Pr e
unfolding r-step-Pr-def estep-Pr-def using helpers-for-r-step-prim by simp

definition r-step-Mn ≡
Cn 1 r-ifz
[r-e2ls,
Cn 1 r-prod-encode
[Cn 1 r-cons
[r-triple-encode (Cn 1 r-pdec22 [r-e2i]) (Cn 1 r-cons [Z , r-e2xs]) Z ,
Cn 1 r-cons
[r-triple-encode r-e2i r-e2xs (Cn 1 r-singleton-encode [Z]),
r-e2tail]],

Z],
Cn 1 r-ifeq
[r-e2rv,
r-const 1 ,
Cn 1 r-prod-encode [r-e2tail, Cn 1 S [Cn 1 r-hd [r-e2ls]]],
Cn 1 r-prod-encode
[Cn 1 r-cons
[r-triple-encode
(Cn 1 r-pdec22 [r-e2i])
(Cn 1 r-cons [Cn 1 S [Cn 1 r-hd [r-e2ls]], r-e2xs])
Z ,

Cn 1 r-cons
[r-triple-encode r-e2i r-e2xs (Cn 1 r-singleton-encode [Cn 1 S [Cn 1 r-hd [r-e2ls]]]),
r-e2tail]],

63

Z]]]

lemma r-step-Mn-prim: prim-recfn 1 r-step-Mn
unfolding r-step-Mn-def using helpers-for-r-step-prim by simp

lemma r-step-Mn: eval r-step-Mn [e] ↓= estep-Mn e
unfolding r-step-Mn-def estep-Mn-def using helpers-for-r-step-prim by simp

definition r-step ≡
Cn 1 r-ifz
[r-e2stack,
Cn 1 r-prod-encode [Z , r-e2rv],
Cn 1 r-ifz
[r-e2i,
Cn 1 r-prod-encode [r-e2tail, r-const 1],
Cn 1 r-ifeq
[r-e2i,
r-const 1 ,
Cn 1 r-prod-encode [r-e2tail, Cn 1 S [Cn 1 S [Cn 1 r-hd [r-e2xs]]]],
Cn 1 r-ifeq
[Cn 1 r-kind [r-e2i],
r-const 2 ,
Cn 1 r-prod-encode [r-e2tail, Cn 1 S [Cn 1 r-nth [r-e2xs, Cn 1 r-pdec22 [r-e2i]]]],
Cn 1 r-ifeq
[Cn 1 r-kind [r-e2i],
r-const 3 ,
r-step-Cn,
Cn 1 r-ifeq
[Cn 1 r-kind [r-e2i],
r-const 4 ,
r-step-Pr ,
Cn 1 r-ifeq
[Cn 1 r-kind [r-e2i], r-const 5 , r-step-Mn, Z]]]]]]]

lemma r-step-prim: prim-recfn 1 r-step
unfolding r-step-def
using r-kind-prim r-step-Mn-prim r-step-Pr-prim r-step-Cn-prim helpers-for-r-step-prim
by simp

lemma r-step: eval r-step [e] ↓= estep e
unfolding r-step-def estep-def
using r-kind-prim r-step-Mn-prim r-step-Pr-prim r-step-Cn-prim helpers-for-r-step-prim

r-kind r-step-Cn r-step-Pr r-step-Mn
by simp

theorem r-step-equiv-step:
assumes valid (fst c)
shows eval r-step [encode-config c] ↓= encode-config (step c)
using r-step estep assms by simp

1.5.5 The universal function

The next function computes the configuration after arbitrarily many steps.
definition r-leap ≡

Pr 2

64

(Cn 2 r-prod-encode
[Cn 2 r-singleton-encode
[Cn 2 r-prod-encode [Id 2 0 , Cn 2 r-prod-encode [Id 2 1 , r-constn 1 0]]],

r-constn 1 0])
(Cn 4 r-step [Id 4 1])

lemma r-leap-prim [simp]: prim-recfn 3 r-leap
unfolding r-leap-def using r-step-prim by simp

lemma r-leap-total: eval r-leap [t, i, x] ↓
using prim-recfn-total[OF r-leap-prim] by simp

lemma r-leap:
assumes i = encode f and recfn (e-length x) f
shows eval r-leap [t, i, x] ↓= encode-config (iterate t step ([(f , list-decode x, [])], None))

proof (induction t)
case 0
then show ?case

unfolding r-leap-def using r-step-prim assms encode-config encode-frame by simp
next

case (Suc t)
let ?c = ([(f , list-decode x, [])], None)
let ?tc = iterate t step ?c
have valid (fst ?c)

using valid-def assms by simp
then have valid: valid (fst ?tc)

using iterate-step-valid by simp
have eval r-leap [Suc t, i, x] =

eval (Cn 4 r-step [Id 4 1]) [t, the (eval r-leap [t, i, x]), i, x]
by (smt One-nat-def Suc-eq-plus1 eq-numeral-Suc eval-Pr-converg-Suc list.size(3) list.size(4)

nat-1-add-1 pred-numeral-simps(3) r-leap-def r-leap-prim r-leap-total)
then have eval r-leap [Suc t, i, x] = eval (Cn 4 r-step [Id 4 1]) [t, encode-config ?tc, i, x]

using Suc by simp
then have eval r-leap [Suc t, i, x] = eval r-step [encode-config ?tc]

using r-step-prim by simp
then have eval r-leap [Suc t, i, x] ↓= encode-config (step ?tc)

by (simp add: r-step-equiv-step valid)
then show ?case by simp

qed

lemma step-leaves-empty-stack-empty:
assumes iterate t step ([(f , list-decode x, [])], None) = ([], Some v)
shows iterate (t + t ′) step ([(f , list-decode x, [])], None) = ([], Some v)
using assms by (induction t ′) simp-all

The next function is essentially a convenience wrapper around r-leap. It returns zero if
the configuration returned by r-leap is non-final, and Suc v if the configuration is final
with return value v.
definition r-result ≡

Cn 3 r-ifz [Cn 3 r-pdec1 [r-leap], Cn 3 r-pdec2 [r-leap], r-constn 2 0]

lemma r-result-prim [simp]: prim-recfn 3 r-result
unfolding r-result-def using r-leap-prim by simp

lemma r-result-total: total r-result
using r-result-prim by blast

65

lemma r-result-empty-stack-None:
assumes i = encode f

and recfn (e-length x) f
and iterate t step ([(f , list-decode x, [])], None) = ([], None)

shows eval r-result [t, i, x] ↓= 0
unfolding r-result-def
using assms r-leap e2stack-0-iff-Nil e2stack-def e2stack-stack r-leap-total r-leap-prim

e2rv-def e2rv-rv
by simp

lemma r-result-empty-stack-Some:
assumes i = encode f

and recfn (e-length x) f
and iterate t step ([(f , list-decode x, [])], None) = ([], Some v)

shows eval r-result [t, i, x] ↓= Suc v
unfolding r-result-def
using assms r-leap e2stack-0-iff-Nil e2stack-def e2stack-stack r-leap-total r-leap-prim

e2rv-def e2rv-rv
by simp

lemma r-result-empty-stack-stays:
assumes i = encode f

and recfn (e-length x) f
and iterate t step ([(f , list-decode x, [])], None) = ([], Some v)

shows eval r-result [t + t ′, i, x] ↓= Suc v
using assms step-leaves-empty-stack-empty r-result-empty-stack-Some by simp

lemma r-result-nonempty-stack:
assumes i = encode f

and recfn (e-length x) f
and fst (iterate t step ([(f , list-decode x, [])], None)) 6= []

shows eval r-result [t, i, x] ↓= 0
proof −

obtain ss rv where iterate t step ([(f , list-decode x, [])], None) = (ss, rv)
by fastforce

moreover from this assms(3) have ss 6= [] by simp
ultimately have eval r-leap [t, i, x] ↓= encode-config (ss, rv)

using assms r-leap by simp
then have eval (Cn 3 r-pdec1 [r-leap]) [t, i, x] ↓6= 0

using ‹ss 6= []› r-leap-prim encode-config r-leap-total list-encode-0 by auto
then show ?thesis unfolding r-result-def using r-leap-prim by auto

qed

lemma r-result-Suc:
assumes i = encode f

and recfn (e-length x) f
and eval r-result [t, i, x] ↓= Suc v

shows iterate t step ([(f , list-decode x, [])], None) = ([], Some v)
(is ?cfg = -)

proof (cases fst ?cfg)
case Nil
then show ?thesis

using assms r-result-empty-stack-None r-result-empty-stack-Some
by (metis Zero-not-Suc nat.inject option.collapse option.inject prod.exhaust-sel)

next

66

case Cons
then show ?thesis using assms r-result-nonempty-stack by simp

qed

lemma r-result-converg:
assumes i = encode f

and recfn (e-length x) f
and eval f (list-decode x) ↓= v

shows ∃ t.
(∀ t ′≥t. eval r-result [t ′, i, x] ↓= Suc v) ∧
(∀ t ′<t. eval r-result [t ′, i, x] ↓= 0)

proof −
let ?xs = list-decode x
let ?stack = [(f , ?xs, [])]
have wellf f using assms(2) by simp
moreover have length ?xs = arity f

using assms(2) by simp
ultimately have correct (?stack, None)

using step-correct valid-def by simp
with assms(3) have reachable (?stack, None) ([], Some v)

by simp
then obtain t where

iterate t step (?stack, None) = ([], Some v)
∀ t ′<t. fst (iterate t ′ step (?stack, None)) 6= []
using reachable-iterate-step-empty-stack by blast

then have t:
eval r-result [t, i, x] ↓= Suc v
∀ t ′<t. eval r-result [t ′, i, x] ↓= 0
using r-result-empty-stack-Some r-result-nonempty-stack assms(1 ,2)
by simp-all

then have eval r-result [t + t ′, i, x] ↓= Suc v for t ′

using r-result-empty-stack-stays assms r-result-Suc by simp
then have ∀ t ′≥t. eval r-result [t ′, i, x] ↓= Suc v

using le-Suc-ex by blast
with t(2) show ?thesis by auto

qed

lemma r-result-diverg:
assumes i = encode f

and recfn (e-length x) f
and eval f (list-decode x) ↑

shows eval r-result [t, i, x] ↓= 0
proof −

let ?xs = list-decode x
let ?stack = [(f , ?xs, [])]
have recfn (length ?xs) f

using assms(2) by auto
then have correct (?stack, None)

using step-correct valid-def by simp
with assms(3) have nonterminating (?stack, None)

by simp
then show ?thesis

using r-result-nonempty-stack assms(1 ,2) by simp
qed

Now we can define the universal partial recursive function. This function executes r-result

67

for increasing time bounds, waits for it to reach a final configuration, and then extracts
its result value. If no final configuration is reached, the universal function diverges.
definition r-univ ≡

Cn 2 r-dec [Cn 2 r-result [Mn 2 (Cn 3 r-not [r-result]), Id 2 0 , Id 2 1]]

lemma r-univ-recfn [simp]: recfn 2 r-univ
unfolding r-univ-def by simp

theorem r-univ:
assumes i = encode f and recfn (e-length x) f
shows eval r-univ [i, x] = eval f (list-decode x)

proof −
let ?cond = Cn 3 r-not [r-result]
let ?while = Mn 2 ?cond
let ?res = Cn 2 r-result [?while, Id 2 0 , Id 2 1]
let ?xs = list-decode x
have ∗: eval ?cond [t, i, x] ↓= (if eval r-result [t, i, x] ↓= 0 then 1 else 0) for t
proof −

have eval ?cond [t, i, x] = eval r-not [the (eval r-result [t, i, x])]
using r-result-total by simp

moreover have eval r-result [t, i, x] ↓
by (simp add: r-result-total)

ultimately show ?thesis by auto
qed
show ?thesis
proof (cases eval f ?xs ↑)

case True
then show ?thesis

unfolding r-univ-def using ∗ r-result-diverg[OF assms] eval-Mn-diverg by simp
next

case False
then obtain v where v: eval f ?xs ↓= v by auto
then obtain t where t:
∀ t ′≥t. eval r-result [t ′, i, x] ↓= Suc v
∀ t ′<t. eval r-result [t ′, i, x] ↓= 0
using r-result-converg[OF assms] by blast

then have
∀ t ′≥t. eval ?cond [t ′, i, x] ↓= 0
∀ t ′<t. eval ?cond [t ′, i, x] ↓= 1
using ∗ by simp-all

then have eval ?while [i, x] ↓= t
using eval-Mn-convergI [of 2 ?cond [i, x] t] by simp

then have eval ?res [i, x] = eval r-result [t, i, x]
by simp

then have eval ?res [i, x] ↓= Suc v
using t(1) by simp

then show ?thesis
unfolding r-univ-def using v by simp

qed
qed

theorem r-univ ′:
assumes recfn (e-length x) f
shows eval r-univ [encode f , x] = eval f (list-decode x)
using r-univ assms by simp

68

Universal functions for every arity can be built from r-univ.
definition r-universal :: nat ⇒ recf where

r-universal n ≡ Cn (Suc n) r-univ [Id (Suc n) 0 , r-shift (r-list-encode (n − 1))]

lemma r-universal-recfn [simp]: n > 0 =⇒ recfn (Suc n) (r-universal n)
unfolding r-universal-def by simp

lemma r-universal:
assumes recfn n f and length xs = n
shows eval (r-universal n) (encode f # xs) = eval f xs
unfolding r-universal-def using wellf-arity-nonzero assms r-list-encode r-univ ′

by fastforce

We will mostly be concerned with computing unary functions. Hence we introduce
separate functions for this case.
definition r-result1 ≡

Cn 3 r-result [Id 3 0 , Id 3 1 , Cn 3 r-singleton-encode [Id 3 2]]

lemma r-result1-prim [simp]: prim-recfn 3 r-result1
unfolding r-result1-def by simp

lemma r-result1-total: total r-result1
using Mn-free-imp-total by simp

lemma r-result1 [simp]:
eval r-result1 [t, i, x] = eval r-result [t, i, singleton-encode x]
unfolding r-result1-def by simp

The following function will be our standard Gödel numbering of all unary partial recur-
sive functions.
definition r-phi ≡ r-universal 1

lemma r-phi-recfn [simp]: recfn 2 r-phi
unfolding r-phi-def by simp

theorem r-phi:
assumes i = encode f and recfn 1 f
shows eval r-phi [i, x] = eval f [x]
unfolding r-phi-def using r-universal assms by force

corollary r-phi ′:
assumes recfn 1 f
shows eval r-phi [encode f , x] = eval f [x]
using assms r-phi by simp

lemma r-phi ′′: eval r-phi [i, x] = eval r-univ [i, singleton-encode x]
unfolding r-universal-def r-phi-def using r-list-encode by simp

1.6 Applications of the universal function

In this section we shall see some ways r-univ and r-result can be used.

69

1.6.1 Lazy conditional evaluation

With the help of r-univ we can now define a lazy variant of r-ifz, in which only one
branch is evaluated.
definition r-lazyifzero :: nat ⇒ nat ⇒ nat ⇒ recf where

r-lazyifzero n j1 j2 ≡
Cn (Suc (Suc n)) r-univ
[Cn (Suc (Suc n)) r-ifz [Id (Suc (Suc n)) 0 , r-constn (Suc n) j1, r-constn (Suc n) j2],
r-shift (r-list-encode n)]

lemma r-lazyifzero-recfn: recfn (Suc (Suc n)) (r-lazyifzero n j1 j2)
using r-lazyifzero-def by simp

lemma r-lazyifzero:
assumes length xs = Suc n

and j1 = encode f 1
and j2 = encode f 2
and recfn (Suc n) f 1
and recfn (Suc n) f 2

shows eval (r-lazyifzero n j1 j2) (c # xs) = (if c = 0 then eval f 1 xs else eval f 2 xs)
proof −

let ?a = r-constn (Suc n) n
let ?b = Cn (Suc (Suc n)) r-ifz
[Id (Suc (Suc n)) 0 , r-constn (Suc n) j1, r-constn (Suc n) j2]

let ?c = r-shift (r-list-encode n)
have eval ?a (c # xs) ↓= n

using assms(1) by simp
moreover have eval ?b (c # xs) ↓= (if c = 0 then j1 else j2)

using assms(1) by simp
moreover have eval ?c (c # xs) ↓= list-encode xs

using assms(1) r-list-encode r-shift by simp
ultimately have eval (r-lazyifzero n j1 j2) (c # xs) =

eval r-univ [if c = 0 then j1 else j2, list-encode xs]
unfolding r-lazyifzero-def using r-lazyifzero-recfn assms(1) by simp

then show ?thesis using assms r-univ by simp
qed

definition r-lifz :: recf ⇒ recf ⇒ recf where
r-lifz f g ≡ r-lazyifzero (arity f − 1) (encode f) (encode g)

lemma r-lifz-recfn [simp]:
assumes recfn n f and recfn n g
shows recfn (Suc n) (r-lifz f g)
using assms r-lazyifzero-recfn r-lifz-def wellf-arity-nonzero by auto

lemma r-lifz [simp]:
assumes length xs = n and recfn n f and recfn n g
shows eval (r-lifz f g) (c # xs) = (if c = 0 then eval f xs else eval g xs)
using assms r-lazyifzero r-lifz-def wellf-arity-nonzero
by (metis One-nat-def Suc-pred)

1.6.2 Enumerating the domains of partial recursive functions

In this section we define a binary function enumdom such that for all i, the domain of
ϕi equals {enumdom(i, x) | enumdom(i, x) ↓}. In other words, the image of enumdomi

70

is the domain of ϕi.
First we need some more properties of r-leap and r-result.
lemma r-leap-Suc: eval r-leap [Suc t, i, x] = eval r-step [the (eval r-leap [t, i, x])]
proof −

have eval r-leap [Suc t, i, x] =
eval (Cn 4 r-step [Id 4 1]) [t, the (eval r-leap [t, i, x]), i, x]

using r-leap-total eval-Pr-converg-Suc r-leap-def
by (metis length-Cons list.size(3) numeral-2-eq-2 numeral-3-eq-3 r-leap-prim)

then show ?thesis using r-step-prim by auto
qed

lemma r-leap-Suc-saturating:
assumes pdec1 (the (eval r-leap [t, i, x])) = 0
shows eval r-leap [Suc t, i, x] = eval r-leap [t, i, x]

proof −
let ?e = eval r-leap [t, i, x]
have eval r-step [the ?e] ↓= estep (the ?e)

using r-step by simp
then have eval r-step [the ?e] ↓= prod-encode (0 , e2rv (the ?e))

using estep-def assms by (simp add: e2stack-def)
then have eval r-step [the ?e] ↓= prod-encode (pdec1 (the ?e), pdec2 (the ?e))

using assms by (simp add: e2rv-def)
then have eval r-step [the ?e] ↓= the ?e by simp
then show ?thesis using r-leap-total r-leap-Suc by simp

qed

lemma r-result-Suc-saturating:
assumes eval r-result [t, i, x] ↓= Suc v
shows eval r-result [Suc t, i, x] ↓= Suc v

proof −
let ?r = λt. eval r-ifz [pdec1 (the (eval r-leap [t, i, x])), pdec2 (the (eval r-leap [t, i, x])), 0]
have ?r t ↓= Suc v

using assms unfolding r-result-def using r-leap-total r-leap-prim by simp
then have pdec1 (the (eval r-leap [t, i, x])) = 0

using option.sel by fastforce
then have eval r-leap [Suc t, i, x] = eval r-leap [t, i, x]

using r-leap-Suc-saturating by simp
moreover have eval r-result [t, i, x] = ?r t

unfolding r-result-def using r-leap-total r-leap-prim by simp
moreover have eval r-result [Suc t, i, x] = ?r (Suc t)

unfolding r-result-def using r-leap-total r-leap-prim by simp
ultimately have eval r-result [Suc t, i, x] = eval r-result [t, i, x]

by simp
with assms show ?thesis by simp

qed

lemma r-result-saturating:
assumes eval r-result [t, i, x] ↓= Suc v
shows eval r-result [t + d, i, x] ↓= Suc v
using r-result-Suc-saturating assms by (induction d) simp-all

lemma r-result-converg ′:
assumes eval r-univ [i, x] ↓= v
shows ∃ t. (∀ t ′≥t. eval r-result [t ′, i, x] ↓= Suc v) ∧ (∀ t ′<t. eval r-result [t ′, i, x] ↓= 0)

proof −

71

let ?f = Cn 3 r-not [r-result]
let ?m = Mn 2 ?f
have recfn 2 ?m by simp
have eval-m: eval ?m [i, x] ↓
proof

assume eval ?m [i, x] ↑
then have eval r-univ [i, x] ↑

unfolding r-univ-def by simp
with assms show False by simp

qed
then obtain t where t: eval ?m [i, x] ↓= t

by auto
then have f-t: eval ?f [t, i, x] ↓= 0 and f-less-t:

∧
y. y < t =⇒ eval ?f [y, i, x] ↓6= 0

using eval-Mn-convergE [of 2 ?f [i, x] t] ‹recfn 2 ?m›
by (metis (no-types, lifting) One-nat-def Suc-1 length-Cons list.size(3))+

have eval-Cn2 : eval (Cn 2 r-result [?m, Id 2 0 , Id 2 1]) [i, x] ↓
proof

assume eval (Cn 2 r-result [?m, Id 2 0 , Id 2 1]) [i, x] ↑
then have eval r-univ [i, x] ↑

unfolding r-univ-def by simp
with assms show False by simp

qed
have eval r-result [t, i, x] ↓= Suc v
proof (rule ccontr)

assume neq-Suc: ¬ eval r-result [t, i, x] ↓= Suc v
show False
proof (cases eval r-result [t, i, x] = None)

case True
then show ?thesis using f-t by simp

next
case False
then obtain w where w: eval r-result [t, i, x] ↓= w w 6= Suc v

using neq-Suc by auto
moreover have eval r-result [t, i, x] ↓6= 0

by (rule ccontr ; use f-t in auto)
ultimately have w 6= 0 by simp
have eval (Cn 2 r-result [?m, Id 2 0 , Id 2 1]) [i, x] =

eval r-result [the (eval ?m [i, x]), i, x]
using eval-m by simp

with w t have eval (Cn 2 r-result [?m, Id 2 0 , Id 2 1]) [i, x] ↓= w
by simp

moreover have eval r-univ [i, x] =
eval r-dec [the (eval (Cn 2 r-result [?m, Id 2 0 , Id 2 1]) [i, x])]

unfolding r-univ-def using eval-Cn2 by simp
ultimately have eval r-univ [i, x] = eval r-dec [w] by simp
then have eval r-univ [i, x] ↓= w − 1 by simp
with assms ‹w 6= 0 › w show ?thesis by simp

qed
qed
then have ∀ t ′≥t. eval r-result [t ′, i, x] ↓= Suc v

using r-result-saturating le-Suc-ex by blast
moreover have eval r-result [y, i, x] ↓= 0 if y < t for y
proof (rule ccontr)

assume neq0 : eval r-result [y, i, x] 6= Some 0
then show False
proof (cases eval r-result [y, i, x] = None)

72

case True
then show ?thesis using f-less-t ‹y < t› by fastforce

next
case False
then obtain v where eval r-result [y, i, x] ↓= v v 6= 0

using neq0 by auto
then have eval ?f [y, i, x] ↓= 0 by simp
then show ?thesis using f-less-t ‹y < t› by simp

qed
qed
ultimately show ?thesis by auto

qed

lemma r-result-diverg ′:
assumes eval r-univ [i, x] ↑
shows eval r-result [t, i, x] ↓= 0

proof (rule ccontr)
let ?f = Cn 3 r-not [r-result]
let ?m = Mn 2 ?f
assume eval r-result [t, i, x] 6= Some 0
with r-result-total have eval r-result [t, i, x] ↓6= 0 by simp
then have eval ?f [t, i, x] ↓= 0 by auto
moreover have eval ?f [y, i, x] ↓ if y < t for y

using r-result-total by simp
ultimately have ∃ z. eval ?f (z # [i, x]) ↓= 0 ∧ (∀ y<z. eval ?f (y # [i, x]) ↓)

by blast
then have eval ?m [i, x] ↓ by simp
then have eval r-univ [i, x] ↓

unfolding r-univ-def using r-result-total by simp
with assms show False by simp

qed

lemma r-result-bivalent ′:
assumes eval r-univ [i, x] ↓= v
shows eval r-result [t, i, x] ↓= Suc v ∨ eval r-result [t, i, x] ↓= 0
using r-result-converg ′[OF assms] not-less by blast

lemma r-result-Some ′:
assumes eval r-result [t, i, x] ↓= Suc v
shows eval r-univ [i, x] ↓= v

proof (rule ccontr)
assume not-v: ¬ eval r-univ [i, x] ↓= v
show False
proof (cases eval r-univ [i, x] ↑)

case True
then show ?thesis

using assms r-result-diverg ′ by simp
next

case False
then obtain w where w: eval r-univ [i, x] ↓= w w 6= v

using not-v by auto
then have eval r-result [t, i, x] ↓= Suc w ∨ eval r-result [t, i, x] ↓= 0

using r-result-bivalent ′ by simp
then show ?thesis using assms not-v w by simp

qed
qed

73

lemma r-result1-converg ′:
assumes eval r-phi [i, x] ↓= v
shows ∃ t.
(∀ t ′≥t. eval r-result1 [t ′, i, x] ↓= Suc v) ∧
(∀ t ′<t. eval r-result1 [t ′, i, x] ↓= 0)

using assms r-result1 r-result-converg ′ r-phi ′′ by simp

lemma r-result1-diverg ′:
assumes eval r-phi [i, x] ↑
shows eval r-result1 [t, i, x] ↓= 0
using assms r-result1 r-result-diverg ′ r-phi ′′ by simp

lemma r-result1-Some ′:
assumes eval r-result1 [t, i, x] ↓= Suc v
shows eval r-phi [i, x] ↓= v
using assms r-result1 r-result-Some ′ r-phi ′′ by simp

The next function performs dovetailing in order to evaluate ϕi for every argument for
arbitrarily many steps. Given i and z, the function decodes z into a pair (x, t) and
outputs zero (meaning “true”) iff. the computation of ϕi on input x halts after at most
t steps. Fixing i and varying z will eventually compute ϕi for every argument in the
domain of ϕi sufficiently long for it to converge.
definition r-dovetail ≡

Cn 2 r-not [Cn 2 r-result1 [Cn 2 r-pdec2 [Id 2 1], Id 2 0 , Cn 2 r-pdec1 [Id 2 1]]]

lemma r-dovetail-prim: prim-recfn 2 r-dovetail
by (simp add: r-dovetail-def)

lemma r-dovetail:
eval r-dovetail [i, z] ↓=
(if the (eval r-result1 [pdec2 z, i, pdec1 z]) > 0 then 0 else 1)

unfolding r-dovetail-def using r-result-total by simp

The function enumdom works as follows in order to enumerate exactly the domain of
ϕi. Given i and y it searches for the minimum z ≥ y for which the dovetail function
returns true. This z is decoded into (x, t) and the x is output. In this way every value
output by enumdom is in the domain of ϕi by construction of r-dovetail. Conversely an
x in the domain will be output for y = (x, t) where t is such that ϕi halts on x within t
steps.
definition r-dovedelay ≡

Cn 3 r-and
[Cn 3 r-dovetail [Id 3 1 , Id 3 0],
Cn 3 r-ifle [Id 3 2 , Id 3 0 , r-constn 2 0 , r-constn 2 1]]

lemma r-dovedelay-prim: prim-recfn 3 r-dovedelay
unfolding r-dovedelay-def using r-dovetail-prim by simp

lemma r-dovedelay:
eval r-dovedelay [z, i, y] ↓=
(if the (eval r-result1 [pdec2 z, i, pdec1 z]) > 0 ∧ y ≤ z then 0 else 1)

by (simp add: r-dovedelay-def r-dovetail r-dovetail-prim)

definition r-enumdom ≡ Cn 2 r-pdec1 [Mn 2 r-dovedelay]

74

lemma r-enumdom-recfn [simp]: recfn 2 r-enumdom
by (simp add: r-enumdom-def r-dovedelay-prim)

lemma r-enumdom [simp]:
eval r-enumdom [i, y] =
(if ∃ z. eval r-dovedelay [z, i, y] ↓= 0
then Some (pdec1 (LEAST z. eval r-dovedelay [z, i, y] ↓= 0))
else None)

proof −
let ?h = Mn 2 r-dovedelay
have total r-dovedelay

using r-dovedelay-prim by blast
then have eval ?h [i, y] =
(if (∃ z. eval r-dovedelay [z, i, y] ↓= 0)
then Some (LEAST z . eval r-dovedelay [z, i, y] ↓= 0)
else None)

using r-dovedelay-prim r-enumdom-recfn eval-Mn-convergI by simp
then show ?thesis

unfolding r-enumdom-def using r-dovedelay-prim by simp
qed

If i is the code of the empty function, r-enumdom has an empty domain, too.
lemma r-enumdom-empty-domain:

assumes
∧

x. eval r-phi [i, x] ↑
shows

∧
y. eval r-enumdom [i, y] ↑

using assms r-result1-diverg ′ r-dovedelay by simp

If i is the code of a function with non-empty domain, r-enumdom enumerates its domain.
lemma r-enumdom-nonempty-domain:

assumes eval r-phi [i, x0] ↓
shows

∧
y. eval r-enumdom [i, y] ↓

and
∧

x. eval r-phi [i, x] ↓ ←→ (∃ y. eval r-enumdom [i, y] ↓= x)
proof −

show eval r-enumdom [i, y] ↓ for y
proof −

obtain t where t: ∀ t ′≥t. the (eval r-result1 [t ′, i, x0]) > 0
using assms r-result1-converg ′ by fastforce

let ?z = prod-encode (x0, max t y)
have y ≤ ?z

using le-prod-encode-2 max.bounded-iff by blast
moreover have pdec2 ?z ≥ t by simp
ultimately have the (eval r-result1 [pdec2 ?z, i, pdec1 ?z]) > 0

using t by simp
with ‹y ≤ ?z› r-dovedelay have eval r-dovedelay [?z, i, y] ↓= 0

by presburger
then show eval r-enumdom [i, y] ↓

using r-enumdom by auto
qed
show eval r-phi [i, x] ↓ = (∃ y. eval r-enumdom [i, y] ↓= x) for x
proof

show ∃ y. eval r-enumdom [i, y] ↓= x if eval r-phi [i, x] ↓ for x
proof −

from that obtain v where eval r-phi [i, x] ↓= v by auto
then obtain t where t: the (eval r-result1 [t, i, x]) > 0

using r-result1-converg ′ assms

75

by (metis Zero-not-Suc dual-order .refl option.sel zero-less-iff-neq-zero)
let ?y = prod-encode (x, t)
have eval r-dovedelay [?y, i, ?y] ↓= 0

using r-dovedelay t by simp
moreover from this have (LEAST z . eval r-dovedelay [z, i, ?y] ↓= 0) = ?y

using gr-implies-not-zero r-dovedelay by (intro Least-equality; fastforce)
ultimately have eval r-enumdom [i, ?y] ↓= x

using r-enumdom by auto
then show ?thesis by blast

qed
show eval r-phi [i, x] ↓ if ∃ y. eval r-enumdom [i, y] ↓= x for x
proof −

from that obtain y where y: eval r-enumdom [i, y] ↓= x
by auto

then have eval r-enumdom [i, y] ↓
by simp

then have
∃ z. eval r-dovedelay [z, i, y] ↓= 0 and
∗: eval r-enumdom [i, y] ↓= pdec1 (LEAST z . eval r-dovedelay [z, i, y] ↓= 0)
(is - ↓= pdec1 ?z)

using r-enumdom by metis+
then have z: eval r-dovedelay [?z, i, y] ↓= 0

by (meson wellorder-Least-lemma(1))
have the (eval r-result1 [pdec2 ?z, i, pdec1 ?z]) > 0
proof (rule ccontr)

assume ¬ (the (eval r-result1 [pdec2 ?z, i, pdec1 ?z]) > 0)
then show False

using r-dovedelay z by simp
qed
then have eval r-phi [i, pdec1 ?z] ↓

using r-result1-diverg ′ assms by fastforce
then show ?thesis using y ∗ by auto

qed
qed

qed

For every ϕi with non-empty domain there is a total recursive function that enumerates
the domain of ϕi.
lemma nonempty-domain-enumerable:

assumes eval r-phi [i, x0] ↓
shows ∃ g. recfn 1 g ∧ total g ∧ (∀ x. eval r-phi [i, x] ↓ ←→ (∃ y. eval g [y] ↓= x))

proof −
define g where g ≡ Cn 1 r-enumdom [r-const i, Id 1 0]
then have recfn 1 g by simp
moreover from this have total g

using totalI1 [of g] g-def assms r-enumdom-nonempty-domain(1) by simp
moreover have eval r-phi [i, x] ↓ ←→ (∃ y. eval g [y] ↓= x) for x

unfolding g-def using r-enumdom-nonempty-domain(2)[OF assms] by simp
ultimately show ?thesis by auto

qed

1.6.3 Concurrent evaluation of functions

We define a function that simulates two recf s “concurrently” for the same argument and
returns the result of the one converging first. If both diverge, so does the simulation

76

function.
definition r-both ≡

Cn 4 r-ifz
[Cn 4 r-result1 [Id 4 0 , Id 4 1 , Id 4 3],
Cn 4 r-ifz
[Cn 4 r-result1 [Id 4 0 , Id 4 2 , Id 4 3],
Cn 4 r-prod-encode [r-constn 3 2 , r-constn 3 0],
Cn 4 r-prod-encode
[r-constn 3 1 , Cn 4 r-dec [Cn 4 r-result1 [Id 4 0 , Id 4 2 , Id 4 3]]]],

Cn 4 r-prod-encode
[r-constn 3 0 , Cn 4 r-dec [Cn 4 r-result1 [Id 4 0 , Id 4 1 , Id 4 3]]]]

lemma r-both-prim [simp]: prim-recfn 4 r-both
unfolding r-both-def by simp

lemma r-both:
assumes

∧
x. eval r-phi [i, x] = eval f [x]

and
∧

x. eval r-phi [j, x] = eval g [x]
shows eval f [x] ↑ ∧ eval g [x] ↑ =⇒ eval r-both [t, i, j, x] ↓= prod-encode (2 , 0)

and [[eval r-result1 [t, i, x] ↓= 0 ; eval r-result1 [t, j, x] ↓= 0]] =⇒
eval r-both [t, i, j, x] ↓= prod-encode (2 , 0)

and eval r-result1 [t, i, x] ↓= Suc v =⇒
eval r-both [t, i, j, x] ↓= prod-encode (0 , the (eval f [x]))

and [[eval r-result1 [t, i, x] ↓= 0 ; eval r-result1 [t, j, x] ↓= Suc v]] =⇒
eval r-both [t, i, j, x] ↓= prod-encode (1 , the (eval g [x]))

proof −
have r-result-total [simp]: eval r-result [t, k, x] ↓ for t k x

using r-result-total by simp
{

assume eval f [x] ↑ ∧ eval g [x] ↑
then have eval r-result1 [t, i, x] ↓= 0 and eval r-result1 [t, j, x] ↓= 0

using assms r-result1-diverg ′ by auto
then show eval r-both [t, i, j, x] ↓= prod-encode (2 , 0)

unfolding r-both-def by simp
next

assume eval r-result1 [t, i, x] ↓= 0 and eval r-result1 [t, j, x] ↓= 0
then show eval r-both [t, i, j, x] ↓= prod-encode (2 , 0)

unfolding r-both-def by simp
next

assume eval r-result1 [t, i, x] ↓= Suc v
moreover from this have eval r-result1 [t, i, x] ↓= Suc (the (eval f [x]))

using assms r-result1-Some ′ by fastforce
ultimately show eval r-both [t, i, j, x] ↓= prod-encode (0 , the (eval f [x]))

unfolding r-both-def by auto
next

assume eval r-result1 [t, i, x] ↓= 0 and eval r-result1 [t, j, x] ↓= Suc v
moreover from this have eval r-result1 [t, j, x] ↓= Suc (the (eval g [x]))

using assms r-result1-Some ′ by fastforce
ultimately show eval r-both [t, i, j, x] ↓= prod-encode (1 , the (eval g [x]))

unfolding r-both-def by auto
}

qed

definition r-parallel ≡
Cn 3 r-both [Mn 3 (Cn 4 r-le [Cn 4 r-pdec1 [r-both], r-constn 3 1]), Id 3 0 , Id 3 1 , Id 3 2]

77

lemma r-parallel-recfn [simp]: recfn 3 r-parallel
unfolding r-parallel-def by simp

lemma r-parallel:
assumes

∧
x. eval r-phi [i, x] = eval f [x]

and
∧

x. eval r-phi [j, x] = eval g [x]
shows eval f [x] ↑ ∧ eval g [x] ↑ =⇒ eval r-parallel [i, j, x] ↑

and eval f [x] ↓ ∧ eval g [x] ↑ =⇒
eval r-parallel [i, j, x] ↓= prod-encode (0 , the (eval f [x]))

and eval g [x] ↓ ∧ eval f [x] ↑ =⇒
eval r-parallel [i, j, x] ↓= prod-encode (1 , the (eval g [x]))

and eval f [x] ↓ ∧ eval g [x] ↓ =⇒
eval r-parallel [i, j, x] ↓= prod-encode (0 , the (eval f [x])) ∨
eval r-parallel [i, j, x] ↓= prod-encode (1 , the (eval g [x]))

proof −
let ?cond = Cn 4 r-le [Cn 4 r-pdec1 [r-both], r-constn 3 1]
define m where m = Mn 3 ?cond
then have m: r-parallel = Cn 3 r-both [m, Id 3 0 , Id 3 1 , Id 3 2]

unfolding r-parallel-def by simp
from m-def have recfn 3 m by simp
{

assume eval f [x] ↑ ∧ eval g [x] ↑
then have ∀ t. eval r-both [t, i, j, x] ↓= prod-encode (2 , 0)

using assms r-both by simp
then have eval ?cond [t, i, j, x] ↓= 1 for t

by simp
then have eval m [i, j, x] ↑

unfolding m-def using eval-Mn-diverg by simp
then have eval (Cn 3 r-both [m, Id 3 0 , Id 3 1 , Id 3 2]) [i, j, x] ↑

using ‹recfn 3 m› by simp
then show eval r-parallel [i, j, x] ↑

using m by simp
next

assume eval f [x] ↓ ∧ eval g [x] ↓
then obtain vf vg where v: eval f [x] ↓= vf eval g [x] ↓= vg

by auto
then obtain tf where tf :
∀ t≥tf . eval r-result1 [t, i, x] ↓= Suc vf
∀ t<tf . eval r-result1 [t, i, x] ↓= 0
using r-result1-converg ′ assms by metis

from v obtain tg where tg:
∀ t≥tg. eval r-result1 [t, j, x] ↓= Suc vg
∀ t<tg. eval r-result1 [t, j, x] ↓= 0
using r-result1-converg ′ assms by metis

show eval r-parallel [i, j, x] ↓= prod-encode (0 , the (eval f [x])) ∨
eval r-parallel [i, j, x] ↓= prod-encode (1 , the (eval g [x]))

proof (cases tf ≤ tg)
case True
with tg(2) have j0 : ∀ t<tf . eval r-result1 [t, j, x] ↓= 0

by simp
have ∗: eval r-both [tf , i, j, x] ↓= prod-encode (0 , the (eval f [x]))

using r-both(3) assms tf (1) by simp
have eval m [i, j, x] ↓= tf

unfolding m-def
proof (rule eval-Mn-convergI)

78

show recfn (length [i, j, x]) (Mn 3 ?cond) by simp
have eval (Cn 4 r-pdec1 [r-both]) [tf , i, j, x] ↓= 0

using ∗ by simp
then show eval ?cond [tf , i, j, x] ↓= 0 by simp
have eval r-both [t, i, j, x] ↓= prod-encode (2 , 0) if t < tf for t

using tf (2) r-both(2) assms that j0 by simp
then have eval ?cond [t, i, j, x] ↓= 1 if t < tf for t

using that by simp
then show

∧
y. y < tf =⇒ eval ?cond [y, i, j, x] ↓6= 0 by simp

qed
moreover have eval r-parallel [i, j, x] =

eval (Cn 3 r-both [m, Id 3 0 , Id 3 1 , Id 3 2]) [i, j, x]
using m by simp

ultimately have eval r-parallel [i, j, x] = eval r-both [tf , i, j, x]
using ‹recfn 3 m› by simp

with ∗ have eval r-parallel [i, j, x] ↓= prod-encode (0 , the (eval f [x]))
by simp

then show ?thesis by simp
next

case False
with tf (2) have i0 : ∀ t≤tg. eval r-result1 [t, i, x] ↓= 0

by simp
then have ∗: eval r-both [tg, i, j, x] ↓= prod-encode (1 , the (eval g [x]))

using assms r-both(4) tg(1) by auto
have eval m [i, j, x] ↓= tg

unfolding m-def
proof (rule eval-Mn-convergI)

show recfn (length [i, j, x]) (Mn 3 ?cond) by simp
have eval (Cn 4 r-pdec1 [r-both]) [tg, i, j, x] ↓= 1

using ∗ by simp
then show eval ?cond [tg, i, j, x] ↓= 0 by simp
have eval r-both [t, i, j, x] ↓= prod-encode (2 , 0) if t < tg for t

using tg(2) r-both(2) assms that i0 by simp
then have eval ?cond [t, i, j, x] ↓= 1 if t < tg for t

using that by simp
then show

∧
y. y < tg =⇒ eval ?cond [y, i, j, x] ↓6= 0 by simp

qed
moreover have eval r-parallel [i, j, x] =

eval (Cn 3 r-both [m, Id 3 0 , Id 3 1 , Id 3 2]) [i, j, x]
using m by simp

ultimately have eval r-parallel [i, j, x] = eval r-both [tg, i, j, x]
using ‹recfn 3 m› by simp

with ∗ have eval r-parallel [i, j, x] ↓= prod-encode (1 , the (eval g [x]))
by simp

then show ?thesis by simp
qed

next
assume eval-fg: eval g [x] ↓ ∧ eval f [x] ↑
then have i0 : ∀ t. eval r-result1 [t, i, x] ↓= 0

using r-result1-diverg ′ assms by auto
from eval-fg obtain v where eval g [x] ↓= v

by auto
then obtain t0 where t0 :
∀ t≥t0. eval r-result1 [t, j, x] ↓= Suc v
∀ t<t0. eval r-result1 [t, j, x] ↓= 0
using r-result1-converg ′ assms by metis

79

then have ∗: eval r-both [t0, i, j, x] ↓= prod-encode (1 , the (eval g [x]))
using r-both(4) assms i0 by simp

have eval m [i, j, x] ↓= t0
unfolding m-def

proof (rule eval-Mn-convergI)
show recfn (length [i, j, x]) (Mn 3 ?cond) by simp
have eval (Cn 4 r-pdec1 [r-both]) [t0, i, j, x] ↓= 1

using ∗ by simp
then show eval ?cond [t0, i, j, x] ↓= 0 by simp
have eval r-both [t, i, j, x] ↓= prod-encode (2 , 0) if t < t0 for t

using t0 (2) r-both(2) assms that i0 by simp
then have eval ?cond [t, i, j, x] ↓= 1 if t < t0 for t

using that by simp
then show

∧
y. y < t0 =⇒ eval ?cond [y, i, j, x] ↓6= 0 by simp

qed
moreover have eval r-parallel [i, j, x] =

eval (Cn 3 r-both [m, Id 3 0 , Id 3 1 , Id 3 2]) [i, j, x]
using m by simp

ultimately have eval r-parallel [i, j, x] = eval r-both [t0, i, j, x]
using ‹recfn 3 m› by simp

with ∗ show eval r-parallel [i, j, x] ↓= prod-encode (1 , the (eval g [x]))
by simp

next
assume eval-fg: eval f [x] ↓ ∧ eval g [x] ↑
then have j0 : ∀ t. eval r-result1 [t, j, x] ↓= 0

using r-result1-diverg ′ assms by auto
from eval-fg obtain v where eval f [x] ↓= v

by auto
then obtain t0 where t0 :
∀ t≥t0. eval r-result1 [t, i, x] ↓= Suc v
∀ t<t0. eval r-result1 [t, i, x] ↓= 0
using r-result1-converg ′ assms by metis

then have ∗: eval r-both [t0, i, j, x] ↓= prod-encode (0 , the (eval f [x]))
using r-both(3) assms by blast

have eval m [i, j, x] ↓= t0
unfolding m-def

proof (rule eval-Mn-convergI)
show recfn (length [i, j, x]) (Mn 3 ?cond) by simp
have eval (Cn 4 r-pdec1 [r-both]) [t0, i, j, x] ↓= 0

using ∗ by simp
then show eval ?cond [t0, i, j, x] ↓= 0

by simp
have eval r-both [t, i, j, x] ↓= prod-encode (2 , 0) if t < t0 for t

using t0 (2) r-both(2) assms that j0 by simp
then have eval ?cond [t, i, j, x] ↓= 1 if t < t0 for t

using that by simp
then show

∧
y. y < t0 =⇒ eval ?cond [y, i, j, x] ↓6= 0 by simp

qed
moreover have eval r-parallel [i, j, x] =

eval (Cn 3 r-both [m, Id 3 0 , Id 3 1 , Id 3 2]) [i, j, x]
using m by simp

ultimately have eval r-parallel [i, j, x] = eval r-both [t0, i, j, x]
using ‹recfn 3 m› by simp

with ∗ show eval r-parallel [i, j, x] ↓= prod-encode (0 , the (eval f [x]))
by simp

}

80

qed

end
theory Standard-Results

imports Universal
begin

1.7 Kleene normal form and the number of µ-operations

Kleene’s original normal form theorem [11] states that every partial recursive f can be
expressed as f(x) = u(µy[t(i, x, y) = 0] for some i, where u and t are specially crafted
primitive recursive functions tied to Kleene’s definition of partial recursive functions.
Rogers [12, p. 29f.] relaxes the theorem by allowing u and t to be any primitive recursive
functions of arity one and three, respectively. Both versions require a separate t-predicate
for every arity. We will show a unified version for all arities by treating x as an encoded
list of arguments.
Our universal function

r-univ ≡
Cn 2 r-dec [Cn 2 r-result [Mn 2 (Cn 3 r-not [r-result]), Id 2 0 , Id 2 1]]

can represent all partial recursive functions (see theorem r-univ). Moreover r-result,
r-dec, and r-not are primitive recursive. As such r-univ could almost serve as the right-
hand side u(µy[t(i, x, y) = 0]. Its only flaw is that the outer function, the composition
of r-dec and r-result, is ternary rather than unary.
lemma r-univ-almost-kleene-nf :

r-univ '
(let u = Cn 3 r-dec [r-result];

t = Cn 3 r-not [r-result]
in Cn 2 u [Mn 2 t, Id 2 0 , Id 2 1])

unfolding r-univ-def by (rule exteqI) simp-all

We can remedy the wrong arity with some encoding and projecting.
definition r-nf-t :: recf where

r-nf-t ≡ Cn 3 r-and
[Cn 3 r-eq [Cn 3 r-pdec2 [Id 3 0], Cn 3 r-prod-encode [Id 3 1 , Id 3 2]],
Cn 3 r-not
[Cn 3 r-result
[Cn 3 r-pdec1 [Id 3 0],
Cn 3 r-pdec12 [Id 3 0],
Cn 3 r-pdec22 [Id 3 0]]]]

lemma r-nf-t-prim: prim-recfn 3 r-nf-t
unfolding r-nf-t-def by simp

definition r-nf-u :: recf where
r-nf-u ≡ Cn 1 r-dec [Cn 1 r-result [r-pdec1 , r-pdec12 , r-pdec22]]

lemma r-nf-u-prim: prim-recfn 1 r-nf-u
unfolding r-nf-u-def by simp

lemma r-nf-t-0 :
assumes eval r-result [pdec1 y, pdec12 y, pdec22 y] ↓6= 0

81

and pdec2 y = prod-encode (i, x)
shows eval r-nf-t [y, i, x] ↓= 0
unfolding r-nf-t-def using assms by auto

lemma r-nf-t-1 :
assumes eval r-result [pdec1 y, pdec12 y, pdec22 y] ↓= 0 ∨ pdec2 y 6= prod-encode (i, x)
shows eval r-nf-t [y, i, x] ↓= 1
unfolding r-nf-t-def using assms r-result-total by auto

The next function is just as universal as r-univ, but satisfies the conditions of the Kleene
normal form theorem because the outer funtion r-nf-u is unary.
definition r-normal-form ≡ Cn 2 r-nf-u [Mn 2 r-nf-t]

lemma r-normal-form-recfn: recfn 2 r-normal-form
unfolding r-normal-form-def using r-nf-u-prim r-nf-t-prim by simp

lemma r-univ-exteq-r-normal-form: r-univ ' r-normal-form
proof (rule exteqI)

show arity: arity r-univ = arity r-normal-form
using r-normal-form-recfn by simp

show eval r-univ xs = eval r-normal-form xs if length xs = arity r-univ for xs
proof −

have length xs = 2
using that by simp

then obtain i x where ix: [i, x] = xs
by (smt Suc-length-conv length-0-conv numeral-2-eq-2)

have eval r-univ [i, x] = eval r-normal-form [i, x]
proof (cases ∀ t. eval r-result [t, i, x] ↓= 0)

case True
then have eval r-univ [i, x] ↑

unfolding r-univ-def by simp
moreover have eval r-normal-form [i, x] ↑
proof −

have eval r-nf-t [y, i, x] ↓= 1 for y
using True r-nf-t-1 [of y i x] by fastforce

then show ?thesis
unfolding r-normal-form-def using r-nf-u-prim r-nf-t-prim by simp

qed
ultimately show ?thesis by simp

next
case False
then have ∃ t. eval r-result [t, i, x] ↓6= 0

by (simp add: r-result-total)
then obtain t where eval r-result [t, i, x] ↓6= 0

by auto
then have eval r-nf-t [triple-encode t i x, i, x] ↓= 0

using r-nf-t-0 by simp
then obtain y where y: eval (Mn 2 r-nf-t) [i, x] ↓= y

using r-nf-t-prim Mn-free-imp-total by fastforce
then have eval r-nf-t [y, i, x] ↓= 0

using r-nf-t-prim Mn-free-imp-total eval-Mn-convergE(2)[of 2 r-nf-t [i, x] y]
by simp

then have r-result: eval r-result [pdec1 y, pdec12 y, pdec22 y] ↓6= 0
and pdec2 : pdec2 y = prod-encode (i, x)
using r-nf-t-0 [of y i x] r-nf-t-1 [of y i x] r-result-total by auto

then have eval r-result [pdec1 y, i, x] ↓6= 0

82

by simp
then obtain v where v:

eval r-univ [pdec12 y, pdec22 y] ↓= v
eval r-result [pdec1 y, pdec12 y, pdec22 y] ↓= Suc v

using r-result r-result-bivalent ′[of pdec12 y pdec22 y - pdec1 y]
r-result-diverg ′[of pdec12 y pdec22 y pdec1 y]

by auto

have eval r-normal-form [i, x] = eval r-nf-u [y]
unfolding r-normal-form-def using y r-nf-t-prim r-nf-u-prim by simp

also have ... = eval r-dec [the (eval (Cn 1 r-result [r-pdec1 , r-pdec12 , r-pdec22]) [y])]
unfolding r-nf-u-def using r-result by simp

also have ... = eval r-dec [Suc v]
using v by simp

also have ... ↓= v
by simp

finally have eval r-normal-form [i, x] ↓= v .
moreover have eval r-univ [i, x] ↓= v

using v(1) pdec2 by simp
ultimately show ?thesis by simp

qed
with ix show ?thesis by simp

qed
qed

theorem normal-form:
assumes recfn n f
obtains i where ∀ x. e-length x = n −→ eval r-normal-form [i, x] = eval f (list-decode x)

proof −
have eval r-normal-form [encode f , x] = eval f (list-decode x) if e-length x = n for x

using r-univ-exteq-r-normal-form assms that exteq-def r-univ ′ by auto
then show ?thesis using that by auto

qed

As a consequence of the normal form theorem every partial recursive function can be
represented with exactly one application of the µ-operator.
fun count-Mn :: recf ⇒ nat where

count-Mn Z = 0
| count-Mn S = 0
| count-Mn (Id m n) = 0
| count-Mn (Cn n f gs) = count-Mn f + sum-list (map count-Mn gs)
| count-Mn (Pr n f g) = count-Mn f + count-Mn g
| count-Mn (Mn n f) = Suc (count-Mn f)

lemma count-Mn-zero-iff-prim: count-Mn f = 0 ←→ Mn-free f
by (induction f) auto

The normal form has only one µ-recursion.
lemma count-Mn-normal-form: count-Mn r-normal-form = 1

unfolding r-normal-form-def r-nf-u-def r-nf-t-def using count-Mn-zero-iff-prim by simp

lemma one-Mn-suffices:
assumes recfn n f
shows ∃ g. count-Mn g = 1 ∧ g ' f

proof −

83

have n > 0
using assms wellf-arity-nonzero by auto

obtain i where i:
∀ x. e-length x = n −→ eval r-normal-form [i, x] = eval f (list-decode x)
using normal-form[OF assms(1)] by auto

define g where g ≡ Cn n r-normal-form [r-constn (n − 1) i, r-list-encode (n − 1)]
then have recfn n g

using r-normal-form-recfn ‹n > 0 › by simp
then have g ' f

using g-def r-list-encode i assms by (intro exteqI) simp-all
moreover have count-Mn g = 1

unfolding g-def using count-Mn-normal-form count-Mn-zero-iff-prim by simp
ultimately show ?thesis by auto

qed

The previous lemma could have been obtained without r-normal-form directly from
r-univ.

