
Soundness and Completeness of Implicational Logic

Asta Halkjær From Jørgen Villadsen

March 17, 2025

Contents
1 Formalization of the Bernays-Tarski Axiom System for Clas-

sical Implicational Logic 1
1.1 Syntax, Semantics and Axiom System . . . . . . . . . . . . . 1
1.2 Soundness and Derived Formulas . . . . . . . . . . . . . . . . 2
1.3 Completeness and Main Theorem . . . . . . . . . . . . . . . . 2
1.4 Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Formalization of ukasiewicz’s Axiom System from 1924 for
Classical Propositional Logic 6
2.1 Syntax, Semantics and Axiom System . . . . . . . . . . . . . 6
2.2 Soundness and Derived Formulas . . . . . . . . . . . . . . . . 6
2.3 Completeness and Main Theorem . . . . . . . . . . . . . . . . 9
2.4 Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Abstract
This work is a formalization of soundness and completeness of the

Bernays-Tarski axiom system for classical implicational logic. The
completeness proof is constructive following the approach by László
Kalmár, Elliott Mendelson and others. The result can be extended
to full classical propositional logic by uncommenting a few lines for
falsehood.

1 Formalization of the Bernays-Tarski Axiom Sys-
tem for Classical Implicational Logic

1.1 Syntax, Semantics and Axiom System
theory Implicational-Logic imports Main begin

datatype form =

Pro nat (‹·›) |
Imp form form (infixr ‹→› 55 )
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primrec semantics (infix ‹|=› 50 ) where

‹I |= · n = I n› |
‹I |= p → q = (I |= p −→ I |= q)›

inductive Ax (‹` -› 50 ) where

Simp: ‹` p → q → p› |
Tran: ‹` (p → q) → (q → r) → p → r› |
MP: ‹` p → q =⇒ ` p =⇒ ` q› |
PR: ‹` (p → q) → p =⇒ ` p›

1.2 Soundness and Derived Formulas
theorem soundness: ‹` p =⇒ I |= p›

by (induct p rule: Ax.induct) auto

lemma Swap: ‹` (p → q → r) → q → p → r›
proof −

have ‹` q → (q → r) → r›
using MP PR Simp Tran by metis

then show ?thesis
using MP Tran by meson

qed

lemma Peirce: ‹` ((p → q) → p) → p›
using MP PR Simp Swap Tran by meson

lemma Hilbert: ‹` (p → p → q) → p → q›
using MP MP Tran Tran Peirce .

lemma Id: ‹` p → p›
using MP Hilbert Simp .

lemma Tran ′: ‹` (q → r) → (p → q) → p → r›
using MP Swap Tran .

lemma Frege: ‹` (p → q → r) → (p → q) → p → r›
using MP MP Tran MP MP Tran Swap Tran ′ MP Tran ′ Hilbert .

lemma Imp1 : ‹` (q → s) → ((q → r) → s) → s›
using MP Peirce Tran Tran ′ by meson

lemma Imp2 : ‹` ((r → s) → s) → ((q → r) → s) → s›
using MP Tran MP Tran Simp .

lemma Imp3 : ‹` ((q → s) → s) → (r → s) → (q → r) → s›
using MP Swap Tran by meson
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1.3 Completeness and Main Theorem
fun pros where

‹pros (p → q) = remdups (pros p @ pros q)› |
‹pros p = (case p of (· n) ⇒ [n] | - ⇒ [])›

lemma distinct-pros: ‹distinct (pros p)›
by (induct p) simp-all

primrec imply (infixr ‹ › 56 ) where
‹[]  q = q› |
‹p # ps  q = p → ps  q›

lemma imply-append: ‹ps @ qs  r = ps  qs  r›
by (induct ps) simp-all

abbreviation Ax-assms (infix ‹`› 50 ) where ‹ps ` q ≡ ` ps  q›

lemma imply-Cons: ‹ps ` q =⇒ p # ps ` q›
proof −

assume ‹ps ` q›
with MP Simp have ‹` p → ps  q› .
then show ?thesis

by simp
qed

lemma imply-head: ‹p # ps ` p›
by (induct ps) (use MP Frege Simp imply.simps in metis)+

lemma imply-mem: ‹p ∈ set ps =⇒ ps ` p›
by (induct ps) (use imply-Cons imply-head in auto)

lemma imply-MP: ‹` ps  (p → q) → ps  p → ps  q›
proof (induct ps)

case (Cons r ps)
then have ‹` (r → ps  (p → q)) → (r → ps  p) → r → ps  q›

using MP Frege Simp by meson
then show ?case

by simp
qed (auto intro: Id)

lemma MP ′: ‹ps ` p → q =⇒ ps ` p =⇒ ps ` q›
using MP imply-MP by metis

lemma imply-swap-append: ‹ps @ qs ` r =⇒ qs @ ps ` r›
by (induct qs arbitrary: ps) (simp, metis MP ′ imply-append imply-Cons im-

ply-head imply.simps(2 ))

lemma imply-deduct: ‹p # ps ` q =⇒ ps ` p → q›
using imply-append imply-swap-append imply.simps by metis
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lemma add-imply [simp]: ‹` p =⇒ ps ` p›
proof −

note MP
moreover have ‹` p → ps  p›

using imply-head by simp
moreover assume ‹` p›
ultimately show ?thesis .

