The meta theory of the Incredible Proof Machine

Joachim Breitner Denis Lohner

March 17, 2025

The Incredible Proof Machine is an interactive visual theorem prover which represents proofs as port graphs. We model this proof representation in Isabelle, and prove that it is just as powerful as natural deduction.

Contents

1	Introduction	2			
2	Auxiliary theories	4			
	2.1 Entailment	4			
	2.2 Indexed_FSet	4			
	2.3 Rose_Tree	5			
	2.3.1 The rose tree data type	5			
	2.3.2 The set of paths in a rose tree	6			
	2.3.3 Indexing into a rose tree	6			
3	Abstract formulas, rules and tasks	8			
	3.1 Abstract_Formula	8			
	3.2 Abstract_Rules				
4	Incredible Proof Graphs				
	4.1 Incredible_Signatures	13			
	4.2 Incredible_Deduction				
	4.3 Abstract_Rules_To_Incredible				
5	Natural Deduction	23			
	5.1 Natural_Deduction				
6	Correctness	25			
	6.1 Incredible_Correctness	25			
7	Completeness 28				
	7.1 Incredible_Trees	28			
	7.2 Build_Incredible_Tree	34			
	7.3 Incredible_Completeness				

8 Instantiations			
	8.1	Propositional_Formulas	41
	8.2	Incredible_Propositional	41
	8.3	Incredible_Propositional_Tasks	43
		8.3.1 Task 1.1	43
		8.3.2 Task 2.11	45
	8.4	Predicate_Formulas	46
	8.5	Incredible_Predicate	50
	8.6	Incredible_Predicate_Tasks	51

1 Introduction

The Incredible Proof Machine (http://incredible.pm) is an educational tool that allows the user to prove theorems just by dragging proof blocks (corresponding to proof rules) onto a canvas, and connecting them correctly.

In the ITP 2016 paper [Bre16] the first author formally describes the shape of these graphs, as port graphs, and gives the necessary conditions for when we consider such a graph a valid proof graph. The present Isabelle formalization implements these definitions in Isabelle, and furthermore proves that such proof graphs are just as powerful as natural deduction.

All this happens with regard to an abstract set of formulas (theory *Abstract_Formula*) and an abstract set of logic rules (theory *Abstract_Rules*) and can thus be instantiated with various logics.

This formalization covers the following aspects:

- We formalize the definition of port graphs, proof graphs and the conditions for such a proof graph to be a valid graph (theory *Incredible_Deduction*).
- We provide a formal description of natural deduction (theory *Natural_Deduction*), which connects to the existing theories in the AFP entry Abstract Completeness [BPT14].
- For every proof graph, we construct a corresponding natural deduction derivation tree (theory *Incredible_Correctness*).
- Conversely, if we have a natural deduction derivation tree, we can construct a proof graph thereof (theory *Incredible_Completeness*).
 - This is the much harder direction, mostly because the freshness side condition for locally fixed constants (such as in the introduction rule for the universal quantifier) is a local check in natural deduction, but a global check in proofs graphs, and thus some elaborate renaming has to occur (globalize in Incredible_Trees).
- To explain our abstract locales, and ensure that the assumptions are consistent, we provide example instantiations for them.

It does not cover the unification procedure and expects that a suitable instantiation is already given. It also does not cover the creation and use of custom blocks, which abstract over proofs and thus correspond to lemmas in Isabelle.

Acknowledgements

We would like to thank Andreas Lochbihler for helpful comments.

References

- [BPT14] Jasmin Christian Blanchette, Andrei Popescu, and Dmitriy Traytel, Abstract completeness, Archive of Formal Proofs (2014), http://isa-afp.org/entries/Abstract_Completeness.shtml, Formal proof development.
- [Bre16] Joachim Breitner, Visual theorem proving with the Incredible Proof Machine, ITP, 2016.

2 Auxiliary theories

2.1 Entailment

```
theory Entailment imports Main HOL-Library.FSet begin  \begin{aligned} &\text{type-synonym 'form entailment} = (\text{'form fset} \times \text{'form}) \\ &\text{abbreviation entails} :: \text{'form fset} \Rightarrow \text{'form entailment (infix} \longleftrightarrow 50) \\ &\text{where } a \vdash c \equiv (a, c) \end{aligned}   \begin{aligned} &\text{fun add-ctxt} :: \text{'form fset} \Rightarrow \text{'form entailment} \Rightarrow \text{'form entailment where} \\ &add\text{-ctxt} \Delta (\Gamma \vdash c) = (\Gamma \mid \cup \mid \Delta \vdash c) \end{aligned}  end
```

2.2 Indexed_FSet

```
\begin{array}{c} \textbf{theory} \ \textit{Indexed-FSet} \\ \textbf{imports} \\ \textit{HOL-Library.FSet} \\ \textbf{begin} \end{array}
```

It is convenient to address the members of a finite set by a natural number, and also to convert a finite set to a list.

```
context includes fset.lifting
lift-definition fset-from-list :: 'a list => 'a fset is set \langle proof \rangle
lemma mem-fset-from-list[simp]: x \in \{l \in l \text{ fset-from-list } l \iff x \in set \ l \in l \}
lemma fimage-fset-from-list[simp]: f \mid f fset-from-list l = f fset-from-list (map f \mid f) \langle proof \rangle
lemma fset-fset-from-list[simp]: fset (fset-from-list l) = set l \langle proof \rangle
lemmas fset-simps[simp] = set-simps[Transfer.transferred]
lemma size-fset-from-list[simp]: distinct <math>l \Longrightarrow size (fset-from-list \ l) = length \ l
  \langle proof \rangle
definition list-of-fset :: 'a fset \Rightarrow 'a list where
  list-of-fset\ s = (SOME\ l.\ fset-from-list\ l = s \land distinct\ l)
lemma fset-from-list-of-fset [simp]: fset-from-list (list-of-fset s) = s
  and distinct-list-of-fset[simp]: distinct (list-of-fset s)
  \langle proof \rangle
lemma length-list-of-fset[simp]: length (list-of-fset s) = size s
lemma nth-list-of-fset-mem[simp]: i < size s \implies list-of-fset s ! i | \in | s
  \langle proof \rangle
\mathbf{inductive} \ \mathit{indexed-fmember} :: \ 'a \Rightarrow \mathit{nat} \Rightarrow \ 'a \ \mathit{fset} \Rightarrow \mathit{bool} \ ( \leftarrow | \in | \_ \rightarrow \lceil 50, 50, 50 \rceil \ \ \mathit{50} \ ) \ \mathbf{where}
  i < size \ s \Longrightarrow list-of-fset \ s \ ! \ i \mid \in \mid_i \ s
lemma indexed-fmember-is-fmember: x \in [s] s \Longrightarrow x \in [s]
\langle proof \rangle
```

```
lemma fmember-is-indexed-fmember:
  assumes x \in s
  shows \exists i. x \in i
\langle proof \rangle
lemma indexed-fmember-unique: x \in |i| s \Longrightarrow y \in |i| s \Longrightarrow x = y \longleftrightarrow i = j
  \langle proof \rangle
definition indexed-members :: 'a fset \Rightarrow (nat \times 'a) list where
  indexed-members s = zip [0..< size s] (list-of-fset s)
lemma mem-set-indexed-members:
  (i,x) \in set \ (indexed\text{-}members \ s) \longleftrightarrow x \mid \in \mid_i s
  \langle proof \rangle
lemma mem-set-indexed-members'[simp]:
  t \in set \ (indexed\text{-}members \ s) \longleftrightarrow snd \ t \mid \in \mid_{fst \ t} s
  \langle proof \rangle
definition fnth (infixl \langle |!| \rangle 100) where
  s \mid ! \mid n = list\text{-}of\text{-}fset \ s \mid n
lemma fnth-indexed-fmember: i < size s \implies s \mid ! \mid i \mid \in \mid_i s
lemma indexed-fmember-fnth: x \in [i] s \longleftrightarrow (s \mid !!) i = x \land i < size s
 \langle proof \rangle
end
definition fidx :: 'a fset \Rightarrow 'a \Rightarrow nat where
 fidx \ s \ x = (SOME \ i. \ x \mid \in \mid_i s)
lemma fidx-eq[simp]: x | \in |_i s \Longrightarrow fidx s x = i
  \langle proof \rangle
lemma fidx-inj[simp]: x \in s \implies y \in s \implies fidx \ s \ x = fidx \ s \ y \longleftrightarrow x = y
lemma inj-on-fidx: inj-on (fidx vertices) (fset vertices)
  \langle proof \rangle
end
```

2.3 Rose_Tree

```
\begin{array}{l} \textbf{theory} \ Rose-Tree \\ \textbf{imports} \ Main \ HOL-Library. Sublist \\ \textbf{begin} \end{array}
```

For theory *Incredible-Trees* we need rose trees; this theory contains the generally useful part of that development.

2.3.1 The rose tree data type

```
datatype 'a rose-tree = RNode (root: 'a) (children: 'a rose-tree list)
```

2.3.2 The set of paths in a rose tree

```
Too bad that inductive-set does not allow for varying parameters...
inductive it-pathsP :: 'a \ rose-tree \Rightarrow nat \ list \Rightarrow bool \ \ \mathbf{where}
   it-paths-Nil: it-pathsP t []
| it-paths-Cons: i < length (children t) \implies children t! <math>i = t' \implies it-pathsP t' is \implies it-pathsP t (i # is)
inductive-cases it-pathP-ConsE: it-pathsP t (i\#is)
inductive-cases it-pathP-RNodeE: it-pathsP (RNode r ants) is
definition it-paths:: 'a rose-tree \Rightarrow nat list set where
  it-paths t = Collect (it-pathsP t)
lemma it-paths-eq [pred-set-conv]: it-pathsP t = (\lambda x. \ x \in it\text{-paths} \ t)
 \langle proof \rangle
lemmas it-paths-intros [intro?] = it-pathsP.intros[to-set]
lemmas it-paths-induct [consumes 1, induct set: it-paths] = it-pathsP.induct[to-set]
lemmas it-paths-cases [consumes 1, cases set: it-paths] = it-pathsP.cases[to-set]
lemmas it-paths-ConsE = it-pathP-ConsE[to-set]
lemmas it-paths-RNodeE = it-pathP-RNodeE[to-set]
lemmas it-paths-simps = it-pathsP.simps [to-set]
lemmas it-paths-intros(1)[simp]
lemma it-paths-RNode-Nil[simp]: it-paths (RNode r []) = {[]}
lemma it-paths-Union: it-paths t \subseteq insert [] (Union (((\lambda (i,t). ((#) i) 'it-paths t) 'set (List.enumerate (0::nat)
(children\ t)))))
 \langle proof \rangle
lemma finite-it-paths[simp]: finite (it-paths t)
  \langle proof \rangle
2.3.3 Indexing into a rose tree
fun tree-at :: 'a rose-tree \Rightarrow nat list \Rightarrow 'a rose-tree where
  tree-at \ t \ [] = t
| tree-at \ t \ (i\#is) = tree-at \ (children \ t \ ! \ i) \ is
lemma it-paths-SnocE[elim-format]:
 assumes is @[i] \in it\text{-}paths\ t
 shows is \in it-paths t \land i < length (children (tree-at t is))
\langle proof \rangle
lemma it-paths-strict-prefix:
 assumes is \in it-paths t
 assumes strict-prefix is' is
 shows is' \in it-paths t
\langle proof \rangle
lemma it-paths-prefix:
 assumes is \in it-paths t
 assumes prefix is' is
```

```
\begin{aligned} &\textbf{shows} \ is' \in \textit{it-paths} \ t \\ &\langle \textit{proof} \rangle \end{aligned} \begin{aligned} &\textbf{lemma} \ \textit{it-paths-butlast:} \\ &\textbf{assumes} \ \textit{is} \in \textit{it-paths} \ t \\ &\textbf{shows} \ \textit{butlast} \ \textit{is} \in \textit{it-paths} \ t \\ &\langle \textit{proof} \rangle \end{aligned} \begin{aligned} &\textbf{lemma} \ \textit{it-path-SnocI:} \\ &\textbf{assumes} \ \textit{is} \in \textit{it-paths} \ t \\ &\textbf{assumes} \ \textit{is} \in \textit{it-paths} \ t \\ &\textbf{assumes} \ \textit{is} \in \textit{length} \ (\textit{children} \ (\textit{tree-at} \ t \ \textit{is})) \\ &\textbf{shows} \ \textit{is} \ @ \ [\textit{i}] \in \textit{it-paths} \ t \\ &\langle \textit{proof} \rangle \end{aligned}
```

 \mathbf{end}

3 Abstract formulas, rules and tasks

3.1 Abstract_Formula

```
theory Abstract-Formula
imports
Main
HOL-Library.FSet
HOL-Library.Stream
Indexed-FSet
begin
```

The following locale describes an abstract interface for a set of formulas, without fixing the concret shape, or set of variables.

The variables mentioned in this locale are only the *locally fixed constants* occurring in formulas, e.g. in the introduction rule for the universal quantifier. Normal variables are not something we care about at this point; they are handled completely abstractly by the abstract notion of a substitution.

```
locale Abstract-Formulas =

    Variables can be renamed injectively

 fixes freshenLC :: nat \Rightarrow 'var \Rightarrow 'var
 — A variable-changing function can be mapped over a formula
 fixes renameLCs :: ('var \Rightarrow 'var) \Rightarrow ('form \Rightarrow 'form)
  — The set of variables occurring in a formula
 fixes lconsts :: 'form \Rightarrow 'var set

    A closed formula has no variables, and substitions do not affect it.

 fixes closed :: 'form \Rightarrow bool
  — A substitution can be applied to a formula.
 fixes subst :: 'subst \Rightarrow 'form \Rightarrow 'form
 — The set of variables occurring (in the image) of a substitution.
 fixes subst-lconsts :: 'subst \Rightarrow 'var set
 — A variable-changing function can be mapped over a substitution
 fixes subst-renameLCs :: ('var \Rightarrow 'var) \Rightarrow ('subst \Rightarrow 'subst)
 — A most generic formula, can be substituted to anything.
 fixes anyP :: 'form
 assumes freshenLC-eq-iff[simp]: freshenLC a v = freshenLC a' v' \longleftrightarrow a = a' \land v = v'
 assumes lconsts-renameLCs: lconsts (renameLCs p f) = p ' lconsts f
 assumes rename-closed: lconsts f = \{\} \implies renameLCs \ p \ f = f
 assumes subst-closed: closed f \Longrightarrow subst \ s \ f = f
 assumes closed-no-lconsts: closed f \Longrightarrow lconsts f = \{\}
 assumes fv-subst: lconsts (subst s f) \subseteq lconsts f \cup subst-lconsts s
 assumes rename-rename: renameLCs p1 (renameLCs p2 f) = renameLCs (p1 \circ p2) f
 assumes rename-subst: renameLCs p (subst s f) = subst (subst-renameLCs p s) (renameLCs p f)
 assumes renameLCs-cong: (\bigwedge x. \ x \in lconsts \ f \Longrightarrow f1 \ x = f2 \ x) \Longrightarrow renameLCs \ f1 \ f = renameLCs \ f2 \ f
  assumes subst-renameLCs-cong: (\bigwedge x. \ x \in subst-lconsts \ s \Longrightarrow f1 \ x = f2 \ x) \Longrightarrow subst-renameLCs \ f1 \ s =
subst-renameLCs f2 s
 assumes subst-lconsts-subst-renameLCs: subst-lconsts (subst-renameLCs p s) = p ' subst-lconsts s
 assumes lconsts-anyP: lconsts anyP = \{\}
 assumes empty-subst: \exists s. (\forall f. subst s f = f) \land subst-lconsts s = \{\}
 assumes anyP-is-any: \exists s. subst s anyP = f
begin
 definition freshen :: nat \Rightarrow 'form \Rightarrow 'form where
   freshen n = renameLCs (freshenLC n)
 definition empty-subst :: 'subst where
```

```
empty-subst = (SOME \ s. \ (\forall \ f. \ subst \ s \ f = f) \land subst-lconsts \ s = \{\})
 lemma empty-subst-spec:
   (\forall f. \ subst \ empty\text{-subst} \ f = f) \land subst\text{-}lconsts \ empty\text{-}subst = \{\}
    \langle proof \rangle
 lemma subst-empty-subst[simp]: subst\ empty-subst\ f=f
   \langle proof \rangle
 lemma \ subst-lconsts-empty-subst[simp]: \ subst-lconsts \ empty-subst= \{\}
   \langle proof \rangle
 lemma lconsts-freshen: lconsts (freshen a f) = freshenLC a ' lconsts f
 lemma freshen-closed: lconsts f = \{\} \Longrightarrow freshen a f = f
   \langle proof \rangle
 lemma closed-eq:
   assumes closed f1
   assumes closed f2
   shows subst s1 (freshen a1 f1) = subst s2 (freshen a2 f2) \longleftrightarrow f1 = f2
  \langle proof \rangle
 lemma freshenLC-range-eq-iff[simp]: freshenLC a \ v \in range (freshenLC a') \longleftrightarrow a = a'
   \langle proof \rangle
 definition rerename :: 'var set \Rightarrow nat \Rightarrow nat \Rightarrow ('var \Rightarrow 'var) \Rightarrow ('var \Rightarrow 'var) where
   rerename V from to f = (if x \in freshenLC from 'V then freshenLC to (inv (freshenLC from) x) else f x)
 lemma inj-freshenLC[simp]: inj (freshenLC i)
   \langle proof \rangle
 lemma rerename-freshen[simp]: x \in V \Longrightarrow rerename V i (isidx is) f (freshenLC i x) = freshenLC (isidx is)
    \langle proof \rangle
 lemma range-rerename: range (rerename V from to f) \subseteq freshenLC to 'V \cup range f
   \langle proof \rangle
 lemma rerename-noop:
     x \notin freshenLC from 'V \implies rerename V from to f x = f x
    \langle proof \rangle
 lemma rerename-rename-noop:
     freshenLC\ from\ `V\cap lconsts\ form\ = \{\}\ \Longrightarrow renameLCs\ (rerename\ V\ from\ to\ f)\ form\ =\ renameLCs\ f
form
      \langle proof \rangle
 lemma rerename-subst-noop:
        freshenLC\ from\ `V\cap subst-lconsts\ s=\{\}\implies subst-renameLCs\ (rerename\ V\ from\ to\ f)\ s=
subst-renameLCs f s
      \langle proof \rangle
end
end
```

3.2 Abstract_Rules

theory Abstract-Rules

```
imports
Abstract-Formula
begin
```

Next, we can define a logic, by giving a set of rules.

