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Abstract

Squaring the circle, doubling the cube and trisecting an angle, us-
ing a compass and straightedge alone, are classic unsolved problems
first posed by the ancient Greeks. All three problems were proved to
be impossible in the 19th century. The following document presents
the proof of the impossibility of solving the latter two problems using
Isabelle/HOL, following a proof by Carrega [Car81]. The proof uses
elementary methods: no Galois theory or field extensions. The set of
points constructible using a compass and straightedge is defined in-
ductively. Radical expressions, which involve only square roots and
arithmetic of rational numbers, are defined, and we find that all con-
structive points have radical coordinates. Finally, doubling the cube
and trisecting certain angles requires solving certain cubic equations
that can be proved to have no rational roots. The Isabelle proofs re-
quire a great many detailed calculations.
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1 Proving the impossibility of trisecting an angle
and doubling the cube

theory Impossible-Geometry
imports Complex-Main
begin

2 Formal Proof
2.1 Definition of the set of Points
datatype point = Point real real

definition points-def :
points = {M . ∃ x ∈ �. ∃ y ∈ �. (M = Point x y)}

primrec abscissa :: point => real
where abscissa: abscissa (Point x y) = x

primrec ordinate :: point => real
where ordinate: ordinate (Point x y) = y

lemma point-surj [simp]:
Point (abscissa M ) (ordinate M ) = M
〈proof 〉

lemma point-eqI [intro?]:
[[abscissa M = abscissa N ; ordinate M = ordinate N ]] =⇒ M = N
〈proof 〉

lemma point-eq-iff :
M = N ←→ abscissa M = abscissa N ∧ ordinate M = ordinate N
〈proof 〉

2.2 Subtraction

Datatype point has a structure of abelian group
instantiation point :: ab-group-add
begin

definition point-zero-def :
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0 = Point 0 0

definition point-one-def :
point-one = Point 1 0

definition point-add-def :
A + B = Point (abscissa A + abscissa B) (ordinate A + ordinate B)

definition point-minus-def :
− A = Point (− abscissa A) (− ordinate A)

definition point-diff-def :
A − (B::point) = A + − B

lemma Point-eq-0 [simp]:
Point xA yA = 0 ←→ (xA = 0 ∧ yA = 0 )
〈proof 〉

lemma point-abscissa-zero [simp]:
abscissa 0 = 0
〈proof 〉

lemma point-ordinate-zero [simp]:
ordinate 0 = 0
〈proof 〉

lemma point-add [simp]:
Point xA yA + Point xB yB = Point (xA + xB) (yA + yB)
〈proof 〉

lemma point-abscissa-add [simp]:
abscissa (A + B) = abscissa A + abscissa B
〈proof 〉

lemma point-ordinate-add [simp]:
ordinate (A + B) = ordinate A + ordinate B
〈proof 〉

lemma point-minus [simp]:
− (Point xA yA) = Point (− xA) (− yA)
〈proof 〉

lemma point-abscissa-minus [simp]:
abscissa (− A) = − abscissa (A)
〈proof 〉

lemma point-ordinate-minus [simp]:
ordinate (− A) = − ordinate (A)
〈proof 〉
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lemma point-diff [simp]:
Point xA yA − Point xB yB = Point (xA − xB) (yA − yB)
〈proof 〉

lemma point-abscissa-diff [simp]:
abscissa (A − B) = abscissa (A) − abscissa (B)
〈proof 〉

lemma point-ordinate-diff [simp]:
ordinate (A − B) = ordinate (A) − ordinate (B)
〈proof 〉

instance
〈proof 〉

end

2.3 Metric Space

We can also define a distance, hence point is also a metric space
instantiation point :: metric-space
begin

definition point-dist-def :
dist A B = sqrt ((abscissa (A − B))^2 + (ordinate (A − B))^2 )

definition
(uniformity :: (point × point) filter) = (INF e∈{0 <..}. principal {(x, y). dist x

