The meta theory of the
Incredible Proof Machine

Joachim Breitner Denis Lohner

March 17, 2025

The Incredible Proof Machine is an interactive visual theorem prover which represents
proofs as port graphs. We model this proof representation in Isabelle, and prove that it is
just as powerful as natural deduction.

Contents
1 Introduction 2
2 Auxiliary theories 4
2.1 Entailment 4
2.2 Indexed FSet e 4
2.3 Rose Tree. e e s 5
2.3.1 Therose tree data type L L 5
2.3.2 Theset of pathsinarosetree.o 6
2.3.3 Indexing intoarosetree L Lo 6
3 Abstract formulas, rules and tasks 8
3.1 Abstract Formula e 8
3.2 Abstract Rules e 9
4 Incredible Proof Graphs 13
4.1 Incredible Signatures 13
4.2 Incredible Deduction e 14
4.3 Abstract._Rules To Incredible 20
5 Natural Deduction 23
5.1 Natural Deduction. e 23
6 Correctness 25
6.1 Incredible Correctness s 25
7 Completeness 28
7.1 Incredible Trees e 28
7.2 Build Incredible Tree e 34
7.3 Incredible_ Completeness 35

8 Instantiations 41

8.1 Propositional _Formulas 41
8.2 Incredible Propositional o o 41
8.3 Incredible Propositional Tasks 43

8.3.1 Task 1.1 e 43

8.3.2 Task 2.11 45
8.4 Predicate Formulas 46
8.5 Incredible Predicate 50
8.6 Incredible Predicate Tasks o 51

1 Introduction

The Incredible Proof Machine (http://incredible.pm) is an educational tool that allows the user to
prove theorems just by dragging proof blocks (corresponding to proof rules) onto a canvas, and con-
necting them correctly.

In the ITP 2016 paper [Brel6] the first author formally describes the shape of these graphs, as port
graphs, and gives the necessary conditions for when we consider such a graph a valid proof graph. The
present Isabelle formalization implements these definitions in Isabelle, and furthermore proves that
such proof graphs are just as powerful as natural deduction.

All this happens with regard to an abstract set of formulas (theory Abstract Formula) and an abstract
set of logic rules (theory Abstract Rules) and can thus be instantiated with various logics.

This formalization covers the following aspects:

e We formalize the definition of port graphs, proof graphs and the conditions for such a proof
graph to be a valid graph (theory Incredible_Deduction).

o We provide a formal description of natural deduction (theory Natural Deduction), which con-
nects to the existing theories in the AFP entry Abstract Completeness [BPT14].

o For every proof graph, we construct a corresponding natural deduction derivation tree (theory
Incredible_ Correctness).

o Conversely, if we have a natural deduction derivation tree, we can construct a proof graph thereof
(theory Incredible_ Completeness).

This is the much harder direction, mostly because the freshness side condition for locally fixed
constants (such as in the introduction rule for the universal quantifier) is a local check in natural
deduction, but a global check in proofs graphs, and thus some elaborate renaming has to occur
(globalize in Incredible_ Trees).

e To explain our abstract locales, and ensure that the assumptions are consistent, we provide
example instantiations for them.

It does not cover the unification procedure and expects that a suitable instantiation is already given.
It also does not cover the creation and use of custom blocks, which abstract over proofs and thus
correspond to lemmas in Isabelle.

Acknowledgements

We would like to thank Andreas Lochbihler for helpful comments.

http://incredible.pm

References

[BPT14] Jasmin Christian Blanchette, Andrei Popescu, and Dmitriy Traytel, Abstract completeness,
Archive of Formal Proofs (2014), http://isa-afp.org/entries/Abstract_ Completeness.shtml,
Formal proof development.

[Brel6] Joachim Breitner, Visual theorem proving with the Incredible Proof Machine, ITP, 2016.

http://isa-afp.org/entries/Abstract_Completeness.shtml

2 Auxiliary theories

2.1 Entailment

theory Entailment
imports Main HOL— Library.FSet
begin

type-synonym form entailment = ('form fset x 'form)

abbreviation entails :: 'form fset = 'form = 'form entailment (infix - 50)
where a F ¢ = (qa, ¢)

fun add-ctzt :: 'form fset = 'form entailment = 'form entailment where
add-ctzt A (T'+ ¢) = (T'|U| A F ¢)

end

2.2 Indexed_FSet

theory Indezed-FSet
imports

HOL—Library.FSet
begin

It is convenient to address the members of a finite set by a natural number, and also to convert a finite
set to a list.

context includes fset.lifting

begin

lift-definition fset-from-list :: 'a list => 'a fset is set (proof)

lemma mem-fset-from-list[simp]: = |€| fset-from-list | <+— x € set | {proof)

lemma fimage-fset-from-list[simpl: f || fset-from-list | = fset-from-list (map f1) (proof)
lemma fset-fset-from-list[simp]: fset (fset-from-list 1) = set | {proof)

lemmas fset-simps[simp] = set-simps| Transfer.transferred)

lemma size-fset-from-list[simp]: distinct | = size (fset-from-list 1) = length

(proof)

definition list-of-fset :: 'a fset = 'a list where
list-of-fset s = (SOME 1. fset-from-list | = s A distinct [)

lemma fset-from-list-of-fset[simp]: fset-from-list (list-of-fset s) = s
and distinct-list-of-fset[simp]: distinct (list-of-fset s)
(proof)

lemma length-list-of-fset[simp]: length (list-of-fset s) = size s
(proof)

lemma nth-list-of-fset-mem[simp: i < size s => list-of-fset s | i |€| s

(proof)

inductive indexed-fmember :: 'a = nat = 'a fset = bool (<- |€|- - [50,50,50] 50) where
i < size s = list-of-fset s ! i |€|; s

lemma indexed-fmember-is-fmember: © |€|; s = x |€] s

{proof)

lemma fmember-is-indexed-fmember:
assumes z |€] s
shows 3. z |€|; s

(proof)

lemma indezed-fmember-unique: z |€|; s = y [€|lj s = =y <+ i =

(proof)

definition indexed-members :: 'a fset = (nat x ’a) list where
indexed-members s = zip [0..<size s] (list-of-fset s)

lemma mem-set-indexed-members:
(i,x) € set (indexed-members s) <— x |€|; s

(proof)

lemma mem-set-indexed-members’[simp]:
t € set (indezed-members s) <— snd t |€]py ¢

(proof)

definition fnth (infixl <|!|» 100) where
s |!| n = list-of-fset s ! n
lemma fnth-indexed-fmember: i < size s => s |!| i |€|; s

(proof)

lemma indexed-fmember-fnth: x |€|; s «— (s 1| i =z A i < size s)

(proof)

end

definition fidz :: 'a fset = 'a = nat where
fidr s x = (SOME i. x |€]; s)

lemma fidz-eq[simp]: © |€|; s = fide s x = i

(proof)

lemma fidz-inj[simp|: z |€] s = y |€]| s = fidv sz = fidtsy+— z =y
(proof)

lemma inj-on-fidz: inj-on (fidx vertices) (fset vertices)

(proof)

end

2.3 Rose_Tree

theory Rose-Tree
imports Main HOL— Library.Sublist
begin

For theory Incredible-Trees we need rose trees; this theory contains the generally useful part of that
development.

2.3.1 The rose tree data type

datatype ‘a rose-tree = RNode (root: 'a) (children: 'a rose-tree list)

2.3.2 The set of paths in a rose tree

Too bad that inductive-set does not allow for varying parameters...

inductive it-pathsP :: 'a rose-tree = nat list = bool where
it-paths-Nil: it-pathsP t ||
| it-paths-Cons: i < length (children t) = children t | i = t' = it-pathsP t' is = it-pathsP t (i#is)

inductive-cases it-pathP-ConsE: it-pathsP t (i#tis)
inductive-cases it-pathP-RNodeE: it-pathsP (RNode 1 ants) is

definition it-paths:: 'a rose-tree = nat list set where
it-paths t = Collect (it-pathsP t)

lemma it-paths-eq [pred-set-conv]: it-pathsP t = (Ax. © € it-paths t)
(proof)

lemmas it-paths-intros [intro?] = it-pathsP.intros[to-set]

lemmas it-paths-induct [consumes 1, induct set: it-paths] = it-pathsP.induct[to-set)
lemmas it-paths-cases [consumes 1, cases set: it-paths] = it-pathsP.cases[to-set]
lemmas it-paths-ConsE = it-pathP-ConsE|to-set]

lemmas it-paths-RNodeE = it-pathP-RNodeE[to-set]

lemmas it-paths-simps = it-pathsP.simps|to-set)

lemmas it-paths-intros(1)[simp)

lemma it-paths-RNode-Nil[simp|: it-paths (RNode r [|) = {[|}
(proof)

lemma it-paths-Union: it-paths t C insert [| (Union (((A (4,t). ((#) ©) ‘it-paths t) ¢ set (List.enumerate (0::nat)
(children t)))))
(proof)

lemma finite-it-paths[simp]: finite (it-paths t)
(proof)

2.3.3 Indexing into a rose tree

fun tree-at :: 'a rose-tree = nat list = 'a rose-tree where
tree-at t [| =t
| tree-at t (iftis) = tree-at (children t ! i) is

lemma it-paths-SnocE|elim-format]:
assumes is @ [{] € it-paths t
shows is € it-paths t A i < length (children (tree-at t is))

(proof)

lemma it-paths-strict-prefix:
assumes is € it-paths t
assumes strict-prefiz is’ is
shows is’ € it-paths t
(proof)

lemma it-paths-prefiz:
assumes s € it-paths t
assumes prefiz is’ is

shows is’ € it-paths t
(proof)

lemma it-paths-butlast:
assumes is € it-paths t
shows butlast is € it-paths t

(proof)

lemma it-path-Snocl:
assumes is € it-paths t
assumes i < length (children (tree-at t is))
shows is Q [i] € dt-paths t
(proof)

end

3 Abstract formulas, rules and tasks

3.1 Abstract_Formula

theory Abstract-Formula

imports
Main
HOL—Library.FSet
HOL- Library.Stream
Indexed-FSet

begin

The following locale describes an abstract interface for a set of formulas, without fixing the concret
shape, or set of variables.

The variables mentioned in this locale are only the locally fixed constants occurring in formulas, e.g. in
the introduction rule for the universal quantifier. Normal variables are not something we care about
at this point; they are handled completely abstractly by the abstract notion of a substitution.

locale Abstract-Formulas =
— Variables can be renamed injectively
fixes freshenLC :: nat = 'var = "var
— A variable-changing function can be mapped over a formula
fixes renameLCs :: ("'var = 'var) = ("form = "form)
— The set of variables occurring in a formula
fixes lconsts :: 'form = "var set
— A closed formula has no variables, and substitions do not affect it.
fixes closed :: 'form = bool
— A substitution can be applied to a formula.
fixes subst :: 'subst = 'form = 'form
— The set of variables occurring (in the image) of a substitution.
fixes subst-lconsts :: 'subst = 'var set
— A variable-changing function can be mapped over a substitution
fixes subst-renameLCs :: ("var = 'var) = ('subst = 'subst)
— A most generic formula, can be substitutied to anything.
fixes anyP :: 'form

assumes freshenL C-eq-iff[simp]: freshenLC a v = freshenLC o’ v' +— a = a' AN v = v’

assumes [consts-renameLCs: lconsts (renameLCs p f) = p lconsts f

assumes rename-closed: lconsts f = {} = renameLCs p f = f

assumes subst-closed: closed f = subst s f = f

assumes closed-no-lconsts: closed f = lconsts f = {}

assumes fu-subst: lconsts (subst s f) C lconsts f U subst-lconsts s

assumes rename-rename: renameLCs pl (renameLCs p2 f) = renameLCs (p1 o p2) f

assumes rename-subst: renameLCs p (subst s f) = subst (subst-renameLCs p s) (renameLCs p f)

assumes renameLCs-cong: (\ z. © € lconsts [= f1 x = f2 £) = renameLCs f1 f = renameLCs f2 f

assumes subst-renameLCs-cong: (\ x. © € subst-lconsts s = f1 x = f2) = subst-renameLCs fI s =
subst-renameLCs f2 s

assumes subst-lconsts-subst-renameLCs: subst-lconsts (subst-renameLCs p s) = p * subst-lconsts s

assumes lconsts-anyP: lconsts anyP = {}

assumes empty-subst: 3 s. (V f. subst s f = f) A subst-lconsts s = {}

assumes anyP-is-any: 3 s. subst s anyP = f
begin

definition freshen :: nat = 'form = 'form where

freshen n = renameLCs (freshenLC n)

definition empty-subst :: 'subst where

empty-subst = (SOME s. (¥ f. subst s f = f) A subst-lconsts s = {})

lemma empty-subst-spec:
(V f. subst empty-subst f = f) A subst-lconsts empty-subst = {}

(proof)

lemma subst-empty-subst[simp]: subst empty-subst f = f
(proof)

lemma subst-lconsts-empty-subst[simp]: subst-lconsts empty-subst = {}
(proof)

lemma lconsts-freshen: lconsts (freshen a f) = freshenLC a ‘ lconsts f

{proof)

lemma freshen-closed: lconsts f = {} = freshen a f = f

(proof)

lemma closed-eq:
assumes closed f1
assumes closed f2
shows subst s1 (freshen al f1) = subst s2 (freshen a2 f2) +— f1 = f2

(proof)

lemma freshenLC-range-eq-iff [simp): freshenLC a v € range (freshenLC a’) +— a = a’

(proof)

definition rerename :: "var set = nat = nat = (‘var = 'var) = (‘var = 'var) where
rerename V from to fx = (if x € freshenLC from ¢V then freshenLC to (inv (freshenLC from) z) else f x)

lemma inj-freshenL C[simpl: inj (freshenLC)
(proof)

lemma rerename-freshen[simpl: © € V. = rerename V i (isidz is) f (freshenLC i x) = freshenLC (isidx is)
T

{proof)

lemma range-rerename: range (rerename V- from to f) C freshenLC to * V U range f

(proof)

lemma rerename-noop:
z ¢ freshenLC from ‘' V. = rerename V from to fz = fzx

(proof)

lemma rerename-rename-noop:
freshenLC from ¢ V N lconsts form = {} = renameLCs (rerename V from to f) form = renameLCs f
form

{proof)
lemma rerename-subst-noop:
freshenLC' from ¢ V N subst-lconsts s = {} = subst-renameLCs (rerename V from to f) s =
subst-renameLCs f s
{proof)
end
end

3.2 Abstract_Rules
theory Abstract-Rules

imports
Abstract-Formula
begin

Next, we can define a logic, by giving a set of rules.