In order to connect to the AFP entry Abstract Completeness, the set of rules is a stream; the only relevant effect of this is that the set is guaranteed to be non-empty and at most countable. This has no further significance in our development.

Each antecedent of a rule consists of

- a set of fresh variables
- a set of hypotheses that may be used in proving the conclusion of the antecedent and
- the conclusion of the antecedent.

Our rules allow for multiple conclusions (but must have at least one).

In order to prove the completeness (but incidentally not to prove correctness) of the incredible proof graphs, there are some extra conditions about the fresh variables in a rule.

- These need to be disjoint for different antecedents.
- They need to list all local variables occurring in either the hypothesis and the conclusion.
- The conclusions of a rule must not contain any local variables.

```
datatype ('form, 'var) antecedent =
  Antecedent (a-hyps: 'form fset) (a-conc: 'form) (a-fresh: 'var set)
abbreviation plain-ant :: 'form \Rightarrow ('form, 'var) antecedent
 where plain-ant f \equiv Antecedent \{||\} f \{||\}
locale Abstract-Rules =
  Abstract	ext{-}Formulas\ freshen LC\ rename LCs\ lconsts\ closed\ subst-lconsts\ subst-rename LCs\ any P
 for freshenLC :: nat \Rightarrow 'var \Rightarrow 'var
 and renameLCs :: ('var \Rightarrow 'var) \Rightarrow ('form \Rightarrow 'form)
 and lconsts :: 'form \Rightarrow 'var set
 and closed :: 'form \Rightarrow bool
 and subst :: 'subst \Rightarrow 'form \Rightarrow 'form
 and subst-lconsts :: 'subst \Rightarrow 'var set
 and subst-renameLCs :: ('var \Rightarrow 'var) \Rightarrow ('subst \Rightarrow 'subst)
 and anyP :: 'form +
 fixes antecedent :: 'rule \Rightarrow ('form, 'var) antecedent list
   and consequent :: 'rule \Rightarrow 'form \ list
   and rules :: 'rule stream
 assumes no-empty-conclusions: \forall xs \in sset \ rules. consequent xs \neq []
 assumes no-local-consts-in-consequences: \forall xs \in sset \ rules. \bigcup (lconsts \ (set \ (consequent \ xs))) = \{\}
 assumes no-multiple-local-consts:
   \bigwedge r \ i \ i' \ . \ r \in sset \ rules \Longrightarrow
                 i < length (antecedent r) \Longrightarrow
                 i' < length (antecedent r) \Longrightarrow
                 a-fresh (antecedent r ! i) \cap a-fresh (antecedent r ! i') = \{\} \lor i = i'
 assumes all-local-consts-listed:
   \bigwedge r \ p. \ r \in sset \ rules \Longrightarrow p \in set \ (antecedent \ r) \Longrightarrow
```

```
lconsts\ (a\text{-}conc\ p)\ \cup\ (\bigcup\ (lconsts\ `fset\ (a\text{-}hyps\ p)))\ \subseteq\ a\text{-}fresh\ p
begin
 definition f-antecedent :: 'rule \Rightarrow ('form, 'var) antecedent fset
    where f-antecedent r = fset-from-list (antecedent r)
 definition f-consequent r = fset-from-list (consequent r)
end
```

Finally, an abstract task specifies what a specific proof should prove. In particular, it gives a set of assumptions that may be used, and lists the conclusions that need to be proven.

Both assumptions and conclusions are closed expressions that may not be changed by substitutions.

```
locale Abstract-Task =
```

Abstract-Rules freshenLC renameLCs lconsts closed subst-subst-lconsts subst-renameLCs anyP antecedent consequent rules

```
for freshenLC :: nat \Rightarrow 'var \Rightarrow 'var
   and renameLCs :: ('var \Rightarrow 'var) \Rightarrow ('form \Rightarrow 'form)
   and lconsts :: 'form \Rightarrow 'var set
   and closed :: 'form \Rightarrow bool
   and subst :: 'subst \Rightarrow 'form \Rightarrow 'form
   and subst-lconsts :: 'subst \Rightarrow 'var set
   and subst-renameLCs :: ('var \Rightarrow 'var) \Rightarrow ('subst \Rightarrow 'subst)
   and anyP :: 'form
   and antecedent :: 'rule \Rightarrow ('form, 'var) \ antecedent \ list
   and consequent :: 'rule \Rightarrow 'form \ list
   and rules :: 'rule stream +
 fixes assumptions :: 'form list
 fixes conclusions :: 'form list
 assumes assumptions-closed: \bigwedge a. a \in set assumptions \Longrightarrow closed a
 assumes conclusions-closed: \bigwedge c. c \in set \ conclusions \Longrightarrow closed \ c
begin
 definition ass-forms where ass-forms = fset-from-list assumptions
 definition conc-forms where conc-forms = fset-from-list conclusions
 lemma mem-ass-forms[simp]: a \in ass-forms \longleftrightarrow a \in set assumptions
   \langle proof \rangle
 lemma mem-conc-forms[simp]: a \in conc-forms \longleftrightarrow a \in set conclusions
    \langle proof \rangle
 lemma subst-freshen-assumptions[simp]:
   assumes pf \in set \ assumptions
   shows subst s (freshen a pf) = pf
      \langle proof \rangle
 lemma subst-freshen-conclusions[simp]:
   assumes pf \in set \ conclusions
   shows subst s (freshen a pf) = pf
      \langle proof \rangle
 lemma subst-freshen-in-ass-formsI:
   assumes pf \in set \ assumptions
   shows subst s (freshen a pf) |\in| ass-forms
      \langle proof \rangle
 lemma subst-freshen-in-conc-formsI:
   assumes pf \in set \ conclusions
```

```
\mathbf{shows}\ subst\ s\ (\mathit{freshen}\ a\ pf)\ |{\in}|\ \mathit{conc}\text{-}\mathit{forms} \langle \mathit{proof}\,\rangle \mathbf{end}
```

 \mathbf{end}

4 Incredible Proof Graphs

4.1 Incredible_Signatures

```
theory Incredible-Signatures
imports
Main
HOL-Library.FSet
HOL-Library.Stream
Abstract-Formula
begin
```

This theory contains the definition for proof graph signatures, in the variants

- Plain port graph
- Port graph with local hypotheses
- Labeled port graph
- Port graph with local constants

```
locale Port-Graph-Signature =
 \mathbf{fixes}\ nodes:: 'node\ stream
 fixes inPorts :: 'node \Rightarrow 'inPort fset
 fixes outPorts :: 'node \Rightarrow 'outPort fset
locale Port-Graph-Signature-Scoped =
  Port-Graph-Signature +
 fixes hyps :: 'node \Rightarrow 'outPort \rightharpoonup 'inPort
 assumes hyps-correct: hyps n p1 = Some p2 \Longrightarrow p1 \mid \in \mid outPorts n \land p2 \mid \in \mid inPorts n
 inductive-set hyps-for' :: 'node \Rightarrow 'inPort \Rightarrow 'outPort set for n p
   where hyps\ n\ h = Some\ p \Longrightarrow h \in hyps-for'\ n\ p
 lemma hyps-for'-subset: hyps-for' n p \subseteq fset (outPorts n)
    \langle proof \rangle
 context includes fset.lifting
 begin
 lift-definition hyps-for :: 'node \Rightarrow 'inPort \Rightarrow 'outPort fset is hyps-for'
 lemma hyps-for-simp[simp]: h \in hyps-for n \neq hyps n = Some p
    \langle proof \rangle
 lemma hyps-for-simp'[simp]: h \in fset \ (hyps-for \ n \ p) \longleftrightarrow hyps \ n \ h = Some \ p
 lemma hyps-for-collect: fset (hyps-for n p) = \{h : hyps \ n \ h = Some \ p\}
    \langle proof \rangle
 lemma hyps-for-subset: hyps-for n p \subseteq outPorts n
    \langle proof \rangle
end
locale Labeled-Signature =
  Port-Graph-Signature-Scoped +
 fixes labelsIn :: 'node \Rightarrow 'inPort \Rightarrow 'form
 fixes labelsOut :: 'node \Rightarrow 'outPort \Rightarrow 'form
```

```
locale Port-Graph-Signature-Scoped-Vars = Port-Graph-Signature nodes in Ports out Ports + Port-Graph-Signature nodes in Ports out Ports + Port-Graph-Signature nodes in Ports out Ports closed subst subst-locates subst-renameLCs any P for nodes :: 'node stream and in Ports :: 'node \Rightarrow 'in Port fset and out Ports :: 'node \Rightarrow 'out Port fset and Ports :: 'node Ports in Port fset and Ports in Ports i
```

4.2 Incredible_Deduction

```
\begin{array}{c} \textbf{theory} \ Incredible\text{-}Deduction\\ \textbf{imports}\\ Main\\ HOL-Library.FSet\\ HOL-Library.Stream\\ Incredible\text{-}Signatures\\ HOL-Eisbach.Eisbach\\ \textbf{begin} \end{array}
```

This theory contains the definition for actual proof graphs, and their various possible properties.

The following locale first defines graphs, without edges.

```
locale Vertex-Graph =
      Port-Graph-Signature nodes inPorts outPorts
          for nodes :: 'node stream
          and inPorts :: 'node \Rightarrow 'inPort fset
          and outPorts :: 'node \Rightarrow 'outPort fset +
     fixes vertices :: 'v fset
     fixes nodeOf :: 'v \Rightarrow 'node
begin
     fun valid-out-port where valid-out-port (v,p) \longleftrightarrow v \mid \in \mid vertices \land p \mid \in \mid outPorts (nodeOf v)
     fun valid-in-port where valid-in-port (v,p) \longleftrightarrow v \in v \in v vertices v \in v \in v fundamental in-port valid-in-port 
     fun terminal-node where
          terminal-node n \longleftrightarrow outPorts \ n = \{||\}
     fun terminal-vertex where
           terminal\text{-}vertex\ v \longleftrightarrow v \mid \in \mid vertices \land terminal\text{-}node\ (nodeOf\ v)
And now we add the edges. This allows us to define paths and scopes.
type-synonym ('v, 'outPort, 'inPort) edge = (('v \times 'outPort) \times ('v \times 'inPort))
locale Pre-Port-Graph =
      Vertex-Graph nodes inPorts outPorts vertices nodeOf
          for nodes :: 'node stream
```

```
and inPorts :: 'node \Rightarrow 'inPort fset
   and outPorts :: 'node \Rightarrow 'outPort fset
   and vertices :: 'v fset
   and nodeOf :: 'v \Rightarrow 'node +
  fixes edges :: ('v, 'outPort, 'inPort) edge set
begin
  fun edge-begin :: (('v \times 'outPort) \times ('v \times 'inPort)) \Rightarrow 'v where
   edge-begin ((v1,p1),(v2,p2)) = v1
 fun edge-end :: (('v \times 'outPort) \times ('v \times 'inPort)) \Rightarrow 'v where
    edge-end ((v1,p1),(v2,p2)) = v2
 lemma edge-begin-tup: edge-begin x = fst (fst x) \langle proof \rangle
 lemma edge-end-tup: edge-end x = fst \ (snd \ x) \ \langle proof \rangle
 inductive path :: v \Rightarrow v \Rightarrow (v, outPort, inPort) edge list \Rightarrow bool where
   path-empty: path v v [] |
   path\text{-}cons: e \in edges \Longrightarrow path \ (edge\text{-}end \ e) \ v' \ pth \Longrightarrow path \ (edge\text{-}begin \ e) \ v' \ (e\#pth)
 inductive-simps path-cons-simp': path \ v \ v' \ (e \# pth)
 inductive-simps path-empty-simp[simp]: path v v'
 lemma path-cons-simp: path v \ v' \ (e \# pth) \longleftrightarrow fst \ (fst \ e) = v \land e \in edges \land path \ (fst \ (snd \ e)) \ v' \ pth
    \langle proof \rangle
 lemma path-appendI: path v v' pth1 \Longrightarrow path v' v'' pth2 \Longrightarrow path v v'' (pth1@pth2)
  lemma path-split: path v v' (pth1@[e]@pth2) \longleftrightarrow path v (edge-end e) (pth1@[e]) \wedge path (edge-end e) v'
pth2
    \langle proof \rangle
  \textbf{lemma} \ \ path - split2 : \ path \ v \ v' \ (pth1@(e\#pth2)) \longleftrightarrow path \ v \ (edge-begin \ e) \ pth1 \ \land \ path \ (edge-begin \ e) \ v'
(e\#pth2)
    \langle proof \rangle
 lemma path-snoc: path v v' (pth1@[e]) \longleftrightarrow e \in edges \land path v (edge-begin e) pth1 \land edge-end e = v'
    \langle proof \rangle
 inductive-set scope :: 'v \times 'inPort \Rightarrow 'v \ set \ \mathbf{for} \ ps \ \mathbf{where}
   v \in |v| \text{ vertices} \implies (\bigwedge pth \ v', path \ v \ v' pth \implies terminal\text{-vertex} \ v' \implies ps \in snd \ `set pth)
   \implies v \in scope \ ps
 lemma scope-find:
   assumes v \in scope \ ps
   assumes terminal-vertex v'
   assumes path v v' pth
   shows ps \in snd 'set pth
  \langle proof \rangle
 lemma snd-set-split:
   assumes ps \in snd 'set pth
   obtains pth1 pth2 e where pth = pth1@[e]@pth2 and snd e = ps and ps \notin snd 'set pth1
   \langle proof \rangle
 {f lemma} scope	ext{-}split:
   assumes v \in scope \ ps
   assumes path v v' pth
   assumes terminal-vertex v'
```

```
where pth = (pth1@[e])@pth2 and path \ v \ (fst \ ps) \ (pth1@[e]) and path \ (fst \ ps) \ v' \ pth2 and snd \ e = ps
and ps \notin snd 'set pth1
   \langle proof \rangle
end
This adds well-formedness conditions to the edges and vertices.
locale Port-Graph = Pre-Port-Graph +
   assumes valid-nodes: nodeOf 'fset vertices \subseteq sset nodes
   assumes valid-edges: \forall (ps1,ps2) \in edges. valid-out-port ps1 \land valid-in-port ps2
begin
   lemma snd-set-path-verties: path v v' pth \Longrightarrow fst 'snd 'set pth \subseteq fset vertices
       \langle proof \rangle
   lemma fst-set-path-verties: path v v' pth \Longrightarrow fst 'fst 'set pth \subseteq fset vertices
       \langle proof \rangle
end
A pruned graph is one where every node has a path to a terminal node (which will be the conclusions).
locale Pruned-Port-Graph = Port-Graph +
   assumes pruned: \bigwedge v. v \in |v| vertices \Longrightarrow (\exists pth \ v'. path \ v \ v' \ pth \ \land terminal-vertex \ v')
begin
   lemma scopes-not-refl:
      assumes v \in |vertices|
      shows v \notin scope(v,p)
   \langle proof \rangle
This lemma can be found in [Bre16], but it is otherwise inconsequential.
   lemma scopes-nest:
      fixes ps1 ps2
      shows scope \ ps1 \subseteq scope \ ps2 \lor scope \ ps2 \subseteq scope \ ps1 \lor scope \ ps1 \cap scope \ ps2 = \{\}
   \langle proof \rangle
end
A well-scoped graph is one where a port marked to be a local hypothesis is only connected to the
corresponding input port, either directly or via a path. It must not be, however, that there is a a
path from such a hypothesis to a terminal node that does not pass by the dedicated input port; this
is expressed via scopes.
locale Scoped-Graph = Port-Graph + Port-Graph-Signature-Scoped
locale Well-Scoped-Graph = Scoped-Graph +
   \textbf{assumes} \ \textit{well-scoped} : ((v_1, p_1), (v_2, p_2)) \in \textit{edges} \implies \textit{hyps} \ (\textit{nodeOf} \ v_1) \ p_1 = \textit{Some} \ p' \implies (v_2, p_2) = (v_1, p') \lor (v_1, p') \lor (v_2, p') = (v_1, p') \lor (v_2, p') \lor (v_2, p') = (v_1, p') \lor (v_2, p') \lor (v_2, p') = (v_1, p') \lor (v_2, p') \lor (v_2, p') = (v_1, p') \lor (v_2, p') \lor (v_
v_2 \in scope (v_1, p')
{\bf context}\ \mathit{Scoped-Graph}
begin
definition hyps-free where
   hyps-free \ pth = (\forall v_1 \ p_1 \ v_2 \ p_2. \ ((v_1,p_1),(v_2,p_2)) \in set \ pth \longrightarrow hyps \ (nodeOf \ v_1) \ p_1 = None)
lemma hyps-free-Nil[simp]: hyps-free [] \langle proof \rangle
lemma hyps-free-Cons[simp]: hyps-free (e\#pth) \longleftrightarrow hyps-free pth \land hyps (nodeOf (fst (fst e))) (snd (fst e))
= None
   \langle proof \rangle
```