y < e})

definition
open (S :: point set) = (∀ x∈S . ∀ F (x ′, y) in uniformity. x ′ = x −→ y ∈ S)

lemma point-dist [simp]:
dist (Point xA yA) (Point xB yB) = sqrt ((xA − xB)^2 + (yA − yB)^2 )
〈proof 〉

lemma real-sqrt-diff-squares-triangle-ineq:
fixes a b c d :: real
shows sqrt ((a − c)^2 + (b − d)^2 ) ≤ sqrt (a^2 + b^2 ) + sqrt (c^2 + d^2 )
〈proof 〉

instance
〈proof 〉
end
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2.4 Geometric Definitions

These geometric definitions will later be used to define constructible points

The distance between two points is defined with the distance of the metric
space point
definition distance-def :

distance A B = dist A B

parallel A B C D is true if the lines AB and CD are parallel. If not it is
false.
definition parallel-def :

parallel A B C D = ((abscissa A − abscissa B) ∗ (ordinate C − ordinate D) =
(ordinate A − ordinate B) ∗ (abscissa C − abscissa D))

Three points A B C are collinear if and only if the lines AB and AC are
parallel
definition collinear-def :

collinear A B C = parallel A B A C

The point M is the intersection of two lines AB and CD if and only if the
points A, M and B are collinear and the points C, M and D are also collinear
definition is-intersection-def :

is-intersection M A B C D = (collinear A M B ∧ collinear C M D)

2.5 Reals definable with square roots

The inductive set radical-sqrt defines the reals that can be defined with
square roots. If x is in the following set, then it depends only upon rational
expressions and square roots. For example, suppose x is of the form : x =

(
√
a+
√
b +

√
c+
√
d ∗ e+ f)/(

√
a +
√
b) + (a +

√
b)/
√
g, where a, b, c, d,

e, f and g are rationals. Then x is in radical-sqrt because it is only defined
with rationals and square roots of radicals.
inductive-set radical-sqrt :: real set

where
Rat: x ∈ � =⇒ x ∈ radical-sqrt
| Neg: x ∈ radical-sqrt =⇒ −x ∈ radical-sqrt
| Inverse: x ∈ radical-sqrt =⇒ x 6= 0 =⇒ 1/x ∈ radical-sqrt
| Plus: x ∈ radical-sqrt =⇒ y ∈ radical-sqrt =⇒ x+y ∈ radical-sqrt
| Times: x ∈ radical-sqrt =⇒ y ∈ radical-sqrt =⇒ x∗y ∈ radical-sqrt
| Sqrt: x ∈ radical-sqrt =⇒ x ≥ 0 =⇒ sqrt x ∈ radical-sqrt

Here, we list some rules that will be used to prove that a given real is in
radical-sqrt.

Given two reals in radical-sqrt x and y, the subtraction x − y is also in
radical-sqrt.
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lemma radical-sqrt-rule-subtraction:
x ∈ radical-sqrt =⇒ y ∈ radical-sqrt =⇒ x−y ∈ radical-sqrt
〈proof 〉

Given two reals in radical-sqrt x and y, and y 6= 0, the division x/y is also
in radical-sqrt.
lemma radical-sqrt-rule-division:
[[x ∈ radical-sqrt; y ∈ radical-sqrt; y 6= 0 ]] =⇒ x/y ∈ radical-sqrt
〈proof 〉

Given a positive real x in radical-sqrt, its square x2 is also in radical-sqrt.
lemma radical-sqrt-rule-power2 :

x ∈ radical-sqrt =⇒ x ≥ 0 =⇒ x^2 ∈ radical-sqrt
〈proof 〉

Given a positive real x in radical-sqrt, its cube x3 is also in radical-sqrt.
lemma radical-sqrt-rule-power3 :

x ∈ radical-sqrt =⇒ x ≥ 0 =⇒ x^3 ∈ radical-sqrt
〈proof 〉

2.6 Introduction of the datatype expr which represents rad-
ical expressions

An expression expr is either a rational constant: Const or the negation of an
expression or the inverse of an expression or the addition of two expressions
or the multiplication of two expressions or the square root of an expression.
datatype expr = Const rat | Negation expr | Inverse expr | Addition expr expr |
Multiplication expr expr | Sqrt expr