In order to connect to the AFP entry Abstract Completeness, the set of rules is a stream; the only
relevant effect of this is that the set is guaranteed to be non-empty and at most countable. This has
no further significance in our development.

Each antecedent of a rule consists of

e a set of fresh variables
e a set of hypotheses that may be used in proving the conclusion of the antecedent and

e the conclusion of the antecedent.

Our rules allow for multiple conclusions (but must have at least one).

In order to prove the completeness (but incidentally not to prove correctness) of the incredible proof
graphs, there are some extra conditions about the fresh variables in a rule.

e These need to be disjoint for different antecedents.
e They need to list all local variables occurring in either the hypothesis and the conclusion.
e The conclusions of a rule must not contain any local variables.

datatype (form, 'var) antecedent =
Antecedent (a-hyps: 'form fset) (a-conc: 'form) (a-fresh: "var set)

abbreviation plain-ant :: 'form = ('form, 'var) antecedent
where plain-ant f = Antecedent {||} f {}

locale Abstract-Rules =
Abstract-Formulas freshenL C renameLCs lconsts closed subst subst-lconsts subst-renameLCs anyP
for freshenLC :: nat = 'var = '"var
and renameLCs :: ("var = 'var) = ('form = 'form)
and Iconsts :: 'form = "var set
and closed :: 'form = bool
and subst :: ‘subst = 'form = 'form
and subst-lconsts :: 'subst = "var set
and subst-renameLCs :: ("var = 'var) = ('subst = 'subst)
and anyP :: 'form +

fixes antecedent :: 'rule = ('form, 'var) antecedent list
and consequent :: 'rule = 'form list
and rules :: 'rule stream

assumes no-empty-conclusions: ¥ zs€sset rules. consequent xs # ||

assumes no-local-consts-in-consequences: ¥V zs€sset rules. | (lconsts ‘ (set (consequent xs))) = {}
assumes no-multiple-local-consts:
N rii . re ssetrules =
i < length (antecedent r) =
i’ < length (antecedent r) —>
a-fresh (antecedent r ! i) N a-fresh (antecedent r ! i') ={} v i =1’
assumes all-local-consts-listed:
N rp. € sset rules => p € set (antecedent r) =

10

lconsts (a-conc p) U (| (lconsts * fset (a-hyps p))) C a-fresh p
begin
definition f-antecedent :: 'rule = ('form, 'var) antecedent fset
where f-antecedent r = fset-from-list (antecedent r)
definition f-consequent r = fset-from-list (consequent r)
end

Finally, an abstract task specifies what a specific proof should prove. In particular, it gives a set of
assumptions that may be used, and lists the conclusions that need to be proven.

Both assumptions and conclusions are closed expressions that may not be changed by substitutions.

locale Abstract-Task =
Abstract-Rules freshenLC renameLCs lconsts closed subst subst-lconsts subst-renameLCs anyP antecedent
consequent rules
for freshenLC :: nat = 'var = 'var
and renameLCs :: ("var = 'var) = ('form = 'form)
and Iconsts :: 'form = 'var set
and closed :: 'form = bool
and subst :: 'subst = 'form = 'form
and subst-lconsts :: 'subst = "var set
and subst-renameLCs :: ("var = "var) = ('subst = 'subst)
and anyP :: 'form
and antecedent :: 'rule = ('form, 'var) antecedent list
and consequent :: 'rule = 'form list
and rules :: 'rule stream +

fixes assumptions :: 'form list

fixes conclusions :: 'form list

assumes assumptions-closed: \ a. a € set assumptions = closed a

assumes conclusions-closed: |\ c. ¢ € set conclusions = closed ¢
begin

definition ass-forms where ass-forms = fset-from-list assumptions

definition conc-forms where conc-forms = fset-from-list conclusions

lemma mem-ass-forms[simp: a |€| ass-forms <— a € set assumptions

(proof)

lemma mem-conc-forms[simpl: a |€| conc-forms <— a € set conclusions

(proof)

lemma subst-freshen-assumptions|simp]:
assumes pf € set assumptions
shows subst s (freshen a pf) = pf

{proof)

lemma subst-freshen-conclusions|simpl:
assumes pf € set conclusions
shows subst s (freshen a pf) = pf

{proof)

lemma subst-freshen-in-ass-formsl:
assumes pf € set assumptions
shows subst s (freshen a pf) |€| ass-forms

{proof)

lemma subst-freshen-in-conc-formsli:
assumes pf € set conclusions

11

shows subst s (freshen a pf) |€| conc-forms

(proof)
end

end

12

4 Incredible Proof Graphs

4.1 Incredible_Signatures

theory Incredible-Signatures
imports
Main
HOL—Library.FSet
HOL- Library.Stream
Abstract-Formula
begin

This theory contains the definition for proof graph signatures, in the variants
e Plain port graph
e Port graph with local hypotheses
o Labeled port graph
o Port graph with local constants

locale Port-Graph-Signature =
fixes nodes :: 'node stream
fixes inPorts :: 'node = "inPort fset
fixes outPorts :: 'node = ’outPort fset

locale Port-Graph-Signature-Scoped =
Port-Graph-Signature +
fixes hyps :: 'node = 'outPort — 'inPort
assumes hyps-correct: hyps n pl = Some p2 = pl |€| outPorts n A p2 |€| inPorts n
begin
inductive-set hyps-for’ :: 'node = "inPort = 'outPort set for n p
where hyps n h = Some p = h € hyps-for’ n p

lemma hyps-for’-subset: hyps-for’ n p C fset (outPorts n)
(proof)

context includes fset.lifting

begin

lift-definition hyps-for :: 'node = 'inPort = ’outPort fset is hyps-for’
(proo)

lemma hyps-for-simp[simp|: h |€| hyps-for n p «— hyps n h = Some p
(proof)

lemma hyps-for-simp’[simp]: h € fset (hyps-for n p) <— hyps n h = Some p
(proof)

lemma hyps-for-collect: fset (hyps-for n p) = {h . hyps n h = Some p}
(proof)

end

lemma hyps-for-subset: hyps-for n p |C| outPorts n

(proof)

end

locale Labeled-Signature =
Port-Graph-Signature-Scoped +
fixes labelsIn :: 'node = "inPort = 'form
fixes labelsOut :: 'node = 'outPort = 'form

13

locale Port-Graph-Signature-Scoped-Vars =
Port-Graph-Signature nodes inPorts outPorts +
Abstract-Formulas freshenL C renameLCs lconsts closed subst subst-lconsts subst-renameLCs anyP
for nodes :: 'node stream and inPorts :: 'node = 'inPort fset and outPorts :: 'node = 'outPort fset
and freshenLC :: nat = var = "var
and renameLCs :: ('var = 'var) = 'form = "form
and lconsts :: 'form = "var set
and closed :: 'form = bool
and subst :: 'subst = 'form = 'form
and subst-lconsts :: 'subst = "var set
and subst-renameLCs :: ("'var = 'var) = ('subst = 'subst)
and anyP :: 'form +

fixes local-vars :: 'node = "inPort = 'var set

end

4.2 Incredible_Deduction

theory Incredible-Deduction
imports
Main
HOL—Library.FSet
HOL— Library.Stream
Incredible-Signatures
HOL— Fisbach.Fisbach
begin

This theory contains the definition for actual proof graphs, and their various possible properties.

The following locale first defines graphs, without edges.

locale Vertex-Graph =
Port-Graph-Signature nodes inPorts outPorts
for nodes :: 'node stream
and inPorts :: 'node = '"inPort fset
and outPorts :: 'node = 'outPort fset +
fixes vertices :: 'v fset
fixes nodeOf :: 'v = 'node
begin
fun valid-out-port where valid-out-port (v,p) «— v |€| vertices A p |€| outPorts (nodeOf v)
fun valid-in-port where valid-in-port (v,p) <— v |€| vertices A p |€| inPorts (nodeOf v)

fun terminal-node where
terminal-node n +— outPorts n = {||}
fun terminal-vertex where
terminal-vertex v «— v |€| vertices A terminal-node (nodeOf v)
end

And now we add the edges. This allows us to define paths and scopes.
type-synonym ('v, ‘outPort, 'inPort) edge = (("v x 'outPort) x (v x 'inPort))
locale Pre-Port-Graph =

Vertex-Graph nodes inPorts outPorts vertices nodeOf
for nodes :: 'node stream

14

and inPorts :: 'node = 'inPort fset
and outPorts :: 'node = 'outPort fset
and vertices :: 'v fset
and nodeOf :: 'v = 'node +

fixes edges :: ('v, 'outPort, "inPort) edge set

begin

fun edge-begin :: (('v x ‘outPort) x (‘v X 'inPort)) = 'v where
edge-begin ((v1,p1),(v2,p2)) = vl

fun edge-end :: (('v x ‘outPort) x (v x 'inPort)) = 'v where
edge-end ((v1,p1),(v2,p2)) = v2

lemma edge-begin-tup: edge-begin x = fst (fst) (proof)
lemma edge-end-tup: edge-end x = fst (snd z) (proof)

inductive path :: 'v = v = (v, ‘outPort, 'inPort) edge list = bool where
path-empty: path v v || |
path-cons: e € edges = path (edge-end e) v’ pth => path (edge-begin e) v’ (e#pth)

inductive-simps path-cons-simp”: path v v’ (e#pth)

inductive-simps path-empty-simp[simpl: path v v’ []

lemma path-cons-simp: path v v’ (e # pth) «— fst (fst ¢) = v A e € edges A path (fst (snd e)) v’ pth
(proof)

lemma path-appendl: path v v’ pthl = path v’ v’ pth2 = path v v’ (pth1Qpth2)
(proof)

lemma path-split: path v v’ (pthl1@Q[e]@Qpth2) <— path v (edge-end e) (pth1Q[e]) A path (edge-end e) v’
pth2
(proof)

!

lemma path-split2: path v v’ (pthl1Q(e#pth2)) <— path v (edge-begin €) pthl A path (edge-begin e) v
(e#pth2)
(proof)

lemma path-snoc: path v v’ (pth1@[e]) +— e € edges A path v (edge-begin e) pthl A edge-end e = v’
{proof)

inductive-set scope :: ‘v X "inPort = 'v set for ps where
v |€] vertices = (\ pth v'. path v v’ pth = terminal-verter v/ = ps € snd * set pth)
= v € scope ps

lemma scope-find:
assumes v € scope ps
assumes terminal-vertex v’
assumes path v v’ pth
shows ps € snd ‘ set pth

(proof)

lemma snd-set-split:
assumes ps € snd ‘ set pth
obtains pthl pth2 e where pth = pth1Q[e]@Qpth2 and snd e = ps and ps ¢ snd ‘ set pthl

{(proof)

lemma scope-split:
assumes v € scope ps
assumes path v v’ pth
assumes terminal-verter v’

15

obtains pthi e pth2
where pth = (pth1Qe])@Qpth2 and path v (fst ps) (pth1Q[e]) and path (fst ps) v’ pth2 and snd e = ps
and ps ¢ snd ‘ set pthl
(proof)

end

This adds well-formedness conditions to the edges and vertices.

locale Port-Graph = Pre-Port-Graph +
assumes valid-nodes: nodeOf ¢ fset vertices C sset nodes
assumes valid-edges: ¥ (ps1,ps2) € edges. valid-out-port ps1 A valid-in-port ps2
begin
lemma snd-set-path-verties: path v v’ pth = fst “ snd * set pth C fset vertices
(proof)

lemma fst-set-path-verties: path v v’ pth = fst * fst * set pth C fset vertices

(proof)

end

A pruned graph is one where every node has a path to a terminal node (which will be the conclusions).

locale Pruned-Port-Graph = Port-Graph +
assumes pruned: Av. v |€| vertices = (I pth v’. path v v’ pth A terminal-verter v’)
begin
lemma scopes-not-refi:
assumes v |€| vertices
shows v ¢ scope (v,p)