1.8 The s-m-n theorem

For all m,n > 0 there is an (m+ 1)-ary primitive recursive function smn with

ϕ(m+n)
p (c1, . . . , cm, x1, . . . , xn) = ϕ

(n)
smn (p,c1,...,cm)(x1, . . . , xn)

for all p, c1, . . . , cm, x1, . . . , xn. Here, ϕ(n) is a function universal for n-ary partial recur-
sive functions, which we will represent by r-universal n

The smn functions compute codes of functions. We start simple: computing codes of the
unary constant functions.
fun code-const1 :: nat ⇒ nat where

code-const1 0 = 0
| code-const1 (Suc c) = quad-encode 3 1 1 (singleton-encode (code-const1 c))

lemma code-const1 : code-const1 c = encode (r-const c)
by (induction c) simp-all

definition r-code-const1-aux ≡
Cn 3 r-prod-encode
[r-constn 2 3 ,

Cn 3 r-prod-encode
[r-constn 2 1 ,

Cn 3 r-prod-encode
[r-constn 2 1 , Cn 3 r-singleton-encode [Id 3 1]]]]

lemma r-code-const1-aux-prim: prim-recfn 3 r-code-const1-aux
by (simp-all add: r-code-const1-aux-def)

lemma r-code-const1-aux:
eval r-code-const1-aux [i, r , c] ↓= quad-encode 3 1 1 (singleton-encode r)
by (simp add: r-code-const1-aux-def)

definition r-code-const1 ≡ r-shrink (Pr 1 Z r-code-const1-aux)

lemma r-code-const1-prim: prim-recfn 1 r-code-const1

84

by (simp-all add: r-code-const1-def r-code-const1-aux-prim)

lemma r-code-const1 : eval r-code-const1 [c] ↓= code-const1 c
proof −

let ?h = Pr 1 Z r-code-const1-aux
have eval ?h [c, x] ↓= code-const1 c for x

using r-code-const1-aux r-code-const1-def
by (induction c) (simp-all add: r-code-const1-aux-prim)

then show ?thesis by (simp add: r-code-const1-def r-code-const1-aux-prim)
qed

Functions that compute codes of higher-arity constant functions:
definition code-constn :: nat ⇒ nat ⇒ nat where

code-constn n c ≡
if n = 1 then code-const1 c
else quad-encode 3 n (code-const1 c) (singleton-encode (triple-encode 2 n 0))

lemma code-constn: code-constn (Suc n) c = encode (r-constn n c)
unfolding code-constn-def using code-const1 r-constn-def
by (cases n = 0) simp-all

definition r-code-constn :: nat ⇒ recf where
r-code-constn n ≡

if n = 1 then r-code-const1
else

Cn 1 r-prod-encode
[r-const 3 ,
Cn 1 r-prod-encode
[r-const n,
Cn 1 r-prod-encode
[r-code-const1 ,
Cn 1 r-singleton-encode
[Cn 1 r-prod-encode
[r-const 2 , Cn 1 r-prod-encode [r-const n, Z]]]]]]

lemma r-code-constn-prim: prim-recfn 1 (r-code-constn n)
by (simp-all add: r-code-constn-def r-code-const1-prim)

lemma r-code-constn: eval (r-code-constn n) [c] ↓= code-constn n c
by (auto simp add: r-code-constn-def r-code-const1 code-constn-def r-code-const1-prim)

Computing codes of m-ary projections:
definition code-id :: nat ⇒ nat ⇒ nat where

code-id m n ≡ triple-encode 2 m n

lemma code-id: encode (Id m n) = code-id m n
unfolding code-id-def by simp

The functions smn are represented by the following function. The value m corresponds
to the length of cs.
definition smn :: nat ⇒ nat ⇒ nat list ⇒ nat where

smn n p cs ≡ quad-encode
3
n
(encode (r-universal (n + length cs)))

85

(list-encode (code-constn n p # map (code-constn n) cs @ map (code-id n) [0 ..<n]))

lemma smn:
assumes n > 0
shows smn n p cs = encode
(Cn n
(r-universal (n + length cs))
(r-constn (n − 1) p # map (r-constn (n − 1)) cs @ (map (Id n) [0 ..<n])))

proof −
let ?p = r-constn (n − 1) p
let ?gs1 = map (r-constn (n − 1)) cs
let ?gs2 = map (Id n) [0 ..<n]
let ?gs = ?p # ?gs1 @ ?gs2
have map encode ?gs1 = map (code-constn n) cs

by (intro nth-equalityI ; auto; metis code-constn assms Suc-pred)
moreover have map encode ?gs2 = map (code-id n) [0 ..<n]

by (rule nth-equalityI) (auto simp add: code-id-def)
moreover have encode ?p = code-constn n p

using assms code-constn[of n − 1 p] by simp
ultimately have map encode ?gs =

code-constn n p # map (code-constn n) cs @ map (code-id n) [0 ..<n]
by simp

then show ?thesis
unfolding smn-def using assms encode.simps(4) by presburger

qed

The next function is to help us define recf s corresponding to the smn functions. It maps
m+1 arguments p, c1, . . . , cm to an encoded list of length m+n+1. The list comprises the
m+1 codes of the n-ary constants p, c1, . . . , cm and the n codes for all n-ary projections.
definition r-smn-aux :: nat ⇒ nat ⇒ recf where

r-smn-aux n m ≡
Cn (Suc m)
(r-list-encode (m + n))
(map (λi. Cn (Suc m) (r-code-constn n) [Id (Suc m) i]) [0 ..<Suc m] @
map (λi. r-constn m (code-id n i)) [0 ..<n])

lemma r-smn-aux-prim: n > 0 =⇒ prim-recfn (Suc m) (r-smn-aux n m)
by (auto simp add: r-smn-aux-def r-code-constn-prim)

lemma r-smn-aux:
assumes n > 0 and length cs = m
shows eval (r-smn-aux n m) (p # cs) ↓=

list-encode (map (code-constn n) (p # cs) @ map (code-id n) [0 ..<n])
proof −

let ?xs = map (λi. Cn (Suc m) (r-code-constn n) [Id (Suc m) i]) [0 ..<Suc m]
let ?ys = map (λi. r-constn m (code-id n i)) [0 ..<n]
have len-xs: length ?xs = Suc m by simp

have map-xs: map (λg. eval g (p # cs)) ?xs = map Some (map (code-constn n) (p # cs))
proof (intro nth-equalityI)

show len: length (map (λg. eval g (p # cs)) ?xs) =
length (map Some (map (code-constn n) (p # cs)))

by (simp add: assms(2))

have map (λg. eval g (p # cs)) ?xs ! i = map Some (map (code-constn n) (p # cs)) ! i
if i < Suc m for i

86

proof −
have map (λg. eval g (p # cs)) ?xs ! i = (λg. eval g (p # cs)) (?xs ! i)

using len-xs that by (metis nth-map)
also have ... = eval (Cn (Suc m) (r-code-constn n) [Id (Suc m) i]) (p # cs)

using that len-xs
by (metis (no-types, lifting) add.left-neutral length-map nth-map nth-upt)

also have ... = eval (r-code-constn n) [the (eval (Id (Suc m) i) (p # cs))]
using r-code-constn-prim assms(2) that by simp

also have ... = eval (r-code-constn n) [(p # cs) ! i]
using len that by simp

finally have map (λg. eval g (p # cs)) ?xs ! i ↓= code-constn n ((p # cs) ! i)
using r-code-constn by simp

then show ?thesis
using len-xs len that by (metis length-map nth-map)

qed
moreover have length (map (λg. eval g (p # cs)) ?xs) = Suc m by simp
ultimately show

∧
i. i < length (map (λg. eval g (p # cs)) ?xs) =⇒

map (λg. eval g (p # cs)) ?xs ! i =
map Some (map (code-constn n) (p # cs)) ! i

by simp
qed
moreover have map (λg. eval g (p # cs)) ?ys = map Some (map (code-id n) [0 ..<n])

using assms(2) by (intro nth-equalityI ; auto)
ultimately have map (λg. eval g (p # cs)) (?xs @ ?ys) =

map Some (map (code-constn n) (p # cs) @ map (code-id n) [0 ..<n])
by (metis map-append)

moreover have map (λx. the (eval x (p # cs))) (?xs @ ?ys) =
map the (map (λx. eval x (p # cs)) (?xs @ ?ys))

by simp
ultimately have ∗: map (λg. the (eval g (p # cs))) (?xs @ ?ys) =

(map (code-constn n) (p # cs) @ map (code-id n) [0 ..<n])
by simp

have ∀ i<length ?xs. eval (?xs ! i) (p # cs) = map (λg. eval g (p # cs)) ?xs ! i
by (metis nth-map)

then have
∀ i<length ?xs. eval (?xs ! i) (p # cs) = map Some (map (code-constn n) (p # cs)) ! i
using map-xs by simp

then have ∀ i<length ?xs. eval (?xs ! i) (p # cs) ↓
using assms map-xs by (metis length-map nth-map option.simps(3))

then have xs-converg: ∀ z∈set ?xs. eval z (p # cs) ↓
by (metis in-set-conv-nth)

have ∀ i<length ?ys. eval (?ys ! i) (p # cs) = map (λx. eval x (p # cs)) ?ys ! i
by simp

then have
∀ i<length ?ys. eval (?ys ! i) (p # cs) = map Some (map (code-id n) [0 ..<n]) ! i
using assms(2) by simp

then have ∀ i<length ?ys. eval (?ys ! i) (p # cs) ↓
by simp

then have ∀ z∈set (?xs @ ?ys). eval z (p # cs) ↓
using xs-converg by auto

moreover have recfn (length (p # cs)) (Cn (Suc m) (r-list-encode (m + n)) (?xs @ ?ys))
using assms r-code-constn-prim by auto

ultimately have eval (r-smn-aux n m) (p # cs) =
eval (r-list-encode (m + n)) (map (λg. the (eval g (p # cs))) (?xs @ ?ys))

87

unfolding r-smn-aux-def using assms by simp
then have eval (r-smn-aux n m) (p # cs) =

eval (r-list-encode (m + n)) (map (code-constn n) (p # cs) @ map (code-id n) [0 ..<n])
using ∗ by metis

moreover have length (?xs @ ?ys) = Suc (m + n) by simp
ultimately show ?thesis

using r-list-encode ∗ assms(1) by (metis (no-types, lifting) length-map)
qed

For all m,n > 0, the recf corresponding to smn is given by the next function.
definition r-smn :: nat ⇒ nat ⇒ recf where
r-smn n m ≡

Cn (Suc m) r-prod-encode
[r-constn m 3 ,
Cn (Suc m) r-prod-encode
[r-constn m n,
Cn (Suc m) r-prod-encode
[r-constn m (encode (r-universal (n + m))), r-smn-aux n m]]]

lemma r-smn-prim [simp]: n > 0 =⇒ prim-recfn (Suc m) (r-smn n m)
by (simp-all add: r-smn-def r-smn-aux-prim)

lemma r-smn:
assumes n > 0 and length cs = m
shows eval (r-smn n m) (p # cs) ↓= smn n p cs
using assms r-smn-def r-smn-aux smn-def r-smn-aux-prim by simp

lemma map-eval-Some-the:
assumes map (λg. eval g xs) gs = map Some ys
shows map (λg. the (eval g xs)) gs = ys
using assms
by (metis (no-types, lifting) length-map nth-equalityI nth-map option.sel)

The essential part of the s-m-n theorem: For all m,n > 0 the function smn satisfies

ϕ(m+n)
p (c1, . . . , cm, x1, . . . , xn) = ϕ

(n)
smn (p,c1,...,cm)(x1, . . . , xn)

for all p, ci, xj .
lemma smn-lemma:

assumes n > 0 and len-cs: length cs = m and len-xs: length xs = n
shows eval (r-universal (m + n)) (p # cs @ xs) =

eval (r-universal n) ((the (eval (r-smn n m) (p # cs))) # xs)
proof −

let ?s = r-smn n m
let ?f = Cn n
(r-universal (n + length cs))
(r-constn (n − 1) p # map (r-constn (n − 1)) cs @ (map (Id n) [0 ..<n]))

have eval ?s (p # cs) ↓= smn n p cs
using assms r-smn by simp

then have eval-s: eval ?s (p # cs) ↓= encode ?f
by (simp add: assms(1) smn)

have recfn n ?f
using len-cs assms by auto

then have ∗: eval (r-universal n) ((encode ?f) # xs) = eval ?f xs

88

using r-universal[of ?f n, OF - len-xs] by simp

let ?gs = r-constn (n − 1) p # map (r-constn (n − 1)) cs @ map (Id n) [0 ..<n]
have ∀ g∈set ?gs. eval g xs ↓

using len-cs len-xs assms by auto
then have eval ?f xs =

eval (r-universal (n + length cs)) (map (λg. the (eval g xs)) ?gs)
using len-cs len-xs assms ‹recfn n ?f › by simp

then have eval ?f xs = eval (r-universal (m + n)) (map (λg. the (eval g xs)) ?gs)
by (simp add: len-cs add.commute)

then have eval (r-universal n) ((the (eval ?s (p # cs))) # xs) =
eval (r-universal (m + n)) (map (λg. the (eval g xs)) ?gs)

using eval-s ∗ by simp
moreover have map (λg. the (eval g xs)) ?gs = p # cs @ xs
proof (intro nth-equalityI)

show length (map (λg. the (eval g xs)) ?gs) = length (p # cs @ xs)
by (simp add: len-xs)

have len: length (map (λg. the (eval g xs)) ?gs) = Suc (m + n)
by (simp add: len-cs)

moreover have map (λg. the (eval g xs)) ?gs ! i = (p # cs @ xs) ! i
if i < Suc (m + n) for i

proof −
from that consider i = 0 | i > 0 ∧ i < Suc m | Suc m ≤ i ∧ i < Suc (m + n)

using not-le-imp-less by auto
then show ?thesis
proof (cases)

case 1
then show ?thesis using assms(1) len-xs by simp

next
case 2
then have ?gs ! i = (map (r-constn (n − 1)) cs) ! (i − 1)

using len-cs
by (metis One-nat-def Suc-less-eq Suc-pred length-map

less-numeral-extra(3) nth-Cons ′ nth-append)
then have map (λg. the (eval g xs)) ?gs ! i =

(λg. the (eval g xs)) ((map (r-constn (n − 1)) cs) ! (i − 1))
using len by (metis length-map nth-map that)

also have ... = the (eval ((r-constn (n − 1) (cs ! (i − 1)))) xs)
using 2 len-cs by auto

also have ... = cs ! (i − 1)
using r-constn len-xs assms(1) by simp

also have ... = (p # cs @ xs) ! i
using 2 len-cs
by (metis diff-Suc-1 less-Suc-eq-0-disj less-numeral-extra(3) nth-Cons ′ nth-append)

finally show ?thesis .
next

case 3
then have ?gs ! i = (map (Id n) [0 ..<n]) ! (i − Suc m)

using len-cs
by (simp; metis (no-types, lifting) One-nat-def Suc-less-eq add-leE

plus-1-eq-Suc diff-diff-left length-map not-le nth-append
ordered-cancel-comm-monoid-diff-class.add-diff-inverse)

then have map (λg. the (eval g xs)) ?gs ! i =
(λg. the (eval g xs)) ((map (Id n) [0 ..<n]) ! (i − Suc m))

using len by (metis length-map nth-map that)
also have ... = the (eval ((Id n (i − Suc m))) xs)

89

using 3 len-cs by auto
also have ... = xs ! (i − Suc m)

using len-xs 3 by auto
also have ... = (p # cs @ xs) ! i

using len-cs len-xs 3
by (metis diff-Suc-1 diff-diff-left less-Suc-eq-0-disj not-le nth-Cons ′

nth-append plus-1-eq-Suc)
finally show ?thesis .

qed
qed
ultimately show map (λg. the (eval g xs)) ?gs ! i = (p # cs @ xs) ! i

if i < length (map (λg. the (eval g xs)) ?gs) for i
using that by simp

qed
ultimately show ?thesis by simp

qed

theorem smn-theorem:
assumes n > 0
shows ∃ s. prim-recfn (Suc m) s ∧
(∀ p cs xs. length cs = m ∧ length xs = n −→

eval (r-universal (m + n)) (p # cs @ xs) =
eval (r-universal n) ((the (eval s (p # cs))) # xs))

using smn-lemma exI [of - r-smn n m] assms by simp

For every numbering, that is, binary partial recursive function, ψ there is a total recursive
function c that translates ψ-indices into ϕ-indices.
lemma numbering-translation:

assumes recfn 2 psi
obtains c where

recfn 1 c
total c
∀ i x. eval psi [i, x] = eval r-phi [the (eval c [i]), x]

proof −
let ?p = encode psi
define c where c = Cn 1 (r-smn 1 1) [r-const ?p, Id 1 0]
then have prim-recfn 1 c by simp
moreover from this have total c

by auto
moreover have eval r-phi [the (eval c [i]), x] = eval psi [i, x] for i x
proof −

have eval c [i] = eval (r-smn 1 1) [?p, i]
using c-def by simp

then have eval (r-universal 1) [the (eval c [i]), x] =
eval (r-universal 1) [the (eval (r-smn 1 1) [?p, i]), x]

by simp
also have ... = eval (r-universal (1 + 1)) (?p # [i] @ [x])

using smn-lemma[of 1 [i] 1 [x] ?p] by simp
also have ... = eval (r-universal 2) [?p, i, x]

by (metis append-eq-Cons-conv nat-1-add-1)
also have ... = eval psi [i, x]

using r-universal[OF assms, of [i, x]] by simp
finally have eval (r-universal 1) [the (eval c [i]), x] = eval psi [i, x] .
then show ?thesis using r-phi-def by simp

qed
ultimately show ?thesis using that by auto

90

qed

1.9 Fixed-point theorems

Fixed-point theorems (also known as recursion theorems) come in many shapes. We
prove the minimum we need for Chapter 2.

1.9.1 Rogers’s fixed-point theorem

In this section we prove a theorem that Rogers [12] credits to Kleene, but admits that
it is a special case and not the original formulation. We follow Wikipedia [17] and call
it the Rogers’s fixed-point theorem.
lemma s11-inj: inj (λx. smn 1 p [x])
proof

fix x1 x2 :: nat
assume smn 1 p [x1] = smn 1 p [x2]
then have list-encode [code-constn 1 p, code-constn 1 x1, code-id 1 0] =

list-encode [code-constn 1 p, code-constn 1 x2, code-id 1 0]
using smn-def by (simp add: prod-encode-eq)

then have [code-constn 1 p, code-constn 1 x1, code-id 1 0] =
[code-constn 1 p, code-constn 1 x2, code-id 1 0]

using list-decode-encode by metis
then have code-constn 1 x1 = code-constn 1 x2 by simp
then show x1 = x2

using code-const1 code-constn code-constn-def encode-injective r-constn
by (metis One-nat-def length-Cons list.size(3) option.simps(1))

qed

definition r-univuniv ≡ Cn 2 r-phi [Cn 2 r-phi [Id 2 0 , Id 2 0], Id 2 1]

lemma r-univuniv-recfn: recfn 2 r-univuniv
by (simp add: r-univuniv-def)

lemma r-univuniv-converg:
assumes eval r-phi [x, x] ↓
shows eval r-univuniv [x, y] = eval r-phi [the (eval r-phi [x, x]), y]
unfolding r-univuniv-def using assms r-univuniv-recfn r-phi-recfn by simp

Strictly speaking this is a generalization of Rogers’s theorem in that it shows the existence
of infinitely many fixed-points. In conventional terms it says that for every total recursive
f and k ∈ N there is an n ≥ k with ϕn = ϕf(n).
theorem rogers-fixed-point-theorem:

fixes k :: nat
assumes recfn 1 f and total f
shows ∃n≥k. ∀ x. eval r-phi [n, x] = eval r-phi [the (eval f [n]), x]

proof −
let ?p = encode r-univuniv
define h where h = Cn 1 (r-smn 1 1) [r-const ?p, Id 1 0]
then have prim-recfn 1 h

by simp
then have total h

by blast
have eval h [x] = eval (Cn 1 (r-smn 1 1) [r-const ?p, Id 1 0]) [x] for x

91

unfolding h-def by simp
then have h: the (eval h [x]) = smn 1 ?p [x] for x

by (simp add: r-smn)

have eval r-phi [the (eval h [x]), y] = eval r-univuniv [x, y] for x y
proof −

have eval r-phi [the (eval h [x]), y] = eval r-phi [smn 1 ?p [x], y]
using h by simp

also have ... = eval r-phi [the (eval (r-smn 1 1) [?p, x]), y]
by (simp add: r-smn)

also have ... = eval (r-universal 2) [?p, x, y]
using r-phi-def smn-lemma[of 1 [x] 1 [y] ?p]
by (metis Cons-eq-append-conv One-nat-def Suc-1 length-Cons

less-numeral-extra(1) list.size(3) plus-1-eq-Suc)
finally show eval r-phi [the (eval h [x]), y] = eval r-univuniv [x, y]

using r-universal r-univuniv-recfn by simp
qed
then have ∗: eval r-phi [the (eval h [x]), y] = eval r-phi [the (eval r-phi [x, x]), y]

if eval r-phi [x, x] ↓ for x y
using r-univuniv-converg that by simp

let ?fh = Cn 1 f [h]
have recfn 1 ?fh

using ‹prim-recfn 1 h› assms by simp
then have infinite {r . recfn 1 r ∧ r ' ?fh}

using exteq-infinite[of ?fh 1] by simp
then have infinite (encode ‘ {r . recfn 1 r ∧ r ' ?fh}) (is infinite ?E)

using encode-injective by (meson finite-imageD inj-onI)
then have infinite ((λx. smn 1 ?p [x]) ‘ ?E)

using s11-inj[of ?p] by (simp add: finite-image-iff inj-on-subset)
moreover have (λx. smn 1 ?p [x]) ‘ ?E = {smn 1 ?p [encode r] |r . recfn 1 r ∧ r ' ?fh}

by auto
ultimately have infinite {smn 1 ?p [encode r] |r . recfn 1 r ∧ r ' ?fh}

by simp
then obtain n where n ≥ k n ∈ {smn 1 ?p [encode r] |r . recfn 1 r ∧ r ' ?fh}

by (meson finite-nat-set-iff-bounded-le le-cases)
then obtain r where r : recfn 1 r n = smn 1 ?p [encode r] recfn 1 r ∧ r ' ?fh

by auto
then have eval-r : eval r [encode r] = eval ?fh [encode r]

by (simp add: exteq-def)
then have eval-r ′: eval r [encode r] = eval f [the (eval h [encode r])]

using assms ‹total h› ‹prim-recfn 1 h› by simp
then have eval r [encode r] ↓

using ‹prim-recfn 1 h› assms(1 ,2) by simp
then have eval r-phi [encode r , encode r] ↓

by (simp add: ‹recfn 1 r› r-phi)
then have eval r-phi [the (eval h [encode r]), y] =

eval r-phi [(the (eval r-phi [encode r , encode r])), y]
for y

using ∗ by simp
then have eval r-phi [the (eval h [encode r]), y] =

eval r-phi [(the (eval r [encode r])), y]
for y

by (simp add: ‹recfn 1 r› r-phi)
moreover have n = the (eval h [encode r]) by (simp add: h r(2))
ultimately have eval r-phi [n, y] = eval r-phi [the (eval r [encode r]), y] for y

92

by simp
then have eval r-phi [n, y] = eval r-phi [the (eval ?fh [encode r]), y] for y

using r by (simp add: eval-r)
moreover have eval ?fh [encode r] = eval f [n]

using eval-r eval-r ′ ‹n = the (eval h [encode r])› by auto
ultimately have eval r-phi [n, y] = eval r-phi [the (eval f [n]), y] for y

by simp
with ‹n ≥ k› show ?thesis by auto

qed

1.9.2 Kleene’s fixed-point theorem

The next theorem is what Rogers [12, p. 214] calls Kleene’s version of what we call
Rogers’s fixed-point theorem. More precisely this would be Kleene’s second fixed-point
theorem, but since we do not cover the first one, we leave out the number.
theorem kleene-fixed-point-theorem:

fixes k :: nat
assumes recfn 2 psi
shows ∃n≥k. ∀ x. eval r-phi [n, x] = eval psi [n, x]

proof −
from numbering-translation[OF assms] obtain c where c:

recfn 1 c
total c
∀ i x. eval psi [i, x] = eval r-phi [the (eval c [i]), x]
by auto

then obtain n where n ≥ k and ∀ x. eval r-phi [n, x] = eval r-phi [the (eval c [n]), x]
using rogers-fixed-point-theorem by blast

with c(3) have ∀ x. eval r-phi [n, x] = eval psi [n, x]
by simp

with ‹n ≥ k› show ?thesis by auto
qed

Kleene’s fixed-point theorem can be generalized to arbitrary arities. But we need to
generalize it only to binary functions in order to show Smullyan’s double fixed-point
theorem in Section 1.9.3.
definition r-univuniv2 ≡

Cn 3 r-phi [Cn 3 (r-universal 2) [Id 3 0 , Id 3 0 , Id 3 1], Id 3 2]

lemma r-univuniv2-recfn: recfn 3 r-univuniv2
by (simp add: r-univuniv2-def)

lemma r-univuniv2-converg:
assumes eval (r-universal 2) [u, u, x] ↓
shows eval r-univuniv2 [u, x, y] = eval r-phi [the (eval (r-universal 2) [u, u, x]), y]
unfolding r-univuniv2-def using assms r-univuniv2-recfn by simp

theorem kleene-fixed-point-theorem-2 :
assumes recfn 2 f and total f
shows ∃n.

recfn 1 n ∧
total n ∧
(∀ x y. eval r-phi [(the (eval n [x])), y] = eval r-phi [(the (eval f [the (eval n [x]), x])), y])

proof −
let ?p = encode r-univuniv2
let ?s = r-smn 1 2

93

define h where h = Cn 2 ?s [r-dummy 1 (r-const ?p), Id 2 0 , Id 2 1]
then have [simp]: prim-recfn 2 h by simp
{

fix u x y
have eval h [u, x] = eval (Cn 2 ?s [r-dummy 1 (r-const ?p), Id 2 0 , Id 2 1]) [u, x]

using h-def by simp
then have the (eval h [u, x]) = smn 1 ?p [u, x]

by (simp add: r-smn)
then have eval r-phi [the (eval h [u, x]), y] = eval r-phi [smn 1 ?p [u, x], y]

by simp
also have ... =

eval r-phi
[encode (Cn 1 (r-universal 3) (r-constn 0 ?p # r-constn 0 u # r-constn 0 x # [Id 1 0])),
y]

using smn[of 1 ?p [u, x]] by (simp add: numeral-3-eq-3)
also have ... =

eval r-phi
[encode (Cn 1 (r-universal 3) (r-const ?p # r-const u # r-const x # [Id 1 0])), y]
(is - = eval r-phi [encode ?f , y])

by (simp add: r-constn-def)
also have ... = eval ?f [y]

using r-phi ′[of ?f] by auto
also have ... = eval (r-universal 3) [?p, u, x, y]

using r-univuniv2-recfn r-universal r-phi by auto
also have ... = eval r-univuniv2 [u, x, y]

using r-universal
by (simp add: r-universal r-univuniv2-recfn)

finally have eval r-phi [the (eval h [u, x]), y] = eval r-univuniv2 [u, x, y] .
}
then have ∗: eval r-phi [the (eval h [u, x]), y] =

eval r-phi [the (eval (r-universal 2) [u, u, x]), y]
if eval (r-universal 2) [u, u, x] ↓ for u x y

using r-univuniv2-converg that by simp

let ?fh = Cn 2 f [h, Id 2 1]
let ?e = encode ?fh
have recfn 2 ?fh

using assms by simp
have total h

by auto
then have total ?fh

using assms Cn-total totalI2 [of ?fh] by fastforce

let ?n = Cn 1 h [r-const ?e, Id 1 0]
have recfn 1 ?n

using assms by simp
moreover have total ?n

using ‹total h› totalI1 [of ?n] by simp
moreover {

fix x y
have eval r-phi [(the (eval ?n [x])), y] = eval r-phi [(the (eval h [?e, x])), y]

by simp
also have ... = eval r-phi [the (eval (r-universal 2) [?e, ?e, x]), y]

using ∗ r-universal[of - 2] totalE [of ?fh 2] ‹total ?fh› ‹recfn 2 ?fh›
by (metis length-Cons list.size(3) numeral-2-eq-2)

also have ... = eval r-phi [the (eval f [the (eval h [?e, x]), x]), y]

94

proof −
have eval (r-universal 2) [?e, ?e, x] ↓

using totalE [OF ‹total ?fh›] ‹recfn 2 ?fh› r-universal
by (metis length-Cons list.size(3) numeral-2-eq-2)

moreover have eval (r-universal 2) [?e, ?e, x] = eval ?fh [?e, x]
by (metis ‹recfn 2 ?fh› length-Cons list.size(3) numeral-2-eq-2 r-universal)

then show ?thesis using assms ‹total h› by simp
qed
also have ... = eval r-phi [(the (eval f [the (eval ?n [x]), x])), y]

by simp
finally have eval r-phi [(the (eval ?n [x])), y] =

eval r-phi [(the (eval f [the (eval ?n [x]), x])), y] .
}
ultimately show ?thesis by blast

qed

1.9.3 Smullyan’s double fixed-point theorem
theorem smullyan-double-fixed-point-theorem:

assumes recfn 2 g and total g and recfn 2 h and total h
shows ∃m n.
(∀ x. eval r-phi [m, x] = eval r-phi [the (eval g [m, n]), x]) ∧
(∀ x. eval r-phi [n, x] = eval r-phi [the (eval h [m, n]), x])

proof −
obtain m where

recfn 1 m and
total m and
m: ∀ x y. eval r-phi [the (eval m [x]), y] =

eval r-phi [the (eval g [the (eval m [x]), x]), y]
using kleene-fixed-point-theorem-2 [of g] assms(1 ,2) by auto

define k where k = Cn 1 h [m, Id 1 0]
then have recfn 1 k

using ‹recfn 1 m› assms(3) by simp
have total (Id 1 0)

by (simp add: Mn-free-imp-total)
then have total k

using ‹total m› assms(4) Cn-total k-def ‹recfn 1 k› by simp
obtain n where n: ∀ x. eval r-phi [n, x] = eval r-phi [the (eval k [n]), x]

using rogers-fixed-point-theorem[of k] ‹recfn 1 k› ‹total k› by blast
obtain mm where mm: eval m [n] ↓= mm

using ‹total m› ‹recfn 1 m› by fastforce
then have ∀ x. eval r-phi [mm, x] = eval r-phi [the (eval g [mm, n]), x]

by (metis m option.sel)
moreover have ∀ x. eval r-phi [n, x] = eval r-phi [the (eval h [mm, n]), x]

using k-def assms(3) ‹total m› ‹recfn 1 m› mm n by simp
ultimately show ?thesis by blast

qed

1.10 Decidable and recursively enumerable sets

We defined decidable already back in Section 1.3:

decidable ?X ≡ ∃ f . recfn 1 f ∧ (∀ x. eval f [x] ↓= (if x ∈ ?X then 1 else 0))

The next theorem is adapted from halting-problem-undecidable.

95

theorem halting-problem-phi-undecidable: ¬ decidable {x. eval r-phi [x, x] ↓}
(is ¬ decidable ?K)

proof
assume decidable ?K
then obtain f where recfn 1 f and f : ∀ x. eval f [x] ↓= (if x ∈ ?K then 1 else 0)

using decidable-def by auto
define g where g ≡ Cn 1 r-ifeq-else-diverg [f , Z , Z]
then have recfn 1 g

using ‹recfn 1 f › r-ifeq-else-diverg-recfn by simp
then obtain i where i: eval r-phi [i, x] = eval g [x] for x

using r-phi ′ by auto
from g-def have eval g [x] = (if x /∈ ?K then Some 0 else None) for x

using r-ifeq-else-diverg-recfn ‹recfn 1 f › f by simp
then have eval g [i] ↓ ←→ i /∈ ?K by simp
also have ... ←→ eval r-phi [i, i] ↑ by simp
also have ... ←→ eval g [i] ↑

using i by simp
finally have eval g [i] ↓ ←→ eval g [i] ↑ .
then show False by auto

qed

lemma decidable-complement: decidable X =⇒ decidable (− X)
proof −

assume decidable X
then obtain f where f : recfn 1 f ∀ x. eval f [x] ↓= (if x ∈ X then 1 else 0)

using decidable-def by auto
define g where g = Cn 1 r-not [f]
then have recfn 1 g

by (simp add: f (1))
moreover have eval g [x] ↓= (if x ∈ X then 0 else 1) for x

by (simp add: g-def f)
ultimately show ?thesis using decidable-def by auto

qed

Finite sets are decidable.
fun r-contains :: nat list ⇒ recf where

r-contains [] = Z
| r-contains (x # xs) = Cn 1 r-ifeq [Id 1 0 , r-const x, r-const 1 , r-contains xs]

lemma r-contains-prim: prim-recfn 1 (r-contains xs)
by (induction xs) auto

lemma r-contains: eval (r-contains xs) [x] ↓= (if x ∈ set xs then 1 else 0)
proof (induction xs arbitrary: x)

case Nil
then show ?case by simp

next
case (Cons a xs)
have eval (r-contains (a # xs)) [x] = eval r-ifeq [x, a, 1 , the (eval (r-contains xs) [x])]

using r-contains-prim prim-recfn-total by simp
also have ... ↓= (if x = a then 1 else if x ∈ set xs then 1 else 0)

using Cons.IH by simp
also have ... ↓= (if x = a ∨ x ∈ set xs then 1 else 0)

by simp
finally show ?case by simp

qed

96

lemma finite-set-decidable: finite X =⇒ decidable X
proof −

fix X :: nat set
assume finite X
then obtain xs where X = set xs

using finite-list by auto
then have ∀ x. eval (r-contains xs) [x] ↓= (if x ∈ X then 1 else 0)

using r-contains by simp
then show decidable X

using decidable-def r-contains-prim by blast
qed

definition semidecidable :: nat set ⇒ bool where
semidecidable X ≡ (∃ f . recfn 1 f ∧ (∀ x. eval f [x] = (if x ∈ X then Some 1 else None)))

The semidecidable sets are the domains of partial recursive functions.
lemma semidecidable-iff-domain:

semidecidable X ←→ (∃ f . recfn 1 f ∧ (∀ x. eval f [x] ↓ ←→ x ∈ X))
proof

show semidecidable X =⇒ ∃ f . recfn 1 f ∧ (∀ x. (eval f [x] ↓) = (x ∈ X))
using semidecidable-def by (metis option.distinct(1))

show semidecidable X if ∃ f . recfn 1 f ∧ (∀ x. (eval f [x] ↓) = (x ∈ X)) for X
proof −

from that obtain f where f : recfn 1 f ∀ x. (eval f [x] ↓) = (x ∈ X)
by auto

let ?g = Cn 1 (r-const 1) [f]
have recfn 1 ?g

using f (1) by simp
moreover have ∀ x. eval ?g [x] = (if x ∈ X then Some 1 else None)

using f by simp
ultimately show semidecidable X

using semidecidable-def by blast
qed

qed

lemma decidable-imp-semidecidable: decidable X =⇒ semidecidable X
proof −

assume decidable X
then obtain f where f : recfn 1 f ∀ x. eval f [x] ↓= (if x ∈ X then 1 else 0)

using decidable-def by auto
define g where g = Cn 1 r-ifeq-else-diverg [f , r-const 1 , r-const 1]
then have recfn 1 g

by (simp add: f (1))
have eval g [x] = eval r-ifeq-else-diverg [if x ∈ X then 1 else 0 , 1 , 1] for x

by (simp add: g-def f)
then have

∧
x. x ∈ X =⇒ eval g [x] ↓= 1 and

∧
x. x /∈ X =⇒ eval g [x] ↑

by simp-all
then show ?thesis

using ‹recfn 1 g› semidecidable-def by auto
qed

A set is recursively enumerable if it is empty or the image of a total recursive function.
definition recursively-enumerable :: nat set ⇒ bool where

recursively-enumerable X ≡
X = {} ∨ (∃ f . recfn 1 f ∧ total f ∧ X = {the (eval f [x]) |x. x ∈ UNIV })

97

theorem recursively-enumerable-iff-semidecidable:
recursively-enumerable X ←→ semidecidable X

proof
show semidecidable X if recursively-enumerable X for X
proof (cases)

assume X = {}
then show ?thesis

using finite-set-decidable decidable-imp-semidecidable
recursively-enumerable-def semidecidable-def

by blast
next

assume X 6= {}
with that obtain f where f : recfn 1 f total f X = {the (eval f [x]) |x. x ∈ UNIV }

using recursively-enumerable-def by blast
define h where h = Cn 2 r-eq [Cn 2 f [Id 2 0], Id 2 1]
then have recfn 2 h

using f (1) by simp
from h-def have h: eval h [x, y] ↓= 0 ←→ the (eval f [x]) = y for x y

using f (1 ,2) by simp
from h-def ‹recfn 2 h› totalI2 f (2) have total h by simp
define g where g = Mn 1 h
then have recfn 1 g

using h-def f (1) by simp
then have eval g [y] =
(if (∃ x. eval h [x, y] ↓= 0 ∧ (∀ x ′<x. eval h [x ′, y] ↓))
then Some (LEAST x. eval h [x, y] ↓= 0)
else None) for y

using g-def ‹total h› f (2) by simp
then have eval g [y] =
(if ∃ x. eval h [x, y] ↓= 0
then Some (LEAST x. eval h [x, y] ↓= 0)
else None) for y

using ‹total h› ‹recfn 2 h› by simp
then have eval g [y] ↓ ←→ (∃ x. eval h [x, y] ↓= 0) for y

by simp
with h have eval g [y] ↓ ←→ (∃ x. the (eval f [x]) = y) for y

by simp
with f (3) have eval g [y] ↓ ←→ y ∈ X for y

by auto
with ‹recfn 1 g› semidecidable-iff-domain show ?thesis by auto

qed

show recursively-enumerable X if semidecidable X for X
proof (cases)

assume X = {}
then show ?thesis using recursively-enumerable-def by simp

next
assume X 6= {}
then obtain x0 where x0 ∈ X by auto
from that semidecidable-iff-domain obtain f where f : recfn 1 f ∀ x. eval f [x] ↓ ←→ x ∈ X

by auto
let ?i = encode f
have i:

∧
x. eval f [x] = eval r-phi [?i, x]

using r-phi ′ f (1) by simp
with ‹x0 ∈ X› f (2) have eval r-phi [?i, x0] ↓ by simp

98

then obtain g where g: recfn 1 g total g ∀ x. eval r-phi [?i, x] ↓ = (∃ y. eval g [y] ↓= x)
using f (1) nonempty-domain-enumerable by blast

with f (2) i have ∀ x. x ∈ X = (∃ y. eval g [y] ↓= x)
by simp

then have ∀ x. x ∈ X = (∃ y. the (eval g [y]) = x)
using totalE [OF g(2) g(1)]
by (metis One-nat-def length-Cons list.size(3) option.collapse option.sel)

then have X = {the (eval g [y]) |y. y ∈ UNIV }
by auto

with g(1 ,2) show ?thesis using recursively-enumerable-def by auto
qed

qed

The next goal is to show that a set is decidable iff. it and its complement are semide-
cidable. For this we use the concurrent evaluation function.
lemma semidecidable-decidable:

assumes semidecidable X and semidecidable (− X)
shows decidable X

proof −
obtain f where f : recfn 1 f ∧ (∀ x. eval f [x] ↓ ←→ x ∈ X)

using assms(1) semidecidable-iff-domain by auto
let ?i = encode f
obtain g where g: recfn 1 g ∧ (∀ x. eval g [x] ↓ ←→ x ∈ (− X))

using assms(2) semidecidable-iff-domain by auto
let ?j = encode g
define d where d = Cn 1 r-pdec1 [Cn 1 r-parallel [r-const ?j, r-const ?i, Id 1 0]]
then have recfn 1 d

by (simp add: d-def)
have ∗:

∧
x. eval r-phi [?i, x] = eval f [x]

∧
x. eval r-phi [?j, x] = eval g [x]

using f g r-phi ′ by simp-all
have eval d [x] ↓= 1 if x ∈ X for x
proof −

have eval f [x] ↓
using f that by simp

moreover have eval g [x] ↑
using g that by blast

ultimately have eval r-parallel [?j, ?i, x] ↓= prod-encode (1 , the (eval f [x]))
using ∗ r-parallel(3) by simp

with d-def show ?thesis by simp
qed
moreover have eval d [x] ↓= 0 if x /∈ X for x
proof −

have eval g [x] ↓
using g that by simp

moreover have eval f [x] ↑
using f that by blast

ultimately have eval r-parallel [?j, ?i, x] ↓= prod-encode (0 , the (eval g [x]))
using ∗ r-parallel(2) by blast

with d-def show ?thesis by simp
qed
ultimately show ?thesis

using decidable-def ‹recfn 1 d› by auto
qed

theorem decidable-iff-semidecidable-complement:
decidable X ←→ semidecidable X ∧ semidecidable (− X)

99

using semidecidable-decidable decidable-imp-semidecidable decidable-complement
by blast

1.11 Rice’s theorem
definition index-set :: nat set ⇒ bool where

index-set I ≡ ∀ i j. i ∈ I ∧ (∀ x. eval r-phi [i, x] = eval r-phi [j, x]) −→ j ∈ I

lemma index-set-closed-in:
assumes index-set I and i ∈ I and ∀ x. eval r-phi [i, x] = eval r-phi [j, x]
shows j ∈ I
using index-set-def assms by simp

lemma index-set-closed-not-in:
assumes index-set I and i /∈ I and ∀ x. eval r-phi [i, x] = eval r-phi [j, x]
shows j /∈ I
using index-set-def assms by metis

theorem rice-theorem:
assumes index-set I and I 6= UNIV and I 6= {}
shows ¬ decidable I

proof
assume decidable I
then obtain d where d: recfn 1 d ∀ i. eval d [i] ↓= (if i ∈ I then 1 else 0)

using decidable-def by auto
obtain j1 j2 where j1 /∈ I and j2 ∈ I

using assms(2 ,3) by auto
let ?if = Cn 2 r-ifz [Cn 2 d [Id 2 0], r-dummy 1 (r-const j2), r-dummy 1 (r-const j1)]
define psi where psi = Cn 2 r-phi [?if , Id 2 1]
then have recfn 2 psi

by (simp add: d)
have eval ?if [x, y] = Some (if x ∈ I then j1 else j2) for x y

by (simp add: d)
moreover have eval psi [x, y] = eval (Cn 2 r-phi [?if , Id 2 1]) [x, y] for x y

using psi-def by simp
ultimately have psi: eval psi [x, y] = eval r-phi [if x ∈ I then j1 else j2, y] for x y

by (simp add: d)
then have in-I : eval psi [x, y] = eval r-phi [j1, y] if x ∈ I for x y

by (simp add: that)
have not-in-I : eval psi [x, y] = eval r-phi [j2, y] if x /∈ I for x y

by (simp add: psi that)
obtain n where n: ∀ x. eval r-phi [n, x] = eval psi [n, x]

using kleene-fixed-point-theorem[OF ‹recfn 2 psi›] by auto
show False
proof cases

assume n ∈ I
then have ∀ x. eval r-phi [n, x] = eval r-phi [j1, x]

using n in-I by simp
then have n /∈ I

using ‹j1 /∈ I › index-set-closed-not-in[OF assms(1)] by simp
with ‹n ∈ I › show False by simp

next
assume n /∈ I
then have ∀ x. eval r-phi [n, x] = eval r-phi [j2, x]

using n not-in-I by simp

100

then have n ∈ I
using ‹j2 ∈ I › index-set-closed-in[OF assms(1)] by simp

with ‹n /∈ I › show False by simp
qed

qed

1.12 Partial recursive functions as actual functions

A well-formed recf describes an algorithm. Usually, however, partial recursive func-
tions are considered to be partial functions, that is, right-unique binary relations. This
distinction did not matter much until now, because we were mostly concerned with the
existence of partial recursive functions, which is equivalent to the existence of algorithms.
Whenever it did matter, we could use the extensional equivalence ('). In Chapter 2,
however, we will deal with sets of functions and sets of sets of functions.
For illustration consider the singleton set containing only the unary zero function. It
could be expressed by {Z}, but this would not contain Cn 1 (Id 1 0) [Z], which computes
the same function. The alternative representation as {f . f ' Z} is not a singleton set.
Another alternative would be to identify partial recursive functions with the equivalence
classes of ('). This would work for all arities. But since we will only need unary and
binary functions, we can go for the less general but simpler alternative of regarding
partial recursive functions as certain functions of types nat ⇒ nat option and nat ⇒
nat ⇒ nat option. With this notation we can represent the aforementioned set by {λ-.
Some 0} and express that the function λ-. Some 0 is total recursive.
In addition terms get shorter, for instance, eval r-func [i, x] becomes func i x.

1.12.1 The definitions
type-synonym partial1 = nat ⇒ nat option

type-synonym partial2 = nat ⇒ nat ⇒ nat option

definition total1 :: partial1 ⇒ bool where
total1 f ≡ ∀ x. f x ↓

definition total2 :: partial2 ⇒ bool where
total2 f ≡ ∀ x y. f x y ↓

lemma total1I [intro]: (
∧

x. f x ↓) =⇒ total1 f
using total1-def by simp

lemma total2I [intro]: (
∧

x y. f x y ↓) =⇒ total2 f
using total2-def by simp

lemma total1E [dest, simp]: total1 f =⇒ f x ↓
using total1-def by simp

lemma total2E [dest, simp]: total2 f =⇒ f x y ↓
using total2-def by simp

definition P1 :: partial1 set (‹P›) where
P ≡ {λx. eval r [x] |r . recfn 1 r}

101

definition P2 :: partial2 set (‹P2›) where
P2 ≡ {λx y. eval r [x, y] |r . recfn 2 r}

definition R1 :: partial1 set (‹R›) where
R ≡ {λx. eval r [x] |r . recfn 1 r ∧ total r}

definition R2 :: partial2 set (‹R2›) where
R2 ≡ {λx y. eval r [x, y] |r . recfn 2 r ∧ total r}

definition Prim1 :: partial1 set where
Prim1 ≡ {λx. eval r [x] |r . prim-recfn 1 r}

definition Prim2 :: partial2 set where
Prim2 ≡ {λx y. eval r [x, y] |r . prim-recfn 2 r}

lemma R1-imp-P1 [simp, elim]: f ∈ R =⇒ f ∈ P
using R1-def P1-def by auto

lemma R2-imp-P2 [simp, elim]: f ∈ R2 =⇒ f ∈ P2

using R2-def P2-def by auto

lemma Prim1-imp-R1 [simp, elim]: f ∈ Prim1 =⇒ f ∈ R
unfolding Prim1-def R1-def by auto

lemma Prim2-imp-R2 [simp, elim]: f ∈ Prim2 =⇒ f ∈ R2

unfolding Prim2-def R2-def by auto

lemma P1E [elim]:
assumes f ∈ P
obtains r where recfn 1 r and ∀ x. eval r [x] = f x
using assms P1-def by force

lemma P2E [elim]:
assumes f ∈ P2

obtains r where recfn 2 r and ∀ x y. eval r [x, y] = f x y
using assms P2-def by force

lemma P1I [intro]:
assumes recfn 1 r and (λx. eval r [x]) = f
shows f ∈ P
using assms P1-def by auto

lemma P2I [intro]:
assumes recfn 2 r and

∧
x y. eval r [x, y] = f x y

shows f ∈ P2

proof −
have (λx y. eval r [x, y]) = f

using assms(2) by simp
then show ?thesis

using assms(1) P2-def by auto
qed

lemma R1I [intro]:
assumes recfn 1 r and total r and

∧
x. eval r [x] = f x

shows f ∈ R
unfolding R1-def

102

using CollectI [of λf . ∃ r . f = (λx. eval r [x]) ∧ recfn 1 r ∧ total r f] assms
by metis

lemma R1E [elim]:
assumes f ∈ R
obtains r where recfn 1 r and total r and f = (λx. eval r [x])
using assms R1-def by auto

lemma R2I [intro]:
assumes recfn 2 r and total r and

∧
x y. eval r [x, y] = f x y

shows f ∈ R2

unfolding R2-def
using CollectI [of λf . ∃ r . f = (λx y. eval r [x, y]) ∧ recfn 2 r ∧ total r f] assms
by metis

lemma R1-SOME :
assumes f ∈ R

and r = (SOME r ′. recfn 1 r ′ ∧ total r ′ ∧ f = (λx. eval r ′ [x]))
(is r = (SOME r ′. ?P r ′))

shows recfn 1 r
and

∧
x. eval r [x] ↓

and
∧

x. f x = eval r [x]
and f = (λx. eval r [x])

proof −
obtain r ′ where ?P r ′

using R1E [OF assms(1)] by auto
then show recfn 1 r

∧
b. eval r [b] ↓

∧
x. f x = eval r [x]

using someI [of ?P r ′] assms(2) totalE [of r] by (auto, metis)
then show f = (λx. eval r [x]) by auto

qed

lemma R2E [elim]:
assumes f ∈ R2

obtains r where recfn 2 r and total r and f = (λx1 x2. eval r [x1, x2])
using assms R2-def by auto

lemma R1-imp-total1 [simp]: f ∈ R =⇒ total1 f
using total1I by fastforce

lemma R2-imp-total2 [simp]: f ∈ R2 =⇒ total2 f
using totalE by fastforce

lemma Prim1I [intro]:
assumes prim-recfn 1 r and

∧
x. f x = eval r [x]

shows f ∈ Prim1
using assms Prim1-def by blast

lemma Prim2I [intro]:
assumes prim-recfn 2 r and

∧
x y. f x y = eval r [x, y]

shows f ∈ Prim2
using assms Prim2-def by blast

lemma P1-total-imp-R1 [intro]:
assumes f ∈ P and total1 f
shows f ∈ R
using assms totalI1 by force

103

lemma P2-total-imp-R2 [intro]:
assumes f ∈ P2 and total2 f
shows f ∈ R2

using assms totalI2 by force

1.12.2 Some simple properties

In order to show that a partial1 or partial2 function is in P, P2, R, R2, Prim1, or Prim2
we will usually have to find a suitable recf. But for some simple or frequent cases this
section provides shortcuts.
lemma identity-in-R1 : Some ∈ R
proof −

have ∀ x. eval (Id 1 0) [x] ↓= x by simp
moreover have recfn 1 (Id 1 0) by simp
moreover have total (Id 1 0)

by (simp add: totalI1)
ultimately show ?thesis by blast

qed

lemma P2-proj-P1 [simp, elim]:
assumes ψ ∈ P2

shows ψ i ∈ P
proof −

from assms obtain u where u: recfn 2 u (λx1 x2. eval u [x1, x2]) = ψ
by auto

define v where v ≡ Cn 1 u [r-const i, Id 1 0]
then have recfn 1 v (λx. eval v [x]) = ψ i

using u by auto
then show ?thesis by auto

qed

lemma R2-proj-R1 [simp, elim]:
assumes ψ ∈ R2

shows ψ i ∈ R
proof −

from assms have ψ ∈ P2 by simp
then have ψ i ∈ P by auto
moreover have total1 (ψ i)

using assms by (simp add: total1I)
ultimately show ?thesis by auto

qed

lemma const-in-Prim1 : (λ-. Some c) ∈ Prim1
proof −

define r where r = r-const c
then have

∧
x. eval r [x] = Some c by simp

moreover have recfn 1 r Mn-free r
using r-def by simp-all

ultimately show ?thesis by auto
qed

lemma concat-P1-P1 :
assumes f ∈ P and g ∈ P
shows (λx. if g x ↓ ∧ f (the (g x)) ↓ then Some (the (f (the (g x)))) else None) ∈ P

104

(is ?h ∈ P)
proof −

obtain rf where rf : recfn 1 rf ∀ x. eval rf [x] = f x
using assms(1) by auto

obtain rg where rg: recfn 1 rg ∀ x. eval rg [x] = g x
using assms(2) by auto

let ?rh = Cn 1 rf [rg]
have recfn 1 ?rh

using rf (1) rg(1) by simp
moreover have eval ?rh [x] = ?h x for x

using rf rg by simp
ultimately show ?thesis by blast

qed

lemma P1-update-P1 :
assumes f ∈ P
shows f (x:=z) ∈ P

proof (cases z)
case None
define re where re ≡ Mn 1 (r-constn 1 1)
from assms obtain r where r : recfn 1 r (λu. eval r [u]) = f

by auto
define r ′ where r ′ = Cn 1 (r-lifz re r) [Cn 1 r-eq [Id 1 0 , r-const x], Id 1 0]
have recfn 1 r ′

using r(1) r ′-def re-def by simp
then have eval r ′ [u] = eval (r-lifz re r) [if u = x then 0 else 1 , u] for u

using r ′-def by simp
with r(1) have eval r ′ [u] = (if u = x then None else eval r [u]) for u

using re-def re-def by simp
with r(2) have eval r ′ [u] = (f (x:=None)) u for u

by auto
then have (λu. eval r ′ [u]) = f (x:=None)

by auto
with None ‹recfn 1 r ′› show ?thesis by auto

next
case (Some y)
from assms obtain r where r : recfn 1 r (λu. eval r [u]) = f

by auto
define r ′ where

r ′ ≡ Cn 1 (r-lifz (r-const y) r) [Cn 1 r-eq [Id 1 0 , r-const x], Id 1 0]
have recfn 1 r ′

using r(1) r ′-def by simp
then have eval r ′ [u] = eval (r-lifz (r-const y) r) [if u = x then 0 else 1 , u] for u

using r ′-def by simp
with r(1) have eval r ′ [u] = (if u = x then Some y else eval r [u]) for u

by simp
with r(2) have eval r ′ [u] = (f (x:=Some y)) u for u

by auto
then have (λu. eval r ′ [u]) = f (x:=Some y)

by auto
with Some ‹recfn 1 r ′› show ?thesis by auto

qed

lemma swap-P2 :
assumes f ∈ P2

shows (λx y. f y x) ∈ P2

105

proof −
obtain r where r : recfn 2 r

∧
x y. eval r [x, y] = f x y

using assms by auto
then have eval (r-swap r) [x, y] = f y x for x y

by simp
moreover have recfn 2 (r-swap r)

using r-swap-recfn r(1) by simp
ultimately show ?thesis by auto

qed

lemma swap-R2 :
assumes f ∈ R2

shows (λx y. f y x) ∈ R2

using swap-P2 [of f] assms
by (meson P2-total-imp-R2 R2-imp-P2 R2-imp-total2 total2E total2I)

lemma skip-P1 :
assumes f ∈ P
shows (λx. f (x + n)) ∈ P

proof −
obtain r where r : recfn 1 r

∧
x. eval r [x] = f x

using assms by auto
let ?s = Cn 1 r [Cn 1 r-add [Id 1 0 , r-const n]]
have recfn 1 ?s

using r by simp
have eval ?s [x] = eval r [x + n] for x

using r by simp
with r have eval ?s [x] = f (x + n) for x

by simp
with ‹recfn 1 ?s› show ?thesis by blast

qed

lemma skip-R1 :
assumes f ∈ R
shows (λx. f (x + n)) ∈ R
using assms skip-P1 R1-imp-total1 total1-def by auto

1.12.3 The Gödel numbering ϕ

While the term Gödel numbering is often used generically for mappings between natural
numbers and mathematical concepts, the inductive inference literature uses it in a more
specific sense. There it is equivalent to the notion of acceptable numbering [12]: For every
numbering there is a recursive function mapping the numbering’s indices to equivalent
ones of a Gödel numbering.
definition goedel-numbering :: partial2 ⇒ bool where

goedel-numbering ψ ≡ ψ ∈ P2 ∧ (∀χ∈P2. ∃ c∈R. ∀ i. χ i = ψ (the (c i)))

lemma goedel-numbering-P2 :
assumes goedel-numbering ψ
shows ψ ∈ P2

using goedel-numbering-def assms by simp

lemma goedel-numberingE :
assumes goedel-numbering ψ and χ ∈ P2

obtains c where c ∈ R and ∀ i. χ i = ψ (the (c i))

106

using assms goedel-numbering-def by blast

lemma goedel-numbering-universal:
assumes goedel-numbering ψ and f ∈ P
shows ∃ i. ψ i = f

proof −
define χ :: partial2 where χ = (λi. f)
have χ ∈ P2

proof −
obtain rf where rf : recfn 1 rf

∧
x. eval rf [x] = f x

using assms(2) by auto
define r where r = Cn 2 rf [Id 2 1]
then have r : recfn 2 r

∧
i x. eval r [i, x] = eval rf [x]

using rf (1) by simp-all
with rf (2) have

∧
i x. eval r [i, x] = f x by simp

with r(1) show ?thesis using χ-def by auto
qed
then obtain c where c ∈ R and ∀ i. χ i = ψ (the (c i))

using goedel-numbering-def assms(1) by auto
with χ-def show ?thesis by auto

qed

Our standard Gödel numbering is based on r-phi:
definition phi :: partial2 (‹ϕ›) where
ϕ i x ≡ eval r-phi [i, x]

lemma phi-in-P2 : ϕ ∈ P2

unfolding phi-def using r-phi-recfn by blast

Indices of any numbering can be translated into equivalent indices of ϕ, which thus is a
Gödel numbering.
lemma numbering-translation-for-phi:

assumes ψ ∈ P2

shows ∃ c∈R. ∀ i. ψ i = ϕ (the (c i))
proof −

obtain psi where psi: recfn 2 psi
∧

i x. eval psi [i, x] = ψ i x
using assms by auto

with numbering-translation obtain b where
recfn 1 b total b ∀ i x. eval psi [i, x] = eval r-phi [the (eval b [i]), x]
by blast

moreover from this obtain c where c: c ∈ R ∀ i. c i = eval b [i]
by fast

ultimately have ψ i x = ϕ (the (c i)) x for i x
using phi-def psi(2) by presburger

then have ψ i = ϕ (the (c i)) for i
by auto

then show ?thesis using c(1) by blast
qed

corollary goedel-numbering-phi: goedel-numbering ϕ
unfolding goedel-numbering-def using numbering-translation-for-phi phi-in-P2 by simp

corollary phi-universal:
assumes f ∈ P
obtains i where ϕ i = f
using goedel-numbering-universal[OF goedel-numbering-phi assms] by auto

107

1.12.4 Fixed-point theorems

The fixed-point theorems look somewhat cleaner in the new notation. We will only need
the following ones in the next chapter.
theorem kleene-fixed-point:

fixes k :: nat
assumes ψ ∈ P2

obtains i where i ≥ k and ϕ i = ψ i
proof −

obtain r-psi where r-psi: recfn 2 r-psi
∧

i x. eval r-psi [i, x] = ψ i x
using assms by auto

then obtain i where i: i ≥ k ∀ x. eval r-phi [i, x] = eval r-psi [i, x]
using kleene-fixed-point-theorem by blast

then have ∀ x. ϕ i x = ψ i x
using phi-def r-psi by simp

then show ?thesis using i that by blast
qed

theorem smullyan-double-fixed-point:
assumes g ∈ R2 and h ∈ R2

obtains m n where ϕ m = ϕ (the (g m n)) and ϕ n = ϕ (the (h m n))
proof −

obtain rg where rg: recfn 2 rg total rg g = (λx y. eval rg [x, y])
using R2E [OF assms(1)] by auto

moreover obtain rh where rh: recfn 2 rh total rh h = (λx y. eval rh [x, y])
using R2E [OF assms(2)] by auto

ultimately obtain m n where
∀ x. eval r-phi [m, x] = eval r-phi [the (eval rg [m, n]), x]
∀ x. eval r-phi [n, x] = eval r-phi [the (eval rh [m, n]), x]
using smullyan-double-fixed-point-theorem[of rg rh] by blast

then have ϕ m = ϕ (the (g m n)) and ϕ n = ϕ (the (h m n))
using phi-def rg rh by auto

then show ?thesis using that by simp
qed

end

108

Chapter 2

Inductive inference of recursive
functions

theory Inductive-Inference-Basics
imports Standard-Results

begin

Inductive inference originates from work by Solomonoff [13, 14] and Gold [9, 8] and
comes in many variations. The common theme is to infer additional information about
objects, such as formal languages or functions, from incomplete data, such as finitely
many words contained in the language or argument-value pairs of the function. Often-
times “additional information” means complete information, such that the task becomes
identification of the object.
The basic setting in inductive inference of recursive functions is as follows. Let us
denote, for a total function f , by fn the code of the list [f(0), ..., f(n)]. Let U be a
set (called class) of total recursive functions, and ψ a binary partial recursive function
(called hypothesis space). A partial recursive function S (called strategy) is said to learn
U in the limit with respect to ψ if for all f ∈ U ,

• the value S(fn) is defined for all n ∈ N,

• the sequence S(f0), S(f1), . . . converges to an i ∈ N with ψi = f .

Both the output S(fn) of the strategy and its interpretation as a function ψS(fn) are
called hypothesis. The set of all classes learnable in the limit by S with respect to ψ is de-
noted by LIMψ(S). Moreover we set LIMψ =

⋃
S∈P LIMψ(S) and LIM =

⋃
ψ∈P2 LIMψ.

We call the latter set the inference type LIM.
Many aspects of this setting can be varied. We shall consider:

• Intermediate hypotheses: ψS(fn) can be required to be total or to be in the class
U , or to coincide with f on arguments up to n, or a myriad of other conditions or
combinations thereof.

• Convergence of hypotheses:

– The strategy can be required to output not a sequence but a single hypothesis,
which must be correct.

– The strategy can be required to converge to a function rather than an index.

We formalize five kinds of results (I and I ′ stand for inference types):

109

• Comparison of learning power: results of the form I ⊂ I ′, in particular showing
that the inclusion is proper (Sections 2.3, 2.4, 2.5, 2.6, 2.7, 2.9, 2.10, 2.11).

• Whether I is closed under the subset relation: U ∈ I ∧ V ⊆ U =⇒ V ∈ I.

• Whether I is closed under union: U ∈ I ∧ V ∈ I =⇒ U ∪ V ∈ I (Section 2.12).

• Whether every class in I can be learned with respect to a Gödel numbering as
hypothesis space (Section 2.2).

• Whether every class in I can be learned by a total recursive strategy (Section 2.8).

The bulk of this chapter is devoted to the first category of results. Most results that we
are going to formalize have been called “classical” by Jantke and Beick [10], who compare
a large number of inference types. Another comparison is by Case and Smith [6]. Angluin
and Smith [1] give an overview of various forms of inductive inference.
All (interesting) proofs herein are based on my lecture notes of the Induktive Inferenz
lectures by Rolf Wiehagen from 1999/2000 and 2000/2001 at the University of Kaiser-
slautern. I have given references to the original proofs whenever I was able to find them.
For the other proofs, as well as for those that I had to contort beyond recognition, I
provide proof sketches.

2.1 Preliminaries

Throughout the chapter, in particular in proof sketches, we use the following notation.
Let b ∈ N∗ be a list of numbers. We write |b| for its length and bi for the i-th element
(i = 0, . . . , |b| − 1). Concatenation of numbers and lists works in the obvious way; for
instance, jbk with j, k ∈ N, b ∈ N∗ refers to the list jb0 . . . b|b|−1k. For 0 ≤ i < |b|, the
term bi:=v denotes the list b0 . . . bi−1vbi+1 . . . b|b|−1. The notation b<i refers to b0 . . . bi−1

for 0 < i ≤ |b|. Moreover, vn is short for the list consisting of n times the value v ∈ N.
Unary partial functions can be regarded as infinite sequences consisting of numbers and
the symbol ↑ denoting undefinedness. We abbreviate the empty function by ↑∞ and the
constant zero function by 0∞. A function can be written as a list concatenated with a
partial function. For example, jb ↑∞ is the function

x 7→

j if x = 0,
bx−1 if 0 < x ≤ |b|,
↑ otherwise,

and jp, where p is a function, means

x 7→
{
j if x = 0,
p(x− 1) otherwise.

A numbering is a function ψ ∈ P2.