The function translation translates a given expression into its equivalent
real.
fun translation :: expr => real (‹(2{|-|})›)

where
translation (Const x) = of-rat x|
translation (Negation e) = − translation e|
translation (Inverse e) = (1 ::real) / translation e|
translation (Addition e1 e2 ) = translation e1 + translation e2 |
translation (Multiplication e1 e2 ) = translation e1 ∗ translation e2 |
translation (Sqrt e) = (if translation e < 0 then 0 else sqrt (translation e))

Define the set of all the radicals of a given expression. For example, suppose
expr is of the form : expr = Addition (Sqrt (Addition (Const a) Sqrt (Const
b))) (Sqrt (Addition (Const c) (Sqrt (Sqrt (Const d))))), where a, b, c and
d are rationals. This can be translated as follows: {|expr |} =

√
a+
√
b +√

c+
√√

d. Moreover, the set radicals of this expression is : {|Addition
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(Const a) (Sqrt (Const b)), Const b, Addition (Const c) (Sqrt (Sqrt (Const
d))), Sqrt (Const d), Const d|}.
fun radicals :: expr => expr set

where
radicals (Const x) = {}|
radicals (Negation e) = (radicals e)|
radicals (Inverse e) = (radicals e)|
radicals (Addition e1 e2 ) = ((radicals e1 ) ∪ (radicals e2 ))|
radicals (Multiplication e1 e2 ) = ((radicals e1 ) ∪ (radicals e2 ))|
radicals (Sqrt e) = (if {|e|} < 0 then radicals e else {e} ∪ (radicals e))

If r is in radicals of e then the set radical-sqrt of r is a subset (strictly
speaking) of the set radicals of e.
lemma radicals-expr-subset: r ∈ radicals e =⇒ radicals r ⊂ radicals e
〈proof 〉

If x is in radical-sqrt then there exists a radical expression e which translation
is x (it is important to notice that this expression is not necessarily unique).
lemma radical-sqrt-correct-expr :

x ∈ radical-sqrt =⇒ ∃ e. {|e|} = x
〈proof 〉

The order of an expression is the maximum number of radicals one over
another occurring in a given expression. Using the example above, sup-
pose expr is of the form : expr = Addition (Sqrt (Addition (Const a) Sqrt
(Const b))) (Sqrt (Addition (Const c) (Sqrt (Sqrt (Const d))))), where a,
b, c and d are rationals and which can be translated as follows: {|expr |}

=

√
a+
√
b+

√
c+

√√
d. The order of expr is max(2, 3) = 3.

fun order :: expr => nat
where
order (Const x) = 0 |
order (Negation e) = order e|
order (Inverse e) = order e|
order (Addition e1 e2 ) = max (order e1 ) (order e2 )|
order (Multiplication e1 e2 ) = max (order e1 ) (order e2 )|
order (Sqrt e) = 1 + order e

If an expression s is one of the radicals (or in radicals) of the expression r,
then its order is smaller (strictly speaking) then the order of r.
lemma in-radicals-smaller-order :

s ∈ radicals r =⇒ (order s) < (order r)
〈proof 〉

The following theorem is the converse of the previous lemma.
lemma in-radicals-smaller-order-contrap:
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(order s) ≥ (order r) =⇒ ¬ (s ∈ radicals r)
〈proof 〉

An expression r cannot be one of its own radicals.
lemma not-in-own-radicals:
¬ (r ∈ radicals r)
〈proof 〉

If an expression e is a radical expression and it has no radicals then its
translation is a rational.
lemma radicals-empty-rational: radicals e = {} =⇒ {|e|} ∈ �
〈proof 〉