obtains pth1 e pth2

```
lemma path-vertices-shift:
 assumes path v v' pth
 shows map fst (map \ fst \ pth)@[v'] = v \# map \ fst \ (map \ snd \ pth)
\langle proof \rangle
inductive terminal-path where
   terminal-path-empty: terminal-vertex v \Longrightarrow terminal-path v \ v \ || \ ||
   terminal-path-cons: ((v_1, p_1), (v_2, p_2)) \in edges \implies terminal-path v_2 \ v' pth \implies hyps \ (nodeOf \ v_1) \ p_1 = None
\implies terminal\text{-}path \ v_1 \ v' (((v_1,p_1),(v_2,p_2))\#pth)
lemma terminal-path-is-path:
 assumes terminal-path v v' pth
 shows path v v' pth
\langle proof \rangle
lemma terminal-path-is-hyps-free:
 assumes terminal-path v v' pth
 shows hyps-free pth
\langle proof \rangle
lemma terminal-path-end-is-terminal:
 assumes terminal-path v v' pth
 shows terminal-vertex v'
\langle proof \rangle
lemma terminal-pathI:
 assumes path \ v \ v' \ pth
 assumes hyps-free pth
 assumes terminal\text{-}vertex\ v'
 shows terminal-path v v' pth
\langle proof \rangle
end
An acyclic graph is one where there are no non-trivial cyclic paths (disregarding edges that are local
hypotheses – these are naturally and benignly cyclic).
locale Acyclic-Graph = Scoped-Graph +
 assumes hyps-free-acyclic: path v \ v \ pth \implies hyps-free \ pth \implies pth = []
begin
lemma hyps-free-vertices-distinct:
 assumes terminal-path v v' pth
 shows distinct (map\ fst\ (map\ fst\ pth)@[v'])
\langle proof \rangle
lemma hyps-free-vertices-distinct':
 assumes terminal-path v v' pth
 shows distinct (v \# map fst (map snd pth))
 \langle proof \rangle
lemma hyps-free-limited:
 assumes terminal-path v v' pth
 shows length pth \leq fcard vertices
\langle proof \rangle
lemma hyps-free-path-not-in-scope:
 assumes terminal-path v t pth
 assumes (v',p') \in snd 'set pth
```

```
shows v' \notin scope(v, p) \langle proof \rangle
```

end

A saturated graph is one where every input port is incident to an edge.

```
locale Saturated-Graph = Port-Graph + assumes saturated: valid-in-port (v,p) \Longrightarrow \exists e \in edges . snd \ e = (v,p)
```

These four conditions make up a well-shaped graph.

```
{\bf locale}\ \textit{Well-Shaped-Graph}\ =\ \textit{Well-Scoped-Graph}\ +\ \textit{Acyclic-Graph}\ +\ \textit{Saturated-Graph}\ +\ \textit{Pruned-Port-Graph}
```

Next we demand an instantiation. This consists of a unique natural number per vertex, in order to rename the local constants apart, and furthermore a substitution per block which instantiates the schematic formulas given in *Labeled-Signature*.

```
locale Instantiation =
  Vertex-Graph nodes - - vertices - +
  Labeled-Signature nodes - - - labelsIn labelsOut +
  Abstract-Formulas freshenLC renameLCs lconsts closed subst-subst-lconsts subst-renameLCs anyP
  for nodes:: 'node stream and edges:: ('vertex, 'outPort, 'inPort) edge set and vertices:: 'vertex fset and
labelsIn :: 'node \Rightarrow 'inPort \Rightarrow 'form  and labelsOut :: 'node \Rightarrow 'outPort \Rightarrow 'form
  and freshenLC :: nat \Rightarrow 'var \Rightarrow 'var
   and renameLCs :: ('var \Rightarrow 'var) \Rightarrow 'form \Rightarrow 'form
   and lconsts :: 'form \Rightarrow 'var set
   and closed :: 'form \Rightarrow bool
   and subst :: 'subst \Rightarrow 'form \Rightarrow 'form
   and subst-lconsts :: 'subst \Rightarrow 'var set
   and subst-renameLCs :: ('var \Rightarrow 'var) \Rightarrow ('subst \Rightarrow 'subst)
   and anyP :: 'form +
 fixes vidx :: 'vertex \Rightarrow nat
   and inst :: 'vertex \Rightarrow 'subst
 assumes vidx-inj: inj-on vidx (fset vertices)
begin
  definition labelAtIn :: 'vertex \Rightarrow 'inPort \Rightarrow 'form  where
   labelAtIn \ v \ p = subst \ (inst \ v) \ (freshen \ (vidx \ v) \ (labelsIn \ (nodeOf \ v) \ p))
 definition labelAtOut :: 'vertex \Rightarrow 'outPort \Rightarrow 'form  where
   labelAtOut \ v \ p = subst \ (inst \ v) \ (freshen \ (vidx \ v) \ (labelsOut \ (nodeOf \ v) \ p))
end
```

A solution is an instantiation where on every edge, both incident ports are labeld with the same formula.

```
locale Solution = Instantiation - - - - edges for edges :: (('vertex \times 'outPort) \times 'vertex \times 'inPort) set + assumes solved: ((v_1, p_1), (v_2, p_2)) \in edges \Longrightarrow labelAtOut \ v_1 \ p_1 = labelAtIn \ v_2 \ p_2
```

If we have locally scoped constants, we demand that only blocks in the scope of the corresponding input port may mention such a locally scoped variable in its substitution.

```
locale Well-Scoped-Instantiation =
```

Pre-Port-Graph nodes inPorts outPorts vertices nodeOf edges +

locale Proof-Graph = Well-Shaped-Graph + Solution

Instantiation inPorts outPorts nodeOf hyps nodes edges vertices labelsIn labelsOut freshenLC renameLCs lconsts closed subst subst-lconsts subst-renameLCs anyP vidx inst +

 $Port-Graph-Signature-Scoped-Vars\ nodes\ in Ports\ outPorts\ freshen LC\ rename LCs\ lconsts\ closed\ subst-lconsts\ subst-rename LCs\ any P\ local-vars$

```
for freshenLC :: nat \Rightarrow 'var \Rightarrow 'var
    and renameLCs :: ('var \Rightarrow 'var) \Rightarrow 'form \Rightarrow 'form
    and lconsts :: 'form \Rightarrow 'var set
    and closed :: 'form \Rightarrow bool
    and subst :: 'subst \Rightarrow 'form \Rightarrow 'form
    and subst-lconsts :: 'subst \Rightarrow 'var set
    and subst-renameLCs :: ('var \Rightarrow 'var) \Rightarrow ('subst \Rightarrow 'subst)
    and anyP :: 'form
    and inPorts :: 'node \Rightarrow 'inPort fset
    and outPorts :: 'node \Rightarrow 'outPort fset
    and nodeOf :: 'vertex \Rightarrow 'node
    and hyps :: 'node \Rightarrow 'outPort \Rightarrow 'inPort option
    and nodes :: 'node stream
    and vertices :: 'vertex fset
    and labelsIn :: 'node \Rightarrow 'inPort \Rightarrow 'form
    and labelsOut :: 'node \Rightarrow 'outPort \Rightarrow 'form
    and vidx :: 'vertex \Rightarrow nat
    and inst :: 'vertex \Rightarrow 'subst
    and edges :: ('vertex, 'outPort, 'inPort) edge set
    and local-vars :: 'node \Rightarrow 'inPort \Rightarrow 'var\ set +
  assumes well-scoped-inst:
    valid-in-port(v,p) \Longrightarrow
     var \in local\text{-}vars \ (nodeOf \ v) \ p \Longrightarrow
     v' \in |vertices|
     freshenLC \ (vidx \ v) \ var \in subst-lconsts \ (inst \ v') \Longrightarrow
     v' \in scope(v,p)
  \textbf{lemma} \ \textit{out-of-scope: valid-in-port} \ (v,p) \implies v' \mid \in \mid \textit{vertices} \implies v' \notin \textit{scope} \ (v,p) \implies \textit{freshenLC} \ (\textit{vidx} \ v) \ \text{`}
local\text{-}vars \ (nodeOf \ v) \ p \cap subst\text{-}lconsts \ (inst \ v') = \{\}
    \langle proof \rangle
end
```

The following locale assembles all these conditions.

${f locale} \ {\it Scoped-Proof-Graph} =$

 $Instantiation \ \ in Ports \ out Ports \ node Of \ hyps \ nodes \ edges \ \ vertices \ labels In \ labels Out \ freshen LC \ rename LCs \ lossed \ subst-lconsts \ subst-rename LCs \ any P \ vidx \ inst \ +$

Well-Shaped-Graph nodes inPorts outPorts vertices nodeOf edges hyps +

Solution inPorts outPorts nodeOf hyps nodes vertices labelsIn labelsOut freshenLC renameLCs lconsts closed subst-subst-lconsts subst-renameLCs anyP vidx inst edges +

 $Well-Scoped-Instantiation \quad freshen LC \quad rename LCs \quad loss t \quad subst-lconsts \quad subst-rename LCs \quad any Ports \quad outPorts \quad node Of \quad hyps \quad nodes \quad vertices \quad labels Out \quad vidx \quad inst \quad edges \quad local-vars$

```
for freshenLC :: nat \Rightarrow 'var \Rightarrow 'var

and renameLCs :: ('var \Rightarrow 'var) \Rightarrow 'form \Rightarrow 'form

and lconsts :: 'form \Rightarrow 'var set

and closed :: 'form \Rightarrow bool

and subst :: 'subst \Rightarrow 'form \Rightarrow 'form

and subst-lconsts :: 'subst \Rightarrow 'var set

and subst-renameLCs :: ('var \Rightarrow 'var) \Rightarrow ('subst \Rightarrow 'subst)

and anyP :: 'form

and inPorts :: 'node \Rightarrow 'inPort fset

and outPorts :: 'node \Rightarrow 'outPort fset

and nodeOf :: 'vertex \Rightarrow 'node

and hyps :: 'node \Rightarrow 'outPort \Rightarrow 'inPort option

and nodes :: 'node stream

and vertices :: 'vertex fset
```

```
and labelsIn :: 'node \Rightarrow 'inPort \Rightarrow 'form
and labelsOut :: 'node \Rightarrow 'outPort \Rightarrow 'form
and vidx :: 'vertex \Rightarrow nat
and inst :: 'vertex \Rightarrow 'subst
and edges :: ('vertex, 'outPort, 'inPort) edge set
and local \cdot vars :: 'node \Rightarrow 'inPort \Rightarrow 'var set
```

end

4.3 Abstract_Rules_To_Incredible

```
theory Abstract-Rules-To-Incredible imports
Main
HOL-Library.FSet
HOL-Library.Stream
Incredible-Deduction
Abstract-Rules
begin
```

 $|inPorts (Assumption r) = \{||\}$

In this theory, the abstract rules given in *Incredible-Proof-Machine.Abstract-Rules* are used to create a proper signature.

Besides the rules given there, we have nodes for assumptions, conclusions, and the helper block.

```
datatype ('form, 'rule) graph-node = Assumption 'form | Conclusion 'form | Rule 'rule | Helper
```

```
type-synonym ('form, 'var) in-port = ('form, 'var) antecedent
type-synonym 'form reg-out-port = 'form
type-synonym 'form hyp = 'form
datatype ('form, 'var) out-port = Reg 'form reg-out-port | Hyp 'form hyp ('form, 'var) in-port
\mathbf{type\text{-}synonym}\ ('v, 'form, 'var)\ edge' = (('v \times ('form, 'var)\ out\text{-}port) \times ('v \times ('form, 'var)\ in\text{-}port))
context Abstract-Task
begin
 definition nodes :: ('form, 'rule) graph-node stream where
    nodes = Helper ## shift (map Assumption assumptions) (shift (map Conclusion conclusions) (smap Rule
rules))
 lemma Helper-in-nodes[simp]:
    Helper \in sset\ nodes\ \langle proof \rangle
 lemma Assumption-in-nodes[simp]:
   Assumption a \in sset \ nodes \longleftrightarrow a \in set \ assumptions \ \langle proof \rangle
 lemma Conclusion-in-nodes[simp]:
    Conclusion c \in sset \ nodes \longleftrightarrow c \in set \ conclusions \ \langle proof \rangle
 lemma Rule-in-nodes[simp]:
    Rule r \in sset \ nodes \longleftrightarrow r \in sset \ rules \ \langle proof \rangle
  fun inPorts' :: ('form, 'rule) graph-node <math>\Rightarrow ('form, 'var) in\text{-}port \ list \ \mathbf{where}
    inPorts'(Rule\ r) = antecedent\ r
  |inPorts'(Assumption r) = []
   |inPorts'(Conclusion r) = [plain-ant r]
  |inPorts'| Helper = [plain-ant|anyP]
 \mathbf{fun} \ \mathit{inPorts} :: (\mathit{'form}, \ \mathit{'rule}) \ \mathit{graph-node} \Rightarrow (\mathit{'form}, \ \mathit{'var}) \ \mathit{in-port} \ \mathit{fset} \ \ \mathbf{where}
   inPorts (Rule \ r) = f-antecedent r
```

```
|inPorts (Conclusion r) = \{ | plain-ant r | \}
   |inPorts\ Helper\ = \{|\ plain-ant\ anyP\ |\}
 lemma inPorts-fset-of:
   inPorts \ n = fset-from-list \ (inPorts' \ n)
   \langle proof \rangle
 definition outPortsRule where
    outPortsRule\ r = ffUnion\ ((\lambda\ a.\ (\lambda\ h.\ Hyp\ h\ a)\ |\ |\ a-hyps\ a)\ |\ f-antecedent\ r)\ |\cup|\ Reg\ |\ f-consequent\ r
 lemma Reg-in-outPortsRule[simp]: Reg c \in |c| outPortsRule r \leftrightarrow c \in |c| f-consequent r
   \langle proof \rangle
 lemma Hyp-in-outPortsRule[simp]: Hyp h c \mid \in \mid outPortsRule r \longleftrightarrow c \mid \in \mid f-antecedent r \land h \mid \in \mid a-hyps c
   \langle proof \rangle
 fun outPorts where
   outPorts\ (Rule\ r) = outPortsRule\ r
   |outPorts\ (Assumption\ r) = \{|Reg\ r|\}
   |outPorts\ (Conclusion\ r) = \{||\}
   |outPorts\ Helper\ = \{|\ Reg\ anyP\ |\}
 fun labelsIn where
   labelsIn - p = a\text{-}conc p
  fun labelsOut where
   labelsOut - (Reg p) = p
  | labelsOut - (Hyp \ h \ c) = h
  fun hyps where
    hyps (Rule r) (Hyp h a) = (if a |\in| f-antecedent r \wedge h \mid \in| a-hyps a then Some a else None)
  | hyps - - = None
 fun local-vars :: ('form, 'rule) graph-node \Rightarrow ('form, 'var) in-port \Rightarrow 'var set where
    local-vars - a = a-fresh a
 sublocale Labeled-Signature nodes inPorts outPorts hyps labelsIn labelsOut
  \langle proof \rangle
 lemma hyps-for-conclusion[simp]: hyps-for (Conclusion n) p = \{||\}
 \mathbf{lemma}\ \mathit{hyps\text{-}for\text{-}Helper[simp]:\ \mathit{hyps\text{-}for\ Helper\ p} = \{||\}
 lemma hyps-for-Rule[simp]: ip \in f-antecedent r \Longrightarrow hyps-for (Rule r) ip = (\lambda h. Hyp h ip) | 1 a-hyps ip
    \langle proof \rangle
end
Finally, a given proof graph solves the task at hand if all the given conclusions are present as conclusion
locale Tasked-Proof-Graph =
  Abstract-Task freshenLC renameLCs lconsts closed subst-subst-lconsts subst-renameLCs anyP antecedent
```

blocks in the graph.