(proof)

This lemma can be found in [Brel6], but it is otherwise inconsequential.

lemma scopes-nest:

fixes psi ps2

shows scope ps1 C scope ps2 V scope ps2 C scope psl V scope psl N scope ps2 = {}
(proof)

end

A well-scoped graph is one where a port marked to be a local hypothesis is only connected to the
corresponding input port, either directly or via a path. It must not be, however, that there is a a
path from such a hypothesis to a terminal node that does not pass by the dedicated input port; this
is expressed via scopes.

locale Scoped-Graph = Port-Graph + Port-Graph-Signature-Scoped
locale Well-Scoped-Graph = Scoped-Graph +

assumes well-scoped: ((v1,p1),(v2,p2)) € edges = hyps (nodeOf v1) p1 = Some p’ = (va,p2) = (v1,p’) V
vg € scope (v1,p’)

context Scoped-Graph
begin

definition hyps-free where
hyps-free pth = (V vy p1 va pa. ((v1,p1),(v2,p2)) € set pth — hyps (nodeOf v1) p1 = None)

lemma hyps-free-Nil[simp]: hyps-free [| {proof)
lemma hyps-free-Cons[simp|: hyps-free (e#pth) «— hyps-free pth A hyps (nodeOf (fst (fst €))) (snd (fst €))

= None

(proof)

16

lemma path-vertices-shift:

assumes path v v’ pth

shows map fst (map fst pth)Q[v’] = v#map fst (map snd pth)
(proof)

inductive terminal-path where

terminal-path-empty: terminal-verter v => terminal-path v v [] |

terminal-path-cons: ((v1,p1),(ve,p2)) € edges = terminal-path vo v’ pth => hyps (nodeOf vi) p1 = None
= terminal-path v1 v’ (((v1,p1),(v2,p2))#pth)

lemma terminal-path-is-path:
assumes terminal-path v v’ pth
shows path v v’ pth

(proof)

lemma terminal-path-is-hyps-free:
assumes terminal-path v v’ pth
shows hyps-free pth

(proof)

lemma terminal-path-end-is-terminal:
assumes terminal-path v v’ pth
shows terminal-vertex v’

{proof)

lemma terminal-pathl:
assumes path v v’ pth
assumes hyps-free pth
assumes terminal-vertex v’
shows terminal-path v v’ pth

(proof)

end

An acyclic graph is one where there are no non-trivial cyclic paths (disregarding edges that are local
hypotheses — these are naturally and benignly cyclic).

locale Acyclic-Graph = Scoped-Graph +
assumes hyps-free-acyclic: path v v pth => hyps-free pth = pth = ||
begin
lemma hyps-free-vertices-distinct:
assumes terminal-path v v’ pth
shows distinct (map fst (map fst pth)Q[v))
(proof)

lemma hyps-free-vertices-distinct’:
assumes terminal-path v v’ pth
shows distinct (v # map fst (map snd pth))

(proof)

lemma hyps-free-limited:
assumes terminal-path v v’ pth
shows length pth < fcard vertices

(proof)

lemma hyps-free-path-not-in-scope:
assumes terminal-path v t pth
assumes (v',p’) € snd * set pth

17

shows v’ ¢ scope (v, p)
(proof)

end

A saturated graph is one where every input port is incident to an edge.

locale Saturated-Graph = Port-Graph +
assumes saturated: valid-in-port (v,p) = 3 e € edges . snd e = (v,p)

These four conditions make up a well-shaped graph.

locale Well-Shaped-Graph = Well-Scoped-Graph + Acyclic-Graph + Saturated-Graph + Pruned-Port-Graph

Next we demand an instantiation. This consists of a unique natural number per vertex, in order to
rename the local constants apart, and furthermore a substitution per block which instantiates the
schematic formulas given in Labeled-Signature.

locale Instantiation =
Vertex-Graph nodes - - vertices - +
Labeled-Signature nodes - - - labelsIn labelsOut +
Abstract-Formulas freshenL C renameLCs lconsts closed subst subst-lconsts subst-renameLCs anyP
for nodes :: 'node stream and edges :: (‘vertex, 'outPort, "inPort) edge set and wvertices :: 'verter fset and
labelsIn :: 'node = "inPort = 'form and labelsOut :: 'node = 'outPort = 'form
and freshenLC :: nat = 'var = "var
and renameLCs :: ('var = 'var) = 'form = "form
and Iconsts :: 'form = 'var set
and closed :: 'form = bool
and subst :: 'subst = 'form = 'form
and subst-lconsts :: 'subst = "var set
and subst-renameLCs :: ("var = "var) = ('subst = 'subst)
and anyP :: 'form +
fixes vidz :: 'verter = nat
and inst :: 'vertex = 'subst
assumes vidz-ing: inj-on vidz (fset vertices)
begin
definition labelAtIn :: 'vertex = "inPort = 'form where
labelAtIn v p = subst (inst v) (freshen (vidz v) (labelsIn (nodeOf v) p))
definition labelAtOut :: "vertex = 'outPort = 'form where
labelAtOut v p = subst (inst v) (freshen (vidz v) (labelsOut (nodeOf v) p))
end

A solution is an instantiation where on every edge, both incident ports are labeld with the same
formula.

locale Solution =
Instantiation - - - - - edges for edges :: (('vertex x ’outPort) x 'vertex x 'inPort) set +
assumes solved: ((v1,p1),(v2,p2)) € edges = labelAtOut v p1 = labelAtIn vy po

locale Proof-Graph = Well-Shaped-Graph + Solution

If we have locally scoped constants, we demand that only blocks in the scope of the corresponding
input port may mention such a locally scoped variable in its substitution.

locale Well-Scoped-Instantiation =

Pre-Port-Graph nodes inPorts outPorts vertices nodeOf edges +

Instantiation inPorts outPorts nodeOf hyps nodes edges vertices labelsIn labelsOut freshenLC renameL Cs
lconsts closed subst subst-lconsts subst-renameLCs anyP vidx inst +

18

Port-Graph-Signature-Scoped- Vars nodes inPorts outPorts freshenLC renameLC's lconsts closed subst subst-lconsts
subst-renameLCs anyP local-vars
for freshenLC :: nat = 'var = 'var
and renameLCs :: ('var = var) = 'form = 'form
and Iconsts :: 'form = 'var set
and closed :: 'form = bool
and subst :: 'subst = 'form = 'form
and subst-lconsts :: 'subst = 'var set
and subst-renameLCs :: ("'var = 'var) = ('subst = 'subst)
and anyP :: 'form
and inPorts :: 'node = '"inPort fset
and outPorts :: 'node = 'outPort fset
and nodeOf :: 'vertex = 'node
and hyps :: 'node = 'outPort = "inPort option
and nodes :: 'node stream
and vertices :: 'vertex fset
and labelsIn :: 'node = "inPort = 'form
and labelsOut :: 'node = 'outPort = 'form
and vidz :: "verter = nat
and inst :: 'vertex = 'subst
and edges :: (‘vertex, 'outPort, "inPort) edge set
and local-vars :: 'node = "inPort = 'var set +
assumes well-scoped-inst:
valid-in-port (v,p) =
var € local-vars (nodeOf v) p =
v’ |€| vertices =
freshenLC' (vidz v) var € subst-lconsts (inst v') =
v' € scope (v,p)
begin
lemma out-of-scope: valid-in-port (v,p) = v’ |€| vertices = v' ¢ scope (v,p) = freshenLC (vidz v)
local-vars (nodeOf v) p N subst-lconsts (inst v’) = {}
(proof)

end

3

The following locale assembles all these conditions.

locale Scoped-Proof-Graph =
Instantiation inPorts outPorts nodeOf hyps nodes edges wvertices labelsIn labelsOut freshenLC renameLC's
lconsts closed subst subst-lconsts subst-renameLCs anyP vidx inst +
Well-Shaped-Graph mnodes inPorts outPorts vertices nodeOf edges hyps +
Solution inPorts outPorts nodeOf hyps nodes vertices labelsIn labelsOut freshenLC renameLCs lconsts closed
subst subst-lconsts subst-renameLCs anyP vidx inst edges +
Well-Scoped-Instantiation freshenLC renameLCs lconsts closed subst subst-lconsts subst-renameLCs anyP
inPorts outPorts nodeOf hyps mnodes vertices labelsIn labelsOut vidx inst edges local-vars
for freshenLC :: nat = 'var = 'var
and renameLCs :: ('var = 'var) = 'form = 'form
and lconsts :: 'form = "var set
and closed :: 'form = bool
and subst :: 'subst = 'form = 'form
and subst-lconsts :: 'subst = 'var set
and subst-renameLCs :: ("'var = 'var) = ('subst = 'subst)
and anyP :: 'form
and inPorts :: 'node = ’inPort fset
and outPorts :: 'node = 'outPort fset
and nodeOf :: 'vertex = 'node
and hyps :: 'node = 'outPort = "inPort option
and nodes :: 'node stream
and vertices :: 'vertex fset

19

and labelsIn :: 'node = "inPort = 'form

and labelsOut :: 'node = 'outPort = 'form

and vidz :: "verter = nat

and inst :: 'verter = 'subst

and edges :: ('vertex, 'outPort, 'inPort) edge set
and local-vars :: 'node = "inPort = 'var set

end

4.3 Abstract__Rules_To__Incredible

theory Abstract-Rules-To-Incredible
imports
Main
HOL— Library.FSet
HOL- Library.Stream
Incredible- Deduction
Abstract-Rules
begin

In this theory, the abstract rules given in Incredible- Proof-Machine. Abstract-Rules are used to create
a proper signature.

Besides the rules given there, we have nodes for assumptions, conclusions, and the helper block.

datatype (form, 'rule) graph-node = Assumption 'form | Conclusion 'form | Rule 'rule | Helper

type-synonym ('form, 'var) in-port = ('form, 'var) antecedent

type-synonym ’'form reg-out-port = 'form

type-synonym 'form hyp = 'form

datatype ('form, 'var) out-port = Reg 'form reg-out-port | Hyp 'form hyp ('form, "var) in-port
type-synonym (v, 'form, 'var) edge’ = (("v x ('form, "var) out-port) x (‘v x ('form, 'var) in-port))

context Abstract-Task
begin
definition nodes :: (‘form, 'rule) graph-node stream where
nodes = Helper ## shift (map Assumption assumptions) (shift (map Conclusion conclusions) (smap Rule
rules))

lemma Helper-in-nodes|simp):

Helper € sset nodes (proof)
lemma Assumption-in-nodes|simp]:

Assumption a € sset nodes <— a € set assumptions (proof)
lemma Conclusion-in-nodes|simp):

Conclusion ¢ € sset nodes <— ¢ € set conclusions (proof)
lemma Rule-in-nodes[simp]:

Rule r € sset nodes <— r € sset rules (proof)

fun inPorts’ :: (‘form, 'rule) graph-node = ('form, 'var) in-port list where
inPorts’ (Rule r) = antecedent r

|inPorts’ (Assumption r) = |]

|inPorts’ (Conclusion) = | plain-ant r]

|inPorts’ Helper = [plain-ant anyP]

fun inPorts :: ('form, 'rule) graph-node = ('form, 'var) in-port fset where

inPorts (Rule) = f-antecedent r
|inPorts (Assumption r) = {||}

20

|inPorts (Conclusion r) = {| plain-ant r |}
|inPorts Helper = {| plain-ant anyP |}

lemma inPorts-fset-of
inPorts n = fset-from-list (inPorts’ n)

{proof)

definition outPortsRule where
outPortsRule r = ffUnion (A a. (A h. Hyp h a) || a-hyps a) || f-antecedent r) |U| Reg || f-consequent r

lemma Reg-in-outPortsRule[simp]: Reg ¢ |€| outPortsRule r +— ¢ |€| f-consequent r
(proof)

lemma Hyp-in-outPortsRule[simp]: Hyp h c |€| outPortsRule r +— ¢ |€| f-antecedent r A h |€| a-hyps c
(proof)

fun outPorts where

outPorts (Rule r) = outPortsRule r
|outPorts (Assumption r) = {|Reg r|}
|outPorts (Conclusion r) = {||}
|outPorts Helper = {| Reg anyP |}

fun labelsIn where
labelsIn - p = a-conc p

fun labelsOut where
labelsOut - (Reg p) = p
| labelsOut - (Hyp h ¢) = h

fun hyps where
hyps (Rule r) (Hyp h a) = (if a |€| f-antecedent v N h |€| a-hyps a then Some a else None)
| hyps - - = None

fun local-vars :: ('form, 'rule) graph-node = ('form, "var) in-port = 'var set where
local-vars - a = a-fresh a

sublocale Labeled-Signature nodes inPorts outPorts hyps labelsIn labelsOut
(proof)

lemma hyps-for-conclusion[simp]: hyps-for (Conclusion n) p = {||}
(proof)
lemma hyps-for-Helper[simp]: hyps-for Helper p = {||}
(proof)
lemma hyps-for-Rule[simp]: ip |€| f-antecedent r = hyps-for (Rule r) ip = (A h. Hyp h ip) | a-hyps ip

(proof)
end

Finally, a given proof graph solves the task at hand if all the given conclusions are present as conclusion
blocks in the graph.

locale Tasked-Proof-Graph =
Abstract-Task freshenL.C renameLCs lconsts closed subst subst-lconsts subst-renameLCs anyP antecedent
consequent rules assumptions conclusions +
Scoped-Proof-Graph freshenLC renameLCs lconsts closed subst subst-lconsts subst-renameLCs anyP inPorts
outPorts nodeOf hyps nodes vertices labelsIn labelsOut vidx inst edges local-vars
for freshenLC :: nat = 'var = 'var
and renameLCs :: ('var = 'var) = 'form = 'form
and lconsts :: 'form = "var set

21

and closed :: 'form = bool

and subst :: 'subst = 'form = 'form

and subst-lconsts :: 'subst = "var set

and subst-renameLCs :: ("'var = 'var) = ('subst = 'subst)
and anyP :: 'form

and antecedent :: 'rule = ('form, 'var) antecedent list
and consequent :: 'rule = "form list
and rules :: 'rule stream

and assumptions :: 'form list
and conclusions :: 'form list

and vertices :: 'vertex fset
and nodeOf :: "vertex = ('form, 'rule) graph-node
and edges :: ('vertex, 'form, 'var) edge’ set
and vidz :: 'vertex = nat
and inst :: ‘vertex = 'subst +
assumes conclusions-present: set (map Conclusion conclusions) C nodeOf * fset vertices

end

22

5 Natural Deduction

5.1 Natural_Deduction

theory Natural-Deduction

imports
Abstract-Completeness. Abstract-Completeness
Abstract-Rules
Entailment

begin

Our formalization of natural deduction builds on Abstract-Completeness. Abstract-Completeness and
refines and concretizes the structure given there as follows

e The judgements are entailments consisting of a finite set of assumptions and a conclusion, which
are abstract formulas in the sense of Incredible-Proof-Machine.Abstract-Formula.

e The abstract rules given in Incredible- Proof-Machine. Abstract-Rules are used to decide the va-
lidity of a step in the derivation.