2.1.1 The prefixes of a function

A prefix, also called initial segment, is a list of initial values of a function.
definition prefix :: partial1 ⇒ nat ⇒ nat list where

110

prefix f n ≡ map (λx. the (f x)) [0 ..<Suc n]

lemma length-prefix [simp]: length (prefix f n) = Suc n
unfolding prefix-def by simp

lemma prefix-nth [simp]:
assumes k < Suc n
shows prefix f n ! k = the (f k)
unfolding prefix-def using assms nth-map-upt[of k Suc n 0 λx. the (f x)] by simp

lemma prefixI :
assumes length vs > 0 and

∧
x. x < length vs =⇒ f x ↓= vs ! x

shows prefix f (length vs − 1) = vs
using assms nth-equalityI [of prefix f (length vs − 1) vs] by simp

lemma prefixI ′:
assumes length vs = Suc n and

∧
x. x < Suc n =⇒ f x ↓= vs ! x

shows prefix f n = vs
using assms nth-equalityI [of prefix f (length vs − 1) vs] by simp

lemma prefixE :
assumes prefix f (length vs − 1) = vs

and f ∈ R
and length vs > 0
and x < length vs

shows f x ↓= vs ! x
using assms length-prefix prefix-nth[of x length vs − 1 f] by simp

lemma prefix-eqI :
assumes

∧
x. x ≤ n =⇒ f x = g x

shows prefix f n = prefix g n
using assms prefix-def by simp

lemma prefix-0 : prefix f 0 = [the (f 0)]
using prefix-def by simp

lemma prefix-Suc: prefix f (Suc n) = prefix f n @ [the (f (Suc n))]
unfolding prefix-def by simp

lemma take-prefix:
assumes f ∈ R and k ≤ n
shows prefix f k = take (Suc k) (prefix f n)

proof −
let ?vs = take (Suc k) (prefix f n)
have length ?vs = Suc k

using assms(2) by simp
then have

∧
x. x < length ?vs =⇒ f x ↓= ?vs ! x

using assms by auto
then show ?thesis

using prefixI [where ?vs=?vs] ‹length ?vs = Suc k› by simp
qed

Strategies receive prefixes in the form of encoded lists. The term “prefix” refers to both
encoded and unencoded lists. We use the notation f . n for the prefix fn.
definition init :: partial1 ⇒ nat ⇒ nat (infix ‹.› 110) where

f . n ≡ list-encode (prefix f n)

111

lemma init-neq-zero: f . n 6= 0
unfolding init-def prefix-def using list-encode-0 by fastforce

lemma init-prefixE [elim]: prefix f n = prefix g n =⇒ f . n = g . n
unfolding init-def by simp

lemma init-eqI :
assumes

∧
x. x ≤ n =⇒ f x = g x

shows f . n = g . n
unfolding init-def using prefix-eqI [OF assms] by simp

lemma initI :
assumes e-length e > 0 and

∧
x. x < e-length e =⇒ f x ↓= e-nth e x

shows f . (e-length e − 1) = e
unfolding init-def using assms prefixI by simp

lemma initI ′:
assumes e-length e = Suc n and

∧
x. x < Suc n =⇒ f x ↓= e-nth e x

shows f . n = e
unfolding init-def using assms prefixI ′ by simp

lemma init-iff-list-eq-upto:
assumes f ∈ R and e-length vs > 0
shows (∀ x<e-length vs. f x ↓= e-nth vs x) ←→ prefix f (e-length vs − 1) = list-decode vs
using prefixI [OF assms(2)] prefixE [OF - assms] by auto

lemma length-init [simp]: e-length (f . n) = Suc n
unfolding init-def by simp

lemma init-Suc-snoc: f . (Suc n) = e-snoc (f . n) (the (f (Suc n)))
unfolding init-def by (simp add: prefix-Suc)

lemma nth-init: i < Suc n =⇒ e-nth (f . n) i = the (f i)
unfolding init-def using prefix-nth by auto

lemma hd-init [simp]: e-hd (f . n) = the (f 0)
unfolding init-def using init-neq-zero by (simp add: e-hd-nth0)

lemma list-decode-init [simp]: list-decode (f . n) = prefix f n
unfolding init-def by simp

lemma init-eq-iff-eq-upto:
assumes g ∈ R and f ∈ R
shows (∀ j<Suc n. g j = f j) ←→ g . n = f . n
using assms initI ′ init-iff-list-eq-upto length-init list-decode-init
by (metis diff-Suc-1 zero-less-Suc)

definition is-init-of :: nat ⇒ partial1 ⇒ bool where
is-init-of t f ≡ ∀ i<e-length t. f i ↓= e-nth t i

lemma not-initial-imp-not-eq:
assumes

∧
x. x < Suc n =⇒ f x ↓ and ¬ (is-init-of (f . n) g)

shows f 6= g
using is-init-of-def assms by auto

112

lemma all-init-eq-imp-fun-eq:
assumes f ∈ R and g ∈ R and

∧
n. f . n = g . n

shows f = g
proof

fix n
from assms have prefix f n = prefix g n

by (metis init-def list-decode-encode)
then have the (f n) = the (g n)

unfolding init-def prefix-def by simp
then show f n = g n

using assms(1 ,2) by (meson R1-imp-total1 option.expand total1E)
qed

corollary neq-fun-neq-init:
assumes f ∈ R and g ∈ R and f 6= g
shows ∃n. f . n 6= g . n
using assms all-init-eq-imp-fun-eq by auto

lemma eq-init-forall-le:
assumes f . n = g . n and m ≤ n
shows f . m = g . m

proof −
from assms(1) have prefix f n = prefix g n

by (metis init-def list-decode-encode)
then have the (f k) = the (g k) if k ≤ n for k

using prefix-def that by auto
then have the (f k) = the (g k) if k ≤ m for k

using assms(2) that by simp
then have prefix f m = prefix g m

using prefix-def by simp
then show ?thesis by (simp add: init-def)

qed

corollary neq-init-forall-ge:
assumes f . n 6= g . n and m ≥ n
shows f . m 6= g . m
using eq-init-forall-le assms by blast

lemma e-take-init:
assumes f ∈ R and k < Suc n
shows e-take (Suc k) (f . n) = f . k
using assms take-prefix by (simp add: init-def less-Suc-eq-le)

lemma init-butlast-init:
assumes total1 f and f . n = e and n > 0
shows f . (n − 1) = e-butlast e

proof −
let ?e = e-butlast e
have e-length e = Suc n

using assms(2) by auto
then have len: e-length ?e = n

by simp
have f . (e-length ?e − 1) = ?e
proof (rule initI)

show 0 < e-length ?e
using assms(3) len by simp

113

have
∧

x. x < e-length e =⇒ f x ↓= e-nth e x
using assms(1 ,2) total1-def ‹e-length e = Suc n› by auto

then show
∧

x. x < e-length ?e =⇒ f x ↓= e-nth ?e x
by (simp add: butlast-conv-take)

qed
with len show ?thesis by simp

qed

Some definitions make use of recursive predicates, that is, 01-valued functions.
definition RPred1 :: partial1 set (‹R01›) where
R01 ≡ {f . f ∈ R ∧ (∀ x. f x ↓= 0 ∨ f x ↓= 1)}

lemma RPred1-subseteq-R1 : R01 ⊆ R
unfolding RPred1-def by auto

lemma const0-in-RPred1 : (λ-. Some 0) ∈ R01

using RPred1-def const-in-Prim1 by fast

lemma RPred1-altdef : R01 = {f . f ∈ R ∧ (∀ x. the (f x) ≤ 1)}
(is R01 = ?S)

proof
show R01 ⊆ ?S
proof

fix f
assume f : f ∈ R01

with RPred1-def have f ∈ R by auto
from f have ∀ x. f x ↓= 0 ∨ f x ↓= 1

by (simp add: RPred1-def)
then have ∀ x. the (f x) ≤ 1

by (metis eq-refl less-Suc-eq-le zero-less-Suc option.sel)
with ‹f ∈ R› show f ∈ ?S by simp

qed
show ?S ⊆ R01

proof
fix f
assume f : f ∈ ?S
then have f ∈ R by simp
then have total:

∧
x. f x ↓ by auto

from f have ∀ x. the (f x) = 0 ∨ the (f x) = 1
by (simp add: le-eq-less-or-eq)

with total have ∀ x. f x ↓= 0 ∨ f x ↓= 1
by (metis option.collapse)

then show f ∈ R01

using ‹f ∈ R› RPred1-def by auto
qed

qed

2.1.2 NUM

A class of recursive functions is in NUM if it can be embedded in a total numbering.
Thus, for learning such classes there is always a total hypothesis space available.
definition NUM :: partial1 set set where

NUM ≡ {U . ∃ψ∈R2. ∀ f∈U . ∃ i. ψ i = f }

definition NUM-wrt :: partial2 ⇒ partial1 set set where

114

ψ ∈ R2 =⇒ NUM-wrt ψ ≡ {U . ∀ f∈U . ∃ i. ψ i = f }

lemma NUM-I [intro]:
assumes ψ ∈ R2 and

∧
f . f ∈ U =⇒ ∃ i. ψ i = f

shows U ∈ NUM
using assms NUM-def by blast

lemma NUM-E [dest]:
assumes U ∈ NUM
shows U ⊆ R

and ∃ψ∈R2. ∀ f∈U . ∃ i. ψ i = f
using NUM-def assms by (force, auto)

lemma NUM-closed-subseteq:
assumes U ∈ NUM and V ⊆ U
shows V ∈ NUM
using assms subset-eq[of V U] NUM-I by auto

This is the classical diagonalization proof showing that there is no total numbering
containing all total recursive functions.
lemma R1-not-in-NUM : R /∈ NUM
proof

assume R ∈ NUM
then obtain ψ where num: ψ ∈ R2 ∀ f∈R. ∃ i. ψ i = f

by auto
then obtain psi where psi: recfn 2 psi total psi eval psi [i, x] = ψ i x for i x

by auto
define d where d = Cn 1 S [Cn 1 psi [Id 1 0 , Id 1 0]]
then have recfn 1 d

using psi(1) by simp
moreover have d: eval d [x] ↓= Suc (the (ψ x x)) for x

unfolding d-def using num psi by simp
ultimately have (λx. eval d [x]) ∈ R

using R1I by blast
then obtain i where ψ i = (λx. eval d [x])

using num(2) by auto
then have ψ i i = eval d [i] by simp
with d have ψ i i ↓= Suc (the (ψ i i)) by simp
then show False

using option.sel[of Suc (the (ψ i i))] by simp
qed

A hypothesis space that contains a function for every prefix will come in handy. The
following is a total numbering with this property.
definition r-prenum ≡

Cn 2 r-ifless [Id 2 1 , Cn 2 r-length [Id 2 0], Cn 2 r-nth [Id 2 0 , Id 2 1], r-constn 1 0]

lemma r-prenum-prim [simp]: prim-recfn 2 r-prenum
unfolding r-prenum-def by simp-all

lemma r-prenum [simp]:
eval r-prenum [e, x] ↓= (if x < e-length e then e-nth e x else 0)
by (simp add: r-prenum-def)

definition prenum :: partial2 where

115

prenum e x ≡ Some (if x < e-length e then e-nth e x else 0)

lemma prenum-in-R2 : prenum ∈ R2

using prenum-def Prim2I [OF r-prenum-prim, of prenum] by simp

lemma prenum [simp]: prenum e x ↓= (if x < e-length e then e-nth e x else 0)
unfolding prenum-def ..

lemma prenum-encode:
prenum (list-encode vs) x ↓= (if x < length vs then vs ! x else 0)
using prenum-def by (cases x < length vs) simp-all

Prepending a list of numbers to a function:
definition prepend :: nat list ⇒ partial1 ⇒ partial1 (infixr ‹�› 64) where

vs � f ≡ λx. if x < length vs then Some (vs ! x) else f (x − length vs)

lemma prepend [simp]:
(vs � f) x = (if x < length vs then Some (vs ! x) else f (x − length vs))
unfolding prepend-def ..

lemma prepend-total: total1 f =⇒ total1 (vs � f)
unfolding total1-def by simp

lemma prepend-at-less:
assumes n < length vs
shows (vs � f) n ↓= vs ! n
using assms by simp

lemma prepend-at-ge:
assumes n ≥ length vs
shows (vs � f) n = f (n − length vs)
using assms by simp

lemma prefix-prepend-less:
assumes n < length vs
shows prefix (vs � f) n = take (Suc n) vs
using assms length-prefix by (intro nth-equalityI) simp-all

lemma prepend-eqI :
assumes

∧
x. x < length vs =⇒ g x ↓= vs ! x

and
∧

x. g (length vs + x) = f x
shows g = vs � f

proof
fix x
show g x = (vs � f) x
proof (cases x < length vs)

case True
then show ?thesis using assms by simp

next
case False
then show ?thesis

using assms prepend by (metis add-diff-inverse-nat)
qed

qed

fun r-prepend :: nat list ⇒ recf ⇒ recf where

116

r-prepend [] r = r
| r-prepend (v # vs) r =

Cn 1 (r-lifz (r-const v) (Cn 1 (r-prepend vs r) [r-dec])) [Id 1 0 , Id 1 0]

lemma r-prepend-recfn:
assumes recfn 1 r
shows recfn 1 (r-prepend vs r)
using assms by (induction vs) simp-all

lemma r-prepend:
assumes recfn 1 r
shows eval (r-prepend vs r) [x] =
(if x < length vs then Some (vs ! x) else eval r [x − length vs])

proof (induction vs arbitrary: x)
case Nil
then show ?case using assms by simp

next
case (Cons v vs)
show ?case

using assms Cons by (cases x = 0) (auto simp add: r-prepend-recfn)
qed

lemma r-prepend-total:
assumes recfn 1 r and total r
shows eval (r-prepend vs r) [x] ↓=
(if x < length vs then vs ! x else the (eval r [x − length vs]))

proof (induction vs arbitrary: x)
case Nil
then show ?case using assms by simp

next
case (Cons v vs)
show ?case

using assms Cons by (cases x = 0) (auto simp add: r-prepend-recfn)
qed

lemma prepend-in-P1 :
assumes f ∈ P
shows vs � f ∈ P

proof −
obtain r where r : recfn 1 r

∧
x. eval r [x] = f x

using assms by auto
moreover have recfn 1 (r-prepend vs r)

using r r-prepend-recfn by simp
moreover have eval (r-prepend vs r) [x] = (vs � f) x for x

using r r-prepend by simp
ultimately show ?thesis by blast

qed

lemma prepend-in-R1 :
assumes f ∈ R
shows vs � f ∈ R

proof −
obtain r where r : recfn 1 r total r

∧
x. eval r [x] = f x

using assms by auto
then have total1 f

using R1-imp-total1 [OF assms] by simp

117

have total (r-prepend vs r)
using r r-prepend-total r-prepend-recfn totalI1 [of r-prepend vs r] by simp

with r have total (r-prepend vs r) by simp
moreover have recfn 1 (r-prepend vs r)

using r r-prepend-recfn by simp
moreover have eval (r-prepend vs r) [x] = (vs � f) x for x

using r r-prepend ‹total1 f › total1E by simp
ultimately show ?thesis by auto

qed

lemma prepend-associative: (us @ vs) � f = us � vs � f (is ?lhs = ?rhs)
proof

fix x
consider

x < length us
| x ≥ length us ∧ x < length (us @ vs)
| x ≥ length (us @ vs)
by linarith

then show ?lhs x = ?rhs x
proof (cases)

case 1
then show ?thesis

by (metis le-add1 length-append less-le-trans nth-append prepend-at-less)
next

case 2
then show ?thesis

by (smt add-diff-inverse-nat add-less-cancel-left length-append nth-append prepend)
next

case 3
then show ?thesis

using prepend-at-ge by auto
qed

qed

abbreviation constant-divergent :: partial1 (‹↑∞›) where
↑∞ ≡ λ-. None

abbreviation constant-zero :: partial1 (‹0∞›) where
0∞ ≡ λ-. Some 0

lemma almost0-in-R1 : vs � 0∞ ∈ R
using RPred1-subseteq-R1 const0-in-RPred1 prepend-in-R1 by auto

The class U0 of all total recursive functions that are almost everywhere zero will be used
several times to construct (counter-)examples.
definition U0 :: partial1 set (‹U 0›) where

U 0 ≡ {vs � 0∞ |vs. vs ∈ UNIV }

The class U 0 contains exactly the functions in the numbering prenum.
lemma U0-altdef : U 0 = {prenum e| e. e ∈ UNIV } (is U 0 = ?W)
proof

show U 0 ⊆ ?W
proof

fix f
assume f ∈ U 0

118

with U0-def obtain vs where f = vs � 0∞

by auto
then have f = prenum (list-encode vs)

using prenum-encode by auto
then show f ∈ ?W by auto

qed
show ?W ⊆ U 0

unfolding U0-def by fastforce
qed

lemma U0-in-NUM : U 0 ∈ NUM
using prenum-in-R2 U0-altdef by (intro NUM-I [of prenum]; force)

Every almost-zero function can be represented by v0∞ for a list v not ending in zero.
lemma almost0-canonical:

assumes f = vs � 0∞ and f 6= 0∞

obtains ws where length ws > 0 and last ws 6= 0 and f = ws � 0∞

proof −
let ?P = λk. k < length vs ∧ vs ! k 6= 0
from assms have vs 6= []

by auto
then have ex: ∃ k<length vs. vs ! k 6= 0

using assms by auto
define m where m = Greatest ?P
moreover have le: ∀ y. ?P y −→ y ≤ length vs

by simp
ultimately have ?P m

using ex GreatestI-ex-nat[of ?P length vs] by simp
have not-gr : ¬ ?P k if k > m for k

using Greatest-le-nat[of ?P - length vs] m-def ex le not-less that by blast
let ?ws = take (Suc m) vs
have vs � 0∞ = ?ws � 0∞

proof
fix x
show (vs � 0∞) x = (?ws � 0∞) x
proof (cases x < Suc m)

case True
then show ?thesis using ‹?P m› by simp

next
case False
moreover from this have (?ws � 0∞) x ↓= 0

by simp
ultimately show ?thesis

using not-gr by (cases x < length vs) simp-all
qed

qed
then have f = ?ws � 0∞

using assms(1) by simp
moreover have length ?ws > 0

by (simp add: ‹vs 6= []›)
moreover have last ?ws 6= 0

by (simp add: ‹?P m› take-Suc-conv-app-nth)
ultimately show ?thesis using that by blast

qed

119

2.2 Types of inference

This section introduces all inference types that we are going to consider together with
some of their simple properties. All these inference types share the following condition,
which essentially says that everything must be computable:
abbreviation environment :: partial2 ⇒ (partial1 set) ⇒ partial1 ⇒ bool where

environment ψ U s ≡ ψ ∈ P2 ∧ U ⊆ R ∧ s ∈ P ∧ (∀ f∈U . ∀n. s (f . n) ↓)

2.2.1 LIM: Learning in the limit

A strategy S learns a class U in the limit with respect to a hypothesis space ψ ∈ P2 if
for all f ∈ U , the sequence (S(fn))n∈N converges to an i with ψi = f . Convergence for a
sequence of natural numbers means that almost all elements are the same. We express
this with the following notation.
abbreviation Almost-All :: (nat ⇒ bool) ⇒ bool (binder ‹∀∞› 10) where
∀∞n. P n ≡ ∃n0. ∀n≥n0. P n

definition learn-lim :: partial2 ⇒ (partial1 set) ⇒ partial1 ⇒ bool where
learn-lim ψ U s ≡

environment ψ U s ∧
(∀ f∈U . ∃ i. ψ i = f ∧ (∀∞n. s (f . n) ↓= i))

lemma learn-limE :
assumes learn-lim ψ U s
shows environment ψ U s

and
∧

f . f ∈ U =⇒ ∃ i. ψ i = f ∧ (∀∞n. s (f . n) ↓= i)
using assms learn-lim-def by auto

lemma learn-limI :
assumes environment ψ U s

and
∧

f . f ∈ U =⇒ ∃ i. ψ i = f ∧ (∀∞n. s (f . n) ↓= i)
shows learn-lim ψ U s
using assms learn-lim-def by auto

definition LIM-wrt :: partial2 ⇒ partial1 set set where
LIM-wrt ψ ≡ {U . ∃ s. learn-lim ψ U s}

definition Lim :: partial1 set set (‹LIM ›) where
LIM ≡ {U . ∃ψ s. learn-lim ψ U s}

LIM is closed under the the subset relation.
lemma learn-lim-closed-subseteq:

assumes learn-lim ψ U s and V ⊆ U
shows learn-lim ψ V s
using assms learn-lim-def by auto

corollary LIM-closed-subseteq:
assumes U ∈ LIM and V ⊆ U
shows V ∈ LIM
using assms learn-lim-closed-subseteq by (smt Lim-def mem-Collect-eq)

Changing the hypothesis infinitely often precludes learning in the limit.
lemma infinite-hyp-changes-not-Lim:

assumes f ∈ U and ∀n. ∃m1>n. ∃m2>n. s (f . m1) 6= s (f . m2)

120

shows ¬ learn-lim ψ U s
using assms learn-lim-def by (metis less-imp-le)

lemma always-hyp-change-not-Lim:
assumes

∧
x. s (f . (Suc x)) 6= s (f . x)

shows ¬ learn-lim ψ {f } s
using assms learn-limE by (metis le-SucI order-refl singletonI)

Guessing a wrong hypothesis infinitely often precludes learning in the limit.
lemma infinite-hyp-wrong-not-Lim:

assumes f ∈ U and ∀n. ∃m>n. ψ (the (s (f . m))) 6= f
shows ¬ learn-lim ψ U s
using assms learn-limE by (metis less-imp-le option.sel)

Converging to the same hypothesis on two functions precludes learning in the limit.
lemma same-hyp-for-two-not-Lim:

assumes f 1 ∈ U
and f 2 ∈ U
and f 1 6= f 2
and ∀n≥n1. s (f 1 . n) = h
and ∀n≥n2. s (f 2 . n) = h

shows ¬ learn-lim ψ U s
using assms learn-limE by (metis le-cases option.sel)

Every class that can be learned in the limit can be learned in the limit with respect
to any Gödel numbering. We prove a generalization in which hypotheses may have to
satisfy an extra condition, so we can re-use it for other inference types later.
lemma learn-lim-extra-wrt-goedel:

fixes extra :: (partial1 set) ⇒ partial1 ⇒ nat ⇒ partial1 ⇒ bool
assumes goedel-numbering χ

and learn-lim ψ U s
and

∧
f n. f ∈ U =⇒ extra U f n (ψ (the (s (f . n))))

shows ∃ t. learn-lim χ U t ∧ (∀ f∈U . ∀n. extra U f n (χ (the (t (f . n)))))
proof −

have env: environment ψ U s
and lim: learn-lim ψ U s
and extra: ∀ f∈U . ∀n. extra U f n (ψ (the (s (f . n))))
using assms learn-limE by auto

obtain c where c: c ∈ R ∀ i. ψ i = χ (the (c i))
using env goedel-numberingE [OF assms(1), of ψ] by auto

define t where t ≡
(λx. if s x ↓ ∧ c (the (s x)) ↓ then Some (the (c (the (s x)))) else None)

have t ∈ P
unfolding t-def using env c concat-P1-P1 [of c s] by auto

have t x = (if s x ↓ then Some (the (c (the (s x)))) else None) for x
using t-def c(1) R1-imp-total1 by auto

then have t: t (f . n) ↓= the (c (the (s (f . n)))) if f ∈ U for f n
using lim learn-limE that by simp

have learn-lim χ U t
proof (rule learn-limI)

show environment χ U t
using t by (simp add: ‹t ∈ P› env goedel-numbering-P2 [OF assms(1)])

show ∃ i. χ i = f ∧ (∀∞n. t (f . n) ↓= i) if f ∈ U for f
proof −

from lim learn-limE(2) obtain i n0 where

121

i: ψ i = f ∧ (∀n≥n0. s (f . n) ↓= i)
using ‹f ∈ U › by blast

let ?j = the (c i)
have χ ?j = f

using c(2) i by simp
moreover have t (f . n) ↓= ?j if n ≥ n0 for n

by (simp add: ‹f ∈ U › i t that)
ultimately show ?thesis by auto

qed
qed
moreover have extra U f n (χ (the (t (f . n)))) if f ∈ U for f n
proof −

from t have the (t (f . n)) = the (c (the (s (f . n))))
by (simp add: that)

then have χ (the (t (f . n))) = ψ (the (s (f . n)))
using c(2) by simp

with extra show ?thesis using that by simp
qed
ultimately show ?thesis by auto

qed

lemma learn-lim-wrt-goedel:
assumes goedel-numbering χ and learn-lim ψ U s
shows ∃ t. learn-lim χ U t
using assms learn-lim-extra-wrt-goedel[where ?extra=λU f n h. True]
by simp

lemma LIM-wrt-phi-eq-Lim: LIM-wrt ϕ = LIM
using LIM-wrt-def Lim-def learn-lim-wrt-goedel[OF goedel-numbering-phi]
by blast

2.2.2 BC: Behaviorally correct learning in the limit

Behaviorally correct learning in the limit relaxes LIM by requiring that the strategy
almost always output an index for the target function, but not necessarily the same index.
In other words convergence of (S(fn))n∈N is replaced by convergence of (ψS(fn))n∈N.
definition learn-bc :: partial2 ⇒ (partial1 set) ⇒ partial1 ⇒ bool where

learn-bc ψ U s ≡
environment ψ U s ∧
(∀ f∈U . ∀∞n. ψ (the (s (f . n))) = f)

lemma learn-bcE :
assumes learn-bc ψ U s
shows environment ψ U s

and
∧

f . f ∈ U =⇒ ∀∞n. ψ (the (s (f . n))) = f
using assms learn-bc-def by auto

lemma learn-bcI :
assumes environment ψ U s

and
∧

f . f ∈ U =⇒ ∀∞n. ψ (the (s (f . n))) = f
shows learn-bc ψ U s
using assms learn-bc-def by auto

definition BC-wrt :: partial2 ⇒ partial1 set set where
BC-wrt ψ ≡ {U . ∃ s. learn-bc ψ U s}

122

definition BC :: partial1 set set where
BC ≡ {U . ∃ψ s. learn-bc ψ U s}

BC is a superset of LIM and closed under the subset relation.
lemma learn-lim-imp-BC : learn-lim ψ U s =⇒ learn-bc ψ U s

using learn-limE learn-bcI [of ψ U s] by fastforce

lemma Lim-subseteq-BC : LIM ⊆ BC
using learn-lim-imp-BC Lim-def BC-def by blast

lemma learn-bc-closed-subseteq:
assumes learn-bc ψ U s and V ⊆ U
shows learn-bc ψ V s
using assms learn-bc-def by auto

corollary BC-closed-subseteq:
assumes U ∈ BC and V ⊆ U
shows V ∈ BC
using assms by (smt BC-def learn-bc-closed-subseteq mem-Collect-eq)

Just like with LIM, guessing a wrong hypothesis infinitely often precludes BC-style
learning.
lemma infinite-hyp-wrong-not-BC :

assumes f ∈ U and ∀n. ∃m>n. ψ (the (s (f . m))) 6= f
shows ¬ learn-bc ψ U s

proof
assume learn-bc ψ U s
then obtain n0 where ∀n≥n0. ψ (the (s (f . n))) = f

using learn-bcE assms(1) by metis
with assms(2) show False using less-imp-le by blast

qed

The proof that Gödel numberings suffice as hypothesis spaces for BC is similar to the
one for learn-lim-extra-wrt-goedel. We do not need the extra part for BC, but we get it
for free.
lemma learn-bc-extra-wrt-goedel:

fixes extra :: (partial1 set) ⇒ partial1 ⇒ nat ⇒ partial1 ⇒ bool
assumes goedel-numbering χ

and learn-bc ψ U s
and

∧
f n. f ∈ U =⇒ extra U f n (ψ (the (s (f . n))))

shows ∃ t. learn-bc χ U t ∧ (∀ f∈U . ∀n. extra U f n (χ (the (t (f . n)))))
proof −

have env: environment ψ U s
and lim: learn-bc ψ U s
and extra: ∀ f∈U . ∀n. extra U f n (ψ (the (s (f . n))))
using assms learn-bc-def by auto

obtain c where c: c ∈ R ∀ i. ψ i = χ (the (c i))
using env goedel-numberingE [OF assms(1), of ψ] by auto

define t where
t = (λx. if s x ↓ ∧ c (the (s x)) ↓ then Some (the (c (the (s x)))) else None)

have t ∈ P
unfolding t-def using env c concat-P1-P1 [of c s] by auto

have t x = (if s x ↓ then Some (the (c (the (s x)))) else None) for x
using t-def c(1) R1-imp-total1 by auto

123

then have t: t (f . n) ↓= the (c (the (s (f . n)))) if f ∈ U for f n
using lim learn-bcE(1) that by simp

have learn-bc χ U t
proof (rule learn-bcI)

show environment χ U t
using t by (simp add: ‹t ∈ P› env goedel-numbering-P2 [OF assms(1)])

show ∀∞n. χ (the (t (f . n))) = f if f ∈ U for f
proof −

obtain n0 where ∀n≥n0. ψ (the (s (f . n))) = f
using lim learn-bcE(2) ‹f ∈ U › by blast

then show ?thesis using that t c(2) by auto
qed

qed
moreover have extra U f n (χ (the (t (f . n)))) if f ∈ U for f n
proof −

from t have the (t (f . n)) = the (c (the (s (f . n))))
by (simp add: that)

then have χ (the (t (f . n))) = ψ (the (s (f . n)))
using c(2) by simp

with extra show ?thesis using that by simp
qed
ultimately show ?thesis by auto

qed

corollary learn-bc-wrt-goedel:
assumes goedel-numbering χ and learn-bc ψ U s
shows ∃ t. learn-bc χ U t
using assms learn-bc-extra-wrt-goedel[where ?extra=λ- - - -. True] by simp

corollary BC-wrt-phi-eq-BC : BC-wrt ϕ = BC
using learn-bc-wrt-goedel goedel-numbering-phi BC-def BC-wrt-def by blast

2.2.3 CONS: Learning in the limit with consistent hypotheses

A hypothesis is consistent if it matches all values in the prefix given to the strategy.
Consistent learning in the limit requires the strategy to output only consistent hypotheses
for prefixes from the class.
definition learn-cons :: partial2 ⇒ (partial1 set) ⇒ partial1 ⇒ bool where

learn-cons ψ U s ≡
learn-lim ψ U s ∧
(∀ f∈U . ∀n. ∀ k≤n. ψ (the (s (f . n))) k = f k)

definition CONS-wrt :: partial2 ⇒ partial1 set set where
CONS-wrt ψ ≡ {U . ∃ s. learn-cons ψ U s}

definition CONS :: partial1 set set where
CONS ≡ {U . ∃ψ s. learn-cons ψ U s}

lemma CONS-subseteq-Lim: CONS ⊆ LIM
using CONS-def Lim-def learn-cons-def by blast

lemma learn-consI :
assumes environment ψ U s

and
∧

f . f ∈ U =⇒ ∃ i. ψ i = f ∧ (∀∞n. s (f . n) ↓= i)
and

∧
f n. f ∈ U =⇒ ∀ k≤n. ψ (the (s (f . n))) k = f k

124

shows learn-cons ψ U s
using assms learn-lim-def learn-cons-def by simp

If a consistent strategy converges, it automatically converges to a correct hypothesis.
Thus we can remove ψ i = f from the second assumption in the previous lemma.
lemma learn-consI2 :

assumes environment ψ U s
and

∧
f . f ∈ U =⇒ ∃ i. ∀∞n. s (f . n) ↓= i

and
∧

f n. f ∈ U =⇒ ∀ k≤n. ψ (the (s (f . n))) k = f k
shows learn-cons ψ U s

proof (rule learn-consI)
show environment ψ U s

and cons:
∧

f n. f ∈ U =⇒ ∀ k≤n. ψ (the (s (f . n))) k = f k
using assms by simp-all

show ∃ i. ψ i = f ∧ (∀∞n. s (f . n) ↓= i) if f ∈ U for f
proof −

from that assms(2) obtain i n0 where i-n0 : ∀n≥n0. s (f . n) ↓= i
by blast

have ψ i x = f x for x
proof (cases x ≤ n0)

case True
then show ?thesis

using i-n0 cons that by fastforce
next

case False
moreover have ∀ k≤x. ψ (the (s (f . x))) k = f k

using cons that by simp
ultimately show ?thesis using i-n0 by simp

qed
with i-n0 show ?thesis by auto

qed
qed

lemma learn-consE :
assumes learn-cons ψ U s
shows environment ψ U s

and
∧

f . f ∈ U =⇒ ∃ i n0. ψ i = f ∧ (∀n≥n0. s (f . n) ↓= i)
and

∧
f n. f ∈ U =⇒ ∀ k≤n. ψ (the (s (f . n))) k = f k

using assms learn-cons-def learn-lim-def by auto

lemma learn-cons-wrt-goedel:
assumes goedel-numbering χ and learn-cons ψ U s
shows ∃ t. learn-cons χ U t
using learn-cons-def assms

learn-lim-extra-wrt-goedel[where ?extra=λU f n h. ∀ k≤n. h k = f k]
by auto

lemma CONS-wrt-phi-eq-CONS : CONS-wrt ϕ = CONS
using CONS-wrt-def CONS-def learn-cons-wrt-goedel goedel-numbering-phi
by blast

lemma learn-cons-closed-subseteq:
assumes learn-cons ψ U s and V ⊆ U
shows learn-cons ψ V s
using assms learn-cons-def learn-lim-closed-subseteq by auto

125

lemma CONS-closed-subseteq:
assumes U ∈ CONS and V ⊆ U
shows V ∈ CONS
using assms learn-cons-closed-subseteq by (smt CONS-def mem-Collect-eq)

A consistent strategy cannot output the same hypothesis for two different prefixes from
the class to be learned.
lemma same-hyp-different-init-not-cons:

assumes f ∈ U
and g ∈ U
and f . n 6= g . n
and s (f . n) = s (g . n)

shows ¬ learn-cons ϕ U s
unfolding learn-cons-def by (auto, metis assms init-eqI)

2.2.4 TOTAL: Learning in the limit with total hypotheses

Total learning in the limit requires the strategy to hypothesize only total functions for
prefixes from the class.
definition learn-total :: partial2 ⇒ (partial1 set) ⇒ partial1 ⇒ bool where

learn-total ψ U s ≡
learn-lim ψ U s ∧
(∀ f∈U . ∀n. ψ (the (s (f . n))) ∈ R)

definition TOTAL-wrt :: partial2 ⇒ partial1 set set where
TOTAL-wrt ψ ≡ {U . ∃ s. learn-total ψ U s}

definition TOTAL :: partial1 set set where
TOTAL ≡ {U . ∃ψ s. learn-total ψ U s}

lemma TOTAL-subseteq-LIM : TOTAL ⊆ LIM
unfolding TOTAL-def Lim-def using learn-total-def by auto

lemma learn-totalI :
assumes environment ψ U s

and
∧

f . f ∈ U =⇒ ∃ i. ψ i = f ∧ (∀∞n. s (f . n) ↓= i)
and

∧
f n. f ∈ U =⇒ ψ (the (s (f . n))) ∈ R

shows learn-total ψ U s
using assms learn-lim-def learn-total-def by auto

lemma learn-totalE :
assumes learn-total ψ U s
shows environment ψ U s

and
∧

f . f ∈ U =⇒ ∃ i n0. ψ i = f ∧ (∀n≥n0. s (f . n) ↓= i)
and

∧
f n. f ∈ U =⇒ ψ (the (s (f . n))) ∈ R

using assms learn-lim-def learn-total-def by auto

lemma learn-total-wrt-goedel:
assumes goedel-numbering χ and learn-total ψ U s
shows ∃ t. learn-total χ U t
using learn-total-def assms learn-lim-extra-wrt-goedel[where ?extra=λU f n h. h ∈ R]
by auto

lemma TOTAL-wrt-phi-eq-TOTAL: TOTAL-wrt ϕ = TOTAL
using TOTAL-wrt-def TOTAL-def learn-total-wrt-goedel goedel-numbering-phi

126

by blast

lemma learn-total-closed-subseteq:
assumes learn-total ψ U s and V ⊆ U
shows learn-total ψ V s
using assms learn-total-def learn-lim-closed-subseteq by auto

lemma TOTAL-closed-subseteq:
assumes U ∈ TOTAL and V ⊆ U
shows V ∈ TOTAL
using assms learn-total-closed-subseteq by (smt TOTAL-def mem-Collect-eq)

2.2.5 CP: Learning in the limit with class-preserving hypotheses

Class-preserving learning in the limit requires all hypotheses for prefixes from the class
to be functions from the class.
definition learn-cp :: partial2 ⇒ (partial1 set) ⇒ partial1 ⇒ bool where

learn-cp ψ U s ≡
learn-lim ψ U s ∧
(∀ f∈U . ∀n. ψ (the (s (f . n))) ∈ U)

definition CP-wrt :: partial2 ⇒ partial1 set set where
CP-wrt ψ ≡ {U . ∃ s. learn-cp ψ U s}

definition CP :: partial1 set set where
CP ≡ {U . ∃ψ s. learn-cp ψ U s}

lemma learn-cp-wrt-goedel:
assumes goedel-numbering χ and learn-cp ψ U s
shows ∃ t. learn-cp χ U t
using learn-cp-def assms learn-lim-extra-wrt-goedel[where ?extra=λU f n h. h ∈ U]
by auto

corollary CP-wrt-phi: CP = CP-wrt ϕ
using learn-cp-wrt-goedel[OF goedel-numbering-phi]
by (smt CP-def CP-wrt-def Collect-cong)

lemma learn-cpI :
assumes environment ψ U s

and
∧

f . f ∈ U =⇒ ∃ i. ψ i = f ∧ (∀∞n. s (f . n) ↓= i)
and

∧
f n. f ∈ U =⇒ ψ (the (s (f . n))) ∈ U

shows learn-cp ψ U s
using assms learn-cp-def learn-lim-def by auto

lemma learn-cpE :
assumes learn-cp ψ U s
shows environment ψ U s

and
∧

f . f ∈ U =⇒ ∃ i n0. ψ i = f ∧ (∀n≥n0. s (f . n) ↓= i)
and

∧
f n. f ∈ U =⇒ ψ (the (s (f . n))) ∈ U

using assms learn-lim-def learn-cp-def by auto

Since classes contain only total functions, a CP strategy is also a TOTAL strategy.
lemma learn-cp-imp-total: learn-cp ψ U s =⇒ learn-total ψ U s

using learn-cp-def learn-total-def learn-lim-def by auto

127

lemma CP-subseteq-TOTAL: CP ⊆ TOTAL
using learn-cp-imp-total CP-def TOTAL-def by blast

2.2.6 FIN: Finite learning

In general it is undecidable whether a LIM strategy has reached its final hypothesis. By
contrast, in finite learning (also called “one-shot learning”) the strategy signals when it
is ready to output a hypothesis. Up until then it outputs a “don’t know yet” value. This
value is represented by zero and the actual hypothesis i by i+ 1.
definition learn-fin :: partial2 ⇒ partial1 set ⇒ partial1 ⇒ bool where

learn-fin ψ U s ≡
environment ψ U s ∧
(∀ f ∈ U . ∃ i n0. ψ i = f ∧ (∀n<n0. s (f . n) ↓= 0) ∧ (∀n≥n0. s (f . n) ↓= Suc i))

definition FIN-wrt :: partial2 ⇒ partial1 set set where
FIN-wrt ψ ≡ {U . ∃ s. learn-fin ψ U s}

definition FIN :: partial1 set set where
FIN ≡ {U . ∃ψ s. learn-fin ψ U s}

lemma learn-finI :
assumes environment ψ U s

and
∧

f . f ∈ U =⇒
∃ i n0. ψ i = f ∧ (∀n<n0. s (f . n) ↓= 0) ∧ (∀n≥n0. s (f . n) ↓= Suc i)

shows learn-fin ψ U s
using assms learn-fin-def by auto

lemma learn-finE :
assumes learn-fin ψ U s
shows environment ψ U s

and
∧

f . f ∈ U =⇒
∃ i n0. ψ i = f ∧ (∀n<n0. s (f . n) ↓= 0) ∧ (∀n≥n0. s (f . n) ↓= Suc i)

using assms learn-fin-def by auto

lemma learn-fin-closed-subseteq:
assumes learn-fin ψ U s and V ⊆ U
shows learn-fin ψ V s
using assms learn-fin-def by auto

lemma learn-fin-wrt-goedel:
assumes goedel-numbering χ and learn-fin ψ U s
shows ∃ t. learn-fin χ U t

proof −
have env: environment ψ U s

and fin:
∧

f . f ∈ U =⇒
∃ i n0. ψ i = f ∧ (∀n<n0. s (f . n) ↓= 0) ∧ (∀n≥n0. s (f . n) ↓= Suc i)

using assms(2) learn-finE by auto
obtain c where c: c ∈ R ∀ i. ψ i = χ (the (c i))

using env goedel-numberingE [OF assms(1), of ψ] by auto
define t where t ≡
λx. if s x ↑ then None

else if s x = Some 0 then Some 0
else Some (Suc (the (c (the (s x) − 1))))

have t ∈ P
proof −

128

from c obtain rc where rc:
recfn 1 rc
total rc
∀ x. c x = eval rc [x]
by auto

from env obtain rs where rs: recfn 1 rs ∀ x. s x = eval rs [x]
by auto

then have eval rs [f . n] ↓ if f ∈ U for f n
using env that by simp

define rt where rt = Cn 1 r-ifz [rs, Z , Cn 1 S [Cn 1 rc [Cn 1 r-dec [rs]]]]
then have recfn 1 rt

using rc(1) rs(1) by simp
have eval rt [x] ↑ if eval rs [x] ↑ for x

using rc(1) rs(1) rt-def that by auto
moreover have eval rt [x] ↓= 0 if eval rs [x] ↓= 0 for x

using rt-def that rc(1 ,2) rs(1) by simp
moreover have eval rt [x] ↓= Suc (the (c (the (s x) − 1))) if eval rs [x] ↓6= 0 for x

using rt-def that rc rs by auto
ultimately have eval rt [x] = t x for x

by (simp add: rs(2) t-def)
with ‹recfn 1 rt› show ?thesis by auto

qed
have t: t (f . n) ↓=

(if s (f . n) = Some 0 then 0 else Suc (the (c (the (s (f . n)) − 1))))
if f ∈ U for f n
using that env by (simp add: t-def)

have learn-fin χ U t
proof (rule learn-finI)

show environment χ U t
using t by (simp add: ‹t ∈ P› env goedel-numbering-P2 [OF assms(1)])

show ∃ i n0. χ i = f ∧ (∀n<n0. t (f . n) ↓= 0) ∧ (∀n≥n0. t (f . n) ↓= Suc i)
if f ∈ U for f

proof −
from fin obtain i n0 where

i: ψ i = f ∧ (∀n<n0. s (f . n) ↓= 0) ∧ (∀n≥n0. s (f . n) ↓= Suc i)
using ‹f ∈ U › by blast

let ?j = the (c i)
have χ ?j = f

using c(2) i by simp
moreover have ∀n<n0. t (f . n) ↓= 0

using t[OF that] i by simp
moreover have t (f . n) ↓= Suc ?j if n ≥ n0 for n

using that i t[OF ‹f ∈ U ›] by simp
ultimately show ?thesis by auto

qed
qed
then show ?thesis by auto

qed

end

2.3 FIN is a proper subset of CP
theory CP-FIN-NUM

imports Inductive-Inference-Basics

129

begin

Let S be a FIN strategy for a non-empty class U . Let T be a strategy that hypothesizes
an arbitrary function from U while S outputs “don’t know” and the hypothesis of S
otherwise. Then T is a CP strategy for U .
lemma nonempty-FIN-wrt-impl-CP:

assumes U 6= {} and U ∈ FIN-wrt ψ
shows U ∈ CP-wrt ψ

proof −
obtain s where learn-fin ψ U s

using assms(2) FIN-wrt-def by auto
then have env: environment ψ U s and

fin:
∧

f . f ∈ U =⇒
∃ i n0. ψ i = f ∧ (∀n<n0. s (f . n) ↓= 0) ∧ (∀n≥n0. s (f . n) ↓= Suc i)

using learn-finE by auto
from assms(1) obtain f 0 where f 0 ∈ U

by auto
with fin obtain i0 where ψ i0 = f 0

by blast
define t where t x ≡
(if s x ↑ then None else if s x ↓= 0 then Some i0 else Some (the (s x) − 1))
for x

have t ∈ P
proof −

from env obtain rs where rs: recfn 1 rs
∧

x. eval rs [x] = s x
by auto

define rt where rt = Cn 1 r-ifz [rs, r-const i0, Cn 1 r-dec [rs]]
then have recfn 1 rt

using rs(1) by simp
then have eval rt [x] ↓= (if s x ↓= 0 then i0 else (the (s x)) − 1) if s x ↓ for x

using rs rt-def that by auto
moreover have eval rt [x] ↑ if eval rs [x] ↑ for x

using rs rt-def that by simp
ultimately have eval rt [x] = t x for x

using rs(2) t-def by simp
with ‹recfn 1 rt› show ?thesis by auto

qed
have learn-cp ψ U t
proof (rule learn-cpI)

show environment ψ U t
using env t-def ‹t ∈ P› by simp

show ∃ i. ψ i = f ∧ (∀∞n. t (f . n) ↓= i) if f ∈ U for f
proof −

from that fin obtain i n0 where
i: ψ i = f ∀n<n0. s (f . n) ↓= 0 ∀n≥n0. s (f . n) ↓= Suc i
by blast

moreover have ∀n≥n0. t (f . n) ↓= i
using that t-def i(3) by simp

ultimately show ?thesis by auto
qed
show ψ (the (t (f . n))) ∈ U if f ∈ U for f n

using ‹ψ i0 = f 0› ‹f 0 ∈ U › t-def fin env that
by (metis (no-types, lifting) diff-Suc-1 not-less option.sel)

qed
then show ?thesis using CP-wrt-def env by auto

qed

130

lemma FIN-wrt-impl-CP:
assumes U ∈ FIN-wrt ψ
shows U ∈ CP-wrt ψ

proof (cases U = {})
case True
then have ψ ∈ P2 =⇒ U ∈ CP-wrt ψ

using CP-wrt-def learn-cpI [of ψ {} λx. Some 0] const-in-Prim1 by auto
moreover have ψ ∈ P2

using assms FIN-wrt-def learn-finE by auto
ultimately show U ∈ CP-wrt ψ by simp

next
case False
with nonempty-FIN-wrt-impl-CP assms show ?thesis

by simp
qed

corollary FIN-subseteq-CP: FIN ⊆ CP
proof

fix U
assume U ∈ FIN
then have ∃ψ. U ∈ FIN-wrt ψ

using FIN-def FIN-wrt-def by auto
then have ∃ψ. U ∈ CP-wrt ψ

using FIN-wrt-impl-CP by auto
then show U ∈ CP

by (simp add: CP-def CP-wrt-def)
qed

In order to show the proper inclusion, we show U 0 ∈ CP − FIN. A CP strategy for U 0

simply hypothesizes the function in U 0 with the longest prefix of fn not ending in zero.
For that we define a function computing the index of the rightmost non-zero value in a
list, returning the length of the list if there is no such value.
definition findr :: partial1 where

findr e ≡
if ∃ i<e-length e. e-nth e i 6= 0
then Some (GREATEST i. i < e-length e ∧ e-nth e i 6= 0)
else Some (e-length e)

lemma findr-total: findr e ↓
unfolding findr-def by simp

lemma findr-ex:
assumes ∃ i<e-length e. e-nth e i 6= 0
shows the (findr e) < e-length e

and e-nth e (the (findr e)) 6= 0
and ∀ i. the (findr e) < i ∧ i < e-length e −→ e-nth e i = 0

proof −
let ?P = λi. i < e-length e ∧ e-nth e i 6= 0
from assms have ∃ i. ?P i by simp
then have ?P (Greatest ?P)

using GreatestI-ex-nat[of ?P e-length e] by fastforce
moreover have ∗: findr e = Some (Greatest ?P)

using assms findr-def by simp
ultimately show the (findr e) < e-length e and e-nth e (the (findr e)) 6= 0

131

by fastforce+
show ∀ i. the (findr e) < i ∧ i < e-length e −→ e-nth e i = 0

using ∗ Greatest-le-nat[of ?P - e-length e] by fastforce
qed

definition r-findr ≡
let g =

Cn 3 r-ifz
[Cn 3 r-nth [Id 3 2 , Id 3 0],
Cn 3 r-ifeq [Id 3 0 , Id 3 1 , Cn 3 S [Id 3 0], Id 3 1],
Id 3 0]

in Cn 1 (Pr 1 Z g) [Cn 1 r-length [Id 1 0], Id 1 0]

lemma r-findr-prim [simp]: prim-recfn 1 r-findr
unfolding r-findr-def by simp

lemma r-findr [simp]: eval r-findr [e] = findr e
proof −

define g where g =
Cn 3 r-ifz
[Cn 3 r-nth [Id 3 2 , Id 3 0],
Cn 3 r-ifeq [Id 3 0 , Id 3 1 , Cn 3 S [Id 3 0], Id 3 1],
Id 3 0]

then have recfn 3 g
by simp

with g-def have g: eval g [j, r , e] ↓=
(if e-nth e j 6= 0 then j else if j = r then Suc j else r) for j r e

by simp
let ?h = Pr 1 Z g
have recfn 2 ?h

by (simp add: ‹recfn 3 g›)
let ?P = λe j i. i < j ∧ e-nth e i 6= 0
let ?G = λe j. Greatest (?P e j)
have h: eval ?h [j, e] =
(if ∀ i<j. e-nth e i = 0 then Some j else Some (?G e j)) for j e

proof (induction j)
case 0
then show ?case using ‹recfn 2 ?h› by auto

next
case (Suc j)
then have eval ?h [Suc j, e] = eval g [j, the (eval ?h [j, e]), e]

using ‹recfn 2 ?h› by auto
then have eval ?h [Suc j, e] =

eval g [j, if ∀ i<j. e-nth e i = 0 then j else ?G e j, e]
using Suc by auto

then have ∗: eval ?h [Suc j, e] ↓=
(if e-nth e j 6= 0 then j
else if j = (if ∀ i<j. e-nth e i = 0 then j else ?G e j)

then Suc j
else (if ∀ i<j. e-nth e i = 0 then j else ?G e j))

using g by simp
show ?case
proof (cases ∀ i<Suc j. e-nth e i = 0)

case True
then show ?thesis using ∗ by simp

next

132

case False
then have ex: ∃ i<Suc j. e-nth e i 6= 0

by auto
show ?thesis
proof (cases e-nth e j = 0)

case True
then have ex ′: ∃ i<j. e-nth e i 6= 0

using ex less-Suc-eq by fastforce
then have (if ∀ i<j. e-nth e i = 0 then j else ?G e j) = ?G e j

by metis
moreover have ?G e j < j

using ex ′ GreatestI-nat[of ?P e j] less-imp-le-nat by blast
ultimately have eval ?h [Suc j, e] ↓= ?G e j

using ∗ True by simp
moreover have ?G e j = ?G e (Suc j)

using True by (metis less-SucI less-Suc-eq)
ultimately show ?thesis using ex by metis

next
case False
then have eval ?h [Suc j, e] ↓= j

using ∗ by simp
moreover have ?G e (Suc j) = j

using ex False Greatest-equality[of ?P e (Suc j)] by simp
ultimately show ?thesis using ex by simp

qed
qed

qed
let ?hh = Cn 1 ?h [Cn 1 r-length [Id 1 0], Id 1 0]
have recfn 1 ?hh

using ‹recfn 2 ?h› by simp
with h have hh: eval ?hh [e] ↓=

(if ∀ i<e-length e. e-nth e i = 0 then e-length e else ?G e (e-length e)) for e
by auto

then have eval ?hh [e] = findr e for e
unfolding findr-def by auto

moreover have total ?hh
using hh totalI1 ‹recfn 1 ?hh› by simp

ultimately show ?thesis
using ‹recfn 1 ?hh› g-def r-findr-def findr-def by metis

qed

lemma U0-in-CP: U 0 ∈ CP
proof −

define s where
s ≡ λx. if findr x ↓= e-length x then Some 0 else Some (e-take (Suc (the (findr x))) x)

have s ∈ P
proof −

define r where
r ≡ Cn 1 r-ifeq [r-findr , r-length, Z , Cn 1 r-take [Cn 1 S [r-findr], Id 1 0]]

then have
∧

x. eval r [x] = s x
using s-def findr-total by fastforce

moreover have recfn 1 r
using r-def by simp

ultimately show ?thesis by auto
qed
moreover have learn-cp prenum U 0 s

133

proof (rule learn-cpI)
show environment prenum U 0 s

using ‹s ∈ P› s-def prenum-in-R2 U0-in-NUM by auto
show ∃ i. prenum i = f ∧ (∀∞n. s (f . n) ↓= i) if f ∈ U 0 for f
proof (cases f = (λ-. Some 0))

case True
then have s (f . n) ↓= 0 for n

using findr-def s-def by simp
then have ∀n≥0 . s (f . n) ↓= 0 by simp
moreover have prenum 0 = f

using True by auto
ultimately show ?thesis by auto

next
case False
then obtain ws where ws: length ws > 0 last ws 6= 0 f = ws � 0∞

using U0-def ‹f ∈ U 0› almost0-canonical by blast
let ?m = length ws − 1
let ?i = list-encode ws
have prenum ?i = f

using ws by auto
moreover have s (f . n) ↓= ?i if n ≥ ?m for n
proof −

have e-nth (f . n) ?m 6= 0
using ws that by (simp add: last-conv-nth)

then have ∃ k<Suc n. e-nth (f . n) k 6= 0
using le-imp-less-Suc that by blast

moreover have
(GREATEST k. k < e-length (f . n) ∧ e-nth (f . n) k 6= 0) = ?m

proof (rule Greatest-equality)
show ?m < e-length (f . n) ∧ e-nth (f . n) ?m 6= 0

using ‹e-nth (f . n) ?m 6= 0 › that by auto
show

∧
y. y < e-length (f . n) ∧ e-nth (f . n) y 6= 0 =⇒ y ≤ ?m

using ws less-Suc-eq-le by fastforce
qed
ultimately have findr (f . n) ↓= ?m

using that findr-def by simp
moreover have ?m < e-length (f . n)

using that by simp
ultimately have s (f . n) ↓= e-take (Suc ?m) (f . n)

using s-def by simp
moreover have e-take (Suc ?m) (f . n) = list-encode ws
proof −

have take (Suc ?m) (prefix f n) = prefix f ?m
using take-prefix[of f ?m n] ws that by (simp add: almost0-in-R1)

then have take (Suc ?m) (prefix f n) = ws
using ws prefixI by auto

then show ?thesis by simp
qed
ultimately show ?thesis by simp

qed
ultimately show ?thesis by auto

qed
show

∧
f n. f ∈ U 0 =⇒ prenum (the (s (f . n))) ∈ U 0

using U0-def by fastforce
qed
ultimately show ?thesis using CP-def by blast

134

qed

As a bit of an interlude, we can now show that CP is not closed under the subset
relation. This works by removing functions from U 0 in a “noncomputable” way such
that a strategy cannot ensure that every intermediate hypothesis is in that new class.
lemma CP-not-closed-subseteq: ∃V U . V ⊆ U ∧ U ∈ CP ∧ V /∈ CP
proof −

— The numbering g ∈ R2 enumerates all functions i0∞ ∈ U0.
define g where g ≡ λi. [i] � 0∞

have g-inj: i = j if g i = g j for i j
proof −

have g i 0 ↓= i and g j 0 ↓= j
by (simp-all add: g-def)

with that show i = j
by (metis option.inject)

qed

— Define a class V . If the strategy ϕi learns gi, it outputs a hypothesis for gi on some shortest
prefix gmi . Then the function gmi 10∞ is included in the class V ; otherwise gi is included.

define V where V ≡
{if learn-lim ϕ {g i} (ϕ i)
then (prefix (g i) (LEAST n. ϕ (the (ϕ i ((g i) . n))) = g i)) @ [1] � 0∞

else g i |
i. i ∈ UNIV }

have V /∈ CP-wrt ϕ
proof

— Assuming V ∈ CPϕ, there is a CP strategy ϕi for V .
assume V ∈ CP-wrt ϕ
then obtain s where s: s ∈ P learn-cp ϕ V s

using CP-wrt-def learn-cpE(1) by auto
then obtain i where i: ϕ i = s

using phi-universal by auto

show False
proof (cases learn-lim ϕ {g i} (ϕ i))

case learn: True
— If ϕi learns gi, it hypothesizes gi on some shortest prefix gmi . Thus it hypothesizes gi on

some prefix of gmi 10∞ ∈ V , too. But gi is not a class-preserving hypothesis because gi /∈ V .
let ?P = λn. ϕ (the (ϕ i ((g i) . n))) = g i
let ?m = Least ?P
have ∃n. ?P n

using i s by (meson learn infinite-hyp-wrong-not-Lim insertI1 lessI)
then have ?P ?m

using LeastI-ex[of ?P] by simp
define h where h = (prefix (g i) ?m) @ [1] � 0∞

then have h ∈ V
using V-def learn by auto

have (g i) . ?m = h . ?m
proof −

have prefix (g i) ?m = prefix h ?m
unfolding h-def by (simp add: prefix-prepend-less)

then show ?thesis by auto
qed
then have ϕ (the (ϕ i (h . ?m))) = g i

using ‹?P ?m› by simp
moreover have g i /∈ V

135

proof
assume g i ∈ V
then obtain j where j: g i =
(if learn-lim ϕ {g j} (ϕ j)
then (prefix (g j) (LEAST n. ϕ (the (ϕ j ((g j) . n))) = g j)) @ [1] � 0∞

else g j)
using V-def by auto

show False
proof (cases learn-lim ϕ {g j} (ϕ j))

case True
then have g i =

(prefix (g j) (LEAST n. ϕ (the (ϕ j ((g j) . n))) = g j)) @ [1] � 0∞

(is g i = ?vs @ [1] � 0∞)
using j by simp

moreover have len: length ?vs > 0 by simp
ultimately have g i (length ?vs) ↓= 1

by (simp add: prepend-associative)
moreover have g i (length ?vs) ↓= 0

using g-def len by simp
ultimately show ?thesis by simp

next
case False
then show ?thesis

using j g-inj learn by auto
qed

qed
ultimately have ϕ (the (ϕ i (h . ?m))) /∈ V by simp
then have ¬ learn-cp ϕ V (ϕ i)

using ‹h ∈ V › learn-cpE(3) by auto
then show ?thesis by (simp add: i s(2))

next
— If ϕi does not learn gi, then gi ∈ V . Hence ϕi does not learn V .
case False
then have g i ∈ V

using V-def by auto
with False have ¬ learn-lim ϕ V (ϕ i)

using learn-lim-closed-subseteq by auto
then show ?thesis

using s(2) i by (simp add: learn-cp-def)
qed

qed
then have V /∈ CP

using CP-wrt-phi by simp
moreover have V ⊆ U 0

using V-def g-def U0-def by auto
ultimately show ?thesis using U0-in-CP by auto

qed

Continuing with the main result of this section, we show that U 0 cannot be learned
finitely. Any FIN strategy would have to output a hypothesis for the constant zero
function on some prefix. But U 0 contains infinitely many other functions starting with
the same prefix, which the strategy then would not learn finitely.
lemma U0-not-in-FIN : U 0 /∈ FIN
proof

assume U 0 ∈ FIN

136

then obtain ψ s where learn-fin ψ U 0 s
using FIN-def by blast

with learn-finE have cp:
∧

f . f ∈ U 0 =⇒
∃ i n0. ψ i = f ∧ (∀n<n0. s (f . n) ↓= 0) ∧ (∀n≥n0. s (f . n) ↓= Suc i)

by simp-all

define z where z = [] � 0∞

then have z ∈ U 0

using U0-def by auto
with cp obtain i n0 where i: ψ i = z and n0 : ∀n≥n0. s (z . n) ↓= Suc i

by blast

define w where w = replicate (Suc n0) 0 @ [1] � 0∞

then have prefix w n0 = replicate (Suc n0) 0
by (simp add: prefix-prepend-less)

moreover have prefix z n0 = replicate (Suc n0) 0
using prefixI [of replicate (Suc n0) 0 z] less-Suc-eq-0-disj unfolding z-def
by fastforce

ultimately have z . n0 = w . n0

by (simp add: init-prefixE)
with n0 have ∗: s (w . n0) ↓= Suc i by auto

have w ∈ U 0 using w-def U0-def by auto
with cp obtain i ′ n0

′ where i ′: ψ i ′ = w
and n0 ′: ∀n<n0

′. s (w . n) ↓= 0 ∀n≥n0
′. s (w . n) ↓= Suc i ′

by blast

have i 6= i ′
proof

assume i = i ′
then have w = z

using i i ′ by simp
have w (Suc n0) ↓= 1

using w-def prepend[of replicate (Suc n0) 0 @ [1] 0∞ Suc n0]
by (metis length-append-singleton length-replicate lessI nth-append-length)

moreover have z (Suc n0) ↓= 0
using z-def by simp

ultimately show False
using ‹w = z› by simp

qed
then have s (w . n0) ↓6= Suc i

using n0 ′ by (cases n0 < n0
′) simp-all

with ∗ show False by simp
qed

theorem FIN-subset-CP: FIN ⊂ CP
using U0-in-CP U0-not-in-FIN FIN-subseteq-CP by auto