consequent rules assumptions conclusions +

Scoped-Proof-Graph freshenLC renameLCs lconsts closed subst-subst-lconsts subst-renameLCs any inPorts outPorts nodeOf hyps nodes vertices labelsIn labelsOut vidx inst edges local-vars

```
for freshenLC :: nat \Rightarrow 'var \Rightarrow 'var
and renameLCs :: ('var \Rightarrow 'var) \Rightarrow 'form \Rightarrow 'form
and lconsts :: 'form \Rightarrow 'var set
```

```
and closed :: 'form \Rightarrow bool
  and subst :: 'subst \Rightarrow 'form \Rightarrow 'form
  and subst-lconsts :: 'subst \Rightarrow 'var set
  and subst-renameLCs :: ('var \Rightarrow 'var) \Rightarrow ('subst \Rightarrow 'subst)
  and anyP :: 'form
  and antecedent :: 'rule \Rightarrow ('form, 'var) \ antecedent \ list
  \mathbf{and}\ \mathit{consequent} :: \ '\mathit{rule} \Rightarrow \ '\mathit{form}\ \mathit{list}
  and rules :: 'rule stream
  and assumptions :: 'form \ list
  {\bf and}\ {\it conclusions}:: {\it 'form\ list}
  and vertices :: 'vertex fset
  and nodeOf :: 'vertex \Rightarrow ('form, 'rule) graph-node
  and edges :: ('vertex, 'form, 'var) edge' set
  and vidx :: 'vertex \Rightarrow nat
  and inst :: 'vertex \Rightarrow 'subst +
assumes conclusions-present: set (map\ Conclusion\ conclusions) \subseteq nodeOf 'fset vertices
```

end

5 Natural Deduction

5.1 Natural_Deduction

```
theory Natural-Deduction
imports
Abstract-Completeness.Abstract-Completeness
Abstract-Rules
Entailment
begin
```

Our formalization of natural deduction builds on Abstract-Completeness. Abstract-Completeness and refines and concretizes the structure given there as follows

- The judgements are entailments consisting of a finite set of assumptions and a conclusion, which are abstract formulas in the sense of *Incredible-Proof-Machine.Abstract-Formula*.
- The abstract rules given in *Incredible-Proof-Machine.Abstract-Rules* are used to decide the validity of a step in the derivation.

A single setep in the derivation can either be the axiom rule, the cut rule, or one of the given rules in *Incredible-Proof-Machine.Abstract-Rules*.

```
datatype 'rule NatRule = Axiom | NatRule 'rule | Cut
```

The following locale is still abstract in the set of rules (nat-rule), but implements the bookkeeping logic for assumptions, the Axiom rule and the Cut rule.

```
locale ND-Rules-Inst =

Abstract-Formulas freshenLC renameLCs lconsts closed subst subst-lconsts subst-renameLCs anyP

for freshenLC :: nat \Rightarrow 'var \Rightarrow 'var

and renameLCs :: ('var \Rightarrow 'var) \Rightarrow 'form \Rightarrow 'form

and lconsts :: 'form \Rightarrow 'var set

and closed :: 'form \Rightarrow bool

and subst :: 'subst \Rightarrow 'form \Rightarrow 'form

and subst-lconsts :: 'subst \Rightarrow 'var set

and subst-renameLCs :: ('var \Rightarrow 'var) \Rightarrow ('subst \Rightarrow 'subst)

and anyP :: 'form +

fixes nat-rule :: 'rule \Rightarrow 'form \Rightarrow ('form, 'var) antecedent fset \Rightarrow bool

and rules :: 'rule stream

begin
```

- An application of the Axiom rule is valid if the conclusion is among the assumptions.
- An application of a *NatRule* is more complicated. This requires some natural number a to rename local variables, and some instantiation s. It checks that
 - none of the local variables occur in the context of the judgement.
 - none of the local variables occur in the instantiation. Together, this implements the usual freshness side-conditions. Furthermore, for every antecedent of the rule, the (correctly renamed and instantiated) hypotheses need to be added to the context.
- The Cut rule is again easy.

inductive eff :: 'rule NatRule \Rightarrow 'form entailment \Rightarrow 'form entailment fset \Rightarrow bool where

```
con \mid \in \mid \Gamma
\Rightarrow eff \ Axiom \ (\Gamma \vdash con) \ \{\mid\mid\}
\mid nat\text{-}rule \ rule \ c \ ants}
\Rightarrow (\bigwedge \ ant \ f. \ ant \ \mid \in \mid ants \Rightarrow f \mid \in \mid \Gamma \Rightarrow freshenLC \ a \ `(a\text{-}fresh \ ant) \cap lconsts \ f = \{\})
\Rightarrow (\bigwedge \ ant. \ ant \ \mid \in \mid ants \Rightarrow freshenLC \ a \ `(a\text{-}fresh \ ant}) \cap subst\text{-}lconsts \ s = \{\})
\Rightarrow eff \ (NatRule \ rule)
(\Gamma \vdash subst \ s \ (freshen \ a \ c))
((\lambda ant. \ ((\lambda p. \ subst \ s \ (freshen \ a \ p)) \ \mid \ `| \ a\text{-}hyps \ ant} \ |\cup| \ \Gamma \vdash subst \ s \ (freshen \ a \ (a\text{-}conc \ ant)))) \ \mid \ `| \ ants)
|eff \ Cut \ (\Gamma \vdash c') \ \{| \ (\Gamma \vdash c')| \}
inductive\text{-}simps \ eff\text{-}Cut\text{-}simps[simp]: \ eff \ Cut \ (\Gamma \vdash c) \ S
sublocale \ RuleSystem\text{-}Defs \ where
eff \ = eff \ and \ rules = Cut \ \# \ Axiom \ \# \ smap \ NatRule \ rules \langle proof \rangle
end
```

Now we instantiate the above locale. We duplicate each abstract rule (which can have multiple consequents) for each consequent, as the natural deduction formulation can only handle a single consequent per rule

```
context Abstract-Task
begin
inductive natEff-Inst where
c \in set \ (consequent \ r) \Longrightarrow natEff-Inst \ (r,c) \ c \ (f-antecedent \ r)
definition n-rules where
n-rules = flat (smap \ (\lambda r. \ map \ (\lambda c. \ (r,c)) \ (consequent \ r)) \ rules)
sublocale ND-Rules-Inst - - - - - natEff-Inst n-rules \langle proof \rangle
```

A task is solved if for every conclusion, there is a well-formed and finite tree that proves this conclusion, using only assumptions given in the task.

```
 \begin{array}{l} \textbf{definition} \ solved \ \textbf{where} \\ solved \longleftrightarrow (\forall \ c. \ c \mid \in \mid conc\text{-}forms \longleftrightarrow (\exists \ \Gamma \ t. \ fst \ (root \ t) = (\Gamma \vdash c) \land \Gamma \mid \subseteq \mid ass\text{-}forms \land wf \ t \land tfinite \ t)) \\ \textbf{end} \\ \end{array}
```

end

6 Correctness

6.1 Incredible_Correctness

```
theory Incredible-Correctness
imports
  Abstract-Rules-To-Incredible
  Natural	ext{-}Deduction
begin
In this theory, we prove that if we have a graph that proves a given abstract task (which is represented
as the context Tasked-Proof-Graph), then we can prove solved.
context Tasked-Proof-Graph
begin
definition adjacentTo: 'vertex \Rightarrow ('form, 'var) in-port \Rightarrow ('vertex \times ('form, 'var) out-port) where
 adjacentTo\ v\ p = (SOME\ ps.\ (ps,\ (v,p)) \in edges)
fun isReg where
  isReg \ v \ p = (case \ p \ of \ Hyp \ h \ c \Rightarrow False \ | \ Reg \ c \Rightarrow
     (case nodeOf\ v\ of
       Conclusion \ a \Rightarrow False
       Assumption a \Rightarrow False
       Rule r \Rightarrow True
       Helper \Rightarrow True
     ))
fun toNatRule where
  toNatRule \ v \ p = (case \ p \ of \ Hyp \ h \ c \Rightarrow Axiom \mid Reg \ c \Rightarrow
      (case\ nodeOf\ v\ of
        Conclusion \ a \Rightarrow Axiom — a lie
       Assumption a \Rightarrow Axiom
       Rule \ r \Rightarrow NatRule \ (r,c)
      Helper \Rightarrow Cut
      ))
inductive-set global-assms' :: 'var itself \Rightarrow 'form set for i where
  v \in |v|  vertices \implies nodeOf \ v = Assumption \ p \implies labelAtOut \ v \ (Req \ p) \in global-assms' \ i
lemma finite-global-assms': finite (global-assms' i)
\langle proof \rangle
context includes fset.lifting
begin
 lift-definition global-assms: 'var\ itself \Rightarrow 'form\ fset\ is\ global-assms'\ \langle proof \rangle
  lemmas \ global-assmsI = global-assms'.intros[Transfer.transferred]
  lemmas \ global-assms-simps = global-assms'.simps[Transfer.transferred]
end
fun extra-assms :: ('vertex \times ('form, 'var) in-port) \Rightarrow 'form fset where
  extra-assms (v, p) = (\lambda p. labelAtOut v p) | '| hyps-for (nodeOf v) p
fun hyps-along :: ('vertex, 'form, 'var) edge' list \Rightarrow 'form fset where
  hyps-along pth = ffUnion (extra-assms | | snd | | fset-from-list pth) |\cup| global-assms TYPE('var)
```

```
lemma hyps-alongE[consumes 1, case-names Hyp Assumption]:
 assumes f \in hyps-along pth
 obtains v p h where (v,p) \in snd 'set pth and f = labelAtOut v h and h \in hyps-for (nodeOf v) p
 |v| pf where v \in |v| vertices and nodeOf v = Assumption pf f = labelAtOut v (Reg pf)
 \langle proof \rangle
Here we build the natural deduction tree, by walking the graph.
primcorec tree :: 'vertex \Rightarrow ('form, 'var) in-port \Rightarrow ('vertex, 'form, 'var) edge' list \Rightarrow (('form entailment),
('rule \times 'form) NatRule) dtree where
 root (tree \ v \ p \ pth) =
   ((hyps-along\ ((adjacentTo\ v\ p,(v,p))\#pth) \vdash labelAtIn\ v\ p),
   (case adjacent To v p of (v', p') \Rightarrow toNatRule v' p'
 | cont (tree v p pth) =
   (case\ adjacentTo\ v\ p\ of\ (v',\ p') \Rightarrow
   (if isReg v' p' then ((\lambda p''. tree v' p'' ((adjacent To v p,(v,p))#pth)) | | inPorts (node Of v')) else {||}
   ))
lemma fst-root-tree[simp]: fst (root (tree \ v \ p \ pth)) = (hyps-along ((adjacentTo \ v \ p,(v,p)) \# pth) \vdash labelAtIn \ v \ p)
\langle proof \rangle
lemma out-port-cases[consumes 1, case-names Assumption Hyp Rule Helper]:
 assumes p \in |utPorts|
 obtains
   a where n = Assumption a and p = Reg a
   \mid r \ h \ c \  where n = Rule \ r \  and p = Hyp \ h \ c
   \mid r f \text{ where } n = Rule \ r \text{ and } p = Reg f
    \mid n = Helper \text{ and } p = Reg \ anyP
  \langle proof \rangle
lemma hyps-for-fimage: hyps-for (Rule r) x = (if \ x \mid \in \mid f-antecedent r then (\lambda \ f. Hyp f \ x) \mid \cdot \mid (a-hyps x) else
\{||\}
  \langle proof \rangle
Now we prove that the thus produced tree is well-formed.
theorem wf-tree:
 assumes valid-in-port (v,p)
 assumes terminal-path v t pth
 shows wf (tree v p pth)
\langle proof \rangle
lemma global-in-ass: global-assms TYPE('var) \subseteq |ass-forms|
primcorec edge-tree :: 'vertex \Rightarrow ('form, 'var) in-port \Rightarrow ('vertex, 'form, 'var) edge' tree where
root\ (edge\text{-}tree\ v\ p)=(adjacentTo\ v\ p,\ (v,p))
 | cont (edge-tree \ v \ p) =
   (case\ adjacentTo\ v\ p\ of\ (v',\ p') \Rightarrow
   (if isReg\ v'\ p'\ then\ ((\lambda\ p.\ edge-tree\ v'\ p)\ |\ inPorts\ (nodeOf\ v'))\ else\ \{||\}
   ))
lemma tfinite-map-tree: tfinite (map-tree f(t) \longleftrightarrow tfinite t
\langle proof \rangle
```

```
lemma finite-tree-edge-tree:
  tfinite\ (tree\ v\ p\ pth)\longleftrightarrow tfinite\ (edge-tree\ v\ p)
\langle proof \rangle
coinductive forbidden-path :: 'vertex <math>\Rightarrow ('vertex, 'form, 'var) edge' stream <math>\Rightarrow bool where
    forbidden-path: ((v_1,p_1),(v_2,p_2)) \in edges \implies hyps \ (nodeOf \ v_1) \ p_1 = None \implies forbidden-path v_1 \ pth \implies forbidden
forbidden-path v_2 (((v_1, p_1),(v_2, p_2))##pth)
\mathbf{lemma} \ \mathit{path-is-forbidden} :
 assumes valid-in-port (v,p)
 assumes ipath (edge-tree v p) es
 shows forbidden-path v es
\langle proof \rangle
\mathbf{lemma}\ \textit{forbidden-path-prefix-is-path}:
  assumes forbidden-path v es
 obtains v' where path v' v (rev (stake n es))
  \langle proof \rangle
\mathbf{lemma}\ forbidden\text{-}path\text{-}pre\!\mathit{fix}\text{-}is\text{-}hyp\text{-}free:
  assumes forbidden-path v es
 shows hyps-free (rev (stake n es))
  \langle proof \rangle
And now we prove that the tree is finite, which requires the above notion of a forbidden-path, i.e. an
infinite path.
theorem finite-tree:
 assumes valid-in-port (v,p)
 {\bf assumes}\ terminal\text{-}vertex\ v
 shows tfinite (tree v p pth)
\langle proof \rangle
The main result of this theory.
theorem solved
\langle proof \rangle
end
end
```

7 Completeness

7.1 Incredible_Trees

```
theory Incredible-Trees
imports
HOL-Library.Sublist
HOL-Library.Countable
Entailment
Rose-Tree
Abstract-Rules-To-Incredible
begin
```

This theory defines incredible trees, which carry roughly the same information as a (tree-shaped) incredible graph, but where the structure is still given by the data type, and not by a set of edges etc.

Tree-shape, but incredible-graph-like content (port names, explicit annotation and substitution)

```
datatype ('form,'rule,'subst,'var) itnode =
   I (iNodeOf': ('form, 'rule) graph-node)
     (iOutPort': 'form reg-out-port)
     (iAnnot': nat)
     (iSubst': 'subst)
 \mid H \ (iAnnot': nat)
     (iSubst': 'subst)
abbreviation INode n \ p \ i \ s \ ants \equiv RNode \ (I \ n \ p \ i \ s) \ ants
abbreviation HNode\ i\ s\ ants \equiv RNode\ (H\ i\ s)\ ants
type-synonym ('form,'rule,'subst,'var) itree = ('form,'rule,'subst,'var) itnode rose-tree
fun iNodeOf where
  iNodeOf (INode n p i s ants) = n
| iNodeOf(HNode\ i\ s\ ants) = Helper
context Abstract-Formulas begin
fun iOutPort where
  iOutPort\ (INode\ n\ p\ i\ s\ ants) = p
| iOutPort (HNode \ i \ s \ ants) = anyP
end
fun iAnnot where iAnnot it = iAnnot' (root it)
fun iSubst where iSubst it = iSubst' (root it)
fun iAnts where iAnts it = children it
type-synonym ('form, 'rule, 'subst) fresh-check = ('form, 'rule) graph-node \Rightarrow nat \Rightarrow 'subst \Rightarrow 'form entail-
ment \Rightarrow bool
context Abstract-Task
begin
```

The well-formedness of the tree. The first argument can be varied, depending on whether we are interested in the local freshness side-conditions or not.