qed

lemma imply-weaken: ‹ps ` p =⇒ set ps ⊆ set ps ′ =⇒ ps ′ ` p›
by (induct ps arbitrary: p) (simp, metis MP ′ imply-deduct imply-mem insert-subset

list.set(2 ))

abbreviation ‹lift t s p ≡ if t then (p → s) → s else p → s›

abbreviation ‹lifts I s ≡ map (λn. lift (I n) s (· n))›

lemma lifts-weaken: ‹lifts I s l ` p =⇒ set l ⊆ set l ′ =⇒ lifts I s l ′ ` p›
using imply-weaken by (metis (no-types, lifting) image-mono set-map)

lemma lifts-pros-lift: ‹lifts I s (pros p) ` lift (I |= p) s p›
proof (induct p)

case (Imp q r)
consider ‹¬ I |= q› | ‹I |= r› | ‹I |= q› ‹¬ I |= r›

by blast
then show ?case
proof cases

case 1
then have ‹lifts I s (pros (q → r)) ` q → s›

using Imp(1 ) lifts-weaken[where l ′ = ‹pros (q → r)›] by simp
then have ‹lifts I s (pros (q → r)) ` ((q → r) → s) → s›

using Imp1 MP ′ add-imply by blast
with 1 show ?thesis

by simp
next

case 2
then have ‹lifts I s (pros (q → r)) ` (r → s) → s›

using Imp(2 ) lifts-weaken[where l ′ = ‹pros (q → r)›] by simp
then have ‹lifts I s (pros (q → r)) ` ((q → r) → s) → s›

using Imp2 MP ′ add-imply by blast
with 2 show ?thesis

by simp
next

case 3
then have ‹lifts I s (pros (q → r)) ` (q → s) → s› ‹lifts I s (pros (q → r)) `

r → s›
using Imp lifts-weaken[where l ′ = ‹pros (q → r)›] by simp-all

then have ‹lifts I s (pros (q → r)) ` (q → r) → s›
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using Imp3 MP ′ add-imply by blast
with 3 show ?thesis

by simp
qed

qed (auto intro: Id Ax .intros)

lemma lifts-pros: ‹I |= p =⇒ lifts I p (pros p) ` p›
proof −

assume ‹I |= p›
then have ‹lifts I p (pros p) ` (p → p) → p›

using lifts-pros-lift[of I p p] by simp
then show ?thesis

using Id MP ′ add-imply by blast
qed

theorem completeness: ‹∀ I . I |= p =⇒ ` p›
proof −

let ?A = ‹λl I . lifts I p l ` p›
let ?B = ‹λl. ∀ I . ?A l I ∧ distinct l›
assume ‹∀ I . I |= p›
moreover have ‹?B l =⇒ (

∧
n l. ?B (n # l) =⇒ ?B l) =⇒ ?B []› for l

by (induct l) blast+
moreover have ‹?B (n # l) =⇒ ?B l› for n l
proof −

assume ∗: ‹?B (n # l)›
show ‹?B l›
proof

fix I
from ∗ have ‹?A (n # l) (I (n := True))› ‹?A (n # l) (I (n := False))›

by blast+
moreover from ∗ have ‹∀m ∈ set l. ∀ t. (I (n := t)) m = I m›

by simp
ultimately have ‹((· n → p) → p) # lifts I p l ` p› ‹(· n → p) # lifts I p l

` p›
by (simp-all cong: map-cong)

then have ‹?A l I ›
using MP ′ imply-deduct by blast

moreover from ∗ have ‹distinct (n # l)›
by blast

ultimately show ‹?A l I ∧ distinct l›
by simp

qed
qed
ultimately have ‹?B []›

using lifts-pros distinct-pros by blast
then show ?thesis

by simp
qed
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theorem main: ‹(` p) = (∀ I . I |= p)›
using soundness completeness by blast

1.4 Reference

Wikipedia https://en.wikipedia.org/wiki/Implicational_propositional_calculus
July 2022
end