2.4 NUM and FIN are incomparable

The class V0 of all total recursive functions f where f(0) is a Gödel number of f can be
learned finitely by always hypothesizing f(0). The class is not in NUM and therefore
serves to separate NUM and FIN.
definition V0 :: partial1 set (‹V 0›) where

137

V 0 = {f . f ∈ R ∧ ϕ (the (f 0)) = f }

lemma V0-altdef : V 0 = {[i] � f | i f . f ∈ R ∧ ϕ i = [i] � f }
(is V 0 = ?W)

proof
show V 0 ⊆ ?W
proof

fix f
assume f ∈ V 0

then have f ∈ R
unfolding V0-def by simp

then obtain i where i: f 0 ↓= i by fastforce
define g where g = (λx. f (x + 1))
then have g ∈ R

using skip-R1 [OF ‹f ∈ R›] by blast
moreover have [i] � g = f

using g-def i by auto
moreover have ϕ i = f

using ‹f ∈ V 0› V0-def i by force
ultimately show f ∈ ?W by auto

qed
show ?W ⊆ V 0

proof
fix g
assume g ∈ ?W
then have ϕ (the (g 0)) = g by auto
moreover have g ∈ R

using prepend-in-R1 ‹g ∈ ?W › by auto
ultimately show g ∈ V 0

by (simp add: V0-def)
qed

qed

lemma V0-in-FIN : V 0 ∈ FIN
proof −

define s where s = (λx. Some (Suc (e-hd x)))
have s ∈ P
proof −

define r where r = Cn 1 S [r-hd]
then have recfn 1 r by simp
moreover have eval r [x] ↓= Suc (e-hd x) for x

unfolding r-def by simp
ultimately show ?thesis

using s-def by blast
qed
have s: s (f . n) ↓= Suc (the (f 0)) for f n

unfolding s-def by simp
have learn-fin ϕ V 0 s
proof (rule learn-finI)

show environment ϕ V 0 s
using s-def ‹s ∈ P› phi-in-P2 V0-def by auto

show ∃ i n0. ϕ i = f ∧ (∀n<n0. s (f . n) ↓= 0) ∧ (∀n≥n0. s (f . n) ↓= Suc i)
if f ∈ V 0 for f

using that V0-def s by auto
qed
then show ?thesis using FIN-def by auto

138

qed

To every f ∈ R a number can be prepended that is a Gödel number of the resulting
function. Such a function is then in V0.
If V0 was in NUM, it would be embedded in a total numbering. Shifting this numbering
to the left, essentially discarding the values at point 0, would yield a total numbering
for R, which contradicts R1-not-in-NUM. This proves V 0 /∈ NUM.
lemma prepend-goedel:

assumes f ∈ R
shows ∃ i. ϕ i = [i] � f

proof −
obtain r where r : recfn 1 r total r

∧
x. eval r [x] = f x

using assms by auto
define r-psi where r-psi = Cn 2 r-ifz [Id 2 1 , Id 2 0 , Cn 2 r [Cn 2 r-dec [Id 2 1]]]
then have recfn 2 r-psi

using r(1) by simp
have eval r-psi [i, x] = (if x = 0 then Some i else f (x − 1)) for i x
proof −

have eval (Cn 2 r [Cn 2 r-dec [Id 2 1]]) [i, x] = f (x − 1)
using r by simp

then have eval r-psi [i, x] = eval r-ifz [x, i, the (f (x − 1))]
unfolding r-psi-def using ‹recfn 2 r-psi› r R1-imp-total1 [OF assms] by auto

then show ?thesis
using assms by simp

qed
with ‹recfn 2 r-psi› have (λi x. if x = 0 then Some i else f (x − 1)) ∈ P2

by auto
with kleene-fixed-point obtain i where
ϕ i = (λx. if x = 0 then Some i else f (x − 1))
by blast

then have ϕ i = [i] � f by auto
then show ?thesis by auto

qed

lemma V0-in-FIN-minus-NUM : V 0 ∈ FIN − NUM
proof −

have V 0 /∈ NUM
proof

assume V 0 ∈ NUM
then obtain ψ where ψ: ψ ∈ R2

∧
f . f ∈ V 0 =⇒ ∃ i. ψ i = f

by auto
define ψ ′ where ψ ′ i x = ψ i (Suc x) for i x
have ψ ′ ∈ R2

proof
from ψ(1) obtain r-psi where

r-psi: recfn 2 r-psi total r-psi
∧

i x. eval r-psi [i, x] = ψ i x
by blast

define r-psi ′ where r-psi ′ = Cn 2 r-psi [Id 2 0 , Cn 2 S [Id 2 1]]
then have recfn 2 r-psi ′ and

∧
i x. eval r-psi ′ [i, x] = ψ ′ i x

unfolding r-psi ′-def ψ ′-def using r-psi by simp-all
then show ψ ′ ∈ P2 by blast
show total2 ψ ′

using ψ ′-def ψ(1) by (simp add: total2I)
qed
have ∃ i. ψ ′ i = f if f ∈ R for f

139

proof −
from that obtain j where j: ϕ j = [j] � f

using prepend-goedel by auto
then have ϕ j ∈ V 0

using that V0-altdef by auto
with ψ obtain i where ψ i = ϕ j by auto
then have ψ ′ i = f

using ψ ′-def j by (auto simp add: prepend-at-ge)
then show ?thesis by auto

qed
with ‹ψ ′ ∈ R2› have R ∈ NUM by auto
with R1-not-in-NUM show False by simp

qed
then show ?thesis

using V0-in-FIN by auto
qed

corollary FIN-not-subseteq-NUM : ¬ FIN ⊆ NUM
using V0-in-FIN-minus-NUM by auto

2.5 NUM and CP are incomparable

There are FIN classes outside of NUM, and CP encompasses FIN. Hence there are CP
classes outside of NUM, too.
theorem CP-not-subseteq-NUM : ¬ CP ⊆ NUM

using FIN-subseteq-CP FIN-not-subseteq-NUM by blast

Conversely there is a subclass of U 0 that is in NUM but cannot be learned in a class-
preserving way. The following proof is due to Jantke and Beick [10]. The idea is to
diagonalize against all strategies, that is, all partial recursive functions.
theorem NUM-not-subseteq-CP: ¬ NUM ⊆ CP
proof−

— Define a family of functions fk.
define f where f ≡ λk. [k] � 0∞

then have f k ∈ R for k
using almost0-in-R1 by auto

— If the strategy ϕk learns fk it hypothesizes fk for some shortest prefix fak

k . Define functions
f ′k = k0ak10∞.

define a where
a ≡ λk. LEAST x. (ϕ (the ((ϕ k) ((f k) . x)))) = f k

define f ′ where f ′ ≡ λk. (k # (replicate (a k) 0) @ [1]) � 0∞

then have f ′ k ∈ R for k
using almost0-in-R1 by auto

— Although fk and f ′k differ, they share the prefix of length ak + 1.
have init-eq: (f ′ k) . (a k) = (f k) . (a k) for k
proof (rule init-eqI)

fix x assume x ≤ a k
then show f ′ k x = f k x

by (cases x = 0) (simp-all add: nth-append f ′-def f-def)
qed
have f k 6= f ′ k for k
proof −

140

have f k (Suc (a k)) ↓= 0 using f-def by auto
moreover have f ′ k (Suc (a k)) ↓= 1

using f ′-def prepend[of (k # (replicate (a k) 0) @ [1]) 0∞ Suc (a k)]
by (metis length-Cons length-append-singleton length-replicate lessI nth-Cons-Suc

nth-append-length)
ultimately show ?thesis by auto

qed

— The separating class U contains f ′k if ϕk learns fk; otherwise it contains fk.
define U where

U ≡ {if learn-lim ϕ {f k} (ϕ k) then f ′ k else f k |k. k ∈ UNIV }
have U /∈ CP
proof

assume U ∈ CP
have ∃ k. learn-cp ϕ U (ϕ k)
proof −

have ∃ψ s. learn-cp ψ U s
using CP-def ‹U ∈ CP› by auto

then obtain s where s: learn-cp ϕ U s
using learn-cp-wrt-goedel[OF goedel-numbering-phi] by blast

then obtain k where ϕ k = s
using phi-universal learn-cp-def learn-lim-def by auto

then show ?thesis using s by auto
qed
then obtain k where k: learn-cp ϕ U (ϕ k) by auto
then have learn: learn-lim ϕ U (ϕ k)

using learn-cp-def by simp
— If fk was in U , ϕk would learn it. But then, by definition of U , fk would not be in U .

Hence fk /∈ U .
have f k /∈ U
proof

assume f k ∈ U
then obtain m where m: f k = (if learn-lim ϕ {f m} (ϕ m) then f ′ m else f m)

using U-def by auto
have f k 0 ↓= m

using f-def f ′-def m by simp
moreover have f k 0 ↓= k by (simp add: f-def)
ultimately have m = k by simp
with m have f k = (if learn-lim ϕ {f k} (ϕ k) then f ′ k else f k)

by auto
moreover have learn-lim ϕ {f k} (ϕ k)

using ‹f k ∈ U › learn-lim-closed-subseteq[OF learn] by simp
ultimately have f k = f ′ k

by simp
then show False

using ‹f k 6= f ′ k› by simp
qed
then have f ′ k ∈ U using U-def by fastforce
then have in-U : ∀n. ϕ (the ((ϕ k) ((f ′ k) . n))) ∈ U

using learn-cpE(3)[OF k] by simp

— Since f ′k ∈ U , the strategy ϕk learns fk. Then ak is well-defined, f ′ak = fak , and ϕk

hypothesizes fk on f ′ak , which is not a class-preserving hypothesis.
have learn-lim ϕ {f k} (ϕ k) using U-def ‹f k /∈ U › by fastforce
then have ∃ i n0. ϕ i = f k ∧ (∀n≥n0. ϕ k ((f k) . n) ↓= i)

using learn-limE(2) by simp

141

then obtain i n0 where ϕ i = f k ∧ (∀n≥n0. ϕ k ((f k) . n) ↓= i)
by auto

then have ϕ (the (ϕ k ((f k) . (a k)))) = f k
using a-def LeastI [of λx. (ϕ (the ((ϕ k) ((f k) . x)))) = f k n0]
by simp

then have ϕ (the ((ϕ k) ((f ′ k) . (a k)))) = f k
using init-eq by simp

then show False
using ‹f k /∈ U › in-U by metis

qed
moreover have U ∈ NUM

using NUM-closed-subseteq[OF U0-in-NUM , of U] f-def f ′-def U0-def U-def
by fastforce

ultimately show ?thesis by auto
qed

2.6 NUM is a proper subset of TOTAL

A NUM class U is embedded in a total numbering ψ. The strategy S with S(fn) =
min{i | ∀k ≤ n : ψi(k) = f(k)} for f ∈ U converges to the least index of f in ψ, and
thus learns f in the limit. Moreover it will be a TOTAL strategy because ψ contains
only total functions. This shows NUM ⊆ TOTAL.

First we define, for every hypothesis space ψ, a function that tries to determine for a
given list e and index i whether e is a prefix of ψi. In other words it tries to decide
whether i is a consistent hypothesis for e. “Tries” refers to the fact that the function
will diverge if ψi(x) ↑ for any x ≤ |e|. We start with a version that checks the list only
up to a given length.
definition r-consist-upto :: recf ⇒ recf where

r-consist-upto r-psi ≡
let g = Cn 4 r-ifeq
[Cn 4 r-psi [Id 4 2 , Id 4 0], Cn 4 r-nth [Id 4 3 , Id 4 0], Id 4 1 , r-constn 3 1]

in Pr 2 (r-constn 1 0) g

lemma r-consist-upto-recfn: recfn 2 r-psi =⇒ recfn 3 (r-consist-upto r-psi)
using r-consist-upto-def by simp

lemma r-consist-upto:
assumes recfn 2 r-psi
shows ∀ k<j. eval r-psi [i, k] ↓ =⇒

eval (r-consist-upto r-psi) [j, i, e] =
(if ∀ k<j. eval r-psi [i, k] ↓= e-nth e k then Some 0 else Some 1)

and ¬ (∀ k<j. eval r-psi [i, k] ↓) =⇒ eval (r-consist-upto r-psi) [j, i, e] ↑
proof −

define g where g =
Cn 4 r-ifeq
[Cn 4 r-psi [Id 4 2 , Id 4 0], Cn 4 r-nth [Id 4 3 , Id 4 0], Id 4 1 , r-constn 3 1]

then have recfn 4 g
using assms by simp

moreover have eval (Cn 4 r-nth [Id 4 3 , Id 4 0]) [j, r , i, e] ↓= e-nth e j for j r i e
by simp

moreover have eval (r-constn 3 1) [j, r , i, e] ↓= 1 for j r i e
by simp

moreover have eval (Cn 4 r-psi [Id 4 2 , Id 4 0]) [j, r , i, e] = eval r-psi [i, j] for j r i e

142

using assms(1) by simp
ultimately have g: eval g [j, r , i, e] =
(if eval r-psi [i, j] ↑ then None
else if eval r-psi [i, j] ↓= e-nth e j then Some r else Some 1)

for j r i e
using ‹recfn 4 g› g-def assms by auto

have goal1 : ∀ k<j. eval r-psi [i, k] ↓ =⇒
eval (r-consist-upto r-psi) [j, i, e] =
(if ∀ k<j. eval r-psi [i, k] ↓= e-nth e k then Some 0 else Some 1)

for j i e
proof (induction j)

case 0
then show ?case

using r-consist-upto-def r-consist-upto-recfn assms eval-Pr-0 by simp
next

case (Suc j)
then have eval (r-consist-upto r-psi) [Suc j, i, e] =

eval g [j, the (eval (r-consist-upto r-psi) [j, i, e]), i, e]
using assms eval-Pr-converg-Suc g-def r-consist-upto-def r-consist-upto-recfn
by simp

also have ... = eval g [j, if ∀ k<j. eval r-psi [i, k] ↓= e-nth e k then 0 else 1 , i, e]
using Suc by auto

also have ... ↓= (if eval r-psi [i, j] ↓= e-nth e j
then if ∀ k<j. eval r-psi [i, k] ↓= e-nth e k then 0 else 1 else 1)

using g by (simp add: Suc.prems)
also have ... ↓= (if ∀ k<Suc j. eval r-psi [i, k] ↓= e-nth e k then 0 else 1)

by (simp add: less-Suc-eq)
finally show ?case by simp

qed
then show ∀ k<j. eval r-psi [i, k] ↓ =⇒

eval (r-consist-upto r-psi) [j, i, e] =
(if ∀ k<j. eval r-psi [i, k] ↓= e-nth e k then Some 0 else Some 1)
by simp

show ¬ (∀ k<j. eval r-psi [i, k] ↓) =⇒ eval (r-consist-upto r-psi) [j, i, e] ↑
proof −

assume ¬ (∀ k<j. eval r-psi [i, k] ↓)
then have ∃ k<j. eval r-psi [i, k] ↑ by simp
let ?P = λk. k < j ∧ eval r-psi [i, k] ↑
define kmin where kmin = Least ?P
then have ?P kmin

using LeastI-ex[of ?P] ‹∃ k<j. eval r-psi [i, k] ↑› by auto
from kmin-def have

∧
k. k < kmin =⇒ ¬ ?P k

using kmin-def not-less-Least[of - ?P] by blast
then have ∀ k < kmin. eval r-psi [i, k] ↓

using ‹?P kmin› by simp
then have eval (r-consist-upto r-psi) [kmin, i, e] =

(if ∀ k<kmin. eval r-psi [i, k] ↓= e-nth e k then Some 0 else Some 1)
using goal1 by simp

moreover have eval r-psi [i, kmin] ↑
using ‹?P kmin› by simp

ultimately have eval (r-consist-upto r-psi) [Suc kmin, i, e] ↑
using r-consist-upto-def g assms by simp

moreover have j ≥ kmin
using ‹?P kmin› by simp

ultimately show eval (r-consist-upto r-psi) [j, i, e] ↑
using r-consist-upto-def r-consist-upto-recfn ‹?P kmin› eval-Pr-converg-le assms

143

by (metis (full-types) Suc-leI length-Cons list.size(3) numeral-2-eq-2 numeral-3-eq-3)
qed

qed

The next function provides the consistency decision functions we need.
definition consistent :: partial2 ⇒ partial2 where

consistent ψ i e ≡
if ∀ k<e-length e. ψ i k ↓
then if ∀ k<e-length e. ψ i k ↓= e-nth e k

then Some 0 else Some 1
else None

Given i and e, consistent ψ decides whether e is a prefix of ψi, provided ψi is defined for
the length of e.
definition r-consistent :: recf ⇒ recf where

r-consistent r-psi ≡
Cn 2 (r-consist-upto r-psi) [Cn 2 r-length [Id 2 1], Id 2 0 , Id 2 1]

lemma r-consistent-recfn [simp]: recfn 2 r-psi =⇒ recfn 2 (r-consistent r-psi)
using r-consistent-def r-consist-upto-recfn by simp

lemma r-consistent-converg:
assumes recfn 2 r-psi and ∀ k<e-length e. eval r-psi [i, k] ↓
shows eval (r-consistent r-psi) [i, e] ↓=
(if ∀ k<e-length e. eval r-psi [i, k] ↓= e-nth e k then 0 else 1)

proof −
have eval (r-consistent r-psi) [i, e] = eval (r-consist-upto r-psi) [e-length e, i, e]

using r-consistent-def r-consist-upto-recfn assms(1) by simp
then show ?thesis using assms r-consist-upto(1) by simp

qed

lemma r-consistent-diverg:
assumes recfn 2 r-psi and ∃ k<e-length e. eval r-psi [i, k] ↑
shows eval (r-consistent r-psi) [i, e] ↑
unfolding r-consistent-def
using r-consist-upto-recfn[OF assms(1)] r-consist-upto[OF assms(1)] assms(2)
by simp

lemma r-consistent:
assumes recfn 2 r-psi and ∀ x y. eval r-psi [x, y] = ψ x y
shows eval (r-consistent r-psi) [i, e] = consistent ψ i e

proof (cases ∀ k<e-length e. ψ i k ↓)
case True
then have ∀ k<e-length e. eval r-psi [i, k] ↓

using assms by simp
then show ?thesis

unfolding consistent-def using True by (simp add: assms r-consistent-converg)
next

case False
then have consistent ψ i e ↑

unfolding consistent-def by auto
moreover have eval (r-consistent r-psi) [i, e] ↑

using r-consistent-diverg[OF assms(1)] assms False by simp
ultimately show ?thesis by simp

qed

144

lemma consistent-in-P2 :
assumes ψ ∈ P2

shows consistent ψ ∈ P2

using assms r-consistent P2E [OF assms(1)] P2I r-consistent-recfn by metis

lemma consistent-for-R2 :
assumes ψ ∈ R2

shows consistent ψ i e =
(if ∀ j<e-length e. ψ i j ↓= e-nth e j then Some 0 else Some 1)

using assms by (simp add: consistent-def)

lemma consistent-init:
assumes ψ ∈ R2 and f ∈ R
shows consistent ψ i (f . n) = (if ψ i . n = f . n then Some 0 else Some 1)
using consistent-def [of - - init f n] assms init-eq-iff-eq-upto by simp

lemma consistent-in-R2 :
assumes ψ ∈ R2

shows consistent ψ ∈ R2

using total2I consistent-in-P2 consistent-for-R2 [OF assms] P2-total-imp-R2 R2-imp-P2 assms
by (metis option.simps(3))

For total hypothesis spaces the next function computes the minimum hypothesis consis-
tent with a given prefix. It diverges if no such hypothesis exists.
definition min-cons-hyp :: partial2 ⇒ partial1 where

min-cons-hyp ψ e ≡
if ∃ i. consistent ψ i e ↓= 0 then Some (LEAST i. consistent ψ i e ↓= 0) else None

lemma min-cons-hyp-in-P1 :
assumes ψ ∈ R2

shows min-cons-hyp ψ ∈ P
proof −

from assms consistent-in-R2 obtain rc where
rc: recfn 2 rc total rc

∧
i e. eval rc [i, e] = consistent ψ i e

using R2E [of consistent ψ] by metis
define r where r = Mn 1 rc
then have recfn 1 r

using rc(1) by simp
moreover from this have eval r [e] = min-cons-hyp ψ e for e

using r-def eval-Mn ′[of 1 rc [e]] rc min-cons-hyp-def assms
by (auto simp add: consistent-in-R2)

ultimately show ?thesis by auto
qed

The function min-cons-hyp ψ is a strategy for learning all NUM classes embedded in ψ.
It is an example of an “identification-by-enumeration” strategy.
lemma NUM-imp-learn-total:

assumes ψ ∈ R2 and U ∈ NUM-wrt ψ
shows learn-total ψ U (min-cons-hyp ψ)

proof (rule learn-totalI)
have ex-psi-i-f : ∃ i. ψ i = f if f ∈ U for f

using assms that NUM-wrt-def by simp
moreover have consistent-eq-0 : consistent ψ i ((ψ i) . n) ↓= 0 for i n

using assms by (simp add: consistent-init)

145

ultimately have
∧

f n. f ∈ U =⇒ min-cons-hyp ψ (f . n) ↓
using min-cons-hyp-def assms(1) by fastforce

then show env: environment ψ U (min-cons-hyp ψ)
using assms NUM-wrt-def min-cons-hyp-in-P1 NUM-E(1) NUM-I by auto

show
∧

f n. f ∈ U =⇒ ψ (the (min-cons-hyp ψ (f . n))) ∈ R
using assms by (simp)

show ∃ i. ψ i = f ∧ (∀∞n. min-cons-hyp ψ (f . n) ↓= i) if f ∈ U for f
proof −

from that env have f ∈ R by auto

let ?P = λi. ψ i = f
define imin where imin ≡ Least ?P
with ex-psi-i-f that have imin: ?P imin

∧
j. ?P j =⇒ j ≥ imin

using LeastI-ex[of ?P] Least-le[of ?P] by simp-all
then have f-neq: ψ i 6= f if i < imin for i

using leD that by auto

let ?Q = λi n. ψ i . n 6= f . n
define nu :: nat ⇒ nat where nu = (λi. SOME n. ?Q i n)
have nu-neq: ψ i . (nu i) 6= f . (nu i) if i < imin for i
proof −

from assms have ψ i ∈ R by simp
moreover from assms imin(1) have f ∈ R by auto
moreover have f 6= ψ i

using that f-neq by auto
ultimately have ∃n. f . n 6= (ψ i) . n

using neq-fun-neq-init by simp
then show ?Q i (nu i)

unfolding nu-def using someI-ex[of λn. ?Q i n] by metis
qed

have ∃n0. ∀n≥n0. min-cons-hyp ψ (f . n) ↓= imin
proof (cases imin = 0)

case True
then have ∀n. min-cons-hyp ψ (f . n) ↓= imin

using consistent-eq-0 assms(1) imin(1) min-cons-hyp-def by auto
then show ?thesis by simp

next
case False
define n0 where n0 = Max (set (map nu [0 ..<imin])) (is - = Max ?N)
have nu i ≤ n0 if i < imin for i
proof −

have finite ?N
using n0-def by simp

moreover have ?N 6= {}
using False n0-def by simp

moreover have nu i ∈ ?N
using that by simp

ultimately show ?thesis
using that Max-ge n0-def by blast

qed
then have ψ i . n0 6= f . n0 if i < imin for i

using nu-neq neq-init-forall-ge that by blast
then have ∗: ψ i . n 6= f . n if i < imin and n ≥ n0 for i n

146

using nu-neq neq-init-forall-ge that by blast

have ψ imin . n = f . n for n
using imin(1) by simp

moreover have (consistent ψ i (f . n) ↓= 0) = (ψ i . n = f . n) for i n
by (simp add: ‹f ∈ R› assms(1) consistent-init)

ultimately have min-cons-hyp ψ (f . n) ↓= (LEAST i. ψ i . n = f . n) for n
using min-cons-hyp-def [of ψ f . n] by auto

moreover have (LEAST i. ψ i . n = f . n) = imin if n ≥ n0 for n
proof (rule Least-equality)

show ψ imin . n = f . n
using imin(1) by simp

show
∧

y. ψ y . n = f . n =⇒ imin ≤ y
using imin ∗ leI that by blast

qed
ultimately have min-cons-hyp ψ (f . n) ↓= imin if n ≥ n0 for n

using that by blast
then show ?thesis by auto

qed
with imin(1) show ?thesis by auto

qed
qed

corollary NUM-subseteq-TOTAL: NUM ⊆ TOTAL
proof

fix U
assume U ∈ NUM
then have ∃ψ∈R2. ∀ f∈U . ∃ i. ψ i = f by auto
then have ∃ψ∈R2. U ∈ NUM-wrt ψ

using NUM-wrt-def by simp
then have ∃ψ s. learn-total ψ U s

using NUM-imp-learn-total by auto
then show U ∈ TOTAL

using TOTAL-def by auto
qed

The class V 0 is in TOTAL − NUM.
theorem NUM-subset-TOTAL: NUM ⊂ TOTAL

using CP-subseteq-TOTAL FIN-not-subseteq-NUM FIN-subseteq-CP NUM-subseteq-TOTAL
by auto

end

2.7 CONS is a proper subset of LIM
theory CONS-LIM

imports Inductive-Inference-Basics
begin

That there are classes in LIM − CONS was noted by Barzdin [4, 3] and Blum and
Blum [5]. It was proven by Wiehagen [15] (see also Wiehagen and Zeugmann [16]). The
proof uses this class:
definition U-LIMCONS :: partial1 set (‹U LIM−CONS›) where

U LIM−CONS ≡ {vs @ [j] � p| vs j p. j ≥ 2 ∧ p ∈ R01 ∧ ϕ j = vs @ [j] � p}

147

Every function in U LIM−CONS carries a Gödel number greater or equal two of itself, after
which only zeros and ones occur. Thus, a strategy that always outputs the rightmost
value greater or equal two in the given prefix will converge to this Gödel number.
The next function searches an encoded list for the rightmost element greater or equal
two.
definition rmge2 :: partial1 where

rmge2 e ≡
if ∀ i<e-length e. e-nth e i < 2 then Some 0
else Some (e-nth e (GREATEST i. i < e-length e ∧ e-nth e i ≥ 2))

lemma rmge2 :
assumes xs = list-decode e
shows rmge2 e =
(if ∀ i<length xs. xs ! i < 2 then Some 0
else Some (xs ! (GREATEST i. i < length xs ∧ xs ! i ≥ 2)))

proof −
have (i < e-length e ∧ e-nth e i ≥ 2) = (i < length xs ∧ xs ! i ≥ 2) for i

using assms by simp
then have (GREATEST i. i < e-length e ∧ e-nth e i ≥ 2) =

(GREATEST i. i < length xs ∧ xs ! i ≥ 2)
by simp

moreover have (∀ i<length xs. xs ! i < 2) = (∀ i<e-length e. e-nth e i < 2)
using assms by simp

moreover have (GREATEST i. i < length xs ∧ xs ! i ≥ 2) < length xs (is Greatest ?P < -)
if ¬ (∀ i<length xs. xs ! i < 2)

using that GreatestI-ex-nat[of ?P] le-less-linear order .asym by blast
ultimately show ?thesis using rmge2-def assms by auto

qed

lemma rmge2-init:
rmge2 (f . n) =
(if ∀ i<Suc n. the (f i) < 2 then Some 0
else Some (the (f (GREATEST i. i < Suc n ∧ the (f i) ≥ 2))))

proof −
let ?xs = prefix f n
have f . n = list-encode ?xs by (simp add: init-def)
moreover have (∀ i<Suc n. the (f i) < 2) = (∀ i<length ?xs. ?xs ! i < 2)

by simp
moreover have (GREATEST i. i < Suc n ∧ the (f i) ≥ 2) =

(GREATEST i. i < length ?xs ∧ ?xs ! i ≥ 2)
using length-prefix[of f n] prefix-nth[of - n f] by metis

moreover have (GREATEST i. i < Suc n ∧ the (f i) ≥ 2) < Suc n
if ¬ (∀ i<Suc n. the (f i) < 2)

using that GreatestI-ex-nat[of λi. i<Suc n ∧ the (f i) ≥ 2 n] by fastforce
ultimately show ?thesis using rmge2 by auto

qed

corollary rmge2-init-total:
assumes total1 f
shows rmge2 (f . n) =
(if ∀ i<Suc n. the (f i) < 2 then Some 0
else f (GREATEST i. i < Suc n ∧ the (f i) ≥ 2))

using assms total1-def rmge2-init by auto

lemma rmge2-in-R1 : rmge2 ∈ R

148

proof −
define g where

g = Cn 3 r-ifle [r-constn 2 2 , Cn 3 r-nth [Id 3 2 , Id 3 0], Cn 3 r-nth [Id 3 2 , Id 3 0], Id 3 1]
then have recfn 3 g by simp
then have g: eval g [j, r , e] ↓= (if 2 ≤ e-nth e j then e-nth e j else r) for j r e

using g-def by simp

let ?h = Pr 1 Z g
have recfn 2 ?h

by (simp add: ‹recfn 3 g›)
have h: eval ?h [j, e] =
(if ∀ i<j. e-nth e i < 2 then Some 0
else Some (e-nth e (GREATEST i. i < j ∧ e-nth e i ≥ 2))) for j e

proof (induction j)
case 0
then show ?case using ‹recfn 2 ?h› by auto

next
case (Suc j)
then have eval ?h [Suc j, e] = eval g [j, the (eval ?h [j, e]), e]

using ‹recfn 2 ?h› by auto
then have ∗: eval ?h [Suc j, e] ↓=
(if 2 ≤ e-nth e j then e-nth e j
else if ∀ i<j. e-nth e i < 2 then 0

else (e-nth e (GREATEST i. i < j ∧ e-nth e i ≥ 2)))
using g Suc by auto

show ?case
proof (cases ∀ i<Suc j. e-nth e i < 2)

case True
then show ?thesis using ∗ by auto

next
case ex: False
show ?thesis
proof (cases 2 ≤ e-nth e j)

case True
then have eval ?h [Suc j, e] ↓= e-nth e j

using ∗ by simp
moreover have (GREATEST i. i < Suc j ∧ e-nth e i ≥ 2) = j

using ex True Greatest-equality[of λi. i < Suc j ∧ e-nth e i ≥ 2]
by simp

ultimately show ?thesis using ex by auto
next

case False
then have ∃ i<j. e-nth e i ≥ 2

using ex leI less-Suc-eq by blast
with ∗ have eval ?h [Suc j, e] ↓= e-nth e (GREATEST i. i < j ∧ e-nth e i ≥ 2)

using False by (smt leD)
moreover have (GREATEST i. i < Suc j ∧ e-nth e i ≥ 2) =

(GREATEST i. i < j ∧ e-nth e i ≥ 2)
using False ex by (metis less-SucI less-Suc-eq less-antisym numeral-2-eq-2)

ultimately show ?thesis using ex by metis
qed

qed
qed

let ?hh = Cn 1 ?h [Cn 1 r-length [Id 1 0], Id 1 0]
have recfn 1 ?hh

149

using ‹recfn 2 ?h› by simp
with h have hh: eval ?hh [e] ↓=
(if ∀ i<e-length e. e-nth e i < 2 then 0
else e-nth e (GREATEST i. i < e-length e ∧ e-nth e i ≥ 2)) for e

by auto
then have eval ?hh [e] = rmge2 e for e

unfolding rmge2-def by auto
moreover have total ?hh

using hh totalI1 ‹recfn 1 ?hh› by simp
ultimately show ?thesis using ‹recfn 1 ?hh› by blast

qed

The first part of the main result is that U LIM−CONS ∈ LIM.
lemma U-LIMCONS-in-Lim: U LIM−CONS ∈ LIM
proof −

have U LIM−CONS ⊆ R
unfolding U-LIMCONS-def using prepend-in-R1 RPred1-subseteq-R1 by blast

have learn-lim ϕ U LIM−CONS rmge2
proof (rule learn-limI)

show environment ϕ U LIM−CONS rmge2
using ‹U-LIMCONS ⊆ R› phi-in-P2 rmge2-def rmge2-in-R1 by simp

show ∃ i. ϕ i = f ∧ (∀∞n. rmge2 (f . n) ↓= i) if f ∈ U LIM−CONS for f
proof −

from that obtain vs j p where
j: j ≥ 2
and p: p ∈ R01

and s: ϕ j = vs @ [j] � p
and f : f = vs @ [j] � p
unfolding U-LIMCONS-def by auto

then have ϕ j = f by simp
from that have total1 f

using ‹U LIM−CONS ⊆ R› R1-imp-total1 total1-def by auto
define n0 where n0 = length vs
have f-gr-n0 : f n ↓= 0 ∨ f n ↓= 1 if n > n0 for n
proof −

have f n = p (n − n0 − 1)
using that n0-def f by simp

with RPred1-def p show ?thesis by auto
qed
have rmge2 (f . n) ↓= j if n ≥ n0 for n
proof −

have n0-greatest: (GREATEST i. i < Suc n ∧ the (f i) ≥ 2) = n0

proof (rule Greatest-equality)
show n0 < Suc n ∧ the (f n0) ≥ 2

using n0-def f that j by simp
show

∧
y. y < Suc n ∧ the (f y) ≥ 2 =⇒ y ≤ n0

proof −
fix y assume y < Suc n ∧ 2 ≤ the (f y)
moreover have p ∈ R ∧ (∀n. p n ↓= 0 ∨ p n ↓= 1)

using RPred1-def p by blast
ultimately show y ≤ n0

using f-gr-n0
by (metis Suc-1 Suc-n-not-le-n Zero-neq-Suc le-less-linear le-zero-eq option.sel)

qed
qed
have f n0 ↓= j

150

using n0-def f by simp
then have ¬ (∀ i<Suc n. the (f i) < 2)

using j that less-Suc-eq-le by auto
then have rmge2 (f . n) = f (GREATEST i. i < Suc n ∧ the (f i) ≥ 2)

using rmge2-init-total ‹total1 f › by auto
with n0-greatest ‹f n0 ↓= j› show ?thesis by simp

qed
with ‹ϕ j = f › show ?thesis by auto

qed
qed
then show ?thesis using Lim-def by auto

qed

The class U LIM−CONS is prefix-complete, which means that every non-empty list is the
prefix of some function in U LIM−CONS. To show this we use an auxiliary lemma: For
every f ∈ R and k ∈ N the value of f at k can be replaced by a Gödel number of the
function resulting from the replacement.
lemma goedel-at:

fixes m :: nat and k :: nat
assumes f ∈ R
shows ∃n≥m. ϕ n = (λx. if x = k then Some n else f x)

proof −
define psi :: partial1 ⇒ nat ⇒ partial2 where

psi = (λf k i x. (if x = k then Some i else f x))
have psi f k ∈ R2

proof −
obtain r where r : recfn 1 r total r eval r [x] = f x for x

using assms by auto
define r-psi where

r-psi = Cn 2 r-ifeq [Id 2 1 , r-dummy 1 (r-const k), Id 2 0 , Cn 2 r [Id 2 1]]
show ?thesis
proof (rule R2I [of r-psi])

from r-psi-def show recfn 2 r-psi
using r(1) by simp

have eval r-psi [i, x] = (if x = k then Some i else f x) for i x
proof −

have eval (Cn 2 r [Id 2 1]) [i, x] = f x
using r by simp

then have eval r-psi [i, x] = eval r-ifeq [x, k, i, the (f x)]
unfolding r-psi-def using ‹recfn 2 r-psi› r R1-imp-total1 [OF assms]
by simp

then show ?thesis using assms by simp
qed
then show

∧
x y. eval r-psi [x, y] = psi f k x y

unfolding psi-def by simp
then show total r-psi

using totalI2 [of r-psi] ‹recfn 2 r-psi› assms psi-def by fastforce
qed

qed
then obtain n where n ≥ m ϕ n = psi f k n

using assms kleene-fixed-point[of psi f k m] by auto
then show ?thesis unfolding psi-def by auto

qed

lemma U-LIMCONS-prefix-complete:

151

assumes length vs > 0
shows ∃ f∈U LIM−CONS. prefix f (length vs − 1) = vs

proof −
let ?p = λ-. Some 0
let ?f = vs @ [0] � ?p
have ?f ∈ R

using prepend-in-R1 RPred1-subseteq-R1 const0-in-RPred1 by blast
with goedel-at[of ?f 2 length vs] obtain j where

j: j ≥ 2 ϕ j = (λx. if x = length vs then Some j else ?f x) (is - = ?g)
by auto

moreover have g: ?g x = (vs @ [j] � ?p) x for x
by (simp add: nth-append)

ultimately have ?g ∈ U LIM−CONS
unfolding U-LIMCONS-def using const0-in-RPred1 by fastforce

moreover have prefix ?g (length vs − 1) = vs
using g assms prefixI prepend-associative by auto

ultimately show ?thesis by auto
qed

Roughly speaking, a strategy learning a prefix-complete class must be total because it
must be defined for every prefix in the class. Technically, however, the empty list is
not a prefix, and thus a strategy may diverge on input 0. We can work around this by
showing that if there is a strategy learning a prefix-complete class then there is also a
total strategy learning this class. We need the result only for consistent learning.
lemma U-prefix-complete-imp-total-strategy:

assumes
∧

vs. length vs > 0 =⇒ ∃ f∈U . prefix f (length vs − 1) = vs
and learn-cons ψ U s

shows ∃ t. total1 t ∧ learn-cons ψ U t
proof −

define t where t = (λe. if e = 0 then Some 0 else s e)
have s e ↓ if e > 0 for e
proof −

from that have list-decode e 6= [] (is ?vs 6= -)
using list-encode-0 list-encode-decode by (metis less-imp-neq)

then have length ?vs > 0 by simp
with assms(1) obtain f where f : f ∈ U prefix f (length ?vs − 1) = ?vs

by auto
with learn-cons-def learn-limE have s (f . (length ?vs − 1)) ↓

using assms(2) by auto
then show s e ↓

using f (2) init-def by auto
qed
then have total1 t

using t-def by auto
have t ∈ P
proof −

from assms(2) have s ∈ P
using learn-consE by simp

then obtain rs where rs: recfn 1 rs eval rs [x] = s x for x
by auto

define rt where rt = Cn 1 (r-lifz Z rs) [Id 1 0 , Id 1 0]
then have recfn 1 rt

using rs by auto
moreover have eval rt [x] = t x for x

using rs rt-def t-def by simp

152

ultimately show ?thesis by blast
qed
have s (f . n) = t (f . n) if f ∈ U for f n

unfolding t-def by (simp add: init-neq-zero)
then have learn-cons ψ U t

using ‹t ∈ P› assms(2) learn-consE [of ψ U s] learn-consI [of ψ U t] by simp
with ‹total1 t› show ?thesis by auto

qed

The proof of U LIM−CONS /∈ CONS is by contradiction. Assume there is a consistent
learning strategy S. By the previous lemma S can be assumed to be total. Moreover it
outputs a consistent hypothesis for every prefix. Thus for every e ∈ N+, S(e) 6= S(e0)
or S(e) 6= S(e1) because S(e) cannot be consistent with both e0 and e1. We use this
property of S to construct a function in U LIM−CONS for which S fails as a learning
strategy. To this end we define a numbering ψ ∈ R2 with ψi(0) = i and

ψi(x+ 1) =

{
0 if S(ψxi 0) 6= S(ψxi),
1 otherwise.

This numbering is recursive because S is total. The “otherwise” case is equivalent to
S(ψxi 1) 6= S(ψxi) because S(ψxi) cannot be consistent with both ψxi 0 and ψxi 1. Therefore
every prefix ψxi is extended in such a way that S changes its hypothesis. Hence S does
not learn ψi in the limit. Kleene’s fixed-point theorem ensures that for some j ≥ 2,
ϕj = ψj . This ψj is the sought function in U LIM−CONS.
The following locale formalizes the construction of ψ for a total strategy S.
locale cons-lim =

fixes s :: partial1
assumes s-in-R1 : s ∈ R

begin

A recf computing the strategy:
definition r-s :: recf where

r-s ≡ SOME r-s. recfn 1 r-s ∧ total r-s ∧ s = (λx. eval r-s [x])

lemma r-s-recfn [simp]: recfn 1 r-s
and r-s-total [simp]:

∧
x. eval r-s [x] ↓

and eval-r-s: s = (λx. eval r-s [x])
using r-s-def R1-SOME [OF s-in-R1 , of r-s] by simp-all

The next function represents the prefixes of ψi.
fun prefixes :: nat ⇒ nat ⇒ nat list where

prefixes i 0 = [i]
| prefixes i (Suc x) = (prefixes i x) @

[if s (e-snoc (list-encode (prefixes i x)) 0) = s (list-encode (prefixes i x))
then 1 else 0]

definition r-prefixes-aux ≡
Cn 3 r-ifeq
[Cn 3 r-s [Cn 3 r-snoc [Id 3 1 , r-constn 2 0]],
Cn 3 r-s [Id 3 1],
Cn 3 r-snoc [Id 3 1 , r-constn 2 1],
Cn 3 r-snoc [Id 3 1 , r-constn 2 0]]

lemma r-prefixes-aux-recfn: recfn 3 r-prefixes-aux

153

unfolding r-prefixes-aux-def by simp

lemma r-prefixes-aux:
eval r-prefixes-aux [j, v, i] ↓=

e-snoc v (if eval r-s [e-snoc v 0] = eval r-s [v] then 1 else 0)
unfolding r-prefixes-aux-def by auto

definition r-prefixes ≡ r-swap (Pr 1 r-singleton-encode r-prefixes-aux)

lemma r-prefixes-recfn: recfn 2 r-prefixes
unfolding r-prefixes-def r-prefixes-aux-def by simp

lemma r-prefixes: eval r-prefixes [i, n] ↓= list-encode (prefixes i n)
proof −

let ?h = Pr 1 r-singleton-encode r-prefixes-aux
have eval ?h [n, i] ↓= list-encode (prefixes i n)
proof (induction n)

case 0
then show ?case

using r-prefixes-def r-prefixes-aux-recfn r-singleton-encode by simp
next

case (Suc n)
then show ?case

using r-prefixes-aux-recfn r-prefixes-aux eval-r-s
by auto metis+

qed
moreover have eval ?h [n, i] = eval r-prefixes [i, n] for i n

unfolding r-prefixes-def by (simp add: r-prefixes-aux-recfn)
ultimately show ?thesis by simp

qed

lemma prefixes-neq-nil: length (prefixes i x) > 0
by (induction x) auto

The actual numbering can then be defined via prefixes.
definition psi :: partial2 (‹ψ›) where
ψ i x ≡ Some (last (prefixes i x))

lemma psi-in-R2 : ψ ∈ R2

proof
define r-psi where r-psi ≡ Cn 2 r-last [r-prefixes]
have recfn 2 r-psi

unfolding r-psi-def by (simp add: r-prefixes-recfn)
then have eval r-psi [i, n] ↓= last (prefixes i n) for n i

unfolding r-psi-def using r-prefixes r-prefixes-recfn prefixes-neq-nil by simp
then have (λi x. Some (last (prefixes i x))) ∈ P2

using ‹recfn 2 r-psi› P2I [of r-psi] by simp
with psi-def show ψ ∈ P2 by presburger
moreover show total2 psi

unfolding psi-def by auto
qed

lemma psi-0-or-1 :
assumes n > 0
shows ψ i n ↓= 0 ∨ ψ i n ↓= 1

proof −

154

from assms obtain m where n = Suc m
using gr0-implies-Suc by blast

then have last (prefixes i (Suc m)) = 0 ∨ last (prefixes i (Suc m)) = 1
by simp

then show ?thesis using ‹n = Suc m› psi-def by simp
qed

The function prefixes does indeed provide the prefixes for ψ.
lemma psi-init: (ψ i) . x = list-encode (prefixes i x)
proof −

have prefix (ψ i) x = prefixes i x
unfolding psi-def
by (induction x) (simp-all add: prefix-0 prefix-Suc)

with init-def show ?thesis by simp
qed

One of the functions ψi is in U LIM−CONS.
lemma ex-psi-in-U : ∃ j. ψ j ∈ U LIM−CONS
proof −

obtain j where j: j ≥ 2 ψ j = ϕ j
using kleene-fixed-point[of ψ] psi-in-R2 R2-imp-P2 by metis

then have ψ j ∈ P by (simp add: phi-in-P2)
define p where p = (λx. ψ j (x + 1))
have p ∈ R01

proof −
from p-def ‹ψ j ∈ P› skip-P1 have p ∈ P by blast
from psi-in-R2 have total1 (ψ j) by simp
with p-def have total1 p

by (simp add: total1-def)
with psi-0-or-1 have p n ↓= 0 ∨ p n ↓= 1 for n

using psi-def p-def by simp
then show ?thesis

by (simp add: RPred1-def P1-total-imp-R1 ‹p ∈ P› ‹total1 p›)
qed
moreover have ψ j = [j] � p
proof

fix x
show ψ j x = ([j] � p) x
proof (cases x = 0)

case True
then show ?thesis using psi-def psi-def prepend-at-less by simp

next
case False
then show ?thesis using p-def by simp

qed
qed
ultimately have ψ j ∈ U LIM−CONS

using j U-LIMCONS-def by (metis (mono-tags, lifting) append-Nil mem-Collect-eq)
then show ?thesis by auto

qed

The strategy fails to learn U LIM−CONS because it changes its hypothesis all the time
on functions ψj ∈ V0.
lemma U-LIMCONS-not-learn-cons: ¬ learn-cons ϕ U LIM−CONS s
proof

155

assume learn: learn-cons ϕ U LIM−CONS s
have s (list-encode (vs @ [0])) 6= s (list-encode (vs @ [1])) for vs
proof −

obtain f 0 where f0 : f 0 ∈ U LIM−CONS prefix f 0 (length vs) = vs @ [0]
using U-LIMCONS-prefix-complete[of vs @ [0]] by auto

obtain f 1 where f1 : f 1 ∈ U LIM−CONS prefix f 1 (length vs) = vs @ [1]
using U-LIMCONS-prefix-complete[of vs @ [1]] by auto

have f 0 (length vs) 6= f 1 (length vs)
using f0 f1 by (metis lessI nth-append-length prefix-nth zero-neq-one)

moreover have ϕ (the (s (f 0 . length vs))) (length vs) = f 0 (length vs)
using learn-consE(3)[of ϕ U-LIMCONS s, OF learn, of f 0 length vs, OF f0 (1)]
by simp

moreover have ϕ (the (s (f 1 . length vs))) (length vs) = f 1 (length vs)
using learn-consE(3)[of ϕ U-LIMCONS s, OF learn, of f 1 length vs, OF f1 (1)]
by simp

ultimately have the (s (f 0 . length vs)) 6= the (s (f 1 . length vs))
by auto

then have s (f 0 . length vs) 6= s (f 1 . length vs)
by auto

with f0 (2) f1 (2) show ?thesis by (simp add: init-def)
qed
then have s (list-encode (vs @ [0])) 6= s (list-encode vs) ∨

s (list-encode (vs @ [1])) 6= s (list-encode vs)
for vs

by metis
then have s (list-encode (prefixes i (Suc x))) 6= s (list-encode (prefixes i x)) for i x

by simp
then have ¬ learn-lim ϕ {ψ i} s for i

using psi-def psi-init always-hyp-change-not-Lim by simp
then have ¬ learn-lim ϕ U-LIMCONS s

using ex-psi-in-U learn-lim-closed-subseteq by blast
then show False

using learn learn-cons-def by simp
qed

end

With the locale we can now show the second part of the main result:
lemma U-LIMCONS-not-in-CONS : U LIM−CONS /∈ CONS
proof

assume U LIM−CONS ∈ CONS
then have U LIM−CONS ∈ CONS-wrt ϕ

by (simp add: CONS-wrt-phi-eq-CONS)
then obtain almost-s where learn-cons ϕ U LIM−CONS almost-s

using CONS-wrt-def by auto
then obtain s where s: total1 s learn-cons ϕ U LIM−CONS s

using U-LIMCONS-prefix-complete U-prefix-complete-imp-total-strategy by blast
then have s ∈ R

using learn-consE(1) P1-total-imp-R1 by blast
with cons-lim-def interpret cons-lim s by simp
show False

using s(2) U-LIMCONS-not-learn-cons by simp
qed

The main result of this section:
theorem CONS-subset-Lim: CONS ⊂ LIM

156

using U-LIMCONS-in-Lim U-LIMCONS-not-in-CONS CONS-subseteq-Lim by auto

end

2.8 Lemma R
theory Lemma-R

imports Inductive-Inference-Basics
begin

A common technique for constructing a class that cannot be learned is diagonalization
against all strategies (see, for instance, Section 2.9). Similarly, the typical way of prov-
ing that a class cannot be learned is by assuming there is a strategy and deriving a
contradiction. Both techniques are easier to carry out if one has to consider only total
recursive strategies. This is not possible in general, since after all the definitions of the
inference types admit strictly partial strategies. However, for many inference types one
can show that for every strategy there is a total strategy with at least the same “learning
power”. Results to that effect are called Lemma R.
Lemma R comes in different strengths depending on how general the construction of the
total recursive strategy is. CONS is the only inference type considered here for which
not even a weak form of Lemma R holds.

2.8.1 Strong Lemma R for LIM, FIN, and BC

In its strong form Lemma R says that for any strategy S, there is a total strategy T
that learns all classes S learns regardless of hypothesis space. The strategy T can be
derived from S by a delayed simulation of S. More precisely, for input fn, T simulates
S for prefixes f0, f1, . . . , fn for at most n steps. If S halts on none of the prefixes, T
outputs an arbitrary hypothesis. Otherwise let k ≤ n be maximal such that S halts on
fk in at most n steps. Then T outputs S(fk).

We reformulate some lemmas for r-result1 to make it easier to use them with ϕ.
lemma r-result1-converg-phi:

assumes ϕ i x ↓= v
shows ∃ t.
(∀ t ′≥t. eval r-result1 [t ′, i, x] ↓= Suc v) ∧
(∀ t ′<t. eval r-result1 [t ′, i, x] ↓= 0)

using assms r-result1-converg ′ phi-def by simp-all

lemma r-result1-bivalent ′:
assumes eval r-phi [i, x] ↓= v
shows eval r-result1 [t, i, x] ↓= Suc v ∨ eval r-result1 [t, i, x] ↓= 0
using assms r-result1 r-result-bivalent ′ r-phi ′′ by simp

lemma r-result1-bivalent-phi:
assumes ϕ i x ↓= v
shows eval r-result1 [t, i, x] ↓= Suc v ∨ eval r-result1 [t, i, x] ↓= 0
using assms r-result1-bivalent ′ phi-def by simp-all

lemma r-result1-diverg-phi:
assumes ϕ i x ↑
shows eval r-result1 [t, i, x] ↓= 0

157

using assms phi-def r-result1-diverg ′ by simp

lemma r-result1-some-phi:
assumes eval r-result1 [t, i, x] ↓= Suc v
shows ϕ i x ↓= v
using assms phi-def r-result1-Some ′ by simp

lemma r-result1-saturating ′:
assumes eval r-result1 [t, i, x] ↓= Suc v
shows eval r-result1 [t + d, i, x] ↓= Suc v
using assms r-result1 r-result-saturating r-phi ′′ by simp

lemma r-result1-saturating-the:
assumes the (eval r-result1 [t, i, x]) > 0 and t ′ ≥ t
shows the (eval r-result1 [t ′, i, x]) > 0

proof −
from assms(1) obtain v where eval r-result1 [t, i, x] ↓= Suc v

using r-result1-bivalent-phi r-result1-diverg-phi
by (metis inc-induct le-0-eq not-less-zero option.discI option.expand option.sel)

with assms have eval r-result1 [t ′, i, x] ↓= Suc v
using r-result1-saturating ′ le-Suc-ex by blast

then show ?thesis by simp
qed

lemma Greatest-bounded-Suc:
fixes P :: nat ⇒ nat
shows (if P n > 0 then Suc n

else if ∃ j<n. P j > 0 then Suc (GREATEST j. j < n ∧ P j > 0) else 0) =
(if ∃ j<Suc n. P j > 0 then Suc (GREATEST j. j < Suc n ∧ P j > 0) else 0)
(is ?lhs = ?rhs)

proof (cases ∃ j<Suc n. P j > 0)
case 1 : True
show ?thesis
proof (cases P n > 0)

case True
then have (GREATEST j. j < Suc n ∧ P j > 0) = n

using Greatest-equality[of λj. j < Suc n ∧ P j > 0] by simp
moreover have ?rhs = Suc (GREATEST j. j < Suc n ∧ P j > 0)

using 1 by simp
ultimately have ?rhs = Suc n by simp
then show ?thesis using True by simp

next
case False
then have ?lhs = Suc (GREATEST j. j < n ∧ P j > 0)

using 1 by (metis less-SucE)
moreover have ?rhs = Suc (GREATEST j. j < Suc n ∧ P j > 0)

using 1 by simp
moreover have (GREATEST j. j < n ∧ P j > 0) =

(GREATEST j. j < Suc n ∧ P j > 0)
using 1 False by (metis less-SucI less-Suc-eq)

ultimately show ?thesis by simp
qed

next
case False
then show ?thesis by auto

qed

158

For n, i, x, the next function simulates ϕi on all non-empty prefixes of at most length
n of the list x for at most n steps. It returns the length of the longest such prefix for
which ϕi halts, or zero if ϕi does not halt for any prefix.
definition r-delay-aux ≡

Pr 2 (r-constn 1 0)
(Cn 4 r-ifz
[Cn 4 r-result1
[Cn 4 r-length [Id 4 3], Id 4 2 ,
Cn 4 r-take [Cn 4 S [Id 4 0], Id 4 3]],

Id 4 1 , Cn 4 S [Id 4 0]])

lemma r-delay-aux-prim: prim-recfn 3 r-delay-aux
unfolding r-delay-aux-def by simp-all

lemma r-delay-aux-total: total r-delay-aux
using prim-recfn-total[OF r-delay-aux-prim] .

lemma r-delay-aux:
assumes n ≤ e-length x
shows eval r-delay-aux [n, i, x] ↓=
(if ∃ j<n. the (eval r-result1 [e-length x , i, e-take (Suc j) x]) > 0
then Suc (GREATEST j.

j < n ∧
the (eval r-result1 [e-length x , i, e-take (Suc j) x]) > 0)

else 0)
proof −

define z where z ≡
Cn 4 r-result1
[Cn 4 r-length [Id 4 3], Id 4 2 , Cn 4 r-take [Cn 4 S [Id 4 0], Id 4 3]]

then have z-recfn: recfn 4 z by simp
have z: eval z [j, r , i, x] = eval r-result1 [e-length x , i, e-take (Suc j) x]

if j < e-length x for j r i x
unfolding z-def using that by simp

define g where g ≡ Cn 4 r-ifz [z, Id 4 1 , Cn 4 S [Id 4 0]]
then have g: eval g [j, r , i, x] ↓=

(if the (eval r-result1 [e-length x , i, e-take (Suc j) x]) > 0 then Suc j else r)
if j < e-length x for j r i x

using that z prim-recfn-total z-recfn by simp

show ?thesis
using assms

proof (induction n)
case 0
moreover have eval r-delay-aux [0 , i, x] ↓= 0

using eval-Pr-0 r-delay-aux-def r-delay-aux-prim r-constn
by (simp add: r-delay-aux-def)

ultimately show ?case by simp
next

case (Suc n)
let ?P = λj. the (eval r-result1 [e-length x, i, e-take (Suc j) x])
have eval r-delay-aux [n, i, x] ↓

using Suc by simp
moreover have eval r-delay-aux [Suc n, i, x] =

eval (Pr 2 (r-constn 1 0) g) [Suc n, i, x]

159

unfolding r-delay-aux-def g-def z-def by simp
ultimately have eval r-delay-aux [Suc n, i, x] =

eval g [n, the (eval r-delay-aux [n, i, x]), i, x]
using r-delay-aux-prim Suc eval-Pr-converg-Suc
by (simp add: r-delay-aux-def g-def z-def numeral-3-eq-3)

then have eval r-delay-aux [Suc n, i, x] ↓=
(if ?P n > 0 then Suc n
else if ∃ j<n. ?P j > 0 then Suc (GREATEST j. j < n ∧ ?P j > 0) else 0)

using g Suc by simp
then have eval r-delay-aux [Suc n, i, x] ↓=

(if ∃ j<Suc n. ?P j > 0 then Suc (GREATEST j. j < Suc n ∧ ?P j > 0) else 0)
using Greatest-bounded-Suc[where ?P=?P] by simp

then show ?case by simp
qed

qed

The next function simulates ϕi on all non-empty prefixes of a list x of length n for at
most n steps and outputs the length of the longest prefix for which ϕi halts, or zero if
ϕi does not halt for any such prefix.
definition r-delay ≡ Cn 2 r-delay-aux [Cn 2 r-length [Id 2 1], Id 2 0 , Id 2 1]

lemma r-delay-recfn [simp]: recfn 2 r-delay
unfolding r-delay-def by (simp add: r-delay-aux-prim)

lemma r-delay:
eval r-delay [i, x] ↓=
(if ∃ j<e-length x. the (eval r-result1 [e-length x, i, e-take (Suc j) x]) > 0
then Suc (GREATEST j.

j < e-length x ∧ the (eval r-result1 [e-length x , i, e-take (Suc j) x]) > 0)
else 0)

unfolding r-delay-def using r-delay-aux r-delay-aux-prim by simp

definition delay i x ≡ Some
(if ∃ j<e-length x. the (eval r-result1 [e-length x , i, e-take (Suc j) x]) > 0
then Suc (GREATEST j.

j < e-length x ∧ the (eval r-result1 [e-length x , i, e-take (Suc j) x]) > 0)
else 0)

lemma delay-in-R2 : delay ∈ R2

using r-delay totalI2 R2I delay-def r-delay-recfn
by (metis (no-types, lifting) numeral-2-eq-2 option.simps(3))

lemma delay-le-length: the (delay i x) ≤ e-length x
proof (cases ∃ j<e-length x. the (eval r-result1 [e-length x, i, e-take (Suc j) x]) > 0)

case True
let ?P = λj. j < e-length x ∧ the (eval r-result1 [e-length x , i, e-take (Suc j) x]) > 0
from True have ∃ j. ?P j by simp
moreover have