 $\begin{array}{ll} \textbf{inductive} \ \textit{iwf} :: (\textit{'form}, \textit{'rule}, \textit{'subst}) \ \textit{fresh-check} \Rightarrow (\textit{'form}, \textit{'rule}, \textit{'subst}, \textit{'var}) \ \textit{itree} \Rightarrow \textit{'form} \ \textit{entailment} \Rightarrow \textit{bool} \end{array}$

```
for fc
    where
    iwf: \llbracket
       n \in sset \ nodes;
       Reg \ p \mid \in \mid outPorts \ n;
      list-all2 (\lambda ip t. iwf fc t ((\lambda h . subst s (freshen i (labelsOut n h))) | hyps-for n ip |\cup| \Gamma \vdash subst s (freshen
i (labelsIn \ n \ ip))))
                (inPorts' n) ants;
       fc \ n \ i \ s \ (\Gamma \vdash c);
       c = subst\ s\ (freshen\ i\ p)
      ] \implies iwf fc \ (INode \ n \ p \ i \ s \ ants) \ (\Gamma \vdash c)
  | iwfH: [
       c \notin ass-forms;
       c \in \Gamma
       c = subst\ s\ (freshen\ i\ anyP)
      ] \implies iwf fc \ (HNode \ i \ s \ []) \ (\Gamma \vdash c)
lemma iwf-subst-freshen-outPort:
  iwf\ lc\ ts\ ent \Longrightarrow
  snd\ ent = subst\ (iSubst\ ts)\ (freshen\ (iAnnot\ ts)\ (iOutPort\ ts))
  \langle proof \rangle
definition all-local-vars :: ('form, 'rule) graph-node \Rightarrow 'var set where
  all-local-vars n = \bigcup (local-vars n 'fset (inPorts \ n))
lemma \ all-local-vars-Helper[simp]:
  all-local-vars Helper = \{\}
  \langle proof \rangle
lemma all-local-vars-Assumption[simp]:
  all-local-vars\ (Assumption\ c) = \{\}
  \langle proof \rangle
Local freshness side-conditions, corresponding what we have in the theory Natural-Deduction.
\mathbf{inductive}\ \mathit{local-fresh-check}\ ::\ (\mathit{'form},\ \mathit{'rule},\ \mathit{'subst})\ \mathit{fresh-check}\ \mathbf{where}
  \llbracket \bigwedge f. f \mid \in \mid \Gamma \Longrightarrow freshenLC \ i \ (all-local-vars \ n) \cap lconsts \ f = \{\};
    freshenLC\ i\ (all-local-vars\ n)\cap subst-lconsts\ s=\{\}
   \rrbracket \Longrightarrow local\text{-}fresh\text{-}check \ n \ i \ s \ (\Gamma \vdash c)
abbreviation local-iwf \equiv iwf local-fresh-check
No freshness side-conditions. Used with the tree that comes out of globalize, where we establish the
(global) freshness conditions separately.
inductive no-fresh-check :: ('form, 'rule, 'subst) fresh-check where
  no-fresh-check n i s (\Gamma \vdash c)
abbreviation plain-iwf \equiv iwf no-fresh-check
fun isHNode where
  isHNode\ (HNode - - - ) = True
 |isHNode - False|
lemma iwf-edge-match:
  assumes iwf fc t ent
  assumes is@[i] \in it\text{-}paths\ t
 shows subst\ (iSubst\ (tree-at\ t\ (is@[i])))\ (freshen\ (iAnnot\ (tree-at\ t\ (is@[i])))\ (iOutPort\ (tree-at\ t\ (is@[i]))))
```

```
= subst (iSubst (tree-at t is)) (freshen (iAnnot (tree-at t is)) (a-conc (inPorts' (iNodeOf (tree-at t is))!
i)))
  \langle proof \rangle
{\bf lemma}\ \textit{iwf-length-inPorts}:
 assumes iwf fc t ent
 assumes is \in it-paths t
 shows length (iAnts (tree-at t is)) <math>\leq length (inPorts' (iNodeOf (tree-at t is)))
  \langle proof \rangle
lemma iwf-local-not-in-subst:
 assumes local-iwf t ent
 assumes is \in it-paths t
 assumes var \in all\text{-}local\text{-}vars (iNodeOf (tree-at t is))
 shows freshenLC (iAnnot (tree-at t is)) var \notin subst-lconsts (iSubst (tree-at t is))
 \langle proof \rangle
lemma iwf-length-inPorts-not-HNode:
 assumes iwf fc t ent
 assumes is \in it-paths t
 assumes \neg (isHNode (tree-at t is))
 shows length (iAnts (tree-at t is)) = length (inPorts' (iNodeOf (tree-at t is)))
  \langle proof \rangle
lemma iNodeOf-outPorts:
  iwf\ fc\ t\ ent \Longrightarrow is \in it\text{-}paths\ t \Longrightarrow outPorts\ (iNodeOf\ (tree-at\ t\ is)) = \{||\} \Longrightarrow False
  \langle proof \rangle
lemma iNodeOf-tree-at:
  iwf\ fc\ t\ ent \implies is \in it\text{-paths}\ t \implies iNodeOf\ (tree\text{-}at\ t\ is) \in sset\ nodes
  \langle proof \rangle
lemma iwf-outPort:
 assumes iwf fc t ent
 assumes is \in it-paths t
 shows Reg (iOutPort (tree-at t is)) |\in| outPorts (iNodeOf (tree-at t is))
  \langle proof \rangle
inductive-set hyps-along for t is where
 prefix (is'@[i]) is \Longrightarrow
 i < length (inPorts' (iNodeOf (tree-at t is'))) \Longrightarrow
 hyps\ (iNodeOf\ (tree-at\ t\ is'))\ h = Some\ (inPorts'\ (iNodeOf\ (tree-at\ t\ is'))\ !\ i) \Longrightarrow
 subst (iSubst (tree-at\ t\ is')) (freshen\ (iAnnot\ (tree-at\ t\ is')) (labelsOut\ (iNodeOf\ (tree-at\ t\ is')\ h)) \in hyps-along
lemma hyps-along-Nil[simp]: hyps-along t [] = {}
  \langle proof \rangle
lemma prefix-app-Cons-elim:
 assumes prefix (xs@[y]) (z\#zs)
 obtains xs = [] and y = z
  |xs'| where xs = z \# xs' and prefix (xs'@[y]) zs
\langle proof \rangle
lemma hyps-along-Cons:
 assumes iwf fc t ent
 assumes i\#is \in it\text{-}paths\ t
```

```
shows hyps-along t (i\#is) =
    (\lambda h. subst (iSubst t) (freshen (iAnnot t) (labelsOut (iNodeOf t) h))) 'fset (hyps-for (iNodeOf t) (inPorts'
(iNodeOf\ t)\ !\ i))
   \cup hyps-along (iAnts t!i) is (is ?S1 = ?S2 \cup ?S3)
\langle proof \rangle
lemma iwf-hyps-exist:
 assumes iwf lc it ent
 assumes is \in it-paths it
 assumes tree-at it is = (HNode \ i \ s \ ants')
 assumes fst\ ent\ |\subseteq|\ ass-forms
 shows subst s (freshen i anyP) \in hyps-along it is
\langle proof \rangle
definition hyp-port-for':: ('form, 'rule, 'subst, 'var) itree \Rightarrow nat list \Rightarrow 'form \Rightarrow nat list \times nat \times ('form, 'var)
out-port where
 hyp\text{-}port\text{-}for'\ t\ is\ f=(SOME\ x.
  (case \ x \ of \ (is', \ i, \ h) \Rightarrow
     prefix (is' @[i]) is \land
     i < length (inPorts' (iNodeOf (tree-at t is'))) \land
     hyps\ (iNodeOf\ (tree-at\ t\ is'))\ h = Some\ (inPorts'\ (iNodeOf\ (tree-at\ t\ is'))\ !\ i)\ \land
     f = subst \ (iSubst \ (tree-at \ t \ is')) \ (freshen \ (iAnnot \ (tree-at \ t \ is')) \ (labelsOut \ (iNodeOf \ (tree-at \ t \ is')) \ h))
  ))
lemma hyp-port-for-spec':
 assumes f \in hyps-along t is
 shows (case hyp-port-for' t is f of (is', i, h) \Rightarrow
     prefix (is' @ [i]) is \land
     i < length (inPorts' (iNodeOf (tree-at t is'))) \land
     hyps\ (iNodeOf\ (tree-at\ t\ is'))\ h = Some\ (inPorts'\ (iNodeOf\ (tree-at\ t\ is'))\ !\ i)\ \land
     f = subst (iSubst (tree-at t is')) (freshen (iAnnot (tree-at t is')) (labelsOut (iNodeOf (tree-at t is')) h)))
\langle \mathit{proof} \, \rangle
definition hyp-port-path-for :: ('form, 'rule, 'subst, 'var) itree \Rightarrow nat list \Rightarrow 'form \Rightarrow nat list
  where hyp-port-path-for t is f = fst (hyp-port-for' t is f)
definition hyp-port-i-for :: ('form, 'rule, 'subst, 'var) itree \Rightarrow nat list \Rightarrow 'form \Rightarrow nat
 where hyp-port-i-for t is f = fst \ (snd \ (hyp-port-for' \ t \ is \ f))
definition hyp-port-h-for :: ('form, 'rule, 'subst, 'var) itree \Rightarrow nat list \Rightarrow 'form \Rightarrow ('form, 'var) out-port
 where hyp-port-h-for t is f = snd (snd (hyp-port-for' t is f))
lemma hyp-port-prefix:
 assumes f \in hyps-along t is
 shows prefix (hyp-port-path-for t is f@[hyp-port-i-for\ t\ is\ f]) is
\langle proof \rangle
lemma hyp-port-strict-prefix:
 assumes f \in hyps-along t is
 shows strict-prefix (hyp-port-path-for\ t\ is\ f) is
\langle proof \rangle
lemma hyp-port-it-paths:
 assumes is \in it-paths t
 assumes f \in hyps-along t is
 shows hyp-port-path-for t is f \in it-paths t
\langle proof \rangle
```

```
lemma hyp-port-hyps:
 assumes f \in hyps-along t is
 shows hyps (iNodeOf (tree-at t (hyp-port-path-for t is f))) (hyp-port-h-for t is f) = Some (inPorts' (iNodeOf
(tree-at\ t\ (hyp-port-path-for\ t\ is\ f)))\ !\ hyp-port-i-for\ t\ is\ f)
\langle proof \rangle
lemma hyp-port-outPort:
 assumes f \in hyps-along t is
 shows (hyp\text{-}port\text{-}h\text{-}for\ t\ is\ f) \mid \in \mid outPorts\ (iNodeOf\ (tree-at\ t\ (hyp\text{-}port\text{-}path\text{-}for\ t\ is\ f)))
\langle proof \rangle
lemma hyp-port-eq:
 assumes f \in hyps-along t is
 shows f = subst (iSubst (tree-at t (hyp-port-path-for t is f))) (freshen (iAnnot (tree-at t (hyp-port-path-for t
is f))) (labelsOut (iNodeOf (tree-at t (hyp-port-path-for t is f))) (hyp-port-h-for t is f)))
\langle proof \rangle
definition isidx :: nat \ list \Rightarrow nat \ \mathbf{where} \ isidx \ xs = to\text{-}nat \ (Some \ xs)
definition v-away :: nat where v-away = to-nat (None :: nat list option)
lemma isidx-inj[simp]: isidx xs = isidx ys \longleftrightarrow xs = ys
  \langle proof \rangle
lemma isidx-v-away[simp]: isidx xs \neq v-away
  \langle proof \rangle
definition map With Index where map With Index f(x) = map(\lambda(i,t)) \cdot f(i,t) (List enumerate 0 xs)
lemma map WithIndex-cong [fundef-cong]:
 xs = ys \Longrightarrow (\bigwedge x \ i. \ x \in set \ ys \Longrightarrow f \ i \ x = g \ i \ x) \Longrightarrow mapWithIndex \ f \ xs = mapWithIndex \ g \ ys
\langle proof \rangle
lemma map WithIndex-Nil[simp]: map WithIndex f [] = []
lemma length-mapWithIndex[simp]: length (mapWithIndex f xs) = length xs
lemma nth-map WithIndex[simp]: i < length xs \implies map WithIndex f xs ! <math>i = f i (xs ! i)
  \langle proof \rangle
lemma list-all2-mapWithIndex2E:
 assumes list-all2 P as bs
 assumes \bigwedge i \ a \ b. i < length \ bs \Longrightarrow P \ a \ b \Longrightarrow Q \ a \ (f \ i \ b)
 shows list-all2 Q as (mapWithIndex f bs)
\langle proof \rangle
The globalize function, which renames all local constants so that they cannot clash with local constants
occurring anywhere else in the tree.
fun qlobalize-node :: nat list \Rightarrow ('var \Rightarrow 'var) \Rightarrow ('form,'rule,'subst,'var) it node \Rightarrow ('form,'rule,'subst,'var)
itnode where
  globalize-node is f(I n p i s) = I n p (isidx is) (subst-renameLCs f s)
  | globalize-node \ is \ f \ (H \ i \ s) = H \ (isidx \ is) \ (subst-renameLCs \ f \ s)
fun globalize :: nat list \Rightarrow ('var \Rightarrow 'var) \Rightarrow ('form,'rule,'subst,'var) itree \Rightarrow ('form,'rule,'subst,'var) itree
where
  globalize is f (RNode \ r \ ants) = RNode
   (globalize-node is f r)
```

```
(map With Index (\lambda i' t.
      qlobalize (is@[i'])
                (rerename (a-fresh (inPorts' (iNodeOf (RNode r ants))! i'))
                           (iAnnot\ (RNode\ r\ ants))\ (isidx\ is)\ f)
      ) ants)
lemma iAnnot'-globalize-node[simp]: iAnnot' (globalize-node is f(n) = isidx is
  \langle proof \rangle
\mathbf{lemma}\ iAnnot\text{-}globalize:
  assumes is' \in it-paths (globalize is f(t))
 shows iAnnot (tree-at (globalize is f t) is') = isidx (is@is')
  \langle proof \rangle
\mathbf{lemma}\ \mathit{all-local-consts-listed'}:
  assumes n \in sset \ nodes
  assumes p \in |n| inPorts n
 shows lconsts (a-conc p) \cup (\bigcup (lconsts 'fset (a-hyps p))) \subseteq a-fresh p
  \langle proof \rangle
lemma no-local-consts-in-consequences':
  n \in sset \ nodes \Longrightarrow Reg \ p \mid \in \mid outPorts \ n \Longrightarrow \ lconsts \ p = \{\}
  \langle proof \rangle
lemma iwf-globalize:
  assumes local-iwf t (\Gamma \vdash c)
  shows plain-iwf (globalize is f t) (renameLCs f \mid \cdot \mid \Gamma \vdash renameLCs f c)
\langle proof \rangle
definition fresh-at where
 fresh-at \ t \ xs =
   (case \ rev \ xs \ of \ [] \Rightarrow \{\}
                  (i\#is') \Rightarrow freshenLC\ (iAnnot\ (tree-at\ t\ (rev\ is')))\ (a-fresh\ (inPorts'\ (iNodeOf\ (tree-at\ t\ (rev\ is'))))
is'))) ! i)))
lemma fresh-at-Nil[simp]:
 fresh-at\ t\ []=\{\}
  \langle \mathit{proof} \rangle
lemma fresh-at-snoc[simp]:
 fresh-at t (is@[i]) = freshenLC (iAnnot (tree-at t is)) ' (a-fresh (inPorts' (iNodeOf (tree-at t is))! i))
  \langle proof \rangle
lemma fresh-at-def':
 fresh-at \ t \ is =
   (if is = [] then \{\}
    else freshenLC (iAnnot (tree-at t (butlast is))) ' (a-fresh (inPorts' (iNodeOf (tree-at t (butlast is))) ! last
is)))
  \langle proof \rangle
lemma fresh-at-Cons[simp]:
  fresh-at \ t \ (i\#is) = (if \ is = [] \ then \ freshen LC \ (iAnnot \ t) \ `(a-fresh \ (inPorts' \ (iNode Of \ t) \ ! \ i)) \ else \ (let \ t' = i)
iAnts t ! i in fresh-at t' is))
  \langle proof \rangle
definition fresh-at-path where
```

```
fresh-at-path\ t\ is = \bigcup (fresh-at\ t\ `set\ (prefixes\ is))
lemma fresh-at-path-Nil[simp]:
 fresh-at-path\ t\ []=\{\}
  \langle proof \rangle
lemma fresh-at-path-Cons[simp]:
 fresh-at-path\ t\ (i\#is) = fresh-at\ t\ [i] \cup fresh-at-path\ (iAnts\ t\ !\ i)\ is
  \langle proof \rangle
lemma globalize-local-consts:
  assumes is' \in it-paths (globalize is f(t))
 shows subst-lconsts (iSubst (tree-at (globalize is f(t)) is')) \subseteq
   fresh-at-path (globalize is f t) is ' \cup range f
  \langle proof \rangle
lemma iwf-globalize':
  assumes local-iwf t ent
 assumes \bigwedge x. \ x \in |fst \ ent \Longrightarrow closed \ x
 assumes closed (snd ent)
 shows plain-iwf (globalize is (freshenLC v-away) t) ent
\langle proof \rangle
end
end
7.2 Build_Incredible_Tree
{\bf theory} \ \textit{Build-Incredible-Tree}
imports Incredible-Trees Natural-Deduction
begin
This theory constructs an incredible tree (with freshness checked only locally) from a natural deduction
tree.
lemma image-eq-to-f:
 assumes f1 'S1 = f2 'S2
 obtains f where \bigwedge x. x \in S2 \Longrightarrow f x \in S1 \land f1 \ (f x) = f2 \ x
\langle proof \rangle
context includes fset.lifting
begin
lemma fimage-eq-to-f:
 assumes f1 | | S1 = f2 | | S2
  obtains f where \bigwedge x. x \in S2 \Longrightarrow f x \in S1 \land f1 \ (f x) = f2 \ x
\langle proof \rangle
end
{f context} Abstract-Task
begin
lemma build-local-iwf:
 fixes t:('form\ entailment \times ('rule \times 'form)\ NatRule)\ tree
 assumes tfinite t
 assumes wf t
 shows \exists it. local-iwf it (fst (root t))
\langle proof \rangle
```

```
definition to-it :: ('form entailment \times ('rule \times 'form) NatRule) tree \Rightarrow ('form,'rule,'subst,'var) itree where
 to-it t = (SOME it. local-iwf it (fst (root t)))
lemma iwf-to-it:
 assumes tfinite t and wf t
 shows local-iwf (to-it t) (fst (root t))
\langle proof \rangle
end
end
```