2 Formalization of ukasiewicz’s Axiom System from
1924 for Classical Propositional Logic

2.1 Syntax, Semantics and Axiom System
theory Implicational-Logic-Appendix imports Main begin

datatype form =
Pro nat (‹·›) |
Neg form (‹∼›) |
Imp form form (infixr ‹→› 55 )

primrec semantics (infix ‹|=› 50 ) where
‹I |= · n = I n› |
‹I |= ∼ p = (¬ I |= p)› |
‹I |= p → q = (I |= p −→ I |= q)›

inductive Ax (‹` -› 50 ) where
01 : ‹` (p → q) → (q → r) → p → r› |
02 : ‹` (∼ p → p) → p› |
03 : ‹` p → ∼ p → q› |
MP: ‹` p → q =⇒ ` p =⇒ ` q›

2.2 Soundness and Derived Formulas
theorem soundness: ‹` p =⇒ I |= p›

by (induct p rule: Ax.induct) simp-all

lemma 04 : ‹` (((q → r) → p → r) → s) → (p → q) → s›
using MP 01 01 .

lemma 05 : ‹` (p → q → r) → (s → q) → p → s → r›
using MP 04 04 .

lemma 06 : ‹` (p → q) → ((p → r) → s) → (q → r) → s›
using MP 04 01 .

lemma 07 : ‹` (t → (p → r) → s) → (p → q) → t → (q → r) → s›
using MP 05 06 .
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lemma 09 : ‹` ((∼ p → q) → r) → p → r›
using MP 01 03 .

lemma 10 : ‹` p → ((∼ p → p) → p) → (q → p) → p›
using MP 09 06 .

lemma 11 : ‹` (q → (∼ p → p) → p) → (∼ p → p) → p›
using MP MP 10 02 02 .

lemma 12 : ‹` t → (∼ p → p) → p›
using MP 09 11 .

lemma 13 : ‹` (∼ p → q) → t → (q → p) → p›
using MP 07 12 .

lemma 14 : ‹` ((t → (q → p) → p) → r) → (∼ p → q) → r›
using MP 01 13 .

lemma 15 : ‹` (∼ p → q) → (q → p) → p›
using MP 14 02 .

lemma 16 : ‹` p → p›
using MP 09 02 .

lemma 17 : ‹` p → (q → p) → p›
using MP 09 15 .

lemma 18 : ‹` q → p → q›
using MP MP 05 17 03 .

lemma 19 : ‹` ((p → q) → r) → q → r›
using MP 01 18 .

lemma 20 : ‹` p → (p → q) → q›
using MP 19 15 .

lemma 21 : ‹` (p → q → r) → q → p → r›
using MP 05 20 .

lemma 22 : ‹` (q → r) → (p → q) → p → r›
using MP 21 01 .

lemma 23 : ‹` ((q → p → r) → s) → (p → q → r) → s›
using MP 01 21 .

lemma 24 : ‹` ((p → q) → p) → p›
using MP MP 23 15 03 .
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lemma 25 : ‹` ((p → r) → s) → (p → q) → (q → r) → s›
using MP 21 06 .

lemma 26 : ‹` ((p → q) → r) → (r → p) → p›
using MP 25 24 .

lemma 28 : ‹` (((r → p) → p) → s) → ((p → q) → r) → s›
using MP 01 26 .

lemma 29 : ‹` ((p → q) → r) → (p → r) → r›
using MP 28 26 .

lemma 31 : ‹` (p → s) → ((p → q) → r) → (s → r) → r›
using MP 07 29 .

lemma 32 : ‹` ((p → q) → r) → (p → s) → (s → r) → r›
using MP 21 31 .

lemma 33 : ‹` (p → s) → (s → q → p → r) → q → p → r›
using MP 32 18 .

lemma 34 : ‹` (s → q → p → r) → (p → s) → q → p → r›
using MP 21 33 .

lemma 35 : ‹` (p → q → r) → (p → q) → p → r›
using MP 34 22 .

lemma 36 : ‹` ∼ p → p → q›
using MP 21 03 .

lemmas
Tran = 01 and
Clavius = 02 and
Expl = 03 and
Frege ′ = 05 and
Clavius ′ = 15 and
Id = 16 and
Simp = 18 and
Swap = 21 and
Tran ′ = 22 and
Peirce = 24 and
Frege = 35 and
Expl ′ = 36

lemma Neg1 : ‹` (q → s) → (∼ q → s) → s›
using MP Clavius ′ Expl ′ Frege ′ Swap by meson

lemma Neg2 : ‹` ((q → s) → s) → ∼ q → s›
using MP Tran MP Swap Expl .
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lemma Imp1 : ‹` (q → s) → ((q → r) → s) → s›
using MP Peirce Tran Tran ′ by meson

lemma Imp2 : ‹` ((r → s) → s) → ((q → r) → s) → s›
using MP Tran MP Tran Simp .