∧
y. ?P y =⇒ y ≤ e-length x by simp

ultimately have ?P (Greatest ?P)
using GreatestI-ex-nat[where ?P=?P] by blast

then have Greatest ?P < e-length x by simp
moreover have delay i x ↓= Suc (Greatest ?P)

using delay-def True by simp
ultimately show ?thesis by auto

next
case False

160

then show ?thesis using delay-def by auto
qed

lemma e-take-delay-init:
assumes f ∈ R and the (delay i (f . n)) > 0
shows e-take (the (delay i (f . n))) (f . n) = f . (the (delay i (f . n)) − 1)
using assms e-take-init[of f - n] length-init[of f n] delay-le-length[of i f . n]
by (metis One-nat-def Suc-le-lessD Suc-pred)

lemma delay-gr0-converg:
assumes the (delay i x) > 0
shows ϕ i (e-take (the (delay i x)) x) ↓

proof −
let ?P = λj. j < e-length x ∧ the (eval r-result1 [e-length x , i, e-take (Suc j) x]) > 0
have ∃ j. ?P j
proof (rule ccontr)

assume ¬ (∃ j. ?P j)
then have delay i x ↓= 0

using delay-def by simp
with assms show False by simp

qed
then have d: the (delay i x) = Suc (Greatest ?P)

using delay-def by simp
moreover have

∧
y. ?P y =⇒ y ≤ e-length x by simp

ultimately have ?P (Greatest ?P)
using ‹∃ j. ?P j› GreatestI-ex-nat[where ?P=?P] by blast

then have the (eval r-result1 [e-length x, i, e-take (Suc (Greatest ?P)) x]) > 0
by simp

then have the (eval r-result1 [e-length x, i, e-take (the (delay i x)) x]) > 0
using d by simp

then show ?thesis using r-result1-diverg-phi by fastforce
qed

lemma delay-unbounded:
fixes n :: nat
assumes f ∈ R and ∀n. ϕ i (f . n) ↓
shows ∃m. the (delay i (f . m)) > n

proof −
from assms have ∃ t. the (eval r-result1 [t, i, f . n]) > 0

using r-result1-converg-phi
by (metis le-refl option.exhaust-sel option.sel zero-less-Suc)

then obtain t where t: the (eval r-result1 [t, i, f . n]) > 0
by auto

let ?m = max n t
have Suc ?m ≥ t by simp
have m: the (eval r-result1 [Suc ?m, i, f . n]) > 0
proof −

let ?w = eval r-result1 [t, i, f . n]
obtain v where v: ?w ↓= Suc v

using t assms(2) r-result1-bivalent-phi by fastforce
have eval r-result1 [Suc ?m, i, f . n] = ?w

using v t r-result1-saturating ′ ‹Suc ?m ≥ t› le-Suc-ex by fastforce
then show ?thesis using t by simp

qed
let ?x = f . ?m
have the (delay i ?x) > n

161

proof −
let ?P = λj. j < e-length ?x ∧ the (eval r-result1 [e-length ?x, i, e-take (Suc j) ?x]) > 0
have e-length ?x = Suc ?m by simp
moreover have e-take (Suc n) ?x = f . n

using assms(1) e-take-init by auto
ultimately have ?P n

using m by simp
have

∧
y. ?P y =⇒ y ≤ e-length ?x by simp

with ‹?P n› have n ≤ (Greatest ?P)
using Greatest-le-nat[of ?P n e-length ?x] by simp

moreover have the (delay i ?x) = Suc (Greatest ?P)
using delay-def ‹?P n› by auto

ultimately show ?thesis by simp
qed
then show ?thesis by auto

qed

lemma delay-monotone:
assumes f ∈ R and n1 ≤ n2

shows the (delay i (f . n1)) ≤ the (delay i (f . n2))
(is the (delay i ?x1) ≤ the (delay i ?x2))

proof (cases the (delay i (f . n1)) = 0)
case True
then show ?thesis by simp

next
case False
let ?P1 = λj. j < e-length ?x1 ∧ the (eval r-result1 [e-length ?x1 , i, e-take (Suc j) ?x1]) > 0
let ?P2 = λj. j < e-length ?x2 ∧ the (eval r-result1 [e-length ?x2 , i, e-take (Suc j) ?x2]) > 0
from False have d1 : the (delay i ?x1) = Suc (Greatest ?P1) ∃ j. ?P1 j

using delay-def option.collapse by fastforce+
moreover have

∧
y. ?P1 y =⇒ y ≤ e-length ?x1 by simp

ultimately have ∗: ?P1 (Greatest ?P1) using GreatestI-ex-nat[of ?P1] by blast
let ?j = Greatest ?P1
from ∗ have ?j < e-length ?x1 by auto
then have 1 : e-take (Suc ?j) ?x1 = e-take (Suc ?j) ?x2

using assms e-take-init by auto
from ∗ have 2 : ?j < e-length ?x2 using assms(2) by auto
with 1 ∗ have the (eval r-result1 [e-length ?x1 , i, e-take (Suc ?j) ?x2]) > 0

by simp
moreover have e-length ?x1 ≤ e-length ?x2

using assms(2) by auto
ultimately have the (eval r-result1 [e-length ?x2 , i, e-take (Suc ?j) ?x2]) > 0

using r-result1-saturating-the by simp
with 2 have ?P2 ?j by simp
then have d2 : the (delay i ?x2) = Suc (Greatest ?P2)

using delay-def by auto
have

∧
y. ?P2 y =⇒ y ≤ e-length ?x2 by simp

with ‹?P2 ?j› have ?j ≤ (Greatest ?P2) using Greatest-le-nat[of ?P2] by blast
with d1 d2 show ?thesis by simp

qed

lemma delay-unbounded-monotone:
fixes n :: nat
assumes f ∈ R and ∀n. ϕ i (f . n) ↓
shows ∃m0. ∀m≥m0. the (delay i (f . m)) > n

proof −

162

from assms delay-unbounded obtain m0 where the (delay i (f . m0)) > n
by blast

then have ∀m≥m0. the (delay i (f . m)) > n
using assms(1) delay-monotone order .strict-trans2 by blast

then show ?thesis by auto
qed

Now we can define a function that simulates an arbitrary strategy ϕi in a delayed way.
The parameter d is the default hypothesis for when ϕi does not halt within the time
bound for any prefix.
definition r-totalizer :: nat ⇒ recf where

r-totalizer d ≡
Cn 2
(r-lifz
(r-constn 1 d)
(Cn 2 r-phi
[Id 2 0 , Cn 2 r-take [Cn 2 r-delay [Id 2 0 , Id 2 1], Id 2 1]]))

[Cn 2 r-delay [Id 2 0 , Id 2 1], Id 2 0 , Id 2 1]

lemma r-totalizer-recfn: recfn 2 (r-totalizer d)
unfolding r-totalizer-def by simp

lemma r-totalizer :
eval (r-totalizer d) [i, x] =
(if the (delay i x) = 0 then Some d else ϕ i (e-take (the (delay i x)) x))

proof −
let ?i = Cn 2 r-delay [Id 2 0 , Id 2 1]
have eval ?i [i, x] = eval r-delay [i, x] for i x

using r-delay-recfn by simp
then have i: eval ?i [i, x] = delay i x for i x

using r-delay by (simp add: delay-def)
let ?t = r-constn 1 d
have t: eval ?t [i, x] ↓= d for i x by simp
let ?e1 = Cn 2 r-take [?i, Id 2 1]
let ?e = Cn 2 r-phi [Id 2 0 , ?e1]
have eval ?e1 [i, x] = eval r-take [the (delay i x), x] for i x

using r-delay i delay-def by simp
then have eval ?e1 [i, x] ↓= e-take (the (delay i x)) x for i x

using delay-le-length by simp
then have e: eval ?e [i, x] = ϕ i (e-take (the (delay i x)) x)

using phi-def by simp
let ?z = r-lifz ?t ?e
have recfn-te: recfn 2 ?t recfn 2 ?e

by simp-all
then have eval (r-totalizer d) [i, x] = eval (r-lifz ?t ?e) [the (delay i x), i, x]

for i x
unfolding r-totalizer-def using i r-totalizer-recfn delay-def by simp

then have eval (r-totalizer d) [i, x] =
(if the (delay i x) = 0 then eval ?t [i, x] else eval ?e [i, x])
for i x

using recfn-te by simp
then show ?thesis using t e by simp

qed

lemma r-totalizer-total: total (r-totalizer d)
proof (rule totalI2)

163

show recfn 2 (r-totalizer d) using r-totalizer-recfn by simp
show

∧
x y. eval (r-totalizer d) [x, y] ↓

using r-totalizer delay-gr0-converg by simp
qed

definition totalizer :: nat ⇒ partial2 where
totalizer d i x ≡

if the (delay i x) = 0 then Some d else ϕ i (e-take (the (delay i x)) x)

lemma totalizer-init:
assumes f ∈ R
shows totalizer d i (f . n) =
(if the (delay i (f . n)) = 0 then Some d
else ϕ i (f . (the (delay i (f . n)) − 1)))

using assms e-take-delay-init by (simp add: totalizer-def)

lemma totalizer-in-R2 : totalizer d ∈ R2

using totalizer-def r-totalizer r-totalizer-total R2I r-totalizer-recfn
by metis

For LIM, totalizer works with every default hypothesis d.
lemma lemma-R-for-Lim:

assumes learn-lim ψ U (ϕ i)
shows learn-lim ψ U (totalizer d i)

proof (rule learn-limI)
show env: environment ψ U (totalizer d i)

using assms learn-limE(1) totalizer-in-R2 by auto
show ∃ j. ψ j = f ∧ (∀∞n. totalizer d i (f . n) ↓= j) if f ∈ U for f
proof −

have f ∈ R
using assms env that by auto

from assms learn-limE obtain j n0 where
j: ψ j = f and
n0 : ∀n≥n0. (ϕ i) (f . n) ↓= j
using ‹f ∈ U › by metis

obtain m0 where m0 : ∀m≥m0. the (delay i (f . m)) > n0

using delay-unbounded-monotone ‹f ∈ R› ‹f ∈ U › assms learn-limE(1)
by blast

then have ∀m≥m0. totalizer d i (f . m) = ϕ i (e-take (the (delay i (f . m))) (f . m))
using totalizer-def by auto

then have ∀m≥m0. totalizer d i (f . m) = ϕ i (f . (the (delay i (f . m)) − 1))
using e-take-delay-init m0 ‹f ∈ R› by auto

with m0 n0 have ∀m≥m0. totalizer d i (f . m) ↓= j
by auto

with j show ?thesis by auto
qed

qed

The effective version of Lemma R for LIM states that there is a total recursive function
computing Gödel numbers of total strategies from those of arbitrary strategies.
lemma lemma-R-for-Lim-effective:
∃ g∈R. ∀ i.
ϕ (the (g i)) ∈ R ∧
(∀U ψ. learn-lim ψ U (ϕ i) −→ learn-lim ψ U (ϕ (the (g i))))

proof −

164

have totalizer 0 ∈ P2 using totalizer-in-R2 by auto
then obtain g where g: g ∈ R ∀ i. (totalizer 0) i = ϕ (the (g i))

using numbering-translation-for-phi by blast
with totalizer-in-R2 have ∀ i. ϕ (the (g i)) ∈ R

by (metis R2-proj-R1)
moreover from g(2) lemma-R-for-Lim[where ?d=0] have
∀ i U ψ. learn-lim ψ U (ϕ i) −→ learn-lim ψ U (ϕ (the (g i)))
by simp

ultimately show ?thesis using g(1) by blast
qed

In order for us to use the previous lemma, we need a function that performs the actual
computation:
definition r-limr ≡
SOME g.

recfn 1 g ∧
total g ∧
(∀ i. ϕ (the (eval g [i])) ∈ R ∧

(∀U ψ. learn-lim ψ U (ϕ i) −→ learn-lim ψ U (ϕ (the (eval g [i])))))

lemma r-limr-recfn: recfn 1 r-limr
and r-limr-total: total r-limr
and r-limr :
ϕ (the (eval r-limr [i])) ∈ R
learn-lim ψ U (ϕ i) =⇒ learn-lim ψ U (ϕ (the (eval r-limr [i])))

proof −
let ?P = λg.

g ∈ R ∧
(∀ i. ϕ (the (g i)) ∈ R ∧ (∀U ψ. learn-lim ψ U (ϕ i) −→ learn-lim ψ U (ϕ (the (g i)))))

let ?Q = λg.
recfn 1 g ∧
total g ∧
(∀ i. ϕ (the (eval g [i])) ∈ R ∧

(∀U ψ. learn-lim ψ U (ϕ i) −→ learn-lim ψ U (ϕ (the (eval g [i])))))
have ∃ g. ?P g using lemma-R-for-Lim-effective by auto
then obtain g where ?P g by auto
then obtain g ′ where g ′: recfn 1 g ′ total g ′ ∀ i. eval g ′ [i] = g i

by blast
with ‹?P g› have ?Q g ′ by simp
with r-limr-def someI-ex[of ?Q] show

recfn 1 r-limr
total r-limr
ϕ (the (eval r-limr [i])) ∈ R
learn-lim ψ U (ϕ i) =⇒ learn-lim ψ U (ϕ (the (eval r-limr [i])))
by auto

qed

For BC, too, totalizer works with every default hypothesis d.
lemma lemma-R-for-BC :

assumes learn-bc ψ U (ϕ i)
shows learn-bc ψ U (totalizer d i)

proof (rule learn-bcI)
show env: environment ψ U (totalizer d i)

using assms learn-bcE(1) totalizer-in-R2 by auto
show ∃n0. ∀n≥n0. ψ (the (totalizer d i (f . n))) = f if f ∈ U for f

165

proof −
have f ∈ R

using assms env that by auto
obtain n0 where n0 : ∀n≥n0. ψ (the ((ϕ i) (f . n))) = f

using assms learn-bcE ‹f ∈ U › by metis
obtain m0 where m0 : ∀m≥m0. the (delay i (f . m)) > n0

using delay-unbounded-monotone ‹f ∈ R› ‹f ∈ U › assms learn-bcE(1)
by blast

then have ∀m≥m0. totalizer d i (f . m) = ϕ i (e-take (the (delay i (f . m))) (f . m))
using totalizer-def by auto

then have ∀m≥m0. totalizer d i (f . m) = ϕ i (f . (the (delay i (f . m)) − 1))
using e-take-delay-init m0 ‹f ∈ R› by auto

with m0 n0 have ∀m≥m0. ψ (the (totalizer d i (f . m))) = f
by auto

then show ?thesis by auto
qed

qed

corollary lemma-R-for-BC-simple:
assumes learn-bc ψ U s
shows ∃ s ′∈R. learn-bc ψ U s ′

using assms lemma-R-for-BC totalizer-in-R2 learn-bcE
by (metis R2-proj-R1 learn-bcE(1) phi-universal)

For FIN the default hypothesis of totalizer must be zero, signalling “don’t know yet”.
lemma lemma-R-for-FIN :

assumes learn-fin ψ U (ϕ i)
shows learn-fin ψ U (totalizer 0 i)

proof (rule learn-finI)
show env: environment ψ U (totalizer 0 i)

using assms learn-finE(1) totalizer-in-R2 by auto
show ∃ j n0. ψ j = f ∧

(∀n<n0. totalizer 0 i (f . n) ↓= 0) ∧
(∀n≥n0. totalizer 0 i (f . n) ↓= Suc j)

if f ∈ U for f
proof −

have f ∈ R
using assms env that by auto

from assms learn-finE [of ψ U ϕ i] obtain j where
j: ψ j = f and
ex-n0 : ∃n0. (∀n<n0. (ϕ i) (f . n) ↓= 0) ∧ (∀n≥n0. (ϕ i) (f . n) ↓= Suc j)
using ‹f ∈ U › by blast

let ?Q = λn0. (∀n<n0. (ϕ i) (f . n) ↓= 0) ∧ (∀n≥n0. (ϕ i) (f . n) ↓= Suc j)
define n0 where n0 = Least ?Q
with ex-n0 have n0 : ?Q n0 ∀n<n0. ¬ ?Q n

using LeastI-ex[of ?Q] not-less-Least[of - ?Q] by blast+
define m0 where m0 = (LEAST m0. ∀m≥m0. the (delay i (f . m)) > n0)
(is m0 = Least ?P)

moreover have ∃m0. ∀m≥m0. the (delay i (f . m)) > n0

using delay-unbounded-monotone ‹f∈R› ‹f ∈ U › assms learn-finE(1)
by simp

ultimately have m0 : ?P m0 ∀m<m0. ¬ ?P m
using LeastI-ex[of ?P] not-less-Least[of - ?P] by blast+

then have ∀m≥m0. totalizer 0 i (f . m) = ϕ i (e-take (the (delay i (f . m))) (f . m))
using totalizer-def by auto

then have ∀m≥m0. totalizer 0 i (f . m) = ϕ i (f . (the (delay i (f . m)) − 1))

166

using e-take-delay-init m0 ‹f∈R› by auto
with m0 n0 have ∀m≥m0. totalizer 0 i (f . m) ↓= Suc j

by auto
moreover have totalizer 0 i (f . m) ↓= 0 if m < m0 for m
proof (cases the (delay i (f . m)) = 0)

case True
then show ?thesis by (simp add: totalizer-def)

next
case False
then have the (delay i (f . m)) ≤ n0

using m0 that ‹f ∈ R› delay-monotone by (meson leI order .strict-trans2)
then show ?thesis

using ‹f ∈ R› n0 (1) totalizer-init by (simp add: Suc-le-lessD)
qed
ultimately show ?thesis using j by auto

qed
qed

2.8.2 Weaker Lemma R for CP and TOTAL

For TOTAL the default hypothesis used by totalizer depends on the hypothesis space,
because it must refer to a total function in that space. Consequently the total strategy
depends on the hypothesis space, which makes this form of Lemma R weaker than the
ones in the previous section.
lemma lemma-R-for-TOTAL:

fixes ψ :: partial2
shows ∃ d. ∀U . ∀ i. learn-total ψ U (ϕ i) −→ learn-total ψ U (totalizer d i)

proof (cases ∃ d. ψ d ∈ R)
case True
then obtain d where ψ d ∈ R by auto
have learn-total ψ U (totalizer d i) if learn-total ψ U (ϕ i) for U i
proof (rule learn-totalI)

show env: environment ψ U (totalizer d i)
using that learn-totalE(1) totalizer-in-R2 by auto

show
∧

f . f ∈ U =⇒ ∃ j. ψ j = f ∧ (∀∞n. totalizer d i (f . n) ↓= j)
using that learn-total-def lemma-R-for-Lim[where ?d=d] learn-limE(2) by metis

show ψ (the (totalizer d i (f . n))) ∈ R if f ∈ U for f n
proof (cases the (delay i (f . n)) = 0)

case True
then show ?thesis using totalizer-def ‹ψ d ∈ R› by simp

next
case False
have f ∈ R

using that env by auto
then show ?thesis

using False that ‹learn-total ψ U (ϕ i)› totalizer-init learn-totalE(3)
by simp

qed
qed
then show ?thesis by auto

next
case False
then show ?thesis using learn-total-def lemma-R-for-Lim by auto

qed

167

corollary lemma-R-for-TOTAL-simple:
assumes learn-total ψ U s
shows ∃ s ′∈R. learn-total ψ U s ′

using assms lemma-R-for-TOTAL totalizer-in-R2
by (metis R2-proj-R1 learn-totalE(1) phi-universal)

For CP the default hypothesis used by totalizer depends on both the hypothesis space
and the class. Therefore the total strategy depends on both the the hypothesis space
and the class, which makes Lemma R for CP even weaker than the one for TOTAL.
lemma lemma-R-for-CP:

fixes ψ :: partial2 and U :: partial1 set
assumes learn-cp ψ U (ϕ i)
shows ∃ d. learn-cp ψ U (totalizer d i)

proof (cases U = {})
case True
then show ?thesis using assms learn-cp-def lemma-R-for-Lim by auto

next
case False
then obtain f where f ∈ U by auto
from ‹f ∈ U › obtain d where ψ d = f

using learn-cpE(2)[OF assms] by auto
with ‹f ∈ U › have ψ d ∈ U by simp
have learn-cp ψ U (totalizer d i)
proof (rule learn-cpI)

show env: environment ψ U (totalizer d i)
using assms learn-cpE(1) totalizer-in-R2 by auto

show
∧

f . f ∈ U =⇒ ∃ j. ψ j = f ∧ (∀∞n. totalizer d i (f . n) ↓= j)
using assms learn-cp-def lemma-R-for-Lim[where ?d=d] learn-limE(2) by metis

show ψ (the (totalizer d i (f . n))) ∈ U if f ∈ U for f n
proof (cases the (delay i (f . n)) = 0)

case True
then show ?thesis using totalizer-def ‹ψ d ∈ U › by simp

next
case False
then show ?thesis

using that env assms totalizer-init learn-cpE(3) by auto
qed

qed
then show ?thesis by auto

qed

2.8.3 No Lemma R for CONS

This section demonstrates that the class V01 of all total recursive functions f where f(0)
or f(1) is a Gödel number of f can be consistently learned in the limit, but not by a
total strategy. This implies that Lemma R does not hold for CONS.
definition V01 :: partial1 set (‹V 01›) where

V 01 = {f . f ∈ R ∧ (ϕ (the (f 0)) = f ∨ ϕ (the (f 1)) = f)}

No total CONS strategy for V 01

In order to show that no total strategy can learn V 01 we construct, for each total strategy
S, one or two functions in V 01 such that S fails for at least one of them. At the core

168

of this construction is a process that given a total recursive strategy S and numbers
z, i, j ∈ N builds a function f as follows: Set f(0) = i and f(1) = j. For x ≥ 1:

(a) Check whether S changes its hypothesis when fx is extended by 0, that is, if
S(fx) 6= S(fx0). If so, set f(x+ 1) = 0.

(b) Otherwise check if S changes its hypothesis when fx is extended by 1, that is, if
S(fx) 6= S(fx1). If so, set f(x+ 1) = 1.

(c) If neither happens, set f(x+ 1) = z.

In other words, as long as we can force S to change its hypothesis by extending the
function by 0 or 1, we do just that. Now there are two cases:

Case 1. For all x ≥ 1 either (a) or (b) occurs; then S changes its hypothesis on f all the
time and thus does not learn f in the limit (not to mention consistently). The
value of z makes no difference in this case.

Case 2. For some minimal x, (c) occurs, that is, there is an fx such that h := S(fx) =
S(fx0) = S(fx1). But the hypothesis h cannot be consistent with both prefixes
fx0 and fx1. Running the process once with z = 0 and once with z = 1 yields two
functions starting with fx0 and fx1, respectively, such that S outputs the same
hypothesis, h, on both prefixes and thus cannot be consistent for both functions.

This process is computable because S is total. The construction does not work if we
only assume S to be a CONS strategy for V01, because we need to be able to apply S to
prefixes not in V01.
The parameters i and j provide flexibility to find functions built by the above process
that are actually in V01. To this end we will use Smullyan’s double fixed-point theorem.
context

fixes s :: partial1
assumes s-in-R1 [simp, intro]: s ∈ R

begin

The function prefixes constructs prefixes according to the aforementioned process.
fun prefixes :: nat ⇒ nat ⇒ nat ⇒ nat ⇒ nat list where

prefixes z i j 0 = [i]
| prefixes z i j (Suc x) = prefixes z i j x @

[if x = 0 then j
else if s (list-encode (prefixes z i j x @ [0])) 6= s (list-encode (prefixes z i j x))

then 0
else if s (list-encode (prefixes z i j x @ [1])) 6= s (list-encode (prefixes z i j x))

then 1
else z]

lemma prefixes-length: length (prefixes z i j x) = Suc x
by (induction x) simp-all

The functions adverse z i j are the functions constructed by prefixes.
definition adverse :: nat ⇒ nat ⇒ nat ⇒ nat ⇒ nat option where

adverse z i j x ≡ Some (last (prefixes z i j x))

lemma init-adverse-eq-prefixes: (adverse z i j) . n = list-encode (prefixes z i j n)

169

proof −
have prefix (adverse z i j) n = prefixes z i j n
proof (induction n)

case 0
then show ?case using adverse-def prefixes-length prefixI ′ by fastforce

next
case (Suc n)
then show ?case using adverse-def by (simp add: prefix-Suc)

qed
then show ?thesis by (simp add: init-def)

qed

lemma adverse-at-01 :
adverse z i j 0 ↓= i
adverse z i j 1 ↓= j
by (auto simp add: adverse-def)

Had we introduced ternary partial recursive functions, the adverse z functions would be
among them.
lemma adverse-in-R3 : ∃ r . recfn 3 r ∧ total r ∧ (λi j x. eval r [i, j, x]) = adverse z
proof −

obtain rs where rs: recfn 1 rs total rs (λx. eval rs [x]) = s
using R1E by auto

have s-total:
∧

x. s x ↓ by simp

define f where f = Cn 2 r-singleton-encode [Id 2 0]
then have recfn 2 f by simp
have f :

∧
i j. eval f [i, j] ↓= list-encode [i]

unfolding f-def by simp

define ch1 where ch1 = Cn 4 r-ifeq
[Cn 4 rs [Cn 4 r-snoc [Id 4 1 , r-constn 3 1]],
Cn 4 rs [Id 4 1],
r-dummy 3 (r-const z),
r-constn 3 1]

then have ch1 : recfn 4 ch1 total ch1
using Cn-total prim-recfn-total rs by auto

define ch0 where ch0 = Cn 4 r-ifeq
[Cn 4 rs [Cn 4 r-snoc [Id 4 1 , r-constn 3 0]],
Cn 4 rs [Id 4 1],
ch1 ,
r-constn 3 0]

then have ch0-total: total ch0 recfn 4 ch0
using Cn-total prim-recfn-total rs ch1 by auto

have eval ch1 [l, v, i, j] ↓= (if s (e-snoc v 1) = s v then z else 1) for l v i j
proof −

have eval ch1 [l, v, i, j] = eval r-ifeq [the (s (e-snoc v 1)), the (s v), z, 1]
unfolding ch1-def using rs by auto

then show ?thesis by (simp add: s-total option.expand)
qed
moreover have eval ch0 [l, v, i, j] ↓=
(if s (e-snoc v 0) = s v then the (eval ch1 [l, v, i, j]) else 0) for l v i j

proof −
have eval ch0 [l, v, i, j] =

170

eval r-ifeq [the (s (e-snoc v 0)), the (s v), the (eval ch1 [l, v, i, j]), 0]
unfolding ch0-def using rs ch1 by auto

then show ?thesis by (simp add: s-total option.expand)
qed
ultimately have ch0 :

∧
l v i j. eval ch0 [l, v, i, j] ↓=

(if s (e-snoc v 0) 6= s v then 0
else if s (e-snoc v 1) 6= s v then 1 else z)

by simp

define app where app = Cn 4 r-ifz [Id 4 0 , Id 4 3 , ch0]
then have recfn 4 app total app

using ch0-total totalI4 by auto
have eval app [l, v, i, j] ↓= (if l = 0 then j else the (eval ch0 [l, v, i, j])) for l v i j

unfolding app-def using ch0-total by simp
with ch0 have app:

∧
l v i j. eval app [l, v, i, j] ↓=

(if l = 0 then j
else if s (e-snoc v 0) 6= s v then 0
else if s (e-snoc v 1) 6= s v then 1 else z)

by simp

define g where g = Cn 4 r-snoc [Id 4 1 , app]
with app have g:

∧
l v i j. eval g [l, v, i, j] ↓= e-snoc v

(if l = 0 then j
else if s (e-snoc v 0) 6= s v then 0
else if s (e-snoc v 1) 6= s v then 1 else z)

using ‹recfn 4 app› by auto
from g-def have recfn 4 g total g

using ‹recfn 4 app› ‹total app› Cn-total Mn-free-imp-total by auto

define b where b = Pr 2 f g
then have recfn 3 b

using ‹recfn 2 f › ‹recfn 4 g› by simp
have b: eval b [x, i, j] ↓= list-encode (prefixes z i j x) for x i j
proof (induction x)

case 0
then show ?case

unfolding b-def using f ‹recfn 2 f › ‹recfn 4 g› by simp
next

case (Suc x)
then have eval b [Suc x, i, j] = eval g [x, the (eval b [x, i, j]), i, j]

using b-def ‹recfn 3 b› by simp
also have ... ↓=
(let v = list-encode (prefixes z i j x)
in e-snoc v
(if x = 0 then j
else if s (e-snoc v 0) 6= s v then 0

else if s (e-snoc v 1) 6= s v then 1 else z))
using g Suc by simp

also have ... ↓=
(let v = list-encode (prefixes z i j x)
in e-snoc v
(if x = 0 then j
else if s (list-encode (prefixes z i j x @ [0])) 6= s v then 0

else if s (list-encode (prefixes z i j x @ [1])) 6= s v then 1 else z))
using list-decode-encode by presburger

finally show ?case by simp

171

qed

define b ′ where b ′ = Cn 3 b [Id 3 2 , Id 3 0 , Id 3 1]
then have recfn 3 b ′

using ‹recfn 3 b› by simp
with b have b ′:

∧
i j x. eval b ′ [i, j, x] ↓= list-encode (prefixes z i j x)

using b ′-def by simp

define r where r = Cn 3 r-last [b ′]
then have recfn 3 r

using ‹recfn 3 b ′› by simp
with b ′ have

∧
i j x. eval r [i, j, x] ↓= last (prefixes z i j x)

using r-def prefixes-length by auto
moreover from this have total r

using totalI3 ‹recfn 3 r› by simp
ultimately have (λi j x. eval r [i, j, x]) = adverse z

unfolding adverse-def by simp
with ‹recfn 3 r› ‹total r› show ?thesis by auto

qed

lemma adverse-in-R1 : adverse z i j ∈ R
proof −

from adverse-in-R3 obtain r where
r : recfn 3 r total r (λi j x. eval r [i, j, x]) = adverse z
by blast

define rij where rij = Cn 1 r [r-const i, r-const j, Id 1 0]
then have recfn 1 rij total rij

using r(1 ,2) Cn-total Mn-free-imp-total by auto
from rij-def have

∧
x. eval rij [x] = eval r [i, j, x]

using r(1) by auto
with r(3) have

∧
x. eval rij [x] = adverse z i j x

by metis
with ‹recfn 1 rij› ‹total rij› show ?thesis by auto

qed

Next we show that for every z there are i, j such that adverse z i j ∈ V 01. The first step
is to show that for every z, Gödel numbers for adverse z i j can be computed uniformly
from i and j.
lemma phi-translate-adverse: ∃ f∈R2.∀ i j. ϕ (the (f i j)) = adverse z i j
proof −

obtain r where r : recfn 3 r total r (λi j x. eval r [i, j, x]) = adverse z
using adverse-in-R3 by blast

let ?p = encode r
define rf where rf = Cn 2 (r-smn 1 2) [r-dummy 1 (r-const ?p), Id 2 0 , Id 2 1]
then have recfn 2 rf and total rf

using Mn-free-imp-total by simp-all
define f where f ≡ λi j. eval rf [i, j]
with ‹recfn 2 rf › ‹total rf › have f ∈ R2 by auto
have rf : eval rf [i, j] = eval (r-smn 1 2) [?p, i, j] for i j

unfolding rf-def by simp
{

fix i j x
have ϕ (the (f i j)) x = eval r-phi [the (f i j), x]

using phi-def by simp
also have ... = eval r-phi [the (eval rf [i, j]), x]

using f-def by simp

172

also have ... = eval (r-universal 1) [the (eval (r-smn 1 2) [?p, i, j]), x]
using rf r-phi-def by simp

also have ... = eval (r-universal (2 + 1)) (?p # [i, j] @ [x])
using smn-lemma[of 1 [i, j] 2 [x]] by simp

also have ... = eval (r-universal 3) [?p, i, j, x]
by simp

also have ... = eval r [i, j, x]
using r-universal r by force

also have ... = adverse z i j x
using r(3) by metis

finally have ϕ (the (f i j)) x = adverse z i j x .
}
with ‹f ∈ R2› show ?thesis by blast

qed

The second, and final, step is to apply Smullyan’s double fixed-point theorem to show
the existence of adverse functions in V 01.
lemma adverse-in-V01 : ∃m n. adverse 0 m n ∈ V 01 ∧ adverse 1 m n ∈ V 01

proof −
obtain f 0 where f0 : f 0 ∈ R2 ∀ i j. ϕ (the (f 0 i j)) = adverse 0 i j

using phi-translate-adverse[of 0] by auto
obtain f 1 where f1 : f 1 ∈ R2 ∀ i j. ϕ (the (f 1 i j)) = adverse 1 i j

using phi-translate-adverse[of 1] by auto
obtain m n where ϕ m = ϕ (the (f 0 m n)) and ϕ n = ϕ (the (f 1 m n))

using smullyan-double-fixed-point[OF f0 (1) f1 (1)] by blast
with f0 (2) f1 (2) have ϕ m = adverse 0 m n and ϕ n = adverse 1 m n

by simp-all
moreover have the (adverse 0 m n 0) = m and the (adverse 1 m n 1) = n

using adverse-at-01 by simp-all
ultimately have
ϕ (the (adverse 0 m n 0)) = adverse 0 m n
ϕ (the (adverse 1 m n 1)) = adverse 1 m n
by simp-all

moreover have adverse 0 m n ∈ R and adverse 1 m n ∈ R
using adverse-in-R1 by simp-all

ultimately show ?thesis using V01-def by auto
qed

Before we prove the main result of this section we need some lemmas regarding the shape
of the adverse functions and hypothesis changes of the strategy.
lemma adverse-Suc:

assumes x > 0
shows adverse z i j (Suc x) ↓=
(if s (e-snoc ((adverse z i j) . x) 0) 6= s ((adverse z i j) . x)
then 0
else if s (e-snoc ((adverse z i j) . x) 1) 6= s ((adverse z i j) . x)

then 1 else z)
proof −

have adverse z i j (Suc x) ↓=
(if s (list-encode (prefixes z i j x @ [0])) 6= s (list-encode (prefixes z i j x))
then 0
else if s (list-encode (prefixes z i j x @ [1])) 6= s (list-encode (prefixes z i j x))

then 1 else z)
using assms adverse-def by simp

then show ?thesis by (simp add: init-adverse-eq-prefixes)

173

qed

The process in the proof sketch (page 168) consists of steps (a), (b), and (c). The next
abbreviation is true iff. step (a) or (b) applies.
abbreviation hyp-change z i j x ≡

s (e-snoc ((adverse z i j) . x) 0) 6= s ((adverse z i j) . x) ∨
s (e-snoc ((adverse z i j) . x) 1) 6= s ((adverse z i j) . x)

If step (c) applies, the process appends z.
lemma adverse-Suc-not-hyp-change:

assumes x > 0 and ¬ hyp-change z i j x
shows adverse z i j (Suc x) ↓= z
using assms adverse-Suc by simp

While (a) or (b) applies, the process appends a value that forces S to change its hypoth-
esis.
lemma while-hyp-change:

assumes ∀ x≤n. x > 0 −→ hyp-change z i j x
shows ∀ x≤Suc n. adverse z i j x = adverse z ′ i j x
using assms

proof (induction n)
case 0
then show ?case by (simp add: adverse-def le-Suc-eq)

next
case (Suc n)
then have ∀ x≤n. x > 0 −→ hyp-change z i j x by simp
with Suc have ∀ x≤Suc n. x > 0 −→ adverse z i j x = adverse z ′ i j x

by simp
moreover have adverse z i j 0 = adverse z ′ i j 0

using adverse-at-01 by simp
ultimately have zz ′: ∀ x≤Suc n. adverse z i j x = adverse z ′ i j x

by auto
moreover have adverse z i j ∈ R adverse z ′ i j ∈ R

using adverse-in-R1 by simp-all
ultimately have init-zz ′: (adverse z i j) . (Suc n) = (adverse z ′ i j) . (Suc n)

using init-eqI by blast

have adverse z i j (Suc (Suc n)) = adverse z ′ i j (Suc (Suc n))
proof (cases s (e-snoc ((adverse z i j) . (Suc n)) 0) 6= s ((adverse z i j) . (Suc n)))

case True
then have s (e-snoc ((adverse z ′ i j) . (Suc n)) 0) 6= s ((adverse z ′ i j) . (Suc n))

using init-zz ′ by simp
then have adverse z ′ i j (Suc (Suc n)) ↓= 0

by (simp add: adverse-Suc)
moreover have adverse z i j (Suc (Suc n)) ↓= 0

using True by (simp add: adverse-Suc)
ultimately show ?thesis by simp

next
case False
then have s (e-snoc ((adverse z ′ i j) . (Suc n)) 0) = s ((adverse z ′ i j) . (Suc n))

using init-zz ′ by simp
then have adverse z ′ i j (Suc (Suc n)) ↓= 1

using init-zz ′ Suc.prems adverse-Suc by (smt le-refl zero-less-Suc)
moreover have adverse z i j (Suc (Suc n)) ↓= 1

using False Suc.prems adverse-Suc by auto

174

ultimately show ?thesis by simp
qed
with zz ′ show ?case using le-SucE by blast

qed

The next result corresponds to Case 1 from the proof sketch.
lemma always-hyp-change-no-lim:

assumes ∀ x>0 . hyp-change z i j x
shows ¬ learn-lim ϕ {adverse z i j} s

proof (rule infinite-hyp-changes-not-Lim[of adverse z i j])
show adverse z i j ∈ {adverse z i j} by simp
show ∀n. ∃m1>n. ∃m2>n. s (adverse z i j . m1) 6= s (adverse z i j . m2)
proof

fix n
from assms obtain m1 where m1 : m1 > n hyp-change z i j m1

by auto
have s (adverse z i j . m1) 6= s (adverse z i j . (Suc m1))
proof (cases s (e-snoc ((adverse z i j) . m1) 0) 6= s ((adverse z i j) . m1))

case True
then have adverse z i j (Suc m1) ↓= 0

using m1 adverse-Suc by simp
then have (adverse z i j) . (Suc m1) = e-snoc ((adverse z i j) . m1) 0

by (simp add: init-Suc-snoc)
with True show ?thesis by simp

next
case False
then have adverse z i j (Suc m1) ↓= 1

using m1 adverse-Suc by simp
then have (adverse z i j) . (Suc m1) = e-snoc ((adverse z i j) . m1) 1

by (simp add: init-Suc-snoc)
with False m1 (2) show ?thesis by simp

qed
then show ∃m1>n. ∃m2>n. s (adverse z i j . m1) 6= s (adverse z i j . m2)

using less-SucI m1 (1) by blast
qed

qed

The next result corresponds to Case 2 from the proof sketch.
lemma no-hyp-change-no-cons:

assumes x > 0 and ¬ hyp-change z i j x
shows ¬ learn-cons ϕ {adverse 0 i j, adverse 1 i j} s

proof −
let ?P = λx. x > 0 ∧ ¬ hyp-change z i j x
define xmin where xmin = Least ?P
with assms have xmin:

?P xmin∧
x. x < xmin =⇒ ¬ ?P x

using LeastI [of ?P] not-less-Least[of - ?P] by simp-all
then have xmin > 0 by simp

have ∀ x≤xmin − 1 . x > 0 −→ hyp-change z i j x
using xmin by (metis One-nat-def Suc-pred le-imp-less-Suc)

then have
∀ x≤xmin. adverse z i j x = adverse 0 i j x
∀ x≤xmin. adverse z i j x = adverse 1 i j x
using while-hyp-change[of xmin − 1 z i j 0]

175

using while-hyp-change[of xmin − 1 z i j 1]
by simp-all

then have
init-z0 : (adverse z i j) . xmin = (adverse 0 i j) . xmin and
init-z1 : (adverse z i j) . xmin = (adverse 1 i j) . xmin
using adverse-in-R1 init-eqI by blast+

then have
a0 : adverse 0 i j (Suc xmin) ↓= 0 and
a1 : adverse 1 i j (Suc xmin) ↓= 1
using adverse-Suc-not-hyp-change xmin(1) init-z1
by metis+

then have
i0 : (adverse 0 i j) . (Suc xmin) = e-snoc ((adverse z i j) . xmin) 0 and
i1 : (adverse 1 i j) . (Suc xmin) = e-snoc ((adverse z i j) . xmin) 1
using init-z0 init-z1 by (simp-all add: init-Suc-snoc)

moreover have
s (e-snoc ((adverse z i j) . xmin) 0) = s ((adverse z i j) . xmin)
s (e-snoc ((adverse z i j) . xmin) 1) = s ((adverse z i j) . xmin)
using xmin by simp-all

ultimately have
s ((adverse 0 i j) . (Suc xmin)) = s ((adverse z i j) . xmin)
s ((adverse 1 i j) . (Suc xmin)) = s ((adverse z i j) . xmin)
by simp-all

then have
s ((adverse 0 i j) . (Suc xmin)) = s ((adverse 1 i j) . (Suc xmin))
by simp

moreover have (adverse 0 i j) . (Suc xmin) 6= (adverse 1 i j) . (Suc xmin)
using a0 a1 i0 i1 by (metis append1-eq-conv list-decode-encode zero-neq-one)

ultimately show ¬ learn-cons ϕ {adverse 0 i j, adverse 1 i j} s
using same-hyp-different-init-not-cons by blast

qed

Combining the previous two lemmas shows that V 01 cannot be learned consistently in
the limit by the total strategy S.
lemma V01-not-in-R-cons: ¬ learn-cons ϕ V 01 s
proof −

obtain m n where
mn0 : adverse 0 m n ∈ V 01 and
mn1 : adverse 1 m n ∈ V 01

using adverse-in-V01 by auto
show ¬ learn-cons ϕ V 01 s
proof (cases ∀ x>0 . hyp-change 0 m n x)

case True
then have ¬ learn-lim ϕ {adverse 0 m n} s

using always-hyp-change-no-lim by simp
with mn0 show ?thesis

using learn-cons-def learn-lim-closed-subseteq by auto
next

case False
then obtain x where x: x > 0 ¬ hyp-change 0 m n x by auto
then have ¬ learn-cons ϕ {adverse 0 m n, adverse 1 m n} s

using no-hyp-change-no-cons[OF x] by simp
with mn0 mn1 show ?thesis using learn-cons-closed-subseteq by auto

qed
qed

176

end

V 01 is in CONS

At first glance, consistently learning V 01 looks fairly easy. After all every f ∈ V 01

provides a Gödel number of itself either at argument 0 or 1. A strategy only has to
figure out which one is right. However, the strategy S we are going to devise does not
always converge to f(0) or f(1). Instead it uses a technique called “amalgamation”. The
amalgamation of two Gödel numbers i and j is a function whose value at x is determined
by simulating ϕi(x) and ϕj(x) in parallel and outputting the value of the first one to
halt. If neither halts the value is undefined. There is a function a ∈ R2 such that ϕa(i,j)
is the amalgamation of i and j.
If f ∈ V 01 then ϕa(f(0),f(1)) is total because by definition of V 01 we have ϕf(0) = f or
ϕf(1) = f and f is total.
Given a prefix fn of an f ∈ V 01 the strategy S first computes ϕa(f(0),f(1))(x) for x =
0, . . . , n. For the resulting prefix ϕna(f(0),f(1)) there are two cases:

Case 1. It differs from fn, say at minimum index x. Then for either z = 0 or z = 1 we
have ϕf(z)(x) 6= f(x) by definition of amalgamation. This implies ϕf(z) 6= f , and
thus ϕf(1−z) = f by definition of V 01. We set S(fn) = f(1− z). This hypothesis
is correct and hence consistent.

Case 2. It equals fn. Then we set S(fn) = a(f(0), f(1)). This hypothesis is consistent by
definition of this case.

In both cases the hypothesis is consistent. If Case 1 holds for some n, the same x and
z will be found also for all larger values of n. Therefore S converges to the correct
hypothesis f(1−z). If Case 2 holds for all n, then S always outputs the same hypothesis
a(f(0), f(1)) and thus also converges.
The above discussion tacitly assumes n ≥ 1, such that both f(0) and f(1) are available
to S. For n = 0 the strategy outputs an arbitrary consistent hypothesis.

Amalgamation uses the concurrent simulation of functions.
definition parallel :: nat ⇒ nat ⇒ nat ⇒ nat option where

parallel i j x ≡ eval r-parallel [i, j, x]

lemma r-parallel ′: eval r-parallel [i, j, x] = parallel i j x
using parallel-def by simp

lemma r-parallel ′′:
shows eval r-phi [i, x] ↑ ∧ eval r-phi [j, x] ↑ =⇒ eval r-parallel [i, j, x] ↑

and eval r-phi [i, x] ↓ ∧ eval r-phi [j, x] ↑ =⇒
eval r-parallel [i, j, x] ↓= prod-encode (0 , the (eval r-phi [i, x]))

and eval r-phi [j, x] ↓ ∧ eval r-phi [i, x] ↑ =⇒
eval r-parallel [i, j, x] ↓= prod-encode (1 , the (eval r-phi [j, x]))

and eval r-phi [i, x] ↓ ∧ eval r-phi [j, x] ↓ =⇒
eval r-parallel [i, j, x] ↓= prod-encode (0 , the (eval r-phi [i, x])) ∨
eval r-parallel [i, j, x] ↓= prod-encode (1 , the (eval r-phi [j, x]))

proof −
let ?f = Cn 1 r-phi [r-const i, Id 1 0]
let ?g = Cn 1 r-phi [r-const j, Id 1 0]
have ∗:

∧
x. eval r-phi [i, x] = eval ?f [x]

∧
x. eval r-phi [j, x] = eval ?g [x]

177

by simp-all
show eval r-phi [i, x] ↑ ∧ eval r-phi [j, x] ↑ =⇒ eval r-parallel [i, j, x] ↑

and eval r-phi [i, x] ↓ ∧ eval r-phi [j, x] ↑ =⇒
eval r-parallel [i, j, x] ↓= prod-encode (0 , the (eval r-phi [i, x]))

and eval r-phi [j, x] ↓ ∧ eval r-phi [i, x] ↑ =⇒
eval r-parallel [i, j, x] ↓= prod-encode (1 , the (eval r-phi [j, x]))

and eval r-phi [i, x] ↓ ∧ eval r-phi [j, x] ↓ =⇒
eval r-parallel [i, j, x] ↓= prod-encode (0 , the (eval r-phi [i, x])) ∨
eval r-parallel [i, j, x] ↓= prod-encode (1 , the (eval r-phi [j, x]))

using r-parallel[OF ∗] by simp-all
qed

lemma parallel:
ϕ i x ↑ ∧ ϕ j x ↑ =⇒ parallel i j x ↑
ϕ i x ↓ ∧ ϕ j x ↑ =⇒ parallel i j x ↓= prod-encode (0 , the (ϕ i x))
ϕ j x ↓ ∧ ϕ i x ↑ =⇒ parallel i j x ↓= prod-encode (1 , the (ϕ j x))
ϕ i x ↓ ∧ ϕ j x ↓ =⇒

parallel i j x ↓= prod-encode (0 , the (ϕ i x)) ∨
parallel i j x ↓= prod-encode (1 , the (ϕ j x))

using phi-def r-parallel ′′ r-parallel parallel-def by simp-all

lemma parallel-converg-pdec1-0-or-1 :
assumes parallel i j x ↓
shows pdec1 (the (parallel i j x)) = 0 ∨ pdec1 (the (parallel i j x)) = 1
using assms parallel[of i x j] parallel(3)[of j x i]
by (metis fst-eqD option.sel prod-encode-inverse)

lemma parallel-converg-either : (ϕ i x ↓ ∨ ϕ j x ↓) = (parallel i j x ↓)
using parallel by (metis option.simps(3))

lemma parallel-0 :
assumes parallel i j x ↓= prod-encode (0 , v)
shows ϕ i x ↓= v
using parallel assms
by (smt option.collapse option.sel option.simps(3) prod.inject prod-encode-eq zero-neq-one)

lemma parallel-1 :
assumes parallel i j x ↓= prod-encode (1 , v)
shows ϕ j x ↓= v
using parallel assms
by (smt option.collapse option.sel option.simps(3) prod.inject prod-encode-eq zero-neq-one)

lemma parallel-converg-V01 :
assumes f ∈ V 01

shows parallel (the (f 0)) (the (f 1)) x ↓
proof −

have f ∈ R ∧ (ϕ (the (f 0)) = f ∨ ϕ (the (f 1)) = f)
using assms V01-def by auto

then have ϕ (the (f 0)) ∈ R ∨ ϕ (the (f 1)) ∈ R
by auto

then have ϕ (the (f 0)) x ↓ ∨ ϕ (the (f 1)) x ↓
using R1-imp-total1 by auto

then show ?thesis using parallel-converg-either by simp
qed

The amalgamation of two Gödel numbers can then be described in terms of parallel.

178

definition amalgamation :: nat ⇒ nat ⇒ partial1 where
amalgamation i j x ≡

if parallel i j x ↑ then None else Some (pdec2 (the (parallel i j x)))

lemma amalgamation-diverg: amalgamation i j x ↑ ←→ ϕ i x ↑ ∧ ϕ j x ↑
using amalgamation-def parallel by (metis option.simps(3))

lemma amalgamation-total:
assumes total1 (ϕ i) ∨ total1 (ϕ j)
shows total1 (amalgamation i j)
using assms amalgamation-diverg[of i j] total-def by auto

lemma amalgamation-V01-total:
assumes f ∈ V 01

shows total1 (amalgamation (the (f 0)) (the (f 1)))
using assms V01-def amalgamation-total R1-imp-total1 total1-def
by (metis (mono-tags, lifting) mem-Collect-eq)

definition r-amalgamation ≡ Cn 3 r-pdec2 [r-parallel]

lemma r-amalgamation-recfn: recfn 3 r-amalgamation
unfolding r-amalgamation-def by simp

lemma r-amalgamation: eval r-amalgamation [i, j, x] = amalgamation i j x
proof (cases parallel i j x ↑)

case True
then have eval r-parallel [i, j, x] ↑

by (simp add: r-parallel ′)
then have eval r-amalgamation [i, j, x] ↑

unfolding r-amalgamation-def by simp
moreover from True have amalgamation i j x ↑

using amalgamation-def by simp
ultimately show ?thesis by simp

next
case False
then have eval r-parallel [i, j, x] ↓

by (simp add: r-parallel ′)
then have eval r-amalgamation [i, j, x] = eval r-pdec2 [the (eval r-parallel [i, j, x])]

unfolding r-amalgamation-def by simp
also have ... ↓= pdec2 (the (eval r-parallel [i, j, x]))

by simp
finally show ?thesis by (simp add: False amalgamation-def r-parallel ′)

qed

The function amalgamate computes Gödel numbers of amalgamations. It corresponds
to the function a from the proof sketch.
definition amalgamate :: nat ⇒ nat ⇒ nat where

amalgamate i j ≡ smn 1 (encode r-amalgamation) [i, j]

lemma amalgamate: ϕ (amalgamate i j) = amalgamation i j
proof

fix x
have ϕ (amalgamate i j) x = eval r-phi [amalgamate i j, x]

by (simp add: phi-def)
also have ... = eval r-phi [smn 1 (encode r-amalgamation) [i, j], x]

using amalgamate-def by simp

179

also have ... = eval r-phi
[encode (Cn 1 (r-universal 3)
(r-constn 0 (encode r-amalgamation) # map (r-constn 0) [i, j] @ map (Id 1) [0])), x]

using smn[of 1 encode r-amalgamation [i, j]] by (simp add: numeral-3-eq-3)
also have ... = eval r-phi

[encode (Cn 1 (r-universal 3)
(r-const (encode r-amalgamation) # [r-const i, r-const j, Id 1 0])), x]
(is ... = eval r-phi [encode ?f , x])

by (simp add: r-constn-def)
finally have ϕ (amalgamate i j) x = eval r-phi

[encode (Cn 1 (r-universal 3)
(r-const (encode r-amalgamation) # [r-const i, r-const j, Id 1 0])), x] .

then have ϕ (amalgamate i j) x = eval (r-universal 3) [encode r-amalgamation, i, j, x]
unfolding r-phi-def using r-universal[of ?f 1] r-amalgamation-recfn by simp

then show ϕ (amalgamate i j) x = amalgamation i j x
using r-amalgamation by (simp add: r-amalgamation-recfn r-universal)

qed

lemma amalgamation-in-P1 : amalgamation i j ∈ P
using amalgamate by (metis P2-proj-P1 phi-in-P2)

lemma amalgamation-V01-R1 :
assumes f ∈ V 01

shows amalgamation (the (f 0)) (the (f 1)) ∈ R
using assms amalgamation-V01-total amalgamation-in-P1
by (simp add: P1-total-imp-R1)

definition r-amalgamate ≡
Cn 2 (r-smn 1 2) [r-dummy 1 (r-const (encode r-amalgamation)), Id 2 0 , Id 2 1]

lemma r-amalgamate-recfn: recfn 2 r-amalgamate
unfolding r-amalgamate-def by simp

lemma r-amalgamate: eval r-amalgamate [i, j] ↓= amalgamate i j
proof −

let ?p = encode r-amalgamation
have rs21 : eval (r-smn 1 2) [?p, i, j] ↓= smn 1 ?p [i, j]

using r-smn by simp
moreover have eval r-amalgamate [i, j] = eval (r-smn 1 2) [?p, i, j]

unfolding r-amalgamate-def by auto
ultimately have eval r-amalgamate [i, j] ↓= smn 1 ?p [i, j]

by simp
then show ?thesis using amalgamate-def by simp

qed

The strategy S distinguishes the two cases from the proof sketch with the help of the
next function, which checks if a hypothesis ϕi is inconsistent with a prefix e. If so, it
returns the least x < |e| witnessing the inconsistency; otherwise it returns the length |e|.
If ϕi diverges for some x < |e|, so does the function.
definition inconsist :: partial2 where

inconsist i e ≡
(if ∃ x<e-length e. ϕ i x ↑ then None
else if ∃ x<e-length e. ϕ i x ↓6= e-nth e x

then Some (LEAST x . x < e-length e ∧ ϕ i x ↓6= e-nth e x)
else Some (e-length e))

180

lemma inconsist-converg:
assumes inconsist i e ↓
shows inconsist i e =
(if ∃ x<e-length e. ϕ i x ↓6= e-nth e x
then Some (LEAST x . x < e-length e ∧ ϕ i x ↓6= e-nth e x)
else Some (e-length e))

and ∀ x<e-length e. ϕ i x ↓
using inconsist-def assms by (presburger , meson)

lemma inconsist-bounded:
assumes inconsist i e ↓
shows the (inconsist i e) ≤ e-length e

proof (cases ∃ x<e-length e. ϕ i x ↓6= e-nth e x)
case True
then show ?thesis

using inconsist-converg[OF assms]
by (smt Least-le dual-order .strict-implies-order dual-order .strict-trans2 option.sel)

next
case False
then show ?thesis using inconsist-converg[OF assms] by auto

qed

lemma inconsist-consistent:
assumes inconsist i e ↓
shows inconsist i e ↓= e-length e ←→ (∀ x<e-length e. ϕ i x ↓= e-nth e x)

proof
show ∀ x<e-length e. ϕ i x ↓= e-nth e x if inconsist i e ↓= e-length e
proof (cases ∃ x<e-length e. ϕ i x ↓6= e-nth e x)

case True
then show ?thesis

using that inconsist-converg[OF assms]
by (metis (mono-tags, lifting) not-less-Least option.inject)

next
case False
then show ?thesis

using that inconsist-converg[OF assms] by simp
qed
show ∀ x<e-length e. ϕ i x ↓= e-nth e x =⇒ inconsist i e ↓= e-length e

unfolding inconsist-def using assms by auto
qed

lemma inconsist-converg-eq:
assumes inconsist i e ↓= e-length e
shows ∀ x<e-length e. ϕ i x ↓= e-nth e x
using assms inconsist-consistent by auto

lemma inconsist-converg-less:
assumes inconsist i e ↓ and the (inconsist i e) < e-length e
shows ∃ x<e-length e. ϕ i x ↓6= e-nth e x

and inconsist i e ↓= (LEAST x. x < e-length e ∧ ϕ i x ↓6= e-nth e x)
proof −

show ∃ x<e-length e. ϕ i x ↓6= e-nth e x
using assms by (metis (no-types, lifting) inconsist-converg(1) nat-neq-iff option.sel)

then show inconsist i e ↓= (LEAST x. x < e-length e ∧ ϕ i x ↓6= e-nth e x)
using assms inconsist-converg by presburger

181

qed

lemma least-bounded-Suc:
assumes ∃ x. x < upper ∧ P x
shows (LEAST x. x < upper ∧ P x) = (LEAST x . x < Suc upper ∧ P x)

proof −
let ?Q = λx. x < upper ∧ P x
let ?x = Least ?Q
from assms have ?x < upper ∧ P ?x

using LeastI-ex[of ?Q] by simp
then have 1 : ?x < Suc upper ∧ P ?x by simp
from assms have 2 : ∀ y<?x. ¬ P y

using Least-le[of ?Q] not-less-Least by fastforce
have (LEAST x . x < Suc upper ∧ P x) = ?x
proof (rule Least-equality)

show ?x < Suc upper ∧ P ?x using 1 2 by blast
show

∧
y. y < Suc upper ∧ P y =⇒ ?x ≤ y

using 1 2 leI by blast
qed
then show ?thesis ..

qed

lemma least-bounded-gr :
fixes P :: nat ⇒ bool and m :: nat
assumes ∃ x. x < upper ∧ P x
shows (LEAST x. x < upper ∧ P x) = (LEAST x . x < upper + m ∧ P x)

proof (induction m)
case 0
then show ?case by simp

next
case (Suc m)
moreover have ∃ x. x < upper + m ∧ P x

using assms trans-less-add1 by blast
ultimately show ?case using least-bounded-Suc by simp

qed

lemma inconsist-init-converg-less:
assumes f ∈ R

and ϕ i ∈ R
and inconsist i (f . n) ↓
and the (inconsist i (f . n)) < Suc n

shows inconsist i (f . (n + m)) = inconsist i (f . n)
proof −

have phi-i-total: ϕ i x ↓ for x
using assms by simp

moreover have f-nth: f x ↓= e-nth (f . n) x if x < Suc n for x n
using that assms(1) by simp

ultimately have (ϕ i x 6= f x) = (ϕ i x ↓6= e-nth (f . n) x) if x < Suc n for x n
using that by simp

then have cond: (x < Suc n ∧ ϕ i x 6= f x) =
(x < e-length (f . n) ∧ ϕ i x ↓6= e-nth (f . n) x) for x n

using length-init by metis
then have

1 : ∃ x<Suc n. ϕ i x 6= f x and
2 : inconsist i (f . n) ↓= (LEAST x. x < Suc n ∧ ϕ i x 6= f x)
using assms(3 ,4) inconsist-converg-less[of i f . n] by simp-all