7.3 Incredible_Completeness

```
theory Incredible-Completeness
```

This theory takes the tree produced in Incredible-Proof-Machine. Build-Incredible-Tree, globalizes it using *globalize*, and then builds the incredible proof graph out of it.

```
{\bf imports}\ \textit{Natural-Deduction}\ \textit{Incredible-Deduction}\ \textit{Build-Incredible-Tree}
begin
type-synonym 'form vertex = ('form \times nat \ list)
type-synonym ('form, 'var) edge'' = ('form vertex, 'form, 'var) edge'
locale Solved-Task =
  Abstract-Task freshenLC renameLCs lconsts closed subst subst-lconsts subst-renameLCs anyP antecedent
consequent rules assumptions conclusions
  for freshenLC :: nat \Rightarrow 'var \Rightarrow 'var
   and renameLCs :: ('var \Rightarrow 'var) \Rightarrow 'form \Rightarrow 'form
   and lconsts :: 'form \Rightarrow 'var set
   and closed :: 'form \Rightarrow bool
   and subst :: 'subst \Rightarrow 'form \Rightarrow 'form
   and subst-lconsts :: 'subst <math>\Rightarrow 'var \ set
   and subst-renameLCs :: ('var \Rightarrow 'var) \Rightarrow ('subst \Rightarrow 'subst)
   and anyP :: 'form
   and antecedent :: 'rule \Rightarrow ('form, 'var) \ antecedent \ list
   and consequent :: 'rule \Rightarrow 'form \ list
   and rules :: 'rule stream
   and assumptions :: 'form list
   and conclusions :: 'form \ list +
 assumes solved: solved
begin
Let us get our hand on concrete trees.
definition ts: 'form \Rightarrow (('form\ entailment) \times ('rule \times 'form)\ NatRule)\ tree\ \mathbf{where}
  ts\ c = (SOME\ t.\ snd\ (fst\ (root\ t)) = c \land fst\ (fst\ (root\ t)) \mid \subseteq \mid ass-forms \land wf\ t \land tfinite\ t)
lemma
 assumes c \in |c| conc\text{-}forms
 shows ts-conc: snd (fst (root (ts c))) = c
 and ts-context: fst (fst (root (ts c))) \subseteq ass-forms
 and ts-wf: wf (ts c)
 and ts-finite[simp]: tfinite(ts c)
  \langle proof \rangle
abbreviation it' where
```

```
it' c \equiv globalize [fidx conc-forms c, 0] (freshenLC v-away) (to-it (ts c))
```

```
lemma iwf-it:
 assumes c \in set \ conclusions
 shows plain-iwf (it' c) (fst (root (ts c)))
 \langle proof \rangle
definition vertices :: 'form vertex fset where
 vertices = Abs\text{-}fset \ (Union \ (set \ (map \ (\lambda \ c. \ insert \ (c, \parallel) \ ((\lambda \ p. \ (c, \ 0 \ \# \ p)) \ `(it\text{-}paths \ (it'\ c)))) \ conclusions)))
lemma mem-vertices: v \in v (fst v \in set conclusions \wedge (snd \ v = v) \vee snd \ v \in (\#) \ 0) 'it-paths
(it' (fst v)))
 \langle proof \rangle
lemma prefixeq-vertices: (c,is) \mid \in \mid vertices \implies prefix is' is \implies (c,is') \mid \in \mid vertices
  \langle proof \rangle
lemma none-vertices[simp]: (c, []) \in vertices \longleftrightarrow c \in set\ conclusions
  \langle proof \rangle
lemma some-vertices [simp]: (c, i \# is) \in vertices \longleftrightarrow c \in set \ conclusions \land i = 0 \land is \in it-paths (it'c)
lemma vertices-cases[consumes 1, case-names None Some]:
 assumes v \in |vertices|
 obtains c where c \in set conclusions and v = (c, \parallel)
      c is where c \in set conclusions and is \in it-paths (it'c) and v = (c, 0 \# is)
\langle proof \rangle
lemma vertices-induct[consumes 1, case-names None Some]:
 assumes v \in |vertices|
 assumes \bigwedge c. c \in set \ conclusions \Longrightarrow P(c, [])
 \mathbf{assumes} \  \, \bigwedge \  \, c \  \, is \, . \, \, c \, \in \, set \, \, conclusions \Longrightarrow is \, \in \, it\text{-paths} \, \, (it' \, \, c) \Longrightarrow \, P \, \, (c, \, \, 0 \# is)
 shows P v
\langle proof \rangle
fun nodeOf :: 'form \ vertex \Rightarrow ('form, 'rule) \ graph-node \ where
  nodeOf(pf, []) = Conclusion pf
| nodeOf (pf, i\#is) = iNodeOf (tree-at (it' pf) is)
fun inst where
 inst(c,[]) = empty-subst
|inst(c, i\#is)| = iSubst(tree-at(it'c) is)
lemma terminal-is-nil[simp]: v \in vertices \implies outPorts (nodeOf v) = \{||\} \iff snd v = []
 \langle proof \rangle
sublocale Vertex-Graph nodes inPorts outPorts vertices nodeOf\langle proof \rangle
definition edge-from :: 'form \Rightarrow nat list => ('form vertex \times ('form,'var) out-port) where
  edge-from c is = ((c, 0 \# is), Reg (iOutPort (tree-at (it' c) is)))
lemma fst-edge-from[simp]: fst (edge-from c is) = (c, 0 \# is)
  \langle proof \rangle
fun in\text{-port-}at :: ('form \times nat \ list) \Rightarrow nat \Rightarrow ('form, 'var) \ in\text{-port } \mathbf{where}
    in\text{-port-at}(c, []) - plain\text{-ant} c
 |in\text{-port-at }(c, -\#is)| i = inPorts'(iNodeOf(tree-at(it'c)is))! i
```

```
definition edge-to :: 'form \Rightarrow nat \ list => ('form \ vertex \times ('form,'var) \ in-port) where
 edge-to \ c \ is =
    in\text{-}port\text{-}at\ (c, [])\ \theta)
                     |i\#is \Rightarrow ((c, 0 \# (rev is)), in\text{-port-at } (c, (0\#rev is)) i))
lemma edge-to-Nil[simp]: edge-to c \parallel = ((c, \parallel), plain-ant c)
  \langle proof \rangle
lemma edge-to-Snoc[simp]: edge-to \ c \ (is@[i]) = ((c, 0 \# is), in-port-at \ ((c, 0 \# is)) \ i)
  \langle proof \rangle
definition edge-at :: 'form \Rightarrow nat \ list => ('form, 'var) \ edge'' where
   edge-at c is = (edge-from c is, edge-to c is)
lemma fst-edge-at[simp]: fst (edge-at c is) = edge-from c is \langle proof \rangle
lemma snd\text{-}edge\text{-}at[simp]: snd (edge\text{-}at c is) = edge\text{-}to c is \langle proof \rangle
lemma hyps-exist':
  assumes c \in set \ conclusions
  assumes is \in it-paths (it'c)
 assumes tree-at (it' c) is = (HNode\ i\ s\ ants)
  shows subst s (freshen i anyP) \in hyps-along (it' c) is
\langle proof \rangle
definition hyp-edge-to :: 'form \Rightarrow nat list => ('form vertex \times ('form,'var) in-port) where
  hyp\text{-}edge\text{-}to\ c\ is = ((c,\ 0\ \#\ is),\ plain\text{-}ant\ any}P)
definition hyp-edge-from :: 'form \Rightarrow nat list => nat \Rightarrow 'subst \Rightarrow ('form vertex \times ('form,'var) out-port)
where
  hyp-edge-from c is n s =
    ((c, 0 \# hyp\text{-port-path-for } (it'c) \text{ is } (subst s (freshen n any}P))),
     hyp-port-h-for (it'c) is (subst\ s\ (freshen\ n\ anyP)))
definition hyp-edge-at :: 'form \Rightarrow nat list => nat \Rightarrow 'subst \Rightarrow ('form, 'var) edge'' where
  hyp\text{-}edge\text{-}at\ c\ is\ n\ s=(hyp\text{-}edge\text{-}from\ c\ is\ n\ s,\ hyp\text{-}edge\text{-}to\ c\ is)
lemma fst-hyp-edge-at[simp]:
 fst\ (hyp\text{-}edge\text{-}at\ c\ is\ n\ s) = hyp\text{-}edge\text{-}from\ c\ is\ n\ s\ \langle proof \rangle
lemma snd-hyp-edge-at[simp]:
  snd\ (hyp\text{-}edge\text{-}at\ c\ is\ n\ s) = hyp\text{-}edge\text{-}to\ c\ is\ \langle proof \rangle
inductive-set edges where
  regular-edge: c \in set\ conclusions \implies is \in it-paths\ (it'\ c) \implies edge-at\ c\ is \in edges
 | hyp-edge: c \in set\ conclusions \Longrightarrow is \in it-paths (it' c) \Longrightarrow tree-at (it' c) is = HNode n\ s\ ants \Longrightarrow hyp-edge-at
c is n s \in edges
sublocale Pre-Port-Graph nodes inPorts outPorts vertices nodeOf edges\langle proof \rangle
lemma edge-from-valid-out-port:
  assumes p \in it-paths (it'c)
 assumes c \in set \ conclusions
  shows valid-out-port (edge-from <math>c p)
\langle proof \rangle
```

```
lemma edge-to-valid-in-port:
  assumes p \in it-paths (it' c)
  assumes c \in set \ conclusions
  shows valid-in-port (edge-to c p)
  \langle proof \rangle
{f lemma}\ hyp\text{-}edge	ext{-}from	ext{-}valid	ext{-}out	ext{-}port:
  assumes is \in it-paths (it'c)
  assumes c \in set \ conclusions
  assumes tree-at (it'c) is = HNode \ n \ s \ ants
  shows valid-out-port (hyp-edge-from c is n s)
\langle proof \rangle
lemma hyp-edge-to-valid-in-port:
  assumes is \in it-paths (it'c)
  assumes c \in set \ conclusions
  assumes tree-at (it' c) is = HNode \ n \ s \ ants
  shows valid-in-port (hyp-edge-to c is)
\langle proof \rangle
inductive scope' :: 'form \ vertex \Rightarrow ('form,'var) \ in-port \Rightarrow 'form \times nat \ list \Rightarrow bool \ \mathbf{where}
  c \in set\ conclusions \Longrightarrow
   is' \in ((\#) \ \theta) ' it-paths (it' \ c) \Longrightarrow
   prefix (is@[i]) is' \Longrightarrow
   ip = in\text{-port-at }(c,is) \ i \Longrightarrow
   scope'(c, is) ip(c, is')
inductive-simps scope-simp: scope' v i v'
inductive-cases scope-cases: scope' v i v'
lemma scope-valid:
  scope' \ v \ i \ v' \Longrightarrow v' \mid \in \mid vertices
\langle proof \rangle
lemma scope-valid-inport:
  v' \models |v| \text{ vertices} \implies scope' v \text{ ip } v' \longleftrightarrow (\exists i. \text{ fst } v = \text{fst } v' \land prefix (snd v@[i]) (snd v') \land ip = in\text{-port-at } v \text{ i)}
\langle proof \rangle
definition terminal-path-from :: 'form \Rightarrow nat list => ('form, 'var) edge'' list where
   terminal-path-from c is = map (edge-at c) (rev (prefixes is))
lemma terminal-path-from-Nil[simp]:
  terminal-path-from c \mid = [edge-at c \mid ]
  \langle proof \rangle
lemma terminal-path-from-Snoc[simp]:
  terminal-path-from c (is @[i]) = edge-at c (is @[i]) # terminal-path-from c is
  \langle proof \rangle
lemma path-terminal-path-from:
  c \in set\ conclusions \Longrightarrow
  is \in it-paths (it'c) \Longrightarrow
  path (c, 0 \# is) (c, []) (terminal-path-from c is)
\langle proof \rangle
```

```
lemma edge-step:
 assumes (((a, b), ba), ((aa, bb), bc)) \in edges
   i where a = aa and b = bb@[i] and bc = in\text{-}port\text{-}at~(aa,bb)~i~ and hyps~(nodeOf~(a,b))~ba = None
 | i  where a = aa  and prefix (b@[i]) bb  and hyps (nodeOf (a, b)) ba = Some (in-port-at (a,b) i)
\langle proof \rangle
lemma path-has-prefixes:
 assumes path \ v \ v' \ pth
 assumes snd v' = []
 assumes prefix (is' @ [i]) (snd v)
 shows ((fst \ v, \ is'), \ (in\text{-port-at} \ (fst \ v, \ is') \ i)) \in snd \ `set \ pth
  \langle proof \rangle
lemma in-scope: valid-in-port (v', p') \Longrightarrow v \in scope (v', p') \longleftrightarrow scope' v' p' v
\langle proof \rangle
sublocale Port-Graph nodes inPorts outPorts vertices nodeOf edges
\langle proof \rangle
sublocale Scoped-Graph nodes inPorts outPorts vertices nodeOf edges hyps\(\rangle proof \rangle \)
lemma hyps-free-path-length:
 assumes path v v' pth
 assumes hyps-free pth
 shows length pth + length (snd v') = length (snd v)
\langle proof \rangle
fun vidx :: 'form \ vertex \Rightarrow nat \ \mathbf{where}
   vidx (c, []) = isidx [fidx conc-forms c]
 |vidx(c, -\#is)| = iAnnot(tree-at(it'c)is)
lemma my-vidx-inj: inj-on vidx (fset vertices)
  \langle proof \rangle
lemma vidx-not-v-away[simp]: v \in v-v-away
  \langle proof \rangle
sublocale Instantiation in Ports outPorts node Of hyps nodes edges vertices labels In labels Out freshen LC re-
nameLCs lconsts closed subst-subst-lconsts subst-renameLCs anyP vidx inst
\langle proof \rangle
sublocale Well-Scoped-Graph nodes in Ports outPorts vertices node Of edges hyps
\langle proof \rangle
sublocale Acyclic-Graph nodes inPorts outPorts vertices nodeOf edges hyps
\langle proof \rangle
sublocale Saturated-Graph nodes inPorts outPorts vertices nodeOf edges
\langle proof \rangle
sublocale Pruned-Port-Graph nodes inPorts outPorts vertices nodeOf edges
\langle proof \rangle
sublocale Well-Shaped-Graph nodes inPorts outPorts vertices nodeOf edges hyps(proof)
```

sublocale sol:Solution inPorts outPorts nodeOf hyps nodes vertices labelsIn labelsOut freshenLC renameLCs lconsts closed subst-subst-lconsts subst-renameLCs anyP vidx inst edges $\langle proof \rangle$

```
lemma node-disjoint-fresh-vars:

assumes n \in sset nodes

assumes i < length (inPorts' n)

assumes i' < length (inPorts' n)

shows a-fresh (inPorts' n ! i) \cap a-fresh (inPorts' n ! i') = {} \lor i = i'

\lor proof \lor
```

sublocale Well-Scoped-Instantiation freshenLC renameLCs lconsts closed subst-subst-lconsts subst-renameLCs anyP inPorts outPorts nodeOf hyps nodes vertices labelsIn labelsOut vidx inst edges local-vars $\langle proof \rangle$

sublocale Scoped-Proof-Graph freshenLC renameLCs lconsts closed subst-subst-lconsts subst-renameLCs any P in P orts out P orts node P of P nodes vertices labels P labels P out P in P orts out P or P or

sublocale tpg: Tasked-Proof-Graph freshenLC renameLCs lconsts closed subst subst-lconsts subst-renameLCs anyP antecedent consequent rules assumptions conclusions vertices nodeOf edges vidx inst $\langle proof \rangle$

end

8 Instantiations

To ensure that our locale assumption are fulfillable, we instantiate them with small examples.