A single setep in the derivation can either be the axiom rule, the cut rule, or one of the given rules in
Incredible- Proof-Machine. Abstract- Rules.

datatype 'rule NatRule = Axiom | NatRule 'rule | Cut

The following locale is still abstract in the set of rules (nat-rule), but implements the bookkeeping
logic for assumptions, the Aziom rule and the Cut rule.

locale ND-Rules-Inst =
Abstract-Formulas freshenL C renameLCs lconsts closed subst subst-lconsts subst-renameLCs anyP
for freshenLC :: nat = 'var = 'var
and renameLCs :: ('var = 'var) = 'form = "form
and Iconsts :: 'form = 'var set
and closed :: 'form = bool
and subst :: 'subst = 'form = 'form
and subst-lconsts :: 'subst = 'var set
and subst-renameLCs :: ("var = "var) = ('subst = 'subst)
and anyP :: 'form +

fixes nat-rule :: 'rule = 'form = ('form, 'var) antecedent fset = bool
and rules :: 'rule stream
begin
o An application of the Aziom rule is valid if the conclusion is among the assumptions.

e An application of a NatRule is more complicated. This requires some natural number a to rename
local variables, and some instantiation s. It checks that

— none of the local variables occur in the context of the judgement.

— none of the local variables occur in the instantiation. Together, this implements the usual
freshness side-conditions. Furthermore, for every antecedent of the rule, the (correctly
renamed and instantiated) hypotheses need to be added to the context.

e The Cut rule is again easy.

inductive eff :: 'rule NatRule = 'form entailment = 'form entailment fset = bool where

23

con €| T
= eff Aziom (' F con) {||}
|nat-rule rule ¢ ants
= (A ant f. ant |€| ants = f |€| T = freshenLC a ‘ (a-fresh ant) N lconsts f = {})
= (A ant. ant |€| ants = freshenLC a ‘ (a-fresh ant) N subst-lconsts s = {})
= eff (NatRule rule)
(T F subst s (freshen a ¢))
((Aant. ((Ap. subst s (freshen a p)) | a-hyps ant |U| T F subst s (freshen a (a-conc ant)))) || ants)
leff Cut (T F ¢) {[(T F eI}

inductive-simps eff-Cut-simps[simp]: eff Cut (T F ¢) S

sublocale RuleSystem-Defs where
eff = eff and rules = Cut ## Axiom ## smap NatRule rules{proof)
end

Now we instantiate the above locale. We duplicate each abstract rule (which can have multiple conse-
quents) for each consequent, as the natural deduction formulation can only handle a single consequent
per rule

context Abstract-Task
begin
inductive natEff-Inst where
¢ € set (consequent r) = natEff-Inst (r,c) ¢ (f-antecedent)

definition n-rules where
n-rules = flat (smap (Ar. map (Ac. (r,c)) (consequent r)) rules)

sublocale ND-Rules-Inst - - - - - - - - natEff-Inst n-rules {proof)

A task is solved if for every conclusion, there is a well-formed and finite tree that proves this conclusion,
using only assumptions given in the task.

definition solved where
solved <— (¥ c. ¢ |€]| conc-forms — (3 T t. fst (root t) = (T'F ¢) AT |C| ass-forms A wf t A tfinite t))
end

end

24

6 Correctness

6.1 Incredible__Correctness

theory Incredible-Correctness

imports
Abstract-Rules-To-Incredible
Natural-Deduction

begin

In this theory, we prove that if we have a graph that proves a given abstract task (which is represented
as the context Tasked-Proof-Graph), then we can prove solved.

context Tasked-Proof-Graph
begin

definition adjacentTo :: 'vertex = ('form, "var) in-port = (‘vertex x ('form, 'var) out-port) where
adjacentTo v p = (SOME ps. (ps, (v,p)) € edges)

fun isReg where
isReg v p = (case p of Hyp h ¢ = False | Reg ¢ =
(case nodeOf v of
Conclusion a = False
| Assumption a = False
| Rule r = True
| Helper = True

)

fun toNatRule where
toNatRule v p = (case p of Hyp h ¢ = Aziom | Reg ¢ =
(case nodeOf v of
Conclusion a = Axiom — a lie
| Assumption a = Axiom
| Rule v = NatRule (r,c)
| Helper = Cut

)

inductive-set global-assms’ :: 'var itself = 'form set for i where
v |€| vertices => nodeOf v = Assumption p => labelAtOut v (Reg p) € global-assms’ i

lemma finite-global-assms’”: finite (global-assms’ i)

(proof)

context includes fset.lifting

begin
lift-definition global-assms :: 'var itself = 'form fset is global-assms’ (proof)
lemmas global-assmsl = global-assms’.intros| Transfer.transferred)
lemmas global-assms-simps = global-assms’.simps| Transfer.transferred]

end

fun extra-assms :: (‘vertex x ('form, 'var) in-port) = 'form fset where
extra-assms (v, p) = (A p. labelAtOut v p) || hyps-for (nodeOf v) p

fun hyps-along :: (‘vertez, 'form, 'var) edge’ list = 'form fset where
hyps-along pth = ffUnion (extra-assms || snd | fset-from-list pth) |U| global-assms TYPE('var)

25

lemma hyps-alongE[consumes 1, case-names Hyp Assumption]:
assumes f |€| hyps-along pth
obtains v p h where (v,p) € snd ‘ set pth and f = labelAtOut v h and h |€| hyps-for (nodeOf v) p
| v pf where v |€]| vertices and nodeOf v = Assumption pf f = labelAtOut v (Reg pf)
(proof)

Here we build the natural deduction tree, by walking the graph.

primcorec tree :: 'vertex = ('form, 'var) in-port = (‘vertex, 'form, 'var) edge’ list = (('form entailment),
("rule x 'form) NatRule) dtree where
root (tree v p pth) =
((hyps-along ((adjacentTo v p,(v,p))#pth) F labelAtin v p),
(case adjacentTo v p of (v', p’) = toNatRule v’ p’
)
| cont (tree v p pth) =
(case adjacentTo v p of (v', p') =
(if isReg v' p’ then (A p”. tree v' p”’ ((adjacentTo v p,(v,p))#pth)) || inPorts (nodeOf v')) else {||}

)

lemma fst-root-tree[simp|: fst (root (tree v p pth)) = (hyps-along ((adjacentTo v p,(v,p))#pth) - labelAtin v p)
(proof)

lemma out-port-cases[consumes 1, case-names Assumption Hyp Rule Helper]:
assumes p |€| outPorts n
obtains
a where n = Assumption a and p = Reg a
| 7 h ¢ where n = Rule r and p = Hyp h ¢
| » f where n = Rule r and p = Reg f
| n = Helper and p = Reg anyP
(proof)

lemma hyps-for-fimage: hyps-for (Rule r) © = (if © |€| f-antecedent r then (A f. Hyp f z) || (a-hyps) else
{13
(proof)

Now we prove that the thus produced tree is well-formed.

theorem wf-tree:
assumes valid-in-port (v,p)
assumes terminal-path v t pth
shows wf (tree v p pth)

(proof)

lemma global-in-ass: global-assms TYPE('var) |C| ass-forms

(proof)

primcorec edge-tree :: "vertex = ('form, "var) in-port = (‘vertex, 'form, 'var) edge’ tree where
root (edge-tree v p) = (adjacentTo v p, (v,p))
| cont (edge-tree v p) =

(case adjacentTo v p of (v', p') =

(if isReg v’ p’ then ((\ p. edge-tree v’ p) | inPorts (nodeOf v')) else {||}

)

lemma tfinite-map-tree: tfinite (map-tree f t) <— tfinite ¢
(proof)

26

lemma finite-tree-edge-tree:
tfinite (tree v p pth) <— tfinite (edge-tree v p)
(proof)

coinductive forbidden-path :: 'vertex = ('vertex, 'form, 'var) edge’ stream = bool where
forbidden-path: ((v1,p1),(ve,p2)) € edges = hyps (nodeOf vi) p1 = None = forbidden-path vy pth —
forbidden-path vy (((v1,p1),(v2,p2))##pth)

lemma path-is-forbidden:
assumes valid-in-port (v,p)
assumes ipath (edge-tree v p) es
shows forbidden-path v es

(proof)

lemma forbidden-path-prefix-is-path:
assumes forbidden-path v es
obtains v’ where path v’ v (rev (stake n es))

(proof)

lemma forbidden-path-prefix-is-hyp-free:
assumes forbidden-path v es
shows hyps-free (rev (stake n es))

(proof)
And now we prove that the tree is finite, which requires the above notion of a forbidden-path, i.e. an
infinite path.

theorem finite-tree:
assumes valid-in-port (v,p)
assumes terminal-vertex v
shows tfinite (tree v p pth)

(proof)

The main result of this theory.

theorem solved

(proof)
end

end

27

7 Completeness

7.1 Incredible_Trees

theory Incredible-Trees
imports

HOL— Library.Sublist

HOL— Library. Countable

Entailment

Rose-Tree

Abstract- Rules-To-Incredible
begin

This theory defines incredible trees, which carry roughly the same information as a (tree-shaped)
incredible graph, but where the structure is still given by the data type, and not by a set of edges
etc.

Tree-shape, but incredible-graph-like content (port names, explicit annotation and substitution)

datatype ('form,’rule,’subst,’var) itnode =
I (iNodeOf": ('form, 'rule) graph-node)
(iOutPort”: 'form reg-out-port)
(iAnnot”: nat)
(iSubst’: 'subst)
| H (iAnnot’: nat)
(iSubst’: 'subst)

abbreviation INode n p i s ants = RNode (I n p i s) ants
abbreviation HNode i s ants = RNode (H i s) ants

type-synonym (’form,’rule,’subst,’var) itree = ('form,’rule,’subst,’var) itnode rose-tree

fun (NodeOf where
iNodeOf (INode n p i s ants) = n
| iNodeOf (HNode i s ants) = Helper

context Abstract-Formulas begin
fun iOutPort where

iOutPort (INode n p i s ants) = p
| i{OutPort (HNode i s ants) = anyP
end

fun iAnnot where iAnnot it = iAnnot’ (root it)
fun iSubst where iSubst it = iSubst’ (root it)
fun iAnts where iAnts it = children it

type-synonym (’form, 'rule, 'subst) fresh-check = ('form, 'rule) graph-node = nat = 'subst = 'form entail-
ment = bool

context Abstract-Task
begin

The well-formedness of the tree. The first argument can be varied, depending on whether we are
interested in the local freshness side-conditions or not.

inductive iwf :: ('form, 'rule, 'subst) fresh-check = ('form,’'rule,’subst,’var) itree = 'form entailment =

bool

28

for fc
where
iwf: |
n € sset nodes;
Reg p |€| outPorts n;
list-all2 (X ip t. twf fc t (X h . subst s (freshen i (labelsOut n h))) |9 hyps-for n ip |U| T subst s (freshen
i (labelsIn n ip))))
(inPorts’ n) ants;
fenis (TF ¢
¢ = subst s (freshen i p)
] = wf fc (INode n p i s ants) (I' F ¢)
| iwfH: [
c |¢| ass-forms;
c |e| T;
¢ = subst s (freshen i anyP)
] = dwf fc (HNode i s []) (T F ¢)

lemma iwf-subst-freshen-outPort:
iwf lc ts ent =
snd ent = subst (iSubst ts) (freshen (iAnnot ts) (iOutPort ts))