182

then have 3 : ∃ x<Suc (n + m). ϕ i x 6= f x
using not-add-less1 by fastforce

then have ∃ x<Suc (n + m). ϕ i x ↓6= e-nth (f . (n + m)) x
using cond by blast

then have ∃ x<e-length (f . (n + m)). ϕ i x ↓6= e-nth (f . (n + m)) x
by simp

moreover have 4 : inconsist i (f . (n + m)) ↓
using assms(2) R1-imp-total1 inconsist-def by simp

ultimately have inconsist i (f . (n + m)) ↓=
(LEAST x . x < e-length (f . (n + m)) ∧ ϕ i x ↓6= e-nth (f . (n + m)) x)

using inconsist-converg[OF 4] by simp
then have 5 : inconsist i (f . (n + m)) ↓= (LEAST x . x < Suc (n + m) ∧ ϕ i x 6= f x)

using cond[of - n + m] by simp
then have (LEAST x . x < Suc n ∧ ϕ i x 6= f x) =

(LEAST x . x < Suc n + m ∧ ϕ i x 6= f x)
using least-bounded-gr [where ?upper=Suc n] 1 3 by simp

then show ?thesis using 2 5 by simp
qed

definition r-inconsist ≡
let

f = Cn 2 r-length [Id 2 1];
g = Cn 4 r-ifless
[Id 4 1 ,
Cn 4 r-length [Id 4 3],
Id 4 1 ,
Cn 4 r-ifeq
[Cn 4 r-phi [Id 4 2 , Id 4 0],
Cn 4 r-nth [Id 4 3 , Id 4 0],
Id 4 1 ,
Id 4 0]]

in Cn 2 (Pr 2 f g) [Cn 2 r-length [Id 2 1], Id 2 0 , Id 2 1]

lemma r-inconsist-recfn: recfn 2 r-inconsist
unfolding r-inconsist-def by simp

lemma r-inconsist: eval r-inconsist [i, e] = inconsist i e
proof −

define f where f = Cn 2 r-length [Id 2 1]
define len where len = Cn 4 r-length [Id 4 3]
define nth where nth = Cn 4 r-nth [Id 4 3 , Id 4 0]
define ph where ph = Cn 4 r-phi [Id 4 2 , Id 4 0]
define g where

g = Cn 4 r-ifless [Id 4 1 , len, Id 4 1 , Cn 4 r-ifeq [ph, nth, Id 4 1 , Id 4 0]]
have recfn 2 f

unfolding f-def by simp
have f : eval f [i, e] ↓= e-length e

unfolding f-def by simp
have recfn 4 len

unfolding len-def by simp
have len: eval len [j, v, i, e] ↓= e-length e for j v

unfolding len-def by simp
have recfn 4 nth

unfolding nth-def by simp
have nth: eval nth [j, v, i, e] ↓= e-nth e j for j v

unfolding nth-def by simp

183

have recfn 4 ph
unfolding ph-def by simp

have ph: eval ph [j, v, i, e] = ϕ i j for j v
unfolding ph-def using phi-def by simp

have recfn 4 g
unfolding g-def using ‹recfn 4 nth› ‹recfn 4 ph› ‹recfn 4 len› by simp

have g-diverg: eval g [j, v, i, e] ↑ if eval ph [j, v, i, e] ↑ for j v
unfolding g-def using that ‹recfn 4 nth› ‹recfn 4 ph› ‹recfn 4 len› by simp

have g-converg: eval g [j, v, i, e] ↓=
(if v < e-length e then v else if ϕ i j ↓= e-nth e j then v else j)
if eval ph [j, v, i, e] ↓ for j v

unfolding g-def using that ‹recfn 4 nth› ‹recfn 4 ph› ‹recfn 4 len› len nth ph
by auto

define h where h ≡ Pr 2 f g
then have recfn 3 h

by (simp add: ‹recfn 2 f › ‹recfn 4 g›)

let ?invariant = λj i e.
(if ∃ x<j. ϕ i x ↑ then None
else if ∃ x<j. ϕ i x ↓6= e-nth e x

then Some (LEAST x . x < j ∧ ϕ i x ↓6= e-nth e x)
else Some (e-length e))

have eval h [j, i, e] = ?invariant j i e if j ≤ e-length e for j
using that

proof (induction j)
case 0
then show ?case unfolding h-def using ‹recfn 2 f › f ‹recfn 4 g› by simp

next
case (Suc j)
then have j-less: j < e-length e by simp
then have j-le: j ≤ e-length e by simp
show ?case
proof (cases eval h [j, i, e] ↑)

case True
then have ∃ x<j. ϕ i x ↑

using j-le Suc.IH by (metis option.simps(3))
then have ∃ x<Suc j. ϕ i x ↑

using less-SucI by blast
moreover have h: eval h [Suc j, i, e] ↑

using True h-def ‹recfn 3 h› by simp
ultimately show ?thesis by simp

next
case False
with Suc.IH j-le have h-j: eval h [j, i, e] =
(if ∃ x<j. ϕ i x ↓6= e-nth e x
then Some (LEAST x . x < j ∧ ϕ i x ↓6= e-nth e x)
else Some (e-length e))

by presburger
then have the-h-j: the (eval h [j, i, e]) =
(if ∃ x<j. ϕ i x ↓6= e-nth e x
then LEAST x. x < j ∧ ϕ i x ↓6= e-nth e x
else e-length e)
(is - = ?v)

by auto
have h-Suc: eval h [Suc j, i, e] = eval g [j, the (eval h [j, i, e]), i, e]

184

using False h-def ‹recfn 4 g› ‹recfn 2 f › by auto
show ?thesis
proof (cases ϕ i j ↑)

case True
with ph g-diverg h-Suc show ?thesis by auto

next
case False
with h-Suc have eval h [Suc j, i, e] ↓=
(if ?v < e-length e then ?v
else if ϕ i j ↓= e-nth e j then ?v else j)
(is - ↓= ?lhs)
using g-converg ph the-h-j by simp

moreover have ?invariant (Suc j) i e ↓=
(if ∃ x<Suc j. ϕ i x ↓6= e-nth e x
then LEAST x. x < Suc j ∧ ϕ i x ↓6= e-nth e x
else e-length e)
(is - ↓= ?rhs)

proof −
from False have ϕ i j ↓ by simp
moreover have ¬ (∃ x<j. ϕ i x ↑)

by (metis (no-types, lifting) Suc.IH h-j j-le option.simps(3))
ultimately have ¬ (∃ x<Suc j. ϕ i x ↑)

using less-Suc-eq by auto
then show ?thesis by auto

qed
moreover have ?lhs = ?rhs
proof (cases ?v < e-length e)

case True
then have

ex-j: ∃ x<j. ϕ i x ↓6= e-nth e x and
v-eq: ?v = (LEAST x . x < j ∧ ϕ i x ↓6= e-nth e x)
by presburger+

with True have ?lhs = ?v by simp
from ex-j have ∃ x<Suc j. ϕ i x ↓6= e-nth e x

using less-SucI by blast
then have ?rhs = (LEAST x . x < Suc j ∧ ϕ i x ↓6= e-nth e x) by simp
with True v-eq ex-j show ?thesis

using least-bounded-Suc[of j λx. ϕ i x ↓6= e-nth e x] by simp
next

case False
then have not-ex: ¬ (∃ x<j. ϕ i x ↓6= e-nth e x)

using Least-le[of λx. x < j ∧ ϕ i x ↓6= e-nth e x] j-le
by (smt leD le-less-linear le-trans)

then have ?v = e-length e by argo
with False have lhs: ?lhs = (if ϕ i j ↓= e-nth e j then e-length e else j)

by simp
show ?thesis
proof (cases ϕ i j ↓= e-nth e j)

case True
then have ¬ (∃ x<Suc j. ϕ i x ↓6= e-nth e x)

using less-SucE not-ex by blast
then have ?rhs = e-length e by argo
moreover from True have ?lhs = e-length e

using lhs by simp
ultimately show ?thesis by simp

next case False

185

then have ϕ i j ↓6= e-nth e j
using ‹ϕ i j ↓› by simp

with not-ex have (LEAST x . x<Suc j ∧ ϕ i x ↓6= e-nth e x) = j
using LeastI [of λx. x<Suc j ∧ ϕ i x ↓6= e-nth e x j] less-Suc-eq
by blast

then have ?rhs = j
using ‹ϕ i j ↓6= e-nth e j› by (meson lessI)

moreover from False lhs have ?lhs = j by simp
ultimately show ?thesis by simp

qed
qed
ultimately show ?thesis by simp

qed
qed

qed
then have eval h [e-length e, i, e] = ?invariant (e-length e) i e

by auto
then have eval h [e-length e, i, e] = inconsist i e

using inconsist-def by simp
moreover have eval (Cn 2 (Pr 2 f g) [Cn 2 r-length [Id 2 1], Id 2 0 , Id 2 1]) [i, e] =

eval h [e-length e, i, e]
using ‹recfn 4 g› ‹recfn 2 f › h-def by auto

ultimately show ?thesis
unfolding r-inconsist-def by (simp add: f-def g-def len-def nth-def ph-def)

qed

lemma inconsist-for-total:
assumes total1 (ϕ i)
shows inconsist i e ↓=
(if ∃ x<e-length e. ϕ i x ↓6= e-nth e x
then LEAST x. x < e-length e ∧ ϕ i x ↓6= e-nth e x
else e-length e)

unfolding inconsist-def using assms total1-def by (auto; blast)

lemma inconsist-for-V01 :
assumes f ∈ V 01 and k = amalgamate (the (f 0)) (the (f 1))
shows inconsist k e ↓=
(if ∃ x<e-length e. ϕ k x ↓6= e-nth e x
then LEAST x. x < e-length e ∧ ϕ k x ↓6= e-nth e x
else e-length e)

proof −
have ϕ k ∈ R

using amalgamation-V01-R1 [OF assms(1)] assms(2) amalgamate by simp
then have total1 (ϕ k) by simp
with inconsist-for-total[of k] show ?thesis by simp

qed

The next function computes Gödel numbers of functions consistent with a given prefix.
The strategy will use these as consistent auxiliary hypotheses when receiving a prefix of
length one.
definition r-auxhyp ≡ Cn 1 (r-smn 1 1) [r-const (encode r-prenum), Id 1 0]

lemma r-auxhyp-prim: prim-recfn 1 r-auxhyp
unfolding r-auxhyp-def by simp

lemma r-auxhyp: ϕ (the (eval r-auxhyp [e])) = prenum e

186

proof
fix x
let ?p = encode r-prenum
let ?p = encode r-prenum
have eval r-auxhyp [e] = eval (r-smn 1 1) [?p, e]

unfolding r-auxhyp-def by simp
then have eval r-auxhyp [e] ↓= smn 1 ?p [e]

by (simp add: r-smn)
also have ... ↓= encode (Cn 1 (r-universal (1 + length [e]))

(r-constn (1 − 1) ?p #
map (r-constn (1 − 1)) [e] @ map (recf .Id 1) [0 ..<1]))

using smn[of 1 ?p [e]] by simp
also have ... ↓= encode (Cn 1 (r-universal (1 + 1))

(r-constn 0 ?p # map (r-constn 0) [e] @ [Id 1 0]))
by simp

also have ... ↓= encode (Cn 1 (r-universal 2)
(r-constn 0 ?p # map (r-constn 0) [e] @ [Id 1 0]))

by (metis one-add-one)
also have ... ↓= encode (Cn 1 (r-universal 2) [r-constn 0 ?p, r-constn 0 e, Id 1 0])

by simp
also have ... ↓= encode (Cn 1 (r-universal 2) [r-const ?p, r-const e, Id 1 0])

using r-constn-def by simp
finally have eval r-auxhyp [e] ↓=

encode (Cn 1 (r-universal 2) [r-const ?p, r-const e, Id 1 0]) .
moreover have ϕ (the (eval r-auxhyp [e])) x = eval r-phi [the (eval r-auxhyp [e]), x]

by (simp add: phi-def)
ultimately have ϕ (the (eval r-auxhyp [e])) x =

eval r-phi [encode (Cn 1 (r-universal 2) [r-const ?p, r-const e, Id 1 0]), x]
(is - = eval r-phi [encode ?f , x])

by simp
then have ϕ (the (eval r-auxhyp [e])) x =

eval (Cn 1 (r-universal 2) [r-const ?p, r-const e, Id 1 0]) [x]
using r-phi-def r-universal[of ?f 1 [x]] by simp

then have ϕ (the (eval r-auxhyp [e])) x = eval (r-universal 2) [?p, e, x]
by simp

then have ϕ (the (eval r-auxhyp [e])) x = eval r-prenum [e, x]
using r-universal by simp

then show ϕ (the (eval r-auxhyp [e])) x = prenum e x by simp
qed

definition auxhyp :: partial1 where
auxhyp e ≡ eval r-auxhyp [e]

lemma auxhyp-prenum: ϕ (the (auxhyp e)) = prenum e
using auxhyp-def r-auxhyp by metis

lemma auxhyp-in-R1 : auxhyp ∈ R
using auxhyp-def Mn-free-imp-total R1I r-auxhyp-prim by metis

Now we can define our consistent learning strategy for V 01.
definition r-sv01 ≡

let
at0 = Cn 1 r-nth [Id 1 0 , Z];
at1 = Cn 1 r-nth [Id 1 0 , r-const 1];
m = Cn 1 r-amalgamate [at0 , at1];
c = Cn 1 r-inconsist [m, Id 1 0];

187

p = Cn 1 r-pdec1 [Cn 1 r-parallel [at0 , at1 , c]];
g = Cn 1 r-ifeq [c, r-length, m, Cn 1 r-ifz [p, at1 , at0]]

in Cn 1 (r-lifz r-auxhyp g) [Cn 1 r-eq [r-length, r-const 1], Id 1 0]

lemma r-sv01-recfn: recfn 1 r-sv01
unfolding r-sv01-def using r-auxhyp-prim r-inconsist-recfn r-amalgamate-recfn
by (simp add: Let-def)

definition sv01 :: partial1 (‹s01›)where
sv01 e ≡ eval r-sv01 [e]

lemma sv01-in-P1 : s01 ∈ P
using sv01-def r-sv01-recfn P1I by presburger

We are interested in the behavior of s01 only on prefixes of functions in V 01. This
behavior is linked to the amalgamation of f(0) and f(1), where f is the function to be
learned.
abbreviation amalg01 :: partial1 ⇒ nat where

amalg01 f ≡ amalgamate (the (f 0)) (the (f 1))

lemma sv01 :
assumes f ∈ V 01

shows s01 (f . 0) = auxhyp (f . 0)
and n 6= 0 =⇒

inconsist (amalg01 f) (f . n) ↓= Suc n =⇒
s01 (f . n) ↓= amalg01 f

and n 6= 0 =⇒
the (inconsist (amalg01 f) (f . n)) < Suc n =⇒
pdec1 (the (parallel (the (f 0)) (the (f 1)) (the (inconsist (amalg01 f) (f . n))))) = 0 =⇒
s01 (f . n) = f 1

and n 6= 0 =⇒
the (inconsist (amalg01 f) (f . n)) < Suc n =⇒
pdec1 (the (parallel (the (f 0)) (the (f 1)) (the (inconsist (amalg01 f) (f . n))))) 6= 0 =⇒
s01 (f . n) = f 0

proof −
have f-total:

∧
x. f x ↓

using assms V01-def R1-imp-total1 by blast
define at0 where at0 = Cn 1 r-nth [Id 1 0 , Z]
define at1 where at1 = Cn 1 r-nth [Id 1 0 , r-const 1]
define m where m = Cn 1 r-amalgamate [at0 , at1]
define c where c = Cn 1 r-inconsist [m, Id 1 0]
define p where p = Cn 1 r-pdec1 [Cn 1 r-parallel [at0 , at1 , c]]
define g where g = Cn 1 r-ifeq [c, r-length, m, Cn 1 r-ifz [p, at1 , at0]]
have recfn 1 g

unfolding g-def p-def c-def m-def at1-def at0-def
using r-auxhyp-prim r-inconsist-recfn r-amalgamate-recfn
by simp

have eval (Cn 1 r-eq [r-length, r-const 1]) [f . 0] ↓= 0
by simp

then have eval r-sv01 [f . 0] = eval r-auxhyp [f . 0]
unfolding r-sv01-def using ‹recfn 1 g› c-def g-def m-def p-def r-auxhyp-prim
by (auto simp add: Let-def)

then show s01 (f . 0) = auxhyp (f . 0)
by (simp add: auxhyp-def sv01-def)

have sv01 : s01 (f . n) = eval g [f . n] if n 6= 0

188

proof −
have ∗: eval (Cn 1 r-eq [r-length, r-const 1]) [f . n] ↓6= 0
(is ?r-eq ↓6= 0)
using that by simp

moreover have recfn 2 (r-lifz r-auxhyp g)
using ‹recfn 1 g› r-auxhyp-prim by simp

moreover have eval r-sv01 [f . n] =
eval (Cn 1 (r-lifz r-auxhyp g) [Cn 1 r-eq [r-length, r-const 1], Id 1 0]) [f . n]

using r-sv01-def by (metis at0-def at1-def c-def g-def m-def p-def)
ultimately have eval r-sv01 [f . n] = eval (r-lifz r-auxhyp g) [the ?r-eq, f . n]

by simp
then have eval r-sv01 [f . n] = eval g [f . n]

using ∗ ‹recfn 1 g› r-auxhyp-prim by auto
then show ?thesis by (simp add: sv01-def that)

qed

have recfn 1 at0
unfolding at0-def by simp

have at0 : eval at0 [f . n] ↓= the (f 0)
unfolding at0-def by simp

have recfn 1 at1
unfolding at1-def by simp

have at1 : n 6= 0 =⇒ eval at1 [f . n] ↓= the (f 1)
unfolding at1-def by simp

have recfn 1 m
unfolding m-def at0-def at1-def using r-amalgamate-recfn by simp

have m: n 6= 0 =⇒ eval m [f . n] ↓= amalg01 f
(is - =⇒ - ↓= ?m)

unfolding m-def at0-def at1-def
using at0 at1 amalgamate r-amalgamate r-amalgamate-recfn by simp

then have c: n 6= 0 =⇒ eval c [f . n] = inconsist (amalg01 f) (f . n)
(is - =⇒ - = ?c)

unfolding c-def using r-inconsist-recfn ‹recfn 1 m› r-inconsist by auto
then have c-converg: n 6= 0 =⇒ eval c [f . n] ↓

using inconsist-for-V01 [OF assms] by simp
have recfn 1 c

unfolding c-def using ‹recfn 1 m› r-inconsist-recfn by simp

have par : n 6= 0 =⇒
eval (Cn 1 r-parallel [at0 , at1 , c]) [f . n] = parallel (the (f 0)) (the (f 1)) (the ?c)
(is - =⇒ - = ?par)

using at0 at1 c c-converg m r-parallel ′ ‹recfn 1 at0 › ‹recfn 1 at1 › ‹recfn 1 c›
by simp

with parallel-converg-V01 [OF assms] have
par-converg: n 6= 0 =⇒ eval (Cn 1 r-parallel [at0 , at1 , c]) [f . n] ↓

by simp
then have p-converg: n 6= 0 =⇒ eval p [f . n] ↓

unfolding p-def using at0 at1 c-converg ‹recfn 1 at0 › ‹recfn 1 at1 › ‹recfn 1 c›
by simp

have p: n 6= 0 =⇒ eval p [f . n] ↓= pdec1 (the ?par)
unfolding p-def
using at0 at1 c-converg ‹recfn 1 at0 › ‹recfn 1 at1 › ‹recfn 1 c› par par-converg
by simp

have recfn 1 p
unfolding p-def using ‹recfn 1 at0 › ‹recfn 1 at1 › ‹recfn 1 m› ‹recfn 1 c›
by simp

189

let ?r = Cn 1 r-ifz [p, at1 , at0]
have r : n 6= 0 =⇒ eval ?r [f . n] = (if pdec1 (the ?par) = 0 then f 1 else f 0)

using at0 at1 c-converg ‹recfn 1 at0 › ‹recfn 1 at1 › ‹recfn 1 c›
‹recfn 1 m› ‹recfn 1 p› p f-total

by fastforce

have g: n 6= 0 =⇒
eval g [f . n] ↓=
(if the ?c = e-length (f . n)
then ?m else the (eval (Cn 1 r-ifz [p, at1 , at0]) [f . n]))

unfolding g-def
using ‹recfn 1 p› ‹recfn 1 at0 › ‹recfn 1 at1 › ‹recfn 1 c› ‹recfn 1 m›

p-converg at1 at0 c c-converg m
by simp

{
assume n 6= 0 and ?c ↓= Suc n
moreover have e-length (f . n) = Suc n by simp
ultimately have eval g [f . n] ↓= ?m using g by simp
then show s01 (f . n) ↓= amalg01 f

using sv01 [OF ‹n 6= 0 ›] by simp
next

assume n 6= 0 and the ?c < Suc n and pdec1 (the ?par) = 0
with g r f-total have eval g [f . n] = f 1 by simp
then show s01 (f . n) = f 1

using sv01 [OF ‹n 6= 0 ›] by simp
next

assume n 6= 0 and the ?c < Suc n and pdec1 (the ?par) 6= 0
with g r f-total have eval g [f . n] = f 0 by simp
then show s01 (f . n) = f 0

using sv01 [OF ‹n 6= 0 ›] by simp
}

qed

Part of the correctness of s01 is convergence on prefixes of functions in V 01.
lemma sv01-converg-V01 :

assumes f ∈ V 01

shows s01 (f . n) ↓
proof (cases n = 0)

case True
then show ?thesis

using assms sv01 R1-imp-total1 auxhyp-in-R1 by simp
next

case n-gr-0 : False
show ?thesis
proof (cases inconsist (amalg01 f) (f . n) ↓= Suc n)

case True
then show ?thesis
using n-gr-0 assms sv01 by simp

next
case False
then have the (inconsist (amalg01 f) (f . n)) < Suc n

using assms inconsist-bounded inconsist-for-V01 length-init
by (metis (no-types, lifting) le-neq-implies-less option.collapse option.simps(3))

then show ?thesis
using n-gr-0 assms sv01 R1-imp-total1 total1E V01-def

190

by (metis (no-types, lifting) mem-Collect-eq)
qed

qed

Another part of the correctness of s01 is its hypotheses being consistent on prefixes of
functions in V 01.
lemma sv01-consistent-V01 :

assumes f ∈ V 01

shows ∀ x≤n. ϕ (the (s01 (f . n))) x = f x
proof (cases n = 0)

case True
then have s01 (f . n) = auxhyp (f . n)

using sv01 [OF assms] by simp
then have ϕ (the (s01 (f . n))) = prenum (f . n)

using auxhyp-prenum by simp
then show ?thesis

using R1-imp-total1 total1E assms by (simp add: V01-def)
next

case n-gr-0 : False
let ?m = amalg01 f
let ?e = f . n
let ?c = the (inconsist ?m ?e)
have c: inconsist ?m ?e ↓

using assms inconsist-for-V01 by blast
show ?thesis
proof (cases inconsist ?m ?e ↓= Suc n)

case True
then show ?thesis

using assms n-gr-0 sv01 R1-imp-total1 total1E V01-def is-init-of-def
inconsist-consistent not-initial-imp-not-eq length-init inconsist-converg-eq

by (metis (no-types, lifting) le-imp-less-Suc mem-Collect-eq option.sel)
next

case False
then have less: the (inconsist ?m ?e) < Suc n

using c assms inconsist-bounded inconsist-for-V01 length-init
by (metis le-neq-implies-less option.collapse)

then have the (inconsist ?m ?e) < e-length ?e
by auto

then have
∃ x<e-length ?e. ϕ ?m x ↓6= e-nth ?e x
inconsist ?m ?e ↓= (LEAST x. x < e-length ?e ∧ ϕ ?m x ↓6= e-nth ?e x)
(is - ↓= Least ?P)
using inconsist-converg-less[OF c] by simp-all

then have ?P ?c and
∧

x. x < ?c =⇒ ¬ ?P x
using LeastI-ex[of ?P] not-less-Least[of - ?P] by (auto simp del: e-nth)

then have ϕ ?m ?c 6= f ?c by auto
then have amalgamation (the (f 0)) (the (f 1)) ?c 6= f ?c

using amalgamate by simp
then have ∗: Some (pdec2 (the (parallel (the (f 0)) (the (f 1)) ?c))) 6= f ?c

using amalgamation-def by (metis assms parallel-converg-V01)
let ?p = parallel (the (f 0)) (the (f 1)) ?c
show ?thesis
proof (cases pdec1 (the ?p) = 0)

case True
then have ϕ (the (f 0)) ?c ↓= pdec2 (the ?p)

using assms parallel-0 parallel-converg-V01

191

by (metis option.collapse prod.collapse prod-decode-inverse)
then have ϕ (the (f 0)) ?c 6= f ?c

using ∗ by simp
then have ϕ (the (f 0)) 6= f by auto
then have ϕ (the (f 1)) = f

using assms V01-def by auto
moreover have s01 (f . n) = f 1

using True less n-gr-0 sv01 assms by simp
ultimately show ?thesis by simp

next
case False
then have pdec1 (the ?p) = 1

by (meson assms parallel-converg-V01 parallel-converg-pdec1-0-or-1)
then have ϕ (the (f 1)) ?c ↓= pdec2 (the ?p)

using assms parallel-1 parallel-converg-V01
by (metis option.collapse prod.collapse prod-decode-inverse)

then have ϕ (the (f 1)) ?c 6= f ?c
using ∗ by simp

then have ϕ (the (f 1)) 6= f by auto
then have ϕ (the (f 0)) = f

using assms V01-def by auto
moreover from False less n-gr-0 sv01 assms have s01 (f . n) = f 0

by simp
ultimately show ?thesis by simp

qed
qed

qed

The final part of the correctness is s01 converging for all functions in V 01.
lemma sv01-limit-V01 :
assumes f ∈ V 01

shows ∃ i. ∀∞n. s01 (f . n) ↓= i
proof (cases ∀n>0 . s01 (f . n) ↓= amalgamate (the (f 0)) (the (f 1)))

case True
then show ?thesis by (meson less-le-trans zero-less-one)

next
case False
then obtain n0 where n0 :

n0 6= 0
s01 (f . n0) ↓6= amalg01 f
using ‹f ∈ V 01› sv01-converg-V01 by blast

then have ∗: the (inconsist (amalg01 f) (f . n0)) < Suc n0

(is the (inconsist ?m (f . n0)) < Suc n0)
using assms ‹n0 6= 0 › sv01 (2) inconsist-bounded inconsist-for-V01 length-init
by (metis (no-types, lifting) le-neq-implies-less option.collapse option.simps(3))

moreover have f ∈ R
using assms V01-def by auto

moreover have ϕ ?m ∈ R
using amalgamate amalgamation-V01-R1 assms by auto

moreover have inconsist ?m (f . n0) ↓
using inconsist-for-V01 assms by blast

ultimately have ∗∗: inconsist ?m (f . (n0 + m)) = inconsist ?m (f . n0) for m
using inconsist-init-converg-less[of f ?m] by simp

then have the (inconsist ?m (f . (n0 + m))) < Suc n0 + m for m
using ∗ by auto

moreover have

192

pdec1 (the (parallel (the (f 0)) (the (f 1)) (the (inconsist ?m (f . (n0 + m)))))) =
pdec1 (the (parallel (the (f 0)) (the (f 1)) (the (inconsist ?m (f . n0)))))

for m
using ∗∗ by auto

moreover have n0 + m 6= 0 for m
using ‹n0 6= 0 › by simp

ultimately have s01 (f . (n0 + m)) = s01 (f . n0) for m
using assms sv01 ∗ ‹n0 6= 0 › by (metis add-Suc)

moreover define i where i = s01 (f . n0)
ultimately have ∀n≥n0. s01 (f . n) = i

using nat-le-iff-add by auto
then have ∀n≥n0. s01 (f . n) ↓= the i

using n0 (2) by simp
then show ?thesis by auto

qed

lemma V01-learn-cons: learn-cons ϕ V 01 s01
proof (rule learn-consI2)

show environment ϕ V 01 s01
by (simp add: Collect-mono V01-def phi-in-P2 sv01-in-P1 sv01-converg-V01)

show
∧

f n. f ∈ V 01 =⇒ ∀ k≤n. ϕ (the (s01 (f . n))) k = f k
using sv01-consistent-V01 .

show ∃ i n0. ∀n≥n0. s01 (f . n) ↓= i if f ∈ V 01 for f
using sv01-limit-V01 that by simp

qed

corollary V01-in-CONS : V 01 ∈ CONS
using V01-learn-cons CONS-def by auto

Now we can show the main result of this section, namely that there is a consistently
learnable class that cannot be learned consistently by a total strategy. In other words,
there is no Lemma R for CONS.
lemma no-lemma-R-for-CONS : ∃U . U ∈ CONS ∧ (¬ (∃ s. s ∈ R ∧ learn-cons ϕ U s))

using V01-in-CONS V01-not-in-R-cons by auto

end

2.9 LIM is a proper subset of BC
theory LIM-BC

imports Lemma-R
begin

The proper inclusion of LIM in BC has been proved by Barzdin [2] (see also Case and
Smith [6]). The proof constructs a class V ∈ BC − LIM by diagonalization against all
LIM strategies. Exploiting Lemma R for LIM, we can assume that all such strategies
are total functions. From the effective version of this lemma we derive a numbering σ ∈
R2 such that for all U ∈ LIM there is an i with U ∈ LIMϕ(σi). The idea behind V is for
every i to construct a class Vi of cardinality one or two such that Vi /∈ LIMϕ(σi). It then
follows that the union V :=

⋃
i Vi cannot be learned by any σi and thus V /∈ LIM. At the

same time, the construction ensures that the functions in V are “predictable enough” to
be learnable in the BC sense.
At the core is a process that maintains a state (b, k) of a list b of numbers and an index
k < |b| into this list. We imagine b to be the prefix of the function being constructed,

193

except for position k where we imagine b to have a “gap”; that is, bk is not defined yet.
Technically, we will always have bk = 0, so b also represents the prefix after the “gap
is filled” with 0, whereas bk:=1 represents the prefix where the gap is filled with 1. For
every i ∈ N, the process starts in state (i0, 1) and computes the next state from a given
state (b, k) as follows:

1. if σi(b<k) 6= σi(b) then the next state is (b0, |b|),

2. else if σi(b<k) 6= σi(bk:=1) then the next state is (bk:=10, |b|),

3. else the next state is (b0, k).

In other words, if σi changes its hypothesis when the gap in b is filled with 0 or 1, then
the process fills the gap with 0 or 1, respectively, and appends a gap to b. If, however,
a hypothesis change cannot be enforced at this point, the process appends a 0 to b and
leaves the gap alone. Now there are two cases:

Case 1. Every gap gets filled eventually. Then the process generates increasing prefixes
of a total function τi, on which σi changes its hypothesis infinitely often. We set
Vi := {τi}, and have Vi /∈ LIMϕ(σi).

Case 2. Some gap never gets filled. That means a state (b, k) is reached such that σi(b0t) =
σi(bk:=10

t) = σi(b<k) for all t. Then the process describes a function τi = b<k ↑ 0∞,
where the value at the gap k is undefined. Replacing the value at k by 0 and 1
yields two functions τ (0)i = b0∞ and τ

(1)
i = bk:=10

∞, which differ only at k and
on which σi converges to the same hypothesis. Thus σi does not learn the class
Vi := {τ (0)i , τ

(1)
i } in the limit.

Both cases combined imply V /∈ LIM.
A BC strategy S for V =

⋃
i Vi works as follows. Let f ∈ V . On input fn the strategy

outputs a Gödel number of the function

gn(x) =

{
f(x) if x ≤ n,
τf(0)(x) otherwise.

By definition of V , f is generated by the process running for i = f(0). If f(0) leads to
Case 1 then f = τf(0), and gn equals f for all n. If f(0) leads to Case 2 with a forever
unfilled gap at k, then gn will be equal to the correct one of τ (0)i or τ (1)i for all n ≥ k.
Intuitively, the prefix received by S eventually grows long enough to reveal the value
f(k). In both cases S converges to f , but it outputs a different Gödel number for every
fn because gn contains the “hard-coded” values f(0), . . . , f(n). Therefore S is a BC
strategy but not a LIM strategy for V .

2.9.1 Enumerating enough total strategies

For the construction of σ we need the function r-limr from the effective version of
Lemma R for LIM.
definition r-sigma ≡ Cn 2 r-phi [Cn 2 r-limr [Id 2 0], Id 2 1]

lemma r-sigma-recfn: recfn 2 r-sigma
unfolding r-sigma-def using r-limr-recfn by simp

194

lemma r-sigma: eval r-sigma [i, x] = ϕ (the (eval r-limr [i])) x
unfolding r-sigma-def phi-def using r-sigma-recfn r-limr-total r-limr-recfn
by simp

lemma r-sigma-total: total r-sigma
using r-sigma r-limr r-sigma-recfn totalI2 [of r-sigma] by simp

abbreviation sigma :: partial2 (‹σ›) where
σ i x ≡ eval r-sigma [i, x]

lemma sigma: σ i = ϕ (the (eval r-limr [i]))
using r-sigma by simp

The numbering σ does indeed enumerate enough total strategies for every LIM learning
problem.
lemma learn-lim-sigma:

assumes learn-lim ψ U (ϕ i)
shows learn-lim ψ U (σ i)
using assms sigma r-limr by simp

2.9.2 The diagonalization process

The following function represents the process described above. It computes the next
state from a given state (b, k).
definition r-next ≡

Cn 1 r-ifeq
[Cn 1 r-sigma [Cn 1 r-hd [r-pdec1], r-pdec1],
Cn 1 r-sigma [Cn 1 r-hd [r-pdec1], Cn 1 r-take [r-pdec2 , r-pdec1]],
Cn 1 r-ifeq
[Cn 1 r-sigma [Cn 1 r-hd [r-pdec1], Cn 1 r-update [r-pdec1 , r-pdec2 , r-const 1]],
Cn 1 r-sigma [Cn 1 r-hd [r-pdec1], Cn 1 r-take [r-pdec2 , r-pdec1]],
Cn 1 r-prod-encode [Cn 1 r-snoc [r-pdec1 , Z], r-pdec2],
Cn 1 r-prod-encode
[Cn 1 r-snoc
[Cn 1 r-update [r-pdec1 , r-pdec2 , r-const 1], Z], Cn 1 r-length [r-pdec1]]],

Cn 1 r-prod-encode [Cn 1 r-snoc [r-pdec1 , Z], Cn 1 r-length [r-pdec1]]]

lemma r-next-recfn: recfn 1 r-next
unfolding r-next-def using r-sigma-recfn by simp

The three conditions distinguished in r-next correspond to Steps 1, 2, and 3 of the
process: hypothesis change when the gap is filled with 0; hypothesis change when the
gap is filled with 1; or no hypothesis change either way.
abbreviation change-on-0 b k ≡ σ (e-hd b) b 6= σ (e-hd b) (e-take k b)

abbreviation change-on-1 b k ≡
σ (e-hd b) b = σ (e-hd b) (e-take k b) ∧
σ (e-hd b) (e-update b k 1) 6= σ (e-hd b) (e-take k b)

abbreviation change-on-neither b k ≡
σ (e-hd b) b = σ (e-hd b) (e-take k b) ∧
σ (e-hd b) (e-update b k 1) = σ (e-hd b) (e-take k b)

195

lemma change-conditions:
obtains
(on-0) change-on-0 b k
| (on-1) change-on-1 b k
| (neither) change-on-neither b k
by auto

lemma r-next:
assumes arg = prod-encode (b, k)
shows change-on-0 b k =⇒ eval r-next [arg] ↓= prod-encode (e-snoc b 0 , e-length b)

and change-on-1 b k =⇒
eval r-next [arg] ↓= prod-encode (e-snoc (e-update b k 1) 0 , e-length b)

and change-on-neither b k =⇒ eval r-next [arg] ↓= prod-encode (e-snoc b 0 , k)
proof −

let ?bhd = Cn 1 r-hd [r-pdec1]
let ?bup = Cn 1 r-update [r-pdec1 , r-pdec2 , r-const 1]
let ?bk = Cn 1 r-take [r-pdec2 , r-pdec1]
let ?bap = Cn 1 r-snoc [r-pdec1 , Z]
let ?len = Cn 1 r-length [r-pdec1]
let ?thenthen = Cn 1 r-prod-encode [?bap, r-pdec2]
let ?thenelse = Cn 1 r-prod-encode [Cn 1 r-snoc [?bup, Z], ?len]
let ?else = Cn 1 r-prod-encode [?bap, ?len]
have bhd: eval ?bhd [arg] ↓= e-hd b

using assms by simp
have bup: eval ?bup [arg] ↓= e-update b k 1

using assms by simp
have bk: eval ?bk [arg] ↓= e-take k b

using assms by simp
have bap: eval ?bap [arg] ↓= e-snoc b 0

using assms by simp
have len: eval ?len [arg] ↓= e-length b

using assms by simp
have else-: eval ?else [arg] ↓= prod-encode (e-snoc b 0 , e-length b)

using bap len by simp
have thenthen: eval ?thenthen [arg] ↓= prod-encode (e-snoc b 0 , k)

using bap assms by simp
have thenelse: eval ?thenelse [arg] ↓= prod-encode (e-snoc (e-update b k 1) 0 , e-length b)

using bup len by simp
have then-:

eval
(Cn 1 r-ifeq [Cn 1 r-sigma [?bhd, ?bup], Cn 1 r-sigma [?bhd, ?bk], ?thenthen, ?thenelse])
[arg] ↓=

(if the (σ (e-hd b) (e-update b k 1)) = the (σ (e-hd b) (e-take k b))
then prod-encode (e-snoc b 0 , k)
else prod-encode (e-snoc (e-update b k 1) 0 , e-length b))
(is eval ?then [arg] ↓= ?then-eval)
using bhd bup bk thenthen thenelse r-sigma r-sigma-recfn r-limr R1-imp-total1 by simp

have ∗: eval r-next [arg] ↓=
(if the (σ (e-hd b) b) = the (σ (e-hd b) (e-take k b))
then ?then-eval
else prod-encode (e-snoc b 0 , e-length b))

unfolding r-next-def
using bhd bk then- else- r-sigma r-sigma-recfn r-limr R1-imp-total1 assms
by simp

have r-sigma-neq: eval r-sigma [x1, y1] 6= eval r-sigma [x2, y2] ←→
the (eval r-sigma [x1, y1]) 6= the (eval r-sigma [x2, y2])

196

for x1 y1 x2 y2

using r-sigma r-limr totalE [OF r-sigma-total r-sigma-recfn] r-sigma-recfn r-sigma-total
by (metis One-nat-def Suc-1 length-Cons list.size(3) option.expand)

{
assume change-on-0 b k
then show eval r-next [arg] ↓= prod-encode (e-snoc b 0 , e-length b)

using ∗ r-sigma-neq by simp
next

assume change-on-1 b k
then show eval r-next [arg] ↓= prod-encode (e-snoc (e-update b k 1) 0 , e-length b)

using ∗ r-sigma-neq by simp
next

assume change-on-neither b k
then show eval r-next [arg] ↓= prod-encode (e-snoc b 0 , k)

using ∗ r-sigma-neq by simp
}

qed

lemma r-next-total: total r-next
proof (rule totalI1)

show recfn 1 r-next
using r-next-recfn by simp

show eval r-next [x] ↓ for x
proof −

obtain b k where x = prod-encode (b, k)
using prod-encode-pdec ′[of x] by metis

then show ?thesis using r-next by fast
qed

qed

The next function computes the state of the process after any number of iterations.
definition r-state ≡

Pr 1
(Cn 1 r-prod-encode [Cn 1 r-snoc [Cn 1 r-singleton-encode [Id 1 0], Z], r-const 1])
(Cn 3 r-next [Id 3 1])

lemma r-state-recfn: recfn 2 r-state
unfolding r-state-def using r-next-recfn by simp

lemma r-state-at-0 : eval r-state [0 , i] ↓= prod-encode (list-encode [i, 0], 1)
proof −

let ?f = Cn 1 r-prod-encode [Cn 1 r-snoc [Cn 1 r-singleton-encode [Id 1 0], Z], r-const 1]
have eval r-state [0 , i] = eval ?f [i]

unfolding r-state-def using r-next-recfn by simp
also have ... ↓= prod-encode (list-encode [i, 0], 1)

by (simp add: list-decode-singleton)
finally show ?thesis .

qed

lemma r-state-total: total r-state
unfolding r-state-def
using r-next-recfn totalE [OF r-next-total r-next-recfn] totalI3 [of Cn 3 r-next [Id 3 1]]
by (intro Pr-total) auto

We call the components of a state (b, k) the block b and the gap k.
definition block :: nat ⇒ nat ⇒ nat where

197

block i t ≡ pdec1 (the (eval r-state [t, i]))

definition gap :: nat ⇒ nat ⇒ nat where
gap i t ≡ pdec2 (the (eval r-state [t, i]))

lemma state-at-0 :
block i 0 = list-encode [i, 0]
gap i 0 = 1
unfolding block-def gap-def r-state-at-0 by simp-all

Some lemmas describing the behavior of blocks and gaps in one iteration of the process:
lemma state-Suc:

assumes b = block i t and k = gap i t
shows block i (Suc t) = pdec1 (the (eval r-next [prod-encode (b, k)]))

and gap i (Suc t) = pdec2 (the (eval r-next [prod-encode (b, k)]))
proof −

have eval r-state [Suc t, i] =
eval (Cn 3 r-next [Id 3 1]) [t, the (eval r-state [t, i]), i]

using r-state-recfn r-next-recfn totalE [OF r-state-total r-state-recfn, of [t, i]]
by (simp add: r-state-def)

also have ... = eval r-next [the (eval r-state [t, i])]
using r-next-recfn by simp

also have ... = eval r-next [prod-encode (b, k)]
using assms block-def gap-def by simp

finally have eval r-state [Suc t, i] = eval r-next [prod-encode (b, k)] .
then show

block i (Suc t) = pdec1 (the (eval r-next [prod-encode (b, k)]))
gap i (Suc t) = pdec2 (the (eval r-next [prod-encode (b, k)]))
by (simp add: block-def , simp add: gap-def)

qed

lemma gap-Suc:
assumes b = block i t and k = gap i t
shows change-on-0 b k =⇒ gap i (Suc t) = e-length b

and change-on-1 b k =⇒ gap i (Suc t) = e-length b
and change-on-neither b k=⇒ gap i (Suc t) = k

using assms r-next state-Suc by simp-all

lemma block-Suc:
assumes b = block i t and k = gap i t
shows change-on-0 b k =⇒ block i (Suc t) = e-snoc b 0

and change-on-1 b k =⇒ block i (Suc t) = e-snoc (e-update b k 1) 0
and change-on-neither b k=⇒ block i (Suc t) = e-snoc b 0

using assms r-next state-Suc by simp-all

Non-gap positions in the block remain unchanged after an iteration.
lemma block-stable:

assumes j < e-length (block i t) and j 6= gap i t
shows e-nth (block i t) j = e-nth (block i (Suc t)) j

proof −
from change-conditions[of block i t gap i t] show ?thesis

using assms block-Suc gap-Suc
by (cases, (simp-all add: nth-append))

qed

Next are some properties of block and gap.

198

lemma gap-in-block: gap i t < e-length (block i t)
proof (induction t)

case 0
then show ?case by (simp add: state-at-0)

next
case (Suc t)
with change-conditions[of block i t gap i t] show ?case
proof (cases)

case on-0
then show ?thesis by (simp add: block-Suc(1) gap-Suc(1))

next
case on-1
then show ?thesis by (simp add: block-Suc(2) gap-Suc(2))

next
case neither
then show ?thesis using Suc.IH block-Suc(3) gap-Suc(3) by force

qed
qed

lemma length-block: e-length (block i t) = Suc (Suc t)
proof (induction t)

case 0
then show ?case by (simp add: state-at-0)

next
case (Suc t)
with change-conditions[of block i t gap i t] show ?case

by (cases, simp-all add: block-Suc gap-Suc)
qed

lemma gap-gr0 : gap i t > 0
proof (induction t)

case 0
then show ?case by (simp add: state-at-0)

next
case (Suc t)
with change-conditions[of block i t gap i t] show ?case

using length-block by (cases, simp-all add: block-Suc gap-Suc)
qed

lemma hd-block: e-hd (block i t) = i
proof (induction t)

case 0
then show ?case by (simp add: state-at-0)

next
case (Suc t)
from change-conditions[of block i t gap i t] show ?case
proof (cases)

case on-0
then show ?thesis

using Suc block-Suc(1) length-block by (metis e-hd-snoc gap-Suc(1) gap-gr0)
next

case on-1
let ?b = block i t and ?k = gap i t
have ?k > 0

using gap-gr0 Suc by simp
then have e-nth (e-update ?b ?k 1) 0 = e-nth ?b 0

199

by simp
then have ∗: e-hd (e-update ?b ?k 1) = e-hd ?b

using e-hd-nth0 gap-Suc(2)[of - i t] gap-gr0 on-1 by (metis e-length-update)
from on-1 have block i (Suc t) = e-snoc (e-update ?b ?k 1) 0

by (simp add: block-Suc(2))
then show ?thesis

using e-hd-0 e-hd-snoc Suc length-block ‹?k > 0 › ∗
by (metis e-length-update gap-Suc(2) gap-gr0 on-1)

next
case neither
then show ?thesis

by (metis Suc block-stable e-hd-nth0 gap-gr0 length-block not-gr0 zero-less-Suc)
qed

qed

Formally, a block always ends in zero, even if it ends in a gap.
lemma last-block: e-nth (block i t) (gap i t) = 0
proof (induction t)

case 0
then show ?case by (simp add: state-at-0)

next
case (Suc t)
from change-conditions[of block i t gap i t] show ?case
proof cases

case on-0
then show ?thesis using Suc by (simp add: block-Suc(1) gap-Suc(1))

next
case on-1
then show ?thesis using Suc by (simp add: block-Suc(2) gap-Suc(2) nth-append)

next
case neither
then have

block i (Suc t) = e-snoc (block i t) 0
gap i (Suc t) = gap i t
by (simp-all add: gap-Suc(3) block-Suc(3))

then show ?thesis
using Suc gap-in-block by (simp add: nth-append)

qed
qed

lemma gap-le-Suc: gap i t ≤ gap i (Suc t)
using change-conditions[of block i t gap i t]

gap-Suc gap-in-block less-imp-le[of gap i t e-length (block i t)]
by (cases) simp-all

lemma gap-monotone:
assumes t1 ≤ t2
shows gap i t1 ≤ gap i t2

proof −
have gap i t1 ≤ gap i (t1 + j) for j
proof (induction j)

case 0
then show ?case by simp

next
case (Suc j)
then show ?case using gap-le-Suc dual-order .trans by fastforce

200

qed
then show ?thesis using assms le-Suc-ex by blast

qed

We need some lemmas relating the shape of the next state to the hypothesis change
conditions in Steps 1, 2, and 3.
lemma state-change-on-neither :

assumes gap i (Suc t) = gap i t
shows change-on-neither (block i t) (gap i t)

and block i (Suc t) = e-snoc (block i t) 0
proof −

let ?b = block i t and ?k = gap i t
have ?k < e-length ?b

using gap-in-block by simp
from change-conditions[of ?b ?k] show change-on-neither (block i t) (gap i t)
proof (cases)

case on-0
then show ?thesis

using ‹?k < e-length ?b› assms gap-Suc(1) by auto
next

case on-1
then show ?thesis using assms gap-Suc(2) by auto

next
case neither
then show ?thesis by simp

qed
then show block i (Suc t) = e-snoc (block i t) 0

using block-Suc(3) by simp
qed

lemma state-change-on-either :
assumes gap i (Suc t) 6= gap i t
shows ¬ change-on-neither (block i t) (gap i t)

and gap i (Suc t) = e-length (block i t)
proof −

let ?b = block i t and ?k = gap i t
show ¬ change-on-neither (block i t) (gap i t)
proof

assume change-on-neither (block i t) (gap i t)
then have gap i (Suc t) = ?k

by (simp add: gap-Suc(3))
with assms show False by simp

qed
then show gap i (Suc t) = e-length (block i t)

using gap-Suc(1) gap-Suc(2) by blast
qed

Next up is the definition of τ . In every iteration the process determines τi(x) for some
x either by appending 0 to the current block b, or by filling the current gap k. In the
former case, the value is determined for x = |b|, in the latter for x = k.

For i and x the function r-dettime computes in which iteration the process for i deter-
mines the value τi(x). This is the first iteration in which the block is long enough to
contain position x and in which x is not the gap. If τi(x) is never determined, because
Case 2 is reached with k = x, then r-dettime diverges.

201

abbreviation determined :: nat ⇒ nat ⇒ bool where
determined i x ≡ ∃ t. x < e-length (block i t) ∧ x 6= gap i t

lemma determined-0 : determined i 0
using gap-gr0 [of i 0] gap-in-block[of i 0] by force

definition r-dettime ≡
Mn 2
(Cn 3 r-and
[Cn 3 r-less
[Id 3 2 , Cn 3 r-length [Cn 3 r-pdec1 [Cn 3 r-state [Id 3 0 , Id 3 1]]]],

Cn 3 r-neq
[Id 3 2 , Cn 3 r-pdec2 [Cn 3 r-state [Id 3 0 , Id 3 1]]]])

lemma r-dettime-recfn: recfn 2 r-dettime
unfolding r-dettime-def using r-state-recfn by simp

abbreviation dettime :: partial2 where
dettime i x ≡ eval r-dettime [i, x]

lemma r-dettime:
shows determined i x =⇒ dettime i x ↓= (LEAST t. x < e-length (block i t) ∧ x 6= gap i t)

and ¬ determined i x =⇒ dettime i x ↑
proof −

define f where f =
(Cn 3 r-and
[Cn 3 r-less
[Id 3 2 , Cn 3 r-length [Cn 3 r-pdec1 [Cn 3 r-state [Id 3 0 , Id 3 1]]]],

Cn 3 r-neq
[Id 3 2 , Cn 3 r-pdec2 [Cn 3 r-state [Id 3 0 , Id 3 1]]]])

then have r-dettime = Mn 2 f
unfolding f-def r-dettime-def by simp

have recfn 3 f
unfolding f-def using r-state-recfn by simp

then have total f
unfolding f-def using Cn-total r-state-total Mn-free-imp-total by simp

have f : eval f [t, i, x] ↓= (if x < e-length (block i t) ∧ x 6= gap i t then 0 else 1) for t
proof −

let ?b = Cn 3 r-pdec1 [Cn 3 r-state [Id 3 0 , Id 3 1]]
let ?k = Cn 3 r-pdec2 [Cn 3 r-state [Id 3 0 , Id 3 1]]
have eval ?b [t, i, x] ↓= pdec1 (the (eval r-state [t, i]))

using r-state-recfn r-state-total by simp
then have b: eval ?b [t, i, x] ↓= block i t

using block-def by simp
have eval ?k [t, i, x] ↓= pdec2 (the (eval r-state [t, i]))

using r-state-recfn r-state-total by simp
then have k: eval ?k [t, i, x] ↓= gap i t

using gap-def by simp
have eval

(Cn 3 r-neq [Id 3 2 , Cn 3 r-pdec2 [Cn 3 r-state [Id 3 0 , Id 3 1]]])
[t, i, x] ↓=

(if x 6= gap i t then 0 else 1)
using b k r-state-recfn r-state-total by simp

moreover have eval
(Cn 3 r-less
[Id 3 2 , Cn 3 r-length [Cn 3 r-pdec1 [Cn 3 r-state [Id 3 0 , Id 3 1]]]])

202

[t, i, x] ↓=
(if x < e-length (block i t) then 0 else 1)

using b k r-state-recfn r-state-total by simp
ultimately show ?thesis

unfolding f-def using b k r-state-recfn r-state-total by simp
qed
{

assume determined i x
with f have ∃ t. eval f [t, i, x] ↓= 0 by simp
then have dettime i x ↓= (LEAST t. eval f [t, i, x] ↓= 0)

using ‹total f › ‹r-dettime = Mn 2 f › r-dettime-recfn ‹recfn 3 f ›
eval-Mn-total[of 2 f [i, x]]

by simp
then show dettime i x ↓= (LEAST t. x < e-length (block i t) ∧ x 6= gap i t)

using f by simp
next

assume ¬ determined i x
with f have ¬ (∃ t. eval f [t, i, x] ↓= 0) by simp
then have dettime i x ↑

using ‹total f › ‹r-dettime = Mn 2 f › r-dettime-recfn ‹recfn 3 f ›
eval-Mn-total[of 2 f [i, x]]

by simp
with f show dettime i x ↑ by simp

}
qed

lemma r-dettimeI :
assumes x < e-length (block i t) ∧ x 6= gap i t

and
∧

T . x < e-length (block i T) ∧ x 6= gap i T =⇒ t ≤ T
shows dettime i x ↓= t

proof −
let ?P = λT . x < e-length (block i T) ∧ x 6= gap i T
have determined i x

using assms(1) by auto
moreover have Least ?P = t

using assms Least-equality[of ?P t] by simp
ultimately show ?thesis using r-dettime by simp

qed

lemma r-dettime-0 : dettime i 0 ↓= 0
using r-dettimeI [of - i 0] determined-0 gap-gr0 [of i 0] gap-in-block[of i 0]
by fastforce

Computing the value of τi(x) works by running the process r-state for dettime i x itera-
tions and taking the value at index x of the resulting block.
definition r-tau ≡ Cn 2 r-nth [Cn 2 r-pdec1 [Cn 2 r-state [r-dettime, Id 2 0]], Id 2 1]

lemma r-tau-recfn: recfn 2 r-tau
unfolding r-tau-def using r-dettime-recfn r-state-recfn by simp

abbreviation tau :: partial2 (‹τ›) where
τ i x ≡ eval r-tau [i, x]

lemma tau-in-P2 : τ ∈ P2

using r-tau-recfn by auto

203

lemma tau-diverg:
assumes ¬ determined i x
shows τ i x ↑
unfolding r-tau-def using assms r-dettime r-dettime-recfn r-state-recfn by simp

lemma tau-converg:
assumes determined i x
shows τ i x ↓= e-nth (block i (the (dettime i x))) x

proof −
from assms obtain t where t: dettime i x ↓= t

using r-dettime(1) by blast
then have eval (Cn 2 r-state [r-dettime, Id 2 0]) [i, x] = eval r-state [t, i]

using r-state-recfn r-dettime-recfn by simp
moreover have eval r-state [t, i] ↓

using r-state-total r-state-recfn by simp
ultimately have eval (Cn 2 r-pdec1 [Cn 2 r-state [r-dettime, Id 2 0]]) [i, x] =

eval r-pdec1 [the (eval r-state [t, i])]
using r-state-recfn r-dettime-recfn by simp

then show ?thesis
unfolding r-tau-def using r-state-recfn r-dettime-recfn t block-def by simp

qed

lemma tau-converg ′:
assumes dettime i x ↓= t
shows τ i x ↓= e-nth (block i t) x
using assms tau-converg[of x i] r-dettime(2)[of x i] by fastforce

lemma tau-at-0 : τ i 0 ↓= i
proof −

have τ i 0 ↓= e-nth (block i 0) 0
using tau-converg ′[OF r-dettime-0] by simp

then show ?thesis using block-def by (simp add: r-state-at-0)
qed

lemma state-unchanged:
assumes gap i t − 1 ≤ y and y ≤ t
shows gap i t = gap i y

proof −
have gap i t = gap i (gap i t − 1)
proof (induction t)

case 0
then show ?case by (simp add: gap-def r-state-at-0)

next
case (Suc t)
show ?case
proof (cases gap i (Suc t) = t + 2)

case True
then show ?thesis by simp

next
case False
then show ?thesis

using Suc state-change-on-either(2) length-block by force
qed

qed
moreover have gap i (gap i t − 1) ≤ gap i y

using assms(1) gap-monotone by simp

204

moreover have gap i y ≤ gap i t
using assms(2) gap-monotone by simp

ultimately show ?thesis by simp
qed

The values of the non-gap indices x of every block created in the diagonalization process
equal τi(x).
lemma tau-eq-state:

assumes j < e-length (block i t) and j 6= gap i t
shows τ i j ↓= e-nth (block i t) j
using assms

proof (induction t)
case 0
then have j = 0

using gap-gr0 [of i 0] gap-in-block[of i 0] length-block[of i 0] by simp
then have τ (e-hd (block i t)) j ↓= e-nth (block i (the (dettime i 0))) 0

using determined-0 tau-converg hd-block by simp
then have τ (e-hd (block i t)) j ↓= e-nth (block i 0) 0

using r-dettime-0 by simp
then show ?case using ‹j = 0 › r-dettime-0 tau-converg ′ by simp

next
case (Suc t)
let ?b = block i t
let ?bb = block i (Suc t)
let ?k = gap i t
let ?kk = gap i (Suc t)
show ?case
proof (cases ?kk = ?k)

case kk-eq-k: True
then have bb-b0 : ?bb = e-snoc ?b 0

using state-change-on-neither by simp
show τ i j ↓= e-nth ?bb j
proof (cases j < e-length ?b)

case True
then have e-nth ?bb j = e-nth ?b j

using bb-b0 by (simp add: nth-append)
moreover have j 6= ?k

using Suc kk-eq-k by simp
ultimately show ?thesis using Suc True by simp

next
case False
then have j: j = e-length ?b

using Suc.prems(1) length-block by auto
then have e-nth ?bb j = 0

using bb-b0 by simp
have dettime i j ↓= Suc t
proof (rule r-dettimeI)

show j < e-length ?bb ∧ j 6= ?kk
using Suc.prems(1 ,2) by linarith

show
∧

T . j < e-length (block i T) ∧ j 6= gap i T =⇒ Suc t ≤ T
using length-block j by simp

qed
with tau-converg ′ show ?thesis by simp

qed
next

case False

205

then have kk-lenb: ?kk = e-length ?b
using state-change-on-either by simp

then show ?thesis
proof (cases j = ?k)

case j-eq-k: True
have dettime i j ↓= Suc t
proof (rule r-dettimeI)

show j < e-length ?bb ∧ j 6= ?kk
using Suc.prems(1 ,2) by simp

show Suc t ≤ T if j < e-length (block i T) ∧ j 6= gap i T for T
proof (rule ccontr)

assume ¬ (Suc t ≤ T)
then have T < Suc t by simp
then show False
proof (cases T < ?k − 1)

case True
then have e-length (block i T) = T + 2

using length-block by simp
then have e-length (block i T) < ?k + 1

using True by simp
then have e-length (block i T) ≤ ?k by simp
then have e-length (block i T) ≤ j

using j-eq-k by simp
then show False

using that by simp
next

case False
then have ?k − 1 ≤ T and T ≤ t

using ‹T < Suc t› by simp-all
with state-unchanged have gap i t = gap i T by blast
then show False

using j-eq-k that by simp
qed

qed
qed
then show ?thesis using tau-converg ′ by simp

next
case False
then have j < e-length ?b

using kk-lenb Suc.prems(1 ,2) length-block by auto
then show ?thesis using Suc False block-stable by fastforce

qed
qed

qed

lemma tau-eq-state ′:
assumes j < t + 2 and j 6= gap i t
shows τ i j ↓= e-nth (block i t) j
using assms tau-eq-state length-block by simp

We now consider the two cases described in the proof sketch. In Case 2 there is a gap
that never gets filled, or equivalently there is a rightmost gap.
abbreviation case-two i ≡ (∃ t. ∀T . gap i T ≤ gap i t)

abbreviation case-one i ≡ ¬ case-two i

206

Another characterization of Case 2 is that from some iteration on only change-on-neither
holds.
lemma case-two-iff-forever-neither :

case-two i ←→ (∃ t. ∀T≥t. change-on-neither (block i T) (gap i T))
proof

assume ∃ t. ∀T≥t. change-on-neither (block i T) (gap i T)
then obtain t where t: ∀T≥t. change-on-neither (block i T) (gap i T)

by auto
have (gap i T) ≤ (gap i t) for T
proof (cases T ≤ t)

case True
then show ?thesis using gap-monotone by simp

next
case False
then show ?thesis
proof (induction T)

case 0
then show ?case by simp

next
case (Suc T)
with t have change-on-neither ((block i T)) ((gap i T))

by simp
then show ?case

using Suc.IH state-change-on-either(1)[of i T] gap-monotone[of T t i]
by metis

qed
qed
then show ∃ t. ∀T . gap i T ≤ gap i t

by auto
next

assume ∃ t. ∀T . gap i T ≤ gap i t
then obtain t where t: ∀T . gap i T ≤ gap i t

by auto
have change-on-neither (block i T) (gap i T) if T≥t for T
proof −

have T : (gap i T) ≥ (gap i t)
using gap-monotone that by simp

show ?thesis
proof (rule ccontr)

assume ¬ change-on-neither (block i T) (gap i T)
then have change-on-0 (block i T) (gap i T) ∨ change-on-1 (block i T) (gap i T)

by simp
then have gap i (Suc T) > gap i T

using gap-le-Suc[of i] state-change-on-either(2)[of i] state-change-on-neither(1)[of i]
dual-order .strict-iff-order

by blast
with T have gap i (Suc T) > gap i t by simp
with t show False

using not-le by auto
qed

qed
then show ∃ t. ∀T≥t. change-on-neither (block i T) (gap i T)

by auto
qed

In Case 1, τi is total.