8.1 Propositional_Formulas

theory Propositional-Formulas

```
imports

Abstract-Formula

HOL-Library.Countable

HOL-Library.Infinite-Set

HOL-Library.Infinite-Typeclass

begin

lemma countable-infinite-ex-bij: \exists f::('a::\{countable,infinite\}\Rightarrow'b::\{countable,infinite\}). bij f \langle proof \rangle
```

Propositional formulas are either a variable from an infinite but countable set, or a function given by a name and the arguments.

```
datatype ('var,'cname) pform =
   Var 'var::{countable,infinite}
   | Fun (name:'cname) (params: ('var,'cname) pform list)
```

Substitution on and closedness of propositional formulas is straight forward.

```
fun subst :: ('var::\{countable, infinite\} \Rightarrow ('var, 'cname) \ pform) \Rightarrow ('var, 'cname) \ pform \Rightarrow ('var, 'cname) \ pform \Rightarrow (var, 'cname) \ pform \Rightarrow (var
```

Now we can interpret Abstract-Formulas. As there are no locally fixed constants in propositional formulas, most of the locale parameters are dummy values

```
interpretation propositional: Abstract-Formulas

— No need to freshen locally fixed constants
curry \ (SOME \ f. \ bij \ f) :: \ nat \Rightarrow 'var \Rightarrow 'var
— also no renaming needed as there are no locally fixed constants
\lambda -. \ id \ \lambda -. \ \{\}
— closedness and substitution as defined above
closed :: ('var::\{countable,infinite\},'cname) \ pform \Rightarrow bool \ subst
— no substitution and renaming of locally fixed constants
\lambda -. \ \{\} \ \lambda -. \ id
— most generic formula
Var \ undefined
\langle proof \rangle
```

declare propositional.subst-lconsts-empty-subst [simp del]

end

8.2 Incredible_Propositional

theory Incredible-Propositional imports

```
Abstract-Rules-To-Incredible
Propositional-Formulas
begin
```

Our concrete interpretation with propositional logic will cover conjunction and implication as well as constant symbols. The type for variables will be *string*.

```
datatype prop-funs = and \mid imp \mid Const string
```

The rules are introduction and elimination of conjunction and implication.

```
datatype prop-rule = andI \mid andE \mid impI \mid impE

definition prop-rules :: prop-rule stream
where prop-rules = cycle [andI, andE, impI, impE]

lemma iR-prop-rules [simp]: sset prop-rules = {andI, andE, impI, impE} \langle proof \rangle

Just some short notation.

abbreviation X :: (string, 'a) \ pform
where X \equiv Var \ ''X''
abbreviation Y :: (string, 'a) \ pform
where Y \equiv Var \ ''Y''
```

Finally the right- and left-hand sides of the rules.

```
fun consequent :: prop-rule \Rightarrow (string, prop-funs) pform list where consequent and I = [Fun \ and \ [X, \ Y]] | consequent and E = [X, \ Y] | consequent impI = [Fun \ imp \ [X, \ Y]] | consequent impE = [Y]
```

```
fun antecedent :: prop-rule \Rightarrow ((string,prop-funs) pform,string) antecedent list where antecedent and I = [plain-ant \ X, \ plain-ant \ Y]
| antecedent and I = [plain-ant \ (Fun \ and \ [X, \ Y])]
| antecedent impI = [Antecedent \ \{|X|\} \ Y \ \}]
| antecedent impI = [plain-ant \ (Fun \ imp \ [X, \ Y]), \ plain-ant \ X]
```

```
interpretation propositional: Abstract-Rules curry (SOME f. bij f):: nat \Rightarrow string \Rightarrow string \lambda-. id \lambda-. \{\} closed :: (string, prop-funs) pform \Rightarrow bool subst \lambda-. \{\} \lambda-. id Var undefined antecedent consequent <math>prop-rules \langle proof \rangle
```

8.3 Incredible_Propositional_Tasks

```
theory Incredible-Propositional-Tasks
imports
  Incredible\hbox{-} Completeness
  Incredible \hbox{-} Propositional
begin
context ND-Rules-Inst begin
\mathbf{lemma}\ \mathit{eff}	ext{-}NatRuleI:
  nat-rule rule\ c\ ants
    \implies entail = (\Gamma \vdash subst\ s\ (freshen\ a\ c))
     \implies hyps = ((\lambda ant. ((\lambda p. subst s (freshen a p)) | `| a-hyps ant | \cup | \Gamma \vdash subst s (freshen a (a-conc ant)))) | `|
ants)
    \Longrightarrow (\bigwedge \ ant \ f. \ ant \ | \in | \ ants \Longrightarrow f \ | \in | \ \Gamma \Longrightarrow freshenLC \ a \ `(a-fresh \ ant) \cap lconsts \ f = \{\})
    \Longrightarrow (\bigwedge \ ant. \ ant \ | \in | \ ants \Longrightarrow \textit{freshenLC} \ a \ `(\textit{a-fresh} \ ant) \ \cap \ \textit{subst-lconsts} \ s = \{\})
    \implies eff (NatRule rule) entail hyps
  \langle proof \rangle
end
context Abstract-Task begin
lemma natEff-InstI:
  rule = (r,c)
  \implies c \in set \ (consequent \ r)
  \implies antec = f-antecedent r
  \implies nat \textit{Eff-Inst rule } c \ \textit{antec}
  \langle proof \rangle
end
context begin
```

8.3.1 Task 1.1

This is the very first task of the Incredible Proof Machine: $A \longrightarrow A$

```
abbreviation A :: (string, prop-funs) \ pform where A \equiv Fun \ (Const "A") \ []
```

First the task is defined as an Abstract-Task.

```
interpretation task1-1: Abstract-Task curry (SOME f. bij f):: nat \Rightarrow string \Rightarrow string \lambda-. id \lambda-. \{\} closed :: (string, prop-funs) pform \Rightarrow bool subst \lambda-. \{\} \lambda-. id Var undefined antecedent consequent prop-rules [A] [A] \langle proof \rangle
```

Then we show, that this task has a proof within our formalization of natural deduction by giving a concrete proof tree.

```
\mathbf{lemma}\ task1-1.solved
  \langle proof \rangle
print-locale Vertex-Graph
interpretation task1-1: Vertex-Graph\ task1-1.nodes\ task1-1.inPorts\ task1-1.outPorts\ \{|0::nat,1|\}
  undefined(0 := Assumption A, 1 := Conclusion A)
\langle proof \rangle
print-locale Pre-Port-Graph
interpretation task1-1: Pre-Port-Graph\ task1-1.nodes\ task1-1.inPorts\ task1-1.outPorts\ \{|0::nat,1|\}
  undefined(0 := Assumption A, 1 := Conclusion A)
  \{((0,Reg\ A),(1,plain-ant\ A))\}
\langle proof \rangle
print-locale Instantiation
interpretation task1-1: Instantiation
  task1-1.inPorts
  task1-1.outPorts
  undefined(0 := Assumption A, 1 := Conclusion A)
  task1-1.hyps
  task1-1.nodes
  \{((0,Reg\ A),(1,plain-ant\ A))\}
  \{|0::nat,1|\}
  task1-1.labelsIn
  task1-1.labelsOut
  curry\ (SOME\ f.\ bij\ f)::\ nat \Rightarrow string \Rightarrow string
  \lambda-. id
  \lambda-. \{\}
  closed :: (string, prop-funs) pform \Rightarrow bool
  subst
  \lambda-. \{\}
  \lambda-. id
  Var\ undefined
  id
  undefined
\langle proof \rangle
declare One-nat-def [simp del]
lemma path-one-edge[simp]:
  task1-1.path\ v1\ v2\ pth \longleftrightarrow
   (v1 = 0 \land v2 = 1 \land pth = [((0,Reg\ A),(1,plain-ant\ A))] \lor
   pth = [] \land v1 = v2)
  \langle proof \rangle
Finally we can also show that there is a proof graph for this task.
{\bf interpretation} \  \, \textit{Tasked-Proof-Graph}
  curry\ (SOME\ f.\ bij\ f)::\ nat \Rightarrow string \Rightarrow string
  \lambda-. id
  \lambda-. \{\}
  closed :: (string, prop-funs) pform \Rightarrow bool
  subst
  λ-. {}
  \lambda-. id
  Var\ undefined
  antecedent
```

```
consequent
prop-rules
[A]
[A]
\{|0::nat,1|\}
undefined(0 := Assumption A, 1 := Conclusion A)
\{((0,Reg\ A),(1,plain-ant\ A))\}
id
undefined
```

```
\langle proof \rangle
8.3.2 Task 2.11
This is a slightly more interesting task as it involves both our connectives: P \land Q \longrightarrow R \Longrightarrow P \longrightarrow
abbreviation B :: (string, prop-funs) pform
  where B \equiv Fun \ (Const "B") \ []
abbreviation C :: (string, prop-funs) pform
  where C \equiv Fun \ (Const "C") \ []
interpretation task2-11: Abstract-Task
  curry\ (SOME\ f.\ bij\ f)::\ nat \Rightarrow string \Rightarrow string
  \lambda-. id
  λ-. {}
  closed :: (string, prop-funs) pform \Rightarrow bool
  subst
  \lambda-. \{\}
  \lambda-. id
  Var\ undefined
  antecedent
  consequent
  prop-rules
  [Fun imp [Fun and [A,B],C]]
  [Fun imp [A, Fun imp [B, C]]]
\langle proof \rangle
abbreviation n-andI \equiv task2-11.n-rules!! \theta
abbreviation n-andE1 \equiv task2-11.n-rules !! 1
abbreviation n-andE2 \equiv task2-11.n-rules !! 2
abbreviation n\text{-}impI \equiv task2\text{-}11.n\text{-}rules !! 3
abbreviation n\text{-}impE \equiv task2\text{-}11.n\text{-}rules !! 4
lemma n-andI [simp]: n-andI = (andI, Fun and [X, Y])
  \langle proof \rangle
lemma n-andE1 [simp]: n-andE1 = (andE, X)
  \langle proof \rangle
lemma n-andE2 [simp]: n-andE2 = (andE, Y)
lemma n-impI [simp]: n-impI = (impI, Fun imp [X,Y])
lemma n-impE [simp]: n-impE = (impE, Y)
\langle proof \rangle
```

lemma subst-Var-eq-id [simp]: subst Var = id $\langle proof \rangle$

```
lemma xy-update: f = undefined("X" := x, "Y" := y) \Longrightarrow x = f "X" \land y = f "Y" \langle proof \rangle lemma y-update: f = undefined("Y" := y) \Longrightarrow y = f "Y" \langle proof \rangle declare snth.simps(1) [simp\ del]
```

By interpreting *Solved-Task* we show that there is a proof tree for the task. We get the existence of the proof graph for free by using the completeness theorem.

```
interpretation task2-11: Solved-Task
  curry\ (SOME\ f.\ bij\ f)::\ nat \Rightarrow string \Rightarrow string
  \lambda-. id
  λ-. {}
  closed :: (string, prop-funs) pform \Rightarrow bool
  subst
  \lambda-. \{\}
  \lambda-. id
  Var\ undefined
  antecedent
  consequent
  prop-rules
  [Fun imp [Fun and [A,B],C]]
  [Fun imp [A,Fun imp [B,C]]]
\langle proof \rangle
{\bf interpretation} \  \, \textit{Tasked-Proof-Graph}
  curry\ (SOME\ f.\ bij\ f)::\ nat \Rightarrow string \Rightarrow string
  \lambda-. id
  \lambda-. \{\}
  closed :: (string, prop-funs) pform \Rightarrow bool
  subst
 \lambda-. \{\}
  \lambda-. id
  Var\ undefined
  antecedent
  consequent
  prop	ext{-}rules
  [Fun imp [Fun and [A,B],C]]
  [Fun imp [A, Fun imp [B, C]]]
  task2-11.vertices
  task2-11.nodeOf
  task2-11.edges
  task2-11.vidx
  task2-11.inst
\langle proof \rangle
end
```

8.4 Predicate_Formulas

```
theory Predicate-Formulas
imports
HOL-Library.Countable
HOL-Library.Infinite-Set
```

```
HOL-Eisbach.Eisbach
Abstract-Formula
begin
```

This theory contains an example instantiation of *Abstract-Formulas* with an formula type with local constants. It is a rather ad-hoc type that may not be very useful to work with, though.

```
type-synonym var = nat
type-synonym lconst = nat
```

We support higher order variables, in order to express $\forall x. ?P$ x. But we stay first order, i.e. the parameters of such a variables will only be instantiated with ground terms.

```
datatype form =
    Var (var:var) (params: form list)
   LC (var:lconst)
   Op (name:string) (params: form list)
   Quant (name:string) (var:nat) (body: form)
type-synonym schema = var \ list \times form
type-synonym subst = (nat \times schema) \ list
fun fv :: form \Rightarrow var set where
  fv (Var \ v \ xs) = insert \ v (Union (fv 'set \ xs))
| fv (LC v) = \{ \}
| fv (Op \ n \ xs) = Union (fv 'set \ xs)
| fv (Quant \ n \ v \ f) = fv \ f - \{v\}
definition fresh-for :: var set \Rightarrow var where
 fresh-for V = (SOME \ n. \ n \notin V)
lemma fresh-for-fresh: finite V \Longrightarrow fresh-for V \notin V
 \langle proof \rangle
Free variables
fun fv-schema :: schema \Rightarrow var set where
 fv-schema (ps,f) = fv f - set ps
definition fv-subst :: subst \Rightarrow var set where
 fv-subst s = \bigcup (fv-schema 'ran (map-of s))
definition fv-subst1 where
 fv-subst1 s = \bigcup (fv \cdot snd \cdot set s)
lemma fv-subst-Nil[simp]: fv-subst1 [] = {}
 \langle proof \rangle
Local constants, separate from free variables.
fun lc :: form \Rightarrow lconst set where
  lc (Var v xs) = Union (lc 'set xs)
| lc (LC c) = \{c\}
| lc (Op \ n \ xs) = Union (lc 'set \ xs)
| lc (Quant \ n \ v f) = lc f
fun lc-schema :: schema \Rightarrow lconst set where
```

lc-schema (ps,f) = lc f

```
definition lc-subst1 where
 lc-subst1 s = \bigcup (lc 'snd 'set s)
fun lc-subst :: subst \Rightarrow lconst set where
  lc\text{-}subst\ s = \bigcup (lc\text{-}schema\ `snd\ `set\ s)
fun map-lc :: (lconst \Rightarrow lconst) \Rightarrow form \Rightarrow form where
  map-lc f (Var v xs) = Var v (map (map-lc f) xs)
 map-lc f (LC n) = LC (f n)
 map-lc f (Op \ n \ xs) = Op \ n \ (map \ (map-lc f) \ xs)
| map-lc f (Quant n v f') = Quant n v (map-lc f f')
lemma fv-map-lc[simp]: fv(map-lc(p)f) = fv(f)
  \langle proof \rangle
lemma lc-map-lc[simp]: lc (map-lc p f) = p ' lc f
lemma map-lc-map-lc[simp]: map-lc p1 (map-lc p2 f) = map-lc (p1 <math>\circ p2) f
fun map-lc-subst1 :: (lconst <math>\Rightarrow lconst) \Rightarrow (var \times form) \ list \Rightarrow (var \times form) \ list where
  map-lc-subst1 fs = map (apsnd (map-lc f)) s
fun map-lc\text{-}subst :: (lconst \Rightarrow lconst) \Rightarrow subst \Rightarrow subst where
  map-lc-subst f s = map \ (apsnd \ (apsnd \ (map-lc \ f))) \ s
lemma map-lc-noop[simp]: lc f = \{\} \Longrightarrow map-lc p f = f
  \langle proof \rangle
lemma map-lc-cong[cong]: (\bigwedge x. \ x \in lc \ f \Longrightarrow f1 \ x = f2 \ x) \Longrightarrow map-lc \ f1 \ f = map-lc \ f2 \ f
lemma [simp]: fv-subst1 (map\ (apsnd\ (map-lc\ p))\ s) = fv-subst1 s
  \langle proof \rangle
lemma map-lc-subst-cong[cong]:
 assumes (\bigwedge x. \ x \in lc\text{-subst } s \Longrightarrow f1 \ x = f2 \ x)
 shows map-lc-subst f1 s = map-lc-subst f2 s
  \langle proof \rangle
```