(proof)

definition all-local-vars :: (‘form, 'rule) graph-node = 'var set where
all-local-vars n = | (local-vars n * fset (inPorts n))

lemma all-local-vars-Helper|[simp]:
all-local-vars Helper = {}

(proof)

lemma all-local-vars-Assumption|simp]:
all-local-vars (Assumption c) = {}

(proof)

Local freshness side-conditions, corresponding what we have in the theory Natural-Deduction.

inductive local-fresh-check :: ('form, 'rule, 'subst) fresh-check where
INA f- f €] T = freshenLC i ¢ (all-local-vars n) N leonsts f = {};
freshenLC' i ¢ (all-local-vars n) N subst-lconsts s = {}
] = local-fresh-check n i s (I' I ¢)

abbreviation local-iwf = twf local-fresh-check

No freshness side-conditions. Used with the tree that comes out of globalize, where we establish the
(global) freshness conditions separately.

inductive no-fresh-check :: ('form, 'rule, 'subst) fresh-check where
no-fresh-check n i s (I' F ¢)

abbreviation plain-iwf = iwf no-fresh-check

fun isHNode where
isHNode (HNode - - -) = True
|isHNode - = False

lemma iwf-edge-match:
assumes wf fc t ent
assumes sQ[i] € it-paths t
shows subst (iSubst (tree-at t (isQ[i]))) (freshen (iAnnot (tree-at t (isQ[i]))) (iOutPort (tree-at t (isQ[i]))))

29

= subst (iSubst (tree-at t is)) (freshen (iAnnot (tree-at t is)) (a-conc (inPorts’ (iNodeOf (tree-at t is)) !
0)))
(proof)

lemma wf-length-inPorts:
assumes wf fc t ent
assumes is € it-paths t
shows length (iAnts (tree-at t is)) < length (inPorts’ (iNodeOf (tree-at t is)))

(proof)

lemma swf-local-not-in-subst:
assumes local-iwf t ent
assumes is € it-paths t
assumes var € all-local-vars (iNodeOf (tree-at t is))
shows freshenLC' (iAnnot (tree-at t is)) var ¢ subst-lconsts (iSubst (tree-at t is))

(proof)

lemma iwf-length-inPorts-not-HNode:
assumes wf fc t ent
assumes s € it-paths t
assumes — (isHNode (tree-at t is))
shows length (iAnts (tree-at t is)) = length (inPorts’ (iNodeOf (tree-at t is)))

(proof)

lemma iNodeOf-outPorts:
iwf fc t ent = 1is € it-paths t = outPorts (iNodeOf (tree-at t is)) = {||} = Fulse

(proof)

lemma iNodeOf-tree-at:
iwf fc t ent = is € it-paths t = iNodeOf (tree-at t is) € sset nodes

(proof)

lemma iwf-outPort:
assumes wf fc t ent
assumes is € it-paths t
shows Reg (iOutPort (tree-at t is)) |€| outPorts (iNodeOf (tree-at t is))

(proof)

inductive-set hyps-along for t is where

prefiz (is'Q[7]) is =

i < length (inPorts’ (iNodeOf (tree-at t is’))) =

hyps (iNodeOf (tree-at t is’)) h = Some (inPorts’ (iNodeOf (tree-at t is')) | i) =

subst (iSubst (tree-at t is")) (freshen (iAnnot (tree-at t is’)) (labelsOut (iNodeOf (tree-at t is')) h)) € hyps-along
tis

lemma hyps-along-Nil[simp]: hyps-along t [| = {}
{proof)

lemma prefiz-app-Cons-elim:
assumes prefic (zsQ[y]) (z#z2s)

obtains zs = [and y = 2
| zs’ where zs = z#txs’ and prefiz (zs'Qy]) zs
(proof)

lemma hyps-along-Cons:
assumes wf fc t ent
assumes i#is € it-paths t

30

shows hyps-along t (iftis) =
(Ah. subst (iSubst t) (freshen (iAnnot t) (labelsOut (iNodeOf t) h))) * fset (hyps-for (iNodeOf t) (inPorts’
(iNodeOf t) ! 7))
U hyps-along (iAnts t ! i) is (is 251 = 252 U 253)
(proof)

lemma iwf-hyps-exist:
assumes wf lc it ent
assumes is € it-paths it
assumes tree-at it is = (HNode i s ants’)
assumes fst ent |C| ass-forms
shows subst s (freshen i anyP) € hyps-along it is

(proof)

definition hyp-port-for’ :: (‘form, 'rule, 'subst, 'var) itree = nat list = "form = nat list x nat x (‘form, "var)
out-port where
hyp-port-for’ t is f = (SOME x.
(case x of (is', i, h) =
prefix (is’ Q [i]) is A
i < length (inPorts’ (iNodeOf (tree-at t is’))) A
hyps (iNodeOf (tree-at t is")) h = Some (inPorts’ (iNodeOf (tree-at t is’)) ! i) A
f = subst (iSubst (tree-at t is’)) (freshen (iAnnot (tree-at t is)) (labelsOut (iNodeOf (tree-at t is")) h))
)

lemma hyp-port-for-spec’:
assumes f € hyps-along t is
shows (case hyp-port-for' tis f of (is’, i, h) =
prefix (is’ @ [d]) is A
i < length (inPorts’ (iNodeOf (tree-at t is))) A
hyps (iNodeOf (tree-at t is’)) h = Some (inPorts’ (iNodeOf (tree-at t is’)) ! i) A
f = subst (iSubst (tree-at t is’)) (freshen (iAnnot (tree-at t is")) (labelsOut (iNodeOf (tree-at t is’)) h)))
{proof)

definition hyp-port-path-for :: ('form, 'rule, 'subst, 'var) itree = nat list = 'form = nat list
where hyp-port-path-for t is f = fst (hyp-port-for’ t is f)

definition hyp-port-i-for = (‘form, 'rule, 'subst, 'var) itree = nat list = "form = nat
where hyp-port-i-for t is f = fst (snd (hyp-port-for’ t is f))

definition hyp-port-h-for :: (form, 'rule, 'subst, 'var) itree = nat list = 'form = ('form, "var) out-port
where hyp-port-h-for t is f = snd (snd (hyp-port-for’ t is f))

lemma hyp-port-prefiz:

assumes f € hyps-along t is

shows prefix (hyp-port-path-for t is fQ[hyp-port-i-for t is f]) is
(proof)

lemma hyp-port-strict-prefix:

assumes f € hyps-along t is

shows strict-prefix (hyp-port-path-for t is f) is
(proof)

lemma hyp-port-it-paths:

assumes s € it-paths t

assumes [€ hyps-along t is

shows hyp-port-path-for t is f € it-paths t
(proof)

31

lemma hyp-port-hyps:

assumes f € hyps-along t is

shows hyps (iNodeOf (tree-at t (hyp-port-path-for t is f))) (hyp-port-h-for t is f) = Some (inPorts’ (iNodeOf
(tree-at t (hyp-port-path-for t is f))) | hyp-port-i-for t is f)
(proof)

lemma hyp-port-outPort:

assumes f € hyps-along t is

shows (hyp-port-h-for t is f) |€| outPorts (iNodeOf (tree-at t (hyp-port-path-for t is f)))
(proof)

lemma hyp-port-eq:

assumes f € hyps-along t is

shows f = subst (iSubst (tree-at t (hyp-port-path-for t is f))) (freshen (iAnnot (tree-at t (hyp-port-path-for ¢
is f))) (labelsOut (iNodeOf (tree-at t (hyp-port-path-for t is f))) (hyp-port-h-for t is f)))
(proof)

definition isidx :: nat list = nat where isidz zs = to-nat (Some s)
definition v-away :: nat where v-away = to-nat (None :: nat list option)
lemma iside-inj[simp|: isidz s = isidz ys +— xs = ys

(proof)
lemma isidz-v-away[simp|: iside s # v-away

(proof)

definition map WithIndex where map Withindex f zs = map (A (i,t) . f i t) (List.enumerate 0 xs)
lemma map WithIndez-cong [fundef-cong]:
s =ys = (A\zi.z € set ys = fix = gizx) = mapWithIndex [xs = mapWithIndez g ys

{proof)

lemma map WithIndez-Nil[simp]: map WithIndez f || = |]
(proof)

lemma length-map WithIndex[simp]: length (mapWithIndex f xs) = length xs
(proof)

lemma nth-map WithIndex[simp|: i < length xs = mapWithIndex fxs ! i = fi (zs! i)
(proof)

lemma list-all2-map WithIndex2F:
assumes list-all2 P as bs
assumes A\ iab.i < lengthbs = Pab= Qa (fib)
shows list-all2 Q as (map WithIndex f bs)

(proof)

The globalize function, which renames all local constants so that they cannot clash with local constants
occurring anywhere else in the tree.

fun globalize-node :: nat list = ("var = "var) = ('form,'rule,’subst,’var) itnode = ('form,’rule,’subst, var)
itnode where

globalize-node is f (Inpis) = Inp (isideis) (subst-renameLCs f s)

| globalize-node is f (H i s) = H (isidz is) (subst-renameLCs f s)

fun globalize :: nat list = (‘var = 'var) = ('form,’rule,’subst,’'var) itree = ('form,’rule,’subst,’var) itree
where
globalize is f (RNode r ants) = RNode
(globalize-node is f r)

32

(mapWithIndex (A i’ t.
globalize (isQ[:"])
(rerename (a-fresh (inPorts’ (iNodeOf (RNode r ants)) ! i'))
(iAnnot (RNode r ants)) (isidz is) f)
t
) ants)

lemma iAnnot’-globalize-node[simp): iAnnot’ (globalize-node is f n) = isidz is
(proof)

lemma iAnnot-globalize:
assumes is’ € it-paths (globalize is f t)
shows iAnnot (tree-at (globalize is f t) is") = isidz (isQis’)
(proof)

lemma all-local-consts-listed":
assumes n € sset nodes
assumes p |€| inPorts n
shows lconsts (a-conc p) U (| (lconsts * fset (a-hyps p))) C a-fresh p

(proof)

lemma no-local-consts-in-consequences’:
n € sset nodes = Reg p |€| outPorts n => lconsts p = {}
(proof)

lemma wf-globalize:

assumes local-iwf t (T + ¢)

shows plain-iwf (globalize is f t) (renameLCs f || T' - renameLCs f ¢)
(proof)

definition fresh-at where
fresh-at t rs =
(case rev xs of [| = {}
| (i#is’) = freshenLC (iAnnot (tree-at t (rev is’))) (a-fresh (inPorts’ (iNodeOf (tree-at t (rev
is")) 1 1))

lemma fresh-at-Nil[simp]:
fresh-at t || = {}
(proof)

lemma fresh-at-snoc[simp]:
fresh-at t (isQ[i]) = freshenLC (iAnnot (tree-at t is)) ¢ (a-fresh (inPorts’ (iNodeOf (tree-at t is)) ! 7))
(proof)

lemma fresh-at-def":

fresh-at t is =

(if is =[] then {}

else freshenLC (iAnnot (tree-at t (butlast is))) ¢ (a-fresh (inPorts’ (iNodeOf (tree-at t (butlast is))) ! last

i5)))

(proof)
lemma fresh-at-Cons|[simp]:

fresh-at t (i#is) = (if is = [] then freshenLC (iAnnot t) ‘ (a-fresh (inPorts’ (iNodeOf t) ! 7)) else (let t' =
iAnts t ! i in fresh-at t' is))

(proof)

definition fresh-at-path where

33

fresh-at-path t is = | (fresh-at t set (prefizes is))

lemma fresh-at-path-Nil[simp):
fresh-at-path t [| = {}
(proof)

lemma fresh-at-path-Cons|simp]:
fresh-at-path t (itis) = fresh-at t [i] U fresh-at-path (iAnts t ! 1) is
(proof)

lemma globalize-local-consts:
assumes is’ € it-paths (globalize is f t)
shows subst-lconsts (iSubst (tree-at (globalize is f t) is’)) C
fresh-at-path (globalize is f t) is' U range f
(proof)

lemma swf-globalize’:

assumes local-iwf t ent

assumes A\ z. z |€| fst ent = closed z

assumes closed (snd ent)

shows plain-iwf (globalize is (freshenLC v-away) t) ent
(proof)

end

end

7.2 Build_Incredible_Tree

theory Build-Incredible- Tree
imports Incredible-Trees Natural-Deduction
begin

This theory constructs an incredible tree (with freshness checked only locally) from a natural deduction
tree.

lemma image-eq-to-f:

assumes f1 ‘S1 = f2 ‘52

obtains f where A\ z. 2 € S2 = fax € SI A fI (fz)=f2z
(proof)

context includes fset.lifting
begin
lemma fimage-eq-to-f:
assumes f1 |9 S1 = f2 |9 S2
obtains f where A\ z. z |€] S2 = fz |€| SI A fI (fz)=f2x
(proof)

end

context Abstract-Task
begin

lemma build-local-iwf:
fixes t :: (‘form entailment x (‘rule x 'form) NatRule) tree
assumes tfinite t
assumes wf ¢
shows 3 it. local-iwf it (fst (root t))

(proof)