lemma Imp3 : ‹` ((q → s) → s) → (r → s) → (q → r) → s›
using MP Swap Tran by meson

2.3 Completeness and Main Theorem
primrec pros where

‹pros (· n) = [n]› |
‹pros (∼ p) = pros p› |
‹pros (p → q) = remdups (pros p @ pros q)›

lemma distinct-pros: ‹distinct (pros p)›
by (induct p) simp-all

primrec imply (infixr ‹ › 56 ) where
‹[]  q = q› |
‹p # ps  q = p → ps  q›

lemma imply-append: ‹ps @ qs  r = ps  qs  r›
by (induct ps) simp-all

abbreviation Ax-assms (infix ‹`› 50 ) where ‹ps ` q ≡ ` ps  q›

lemma imply-Cons: ‹ps ` q =⇒ p # ps ` q›
proof −

assume ‹ps ` q›
with MP Simp have ‹` p → ps  q› .
then show ?thesis

by simp
qed

lemma imply-head: ‹p # ps ` p›
by (induct ps) (use MP Frege Simp imply.simps in metis)+

lemma imply-mem: ‹p ∈ set ps =⇒ ps ` p›
by (induct ps) (use imply-Cons imply-head in auto)

lemma imply-MP: ‹` ps  (p → q) → ps  p → ps  q›
proof (induct ps)

case (Cons r ps)
then have ‹` (r → ps  (p → q)) → (r → ps  p) → r → ps  q›

using MP Frege Simp by meson
then show ?case
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by simp
qed (auto intro: Id)

lemma MP ′: ‹ps ` p → q =⇒ ps ` p =⇒ ps ` q›
using MP imply-MP by metis

lemma imply-swap-append: ‹ps @ qs ` r =⇒ qs @ ps ` r›
by (induct qs arbitrary: ps) (simp, metis MP ′ imply-append imply-Cons im-

ply-head imply.simps(2 ))

lemma imply-deduct: ‹p # ps ` q =⇒ ps ` p → q›
using imply-append imply-swap-append imply.simps by metis

lemma add-imply [simp]: ‹` p =⇒ ps ` p›
proof −

note MP
moreover have ‹` p → ps  p›

using imply-head by simp
moreover assume ‹` p›
ultimately show ?thesis .

qed

lemma imply-weaken: ‹ps ` p =⇒ set ps ⊆ set ps ′ =⇒ ps ′ ` p›
by (induct ps arbitrary: p) (simp, metis MP ′ imply-deduct imply-mem insert-subset

list.set(2 ))

abbreviation ‹lift t s p ≡ if t then (p → s) → s else p → s›

abbreviation ‹lifts I s ≡ map (λn. lift (I n) s (· n))›

lemma lifts-weaken: ‹lifts I s l ` p =⇒ set l ⊆ set l ′ =⇒ lifts I s l ′ ` p›
using imply-weaken by (metis (no-types, lifting) image-mono set-map)

lemma lifts-pros-lift: ‹lifts I s (pros p) ` lift (I |= p) s p›
proof (induct p)

case (Neg q)
consider ‹¬ I |= q› | ‹I |= q›

by blast
then show ?case
proof cases

case 1
then have ‹lifts I s (pros (∼ q)) ` q → s›

using Neg by simp
then have ‹lifts I s (pros (∼ q)) ` (∼ q → s) → s›

using MP ′ Neg1 add-imply by blast
with 1 show ?thesis

by simp
next

case 2
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then have ‹lifts I s (pros (∼ q)) ` (q → s) → s›
using Neg by simp

then have ‹lifts I s (pros (∼ q)) ` ∼ q → s›
using MP ′ Neg2 add-imply by blast

with 2 show ?thesis
by simp

qed
next

case (Imp q r)
consider ‹¬ I |= q› | ‹I |= r› | ‹I |= q› ‹¬ I |= r›

by blast
then show ?case
proof cases

case 1
then have ‹lifts I s (pros (q → r)) ` q → s›

using Imp(1 ) lifts-weaken[where l ′ = ‹pros (q → r)›] by simp
then have ‹lifts I s (pros (q → r)) ` ((q → r) → s) → s›

using Imp1 MP ′ add-imply by blast
with 1 show ?thesis

by simp
next

case 2
then have ‹lifts I s (pros (q → r)) ` (r → s) → s›

using Imp(2 ) lifts-weaken[where l ′ = ‹pros (q → r)›] by simp
then have ‹lifts I s (pros (q → r)) ` ((q → r) → s) → s›