207

lemma case-one-tau-total:
assumes case-one i
shows τ i x ↓

proof (cases x = gap i x)
case True
from assms have ∀ t. ∃T . gap i T > gap i t

using le-less-linear gap-def [of i x] by blast
then obtain T where T : gap i T > gap i x

by auto
then have T > x

using gap-monotone leD le-less-linear by blast
then have x < T + 2 by simp
moreover from T True have x 6= gap i T by simp
ultimately show ?thesis using tau-eq-state ′ by simp

next
case False
moreover have x < x + 2 by simp
ultimately show ?thesis using tau-eq-state ′ by blast

qed

In Case 2, τi is undefined only at the gap that never gets filled.
lemma case-two-tau-not-quite-total:

assumes ∀T . gap i T ≤ gap i t
shows τ i (gap i t) ↑

and x 6= gap i t =⇒ τ i x ↓
proof −

let ?k = gap i t
have ¬ determined i ?k
proof

assume determined i ?k
then obtain T where T : ?k < e-length (block i T) ∧ ?k 6= gap i T

by auto
with assms have snd-le: gap i T < ?k

by (simp add: dual-order .strict-iff-order)
then have T < t

using gap-monotone by (metis leD le-less-linear)
from T length-block have ?k < T + 2 by simp
moreover have ?k 6= T + 1

using T state-change-on-either(2) ‹T < t› state-unchanged
by (metis Suc-eq-plus1 Suc-leI add-diff-cancel-right ′ le-add1 nat-neq-iff)

ultimately have ?k ≤ T by simp
then have gap i T = gap i ?k

using state-unchanged[of i T ?k] ‹?k < T + 2 › snd-le by simp
then show False

by (metis diff-le-self state-unchanged leD nat-le-linear gap-monotone snd-le)
qed
with tau-diverg show τ i ?k ↑ by simp

assume x 6= ?k
show τ i x ↓
proof (cases x < t + 2)

case True
with ‹x 6= ?k› tau-eq-state ′ show ?thesis by simp

next
case False
then have gap i x = ?k

208

using assms by (simp add: dual-order .antisym gap-monotone)
with ‹x 6= ?k› have x 6= gap i x by simp
then show ?thesis using tau-eq-state ′[of x x] by simp

qed
qed

lemma case-two-tau-almost-total:
assumes ∃ t. ∀T . gap i T ≤ gap i t (is ∃ t. ?P t)
shows τ i (gap i (Least ?P)) ↑

and x 6= gap i (Least ?P) =⇒ τ i x ↓
proof −

from assms have ?P (Least ?P)
using LeastI-ex[of ?P] by simp

then show τ i (gap i (Least ?P)) ↑ and x 6= gap i (Least ?P) =⇒ τ i x ↓
using case-two-tau-not-quite-total by simp-all

qed

Some more properties of τ .
lemma init-tau-gap: (τ i) . (gap i t − 1) = e-take (gap i t) (block i t)
proof (intro initI ′)

show 1 : e-length (e-take (gap i t) (block i t)) = Suc (gap i t − 1)
proof −

have gap i t > 0
using gap-gr0 by simp

moreover have gap i t < e-length (block i t)
using gap-in-block by simp

ultimately have e-length (e-take (gap i t) (block i t)) = gap i t
by simp

then show ?thesis using gap-gr0 by simp
qed
show τ i x ↓= e-nth (e-take (gap i t) (block i t)) x if x < Suc (gap i t − 1) for x
proof −

have x-le: x < gap i t
using that gap-gr0 by simp

then have x < e-length (block i t)
using gap-in-block less-trans by blast

then have ∗: τ i x ↓= e-nth (block i t) x
using x-le tau-eq-state by auto

have x < e-length (e-take (gap i t) (block i t))
using x-le 1 by simp

then have e-nth (block i t) x = e-nth (e-take (gap i t) (block i t)) x
using x-le by simp

then show ?thesis using ∗ by simp
qed

qed

lemma change-on-0-init-tau:
assumes change-on-0 (block i t) (gap i t)
shows (τ i) . (t + 1) = block i t

proof (intro initI ′)
let ?b = block i t and ?k = gap i t
show e-length (block i t) = Suc (t + 1)

using length-block by simp
show (τ i) x ↓= e-nth (block i t) x if x < Suc (t + 1) for x
proof (cases x = ?k)

case True

209

have gap i (Suc t) = e-length ?b and b: block i (Suc t) = e-snoc ?b 0
using gap-Suc(1) block-Suc(1) assms by simp-all

then have x < e-length (block i (Suc t)) x 6= gap i (Suc t)
using that length-block by simp-all

then have τ i x ↓= e-nth (block i (Suc t)) x
using tau-eq-state by simp

then show ?thesis using that assms b by (simp add: nth-append)
next

case False
then show ?thesis using that assms tau-eq-state ′ by simp

qed
qed

lemma change-on-0-hyp-change:
assumes change-on-0 (block i t) (gap i t)
shows σ i ((τ i) . (t + 1)) 6= σ i ((τ i) . (gap i t − 1))
using assms hd-block init-tau-gap change-on-0-init-tau by simp

lemma change-on-1-init-tau:
assumes change-on-1 (block i t) (gap i t)
shows (τ i) . (t + 1) = e-update (block i t) (gap i t) 1

proof (intro initI ′)
let ?b = block i t and ?k = gap i t
show e-length (e-update ?b ?k 1) = Suc (t + 1)

using length-block by simp
show (τ i) x ↓= e-nth (e-update ?b ?k 1) x if x < Suc (t + 1) for x
proof (cases x = ?k)

case True
have gap i (Suc t) = e-length ?b and b: block i (Suc t) = e-snoc (e-update ?b ?k 1) 0

using gap-Suc(2) block-Suc(2) assms by simp-all
then have x < e-length (block i (Suc t)) x 6= gap i (Suc t)

using that length-block by simp-all
then have τ i x ↓= e-nth (block i (Suc t)) x

using tau-eq-state by simp
then show ?thesis using that assms b nth-append by (simp add: nth-append)

next
case False
then show ?thesis using that assms tau-eq-state ′ by simp

qed
qed

lemma change-on-1-hyp-change:
assumes change-on-1 (block i t) (gap i t)
shows σ i ((τ i) . (t + 1)) 6= σ i ((τ i) . (gap i t − 1))
using assms hd-block init-tau-gap change-on-1-init-tau by simp

lemma change-on-either-hyp-change:
assumes ¬ change-on-neither (block i t) (gap i t)
shows σ i ((τ i) . (t + 1)) 6= σ i ((τ i) . (gap i t − 1))
using assms change-on-0-hyp-change change-on-1-hyp-change by auto

lemma filled-gap-0-init-tau:
assumes f 0 = (τ i)((gap i t):=Some 0)
shows f 0 . (t + 1) = block i t

proof (intro initI ′)
show len: e-length (block i t) = Suc (t + 1)

210

using assms length-block by auto
show f 0 x ↓= e-nth (block i t) x if x < Suc (t + 1) for x
proof (cases x = gap i t)

case True
then show ?thesis using assms last-block by auto

next
case False
then show ?thesis using assms len tau-eq-state that by auto

qed
qed

lemma filled-gap-1-init-tau:
assumes f 1 = (τ i)((gap i t):=Some 1)
shows f 1 . (t + 1) = e-update (block i t) (gap i t) 1

proof (intro initI ′)
show len: e-length (e-update (block i t) (gap i t) 1) = Suc (t + 1)

using e-length-update length-block by simp
show f 1 x ↓= e-nth (e-update (block i t) (gap i t) 1) x if x < Suc (t + 1) for x
proof (cases x = gap i t)

case True
moreover have gap i t < e-length (block i t)

using gap-in-block by simp
ultimately show ?thesis using assms by simp

next
case False
then show ?thesis using assms len tau-eq-state that by auto

qed
qed

2.9.3 The separating class

Next we define the sets Vi from the introductory proof sketch (page 193).
definition V-bclim :: nat ⇒ partial1 set where

V-bclim i ≡
if case-two i
then let k = gap i (LEAST t. ∀T . gap i T ≤ gap i t)

in {(τ i)(k:=Some 0), (τ i)(k:=Some 1)}
else {τ i}

lemma V-subseteq-R1 : V-bclim i ⊆ R
proof (cases case-two i)

case True
define k where k = gap i (LEAST t. ∀T . gap i T ≤ gap i t)
have τ i ∈ P

using tau-in-P2 P2-proj-P1 by auto
then have (τ i)(k:=Some 0) ∈ P and (τ i)(k:=Some 1) ∈ P

using P1-update-P1 by simp-all
moreover have total1 ((τ i)(k:=Some v)) for v

using case-two-tau-almost-total(2)[OF True] k-def total1-def by simp
ultimately have (τ i)(k:=Some 0) ∈ R and (τ i)(k:=Some 1) ∈ R

using P1-total-imp-R1 by simp-all
moreover have V-bclim i = {(τ i)(k:=Some 0), (τ i)(k:=Some 1)}

using True V-bclim-def k-def by (simp add: Let-def)
ultimately show ?thesis by simp

next

211

case False
have V-bclim i = {τ i}

unfolding V-bclim-def by (simp add: False)
moreover have τ i ∈ R

using total1I case-one-tau-total[OF False] tau-in-P2 P2-proj-P1 [of τ] P1-total-imp-R1
by simp

ultimately show ?thesis by simp
qed

lemma case-one-imp-gap-unbounded:
assumes case-one i
shows ∃ t. gap i t − 1 > n

proof (induction n)
case 0
then show ?case

using assms gap-gr0 [of i] state-at-0 (2)[of i] by (metis diff-is-0-eq gr-zeroI)
next

case (Suc n)
then obtain t where t: gap i t − 1 > n

by auto
moreover from assms have ∀ t. ∃T . gap i T > gap i t

using leI by blast
ultimately obtain T where gap i T > gap i t

by auto
then have gap i T − 1 > gap i t − 1

using gap-gr0 [of i] by (simp add: Suc-le-eq diff-less-mono)
with t have gap i T − 1 > Suc n by simp
then show ?case by auto

qed

lemma case-one-imp-not-learn-lim-V :
assumes case-one i
shows ¬ learn-lim ϕ (V-bclim i) (σ i)

proof −
have V-bclim: V-bclim i = {τ i}

using assms V-bclim-def by (auto simp add: Let-def)
have ∃m1>n. ∃m2>n. (σ i) ((τ i) . m1) 6= (σ i) ((τ i) . m2) for n
proof −

obtain t where t: gap i t − 1 > n
using case-one-imp-gap-unbounded[OF assms] by auto

moreover have ∀ t. ∃T≥t. ¬ change-on-neither (block i T) (gap i T)
using assms case-two-iff-forever-neither by blast

ultimately obtain T where T : T ≥ t ¬ change-on-neither (block i T) (gap i T)
by auto

then have (σ i) ((τ i) . (T + 1)) 6= (σ i) ((τ i) . (gap i T − 1))
using change-on-either-hyp-change by simp

moreover have gap i T − 1 > n
using t T (1) gap-monotone by (simp add: diff-le-mono less-le-trans)

moreover have T + 1 > n
proof −

have gap i T − 1 ≤ T
using gap-in-block length-block by (simp add: le-diff-conv less-Suc-eq-le)

then show ?thesis using ‹gap i T − 1 > n› by simp
qed
ultimately show ?thesis by auto

qed

212

with infinite-hyp-changes-not-Lim V-bclim show ?thesis by simp
qed

lemma case-two-imp-not-learn-lim-V :
assumes case-two i
shows ¬ learn-lim ϕ (V-bclim i) (σ i)

proof −
let ?P = λt. ∀T . (gap i T) ≤ (gap i t)
let ?t = LEAST t. ?P t
let ?k = gap i ?t
let ?b = e-take ?k (block i ?t)
have t: ∀T . gap i T ≤ gap i ?t

using assms LeastI-ex[of ?P] by simp
then have neither : ∀T≥?t. change-on-neither (block i T) (gap i T)

using gap-le-Suc gap-monotone state-change-on-neither(1)
by (metis (no-types, lifting) antisym)

have gap-T : ∀T≥?t. gap i T = ?k
using t gap-monotone antisym-conv by blast

define f 0 where f 0 = (τ i)(?k:=Some 0)
define f 1 where f 1 = (τ i)(?k:=Some 1)
show ?thesis
proof (rule same-hyp-for-two-not-Lim)

show f 0 ∈ V-bclim i and f 1 ∈ V-bclim i
using assms V-bclim-def f 0-def f 1-def by (simp-all add: Let-def)

show f 0 6= f 1 using f 0-def f 1-def by (meson map-upd-eqD1 zero-neq-one)
show ∀n≥Suc ?t. σ i (f 0 . n) = σ i ?b
proof −

have σ i (block i T) = σ i (e-take ?k (block i T)) if T ≥ ?t for T
using that gap-T neither hd-block by metis

then have σ i (block i T) = σ i ?b if T ≥ ?t for T
by (metis (no-types, lifting) init-tau-gap gap-T that)

then have σ i (f 0 . (T + 1)) = σ i ?b if T ≥ ?t for T
using filled-gap-0-init-tau[of f 0 i T] f 0-def gap-T that
by (metis (no-types, lifting))

then have σ i (f 0 . T) = σ i ?b if T ≥ Suc ?t for T
using that by (metis (no-types, lifting) Suc-eq-plus1 Suc-le-D Suc-le-mono)

then show ?thesis by simp
qed
show ∀n≥Suc ?t. σ i (f 1 . n) = σ i ?b
proof −

have σ i (e-update (block i T) ?k 1) = σ i (e-take ?k (block i T)) if T ≥ ?t for T
using neither by (metis (no-types, lifting) hd-block gap-T that)

then have σ i (e-update (block i T) ?k 1) = σ i ?b if T ≥ ?t for T
using that init-tau-gap[of i] gap-T by (metis (no-types, lifting))

then have σ i (f 1 . (T + 1)) = σ i ?b if T ≥ ?t for T
using filled-gap-1-init-tau[of f 1 i T] f 1-def gap-T that
by (metis (no-types, lifting))

then have σ i (f 1 . T) = σ i ?b if T ≥ Suc ?t for T
using that by (metis (no-types, lifting) Suc-eq-plus1 Suc-le-D Suc-le-mono)

then show ?thesis by simp
qed

qed
qed

corollary not-learn-lim-V : ¬ learn-lim ϕ (V-bclim i) (σ i)
using case-one-imp-not-learn-lim-V case-two-imp-not-learn-lim-V

213

by (cases case-two i) simp-all

Next we define the separating class.
definition V-BCLIM :: partial1 set (‹V BC−LIM›) where

V BC−LIM ≡
⋃

i. V-bclim i

lemma V-BCLIM-R1 : V BC−LIM ⊆ R
using V-BCLIM-def V-subseteq-R1 by auto

lemma V-BCLIM-not-in-Lim: V BC−LIM /∈ LIM
proof

assume V BC−LIM ∈ LIM
then obtain s where s: learn-lim ϕ V BC−LIM s

using learn-lim-wrt-goedel[OF goedel-numbering-phi] Lim-def by blast
moreover obtain i where ϕ i = s

using s learn-limE(1) phi-universal by blast
ultimately have learn-lim ϕ V BC−LIM (λx. eval r-sigma [i, x])

using learn-lim-sigma by simp
moreover have V-bclim i ⊆ V BC−LIM

using V-BCLIM-def by auto
ultimately have learn-lim ϕ (V-bclim i) (λx. eval r-sigma [i, x])

using learn-lim-closed-subseteq by simp
then show False

using not-learn-lim-V by simp
qed

2.9.4 The separating class is in BC

In order to show V BC−LIM ∈ BC we define a hypothesis space that for every function
τi and every list b of numbers contains a copy of τi with the first |b| values replaced by
b.
definition psitau :: partial2 (‹ψτ ›) where
ψτ b x ≡ (if x < e-length b then Some (e-nth b x) else τ (e-hd b) x)

lemma psitau-in-P2 : ψτ ∈ P2

proof −
define r where r ≡

Cn 2
(r-lifz r-nth (Cn 2 r-tau [Cn 2 r-hd [Id 2 0], Id 2 1]))
[Cn 2 r-less [Id 2 1 , Cn 2 r-length [Id 2 0]], Id 2 0 , Id 2 1]

then have recfn 2 r
using r-tau-recfn by simp

moreover have eval r [b, x] = ψτ b x for b x
proof −

let ?f = Cn 2 r-tau [Cn 2 r-hd [Id 2 0], Id 2 1]
have recfn 2 r-nth recfn 2 ?f

using r-tau-recfn by simp-all
then have eval (r-lifz r-nth ?f) [c, b, x] =

(if c = 0 then eval r-nth [b, x] else eval ?f [b, x]) for c
by simp

moreover have eval r-nth [b, x] ↓= e-nth b x
by simp

moreover have eval ?f [b, x] = τ (e-hd b) x
using r-tau-recfn by simp

ultimately have eval (r-lifz r-nth ?f) [c, b, x] =

214

(if c = 0 then Some (e-nth b x) else τ (e-hd b) x) for c
by simp

moreover have eval (Cn 2 r-less [Id 2 1 , Cn 2 r-length [Id 2 0]]) [b, x] ↓=
(if x < e-length b then 0 else 1)

by simp
ultimately show ?thesis

unfolding r-def psitau-def using r-tau-recfn by simp
qed
ultimately show ?thesis by auto

qed

lemma psitau-init:
ψτ (f . n) x = (if x < Suc n then Some (the (f x)) else τ (the (f 0)) x)

proof −
let ?e = f . n
have e-length ?e = Suc n by simp
moreover have x < Suc n =⇒ e-nth ?e x = the (f x) by simp
moreover have e-hd ?e = the (f 0)

using hd-init by simp
ultimately show ?thesis using psitau-def by simp

qed

The class V BC−LIM can be learned BC-style in the hypothesis space ψτ by the identity
function.
lemma learn-bc-V-BCLIM : learn-bc ψτ V BC−LIM Some
proof (rule learn-bcI)

show environment ψτ V BC−LIM Some
using identity-in-R1 V-BCLIM-R1 psitau-in-P2 by auto

show ∃n0. ∀n≥n0. ψ
τ (the (Some (f . n))) = f if f ∈ V BC−LIM for f

proof −
from that V-BCLIM-def obtain i where i: f ∈ V-bclim i

by auto
show ?thesis
proof (cases case-two i)

case True
let ?P = λt. ∀T . (gap i T) ≤ (gap i t)
let ?lmin = LEAST t. ?P t
define k where k ≡ gap i ?lmin
have V-bclim: V-bclim i = {(τ i)(k:=Some 0), (τ i)(k:=Some 1)}

using True V-bclim-def k-def by (simp add: Let-def)
moreover have 0 < k

using gap-gr0 [of i] k-def by simp
ultimately have f 0 ↓= i

using tau-at-0 [of i] i by auto
have ψτ (f . n) = f if n ≥ k for n
proof

fix x
show ψτ (f . n) x = f x
proof (cases x ≤ n)

case True
then show ?thesis

using R1-imp-total1 V-subseteq-R1 i psitau-init by fastforce
next

case False
then have ψτ (f . n) x = τ (the (f 0)) x

using psitau-init by simp

215

then have ψτ (f . n) x = τ i x
using ‹f 0 ↓= i› by simp

moreover have f x = τ i x
using False V-bclim i that by auto

ultimately show ?thesis by simp
qed

qed
then show ?thesis by auto

next
case False
then have V-bclim i = {τ i}

using V-bclim-def by (auto simp add: Let-def)
then have f : f = τ i

using i by simp
have ψτ (f . n) = f for n
proof

fix x
show ψτ (f . n) x = f x
proof (cases x ≤ n)

case True
then show ?thesis

using R1-imp-total1 V-BCLIM-R1 psitau-init that by auto
next

case False
then show ?thesis by (simp add: f psitau-init tau-at-0)

qed
qed
then show ?thesis by simp

qed
qed

qed

Finally, the main result of this section:
theorem Lim-subset-BC : LIM ⊂ BC

using learn-bc-V-BCLIM BC-def Lim-subseteq-BC V-BCLIM-not-in-Lim by auto

end

2.10 TOTAL is a proper subset of CONS
theory TOTAL-CONS

imports Lemma-R
CP-FIN-NUM
CONS-LIM

begin

We first show that TOTAL is a subset of CONS. Then we present a separating class.

2.10.1 TOTAL is a subset of CONS

A TOTAL strategy hypothesizes only total functions, for which the consistency with the
input prefix is decidable. A CONS strategy can thus run a TOTAL strategy and check
if its hypothesis is consistent. If so, it outputs this hypothesis, otherwise some arbitrary
consistent one. Since the TOTAL strategy converges to a correct hypothesis, which is
consistent, the CONS strategy will converge to the same hypothesis.

216

Without loss of generality we can assume that learning takes place with respect to our
Gödel numbering ϕ. So we need to decide consistency only for this numbering.
abbreviation r-consist-phi where

r-consist-phi ≡ r-consistent r-phi

lemma r-consist-phi-recfn [simp]: recfn 2 r-consist-phi
by simp

lemma r-consist-phi:
assumes ∀ k<e-length e. ϕ i k ↓
shows eval r-consist-phi [i, e] ↓=
(if ∀ k<e-length e. ϕ i k ↓= e-nth e k then 0 else 1)

proof −
have ∀ k<e-length e. eval r-phi [i, k] ↓

using assms phi-def by simp
moreover have recfn 2 r-phi by simp
ultimately have eval (r-consistent r-phi) [i, e] ↓=

(if ∀ k<e-length e. eval r-phi [i, k] ↓= e-nth e k then 0 else 1)
using r-consistent-converg assms by simp

then show ?thesis using phi-def by simp
qed

lemma r-consist-phi-init:
assumes f ∈ R and ϕ i ∈ R
shows eval r-consist-phi [i, f . n] ↓= (if ∀ k≤n. ϕ i k = f k then 0 else 1)
using assms r-consist-phi R1-imp-total1 total1E by (simp add: r-consist-phi)

lemma TOTAL-subseteq-CONS : TOTAL ⊆ CONS
proof

fix U assume U ∈ TOTAL
then have U ∈ TOTAL-wrt ϕ

using TOTAL-wrt-phi-eq-TOTAL by blast
then obtain t ′ where t ′: learn-total ϕ U t ′

using TOTAL-wrt-def by auto
then obtain t where t: recfn 1 t

∧
x. eval t [x] = t ′ x

using learn-totalE(1) P1E by blast
then have t-converg: eval t [f . n] ↓ if f ∈ U for f n

using t ′ learn-totalE(1) that by auto

define s where s ≡ Cn 1 r-ifz [Cn 1 r-consist-phi [t, Id 1 0], t, r-auxhyp]
then have recfn 1 s

using r-consist-phi-recfn r-auxhyp-prim t(1) by simp

have consist: eval r-consist-phi [the (eval t [f . n]), f . n] ↓=
(if ∀ k≤n. ϕ (the (eval t [f . n])) k = f k then 0 else 1)

if f ∈ U for f n
proof −

have eval r-consist-phi [the (eval t [f . n]), f . n] =
eval (Cn 1 r-consist-phi [t, Id 1 0]) [f . n]

using that t-converg t(1) by simp
also have ... ↓= (if ∀ k≤n. ϕ (the (eval t [f . n])) k = f k then 0 else 1)
proof −

from that have f ∈ R
using learn-totalE(1) t ′ by blast

moreover have ϕ (the (eval t [f . n])) ∈ R

217

using t ′ t learn-totalE t-converg that by simp
ultimately show ?thesis

using r-consist-phi-init t-converg t(1) that by simp
qed
finally show ?thesis .

qed

have s-eq-t: eval s [f . n] = eval t [f . n]
if ∀ k≤n. ϕ (the (eval t [f . n])) k = f k and f ∈ U for f n
using that consist s-def t r-auxhyp-prim prim-recfn-total
by simp

have s-eq-aux: eval s [f . n] = eval r-auxhyp [f . n]
if ¬ (∀ k≤n. ϕ (the (eval t [f . n])) k = f k) and f ∈ U for f n

proof −
from that have eval r-consist-phi [the (eval t [f . n]), f . n] ↓= 1

using consist by simp
moreover have t ′ (f . n) ↓ using t ′ learn-totalE(1) that(2) by blast
ultimately show ?thesis

using s-def t r-auxhyp-prim t ′ learn-totalE by simp
qed

have learn-cons ϕ U (λe. eval s [e])
proof (rule learn-consI)

have eval s [f . n] ↓ if f ∈ U for f n
using that t-converg[OF that, of n] s-eq-t[of n f] prim-recfn-total[of r-auxhyp 1]

r-auxhyp-prim s-eq-aux[OF - that, of n] totalE
by fastforce

then show environment ϕ U (λe. eval s [e])
using t ′ ‹recfn 1 s› learn-totalE(1) by blast

show ∃ i. ϕ i = f ∧ (∀∞n. eval s [f . n] ↓= i) if f ∈ U for f
proof −

from that t ′ t learn-totalE obtain i n0 where
i-n0 : ϕ i = f ∧ (∀n≥n0. eval t [f . n] ↓= i)
by metis

then have
∧

n. n ≥ n0 =⇒ ∀ k≤n. ϕ (the (eval t [f . n])) k = f k
by simp

with s-eq-t have
∧

n. n ≥ n0 =⇒ eval s [f . n] = eval t [f . n]
using that by simp

with i-n0 have
∧

n. n ≥ n0 =⇒ eval s [f . n] ↓= i
by auto

with i-n0 show ?thesis by auto
qed
show ∀ k≤n. ϕ (the (eval s [f . n])) k = f k if f ∈ U for f n
proof (cases ∀ k≤n. ϕ (the (eval t [f . n])) k = f k)

case True
with that s-eq-t show ?thesis by simp

next
case False
then have eval s [f . n] = eval r-auxhyp [f . n]

using that s-eq-aux by simp
moreover have f ∈ R

using learn-totalE(1)[OF t ′] that by auto
ultimately show ?thesis using r-auxhyp by simp

qed
qed

218

then show U ∈ CONS using CONS-def by auto
qed

2.10.2 The separating class
Definition of the class

The class that will be shown to be in CONS − TOTAL is the union of the following two
classes.
definition V-constotal-1 :: partial1 set where

V-constotal-1 ≡ {f . ∃ j p. f = [j] � p ∧ j ≥ 2 ∧ p ∈ R01 ∧ ϕ j = f }

definition V-constotal-2 :: partial1 set where
V-constotal-2 ≡
{f . ∃ j a k.

f = j # a @ [k] � 0∞ ∧
j ≥ 2 ∧
(∀ i<length a. a ! i ≤ 1) ∧
k ≥ 2 ∧
ϕ j = j # a � ↑∞ ∧
ϕ k = f }

definition V-constotal :: partial1 set where
V-constotal ≡ V-constotal-1 ∪ V-constotal-2

lemma V-constotal-2I :
assumes f = j # a @ [k] � 0∞

and j ≥ 2
and ∀ i<length a. a ! i ≤ 1
and k ≥ 2
and ϕ j = j # a � ↑∞
and ϕ k = f

shows f ∈ V-constotal-2
using assms V-constotal-2-def by blast

lemma V-subseteq-R1 : V-constotal ⊆ R
proof

fix f assume f ∈ V-constotal
then have f ∈ V-constotal-1 ∨ f ∈ V-constotal-2

using V-constotal-def by auto
then show f ∈ R
proof

assume f ∈ V-constotal-1
then obtain j p where f = [j] � p p ∈ R01

using V-constotal-1-def by blast
then show ?thesis using prepend-in-R1 RPred1-subseteq-R1 by auto

next
assume f ∈ V-constotal-2
then obtain j a k where f = j # a @ [k] � 0∞

using V-constotal-2-def by blast
then show ?thesis using almost0-in-R1 by auto

qed
qed

219

The class is in CONS

The class can be learned by the strategy rmge2, which outputs the rightmost value
greater or equal two in the input fn. If f is from V1 then the strategy is correct right
from the start. If f is from V2 the strategy outputs the consistent hypothesis j until it
encounters the correct hypothesis k, to which it converges.
lemma V-in-CONS : learn-cons ϕ V-constotal rmge2
proof (rule learn-consI)

show environment ϕ V-constotal rmge2
using V-subseteq-R1 rmge2-in-R1 R1-imp-total1 phi-in-P2 by simp

have (∃ i. ϕ i = f ∧ (∀∞n. rmge2 (f . n) ↓= i)) ∧
(∀n. ∀ k≤n. ϕ (the (rmge2 (f . n))) k = f k)

if f ∈ V-constotal for f
proof (cases f ∈ V-constotal-1)

case True
then obtain j p where

f : f = [j] � p and
j: j ≥ 2 and
p: p ∈ R01 and
phi-j: ϕ j = f
using V-constotal-1-def by blast

then have f 0 ↓= j by (simp add: prepend-at-less)
then have f-at-0 : the (f 0) ≥ 2 by (simp add: j)
have f-at-gr0 : the (f x) ≤ 1 if x > 0 for x

using that f p by (simp add: RPred1-altdef Suc-leI prepend-at-ge)
have total1 f

using V-subseteq-R1 that R1-imp-total1 total1-def by auto
have rmge2 (f . n) ↓= j for n
proof −

let ?P = λi. i < Suc n ∧ the (f i) ≥ 2
have Greatest ?P = 0
proof (rule Greatest-equality)

show 0 < Suc n ∧ 2 ≤ the (f 0)
using f-at-0 by simp

show
∧

y. y < Suc n ∧ 2 ≤ the (f y) =⇒ y ≤ 0
using f-at-gr0 by fastforce

qed
then have rmge2 (f . n) = f 0

using f-at-0 rmge2-init-total[of f n, OF ‹total1 f ›] by auto
then show rmge2 (f . n) ↓= j

by (simp add: ‹f 0 ↓= j›)
qed
then show ?thesis using phi-j by auto

next
case False
then have f ∈ V-constotal-2

using V-constotal-def that by auto
then obtain j a k where jak:

f = j # a @ [k] � 0∞

j ≥ 2
∀ i<length a. a ! i ≤ 1
k ≥ 2
ϕ j = j # a � ↑∞
ϕ k = f
using V-constotal-2-def by blast

220

then have f-at-0 : f 0 ↓= j by simp
have f-eq-a: f x ↓= a ! (x − 1) if 0 < x ∧ x < Suc (length a) for x
proof −

have x − 1 < length a
using that by auto

then show ?thesis
by (simp add: jak(1) less-SucI nth-append that)

qed
then have f-at-a: the (f x) ≤ 1 if 0 < x ∧ x < Suc (length a) for x

using jak(3) that by auto
from jak have f-k: f (Suc (length a)) ↓= k by auto
from jak have f-at-big: f x ↓= 0 if x > Suc (length a) for x

using that by simp
let ?P = λn i. i < Suc n ∧ the (f i) ≥ 2
have rmge2 : rmge2 (f . n) = f (Greatest (?P n)) for n
proof −

have ¬ (∀ i<Suc n. the (f i) < 2) for n
using jak(2) f-at-0 by auto

moreover have total1 f
using V-subseteq-R1 R1-imp-total1 that total1-def by auto

ultimately show ?thesis using rmge2-init-total[of f n] by auto
qed
have Greatest (?P n) = 0 if n < Suc (length a) for n
proof (rule Greatest-equality)

show 0 < Suc n ∧ 2 ≤ the (f 0)
using that by (simp add: jak(2) f-at-0)

show
∧

y. y < Suc n ∧ 2 ≤ the (f y) =⇒ y ≤ 0
using that f-at-a
by (metis Suc-1 dual-order .strict-trans leI less-Suc-eq not-less-eq-eq)

qed
with rmge2 f-at-0 have rmge2-small:

rmge2 (f . n) ↓= j if n < Suc (length a) for n
using that by simp

have Greatest (?P n) = Suc (length a) if n ≥ Suc (length a) for n
proof (rule Greatest-equality)

show Suc (length a) < Suc n ∧ 2 ≤ the (f (Suc (length a)))
using that f-k by (simp add: jak(4) less-Suc-eq-le)

show
∧

y. y < Suc n ∧ 2 ≤ the (f y) =⇒ y ≤ Suc (length a)
using that f-at-big by (metis leI le-SucI not-less-eq-eq numeral-2-eq-2 option.sel)

qed
with rmge2 f-at-big f-k have rmge2-big:

rmge2 (f . n) ↓= k if n ≥ Suc (length a) for n
using that by simp

then have ∃ i n0. ϕ i = f ∧ (∀n≥n0. rmge2 (f . n) ↓= i)
using jak(6) by auto

moreover have ∀ k≤n. ϕ (the (rmge2 (f . n))) k = f k for n
proof (cases n < Suc (length a))

case True
then have rmge2 (f . n) ↓= j

using rmge2-small by simp
then have ϕ (the (rmge2 (f . n))) = ϕ j by simp
with True show ?thesis

using rmge2-small f-at-0 f-eq-a jak(5) prepend-at-less
by (metis le-less-trans le-zero-eq length-Cons not-le-imp-less nth-Cons-0 nth-Cons-pos)

next
case False

221

then show ?thesis using rmge2-big jak by simp
qed
ultimately show ?thesis by simp

qed
then show

∧
f . f ∈ V-constotal =⇒ ∃ i. ϕ i = f ∧ (∀∞n. rmge2 (f . n) ↓= i)

and
∧

f n. f ∈ V-constotal =⇒ ∀ k≤n. ϕ (the (rmge2 (f . n))) k = f k
by simp-all

qed

The class is not in TOTAL

Recall that V is the union of V1 = {jp | j ≥ 2 ∧ p ∈ R01 ∧ ϕj = jp} and V2 = {jak0∞ |
j ≥ 2 ∧ a ∈ {0, 1}∗ ∧ k ≥ 2 ∧ ϕj = ja ↑∞ ∧ ϕk = jak0∞}.

The proof is adapted from a proof of a stronger result by Freivalds, Kinber, and Wieha-
gen [7, Theorem 27] concerning an inference type not defined here.
The proof is by contradiction. If V was in TOTAL, there would be a strategy S learning
V in our standard Gödel numbering ϕ. By Lemma R for TOTAL we can assume S to
be total.
In order to construct a function f ∈ V for which S fails we employ a computable process
iteratively building function prefixes. For every j the process builds a function ψj . The
initial prefix is the singleton [j]. Given a prefix b, the next prefix is determined as follows:

1. Search for a y ≥ |b| with ϕS(b)(y) ↓= v for some v.

2. Set the new prefix b0y−|b|v̄, where v̄ = 1− v.

Step 1 can diverge, for example, if ϕS(b) is the empty function. In this case ψj will only
be defined for a finite prefix. If, however, Step 2 is reached, the prefix b is extended to
a b′ such that ϕS(b)(y) 6= b′y, which implies S(b) is a wrong hypothesis for every function
starting with b′, in particular for ψj . Since v̄ ∈ {0, 1}, Step 2 only appends zeros and
ones, which is important for showing membership in V .
This process defines a numbering ψ ∈ P2, and by Kleene’s fixed-point theorem there is
a j ≥ 2 with ϕj = ψj . For this j there are two cases:

Case 1. Step 1 always succeeds. Then ψj is total and ψj ∈ V1. But S outputs wrong
hypotheses on infinitely many prefixes of ψj (namely every prefix constructed by
the process).

Case 2. Step 1 diverges at some iteration, say when the state is b = ja for some a ∈ {0, 1}∗.
Then ψj has the form ja ↑∞. The numbering χ with χk = jak0∞ is in P2, and by
Kleene’s fixed-point theorem there is a k ≥ 2 with ϕk = χk = jak0∞. This jak0∞
is in V2 and has the prefix ja. But Step 1 diverged on this prefix, which means
there is no y ≥ |ja| with ϕS(ja)(y) ↓. In other words S hypothesizes a non-total
function.

Thus, in both cases there is a function in V where S does not behave like a TOTAL
strategy. This is the desired contradiction.
The following locale formalizes this proof sketch.
locale total-cons =

fixes s :: partial1
assumes s-in-R1 : s ∈ R

222

begin

definition r-s :: recf where
r-s ≡ SOME r-s. recfn 1 r-s ∧ total r-s ∧ s = (λx. eval r-s [x])

lemma rs-recfn [simp]: recfn 1 r-s
and rs-total [simp]:

∧
x. eval r-s [x] ↓

and eval-rs:
∧

x. s x = eval r-s [x]
using r-s-def R1-SOME [OF s-in-R1 , of r-s] by simp-all

Performing Step 1 means enumerating the domain of ϕS(b) until a y ≥ |b| is found. The
next function enumerates all domain values and checks the condition for them.
definition r-search-enum ≡

Cn 2 r-le [Cn 2 r-length [Id 2 1], Cn 2 r-enumdom [Cn 2 r-s [Id 2 1], Id 2 0]]

lemma r-search-enum-recfn [simp]: recfn 2 r-search-enum
by (simp add: r-search-enum-def Let-def)

abbreviation search-enum :: partial2 where
search-enum x b ≡ eval r-search-enum [x, b]

abbreviation enumdom :: partial2 where
enumdom i y ≡ eval r-enumdom [i, y]

lemma enumdom-empty-domain:
assumes

∧
x. ϕ i x ↑

shows
∧

y. enumdom i y ↑
using assms r-enumdom-empty-domain by (simp add: phi-def)

lemma enumdom-nonempty-domain:
assumes ϕ i x0 ↓
shows

∧
y. enumdom i y ↓

and
∧

x. ϕ i x ↓ ←→ (∃ y. enumdom i y ↓= x)
using assms r-enumdom-nonempty-domain phi-def by metis+

Enumerating the empty domain yields the empty function.
lemma search-enum-empty:

fixes b :: nat
assumes s b ↓= i and

∧
x. ϕ i x ↑

shows
∧

x. search-enum x b ↑
using assms r-search-enum-def enumdom-empty-domain eval-rs by simp

Enumerating a non-empty domain yields a total function.
lemma search-enum-nonempty:

fixes b y0 :: nat
assumes s b ↓= i and ϕ i y0 ↓ and e = the (enumdom i x)
shows search-enum x b ↓= (if e-length b ≤ e then 0 else 1)

proof −
let ?e = λx. the (enumdom i x)
let ?y = Cn 2 r-enumdom [Cn 2 r-s [Id 2 1], Id 2 0]
have recfn 2 ?y using assms(1) by simp
moreover have

∧
x. eval ?y [x, b] = enumdom i x

using assms(1 ,2) eval-rs by auto
moreover from this have

∧
x. eval ?y [x, b] ↓

using enumdom-nonempty-domain(1)[OF assms(2)] by simp

223

ultimately have eval (Cn 2 r-le [Cn 2 r-length [Id 2 1], ?y]) [x, b] ↓=
(if e-length b ≤ ?e x then 0 else 1)

by simp
then show ?thesis using assms by (simp add: r-search-enum-def)

qed

If there is a y as desired, the enumeration will eventually return zero (representing
“true”).
lemma search-enum-nonempty-eq0 :

fixes b y :: nat
assumes s b ↓= i and ϕ i y ↓ and y ≥ e-length b
shows ∃ x. search-enum x b ↓= 0

proof −
obtain x where x: enumdom i x ↓= y

using enumdom-nonempty-domain(2)[OF assms(2)] assms(2) by auto
from assms(2) have ϕ i y ↓ by simp
with x have search-enum x b ↓= 0

using search-enum-nonempty[where ?e=y] assms by auto
then show ?thesis by auto

qed

If there is no y as desired, the enumeration will never return zero.
lemma search-enum-nonempty-neq0 :

fixes b y0 :: nat
assumes s b ↓= i

and ϕ i y0 ↓
and ¬ (∃ y. ϕ i y ↓ ∧ y ≥ e-length b)

shows ¬ (∃ x. search-enum x b ↓= 0)
proof

assume ∃ x. search-enum x b ↓= 0
then obtain x where x: search-enum x b ↓= 0

by auto
obtain y where y: enumdom i x ↓= y

using enumdom-nonempty-domain[OF assms(2)] by blast
then have search-enum x b ↓= (if e-length b ≤ y then 0 else 1)

using assms(1−2) search-enum-nonempty by simp
with x have e-length b ≤ y

using option.inject by fastforce
moreover have ϕ i y ↓

using assms(2) enumdom-nonempty-domain(2) y by blast
ultimately show False using assms(3) by force

qed

The next function corresponds to Step 1. Given a prefix b it computes a y ≥ |b| with
ϕS(b)(y) ↓ if such a y exists; otherwise it diverges.
definition r-search ≡ Cn 1 r-enumdom [r-s, Mn 1 r-search-enum]

lemma r-search-recfn [simp]: recfn 1 r-search
using r-search-def by simp

abbreviation search :: partial1 where
search b ≡ eval r-search [b]

If ϕS(b) is the empty function, the search process diverges because already the enumer-
ation of the domain diverges.

224

lemma search-empty:
assumes s b ↓= i and

∧
x. ϕ i x ↑

shows search b ↑
proof −

have
∧

x. search-enum x b ↑
using search-enum-empty[OF assms] by simp

then have eval (Mn 1 r-search-enum) [b] ↑ by simp
then show search b ↑ unfolding r-search-def by simp

qed

If ϕS(b) is non-empty, but there is no y with the desired properties, the search process
diverges.
lemma search-nonempty-neq0 :

fixes b y0 :: nat
assumes s b ↓= i

and ϕ i y0 ↓
and ¬ (∃ y. ϕ i y ↓ ∧ y ≥ e-length b)

shows search b ↑
proof −

have ¬ (∃ x. search-enum x b ↓= 0)
using assms search-enum-nonempty-neq0 by simp

moreover have recfn 1 (Mn 1 r-search-enum)
by (simp add: assms(1))

ultimately have eval (Mn 1 r-search-enum) [b] ↑ by simp
then show ?thesis using r-search-def by auto

qed

If there is a y as desired, the search process will return one such y.
lemma search-nonempty-eq0 :

fixes b y :: nat
assumes s b ↓= i and ϕ i y ↓ and y ≥ e-length b
shows search b ↓

and ϕ i (the (search b)) ↓
and the (search b) ≥ e-length b

proof −
have ∃ x. search-enum x b ↓= 0

using assms search-enum-nonempty-eq0 by simp
moreover have ∀ x. search-enum x b ↓

using assms search-enum-nonempty by simp
moreover have recfn 1 (Mn 1 r-search-enum)

by simp
ultimately have

1 : search-enum (the (eval (Mn 1 r-search-enum) [b])) b ↓= 0 and
2 : eval (Mn 1 r-search-enum) [b] ↓
using eval-Mn-diverg eval-Mn-convergE [of 1 r-search-enum [b]]
by (metis (no-types, lifting) One-nat-def length-Cons list.size(3) option.collapse,

metis (no-types, lifting) One-nat-def length-Cons list.size(3))
let ?x = the (eval (Mn 1 r-search-enum) [b])
have search b = eval (Cn 1 r-enumdom [r-s, Mn 1 r-search-enum]) [b]

unfolding r-search-def by simp
then have 3 : search b = enumdom i ?x

using assms 2 eval-rs by simp
then have the (search b) = the (enumdom i ?x) (is ?y = -)

by simp
then have 4 : search-enum ?x b ↓= (if e-length b ≤ ?y then 0 else 1)

225

using search-enum-nonempty assms by simp
from 3 have ϕ i ?y ↓

using enumdom-nonempty-domain assms(2) by (metis option.collapse)
then show ϕ i ?y ↓

using phi-def by simp
then show ?y ≥ e-length b

using assms 4 1 option.inject by fastforce
show search b ↓

using 3 assms(2) enumdom-nonempty-domain(1) by auto
qed

The converse of the previous lemma states that whenever the search process returns a
value it will be one with the desired properties.
lemma search-converg:

assumes s b ↓= i and search b ↓ (is ?y ↓)
shows ϕ i (the ?y) ↓

and the ?y ≥ e-length b
proof −

have ∃ y. ϕ i y ↓
using assms search-empty by meson

then have ∃ y. y ≥ e-length b ∧ ϕ i y ↓
using search-nonempty-neq0 assms by meson

then obtain y where y: y ≥ e-length b ∧ ϕ i y ↓ by auto
then have ϕ i y ↓

using phi-def by simp
then show ϕ i (the (search b)) ↓

and (the (search b)) ≥ e-length b
using y assms search-nonempty-eq0 [OF assms(1) ‹ϕ i y ↓›] by simp-all

qed

Likewise, if the search diverges, there is no appropriate y.
lemma search-diverg:

assumes s b ↓= i and search b ↑
shows ¬ (∃ y. ϕ i y ↓ ∧ y ≥ e-length b)

proof
assume ∃ y. ϕ i y ↓ ∧ y ≥ e-length b
then obtain y where y: ϕ i y ↓ y ≥ e-length b

by auto
from y(1) have ϕ i y ↓

by (simp add: phi-def)
with y(2) search-nonempty-eq0 have search b ↓

using assms by blast
with assms(2) show False by simp

qed

Step 2 extends the prefix by a block of the shape 0nv̄. The next function constructs such
a block for given n and v.
definition r-badblock ≡

let f = Cn 1 r-singleton-encode [r-not];
g = Cn 3 r-cons [r-constn 2 0 , Id 3 1]

in Pr 1 f g

lemma r-badblock-prim [simp]: recfn 2 r-badblock
unfolding r-badblock-def by simp

226

lemma r-badblock: eval r-badblock [n, v] ↓= list-encode (replicate n 0 @ [1 − v])
proof (induction n)

case 0
let ?f = Cn 1 r-singleton-encode [r-not]
have eval r-badblock [0 , v] = eval ?f [v]

unfolding r-badblock-def by simp
also have ... = eval r-singleton-encode [the (eval r-not [v])]

by simp
also have ... ↓= list-encode [1 − v]

by simp
finally show ?case by simp

next
case (Suc n)
let ?g = Cn 3 r-cons [r-constn 2 0 , Id 3 1]
have recfn 3 ?g by simp
have eval r-badblock [(Suc n), v] = eval ?g [n, the (eval r-badblock [n , v]), v]

using ‹recfn 3 ?g› Suc by (simp add: r-badblock-def)
also have ... = eval ?g [n, list-encode (replicate n 0 @ [1 − v]), v]

using Suc by simp
also have ... = eval r-cons [0 , list-encode (replicate n 0 @ [1 − v])]

by simp
also have ... ↓= e-cons 0 (list-encode (replicate n 0 @ [1 − v]))

by simp
also have ... ↓= list-encode (0 # (replicate n 0 @ [1 − v]))

by simp
also have ... ↓= list-encode (replicate (Suc n) 0 @ [1 − v])

by simp
finally show ?case by simp

qed

lemma r-badblock-only-01 : e-nth (the (eval r-badblock [n, v])) i ≤ 1
using r-badblock by (simp add: nth-append)

lemma r-badblock-last: e-nth (the (eval r-badblock [n, v])) n = 1 − v
using r-badblock by (simp add: nth-append)

The following function computes the next prefix from the current one. In other words,
it performs Steps 1 and 2.
definition r-next ≡

Cn 1 r-append
[Id 1 0 ,
Cn 1 r-badblock
[Cn 1 r-sub [r-search, r-length],
Cn 1 r-phi [r-s, r-search]]]

lemma r-next-recfn [simp]: recfn 1 r-next
unfolding r-next-def by simp

The name next is unavailable, so we go for nxt.
abbreviation nxt :: partial1 where

nxt b ≡ eval r-next [b]

lemma nxt-diverg:
assumes search b ↑
shows nxt b ↑

227

unfolding r-next-def using assms by (simp add: Let-def)

lemma nxt-converg:
assumes search b ↓= y
shows nxt b ↓=

e-append b (list-encode (replicate (y − e-length b) 0 @ [1 − the (ϕ (the (s b)) y)]))
unfolding r-next-def using assms r-badblock search-converg phi-def eval-rs
by fastforce

lemma nxt-search-diverg:
assumes nxt b ↑
shows search b ↑

proof (rule ccontr)
assume search b ↓
then obtain y where search b ↓= y by auto
then show False

using nxt-converg assms by simp
qed

If Step 1 finds a y, the hypothesis S(b) is incorrect for the new prefix.
lemma nxt-wrong-hyp:

assumes nxt b ↓= b ′ and s b ↓= i
shows ∃ y<e-length b ′. ϕ i y ↓6= e-nth b ′ y

proof −
obtain y where y: search b ↓= y

using assms nxt-diverg by fastforce
then have y-len: y ≥ e-length b

using assms search-converg(2) by fastforce
then have b ′: b ′ =

(e-append b (list-encode (replicate (y − e-length b) 0 @ [1 − the (ϕ i y)])))
using y assms nxt-converg by simp

then have e-nth b ′ y = 1 − the (ϕ i y)
using y-len e-nth-append-big r-badblock r-badblock-last by auto

moreover have ϕ i y ↓
using search-converg y y-len assms(2) by fastforce

ultimately have ϕ i y ↓6= e-nth b ′ y
by (metis gr-zeroI less-numeral-extra(4) less-one option.sel zero-less-diff)

moreover have e-length b ′ = Suc y
using y-len e-length-append b ′ by auto

ultimately show ?thesis by auto
qed

If Step 1 diverges, the hypothesis S(b) refers to a non-total function.
lemma nxt-nontotal-hyp:

assumes nxt b ↑ and s b ↓= i
shows ∃ x. ϕ i x ↑
using nxt-search-diverg[OF assms(1)] search-diverg[OF assms(2)] by auto

The process only ever extends the given prefix.
lemma nxt-stable:

assumes nxt b ↓= b ′

shows ∀ x<e-length b. e-nth b x = e-nth b ′ x
proof −

obtain y where y: search b ↓= y
using assms nxt-diverg by fastforce

228

then have y ≥ e-length b
using search-converg(2) eval-rs rs-total by fastforce

show ?thesis
proof (rule allI , rule impI)

fix x assume x < e-length b
let ?i = the (s b)
have b ′: b ′ =

(e-append b (list-encode (replicate (y − e-length b) 0 @ [1 − the (ϕ ?i y)])))
using assms nxt-converg[OF y] by auto

then show e-nth b x = e-nth b ′ x
using e-nth-append-small ‹x < e-length b› by auto

qed
qed

The following properties of r-next will be used to show that some of the constructed
functions are in the class V .
lemma nxt-append-01 :

assumes nxt b ↓= b ′

shows ∀ x. x ≥ e-length b ∧ x < e-length b ′ −→ e-nth b ′ x = 0 ∨ e-nth b ′ x = 1
proof −

obtain y where y: search b ↓= y
using assms nxt-diverg by fastforce

let ?i = the (s b)
have b ′: b ′ = (e-append b (list-encode (replicate (y − e-length b) 0 @ [1 − the (ϕ ?i y)])))
(is b ′ = (e-append b ?z))
using assms y nxt-converg prod-encode-eq by auto

show ?thesis
proof (rule allI , rule impI)

fix x assume x: e-length b ≤ x ∧ x < e-length b ′

then have e-nth b ′ x = e-nth ?z (x − e-length b)
using b ′ e-nth-append-big by blast

then show e-nth b ′ x = 0 ∨ e-nth b ′ x = 1
by (metis less-one nat-less-le option.sel r-badblock r-badblock-only-01)

qed
qed

lemma nxt-monotone:
assumes nxt b ↓= b ′

shows e-length b < e-length b ′

proof −
obtain y where y: search b ↓= y

using assms nxt-diverg by fastforce
let ?i = the (s b)
have b ′: b ′ =

(e-append b (list-encode (replicate (y − e-length b) 0 @ [1 − the (ϕ ?i y)])))
using assms y nxt-converg prod-encode-eq by auto

then show ?thesis using e-length-append by auto
qed

The next function computes the prefixes after each iteration of the process r-next when
started with the list [j].
definition r-prefixes :: recf where

r-prefixes ≡ Pr 1 r-singleton-encode (Cn 3 r-next [Id 3 1])

lemma r-prefixes-recfn [simp]: recfn 2 r-prefixes

229

unfolding r-prefixes-def by (simp add: Let-def)

abbreviation prefixes :: partial2 where
prefixes t j ≡ eval r-prefixes [t, j]

lemma prefixes-at-0 : prefixes 0 j ↓= list-encode [j]
unfolding r-prefixes-def by simp

lemma prefixes-at-Suc:
assumes prefixes t j ↓ (is ?b ↓)
shows prefixes (Suc t) j = nxt (the ?b)
using r-prefixes-def assms by auto

lemma prefixes-at-Suc ′:
assumes prefixes t j ↓= b
shows prefixes (Suc t) j = nxt b
using r-prefixes-def assms by auto

lemma prefixes-prod-encode:
assumes prefixes t j ↓
obtains b where prefixes t j ↓= b
using assms surj-prod-encode by force

lemma prefixes-converg-le:
assumes prefixes t j ↓ and t ′ ≤ t
shows prefixes t ′ j ↓
using r-prefixes-def assms eval-Pr-converg-le[of 1 - - [j]]
by simp

lemma prefixes-diverg-add:
assumes prefixes t j ↑
shows prefixes (t + d) j ↑
using r-prefixes-def assms eval-Pr-diverg-add[of 1 - - [j]]
by simp

Many properties of r-prefixes can be derived from similar properties of r-next.
lemma prefixes-length:

assumes prefixes t j ↓= b
shows e-length b > t

proof (insert assms, induction t arbitrary: b)
case 0
then show ?case using prefixes-at-0 prod-encode-eq by auto

next
case (Suc t)
then have prefixes t j ↓

using prefixes-converg-le Suc-n-not-le-n nat-le-linear by blast
then obtain b ′ where b ′: prefixes t j ↓= b ′

using prefixes-prod-encode by blast
with Suc have e-length b ′ > t by simp
have prefixes (Suc t) j = nxt b ′

using b ′ prefixes-at-Suc ′ by simp
with Suc have nxt b ′ ↓= b by simp
then have e-length b ′ < e-length b

using nxt-monotone by simp
then show ?case using ‹e-length b ′ > t› by simp

qed

230

lemma prefixes-monotone:
assumes prefixes t j ↓= b and prefixes (t + d) j ↓= b ′

shows e-length b ≤ e-length b ′

proof (insert assms, induction d arbitrary: b ′)
case 0
then show ?case using prod-encode-eq by simp

next
case (Suc d)
moreover have t + d ≤ t + Suc d by simp
ultimately have prefixes (t + d) j ↓

using prefixes-converg-le by blast
then obtain b ′′ where b ′′: prefixes (t + d) j ↓= b ′′

using prefixes-prod-encode by blast
with Suc have prefixes (t + Suc d) j = nxt b ′′

by (simp add: prefixes-at-Suc ′)
with Suc have nxt b ′′ ↓= b ′ by simp
then show ?case using nxt-monotone Suc b ′′ by fastforce

qed

lemma prefixes-stable:
assumes prefixes t j ↓= b and prefixes (t + d) j ↓= b ′

shows ∀ x<e-length b. e-nth b x = e-nth b ′ x
proof (insert assms, induction d arbitrary: b ′)

case 0
then show ?case using prod-encode-eq by simp

next
case (Suc d)
moreover have t + d ≤ t + Suc d by simp
ultimately have prefixes (t + d) j ↓

using prefixes-converg-le by blast
then obtain b ′′ where b ′′: prefixes (t + d) j ↓= b ′′

using prefixes-prod-encode by blast
with Suc have prefixes (t + Suc d) j = nxt b ′′

by (simp add: prefixes-at-Suc ′)
with Suc have b ′: nxt b ′′ ↓= b ′ by simp
show ∀ x<e-length b. e-nth b x = e-nth b ′ x
proof (rule allI , rule impI)

fix x assume x: x < e-length b
then have e-nth b x = e-nth b ′′ x

using Suc b ′′ by simp
moreover have x ≤ e-length b ′′

using x prefixes-monotone b ′′ Suc by fastforce
ultimately show e-nth b x = e-nth b ′ x

using b ′′ nxt-stable Suc b ′ prefixes-monotone x
by (metis leD le-neq-implies-less)

qed
qed

lemma prefixes-tl-only-01 :
assumes prefixes t j ↓= b
shows ∀ x>0 . e-nth b x = 0 ∨ e-nth b x = 1

proof (insert assms, induction t arbitrary: b)
case 0
then show ?case using prefixes-at-0 prod-encode-eq by auto

next

231

case (Suc t)
then have prefixes t j ↓

using prefixes-converg-le Suc-n-not-le-n nat-le-linear by blast
then obtain b ′ where b ′: prefixes t j ↓= b ′

using prefixes-prod-encode by blast
show ∀ x>0 . e-nth b x = 0 ∨ e-nth b x = 1
proof (rule allI , rule impI)

fix x :: nat
assume x: x > 0
show e-nth b x = 0 ∨ e-nth b x = 1
proof (cases x < e-length b ′)

case True
then show ?thesis

using Suc b ′ prefixes-at-Suc ′ nxt-stable x by metis
next

case False
then show ?thesis

using Suc.prems b ′ prefixes-at-Suc ′ nxt-append-01 by auto
qed

qed
qed

lemma prefixes-hd:
assumes prefixes t j ↓= b
shows e-nth b 0 = j

proof −
obtain b ′ where b ′: prefixes 0 j ↓= b ′

by (simp add: prefixes-at-0)
then have b ′ = list-encode [j]

by (simp add: prod-encode-eq prefixes-at-0)
then have e-nth b ′ 0 = j by simp
then show e-nth b 0 = j

using assms prefixes-stable[OF b ′, of t b] prefixes-length[OF b ′] by simp
qed

lemma prefixes-nontotal-hyp:
assumes prefixes t j ↓= b

and prefixes (Suc t) j ↑
and s b ↓= i

shows ∃ x. ϕ i x ↑
using nxt-nontotal-hyp[OF - assms(3)] assms(2) prefixes-at-Suc ′[OF assms(1)] by simp