34

definition to-it :: (‘form entailment x ('rule x 'form) NatRule) tree = ('form,’rule,’subst,’var) itree where
to-it t = (SOME it. local-iwf it (fst (root t)))

lemma iwf-to-it:
assumes tfinite t and wf t
shows local-iwf (to-it t) (fst (root t))
{proof)
end
end

7.3 Incredible_Completeness

theory Incredible-Completeness
imports Natural-Deduction Incredible-Deduction Build-Incredible-Tree
begin

This theory takes the tree produced in Incredible- Proof-Machine. Build-Incredible-Tree, globalizes it
using globalize, and then builds the incredible proof graph out of it.

type-synonym form vertex = ('form X nat list)
type-synonym ('form, 'var) edge’ = ('form vertex, 'form, 'var) edge’

locale Solved-Task =
Abstract-Task freshenLC renameLCs lconsts closed subst subst-lconsts subst-renameLCs anyP antecedent
consequent Tules assumptions conclusions
for freshenLC :: nat = 'var = 'var
and renameLCs :: ('var = var) = 'form = 'form
and Iconsts :: 'form = 'var set
and closed :: 'form = bool
and subst :: 'subst = "form = 'form
and subst-lconsts :: 'subst = 'var set
and subst-renameLCs :: ("var = "var) = ('subst = 'subst)
and anyP :: 'form
and antecedent :: 'rule = ('form, 'var) antecedent list
and consequent :: 'rule = 'form list
and rules :: 'rule stream
and assumptions :: 'form list
and conclusions :: 'form list +
assumes solved: solved
begin

Let us get our hand on concrete trees.

definition ts :: 'form = (('form entailment) x ('rule x ’form) NatRule) tree where
ts ¢ = (SOME t. snd (fst (root t)) = ¢ A fst (fst (root t)) |C| ass-forms A wf t A tfinite t)

lemma
assumes c |€| conc-forms
shows ts-conc: snd (fst (root (ts ¢))) =
and ts-context: fst (fst (root (ts c))) |
and ts-wf: wf (ts c)
and ts-finite[simp]: tfinite (s c)
(proo)

c
C| ass-forms

abbreviation it’ where
it’ ¢ = globalize [fidz conc-forms ¢, 0] (freshenLC v-away) (to-it (ts c))

35

lemma wf-it:
assumes ¢ € set conclusions
shows plain-iwf (it’ ¢) (fst (root (ts c)))
(proof)

definition vertices :: 'form vertex fset where
vertices = Abs-fset (Union (set (map (X c. insert (¢, []) (A p. (¢, 0 # p)) * (it-paths (it’ ¢)))) conclusions)))

lemma mem-vertices: v |€| vertices +— (fst v € set conclusions A (snd v =[] V snd v € ((#) 0) ¢ it-paths
(it" (fst v))))
(proof)

lemma prefizeg-vertices: (c,is) |€| vertices = prefiz is’ is = (¢, is') |€| vertices

(proof)

lemma none-vertices[simp|: (¢, []) |€| vertices +— c € set conclusions
(proof)

lemma some-vertices[simp|: (¢, i#is) |€| vertices +— ¢ € set conclusions N i = 0 A is € it-paths (it’ c)

(proof)

lemma vertices-cases[consumes 1, case-names None Somel:
assumes v |€| vertices
obtains ¢ where ¢ € set conclusions and v = (c, [])
| ¢ is where ¢ € set conclusions and is € it-paths (it’ ¢) and v = (¢, 0#1is)

(proof)

lemma vertices-induct[consumes 1, case-names None Some]:
assumes v |€| vertices
assumes /\ c¢. ¢ € set conclusions = P (¢, [])
assumes)\ ¢ is . ¢ € set conclusions = is € it-paths (it’ ¢) = P (c, 0#1is)
shows P v

(proof)

fun nodeOf :: 'form vertex = ('form, 'rule) graph-node where
nodeOf (pf, []) = Conclusion pf
| nodeOf (pf, i#is) = iNodeOf (tree-at (it’ pf) is)

fun inst where
inst (¢,[]) = empty-subst
linst (c, i#tis) = iSubst (tree-at (it' c) is)

lemma terminal-is-nil[simp|: v |€| vertices = outPorts (nodeOf v) = {||} +— snd v = ||

(proof)
sublocale Vertez-Graph nodes inPorts outPorts vertices nodeOf (proof)

definition edge-from :: 'form = nat list => ('form vertex x ('form,’var) out-port) where
edge-from ¢ is = ((¢, 0 # is), Reg (iOutPort (tree-at (it’ ¢) is)))

lemma fst-edge-from[simpl: fst (edge-from c is) = (¢, 0 # is)
(proof)

fun in-port-at :: ("form x nat list) = nat = ('form,’var) in-port where
in-port-at (c, []) - = plain-ant c
| in-port-at (¢, -#1s) © = inPorts’ (iNodeOf (tree-at (it’ c) is)) ! i

36

definition edge-to :: 'form = nat list => ('form vertex x ('form,’var) in-port) where
edge-to c is =
(case revis of [| = ((c,], in-port-at (¢, []) 0)
| i#is = ((c, 0 # (rev is)), in-port-at (¢, (0 rev is)) i))

lemma edge-to-Nil[simp]: edge-to ¢ [| = ((¢, []), plain-ant c)
(proof)

lemma edge-to-Snoc[simp]: edge-to ¢ (isQ[i]) = ((¢, 0 # 1is), in-port-at ((¢, 0 # is)) 1)
(proof)

definition edge-at :: 'form = nat list => ('form, 'var) edge’’ where
edge-at ¢ is = (edge-from c is, edge-to c is)

lemma fst-edge-at[simp]: fst (edge-at ¢ is) = edge-from c is (proof)
lemma snd-edge-at[simpl: snd (edge-at c is) = edge-to ¢ is {proof)

lemma hyps-exist”:
assumes c¢ € set conclusions
assumes is € it-paths (it’ ¢)
assumes tree-at (it ¢) is = (HNode i s ants)
shows subst s (freshen i anyP) € hyps-along (it’ ¢) is

{proof)

definition hyp-edge-to :: 'form = nat list => ('form vertex x ('form,’var) in-port) where
hyp-edge-to ¢ is = ((¢, 0 # 1is), plain-ant anyP)

definition hyp-edge-from :: 'form = nat list => nat = ’'subst = ('form vertex x ('form,'var) out-port)
where
hyp-edge-from ¢ is n s =
((e, 0 # hyp-port-path-for (it’ c) is (subst s (freshen n anyP))),
hyp-port-h-for (it’ ¢) is (subst s (freshen n anyP)))

definition hyp-edge-at :: 'form = nat list => nat = 'subst = ('form, 'var) edge’’ where
hyp-edge-at ¢ is n s = (hyp-edge-from c is n s, hyp-edge-to c is)

lemma fst-hyp-edge-at[simp]:

fst (hyp-edge-at ¢ is n s) = hyp-edge-from c is n s (proof)
lemma snd-hyp-edge-at[simp]:

snd (hyp-edge-at ¢ is n s) = hyp-edge-to ¢ is {proof)

inductive-set edges where

reqular-edge: ¢ € set conclusions = is € it-paths (it' ¢) = edge-at c is € edges

| hyp-edge: ¢ € set conclusions = is € it-paths (it' ¢) = tree-at (it’ ¢) is = HNode n s ants = hyp-edge-at
cisn s € edges

sublocale Pre-Port-Graph nodes inPorts outPorts vertices nodeOf edges(proof)

lemma edge-from-valid-out-port:
assumes p € it-paths (it’ c)
assumes c¢ € set conclusions
shows wvalid-out-port (edge-from c p)

{proof)

37

lemma edge-to-valid-in-port:
assumes p € it-paths (it’ c)
assumes c¢ € set conclusions
shows wvalid-in-port (edge-to ¢ p)
(proof)

lemma hyp-edge-from-valid-out-port:
assumes is € it-paths (it’ c)
assumes c¢ € set conclusions
assumes tree-at (it’ ¢) is = HNode n s ants
shows wvalid-out-port (hyp-edge-from ¢ is n s)
(proof)

lemma hyp-edge-to-valid-in-port:
assumes is € it-paths (it’ c)
assumes c € set conclusions
assumes tree-at (it’ ¢) is = HNode n s ants
shows walid-in-port (hyp-edge-to c is)
(proof)

inductive scope’ :: 'form vertex = ('form,’var) in-port = 'form X nat list = bool where
c € set conclusions —>
is’ € (#) 0) *it-paths (it' ¢) =
prefir (isQ[i]) is’ =
ip = in-port-at (c,is) i =
scope’ (¢, is) ip (c, is)

inductive-simps scope-simp: scope’ v i v’
inductive-cases scope-cases: scope’ v i v’

lemma scope-valid:
scope’ v i v = v’ |€]| vertices

{proof)

lemma scope-valid-inport:
v’ |€| vertices = scope’ vip v’ <— (3 4. fst v = fst v’ A prefix (snd vQ[3]) (snd v) A ip = in-port-at v 7)
{proof)

definition terminal-path-from :: 'form = nat list => ('form, 'var) edge’’ list where
terminal-path-from ¢ is = map (edge-at c) (rev (prefizes is))

lemma terminal-path-from-Nil][simp]:
terminal-path-from ¢ [| = [edge-at c []]
(proof)

lemma terminal-path-from-Snoc[simp):
terminal-path-from ¢ (is Q [i]) = edge-at ¢ (isQ[i]) # terminal-path-from c is
(proof)

lemma path-terminal-path-from:

¢ € set conclusions =

is € it-paths (it ¢) =

path (c, 0 # 1is) (c, []) (terminal-path-from c is)
(proof)

38

lemma edge-step:
assumes (((a, b), ba), ((aa, bb), bc)) € edges
obtains
i where a = aa and b = bbQli| and bc = in-port-at (aa,bb) i and hyps (nodeOf (a, b)) ba = None
| ¢ where a = aa and prefiz (bQ[i]) bb and hyps (nodeOf (a, b)) ba = Some (in-port-at (a,b) 7)
(proof)

lemma path-has-prefizes:
assumes path v v’ pth
assumes snd v’ = ||
assumes prefiz (is’ Q [i]) (snd v)
shows ((fst v, is’), (in-port-at (fst v, is’) 7)) € snd * set pth
(proof)

lemma in-scope: valid-in-port (v', p') = v € scope (v', p’) +— scope’ v’ p’ v

(proof)

sublocale Port-Graph nodes inPorts outPorts vertices nodeOf edges

{proof)

sublocale Scoped-Graph nodes inPorts outPorts vertices nodeOf edges hyps{proof)

lemma hyps-free-path-length:

assumes path v v’ pth

assumes hyps-free pth

shows length pth + length (snd v') = length (snd v)
(proof)

fun vidz :: 'form vertex = nat where
vide (¢, [|) = iside [fide conc-forms]

|vidz (¢, -#is) = iAnnot (tree-at (it’ ¢) is)

lemma my-vidz-inj: inj-on vidz (fset vertices)

(proof)

lemma vidz-not-v-away[simp|: v |€| vertices = vidx v # v-away

(proof)

sublocale Instantiation inPorts outPorts nodeOf hyps mnodes edges vertices labelsIn labelsOut freshenLC' re-
nameLCs lconsts closed subst subst-lconsts subst-renameL Cs anyP vidz inst

(proof)

sublocale Well-Scoped-Graph nodes inPorts outPorts vertices nodeOf edges hyps
(proof)

sublocale Acyclic-Graph nodes inPorts outPorts vertices nodeOf edges hyps
(proof)

sublocale Saturated-Graph nodes inPorts outPorts vertices nodeOf edges

{proof)

sublocale Pruned-Port-Graph nodes inPorts outPorts vertices nodeOf edges

(proof)

sublocale Well-Shaped-Graph nodes inPorts outPorts vertices nodeOf edges hyps{proof)

39

sublocale sol:Solution inPorts outPorts nodeOf hyps nodes vertices labelsIn labelsOut freshenL C renameLCs
lconsts closed subst subst-lconsts subst-renameLCs anyP vidx inst edges

{proof)

lemma node-disjoint-fresh-vars:
assumes n € sset nodes
assumes ¢ < length (inPorts’ n)
assumes i’ < length (inPorts’ n)
shows a-fresh (inPorts’ n'! i) N a-fresh (inPorts’ n 1 i)y = {} Vv i= 1’

(proof)

sublocale Well-Scoped-Instantiation freshenLC renameLCs lconsts closed subst subst-lconsts subst-renameL Cs
anyP inPorts outPorts nodeOf hyps mnodes vertices labelsIn labelsOut vidz inst edges local-vars

(proof)

sublocale Scoped-Proof-Graph freshenLC renameLCs lconsts closed subst subst-lconsts subst-renameLCs anyP
inPorts outPorts nodeOf hyps nodes vertices labelsIn labelsOut vidz inst edges local-vars{proof)

sublocale tpg: Tasked-Proof-Graph freshenLC renameLCs lconsts closed subst subst-lconsts subst-renameLCs
anyP antecedent consequent rules assumptions conclusions
vertices nodeOf edges vidz inst

(proof)
end

end

40

8 Instantiations

To ensure that our locale assumption are fulfillable, we instantiate them with small examples.