using Imp2 MP ′ add-imply by blast
with 2 show ?thesis

by simp
next

case 3
then have ‹lifts I s (pros (q → r)) ` (q → s) → s› ‹lifts I s (pros (q → r)) `

r → s›
using Imp lifts-weaken[where l ′ = ‹pros (q → r)›] by simp-all

then have ‹lifts I s (pros (q → r)) ` (q → r) → s›
using Imp3 MP ′ add-imply by blast

with 3 show ?thesis
by simp

qed
qed (auto intro: Id)

lemma lifts-pros: ‹I |= p =⇒ lifts I p (pros p) ` p›
proof −

assume ‹I |= p›
then have ‹lifts I p (pros p) ` (p → p) → p›

using lifts-pros-lift[of I p p] by simp
then show ?thesis

using Id MP ′ add-imply by blast
qed
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theorem completeness: ‹∀ I . I |= p =⇒ ` p›
proof −

let ?A = ‹λl I . lifts I p l ` p›
let ?B = ‹λl. ∀ I . ?A l I ∧ distinct l›
assume ‹∀ I . I |= p›
moreover have ‹?B l =⇒ (

∧
n l. ?B (n # l) =⇒ ?B l) =⇒ ?B []› for l

by (induct l) blast+
moreover have ‹?B (n # l) =⇒ ?B l› for n l
proof −

assume ∗: ‹?B (n # l)›
show ‹?B l›
proof

fix I
from ∗ have ‹?A (n # l) (I (n := True))› ‹?A (n # l) (I (n := False))›

by blast+
moreover from ∗ have ‹∀m ∈ set l. ∀ t. (I (n := t)) m = I m›

by simp
ultimately have ‹((· n → p) → p) # lifts I p l ` p› ‹(· n → p) # lifts I p l

` p›
by (simp-all cong: map-cong)

then have ‹?A l I ›
using MP ′ imply-deduct by blast

moreover from ∗ have ‹distinct (n # l)›
by blast

ultimately show ‹?A l I ∧ distinct l›
by simp

qed
qed
ultimately have ‹?B []›

using lifts-pros distinct-pros by blast
then show ?thesis

by simp
qed

theorem main: ‹(` p) = (∀ I . I |= p)›
using soundness completeness by blast

2.4 Reference

Numbered lemmas are from Jan ukasiewicz: Elements of Mathematical Logic
(English Tr. 1963)
end
theory Implicational-Logic-Sequent-Calculus imports Main begin

datatype form =
Pro nat (‹·›) |
Imp form form (infixr ‹→› 100 )

primrec semantics (infix ‹|=› 50 ) where
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‹I |= ·n = I n› |
‹I |= p → q = (I |= p −→ I |= q)›

abbreviation sc (‹[[-]]›) where ‹[[I ]] X Y ≡ (∀ p ∈ set X . I |= p) −→ (∃ q ∈ set
Y . I |= q)›

inductive SC (infix ‹>>› 50 ) where
Imp-L: ‹p → q # X >> Y › if ‹X >> p # Y › and ‹q # X >> Y › |
Imp-R: ‹X >> p → q # Y › if ‹p # X >> q # Y › |
Set-L: ‹X ′ >> Y › if ‹X >> Y › and ‹set X ′ = set X› |
Set-R: ‹X >> Y ′› if ‹X >> Y › and ‹set Y ′ = set Y › |
Basic: ‹p # - >> p # -›

function mp where
‹mp A B (p → q # C ) [] = (mp A B C [p] ∧ mp A B (q # C ) [])› |
‹mp A B C (p → q # D) = mp A B (p # C ) (q # D)› |
‹mp A B [] [] = (set A ∩ set B 6= {})› |
‹mp A B (·n # C ) [] = mp (n # A) B C []› |
‹mp A B C (·n # D) = mp A (n # B) C D›
by pat-completeness simp-all

termination
by (relation ‹measure (λ(-, -, C , D). 2 ∗ (

∑
p ← C @ D. size p) + size (C @

D))›) simp-all

lemma main: ‹(∀ I . [[I ]] (map · A @ C ) (map · B @ D)) ←→ mp A B C D›
by (induct rule: mp.induct) (auto 5 2 )

definition prover (‹`›) where ‹` p ≡ mp [] [] [] [p]›

theorem prover-correct: ‹` p ←→ (∀ I . I |= p)›
unfolding prover-def by (simp flip: main)

export-code ` in SML

lemma MP: ‹mp A B C D =⇒ set X ⊇ set (map · A @ C ) =⇒ set Y ⊇ set (map
· B @ D) =⇒ X >> Y ›
proof (induct A B C D arbitrary: X Y rule: mp.induct[case-names Imp-L Imp-R
Basic])