A finite non-empty set of natural numbers has necessarily a maximum.
lemma finite-set-has-max:

finite (s:: nat set) =⇒ s 6= {} =⇒ ∃ k ∈ s. ∀ p ∈ s. p ≤ k
〈proof 〉

There is a finite number of radicals in an expression.
lemma finite-radicals: finite (radicals e)
〈proof 〉

We define here a new set corresponding to the orders of each element in the
set radicals of an expression expr. Using the example above, suppose expr
is of the form : expr = Addition (Sqrt (Addition (Const a) Sqrt (Const b)))
(Sqrt (Addition (Const c) (Sqrt (Sqrt (Const d))))), where a, b, c and d
are rationals and which can be translated as follows: {|expr |} =

√
a+
√
b+√

c+
√√

d. The set radicals of expr is {Addition (Const a) Sqrt (Const b),
Const b, Addition (Const c) (Sqrt (Sqrt (Const d))), Sqrt (Const d), Const
d}; therefore, the set order-radicals of this set is {1, 0, 2, 1, 0}.
fun order-radicals:: expr set => nat set

where order-radicals s = {y. ∃ x ∈ s. y = order x}

If the set of radicals of an expression e is not empty and is finite then the
set order-radicals of the set of radicals of e is not empty and is also finite.

The following lemma states that given an expression e, if the set order-radicals
of the set radicals e is not empty and is finite, then there exists a radical r
of e which is of highest order among the radicals of e.
lemma finite-order-radicals-has-max:
[[order-radicals (radicals e) 6= {};

finite (order-radicals (radicals e))]]
=⇒ ∃ r . r ∈ radicals e ∧ (∀ s∈radicals e. order s ≤ order r)
〈proof 〉
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This important lemma states that in an expression that has at least one
radical, we can find an upmost radical r which is not radical of any other
term of the expression e. It is also important to notice that this upmost
radical is not necessarily unique and is not the term of highest order of
the expression e. Using the example above, suppose e is of the form : e =
Addition (Sqrt (Addition (Const a) Sqrt (Const b))) (Sqrt (Addition (Const
c) (Sqrt (Sqrt (Const d))))), where a, b, c and d are rationals and which

can be translated as follows: {|e|} =
√
a+
√
b +

√
c+

√√
d. The possible

upmost radicals in this expression are Addition (Const a) (Sqrt (Const b))
or Addition (Const c) (Sqrt (Sqrt (Const d))).
lemma finite-order-radicals:

radicals e 6= {} =⇒ finite (radicals e) =⇒
order-radicals (radicals e) 6= {} ∧ finite (order-radicals (radicals e))
〈proof 〉

lemma upmost-radical-sqrt2 :
radicals e 6= {} =⇒
∃ r ∈ radicals e. ∀ s ∈ radicals e. r /∈ radicals s
〈proof 〉

The following 7 lemmas are used to prove the main lemma radical-sqrt-normal-form
which states that if an expression e has at least one radical then it can be
written in a normal form. This means that there exist three radical expres-
sions a, b and r such that {|e|} = {|a|} + {|b|} ∗ √{|r |} and the radicals of a
are radicals of e but are not r, and the same goes for the radicals of b and
r. It is important to notice that a, b and r are not unique and Sqrt r is not
necessarily the term of highest order.
lemma eq-sqrt-squared:
(x::real) ≥ 0 =⇒ (sqrt x) ∗ (sqrt x) = x
〈proof 〉

lemma radical-sqrt-normal-form-inverse:
assumes z ≥ 0 x 6= y ∗ sqrt z
shows
1 / (x + y ∗ sqrt z) =
x / (x ∗ x − y ∗ y ∗ z) − (y ∗ sqrt z) / (x ∗ x − y ∗ y ∗ z)