8.1 Propositional__Formulas

theory Propositional-Formulas
imports

Abstract-Formula

HOL— Library. Countable

HOL— Library.Infinite-Set

HOL— Library.Infinite- Typeclass
begin

lemma countable-infinite-ex-bij: 3 f::('a::{ countable,infinite}="b::{ countable,infinite}). bij f

(proof)

Propositional formulas are either a variable from an infinite but countable set, or a function given by
a name and the arguments.

datatype (‘var,’cname) pform =
Var "var::{ countable,infinite}
| Fun (name:’cname) (params: ("var,’cname) pform list)

Substitution on and closedness of propositional formulas is straight forward.

fun subst :: ("var::{ countable,infinite} = ('var,’cname) pform) = (‘var,’cname) pform = (‘var,’cname) pform
where subst s (Var v) = s v
| subst s (Fun n ps) = Fun n (map (subst s) ps)

fun closed :: ("var::{countable,infinite},’cname) pform = bool
where closed (Var v) <— False
| closed (Fun n ps) <— list-all closed ps

Now we can interpret Abstract-Formulas. As there are no locally fixed constants in propositional
formulas, most of the locale parameters are dummy values

interpretation propositional: Abstract-Formulas
— No need to freshen locally fixed constants
curry (SOME f. bij f):: nat = 'var = 'var
— also no renaming needed as there are no locally fixed constants
A-cid M- {}
— closedness and substitution as defined above
closed :: ('var::{ countable,infinite},’cname) pform = bool subst
— no substitution and renaming of locally fixed constants
A- A} A dd
— most generic formula

Var undefined
(proof)

declare propositional.subst-lconsts-empty-subst [simp del]

end

8.2 Incredible_Propositional

theory Incredible- Propositional imports

41

Abstract-Rules-To-Incredible
Propositional-Formulas
begin

Our concrete interpretation with propositional logic will cover conjunction and implication as well as
constant symbols. The type for variables will be string.

datatype prop-funs = and | imp | Const string

The rules are introduction and elimination of conjunction and implication.

datatype prop-rule = andl | andE | impl | impE

definition prop-rules :: prop-rule stream
where prop-rules = cycle [andI, andE, impl, impE]

lemma iR-prop-rules [simp]: sset prop-rules = {andl, andE, impl, impE}
(proof)

Just some short notation.

abbreviation X :: (string,’a) pform
where X = Var X"

abbreviation Y :: (string,’a) pform
where Y = Var 'Y

Finally the right- and left-hand sides of the rules.

fun consequent :: prop-rule = (string, prop-funs) pform list
where consequent andl = [Fun and [X, Y]]
| consequent andE = [X, Y]
| consequent impl = [Fun imp [X, Y]]
| consequent impE = [Y]

fun antecedent :: prop-rule = ((string,prop-funs) pform,string) antecedent list
where antecedent andl = [plain-ant X, plain-ant Y]
| antecedent andE = [plain-ant (Fun and [X, Y])]
| antecedent impl = [Antecedent {|X|} Y {}]
| antecedent impE = [plain-ant (Fun imp [X, Y]), plain-ant X]

interpretation propositional: Abstract-Rules
curry (SOME f. bij f):: nat = string = string
A-. id
A- A}
closed :: (string, prop-funs) pform = bool
subst
)
A-.id
Var undefined
antecedent
consequent
prop-rules
(proof)

end

42

8.3 Incredible__Propositional_Tasks

theory Incredible- Propositional-Tasks
imports

Incredible-Completeness

Incredible- Propositional
begin

context ND-Rules-Inst begin
lemma eff-NatRulel:
nat-rule rule ¢ ants
= entail = (T F subst s (freshen a c))
= hyps = ((Aant. ((Ap. subst s (freshen a p)) | a-hyps ant |U| T' b subst s (freshen a (a-conc ant)))) |
ants)
= (A ant f. ant |€| ants = f |€| I' = freshenLC a ‘ (a-fresh ant) N lconsts f = {})
= (A ant. ant |€| ants = freshenLC a ‘ (a-fresh ant) N subst-lconsts s = {})
= eff (NatRule rule) entail hyps
(proof)

end

context Abstract-Task begin
lemma natEff-Instl:
rule = (r,c)
= ¢ € set (consequent r)
= antec = f-antecedent r
= natEff-Inst rule ¢ antec
(proof)

end

context begin
8.3.1 Task 1.1

This is the very first task of the Incredible Proof Machine: A — A

abbreviation A :: (string,prop-funs) pform
where A = Fun (Const "A") ||

First the task is defined as an Abstract-Task.

interpretation taski-1: Abstract-Task
curry (SOME f. bij f):: nat = string = string
A-.id
A {}
closed :: (string, prop-funs) pform = bool
subst
-)
A-.id
Var undefined
antecedent
consequent
prop-rules
[4]
[4]
(proof)

Then we show, that this task has a proof within our formalization of natural deduction by giving a
concrete proof tree.

43

lemma taskl-1.solved
(proof)

print-locale Vertez-Graph
interpretation taski-1: Vertex-Graph task1-1.nodes taskl-1.inPorts taski-1.outPorts {|0:nat,1|}
undefined(0 := Assumption A, 1 := Conclusion A)

{proof)

print-locale Pre-Port-Graph

interpretation task1-1: Pre-Port-Graph task1-1.nodes taskl-1.inPorts task1-1.outPorts {|0:nat,1|}
undefined(0 := Assumption A, 1 := Conclusion A)
{((0,Reg A),(1,plain-ant A))}

(proof)

print-locale Instantiation
interpretation taskI-1: Instantiation
task1-1.inPorts
task1-1.outPorts
undefined(0 := Assumption A, 1 := Conclusion A)
task1-1.hyps
task1-1.nodes
{((0,Reg A),(1,plain-ant A))}
{]0::nat,1|}
task1-1.labelsIn
task1-1.labelsOut
curry (SOME f. bij f):: nat = string = string
A-.id
A- A}
closed :: (string, prop-funs) pform = bool
subst
A)
A-.id
Var undefined
id
undefined
(proof)

declare One-nat-def [simp del]

lemma path-one-edge[simp]:
task1-1.path vl v2 pth +—
(v =0 ANv2=1Apth=1[((0,Reg A),(1,plain-ant A))] V
pth =[] A vl = v2)
(proo)

Finally we can also show that there is a proof graph for this task.

interpretation Tasked-Proof-Graph
curry (SOME f. bij f):: nat = string = string
A-.id
-)
closed :: (string, prop-funs) pform = bool
subst
!
A-.id
Var undefined
antecedent

44

consequent

prop-rules
[A]

4]
{]0::nat, 1]}

undefined(0 := Assumption A, 1 := Conclusion A)
{((0,Reg A),(1,plain-ant A))}
id
undefined
(proof)

8.3.2 Task 2.11

This is a slightly more interesting task as it involves both our connectives: P A Q — R = P —
Q — R

abbreviation B :: (string,prop-funs) pform
where B = Fun (Const ""B") ||

abbreviation C :: (string,prop-funs) pform
where C' = Fun (Const ""C") |]

interpretation task2-11: Abstract-Task
curry (SOME f. bij f):: nat = string = string
A-.id
-)
closed :: (string, prop-funs) pform = bool
subst
!
A-.id
Var undefined
antecedent
consequent
prop-rules
[Fun imp [Fun and [A,B],C]]
[Fun imp [A,Fun imp [B,C]]]
(proof)

abbreviation n-andl = task2-11.n-rules !! 0
abbreviation n-andE1 = task2-11.n-rules !! 1
abbreviation n-andE2 = task2-11.n-rules !! 2
abbreviation n-impl = task2-11.n-rules !! 3
abbreviation n-impE = task2-11.n-rules ! 4

lemma n-andl [simp]: n-andl = (andl, Fun and [X,Y])

(proof)
lemma n-andE1 [simp]: n-andE1 = (andE, X)

(proof)
lemma n-andE2 [simp]: n-andE2 = (andE, Y)

(proof)
lemma n-impl [simp]: n-impl = (impl, Fun imp [X,Y])

(proof)
lemma n-impFE [simp]: n-impE = (impE, Y)

(proof)

lemma subst-Var-eq-id [simp]: subst Var = id

(proof)

45

lemma zy-update: f = undefined("X"” .=z, "Y" == y) = x=f"X" ANy =[f"Y" (proof)
lemma y-update: f = undefined("'Y":=y) = y = f "Y' (proof)

declare snth.simps(1) [simp del]

By interpreting Solved-Task we show that there is a proof tree for the task. We get the existence of
the proof graph for free by using the completeness theorem.

interpretation task2-11: Solved-Task
curry (SOME f. bij f):: nat = string = string

A-.id

A {}

closed :: (string, prop-funs) pform = bool
subst

A {)

A-.id

Var undefined

antecedent

consequent

prop-rules

[Fun imp [Fun and [A,B],C]]
[Fun imp [A,Fun imp [B,C]]]
(proof)

interpretation Tasked-Proof-Graph
curry (SOME f. bij f):: nat = string = string

A-.id

A {}

closed :: (string, prop-funs) pform = bool
subst

A- A}

A-.id

Var undefined

antecedent

consequent

prop-rules

[Fun imp [Fun and [A,B],C]]
[Fun imp [A,Fun imp [B,C]]]
task2-11 .vertices
task2-11.nodeOf
task2-11.edges

task2-11.vidx

task2-11.inst

(proof)

end

end

8.4 Predicate_Formulas

theory Predicate-Formulas
imports
HOL- Library. Countable
HOL- Library.Infinite-Set

46

HOL— Fisbach. FEisbach
Abstract-Formula
begin

This theory contains an example instantiation of Abstract-Formulas with an formula type with local
constants. It is a rather ad-hoc type that may not be very useful to work with, though.

type-synonym var = nat
type-synonym lconst = nat

We support higher order variables, in order to express Vz.?P z. But we stay first order, i.e. the
parameters of such a variables will only be instantiated with ground terms.

datatype form =
Var (var:var) (params: form list)
| LC (var:lconst)
| Op (name:string) (params: form list)
| Quant (name:string) (var:nat) (body: form)

type-synonym schema = var list X form
type-synonym subst = (nat x schema) list

fun fv :: form = var set where
fo (Var v xs) = insert v (Union (fv ¢ set xs))

| fo (LCw) = {}
| fu EOp n xs) = Union (fv * set xs)

| fo (Quant nv f) = fo f —{v}

definition fresh-for :: var set = var where
fresh-for V.= (SOME n. n ¢ V)

lemma fresh-for-fresh: finite V.—> fresh-for V.¢ V
(proof)

Free variables

fun fv-schema :: schema = var set where
fv-schema (ps,f) = fo f — set ps

definition fv-subst :: subst = var set where
fu-subst s = | (fv-schema * ran (map-of s))

definition fv-subst! where
fv-subst! s = |J(fv “ snd ‘ set s)

lemma fv-subst-Nil[simp]: fv-substl [| = {}
(proof)

Local constants, separate from free variables.

fun lc :: form = lconst set where
le (Var v xs) = Union (lc ‘ set zs)

| le (LC ¢) = {c}

| le (Op n xs) = Union (lc © set xs)

| lc (Quant n v f)=lcf

fun lc-schema :: schema = lconst set where
le-schema (ps,f) = lc f

47

definition lc-subst! where
le-substl s = |J (lc “ snd * set s)

fun lc-subst :: subst = lconst set where
le-subst s = | (le-schema * snd * set s)

fun map-lc :: (lconst = lconst) = form = form where
map-lc f (Var v xs) = Var v (map (map-lc f) zs)

| map-lc f (LC n) = LC (f n)

| map-lc f (Op n zs) = Op n (map (map-lc f) xs)

| map-lc f (Quant n v f') = Quant n v (map-lc f ')

lemma fv-map-le[simpl: fo (map-lc p f) = fo f
(proof)

lemma lc-map-lc[simp]: lc (map-lep f) =p ‘lc f
(proof)

lemma map-le-map-lc[simp]: map-lc p1 (map-lc p2 f) = map-lc (p1 o p2) f
(proof)

fun map-le-subst1 :: (lconst = lconst) = (var x form) list = (var x form) list where
map-lc-substl f s = map (apsnd (map-lc f)) s

fun map-le-subst :: (lconst = lconst) = subst = subst where
map-lc-subst f s = map (apsnd (apsnd (map-lc f))) s

lemma map-lc-noop[simp|: lc f = {} = map-lecp f = f

(proof)

lemma map-lc-cong[cong]: (\z. z € lc f = fl © = f2) = map-lc f1 f = map-lc 2 f
(proof)

lemma [simp]: fv-subst! (map (apsnd (map-lc p)) s) = fv-subst! s
(proof)

lemma map-lc-subst-cong|congl:
assumes (Az. z € lc-subst s = f1 = f2 x)
shows map-lc-subst f1 s = map-lc-subst f2 s

(proof)

In order to make the termination checker happy, we define substitution in two stages: One that substi-
tutes only ground terms for variables, and the real one that can substitute schematic terms (or lambda
expression, if you want).