case (Imp-L A B p q C )
have

‹set (map · A @ C ) ⊆ set X›
‹set (map · B) ⊆ set Y ›
using Imp-L(4 ,5 ) by auto

moreover from this have
‹set (map · A @ C ) ⊆ set (q # X)›
‹set (map · B) ⊆ set (p # Y )›
by auto

ultimately have ‹p → q # X >> Y ›
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using Imp-L(1−3 ) SC .Imp-L by simp
then show ?case

using Imp-L(4 ) Set-L by fastforce
next

case (Imp-R A B C p q D)
have

‹set (map · A @ C ) ⊆ set (p # X)›
‹set (map · B @ D) ⊆ set (q # Y )›
using Imp-R(3 ,4 ) by auto

then have ‹X >> p → q # Y ›
using Imp-R(1 ,2 ) SC .Imp-R by simp

then show ?case
using Imp-R(4 ) Set-R by fastforce

next
case (Basic A B)
obtain n where

‹n ∈ set A›
‹n ∈ set B›
using Basic(1 ) by auto

then have
‹set (·n # X) = set X›
‹set (·n # Y ) = set Y ›
using Basic(2 ,3 ) by auto

then show ?case
using Set-L Set-R SC .Basic by metis

qed simp-all

theorem OK : ‹(∀ I . [[I ]] X Y ) ←→ X >> Y ›
by (rule, use MP main[of ‹[]› - ‹[]› -] in simp, induct rule: SC .induct) auto

corollary ‹[] >> [p] ←→ (∀ I . I |= p)›
using OK by force

proposition ‹[] >> [p → p]›
proof −

from Imp-R have ?thesis if ‹[p] >> [p]›
using that by force

with Basic show ?thesis
by force

qed

proposition ‹[] >> [p → (p → q) → q]›
proof −

from Imp-R have ?thesis if ‹[p] >> [(p → q) → q]›
using that by force

with Imp-R have ?thesis if ‹[p → q, p] >> [q]›
using that by force

with Imp-L have ?thesis if ‹[p] >> [p, q]› and ‹[q, p] >> [q]›
using that by force

14



with Basic show ?thesis
by force

qed

proposition ‹[] >> [p → q → q → p]›
proof −

from Imp-R have ?thesis if ‹[p] >> [q → q → p]›
using that by force

with Imp-R have ?thesis if ‹[q, p] >> [q → p]›
using that by force

with Imp-R have ?thesis if ‹[q, q, p] >> [p]›
using that by force

with Set-L have ?thesis if ‹[p, q] >> [p]›
using that by force

with Basic show ?thesis
by force

qed

proposition ‹[] >> [(p → q) → p → q]›
proof −

from Imp-R have ?thesis if ‹[p → q] >> [p → q]›
using that by force

with Basic show ?thesis
by force

qed

proposition ‹[] >> [p → p → q → q]›
proof −

from Imp-R have ?thesis if ‹[p] >> [p → q → q]›
using that by force

with Imp-R have ?thesis if ‹[p, p] >> [q → q]›
using that by force

with Imp-R have ?thesis if ‹[q, p, p] >> [q]›
using that by force

with Basic show ?thesis
by force

qed

proposition ‹[] >> [(p → p → q) → p → q]›
proof −

from Imp-R have ?thesis if ‹[p → p → q] >> [p → q]›
using that by force

with Imp-R have ?thesis if ‹[p, p → p → q] >> [q]›
using that by force

with Set-L have ?thesis if ‹[p → p → q, p] >> [q]›
using that by force

with Imp-L have ?thesis if ‹[p] >> [p, q]› and ‹[p → q, p] >> [q]›
using that by force

with Imp-L have ?thesis if ‹[p] >> [p, q]› and ‹[q, p] >> [q]› and ‹[p] >> [p, q]›
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using that by force
with Basic show ?thesis

by force
qed

proposition ‹[] >> [p → q → p]›
proof −

from Imp-R have ?thesis if ‹[p] >> [q → p]›
using that by force

with Imp-R have ?thesis if ‹[q, p] >> [p]›
using that by force

with Set-L have ?thesis if ‹[p, q] >> [p]›
using that by force

with Basic show ?thesis
by force

qed

proposition ‹[] >> [(p → r) → (r → q) → p → q]›
proof −

from Imp-R have ?thesis if ‹[p → r ] >> [(r → q) → p → q]›
using that by force

with Imp-R have ?thesis if ‹[r → q, p → r ] >> [p → q]›
using that by force

with Imp-R have ?thesis if ‹[p, r → q, p → r ] >> [q]›
using that by force

with Set-L have ?thesis if ‹[r → q, p → r , p] >> [q]›
using that by force

with Imp-L have ?thesis if ‹[p → r , p] >> [r , q]› and ‹[q, p → r , p] >> [q]›
using that by force