〈proof 〉

lemma radical-sqrt-normal-form-lemma:
fixes e::expr
assumes radicals e 6= {}
and ∀ s ∈ radicals e. r /∈ radicals s
and r ∈ radicals e
shows ∃ a b. 0 ≤ {|r |} ∧ {|e|} = {|a|} + {|b|} ∗ sqrt {|r |} &

radicals a ∪ radicals b ∪ radicals r ⊆ radicals e &
r /∈ radicals a ∪ radicals b
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(is ∃ a b. ?concl e a b)
〈proof 〉

This main lemma is essential for the remaining part of the proof.
theorem radical-sqrt-normal-form:

radicals e 6= {} =⇒
∃ r ∈ radicals e.
∃ a b. {|e|} = {|Addition a (Multiplication b (Sqrt r))|} ∧ {|r |} ≥ 0 ∧

radicals a ∪ radicals b ∪ radicals r ⊆ radicals e &
r /∈ radicals a ∪ radicals b ∪ radicals r

〈proof 〉

2.7 Important properties of the roots of a cubic equation

The following 7 lemmas are used to prove a main result about the properties
of the roots of a cubic equation (cubic-root-radical-sqrt-rational) which states
that assuming that a b and c are rationals and that x is a radical satisfying
x3 + ax2 + bx+ c = 0 then there exists a rational root. This lemma will be
used in the proof of the impossibility of trisection an angle and of duplicating
a cube.
lemma cubic-root-radical-sqrt-steplemma:

fixes P :: real set
assumes Nats [THEN subsetD, intro]: Nats ⊆ P
and Neg: ∀ x ∈ P. −x ∈ P
and Inv: ∀ x ∈ P. x 6= 0 −→ 1/x ∈ P
and Add: ∀ x ∈ P. ∀ y ∈ P. x+y ∈ P
and Mult: ∀ x ∈ P. ∀ y ∈ P. x∗y ∈ P
and a: a ∈ P and b: b ∈ P and c: c ∈ P
and eq0 : z^3 + a ∗ z^2 + b ∗ z + c = 0
and u: u ∈ P
and v: v ∈ P
and s: s ∗ s ∈ P
and z: z = u + v ∗ s
shows ∃w ∈ P. w^3 + a ∗ w^2 + b ∗ w + c = 0
〈proof 〉

lemma cubic-root-radical-sqrt-steplemma-sqrt:
assumes Nats [THEN subsetD, intro]: Nats ⊆ P
and ∀ x ∈ P. −x ∈ P
and ∀ x ∈ P. x 6= 0 −→ 1/x ∈ P
and ∀ x ∈ P. ∀ y ∈ P. x+y ∈ P
and ∀ x ∈ P. ∀ y ∈ P. x∗y ∈ P
and (a ∈ P) and b: (b ∈ P) and c: (c ∈ P)
and z^3 + a ∗ z^2 + b ∗ z + c = 0
and u ∈ P v ∈ P s ∈ P
and s ≥ 0
and z = u + v ∗ sqrt s
shows ∃w ∈ P. w^3 + a ∗ w^2 + b ∗ w + c = 0
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〈proof 〉

lemma cubic-root-radical-sqrt-lemma:
fixes e::expr
assumes a: a ∈ � and b: b ∈ � and c: c ∈ �
and notEmpty: radicals e 6= {}
and eq0 : {|e|}^ 3 + a ∗ {|e|}^2 + b ∗ {|e|} + c = 0
shows ∃ e1 . radicals e1 ⊂ radicals e ∧ ({|e1 |}^3 + a ∗ {|e1 |}^2 + b ∗ {|e1 |} + c

= 0 )
〈proof 〉

lemma cubic-root-radical-sqrt:
assumes abc: a ∈ � b ∈ � c ∈ �
shows card (radicals e) = n =⇒ {|e|}^3 + a ∗ {|e|}^2 + b ∗ {|e|} + c = 0 =⇒