fun subst! :: (var x form) list = form = form where
substl s (Var v []) = (case map-of s v of Some f = f | None = Var v [])
| substl s (Var v xs) = Var v s
| substl s (LC'n) = LCn
| substl s (Op n xs) = Op n (map (subst! s) zs)
| substl s (Quant n v f) =
(if v € fv-substl s then
(let v’ = fresh-for (fv-substl s)
in Quant n v’ (subst! ((v, Var v’ [))#s) f))
else Quant n v (substl s f))

lemma subst!-Nil[simp|: substl [| f = f

48

(proof)

lemma lec-substl: le (subst! s f) Cle f U J(le “ snd ‘ set s)
(proof)

lemma apsnd-def”: apsnd f = (A(k, v). (k, fv))
(proof)

lemma map-of-map-apsnd:
map-of (map (apsnd f) xs) = map-option f o map-of xs
(proof)

lemma map-lc-substl [simp]: map-lc p (substl s f) = substl (map-lc-substl p s) (map-lc p f)
(proof)

fun subst’ :: subst = form = form where
subst’ s (Var v zs) =
(case map-of s v of None = (Var v (map (subst’ s) xs))
| Some (ps,rhs) =
if length ps = length zs
then substl (zip ps (map (subst’ s) xs)) rhs
else (Var v (map (subst’ s) zs)))
| subst’ s (LC'n) = LCn
| subst’ s (Op n zs) = Op n (map (subst’ s) xs)
| subst’ s (Quant n v f) =
(if v € fu-subst s then
(let v' = fresh-for (fv-subst s)
in Quant n v’ (subst’ ((v,([], Var v' []))#s) f))
else Quant n v (subst’ s f))

lemma subst’-Nil[simp]: subst’ [| f = f
(proof)

lemma lc-subst”: lc (subst’ s f) C lc f U le-subst s

(proof)

lemma ran-map-option-comp[simpl:
ran (map-option f o m) = f “ran m

(proof)

lemma fv-schema-apsnd-map-lc[simp):
fu-schema (apsnd (map-lc p) a) = fv-schema a
(proof)
lemma fu-subst-map-apsnd-map-lc|simp):
fv-subst (map (apsnd (apsnd (map-lc p))) s) = fo-subst s
(proof)

lemma map-apsnd-zip[simp]: map (apsnd f) (zip a b) = zip a (map [b)
(proof)

lemma map-lc-subst’[simp]: map-lc p (subst’ s f) = subst’ (map-lc-subst p s) (map-lc p f)
(proof)

Since subst’ happily renames quantified variables, we have a simple wrapper that ensures that the
substitution is minimal, and is empty if f is closed. This is a hack to support lemma subst-noop.

49

fun subst :: subst = form = form where
subst s f = subst’ (filter (A (v,8). v € fof) s) f

lemma subst-Nil[simp]: subst [| f = f
(proof)

lemma subst-noop[simp|: fo f = {} = subst s f = f
(proof)

lemma lc-subst: le (subst s f) C le f U lc-subst s

(proof)

lemma lc-subst-map-lc-subst[simp]: le-subst (map-le-subst p s) = p * le-subst s

(proof)

lemma map-lc-subst[simp]: map-lc p (subst s f) = subst (map-le-subst p s) (map-lc p f)
(proof)

fun closed :: form = bool where

closed f «— fof ={} Nlcf={}

interpretation predicate: Abstract-Formulas
curry to-nat :: nat = var = var
map-lc
le
closed
subst
le-subst
map-lc-subst
Var 0]

(proof)

declare predicate.subst-lconsts-empty-subst [simp del]

end

8.5 Incredible_Predicate

theory Incredible-Predicate imports
Abstract-Rules- To-Incredible
Predicate-Formulas
begin
Our example interpretation with predicate logic will cover implication and the universal quantifier.

The rules are introduction and elimination of implication and universal quantifiers.

datatype prop-rule = alll | allE | impl | impE

definition prop-rules :: prop-rule stream
where prop-rules = cycle [alll, allE, impl, impF)

lemma iR-prop-rules [simp]: sset prop-rules = {alll, allE, impl, impE}
(proof)

Just some short notation.

50

abbreviation X :: form
where X = Var 10 |]
abbreviation Y :: form
where Y = Var 11 ||
abbreviation z :: form
where z = Var 9 ||
abbreviation t :: form
where t = Var 15 ||
abbreviation P :: form = form
where P f = Var 12 [f]
abbreviation @ :: form = form
where Q f = Op "Q" [f]
abbreviation imp :: form = form = form
where imp f1 f2 = Op "imp”’ [f1, 2]
abbreviation ForallX :: form = form
where ForallX f = Quant "all” 9 f

Finally the right- and left-hand sides of the rules.

fun consequent :: prop-rule = form list
where consequent alll = [ForallX (P x)]
| consequent allE = [P
| consequent impl = [imp X Y]
| consequent impE = [Y]

abbreviation alll-input where alll-input = Antecedent {||} (P (LC 0)) {0}
abbreviation impl-input where impl-input = Antecedent {|X|} Y {}

fun antecedent :: prop-rule = (form, lconst) antecedent list
where antecedent alll = [alll-input]
| antecedent allE = [plain-ant (ForallX (P x))]
| antecedent impl = [impl-input]
| antecedent impE = [plain-ant (imp X Y), plain-ant X]

interpretation predicate: Abstract-Rules
curry to-nat :: nat = var = var
map-lc
le
closed
subst
le-subst
map-lc-subst
Var 0]
antecedent
consequent
prop-rules

(proof)

end

8.6 Incredible__Predicate_ Tasks

theory Incredible-Predicate-Tasks
imports
Incredible-Completeness
Incredible- Predicate
HOL— Eisbach.Eisbach

o1

begin
declare One-nat-def [simp del]

context ND-Rules-Inst begin
lemma eff-NatRulel:
nat-rule rule ¢ ants
= entail = (I' F subst s (freshen a c))
= hyps = ((Aant. ((Ap. subst s (freshen a p)) | a-hyps ant |U| T' b subst s (freshen a (a-conc ant)))) |
ants)
= (A ant f. ant |€] ants = [|€|] T => freshenLC a ‘ (a-fresh ant) N lconsts f = {})
= (A ant. ant |€| ants = freshenLC a ‘ (a-fresh ant) N subst-lconsts s = {})
= eff (NatRule rule) entail hyps
(proof)

end

context Abstract-Task begin
lemma natEff-Instl:
rule = (r,c)
= ¢ € set (consequent r)
= antec = f-antecedent r
= natEff-Inst rule ¢ antec

(proof)
end

context begin
A typical task with local constants:: Vz. Q © — @ x

First the task is defined as an Abstract-Task.

interpretation task: Abstract-Task

curry to-nat :: nat = var = var

map-lc

le

closed

subst

le-subst

map-lc-subst

Var 0]

antecedent

consequent

prop-rules

[

[ForallX (imp (Q z) (Q x))]
(proof)

Then we show, that this task has a proof within our formalization of natural deduction by giving a
concrete proof tree.

abbreviation [z :: nat where lx = to-nat (1::nat,0::nat)

abbreviation base-tree :: ((form fset x form) x (prop-rule x form) NatRule) tree where
base-tree = Node ({|Q (LC Iz)|} F Q (LC lz), Aziom) {||}

abbreviation imp-tree :: ((form fset x form) x (prop-rule x form) NatRule) tree where
imp-tree = Node ({||} F imp (Q (LCIz)) (Q (LC lx)), NatRule (impl, imp X Y)) {|base-tree|}

52

abbreviation solution-tree :: ((form fset x form) x (prop-rule x form) NatRule) tree where
solution-tree = Node ({||} F ForallX (imp (Q z) (Q z)), NatRule (alll, ForallX (P x))) {|imp-tree|}

abbreviation s! where s1 = [(12, ([9], imp (Q z) (Q z)))]
abbreviation s2 where s2 = [(10, ([, Q (LC Iz))), (11, ([, @ (LC Iz)))]

lemma fv-subst-s1[simp]: fu-subst s1 = {}

(proof)

lemma substi-simps[simp]:
subst s1 (P (LC n)) = imp (Q (LC n)) (@ (LC n))
(Z*ubstfs; (ForallX (P z)) = ForallX (imp (Q z) (Q z))
Proo

lemma subst2-simps[simp):
subst s2 X = @ (LC lx)
subst s2 Y = @ (LC lx)
subst s2 (imp X Y) = imp (subst s2 X) (subst s2'Y)

(proof)

lemma substll: ForallX (imp (Q z) (Q x)) = subst s1 (predicate.freshen 1 (ForallX (P z)))
(proof)

lemma substI2: imp (Q (LC lz)) (Q (LC lz)) = subst s2 (predicate.freshen 2 (imp X Y))
(proof)

declare subst.simps[simp del]

lemma task.solved

(proof)

abbreviation vertices where vertices = {|0::nat,1,2 |}
fun nodeOf where
nodeOf n = [Conclusion (ForallX (imp (Q z) (Q x))),
Rule alll,
Rule impI] ! n

fun inst where
inst n = [[],s1,s2] ! n

interpretation task: Vertex-Graph task.nodes task.inPorts task.outPorts vertices nodeOf (proof)

abbreviation el :: (nat, form, nat) edge’
where el = ((1,Reg (ForallX (P z))), (0,plain-ant (ForallX (imp (Q z) (Q x)))))
abbreviation e2 :: (nat, form, nat) edge’
where e2 = ((2,Reg (imp X Y)), (1,alll-input))
abbreviation e3 :: (nat, form, nat) edge’
where e8 = ((2,Hyp X (impl-input)), (2,impI-input))
abbreviation task-edges :: (nat, form, nat) edge’ set where task-edges = {el, e2, e3}

interpretation task: Scoped-Graph task.nodes task.inPorts task.outPorts vertices nodeOf task-edges task.hyps
(proof)

interpretation task: Instantiation
task.inPorts

93

task.outPorts
nodeOf
task.hyps
task.nodes
task-edges
vertices
task.labelsIn
task.labelsOut
curry to-nat :: nat = var = var
map-lc

lc

closed

subst

lc-subst
map-lc-subst
Var 0]

id

inst

{proof)

Finally we can also show that there is a proof graph for this task.

interpretation Well-Scoped-Graph

task.nodes

task.inPorts

task.outPorts

vertices

nodeOf

task-edges

task.hyps

(proof)

lemma no-path-01[simp): task.path 0 v pth «— (pth =[] A v = 0)
(proof)
lemma no-path-12[simp|: — task.path 1 2 pth

(proof)

interpretation Acyclic-Graph
task.nodes
task.inPorts
task.outPorts
vertices
nodeOf
task-edges
task.hyps

(proof)

interpretation Saturated-Graph
task.nodes
task.inPorts
task.outPorts
vertices
nodeOf
task-edges

(proof)

interpretation Pruned-Port-Graph
task.nodes

54

task.inPorts
task.outPorts
vertices

nodeOf
task-edges

(proof)

interpretation Well-Shaped-Graph
task.nodes
task.inPorts
task.outPorts
vertices
nodeOf task-edges
task.hyps

(proof)

interpretation Solution
task.inPorts
task.outPorts
nodeOf
task.hyps
task.nodes
vertices
task.labelsIn
task.labelsOut
curry to-nat :: nat = var = var
map-lc
lc
closed
subst
lc-subst
map-lc-subst
Var 0]
id
inst
task-edges

(proof)

interpretation Proof-Graph
task.nodes
task.inPorts
task.outPorts
vertices
nodeOf
task-edges
task.hyps
task.labelsIn
task.labelsOut
curry to-nat :: nat = var = var
map-lc
le
closed
subst
lc-subst
map-lc-subst
Var 0]
id

95

inst
(proof)

lemma path-20:

assumes task.path 2 0 pth

shows (1, alll-input) € snd * set pth
(proof)

lemma scope-21: 2 € task.scope (1, alll-input)

(proof)

interpretation Scoped-Proof-Graph
curry to-nat :: nat = var = var
map-lc
le
closed
subst
lc-subst
map-lc-subst
Var 0]
task.inPorts
task.outPorts
nodeOf
task.hyps
task.nodes
vertices
task.labelsIn
task.labelsOut
id
st
task-edges
task.local-vars

(proof)

interpretation Tusked-Proof-Graph
curry to-nat :: nat = var = var
map-lc
le
closed
subst
lc-subst
map-lc-subst
Var 0]
antecedent
consequent
prop-rules
[
[ForallX (imp (Q z) (Q x))]

vertices
nodeOf
task-edges
id

st

(proof)

end

o6

end

o7

	Introduction
	Auxiliary theories
	Entailment
	Indexed_FSet
	Rose_Tree
	The rose tree data type
	The set of paths in a rose tree
	Indexing into a rose tree

	Abstract formulas, rules and tasks
	Abstract_Formula
	Abstract_Rules

	Incredible Proof Graphs
	Incredible_Signatures
	Incredible_Deduction
	Abstract_Rules_To_Incredible

	Natural Deduction
	Natural_Deduction

	Correctness
	Incredible_Correctness

	Completeness
	Incredible_Trees
	Build_Incredible_Tree
	Incredible_Completeness

	Instantiations
	Propositional_Formulas
	Incredible_Propositional
	Incredible_Propositional_Tasks
	Task 1.1
	Task 2.11

	Predicate_Formulas
	Incredible_Predicate
	Incredible_Predicate_Tasks