with Basic have ?thesis if ‹[p → r , p] >> [r , q]›
using that by force

with Imp-L have ?thesis if ‹[p] >> [p, r , q]› and ‹[r , p] >> [r , q]›
using that by force

with Basic show ?thesis
by force

qed

proposition ‹[] >> [((p → q) → p) → p]›
proof −

from Imp-R have ?thesis if ‹[(p → q) → p] >> [p]›
using that by force

with Imp-L have ?thesis if ‹[] >> [p → q, p]› and ‹[p] >> [p]›
using that by force

with Basic have ?thesis if ‹[] >> [p → q, p]›
using that by force

with Imp-R have ?thesis if ‹[p] >> [q, p]›
using that by force

with Set-R have ?thesis if ‹[p] >> [p, q]›
using that by force
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with Basic show ?thesis
by force

qed

end
theory Implicational-Logic-Natural-Deduction imports Main begin

datatype form =
Pro nat (‹·›) |
Imp form form (infixr ‹→› 100 )

primrec semantics (infix ‹|=› 50 ) where
‹I |= ·n = I n› |
‹I |= p → q = (I |= p −→ I |= q)›

inductive Calculus (infix ‹ › 50 ) where
Assm: ‹p ∈ set A =⇒ A  p› |
ImpI : ‹p # A  q =⇒ A  p → q› |
ImpE : ‹A  p → q =⇒ A  p =⇒ A  q› |
ImpC : ‹p → - # A  p =⇒ A  p›

abbreviation natural-deduction (‹` -› [100 ] 100 ) where ‹` p ≡ []  p›

theorem soundness: ‹A  p =⇒ ∀ p ∈ set A. I |= p =⇒ I |= p›
by (induct rule: Calculus.induct) auto

lemma weaken ′: ‹A  p =⇒ set A = set B =⇒ B  p›
proof (induct arbitrary: B rule: Calculus.induct)

case ImpC
with Calculus.ImpC show ?case

using list.set(2 ) by metis
qed (auto intro: Calculus.intros)

lemma weak: ‹A  p =⇒ q # A  p›
proof (induct rule: Calculus.induct)

case ImpI
with Calculus.ImpI show ?case

using insert-commute list.set(2 ) weaken ′ by (metis (full-types))
next

case ImpC
with Calculus.ImpC show ?case

using insert-commute list.set(2 ) weaken ′ by (metis (full-types))
qed (auto intro: Calculus.intros)

lemma add-assumptions: ‹` p =⇒ A  p›
by (induct A) (simp-all add: weak)

lemma weaken: ‹A  p =⇒ set A ⊆ set B =⇒ B  p›
proof (induct A arbitrary: p)
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case (Cons q A)
moreover from this have ‹A  q → p› and ‹set A ⊆ set B› and ‹B  q›

by (simp-all add: Assm ImpI )
ultimately show ?case

using ImpE by blast
qed (simp add: add-assumptions)

lemma deduct: ‹A  p → q =⇒ p # A  q›
using Assm ImpE list.set-intros(1 ) weak by meson

lemma Peirce: ‹` ((p → q) → p) → p›
using Assm ImpC ImpI deduct list.set-intros(1 ) by meson

lemma Simp: ‹` p → q → p›
by (simp add: Assm ImpI )

lemma Tran: ‹` (p → q) → (q → r) → p → r›
proof −

have ‹[p, q → r , p → q]  r›
using Assm ImpE list.set-intros(1 ) weak by meson

then show ?thesis
using ImpI by blast

qed

lemma Swap: ‹` (p → q → r) → q → p → r›
proof −

have ‹[p, q, p → q → r ]  r›
using Assm ImpE list.set-intros(1 ) weak by meson

then show ?thesis
using ImpI by blast

qed

lemma Tran ′: ‹` (q → r) → (p → q) → p → r›
using ImpE Swap Tran .

lemma Imp1 : ‹` (q → s) → ((q → r) → s) → s›
using ImpE Peirce Tran Tran ′ by meson

lemma Imp2 : ‹` ((r → s) → s) → ((q → r) → s) → s›
using ImpE Tran ImpE Tran Simp .