We now consider the two cases from the proof sketch.
abbreviation case-two j ≡ ∃ t. prefixes t j ↑

abbreviation case-one j ≡ ¬ case-two j

In Case 2 there is a maximum convergent iteration because iteration 0 converges.
lemma case-two:

assumes case-two j
shows ∃ t. (∀ t ′≤t. prefixes t ′ j ↓) ∧ (∀ t ′>t. prefixes t ′ j ↑)

proof −
let ?P = λt. prefixes t j ↑
define t0 where t0 = Least ?P
then have ?P t0

using assms LeastI-ex[of ?P] by simp

232

then have diverg: ?P t if t ≥ t0 for t
using prefixes-converg-le that by blast

from t0-def have converg: ¬ ?P t if t < t0 for t
using Least-le[of ?P] that not-less by blast

have t0 > 0
proof (rule ccontr)

assume ¬ 0 < t0
then have t0 = 0 by simp
with ‹?P t0› prefixes-at-0 show False by simp

qed
let ?t = t0 − 1
have ∀ t ′≤?t. prefixes t ′ j ↓

using converg ‹0 < t0› by auto
moreover have ∀ t ′>?t. prefixes t ′ j ↑

using diverg by simp
ultimately show ?thesis by auto

qed

Having completed the modelling of the process, we can now define the functions ψj it
computes. The value ψj(x) is computed by running r-prefixes until the prefix is longer
than x and then taking the x-th element of the prefix.
definition r-psi ≡

let f = Cn 3 r-less [Id 3 2 , Cn 3 r-length [Cn 3 r-prefixes [Id 3 0 , Id 3 1]]]
in Cn 2 r-nth [Cn 2 r-prefixes [Mn 2 f , Id 2 0], Id 2 1]

lemma r-psi-recfn: recfn 2 r-psi
unfolding r-psi-def by simp

abbreviation psi :: partial2 (‹ψ›) where
ψ j x ≡ eval r-psi [j, x]

lemma psi-in-P2 : ψ ∈ P2

using r-psi-recfn by auto

The values of ψ can be read off the prefixes.
lemma psi-eq-nth-prefix:

assumes prefixes t j ↓= b and e-length b > x
shows ψ j x ↓= e-nth b x

proof −
let ?f = Cn 3 r-less [Id 3 2 , Cn 3 r-length [Cn 3 r-prefixes [Id 3 0 , Id 3 1]]]
let ?P = λt. prefixes t j ↓ ∧ e-length (the (prefixes t j)) > x
from assms have ex-t: ∃ t. ?P t by auto
define t0 where t0 = Least ?P
then have ?P t0

using LeastI-ex[OF ex-t] by simp
from ex-t have not-P: ¬ ?P t if t < t0 for t

using ex-t that Least-le[of ?P] not-le t0-def by auto

have ?P t using assms by simp
with not-P have t0 ≤ t using leI by blast
then obtain b0 where b0 : prefixes t0 j ↓= b0

using assms(1) prefixes-converg-le by blast

have eval ?f [t0, j, x] ↓= 0
proof −

233

have eval (Cn 3 r-prefixes [Id 3 0 , Id 3 1]) [t0, j, x] ↓= b0
using b0 by simp

then show ?thesis using ‹?P t0› by simp
qed
moreover have eval ?f [t, j, x] ↓6= 0 if t < t0 for t
proof −

obtain bt where bt: prefixes t j ↓= bt
using prefixes-converg-le[of t0 j t] b0 ‹t < t0› by auto

moreover have ¬ ?P t
using that not-P by simp

ultimately have e-length bt ≤ x by simp
moreover have eval (Cn 3 r-prefixes [Id 3 0 , Id 3 1]) [t, j, x] ↓= bt

using bt by simp
ultimately show ?thesis by simp

qed
ultimately have eval (Mn 2 ?f) [j, x] ↓= t0

using eval-Mn-convergI [of 2 ?f [j, x] t0] by simp
then have ψ j x ↓= e-nth b0 x

unfolding r-psi-def using b0 by simp
then show ?thesis

using ‹t0 ≤ t› assms(1) prefixes-stable[of t0 j b0 t − t0 b] b0 ‹?P t0›
by simp

qed

lemma psi-converg-imp-prefix:
assumes ψ j x ↓
shows ∃ t b. prefixes t j ↓= b ∧ e-length b > x

proof −
let ?f = Cn 3 r-less [Id 3 2 , Cn 3 r-length [Cn 3 r-prefixes [Id 3 0 , Id 3 1]]]
have eval (Mn 2 ?f) [j, x] ↓
proof (rule ccontr)

assume ¬ eval (Mn 2 ?f) [j, x] ↓
then have eval (Mn 2 ?f) [j, x] ↑ by simp
then have ψ j x ↑

unfolding r-psi-def by simp
then show False

using assms by simp
qed
then obtain t where t: eval (Mn 2 ?f) [j, x] ↓= t

by blast
have recfn 2 (Mn 2 ?f) by simp
then have f-zero: eval ?f [t, j, x] ↓= 0

using eval-Mn-convergE [OF - t]
by (metis (no-types, lifting) One-nat-def Suc-1 length-Cons list.size(3))

have prefixes t j ↓
proof (rule ccontr)

assume ¬ prefixes t j ↓
then have prefixes t j ↑ by simp
then have eval ?f [t, j, x] ↑ by simp
with f-zero show False by simp

qed
then obtain b ′ where b ′: prefixes t j ↓= b ′ by auto
moreover have e-length b ′ > x
proof (rule ccontr)

assume ¬ e-length b ′ > x
then have eval ?f [t, j, x] ↓= 1

234

using b ′ by simp
with f-zero show False by simp

qed
ultimately show ?thesis by auto

qed

lemma psi-converg-imp-prefix ′:
assumes ψ j x ↓
shows ∃ t b. prefixes t j ↓= b ∧ e-length b > x ∧ ψ j x ↓= e-nth b x
using psi-converg-imp-prefix[OF assms] psi-eq-nth-prefix by blast

In both Case 1 and 2, ψj starts with j.
lemma psi-at-0 : ψ j 0 ↓= j

using prefixes-hd prefixes-length psi-eq-nth-prefix prefixes-at-0 by fastforce

In Case 1, ψj is total and made up of j followed by zeros and ones, just as required by
the definition of V1.
lemma case-one-psi-total:

assumes case-one j and x > 0
shows ψ j x ↓= 0 ∨ ψ j x ↓= 1

proof −
obtain b where b: prefixes x j ↓= b

using assms(1) by auto
then have e-length b > x

using prefixes-length by simp
then have ψ j x ↓= e-nth b x

using b psi-eq-nth-prefix by simp
moreover have e-nth b x = 0 ∨ e-nth b x = 1

using prefixes-tl-only-01 [OF b] assms(2) by simp
ultimately show ψ j x ↓= 0 ∨ ψ j x ↓= 1

by simp
qed

In Case 2, ψj is defined only for a prefix starting with j and continuing with zeros and
ones. This prefix corresponds to ja from the definition of V2.
lemma case-two-psi-only-prefix:

assumes case-two j
shows ∃ y. (∀ x. 0 < x ∧ x < y −→ ψ j x ↓= 0 ∨ ψ j x ↓= 1) ∧

(∀ x ≥ y. ψ j x ↑)
proof −

obtain t where
t-le: ∀ t ′≤t. prefixes t ′ j ↓ and
t-gr : ∀ t ′>t. prefixes t ′ j ↑
using assms case-two by blast

then obtain b where b: prefixes t j ↓= b
by auto

let ?y = e-length b
have ψ j x ↓= 0 ∨ ψ j x ↓= 1 if x > 0 ∧ x < ?y for x

using t-le b that by (metis prefixes-tl-only-01 psi-eq-nth-prefix)
moreover have ψ j x ↑ if x ≥ ?y for x
proof (rule ccontr)

assume ψ j x ↓
then obtain t ′ b ′ where t ′: prefixes t ′ j ↓= b ′ and e-length b ′ > x

using psi-converg-imp-prefix by blast
then have e-length b ′ > ?y

235

using that by simp
with t ′ have t ′ > t

using prefixes-monotone b by (metis add-diff-inverse-nat leD)
with t ′ t-gr show False by simp

qed
ultimately show ?thesis by auto

qed

definition longest-prefix :: nat ⇒ nat where
longest-prefix j ≡ THE y. (∀ x<y. ψ j x ↓) ∧ (∀ x≥y. ψ j x ↑)

lemma longest-prefix:
assumes case-two j and z = longest-prefix j
shows (∀ x<z. ψ j x ↓) ∧ (∀ x≥z. ψ j x ↑)

proof −
let ?P = λz. (∀ x<z. ψ j x ↓) ∧ (∀ x≥z. ψ j x ↑)
obtain y where y:
∀ x. 0 < x ∧ x < y −→ ψ j x ↓= 0 ∨ ψ j x ↓= 1
∀ x≥y. ψ j x ↑
using case-two-psi-only-prefix[OF assms(1)] by auto

have ?P (THE z . ?P z)
proof (rule theI [of ?P y])

show ?P y
proof

show ∀ x<y. ψ j x ↓
proof (rule allI , rule impI)

fix x assume x < y
show ψ j x ↓
proof (cases x = 0)

case True
then show ?thesis using psi-at-0 by simp

next
case False
then show ?thesis using y(1) ‹x < y› by auto

qed
qed
show ∀ x≥y. ψ j x ↑ using y(2) by simp

qed
show z = y if ?P z for z
proof (rule ccontr , cases z < y)

case True
moreover assume z 6= y
ultimately show False

using that ‹?P y› by auto
next

case False
moreover assume z 6= y
then show False

using that ‹?P y› y(2) by (meson linorder-cases order-refl)
qed

qed
then have (∀ x<(THE z . ?P z). ψ j x ↓) ∧ (∀ x≥(THE z . ?P z). ψ j x ↑)

by blast
moreover have longest-prefix j = (THE z . ?P z)

unfolding longest-prefix-def by simp
ultimately show ?thesis using assms(2) by metis

236

qed

lemma case-two-psi-longest-prefix:
assumes case-two j and y = longest-prefix j
shows (∀ x. 0 < x ∧ x < y −→ ψ j x ↓= 0 ∨ ψ j x ↓= 1) ∧
(∀ x ≥ y. ψ j x ↑)

using assms longest-prefix case-two-psi-only-prefix
by (metis prefixes-tl-only-01 psi-converg-imp-prefix ′)

The prefix cannot be empty because the process starts with prefix [j].
lemma longest-prefix-gr-0 :

assumes case-two j
shows longest-prefix j > 0
using assms case-two-psi-longest-prefix psi-at-0 by force

lemma psi-not-divergent-init:
assumes prefixes t j ↓= b
shows (ψ j) . (e-length b − 1) = b

proof (intro initI)
show 0 < e-length b

using assms prefixes-length by fastforce
show ψ j x ↓= e-nth b x if x < e-length b for x

using that assms psi-eq-nth-prefix by simp
qed

In Case 2, the strategy S outputs a non-total hypothesis on some prefix of ψj .
lemma case-two-nontotal-hyp:

assumes case-two j
shows ∃n<longest-prefix j. ¬ total1 (ϕ (the (s ((ψ j) . n))))

proof −
obtain t where ∀ t ′≤t. prefixes t ′ j ↓ and t-gr : ∀ t ′>t. prefixes t ′ j ↑

using assms case-two by blast
then obtain b where b: prefixes t j ↓= b

by auto
moreover obtain i where i: s b ↓= i

using eval-rs by fastforce
moreover have div: prefixes (Suc t) j ↑

using t-gr by simp
ultimately have ∃ x. ϕ i x ↑

using prefixes-nontotal-hyp by simp
then obtain x where ϕ i x ↑ by auto
moreover have init: ψ j . (e-length b − 1) = b (is - . ?n = b)

using psi-not-divergent-init[OF b] by simp
ultimately have ϕ (the (s (ψ j . ?n))) x ↑

using i by simp
then have ¬ total1 (ϕ (the (s (ψ j . ?n))))

by auto
moreover have ?n < longest-prefix j

using case-two-psi-longest-prefix init b div psi-eq-nth-prefix
by (metis length-init lessI not-le-imp-less option.simps(3))

ultimately show ?thesis by auto
qed

Consequently, in Case 2 the strategy does not TOTAL-learn any function starting with
the longest prefix of ψj .

237

lemma case-two-not-learn:
assumes case-two j

and f ∈ R
and

∧
x. x < longest-prefix j =⇒ f x = ψ j x

shows ¬ learn-total ϕ {f } s
proof −

obtain n where n:
n < longest-prefix j
¬ total1 (ϕ (the (s (ψ j . n))))
using case-two-nontotal-hyp[OF assms(1)] by auto

have f . n = ψ j . n
using assms(3) n(1) by (intro init-eqI) auto

with n(2) show ?thesis by (metis R1-imp-total1 learn-totalE(3) singletonI)
qed

In Case 1 the strategy outputs a wrong hypothesis on infinitely many prefixes of ψj and
thus does not learn ψj in the limit, much less in the sense of TOTAL.
lemma case-one-wrong-hyp:

assumes case-one j
shows ∃n>k. ϕ (the (s ((ψ j) . n))) 6= ψ j

proof −
have all-t: ∀ t. prefixes t j ↓

using assms by simp
then obtain b where b: prefixes (Suc k) j ↓= b

by auto
then have length: e-length b > Suc k

using prefixes-length by simp
then have init: ψ j . (e-length b − 1) = b

using psi-not-divergent-init b by simp
obtain i where i: s b ↓= i

using eval-rs by fastforce
from all-t obtain b ′ where b ′: prefixes (Suc (Suc k)) j ↓= b ′

by auto
then have ψ j . (e-length b ′ − 1) = b ′

using psi-not-divergent-init by simp
moreover have ∃ y<e-length b ′. ϕ i y ↓6= e-nth b ′ y

using nxt-wrong-hyp b b ′ i prefixes-at-Suc by auto
ultimately have ∃ y<e-length b ′. ϕ i y 6= ψ j y

using b ′ psi-eq-nth-prefix by auto
then have ϕ i 6= ψ j by auto
then show ?thesis

using init length i by (metis Suc-less-eq length-init option.sel)
qed

lemma case-one-not-learn:
assumes case-one j
shows ¬ learn-lim ϕ {ψ j} s

proof (rule infinite-hyp-wrong-not-Lim[of ψ j])
show ψ j ∈ {ψ j} by simp
show ∀n. ∃m>n. ϕ (the (s (ψ j . m))) 6= ψ j

using case-one-wrong-hyp[OF assms] by simp
qed

lemma case-one-not-learn-V :
assumes case-one j and j ≥ 2 and ϕ j = ψ j
shows ¬ learn-lim ϕ V-constotal s

238

proof −
have ψ j ∈ V-constotal-1
proof −

define p where p = (λx. (ψ j) (x + 1))
have p ∈ R01

proof −
from p-def have p ∈ P

using skip-P1 [of ψ j 1] psi-in-P2 P2-proj-P1 by blast
moreover have p x ↓= 0 ∨ p x ↓= 1 for x

using p-def assms(1) case-one-psi-total by auto
moreover from this have total1 p by fast
ultimately show ?thesis using RPred1-def by auto

qed
moreover have ψ j = [j] � p

by (intro prepend-eqI , simp add: psi-at-0 , simp add: p-def)
ultimately show ?thesis using assms(2 ,3) V-constotal-1-def by blast

qed
then have ψ j ∈ V-constotal using V-constotal-def by auto
moreover have ¬ learn-lim ϕ {ψ j} s

using case-one-not-learn assms(1) by simp
ultimately show ?thesis using learn-lim-closed-subseteq by auto

qed

The next lemma embodies the construction of χ followed by the application of Kleene’s
fixed-point theorem as described in the proof sketch.
lemma goedel-after-prefixes:

fixes vs :: nat list and m :: nat
shows ∃n≥m. ϕ n = vs @ [n] � 0∞

proof −
define f :: partial1 where f ≡ vs � 0∞

then have f ∈ R
using almost0-in-R1 by auto

then obtain n where n:
n ≥ m
ϕ n = (λx. if x = length vs then Some n else f x)
using goedel-at[of f m length vs] by auto

moreover have ϕ n x = (vs @ [n] � 0∞) x for x
proof −

consider x < length vs | x = length vs | x > length vs
by linarith

then show ?thesis
using n f-def by (cases) (auto simp add: prepend-associative)

qed
ultimately show ?thesis by blast

qed

If Case 2 holds for a j ≥ 2 with ϕj = ψj , that is, if ψj ∈ V1, then there is a function in
V , namely ψj , on which S fails. Therefore S does not learn V .
lemma case-two-not-learn-V :

assumes case-two j and j ≥ 2 and ϕ j = ψ j
shows ¬ learn-total ϕ V-constotal s

proof −
define z where z = longest-prefix j
then have z > 0

using longest-prefix-gr-0 [OF assms(1)] by simp

239

define vs where vs = prefix (ψ j) (z − 1)
then have vs ! 0 = j

using psi-at-0 ‹z > 0 › by simp
define a where a = tl vs
then have vs: vs = j # a

using vs-def ‹vs ! 0 = j›
by (metis length-Suc-conv length-prefix list.sel(3) nth-Cons-0)

obtain k where k: k ≥ 2 and phi-k: ϕ k = j # a @ [k] � 0∞

using goedel-after-prefixes[of 2 j # a] by auto
have phi-j: ϕ j = j # a � ↑∞
proof (rule prepend-eqI)

show
∧

x. x < length (j # a) =⇒ ϕ j x ↓= (j # a) ! x
using assms(1 ,3) vs vs-def ‹0 < z›

length-prefix[of ψ j z − 1]
prefix-nth[of - - ψ j]
psi-at-0 [of j]
case-two-psi-longest-prefix[OF - z-def]
longest-prefix[OF - z-def]

by (metis One-nat-def Suc-pred option.collapse)
show

∧
x. ϕ j (length (j # a) + x) ↑

using assms(3) vs-def
by (simp add: vs assms(1) case-two-psi-longest-prefix z-def)

qed
moreover have ϕ k ∈ V-constotal-2
proof (intro V-constotal-2I [of - j a k])

show ϕ k = j # a @ [k] � 0∞

using phi-k .
show 2 ≤ j

using ‹2 ≤ j› .
show 2 ≤ k

using ‹2 ≤ k› .
show ∀ i<length a. a ! i ≤ 1
proof (rule allI , rule impI)

fix i assume i: i < length a
then have Suc i < z

using z-def vs-def length-prefix ‹0 < z› vs
by (metis One-nat-def Suc-mono Suc-pred length-Cons)

have a ! i = vs ! (Suc i)
using vs by simp

also have ... = the (ψ j (Suc i))
using vs-def vs i length-Cons length-prefix prefix-nth
by (metis Suc-mono)

finally show a ! i ≤ 1
using case-two-psi-longest-prefix ‹Suc i < z› z-def
by (metis assms(1) less-or-eq-imp-le not-le-imp-less not-one-less-zero

option.sel zero-less-Suc)
qed

qed (auto simp add: phi-j)
then have ϕ k ∈ V-constotal

using V-constotal-def by auto
moreover have ¬ learn-total ϕ {ϕ k} s
proof −

have ϕ k ∈ R
by (simp add: phi-k almost0-in-R1)

moreover have
∧

x. x < longest-prefix j =⇒ ϕ k x = ψ j x
using phi-k vs-def z-def length-prefix phi-j prepend-associative prepend-at-less

240

by (metis One-nat-def Suc-pred ‹0 < z› ‹vs = j # a› append-Cons assms(3))
ultimately show ?thesis

using case-two-not-learn[OF assms(1)] by simp
qed
ultimately show ¬ learn-total ϕ V-constotal s

using learn-total-closed-subseteq by auto
qed

The strategy S does not learn V in either case.
lemma not-learn-total-V : ¬ learn-total ϕ V-constotal s
proof −

obtain j where j ≥ 2 ϕ j = ψ j
using kleene-fixed-point psi-in-P2 by auto

then show ?thesis
using case-one-not-learn-V learn-total-def case-two-not-learn-V
by (cases case-two j) auto

qed

end

lemma V-not-in-TOTAL: V-constotal /∈ TOTAL
proof (rule ccontr)

assume ¬ V-constotal /∈ TOTAL
then have V-constotal ∈ TOTAL by simp
then have V-constotal ∈ TOTAL-wrt ϕ

by (simp add: TOTAL-wrt-phi-eq-TOTAL)
then obtain s where learn-total ϕ V-constotal s

using TOTAL-wrt-def by auto
then obtain s ′ where s ′: s ′ ∈ R learn-total ϕ V-constotal s ′

using lemma-R-for-TOTAL-simple by blast
then interpret total-cons s ′

by (simp add: total-cons-def)
have ¬ learn-total ϕ V-constotal s ′

by (simp add: not-learn-total-V)
with s ′(2) show False by simp

qed

lemma TOTAL-neq-CONS : TOTAL 6= CONS
using V-not-in-TOTAL V-in-CONS CONS-def by auto

The main result of this section:
theorem TOTAL-subset-CONS : TOTAL ⊂ CONS

using TOTAL-subseteq-CONS TOTAL-neq-CONS by simp

end

2.11 R is not in BC
theory R1-BC

imports Lemma-R
CP-FIN-NUM

begin

We show that U 0 ∪ V 0 is not in BC, which implies R /∈ BC.

241

The proof is by contradiction. Assume there is a strategy S learning U 0 ∪ V 0 behav-
iorally correct in the limit with respect to our standard Gödel numbering ϕ. Thanks to
Lemma R for BC we can assume S to be total. Then we construct a function in U 0 ∪
V 0 for which S fails.
As usual, there is a computable process building prefixes of functions ψj . For every j it
starts with the singleton prefix b = [j] and computes the next prefix from a given prefix
b as follows:

1. Simulate ϕS(b0k)(|b|+ k) for increasing k for an increasing number of steps.

2. Once a k with ϕS(b0k)(|b|+ k) = 0 is found, extend the prefix by 0k1.

There is always such a k because by assumption S learns b0∞ ∈ U0 and thus outputs a
hypothesis for b0∞ on almost all of its prefixes. Therefore for almost all prefixes of the
form b0k, we have ϕS(b0k) = b0∞ and hence ϕS(b0k)(|b|+ k) = 0. But Step 2 constructs
ψj such that ψj(|b| + k) = 1. Therefore S does not hypothesize ψj on the prefix b0k of
ψj . And since the process runs forever, S outputs infinitely many incorrect hypotheses
for ψj and thus does not learn ψj .
Applying Kleene’s fixed-point theorem to ψ ∈ R2 yields a j with ϕj = ψj and thus
ψj ∈ V0. But S does not learn any ψj , contradicting our assumption.
The result R /∈ BC can be obtained more directly by running the process with the empty
prefix, thereby constructing only one function instead of a numbering. This function is
in R, and S fails to learn it by the same reasoning as above. The stronger statement
about U 0 ∪ V 0 will be exploited in Section 2.12.
In the following locale the assumption that S learns U 0 suffices for analyzing the process.
However, in order to arrive at the desired contradiction this assumption is too weak
because the functions built by the process are not in U 0.
locale r1-bc =

fixes s :: partial1
assumes s-in-R1 : s ∈ R and s-learn-U0 : learn-bc ϕ U 0 s

begin

lemma s-learn-prenum:
∧

b. learn-bc ϕ {prenum b} s
using s-learn-U0 U0-altdef learn-bc-closed-subseteq by blast

A recf for the strategy:
definition r-s :: recf where

r-s ≡ SOME rs. recfn 1 rs ∧ total rs ∧ s = (λx. eval rs [x])

lemma r-s-recfn [simp]: recfn 1 r-s
and r-s-total:

∧
x. eval r-s [x] ↓

and eval-r-s:
∧

x. s x = eval r-s [x]
using r-s-def R1-SOME [OF s-in-R1 , of r-s] by simp-all

We begin with the function that finds the k from Step 1 of the construction of ψ.
definition r-find-k ≡

let k = Cn 2 r-pdec1 [Id 2 0];
r = Cn 2 r-result1
[Cn 2 r-pdec2 [Id 2 0],
Cn 2 r-s [Cn 2 r-append-zeros [Id 2 1 , k]],
Cn 2 r-add [Cn 2 r-length [Id 2 1], k]]

242

in Cn 1 r-pdec1 [Mn 1 (Cn 2 r-eq [r , r-constn 1 1])]

lemma r-find-k-recfn [simp]: recfn 1 r-find-k
unfolding r-find-k-def by (simp add: Let-def)

There is always a suitable k, since the strategy learns b0∞ for all b.
lemma learn-bc-prenum-eventually-zero:
∃ k. ϕ (the (s (e-append-zeros b k))) (e-length b + k) ↓= 0

proof −
let ?f = prenum b
have ∃n≥e-length b. ϕ (the (s (?f . n))) = ?f

using learn-bcE s-learn-prenum by (meson le-cases singletonI)
then obtain n where n: n ≥ e-length b ϕ (the (s (?f . n))) = ?f

by auto
define k where k = Suc n − e-length b
let ?e = e-append-zeros b k
have len: e-length ?e = Suc n

using k-def n e-append-zeros-length by simp
have ?f . n = ?e
proof −

have e-length ?e > 0
using len n(1) by simp

moreover have ?f x ↓= e-nth ?e x for x
proof (cases x < e-length b)

case True
then show ?thesis using e-nth-append-zeros by simp

next
case False
then have ?f x ↓= 0 by simp
moreover from False have e-nth ?e x = 0

using e-nth-append-zeros-big by simp
ultimately show ?thesis by simp

qed
ultimately show ?thesis using initI [of ?e] len by simp

qed
with n(2) have ϕ (the (s ?e)) = ?f by simp
then have ϕ (the (s ?e)) (e-length ?e) ↓= 0

using len n(1) by auto
then show ?thesis using e-append-zeros-length by auto

qed

lemma if-eq-eq: (if v = 1 then (0 :: nat) else 1) = 0 =⇒ v = 1
by presburger

lemma r-find-k:
shows eval r-find-k [b] ↓

and let k = the (eval r-find-k [b])
in ϕ (the (s (e-append-zeros b k))) (e-length b + k) ↓= 0

proof −
let ?k = Cn 2 r-pdec1 [Id 2 0]
let ?argt = Cn 2 r-pdec2 [Id 2 0]
let ?argi = Cn 2 r-s [Cn 2 r-append-zeros [Id 2 1 , ?k]]
let ?argx = Cn 2 r-add [Cn 2 r-length [Id 2 1], ?k]
let ?r = Cn 2 r-result1 [?argt, ?argi, ?argx]
define f where f ≡

let k = Cn 2 r-pdec1 [Id 2 0];

243

r = Cn 2 r-result1
[Cn 2 r-pdec2 [Id 2 0],
Cn 2 r-s [Cn 2 r-append-zeros [Id 2 1 , k]],
Cn 2 r-add [Cn 2 r-length [Id 2 1], k]]

in Cn 2 r-eq [r , r-constn 1 1]
then have recfn 2 f by (simp add: Let-def)
have total r-s

by (simp add: r-s-total totalI1)
then have total f

unfolding f-def using Cn-total Mn-free-imp-total by (simp add: Let-def)

have eval ?argi [z, b] = s (e-append-zeros b (pdec1 z)) for z
using r-append-zeros ‹recfn 2 f › eval-r-s by auto

then have eval ?argi [z, b] ↓= the (s (e-append-zeros b (pdec1 z))) for z
using eval-r-s r-s-total by simp

moreover have recfn 2 ?r using ‹recfn 2 f › by auto
ultimately have r : eval ?r [z, b] =

eval r-result1 [pdec2 z, the (s (e-append-zeros b (pdec1 z))), e-length b + pdec1 z]
for z

by simp
then have f : eval f [z, b] ↓= (if the (eval ?r [z, b]) = 1 then 0 else 1) for z

using f-def ‹recfn 2 f › prim-recfn-total by (auto simp add: Let-def)

have ∃ k. ϕ (the (s (e-append-zeros b k))) (e-length b + k) ↓= 0
using s-learn-prenum learn-bc-prenum-eventually-zero by auto

then obtain k where ϕ (the (s (e-append-zeros b k))) (e-length b + k) ↓= 0
by auto

then obtain t where eval r-result1 [t, the (s (e-append-zeros b k)), e-length b + k] ↓= Suc 0
using r-result1-converg-phi(1) by blast

then have t: eval r-result1 [t, the (s (e-append-zeros b k)), e-length b + k] ↓= Suc 0
by simp

let ?z = prod-encode (k, t)
have eval ?r [?z, b] ↓= Suc 0

using t r by (metis fst-conv prod-encode-inverse snd-conv)
with f have fzb: eval f [?z, b] ↓= 0 by simp
moreover have eval (Mn 1 f) [b] =
(if (∃ z. eval f ([z, b]) ↓= 0)
then Some (LEAST z . eval f [z, b] ↓= 0)
else None)

using eval-Mn-total[of 1 f [b]] ‹total f › ‹recfn 2 f › by simp
ultimately have mn1f : eval (Mn 1 f) [b] ↓= (LEAST z . eval f [z, b] ↓= 0)

by auto
with fzb have eval f [the (eval (Mn 1 f) [b]), b] ↓= 0 (is eval f [?zz, b] ↓= 0)

using ‹total f › ‹recfn 2 f › LeastI-ex[of %z. eval f [z, b] ↓= 0] by auto
moreover have eval f [?zz, b] ↓= (if the (eval ?r [?zz, b]) = 1 then 0 else 1)

using f by simp
ultimately have (if the (eval ?r [?zz, b]) = 1 then (0 :: nat) else 1) = 0 by auto
then have the (eval ?r [?zz, b]) = 1

using if-eq-eq[of the (eval ?r [?zz, b])] by simp
then have

eval r-result1
[pdec2 ?zz, the (s (e-append-zeros b (pdec1 ?zz))), e-length b + pdec1 ?zz] ↓=

1
using r r-result1-total r-result1-prim totalE
by (metis length-Cons list.size(3) numeral-3-eq-3 option.collapse)

244

then have ∗: ϕ (the (s (e-append-zeros b (pdec1 ?zz)))) (e-length b + pdec1 ?zz) ↓= 0
by (simp add: r-result1-some-phi)

define Mn1f where Mn1f = Mn 1 f
then have eval Mn1f [b] ↓= ?zz

using mn1f by auto
moreover have recfn 1 (Cn 1 r-pdec1 [Mn1f])

using ‹recfn 2 f › Mn1f-def by simp
ultimately have eval (Cn 1 r-pdec1 [Mn1f]) [b] = eval r-pdec1 [the (eval (Mn1f) [b])]

by auto
then have eval (Cn 1 r-pdec1 [Mn1f]) [b] = eval r-pdec1 [?zz]

using Mn1f-def by blast
then have 1 : eval (Cn 1 r-pdec1 [Mn1f]) [b] ↓= pdec1 ?zz

by simp
moreover have recfn 1 (Cn 1 S [Cn 1 r-pdec1 [Mn1f]])

using ‹recfn 2 f › Mn1f-def by simp
ultimately have eval (Cn 1 S [Cn 1 r-pdec1 [Mn1f]]) [b] =

eval S [the (eval (Cn 1 r-pdec1 [Mn1f]) [b])]
by simp

then have eval (Cn 1 S [Cn 1 r-pdec1 [Mn1f]]) [b] = eval S [pdec1 ?zz]
using 1 by simp

then have eval (Cn 1 S [Cn 1 r-pdec1 [Mn1f]]) [b] ↓= Suc (pdec1 ?zz)
by simp

moreover have eval r-find-k [b] = eval (Cn 1 r-pdec1 [Mn1f]) [b]
unfolding r-find-k-def Mn1f-def f-def by metis

ultimately have r-find-ksb: eval r-find-k [b] ↓= pdec1 ?zz
using 1 by simp

then show eval r-find-k [b] ↓ by simp-all

from r-find-ksb have the (eval r-find-k [b]) = pdec1 ?zz
by simp

moreover have ϕ (the (s (e-append-zeros b (pdec1 ?zz)))) (e-length b + pdec1 ?zz) ↓= 0
using ∗ by simp

ultimately show let k = the (eval r-find-k [b])
in ϕ (the (s (e-append-zeros b k))) (e-length b + k) ↓= 0

by simp
qed

lemma r-find-k-total: total r-find-k
by (simp add: s-learn-prenum r-find-k(1) totalI1)

The following function represents one iteration of the process.
abbreviation r-next ≡

Cn 3 r-snoc [Cn 3 r-append-zeros [Id 3 1 , Cn 3 r-find-k [Id 3 1]], r-constn 2 1]

Using r-next we define the function r-prefixes that computes the prefix after every iter-
ation of the process.
definition r-prefixes :: recf where

r-prefixes ≡ Pr 1 r-singleton-encode r-next

lemma r-prefixes-recfn: recfn 2 r-prefixes
unfolding r-prefixes-def by simp

lemma r-prefixes-total: total r-prefixes
proof −

245

have recfn 3 r-next by simp
then have total r-next

using ‹recfn 3 r-next› r-find-k-total Cn-total Mn-free-imp-total by auto
then show ?thesis

by (simp add: Mn-free-imp-total Pr-total r-prefixes-def)
qed

lemma r-prefixes-0 : eval r-prefixes [0 , j] ↓= list-encode [j]
unfolding r-prefixes-def by simp

lemma r-prefixes-Suc:
eval r-prefixes [Suc n, j] ↓=
(let b = the (eval r-prefixes [n, j])
in e-snoc (e-append-zeros b (the (eval r-find-k [b]))) 1)

proof −
have recfn 3 r-next by simp
then have total r-next

using ‹recfn 3 r-next› r-find-k-total Cn-total Mn-free-imp-total by auto
have eval-next: eval r-next [t, v, j] ↓=

e-snoc (e-append-zeros v (the (eval r-find-k [v]))) 1
for t v j

using r-find-k-total ‹recfn 3 r-next› r-append-zeros by simp
then have eval r-prefixes [Suc n, j] = eval r-next [n, the (eval r-prefixes [n, j]), j]

using r-prefixes-total by (simp add: r-prefixes-def)
then show eval r-prefixes [Suc n, j] ↓=
(let b = the (eval r-prefixes [n, j])
in e-snoc (e-append-zeros b (the (eval r-find-k [b]))) 1)

using eval-next by metis
qed

Since r-prefixes is total, we can get away with introducing a total function.
definition prefixes :: nat ⇒ nat ⇒ nat where

prefixes j t ≡ the (eval r-prefixes [t, j])

lemma prefixes-Suc:
prefixes j (Suc t) =

e-snoc (e-append-zeros (prefixes j t) (the (eval r-find-k [prefixes j t]))) 1
unfolding prefixes-def using r-prefixes-Suc by (simp-all add: Let-def)

lemma prefixes-Suc-length:
e-length (prefixes j (Suc t)) =

Suc (e-length (prefixes j t) + the (eval r-find-k [prefixes j t]))
using e-append-zeros-length prefixes-Suc by simp

lemma prefixes-length-mono: e-length (prefixes j t) < e-length (prefixes j (Suc t))
using prefixes-Suc-length by simp

lemma prefixes-length-mono ′: e-length (prefixes j t) ≤ e-length (prefixes j (t + d))
proof (induction d)

case 0
then show ?case by simp

next
case (Suc d)
then show ?case using prefixes-length-mono le-less-trans by fastforce

qed

246

lemma prefixes-length-lower-bound: e-length (prefixes j t) ≥ Suc t
proof (induction t)

case 0
then show ?case by (simp add: prefixes-def r-prefixes-0)

next
case (Suc t)
moreover have Suc (e-length (prefixes j t)) ≤ e-length (prefixes j (Suc t))

using prefixes-length-mono by (simp add: Suc-leI)
ultimately show ?case by simp

qed

lemma prefixes-Suc-nth:
assumes x < e-length (prefixes j t)
shows e-nth (prefixes j t) x = e-nth (prefixes j (Suc t)) x

proof −
define k where k = the (eval r-find-k [prefixes j t])
let ?u = e-append-zeros (prefixes j t) k
have prefixes j (Suc t) =

e-snoc (e-append-zeros (prefixes j t) (the (eval r-find-k [prefixes j t]))) 1
using prefixes-Suc by simp

with k-def have prefixes j (Suc t) = e-snoc ?u 1
by simp

then have e-nth (prefixes j (Suc t)) x = e-nth (e-snoc ?u 1) x
by simp

moreover have x < e-length ?u
using assms e-append-zeros-length by auto

ultimately have e-nth (prefixes j (Suc t)) x = e-nth ?u x
using e-nth-snoc-small by simp

moreover have e-nth ?u x = e-nth (prefixes j t) x
using assms e-nth-append-zeros by simp

ultimately show e-nth (prefixes j t) x = e-nth (prefixes j (Suc t)) x
by simp

qed

lemma prefixes-Suc-last: e-nth (prefixes j (Suc t)) (e-length (prefixes j (Suc t)) − 1) = 1
using prefixes-Suc by simp

lemma prefixes-le-nth:
assumes x < e-length (prefixes j t)
shows e-nth (prefixes j t) x = e-nth (prefixes j (t + d)) x

proof (induction d)
case 0
then show ?case by simp

next
case (Suc d)
have x < e-length (prefixes j (t + d))

using s-learn-prenum assms prefixes-length-mono ′

by (simp add: less-eq-Suc-le order-trans-rules(23))
then have e-nth (prefixes j (t + d)) x = e-nth (prefixes j (t + Suc d)) x

using prefixes-Suc-nth by simp
with Suc show ?case by simp

qed

The numbering ψ is defined via prefixes.
definition psi :: partial2 (‹ψ›) where
ψ j x ≡ Some (e-nth (prefixes j (Suc x)) x)

247

lemma psi-in-R2 : ψ ∈ R2

proof
define r where r ≡ Cn 2 r-nth [Cn 2 r-prefixes [Cn 2 S [Id 2 1], Id 2 0], Id 2 1]
then have recfn 2 r

using r-prefixes-recfn by simp
then have eval r [j, x] ↓= e-nth (prefixes j (Suc x)) x for j x

unfolding r-def prefixes-def using r-prefixes-total r-prefixes-recfn e-nth by simp
then have eval r [j, x] = ψ j x for j x

unfolding psi-def by simp
then show ψ ∈ P2

using ‹recfn 2 r› by auto
show total2 ψ

unfolding psi-def by auto
qed

lemma psi-eq-nth-prefixes:
assumes x < e-length (prefixes j t)
shows ψ j x ↓= e-nth (prefixes j t) x

proof (cases Suc x < t)
case True
have x ≤ e-length (prefixes j x)

using prefixes-length-lower-bound by (simp add: Suc-leD)
also have ... < e-length (prefixes j (Suc x))

using prefixes-length-mono s-learn-prenum by simp
finally have x < e-length (prefixes j (Suc x)) .
with True have e-nth (prefixes j (Suc x)) x = e-nth (prefixes j t) x

using prefixes-le-nth[of x j Suc x t − Suc x] by simp
then show ?thesis using psi-def by simp

next
case False
then have e-nth (prefixes j (Suc x)) x = e-nth (prefixes j t) x

using prefixes-le-nth[of x j t Suc x − t] assms by simp
then show ?thesis using psi-def by simp

qed

lemma psi-at-0 : ψ j 0 ↓= j
using psi-eq-nth-prefixes[of 0 j 0] prefixes-length-lower-bound[of 0 j]
by (simp add: prefixes-def r-prefixes-0)

The prefixes output by the process prefixes j are indeed prefixes of ψj .
lemma prefixes-init-psi: ψ j . (e-length (prefixes j (Suc t)) − 1) = prefixes j (Suc t)
proof (rule initI [of prefixes j (Suc t)])

let ?e = prefixes j (Suc t)
show e-length ?e > 0

using prefixes-length-lower-bound[of Suc t j] by auto
show

∧
x. x < e-length ?e =⇒ ψ j x ↓= e-nth ?e x

using prefixes-Suc-nth psi-eq-nth-prefixes by simp
qed

Every prefix of ψj generated by the process prefixes j (except for the initial one) is of
the form b0k1. But k is chosen such that ϕS(b0k)(|b|+ k) = 0 6= 1 = b0k1|b|+k. Therefore
the hypothesis S(b0k) is incorrect for ψj .
lemma hyp-wrong-at-last:
ϕ (the (s (e-butlast (prefixes j (Suc t))))) (e-length (prefixes j (Suc t)) − 1) 6=

248

ψ j (e-length (prefixes j (Suc t)) − 1)
(is ?lhs 6= ?rhs)

proof −
let ?b = prefixes j t
let ?k = the (eval r-find-k [?b])
let ?x = e-length (prefixes j (Suc t)) − 1
have e-butlast (prefixes j (Suc t)) = e-append-zeros ?b ?k

using s-learn-prenum prefixes-Suc by simp
then have ?lhs = ϕ (the (s (e-append-zeros ?b ?k))) ?x

by simp
moreover have ?x = e-length ?b + ?k

using prefixes-Suc-length by simp
ultimately have ?lhs = ϕ (the (s (e-append-zeros ?b ?k))) (e-length ?b + ?k)

by simp
then have ?lhs ↓= 0

using r-find-k(2) r-s-total s-learn-prenum by metis
moreover have ?x < e-length (prefixes j (Suc t))

using prefixes-length-lower-bound le-less-trans linorder-not-le s-learn-prenum
by fastforce

ultimately have ?rhs ↓= e-nth (prefixes j (Suc t)) ?x
using psi-eq-nth-prefixes[of ?x j Suc t] by simp

moreover have e-nth (prefixes j (Suc t)) ?x = 1
using prefixes-Suc prefixes-Suc-last by simp

ultimately have ?rhs ↓= 1 by simp
with ‹?lhs ↓= 0 › show ?thesis by simp

qed

corollary hyp-wrong: ϕ (the (s (e-butlast (prefixes j (Suc t))))) 6= ψ j
using hyp-wrong-at-last[of j t] by auto

For all j, the strategy S outputs infinitely many wrong hypotheses for ψj
lemma infinite-hyp-wrong: ∃m>n. ϕ (the (s (ψ j . m))) 6= ψ j
proof −

let ?b = prefixes j (Suc (Suc n))
let ?bb = e-butlast ?b
have len-b: e-length ?b > Suc (Suc n)

using prefixes-length-lower-bound by (simp add: Suc-le-lessD)
then have len-bb: e-length ?bb > Suc n by simp
define m where m = e-length ?bb − 1
with len-bb have m > n by simp
have ψ j . m = ?bb
proof −

have ψ j . (e-length ?b − 1) = ?b
using prefixes-init-psi by simp

then have ψ j . (e-length ?b − 2) = ?bb
using init-butlast-init psi-in-R2 R2-proj-R1 R1-imp-total1 len-bb length-init
by (metis Suc-1 diff-diff-left length-butlast length-greater-0-conv

list.size(3) list-decode-encode not-less0 plus-1-eq-Suc)
then show ?thesis by (metis diff-Suc-1 length-init m-def)

qed
moreover have ϕ (the (s ?bb)) 6= ψ j

using hyp-wrong by simp
ultimately have ϕ (the (s (ψ j . m))) 6= ψ j

by simp
with ‹m > n› show ?thesis by auto

qed

249

lemma U0-V0-not-learn-bc: ¬ learn-bc ϕ (U 0 ∪ V 0) s
proof −

obtain j where j: ϕ j = ψ j
using R2-imp-P2 kleene-fixed-point psi-in-R2 by blast

moreover have ∃m>n. ϕ (the (s ((ψ j) . m))) 6= ψ j for n
using infinite-hyp-wrong[of - j] by simp

ultimately have ¬ learn-bc ϕ {ψ j} s
using infinite-hyp-wrong-not-BC by simp

moreover have ψ j ∈ V 0

proof −
have ψ j ∈ R (is ?f ∈ R)

using psi-in-R2 by simp
moreover have ϕ (the (?f 0)) = ?f

using j psi-at-0 [of j] by simp
ultimately show ?thesis by (simp add: V0-def)

qed
ultimately show ¬ learn-bc ϕ (U 0 ∪ V 0) s

using learn-bc-closed-subseteq by auto
qed

end

lemma U0-V0-not-in-BC : U 0 ∪ V 0 /∈ BC
proof

assume in-BC : U 0 ∪ V 0 ∈ BC
then have U 0 ∪ V 0 ∈ BC-wrt ϕ

using BC-wrt-phi-eq-BC by simp
then obtain s where learn-bc ϕ (U 0 ∪ V 0) s

using BC-wrt-def by auto
then obtain s ′ where s ′: s ′ ∈ R learn-bc ϕ (U 0 ∪ V 0) s ′

using lemma-R-for-BC-simple by blast
then have learn-U0 : learn-bc ϕ U 0 s ′

using learn-bc-closed-subseteq[of ϕ U 0 ∪ V 0 s ′] by simp
then interpret r1-bc s ′

by (simp add: r1-bc-def s ′(1))
have ¬ learn-bc ϕ (U 0 ∪ V 0) s ′

using learn-bc-closed-subseteq U0-V0-not-learn-bc by simp
with s ′(2) show False by simp

qed

theorem R1-not-in-BC : R /∈ BC
proof −

have U 0 ∪ V 0 ⊆ R
using V0-def U0-in-NUM by auto

then show ?thesis
using U0-V0-not-in-BC BC-closed-subseteq by auto

qed

end

2.12 The union of classes
theory Union

imports R1-BC TOTAL-CONS

250

begin

None of the inference types introduced in this chapter are closed under union of classes.
For all inference types except FIN this follows from U0-V0-not-in-BC.
lemma not-closed-under-union:
∀ I∈{CP, TOTAL, CONS , LIM , BC}. U 0 ∈ I ∧ V 0 ∈ I ∧ U 0 ∪ V 0 /∈ I
using U0-in-CP U0-in-NUM V0-in-FIN

FIN-subseteq-CP
NUM-subseteq-TOTAL
CP-subseteq-TOTAL
TOTAL-subseteq-CONS
CONS-subseteq-Lim
Lim-subseteq-BC
U0-V0-not-in-BC

by blast

In order to show the analogous result for FIN consider the classes {0∞} and {0n10∞ |
n ∈ N}. The former can be learned finitely by a strategy that hypothesizes 0∞ for
every input. The latter can be learned finitely by a strategy that waits for the 1 and
hypothesizes the only function in the class with a 1 at that position. However, the union
of both classes is not in FIN. This is because any FIN strategy has to hypothesize 0∞

on some prefix of the form 0n. But the strategy then fails for the function 0n10∞.
lemma singleton-in-FIN : f ∈ R =⇒ {f } ∈ FIN
proof −

assume f ∈ R
then obtain i where i: ϕ i = f

using phi-universal by blast
define s :: partial1 where s = (λ-. Some (Suc i))
then have s ∈ R

using const-in-Prim1 [of Suc i] by simp
have learn-fin ϕ {f } s
proof (intro learn-finI)

show environment ϕ {f } s
using ‹s ∈ R› ‹f ∈ R› by (simp add: phi-in-P2)

show ∃ i n0. ϕ i = g ∧ (∀n<n0. s (g . n) ↓= 0) ∧ (∀n≥n0. s (g . n) ↓= Suc i)
if g ∈ {f } for g

proof −
from that have g = f by simp
then have ϕ i = g

using i by simp
moreover have ∀n<0 . s (g . n) ↓= 0 by simp
moreover have ∀n≥0 . s (g . n) ↓= Suc i

using s-def by simp
ultimately show ?thesis by auto

qed
qed
then show {f } ∈ FIN using FIN-def by auto

qed

definition U-single :: partial1 set where
U-single ≡ {(λx. if x = n then Some 1 else Some 0)| n. n ∈ UNIV }

lemma U-single-in-FIN : U-single ∈ FIN
proof −

define psi :: partial2 where psi ≡ λn x. if x = n then Some 1 else Some 0

251

have psi ∈ R2

using psi-def by (intro R2I [of Cn 2 r-not [r-eq]]) auto
define s :: partial1 where

s ≡ λb. if findr b ↓= e-length b then Some 0 else Some (Suc (the (findr b)))
have s ∈ R
proof (rule R1I)

let ?r = Cn 1 r-ifeq [r-findr , r-length, Z , Cn 1 S [r-findr]]
show recfn 1 ?r by simp
show total ?r by auto
show eval ?r [b] = s b for b
proof −

let ?b = the (findr b)
have eval ?r [b] = (if ?b = e-length b then Some 0 else Some (Suc (?b)))

using findr-total by simp
then show eval ?r [b] = s b

by (metis findr-total option.collapse option.inject s-def)
qed

qed
have U-single ⊆ R
proof

fix f
assume f ∈ U-single
then obtain n where f = (λx. if x = n then Some 1 else Some 0)

using U-single-def by auto
then have f = psi n

using psi-def by simp
then show f ∈ R

using ‹psi ∈ R2› by simp
qed
have learn-fin psi U-single s
proof (rule learn-finI)

show environment psi U-single s
using ‹psi ∈ R2› ‹s ∈ R› ‹U-single ⊆ R› by simp

show ∃ i n0. psi i = f ∧ (∀n<n0. s (f . n) ↓= 0) ∧ (∀n≥n0. s (f . n) ↓= Suc i)
if f ∈ U-single for f

proof −
from that obtain i where i: f = (λx. if x = i then Some 1 else Some 0)

using U-single-def by auto
then have psi i = f

using psi-def by simp
moreover have ∀n<i. s (f . n) ↓= 0

using i s-def findr-def by simp
moreover have ∀n≥i. s (f . n) ↓= Suc i
proof (rule allI , rule impI)

fix n
assume n ≥ i
let ?e = init f n
have ∃ i<e-length ?e. e-nth ?e i 6= 0

using ‹n ≥ i› i by simp
then have less: the (findr ?e) < e-length ?e

and nth-e: e-nth ?e (the (findr ?e)) 6= 0
using findr-ex by blast+

then have s ?e ↓= Suc (the (findr ?e))
using s-def by auto

moreover have the (findr ?e) = i
using nth-e less i by (metis length-init nth-init option.sel)

252

ultimately show s ?e ↓= Suc i by simp
qed
ultimately show ?thesis by auto

qed
qed
then show U-single ∈ FIN using FIN-def by blast

qed

lemma zero-U-single-not-in-FIN : {0∞} ∪ U-single /∈ FIN
proof

assume {0∞} ∪ U-single ∈ FIN
then obtain psi s where learn: learn-fin psi ({0∞} ∪ U-single) s

using FIN-def by blast
then have learn-fin psi {0∞} s

using learn-fin-closed-subseteq by auto
then obtain i n0 where i:

psi i = 0∞

∀n<n0. s (0∞ . n) ↓= 0
∀n≥n0. s (0∞ . n) ↓= Suc i
using learn-finE(2) by blast

let ?f = λx. if x = Suc n0 then Some 1 else Some 0
have ?f 6= 0∞ by (metis option.inject zero-neq-one)
have ?f ∈ U-single

using U-single-def by auto
then have learn-fin psi {?f } s

using learn learn-fin-closed-subseteq by simp
then obtain j m0 where j:

psi j = ?f
∀n<m0. s (?f . n) ↓= 0
∀n≥m0. s (?f . n) ↓= Suc j
using learn-finE(2) by blast

consider
(less) m0 < n0 | (eq) m0 = n0 | (gr) m0 > n0

by linarith
then show False
proof (cases)

case less
then have s (0∞. m0) ↓= 0

using i by simp
moreover have 0∞ . m0 = ?f . m0

using less init-eqI [of m0 ?f 0∞] by simp
ultimately have s (?f . m0) ↓= 0 by simp
then show False using j by simp

next
case eq
then have 0∞ . m0 = ?f . m0

using init-eqI [of m0 ?f 0∞] by simp
then have s (0∞ . m0) = s (?f . m0) by simp
then have i = j

using i j eq by simp
then have psi i = psi j by simp
then show False using ‹?f 6= 0∞› i j by simp

next
case gr
have 0∞ . n0 = ?f . n0

using init-eqI [of n0 ?f 0∞] by simp

253

moreover have s (0∞ . n0) ↓= Suc i
using i by simp

moreover have s (?f . n0) ↓= 0
using j gr by simp

ultimately show False by simp
qed

qed

lemma FIN-not-closed-under-union: ∃U V . U ∈ FIN ∧ V ∈ FIN ∧ U ∪ V /∈ FIN
proof −

have {0∞} ∈ FIN
using singleton-in-FIN const-in-Prim1 by simp

moreover have U-single ∈ FIN
using U-single-in-FIN by simp

ultimately show ?thesis
using zero-U-single-not-in-FIN by blast

qed

In contrast to the inference types, NUM is closed under the union of classes. The
total numberings that exist for each NUM class can be interleaved to produce a total
numbering encompassing the union of the classes. To define the interleaving, modulo
and division by two will be helpful.
definition r-div2 ≡

r-shrink
(Pr 1 Z
(Cn 3 r-ifle
[Cn 3 r-mul [r-constn 2 2 , Cn 3 S [Id 3 0]], Id 3 2 , Cn 3 S [Id 3 1], Id 3 1]))

lemma r-div2-prim [simp]: prim-recfn 1 r-div2
unfolding r-div2-def by simp

lemma r-div2 [simp]: eval r-div2 [n] ↓= n div 2
proof −

let ?p = Pr 1 Z
(Cn 3 r-ifle
[Cn 3 r-mul [r-constn 2 2 , Cn 3 S [Id 3 0]], Id 3 2 , Cn 3 S [Id 3 1], Id 3 1])

have eval ?p [i, n] ↓= min (n div 2) i for i
by (induction i) auto

then have eval ?p [n, n] ↓= n div 2 by simp
then show ?thesis unfolding r-div2-def by simp

qed

definition r-mod2 ≡ Cn 1 r-sub [Id 1 0 , Cn 1 r-mul [r-const 2 , r-div2]]

lemma r-mod2-prim [simp]: prim-recfn 1 r-mod2
unfolding r-mod2-def by simp

lemma r-mod2 [simp]: eval r-mod2 [n] ↓= n mod 2
unfolding r-mod2-def using Rings.semiring-modulo-class.minus-mult-div-eq-mod
by auto

lemma NUM-closed-under-union:
assumes U ∈ NUM and V ∈ NUM
shows U ∪ V ∈ NUM

proof −

254

from assms obtain psi-u psi-v where
psi-u: psi-u ∈ R2

∧
f . f ∈ U =⇒ ∃ i. psi-u i = f and

psi-v: psi-v ∈ R2
∧

f . f ∈ V =⇒ ∃ i. psi-v i = f
by fastforce

define psi where psi ≡ λi. if i mod 2 = 0 then psi-u (i div 2) else psi-v (i div 2)
from psi-u(1) obtain u where u: recfn 2 u total u

∧
x y. eval u [x, y] = psi-u x y

by auto
from psi-v(1) obtain v where v: recfn 2 v total v

∧
x y. eval v [x, y] = psi-v x y

by auto
let ?r-psi = Cn 2 r-ifz
[Cn 2 r-mod2 [Id 2 0],
Cn 2 u [Cn 2 r-div2 [Id 2 0], Id 2 1],
Cn 2 v [Cn 2 r-div2 [Id 2 0], Id 2 1]]

show ?thesis
proof (rule NUM-I [of psi])

show psi ∈ R2

proof (rule R2I)
show recfn 2 ?r-psi

using u(1) v(1) by simp
show eval ?r-psi [x, y] = psi x y for x y

using u v psi-def prim-recfn-total R2-imp-total2 [OF psi-u(1)]
R2-imp-total2 [OF psi-v(1)]

by simp
moreover have psi x y ↓ for x y

using psi-def psi-u(1) psi-v(1) by simp
ultimately show total ?r-psi

using ‹recfn 2 ?r-psi› totalI2 by simp
qed
show ∃ i. psi i = f if f ∈ U ∪ V for f
proof (cases f ∈ U)

case True
then obtain j where psi-u j = f

using psi-u(2) by auto
then have psi (2 ∗ j) = f

using psi-def by simp
then show ?thesis by auto

next
case False
then have f ∈ V

using that by simp
then obtain j where psi-v j = f

using psi-v(2) by auto
then have psi (Suc (2 ∗ j)) = f

using psi-def by simp
then show ?thesis by auto

qed
qed

qed

end

255

Bibliography

[1] D. Angluin and C. H. Smith. Inductive inference. In Encyclopedia of Artificial
Intelligence, pages 409–418. J. Wiley and Sons, New York, 1987.

[2] J. M. Barzdin. Two theorems on the limiting synthesis of functions. In Theory of
Algorithms and Programs, volume 1, pages 82–88. Latvian State University, Riga,
1974. In Russian.

[3] J. M. Barzdin. Inductive inference of automata, functions and programs. In Amer.
Math. Soc. Transl., pages 107–122, 1977.

[4] Y. M. Barzdin. Inductive inference of automata, functions and programs. In Pro-
ceedings International Congress of Mathematics, pages 455–460, 1974.

[5] L. Blum and M. Blum. Toward a mathematical theory of inductive inference. In-
form. Control, 28(2):125–155, June 1975.

[6] J. Case and C. H. Smith. Comparison of identification criteria for machine inductive
inference. Theoret. Comput. Sci., 25:193–220, 1983.

[7] R. Freivalds, E. B. Kinber, and R. Wiehagen. How inductive inference strategies
discover their errors. Inform. Comput., 118(2):208–226, 1995.

[8] E. M. Gold. Limiting recursion. J. Symbolic Logic, 30:28–48, 1965.

[9] E. M. Gold. Language identification in the limit. Inform. Control, 10(5):447–474,
1967.

[10] K. P. Jantke and H.-R. Beick. Combining postulates of naturalness in inductive
inference. Elektronische Informationsverarbeitung und Kybernetik, 17(8/9):465–484,
1981.

[11] S. C. Kleene. Recursive predicates and quantifiers. Trans. Amer. Math. Soc.,
53(1):41–73, 1943.

[12] H. Rogers, Jr. Theory of Recursive Functions and Effective Computability. The
MIT Press, 2nd edition, 1987.

[13] R. J. Solomonoff. A formal theory of inductive inference: Part 1. Inform. Control,
7:1–22, 1964.

[14] R. J. Solomonoff. A formal theory of inductive inference: Part 2. Inform. Control,
7:224–254, 1964.

[15] R. Wiehagen. Limes-Erkennung rekursiver Funktionen durch spezielle Strategien.
Journal of Information Processing and Cybernetics (EIK), 12:93–99, 1976.

256

[16] R. Wiehagen and T. Zeugmann. Ignoring data may be the only way to learn
efficiently. J. of Experimental and Theoret. Artif. Intell., 6(1):131–144, 1994.

[17] Wikipedia contributors. Kleene’s recursion theorem — Wikipedia, the free encyclo-
pedia, 2020. [Online; accessed 28-March-2020].

[18] J. Xu, X. Zhang, C. Urban, and S. J. C. Joosten. Universal turing machine.
Archive of Formal Proofs, Feb. 2019. http://isa-afp.org/entries/Universal_Turing_
Machine.html, Formal proof development.

257

http://isa-afp.org/entries/Universal_Turing_Machine.html
http://isa-afp.org/entries/Universal_Turing_Machine.html

	Partial recursive functions
	Basic definitions
	Partial recursive functions
	Extensional equality
	Primitive recursive and total functions

	Simple functions
	Manipulating parameters
	Arithmetic and logic
	Comparison and conditions

	The halting problem
	Encoding tuples and lists
	Pairs and tuples
	Lists

	A universal partial recursive function
	A step function
	Encoding partial recursive functions
	The step function on encoded configurations
	The step function as a partial recursive function
	The universal function

	Applications of the universal function
	Lazy conditional evaluation
	Enumerating the domains of partial recursive functions
	Concurrent evaluation of functions

	Kleene normal form and the number of -operations
	The s-m-n theorem
	Fixed-point theorems
	Rogers's fixed-point theorem
	Kleene's fixed-point theorem
	Smullyan's double fixed-point theorem

	Decidable and recursively enumerable sets
	Rice's theorem
	Partial recursive functions as actual functions
	The definitions
	Some simple properties
	The Gödel numbering 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000
	Fixed-point theorems

	Inductive inference of recursive functions
	Preliminaries
	The prefixes of a function
	NUM

	Types of inference
	LIM: Learning in the limit
	BC: Behaviorally correct learning in the limit
	CONS: Learning in the limit with consistent hypotheses
	TOTAL: Learning in the limit with total hypotheses
	CP: Learning in the limit with class-preserving hypotheses
	FIN: Finite learning

	FIN is a proper subset of CP
	NUM and FIN are incomparable
	NUM and CP are incomparable
	NUM is a proper subset of TOTAL
	CONS is a proper subset of LIM
	Lemma R
	Strong Lemma R for LIM, FIN, and BC
	Weaker Lemma R for CP and TOTAL
	No Lemma R for CONS

	LIM is a proper subset of BC
	Enumerating enough total strategies
	The diagonalization process
	The separating class
	The separating class is in BC

	TOTAL is a proper subset of CONS
	TOTAL is a subset of CONS
	The separating class

	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 R is not in BC
	The union of classes