∃ x ∈ �. x^3 + a ∗ x^2 + b ∗ x + c = 0
〈proof 〉

Now we can prove the final result about the properties of the roots of a cubic
equation.
theorem cubic-root-radical-sqrt-rational:

assumes a: a ∈ � and b: b ∈ � and c: c ∈ �
and x: x ∈ radical-sqrt
and x-eqn: x^3 + a ∗ x^2 + b ∗ x + c = 0
shows c: ∃ x ∈ �. x^3 + a ∗ x^2 + b ∗ x + c = 0
〈proof 〉

2.8 Important properties of radicals
lemma sqrt-roots:

y^2=x =⇒ x≥0 ∧ (sqrt (x) = y | sqrt (x) = −y)
〈proof 〉

lemma radical-sqrt-linear-equation:
assumes a ∈ radical-sqrt b ∈ radical-sqrt
and ¬ (a = 0 ∧ b = 0 )
and a ∗ x + b = 0
shows x ∈ radical-sqrt
〈proof 〉

lemma radical-sqrt-simultaneous-linear-equation:
assumes a ∈ radical-sqrt
and b ∈ radical-sqrt
and c ∈ radical-sqrt
and d ∈ radical-sqrt
and e ∈ radical-sqrt
and f ∈ radical-sqrt
and NotNull: ¬ (a∗e − b∗d =0 ∧ a∗f − c∗d = 0 ∧ e∗c = b∗f )
and eq: a∗x + b∗y = c d∗x + e∗y = f
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shows x ∈ radical-sqrt ∧ y ∈ radical-sqrt
〈proof 〉

lemma radical-sqrt-quadratic-equation:
assumes a ∈ radical-sqrt

and b ∈ radical-sqrt
and c ∈ radical-sqrt
and eq0 : a∗x^2+b∗x+c = 0
and NotNull: ¬ (a = 0 ∧ b = 0 ∧ c = 0 )

shows x ∈ radical-sqrt
〈proof 〉

lemma radical-sqrt-simultaneous-linear-quadratic:
assumes a ∈ radical-sqrt

and b ∈ radical-sqrt
and c ∈ radical-sqrt
and d ∈ radical-sqrt
and e ∈ radical-sqrt
and f ∈ radical-sqrt
and NotNull: ¬(d=0 ∧ e=0 ∧ f=0 )
and eq: (x−a)^2 + (y−b)^2 = cd∗x+e∗y = f

shows x ∈ radical-sqrt ∧ y ∈ radical-sqrt
〈proof 〉

lemma radical-sqrt-simultaneous-quadratic-quadratic:
assumes a ∈ radical-sqrt

and b ∈ radical-sqrt
and c ∈ radical-sqrt
and d ∈ radical-sqrt
and e ∈ radical-sqrt
and f ∈ radical-sqrt
and NotEqual: ¬ (a = d ∧ b = e ∧ c = f )
and eq: (x − a)^2 + (y − b)^2 = c (x − d)^2 + (y − e)^2 = f

shows x ∈ radical-sqrt ∧ y ∈ radical-sqrt
〈proof 〉

2.9 Important properties of geometrical points which coor-
dinates are radicals

lemma radical-sqrt-line-line-intersection:
assumes absA: (abscissa (A)) ∈ radical-sqrt

and ordA: (ordinate A) ∈ radical-sqrt
and absB: (abscissa B) ∈ radical-sqrt
and ordB: (ordinate B) ∈ radical-sqrt
and absC : (abscissa C ) ∈ radical-sqrt
and ordC : (ordinate C ) ∈ radical-sqrt
and absD: (abscissa D) ∈ radical-sqrt
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and ordD: (ordinate D) ∈ radical-sqrt
and notParallel: ¬ (parallel A B C D)
and isIntersec: is-intersection X A B C D

shows (abscissa X) ∈ radical-sqrt ∧ (ordinate X) ∈ radical-sqrt
〈proof 〉

lemma radical-sqrt-line-circle-intersection:
assumes absA: (abscissa A) ∈ radical-sqrt and ordA: (ordinate A) ∈ radical-sqrt