lemma Imp3 : ‹` ((q → s) → s) → (r → s) → (q → r) → s›
using ImpE Tran Tran ′ by meson

fun pros where
‹pros (p → q) = remdups (pros p @ pros q)› |
‹pros p = (case p of ·n ⇒ [n] | - ⇒ [])›

lemma distinct-pros: ‹distinct (pros p)›
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by induct simp-all

abbreviation ‹lift t s p ≡ if t then (p → s) → s else p → s›

abbreviation ‹lifts I s ≡ map (λn. lift (I n) s (·n))›

lemma lifts-weaken: ‹lifts I s l  p =⇒ set l ⊆ set l ′ =⇒ lifts I s l ′ p›
proof −

assume ‹lifts I s l  p›
moreover assume ‹set l ⊆ set l ′›
then have ‹set ((lifts I s) l) ⊆ set ((lifts I s) l ′)›

by auto
ultimately show ?thesis

using weaken by blast
qed

lemma lifts-pros-lift: ‹lifts I s (pros p)  lift (I |= p) s p›
proof (induct p)

case (Imp q r)
consider ‹¬ I |= q› | ‹I |= r› | ‹I |= q› and ‹¬ I |= r›

by blast
then show ?case
proof cases

case 1
then have ‹lifts I s (pros (q → r))  q → s›

using Imp(1 ) lifts-weaken[where l ′ = ‹pros (q → r)›] by simp
then have ‹lifts I s (pros (q → r))  ((q → r) → s) → s›

using Imp1 ImpE add-assumptions by blast
with 1 show ?thesis

by simp
next

case 2
then have ‹lifts I s (pros (q → r))  (r → s) → s›

using Imp(2 ) lifts-weaken[where l ′ = ‹pros (q → r)›] by simp
then have ‹lifts I s (pros (q → r))  ((q → r) → s) → s›

using Imp2 ImpE add-assumptions by blast
with 2 show ?thesis

by simp
next

case 3
then have

‹lifts I s (pros (q → r))  (q → s) → s›
‹lifts I s (pros (q → r))  r → s›
using Imp lifts-weaken[where l ′ = ‹pros (q → r)›] by simp-all

then have ‹lifts I s (pros (q → r))  (q → r) → s›
using Imp3 ImpE add-assumptions by blast

with 3 show ?thesis
by simp

qed
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qed (simp add: Assm)

lemma lifts-pros: ‹I |= p =⇒ lifts I p (pros p)  p›
proof −

assume ‹I |= p›
then have ‹lifts I p (pros p)  (p → p) → p›

using lifts-pros-lift[of I p p] by simp
then show ?thesis

using ImpC deduct by blast
qed

theorem completeness: ‹∀ I . I |= p =⇒ ` p›
proof −

let ?A = ‹λl I . lifts I p l  p›
let ?B = ‹λl. ∀ I . ?A l I ∧ distinct l›
assume ‹∀ I . I |= p›
moreover have ‹?B l =⇒ (

∧
n l. ?B (n # l) =⇒ ?B l) =⇒ ?B []› for l

by (induct l) blast+
moreover have ‹?B (n # l) =⇒ ?B l› for n l
proof −

assume ∗: ‹?B (n # l)›
show ‹?B l›
proof

fix I
from ∗ have

‹?A (n # l) (I (n := True))›
‹?A (n # l) (I (n := False))›
by blast+

moreover from ∗ have ‹∀m ∈ set l. ∀ t. (I (n := t)) m = I m›
by simp

ultimately have
‹((·n → p) → p) # lifts I p l  p›
‹(·n → p) # lifts I p l  p›
by (simp-all cong: map-cong)

then have ‹?A l I ›
using ImpE ImpI by blast

moreover from ∗ have ‹distinct (n # l)›
by blast

ultimately show ‹?A l I ∧ distinct l›
by simp

qed
qed
ultimately have ‹?B []›

using lifts-pros distinct-pros by blast
then show ?thesis

by simp
qed

primrec chain where
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‹chain p [] = p› |
‹chain p (q # A) = q → chain p A›

lemma chain-rev: ‹B  chain p A =⇒ rev A @ B  p›
by (induct A arbitrary: B) (simp-all add: deduct)

lemma chain-deduct: ‹` chain p A =⇒ A  p›
proof (induct A)

case (Cons q A)
then have ‹rev (q # A) @ []  p›

using chain-rev by blast
moreover have ‹set (rev (q # A) @ []) = set (q # A)›

by simp
ultimately show ?case

using weaken by blast
qed simp

lemma chain-semantics: ‹I |= chain p A = ((∀ p ∈ set A. I |= p) −→ I |= p)›
by (induct A) auto

theorem main: ‹A  p = (∀ I . (∀ p ∈ set A. I |= p) −→ I |= p)›
using chain-deduct chain-semantics completeness soundness by meson

end
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