In order to make the termination checker happy, we define substitution in two stages: One that substitutes only ground terms for variables, and the real one that can substitute schematic terms (or lambda expression, if you want).

```
fun subst1 :: (var \times form) list \Rightarrow form \Rightarrow form where subst1 s (Var v []) = (case map-of s v of Some <math>f \Rightarrow f \mid None \Rightarrow Var v []) | subst1 s (Var v xs) = Var v xs | subst1 s (LC n) = LC n | subst1 s (Op n xs) = Op n (map (subst1 s) xs) | subst1 s (Quant n v f) = (if v ∈ fv-subst1 s then (let v' = fresh-for (fv-subst1 s) in Quant n v' (subst1 <math>(v, Var v' []) \# s) f)) else Quant n v (subst1 s f))
```

lemma subst1-Nil[simp]: subst1 [] f = f

```
\langle proof \rangle
lemma lc-subst1: lc (subst1 \ s \ f) \subseteq lc \ f \cup \bigcup (lc \ `snd \ `set \ s)
  \langle proof \rangle
lemma apsnd-def': apsnd f = (\lambda(k, v), (k, f v))
  \langle proof \rangle
lemma map-of-map-apsnd:
  map\text{-}of \ (map \ (apsnd \ f) \ xs) = map\text{-}option \ f \circ map\text{-}of \ xs
  \langle proof \rangle
lemma map-lc-subst1 [simp]: map-lc p (subst1 s f) = subst1 (map-lc-subst1 p s) (map-lc p f)
fun subst' :: subst \Rightarrow form \Rightarrow form where
   subst's (Var v xs) =
      (case \ map-of \ s \ v \ of \ None \Rightarrow (Var \ v \ (map \ (subst' \ s) \ xs))
                 | Some (ps,rhs) \Rightarrow
                      if\ length\ ps=\ length\ xs
                      then subst1 (zip ps (map (subst's) xs)) rhs
                      else (Var \ v \ (map \ (subst' \ s) \ xs)))
   subst's (LC n) = LC n
   subst's (Op \ n \ xs) = Op \ n \ (map \ (subst's) \ xs)
  | subst's (Quant n v f) =
      (if v \in \text{fv-subst } s \text{ then}
      (let \ v' = fresh-for \ (fv-subst \ s)
       in Quant n \ v' \ (subst' \ ((v,([],\ Var\ v'\ []))\#s)\ f))
      else Quant n \ v \ (subst' \ s \ f))
lemma subst'-Nil[simp]: subst' [] f = f
lemma lc-subst': lc (subst' s f) \subseteq lc f \cup lc-subst s
lemma ran-map-option-comp[simp]:
  ran (map-option f \circ m) = f 'ran m
\langle proof \rangle
lemma fv-schema-apsnd-map-lc[simp]:
 fv-schema (apsnd (map-lc p) a) = fv-schema a
\langle proof \rangle
lemma fv-subst-map-apsnd-map-lc[simp]:
 \mathit{fv\text{-}subst}\ (\mathit{map}\ (\mathit{apsnd}\ (\mathit{apsnd}\ (\mathit{map\text{-}lc}\ p)))\ s) = \mathit{fv\text{-}subst}\ s
\langle proof \rangle
lemma map-apsnd-zip[simp]: map\ (apsnd\ f)\ (zip\ a\ b) = zip\ a\ (map\ f\ b)
lemma map-lc-subst'[simp]: map-lc p (subst' s f) = subst' (map-lc-subst p s) (map-lc p f)
  \langle proof \rangle
```

Since subst' happily renames quantified variables, we have a simple wrapper that ensures that the substitution is minimal, and is empty if f is closed. This is a hack to support lemma subst-noop.

```
fun subst :: subst \Rightarrow form \Rightarrow form where
  subst s f = subst' (filter (\lambda (v,s), v \in fv f) s) f
lemma subst-Nil[simp]: subst [] f = f
  \langle proof \rangle
lemma subst-noop[simp]: fv f = \{\} \implies subst \ s \ f = f
lemma lc-subst: lc (subst\ s\ f) \subseteq lc\ f \cup lc-subst\ s
  \langle proof \rangle
lemma lc-subst-map-lc-subst[simp]: lc-subst (map-lc-subst p s) = p ' lc-subst s
lemma map-lc-subst[simp]: map-lc p (subst\ s\ f) = subst\ (map-lc-subst p\ s) (map-lc\ p\ f)
  \langle proof \rangle
fun closed :: form \Rightarrow bool where
  closed\ f \longleftrightarrow fv\ f = \{\} \land lc\ f = \{\}
interpretation predicate: Abstract-Formulas
  curry\ to\text{-}nat :: nat \Rightarrow var \Rightarrow var
  map-lc
  lc
  closed
  subst
  lc	ext{-}subst
  map-lc-subst
  Var \theta
  \langle proof \rangle
declare predicate.subst-lconsts-empty-subst [simp del]
```

8.5 Incredible_Predicate

end

theory Incredible-Predicate imports
Abstract-Rules-To-Incredible
Predicate-Formulas
begin

Our example interpretation with predicate logic will cover implication and the universal quantifier.

The rules are introduction and elimination of implication and universal quantifiers.

```
\label{eq:datatype} \begin{split} \textbf{datatype} \ prop\text{-}rule &= allI \mid allE \mid impI \mid impE \\ \textbf{definition} \ prop\text{-}rules :: prop\text{-}rule \ stream \\ \textbf{where} \ prop\text{-}rules &= cycle \ [allI, \ allE, \ impI, \ impE] \\ \\ \textbf{lemma} \ iR\text{-}prop\text{-}rules \ [simp]: \ sset \ prop\text{-}rules &= \{allI, \ allE, \ impI, \ impE\} \\ & \langle proof \rangle \end{split}
```

Just some short notation.

```
abbreviation X :: form
  where X \equiv Var 10
abbreviation Y :: form
  where Y \equiv Var 11
abbreviation x :: form
 where x \equiv Var 9
abbreviation t :: form
 where t \equiv Var 13
abbreviation P :: form \Rightarrow form
 where P f \equiv Var 12 [f]
abbreviation Q :: form \Rightarrow form
 where Q f \equiv Op "Q" [f]
abbreviation imp :: form \Rightarrow form \Rightarrow form
  where imp\ f1\ f2 \equiv Op\ ''imp''\ [f1,\ f2]
abbreviation ForallX :: form \Rightarrow form
 where ForallX f \equiv Quant "all" 9 f
Finally the right- and left-hand sides of the rules.
\mathbf{fun}\ consequent::prop\text{-}rule \Rightarrow form\ list
 where consequent all I = [ForallX (P x)]
   consequent \ all E = [P \ t]
   consequent impI = [imp \ X \ Y]
  | consequent impE = [Y]
abbreviation allI-input where allI-input \equiv Antecedent {||} (P (LC 0)) {0}
abbreviation impl-input where impl-input \equiv Antecedent {|X|} Y {}
fun antecedent :: prop-rule <math>\Rightarrow (form, lconst) antecedent list
 where antecedent \ all I = [all I-input]
   antecedent \ all E = [plain-ant \ (Forall X \ (P \ x))]
   antecedent impI = [impI-input]
  | antecedent impE = [plain-ant (imp X Y), plain-ant X]
interpretation predicate: Abstract-Rules
  curry \ to\text{-}nat :: \ nat \Rightarrow var \Rightarrow var
  map-lc
  lc
  closed
  subst
 lc	ext{-}subst
  map-lc-subst
  Var \ \theta \ []
  antecedent
  consequent
  prop-rules
\langle proof \rangle
end
```

8.6 Incredible_Predicate_Tasks

theory Incredible-Predicate-Tasks imports Incredible-Completeness Incredible-Predicate HOL-Eisbach.Eisbach

begin

```
declare One-nat-def [simp del]
context ND-Rules-Inst begin
lemma eff-NatRuleI:
  nat-rule rule c ants
    \implies entail = (\Gamma \vdash subst\ s\ (freshen\ a\ c))
    \implies hyps = ((\lambda ant. ((\lambda p. subst s (freshen a p)) | `| a-hyps ant | \cup | \Gamma \vdash subst s (freshen a (a-conc ant)))) | `|
ants)
    \Longrightarrow (\bigwedge ant \ f. \ ant \ | \in | \ ants \Longrightarrow f \ | \in | \ \Gamma \Longrightarrow freshenLC \ a \ `(a-fresh \ ant) \cap lconsts \ f = \{\})
    \Longrightarrow (\bigwedge \ ant. \ ant \ | \in | \ ants \Longrightarrow \textit{freshenLC} \ a \ `(\textit{a-fresh} \ ant) \ \cap \ \textit{subst-lconsts} \ s = \{\})
    \implies eff (NatRule rule) entail hyps
  \langle proof \rangle
end
context Abstract-Task begin
lemma natEff-InstI:
  rule = (r,c)
  \implies c \in set (consequent r)
 \implies antec = f-antecedent r
  \implies natEff\text{-}Inst\ rule\ c\ antec
  \langle proof \rangle
end
context begin
A typical task with local constants:: \forall x. \ Q \ x \longrightarrow Q \ x
First the task is defined as an Abstract-Task.
interpretation task: Abstract-Task
  curry\ to\text{-}nat :: nat \Rightarrow var \Rightarrow var
  map-lc
  lc
  closed
  subst
  lc-subst
  map-lc-subst
  Var \theta
  antecedent
  consequent
  prop-rules
  [Forall X (imp (Q x) (Q x))]
\langle proof \rangle
Then we show, that this task has a proof within our formalization of natural deduction by giving a
concrete proof tree.
abbreviation lx :: nat where lx \equiv to\text{-}nat \ (1::nat, 0::nat)
abbreviation base-tree :: ((form\ fset \times form) \times (prop-rule \times form)\ NatRule)\ tree\ where
  base-tree \equiv Node (\{|Q(LC lx)|\} \vdash Q(LC lx), Axiom) \{||\}
abbreviation imp-tree :: ((form\ fset \times form) \times (prop-rule \times form)\ NatRule) tree where
  imp-tree \equiv Node (\{||\} \vdash imp (Q (LC lx)) (Q (LC lx)), NatRule (impI, imp X Y)) \{|base-tree|\}
```

```
abbreviation solution-tree :: ((form\ fset \times form) \times (prop\text{-}rule \times form)\ NatRule) tree where
  solution\text{-}tree \equiv Node (\{||\} \vdash ForallX (imp (Q x) (Q x)), NatRule (allI, ForallX (P x))) \{|imp\text{-}tree|\}
abbreviation s1 where s1 \equiv [(12, ([9], imp (Q x) (Q x)))]
abbreviation s2 where s2 \equiv [(10, ([], Q(LC lx))), (11, ([], Q(LC lx)))]
lemma fv-subst-s1[simp]: fv-subst s1 = {}
  \langle proof \rangle
lemma subst1-simps[simp]:
  subst\ s1\ (P\ (LC\ n)) = imp\ (Q\ (LC\ n))\ (Q\ (LC\ n))
  subst\ s1\ (ForallX\ (P\ x)) = ForallX\ (imp\ (Q\ x)\ (Q\ x))
  \langle proof \rangle
lemma subst2-simps[simp]:
   subst\ s2\ X = Q\ (LC\ lx)
   subst\ s2\ Y = Q\ (LC\ lx)
   subst\ s2\ (imp\ X\ Y) = imp\ (subst\ s2\ X)\ (subst\ s2\ Y)
  \langle proof \rangle
lemma substI1: ForallX (imp (Q x) (Q x)) = subst s1 (predicate.freshen 1 (ForallX (P x)))
 \langle proof \rangle
lemma subst12: imp(Q(LC lx))(Q(LC lx)) = subst s2(predicate.freshen 2(imp X Y))
declare subst.simps[simp del]
lemma task.solved
  \langle proof \rangle
abbreviation vertices where vertices \equiv \{ | \theta :: nat, 1, 2 | \}
fun nodeOf where
   nodeOf \ n = [Conclusion (ForallX (imp (Q x) (Q x))),
               Rule allI,
               Rule impI]! n
fun inst where
   inst \ n = [[], s1, s2] ! \ n
interpretation task: Vertex-Graph task.nodes task.inPorts task.outPorts vertices nodeOf\langle proof \rangle
abbreviation e1 :: (nat, form, nat) edge'
  where e1 \equiv ((1,Reg (Forall X (P x))), (0,plain-ant (Forall X (imp (Q x) (Q x)))))
abbreviation e2 :: (nat, form, nat) edge'
  where e2 \equiv ((2,Reg (imp X Y)), (1,allI-input))
abbreviation e3 :: (nat, form, nat) edge'
  where e3 \equiv ((2, Hyp \ X \ (impI-input)), \ (2, impI-input))
abbreviation task-edges :: (nat, form, nat) \ edge' \ set \ where \ task-edges \equiv \{e1, e2, e3\}
interpretation task: Scoped-Graph task.nodes task.inPorts task.outPorts vertices nodeOf task-edges task.hyps
  \langle proof \rangle
interpretation task: Instantiation
  task.inPorts
```

```
task.outPorts
  nodeOf
  task.hyps
  task.nodes
  task\text{-}edges
  vertices
  task.labelsIn
  task.labelsOut\\
  curry\ to\text{-}nat :: nat \Rightarrow var \Rightarrow var
  map-lc
  lc
  closed
  subst
  lc	ext{-}subst
  map-lc-subst
  Var \theta []
  id
  inst
\langle proof \rangle
Finally we can also show that there is a proof graph for this task.
{\bf interpretation}\ \textit{Well-Scoped-Graph}
  task.nodes
  task.inPorts
  task.outPorts\\
  vertices
  nodeOf
  task\text{-}edges
  task.hyps
\langle proof \rangle
lemma no-path-01[simp]: task.path 0 v pth \longleftrightarrow (pth = [] \land v = 0)
lemma no-path-12[simp]: \neg task.path 1 2 pth
  \langle proof \rangle
interpretation Acyclic-Graph
  task.nodes
  task.inPorts
  task.outPorts\\
  vertices
  nodeOf
  task\text{-}edges
  task.hyps
\langle proof \rangle
interpretation Saturated-Graph
  task.nodes
  task.inPorts\\
  task.outPorts
  vertices
  nodeOf
  task\text{-}edges
\langle proof \rangle
{\bf interpretation}\ {\it Pruned-Port-Graph}
```

task.nodes

```
task.inPorts
  task.outPorts
  vertices
  nodeOf
  task\text{-}edges
\langle proof \rangle
{\bf interpretation}\ \textit{Well-Shaped-Graph}
  task.nodes
  task.inPorts\\
  task.outPorts\\
  vertices
  nodeOf\ task-edges
  task.hyps
\langle proof \rangle
interpretation Solution
  task.inPorts\\
  task.outPorts
  nodeOf
  task.hyps
  task.nodes
  vertices
  task.labels In \\
  task.labelsOut\\
  curry\ to\text{-}nat::\ nat \Rightarrow var \Rightarrow var
  map-lc
  lc
  closed
  subst
  lc	ext{-}subst
  map\text{-}lc\text{-}subst
  Var \theta
  id
  inst
  task\text{-}edges
\langle proof \rangle
{\bf interpretation}\ {\it Proof-Graph}
  task.nodes
  task.inPorts\\
  task.outPorts
  vertices
  nodeOf
  task-edges
  task.hyps
  task.labelsIn
  task.labelsOut
  curry\ to\text{-}nat::\ nat \Rightarrow var \Rightarrow var
  map\text{-}lc
  lc
  closed
  subst
  lc	ext{-}subst
  map\mbox{-}lc\mbox{-}subst
  Var \theta
  id
```

```
inst
\langle \mathit{proof} \, \rangle
lemma path-20:
  assumes task.path 2 0 pth
  shows (1, allI-input) \in snd 'set pth
\langle proof \rangle
\mathbf{lemma} \ \mathit{scope-21} \colon \mathcal{2} \in \mathit{task.scope} \ (\mathit{1}, \ \mathit{allI-input})
interpretation Scoped-Proof-Graph
  curry \ to\text{-}nat :: nat \Rightarrow var \Rightarrow var
  map-lc
  lc
  closed
  subst
  lc	ext{-}subst
  map\text{-}lc\text{-}subst
  Var \theta []
  task. in Ports \\
  task.outPorts
  nodeOf
  task.hyps
  task.nodes
  vertices
  task.labels In \\
  task. labels Out \\
  id
  inst
  task\text{-}edges
  task.local\hbox{-}vars
\langle proof \rangle
{\bf interpretation} \  \, \textit{Tasked-Proof-Graph}
  curry\ to\text{-}nat :: nat \Rightarrow var \Rightarrow var
  map-lc
  lc
  closed
  subst
  lc	ext{-}subst
  map\text{-}lc\text{-}subst
  Var \theta []
  antecedent
  consequent
  prop-rules
  [ForallX\ (imp\ (Q\ x)\ (Q\ x))]
  vertices
  nodeOf
  task\text{-}edges
  id
  inst
\langle proof \rangle
```

 \mathbf{end}