and absB: (abscissa B) ∈ radical-sqrt and ordB: (ordinate B) ∈ radical-sqrt
and absC : (abscissa C ) ∈ radical-sqrt and ordC : (ordinate C ) ∈ radical-sqrt
and absD: (abscissa D) ∈ radical-sqrt and ordD: (ordinate D) ∈ radical-sqrt
and absE : (abscissa E) ∈ radical-sqrt and ordE : (ordinate E) ∈ radical-sqrt
and notEqual: A 6= B
and colin: collinear A X B
and eqDist: (distance C X = distance D E)

shows (abscissa X) ∈ radical-sqrt ∧ (ordinate X) ∈ radical-sqrt
〈proof 〉

lemma radical-sqrt-circle-circle-intersection:
assumes absA: (abscissa A) ∈ radical-sqrt and ordA: (ordinate A) ∈ radical-sqrt

and absB: (abscissa B) ∈ radical-sqrt and ordB: (ordinate B) ∈ radical-sqrt
and absC : (abscissa C ) ∈ radical-sqrt and ordC : (ordinate C ) ∈ radical-sqrt
and absD: (abscissa D) ∈ radical-sqrt and ordD: (ordinate D) ∈ radical-sqrt
and absE : (abscissa E) ∈ radical-sqrt and ordE : (ordinate E) ∈ radical-sqrt
and absF : (abscissa F) ∈ radical-sqrt and ordF : (ordinate F) ∈ radical-sqrt
and eqDist0 : distance A X = distance B C
and eqDist1 : distance D X = distance E F
and notEqual: ¬ (A = D ∧ distance B C = distance E F)

shows (abscissa X) ∈ radical-sqrt ∧ (ordinate X) ∈ radical-sqrt
〈proof 〉

2.10 Definition of the set of contructible points
inductive-set constructible :: point set

where
(M ∈ points ∧ (abscissa M ) ∈ � ∧ (ordinate M ) ∈ �) =⇒ M ∈ constructible|
(A ∈ constructible ∧ B ∈ constructible ∧ C ∈ constructible ∧ D ∈ constructible
∧ ¬ parallel A B C D ∧ is-intersection M A B C D) =⇒ M ∈ constructible|
(A ∈ constructible ∧ B ∈ constructible ∧ C ∈ constructible ∧ D ∈ constructible
∧ E ∈ constructible ∧ ¬ A = B ∧ collinear A M B ∧ distance C M = distance D
E) =⇒ M ∈ constructible|
(A ∈ constructible ∧ B ∈ constructible ∧ C ∈ constructible ∧ D ∈ constructible
∧ E ∈ constructible ∧ F ∈ constructible ∧ ¬ (A = D ∧ distance B C = distance
E F) ∧ distance A M = distance B C ∧ distance D M = distance E F) =⇒ M ∈
constructible
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2.11 An important property about constructible points: their
coordinates are radicals

lemma constructible-radical-sqrt:
assumes M ∈ constructible
shows (abscissa M ) ∈ radical-sqrt ∧ (ordinate M ) ∈ radical-sqrt
〈proof 〉

2.12 Proving the impossibility of duplicating the cube
lemma impossibility-of-doubling-the-cube-lemma:

assumes x: x ∈ radical-sqrt
and x-eqn: x^3 = 2
shows False
〈proof 〉

theorem impossibility-of-doubling-the-cube:
x^3 = 2 =⇒ (Point x 0 ) /∈ constructible
〈proof 〉

2.13 Proving the impossibility of trisecting an angle
lemma impossibility-of-trisecting-pi-over-3-lemma:

assumes x: x ∈ radical-sqrt
and x-eqn: x^3 − 3 ∗ x − 1 = 0
shows False
〈proof 〉

theorem impossibility-of-trisecting-angle-pi-over-3 :
Point (cos (pi / 9 )) 0 /∈ constructible
〈proof 〉

end
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